Science.gov

Sample records for li3ca2c6 intercalated graphite

  1. Superconducting graphite intercalation compounds with calcium

    NASA Astrophysics Data System (ADS)

    Emery, N.; Hérold, C.; Marêché, J.-F.; Lagrange, P.; Bellouard, C.; Lamura, G.; Di Gennaro, E.; Andreone, A.

    2008-04-01

    In the graphite-lithium-calcium system, four well-defined intercalation compounds were synthesised. Two of them, CaC 6 and Li 3Ca 2C 6, exhibit superconducting properties at 11.5 K and 11.15 K, respectively, the highest critical temperatures among those of graphite intercalation compounds. The samples are synthesised using a liquid-solid method allowing the preparation of pure bulk samples, auspicious for crystallographic and magnetic measurements. The crystal structure of CaC 6 was entirely specified; this compound crystallises in the R-3 m space group. The two-dimensional unit cell of Li 3Ca 2C 6 is hexagonal and commensurate with that of graphite and the intercalated sheets, very rich in metal, are seven-layered. The magnetic properties of these phases were studied with an applied field parallel and perpendicular to the graphene sheets. In both cases the magnetic phase diagram indicates that these compounds are type II superconducting materials slightly anisotropic in spite of their lamellar structure. In the case of CaC 6, in-plane magnetic penetration depth measurements show a clear exponential behaviour at low temperatures, consistent with an s-wave symmetry of the gap function, well fitted by the standard BCS theory in the dirty limit.

  2. Intercalated graphite electrical conductors

    NASA Technical Reports Server (NTRS)

    Banks, B. A.

    1983-01-01

    For years NASA has wanted to reduce the weight of spacecraft and aircraft. Experiments are conducted to find a lightweight synthetic metal to replace copper. The subject of this paper, intercalated graphite, is such a material. Intercalated graphite is made by heating petroleum or coal to remove the hydrogen and to form more covalent bonds, thus increasing the molecular weight. The coal or petroleum eventually turns to pitch, which can then be drawn into a fiber. With continued heating the pitch-based fiber releases hydrogen and forms a carbon fiber. The carbon fiber, if heated sufficiently, becomes more organized in parallel layers of hexagonally arranged carbon atoms in the form of graphite. A conductor of intercalated graphite is potentially useful for spacecraft or aircraft applications because of its low weight.

  3. Density of intercalated graphite fibers

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Slabe, Melissa E.

    1990-01-01

    The density of Amoco P-55, P-75, P-100, and P-120 pitch-based graphite fibers and their intercalation compounds with bromine, iodine monochloride, and copper (II) chloride have been measured using a density gradient column. The distribution of densities within a fiber type is found to be a sensitive indicator of the quality of the intercalation reaction. In all cases the density was found to increase, indicating that the mass added to the graphite is dominant over fiber expansion. Density increases are small (less than 10 percent) giving credence to a model of the intercalated graphite fibers which have regions which are intercalated and regions which are not.

  4. Density of intercalated graphite fibers

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Slabe, Melissa E.

    1989-01-01

    The density of Amoco P-55, P-75, P-100, and P-120 pitch-based graphite fibers and their intercalation compounds with bromine, iodine monochloride, and copper (II) chloride have been measured using a density gradient column. The distribution of densities within a fiber type is found to be a sensitive indicator of the quality of the intercalation reaction. In all cases the density was found to increase, indicating that the mass added to the graphite is dominant over fiber expansion. Density increases are small (less than 10 percent) giving credence to a model of the intercalated graphite fibers which have regions which are intercalated and regions which are not.

  5. Intercalated hybrid graphite fiber composite

    NASA Technical Reports Server (NTRS)

    Gaier, James R. (Inventor)

    1993-01-01

    The invention is directed to a highly conductive lightweight hybrid material and methods of producing the same. The hybrid composite is obtained by weaving strands of a high strength carbon or graphite fiber into a fabric-like structure, depositing a layer of carbon onto the structure, heat treating the structure to graphitize the carbon layer, and intercalating the graphitic carbon layer structure. A laminate composite material useful for protection against lightning strikes comprises at least one layer of the hybrid material over at least one layer of high strength carbon or graphite fibers. The composite material of the present invention is compatible with matrix compounds, has a coefficient of thermal expansion which is the same as underlying fiber layers, and is resistant to galvanic corrosion in addition to being highly conductive. These materials are useful in the aerospace industry, in particular as lightning strike protection for airplanes.

  6. Graphite fiber intercalation: Dynamics of the bromine intercalation process

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.; Zinolabedini, R.

    1985-01-01

    The resistance of pitch-based graphite fibers was monitored, in situ, during a series of bromine intercalation experiments. The threshold pressure for the bromine intercalation of pitch-based fibers was estimated to be 102 torr. When the bromine atmosphere was removed from the reaction chamber, the resistivity of the intercalated graphite fibers increased consistently. This increase was attributed to loss of bromine from the perimeter of the fiber. The loss was confirmed by mapping the bromine concentration across the diameter of single intercalated fibers with either energy dispersive spectroscopy or scanning Auger microscopy. A statistical study comparing fibers intercalated in bromine vapor with fibers intercalated in bromine liquid showed that similar products were obtained with both methods of intercalation.

  7. Superconductivity in graphite intercalation compounds

    DOE PAGESBeta

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P. M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-02-26

    This study examines the field of superconductivity in the class of materials known as graphite intercalation compounds which has a history dating back to the 1960s. This paper recontextualizes the field in light of the discovery of superconductivity in CaC₆ and YbC₆ in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how this relates to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic statesmore » and phonon modes are most important for superconductivity and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.« less

  8. Superconductivity in graphite intercalation compounds

    SciTech Connect

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P. M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-02-26

    This study examines the field of superconductivity in the class of materials known as graphite intercalation compounds which has a history dating back to the 1960s. This paper recontextualizes the field in light of the discovery of superconductivity in CaC₆ and YbC₆ in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how this relates to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  9. Stability of Bromine Intercalated Graphite Fibers

    NASA Technical Reports Server (NTRS)

    Gaier, J. R.

    1984-01-01

    Previous evidence suggested that bromine intercalation compounds of crystalline graphite spontaneously deintercalate when the bromine atmosphere is removed. However, results show that bromine intercalated P-100 graphite fibers are stable for long periods of time. They are stable under vacuum conditions, high humidity, and current densities up to 24,000 A/sq cm. They are thermally stable to 200 C, and at temperatures as high as 400 C still retain 80 percent of the conductivity gained by intercalation. At temperatures greater than 300 C, there is significant oxidative degradation of the fibers. The environmental stability shown by the bromine compound makes it a promising candidate for practical applications in aerospace technology.

  10. Feasibility of intercalated graphite railgun armatures

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Gooden, Clarence E.; Yashan, Doreen; Naud, Steven

    1990-01-01

    Graphite intercalation compounds may provide an excellent material for the fabrication of electro-magnetic railgun armatures. As a pulse of power is fed into the armature the intercalate could be excited into the plasma state around the edges of the armature, while the bulk of the current would be carried through the graphite block. Such an armature would have the desirable characteristics of both diffuse plasma armatures and bulk conduction armatures. In addition, the highly anisotropic nature of these materials could enable the electrical and thermal conductivity to be tailored to meet the specific requirements of electromagnetic railgun armatures. Preliminary investigations were performed in an attempt to determine the feasibility of using graphite intercalation compounds as railgun armatures. Issues of fabrication, resistivity, stability, and electrical current spreading are addressed for the case of highly oriented pyrolytic graphite.

  11. Environmental stability of intercalated graphite fibers

    NASA Technical Reports Server (NTRS)

    Gaier, J. R.; Jaworske, D. A.

    1985-01-01

    Graphite fibers intercalated with bromine, iodine monochloride, ferric chloride, and cupric chloride were subjected to stability tests under four environments which are encountered by engineering materials in the aerospace industry: ambient laboratory conditions, as would be experienced during handling operations and terrestrial applications; high vacuum, as would be experienced in space applications; high humidity, as would be experienced in marine applications; and high temperature, as would be experienced in some processing steps and applications. Monitoring the resistance of the fibers at ambient laboratory conditions revealed that only the ferric chloride intercalated fibers were unstable, due to absorption of water from the air. All four types of intercalated fibers were unstable, due to absorption of water from the air. All four types of intercalated fibers were stable for long periods under high vacuum. Ferric chloride, cupric chloride, and iodine monochloride intercalated fibers were sensitive to high humidity conditions. All intercalated fibers began to degrade above 250 C. The order of their thermal stability, from lowest to highest, was cupric chloride, iodine monochloride, bromine, and ferric chloride. Of the four types of intercalated fibers tested, the bromine intercalated fibers appear to have the most potential for application, based on environmental stability.

  12. EMI Shields made from intercalated graphite composites

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Terry, Jennifer

    1995-01-01

    Electromagnetic interference (EMI) shielding typically makes up about twenty percent of the mass of a spacecraft power system. Graphite fiber/polymer composites have significantly lower densities and higher strengths than aluminum, the present material of choice for EMI shields, but they lack the electrical conductivity that enables acceptable shielding effectiveness. Bromine intercalated pitch-based graphite/epoxy composites have conductivities fifty times higher than conventional structural graphite fibers. Calculations are presented which indicate that EMI shields made from such composites can have sufficient shielding at less than 20% of the mass of conventional aluminum shields. EMI shields provide many functions other than EMI shielding including physical protection, thermal management, and shielding from ionizing radiation. Intercalated graphite composites perform well in these areas also. Mechanically, they have much higher specific strength and modulus than aluminum. They also have shorter half thicknesses for x-rays and gamma radiation than aluminum. Thermally, they distribute infra-red radiation by absorbing and re-radiating it rather than concentrating it by reflection as aluminum does. The prospects for intercalated graphite fiber/polymer composites for EMI shielding are encouraging.

  13. Graphite intercalation compound with iodine as the major intercalate

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh; Kucera, Donald

    1994-01-01

    Halogenated graphite CBr(x)I(y) (I less than y/x less than 10) was made by exposing graphite materials to either pure Br2 or an I2/Br2/HBr mixture to initiate the reaction, and then to iodine vapor containing a small amount of Br2/HBr/IBr to complete the intercalation reaction. Wetting of the graphite materials by the I2/Br2/HBr mixture is needed to start the reaction, and a small amount of Br2/HBr/IBr is needed to complete the charge transfer between iodine and carbon. The interplanar spacings for the graphite materials need to be in the 3.35 to 3.41 A range. The X-ray diffraction data obtained from the halogenated HOPG indicate that the distance between the two carbon layers containing intercalate is 7.25 A. Electrical resistivity of the fiber product is from 3 to 6.5 times the pristine value, The presence of a small amount of isoprene rubber in the reaction significantly increased the iodine-to-bromine ratio in the product. In this reaction, rubber is known to generate HBr and to slowly remove bromine from the vapor. The halogenation generally caused a 22 percent to 25 percent weight increase. The halogens were found uniformly distributed in the product interior. However, although the surface contains very little iodine, it has high concentrations of bromine and oxygen. It is believed that the high concentrations of bromine and oxygen in this surface cause the halogenated fiber to be more resistant to structural damage during subsequent fluorination to fabricate graphite fluoride fibers.

  14. Ferric chloride graphite intercalation compounds prepared from graphite fluoride

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    1994-01-01

    The reaction between graphite fluoride and ferric chloride was observed in the temperature range of 300 to 400 C. The graphite fluorides used for this reaction have an sp3 electronic structure and are electrical insulators. They can be made by fluorinating either carbon fibers or powder having various degrees of graphitization. Reaction is fast and spontaneous and can occur in the presence of air. The ferric chloride does not have to be predried. The products have an sp2 electronic structure and are electrical conductors. They contain first stage FeCl3 intercalated graphite. Some of the products contain FeCl2*2H2O, others contain FeF3 in concentrations that depend on the intercalation condition. The graphite intercalated compounds (GIC) deintercalated slowly in air at room temperature, but deintercalated quickly and completely at 370 C. Deintercalation is accompanied by the disappearing of iron halides and the formation of rust (hematite) distributed unevenly on the fiber surface. When heated to 400 C in pure N2 (99.99 vol %), this new GIC deintercalates without losing its molecular structure. However, when the compounds are heated to 800 C in quartz tube, they lost most of its halogen atoms and formed iron oxides (other than hematite), distributed evenly in or on the fiber. This iron-oxide-covered fiber may be useful in making carbon-fiber/ceramic-matrix composites with strong bonding at the fiber-ceramic interface.

  15. Structural state of expanded graphite prepared from intercalation compounds

    SciTech Connect

    Teplykh, A. E. Bogdanov, S. G.; Dorofeev, Yu. A.; Pirogov, A. N.; Skryabin, Yu. N.; Makotchenko, V. G.; Nazarov, A. S.; Fedorov, V. E.

    2006-12-15

    The structural state of nanocrystalline samples of expanded graphite is investigated using X-ray diffraction and neutron diffraction analyses. The expanded graphite samples are prepared by a rapid thermal decomposition of intercalation compounds of oxidized graphite based on fluorinated graphite, graphite oxide, and graphite aminofluoride. It is established that the main phase of expanded graphite belongs to the hexagonal crystal system (space group P6{sub 3}/mmc) and that carbon atoms in the structure occupy the 2b and 2c positions. The unit cell parameters and the unit cell volume in the structure of expanded graphite samples are larger than those in the structure of massive graphite.

  16. Kinetics of the Formation of Intercalation Compounds in Crystalline Graphite

    NASA Technical Reports Server (NTRS)

    Sharma, P. K.; Hickey, G. S.

    1995-01-01

    Crystalline graphite has a structure that can be best described as an ordered stack of flat aromatic layers. It is known to form intercalation compounds with bromine and nitric acid. Their formation was studied using thermal measurements and analytical techniques. Samples of graphite treated with either bromine or nitric acid were prepared by contacting these reagents with powdered graphite.

  17. Intercalation of solid hydrogen into graphite under pressures

    NASA Astrophysics Data System (ADS)

    Lim, Jinhyuk; Yoo, Choong-Shik

    2016-08-01

    We present the Raman spectral evidence of pressure-induced intercalation of solid hydrogen into graphite to 60 GPa. The intercalation is evident by the emergence of two characteristic Raman bands of hydrogen (νo1 and νo2), which appear upon the solidification of hydrogen and disappear as all sp2-hybridized graphitic carbons convert to sp3-hybridized hexagonal diamond at 57 GPa. The νo1 and νo2 frequencies of intercalated hydrogen, 4250 and 4270 cm-1 at 10 GPa, are substantially higher than the νo of bulk hydrogen, 4228 cm-1 at the same pressure, indicating the presence of strong repulsive interactions between intercalated hydrogen molecules and graphite layers and, thereby, strong internal chemical pressures. Based on the spectral blue shift of intercalated hydrogen vibrons, we estimate the internal pressure to be ˜1 GPa at 10 GPa and ˜10 GPa at 50 GPa.

  18. Small-angle x-ray scattering of intercalation compounds of graphite, fluorographite, and graphite oxide

    SciTech Connect

    Perevozkin, V.Yu.; Yur'ev, G.S.; Nazarov, A.S.; Danilenko, A.M.; Lisitsa, V.V.; Makotchenko, V.G.; Paasonen, V.M.; Yakovlev, I.I.

    1988-05-01

    Graphite intercalation compounds are interesting as cathode materials in chemical current sources and catalysts and are good conductors of electricity. Small-angle x-ray scattering was studied on natural graphite, intercalation compounds of fluorinated graphite, graphite oxide, and the products of reduction of the compounds. It was shown that scattering takes place in regions with a lower density and the size of the density inhomogeneities was determined.

  19. Electrochemical intercalation and electrical conductivity of graphite fibers

    NASA Technical Reports Server (NTRS)

    Besenhard, J. O.; Fritz, H. P.; Moehwald, H.; Nickl, J. J.

    1982-01-01

    Lamellar compounds of graphite fibers were prepared by electrochemical intercalation. The dependence of the electrical resistance on the intercalate concentration was determined by a quasi simultaneous method. A factor 30 decrease of the relative fiber resistance was obtained with fluorosulfuric acid.

  20. Obtaining graphene nanoplatelets from various graphite intercalation compounds

    NASA Astrophysics Data System (ADS)

    Melezhyk, A.; Galunin, E.; Memetov, N.

    2015-11-01

    The work compares the exfoliation ability of different graphite materials (expanded graphite intercalation compound, thermally expanded and oxidatively intercalated graphites) and describes the properties of graphene nanoplatelets (GNPs) obtained dependently on intercalation/deintercalation conditions and reagents. Among the studied materials, the graphite intercalated with ammonium persulfate in sulfuric acid and expanded at 40 °C possesses the maximum ability for ultrasonic exfoliation in the presence of a surfactant. The exfoliation efficiency strongly depends on the content of water in sulfuric acid during the intercalation. The highest efficiency was achieved for the expanded graphite intercalation compound (EGIC) prepared in sulfuric acid containing diluted oleum, which may be explained by increased acidity of the medium and, correspondingly, redox potential of the persulfate compound. This is also related to increased amounts of oxygen groups in the GNPs obtained from the EGIC synthesized in 100% sulfuric acid and diluted oleum. Besides, the nature of surface groups on the GNPs strongly depends on the nature of a deintercalating reagent. Thus, the treatment of the EGIC with different nucleophilic molecules (such as water, ammonia, carbamide, hexamethylenetetramine, organic amines, etc.) can yield GNPs with various surface groups. The interaction between the EGIC and nucleophilic molecules does not only include the substitution of sulfate groups, but also redox reactions with participation of graphene layers. Depending on the nature of the nucleophile, those reactions can lead to the formation of different groups attached to the graphene surface. GNPs with almost pure surface were obtained when using ammonia and carbamide.

  1. Homogeneity of pristine and bromine intercalated graphite fibers

    NASA Technical Reports Server (NTRS)

    Gaier, J. R.; Marino, D.

    1985-01-01

    Wide variations in the resistivity of intercalated graphite fibers and to use these materials for electrical applications, their bulk properties must be established. The homogeneity of the diameter, the resistivity, and the mass density of 50 graphite fibers, before and after bromine intercalation was measured. Upon intercalation the diameter was found to expand by about 5%, the resistivity to decrease by a factor of five, and the density to increase by about 6%. Each individual fiber was found to have uniform diameter and resistivity over macroscopic regions for lengths as long as 7 cm. The ratio of pristine to intercalated resistivity increases as the pristine fiber diameter increases at a rate of 0.16 micron, but decreases with the increasing ratio of intercalated diameter to pristine diameter at a rate of 0.08.

  2. The preliminary feasibility of intercalated graphite railgun armatures

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Gooden, Clarence E.; Yashan, Doreen; Naud, Steve

    1991-01-01

    Graphite intercalation compounds may provide an excellent material for the fabrication of electromagnetic railgun armatures. As a pulse of power is fed into the armature the intercalate could be excited into the plasma state around the edges of the armature, while the bulk of the current would be carried through the graphite block. Such an armature would have both diffuse plasma armatures and bulk conduction armatures. In addition, the highly anisotropic nature of these materials could enable the electrical and thermal conductivity to be tailored to meet the specific requirements of electromagnetic railgun armatures. Preliminary investigations have been performed in an attempt to determine the feasibility of using graphite intercalation compounds as railgun armatures. Issues of fabrication, resistivity, stability, and electrical current spreading have been addressed for the case of highly oriented pyrolytic graphite.

  3. Environmentally benign graphite intercalation compound composition for exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    SciTech Connect

    Zhamu, Aruna; Jang, Bor Z.

    2014-06-17

    A carboxylic-intercalated graphite compound composition for the production of exfoliated graphite, flexible graphite, or nano-scaled graphene platelets. The composition comprises a layered graphite with interlayer spaces or interstices and a carboxylic acid residing in at least one of the interstices, wherein the composition is prepared by a chemical oxidation reaction which uses a combination of a carboxylic acid and hydrogen peroxide as an intercalate source. Alternatively, the composition may be prepared by an electrochemical reaction, which uses a carboxylic acid as both an electrolyte and an intercalate source. Exfoliation of the invented composition does not release undesirable chemical contaminants into air or drainage.

  4. Graphite fiber intercalation: Basic properties of copper chloride intercalated fibers

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.; Miller, J. D.

    1986-01-01

    In situ resistance measurements were used to follow the intercalation of copper chloride in pitch-based fibers. Subsequent single fiber resistivity measurements reveal a large range of resistivities, from 13 to 160 micro-ohms cm. Additional density measurements reveal a bimodal distribution of mass densities. The dense fibers have lower resistivities and correspond to the stage III compound identified by X-ray diffraction. Neither resistivity nor density correlate with diameter. Both energy dispersive spectroscopy and mass density data suggest that excess chlorine resides in the intercalated fiber, resulting in a stoichiometry of C4.9n CuCl2.5 (where n is the stage number) for the denser fibers. Finally, thermogravimetric analysis shows a 33 percent loss in mass upon heating to 700C. This loss in mass is attributed to loss of both chlorine and carbon.

  5. Preparation of graphite intercalation compounds containing oligo and polyethers

    NASA Astrophysics Data System (ADS)

    Zhang, Hanyang; Lerner, Michael M.

    2016-02-01

    Layered host-polymer nanocomposites comprising polymeric guests between inorganic sheets have been prepared with many inorganic hosts, but there is limited evidence for the incorporation of polymeric guests into graphite. Here we report for the first time the preparation, and structural and compositional characterization of graphite intercalation compounds (GICs) containing polyether bilayers. The new GICs are obtained by either (1) reductive intercalation of graphite with an alkali metal in the presence of an oligo or polyether and an electrocatalyst, or (2) co-intercalate exchange of an amine for an oligo or polyether in a donor-type GIC. Structural characterization of products using powder X-ray diffraction, Raman spectroscopy, and thermal analyses supports the formation of well-ordered, first-stage GICs containing alkali metal cations and oligo or polyether bilayers between reduced graphene sheets.Layered host-polymer nanocomposites comprising polymeric guests between inorganic sheets have been prepared with many inorganic hosts, but there is limited evidence for the incorporation of polymeric guests into graphite. Here we report for the first time the preparation, and structural and compositional characterization of graphite intercalation compounds (GICs) containing polyether bilayers. The new GICs are obtained by either (1) reductive intercalation of graphite with an alkali metal in the presence of an oligo or polyether and an electrocatalyst, or (2) co-intercalate exchange of an amine for an oligo or polyether in a donor-type GIC. Structural characterization of products using powder X-ray diffraction, Raman spectroscopy, and thermal analyses supports the formation of well-ordered, first-stage GICs containing alkali metal cations and oligo or polyether bilayers between reduced graphene sheets. Electronic supplementary information (ESI) available: Domain size, additional Raman spectra info, compositional calculation, and packing fractions. See DOI: 10.1039/c5

  6. Durability of Intercalated Graphite Epoxy Composites in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Davidson, Michelle L.; Shively, Rhonda

    1996-01-01

    The electrical conductivity of graphite epoxy composites can be substantially increased by intercalating (inserting guest atoms or molecules between the graphene planes) the graphite fibers before composite formation. The resulting high strength, low density, electrically conducting composites have been proposed for EMI shielding in spacecraft. Questions have been raised, however, about their durability in the space environment, especially with respect to outgassing of the intercalates, which are corrosive species such as bromine. To answer those concerns, six samples of bromine intercalated graphite epoxy composites were included in the third Evaluation of Oxygen Interaction with Materials (EOIM-3) experiment flown on the Space Shuttle Discovery (STS-46). Changes in electrical conductivity, optical reflectance, surface texture, and mass loss for SiO2 protected and unprotected samples were measured after being exposed to the LEO environment for 42 hours. SiO2 protected samples showed no degradation, verifying conventional protection strategies are applicable to bromine intercalated composites. The unprotected samples showed that bromine intercalation does not alter the degradation of graphite-epoxy composites. No bromine was detected to have been released by the fibers allaying fears that outgassing could be disruptive to the sensitive electronics the EMI shield is meant to protect.

  7. Revisiting the domain model for lithium intercalated graphite

    SciTech Connect

    Krishnan, Sridevi; Brenet, Gilles; Caliste, Damien; Genovese, Luigi; Deutsch, Thierry; Pochet, Pascal

    2013-12-16

    In this Letter, we study the stability of the domain model for lithium intercalated graphite in stages III and II by means of Density Functional Theory and Kinetic Lattice Monte Carlo simulations. We find that the domain model is either thermodynamically or kinetically stable when compared to the standard model in stages III and II. The existence of domains in the intercalation sequence is well supported by recent high resolution transmission electron microscope observations in lithiated graphite. Moreover, we predict that such domain staging sequences leads to a wide range of diffusivity as reported in experiments.

  8. Graphite intercalation compound with iodine as the major intercalant

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh; Kucera, Donald

    1992-01-01

    Halogenated CBr(sub x)I(sub y) (1 less than y/x less than 10) was made by exposing graphite materials with interplanar spacing in the 3.35 to 3.41 A range to either pure Br2 or an I2-Br2 mixture, and then to iodine vapor containing a small amount of Br2. The electrical resistivity of this product is from 3 to 6.5 times the pristine value. The presence of a small amount of isoprene rubber in the reaction significantly increased the iodine to bromine ratio in the product. In this reaction, rubber is known to generate HBr and to slowly remove bromine from the vapor. The halogenation generally caused a 22 to 25 percent weight increase. The halogens were found uniformly distributed in the product interior. However, although the surface contains very little iodine, it has high concentrations of bromine and oxygen. It is believed that the high concentrations of bromine and oxygen in this surface cause the halogenated fiber to be more resistant to fluorine attack during subsequent fluorination to fabricate graphite fluoride fibers.

  9. Reversible Intercalation of Fluoride-Anion Receptor Complexes in Graphite

    NASA Technical Reports Server (NTRS)

    West, William C.; Whitacre, Jay F.; Leifer, Nicole; Greenbaum, Steve; Smart, Marshall; Bugga, Ratnakumar; Blanco, Mario; Narayanan, S. R.

    2007-01-01

    We have demonstrated a route to reversibly intercalate fluoride-anion receptor complexes in graphite via a nonaqueous electrochemical process. This approach may find application for a rechargeable lithium-fluoride dual-ion intercalating battery with high specific energy. The cell chemistry presented here uses graphite cathodes with LiF dissolved in a nonaqueous solvent through the aid of anion receptors. Cells have been demonstrated with reversible cathode specific capacity of approximately 80 mAh/g at discharge plateaus of upward of 4.8 V, with graphite staging of the intercalant observed via in situ synchrotron X-ray diffraction during charging. Electrochemical impedance spectroscopy and B-11 nuclear magnetic resonance studies suggest that cointercalation of the anion receptor with the fluoride occurs during charging, which likely limits the cathode specific capacity. The anion receptor type dictates the extent of graphite fluorination, and must be further optimized to realize high theoretical fluorination levels. To find these optimal anion receptors, we have designed an ab initio calculations-based scheme aimed at identifying receptors with favorable fluoride binding and release properties.

  10. Preparation of graphite oxide by sodium cholate intercalation and sonication from Indonesian natural graphite

    NASA Astrophysics Data System (ADS)

    Panatarani, Camellia; Maulana, Ayu Oktama; Rianto, Anton; Joni, I. Made

    2016-02-01

    Graphite oxide is widely use in renewable energy application such as solar cells, fuel-cells, battery electrodes, catalyst support, etc. This paper reports the preparation of graphite oxide from Indonesian natural graphite by sodium cholate intercalation. The enrichment process of as received graphite with carbon content of 60% was carried out by using acid leaching (HF) method. The enrichment process successfully obtained graphite with carbon content 95.61% with contaminant minerals observed by EDS were magnesium and aluminum. Purified graphite was then intercalated by sodium cholate at various concentration and sonication time. The XRD results shows that preparation with concentration of sodium cholate 2 Wt.% and sonication 10 hours formed a peak characteristic of graphite oxide at 2θ=15°. In addition, the successful oxidation process designated by the C/O ratio of 15.75 observed from EDS and supported by the present of functional C-H and C-O obtained from the FTIR observation. It is concluded that the graphite oxide successfully prepared by intercalation using sodium cholate and sonication.

  11. Dry synthesis of lithium intercalated graphite powders and carbon fibers

    SciTech Connect

    Sacci, Robert L; Adamczyk, Leslie A; Veith, Gabriel M; Dudney, Nancy J

    2014-01-01

    Herein we describe the direct synthesis of lithium intercalated graphite by heating under vacuum or ball milling under pressurized Ar(g). Both methods allow for stoichometric control of Li-C ratio in batter-grade graphites and carbon fibers prior formation of a solid electrolyte interphase. The products' surface chemistries, as probed by XPS, suggest that LiC6 are extremely reactive with trace amounts of moisture or oxygen. The open circuit potential and SEM data show that the reactivity of the lithiated battery-grade graphite and the carbon fiber can be related to the density of edge/defect sites on the surfaces. Preliminary results of spontaneous SEI formation on Li-graphite in electrolyte are also given.

  12. Sulfuric acid intercalated graphite oxide for graphene preparation.

    PubMed

    Hong, Yanzhong; Wang, Zhiyong; Jin, Xianbo

    2013-12-06

    Graphene has shown enormous potential for innovation in various research fields. The current chemical approaches based on exfoliation of graphite via graphite oxide (GO) are potential for large-scale synthesis of graphene but suffer from high cost, great operation difficulties, and serious waste discharge. We report a facile preparation of graphene by rapid reduction and expansion exfoliation of sulfuric acid intercalated graphite oxide (SIGO) at temperature just above 100°C in ambient atmosphere, noting that SIGO is easily available as the immediate oxidation descendent of graphite in sulfuric acid. The oxygenic and hydric groups in SIGO are mainly removed through dehydration as catalyzed by the intercalated sulfuric acid (ISA). The resultant consists of mostly single layer graphene sheets with a mean diameter of 1.07 μm after dispersion in DMF. This SIGO process is reductant free, easy operation, low-energy, environmental friendly and generates graphene with low oxygen content, less defect and high conductivity. The provided synthesis route from graphite to graphene via SIGO is compact and readily scalable.

  13. Sulfuric Acid Intercalated Graphite Oxide for Graphene Preparation

    NASA Astrophysics Data System (ADS)

    Hong, Yanzhong; Wang, Zhiyong; Jin, Xianbo

    2013-12-01

    Graphene has shown enormous potential for innovation in various research fields. The current chemical approaches based on exfoliation of graphite via graphite oxide (GO) are potential for large-scale synthesis of graphene but suffer from high cost, great operation difficulties, and serious waste discharge. We report a facile preparation of graphene by rapid reduction and expansion exfoliation of sulfuric acid intercalated graphite oxide (SIGO) at temperature just above 100°C in ambient atmosphere, noting that SIGO is easily available as the immediate oxidation descendent of graphite in sulfuric acid. The oxygenic and hydric groups in SIGO are mainly removed through dehydration as catalyzed by the intercalated sulfuric acid (ISA). The resultant consists of mostly single layer graphene sheets with a mean diameter of 1.07 μm after dispersion in DMF. This SIGO process is reductant free, easy operation, low-energy, environmental friendly and generates graphene with low oxygen content, less defect and high conductivity. The provided synthesis route from graphite to graphene via SIGO is compact and readily scalable.

  14. Sulfuric Acid Intercalated Graphite Oxide for Graphene Preparation

    PubMed Central

    Hong, Yanzhong; Wang, Zhiyong; Jin, Xianbo

    2013-01-01

    Graphene has shown enormous potential for innovation in various research fields. The current chemical approaches based on exfoliation of graphite via graphite oxide (GO) are potential for large-scale synthesis of graphene but suffer from high cost, great operation difficulties, and serious waste discharge. We report a facile preparation of graphene by rapid reduction and expansion exfoliation of sulfuric acid intercalated graphite oxide (SIGO) at temperature just above 100°C in ambient atmosphere, noting that SIGO is easily available as the immediate oxidation descendent of graphite in sulfuric acid. The oxygenic and hydric groups in SIGO are mainly removed through dehydration as catalyzed by the intercalated sulfuric acid (ISA). The resultant consists of mostly single layer graphene sheets with a mean diameter of 1.07 μm after dispersion in DMF. This SIGO process is reductant free, easy operation, low-energy, environmental friendly and generates graphene with low oxygen content, less defect and high conductivity. The provided synthesis route from graphite to graphene via SIGO is compact and readily scalable. PMID:24310650

  15. Intercalated graphite fiber composites as EMI shields in aerospace structures

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    1990-01-01

    The requirements for electromagnetic interference (EMI) shielding in aerospace structures are complicated over that of ground structures by their weight limitations. As a result, the best EMI shielding materials must blend low density, high strength, and high elastic modulus with high shielding ability. In addition, fabrication considerations including penetrations and joints play a major role. The EMI shielding properties are calculated for shields formed from pristine and intercalated graphite fiber/epoxy composites and compared to preliminary experimental results and to shields made from aluminum. Calculations indicate that EMI shields could be fabricated from intercalated graphite composites which would have less than 12 percent of the mass of conventional aluminum shields, based on mechanical properties and shielding properties alone.

  16. Technological hurdles to the application of intercalated graphite fibers

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    1988-01-01

    Before intercalated graphite fibers can be developed as an effective power material, there are several technological hurdles which must be overcome. These include the environmental stability, homogeneity and bulk properties, connection procedures, and costs. Strides were made within the last several years in stability and homogeneity of intercalated graphite fibers. Bulk properties and connection procedures are areas of active research now. Costs are still prohibitive for all but the most demanding applications. None of these problems, however, appear to be unsolvable, and their solution may result in wide spread GOC application. The development of a relatively simple technology application, such as EMI shielding, would stimulate the solution of scale-up problems. Once this technology is developed, then more demanding applications, such as power bus bars, may be possible.

  17. An enhanced hydrogen adsorption enthalpy for fluoride intercalated graphite compounds.

    PubMed

    Cheng, Hansong; Sha, Xianwei; Chen, Liang; Cooper, Alan C; Foo, Maw-Lin; Lau, Garret C; Bailey, Wade H; Pez, Guido P

    2009-12-16

    We present a combined theoretical and experimental study on H(2) physisorption in partially fluorinated graphite. This material, first predicted computationally using ab initio molecular dynamics simulation and subsequently synthesized and characterized experimentally, represents a novel class of "acceptor type" graphite intercalated compounds that exhibit significantly higher isosteric heat of adsorption for H(2) at near ambient temperatures than previously demonstrated for commonly available porous carbon-based materials. The unusually strong interaction arises from the semi-ionic nature of the C-F bonds. Although a high H(2) storage capacity (>4 wt %) at room temperature is predicted not to be feasible due to the low heat of adsorption, enhanced storage properties can be envisaged by doping the graphitic host with appropriate species to promote higher levels of charge transfer from graphene to F(-) anions. PMID:19928879

  18. Superconductivity in the Graphite Intercalation Compound BaC(6).

    PubMed

    Heguri, Satoshi; Kawade, Naoya; Fujisawa, Takumi; Yamaguchi, Akira; Sumiyama, Akihiko; Tanigaki, Katsumi; Kobayashi, Mototada

    2015-06-19

    Among many two-dimensional (2D) high T(C) superconductors, graphite intercalation compounds (GICs) are the most famous intercalation family, which are classified as typical electron-phonon mediated superconductors. We show unambiguous experimental facts that BaC(6), the superconductivity of which has been missing for many years so far among various alkaline earth metal (Ca, Sr, and Ba) intercalted GICs, exhibits superconductivity at T(C)=65  mK. By adding this finding as the additional experimental point, a complete figure displaying the relationship between T(C) and interlayer distance (d) for GICs is now provided, and their possible superconducting mechanisms raised so far are revisited. The present study settles a long-running debate between theories and experiments on the superconductivity in the first stage GICs.

  19. High-Temperature Intercalated Graphite Fiber Conductors Fabricated

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2002-01-01

    Composites of intercalated graphite fibers show promise to significantly reduce the weight of electromagnetic interference shielding in spacecraft and aircraft. Bromine intercalated pitch-based fibers have been among the most heavily studied systems because of their attractive electrical and thermal conductivities and their stability over a wide range of environmental conditions. Previous studies found that the resistivity of bromineintercalated graphite fibers began to increase when the fibers were exposed to temperatures in excess of about 200 C in air for long periods of time. If the temperature was as high as 450 C, the resistivity increased dramatically within a few hours. It remained unclear, however, whether the increase was due to deintercalation of the bromine or to air oxidation of the fibers. Studies were initially directed toward determining the temperature at which bromine would deintercalate from the fibers, and perhaps become a hazard to both personnel and equipment. So the mass of bromine-intercalated graphite fibers was carefully monitored as it was heated in an inert atmosphere, since the fibers are known to oxidize at a lower temperature than they deintercalate. What was found was that the fibers, which are about 18-wt% bromine, did not lose any appreciable mass even at temperatures approaching 1000 C. X-ray diffraction studies showed that there were also no changes in the overall structure of the compound. Resistivity measurements indicated that there is some slight degradation in the electronic structure, in that the resistivity increased by a few percent. Overall, the results show that these materials may be suitable for applications at temperatures at least this high, provided oxygen is excluded. This may enable their use in carbon-ceramic, and perhaps even carbon-carbon composites.

  20. C-13 nuclear magnetic resonance in graphite intercalation compounds

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Resing, H. A.

    1985-01-01

    The C-13 NMR chemical shifts of graphite intercalation compounds have been calculated. For acceptor types, the shifts come mainly from the paramagnetic (Ramsey) intra-atomic terms. They are related to the gross features of the two-dimensional band structures. The calculated anisotropy is about - 140 ppm and is independent of the finer details such as charge transfer. For donor types, the carbon 2p pi orbitals are spin-polarized because of mixing with metal-conduction electrons, thus there is an additional dipolar contribution which may be correlated with the electronic specific heat. The general agreement with experimental data is satisfactory.

  1. The 13C nuclear magnetic resonance in graphite intercalation compounds

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Resing, H. A.

    1985-01-01

    The (13)C NMR chemical shifts of graphite intercalation compounds were calculated. For acceptor types, the shifts come mainly from the paramagnetic (Ramsey) intra-atomic terms. They are related to the gross features of the two-dimensional band structures. The calculated anisotropy is about -140 ppm and is independent of the finer details such as charge transfer. For donor types, the carbon 2p pi orbitals are spin-polarized because of mixing with metal conduction electrons, thus there is an additional dipolar contribution which may be correlated with the electronic specific heat. The general agreement with experimental data is satisfactory.

  2. Electrochemical impedance analysis for lithium ion intercalation into graphitized carbons

    SciTech Connect

    Chang, Y.C.; Sohn, H.J.

    2000-01-01

    Electrochemical impedance spectroscopy (EIS) was employed to study electrochemical behaviors during intercalation of Li{sup +} into graphitized carbon anode. Analysis was carried out on three regions of frequencies mainly below 0.3 V. The first depressed semicircle in the high-frequency region had two-dimensional characteristics and did not vary over the entire potential range. The second semicircle in the mid-frequency region had a potential dependency above 0.3 V. Impedance spectra at the lower frequency region were attributed to the finite diffusion of Li{sup +}, and the order of the chemical diffusion coefficient was approximately 10{sup {minus}10} cm{sup 2}/s.

  3. Resistivity of pristine and intercalated graphite fiber epoxy composites

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Hambourger, Paul D.; Slabe, Melissa E.

    1989-01-01

    Laminar composites were fabricated from pristine and bromine intercalated Amoco P-55, P-75, and P-100 graphite fibers and Hysol-Grafil EAG101-1 film epoxy. The thickness and r.f. eddy current resistivity of several samples were measured at grid points and averaged point by point to obtain final values. Although the values obtained this way have high precision (less than 3 percent deviation), the resistivity values appear to be 20 to 90 percent higher than resistivities measured on high aspect ratio samples using multi-point techniques, and by those predicted by theory. The temperature dependence of the resistivity indicates that the fibers are neither damaged nor deintercalated by the composite fabrication process. The resistivity of the composites is a function of sample thickness (i.e., resin content). Composite resistivity is dominated by fiber resistivity, so lowering the resistivity of the fibers, either through increased graphitization or intercalation, results in a lower composite resistivity. A modification of the simple rule of mixtures model appears to predict the conductivity of high aspect ratio samples measured along a fiber direction, but a directional dependence appears which is not predicted by the theory. The resistivity of these materials is clearly more complex than that of homogeneous materials.

  4. Dynamics of graphite fiber intercalation: In situ resistivity measurements with a four point probe

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.

    1984-01-01

    The dynamics of ferric chloride intercalation of single graphite fibers were studied, in situ, using a four point dc bridge. Measurements before, during and after the intercalation showed that the intercalation occurred within minutes at 200 C. Changes in fiber resistivity after exposure to air suggested hydration of the graphite intercalation compound. Deintercalation of the ferric chloride was initiated at temperatures in excess of 400 C. cycling the intercalant into and out of the graphite fiber gave no improvements in fiber resistivity. The activation energy of the ferric chloride intercalation reaction was found to be 17 + or - 4 kcal/mol 1 consistent with the concept of a preliminary nucleation step in the intercalation reaction.

  5. First-principles study of Se-intercalated graphite

    SciTech Connect

    BARTKOWIAK,M.; MODINE,NORMAND A.; SOFO,J.O.; MAHAN,G.D.

    2000-05-11

    Se-intercalated graphite compounds (Se-GICs) are considered as promising candidates for room-temperature thermoelectric cooling devices. Here the authors analyze the crystallographic structure and electronic properties of these materials within the framework of density-functional theory. First, the Adaptive-Coordinate Real-space Electronic Structure (ACRES) code is used to determine the stable structure of a representative stage-2 Se-GIC by relaxing atomic positions. The stable configuration is found to be a pendant-type structure, in which each selenium is bonded covalently to two atoms within the same carbon layer, causing a local distortion of the in-plane conjugation of the graphite. Then, they use the full potential linearized augmented plane wave (FP-LAPW) method to calculate the electronic band structure of the material and discuss its properties. Near the Fermi energy E{sub F}, there are wide bands originating from the host graphitic electronic structure and a few very narrow bands mainly of Se 4p character. The latter bands contribute to high peaks in the density of states close to E{sub F}. They show that this feature, although typical of many good thermoelectrics, does not necessarily imply high thermopower in the case of Se-GICs.

  6. Graphite intercalation with fluoroanions by chemical and electrochemical methods

    NASA Astrophysics Data System (ADS)

    Ozmen-Monkul, Bahar

    New acceptor-type graphite intercalation compounds (GICs) containing perfluoroalkyl anions have been synthesized by using both chemical and electrochemical methods and characterized by elemental and thermogravimetric analyses. Investigation into these graphite intercalation compounds can provide novel materials and a detailed understanding of their properties. GICs of composition Cx[FB(C2F 5)3]·deltaF are prepared for the first time by the intercalation of fluoro-tris(pentafluoroethyl)borate anion, [FB(C2F 5)3]-, under ambient conditions in aqueous (48%) hydrofluoric acid containing the oxidant K2[MnF6]. Powder-XRD data indicate that products are pure stage 2 and physical mixture of stage 2 and stage 3 after 1 h to 20 h reaction times. The calculated basal repeat distance, Ic, is 1.20 nm for stage 2 and 1.54-1.56 nm for stage 3 GICs, corresponding to gallery heights of di = 0.86-0.89 nm. In addition, stage 2 GIC of C x[FB(C2F5)3]·deltaCH 3NO2 having di = 0.84 nm is prepared by electrochemical oxidation of graphite in a nitromethane electrolyte. The elemental analyses of these complex GICs required that a new sample digestion protocol be developed. After digestion, the fluoride amounts in these GIC samples were analyzed by using ion-selective fluoride combination electrode. The method developed is able to provide fluoride anion content in GICs without interference from the decomposition products of [FB(C 2F5)3]- anion. For the boron analyses the same digestion procedure above is used and the B contents were determined by ICP-AES. For Cx[FB(C2F 5)3]·deltaF, both compositional parameters x and delta are obtained from the results of elemental B and F analyses. For the chemically prepared GICs at 1 h to 20 h, calculated x values were in the range of 51-56 and the calculated delta values increased with reaction time from approx. 0-2. Combining B analysis and TGA mass loss gives a composition of x = 44 and delta = 0.37 for the electrochemically prepared GIC of Cx[FB(C2

  7. Micromechanical properties of intercalated compounds of graphite oxide with dodecahydro- closо-dodecaboric acid

    NASA Astrophysics Data System (ADS)

    Karpenko, A. A.; Saldin, V. I.

    2016-08-01

    The micromechanical properties (Young's modulus, deformation, and adhesion) of the intercalated compound of graphite oxide with dodecahydro- closo-dodecaboric acid were studied by atomic force microscopy, transmission electron microscopy, and Raman spectroscopy and compared with the same characteristics of the starting graphite oxide. The significant difference in the micromechanical properties of the materials under study is dictated by differences in the topography and properties of their film surface, which, in turn, can be determined by their chemical composition. The introduction of dodecahydro- closo-dodecaboric acid in the interplanar space of graphite oxide affects the structuring of the latter. A considerable increase in the adhesion of the intercalated compound relative to that of oxide graphite is explained by high adhesive properties of the introduced acid, the Young's modulus of graphite oxide being higher than that of the intercalated compound. This was attributed to the high hydrophilicity of dodecahydro- closo-dodecaboric acid and the difficulty of water removal from the interplanar space; water plasticizes the material, which becomes softer than graphite oxide. The difference in the structure of the coating of the intercalated compounds and the starting graphite oxide was found to be also reflected by their Raman spectra, namely, by the increased intensity of the D line with the preserved position of the G line, which points to the impurity nature of the intercalate and the unchanged hexagonal lattice of graphite.

  8. Micromechanical properties of intercalated compounds of graphite oxide with dodecahydro- closo-dodecaboric acid

    NASA Astrophysics Data System (ADS)

    Karpenko, A. A.; Saldin, V. I.

    2016-08-01

    The micromechanical properties (Young's modulus, deformation, and adhesion) of the intercalated compound of graphite oxide with dodecahydro- closo-dodecaboric acid were studied by atomic force microscopy, transmission electron microscopy, and Raman spectroscopy and compared with the same characteristics of the starting graphite oxide. The significant difference in the micromechanical properties of the materials under study is dictated by differences in the topography and properties of their film surface, which, in turn, can be determined by their chemical composition. The introduction of dodecahydro- closo-dodecaboric acid in the interplanar space of graphite oxide affects the structuring of the latter. A considerable increase in the adhesion of the intercalated compound relative to that of oxide graphite is explained by high adhesive properties of the introduced acid, the Young's modulus of graphite oxide being higher than that of the intercalated compound. This was attributed to the high hydrophilicity of dodecahydro- closo-dodecaboric acid and the difficulty of water removal from the interplanar space; water plasticizes the material, which becomes softer than graphite oxide. The difference in the structure of the coating of the intercalated compounds and the starting graphite oxide was found to be also reflected by their Raman spectra, namely, by the increased intensity of the D line with the preserved position of the G line, which points to the impurity nature of the intercalate and the unchanged hexagonal lattice of graphite.

  9. Optical properties of NbCl5 and ZnMg intercalated graphite compounds

    NASA Astrophysics Data System (ADS)

    Jung, Eilho; Lee, Seokbae; Roh, Seulki; Meng, Xiuqing; Tongay, Sefaattin; Kang, Jihoon; Park, Tuson; Hwang, Jungseek

    2014-12-01

    We studied NbCl5 and ZnMg alloy intercalated graphite compounds using an optical spectroscopy technique. These intercalated metallic graphite samples were quite challenging to obtain optical reflectance spectra since they were not flat and quite thin. By using both a new method and an in situ gold evaporation technique we were able to obtain reliable reflectance spectra of our samples in the far and mid infrared range (80-7000 cm-1). We extracted the optical constants including the optical conductivity and the dielectric function from the measured reflectance spectra using a Kramers-Kronig analysis. We also extracted the dc conductivity and the plasma frequencies from the optical conductivity and dielectric functions. NbCl5 intercalated graphite samples show similar optical conductivity spectra as bare highly oriented pyrolytic graphite even though there are some differences in detail. ZnMg intercalated samples show significantly different optical conductivity spectra from the bare graphite. Optical spectroscopy is one of the most reliable experimental techniques to obtain the electronic band structures of materials. The obtained optical conductivities support the recent theoretically calculated electronic band structures of NbCl5 and ZnMg intercalated graphite compounds. Our results also provide important information of electronic structures and charge carrier properties of these two new intercalated materials for applications.

  10. A micrographic and gravimetric study of intercalation and deintercalation of graphite fibers

    NASA Technical Reports Server (NTRS)

    Hung, C. C.

    1985-01-01

    Intercalation and deintercalation of Union Carbide P-100 graphite fibers with liquid and vaporous bromine was studied gravimetrically and microscopically. The mass of the bromine intercalated fibers was found to be 17 to 20 percent greater than their pristine counterpart. This variation decreased to 17 to 18 percent after heating in air for 3 days at 200 C and to 14.5 to 18 percent after 6 days of 260 C heating. The fiber length did not change throughout the experiment. The fiber diameter increased during intercalation and decreased slightly upon deintercalation but was not affected by heating to 260 C for 3 days in air. Comparing the mass and volume data to those with highly oriented pyrolitic graphite or natural single crystal graphite suggested the possibility that the intercalated P-100 fibers could be mostly stage 4.

  11. Effect of lightning strike on bromine intercalated graphite fiber/epoxy composites

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Slabe, Melissa E.; Brink, Norman O.

    1991-01-01

    Laminar composites were fabricated from pristine and bromine intercalated pitch based graphite fibers. It was found that laminar composites could be fabricated using either pristine or intercalated graphite fibers using standard fabrication techniques. The intercalated graphite fiber composites had electrical properties which were markedly improved over both the corresponding pitch based and polyacrylonitrile (PAN) based composites. Despite composites resistivities more than an order of magnitude lower for pitch based fiber composites, the lightning strike resistance was poorer than that of the Pan based fiber composites. This leads to the conclusion that the mechanical properties of the pitch fibers are more important than electrical or thermal properties in determining the lightning strike resistance. Based on indicated lightning strike tolerance for high elongation to failure materials, the use of vapor grown, rather than pitch based graphite fibers appears promising.

  12. The importance of the active surface area of graphite materials in the first lithium intercalation

    NASA Astrophysics Data System (ADS)

    Novák, P.; Ufheil, J.; Buqa, H.; Krumeich, F.; Spahr, M. E.; Goers, D.; Wilhelm, H.; Dentzer, J.; Gadiou, R.; Vix-Guterl, C.

    When lithium is intercalated into graphite in ethylene carbonate (EC) containing electrolytes, solvent co-intercalation leading to the exfoliation of the graphite structure could occur. The exfoliation can be suppressed if an efficient solid electrolyte interphase (SEI, a passivation layer) is formed. Here we study the role played by the active surface area (ASA) of graphite materials during their first electrochemical reduction. ASA (related to the presence of defects at the carbon surface) appears as a critical graphite surface parameter influencing the surface passivation mechanism and the graphite exfoliation. The ASA of TIMREX ® SLX50 synthetic graphite was modified by thermal treatment in argon and air. The electrochemical performance was characterized in 1 M LiPF 6, EC:DMC electrolyte and post mortem analyses were performed by SEM imaging. It turned out that a decrease of the graphite ASA, i.e., an increase of the graphite structural order, hinders the formation of the passivation layer and favors the exfoliation process. In contrast, the exfoliation of the same graphite can be suppressed if its ASA is increased for example by air treatment. The ASA of the graphite kinetically controls the formation of an efficient SEI film and accordingly the irreversible charge loss is much lower in the case of graphite with a high ASA value.

  13. Functional binders for reversible lithium intercalation into graphite in propylene carbonate and ionic liquid media

    NASA Astrophysics Data System (ADS)

    Komaba, Shinichi; Yabuuchi, Naoaki; Ozeki, Tomoaki; Okushi, Koji; Yui, Hiroharu; Konno, Kozo; Katayama, Yasushi; Miura, Takashi

    Poly(acrylic acid) (PAA), poly(methacrylic acid) (PMA), and poly(vinyl alcohol) (PVA), which have oxygen species as functional groups, were utilized as a binder for graphite electrodes, and the electrochemical reversibility of lithium intercalation was examined in PC medium and ionic liquid electrolyte, lithium bis(trifluoromethanesulfonyl)amide dissolved in 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)amide (BMP-TFSA). Columbic efficiency of 75-80% with more than 300 mAh g -1 was achieved upon first reduction/oxidation cycle in both electrolytes using these binding polymers, which were significantly improved in comparison to a conventional PVdF binder (less than 45% of columbic efficiency for the first cycle). For the graphite-PVdF electrode, co-intercalation and/or decomposition of PC molecules solvating to Li ions were observed by the electrochemical reduction, resulting in the cracking of graphite particles. In contrast, the co-intercalation and decomposition of PC molecules and BMP cations for the first reduction process were completely suppressed for the graphite electrodes prepared with the polymers containing oxygen atoms. It was proposed that the selective permeability of lithium ions was attained by the uniform coating of the graphite particles with PAA, PMA, and PVA polymers, because the electrostatic interaction between the positively charged lithium ions and negatively charged oxygen atom in the polymer should modulate the desolvation process of lithium ions during the lithium intercalation into graphite, showing the similar functions like artificial solid-electrolyte interphase.

  14. Electronic structure of intercalated graphite studied by soft-x-ray-emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Gu, Guojiang; Schnatterly, S. E.

    1995-08-01

    Carbon K soft-x-ray-emission (SXE) spectra of highly ordered pyrolytic graphite (HOPG) and intercalated graphite with both donor (LiC6) and acceptor (FeCl3) doping are presented and compared. A numerical calculation using partially inverted initial states is carried out and models are constructed to fit these data using this method. It is shown that this approach is able to describe accurately the enhancement of the SXE spectrum near the Fermi energy for LiC6. In the case of graphite intercalated with FeCl3, the model also produces an enhanced Fermi edge while the data show no difference from the spectrum of HOPG. This aspect of the spectra of acceptor compounds is not at present understood.

  15. Standard Model for Superconductivity in Graphite Intercalation Compounds: Prediction of Optimum Tc

    NASA Astrophysics Data System (ADS)

    Takada, Yasutami

    2009-03-01

    Based on the model that was successfully applied to the explanation of superconductivity with the transition temperature Tc of about 0.1K or less in the alkali- intercalated graphite compounds such as KC8, RbC8, and CsC8 in 1982 [Y. Takada, J. Phys. Soc. Jpn. 51, 63 (1982) ], we have calculated Tc for the alkaline-earth- intercalated graphite compounds including CaC6, YbC6, and SrC6 with Tc of about 10K or less to find that the same model reproduces the observed Tc in those compounds as well, indicating that it is a standard model for superconductivity in the graphite intercalation compounds with Tc ranging over three orders of magnitude. The difference in Tc by two orders between KC8 and CaC6 can be accounted for by (i) doubling Z the valency of the metal ions, which enhances Tc by one order, and (ii) tripling m^* the effective mass of the superconducting three-dimensional electrons in the interlayer band, which also enhances Tc by one order. Enhancement of Tc well beyond 10 K is also predicted in this model, if intercalant metals are judiciously chosen so that both Z and m^* are increased further.

  16. Li Intercalation into Graphite: Direct Optical Imaging and Cahn-Hilliard Reaction Dynamics.

    PubMed

    Guo, Yinsheng; Smith, Raymond B; Yu, Zhonghua; Efetov, Dmitri K; Wang, Junpu; Kim, Philip; Bazant, Martin Z; Brus, Louis E

    2016-06-01

    Lithium intercalation into graphite is a critical process in energy storage technology. Studies of Li intercalation kinetics have proved challenging due to structural and phase complexity, and sample heterogeneity. Here we report direct time- and space-resolved, all-optical measurement of Li intercalation. We use a single crystal graphite electrode with lithographically defined disc geometry. All-optical, Raman and reflectance measurements distinguish the intrinsic intercalation process from side reactions, and provide new insight into the microscopic intercalation process. The recently proposed Cahn-Hilliard reaction (CHR) theory quantitatively captures the observed phase front spatial patterns and dynamics, using a two-layer free-energy model with novel, generalized Butler-Volmer kinetics. This approach unites Cahn-Hilliard and electrochemical kinetics, using a thermodynamically consistent description of the Li injection reaction at the crystal edge that involves a cooperative opening of graphene planes. The excellent agreement between experiment and theory presented here, with single-crystal resolution, provides strong support for the CHR theory of solid-state reactions. PMID:27203128

  17. Electrical conductivity and optical properties of polyaniline intercalated graphite oxide nanocomposites.

    PubMed

    Dutta, Kousik; De, S K

    2007-07-01

    Layered graphite oxide is used as host material for the synthesis of conducting polymer intercalated nanocomposites. Powder X-ray diffraction, Fourier transform infrared, and UV-VIS absorption spectra indicate the formation of polyaniline within the interlamellar spaces of graphite oxide. The red shift of UV-VIS absorption associated with graphite oxide is found. The direct current (dc) conductivity increases by about three orders of magnitude compare with pristine graphite oxide. The temperature dependence dc conductivity of the nanocomposite follows Mott's three-dimensional variable range hopping. The alternating current (ac) conductivity suggests correlated barrier hopping of conduction process. The conductivity relaxation time varies in the range of 10(-5)-10(-7) Sec.

  18. The effect of length and diameter on the resistivity of bromine intercalated graphite fibers

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    1989-01-01

    The resistivity of bromine intercalated graphite fibers has been shown to vary with both the diameter and the length of the fibers. This is due to bromine depletion from the fiber surface. Model calculations assuming a 1.0 micron bromine depletion zone for P-100, and 3.0 microns for vapor-grown graphite fibers fit the respective diameter dependence of their resistivities quite well. Length dependence data imply a bromine depletion zone along the length of P-100 fibers which is also a few microns, but that of vapor grown fibers appears to be as large as 300 microns. Despite these values, microfilaments, which are much smaller than the expected depletion zones, do form residual bromine intercalation compounds with resistivities about one-half of their pristine value.

  19. Low-Voltage Voltammetric Electrowetting of Graphite Surfaces by Ion Intercalation/Deintercalation.

    PubMed

    Zhang, Guohui; Walker, Marc; Unwin, Patrick R

    2016-08-01

    We demonstrate low-voltage electrowetting at the surface of freshly cleaved highly oriented pyrolytic graphite (HOPG). Using cyclic voltammetry (CV), electrowetting of a droplet of a sodium perchlorate solution is observed at moderately positive potentials on high-quality (low step edge coverage) HOPG, leading to significant changes in the contact angle and relative contact diameter that are comparable to the results of the widely studied electrowetting on dielectric (EWOD) system, but over a much lower voltage range. The electrowetting behavior is found to be reasonably fast, reversible, and repeatable for at least 20 cyclic scans (maximum tested). In contrast to classical electrowetting, e.g., EWOD, the electrowetting of the droplet on HOPG occurs with the intercalation/deintercalation of anions between the graphene layers of graphite, driven by the applied potential, observed in the CV response, and detected by X-ray photoelectron spectroscopy. The electrowetting behavior is strongly influenced by those factors that affect the extent of the intercalation/deintercalation of ions on graphite, such as potential range scan rate, potential polarity, quality of the HOPG substrate (step edge density and step height), and type of anion in the solution. In addition to perchlorate, sulfate salts also promote electrowetting, but some other salts do not. Our findings suggest a new mechanism for electrowetting based on ion intercalation, and the results are important to fundamental electrochemistry as well as to diversifying the means by which electrowetting can be controlled and applied.

  20. Synthesis and characterization of graphite-metal fluoride intercalation compounds

    SciTech Connect

    McQuillan, B.W.

    1981-04-01

    The compound C/sub x/AsF/sub 5/ was prepared and characterized by x-ray diffraction and x-ray absorption, which show the presence of As(III) and As(V), and the As-F bond distances are consistent with AsF/sub 3/ and AsF/sup -//sub 6/, C/sup +//sub 8/AsF/sup -//sub 6/ and C/sup +//sub 8/OsF/sup -//sub 6/ were synthesized. The C/sub x/AsF/sub 6/ and numerous standard arsenic-flourine compounds were studied by x-ray absorption. Magnetic susceptibility of C/sup +//sub 8/OsF/sup -//sub 6/ confirms the high degree of oxidation in this compound. X-ray absorption studies were begun to determine the species present within the graphite when BrF/sub 3/ or GeF/sub 4/ + F/sub 2/ are added. In the BrF/sub 3/ case, Br/sub 2/ is evolved and only Br(III) is present in the graphite. The binary phase diagram XeF/sub 2/:Xe/sup +//sub 5/AsF/sup -//sub 6/ was investigated by melting point determination and Raman spectroscopy. This mixture near 1.3:1 forms a kinetically stable glass at room temperature and is molten at 50/sup 0/C. Several new species or phases are observed in the Raman spectra. These species have been assigned tentative structures.

  1. Critical role of intercalated water for electrocatalytically active nitrogen-doped graphitic systems

    DOE PAGESBeta

    Martinez, Ulises; Dumont, Joseph H.; Holby, Edward F.; Artyushkova, Kateryna; Purdy, Geraldine M.; Singh, Akhilesh; Mack, Nathan H.; Atanassov, Plamen; Cullen, David A.; More, Karren L.; et al

    2016-03-18

    Graphitic materials are very essential in energy conversion and storage because of their excellent chemical and electrical properties. The strategy for obtaining functional graphitic materials involves graphite oxidation and subsequent dissolution in aqueous media, forming graphene-oxide nanosheets (GNs). Restacked GNs contain substantial intercalated water that can react with heteroatom dopants or the graphene lattice during reduction. We demonstrate that removal of intercalated water using simple solvent treatments causes significant structural reorganization, substantially affecting the oxygen reduction reaction (ORR) activity and stability of nitrogen-doped graphitic systems. Amid contrasting reports describing the ORR activity of GN-based catalysts in alkaline electrolytes, we demonstratemore » superior activity in an acidic electrolyte with an onset potential of ~0.9 V, a half-wave potential (E½) of 0.71 V, and a selectivity for four-electron reduction of >95%. Finally and further, durability testing showed E½ retention >95% in N2- and O2-saturated solutions after 2000 cycles, demonstrating the highest ORR activity and stability reported to date for GN-based electrocatalysts in acidic media.« less

  2. Critical role of intercalated water for electrocatalytically active nitrogen-doped graphitic systems

    PubMed Central

    Martinez, Ulises; Dumont, Joseph H.; Holby, Edward F.; Artyushkova, Kateryna; Purdy, Geraldine M.; Singh, Akhilesh; Mack, Nathan H.; Atanassov, Plamen; Cullen, David A.; More, Karren L.; Chhowalla, Manish; Zelenay, Piotr; Dattelbaum, Andrew M.; Mohite, Aditya D.; Gupta, Gautam

    2016-01-01

    Graphitic materials are essential in energy conversion and storage because of their excellent chemical and electrical properties. The strategy for obtaining functional graphitic materials involves graphite oxidation and subsequent dissolution in aqueous media, forming graphene-oxide nanosheets (GNs). Restacked GNs contain substantial intercalated water that can react with heteroatom dopants or the graphene lattice during reduction. We demonstrate that removal of intercalated water using simple solvent treatments causes significant structural reorganization, substantially affecting the oxygen reduction reaction (ORR) activity and stability of nitrogen-doped graphitic systems. Amid contrasting reports describing the ORR activity of GN-based catalysts in alkaline electrolytes, we demonstrate superior activity in an acidic electrolyte with an onset potential of ~0.9 V, a half-wave potential (E½) of 0.71 V, and a selectivity for four-electron reduction of >95%. Further, durability testing showed E½ retention >95% in N2- and O2-saturated solutions after 2000 cycles, demonstrating the highest ORR activity and stability reported to date for GN-based electrocatalysts in acidic media. PMID:27034981

  3. Superconductivity in Li{sub 3}Ca{sub 2}C{sub 6} intercalated graphite

    SciTech Connect

    Emery, Nicolas; Herold, Claire . E-mail: Claire.Herold@lcsm.uhp-nancy.fr; Mareche, Jean-Francois; Bellouard, Christine; Loupias, Genevieve; Lagrange, Philippe

    2006-04-15

    In this paper, we report the discovery of superconductivity in Li{sub 3}Ca{sub 2}C{sub 6}. Several graphite intercalation compounds (GICs) with electron donors, are well known as superconductors [T. Enoki, S. Masatsugu, E. Morinobu, Graphite Intercalation Compounds and Applications, Oxford University Press, Oxford, 2003]. It is probably not astonishing, since it is generally admitted that low dimensionality promotes high superconducting transition temperatures. Superconductivity is lacking in pristine graphite, but after charging the graphene planes by intercalation, its electronic properties change considerably and superconducting behaviour can appear. Li{sub 3}Ca{sub 2}C{sub 6} is a ternary GIC [S. Pruvost, C. Herold, A. Herold, P. Lagrange, Eur. J. Inorg. Chem. 8 (2004) 1661-1667], for which the intercalated sheets are very thick and poly layered (five lithium layers and two calcium ones). It contains a great amount of metal (five metallic atoms for six carbon ones). Its critical temperature of 11.15 K is very close to that of CaC{sub 6} GIC [T.E. Weller, M. Ellerby, S.S. Saxena, R.P. Smith, N.T. Skipper, Nat. Phys. 1 (2005) 39-41; N. Emery, C. Herold, M. d'Astuto, V. Garcia, Ch. Bellin, J.F. Mareche, P. Lagrange, G. Loupias, Phys. Rev. Lett. 95 (2005) 087003] (11.5 K). Both CaC{sub 6} and Li{sub 3}Ca{sub 2}C{sub 6} GICs possess currently the highest transition temperatures among all the GICs.

  4. Structural study and crystal chemistry of the first stage calcium graphite intercalation compound

    SciTech Connect

    Emery, Nicolas; Herold, Claire . E-mail: Claire.Herold@lcsm.uhp-nancy.fr; Lagrange, Philippe

    2005-09-15

    A novel and efficient synthesis method concerning the preparation of the first stage calcium graphite intercalation compound is provided. It makes use of a reaction between liquid metallic alloy and pyrolytic graphite. From now on it is especially easy to obtain bulk CaC{sub 6} samples. Thanks to such samples, it was possible to study in detail the crystal structure of this binary intercalation compound. It has been entirely specified, so that we know that CaC{sub 6} crystal is rhombohedral and belongs to the R3-bar m space group with the following parameters: a=517pm and {alpha}=49.55 deg. The elemental unit cell contains one calcium atom and six carbon atoms. In this paper, we show also how the various MC{sub 6} structures evolve according to the size of the intercalated element and to the bond nature that appears in the final compound. CaC{sub 6} is unique, since all the other MC{sub 6} compounds exhibit a hexagonal symmetry.

  5. Indirect measurement of N-14 quadrupolar coupling for NH3 intercalated in potassium graphite

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Fronko, R. M.; Resing, H. A.

    1987-01-01

    A method for indirect measurement of the nuclear quadrupolar coupling was developed and applied to NH3 molecules in the graphite intercalation compound K(NH3)4.3C24, which has a layered structure with alternating carbon and intercalant layers. Three triplets were observed in the H-1 NMR spectra of the compound. The value of the N-14 quadrupolar coupling constant of NH3 (3.7 MHz), determined indirectly from the H-1 NMR spectra, was intermediate between the gas value of 4.1 MHz and the solid-state value of 3.2 MHz. The method was also used to deduce the (H-1)-(H-1) and (N-14)-(H-1) dipolar interactions, the H-1 chemical shifts, and the molecular orientations and motions of NH3.

  6. ESR of Mn2+ in AlCl3-graphite intercalated compounds

    NASA Astrophysics Data System (ADS)

    Ceotto, G.; Barberis, G. E.; Rettori, C.

    1989-05-01

    Electron-spin-resonance experiments of Mn2+ impurities in stage-2 AlCl3-graphite intercalated compounds show the usual conduction-carrier spin resonance and a completely resolved Mn2+ spectrum of axial symmetry with the axial axis perpendicular to the carbon layers. The temperature dependence of the Mn2+ second-order crystal-field parameter and spin-lattice relaxation time are reported. The hyperfine splittings were found to be temperature independent. The observed anomalies in the linewidth of the conduction-carrier spin resonance and the intensity of the Mn2+ resonance at T~=200 K are interpreted in terms of a quasi-two-dimensional order-disorder phase transition experienced by the intercalant molecules at this temperature.

  7. HTR Fuel Waste Management: TRISO separation and acid-graphite intercalation compounds preparation

    NASA Astrophysics Data System (ADS)

    Guittonneau, Fabrice; Abdelouas, Abdesselam; Grambow, Bernd

    2010-12-01

    Considering the need to reduce waste production and greenhouse emissions and still keeping high energy efficiency, various 4th generation nuclear energy systems have been proposed. As far as graphite-moderated reactors are concerned (future high temperature fast or thermal reactors), one of the key issues is the large volumes of irradiated graphite encountered. With the objective to reduce volume of waste in the HTR concept, it is very important to be able to separate the fuel from low level activity graphite representing a large volume. The separated TRISO particles can then be reprocessed for waste separation or disposed off in geological repository. In addition, preparation of acid-GICs from the separated graphite may constitute a way to recycle this waste. We used HTR-type compact fuel with ZrO 2 TRISO particles to test two separation methods: low (H 2SO 4 + H 2O 2) and high (H 2SO 4 + HNO 3) temperature acid treatments. In both cases the TRISO separation was complete but some TRISO layers oxidized at high temperature. At low temperature, the desegregation of graphite grains is facilitated by intercalation of sulfuric acid between the graphene layers. The acid-GIC obtained consists of pure phases of high quality suggesting their potential industrial recycling.

  8. Stability of bromine, iodine monochloride, copper (II) chloride, and nickel (II) chloride intercalated pitch-based graphite fibers

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Slabe, Melissa E.; Shaffer, Nanette

    1987-01-01

    Four different grades of pitch-based graphite fibers (Amoco P-55, P-75, P-100. and P-120) were intercalated with each of four different intercalates: bromine (Br2), iodine monochloride (ICl), copper (II) chloride (CuCl2), and nickel (II) chloride (NiCl2). The P-55 fibers did not react with Br2 or NiCl2, and the P-75 did not react with NiCl2. The stability of the electrical resistance of the intercalated fibers was monitored over long periods of time in ambient, high humidity (100 percent at 60 C), vacuum (10 to the -6 torr), and high temperature (up to 400 C) conditions. Fibers with lower graphitization form graphite intercalation compounds (GIC's) which are more stable than those with higher graphitization (i.e., P-55 (most stable) greater than P-75 greater than P-100 greater than P-120 (least stable). Br2 formed the most stable GIC's followed in order of decreasing stability by ICl, CuCl2, and NiCl2. While Br2 GIC's had the most stability, ICl had the advantages of forming GIC's with slightly greater reduction in resistance (by about 10%) than Br2, and the ability to intercalate P-55 fiber. Transition metal chlorides are susceptible to water vapor and high temperature. The stability of fibers in composites differs.

  9. Synthesis and characterisation of a novel europium-based graphite intercalation compound

    SciTech Connect

    Emery, Nicolas; Herold, Claire Bellouard, Christine; Delcroix, Pierre; Mareche, Jean-Francois; Lagrange, Philippe

    2008-11-15

    In the lithium-europium-graphite system, a novel ternary compound was synthesised by direct immersion of a pyrolytic graphite platelet in a molten lithium-based alloy with a well chosen Li/Eu ratio at 400 deg. C. The ternary compound exhibits poly-layered intercalated sheets mainly constituted of two europium planes. Its chemical formula can be written Li{sub x}EuC{sub 4}, since the amount of lithium is still not determined. The {sup 151}Eu Moessbauer spectra clearly indicate a +II valence for europium. The magnetic susceptibility and the magnetisation versus temperature reveal a complex behaviour which is qualitatively described thanks to structural hypothesis and analogies with the magnetic properties of the binary EuC{sub 6} compound. A first ferromagnetic transition occurring at 225 K is attributed to interactions between both intercalated europium planes. The lower temperature susceptibility behaviour can be interpreted by antiferromagnetic interactions between in-plane neighbours and ferromagnetic interactions along the c-axis. - Graphical abstract: 1D electronic density profiles along the c-axis of Li{sub x}EuC{sub 4}.

  10. Bond-Length Change as a Tool to Determine Charge Transfer and Electron-Phonon Coupling in Graphite Intercalation Compounds

    NASA Astrophysics Data System (ADS)

    Pietronero, L.; Strässler, S.

    1981-08-01

    A theory is formulated that explains the observed bond-length change in graphite intercalation compounds in terms of the charge transfer f. The values of f obtained via the bond-length changes are in good agreement with those derived with other methods. The present analysis also provides information on the electron-phonon coupling that defines the maximum conductivity.

  11. Intercalated graphite: A synthetic metal II. Theory of bond length change and conductivity

    NASA Astrophysics Data System (ADS)

    Strässler, Sigfrid; Pietronero, Luciano

    We present a brief review of the present understanding of the electronic properties of graphite intercalation compounds with special attention on bond length changes and electrical conductivity. After a discussion of the band structure and the Fermi surface we show how to extract the values of the charge transfer and information about the electron phonon coupling from the change of the in plane bond length. These values are then used in the variational solution of the Boltzmann equation to compute the resistivity due to the scattering with the in plane phonons and to estimate the maximum ideal conductivity for these compounds. The comparison with experiments is discussed and the main open problems are outlined.

  12. The de Haas-van Alphen effect of graphite intercalation compounds with SbCl 5 and HNO 3

    NASA Astrophysics Data System (ADS)

    Takahashi, Otofumi; Iye, Yasuhiro; Tanuma, Sei-ichi

    1981-03-01

    The de Haas-van Alphen (dHvA) effect of SbCl 5-graphite intercalation compounds of stage 2, 3 and 4, and residual HNO 3-compound of stage 3 has been studied. The dHvA spectra are stage dependent, and no combination frequency relations are found, which are in disagreement with Batallan et al.'s report. The amount of charge transfer per intercalant estimated on the basis of the rigid band model is 0.44, 0.49 and 0.43 for stage 4, 3 and 2 SbCl 5-compounds and is 0.14 for stage 3 HNO 3-compound.

  13. Staging properties of potassium-ammonia ternary graphite intercalation compounds at high ammonia pressure

    NASA Astrophysics Data System (ADS)

    Qian, X. W.; Solin, S. A.

    1989-04-01

    The pressure dependence of the (00l) x-ray diffraction patterns of the ternary graphite intercalation compound K(NH3)xC24 has been studied in the range 0.5-11 kbar (for which x~4.5) using a diamond anvil cell. A special apparatus for loading the cell with liquid ammonia at room temperature has been constructed and is briefly described. In these experiments, the pressure-transmitting fluid was also an intercalant, namely ammonia. Therefore, the chemical potential of this species was linearly coupled to the applied pressure in contrast to the usual case where the pressure-transmitting fluid is chemically passive. The pressure dependences of the basal spacings and of the relative intensities of key reflections have been measured, as have the compressibilities of the stage-1 and stage-2 components of the two-phase system. Basal-spacing anomalies and anomalies in the relative intensities occur at pressures of ~3.5 and 8.0 kbar and are tentatively attributed to in-plane coordination changes in the potassium-ammonia ratio. Using thermodynamic arguments and Le Chatelier's principle we show quantitatively that a staging phase transition from pure stage-1 phase to an admixture of stage-1 and stage-2 is expected with increased pressure above 10 bar in agreement with experiment. The saturation ammonia compositions (x values) of the admixed stages are found to be 4.5 and 5.4 for the stage-1 and -2 components, respectively. This result is interpreted as evidence that the composition is not sterically limited but is determined by the binding energy of ammonia for potassium and by the perturbation to this energy from the guest-host interaction.

  14. Mechanical and electrical properties of graphite fiber-epoxy composites made from pristine and bromine intercalated fibers

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Vannucci, Raymond D.; Zinolabedini, Reza

    1987-01-01

    The mechanical and electrical properties of pristine and bromine intercalated graphite fiber-epoxy composites were compared. The two types of composite were similar in terms of tensile modulus, tensile strength, and Poisson's Ratio. However, the interlaminar shear strength of the brominated composite was 18 percent greater than its pristine counterpart. Only slight differences were observed in flexural properties. A five-fold decrease was observed in the electrical resistivity of the brominated composite parallel to the axis of the fibers, resulting in a unidirectional resistivity of about 90 microOmega/cm. Transverse resistivity was unaffected. Both types of composite were subjected to a simulated lightning strike of 10 KJ (at a peak current of 150 kA), and the composite with the intercalated graphite exhibited less damage.

  15. The Electrical and Thermal Conductivity of Woven Pristine and Intercalated Graphite Fiber-Polymer Composites

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Vandenburg, Yvonne Yoder; Berkebile, Steven; Stueben, Heather; Balagadde, Frederick

    2002-01-01

    A series of woven fabric laminar composite plates and narrow strips were fabricated from a variety of pitch-based pristine and bromine intercalated graphite fibers in an attempt to determine the influence of the weave on the electrical and thermal conduction. It was found generally that these materials can be treated as if they are homogeneous plates. The rule of mixtures describes the resistivity of the composite fairly well if it is realized that only the component of the fibers normal to the equipotential surface will conduct current. When the composite is narrow with respect to the fiber weave, however, there is a marked angular dependence of the resistance which was well modeled by assuming that the current follows only along the fibers (and not across them in a transverse direction), and that the contact resistance among the fibers in the composite is negligible. The thermal conductivity of composites made from less conductive fibers more closely followed the rule of mixtures than that of the high conductivity fibers, though this is thought to be an artifact of the measurement technique. Electrical and thermal anisotropy could be induced in a particular region of the structure by weaving together high and low conductivity fibers in different directions, though this must be done throughout all of the layers of the structure as interlaminar conduction precludes having only the top layer carry the anisotropy. The anisotropy in the thermal conductivity is considerably less than either that predicted by the rule of mixtures or the electrical resistivity.

  16. Effect of sorbed molecules on the resistivity of alkali metal-graphite intercalation compounds

    SciTech Connect

    Akuzawa, Noboru Kunihashi, Yoji; Sato, Yuki; Tsuchiya, Ken-ichi; Matsumoto, Rika

    2007-03-15

    Alkali metal-graphite intercalation compounds with the composition of MC{sub 24} (M=K, Rb, Cs) were prepared by heating a mixture of MC{sub 8} (saturated compound) and graphite sheet (Grafoil) at 350-450 deg. C. The resistivity perpendicular to the layer planes ({rho} {sub c}) of the resulting compounds was determined by the two-terminal method. The anisotropy factor of the resistivity, ({rho} {sub c}/{rho} {sub a}), of KC{sub 24} prepared from Grafoil was {approx}130, being about 1/6-1/10 in magnitude compared with that of KC{sub 24} prepared from highly oriented pyrolytic graphite. The resistivity change during sorption of hydrogen (at 90 K), ethylene (at 194 K) and acetylene (at 194 K) was determined. The resistivity of MC{sub 24} increased with increase of the sorbed amount of H{sub 2}. The magnitude of the increase was in the order KC{sub 24}>RbC{sub 24}>CsC{sub 24}. This resistivity increase was considered to be due to the expansion along c-direction which reduces the charge-transfer interaction between the carbon layers and potassium ions, resulting in the decrease of the density of the conduction electron. The resistivity of MC{sub 24} increased extensively during sorption of C{sub 2}H{sub 4} and C{sub 2}H{sub 2}. It was discussed in connection with the in-plane structural transition and chemical interaction between alkali metal ions and sorbed molecules. - Graphical abstract: The resistivity of MC{sub 24} increased with increase of the sorbed amount of H{sub 2}. The magnitude of the increase was in the order KC{sub 24}>RbC{sub 24}>CsC{sub 24}. This resistivity increase was considered to be due to the expansion along c-direction which reduces the charge-transfer interaction between the carbon layers and potassium ions.

  17. Low-temperature exfoliation of multilayer-graphene material from FeCl3 and CH3NO2 co-intercalated graphite compound.

    PubMed

    Fu, Wujun; Kiggans, Jim; Overbury, Steven H; Schwartz, Viviane; Liang, Chengdu

    2011-05-14

    Microwave induced rapid decomposition of nitromethane at low temperature exfoliates the graphene sheets from the FeCl(3) and CH(3)NO(2) co-intercalated graphite compound without creating many defects and functional groups. This approach provides a scalable method for high-quality graphene materials via low-temperature exfoliation of graphite under mild chemical conditions.

  18. Powder, paper and foam of few-layer graphene prepared in high yield by electrochemical intercalation exfoliation of expanded graphite.

    PubMed

    Wu, Liqiong; Li, Weiwei; Li, Peng; Liao, Shutian; Qiu, Shengqiang; Chen, Mingliang; Guo, Yufen; Li, Qi; Zhu, Chao; Liu, Liwei

    2014-04-01

    A facile and high-yield approach to the preparation of few-layer graphene (FLG) by electrochemical intercalation exfoliation (EIE) of expanded graphite in sulfuric acid electrolyte is reported. Stage-1 H2SO4-graphite intercalation compound is used as a key intermediate in EIE to realize the efficient exfoliation. The yield of the FLG sheets (<7 layers) with large lateral sizes (tens of microns) is more than 75% relative to the total amount of starting expanded graphite. A low degree of oxygen functionalization existing in the prepared FLG flakes enables them to disperse effectively, which contributes to the film-forming characteristics of the FLG flakes. These electrochemically exfoliated FLG flakes are integrated into several kinds of macroscopic graphene structures. Flexible and freestanding graphene papers made of the FLG flakes retain excellent conductivity (≈24,500 S m(-1)). Three-dimensional (3D) graphene foams with light weight are fabricated from the FLG flakes by the use of Ni foams as self-sacrifice templates. Furthermore, 3D graphene/Ni foams without any binders, which are used as supercapacitor electrodes in aqueous electrolyte, provide the specific capacitance of 113.2 F g(-1) at a current density of 0.5 A g(-1), retaining 90% capacitance after 1000 cycles.

  19. Structural and electronic properties of graphite and graphite intercalation compounds MC[sub 8] (M = K, Rb, Cs) governing their scanning tunneling microscopy images

    SciTech Connect

    Whangbo, M.H.; Liang, W.; Ren, J. ); Magonov, S.N.; Wawkuschewski, A. )

    1994-08-04

    Several puzzling observations in the scanning tunneling microscopy (STM) and atomic force microscopy (AFM) studies of highly oriented pyrolytic graphite (HOPG) and its intercalation compounds MC[sub 8] (M = K, Rb, Cs) were investigated on the basis of atom-atom potential and Coulombic interaction energy calculations. The charge or spin density wave state of a graphite monolayer is found inconsistent with an identical peak registry of the HOPG STM images obtained at plus and minus bias voltages. Simultaneous STM/AFM measurements of HOPG show the STM and AFM images to have an identical peak registry, which implies that the local hardness of the surface monolayer is larger at the B-site than at the A-site. We confirm this implication by estimating the local hardness in the surface monolayer of a graphite bilayer in terms of atom-atom potential calculations. The essential characteristics of the Moire STM images of HOPG are correctly predicted by the local hardness map obtained for the surface monolayer of a graphite bilayer in terms of atom-atom potential calculations. This supports the notion that the tip-force-induced topography change in the surface monolayer is generally responsible for Moire STM patterns in layered materials. 29 refs., 5 figs., 2 tabs.

  20. Enhanced electric double layer capacitance of graphite oxide intercalated by poly(sodium 4-styrensulfonate) with high cycle stability.

    PubMed

    Jeong, Hae-Kyung; Jin, Meihua; Ra, Eun Ju; Sheem, Kyeu Yoon; Han, Gang Hee; Arepalli, Sivaram; Lee, Young Hee

    2010-02-23

    We propose a new material for high power and high density supercapacitors with excellent cycle stability. Graphite oxide (PSS-GO) intercalated with poly(sodium 4-styrensulfonate) showed high performance of electric double layer capacitance (EDLC) compared to that of the pristine graphite oxide. Specific capacitance of the PSS-GO reached 190 F/g, and the energy density was much improved to 38 Wh/kg with a power density of 61 W/kg. Cycle test showed that the specific capacitance decreased by only 12% after 14860 cycles, providing excellent cyclic stability. The high EDLC performance of PSS-GO composite was attributed to the wide interlayer distance and simple pore structures accommodating fast ion kinetics. PMID:20099869

  1. The Use of Pristine and Intercalated Graphite Fiber Composites as Buss Bars in Lead-Acid Batteries

    NASA Technical Reports Server (NTRS)

    Opaluch, Amanda M.

    2004-01-01

    This study was conducted as a part of the Firefly Energy Space Act Agreement project to investigate the possible use of composite materials in lead acid batteries. Specifically, it examined the use of intercalated graphite composites as buss bars. Currently, buss bars of these batteries are made of lead, a material that is problematic for several reasons. Over time, the lead is subject to both corrosion at the positive plate and sulfation at the negative plate, resulting in decreased battery life. In addition, the weight and size of the lead buss bars make for a heavy and cumbersome battery that is undesirable. Functionality and practicality of lead buss bars is adequate at best; consequently, investigation of more efficient composite materials would be advantageous. Practically speaking, graphite composites have a low density that is nearly one fourth that of its lead counterpart. A battery made of less dense materials would be more attractive to the consumer and the producer because it would be light and convenient. More importantly, low weight would be especially beneficial because it would result in greater overall power density of the battery. In addition to power density, use of graphite composite materials can also increase the life of the battery. From a functional standpoint, corrosion and sulfation at the positive and negative plates are major obstacles when considering how to extend battery life. Neither of these reactions are a factor when graphite composites replace lead parts because graphite is chemically non-reactive with the electrolyte within the battery. Without the problem of corrosion or sulfation, battery life expectancy can be almost doubled. The replacement of lead battery parts with composite materials is also more environmentally favorable because of easy disposal of organic materials. For this study, both pristine and bromine intercalated single-ply graphite fiber composites were created. The composites were fabricated in such a way as to

  2. Magnetic behaviour of spin 1/2 finite chains intercalated into graphite. Example of the copper chloroaluminate complex

    NASA Astrophysics Data System (ADS)

    El Hafidi, M.; Chouteau, G.; Polo, V.; Pernot, P.; Vangelisti, R.

    1993-02-01

    New chloroaluniinate compounds with copper and cobalt have been prepared and intercalated into graphite. For the copper intercalated compound X ray analysis shows a chain structure. The magnetic properties are consistent with a model of finite chain distribution of spin 1/2 Cu^{2+} ions. The contribution to the susceptibility of the short chains containing an odd number of spins is a paramagnetic-like tail which is dominant at low temperatures. Des nouveaux composés chloroaluminates de cuivre et de cobalt ont été préparés puis insérés dans le graphite. Dans le cas du composé au cuivre l'analyse aux rayons X montre une structure en chaînes. Les propriétés magnétiques s'interprètent bien dans un modèle de chaines finies de spins 1/2 portés par les ions Cu^{2+}. A basse température la contribution des chaînes impaires est dominante et du type loi de Curie.

  3. Properties of hybrid CVD/PAN graphite fibers and their bromine intercalation compounds

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Lake, Max L.; Moinuddin, Alia; Marabito, Mark

    1992-01-01

    A hybrid fiber with a PAN core surrounded by a vapor grown carbon fiber (VGCF) sheath was fabricated using a proprietary process. The density, ultimate tensile strength, Young's modulus, and resistivity of pristine and bromine intercalated fibers made by this technique having diameters varying from 5 to 50 microns were compared with the values predicted from the rule of mixtures model. For both the pristine and intercalated fibers, the density, ultimate tensile strength, and Young's modulus of the fibers were lower than predicted, but the resistivity was measured to be consistent with predictions. The lower than theoretical mechanical properties may be evidence of a low density disordered interface between the core and the sheath which would lower the density and degrade the mechanical properties, but would leave the resistivity nearly unaffected. Intercalation had little if any effect on the ultimate tensile strength and Young's modulus, but raised the density by about 11 pct., and lowered the resistivity by an order of magnitude. The diameter dependence of the resistivity showed evidence of a depletion layer of the type found in VGCF.

  4. Properties of novel CVD graphite fibers and their bromine intercalation compounds

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Lake, Max L.; Moinuddin, Alia; Marabito, Mark

    1991-01-01

    A hybrid fiber with a PAN core surrounded by a vapor grown carbon fiber (VGCF) sheath was fabricated using a proprietary process. The density, ultimate tensile strength, Young's modulus, and resistivity of pristine and bromine intercalated fibers made by this technique having diameters varying from 5 to 50 microns were compared with the values predicted from the rule of mixtures model. For both the pristine and intercalated fibers, the density, ultimate tensile strength, and Young's modulus of the fibers were lower than predicted, but the resistivity was measured to be consistent with predictions. The lower than theoretical mechanical properties may be evidence of a low density disordered interface between the core and the sheath which would lower the density and degrade the mechanical properties, but would leave the resistivity nearly unaffected. Intercalation had little if any effect on the ultimate tensile strength and Young's modulus, but raised the density by about 11 pct., and lowered the resistivity by an order of magnitude. The diameter dependence of the resistivity showed evidence of a depletion layer of the type found in VGCF.

  5. Effect of length of chopped pristine and intercalated graphite fibers on the resistivity of fiber networks

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Stahl, Mark

    1988-01-01

    Samples of Amoco P-100 fibers were chopped to lengths of 3.14, 2.53, 1.90, 1.27, 0.66 mm, or milled for 2 hours. The two-point resistivity of compacts of these fibers were measured as a function of pressure from 34 kPa to 143 MPa. Samples of each fiber length were intercalated with bromine at room temperature and similarly measured. The low pressure resistivity of the compacts decreased with increasing fiber length. Intercalation lowered the resistivity of each of the chopped length compacts, but raised the resistivity of the milled fiber compacts. Bulk resistivity of all samples decreased with increasing pressure at similar rates. Even though fiber volumes were as low as 5 percent, all measurements exhibited measurable resistivity. A greater change with pressure in the resistance was observed for shorter fibers than for longer, probably an indication of tighter fiber packing. Intercalation appeared to have no effect on the fiber to fiber contact resistance.

  6. Electronic structure of alkali-intercalated graphite studied by soft-x-ray emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Mansour, A.; Schnatterly, S. E.; Ritsko, J. J.

    1987-02-01

    Carbon K soft-x-ray emission spectra of LiC6, KC8, and CsC8 are presented. An absolute value for the charge transfer from the alkali metal to the carbon π band is obtained. A model fit to the data reveals similar effects on both spectral shape and threshold energy, independent of the choice of the alkali-metal intercalant, and provides a measure of departures from the rigid-band approximation. An enhancement of the soft-x-ray emission spectrum near EF is reported.

  7. Intercalation of Lithium in Pitch-Based Graphitized Carbon Fibers Chemically Modified by Fluorine: Soft Carbon With or Without an Oxide Surface

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Chen; Prisko, Aniko

    1999-01-01

    The effects of carbon structure and surface oxygen on the carbon's performance as the anode in lithium-ion battery were studied. Two carbon materials were used for the electrochemical tests: soft carbon made from defluorination of graphite fluoride, and the carbon precursor from which the graphite fluoride was made. In this research the precursor was graphitized carbon fiber P-100. It was first fluorinated to form CF(0.68), then defluorinated slowly at 350 to 450 C in bromoform, and finally heated in 1000 C nitrogen before exposed to room temperature air, producing disordered soft carbon having basic surface oxides. This process caused very little carbon loss. The electrochemical test involved cycles of lithium intercalation and deintercalation using C/saturated LiI-50/50 (vol %) EC and DMC/Li half cell. The cycling test had four major results. (1) The presence of a basic oxide surface may prevent solvent from entering the carbon structure and therefore prolong the carbon's cycle life for lithium intercalation-deintercalation. (2) The disordered soft carbon can store lithium through two different mechanisms. One of them is lithium intercalation. which gives the disordered carbon an electrochemical behavior similar to its more ordered graphitic precursor. The other is unknown in its chemistry, but is responsible for the high-N,oltage portion (less than 0.3V) of the charge-discharge curve. (3) Under certain conditions, the disordered carbon can store more lithium than its precursor. (4) These sample and its precursor can intercalate at 200 mA/g. and deintercalate at a rate of 2000 mA/g without significant capacity loss.

  8. Quasi-two-dimensional quantum states of H{sub 2} in stage-2 Rb-intercalated graphite

    SciTech Connect

    Smith, A.P.; Benedek, R.; Trouw, F.R.; Minkoff, M.; Yang, L.H.

    1995-10-30

    Inelastic-incoherent-neutron scattering can be a valuable nanostructural probe of H{sub 2}-doped porous materials, provided the spectral peaks can be interpreted in terms of crystal-field-split hydrogen-molecule energy levels, which represent a signature of the local symmetry. Inelastic-neutron-scattering measurements as well as extensive theoretical analyses have been performed on stage-2 Rb-intercalated graphite (Rb-GIC), with physisorbed H{sub 2}, HD, and D{sub 2}, a layered porous system with abundant spectral peaks, to assess whether the crystal-field-state picture enables a quantitative understanding of the observed structure. Potential-energy surfaces for molecular rotational and translational motion, as well as the intermolecular interactions of hydrogen molecules in Rb-GIC, were calculated within local-density-functional theory (LDFT). Model potentials, parameterized using results of the LDFT calculations, were employed in schematic calculations of rotational and translational excited state spectra of a single physisorbed H{sub 2} molecule in Rb-GIC. Results of the analysis are basically consistent with the assignment by Stead et al. of the lowest-lying peak at 1.4 meV to a rotational-tunneling transition of an isotropic hindered-rotor oriented normal to the planes, but indicate a small azimuthal anisotropy and a lower barrier than for the isotropic case. Based on the experimental isotope shifts and the theoretically predicted states, they conclude that spectral peaks at 11 and 22 meV are most likely related to center of mass excitations.

  9. Spontaneous intercalation of long-chain alkyl ammonium into edge-selectively oxidized graphite to efficiently produce high-quality graphene

    PubMed Central

    Wei, Liangming; Wu, Fei; Shi, Diwen; Hu, Changchen; Li, Xiaolin; Yuan, Weien; Wang, Jian; Zhao, Jiang; Geng, Huijuan; Wei, Hao; Wang, Ying; Hu, Nantao; Zhang, Yafei

    2013-01-01

    Mass production of high-quality graphene nanosheets (GNs) is essential for practical applications. We report that oxidation of graphite by low concentration KMnO4 at relatively high temperature (60°C) leads to edge-selectively oxidized graphite (EOG) which preserves the high crystalline graphitic structure on its basal planes while the edges are functionalized by oxygen-containing groups. Long-chain tetradecyl-ammonium salt (C14N+) could be spontaneously intercalated into EOG to form intercalated EOG-C14N+ compounds. Gentle and short-time sonication of EOG-C14N+ in toluene can full exfoliate EOG into edge-oxidized graphene nanosheets (EOGNs) with concentration of 0.67 mg/ml, monolayer population up to 90% and lateral size from 1 μm to >100 μm. The EOG and EOGN films show excellent electrical conductance, which is far superior to their graphene oxide (GO) counterparts. Our method provides an efficient way to produce high-quality GNs, and the resultant EOG also can be directly used for production of multifunctional materials and devices. PMID:24022463

  10. Enhancement of electrochemical hydrogen storage in NiCl2-FeCl3-PdCl2-graphite intercalation compound effected by chemical exfoliation

    NASA Astrophysics Data System (ADS)

    Skowroński, J. M.; Rozmanowski, T.; Krawczyk, P.

    2013-06-01

    In the present work, a quaternary NiCl2-FeCl3-PdCl2-graphite intercalation compound (NiCl2-FeCl3-PdCl2-GIC) was successfully synthesized by molten salts method. A part of this compound was subsequently subjected to chemical exfoliation to obtain expanded compound (NiCl2-FeCl3-PdCl2-EGIC). The changes created in crystalline structure, morphology and chemical composition of GIC due to exfoliation were examined by XRD, SEM and EDS techniques and then related to electrochemical behaviour of electrodes made of the original and exfoliated compound. The results of electrochemical studies carried out by the cyclic voltammetry (CV) method in 6 M KOH solution showed that current charges of all the cathodic and anodic peaks recorded for NiCl2-FeCl3-PdCl2-EGIC are considerably higher already in the first two cycles as compared to those observed for the original NiCl2-FeCl3-PdCl2-GIC. This improvement is ascribed to chemical exfoliation leading to a tremendous development of surface area of the compound due to the splitting and wrinkling of graphite flakes followed by easier access of hydroxyl ions of the electrolyte to active species of intercalates preserved between the graphene interspaces as well as expelled from the graphite interspacing. A large anodic peak was recorded on CV curves after the potentiostatic polarization of electrodes at the potential of -1.2 V where the reaction of hydrogen sorption/evolution occurs and intercalates highly dispersed in the graphite matrix are reduced to a metal form. This peak mainly corresponding to the recovery of hydrogen stored in the electrode appeared to be over five times higher for electrode made of exfoliated compound. This significant enhancement of the hydrogen storage capacity is attributed to electrochemically active Pd nanoparticles highly dispersed in porous structure of exfoliated compound and likely functioning in synergy with Ni/Fe clusters.

  11. New interpretation of the electron-diffraction pattern for high-stage rubidium-graphite intercalation compounds

    NASA Astrophysics Data System (ADS)

    Hwang, D. M.

    1983-01-01

    The C∇X electron-diffraction pattern obtained by Kambe et al. from high-stage Rb-graphite at and around room temperature (between 170 and 620 K for the stage-2 compound) is found to match remarkably well with the superposition of diffractions from the (3×7)R(30°, 40.9°), (3×3)R(30°, 60°), and (3×4)R(30°, 60°) commensurate superlattices. It is suggested that the unsaturated Rb-graphite, like the unsaturated Cs-graphite, has a tendency to form parallel-chain structures with a nearest-neighbor distance of 3a0.

  12. Effect of heat-treatment temperature of vapor-grown graphite fibers. I - Properties of their bromine intercalation compounds

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Hambourger, Paul D.; Slabe, Melissa E.

    1989-01-01

    Vapor-grown graphite fibers were heat treated at 2000, 2200, 2400, 2600, 2800, and 3000 C, brominated at room temperature for two days, and then characterized by X-ray diffraction analysis, differential scanning calorimetry, and resistivity measurements. Fibers greater than 13 microns in diameter had low resistivities (50 microohms or less) irrespective of the heat treatment temperature. An analysis of the results obtained suggests that resistivities below 6 microohms cannot be achieved through a further reduction in defect level unless the amount of bromine is increased.

  13. A comparative study on the impact of different glymes and their derivatives as electrolyte solvents for graphite co-intercalation electrodes in lithium-ion and sodium-ion batteries.

    PubMed

    Jache, Birte; Binder, Jan Oliver; Abe, Takeshi; Adelhelm, Philipp

    2016-06-01

    The abundance of sodium has recently sparked considerable interest in sodium-ion batteries (NIBs). Their similarity to conventional lithium-ion technology is obvious; however, the cell chemistry often significantly deviates. Graphite, although being the standard negative electrode in Li-ion batteries, is largely inactive for Na-ion storage in conventional non-aqueous carbonate-based electrolytes, for example. Very recently, it has been demonstrated that graphite can be activated for Na-ion storage in cells with ether-based electrolytes. The storage mechanism is based on co-intercalation of solvent molecules along with the Na-ions, forming ternary graphite intercalation compounds (t-GICs). This process is highly reversible but yet poorly understood. Here, we provide a comprehensive study on the formation and the stability of t-GICs. A series of ether solvents are being discussed: linear glymes with different chain lengths (mono-, di-, tri-, and tetraglyme), several derivatives with side groups as well as tetrahydrofuran (THF) as a cyclic ether and one crown ether. We show that the redox potentials shift depending on the ether chain length and mixing of ethers might enable tailoring of the redox behaviour. The inferior behaviour of triglyme is likely due to the less ideal ion coordination. Complementary experiments with lithium are made and demonstrate the superior behaviour of sodium. We find that the increase in graphene layer spacing during intercalation only slightly depends on the chain length and is in the range of 250%, and still mechanical stability is preserved. We further show the t-GICs possess chemical stability and demonstrate that the kinetically favoured charge transfer is probably due to the absence of a solid electrolyte interphase.

  14. A comparative study on the impact of different glymes and their derivatives as electrolyte solvents for graphite co-intercalation electrodes in lithium-ion and sodium-ion batteries.

    PubMed

    Jache, Birte; Binder, Jan Oliver; Abe, Takeshi; Adelhelm, Philipp

    2016-06-01

    The abundance of sodium has recently sparked considerable interest in sodium-ion batteries (NIBs). Their similarity to conventional lithium-ion technology is obvious; however, the cell chemistry often significantly deviates. Graphite, although being the standard negative electrode in Li-ion batteries, is largely inactive for Na-ion storage in conventional non-aqueous carbonate-based electrolytes, for example. Very recently, it has been demonstrated that graphite can be activated for Na-ion storage in cells with ether-based electrolytes. The storage mechanism is based on co-intercalation of solvent molecules along with the Na-ions, forming ternary graphite intercalation compounds (t-GICs). This process is highly reversible but yet poorly understood. Here, we provide a comprehensive study on the formation and the stability of t-GICs. A series of ether solvents are being discussed: linear glymes with different chain lengths (mono-, di-, tri-, and tetraglyme), several derivatives with side groups as well as tetrahydrofuran (THF) as a cyclic ether and one crown ether. We show that the redox potentials shift depending on the ether chain length and mixing of ethers might enable tailoring of the redox behaviour. The inferior behaviour of triglyme is likely due to the less ideal ion coordination. Complementary experiments with lithium are made and demonstrate the superior behaviour of sodium. We find that the increase in graphene layer spacing during intercalation only slightly depends on the chain length and is in the range of 250%, and still mechanical stability is preserved. We further show the t-GICs possess chemical stability and demonstrate that the kinetically favoured charge transfer is probably due to the absence of a solid electrolyte interphase. PMID:27165175

  15. Electrochemistry in ultrahigh vacuum. Intercalation of lithium into the basal plane of highly oriented pyrolytic graphite from a poly(ethylene oxide)/LiClO{sub 4} solid polymer electrolyte

    SciTech Connect

    Gofer, Y.; Barbour, R.; Luo, Y.; Tryk, D.A.; Jayne, J.; Chottiner, G.; Scherson, D.A.

    1995-08-03

    The electrochemical insertion of lithium into the basal plane of highly ordered pyrolytic graphite (HOPG-(bp)) from a LiClO{sub 4}/PEO solid polymer electrolyte has been examined in ultrahigh vacuum (UHV) using a carefully designed electrochemical cell. On the basis of a comparison of the data obtained with those recorded for the same interfacial system in an inert gas at atmospheric pressure, it has been concluded that the electrochemical behavior observed in UHV is indeed characteristic of the Li/LiClO{sub 4}(PEO)/(HOPG)(bp) system and therefore not affected in any discernible way by the ultralow pressures. Coulometric analysis of cyclic voltammetry experiments showed that the charge associated with lithium intercalation is larger than that observed during subsequent deintercalation, particularly during the first few intercalation-deintercalation cycles. However, the total amount of impurities observed in Auger electron spectra of emersed HOPG(bp) surfaces following lithium intercalation was very low. This last finding is inconsistent with the presence of a film of any significant thickness on the surface, suggesting that the charge imbalance for this interface is due to kinetic hindrances during lithium deintercalation. 10 refs., 3 figs.

  16. The mechanism of caesium intercalation of graphene.

    PubMed

    Petrović, M; Šrut Rakić, I; Runte, S; Busse, C; Sadowski, J T; Lazić, P; Pletikosić, I; Pan, Z-H; Milun, M; Pervan, P; Atodiresei, N; Brako, R; Šokčević, D; Valla, T; Michely, T; Kralj, M

    2013-01-01

    Properties of many layered materials, including copper- and iron-based superconductors, topological insulators, graphite and epitaxial graphene, can be manipulated by the inclusion of different atomic and molecular species between the layers via a process known as intercalation. For example, intercalation in graphite can lead to superconductivity and is crucial in the working cycle of modern batteries and supercapacitors. Intercalation involves complex diffusion processes along and across the layers; however, the microscopic mechanisms and dynamics of these processes are not well understood. Here we report on a novel mechanism for intercalation and entrapment of alkali atoms under epitaxial graphene. We find that the intercalation is adjusted by the van der Waals interaction, with the dynamics governed by defects anchored to graphene wrinkles. Our findings are relevant for the future design and application of graphene-based nano-structures. Similar mechanisms can also have a role for intercalation of layered materials. PMID:24212475

  17. Dual intercalating molten electrolyte batteries

    SciTech Connect

    Carlin, R.T.; De Long, H.C.; Fuller, J.; Trulove, P.C. . Frank J. Seiler Research Lab.)

    1994-07-01

    The reductive and oxidative intercalation of ions into graphite from room-temperature and low temperature molten salts is demonstrated. For this investigation, the molten salts use 1-ethyl-3-methylimidazolium (EMI[sup +]) or 1,2-dimethyl-3-propylimidazolium (DMPI[sup +]) as the cation and AlCl[sup [minus

  18. A method to remove intercalates from bromine and iodine intercalated carbon fibers

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    1993-01-01

    Upon exposure to room-temperature fluorine, intercalated carbon fibers (containing either bromine alone or iodine and bromine together) become heavier and less stable. For Amoco P-100 graphitized carbon fibers which were intercalated with 18 percent bromine by weight, 1 hr of fluorine exposure results in a large weight increase, but causes only a small decrease in thermal stability. More than l hr of fluorine exposure time results in small additional increases in fiber weight, but significant further decreases in fiber thermal stability. Such phenomena do not occur if the fluorine exposure is at 250 C. These observations suggest the mechanism that at room temperature, fluorine is absorbed quickly by the intercalated fibers and intercalated slowly into the fibers. Most of the original intercalates are replaced by fluorine in the process of fluorine intercalation. Under an inert environment, the bromine intercalated fibers are much more thermally stable. After 800 C vacuum heating for two weeks, the brominated fibers lost about 45 percent of their bromine, and their resistivity increased from 64 omega-cm to a range of 95 to 170 micro omega-cm. This is still much lower than the 300 micro omega-cm value for pristine P-100. For practical purposes, in order to preserve their thermal stability, brominated fibers need to be protected from exposure to fluorine at room temperature, or to any intercalate at a temperature where, upon direct contact to graphite, an intercalation compound can easily be formed.

  19. Mg intercalation into Ti2C building block

    NASA Astrophysics Data System (ADS)

    Yu, Xue-fang; Cheng, Jianbo; Liu, Zhenbo; Li, Qingzhong; Li, Wenzuo; Yang, Xin; Xiao, Bo

    2015-06-01

    Generally, intercalation occurs when foreign atoms intercalate into multi-layer structures, while adsorption occurs when foreign atoms interact with monolayer structures or surfaces. We performed an investigation on the Mg intercalation into Ti2C building block (MXene) from first-principles simulation. We found that Mg can favorably intercalate into MXene, forming the stable compound Ti2MgC, which corresponds to the stage I in the Li intercalation into graphite. Based on the evaluation of the average cell potential and the energy barrier of Mg diffusion for the most energetically stable structure, our results suggest that Ti2MgC is a potential anode for Mg ion batteries.

  20. Computation of dimensional changes in isotropic cesium-graphite reservoirs

    NASA Astrophysics Data System (ADS)

    Smith, Joe N.; Heffernan, Timothy

    1992-01-01

    Cs-graphite reservoirs have been utilized in many operating thermionic converters and TFEs, in both in-core and out-of-core tests. The vapor pressure of cesium over Cs-intercalated graphite is well documented for unirradiated reservoirs. The vapor pressure after irradiation is the subject of on-going study. Dimensional changes due to both intercalation and to neutron irradiation have been quantified only for highly oriented graphite. This paper describes extrapolation of the data for intercalated oriented graphite, to provide a qualitative description of the response of isotropic graphite to exposure to both cesium and neutrons.

  1. Method for producing thin graphite flakes with large aspect ratios

    DOEpatents

    Bunnell, L. Roy

    1993-01-01

    A method for making graphite flakes of high aspect ratio by the steps of providing a strong concentrated acid and heating the graphite in the presence of the acid for a time and at a temperature effective to intercalate the acid in the graphite; heating the intercalated graphite at a rate and to a temperature effective to exfoliate the graphite in discrete layers; subjecting the graphite layers to ultrasonic energy, mechanical shear forces, or freezing in an amount effective to separate the layes into discrete flakes.

  2. Charge-discharge mechanism of graphitized mesocarbon microbeads

    SciTech Connect

    Mabuchi, Akihiro; Fujimoto, Hiroyuki; Tokumitsu, Katsuhisa; Kasuh, Takahiro

    1995-09-01

    The charge-discharge reaction mechanism of the graphitized mesocarbon microbead (MCMB) anode was investigated with cyclic voltammetry and X-ray diffractometry. It is concluded that the charge-discharge reaction of graphitized MCMB involves intercalation of lithium, which is essentially similar to that for graphite. However, the in-plane ordering of the stage 1 and 2 Li-GICs (Graphite Intercalation Compounds) obtained from the graphitized MCMB is not LiC{sub 6} like graphite, but is close to LiC{sub 8}, according to the results of both X-ray diffractometry and cyclic voltammetry.

  3. Brazing graphite to graphite

    DOEpatents

    Peterson, George R.

    1976-01-01

    Graphite is joined to graphite by employing both fine molybdenum powder as the brazing material and an annealing step that together produce a virtually metal-free joint exhibiting properties similar to those found in the parent graphite. Molybdenum powder is placed between the faying surfaces of two graphite parts and melted to form molybdenum carbide. The joint area is thereafter subjected to an annealing operation which diffuses the carbide away from the joint and into the graphite parts. Graphite dissolved by the dispersed molybdenum carbide precipitates into the joint area, replacing the molybdenum carbide to provide a joint of virtually graphite.

  4. Li intercalation at graphene/hexagonal boron nitride interfaces

    NASA Astrophysics Data System (ADS)

    Shirodkar, Sharmila N.; Kaxiras, Efthimios

    2016-06-01

    Intercalation of Li in graphite and other layered structures is of interest for highly efficient energy storage devices. In this paper, we determine the extent to which Li intercalates at the different interfaces formed between graphene (G) and hexagonal boron nitride (hBN) heterostructures. We use ab initio calculations to explore in detail the position of the dispersed Li atoms, changes in the structure at the interfaces, energetic stability of the configurations, and the corresponding electronic structure with varying concentrations of the intercalant. We trace the origin of the energetic stability and maximum concentration of Li that intercalates into various layered structures to the ability of the interface to accept electrons. Our calculations indicate that Li intercalates easiest at G/G interfaces, followed by interfaces between G/hBN, whereas Li cannot intercalate in hBN/hBN interfaces. Our results provide a framework for the design of experimental setups with optimal Li intercalation and reveal the implications of intercalation on the dielectric properties of these materials and their possible application in plasmonics.

  5. Intercalated clay catalysts

    SciTech Connect

    Pinnavaia, T.J.

    1983-04-22

    Recent advances in the intercalation of metal complex cations in smectite clay minerals are leading to the development of new classes of selective heterogeneous catalysts. The selectivity of both metal-catalyzed and proton-catalyzed chemical conversions in clay intercalates can often be regulated by controlling surface chemical equilibria, interlamellar swelling, or reactant pair proximity in the interlayer regions. Also, the intercalation of polynuclear hydroxy metal cations and metal cluster cations in smectites affords new pillared clay catalysts with pore sizes that can be made larger than those of conventional zeolite catalysts.

  6. Intercalated Clay Catalysts

    NASA Astrophysics Data System (ADS)

    Pinnavaia, Thomas J.

    1983-04-01

    Recent advances in the intercalation of metal complex cations in smectite clay minerals are leading to the development of new classes of selective heterogeneous catalysts. The selectivity of both metal-catalyzed and proton-catalyzed chemical conversions in clay intercalates can often be regulated by controlling surface chemical equilibria, interlamellar swelling, or reactant pair proximity in the interlayer regions. Also, the intercalation of polynuclear hydroxy metal cations and metal cluster cations in smectites affords new pillared clay catalysts with pore sizes that can be made larger than those of conventional zeolite catalysts.

  7. The growth of graphite phase on an iridium field electron emitter

    NASA Astrophysics Data System (ADS)

    Bernatskii, D. P.; Pavlov, V. G.

    2016-06-01

    The growth of graphite on the surface of an iridium tip in pyrolysis of benzene to give a ribbed crystal has been found by the methods of field electron and desorption microscopy. The formation of a graphite crystal results in the electric field factor increasing. The adsorption of alkali metals on the surface of graphite is accompanied by the intercalation effect.

  8. Room-Temperature Fluorine-Induced Decrease in the Stability of Bromine and Iodine Intercalated Carbon Fibers

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    1995-01-01

    Upon exposure to room-temperature fluorine, intercalated carbon fibers (containing either bromine alone or iodine and bromine together) become heavier and less stable. For Amoco P-100 graphitized carbon fibers, which were intercalated with 18 wt percent bromine, 1 hour of fluorine exposure resulted in a large weight increase but caused only a small decrease in thermal stability. An additional 89 hours of fluorine exposure time resulted in small additional increases in fiber weight, but significant further decreases in fiber thermal stability. Such phenomena of weight increase and stability decrease do not occur if the intercalated fibers are exposed to 250 C fluorine. These observations suggest that, at room temperature, fluorine is absorbed quickly by the intercalated fibers and is intercalated slowly into the fibers. Most of the original intercalates are replaced by fluorine in the process of fluorine intercalation. In an inert environment, the bromine intercalated fibers are much more thermally stable. After 800 C vacuum heating for 2 weeks, the brominated fibers lost about 45% of their bromine, and their resistivity increased from 64 mu(Omega)-cm to a range of 95-170 mu(Omega)-cm. This is still much lower than the value of 300 mu(Omega)-cm for pristine P-100. For practical purposes, to preserve their thermal stability, brominated fibers need to be protected from exposure to fluorine at room temperature or to any intercalate at a temperature where, upon direct contact with graphite, an intercalation compound can easily be formed.

  9. Electronic structures of an epitaxial graphene monolayer on SiC(0001) after metal intercalation (metal = Al, Ag, Au, Pt, and Pd): A first-principles study

    NASA Astrophysics Data System (ADS)

    Hsu, Chia-Hsiu; Lin, Wen-Huan; Ozolins, Vidvuds; Chuang, Feng-Chuan

    2012-02-01

    The atomic structures and electronic properties of metal-intercalated (metal = Al, Ag, Au, Pt, and Pd) graphene monolayers on SiC(0001) were investigated using first-principles calculations. The unique Dirac cone of graphene near the K point reappeared as the graphite layer was intercalated by these metals at a coverage of 3/8 ML. Furthermore, our results show that metal intercalation leads to n-type doping of graphene. The bands contributed from graphene exhibit small splitting after intercalation, whereas the bands contributed from the intercalated metal layer have significant Rashba spin-orbit splittings in all cases except Al.

  10. Highly Conducting Graphite Epoxy Composite Demonstrated

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    1999-01-01

    Weight savings as high as 80 percent could be achieved if graphite polymer composites could replace aluminum in structures such as electromagnetic interference shielding covers and grounding planes. This could result in significant cost savings, especially for the mobile electronics found in spacecraft, aircraft, automobiles, and hand-held consumer electronics. However, such composites had not yet been fabricated with conductivity sufficient to enable these applications. To address this lack, a partnership of the NASA Lewis Research Center, Manchester College, and Applied Sciences, Inc., fabricated nonmetallic composites with unprecedented electrical conductivity. For these composites, heat-treated, vapor-grown graphite fibers were selected which have a resistivity of about 80 mW-cm, more than 20 times more conductive than typical carbon fibers. These fibers were then intercalated with iodine bromide (IBr). Intercalation is the insertion of guest atoms or molecules between the carbon planes of the graphite fibers. Since the carbon planes are not highly distorted in the process, intercalation has little effect on mechanical and thermal properties. Intercalation does, however, lower the carbon fiber resistivity to less than 10 mW-cm, which is comparable to that of metal fibers. Scaleup of the reaction was required since the initial intercalation experiments would be carried out on 20-mg quantities of fibers, and tens of grams of intercalated fibers would be needed to fabricate even small demonstration composites. The reaction was first optimized through a time and temperature study that yielded fibers with a resistivity of 8.7 2 mW-cm when exposed to IBr vapor at 114 C for 24 hours. Stability studies indicated that the intercalated fibers rapidly lost their conductivity when exposed to temperatures as low as 40 C in air. They were not, however, susceptible to degradation by water vapor in the manner of most graphite intercalation compounds. The 1000-fold scaleup

  11. KOH etched graphite for fast chargeable lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Cheng, Qian; Yuge, Ryota; Nakahara, Kentaro; Tamura, Noriyuki; Miyamoto, Shigeyuki

    2015-06-01

    Graphite is the most widely used anode material for lithium ion (Li-ion) batteries, although it has limited power performance at high charging rates (Li-ion input). Alternative materials such as silicon and tin alloys, however, have an even more inferior rate capability. We describe here a multi-channel structure with a graphite surface etched with pores that can greatly increase the number of sites for Li-ion intercalation/de-intercalation and reduce the Li-ion diffusion distance for fast chargeable Li-ion batteries by etching the graphite surface with pores. As a result, the multi-channel structure graphite anode shows better charging and discharging rate capability, cyclability, and higher coulombic efficiency than pristine graphite materials. The multi-channel anode material is proposed for use in fast chargeable Li-ion batteries for electric vehicles and plug-in hybrid vehicles.

  12. Deconstructing graphite: graphenide solutions.

    PubMed

    Pénicaud, Alain; Drummond, Carlos

    2013-01-15

    Growing interest in graphene over past few years has prompted researchers to find new routes for producing this material other than mechanical exfoliation or growth from silicon carbide. Chemical vapor deposition on metallic substrates now allows researchers to produce continuous graphene films over large areas. In parallel, researchers will need liquid, large scale, formulations of graphene to produce functional graphene materials that take advantage of graphene's mechanical, electrical, and barrier properties. In this Account, we describe methods for creating graphene solutions from graphite. Graphite provides a cheap source of carbon, but graphite is insoluble. With extensive sonication, it can be dispersed in organic solvents or water with adequate additives. Nevertheless, this process usually creates cracks and defects in the graphite. On the other hand, graphite intercalation compounds (GICs) provide a means to dissolve rather than disperse graphite. GICS can be obtained through the reaction of alkali metals with graphite. These compounds are a source of graphenide salts and also serve as an excellent electronic model of graphene due to the decoupling between graphene layers. The graphenide macroions, negatively charged graphene sheets, form supple two-dimensional polyelectrolytes that spontaneously dissolve in some organic solvents. The entropic gain from the dissolution of counterions and the increased degrees of freedom of graphene in solution drives this process. Notably, we can obtain graphenide solutions in easily processable solvents with low boiling points such as tetrahydrofuran or cyclopentylmethylether. We performed a statistical analysis of high resolution transmission electronic micrographs of graphene sheets deposited on grids from GICs solution to show that the dissolved material has been fully exfoliated. The thickness distribution peaks with single layers and includes a few double- or triple-layer objects. Light scattering analysis of the

  13. GRAPHITE EXTRUSIONS

    DOEpatents

    Benziger, T.M.

    1959-01-20

    A new lubricant for graphite extrusion is described. In the past, graphite extrusion mixtures have bcen composed of coke or carbon black, together with a carbonaceous binder such as coal tar pitch, and a lubricant such as petrolatum or a colloidal suspension of graphite in glycerin or oil. Sinee sueh a lubricant is not soluble in, or compatible with the biiider liquid, such mixtures were difficult to extrude, and thc formed pieees lacked strength. This patent teaches tbe use of fatty acids as graphite extrusion lubricants and definite improvemcnts are realized thereby since the fatty acids are soluble in the binder liquid.

  14. High performance Li-ion sulfur batteries enabled by intercalation chemistry.

    PubMed

    Lv, Dongping; Yan, Pengfei; Shao, Yuyan; Li, Qiuyan; Ferrara, Seth; Pan, Huilin; Graff, Gordon L; Polzin, Bryant; Wang, Chongmin; Zhang, Ji-Guang; Liu, Jun; Xiao, Jie

    2015-09-11

    The unstable interface of lithium metal in high energy density Li sulfur (Li-S) batteries raises concerns of poor cycling, low efficiency and safety issues, which may be addressed by using intercalation types of anode. Herein, a new prototype of Li-ion sulfur battery with high performance has been demonstrated by coupling a graphite anode with a sulfur cathode (2 mA h cm(-2)) after successfully addressing the interface issue of graphite in an ether based electrolyte. PMID:26214797

  15. High performance Li-ion sulfur batteries enabled by intercalation chemistry.

    PubMed

    Lv, Dongping; Yan, Pengfei; Shao, Yuyan; Li, Qiuyan; Ferrara, Seth; Pan, Huilin; Graff, Gordon L; Polzin, Bryant; Wang, Chongmin; Zhang, Ji-Guang; Liu, Jun; Xiao, Jie

    2015-09-11

    The unstable interface of lithium metal in high energy density Li sulfur (Li-S) batteries raises concerns of poor cycling, low efficiency and safety issues, which may be addressed by using intercalation types of anode. Herein, a new prototype of Li-ion sulfur battery with high performance has been demonstrated by coupling a graphite anode with a sulfur cathode (2 mA h cm(-2)) after successfully addressing the interface issue of graphite in an ether based electrolyte.

  16. In situ AFM study of interlayer spacing during anion intercalation into HOPG in aqueous electrolyte

    SciTech Connect

    Alliata, D.; Koetz, R.; Haas, O.; Siegenthaler, H.

    1999-11-23

    In the context of ion transfer batteries, highly oriented pyrolytic graphite (HOPG) was studied as a model in aqueous electrolytes to elucidate the mechanism of electrochemical intercalation into graphite. The local time-dependent dimensional changes of the host material occurring during the electrochemical intercalation processes were investigated on the nanometer scale. Atomic force microscopy (AFM), combined with cyclic voltammetry, was used as an in situ analytical tool during the intercalation of perchlorate and hydrogen sulfate ions into and their expulsion from the HOPG electrodes. For the first time, a reproducible, quantitative estimate of the interlayer spacing in HOPG with intercalated perchlorate and hydrogen sulfate ions could be obtained by in situ AFM measurements. The experimental values are in agreement with theoretical expectations, only for relatively low stacks of graphene layers. After formation of stage IV, HOPG expansion upon intercalation typically amounts to 32% when tens of layers are involved but to only 14% when thousands of layers are involved. Blister formation and more dramatic changes in morphology were observed, depending on the kind of electrolyte used, at higher levels of anion intercalation.

  17. Lithium intercalation behavior of surface modified carbonaceous materials

    SciTech Connect

    Tran, T.D.; Murguia, L.X.; Song, X.; Kinoshita, K.

    1997-07-17

    The surface properties of several well-characterized commercial carbon materials were modified by thermal and chemical treatments. The reversible capacities for lithium intercalation of a sponge green coke and a fuel green coke for lithium intercalation increased by as much as 25% after heat treatment in both reducing (5% H{sub 2}/Ar) and oxidizing (CO{sub 2}) environments. The irreversible capacity loss increased significantly with CO{sub 2} treatment at 800{degrees}C. The trend of larger capacity losses with CO{sub 2} treatment is also observed with a synthetic graphite (SFG6) which was produced by heat treatment at about 3000{degrees}C. Carbon fibers that were first impregnated with LiOH solution followed by reaction with CO{sub 2} to form Li{sub 2}CO{sub 3} tended to show lower irreversible capacity losses.

  18. A new way to synthesize superconducting metal-intercalated C60 and FeSe.

    PubMed

    Takahei, Yuuki; Tomita, Keitaro; Itoh, Yugo; Ashida, Keishi; Lee, Ji-Hyun; Nishimoto, Naoki; Kimura, Takumi; Kudo, Kazutaka; Nohara, Minoru; Kubozono, Yoshihiro; Kambe, Takashi

    2016-01-06

    Doping with the optimum concentration of carriers (electrons or holes) can modify the physical properties of materials. Therefore, improved ways to achieve carrier doping have been pursued extensively for more than 50 years. Metal-intercalation is one of the most important techniques for electron doping of organic / inorganic solids, and has produced superconductors from insulators and metallic solids. The most successful examples are metal-intercalated graphite and C60 superconductors. Metal intercalation has been performed using solid-reaction and liquid solvent techniques. However, precise control of the quantity of intercalants in the target solids can be difficult to achieve using these methods, as that quantity depends largely on the initial conditions. Here we report an electrochemical method for metal-intercalation, and demonstrate the preparation of superconductors using organic and inorganic materials (C60 and FeSe). The metal atoms are effectively intercalated into the spaces in C60 and FeSe solids by supplying an electric current between electrodes in a solvent that includes electrolytes. The recorded superconducting transition temperatures, Tc's, were the same as those of metal-intercalated C60 and FeSe prepared using solid-reaction or liquid solvent techniques. This technique may open a new avenue in the search for organic / inorganic superconductors.

  19. A new way to synthesize superconducting metal-intercalated C60 and FeSe

    NASA Astrophysics Data System (ADS)

    Takahei, Yuuki; Tomita, Keitaro; Itoh, Yugo; Ashida, Keishi; Lee, Ji-Hyun; Nishimoto, Naoki; Kimura, Takumi; Kudo, Kazutaka; Nohara, Minoru; Kubozono, Yoshihiro; Kambe, Takashi

    2016-01-01

    Doping with the optimum concentration of carriers (electrons or holes) can modify the physical properties of materials. Therefore, improved ways to achieve carrier doping have been pursued extensively for more than 50 years. Metal-intercalation is one of the most important techniques for electron doping of organic / inorganic solids, and has produced superconductors from insulators and metallic solids. The most successful examples are metal-intercalated graphite and C60 superconductors. Metal intercalation has been performed using solid-reaction and liquid solvent techniques. However, precise control of the quantity of intercalants in the target solids can be difficult to achieve using these methods, as that quantity depends largely on the initial conditions. Here we report an electrochemical method for metal-intercalation, and demonstrate the preparation of superconductors using organic and inorganic materials (C60 and FeSe). The metal atoms are effectively intercalated into the spaces in C60 and FeSe solids by supplying an electric current between electrodes in a solvent that includes electrolytes. The recorded superconducting transition temperatures, Tc’s, were the same as those of metal-intercalated C60 and FeSe prepared using solid-reaction or liquid solvent techniques. This technique may open a new avenue in the search for organic / inorganic superconductors.

  20. Graphite Revisited

    NASA Astrophysics Data System (ADS)

    Draine, B. T.

    2016-11-01

    Laboratory measurements are used to constrain the dielectric tensor for graphite, from microwave to X-ray frequencies. The dielectric tensor is strongly anisotropic even at X-ray energies. The discrete dipole approximation is employed for accurate calculations of absorption and scattering by single-crystal graphite spheres and spheroids. For randomly oriented single-crystal grains, the so-called 1/3{--}2/3 approximation for calculating absorption and scattering cross sections is exact in the limit a/λ \\to 0 and provides better than ∼10% accuracy in the optical and UV even when a/λ is not small, but becomes increasingly inaccurate at infrared wavelengths, with errors as large as ∼40% at λ =10 μ {{m}}. For turbostratic graphite grains, the Bruggeman and Maxwell Garnett treatments yield similar cross sections in the optical and ultraviolet, but diverge in the infrared, with predicted cross sections differing by over an order of magnitude in the far-infrared. It is argued that the Maxwell Garnett estimate is likely to be more realistic, and is recommended. The out-of-plane lattice resonance of graphite near 11.5 μm may be observable in absorption with the MIRI spectrograph on James Webb Space Telescope. Aligned graphite grains, if present in the interstellar medium, could produce polarized X-ray absorption and polarized X-ray scattering near the carbon K edge.

  1. Metallic conductivity and air stability in copper chloride intercalated carbon fibers

    NASA Technical Reports Server (NTRS)

    Oshima, H.; Woollam, J. A.; Yavrouian, A.

    1982-01-01

    Carbon-copper chloride intercalation compounds have been obtained by using variously graphitized carbon fibers as host materials. The resultant conductors are air stable, thermally stable to 450 K, have electrical resistivities as low as 12.9 microohm cm at room temperature, and have metallic conductivity temperature dependencies. These intercalated fibers have tensile strengths of 160000 psi, and Young's moduli of 25 x 10 to the 6th psi. For aerospace use, 1/(resistivity x density) is a figure of merit. On this basis, a reduction in resistivity by a factor of two will make this conductor competitive with copper.

  2. Transport study of electrochemically decorated and intercalated graphene

    NASA Astrophysics Data System (ADS)

    Efetov, Dmitri K.; Mak, Kin Fai; Guo, Yinsheng; Heinz, Tony F.; Brus, Louis; Kim, Philip

    2012-02-01

    Due to the surface-only properties of graphene, the decoration and/or intercalation of single, bi- and multi-layer graphene with foreign atoms can severely modify its electronic interactions, similar to those observed in its 3D counterpart the graphite intercalation compounds. Supported by a highly increased density of state due to a strong charge transfer above 10^14 cm-2 into the graphene π-bands, certain adatoms are expected to induce strong electronic interactions to the graphenes own Dirac fermions, where theoretical predictions reach from the Kondo-effect and magnetism to as far as superconductivity in graphene. In this study we will present evidence of specific adsorption and intercalation of diverse atomic species by electrochemical means. We will present a detailed transport study, including resistivity-, Hall- and magneto-resistivity measurements of single-, bi- and multi-layer graphene devices which were subjected to electrochemical doping by a variety of electrolytes and ionic species such as Li^+, ClO4^-, Cs^+, Ca^2+, etc.

  3. Thermally exfoliated graphite oxide

    NASA Technical Reports Server (NTRS)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Abdala, Ahmed (Inventor)

    2011-01-01

    A modified graphite oxide material contains a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g, wherein the thermally exfoliated graphite oxide displays no signature of the original graphite and/or graphite oxide, as determined by X-ray diffraction.

  4. Simultaneous electrical resistivity and mass uptake measurements in bromine intercalated fibers

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.

    1986-01-01

    Changes in mass and electrical resistivity of several types of pitch-based and vapor-grown graphite fibers were monitored during reaction with bromine. The observed threshold pressure dependent reaction suggested that the fibers were intercalated. In the fully brominated compound, the mass was increased by 44 percent and the resistivity was improved by a factor of 17. In the residue compound, the mass was increased by 22 percent and the resistivity was improved by a factor of 5. Fibers possessing different degrees of graphitization had surprisingly similar changes in both mass and resistivity.

  5. Controlling the actuation properties of MXene paper electrodes upon cation intercalation

    SciTech Connect

    Come, Jeremy E.; Black, Jennifer M.; Naguib, Michael; Lukatskaya, Maria R.; Beidaghi, Majid; Wesolowski, David J.; Gogotsi, Yury; Rondinone, Adam J.; Balke, Nina; Kalinin, Sergei V.

    2015-08-05

    Atomic force microscopy was used to monitor the macroscopic deformation in a delaminated Ti₃C₂ paper electrode in-situ, during charge/discharge in a variety of aqueous electrolytes to examine the effect of the cation intercalation on the electrochemical behavior and mechanical response. The results show a strong dependence of the electrode deformation on cation size and charge. The electrode undergoes a large contraction during Li⁺, Na⁺ or Mg²⁺ intercalation, differentiating the Ti₃C₂ paper from conventional electrodes where redox intercalation of ions (e.g. Li⁺) into the bulk phase (e.g. graphite, silicon) results in volumetric expansion. This feature may explain the excellent rate performance and cyclability reported for MXenes. We also demonstrated that the variation of the electromechanical contraction can be easily adjusted by electrolyte exchange, and shows interesting characteristics for the design of actuators based on 2D metal carbides.

  6. A theoretical study of a carbon lattice system for lithium intercalated carbon anodes

    SciTech Connect

    Scanlon, L.G.; Storch, D.M.; Newton, J.H.; Sandi, G.

    1997-09-01

    A theoretical study was performed using computational chemistry to describe the intermolecular forces between graphite layers as well as spacing and conformation. It was found that electron correlation and a diffuse basis set were important for this calculation. In addition, the high reactivity of edge sites in lithium intercalated carbon anodes was also investigated. In this case, the reactive sites appear to strongly correlate with the relative distribution of the total atomic spin densities as well as total atomic charges. The spacing of graphite layers and lithium ion separation within an {open_quotes}approximated{close_quotes} lithium intercalated carbon anode was also investigated. The spacing of the carbon layers used in this investigation agrees most closely for that found in disordered carbon lattices.

  7. Intercalation of cyclic ketones into vanadyl phosphate

    SciTech Connect

    Zima, Vitezslav . E-mail: vitezslav.zima@upce.cz; Melanova, Klara; Benes, Ludvik; Trchova, Miroslava; Dybal, Jiri

    2005-01-15

    Intercalation compounds of vanadyl phosphate with cyclic ketones (cyclopentanone, cyclohexanone, 4-methylcyclohexanone, and 1,4-cyclohexanedione) were prepared from corresponding propanol or ethanol intercalates by a molecular exchange. The intercalates prepared were characterized using powder X-ray diffraction and thermogravimetric analysis. The intercalates are stable in dry environment and decompose slowly in humid air. Infrared and Raman spectra indicate that carbonyl oxygens of the guest molecules are coordinated to the vanadium atoms of the host layers. The local structure and interactions in the cyclopentanone intercalate have been suggested on the basis of quantum chemical calculations.

  8. Synthesis of soluble graphite and graphene.

    PubMed

    Kelly, K F; Billups, W E

    2013-01-15

    resorting to oxidation. Our exfoliation process involves the intercalation of lithium into bulk graphite to yield graphene sheets reduced by the lithium. We can alkylate the resulting graphite salt reductively using solubilizing dodecyl groups. By probe microscopy, we show that these groups are attached covalently only at the graphitic edges. PMID:23116420

  9. Synthesis of soluble graphite and graphene.

    PubMed

    Kelly, K F; Billups, W E

    2013-01-15

    resorting to oxidation. Our exfoliation process involves the intercalation of lithium into bulk graphite to yield graphene sheets reduced by the lithium. We can alkylate the resulting graphite salt reductively using solubilizing dodecyl groups. By probe microscopy, we show that these groups are attached covalently only at the graphitic edges.

  10. Bridged graphite oxide materials

    NASA Technical Reports Server (NTRS)

    Herrera-Alonso, Margarita (Inventor); McAllister, Michael J. (Inventor); Aksay, Ilhan A. (Inventor); Prud'homme, Robert K. (Inventor)

    2010-01-01

    Bridged graphite oxide material comprising graphite sheets bridged by at least one diamine bridging group. The bridged graphite oxide material may be incorporated in polymer composites or used in adsorption media.

  11. Ca intercalated bilayer graphene as a thinnest limit of superconducting C6Ca.

    PubMed

    Kanetani, Kohei; Sugawara, Katsuaki; Sato, Takafumi; Shimizu, Ryota; Iwaya, Katsuya; Hitosugi, Taro; Takahashi, Takashi

    2012-11-27

    Success in isolating a 2D graphene sheet from bulky graphite has triggered intensive studies of its physical properties as well as its application in devices. Graphite intercalation compounds (GICs) have provided a platform of exotic quantum phenomena such as superconductivity, but it is unclear whether such intercalation is feasible in the thinnest 2D limit (i.e., bilayer graphene). Here we report a unique experimental realization of 2D GIC, by fabricating calcium-intercalated bilayer graphene C(6)CaC(6) on silicon carbide. We have investigated the structure and electronic states by scanning tunneling microscopy and angle-resolved photoemission spectroscopy. We observed a free-electron-like interlayer band at the Brillouin-zone center, which is thought to be responsible for the superconductivity in 3D GICs, in addition to a large π* Fermi surface at the zone boundary. The present success in fabricating Ca-intercalated bilayer graphene would open a promising route to search for other 2D superconductors as well as to explore its application in devices.

  12. Structure and magnetism of cobalt intercalated graphene/Ir(111) via spin-polarized STM

    NASA Astrophysics Data System (ADS)

    Decker, Regis; Brede, Jens; Atodiresei, Nicolae; Caciuc, Vasile; Bluegel, Stefan; Wiesendanger, Roland

    2013-03-01

    The presence of intercalation compounds in graphite, i.e. impurities or layer(s) trapped between carbon sheets, can lead to changes in the transport, optical and catalytic properties compared to bulk graphite, or even superconductivity. Here, we present the local structure and magnetic properties of graphene on a magnetic substrate, resolved by spin-polarized STM. The magnetic substrate is obtained by the intercalation of a cobalt layer between graphene and an Ir(111) surface. The atomic structure of the graphene layer is dominated by a highly corrugated Moiré pattern, which arises due to the incommensurability and/or twisting angle of the graphene lattice and the Co/Ir(111) surface. Within the Moiré unit cell three different regions, i.e. top, fcc, and hcp regions are identified. Interestingly, these regions show very different electronic and magnetic signatures in the experiments, defining an atomic-scale magnetic Moiré pattern. The observed spin polarization is compared to density functional theory calculations. The calculations reveal that the bonding between the graphene layer and intercalated Co layer varies from weak to strong within the Moiré unit cell. Moreover, the interaction between the graphene and the intercalated cobalt layer leads to a spin dependent charge rearrangement, which induces magnetism in graphene as observed in experiment.

  13. Tunable Graphitic Carbon Nano-Onions Development in Carbon Nanofibers for Multivalent Energy Storage

    SciTech Connect

    Schwarz, Haiqing L.

    2016-01-01

    We developed a novel porous graphitic carbon nanofiber material using a synthesis strategy combining electrospinning and catalytic graphitization. RF hydrogel was used as carbon precursors, transition metal ions were successfully introduced into the carbon matrix by binding to the carboxylate groups of a resorcinol derivative. Transition metal particles were homogeneously distributed throughout the carbon matrix, which are used as in-situ catalysts to produce graphitic fullerene-like nanostructures surrounding the metals. The success design of graphitic carbons with enlarged interlayer spacing will enable the multivalent ion intercalation for the development of multivalent rechargeable batteries.

  14. Surface treated natural graphite as anode material for high-power Li-ion battery applications.

    SciTech Connect

    Liu, J.; Vissers, D. R.; Amine, K.; Barsukov, I. V.; Henry, F.; Doniger, J.; Chemical Engineering; Superior Graphite Co.

    2006-01-01

    High power application of Li-ion battery in hybrid electrical vehicles requires low cost and safe cell materials. Among the various carbon anode materials used in lithium ion batteries, natural graphite shows the most promise with advantages in performance and cost. However, natural graphite is not compatible with propylene carbonate (PC)-based electrolytes, which have a lower melting point and improved safety characteristics. The problem with it is that the molecules of propylene carbonate intercalate with Li+ into graphite, and that frequently leads to the exfoliation of the graphite matrix.

  15. Layer Number Dependence of Li(+) Intercalation on Few-Layer Graphene and Electrochemical Imaging of Its Solid-Electrolyte Interphase Evolution.

    PubMed

    Hui, Jingshu; Burgess, Mark; Zhang, Jiarui; Rodríguez-López, Joaquín

    2016-04-26

    A fundamental question facing electrodes made out of few layers of graphene (FLG) is if they display chemical properties that are different to their bulk graphite counterpart. Here, we show evidence that suggests that lithium ion intercalation on FLG, as measured via stationary voltammetry, shows a strong dependence on the number of layers of graphene that compose the electrode. Despite its extreme thinness and turbostratic structure, Li ion intercalation into FLG still proceeds through a staging process, albeit with different signatures than bulk graphite or multilayer graphene. Single-layer graphene does not show any evidence of ion intercalation, while FLG with four graphene layers displays limited staging peaks, which broaden and increase in number as the layer number increases to six. Despite these mechanistic differences on ion intercalation, the formation of a solid-electrolyte interphase (SEI) was observed on all electrodes. Scanning electrochemical microscopy (SECM) in the feedback mode was used to demonstrate changes in the surface conductivity of FLG during SEI evolution. Observation of ion intercalation on large area FLG was conditioned to the fabrication of "ionic channels" on the electrode. SECM measurements using a recently developed Li-ion sensitive imaging technique evidenced the role of these channels in enabling Li-ion intercalation through localized flux measurements. This work highlights the impact of nanostructure and microstructure on macroscopic electrochemical behavior and provides guidance to the mechanistic control of ion intercalation using graphene, an atomically thin interface where surface and bulk reactivity converge. PMID:26943950

  16. Preparation of graphitic articles

    DOEpatents

    Phillips, Jonathan; Nemer, Martin; Weigle, John C.

    2010-05-11

    Graphitic structures have been prepared by exposing templates (metal, metal-coated ceramic, graphite, for example) to a gaseous mixture that includes hydrocarbons and oxygen. When the template is metal, subsequent acid treatment removes the metal to yield monoliths, hollow graphitic structures, and other products. The shapes of the coated and hollow graphitic structures mimic the shapes of the templates.

  17. Ag induced electromagnetic interference shielding of Ag-graphite/PVDF flexible nanocomposites thinfilms

    NASA Astrophysics Data System (ADS)

    Kumaran, R.; Alagar, M.; Dinesh Kumar, S.; Subramanian, V.; Dinakaran, K.

    2015-09-01

    We report Ag nanoparticle induced Electromagnetic Interference (EMI) shielding in a flexible composite films of Ag nanoparticles incorporated graphite/poly-vinylidene difluoride (PVDF). PVDF nanocomposite thin-films were synthesized by intercalating Ag in Graphite (GIC) followed by dispersing GIC in PVDF. The X-ray diffraction analysis and the high-resolution transmission electron microscope clearly dictate the microstructure of silver nanoparticles in graphite intercalated composite of PVDF matrix. The conductivity values of nanocomposites are increased upto 2.5 times when compared to neat PVDF having a value of 2.70 S/cm at 1 MHz. The presence of Ag broadly enhanced the dielectric constant and lowers the dielectric loss of PVDF matrix proportional to Ag content. The EMI shielding effectiveness of the composites is 29.1 dB at 12.4 GHz for the sample having 5 wt. % Ag and 10 wt. % graphite in PVDF.

  18. The alkaline earth intercalates of molybdenum disulfide

    NASA Technical Reports Server (NTRS)

    Somoano, R. B.; Hadek, V.; Rembaum, A.; Samson, S.; Woollam, J. A.

    1975-01-01

    Molybdenum disulfide has been intercalated with calcium and strontium by means of the liquid ammonia technique. Chemical, X-ray, and superconductivity data are presented. The X-ray data reveal a lowering of crystal symmetry and increase of complexity of the structure upon intercalation with the alkaline earth metals. The Ca and Sr intercalates start to superconduct at 4 and 5.6 K, respectively, and show considerable anisotropy regarding the critical magnetic field.

  19. Single layer nano graphene platelets derived from graphite nanofibres

    NASA Astrophysics Data System (ADS)

    Huang, Kai; Delport, Géraud; Orcin-Chaix, Lucile; Drummond, Carlos; Lauret, Jean-Sebastien; Penicaud, Alain

    2016-04-01

    Solutions of calibrated nanographenides (negatively charged nanographenes) are obtained by dissolution of graphite nanofibre intercalation compounds (GNFICs). Deposits show homogeneous unfolded nanographene platelets of 1 to 2 layers thickness and 10 nm lateral size, evidenced by atomic force microscopy and Raman spectroscopy. Upon oxidation, nanographenide solutions exhibit strong photoluminescence.Solutions of calibrated nanographenides (negatively charged nanographenes) are obtained by dissolution of graphite nanofibre intercalation compounds (GNFICs). Deposits show homogeneous unfolded nanographene platelets of 1 to 2 layers thickness and 10 nm lateral size, evidenced by atomic force microscopy and Raman spectroscopy. Upon oxidation, nanographenide solutions exhibit strong photoluminescence. Electronic supplementary information (ESI) available: Raman, SEM, TEM and XPS characterization of the raw nanofibres, detailed XPS spectra analysis of deposits from GNFIC/THF and GNFIC/NMP solutions, Raman and AFM characterization of fresh and aged solutions of nanofibres obtained from 3 different suppliers. See DOI: 10.1039/c6nr01512c

  20. The milling of pristine and brominated P-100 graphite fibers

    NASA Technical Reports Server (NTRS)

    Dillehay, M. E.; Gaier, J. R.

    1986-01-01

    Techniques were developed for the ball milling of pristine and brominated P-100 graphite fibers. Because of the lubrication properties of graphite, large ball loads (50 percent by volume) were required. Use of 2-propanol as a milling medium enhanced the efficiency of the process. Milled brominated P-100 fibers had resistivities which were indistinguishable from milled pristine P-100 fibers. Apparent loss of bromine from the brominated fibers suggests that bromine would not be the intercalate of choice in applications where milled fibers of this type are required. Other intercalates which do not degas may be more appropriate for a milled fiber application. These same results, however, do provide evidence that bromine molecules leave the fiber surface when removed from overpressure of bromine. While exploring possible solvent media for milling purposes, it was found that brominated fibers are stable in a wide variety of organic solvents.

  1. Electron oxidation of graphite by fluorospecies

    SciTech Connect

    Rosenthal, G.L.

    1984-09-01

    The fluoride-ion affinity (A/sub F/sup -//) of phosphorus pentafluoride was determined to be 100 kcal/mole from the heats of reaction of the Lewis bases SF/sub 4/ and ClO/sub 2/F with PF/sub 5/ near room temperature. The fluoride-ion affinity of boron trifluoride was determined to be 92 kcal/mole from the heat of reaction of ClO/sub 2/F with BF/sub 3/. The crystal structure of ClO/sub 2/BF/sub 4/ was determined and a precise lattice energy was calculated from this structure and used to determined A/sub F/sup -//. Both PF/sub 5/ and BF/sub 3/ were found to react with graphite in the presence of fluorine gas to yield a variety of non-stoichiometric compounds. The fluoride-ion affinity of silicon tetrafluoride is not known, but it does not react with graphite and F/sub 2/ except at high pressures. These and previous results suggested a threshold in oxidizing power of intercalating species below which the oxidative intercalation reaction would not occur. The reduction of C/sub x/PF/sub 6/ by PF/sub 3/ proved that the reaction is thermodynamically controlled to some extent. The displacement of PF/sub 5/ in C/sub x/PF/sub 6/ by BF/sub 3/ (with a smaller A/sub F/sup -//) suggested that two BF/sub 3/ molecules may have a larger fluoride-ion affinity than one PF/sub 5/ and that B/sub 2/F/sub 7//sup -/ may be a stable anion in graphite. Conductivity studies of PF/sub x/ and BF/sub y/ salts showed that a large drop in conductivity when the reaction reaches first stage is due in the most part to direct fluorination of carbon in graphite.

  2. Electrochemical Ultracapacitors Using Graphitic Nanostacks

    NASA Technical Reports Server (NTRS)

    Marotta, Christopher

    2012-01-01

    Electrochemical ultracapacitors (ECs) have been developed using graphitic nanostacks as the electrode material. The advantages of this technology will be the reduction of device size due to superior power densities and relative powers compared to traditional activated carbon electrodes. External testing showed that these materials display reduced discharge response times compared to state-of-the-art materials. Such applications are advantageous for pulsed power applications such as burst communications (satellites, cell phones), electromechanical actuators, and battery load leveling in electric vehicles. These carbon nanostructures are highly conductive and offer an ordered mesopore network. These attributes will provide more complete electrolyte wetting, and faster release of stored charge compared to activated carbon. Electrochemical capacitor (EC) electrode materials were developed using commercially available nanomaterials and modifying them to exploit their energy storage properties. These materials would be an improvement over current ECs that employ activated carbon as the electrode material. Commercially available graphite nanofibers (GNFs) are used as precursor materials for the synthesis of graphitic nanostacks (GNSs). These materials offer much greater surface area than graphite flakes. Additionally, these materials offer a superior electrical conductivity and a greater average pore size compared to activated carbon electrodes. The state of the art in EC development uses activated carbon (AC) as the electrode material. AC has a high surface area, but its small average pore size inhibits electrolyte ingress/egress. Additionally, AC has a higher resistivity, which generates parasitic heating in high-power applications. This work focuses on fabricating EC from carbon that has a very different structure by increasing the surface area of the GNF by intercalation or exfoliation of the graphitic basal planes. Additionally, various functionalities to the GNS

  3. Industrial Applications of Graphite Fluoride Fibers

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh; Kucera, Donald

    1991-01-01

    Based on fluorination technology developed during 1934 to 1959, and the fiber technology developed during the 1970s, a new process was developed to produce graphite fluoride fibers. In the process, pitch based graphitized carbon fibers are at first intercalated and deintercalated several times by bromine and iodine, followed by several cycles of nitrogen heating and fluorination at 350 to 370 C. Electrical, mechanical, and thermal properties of this fiber depend on the fluorination process and the fluorine content of the graphite fluoride product. However, these properties are between those of graphite and those of PTFE (Teflon). Therefore, it is considered to be a semiplastic. The physical properties suggest that this new material may have many new and unexplored applications. For example, it can be a thermally conductive electrical insulator. Its coefficient of thermal expansion (CTE) can be adjusted to match that of silicon, and therefore, it can be a heat sinking printed circuit board which is CTE compatible with silicon. Using these fibers in printed circuit boards may provide improved electrical performance and reliability of the electronics on the board over existing designs. Also, since it releases fluorine at 300 C or higher, it can be used as a material to store fluorine and to conduct fluorination. This application may simplify the fluorination process and reduce the risk of handling fluorine.

  4. Atomically resolved graphitic surfaces in air by atomic force microscopy.

    PubMed

    Wastl, Daniel S; Weymouth, Alfred J; Giessibl, Franz J

    2014-05-27

    Imaging at the atomic scale using atomic force microscopy in biocompatible environments is an ongoing challenge. We demonstrate atomic resolution of graphite and hydrogen-intercalated graphene on SiC in air. The main challenges arise from the overall surface cleanliness and the water layers which form on almost all surfaces. To further investigate the influence of the water layers, we compare data taken with a hydrophilic bulk-silicon tip to a hydrophobic bulk-sapphire tip. While atomic resolution can be achieved with both tip materials at moderate interaction forces, there are strong differences in force versus distance spectra which relate to the water layers on the tips and samples. Imaging at very low tip-sample interaction forces results in the observation of large terraces of a naturally occurring stripe structure on the hydrogen-intercalated graphene. This structure has been previously reported on graphitic surfaces that are not covered with disordered adsorbates in ambient conditions (i.e., on graphite and bilayer graphene on SiC, but not on monolayer graphene on SiC). Both these observations indicate that hydrogen-intercalated graphene is close to an ideal graphene sample in ambient environments.

  5. Anomalous dielectric relaxation of water confined in graphite oxide

    SciTech Connect

    Yu, Ji; Tian, Yuchen; Gu, Min; Tang, Tong B.

    2015-09-28

    Nonmonotonic thermal dependence of dielectric relaxation of water has been observed in hydrated graphite oxide (GO). Graphite oxide prepared via Hummers method then imbued with specific water contents were characterized, with {sup 13}C and {sup 1}H nuclear magnetic resonance spectroscopies, X-ray photoelectron spectroscopy, ambient- and variable-temperature X-ray diffractometries, as well as thermogravimetric analysis. Pressed pellets provided with either conducting or blocking electrodes yielded dielectric loss, which was shown to originate from dielectric relaxation of the confined water. Three relaxation processes were observed in impedance spectroscopy. Our previous work has identified two different types of water in GO, namely, intercalated water and water in inter-grain voids. P{sub 1} expresses the reorientation of water confined inside inter-grain voids, and P{sub 2}, the rotation of intercalated water molecules confined in interlayers. The present work reveals a new process P{sub 3}, which also relates to intercalated water. It slows down with temperature, and this apparent anomaly is explained by the decrease in water content and consequent narrowing of interlayer spacing in graphite oxide, as confirmed by characterization techniques. The present study should contribute to our understanding of surface water dynamics.

  6. Anomalous dielectric relaxation of water confined in graphite oxide

    NASA Astrophysics Data System (ADS)

    Yu, Ji; Tian, Yuchen; Gu, Min; Tang, Tong B.

    2015-09-01

    Nonmonotonic thermal dependence of dielectric relaxation of water has been observed in hydrated graphite oxide (GO). Graphite oxide prepared via Hummers method then imbued with specific water contents were characterized, with 13C and 1H nuclear magnetic resonance spectroscopies, X-ray photoelectron spectroscopy, ambient- and variable-temperature X-ray diffractometries, as well as thermogravimetric analysis. Pressed pellets provided with either conducting or blocking electrodes yielded dielectric loss, which was shown to originate from dielectric relaxation of the confined water. Three relaxation processes were observed in impedance spectroscopy. Our previous work has identified two different types of water in GO, namely, intercalated water and water in inter-grain voids. P1 expresses the reorientation of water confined inside inter-grain voids, and P2, the rotation of intercalated water molecules confined in interlayers. The present work reveals a new process P3, which also relates to intercalated water. It slows down with temperature, and this apparent anomaly is explained by the decrease in water content and consequent narrowing of interlayer spacing in graphite oxide, as confirmed by characterization techniques. The present study should contribute to our understanding of surface water dynamics.

  7. Atomically resolved graphitic surfaces in air by atomic force microscopy.

    PubMed

    Wastl, Daniel S; Weymouth, Alfred J; Giessibl, Franz J

    2014-05-27

    Imaging at the atomic scale using atomic force microscopy in biocompatible environments is an ongoing challenge. We demonstrate atomic resolution of graphite and hydrogen-intercalated graphene on SiC in air. The main challenges arise from the overall surface cleanliness and the water layers which form on almost all surfaces. To further investigate the influence of the water layers, we compare data taken with a hydrophilic bulk-silicon tip to a hydrophobic bulk-sapphire tip. While atomic resolution can be achieved with both tip materials at moderate interaction forces, there are strong differences in force versus distance spectra which relate to the water layers on the tips and samples. Imaging at very low tip-sample interaction forces results in the observation of large terraces of a naturally occurring stripe structure on the hydrogen-intercalated graphene. This structure has been previously reported on graphitic surfaces that are not covered with disordered adsorbates in ambient conditions (i.e., on graphite and bilayer graphene on SiC, but not on monolayer graphene on SiC). Both these observations indicate that hydrogen-intercalated graphene is close to an ideal graphene sample in ambient environments. PMID:24746062

  8. Recent Advances in Preparation, Structure, Properties and Applications of Graphite Oxide.

    PubMed

    Srivastava, Suneel Kumar; Pionteck, Jürgen

    2015-03-01

    Graphite oxide, also referred as graphitic oxide or graphitic acid, is an oxidized bulk product of graphite with a variable composition. However, it did not receive immense attention until it was identified as an important and easily obtainable precursor for the preparation of graphene. This inspired many researchers to explore facts related to graphite oxide in exploiting its fascinating features. The present article culminates up-dated review on different preparative methods, morphology and characterization of physical/chemical properties of graphite oxide by XRD, XPS, FTIR, Raman, NMR, UV-visible, and DRIFT analyses. Finally, recent developments on intercalation and applications of GO in multifaceted areas of catalysis, sensor, supercapacitors, water purification, hydrogen storage and magnetic shielding etc. has also been reviewed.

  9. Hindered Glymes for Graphite-Compatible Electrolytes.

    PubMed

    Shanmukaraj, Devaraj; Grugeon, Sylvie; Laruelle, Stephane; Armand, Michel

    2015-08-24

    Organic carbonate mixtures are used almost exclusively as lithium battery electrolyte solvents. The linear compounds (dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate) act mainly as thinner for the more viscous and high-melting ethylene carbonate but are the least stable component and have low flash points; these are serious handicaps for lifetime and safety. Polyethers (glymes) are useful co-solvents, but all formerly known representatives solvate Li(+) strongly enough to co-intercalate in the graphite negative electrode and exfoliate it. We have put forward a new electrolyte composition comprising a polyether to which a bulky tert-butyl group is attached ("hindered glyme"), thus completely preventing co-intercalation while maintaining good conductivity. This alkyl-carbonate-free electrolyte shows remarkable cycle efficiency of the graphite electrode, not only at room temperature, but also at 50 and 70 °C in the presence of lithium bis(fluorosulfonimide). The two-ethylene-bridge hindered glyme has a high boiling point and a flash point of 80 °C, a considerable advantage for safety.

  10. Hindered Glymes for Graphite-Compatible Electrolytes.

    PubMed

    Shanmukaraj, Devaraj; Grugeon, Sylvie; Laruelle, Stephane; Armand, Michel

    2015-08-24

    Organic carbonate mixtures are used almost exclusively as lithium battery electrolyte solvents. The linear compounds (dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate) act mainly as thinner for the more viscous and high-melting ethylene carbonate but are the least stable component and have low flash points; these are serious handicaps for lifetime and safety. Polyethers (glymes) are useful co-solvents, but all formerly known representatives solvate Li(+) strongly enough to co-intercalate in the graphite negative electrode and exfoliate it. We have put forward a new electrolyte composition comprising a polyether to which a bulky tert-butyl group is attached ("hindered glyme"), thus completely preventing co-intercalation while maintaining good conductivity. This alkyl-carbonate-free electrolyte shows remarkable cycle efficiency of the graphite electrode, not only at room temperature, but also at 50 and 70 °C in the presence of lithium bis(fluorosulfonimide). The two-ethylene-bridge hindered glyme has a high boiling point and a flash point of 80 °C, a considerable advantage for safety. PMID:26212607

  11. Intercalation chemistry of zirconium 4-sulfophenylphosphonate

    SciTech Connect

    Svoboda, Jan; Zima, Vítězslav; Melánová, Klára; Beneš, Ludvík; Trchová, Miroslava

    2013-12-15

    Zirconium 4-sulfophenylphosphonate is a layered material which can be employed as a host for the intercalation reactions with basic molecules. A wide range of organic compounds were chosen to represent intercalation ability of zirconium 4-sulfophenylphosphonate. These were a series of alkylamines from methylamine to dodecylamine, 1,4-phenylenediamine, p-toluidine, 1,8-diaminonaphthalene, 1-aminopyrene, imidazole, pyridine, 4,4′-bipyridine, poly(ethylene imine), and a series of amino acids from glycine to 6-aminocaproic acid. The prepared compounds were characterized by powder X-ray diffraction, thermogravimetry analysis and IR spectroscopy and probable arrangement of the guest molecules in the interlayer space of the host is proposed based on the interlayer distance of the prepared intercalates and amount of the intercalated guest molecules. - Graphical abstract: Nitrogen-containing organic compounds can be intercalated into the interlayer space of zirconium 4-sulfophenylphosphonate. - Highlights: • Zirconium 4-sulfophenylphosphonate was examined as a host material in intercalation chemistry. • A wide range of nitrogen-containing organic compounds were intercalated. • Possible arrangement of the intercalated species is described.

  12. Protection of nuclear graphite toward fluoride molten salt by glassy carbon deposit

    NASA Astrophysics Data System (ADS)

    Bernardet, V.; Gomes, S.; Delpeux, S.; Dubois, M.; Guérin, K.; Avignant, D.; Renaudin, G.; Duclaux, L.

    2009-02-01

    Molten salt reactor represents one of the promising future Generation IV nuclear reactors families where the fuel, a liquid molten fluoride salt, is circulating through the graphite reactor core. The interactions between nuclear graphite and fluoride molten salt and also the graphite surface protection were investigated in this paper by powder X-ray diffraction, micro-Raman spectroscopy and scanning electron microscopy coupled with X-ray microanalysis. Nuclear graphite discs were covered by two kinds of protection deposit: a glassy carbon coating and a double coating of pyrolitic carbon/glassy carbon. Different behaviours have been highlighted according to the presence and the nature of the coated protection film. Intercalation of molten salt between the graphite layers did not occur. Nevertheless the molten salt adhered more or less to the surface of the graphite disc, filled more or less the graphite surface porosity and perturbed more or less the graphite stacking order at the disc surface. The behaviour of unprotected graphite was far to be satisfactory after two days of immersion of graphite in molten salt at 500 °C. The best protection of the graphite disc surface, with the maximum of inertness towards molten salt, has been obtained with the double coating of pyrolitic carbon/glassy carbon.

  13. Chapter 20: Graphite

    SciTech Connect

    Burchell, Timothy D

    2012-01-01

    Graphite is truly a unique material. Its structure, from the nano- to the millimeter scale give it remarkable properties that lead to numerous and diverse applications. Graphite bond anisotropy, with strong in-plane covalent bonds and weak van der Waals type bonding between the planes, gives graphite its unique combination of properties. Easy shear of the crystal, facilitated by weak interplaner bonds allows graphite to be used as a dry lubricant, and is responsible for the substances name! The word graphite is derived from the Greek to write because of graphites ability to mark writing surfaces. Moreover, synthetic graphite contains within its structure, porosity spanning many orders of magnitude in size. The thermal closure of these pores profoundly affects the properties for example, graphite strength increases with temperature to temperatures in excess of 2200 C. Consequently, graphite is utilized in many high temperature applications. The basic physical properties of graphite are reviewed here. Graphite applications include metallurgical; (aluminum and steel production), single crystal silicon production, and metal casting; electrical (motor brushes and commutators); mechanical (seals, bearings and bushings); and nuclear applications, (see Chapter 91, Nuclear Graphite). Here we discuss the structure, manufacture, properties, and applications of Graphite.

  14. Graphite Technology Development Plan

    SciTech Connect

    W. Windes; T. Burchell; M.Carroll

    2010-10-01

    The Next Generation Nuclear Plant (NGNP) will be a helium-cooled High Temperature Gas Reactor (HTGR) with a large graphite core. Graphite physically contains the fuel and comprises the majority of the core volume. Graphite has been used effectively as a structural and moderator material in both research and commercial high-temperature gas-cooled reactors. This development has resulted in graphite being established as a viable structural material for HTGRs. While the general characteristics necessary for producing nuclear grade graphite are understood, historical “nuclear” grades no longer exist. New grades must be fabricated, characterized, and irradiated to demonstrate that current grades of graphite exhibit acceptable non-irradiated and irradiated properties upon which the thermomechanical design of the structural graphite in NGNP is based. This Technology Development Plan outlines the research and development (R&D) activities and associated rationale necessary to qualify nuclear grade graphite for use within the NGNP reactor.

  15. Enhancement of electron–phonon coupling in Cs-overlayered intercalated bilayer graphene

    NASA Astrophysics Data System (ADS)

    Kleeman, J.; Sugawara, K.; Sato, T.; Takahashi, T.

    2016-05-01

    We have performed high-resolution angle-resolved photoemission spectroscopy (ARPES) on cesium (Cs) intercalated bilayer graphene with a Cs overlayer (Cs-C8CsC8). Low-energy electron diffraction shows a (2  ×  2) pattern consistent with intercalation of a Cs layer similar to bulk C8Cs, in addition to the signature of a nearly commensurate superstructure created by the Cs overlayer. ARPES results reveal folding of the π bands due to the periodic (2  ×  2) potential of the intercalated Cs atoms, together with a free-electron-like state at the Γ point. Significant mass renormalization is observed in the band dispersion near the Fermi level, indicative of strong electron–phonon coupling. Based on analysis of the self-energy, we find anisotropic electron–phonon coupling with an estimated strength of λ =0.38   ±  0.02 in the K-Γ direction, and λ =0.60+/- 0.02 in the K-M direction. This coupling is much larger than that of other doped graphenes, and comparable to superconducting bulk GICs. We attribute this large electron–phonon coupling constant to the presence of the Cs overlayer, which highly dopes {π\\ast} bands, and creates a structure similar to stage-I graphite intercalation compounds.

  16. Enhancement of electron-phonon coupling in Cs-overlayered intercalated bilayer graphene

    NASA Astrophysics Data System (ADS)

    Kleeman, J.; Sugawara, K.; Sato, T.; Takahashi, T.

    2016-05-01

    We have performed high-resolution angle-resolved photoemission spectroscopy (ARPES) on cesium (Cs) intercalated bilayer graphene with a Cs overlayer (Cs-C8CsC8). Low-energy electron diffraction shows a (2  ×  2) pattern consistent with intercalation of a Cs layer similar to bulk C8Cs, in addition to the signature of a nearly commensurate superstructure created by the Cs overlayer. ARPES results reveal folding of the π bands due to the periodic (2  ×  2) potential of the intercalated Cs atoms, together with a free-electron-like state at the Γ point. Significant mass renormalization is observed in the band dispersion near the Fermi level, indicative of strong electron-phonon coupling. Based on analysis of the self-energy, we find anisotropic electron-phonon coupling with an estimated strength of λ =0.38   ±  0.02 in the K-Γ direction, and λ =0.60+/- 0.02 in the K-M direction. This coupling is much larger than that of other doped graphenes, and comparable to superconducting bulk GICs. We attribute this large electron-phonon coupling constant to the presence of the Cs overlayer, which highly dopes {π\\ast} bands, and creates a structure similar to stage-I graphite intercalation compounds.

  17. Atomic intercalation - a practical method to determine the nanoscale adhesion energy of graphene on HOPG

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Sorescu, Dan; Jeon, Seokmin; Belianinov, Alexei; Kalinin, Sergei; Baddorf, Arthur; Maksymovych, Petro

    A detailed analysis of atomic intercalates in graphite provides a direct estimate of the nanoscale elastic adhesion of a graphene sheet atop highly ordered pyrolytic graphite (HOPG). Atomic intercalation is carried out using conventional ion sputtering, creating ``blisters'' in the top-most layer of the HOPG surface. Scanning tunneling microscopy coupled with image analysis and density functional theory is used to reconstruct the atomic positions and the strain map within the deformed graphene sheet. To estimate the adhesion energy we invoke an analytical model originally devised for macroscopic deformations of graphene. This model yields a value of is 0.221 +/- 0.011 J/m2 for the adhesion energy of graphite, which is in surprisingly good agreement with reported experimental and theoretical values. This implies that mechanical properties of graphene scale at least to lengths of a few nanometers. The simplicity of our method enables analysis of elastic mechanical properties in many two-dimensional layered materials and provides a unique opportunity to investigate the local variability of mechanical properties on the nanoscale. Acknowledgements: Experiments were conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

  18. Solvent-driven electron trapping and mass transport in reduced graphites to access perfect graphene

    PubMed Central

    Vecera, Philipp; Holzwarth, Johannes; Edelthalhammer, Konstantin F.; Mundloch, Udo; Peterlik, Herwig; Hauke, Frank; Hirsch, Andreas

    2016-01-01

    Herein, we report on a significant discovery, namely, the quantitative discharging of reduced graphite forms, such as graphite intercalation compounds, graphenide dispersions and graphenides deposited on surfaces with the simple solvent benzonitrile. Because of its comparatively low reduction potential, benzonitrile is reduced during this process to the radical anion, which exhibits a red colour and serves as a reporter molecule for the quantitative determination of negative charges on the carbon sheets. Moreover, this discovery reveals a very fundamental physical–chemical phenomenon, namely a quantitative solvent reduction induced and electrostatically driven mass transport of K+ ions from the graphite intercalation compounds into the liquid. The simple treatment of dispersed graphenides suspended on silica substrates with benzonitrile leads to the clean conversion to graphene. This unprecedented procedure represents a rather mild, scalable and inexpensive method for graphene production surpassing previous wet-chemical approaches. PMID:27506380

  19. In situ investigation of the interaction between graphite and electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Novák, Petr; Joho, Felix; Imhof, Roman; Panitz, Jan-Christoph; Haas, Otto

    The formation of a solid electrolyte interphase (SEI) before and during lithium intercalation was studied on graphite electrodes in ethylene carbonate based electrolytes. We demonstrated by using in situ mass spectrometry that during the first charge of the graphite electrode ethylene gas is evolved in a potential window that corresponds to the formation of a SEI. Moreover, development of hydrogen gas was detected even in dry electrolytes containing <10 ppm H 2O. No CO 2 is developed however, as confirmed by two in situ methods, mass spectrometry and infrared spectroscopy. We conclude that the formation of the SEI is a complex process which depends among other things on the amount of trace water present in the cell. In addition, in situ Raman mapping experiments revealed that lithium intercalation into graphite does not proceed homogeneously.

  20. Solvent-driven electron trapping and mass transport in reduced graphites to access perfect graphene.

    PubMed

    Vecera, Philipp; Holzwarth, Johannes; Edelthalhammer, Konstantin F; Mundloch, Udo; Peterlik, Herwig; Hauke, Frank; Hirsch, Andreas

    2016-01-01

    Herein, we report on a significant discovery, namely, the quantitative discharging of reduced graphite forms, such as graphite intercalation compounds, graphenide dispersions and graphenides deposited on surfaces with the simple solvent benzonitrile. Because of its comparatively low reduction potential, benzonitrile is reduced during this process to the radical anion, which exhibits a red colour and serves as a reporter molecule for the quantitative determination of negative charges on the carbon sheets. Moreover, this discovery reveals a very fundamental physical-chemical phenomenon, namely a quantitative solvent reduction induced and electrostatically driven mass transport of K(+) ions from the graphite intercalation compounds into the liquid. The simple treatment of dispersed graphenides suspended on silica substrates with benzonitrile leads to the clean conversion to graphene. This unprecedented procedure represents a rather mild, scalable and inexpensive method for graphene production surpassing previous wet-chemical approaches. PMID:27506380

  1. Solvent-driven electron trapping and mass transport in reduced graphites to access perfect graphene

    NASA Astrophysics Data System (ADS)

    Vecera, Philipp; Holzwarth, Johannes; Edelthalhammer, Konstantin F.; Mundloch, Udo; Peterlik, Herwig; Hauke, Frank; Hirsch, Andreas

    2016-08-01

    Herein, we report on a significant discovery, namely, the quantitative discharging of reduced graphite forms, such as graphite intercalation compounds, graphenide dispersions and graphenides deposited on surfaces with the simple solvent benzonitrile. Because of its comparatively low reduction potential, benzonitrile is reduced during this process to the radical anion, which exhibits a red colour and serves as a reporter molecule for the quantitative determination of negative charges on the carbon sheets. Moreover, this discovery reveals a very fundamental physical-chemical phenomenon, namely a quantitative solvent reduction induced and electrostatically driven mass transport of K+ ions from the graphite intercalation compounds into the liquid. The simple treatment of dispersed graphenides suspended on silica substrates with benzonitrile leads to the clean conversion to graphene. This unprecedented procedure represents a rather mild, scalable and inexpensive method for graphene production surpassing previous wet-chemical approaches.

  2. Macroscopic Properties of Restacked, Redox-Liquid Exfoliated Graphite and Graphite Mimics Produced in Bulk Quantities

    SciTech Connect

    Srivastava, Vikram K; Quinlan, Ronald; Agapov, Alexander L; Dunlap, John R; Nelson, Kimberly M; Duranty, Edward R; Sokolov, Alexei P; Bhat, Gajanan; Mays, Jimmy

    2014-01-01

    The excellent properties exhibited by monolayer graphene have spurred the development of exfoliation techniques using bulk graphite to produce large quantities of pristine monolayer sheets. Development of simple chemistry to exfoliate and intercalate graphite and graphite mimics in large quantities is required for numerous applications. To determine the macroscopic behavior of restacked, exfoliated bulk materials, a systematic approach is presented using a simple, redox-liquid sonication process along to obtain large quantities of 2D and 3D hexagonally layered graphite, molybdenum disulfi de, and boron nitride, which are subsequently characterized to observe chemical and structural changes. For MoS 2 sonicated with the antioxidant sodium bisulfi te, results from Raman spectroscopy, X-ray diffraction, and electron microscopy indicate the presence of distorted phases from different polymorphs, and apparent nanotube structures in the bulk, restacked powder. Furthermore, using thermograviemtric analysis, the antioxidant enhances the resistance to oxidative degradation of MoS 2 , upon thermal treatment up to 900 C. The addition of the ionic antioxidant decreased dispersion stability in non-polar solvent, suggesting decreased compatibility with non-polar systems. Using simple chemical methods, the ability to generate tailored multidimensional layered materials with unique macroscopic properties is critical for numerous applications, including electrical devices, reinforced polymer composites, lithium ion capacitors, and chemical sensing.

  3. High energy density sodium-ion capacitors through co-intercalation mechanism in diglyme-based electrolyte system

    NASA Astrophysics Data System (ADS)

    Han, Pengxian; Han, Xiaoqi; Yao, Jianhua; Zhang, Lixue; Cao, Xiaoyan; Huang, Changshui; Cui, Gunglei

    2015-11-01

    A novel sodium-ion capacitor (NIC) was assembled using graphitic mesocarbon microbead anode and activated carbon cathode in diglyme-based electrolyte. Charge/discharge tests indicate that sodium ions can reversibly co-intercalated with diglyme solvent into graphite anode and show good rate performance. The energy densities of the NICs are as high as 93.5 and 86.5 Wh kg-1 at 573 and 2832 W kg-1 (equal to 4 C and 50 C) in the voltage window at 1-4 V, respectively. By optimizing the voltage ranges, the capacity retention of the NIC at 20 C is 98.3% even after 3000 cycles. Such superior electrochemical performance should be attributed to the reversible intercalated/deintercalated reaction of sodium ions and the formation of ternary graphite intercalation compounds in diglyme-based electrolyte. The present work pioneers new realms of hybrid energy storage system with high energy density, high power density and long cycle life.

  4. Adsorption of ammonia on graphite oxide/aluminium polycation and graphite oxide/zirconium-aluminium polyoxycation composites.

    PubMed

    Seredych, Mykola; Bandosz, Teresa J

    2008-08-01

    Graphite oxide (GO) synthesized from commercial graphite was modified with aluminium or zirconium-aluminium polyoxycations and then calcined at 350 degrees C. On the samples obtained adsorption of ammonia from moist air was investigated. The surface of materials before and after exposure to ammonia was characterized using adsorption of nitrogen, XRD, SEM, FTIR, TA, CHN analysis, and potentiometric titration. The results showed that in spite of the fact that graphite composites/pillared graphites (PG) have Keggin-like ions located between the layers, that space blocked for nitrogen molecules used to determine the specific surface area. During calcinations, the deflagration of layers occurred as a result of decomposition of epoxy groups. This results in formation of disordered graphitic carbons with some mesoporosity. Even though these materials were not porous, the significant amount of ammonia was retained on the surface. Since ammonia molecule is able to specifically interact with oxygen groups of graphite oxide and Brønsted centers of inorganic pillars, it is likely intercalated between the composite layers. While the best performance was found for GO modified with aluminium-zirconium species, after calcinations the samples containing Keggin Al(13) like cations revealed the high capacity which is linked to the high acidity of incorporated inorganic compounds. PMID:18501918

  5. Adsorption of ammonia on graphite oxide/aluminium polycation and graphite oxide/zirconium-aluminium polyoxycation composites.

    PubMed

    Seredych, Mykola; Bandosz, Teresa J

    2008-08-01

    Graphite oxide (GO) synthesized from commercial graphite was modified with aluminium or zirconium-aluminium polyoxycations and then calcined at 350 degrees C. On the samples obtained adsorption of ammonia from moist air was investigated. The surface of materials before and after exposure to ammonia was characterized using adsorption of nitrogen, XRD, SEM, FTIR, TA, CHN analysis, and potentiometric titration. The results showed that in spite of the fact that graphite composites/pillared graphites (PG) have Keggin-like ions located between the layers, that space blocked for nitrogen molecules used to determine the specific surface area. During calcinations, the deflagration of layers occurred as a result of decomposition of epoxy groups. This results in formation of disordered graphitic carbons with some mesoporosity. Even though these materials were not porous, the significant amount of ammonia was retained on the surface. Since ammonia molecule is able to specifically interact with oxygen groups of graphite oxide and Brønsted centers of inorganic pillars, it is likely intercalated between the composite layers. While the best performance was found for GO modified with aluminium-zirconium species, after calcinations the samples containing Keggin Al(13) like cations revealed the high capacity which is linked to the high acidity of incorporated inorganic compounds.

  6. A lipid membrane intercalating conjugated oligoelectrolyte enables electrode driven succinate production in Shewanella

    SciTech Connect

    Thomas, AW; Garner, LE; Nevin, KP; Woodard, TL; Franks, AE; Lovley, DR; Sumner, JJ; Sund, CJ; Bazan, GC

    2013-06-01

    An amphiphilic conjugated oligoelectrolyte (COE) that spontaneously intercalates into lipid membranes enables Shewanella oneidensis to use a graphite electrode as the sole electron donor for succinate production. Current consumed in a poised electrochemical system by Shewanella with micromolar concentrations of COE correlates well with the succinate produced via fumarate reduction as determined by HPLC analysis. Confocal microscopy confirms incorporation of the COE into the microbes on the electrode surface. This work presents a unique strategy to induce favorable bio-electronic interactions for the production of reduced microbial metabolites.

  7. Producing graphite with desired properties

    NASA Technical Reports Server (NTRS)

    Dickinson, J. M.; Imprescia, R. J.; Reiswig, R. D.; Smith, M. C.

    1971-01-01

    Isotropic or anisotropic graphite is synthesized with precise control of particle size, distribution, and shape. The isotropic graphites are nearly perfectly isotropic, with thermal expansion coefficients two or three times those of ordinary graphites. The anisotropic graphites approach the anisotropy of pyrolytic graphite.

  8. Oxidation Resistant Graphite Studies

    SciTech Connect

    W. Windes; R. Smith

    2014-07-01

    The Very High Temperature Reactor (VHTR) Graphite Research and Development Program is investigating doped nuclear graphite grades exhibiting oxidation resistance. During a oxygen ingress accident the oxidation rates of the high temperature graphite core region would be extremely high resulting in significant structural damage to the core. Reducing the oxidation rate of the graphite core material would reduce the structural effects and keep the core integrity intact during any air-ingress accident. Oxidation testing of graphite doped with oxidation resistant material is being conducted to determine the extent of oxidation rate reduction. Nuclear grade graphite doped with varying levels of Boron-Carbide (B4C) was oxidized in air at nominal 740°C at 10/90% (air/He) and 100% air. The oxidation rates of the boronated and unboronated graphite grade were compared. With increasing boron-carbide content (up to 6 vol%) the oxidation rate was observed to have a 20 fold reduction from unboronated graphite. Visual inspection and uniformity of oxidation across the surface of the specimens were conducted. Future work to determine the remaining mechanical strength as well as graphite grades with SiC doped material are discussed.

  9. Interaction of boron with graphite: A van der Waals density functional study

    NASA Astrophysics Data System (ADS)

    Liu, Juan; Wang, Chen; Liang, Tongxiang; Lai, Wensheng

    2016-08-01

    Boron doping has been widely investigated to improve oxidation resistance of graphite. In this work the interaction of boron with graphite is investigated by a van der Waals density-functional approach (vdW-DF). The traditional density-functional theory (DFT) is well accounted for the binding in boron-substituted graphite. However, to investigate the boron atom on graphite surface and the interstitial impurities require use of a description of graphite interlayer binding. Traditional DFT cannot describe the vdW physics, for instance, GGA calculations show no relevant binding between graphite sheets. LDA shows some binding, but they fail to provide an accurate account of vdW forces. In this paper, we compare the calculation results of graphite lattice constant and cohesive energy by several functionals, it shows that vdW-DF such as two optimized functionals optB88-vdW and optB86b-vdW give much improved results than traditional DFT. The vdW-DF approach is then applied to study the interaction of boron with graphite. Boron adsorption, substitution, and intercalation are discussed in terms of structural parameters and electronic structures. When adsorbing on graphite surface, boron behaves as π electron acceptor. The π electron approaches boron atom because of more electropositive of boron than carbon. For substitution situation, the hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. The B-doped graphite system with the hole has less ability to offer electrons to oxygen, ultimately resulted in the inhibition of carbon oxidation. For interstitial doping, vdW-DFs show more accurate formation energy than LDA. PBE functional cannot describe the interstitial boron in graphite reasonably because of the ignoring binding of graphite sheets. The investigation of electron structures of boron doped graphite will play an important role in understanding the oxidation mechanism in further study.

  10. Organic intercalation of structure modified vermiculite.

    PubMed

    Wu, Nian; Wu, Limei; Liao, Libing; Lv, Guocheng

    2015-11-01

    The experiment used cationic surfactants of different chain lengths to intercalate structure modified vermiculites. The influences of structure modification, chain length and dosage of surfactants on the intercalation behavior of vermiculites were studied, and intercalation mechanism and features of interlayer chemical reactions were discussed. Results indicate that structure modified vermiculites with different layer charge have different intercalation behavior. The basal spacing of the organic intercalated modified vermiculite is the largest when acid concentration used in structure modification is 0.003 mol/L, and increases with increasing the chain length and dosage of the organics. Molecular dynamics simulation verifies that interlayer organics align almost parallel to structure layer of vermiculite, with alkyl chain stretching to the middle of interlayer space. -N(+) groups of the three surfactants locate above the leached [SiO4], which has stronger interaction with interlayer organic cations. Electrostatic force is the main interaction force between interlayer organics and structure layer of vermiculite, and then is Van der Waals force, no chemical bond formed. PMID:26196709

  11. Collecting duct intercalated cell function and regulation.

    PubMed

    Roy, Ankita; Al-bataineh, Mohammad M; Pastor-Soler, Núria M

    2015-02-01

    Intercalated cells are kidney tubule epithelial cells with important roles in the regulation of acid-base homeostasis. However, in recent years the understanding of the function of the intercalated cell has become greatly enhanced and has shaped a new model for how the distal segments of the kidney tubule integrate salt and water reabsorption, potassium homeostasis, and acid-base status. These cells appear in the late distal convoluted tubule or in the connecting segment, depending on the species. They are most abundant in the collecting duct, where they can be detected all the way from the cortex to the initial part of the inner medulla. Intercalated cells are interspersed among the more numerous segment-specific principal cells. There are three types of intercalated cells, each having distinct structures and expressing different ensembles of transport proteins that translate into very different functions in the processing of the urine. This review includes recent findings on how intercalated cells regulate their intracellular milieu and contribute to acid-base regulation and sodium, chloride, and potassium homeostasis, thus highlighting their potential role as targets for the treatment of hypertension. Their novel regulation by paracrine signals in the collecting duct is also discussed. Finally, this article addresses their role as part of the innate immune system of the kidney tubule. PMID:25632105

  12. Hydrogen intercalation under graphene on Ir(111)

    NASA Astrophysics Data System (ADS)

    Grånäs, Elin; Gerber, Timm; Schröder, Ulrike A.; Schulte, Karina; Andersen, Jesper N.; Michely, Thomas; Knudsen, Jan

    2016-09-01

    Using high resolution X-ray photoelectron spectroscopy and scanning tunneling microscopy we study the intercalation of hydrogen under graphene/Ir(111). The hydrogen intercalated graphene is characterized by a component in C 1s that is shifted -0.10 to -0.18 eV with respect to pristine graphene and a component in Ir 4f at 60.54 eV. The position of this Ir 4f component is identical to that of the Ir(111) surface layer with hydrogen atoms adsorbed, indicating that the atomic hydrogen adsorption site on bare Ir(111) and beneath graphene is the same. Based on co-existence of fully- and non-intercalated graphene, and the inability to intercalate a closed graphene film covering the entire Ir(111) surface, we conclude that hydrogen dissociatively adsorbs at bare Ir(111) patches, and subsequently diffuses rapidly under graphene. A likely entry point for the intercalating hydrogen atoms is identified to be where graphene crosses an underlying Ir(111) step.

  13. Physicochemical Characterization, and Relaxometry Studies of Micro-Graphite Oxide, Graphene Nanoplatelets, and Nanoribbons

    PubMed Central

    Paratala, Bhavna S.; Jacobson, Barry D.; Kanakia, Shruti; Francis, Leonard Deepak; Sitharaman, Balaji

    2012-01-01

    The chemistry of high-performance magnetic resonance imaging contrast agents remains an active area of research. In this work, we demonstrate that the potassium permanganate-based oxidative chemical procedures used to synthesize graphite oxide or graphene nanoparticles leads to the confinement (intercalation) of trace amounts of Mn2+ ions between the graphene sheets, and that these manganese intercalated graphitic and graphene structures show disparate structural, chemical and magnetic properties, and high relaxivity (up to 2 order) and distinctly different nuclear magnetic resonance dispersion profiles compared to paramagnetic chelate compounds. The results taken together with other published reports on confinement of paramagnetic metal ions within single-walled carbon nanotubes (a rolled up graphene sheet) show that confinement (encapsulation or intercalation) of paramagnetic metal ions within graphene sheets, and not the size, shape or architecture of the graphitic carbon particles is the key determinant for increasing relaxivity, and thus, identifies nano confinement of paramagnetic ions as novel general strategy to develop paramagnetic metal-ion graphitic-carbon complexes as high relaxivity MRI contrast agents. PMID:22685555

  14. Physicochemical characterization, and relaxometry studies of micro-graphite oxide, graphene nanoplatelets, and nanoribbons.

    PubMed

    Paratala, Bhavna S; Jacobson, Barry D; Kanakia, Shruti; Francis, Leonard Deepak; Sitharaman, Balaji

    2012-01-01

    The chemistry of high-performance magnetic resonance imaging contrast agents remains an active area of research. In this work, we demonstrate that the potassium permanganate-based oxidative chemical procedures used to synthesize graphite oxide or graphene nanoparticles leads to the confinement (intercalation) of trace amounts of Mn(2+) ions between the graphene sheets, and that these manganese intercalated graphitic and graphene structures show disparate structural, chemical and magnetic properties, and high relaxivity (up to 2 order) and distinctly different nuclear magnetic resonance dispersion profiles compared to paramagnetic chelate compounds. The results taken together with other published reports on confinement of paramagnetic metal ions within single-walled carbon nanotubes (a rolled up graphene sheet) show that confinement (encapsulation or intercalation) of paramagnetic metal ions within graphene sheets, and not the size, shape or architecture of the graphitic carbon particles is the key determinant for increasing relaxivity, and thus, identifies nano confinement of paramagnetic ions as novel general strategy to develop paramagnetic metal-ion graphitic-carbon complexes as high relaxivity MRI contrast agents.

  15. Method for producing dustless graphite spheres from waste graphite fines

    DOEpatents

    Pappano, Peter J; Rogers, Michael R

    2012-05-08

    A method for producing graphite spheres from graphite fines by charging a quantity of spherical media into a rotatable cylindrical overcoater, charging a quantity of graphite fines into the overcoater thereby forming a first mixture of spherical media and graphite fines, rotating the overcoater at a speed such that the first mixture climbs the wall of the overcoater before rolling back down to the bottom thereby forming a second mixture of spherical media, graphite fines, and graphite spheres, removing the second mixture from the overcoater, sieving the second mixture to separate graphite spheres, charging the first mixture back into the overcoater, charging an additional quantity of graphite fines into the overcoater, adjusting processing parameters like overcoater dimensions, graphite fines charge, overcoater rotation speed, overcoater angle of rotation, and overcoater time of rotation, before repeating the steps until graphite fines are converted to graphite spheres.

  16. Coating method for graphite

    DOEpatents

    Banker, John G.; Holcombe, Jr., Cressie E.

    1977-01-01

    A method of limiting carbon contamination from graphite ware used in induction melting of uranium alloys is provided comprising coating the graphite surface with a suspension of Y.sub.2 O.sub.3 particles in water containing about 1.5 to 4% by weight sodium carboxymethylcellulose.

  17. Coating method for graphite

    DOEpatents

    Banker, J.G.; Holcombe, C.E. Jr.

    1975-11-06

    A method of limiting carbon contamination from graphite ware used in induction melting of uranium alloys is provided. The graphite surface is coated with a suspension of Y/sub 2/O/sub 3/ particles in water containing about 1.5 to 4 percent by weight sodium carboxymethylcellulose.

  18. Controlling the actuation properties of MXene paper electrodes upon cation intercalation

    DOE PAGESBeta

    Come, Jeremy E.; Black, Jennifer M.; Naguib, Michael; Lukatskaya, Maria R.; Beidaghi, Majid; Wesolowski, David J.; Gogotsi, Yury; Rondinone, Adam J.; Balke, Nina; Kalinin, Sergei V.

    2015-08-05

    Atomic force microscopy was used to monitor the macroscopic deformation in a delaminated Ti₃C₂ paper electrode in-situ, during charge/discharge in a variety of aqueous electrolytes to examine the effect of the cation intercalation on the electrochemical behavior and mechanical response. The results show a strong dependence of the electrode deformation on cation size and charge. The electrode undergoes a large contraction during Li⁺, Na⁺ or Mg²⁺ intercalation, differentiating the Ti₃C₂ paper from conventional electrodes where redox intercalation of ions (e.g. Li⁺) into the bulk phase (e.g. graphite, silicon) results in volumetric expansion. This feature may explain the excellent rate performancemore » and cyclability reported for MXenes. We also demonstrated that the variation of the electromechanical contraction can be easily adjusted by electrolyte exchange, and shows interesting characteristics for the design of actuators based on 2D metal carbides.« less

  19. A new facile route for synthesizing of graphene oxide using mixture of sulfuric-nitric-phosphoric acids as intercalating agent

    NASA Astrophysics Data System (ADS)

    Panwar, Vinay; Chattree, Ananya; Pal, Kaushik

    2015-09-01

    In this work, graphene oxide (GO) has been prepared through three different processes namely, eco-friendly Hummers method, modification in improved Hummers method and a new approach. This new approach has been designed by changing some processing parameters and intercalating agent for significant reduction in processing time and to improve the quantity of GO in comparison to the other two methods. This has been achieved through better oxidization of graphite using nitric-sulfuric acid (HNO3-H2SO4) as intercalating agent. X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, Atomic Force Microscopy (AFM), X-ray photoelectron spectroscopy (XPS), UV-visible spectroscopy, and Thermogravimetric analysis (TGA) are used to characterize the GO prepared through different processes. These characterizations have confirmed an improved exfoliation of graphite, using addition of HNO3 in intercalating agent, in a short processing time and bring on higher yield of GO via this new process.

  20. A stable graphite negative electrode for the lithium-sulfur battery.

    PubMed

    Jeschull, Fabian; Brandell, Daniel; Edström, Kristina; Lacey, Matthew J

    2015-12-14

    Efficient, reversible lithium intercalation into graphite in ether-based electrolytes is enabled through a protective electrode binder, polyacrylic acid sodium salt (PAA-Na). In turn, this enables the creation of a stable "lithium-ion-sulfur" cell, using a lithiated graphite negative electrode with a sulfur positive electrode, using the common DME:DOL solvent system suited to the electrochemistry of the lithium-sulfur battery. Graphite-sulfur lithium-ion cells show average coulombic efficiencies of ∼99.5%, compared with <95% for lithium-sulfur cells, and significantly better capacity retention, taking into account cell balancing considerations. The high efficiency derives from the considerably better interfacial stability of the graphite electrode, which suppresses the polysulfide redox shuttle and self-discharge.

  1. Large-scale preparation of graphene by high temperature insertion of hydrogen into graphite.

    PubMed

    Kamali, Ali Reza; Fray, Derek J

    2015-07-14

    Experimental evidence for high temperature diffusion of hydrogen into the interlayer space of graphite is provided. This process is discussed as a possible method for the rapid production of high-quality, inexpensive graphene in large quantities, which could lead to the widespread application of graphene. It was found that hydrogen cations, dissolved in molten LiCl, can be discharged on cathodically polarized graphite rods, which then intercalate into the graphite structure, leading to the peeling of graphite to produce graphene. The graphene nanosheets produced displayed a single-crystalline structure with a lateral size of several hundred nanometers and a high degree of crystallinity and thermal stability. The method introduced could be scaled up to produce industrial quantities of high-quality graphene. PMID:26053881

  2. Role of Peroxide Ions in Formation of Graphene Nanosheets by Electrochemical Exfoliation of Graphite

    PubMed Central

    Rao, Kodepelly Sanjeeva; Senthilnathan, Jaganathan; Liu, Yung-Fang; Yoshimura, Masahiro

    2014-01-01

    This study demonstrates a facile, mild and environmentally-friendly sustainable (soft processing) approach for the efficient electrochemical exfoliation of graphite using a sodium hydroxide/hydrogen peroxide/water (NaOH/H2O2/H2O) system that can produce high-quality, anodic few-layer graphene nanosheets in 95% yield at ambient reaction conditions. The control experiment conducted using NaOH/H2O revealed the crucial role of H2O2 in the exfoliation of graphite. A possible exfoliation mechanism is proposed. The reaction of H2O2 with hydroxyl ions (HO−) leads to the formation of highly nucleophilic peroxide ions (O22−), which play a crucial role in the exfoliation of graphite via electrochemical-potential-assisted intercalation and strong expansion of graphite sheets. PMID:24577336

  3. Large-scale preparation of graphene by high temperature insertion of hydrogen into graphite.

    PubMed

    Kamali, Ali Reza; Fray, Derek J

    2015-07-14

    Experimental evidence for high temperature diffusion of hydrogen into the interlayer space of graphite is provided. This process is discussed as a possible method for the rapid production of high-quality, inexpensive graphene in large quantities, which could lead to the widespread application of graphene. It was found that hydrogen cations, dissolved in molten LiCl, can be discharged on cathodically polarized graphite rods, which then intercalate into the graphite structure, leading to the peeling of graphite to produce graphene. The graphene nanosheets produced displayed a single-crystalline structure with a lateral size of several hundred nanometers and a high degree of crystallinity and thermal stability. The method introduced could be scaled up to produce industrial quantities of high-quality graphene.

  4. Synthesis, electrical and thermal conductivities, and potential applications of graphite fluoride fibers

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh; Long, Martin; Stahl, Mark

    1988-01-01

    Graphite fluoride fibers can be produced by fluorinating pristine or intercalated graphite fibers. The higher the degree of graphitization of the fibers, the higher the temperature needed to reach the same degree of fluorination. Structural damage during high temperature fluorination can be reduced or eliminated by pretreating the fibers with bromine and/or fluorine. The electrical resistivity of the fibers was in the 0.01 to 10 to the 11th ohm-cm range. The thermal conductivity of these fibers ranged from 5 to 75 W/m-K, which is much larger than the thermal conductivity of glass (1.1 W/m-K), the commonly used fiber in epoxy composites. A composite made from graphite fluoride fibers and epoxy or PTFE may be highly thermally conducting and electrically insulating or semiconducting. The electrically insulating product may be used as heat sinks for electrical or electronic instruments.

  5. A stable graphite negative electrode for the lithium-sulfur battery.

    PubMed

    Jeschull, Fabian; Brandell, Daniel; Edström, Kristina; Lacey, Matthew J

    2015-12-14

    Efficient, reversible lithium intercalation into graphite in ether-based electrolytes is enabled through a protective electrode binder, polyacrylic acid sodium salt (PAA-Na). In turn, this enables the creation of a stable "lithium-ion-sulfur" cell, using a lithiated graphite negative electrode with a sulfur positive electrode, using the common DME:DOL solvent system suited to the electrochemistry of the lithium-sulfur battery. Graphite-sulfur lithium-ion cells show average coulombic efficiencies of ∼99.5%, compared with <95% for lithium-sulfur cells, and significantly better capacity retention, taking into account cell balancing considerations. The high efficiency derives from the considerably better interfacial stability of the graphite electrode, which suppresses the polysulfide redox shuttle and self-discharge. PMID:26451894

  6. NEW METHOD OF GRAPHITE PREPARATION

    DOEpatents

    Stoddard, S.D.; Harper, W.T.

    1961-08-29

    BS>A method is described for producing graphite objects comprising mixing coal tar pitch, carbon black, and a material selected from the class comprising raw coke, calcined coke, and graphite flour. The mixture is placed in a graphite mold, pressurized to at least 1200 psi, and baked and graphitized by heating to about 2500 deg C while maintaining such pressure. (AEC)

  7. Commercial cokes and graphites as anode materials for lithium - ion cells

    SciTech Connect

    Derwin, D J; Kinoshita, K; Tran, T D; Zaleski, P

    2000-10-26

    Several types of carbonaceous materials from Superior Graphite Co. were investigated for lithium ion intercalation. These commercially available cokes, graphitized cokes and graphites have a wide range of physical and chemical properties. The coke materials were investigated in propylene carbonate based electrolytes and the graphitic materials were studied in ethylene carbonate/dimethyl solutions to prevent exfoliation. The reversible capacities of disordered cokes are below 230 mAh/g and those for many highly ordered synthetic (artificial) and natural graphites approached 372 mAh/g (LiC{sub 6}). The irreversible capacity losses vary between 15 to as much as 200% of reversible capacities for various types of carbon. Heat treated cokes with the average particle size of 10 microns showed marked improvements in reversible capacity for lithium intercalation. The electrochemical characteristics are correlated with data obtained from scanning electron microscopy (SEM), high resolution transmission electron microscopy (TEM), X-ray diffraction (XRD) and BET surface area analysis. The electrochemical performance, availability, cost and manufacturability of these commercial carbons will be discussed.

  8. A comparison of the bromination dynamics of various carbon and graphite fibers

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    1987-01-01

    The electrical resistance of four grades of pitch-based graphite fibers and three experimental organic vapor-derived fibers was determined in situ during bromination and subsequent exposure to ambient laboratory air. The results show that the least graphitic pitch-based fiber does not brominate significantly, and that bromination and debrominaton reactions proceed much slower for vapor-derived fibers than for pitch-based ones. It is suggested that this decreased reacton rate is primarily due to the differences in graphene plane orientation between the fiber types. The results also imply that the vapor-derived and pitch-based fibers produce true intercalation compounds.

  9. Effect of low-temperature conditions on passive layer growth in Li intercalation materials: In situ impedance study

    SciTech Connect

    Barsoukov, E.; Kim, J.H.; Kim, J.H.; Yoon, C.O.; Lee, H.

    1998-08-01

    Electrochemical impedance spectroscopy has been applied to investigate the formation of insulating layers at the surfaces of microscopic particles of mesocarbon microbeads (MCMB), graphite, and hard carbon during the first Li-intercalation into these materials at ambient temperature as well as at {minus}20 C. Investigations were carried out in a three-electrode sandwich cell, designed for impedance measurements in the frequency range 64 kHz to 5 mHz. The impedance spectra, obtained in the potential range 1.5 and 0.02 V during the first charge, were analyzed by complex nonlinear least square fits. A new model, taking into account the porous structure of the intercalation material, electrochemical processes at the interface, as well as spherical diffusion of Li ions toward the centers of the particles, has been used for this analysis. The first intercalation at {minus}20 C results in formation of an insulating layer, which is about 90 times thinner than in the room-temperature case, as concluded from an analysis of experimental results. The irreversible capacity loss, which is 1.3 times larger at {minus}20 C that at room temperature, is ascribed to the formation of a porous precipitate of electrolyte decomposition products on the particle surface. Additional Li intercalation at room temperature results in an irreversible capacity loss of 26% from the initial value, and formation of a composite layer, including low-temperature and room-temperature deposited components.

  10. Onset of superconductivity in sodium and potassium intercalated molybdenum disulphide

    NASA Technical Reports Server (NTRS)

    Somoano, R. B.; Rembaum, A.

    1971-01-01

    Molybdenum disulfide in the form of natural crystals or powder has been intercalated at -65 to -70 C with sodium and potassium using the liquid ammonia technique. All intercalated samples were found to show a superconducting transition. A plot of the percent of diamagnetic throw versus temperature indicates the possible existence of two phases in the potassium intercalated molybdenum disulfide. The onset of superconductivity in potassium and sodium intercalated molybdenite powder was found to be approximately 6.2 and approximately 4.5 K, respectively. The observed superconductivity is believed to be due to an increase in electron density as a result of intercalation.

  11. Graphite Technology Development Plan

    SciTech Connect

    W. Windes; T. Burchell; R. Bratton

    2007-09-01

    This technology development plan is designed to provide a clear understanding of the research and development direction necessary for the qualification of nuclear grade graphite for use within the Next Generation Nuclear Plant (NGNP) reactor. The NGNP will be a helium gas cooled Very High Temperature Reactor (VHTR) with a large graphite core. Graphite physically contains the fuel and comprises the majority of the core volume. Considerable effort will be required to ensure that the graphite performance is not compromised during operation. Based upon the perceived requirements the major data needs are outlined and justified from the perspective of reactor design, reatcor performance, or the reactor safety case. The path forward for technology development can then be easily determined for each data need. How the data will be obtained and the inter-relationships between the experimental and modeling activities will define the technology development for graphite R&D. Finally, the variables affecting this R&D program are discussed from a general perspective. Factors that can significantly affect the R&D program such as funding, schedules, available resources, multiple reactor designs, and graphite acquisition are analyzed.

  12. Graphite design handbook

    SciTech Connect

    Ho, F.H.

    1988-09-01

    The objectives of the Graphite Design Handbook (GDH) are to provide and maintain a single source of graphite properties and phenomenological model of mechanical behavior to be used for design of MHTGR graphite components of the Reactor System, namely, core support, permanent side reflector, hexagonal reflector elements, and prismatic fuel elements; to provide a single source of data and material models for use in MHTGR graphite component design, performance, and safety analyses; to present properties and equations representing material models in a form which can be directly used by the designer or analyst without the need for interpretation and is compatible with analytical methods and structural criteria used in the MHTGR project, and to control the properties and material models used in the MHTGR design and analysis to proper Quality Assurance standards and project requirements. The reference graphite in the reactor internal components is the nuclear grade 2020. There are two subgrades of interest, the cylinder nuclear grade and the large rectangular nuclear grade. The large rectangular nuclear grade is molded in large rectangular blocks. It is the reference material for the permanent side reflector and the central column support structure. The cylindrical nuclear grade is isostatically pressed and is intended for use as the core support component. This report gives the design properties for both H-451 and 2020 graphite as they apply to their respective criteria. The properties are presented in a form for design, performance, and safety calculations that define or validate the component design. 103 refs., 20 figs., 19 tabs.

  13. Phosphate-stabilized Lithium intercalation compounds

    SciTech Connect

    Richardson, Thomas J.

    2002-07-22

    Four manganese and iron phosphates with alluaudite or fillowite structures have been prepared by solid state reactions: Na2FeMn2(PO4)3, LiNaFeMn2(PO4)3, NaFe3(PO4)3, and Na2Mn3(PO4)3. LixNa2-xFeMn2(PO4)3 with x close to 2 was prepared from Na2FeMn2(PO4)3 by molten salt ion exchange. These materials are similar in stoichiometry to the phospho-olivines LiFe(Mn)PO4, but have a more complex structure that can accommodate mixed transition metal oxidation states. They are of interest as candidates for lithium battery cathodes because of their somewhat higher electronic conductivity, high intercalant ion mobility, and ease of preparation. Their performance as intercalation electrodes in non-aqueous lithium cells was, however, poor.

  14. The intercalation and exfoliation of tungsten disulfide

    NASA Astrophysics Data System (ADS)

    Miremadi, B. K.; Morrison, S. R.

    1988-05-01

    The exfoliation of WS2, the separation of this layer compound into single molecular layers suspended in solution, was found more difficult than the exfoliation of MoS2 reported earlier. The difficulty was found to be the resistance of the WS2 to intercalation. By ultrasonic treatments while exposed to hexane plus n-butylithium, the lithium was found to intercalate, and exfoliation by immersion in water became possible. Restacking the WS2 by drying in a basic solution led to much larger crystallites than the as-received material, while flocculating by decreasing the pH led to small crystallites with a high density of edge planes. Nickel and aluminum inclusions lead to poor restacking, with no regular c spacing between WS2 basal planes. The more vigorous exfoliation procedure applied to MoS2 also leads to loss of regular c spacing (the x-ray diffraction pattern is essentially that of single molecular layers).

  15. Graphite Gamma Scan Results

    SciTech Connect

    Mark W. Drigert

    2014-04-01

    This report documents the measurement and data analysis of the radio isotopic content for a series of graphite specimens irradiated in the first Advanced Graphite Creep (AGC) experiment, AGC-1. This is the first of a series of six capsules planned as part of the AGC experiment to fully characterize the neutron irradiation effects and radiation creep behavior of current nuclear graphites. The AGC-1 capsule was irradiated in the Advanced Test Reactor (ATR) at INL at approximately 700 degrees C and to a peak dose of 7 dpa (displacements per atom). Details of the irradiation conditions and other characterization measurements performed on specimens in the AGC-1 capsule can be found in “AGC-1 Specimen Post Irradiation Data Report” ORNL/TM 2013/242. Two specimens from six different graphite types are analyzed here. Each specimen is 12.7 mm in diameter by 25.4 mm long. The isotope with the highest activity was 60Co. Graphite type NBG-18 had the highest content of 60Co with an activity of 142.89 µCi at a measurement distance of 47 cm.

  16. Recompressed exfoliated graphite articles

    DOEpatents

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z

    2013-08-06

    This invention provides an electrically conductive, less anisotropic, recompressed exfoliated graphite article comprising a mixture of (a) expanded or exfoliated graphite flakes; and (b) particles of non-expandable graphite or carbon, wherein the non-expandable graphite or carbon particles are in the amount of between about 3% and about 70% by weight based on the total weight of the particles and the expanded graphite flakes combined; wherein the mixture is compressed to form the article having an apparent bulk density of from about 0.1 g/cm.sup.3 to about 2.0 g/cm.sup.3. The article exhibits a thickness-direction conductivity typically greater than 50 S/cm, more typically greater than 100 S/cm, and most typically greater than 200 S/cm. The article, when used in a thin foil or sheet form, can be a useful component in a sheet molding compound plate used as a fuel cell separator or flow field plate. The article may also be used as a current collector for a battery, supercapacitor, or any other electrochemical cell.

  17. Se atoms and Se6 molecules as guests in Se-carbons - prepared by reduction of a SeCl4-graphite precursor

    NASA Astrophysics Data System (ADS)

    Walter, J.; Shioyama, H.

    2000-01-01

    A SeCl4 -graphite intercalation compound precursor was reduced by a solution of lithium diphenylide in tetrahydrofuran at room temperature. X-ray diffraction measurements gave two distinguishable stages. One stage represented a Se-atom intercalation the other represented an intercalation of Se6 molecules. The in-plane diffraction patterns were estimated by selected-area electron diffraction, the existence of two different guest species (atoms and molecules) could be proved. The Se6 -molecule phase shows an incommensurate lattice with regard to the host lattice, but they are in the same orientation. The lattice parameter of intercalated Se6 is a Se 6-guest = 1158+/-36 pm, c Se 6-guest = 483+/-38 pm, which fits with the lattice parameter of non-intercalated Se6 molecules. Se atom domains show a 2 × agraphite superlattice with respect to the host lattice, which is a commensurate superstructure. Raman scattering data showed the occurrence of an acceptor-type graphite intercalation compound. Three different types of spectra could be obtained, two kinds of spectra consists of doublets at 1588 cm-1 and 1608 cm-1 , with different intensity ratios. These two kinds of spectra are certainly attributed to Se-atom domains, with different stages. A third type of spectrum show bands at higher wavenumbers (1646 cm-1 and 1653 cm-1 ). These bands are probably correlated to Se6 -molecule domains. They represent maybe very early stages of nanoparticle formation.

  18. Intercalation compounds and electrodes for batteries

    DOEpatents

    Chiang, Yet-Ming; Sadoway, Donald R.; Jang, Young-Il; Huang, Biyan

    2004-09-07

    This invention concerns intercalation compounds and in particular lithium intercalation compounds which have improved properties for use in batteries. Compositions of the invention include particulate metal oxide material having particles of multicomponent metal oxide, each including an oxide core of at least first and second metals in a first ratio, and each including a surface coating of metal oxide or hydroxide that does not include the first and second metals in the first ratio formed by segregation of at least one of the first and second metals from the core. The core may preferably comprise Li.sub.x M.sub.y N.sub.z O.sub.2 wherein M and N are metal atom or main group elements, x, y and z are numbers from about 0 to about 1 and y and z are such that a formal charge on M.sub.y N.sub.z portion of the compound is (4-x), and having a charging voltage of at least about 2.5V. The invention may also be characterized as a multicomponent oxide microstructure usable as a lithium intercalation material including a multiphase oxide core and a surface layer of one material, which is a component of the multiphase oxide core, that protects the underlying intercalation material from chemical dissolution or reaction. In a particular preferred example the multicomponent oxide may be an aluminum-doped lithium manganese oxide composition. Such aluminum-doped lithium manganese oxide compositions, having an orthorhombic structure, also form a part of the invention. In addition, the invention includes articles, particularly electrodes, for batteries formed from the compositions of the invention, and batteries including such electrodes. The invention further relates to a composite intercalation material comprising at least two compounds in which at least one compound has an orthorhombic structure Li.sub.x Al.sub.y Mn.sub.1-y O.sub.2, where y is nonzero, or a mixture of orthorhombic and monoclinic Li.sub.x Al.sub.y Mn.sub.1-y O.sub.2.

  19. Irradiation Creep in Graphite

    SciTech Connect

    Ubic, Rick; Butt, Darryl; Windes, William

    2014-03-13

    An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

  20. Coatings for graphite fibers

    NASA Technical Reports Server (NTRS)

    Galasso, F. S.; Scola, D. A.; Veltri, R. D.

    1980-01-01

    Graphite fibers released from composites during burning or an explosion caused shorting of electrical and electronic equipment. Silicon carbide, silica, silicon nitride and boron nitride were coated on graphite fibers to increase their electrical resistances. Resistances as high as three orders of magnitude higher than uncoated fiber were attained without any significant degradation of the substrate fiber. An organo-silicone approach to produce coated fibers with high electrical resistance was also used. Celion 6000 graphite fibers were coated with an organo-silicone compound, followed by hydrolysis and pyrolysis of the coating to a silica-like material. The shear and flexural strengths of composites made from high electrically resistant fibers were considerably lower than the shear and flexural strengths of composites made from the lower electrically resistant fibers. The lower shear strengths of the composites indicated that the coatings on these fibers were weaker than the coating on the fibers which were pyrolyzed at higher temperature.

  1. Cesium diffusion in graphite

    SciTech Connect

    Evans, R.B. III; Davis, W. Jr.; Sutton, A.L. Jr.

    1980-05-01

    Experiments on diffusion of /sup 137/Cs in five types of graphite were performed. The document provides a completion of the report that was started and includes a presentation of all of the diffusion data, previously unpublished. Except for data on mass transfer of /sup 137/Cs in the Hawker-Siddeley graphite, analyses of experimental results were initiated but not completed. The mass transfer process of cesium in HS-1-1 graphite at 600 to 1000/sup 0/C in a helium atmosphere is essentially pure diffusion wherein values of (E/epsilon) and ..delta..E of the equation D/epsilon = (D/epsilon)/sub 0/ exp (-..delta..E/RT) are about 4 x 10/sup -2/ cm/sup 2//s and 30 kcal/mole, respectively.

  2. Improved graphite furnace atomizer

    DOEpatents

    Siemer, D.D.

    1983-05-18

    A graphite furnace atomizer for use in graphite furnace atomic absorption spectroscopy is described wherein the heating elements are affixed near the optical path and away from the point of sample deposition, so that when the sample is volatilized the spectroscopic temperature at the optical path is at least that of the volatilization temperature, whereby analyteconcomitant complex formation is advantageously reduced. The atomizer may be elongated along its axis to increase the distance between the optical path and the sample deposition point. Also, the atomizer may be elongated along the axis of the optical path, whereby its analytical sensitivity is greatly increased.

  3. The intercalation chemistry of layered iron chalcogenide superconductors

    NASA Astrophysics Data System (ADS)

    Vivanco, Hector K.; Rodriguez, Efrain E.

    2016-10-01

    The iron chalcogenides FeSe and FeS are superconductors composed of two-dimensional sheets held together by van der Waals interactions, which makes them prime candidates for the intercalation of various guest species. We review the intercalation chemistry of FeSe and FeS superconductors and discuss their synthesis, structure, and physical properties. Before we review the latest work in this area, we provide a brief background on the intercalation chemistry of other inorganic materials that exhibit enhanced superconducting properties upon intercalation, which include the transition metal dichalcogenides, fullerenes, and layered cobalt oxides. From past studies of these intercalated superconductors, we discuss the role of the intercalates in terms of charge doping, structural distortions, and Fermi surface reconstruction. We also briefly review the physical and chemical properties of the host materials-mackinawite-type FeS and β-FeSe. The three types of intercalates for the iron chalcogenides can be placed in three categories: 1.) alkali and alkaline earth cations intercalated through the liquid ammonia technique; 2.) cations intercalated with organic amines such as ethylenediamine; and 3.) layered hydroxides intercalated during hydrothermal conditions. A recurring theme in these studies is the role of the intercalated guest in electron doping the chalcogenide host and in enhancing the two-dimensionality of the electronic structure by spacing the FeSe layers apart. We end this review discussing possible new avenues in the intercalation chemistry of transition metal monochalcogenides, and the promise of these materials as a unique set of new inorganic two-dimensional systems.

  4. Superconductivity in Ca-intercalated epitaxial graphene on silicon carbide

    NASA Astrophysics Data System (ADS)

    Li, Kang; Feng, Xiao; Zhang, Wenhao; Ou, Yunbo; Chen, Lianlian; He, Ke; Wang, Li-Li; Guo, Liwei; Liu, Guodong; Xue, Qi-Kun; Ma, Xucun

    2013-08-01

    We have prepared Ca-intercalated multilayer epitaxial graphene films on silicon carbide and observed superconductivity in them with both magnetic and transport measurements. Superconducting transition has been detected at temperature up to 7 K in Ca-intercalated epitaxial graphene with the thickness down to 10 layers grown on both Si-face and C-face of silicon carbide. The result demonstrates intercalated epitaxial graphene as a good platform to study graphene-based superconductivity.

  5. Physics and chemistry of MoS2 intercalation compounds

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Somoano, R. B.

    1977-01-01

    An investigation is made of the physics and chemistry of MoS2 intercalation compounds. These compounds may be separated into two groups according to their stoichiometry, structure and superconducting properties. The first group consists of Na, Ca, and Sr intercalates, and the second group consists of K, Rb, and Cs intercalates. Particular attention is given to the structure of the electronic energy band and to the normal state and superconducting properties of these compounds.

  6. Ag induced electromagnetic interference shielding of Ag-graphite/PVDF flexible nanocomposites thinfilms

    SciTech Connect

    Kumaran, R.; Alagar, M.; Dinesh Kumar, S.; Subramanian, V.; Dinakaran, K.

    2015-09-14

    We report Ag nanoparticle induced Electromagnetic Interference (EMI) shielding in a flexible composite films of Ag nanoparticles incorporated graphite/poly-vinylidene difluoride (PVDF). PVDF nanocomposite thin-films were synthesized by intercalating Ag in Graphite (GIC) followed by dispersing GIC in PVDF. The X-ray diffraction analysis and the high-resolution transmission electron microscope clearly dictate the microstructure of silver nanoparticles in graphite intercalated composite of PVDF matrix. The conductivity values of nanocomposites are increased upto 2.5 times when compared to neat PVDF having a value of 2.70 S/cm at 1 MHz. The presence of Ag broadly enhanced the dielectric constant and lowers the dielectric loss of PVDF matrix proportional to Ag content. The EMI shielding effectiveness of the composites is 29.1 dB at 12.4 GHz for the sample having 5 wt. % Ag and 10 wt. % graphite in PVDF.

  7. Graphite-based photovoltaic cells

    DOEpatents

    Lagally, Max; Liu, Feng

    2010-12-28

    The present invention uses lithographically patterned graphite stacks as the basic building elements of an efficient and economical photovoltaic cell. The basic design of the graphite-based photovoltaic cells includes a plurality of spatially separated graphite stacks, each comprising a plurality of vertically stacked, semiconducting graphene sheets (carbon nanoribbons) bridging electrically conductive contacts.

  8. Intercalation of both CTMAB and Al13 into montmorillonite.

    PubMed

    Zhu, Runliang; Wang, Tong; Ge, Fei; Chen, Wangxiang; You, Zhimin

    2009-07-01

    Clays intercalated with both organic cations and hydroxy-metal cations, also known as inorganic-organic clays (IOCs), have drawn great interests in the recent years because they possess the properties of both organoclays and pillared layered clays (PILCs). In this work, cetyltrimethyl ammonium bromide (CTMAB) and hydroxy-aluminum ([Al13O4(OH)24(H2O)12]7+ or Al13) were selected as the representatives of organic cations and hydroxy-metal cations, and three different methods were employed for the intercalation of montmorillonite at various CTMAB/Al13 ratios. This work aims to provide some novel information for clarifying the structural characteristics of IOCs. The experimental results showed that the structures of the resulting IOCs strongly depended on the intercalation methods and CTMAB/Al13 ratio. Both the intercalation agents could be intercalated into montmorillonite if they were used simultaneously for the intercalation, or if Al13 was intercalated after CTMAB, and the resulting IOCs were shown to have large basal spacing and small surface areas. However, if Al13 was intercalated first, the loading amounts of CTMAB would decrease significantly when the used Al13 amounts were relatively large (> or = 4 mmol Al/g montmorillonite). This could be attributed to the "lock" effect of montmorillonite's layers by the pre-intercalated Al13, and the basal spacing values of the resulting IOCs were shown to be equal to those of the PILCs. PMID:19394028

  9. Aluminosilicate nanohybrid materials. Intercalation of polystyrene in kaolinite

    NASA Astrophysics Data System (ADS)

    Elbokl, Tamer A.; Detellier, Christian

    2006-05-01

    This paper reports on the intercalation of polystyrene into the interlamellar spaces of kaolinite. The intercalation was achieved by a free radical polymerization reaction of styrene in the presence of a kaolinite DMSO intercalate as a starting material. The results of the XRD, FTIR and TGA analyses confirmed the intercalation of polystyrene in the interlamellar spaces of kaolinite. 13C CP/MAS and DD/MAS spectra indicated the almost complete displacement of DMSO by polystyrene chains and the rigidity of the latter in the interlamellar spaces. 29Si and 27Al NMR spectra of the starting materials and the products are also discussed.

  10. Coatings for Graphite Fibers

    NASA Technical Reports Server (NTRS)

    Galasso, F. S.; Scola, D. A.; Veltri, R. D.

    1980-01-01

    Several approaches for applying high resistance coatings continuously to graphite yarn were investigated. Two of the most promising approaches involved (1) chemically vapor depositing (CVD) SiC coatings on the surface of the fiber followed by oxidation, and (2) drawing the graphite yarn through an organo-silicone solution followed by heat treatments. In both methods, coated fibers were obtained which exhibited increased electrical resistances over untreated fibers and which were not degraded. This work was conducted in a previous program. In this program, the continuous CVD SiC coating process used on HTS fiber was extended to the coating of HMS, Celion 6000, Celion 12000 and T-300 graphite fiber. Electrical resistances three order of magnitude greater than the uncoated fiber were measured with no significant degradation of the fiber strength. Graphite fibers coated with CVD Si3N4 and BN had resistances greater than 10(exp 6) ohm/cm. Lower pyrolysis temperatures were used in preparing the silica-like coatings also resulting in resistances as high as three orders of magnitude higher than the uncoated fiber. The epoxy matrix composites prepared using these coated fibers had low shear strengths indicating that the coatings were weak.

  11. Structural graphitic carbon foams

    SciTech Connect

    Kearns, K.M.; Anderson, H.J.

    1998-12-31

    Graphitic carbon foams are a unique material form with very high structural and thermal properties at a light weight. A process has been developed to produce microcellular, open-celled graphitic foams. The process includes heating a mesophase pitch preform above the pitch melting temperature in a pressurized reactor. At the appropriate time, the pressure is released, the gas nucleates bubbles, and these bubbles grow forming the pitch into the foam structure. The resultant foamed pitch is then stabilized in an oxygen environment. At this point a rigid structure exists with some mechanical integrity. The foam is then carbonized to 800 C followed by a graphitization to 2700 C. The shear action from the growing bubbles aligns the graphitic planes along the foam struts to provide the ideal structure for good mechanical properties. Some of these properties have been characterized for some of the foam materials. It is known that variations of the blowing temperature, blowing pressure and saturation time result in foams of variously sized with mostly open pores; however, the mechanism of bubble nucleation is not known. Therefore foams were blown with various gases to begin to determine the nucleation method. These gases are comprised of a variety of molecular weights as well as a range of various solubility levels. By examining the resultant structures of the foam, differences were noted to develop an explanation of the foaming mechanism.

  12. Graphite technology development plan

    SciTech Connect

    1986-07-01

    This document presents the plan for the graphite technology development required to support the design of the 350 MW(t) Modular HTGR within the US National Gas-Cooled Reactor Program. Besides descriptions of the required technology development, cost estimates, and schedules, the plan also includes the associated design functions and design requirements.

  13. GRAPHITE BONDING METHOD

    DOEpatents

    King, L.D.P.

    1964-02-25

    A process for bonding or joining graphite members together in which a thin platinum foil is placed between the members, heated in an inert atmosphere to a temperature of 1800 deg C, and then cooled to room temperature is described. (AEC)

  14. (Irradiation creep of graphite)

    SciTech Connect

    Kennedy, C.R.

    1990-12-21

    The traveler attended the Conference, International Symposium on Carbon, to present an invited paper, Irradiation Creep of Graphite,'' and chair one of the technical sessions. There were many papers of particular interest to ORNL and HTGR technology presented by the Japanese since they do not have a particular technology embargo and are quite open in describing their work and results. In particular, a paper describing the failure of Minor's law to predict the fatigue life of graphite was presented. Although the conference had an international flavor, it was dominated by the Japanese. This was primarily a result of geography; however, the work presented by the Japanese illustrated an internal program that is very comprehensive. This conference, a result of this program, was better than all other carbon conferences attended by the traveler. This conference emphasizes the need for US participation in international conferences in order to stay abreast of the rapidly expanding HTGR and graphite technology throughout the world. The United States is no longer a leader in some emerging technologies. The traveler was surprised by the Japanese position in their HTGR development. Their reactor is licensed and the major problem in their graphite program is how to eliminate it with the least perturbation now that most of the work has been done.

  15. Intercalation of water into lithium. beta. -alumina

    SciTech Connect

    Dudney, N J; Bates, J B; Wang, J C; Brown, G M; Larson, B C; Engstrom, H

    1981-01-01

    Infrared absorption, neutron diffraction and weight loss techniques have been used to investigate the hydration of single crystals of Li ..beta..-alumina. The hydration is a reversible intercalation reaction. Up to approximately two water molecules per formula unit can penetrate the conduction plane. Other protonated species are formed from the dissociation of the molecular water. The rate of hydration is controlled by the diffusion of water in the conduction plane. A likely diffusion mechanism requires dissociation of the water and an interstitialcy motion of the oxygen.

  16. Superconductivity in alkali metal intercalated iron selenides.

    PubMed

    Krzton-Maziopa, A; Svitlyk, V; Pomjakushina, E; Puzniak, R; Conder, K

    2016-07-27

    Alkali metal intercalated iron selenide superconductors A x Fe2-y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations. PMID:27248118

  17. Intercalation processes of copper complexes in DNA

    PubMed Central

    Galindo-Murillo, Rodrigo; García-Ramos, Juan Carlos; Ruiz-Azuara, Lena; Cheatham, Thomas E.; Cortés-Guzmán, Fernando

    2015-01-01

    The family of anticancer complexes that include the transition metal copper known as Casiopeínas® shows promising results. Two of these complexes are currently in clinical trials. The interaction of these compounds with DNA has been observed experimentally and several hypotheses regarding the mechanism of action have been developed, and these include the generation of reactive oxygen species, phosphate hydrolysis and/or base-pair intercalation. To advance in the understanding on how these ligands interact with DNA, we present a molecular dynamics study of 21 Casiopeínas with a DNA dodecamer using 10 μs of simulation time for each compound. All the complexes were manually inserted into the minor groove as the starting point of the simulations. The binding energy of each complex and the observed representative type of interaction between the ligand and the DNA is reported. With this extended sampling time, we found that four of the compounds spontaneously flipped open a base pair and moved inside the resulting cavity and four compounds formed stacking interactions with the terminal base pairs. The complexes that formed the intercalation pocket led to more stable interactions. PMID:25958394

  18. Superconductivity in alkali metal intercalated iron selenides.

    PubMed

    Krzton-Maziopa, A; Svitlyk, V; Pomjakushina, E; Puzniak, R; Conder, K

    2016-07-27

    Alkali metal intercalated iron selenide superconductors A x Fe2-y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations.

  19. Superconductivity in alkali metal intercalated iron selenides

    NASA Astrophysics Data System (ADS)

    Krzton-Maziopa, A.; Svitlyk, V.; Pomjakushina, E.; Puzniak, R.; Conder, K.

    2016-07-01

    Alkali metal intercalated iron selenide superconductors A x Fe2-y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations.

  20. Lithium intercalation in porous carbon electrodes

    SciTech Connect

    Tran, T.D.; Feikert, J.; Pekala, R.W.

    1995-04-01

    Carbons derived from the phase separation of polyacrylonitrile/solvent mixtures were investigated as lithium intercalation anodes for rechargeable lithium-ion batteries. The carbon electrodes have a bulk density of 0.35-0.5 g/cm{sup 3}, relatively low surface areas (< 10 m{sup 2}/g), and micron-size cells. Pyrolysis temperature influences the reversible lithium intercalation and the irreversible capacity (associated with the formation of the passivating layer). Carbon electrodes pyrolyzed at 600{degrees}C have first-cycle capacity as high as 550 mAh/g as well as large irreversible capacity, 440 mAh/g. Electrodes prepared at 1050{degrees}C have reversible capacities around 270 mAh/g with relatively lower capacity losses (120 mAh/g). Doping the organic precursors with phosphoric acid, prior to pyrolysis at 1050{degrees}C, leads to carbon electrodes with reversible capacities as high as 450 mAh/g. The capacity of doped carbon increased with increasing phosphorus concentration in the samples. The doped carbon anodes exhibited good cycleability and excellent coulombic efficiency. The electrochemical performance is related to morphology, chemical composition, and local structural order.

  1. Superconductivity in alkali metal intercalated iron selenides

    NASA Astrophysics Data System (ADS)

    Krzton-Maziopa, A.; Svitlyk, V.; Pomjakushina, E.; Puzniak, R.; Conder, K.

    2016-07-01

    Alkali metal intercalated iron selenide superconductors A x Fe2‑y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations.

  2. Li(V0.5Ti0.5)S2 as a 1 V lithium intercalation electrode

    NASA Astrophysics Data System (ADS)

    Clark, Steve J.; Wang, Da; Armstrong, A. Robert; Bruce, Peter G.

    2016-03-01

    Graphite, the dominant anode in rechargeable lithium batteries, operates at ~0.1 V versus Li+/Li and can result in lithium plating on the graphite surface, raising safety concerns. Titanates, for example, Li4Ti5O12, intercalate lithium at~1.6 V versus Li+/Li, avoiding problematic lithium plating at the expense of reduced cell voltage. There is interest in 1 V anodes, as this voltage is sufficiently high to avoid lithium plating while not significantly reducing cell potential. The sulfides, LiVS2 and LiTiS2, have been investigated as possible 1 V intercalation electrodes but suffer from capacity fading, large 1st cycle irreversible capacity or polarization. Here we report that the 50/50 solid solution, Li1+x(V0.5Ti0.5)S2, delivers a reversible capacity to store charge of 220 mAhg-1 (at 0.9 V), 99% of theoretical, at a rate of C/2, retaining 205 mAhg-1 at C-rate (92% of theoretical). Rate capability is excellent with 200 mAhg-1 at 3C. C-rate is discharge in 1 h. Polarization is low, 100 mV at C/2. To the best of our knowledge, the properties/performances of Li(V0.5Ti0.5)S2 exceed all previous 1 V electrodes.

  3. Graphite polyhedral crystals.

    PubMed

    Gogotsi, Y; Libera, J A; Kalashnikov, N; Yoshimura, M

    2000-10-13

    Polyhedral nano- and microstructures with shapes of faceted needles, rods, rings, barrels, and double-tipped pyramids, which we call graphite polyhedral crystals (GPCs), have been discovered. They were found in pores of glassy carbon. They have nanotube cores and graphite faces, and they can exhibit unusual sevenfold, ninefold, or more complex axial symmetry. Although some are giant radially extended nanotubes, Raman spectroscopy and transmission electron microscopy suggest GPCs have a degree of perfection higher than in multiwall nanotubes of similar size. The crystals are up to 1 micrometer in cross section and 5 micrometers in length, and they can probably be grown in much larger sizes. Preliminary results suggest a high electrical conductivity, strength, and chemical stability of GPC.

  4. Metal intercalation-induced selective adatom mass transport on graphene

    DOE PAGESBeta

    Liu, Xiaojie; Wang, Cai -Zhuang; Hupalo, Myron; Lin, Hai -Qing; Ho, Kai -Ming; Thiel, Patricia A.; Tringides, Michael C.

    2016-03-29

    Recent experiments indicate that metal intercalation is a very effective method to manipulate the graphene-adatom interaction and control metal nanostructure formation on graphene. A key question is mass transport, i.e., how atoms deposited uniformly on graphene populate different areas depending on the local intercalation. Using first-principles calculations, we show that partially intercalated graphene, with a mixture of intercalated and pristine areas, can induce an alternating electric field because of the spatial variations in electron doping, and thus, an oscillatory electrostatic potential. As a result, this alternating field can change normal stochastic adatom diffusion to biased diffusion, leading to selective massmore » transport and consequent nucleation, on either the intercalated or pristine areas, depending on the charge state of the adatoms.« less

  5. Superconductivity in the alkali metal intercalates of molybdenum disulphide

    NASA Technical Reports Server (NTRS)

    Somoano, R. B.; Hadek, V.; Rembaum, A.

    1972-01-01

    The complete series of alkali metals, lithium through cesium, have been intercalated into molybdenum disulphide, using both the liquid ammonia and vapor techniques. All the intercalates with the exception of lithium yielded full superconducting transitions with onset temperatures of 6 K for AxMoS2(Ax=K,Rb,Cs) and 4 K for BxMoS2(Bx=Li,Na). The superconducting transition for lithium was incomplete down to 1.5 K. Stoichiometries and unit cell parameters have been determined for the intercalation compounds. Both rhombohedral and hexagonal polymorphs of MoS2 have been intercalated and found to exhibit the same superconductivity behavior. The nature of the extraneous superconducting transition of some intercalated samples on exposure to air was elucidated.

  6. Quasi-freestanding graphene on Ni(111) by Cs intercalation

    NASA Astrophysics Data System (ADS)

    Alattas, M.; Schwingenschlögl, U.

    2016-05-01

    A possible approach to achieve quasi-freestanding graphene on a substrate for technological purpose is the intercalation of alkali metal atoms. Cs intercalation between graphene and Ni(111) therefore is investigated using density functional theory, incorporating van der Waals corrections. It is known that direct contact between graphene and Ni(111) perturbs the Dirac states. We find that Cs intercalation restores the linear dispersion characteristic of Dirac fermions, which agrees with experiments, but the Dirac cone is shifted to lower energy, i.e., the graphene sheet is n-doped. Cs intercalation therefore decouples the graphene sheet from the substrate except for a charge transfer. On the other hand, the spin polarization of Ni(111) does not extend through the intercalated atoms to the graphene sheet, for which we find virtually spin-degeneracy.

  7. 7Li NMR study of intercalated lithium in curved carbon lattices

    NASA Astrophysics Data System (ADS)

    Gerald, R. E.; Johnson, C. S.; Rathke, J. W.; Klingler, R. J.; Sandí, G.; Scanlon, L. G.

    A device was invented that permits nuclear magnetic resonance (NMR) analysis of the internal elements of a coin cell battery. The Coin Cell Battery Imager was used to record wideline 7Li NMR spectra of the lithium ions that were electrochemically intercalated into three different types of carbon-based materials. The samples included graphite, corannulene, and carbon derived from sepiolite clay. All samples were excised from 2032-size coin cells that were cycled multiple times and left in a discharged state (i.e., fully lithiated). A comparison of the 7Li NMR spectra recorded for the three carbons revealed that the curved carbon lattice derived from sepiolite affected the lithium resonances in a manner similar to that observed for the curved molecule corannulene, while both differed from the flat lattice of graphite. In addition, it was possible to observe lithium dendrites on the surface of a hard carbon electrode even in the presence of a large lithium counter electrode using NMR imaging techniques.

  8. METHOD OF FABRICATING A GRAPHITE MODERATED REACTOR

    DOEpatents

    Kratz, H.R.

    1963-05-01

    S>A nuclear reactor formed of spaced bodies of uranium and graphite blocks is improved by diffusing helium through the graphite blocks in order to replace the air in the pores of the graphite with helium. The helium-impregnated graphite conducts heat better, and absorbs neutrons less, than the original air- impregnated graphite. (AEC)

  9. CMB-13 research on carbon and graphite

    NASA Technical Reports Server (NTRS)

    Smith, M. C.

    1972-01-01

    Preliminary results of the research on carbon and graphite accomplished during this report period are presented. Included are: particle characteristics of Santa Maria fillers, compositions and density data for hot-molded Santa Maria graphites, properties of hot-molded Santa Maria graphites, and properties of hot-molded anisotropic graphites. Ablation-resistant graphites are also discussed.

  10. Graphite fiber reinforced thermoplastic resins

    NASA Technical Reports Server (NTRS)

    Navak, R. C.

    1977-01-01

    The results of a program designed to optimize the fabrication procedures for graphite thermoplastic composites are described. The properties of the composites as a function of temperature were measured and graphite thermoplastic fan exit guide vanes were fabricated and tested. Three thermoplastics were included in the investigation: polysulfone, polyethersulfone, and polyarylsulfone. Type HMS graphite was used as the reinforcement. Bending fatigue tests of HMS graphite/polyethersulfone demonstrated a gradual shear failure mode which resulted in a loss of stiffness in the specimens. Preliminary curves were generated to show the loss in stiffness as a function of stress and number of cycles. Fan exit guide vanes of HMS graphite polyethersulfone were satisfactorily fabricated in the final phase of the program. These were found to have stiffness and better fatigue behavior than graphite epoxy vanes which were formerly bill of material.

  11. Intercalation and controlled release properties of vitamin C intercalated layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Gao, Xiaorui; Lei, Lixu; O'Hare, Dermot; Xie, Juan; Gao, Pengran; Chang, Tao

    2013-07-01

    Two drug-inorganic composites involving vitamin C (VC) intercalated in Mg-Al and Mg-Fe layered double hydroxides (LDHs) have been synthesized by the calcination-rehydration (reconstruction) method. Powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), and UV-vis absorption spectroscopy indicate a successful intercalation of VC into the interlayer galleries of the LDH host. Studies of VC release from the LDHs in deionised water and in aqueous CO32- solutions imply that Mg3Al-VC LDH is a better controlled release system than Mg3Fe-VC LDH. Analysis of the release profiles using a number of kinetic models suggests a solution-dependent release mechanism, and a diffusion-controlled deintercalation mechanism in deionised water, but an ion exchange process in CO32- solution.

  12. Intercalation and controlled release properties of vitamin C intercalated layered double hydroxide

    SciTech Connect

    Gao, Xiaorui; Lei, Lixu; O'Hare, Dermot; Xie, Juan; Gao, Pengran; Chang, Tao

    2013-07-15

    Two drug-inorganic composites involving vitamin C (VC) intercalated in Mg–Al and Mg–Fe layered double hydroxides (LDHs) have been synthesized by the calcination–rehydration (reconstruction) method. Powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), and UV–vis absorption spectroscopy indicate a successful intercalation of VC into the interlayer galleries of the LDH host. Studies of VC release from the LDHs in deionised water and in aqueous CO{sub 3}{sup 2−} solutions imply that Mg{sub 3}Al–VC LDH is a better controlled release system than Mg{sub 3}Fe–VC LDH. Analysis of the release profiles using a number of kinetic models suggests a solution-dependent release mechanism, and a diffusion-controlled deintercalation mechanism in deionised water, but an ion exchange process in CO{sub 3}{sup 2−} solution. - Graphical abstract: Vitamin C anions have been intercalated in the interlayer space of layered double hydroxide and released in CO{sub 3}{sup 2−} solution and deionised water. - Highlights: • Vitamin C intercalated Mg–Al and Mg–Fe layered double hydroxides were prepared. • Release property of vitamin C in aqueous CO{sub 3}{sup 2−} solution is better. • Avrami-Erofe’ev and first-order models provide better fit for release results. • Diffusion-controlled and ion exchange processes occur in deionised water. • An ion exchange process occurs in CO{sub 3}{sup 2−} solution.

  13. Synthesis, characterization and lithium electrochemical insertion into antimony-based graphite composites

    NASA Astrophysics Data System (ADS)

    Dailly, Anne; Ghanbaja, Jaafar; Willmann, Patrick; Billaud, Denis

    There is a renewal of interest in the use of metals that are capable of alloying with lithium as negative-electrode materials for lithium-ion batteries. These metals can supply larger capacities than graphite but their main disadvantage consists in their very limited cycle life. Indeed, they present considerable volume variations during alloying, which lead to a mechanical degradation of the electrode. The concept of an active phase stabilizing matrix was introduced. We propose in this study to associate a metal able to alloy lithium to graphite by using new preparation methods involving graphite intercalation compounds (GICs) as precursors. In one case, antimony pentachloride SbCl 5 was reduced by the stage I KC 8 GIC. In another case, C 12SbCl 5 and C 24SbCl 5 GICs were reduced either by gaseous caesium or by activated sodium hydride NaH. Actually, these methods led to the attention of antimony-based graphite composites in which antimony particles are deposited on the surface and edges of graphite layers or embedded in an organic matrix. Both morphological and structural characteristics of such composites were studied by transmission electron microscopy. Examination of their electrochemical properties as regards lithium insertion showed that they present interesting performances because the reversible capacity is increased by comparison with that of pure graphite and the stability of the metal is preserved throughout the cycling. The combination of graphite and antimony prevents the metal against cracking and pulverization that occur generally during alloying/dealloying cycles. Antimony-graphite composites prepared via SbCl 5 reduction by KC 8, via C 12SbCl 5 reduction by gaseous caesium or via C 24SbCl 5 reduction by activated NaH display improved reversible capacities of 420, 490 and 440 mAh g -1, respectively.

  14. Heat exchanger using graphite foam

    DOEpatents

    Campagna, Michael Joseph; Callas, James John

    2012-09-25

    A heat exchanger is disclosed. The heat exchanger may have an inlet configured to receive a first fluid and an outlet configured to discharge the first fluid. The heat exchanger may further have at least one passageway configured to conduct the first fluid from the inlet to the outlet. The at least one passageway may be composed of a graphite foam and a layer of graphite material on the exterior of the graphite foam. The layer of graphite material may form at least a partial barrier between the first fluid and a second fluid external to the at least one passageway.

  15. Synthesis and characterization of Mn intercalated Mg-Al hydrotalcite.

    PubMed

    Yang, Chengxue; Liao, Libing; Lv, Guocheng; Wu, Limei; Mei, Lefu; Li, Zhaohui

    2016-10-01

    Mn intercalated hydrotalcite was prepared using a reconstruction method. And Mn intercalation was confirmed by XRD, FTIR, and thermal analyses. The different valences of Mn were present as determined by XPS. Calcination slightly promoted the isomorphic replacement of Mn(2+) and Mn(3+) for Mg(2+) and Al(3+), especially the replacement of Mn(2+) for Mg(2+) and Al(3+), and to some extent, reduced Mn intercalation. Ultrasonic treatment significantly increased Mn intercalation in permanganate form (Mn(7+)), and promoted the replacement of Mn(2+) for Mg(2+) and Al(3+). XRF analysis showed that ultrasonic treatment decreased the unbalanced layer charge of Mn intercalated hydrotalcite, while prolonged calcination increased it. These results may provide guidance on the preparation and application of Mn intercalated hydrotalcite. Extended calcination time and ultrasonic vibration increased the interlayer spacing of hydrotalcite, as a result of reduction in layer charge. As the layer charge was not completely balanced after Mn intercalation, a certain amount of CO3(2-) was re-adsorbed into the interlayer space. Mn-hydrotalcites with different layer charges, different contents of Mn with varying valences are expected to have different performances in the process of adsorption, degradation, and catalysis. PMID:27380016

  16. Synthesis and characterization of Mn intercalated Mg-Al hydrotalcite.

    PubMed

    Yang, Chengxue; Liao, Libing; Lv, Guocheng; Wu, Limei; Mei, Lefu; Li, Zhaohui

    2016-10-01

    Mn intercalated hydrotalcite was prepared using a reconstruction method. And Mn intercalation was confirmed by XRD, FTIR, and thermal analyses. The different valences of Mn were present as determined by XPS. Calcination slightly promoted the isomorphic replacement of Mn(2+) and Mn(3+) for Mg(2+) and Al(3+), especially the replacement of Mn(2+) for Mg(2+) and Al(3+), and to some extent, reduced Mn intercalation. Ultrasonic treatment significantly increased Mn intercalation in permanganate form (Mn(7+)), and promoted the replacement of Mn(2+) for Mg(2+) and Al(3+). XRF analysis showed that ultrasonic treatment decreased the unbalanced layer charge of Mn intercalated hydrotalcite, while prolonged calcination increased it. These results may provide guidance on the preparation and application of Mn intercalated hydrotalcite. Extended calcination time and ultrasonic vibration increased the interlayer spacing of hydrotalcite, as a result of reduction in layer charge. As the layer charge was not completely balanced after Mn intercalation, a certain amount of CO3(2-) was re-adsorbed into the interlayer space. Mn-hydrotalcites with different layer charges, different contents of Mn with varying valences are expected to have different performances in the process of adsorption, degradation, and catalysis.

  17. Fabrication of Iron-Containing Carbon Materials From Graphite Fluoride

    NASA Technical Reports Server (NTRS)

    Hung, Ching-cheh

    1996-01-01

    Carbon materials containing iron alloy, iron metal, iron oxide or iron halide were fabricated. Typical samples of these metals were estimated to contain 1 iron atom per 3.5 to 5 carbon atoms. Those carbon materials containing iron alloy, iron metal, and/or Fe3O4 were magnetic. The kinetics of the fabrication process were studied by exposing graphite fluoride (CF(0.68)) to FeCl3 over a 280 to 420 C temperature range. Between 280 and 295 C, FeCl3 quickly entered the structure of CF(0.68), broke the carbon-fluorine bonds, and within 10 to 30 min, completely converted it to carbon made up of graphite planes between which particles of crystalline FeF3 and noncrystalline FeCl3 were located. Longer reaction times (e.g., 28 hr) or higher reaction temperatures (e.g., 420 C) produced materials containing graphite, a FeCl3-graphite intercalation compound, FeCl2(center dot)4H2O, and FeCl2(center dot)2H2O. These products were further heat treated to produce iron-containing carbon materials. When the heating temperature was kept in the 750 to 850 C range, and the oxygen supply was kept at the optimum level, the iron halides in the carbon structure were converted to iron oxides. Raising the heat to temperatures higher than 900 C reduced such iron oxides to iron metal. The kinetics of these reactions were used to suggest processes for fabricating carbon materials containing iron alloy. Such processes were then tested experimentally. In one of the successful trial runs, commercially purchased CF(0.7) powder was used as the reactant, and NiO was added during the final heating to 1200 C as a source of both nickel and oxygen. The product thus obtained was magnetic and was confirmed to be a nickel-iron alloy in carbon.

  18. Intercalation studies of zinc hydroxide chloride: Ammonia and amino acids

    SciTech Connect

    Arizaga, Gregorio Guadalupe Carbajal

    2012-01-15

    Zinc hydroxide chloride (ZHC) is a layered hydroxide salt with formula Zn{sub 5}(OH){sub 8}Cl{sub 2}{center_dot}2H{sub 2}O. It was tested as intercalation matrix for the first time and results were compared with intercalation products of the well-known zinc hydroxide nitrate and a Zn/Al layered double hydroxide. Ammonia was intercalated into ZHC, while no significant intercalation occurred in ZHN. Aspartic acid intercalation was only achieved by co-precipitation at pH=10 with ZHC and pH=8 with zinc hydroxide nitrate. Higher pH resistance in ZHC favored total deprotonation of both carboxylic groups of the Asp molecule. ZHC conferred more thermal protection against Asp combustion presenting exothermic peaks even at 452 Degree-Sign C while the exothermic event in ZHN was 366 Degree-Sign C and in the LDH at 276 Degree-Sign C. - Graphical abstract: The zinc hydroxide chloride (ZHC) with formula Zn{sub 5}(OH){sub 8}Cl{sub 2}{center_dot}2H{sub 2}O was tested as intercalation matrix. In comparison with the well-known zinc hydroxide nitrate (ZHN) and layered double hydroxides (LDH), ZHC was the best matrix for thermal protection of Asp combustion, presenting exothermic peaks even at 452 Degree-Sign C, while the highest exothermic event in ZHN was at 366 Degree-Sign C, and in the LDH it was at 276 Degree-Sign C. Highlights: Black-Right-Pointing-Pointer Zinc hydroxide chloride (ZHC) was tested as intercalation matrix for the first time. Black-Right-Pointing-Pointer ZHC has higher chemical and thermal stability than zinc hydroxide nitrate and LDH. Black-Right-Pointing-Pointer NH{sub 3} molecules can be intercalated into ZHC. Black-Right-Pointing-Pointer The amino group of amino acids limits the intercalation by ion-exchange.

  19. Prediction of superconductivity in Li-intercalated bilayer phosphorene

    SciTech Connect

    Huang, G. Q.; Xing, Z. W.; Xing, D. Y.

    2015-03-16

    It is shown that bilayer phosphorene can be transformed from a direct-gap semiconductor to a BCS superconductor by intercalating Li atoms. For the Li-intercalated bilayer phosphorene, we find that the electron occupation of Li-derived band is small and superconductivity is intrinsic. With increasing the intercalation of Li atoms, both increased metallicity and strong electron-phonon coupling are favorable for the enhancement of superconductivity. The obtained electron-phonon coupling λ can be larger than 1 and the superconducting temperature T{sub c} can be increased up to 16.5 K, suggesting that phosphorene may be a good candidate for a nanoscale superconductor.

  20. Dissecting the Dynamic Pathways of Stereoselective DNA Threading Intercalation.

    PubMed

    Almaqwashi, Ali A; Andersson, Johanna; Lincoln, Per; Rouzina, Ioulia; Westerlund, Fredrik; Williams, Mark C

    2016-03-29

    DNA intercalators that have high affinity and slow kinetics are developed for potential DNA-targeted therapeutics. Although many natural intercalators contain multiple chiral subunits, only intercalators with a single chiral unit have been quantitatively probed. Dumbbell-shaped DNA threading intercalators represent the next order of structural complexity relative to simple intercalators, and can provide significant insights into the stereoselectivity of DNA-ligand intercalation. We investigated DNA threading intercalation by binuclear ruthenium complex [μ-dppzip(phen)4Ru2](4+) (Piz). Four Piz stereoisomers are defined by the chirality of the intercalating subunit (Ru(phen)2dppz) and the distal subunit (Ru(phen)2ip), respectively, each of which can be either right-handed (Δ) or left-handed (Λ). We used optical tweezers to measure single DNA molecule elongation due to threading intercalation, revealing force-dependent DNA intercalation rates and equilibrium dissociation constants. The force spectroscopy analysis provided the zero-force DNA binding affinity, the equilibrium DNA-ligand elongation Δxeq, and the dynamic DNA structural deformations during ligand association xon and dissociation xoff. We found that Piz stereoisomers exhibit over 20-fold differences in DNA binding affinity, from a Kd of 27 ± 3 nM for (Δ,Λ)-Piz to a Kd of 622 ± 55 nM for (Λ,Δ)-Piz. The striking affinity decrease is correlated with increasing Δxeq from 0.30 ± 0.02 to 0.48 ± 0.02 nm and xon from 0.25 ± 0.01 to 0.46 ± 0.02 nm, but limited xoff changes. Notably, the affinity and threading kinetics is 10-fold enhanced for right-handed intercalating subunits, and 2- to 5-fold enhanced for left-handed distal subunits. These findings demonstrate sterically dispersed transition pathways and robust DNA structural recognition of chiral intercalators, which are critical for optimizing DNA binding affinity and kinetics. PMID:27028636

  1. Graphitic packing removal tool

    SciTech Connect

    Meyers, K.E.; Kolsun, G.J.

    1996-12-31

    Graphitic packing removal tools are described for removal of the seal rings in one piece from valves and pumps. The packing removal tool has a cylindrical base ring the same size as the packing ring with a surface finish, perforations, knurling or threads for adhesion to the seal ring. Elongated leg shanks are mounted axially along the circumferential center. A slit or slits permit insertion around shafts. A removal tool follower stabilizes the upper portion of the legs to allow a spanner wrench to be used for insertion and removal.

  2. Graphitic packing removal tool

    DOEpatents

    Meyers, K.E.; Kolsun, G.J.

    1997-11-11

    Graphitic packing removal tools for removal of the seal rings in one piece are disclosed. The packing removal tool has a cylindrical base ring the same size as the packing ring with a surface finish, perforations, knurling or threads for adhesion to the seal ring. Elongated leg shanks are mounted axially along the circumferential center. A slit or slits permit insertion around shafts. A removal tool follower stabilizes the upper portion of the legs to allow a spanner wrench to be used for insertion and removal. 5 figs.

  3. Graphitic packing removal tool

    DOEpatents

    Meyers, Kurt Edward; Kolsun, George J.

    1997-01-01

    Graphitic packing removal tools for removal of the seal rings in one piece. he packing removal tool has a cylindrical base ring the same size as the packing ring with a surface finish, perforations, knurling or threads for adhesion to the seal ring. Elongated leg shanks are mounted axially along the circumferential center. A slit or slits permit insertion around shafts. A removal tool follower stabilizes the upper portion of the legs to allow a spanner wrench to be used for insertion and removal.

  4. A sodium-ion battery exploiting layered oxide cathode, graphite anode and glyme-based electrolyte

    NASA Astrophysics Data System (ADS)

    Hasa, Ivana; Dou, Xinwei; Buchholz, Daniel; Shao-Horn, Yang; Hassoun, Jusef; Passerini, Stefano; Scrosati, Bruno

    2016-04-01

    Room-temperature rechargeable sodium-ion batteries (SIBs), in view of the large availability and low cost of sodium raw materials, represent an important class of electrochemical systems suitable for application in large-scale energy storage. In this work, we report a novel, high power SIB formed by coupling the layered P2-Na0.7CoO2 cathode with the graphite anode in an optimized ether-based electrolyte. The study firstly addresses the electrochemical optimization of the two electrode materials and then the realization and characterization of the novel SIB based on their combination. The cell represents an original sodium rocking chair battery obtained combining the intercalation/de-intercalation processes of sodium within the cathode and anode layers. We show herein that this battery, favored by suitable electrode/electrolyte combination, offers unique performance in terms of cycle life, efficiency and, especially, power capability.

  5. NMR studies of molecules in liquid crystals and graphite

    SciTech Connect

    Rosen, M.E.

    1992-06-01

    NMR experiments to measure proton dipole couplings were performed on a series of n-alkanes (n-hexane through n-decane) dissolved in nematic liquid crystals. Computer modeling of the experimental NMR-spectra was done using several different models for intermolecular interactions in these systems. The model of Photinos et al. was found to be best in describing the intermolecular interactions in these systems and can provide a statistical picture of the conformation and orientation of the alkane molecules in their partially-oriented environment. Order parameters and conformational distributions for the alkanes can be calculated from the modeling. The alkanes are found to have conformational distributions very much like those found in liquid alkanes. Proton NMR spectra of tetrahydrofuran (THF) intercalated in two graphite intercalation compounds were also measured. Computer simulations of these spectra provide a picture of THF in the constrained environment between the graphene layers where the THF is oriented at a particular angle, can translate and rotate freely, but does not appear to pseudorotate.

  6. Synthesis, physical and chemical properties, and potential applications of graphite fluoride fibers

    SciTech Connect

    Hung, C.C.; Long, M.; Stahl, M.

    1987-08-01

    Graphite fluoride fibers can be produced by fluorinating pristine or intercalated graphite fibers. The higher the degree of graphitization of the fibers, the higher the temperature needed to reach the same degree of fluorination. Pitched based fibers were fluorinated to flourine-to-carbon atom rations between 0 and 1. The graphite fluoride fibers with a fluorine-to-carbon atom ration near 1 have extensive visible structural damage. On the other hand, fluorination of fibers pretreated with bromine or fluorine and bromine result in fibers with a fluorine-to-carbon atom ratio nearly equal to 0.5 with no visible structural damage. The electrical resistivity of the fibers is dependent upon the fluorine to carbon atom ratio and ranged from .01 to 10 to the 11th ohm/cm. The thermal conductivity of these fibers ranged from 5 to 73 W/m-k, which is much larger than the thermal conductivity of glass, which is the regular filler in epoxy composites. If graphite fluoride fibers are used as a filler in epoxy or PTFE, the resulting composite may be a high thermal conductivity material with an electrical resistivity in either the insulator or semiconductor range. The electrically insulating product may provide heat transfer with lower temperature gradients than many current electrical insulators. Potential applications are presented.

  7. Preparation and characterization of aminated graphite oxide for CO2 capture

    NASA Astrophysics Data System (ADS)

    Zhao, Yunxia; Ding, Huiling; Zhong, Qin

    2012-03-01

    Adsorption with solid sorbents is one of the most promising options for postcombustion carbon dioxide (CO2) capture. In this study, aminated graphite oxide used for CO2 adsorption was synthesized, based on the intercalation reaction of graphite oxide (GO) with amines, including ethylenediamine (EDA), diethylenetriamine (DETA) and triethylene tetramine (TETA). The structural information, surface chemistry and thermal behavior of the adsorbent samples were characterized by X-ray powder diffraction (XRD), infrared spectroscopy (IR), transmission electron microscope (TEM), elemental analysis, particle size analysis, nitrogen adsorption as well as differential thermal and thermogravimetric analysis (DSC-TGA). CO2 capture was investigated by dynamic adsorption experiments with N2sbnd CO2 mixed gases at 30 °C. The three kinds of graphite oxide samples modified by excess EDA, DETA and TETA showed similar adsorption behaviors seen from their breakthrough curves. Among them, the sample aminated by EDA exhibited the highest adsorption capacity with the longest breakthrough time of CO2. Before saturation, its adsorption capacity was up to 53.62 mg CO2/g sample. In addition, graphite oxide samples modified by different amount of EDA (EDA/GO raw ratio 10 wt%, 50 wt% and 100 wt%) were prepared in the ethanol. Their CO2 adsorption performance was investigated. The experimental results demonstrated that graphite oxide with 50 wt% EDA had the largest adsorption capacity 46.55 mg CO2/g sample.

  8. Stable aqueous dispersions of functionalized multi-layer graphene by pulsed underwater plasma exfoliation of graphite

    NASA Astrophysics Data System (ADS)

    Meyer-Plath, Asmus; Beckert, Fabian; Tölle, Folke J.; Sturm, Heinz; Mülhaupt, Rolf

    2016-02-01

    A process was developed for graphite particle exfoliation in water to stably dispersed multi-layer graphene. It uses electrohydraulic shockwaves and the functionalizing effect of solution plasma discharges in water. The discharges were excited by 100 ns high voltage pulsing of graphite particle chains that bridge an electrode gap. The underwater discharges allow simultaneous exfoliation and chemical functionalization of graphite particles to partially oxidized multi-layer graphene. Exfoliation is caused by shockwaves that result from rapid evaporation of carbon and water to plasma-excited gas species. Depending on discharge energy and locus of ignition, the shockwaves cause stirring, erosion, exfoliation and/or expansion of graphite flakes. The process was optimized to produce long-term stable aqueous dispersions of multi-layer graphene from graphite in a single process step without requiring addition of intercalants, surfactants, binders or special solvents. A setup was developed that allows continuous production of aqueous dispersions of flake size-selected multi-layer graphenes. Due to the well-preserved sp2-carbon structure, thin films made from the dispersed graphene exhibited high electrical conductivity. Underwater plasma discharge processing exhibits high innovation potential for morphological and chemical modifications of carbonaceous materials and surfaces, especially for the generation of stable dispersions of two-dimensional, layered materials.

  9. Synthesis, physical and chemical properties, and potential applications of graphite fluoride fibers

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh; Long, Martin; Stahl, Mark

    1987-01-01

    Graphite fluoride fibers can be produced by fluorinating pristine or intercalated graphite fibers. The higher the degree of graphitization of the fibers, the higher the temperature needed to reach the same degree of fluorination. Pitched based fibers were fluorinated to flourine-to-carbon atom rations between 0 and 1. The graphite fluoride fibers with a fluorine-to-carbon atom ration near 1 have extensive visible structural damage. On the other hand, fluorination of fibers pretreated with bromine or fluorine and bromine result in fibers with a fluorine-to-carbon atom ratio nearly equal to 0.5 with no visible structural damage. The electrical resistivity of the fibers is dependent upon the fluorine to carbon atom ratio and ranged from .01 to 10 to the 11th ohm/cm. The thermal conductivity of these fibers ranged from 5 to 73 W/m-k, which is much larger than the thermal conductivity of glass, which is the regular filler in epoxy composites. If graphite fluoride fibers are used as a filler in epoxy or PTFE, the resulting composite may be a high thermal conductivity material with an electrical resistivity in either the insulator or semiconductor range. The electrically insulating product may provide heat transfer with lower temperature gradients than many current electrical insulators. Potential applications are presented.

  10. REFRACTORY COATING FOR GRAPHITE MOLDS

    DOEpatents

    Stoddard, S.D.

    1958-06-24

    Refractory coating for graphite molds used in the casting of uranium is described. The coating is an alumino-silicate refractory composition which may be used as a mold surface in solid form or as a coating applied to the graphite mold. The composition consists of a mixture of ball clay, kaolin, alumina cement, alumina, water, sodium silicate, and sodium carbonate.

  11. Cryotribology of diamond and graphite

    SciTech Connect

    Iwasa, Yukikazu; Ashaboglu, A.F.; Rabinowicz, E.R.

    1996-12-31

    An experimental study was carried out on the tribological behavior of materials of interest in cryogenic applications, focusing on diamond and graphite. Both natural diamond (referred in the text as diamond) and chemical-vapor-deposition (CVD) diamond (CVD-diamond) were used. The experiment was carried out using a pin-on-disk tribometer capable of operating at cryogenic temperatures, from 4.2 to 293 K. Two basic scenarios of testing were used: (1) frictional coefficient ({mu}) vs velocity (v) characteristics at constant temperatures; (2) {mu} vs temperature (T) behavior at fixed sliding speeds. For diamond/CVD-diamond, graphite/CVD-diamond, stainless steel/CVD-diamond pairs, {mu}`s are virtually velocity independent. For each of diamond/graphite, alumina/graphite, and graphite/graphite pairs, the {partial_derivative}{mu}/{partial_derivative}v characteristic is favorable, i.e., positive. For diamond/CVD-diamond and graphite/CVD-diamond pairs, {mu}`s are nearly temperature independent between in the range 77 - 293 K. Each {mu} vs T plot for pin materials sliding on graphite disks has a peak at a temperature in the range 100 - 200 K.

  12. Examining graphite reinforcement in composites

    NASA Technical Reports Server (NTRS)

    Sanders, R. E.; Yates, C. I.

    1980-01-01

    Structure of graphite layers in composite parts can be checked by pyrolizing epoxy portion of composite samples. After 2-3 hours in nitrogen atmosphere at 540 C, only graphite fibers remain. These can be separated and checked for proper number, thickness, and orientation.

  13. Multiaxial graphite test specimen

    SciTech Connect

    1988-09-01

    A multiaxial test program is to be conducted by Oak Ridge National Laboratory (ORNL) on the core component graphite. The objectives of the tests are to obtain failure data under uniaxial and biaxial states of stress in order to construct a failure surface in a two-dimensional stress space. These data will be used in verifying the accuracy of the maximum stress failure theory being proposed for use in designing the core graphite components. Tubular specimens are proposed to be used and are either loaded axially and/or subjected to internal pressure. This report includes a study on three specimen configurations. The conclusions of that study indicate that an elliptical transition geometry procedures the smallest discontinuity effects. Several loading combustions were studied using the elliptical transition specimen. The primary purpose is to establish the location of the highest stress state and its relation to the gage section for all of the loading conditions. The tension/internal pres sure loading condition (1:1) indicated that the high stress area is just outside the gage section but still should be acceptable. 5 refs., 18 figs.

  14. Intercalated samarium as an agent enabling the intercalation of oxygen under a monolayer graphene film on iridium

    NASA Astrophysics Data System (ADS)

    Afanas'eva, E. Yu.; Rut'kov, E. V.; Gall', N. R.

    2016-06-01

    Using thermal desorption time-of-flight mass spectrometry and thermionic methods, it is shown that oxygen does not intercalate under a graphene monolayer grown correctly on iridium, at least at temperatures of T = 300-400 K and exposures below 12000 L. However, if the graphene film on iridium is preliminary intercalated with samarium atoms (up to coverage of θSm = 0.2-0.45), the penetration of oxygen atoms under the graphene film is observed. The oxygen atoms in the intercalated state are chemically bonded to samarium atoms and remain under graphene up to high temperatures (~2150 K).

  15. Baseline Graphite Characterization: First Billet

    SciTech Connect

    Mark C. Carroll; Joe Lords; David Rohrbaugh

    2010-09-01

    The Next Generation Nuclear Plant Project Graphite Research and Development program is currently establishing the safe operating envelope of graphite core components for a very high temperature reactor design. To meet this goal, the program is generating the extensive amount of quantitative data necessary for predicting the behavior and operating performance of the available nuclear graphite grades. In order determine the in-service behavior of the graphite for the latest proposed designs, two main programs are underway. The first, the Advanced Graphite Creep (AGC) program, is a set of experiments that are designed to evaluate the irradiated properties and behavior of nuclear grade graphite over a large spectrum of temperatures, neutron fluences, and compressive loads. Despite the aggressive experimental matrix that comprises the set of AGC test runs, a limited amount of data can be generated based upon the availability of space within the Advanced Test Reactor and the geometric constraints placed on the AGC specimens that will be inserted. In order to supplement the AGC data set, the Baseline Graphite Characterization program will endeavor to provide supplemental data that will characterize the inherent property variability in nuclear-grade graphite without the testing constraints of the AGC program. This variability in properties is a natural artifact of graphite due to the geologic raw materials that are utilized in its production. This variability will be quantified not only within a single billet of as-produced graphite, but also from billets within a single lot, billets from different lots of the same grade, and across different billets of the numerous grades of nuclear graphite that are presently available. The thorough understanding of this variability will provide added detail to the irradiated property data, and provide a more thorough understanding of the behavior of graphite that will be used in reactor design and licensing. This report covers the

  16. Method for intercalating alkali metal ions into carbon electrodes

    DOEpatents

    Doeff, M.M.; Ma, Y.; Visco, S.J.; DeJonghe, L.

    1995-08-22

    A low cost, relatively flexible, carbon electrode for use in a secondary battery is described. A method is provided for producing same, including intercalating alkali metal salts such as sodium and lithium into carbon.

  17. Influence of interlayer cations on organic intercalation of montmorillonite.

    PubMed

    Wu, Limei; Liao, Libing; Lv, Guocheng

    2015-09-15

    The influence of the types of interlayer cations on organic intercalation of montmorillonite (Mt) was studied in this paper. The distribution of Na(+), K(+), Mg(2+), Ca(2+) and Fe(3+) in montmorillonite interlayer, their interaction with structure layers and the effect of interlayer cations on the basal spacing of Mt, the amount of binding water for different interlayer cations and the binding force between them were investigated systematically. 1-Hexadecy1-3-methylimidazolium chloride monohydrate (C16mimCl) was intercalated into montmorillonites with different interlayer cations. The influence of interlayer cations on organic intercalation was investigated. Molecular dynamics (MD) modeling was used to speculate the interlayer microstructures of the organically intercalated Mt with different interlayer cations. These simulations help to predict the microstructure of organo-Mt and guide their relevant engineering applications. PMID:26001131

  18. Method for intercalating alkali metal ions into carbon electrodes

    DOEpatents

    Doeff, Marca M.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard

    1995-01-01

    A low cost, relatively flexible, carbon electrode for use in a secondary battery is described. A method is provided for producing same, including intercalating alkali metal salts such as sodium and lithium into carbon.

  19. Electronic properties of carbon fibers intercalated with copper chloride

    NASA Technical Reports Server (NTRS)

    Oshima, H.; Natarajan, V.; Woollam, J. A.; Yavrouian, A.; Haugland, E. J.; Tsuzuku, T.

    1984-01-01

    Copper chloride intercalated pitch-based carbon fibers are found to have electrical resistivities as low as 12.9 micro-ohm-cm, and are air- and thermally-stable at and above room temperature. This is therefore a good candidate system for conductor application. In addition, Shubnikov-deHaas quantum oscillatory effects were found, and electronic properties of the intercalated fiber are studied using magnetic fields to 20 tesla.

  20. Effect of a pyrrolidinium zwitterion on charge/discharge cycle properties of Li/LiCoO2 and graphite/Li cells containing an ionic liquid electrolyte

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Seitaro; Yoshizawa-Fujita, Masahiro; Takeoka, Yuko; Rikukawa, Masahiro

    2016-11-01

    Ionic liquids (ILs) containing zwitterions have been studied as electrolytes for lithium-ion batteries (LIBs). The effects of addition of a pyrrolidinium zwitterion in an IL electrolyte on the thermal and electrochemical stability and charge/discharge properties of Li/LiCoO2 and graphite/Li cells were investigated. The thermal decomposition temperature of the IL electrolyte composed of N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)amide ([P13][FSA])/lithium bis(trifluoromethylsulfonyl)amide (LiTFSA) with 3-(1-butylpyrrolidinium)propane-1-sulfonate (Bpyps) as the zwitterionic additive, the thermal decomposition temperature was about 300 °C. The electrochemical window of [P13][FSA]/LiTFSA/Bpyps was 0-+5.4 V vs. Li/Li+, which was almost identical to that of [P13][FSA]/LiTFSA. Li|electrolyte|LiCoO2 cells containing the IL/Bpyps electrolyte system exhibited high capacities in the cut-off voltage range of 3.0-4.6 V, even after 50 cycles. The increase in the interfacial resistance between the electrolyte and cathode with cycling was suppressed. In the cyclic voltammograms of cells employing a graphite electrode, the intercalation/deintercalation of lithium ions were observed in the range of 0 and + 0.4 V vs. Li/Li+. Further, graphite|electrolyte|Li cells containing [P13][FSA]/LiTFSA/Bpyps exhibited stable charge/discharge cycle behaviour over 50 cycles.

  1. Cation intercalation in sputter-deposited W oxide films

    NASA Astrophysics Data System (ADS)

    Strømme Mattsson, Maria

    1998-10-01

    Intercalation of Li, Na, and K ions into sputtered amorphous and monoclinic W oxide has been studied electrochemically and by x-ray diffraction. It was found that both Li and K intercalation, at low concentrations, caused a phase separation in the crystalline W oxide, while Na intercalation, at low concentrations, accurately followed the lattice-gas model [A. J. Berlinsky, W. G. Unruh, W. R. McKinnon, and R. R. Haering, Solid State Commun. 31, 135 (1979)]. The lattice-gas model was also used to extract information about the electrochemical response at high concentrations of all three types of intercalants. At low concentrations the net interaction between the intercalated ions was found to be attractive, while at higher concentrations the interaction was repulsive. Intercalation of alkali ions into amorphous W oxide could be modeled with a Gaussian distribution of site energies. The distribution of Li ions was found to be narrower and peaked at a lower energy than that of Na and K ions.

  2. Comparison of the electrochemical properties of several commercial graphites with a templated disordered carbon

    SciTech Connect

    GUIDOTTI,RONALD A.; REINHARDT,FREDERICK W.; SANDI,GISELLE

    2000-03-22

    A templated carbon was prepared by the pyrolysis of pyrene impregnated into pillared clay (PILC). The electrochemical performance of this was evaluated with the goal of using this material as an anode in Li-ion cells. The reversible capacity was measured as a function of C rate and the cycling characteristics were determined for various intercalation protocols. The performance of this material was compared to that of several commercial graphites tested under the same conditions. The PILC carbon shows great promise as a Li-ion anode if the fade and first-cycle losses can be controlled.

  3. Comparison of the electrochemical properties of several commercial graphites with a templated disordered carbon

    SciTech Connect

    Guidotti, R. A.; Reinhardt, F. W.; Sandi, G.

    2000-04-11

    A templated carbon was prepared by the pyrolysis of pyrene impregnated into pillared clay (PILC). The electrochemical performance of this was evaluated with the goal of using this material as an anode in Li-ion cells. The reversible capacity was measured as a function of C rate and the cycling characteristics were determined for various intercalation protocols. The performance of this material was compared to that of several commercial graphites tested under the same conditions. The PILC carbon shows great promise as a Li-ion anode if the fade and first-cycle losses can be controlled.

  4. Stochastic Terminal Dynamics in Epithelial Cell Intercalation

    NASA Astrophysics Data System (ADS)

    Eule, Stephan; Metzger, Jakob; Reichl, Lars; Kong, Deqing; Zhang, Yujun; Grosshans, Joerg; Wolf, Fred

    2015-03-01

    We found that the constriction of epithelial cell contacts during intercalation in germ band extension in Drosophila embryos follows intriguingly simple quantitative laws. The mean contact length < L > follows < L > (t) ~(T - t) α , where T is the finite collapse time; the time dependent variance of contact length is proportional to the square of the mean; finally the time dependent probability density of the contact lengths remains close to Gaussian during the entire process. These observations suggest that the dynamics of contact collapse can be captured by a stochastic differential equation analytically tractable in small noise approximation. Here, we present such a model, providing an effective description of the non-equilibrium statistical mechanics of contact collapse. All model parameters are fixed by measurements of time dependent mean and variance of contact lengths. The model predicts the contact length covariance function that we obtain in closed form. The contact length covariance function closely matches experimental observations suggesting that the model well captures the dynamics of contact collapse.

  5. Formation and chemical reactivity of carbon fibers prepared by defluorination of graphite fluoride

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    1994-01-01

    Defluorination of graphite fluoride (CFX) by heating to temperatures of 250 to 450 C in chemically reactive environments was studied. This is a new and possibly inexpensive process to produce new carbon-based materials. For example, CF 0.68 fibers, made from P-100 carbon fibers, can be defluorinated in BrH2C-CH = CH-CH2Br (1,4-dibromo-2butene) heated to 370 C, and graphitized to produce fibers with an unusually high modulus and a graphite layer structure that is healed and cross-linked. Conversely, a sulfur-doped, visibly soft carbon fiber was produced by defluorinating CF 0.9 fibers, made from P-25, in sulfur (S) vapor at 370 C and then heating to 660 C in nitrogen (N2). Furthermore, defluorination of the CF 0.68 fibers in bromine (Br2) produced fragile, structurally damaged carbon fibers. Heating these fragile fibers to 1100 C in N2 caused further structural damage, whereas heating to 150 C in bromoform (CHBr3) and then to 1100 C in N2 healed the structural defects. The defluorination product of CFX, tentatively called activated graphite, has the composition and molecular structure of graphite, but is chemically more reactive. Activated graphite is a scavenger of manganese (Mn), and can be intercalated with magnesium (Mg). Also, it can easily collect large amounts of an alloy made from copper (Cu) and type 304 stainless steel to form a composite. Finally, there are indications that activated graphite can wet metals or ceramics, thereby forming stronger composites with them than the pristine carbon fibers can form.

  6. Bionanocomposites containing magnetic graphite as potential systems for drug delivery.

    PubMed

    Ribeiro, Lígia N M; Alcântara, Ana C S; Darder, Margarita; Aranda, Pilar; Herrmann, Paulo S P; Araújo-Moreira, Fernando M; García-Hernández, Mar; Ruiz-Hitzky, Eduardo

    2014-12-30

    New magnetic bio-hybrid matrices for potential application in drug delivery are developed from the assembly of the biopolymer alginate and magnetic graphite nanoparticles. Ibuprofen (IBU) intercalated in a Mg-Al layered double hydroxide (LDH) was chosen as a model drug delivery system (DDS) to be incorporated as third component of the magnetic bionanocomposite DDS. For comparative purposes DDS based on the incorporation of pure IBU in the magnetic bio-hybrid matrices were also studied. All the resulting magnetic bionanocomposites were processed as beads and films and characterized by different techniques with the aim to elucidate the role of the magnetic graphite on the systems, as well as that of the inorganic brucite-like layers in the drug-loaded LDH. In this way, the influence of both inorganic components on the mechanical properties, the water uptake ability, and the kinetics of the drug release from these magnetic systems were determined. In addition, the possibility of modulating the levels of IBU release by stimulating the bionanocomposites with an external magnetic field was also evaluated in in vitro assays.

  7. Bionanocomposites containing magnetic graphite as potential systems for drug delivery.

    PubMed

    Ribeiro, Lígia N M; Alcântara, Ana C S; Darder, Margarita; Aranda, Pilar; Herrmann, Paulo S P; Araújo-Moreira, Fernando M; García-Hernández, Mar; Ruiz-Hitzky, Eduardo

    2014-12-30

    New magnetic bio-hybrid matrices for potential application in drug delivery are developed from the assembly of the biopolymer alginate and magnetic graphite nanoparticles. Ibuprofen (IBU) intercalated in a Mg-Al layered double hydroxide (LDH) was chosen as a model drug delivery system (DDS) to be incorporated as third component of the magnetic bionanocomposite DDS. For comparative purposes DDS based on the incorporation of pure IBU in the magnetic bio-hybrid matrices were also studied. All the resulting magnetic bionanocomposites were processed as beads and films and characterized by different techniques with the aim to elucidate the role of the magnetic graphite on the systems, as well as that of the inorganic brucite-like layers in the drug-loaded LDH. In this way, the influence of both inorganic components on the mechanical properties, the water uptake ability, and the kinetics of the drug release from these magnetic systems were determined. In addition, the possibility of modulating the levels of IBU release by stimulating the bionanocomposites with an external magnetic field was also evaluated in in vitro assays. PMID:25455784

  8. Photoemission studies of fluorine functionalized porous graphitic carbon

    NASA Astrophysics Data System (ADS)

    Ganegoda, Hasitha; Jensen, David S.; Olive, Daniel; Cheng, Lidens; Segre, Carlo U.; Linford, Matthew R.; Terry, Jeff

    2012-03-01

    Porous graphitic carbon (PGC) has unique properties desirable for liquid chromatography applications when used as a stationary phase. The polar retention effect on graphite (PREG) allows efficient separation of polar and non-polar solutes. Perfluorinated hydrocarbons however lack polarizabilty and display strong lipo- and hydrophobicity, hence common lipophilic and hydrophilic analytes have low partition coefficiency in fluorinated stationary phases. Attractive interaction between fluorinated stationary phase and fluorinated analytes results in strong retention compared to non-fluorinated analytes. In order to change the selectivities of PGC, it is necessary to develop a bonded PGC stationary phase. In this study, we have synthesized perfluorinated, PGC using hepatadecafluoro-1-iodooctane, under different temperature conditions. Surface functionalization of the raw material was studied using photoelectron spectroscopy (PES). Results indicate the existence of fluorine containing functional groups, -CF, -CF2 along with an intercalated electron donor species. Multiple oxygen functional groups were also observed, likely due to the presence of oxygen in the starting material. These oxygen species may be responsible for significant modifications to planer and tetrahedral carbon ratios.

  9. Photoemission studies of fluorine functionalized porous graphitic carbon

    SciTech Connect

    Ganegoda, Hasitha; Olive, Daniel; Cheng, Lidens; Segre, Carlo U.; Terry, Jeff; Jensen, David S.; Linford, Matthew R.

    2012-03-01

    Porous graphitic carbon (PGC) has unique properties desirable for liquid chromatography applications when used as a stationary phase. The polar retention effect on graphite (PREG) allows efficient separation of polar and non-polar solutes. Perfluorinated hydrocarbons however lack polarizabilty and display strong lipo- and hydrophobicity, hence common lipophilic and hydrophilic analytes have low partition coefficiency in fluorinated stationary phases. Attractive interaction between fluorinated stationary phase and fluorinated analytes results in strong retention compared to non-fluorinated analytes. In order to change the selectivities of PGC, it is necessary to develop a bonded PGC stationary phase. In this study, we have synthesized perfluorinated, PGC using hepatadecafluoro-1-iodooctane, under different temperature conditions. Surface functionalization of the raw material was studied using photoelectron spectroscopy (PES). Results indicate the existence of fluorine containing functional groups, -CF, -CF{sub 2} along with an intercalated electron donor species. Multiple oxygen functional groups were also observed, likely due to the presence of oxygen in the starting material. These oxygen species may be responsible for significant modifications to planer and tetrahedral carbon ratios.

  10. Shear Assisted Electrochemical Exfoliation of Graphite to Graphene.

    PubMed

    Shinde, Dhanraj B; Brenker, Jason; Easton, Christopher D; Tabor, Rico F; Neild, Adrian; Majumder, Mainak

    2016-04-12

    The exfoliation characteristics of graphite as a function of applied anodic potential (1-10 V) in combination with shear field (400-74 400 s(-1)) have been studied in a custom-designed microfluidic reactor. Systematic investigation by atomic force microscopy (AFM) indicates that at higher potentials thicker and more fragmented graphene sheets are obtained, while at potentials as low as 1 V, pronounced exfoliation is triggered by the influence of shear. The shear-assisted electrochemical exfoliation process yields large (∼10 μm) graphene flakes with a high proportion of single, bilayer, and trilayer graphene and small ID/IG ratio (0.21-0.32) with only a small contribution from carbon-oxygen species as demonstrated by X-ray photoelectron spectroscopy measurements. This method comprises intercalation of sulfate ions followed by exfoliation using shear induced by a flowing electrolyte. Our findings on the crucial role of hydrodynamics in accentuating the exfoliation efficiency suggest a safer, greener, and more automated method for production of high quality graphene from graphite.

  11. Discriminating Intercalative Effects of Threading Intercalator Nogalamycin, from Classical Intercalator Daunomycin, Using Single Molecule Atomic Force Spectroscopy

    PubMed Central

    Sett, S.; Ghosh, S.; Rakshit, T.; Mukhopadhyay, R.

    2016-01-01

    DNA threading intercalators are a unique class of intercalating agents, albeit little biophysical information is available on their intercalative actions. Herein, the intercalative effects of nogalamycin, which is a naturally-occurring DNA threading intercalator, have been investigated by high-resolution atomic force microscopy (AFM) and spectroscopy (AFS). The results have been compared with those of the well-known chemotherapeutic drug daunomycin, which is a non-threading classical intercalator bearing structural similarity to nogalamycin. A comparative AFM assessment revealed a greater increase in DNA contour length over the entire incubation period of 48 h for nogalamycin treatment, whereas the contour length increase manifested faster in case of daunomycin. The elastic response of single DNA molecules to an externally applied force was investigated by the single molecule AFS approach. Characteristic mechanical fingerprints in the overstretching behaviour clearly distinguished the nogalamycin/daunomycin-treated dsDNA from untreated dsDNA—the former appearing less elastic than the latter, and the nogalamycin-treated DNA distinguished from the daunomycin-treated DNA—the classically intercalated dsDNA appearing the least elastic. A single molecule AFS-based discrimination of threading intercalation from the classical type is being reported for the first time. PMID:27183010

  12. Spent graphite fuel element processing

    SciTech Connect

    Holder, N.D.; Olsen, C.W.

    1981-07-01

    The Department of Energy currently sponsors two programs to demonstrate the processing of spent graphite fuel elements. General Atomic in San Diego operates a cold pilot plant to demonstrate the processing of both US and German high-temperature reactor fuel. Exxon Nuclear Idaho Company is demonstrating the processing of spent graphite fuel elements from Rover reactors operated for the Nuclear Rocket Propulsion Program. This work is done at Idaho National Engineering Laboratory, where a hot facility is being constructed to complete processing of the Rover fuel. This paper focuses on the graphite combustion process common to both programs.

  13. METHOD OF OBTAINING UNIFORM COATINGS ON GRAPHITE

    DOEpatents

    Campbell, I.E.

    1961-04-01

    A method is given for obtaining uniform carbide coatings on graphite bodies. According to the invention a metallic halide in vapor form is passed over the graphite body under such conditions of temperature and pressure that the halide reacts with the graphite to form a coating of the metal carbide on the surface of the graphite.

  14. Method of Obtaining Uniform Coatings on Graphite

    DOEpatents

    Campbell, I. E.

    1961-04-01

    A method is given for obtaining uniform carbide coatings on graphite bodies. According to the invention a metallic halide in vapor form is passed over the graphite body under such conditions of temperature and pressure that the halide reacts with the graphite to form a coating of the metal carbide on the surface of the graphite.

  15. Mineral resource of the month: graphite

    USGS Publications Warehouse

    ,

    2008-01-01

    The article presents facts about graphite ideal for industrial applications. Among the characteristics of graphite are its metallic luster, softness, perfect basal cleavage and electrical conductivity. Batteries, brake linings and powdered metals are some of the products that make use of graphite. It attributes the potential applications for graphite in high-technology fields to innovations in thermal technology and acid-leaching techniques.

  16. Highly stable and ultrafast electrode reaction of graphite for sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhu, Zhiqiang; Cheng, Fangyi; Hu, Zhe; Niu, Zhiqiang; Chen, Jun

    2015-10-01

    Sodium ion battery is a potential sustainable energy storage system due to its abundance and low cost. To date, some Na-storage anode materials have achieved long life span, but the rate performance still remains insufficient. Herein, we show that in some linear ether-based electrolytes, graphite can not only render unprecedented cyclability (∼6000 cycles), but also exhibit ultrahigh rate capability (up to 10 A g-1), along with a reversible capacity of ∼110 mAh g-1. By combining electrochemical measurements and structural analysis (e.g. in situ Raman and ex situ XRD measurements), we reveal that graphite undergoes a stage-evolution mechanism induced by the insertion of solvated sodium ions. Furthermore, kinetic studies have shown that this process accompanies with an intercalation pseudocapacitive behavior, which should be responsible for the obtained superior electrode properties.

  17. Electrochemistry and safety of Li 4Ti 5O 12 and graphite anodes paired with LiMn 2O 4 for hybrid electric vehicle Li-ion battery applications

    NASA Astrophysics Data System (ADS)

    Belharouak, Ilias; Koenig, Gary M.; Amine, K.

    A promising anode material for hybrid electric vehicles (HEVs) is Li 4Ti 5O 12 (LTO). LTO intercalates lithium at a voltage of ∼1.5 V relative to lithium metal, and thus this material has a lower energy compared to a graphite anode for a given cathode material. However, LTO has promising safety and cycle life characteristics relative to graphite anodes. Herein, we describe electrochemical and safety characterizations of LTO and graphite anodes paired with LiMn 2O 4 cathodes in pouch cells. The LTO anode outperformed graphite with regards to capacity retention on extended cycling, pulsing impedance, and calendar life and was found to be more stable to thermal abuse from analysis of gases generated at elevated temperatures and calorimetric data. The safety, calendar life, and pulsing performance of LTO make it an attractive alternative to graphite for high power automotive applications, in particular when paired with LiMn 2O 4 cathode materials.

  18. Graphite for the nuclear industry

    SciTech Connect

    Burchell, T.D.; Fuller, E.L.; Romanoski, G.R.; Strizak, J.P.

    1991-01-01

    Graphite finds applications in both fission and fusion reactors. Fission reactors harness the energy liberated when heavy elements, such as uranium or plutonium, fragment or fission''. Reactors of this type have existed for nearly 50 years. The first nuclear fission reactor, Chicago Pile No. 1, was constructed of graphite under a football stand at Stagg Field, University of Chicago. Fusion energy devices will produce power by utilizing the energy produced when isotopes of the element hydrogen are fused together to form helium, the same reaction that powers our sun. The role of graphite is very different in these two reactor systems. Here we summarize the function of the graphite in fission and fusion reactors, detailing the reasons for their selection and discussing some of the challenges associated with their application in nuclear fission and fusion reactors. 10 refs., 15 figs., 1 tab.

  19. CALANDRIA TYPE SODIUM GRAPHITE REACTOR

    DOEpatents

    Peterson, R.M.; Mahlmeister, J.E.; Vaughn, N.E.; Sanders, W.J.; Williams, A.C.

    1964-02-11

    A sodium graphite power reactor in which the unclad graphite moderator and fuel elements are contained within a core tank is described. The core tank is submersed in sodium within the reactor vessel. Extending longitudinally through the core thnk are process tubes with fuel elements positioned therein. A bellows sealing means allows axial expansion and construction of the tubes. Within the core tank, a leakage plenum is located below the graphite, and above the graphite is a gas space. A vent line regulates the gas pressure in the space, and another line removes sodium from the plenum. The sodium coolant flows from the lower reactor vessel through the annular space between the fuel elements and process tubes and out into the reactor vessel space above the core tank. From there, the heated coolant is drawn off through an outlet line and sent to the heat exchange. (AEC)

  20. Graphite-reinforced bone cement

    NASA Technical Reports Server (NTRS)

    Knoell, A. C.

    1976-01-01

    Chopped graphite fibers added to surgical bone cement form bonding agent with mechanical properties closely matched to those of bone. Curing reaction produces less heat, resulting in reduced traumatization of body tissues. Stiffness is increased without affecting flexural strength.

  1. Irradiation Induced Creep of Graphite

    SciTech Connect

    Burchell, Timothy D; Murty, Prof K.L.; Eapen, Dr. Jacob

    2010-01-01

    The current status of graphite irradiation induced creep strain prediction is reviewed and the major creep models are described. The ability of the models to quantitatively predict the irradiation induced creep strain of graphite is reported. Potential mechanisms of in-crystal creep are reviewed as are mechanisms of pore generation under stress. The case for further experimental work is made and the need for improved creep models across multi-scales is highlighted.

  2. Ammonia intercalated flower-like MoS2 nanosheet film as electrocatalyst for high efficient and stable hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Wang, F. Z.; Zheng, M. J.; Zhang, B.; Zhu, C. Q.; Li, Q.; Ma, L.; Shen, W. Z.

    2016-08-01

    Ammonia intercalated flower-like MoS2 electrocatalyst film assembled by vertical orientated ultrathin nanosheet on graphite sheethas been successfully synthesized using one-step hydrothermal method. In this strategy, ammonia can effectively insert into the parallel plane of the MoS2 nanosheets, leading to the expansion of lattice and phase transfer from 2H to 1T, generating more active unsaturated sulfur atoms. The flower-like ammoniated MoS2 electrocatalysts with more active sites and large surface area exhibited excellent HER activity with a small Tafel slope and low onset overpotential, resulting a great enhancement in hydrogen evolution. The high efficient activity and recyclable utilization, as well as large-scale, indicate that it is a very promising electrocatalyst to replace Pt in industry application.

  3. Ammonia intercalated flower-like MoS2 nanosheet film as electrocatalyst for high efficient and stable hydrogen evolution.

    PubMed

    Wang, F Z; Zheng, M J; Zhang, B; Zhu, C Q; Li, Q; Ma, L; Shen, W Z

    2016-01-01

    Ammonia intercalated flower-like MoS2 electrocatalyst film assembled by vertical orientated ultrathin nanosheet on graphite sheethas been successfully synthesized using one-step hydrothermal method. In this strategy, ammonia can effectively insert into the parallel plane of the MoS2 nanosheets, leading to the expansion of lattice and phase transfer from 2H to 1T, generating more active unsaturated sulfur atoms. The flower-like ammoniated MoS2 electrocatalysts with more active sites and large surface area exhibited excellent HER activity with a small Tafel slope and low onset overpotential, resulting a great enhancement in hydrogen evolution. The high efficient activity and recyclable utilization, as well as large-scale, indicate that it is a very promising electrocatalyst to replace Pt in industry application. PMID:27538812

  4. Ammonia intercalated flower-like MoS2 nanosheet film as electrocatalyst for high efficient and stable hydrogen evolution

    PubMed Central

    Wang, F. Z.; Zheng, M. J.; Zhang, B.; Zhu, C. Q.; Li, Q.; Ma, L.; Shen, W. Z.

    2016-01-01

    Ammonia intercalated flower-like MoS2 electrocatalyst film assembled by vertical orientated ultrathin nanosheet on graphite sheethas been successfully synthesized using one-step hydrothermal method. In this strategy, ammonia can effectively insert into the parallel plane of the MoS2 nanosheets, leading to the expansion of lattice and phase transfer from 2H to 1T, generating more active unsaturated sulfur atoms. The flower-like ammoniated MoS2 electrocatalysts with more active sites and large surface area exhibited excellent HER activity with a small Tafel slope and low onset overpotential, resulting a great enhancement in hydrogen evolution. The high efficient activity and recyclable utilization, as well as large-scale, indicate that it is a very promising electrocatalyst to replace Pt in industry application. PMID:27538812

  5. Resonating Valence Bonds and Mean-Field d-Wave Superconductivity in Graphite

    SciTech Connect

    Black-Schaffer, Annica M.

    2010-04-27

    We investigate the possibility of inducing superconductivity in a graphite layer by electronic correlation effects. We use a phenomenological microscopic Hamiltonian which includes nearest neighbor hopping and an interaction term which explicitly favors nearest neighbor spin-singlets through the well-known resonance valence bond (RVB) character of planar organic molecules. Treating this Hamiltonian in mean-field theory, allowing for bond-dependent variation of the RVB order parameter, we show that both s- and d-wave superconducting states are possible. The d-wave solution belongs to a two-dimensional representation and breaks time reversal symmetry. At zero doping there exists a quantum critical point at the dimensionless coupling J/t = 1.91 and the s- and d-wave solutions are degenerate for low temperatures. At finite doping the d-wave solution has a significantly higher T{sub c} than the s-wave solution. By using density functional theory we show that the doping induced from sulfur absorption on a graphite layer is enough to cause an electronically driven d-wave superconductivity at graphite-sulfur interfaces. We also discuss applying our results to the case of the intercalated graphites as well as the validity of a mean-field approach.

  6. Electrochemical synthesis of alkali-intercalated iron selenide superconductors

    NASA Astrophysics Data System (ADS)

    Shen, Shi-Jie; Ying, Tian-Ping; Wang, Gang; Jin, Shi-Feng; Zhang, Han; Lin, Zhi-Ping; Chen, Xiao-Long

    2015-11-01

    Electrochemical method has been used to insert K/Na into FeSe lattice to prepare alkali-intercalated iron selenides at room temperature. Magnetization measurement reveals that KxFe2Se2 and NaxFe2Se2 are superconductive at 31 K and 46 K, respectively. This is the first successful report of obtaining metal-intercalated FeSe-based high-temperature superconductors using electrochemical method. It provides an effective route to synthesize metal-intercalated layered compounds for new superconductor exploration. Project supported by the National Natural Science Foundation of China (Grant Nos. 51322211and 91422303), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07020100), Beijing Nova Program of China (Grant No. 2011096), and K. C. Wong Education Foundation, Hong Kong, China.

  7. Progressive specification rather than intercalation of segments during limb regeneration.

    PubMed

    Roensch, Kathleen; Tazaki, Akira; Chara, Osvaldo; Tanaka, Elly M

    2013-12-13

    An amputated salamander limb regenerates the correct number of segments. Models explaining limb regeneration were largely distinct from those for limb development, despite the presence of common patterning molecules. Intercalation has been an important concept to explain salamander limb regeneration, but clear evidence supporting or refuting this model was lacking. In the intercalation model, the first blastema cells acquire fingertip identity, creating a gap in positional identity that triggers regeneration of the intervening region from the stump. We used HOXA protein analysis and transplantation assays to show that axolotl limb blastema cells acquire positional identity in a proximal-to-distal sequence. Therefore, intercalation is not the primary mechanism for segment formation during limb regeneration in this animal. Patterning in development and regeneration uses similar mechanisms. PMID:24337297

  8. Tethered naphthalene diimide intercalators enhance DNA triplex stability.

    PubMed

    Gianolio, D A; McLaughlin, L W

    2001-09-01

    Naphthalene diimides function as effective intercalators and when tethered to the 5'-terminus of a pyrimidine-rich oligonucleotide can contribute significantly to the overall stabilization of DNA triplexes. This stabilization can be further enhanced by alterations to the linker tethering the DNA sequence and the intercalator. Less flexible linkers, and particularly one with a phenyl ring present, appear to permit the stabilization afforded by the bound intercalator to be transferred more effectively to the three-stranded complex. The conjugate containing the phenyl linker exhibits a T(M) value that is increased by 28 degrees C relative to the unconjugated triplex. That the linker itself contributes to the observed stabilization is clear since introduction of the phenyl linker increases the observed T(M) by 11 degrees C relative to a simple flexible linker.

  9. Band gap opening in bilayer silicene by alkali metal intercalation.

    PubMed

    Liu, Hongsheng; Han, Nannan; Zhao, Jijun

    2014-11-26

    Recently, bilayer and multilayer silicene have attracted increased attention following the boom of silicene, which holds great promise for future applications in microelectronic devices. Herein we systematically investigate all stacking configurations of bilayer silicene and the corresponding electronic properties. Strong coupling is found between two silicene layers, which destroys the Dirac cones in the band structures of pristine silicene and makes bilayer silicene sheets metallic. However, intercalation of alkali metal (especially potassium) can effectively decouple the interaction between two silicene layers. In the K-intercalated bilayer silicene (KSi4), the Dirac cones are recovered with a small band gap of 0.27 eV located about 0.55 eV below the Fermi level. Furthermore, intercalation of K(+) cations in bilayer silicene (K(+)Si4) results in a semiconductor with a moderate band gap of 0.43 eV, making it ideal for microelectronic applications.

  10. Intercalation of paracetamol into the hydrotalcite-like host

    SciTech Connect

    Kovanda, Frantisek; Maryskova, Zuzana; Kovar, Petr

    2011-12-15

    Hydrotalcite-like compounds are often used as host structures for intercalation of various anionic species. The product intercalated with the nonionic, water-soluble pharmaceuticals paracetamol, N-(4-hydroxyphenyl)acetamide, was prepared by rehydration of the Mg-Al mixed oxide obtained by calcination of hydrotalcite-like precursor at 500 Degree-Sign C. The successful intercalation of paracetamol molecules into the interlayer space was confirmed by powder X-ray diffraction and infrared spectroscopy measurements. Molecular simulations showed that the phenolic hydroxyl groups of paracetamol interact with hydroxide sheets of the host via the hydroxyl groups of the positively charged sites of Al-containing octahedra; the interlayer water molecules are located mostly near the hydroxide sheets. The arrangement of paracetamol molecules in the interlayer is rather disordered and interactions between neighboring molecules cause their tilting towards the hydroxide sheets. Dissolution tests in various media showed slower release of paracetamol intercalated in the hydrotalcite-like host in comparison with tablets containing the powdered pharmaceuticals. - Graphical abstract: Molecular simulations showed disordered arrangement of paracetamol molecules in the interlayer; most of the interlayer water molecules are located near the hydroxide sheets. Black-Small-Square Highlights: Black-Right-Pointing-Pointer Paracetamol was intercalated in Mg-Al hydrotalcite-like host by rehydration/reconstruction procedure. Black-Right-Pointing-Pointer Paracetamol phenolic groups interact with positively charged sites in hydroxide sheets. Black-Right-Pointing-Pointer Molecular simulations showed disordered arrangement of guest molecules in the interlayer. Black-Right-Pointing-Pointer Slower release of paracetamol intercalated in the hydrotalcite-like host was observed.

  11. Dielectric relaxation of alkyl chains in graphite oxide and n-alkylammonium halides

    NASA Astrophysics Data System (ADS)

    Ai, Xiaoqian; Tian, Yuchen; Gu, Min; Yu, Ji; Tang, Tong B.

    2016-05-01

    The dynamic of n-alkylammonium halides and n-alkylammonium cations (n = 12, 14, 16, 18) intercalated in graphite oxide (GO) have been investigated with complex impedance spectroscopy. X-ray diffraction, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, elemental analysis and thermogravimetry served to characterize the materials. The intercalated alkylammonium cations distributes as monolayers (when n = 12, 14 or 16) or bilayers (when n = 18), with their long axis parallel to GO layers, and with cations of headgroups bonded ionically to C-O- groups of GO; backbones of the confined molecules remain free. All halides and intercalation compounds suffer dielectric loss at low temperature. Arrhenius plots of the thermal dependence of the loss peaks, which are asymmetric, produce apparent activation energies that rise with increasing n. Ngai's correlated-state model helps to correct for effects of dipole-dipole interaction, leading to virtually identical values for actual activation energy of 110 meV ± 5%; the values are also almost the same as the barrier energy for internal rotation in the alkyl macromolecule. We conclude that the relaxation of the alkylammonium cations arises not from C3 reorientation of the CH3 at its headgroup, but from small-angle wobbling around its major axis, an intrinsic motion.

  12. Design and synthesis of threading intercalators to target DNA.

    PubMed

    Howell, Lesley A; Gulam, Rosul; Mueller, Anja; O'Connell, Maria A; Searcey, Mark

    2010-12-01

    Threading intercalators are high affinity DNA binding agents that bind by inserting a chromophore into the duplex and locating one group in each groove. The first threading intercalators that can be conjugated to acids, sulfonic acids and peptides to target them to duplex DNA are described, based upon the well studied acridine-3- or 4-carboxamides. Cellular uptake of the parent acridine is rapid and it can be visualized in the nucleus of cells. Both the parent compounds and their conjugates maintain antitumor activity.

  13. Promising Cell Configuration for Next-Generation Energy Storage: Li2S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte.

    PubMed

    Li, Zhe; Zhang, Shiguo; Terada, Shoshi; Ma, Xiaofeng; Ikeda, Kohei; Kamei, Yutaro; Zhang, Ce; Dokko, Kaoru; Watanabe, Masayoshi

    2016-06-29

    Lithium-ion sulfur batteries with a [graphite|solvate ionic liquid electrolyte|lithium sulfide (Li2S)] structure are developed to realize high performance batteries without the issue of lithium anode. Li2S has recently emerged as a promising cathode material, due to its high theoretical specific capacity of 1166 mAh/g and its great potential in the development of lithium-ion sulfur batteries with a lithium-free anode such as graphite. Unfortunately, the electrochemical Li(+) intercalation/deintercalation in graphite is highly electrolyte-selective: whereas the process works well in the carbonate electrolytes inherited from Li-ion batteries, it cannot take place in the ether electrolytes commonly used for Li-S batteries, because the cointercalation of the solvent destroys the crystalline structure of graphite. Thus, only very few studies have focused on graphite-based Li-S full cells. In this work, simple graphite-based Li-S full cells were fabricated employing electrolytes beyond the conventional carbonates, in combination with highly loaded Li2S/graphene composite cathodes (Li2S loading: 2.2 mg/cm(2)). In particular, solvate ionic liquids can act as a single-phase electrolyte simultaneously compatible with both the Li2S cathode and the graphite anode and can further improve the battery performance by suppressing the shuttle effect. Consequently, these lithium-ion sulfur batteries show a stable and reversible charge-discharge behavior, along with a very high Coulombic efficiency.

  14. Another morphogenetic movement on the map: Charting dorsal intercalation in C. elegans.

    PubMed

    Walck-Shannon, Elise; Hardin, Jeff

    2016-01-01

    Dorsal intercalation is a coordinated cell migration event that rearranges hypodermal cells during C. elegans embryogenesis, and that resembles cell intercalation in many systems from flies to mice. Despite its conservation, the molecular mechanisms that govern dorsal intercalation in worms have remained elusive. Here, we comment on our recent publication, Walck-Shannon et al.,(1) which begins to spatially map the molecular requirements for intercalation. First, we provide a historical perspective on the factors that have previously hampered the study of dorsal intercalation. Next, we provide a summary of the molecular pathways identified in Walck-Shannon et al.,(1) pointing out surprises along the way. Finally, we consider the potential conservation of the molecular pathway we described and discuss future questions surrounding dorsal intercalation. Despite the challenges, dorsal intercalation is a process poised to advance our understanding of cell intercalation during morphogenesis throughout the animal kingdom. PMID:27385264

  15. Graphite Formation in Cast Iron

    NASA Technical Reports Server (NTRS)

    Stefanescu, D. M.

    1985-01-01

    In the first phase of the project it was proven that by changing the ratio between the thermal gradient and the growth rate for commercial cast iron samples solidifying in a Bridgman type furnace, it is possible to produce all types of graphite structures, from flake to spheroidal, and all types of matrices, from ferritic to white at a certain given level of cerium. KC-135 flight experiments have shown that in a low-gravity environment, no flotation occurs even in spheroidal graphite cast irons with carbon equivalent as high as 5%, while extensive graphite flotation occurred in both flake and spheroidal graphite cast irons, in high carbon samples solidified in a high gravity environment. This opens the way for production of iron-carbon composite materials, with high carbon content (e.g., 10%) in a low gravity environment. By using KC-135 flights, the influence of some basic elements on the solidification of cast iron will be studied. The mechanism of flake to spheroidal graphite transition will be studied, by using quenching experiments at both low and one gravity for different G/R ratios.

  16. Improving the mechanical properties of single-walled carbon nanotube sheets by intercalation of polymeric adhesives

    NASA Astrophysics Data System (ADS)

    Coleman, Jonathan N.; Blau, Werner J.; Dalton, Alan B.; Muñoz, Edgar; Collins, Steve; Kim, Bog G.; Razal, Joselito; Selvidge, Miles; Vieiro, Guillermo; Baughman, Ray H.

    2003-03-01

    Organic polymers, such as poly(vinyl alcohol), poly(vinyl pyrrolidone), and poly(styrene), were intercalated into single-walled carbon nanotube sheets by soaking the sheets in polymer solutions. Even for short soak times, significant polymer intercalation into existing free volume was observed. Tensile tests on intercalated sheets showed that the Young's modulus, strength, and toughness increased by factors of 3, 9, and 28, respectively, indicating that the intercalated polymer enhances load transmission between nanotubes.

  17. NGNP Graphite Testing and Qualification Specimen Selection Strategy

    SciTech Connect

    Robert Bratton

    2005-05-01

    The available grades of graphite for the NGNP are reviewed. A selection matrix is presented outlining the available grades for the NGNP graphite irradiation program based upon input from potential NGNP vendors, graphite manufactures, and graphite experts.

  18. Layered Compounds and Intercalation Chemistry: An Example of Chemistry and Diffusion in Solids.

    ERIC Educational Resources Information Center

    Whittingham, M. Stanley; Chianelli, Russell R.

    1980-01-01

    Considers a few areas of oxide/sulfide and intercalation-type chemistry. Discusses synthesis of the disulfides of the metals of group IVB, VB, and VIB; the intercalation reaction between lithium and titanium disulfide; other intercalates; and sulfide catalysts. (CS)

  19. Preparation and properties of hydrogen-intercalated indium and gallium monoselenides

    SciTech Connect

    Koz'mik, I.D.; Kovalyuk, Z.D.; Grigorchak, I.I.; Bakhmatyuk, B.P.

    1987-10-01

    Indium and gallium monoselenides can be intercalated by hydrogen ions. Thermodynamic parameters have been calculated for the intercalation and the proton diffusion coefficient in the van der Waals' spaces has been determined. The effects of hydrogen intercalation on the resistance perpendicular to the layers in InSe and GaSe have been determined.

  20. Thermal Pyrolytic Graphite Enhanced Components

    NASA Technical Reports Server (NTRS)

    Hardesty, Robert E. (Inventor)

    2015-01-01

    A thermally conductive composite material, a thermal transfer device made of the material, and a method for making the material are disclosed. Apertures or depressions are formed in aluminum or aluminum alloy. Plugs are formed of thermal pyrolytic graphite. An amount of silicon sufficient for liquid interface diffusion bonding is applied, for example by vapor deposition or use of aluminum silicon alloy foil. The plugs are inserted in the apertures or depressions. Bonding energy is applied, for example by applying pressure and heat using a hot isostatic press. The thermal pyrolytic graphite, aluminum or aluminum alloy and silicon form a eutectic alloy. As a result, the plugs are bonded into the apertures or depressions. The composite material can be machined to produce finished devices such as the thermal transfer device. Thermally conductive planes of the thermal pyrolytic graphite plugs may be aligned in parallel to present a thermal conduction path.

  1. Intercalation, DNA Kinking, and the Control of Transcription

    NASA Astrophysics Data System (ADS)

    Werner, Milton H.; Gronenborn, Angela M.; Marius Clore, G.

    1996-02-01

    Biological processes involved in the control and regulation of transcription are dependent on protein-induced distortions in DNA structure that enhance the recruitment of proteins to their specific DNA targets. This function is often accomplished by accessory factors that bind sequence specifically and locally bend or kink the DNA. The recent determination of the three-dimensional structures of several protein-DNA complexes, involving proteins that perform such architectural tasks, brings to light a common theme of side chain intercalation as a mechanism capable of driving the deformation of the DNA helix. The protein scaffolds orienting the intercalating side chain (or side chains) are structurally diverse, presently comprising four distinct topologies that can accomplish the same task. The intercalating side chain (or side chains), however, is exclusively hydrophobic. Intercalation can either kink or bend the DNA, unstacking one or more adjacent base pairs and locally unwinding the DNA over as much as a full turn of helix. Despite these distortions, the return to B-DNA helical parameters generally occurs within the adjacent half-turns of DNA.

  2. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance.

    PubMed

    Augustyn, Veronica; Come, Jérémy; Lowe, Michael A; Kim, Jong Woung; Taberna, Pierre-Louis; Tolbert, Sarah H; Abruña, Héctor D; Simon, Patrice; Dunn, Bruce

    2013-06-01

    Pseudocapacitance is commonly associated with surface or near-surface reversible redox reactions, as observed with RuO2·xH2O in an acidic electrolyte. However, we recently demonstrated that a pseudocapacitive mechanism occurs when lithium ions are inserted into mesoporous and nanocrystal films of orthorhombic Nb2O5 (T-Nb2O5; refs 1,2). Here, we quantify the kinetics of charge storage in T-Nb2O5: currents that vary inversely with time, charge-storage capacity that is mostly independent of rate, and redox peaks that exhibit small voltage offsets even at high rates. We also define the structural characteristics necessary for this process, termed intercalation pseudocapacitance, which are a crystalline network that offers two-dimensional transport pathways and little structural change on intercalation. The principal benefit realized from intercalation pseudocapacitance is that high levels of charge storage are achieved within short periods of time because there are no limitations from solid-state diffusion. Thick electrodes (up to 40 μm thick) prepared with T-Nb2O5 offer the promise of exploiting intercalation pseudocapacitance to obtain high-rate charge-storage devices.

  3. Intercalation of papain enzyme into hydrotalcite type layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Zou, N.; Plank, J.

    2012-09-01

    Intercalation of proteolytic enzyme papain into hydrotalcite type LDH structure was achieved by controlled co-precipitation at pH=9.0 in the presence of papain. Characterization of the MgAl-papain-LDH phase was carried out using X-ray powder diffraction (XRD), elemental analysis, infrared spectroscopy (IR) and thermogravimetry (TG). According to XRD, papain was successfully intercalated. The d-value for the basal spacing of MgAl-papain-LDH was found at ˜5.3 nm. Consequently, original papain (hydrodynamic diameter ˜7.2 nm) attains a compressed conformation during intercalation.Formation of MgAl-papain-LDH was confirmed by elemental analysis and transmission electron microscopy (TEM). Under SEM, MgAl-papain-LDH phases appear as nanothin platelets which are intergrown to flower-like aggregates. Steric size and activity of the enzyme was retained after deintercalation from MgAl-LDH framework, as was evidenced by light scattering and UV/vis measurements. Thus, papain is not denatured during intercalation, and LDH is a suitable host structure which can provide a time-controlled release of the biomolecule.

  4. Tethered naphthalene diimide-based intercalators for DNA triplex stabilization.

    PubMed

    Gianolio, D A; Segismundo, J M; McLaughlin, L W

    2000-05-15

    The synthesis and triplex stabilizing properties of oligodeoxyribonucleotides functionalized at the 5'- and/or 3'-termini with a naphthalene diimide-based (NDI) intercalator is described. The NDI intercalator was prepared in a single step from the corresponding dianhydride and was attached to the 5'-terminus of an oligodeoxyribonucleotide following a reverse coupling procedure. The DMT protecting group was removed and the sequence phosphitylated to generate the phosphoramidite derivative on the 5'-terminus of the support-bound oligodeoxyribonucleotide. The NDI intercalator with a free hydroxyl was then added in the presence of tetrazole. Attachment of the NDI to the 3'-terminus relied upon a tethered amino group that could be functionalized first with the naphthalene dianhydride, which was subsequently converted to the diimide. Using both procedures, an oligonucleo-tide conjugate was prepared having the NDI intercalator at both the 5'- and 3'-termini. Thermal denaturation studies were used to determine the remarkable gain in stability for triplexes formed when the NDI-conjugated oligonucleotide was present as the third strand in the complex.

  5. Exfoliation of Hexagonal Boron Nitride via Ferric Chloride Intercalation

    NASA Technical Reports Server (NTRS)

    Hung, Ching-cheh; Hurst, Janet; Santiago, Diana; Rogers, Richard B.

    2014-01-01

    Sodium fluoride (NaF) was used as an activation agent to successfully intercalate ferric chloride (FeCl3) into hexagonal boron nitride (hBN). This reaction caused the hBN mass to increase by approx.100 percent, the lattice parameter c to decrease from 6.6585 to between 6.6565 and 6.6569 ?, the x-ray diffraction (XRD) (002) peak to widen from 0.01deg to 0.05deg of the full width half maximum value, the Fourier transform infrared (FTIR) spectrum's broad band (1277/cm peak) to change shape, and new FTIR bands to emerge at 3700 to 2700 and 1600/cm. This indicates hBN's structural and chemical properties are significantly changed. The intercalated product was hygroscopic and interacted with moisture in the air to cause further structural and chemical changes (from XRD and FTIR). During a 24-h hold at room temperature in air with 100 percent relative humidity, the mass increased another 141 percent. The intercalated product, hydrated or not, can be heated to 750 C in air to cause exfoliation. Exfoliation becomes significant after two intercalation-air heating cycles, when 20-nm nanosheets are commonly found. Structural and chemical changes indicated by XRD and FTIR data were nearly reversed after the product was placed in hydrochloric acid (HCl), resulting in purified, exfoliated, thin hBN products.

  6. Tethered naphthalene diimide-based intercalators for DNA triplex stabilization

    PubMed Central

    Gianolio, Diego A.; Segismundo, Joanna M.; McLaughlin, Larry W.

    2000-01-01

    The synthesis and triplex stabilizing properties of oligodeoxyribonucleotides functionalized at the 5′- and/or 3′-termini with a naphthalene diimide-based (NDI) intercalator is described. The NDI intercalator was prepared in a single step from the corresponding dianhydride and was attached to the 5′-terminus of an oligodeoxyribonucleotide following a reverse coupling procedure. The DMT protecting group was removed and the sequence phosphitylated to generate the phosphoramidite derivative on the 5′-terminus of the support-bound oligodeoxyribonucleotide. The NDI intercalator with a free hydroxyl was then added in the presence of tetrazole. Attachment of the NDI to the 3′-terminus relied upon a tethered amino group that could be functionalized first with the naphthalene dianhydride, which was subsequently converted to the diimide. Using both procedures, an oligonucleotide conjugate was prepared having the NDI intercalator at both the 5′- and 3′-termini. Thermal denaturation studies were used to determine the remarkable gain in stability for triplexes formed when the NDI-conjugated oligonucleotide was present as the third strand in the complex. PMID:10773082

  7. Intercalation of paracetamol into the hydrotalcite-like host

    NASA Astrophysics Data System (ADS)

    Kovanda, František; Maryšková, Zuzana; Kovář, Petr

    2011-12-01

    Hydrotalcite-like compounds are often used as host structures for intercalation of various anionic species. The product intercalated with the nonionic, water-soluble pharmaceuticals paracetamol, N-(4-hydroxyphenyl)acetamide, was prepared by rehydration of the Mg-Al mixed oxide obtained by calcination of hydrotalcite-like precursor at 500 °C. The successful intercalation of paracetamol molecules into the interlayer space was confirmed by powder X-ray diffraction and infrared spectroscopy measurements. Molecular simulations showed that the phenolic hydroxyl groups of paracetamol interact with hydroxide sheets of the host via the hydroxyl groups of the positively charged sites of Al-containing octahedra; the interlayer water molecules are located mostly near the hydroxide sheets. The arrangement of paracetamol molecules in the interlayer is rather disordered and interactions between neighboring molecules cause their tilting towards the hydroxide sheets. Dissolution tests in various media showed slower release of paracetamol intercalated in the hydrotalcite-like host in comparison with tablets containing the powdered pharmaceuticals.

  8. Graphite filament wound pressure vessels

    NASA Technical Reports Server (NTRS)

    Feldman, A.; Damico, J. J.

    1972-01-01

    Filament wound NOL rings, 4-inch and 8-inch diameter closed-end vessels involving three epoxy resin systems and three graphite fibers were tested to develop property data and fabrication technology for filament wound graphite/epoxy pressure vessels. Vessels were subjected to single-cycle burst tests at room temperature. Manufacturing parameters were established for tooling, winding, and curing that resulted in the development of a pressure/vessel performance factor (pressure x volume/weight) or more than 900,000 in. for an oblate spheroid specimen.

  9. Graphite fiber reinforced thermoplastic resins

    NASA Technical Reports Server (NTRS)

    Novak, R. C.

    1975-01-01

    Mechanical properties of neat resin samples and graphite fiber reinforced samples of thermoplastic resins were characterized with particular emphasis directed to the effects of environmental exposure (humidity, temperature and ultraviolet radiation). Tensile, flexural, interlaminar shear, creep and impact strengths were measured for polysulfone, polyarylsulfone and a state-of-the-art epoxy resin samples. In general, the thermoplastic resins exhibited environmental degradation resistance equal to or superior to the reference epoxy resin. Demonstration of the utility and quality of a graphite/thermoplastic resin system was accomplished by successfully thermoforming a simulated compressor blade and a fan exit guide vane.

  10. Pyrolytic graphite collector development program

    NASA Technical Reports Server (NTRS)

    Wilkins, W. J.

    1982-01-01

    Pyrolytic graphite promises to have significant advantages as a material for multistage depressed collector electrodes. Among these advantages are lighter weight, improved mechanical stiffness under shock and vibration, reduced secondary electron back-streaming for higher efficiency, and reduced outgassing at higher operating temperatures. The essential properties of pyrolytic graphite and the necessary design criteria are discussed. This includes the study of suitable electrode geometries and methods of attachment to other metal and ceramic collector components consistent with typical electrical, thermal, and mechanical requirements.

  11. Systems and methods for forming defects on graphitic materials and curing radiation-damaged graphitic materials

    DOEpatents

    Ryu, Sunmin; Brus, Louis E.; Steigerwald, Michael L.; Liu, Haitao

    2012-09-25

    Systems and methods are disclosed herein for forming defects on graphitic materials. The methods for forming defects include applying a radiation reactive material on a graphitic material, irradiating the applied radiation reactive material to produce a reactive species, and permitting the reactive species to react with the graphitic material to form defects. Additionally, disclosed are methods for removing defects on graphitic materials.

  12. Composition and method for brazing graphite to graphite

    DOEpatents

    Taylor, Albert J.; Dykes, Norman L.

    1984-01-01

    The present invention is directed to a brazing material for joining graphite structures that can be used at temperatures up to about 2800.degree. C. The brazing material formed of a paste-like composition of hafnium carbide and uranium oxide with a thermosetting resin. The uranium oxide is converted to uranium dicarbide during the brazing operation and then the hafnium carbide and uranium dicarbide form a liquid phase at a temperature about 2600.degree. C. with the uranium diffusing and vaporizing from the joint area as the temperature is increased to about 2800.degree. C. so as to provide a brazed joint consisting essentially of hafnium carbide. This brazing temperature for hafnium carbide is considerably less than the eutectic temperature of hafnium carbide of about 3150.degree. C. The brazing composition also incorporates the thermosetting resin so that during the brazing operation the graphite structures may be temporarily bonded together by thermosetting the resin so that machining of the structures to final dimensions may be completed prior to the completion of the brazing operation. The resulting brazed joint is chemically and thermally compatible with the graphite structures joined thereby and also provides a joint of sufficient integrity so as to at least correspond with the strength and other properties of the graphite.

  13. RECOVERY OF VALUABLE MATERIAL FROM GRAPHITE BODIES

    DOEpatents

    Fromm, L.W. Jr.

    1959-09-01

    An electrolytic process for recovering uranium from a graphite fuel element is described. The uraniumcontaining graphite body is disposed as the anode of a cell containing a nitric acid electrolyte and a 5 amp/cm/sup 2/ current passed to induce a progressive disintegration of the graphite body. The dissolved uranium is quickly and easily separated from the resulting graphite particles by simple mechanical means, such as centrifugation, filtration, and decontamination.

  14. Method of Joining Graphite Fibers to a Substrate

    NASA Technical Reports Server (NTRS)

    Beringer, Durwood M. (Inventor); Caron, Mark E. (Inventor); Taddey, Edmund P. (Inventor); Gleason, Brian P. (Inventor)

    2014-01-01

    A method of assembling a metallic-graphite structure includes forming a wetted graphite subassembly by arranging one or more layers of graphite fiber material including a plurality of graphite fibers and applying a layer of metallization material to ends of the plurality of graphite fibers. At least one metallic substrate is secured to the wetted graphite subassembly via the layer of metallization material.

  15. Technical Report-Final-Electrochemistry of Nanostructured Intercalation Hosts

    SciTech Connect

    Professor William H. Smyrl, Principal Investigator

    2009-03-09

    We have shown that: (1) Li+ ions are inserted reversibly, without diffusion control, up to the level of at least 4 moles Li+ ions per mole for V2O5, in the aerogel (ARG) form (500 m2/g specific surface area) and aerogel-like (ARG-L) form (200 m2/g specific surface area)(6,7,1,2); (2) polyvalent cations (Al+3, Mg+2, Zn+2) may be intercalated reversibly into V2O5 (ARG) with high capacity (approaching 4 equivalents/mole V2O5 (ARG)) for each (5); (3) dopant cations such as Ag+ and Cu+2 increase the conductivity of V2O5 (XRG) up to three orders of magnitude(3), they are electrochemically active – showing reduction to the metallic-state in parallel to intercalation of Li+ ions – but are not released to the electrolyte upon oxidation and Li+ ion release (Cu+2 ions are reduced to Cu metal and reoxidized to Cu+2 in Li+ ion insertion/release cycles, but the copper ions are not released to the electrolyte over more than 400 cycles of the XRG form); (4) we have shown that Cu+2 ion (dopant) and Zn+2 ions (chemical insertion and dopant) occupy the same intercalation site inV2O5 xerogel and aerogel(4); (5) the reversible intercalation of Zn+2, Mg+2, and Al+3 in the ARG(11) indicates that these cations are “mobile”, but that Cu+2 ions and Ag+ ions are “immobile” in the xerogel, i.e., the latter ions are not exchanged with the electrolyte in Li+ ion intercalation cycling(3).

  16. Facile synthesis of mesophase pitch/exfoliated graphite nanoplatelets nanocomposite and its application as anode materials for lithium-ion batteries

    SciTech Connect

    Yang Yishuang; Wang Chengyang; Chen Mingming; Shi Zhiqiang; Zheng Jiaming

    2010-09-15

    Mesophase pitch (MP)/exfoliated graphite nanoplatelets (GNPs) nanocomposite has been prepared by an efficient method with an initiation of graphite intercalation compounds (GIC). X-ray diffraction, optical microscopy, high-resolution transmission electron microscopy and scanning electron microscopy analysis techniques are used to characterize the samples. It is observed that GIC has exfoliated completely into GNPs during the formation of MP/GNPs nanocomposite and the GNPs are distributed uniformly in MP matrix, which represent a conductive path for a movement of electrons throughout the composites. Electrochemical tests demonstrate that the carbonized MP/GNPs nanocomposite displays higher capacity and better cycle performance in comparison with the pure carbonized MP. It is concluded that such a large improvement of electrochemical performance within the nanocomposite may in general be related to the enhanced electronic conductivity, which is achieved by good dispersion of GNPs within MP matrix and formation of a 3D network of GNPs. - Graphical abstract: Uniform mesophase pitch/exfoliated graphite nanoplatelets nanocomposite has been efficiently fabricated with an initiation of graphite intercalation compounds. The as-prepared composite electrode exhibited high electrochemical performance for Li-ion batteries.

  17. High speed hydrogen/graphite interaction

    NASA Technical Reports Server (NTRS)

    Kelly, A. J.; Hamman, R.; Sharma, O. P.; Harrje, D. T.

    1974-01-01

    Various aspects of a research program on high speed hydrogen/graphite interaction are presented. Major areas discussed are: (1) theoretical predictions of hydrogen/graphite erosion rates; (2) high temperature, nonequilibrium hydrogen flow in a nozzle; and (3) molecular beam studies of hydrogen/graphite erosion.

  18. Separation medium containing thermally exfoliated graphite oxide

    NASA Technical Reports Server (NTRS)

    Prud'homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Herrera-Alonso, Margarita (Inventor)

    2012-01-01

    A separation medium, such as a chromatography filling or packing, containing a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m.sup.2/g to 2600 m.sup.2/g, wherein the thermally exfoliated graphite oxide has a surface that has been at least partially functionalized.

  19. CMB-13 research on carbon and graphite

    NASA Technical Reports Server (NTRS)

    Smith, M. C.

    1972-01-01

    The research on graphite and carbon for this period is reported. Topics discussed include: effects of grinding on the Santa Marie graphites, properties and purities of coal-tar, resin-bonded graphite, carbonization of resin components, and glass-like carbon filler.

  20. Electrochemical Na-intercalation-induced high-temperature superconductivity in FeSe

    NASA Astrophysics Data System (ADS)

    Kajita, Tetsuya; Kawamata, Takayuki; Noji, Takashi; Hatakeda, Takehiro; Kato, Masatsune; Koike, Yoji; Itoh, Takashi

    2015-12-01

    Iron-chalcogenide-based superconductors have attracted much attention due to their relatively high superconducting transition temperatures (Tc) and their simple layered crystal structures. We have performed electrochemical co-intercalation of Na and propylene carbonate (PC) into FeSe, and successfully synthesized a new superconductor, Nax(PC)yFe2Se2, with Tc = 43 K. The type and amount of intercalated metal, and the electrolyte used in the intercalation affected the superconductivity. Our electrochemical intercalation method should be a useful tool for discovering new superconductors by controlling the intercalation conditions.

  1. Intercalation of organic molecules into SnS{sub 2} single crystals

    SciTech Connect

    Toh, M.L.; Tan, K.J.; Wei, F.X.; Zhang, K.K.; Jiang, H.; Kloc, C.

    2013-02-15

    SnS{sub 2} is a layered semiconductor with a van der Waals gap separating the covalently bonded layers. In this study, post-synthesis intercalation of donor organic amine molecules, such as ethylenediamine (en), into tin disulfide and secondary intercalation of p-phenylenediamine (PPD) and 1, 5-naphthalenediamine (NDA) into SnS{sub 2e}n have been verified with X-ray diffraction. PPD and NDA did not intercalate directly even during prolonged annealing but replaced en readily if en was already present in the van der Waals gap. The c-lattice dilation is proportional to the intercalant size. Unit cell lattices of intercalated products were determined from the positions of the X-ray diffraction peaks. Optical images taken during the intercalation showed that intercalation progressed from the periphery towards the interior of the crystal. TEM diffraction patterns in the [0 0 1] direction of SnS{sub 2} after intercalation revealed defects and stacking mismatches among the SnS{sub 2} layers caused by the intercalation. UV-Vis absorption studies showed a red shift in the band edge of the SnS{sub 2} material after intercalation. The band edge was 2.2 eV for pristine SnS{sub 2}; after intercalation with en or PPD, the absorbance spectra band edges shifted to approximately 0.7 eV or 0.5 eV, respectively. - Graphical Abstract: SnS{sub 2} single crystals were intercalated with organic amine molecules such as ethylenediamine, phenylenediamine and naphthalenediamine. Absorption studies showed red shift of band edge after intercalation, which was consistent with optical observations. X-ray diffraction indicated lattice dilation in the c-lattice of SnS{sub 2} after intercalation. Highlights: Black-Right-Pointing-Pointer Organic molecules intercalated inhomogenously between covalently bonded SnS{sub 2} layers. Black-Right-Pointing-Pointer Ethylenediamine (en) intercalate directly into SnS{sub 2}. Black-Right-Pointing-Pointer Phenylenediamine (PPD) and naphthalenediamine (NDA) can be

  2. Multi-layer and multi-component intercalation at the graphene/Ir(111) interface

    NASA Astrophysics Data System (ADS)

    Bazarnik, Maciej; Decker, Régis; Brede, Jens; Wiesendanger, Roland

    2015-09-01

    We present a scanning tunneling microscopy study of Fe and Co intercalated at the graphene-Ir(111) interface. In the case of Fe, we investigate the morphology of the surface with respect to the annealing temperature, which activates the intercalation, and as a function of coverage. By increasing the coverage we show that it is possible to intercalate multilayers at the interface. Finally, we demonstrate that the successive intercalation of Co and Fe for the same sample leads to distinct adjacent intercalation areas.

  3. Graphite oral tattoo: case report.

    PubMed

    Moraes, Renata Mendonça; Gouvêa Lima, Gabriela de Morais; Guilhermino, Marinaldo; Vieira, Mayana Soares; Carvalho, Yasmin Rodarte; Anbinder, Ana Lia

    2015-10-16

    Pigmented oral lesions compose a large number of pathological entities, including exogenous pigmentat oral tattoos, such as amalgam and graphite tattoos. We report a rare case of a graphite tattoo on the palate of a 62-year-old patient with a history of pencil injury, compare it with amalgam tattoos, and determine the prevalence of oral tattoos in our Oral Pathology Service. We also compare the clinical and histological findings of grafite and amalgam tattoos. Oral tattoos affect women more frequently in the region of the alveolar ridge. Graphite tattoos occur in younger patients when compared with the amalgam type. Histologically, amalgam lesions represent impregnation of the reticular fibers of vessels and nerves with silver, whereas in cases of graphite tattoos, this impregnation is not observed, but it is common to observe a granulomatous inflammatory response, less evident in cases of amalgam tattoos. Both types of lesions require no treatment, but in some cases a biopsy may be done to rule out melanocytic lesions.

  4. Igneous Graphite in Enstatite Chondrites

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.

    1997-01-01

    Igneous graphite. a rare constituent in terrestrial mafic and ultramafic rocks. occurs in three EH and one EL enstatite chondrite impact-melt breccias as 2-150 Ilm long euhedrallaths. some with pyramidal terminations. In contrast. graphite in most enstatite chondrites exsolved from metallic Fe-Ni as polygonal. rounded or irregular aggregates. Literature data for five EH chondrites on C combusting at high temperatures show that Abee contains the most homogeneous C isotopes (i.e. delta(sup 13)C = -8.1+/-2.1%); in addition. Abee's mean delta(sup l3)C value is the same as the average high-temperature C value for the set of five EH chondrites. This suggests that Abee scavenged C from a plurality of sources on its parent body and homogenized the C during a large-scale melting event. Whereas igneous graphite in terrestrial rocks typically forms at relatively high pressure and only moderately low oxygen fugacity (e.g., approx. 5 kbar. logfO2, approx. -10 at 1200 C ). igneous graphite in asteroidal meteorites formed at much lower pressures and oxygen fugacities.

  5. Fracture toughness of anisotropic graphites

    SciTech Connect

    Kennedy, C.R.; Kehne, M.T.

    1985-01-01

    Fracture toughness measurements have been made at 0, 30, 45, 60, and 90/sup 0/ from the extrusion axis on a reasonably anisotropic graphite, grade AGOT. It was found that the fracture toughness did not vary appreciably with orientation. An observed variation in strength was found to be the result of defect orientation.

  6. Graphite oral tattoo: case report.

    PubMed

    Moraes, Renata Mendonça; Gouvêa Lima, Gabriela de Morais; Guilhermino, Marinaldo; Vieira, Mayana Soares; Carvalho, Yasmin Rodarte; Anbinder, Ana Lia

    2015-10-01

    Pigmented oral lesions compose a large number of pathological entities, including exogenous pigmentat oral tattoos, such as amalgam and graphite tattoos. We report a rare case of a graphite tattoo on the palate of a 62-year-old patient with a history of pencil injury, compare it with amalgam tattoos, and determine the prevalence of oral tattoos in our Oral Pathology Service. We also compare the clinical and histological findings of grafite and amalgam tattoos. Oral tattoos affect women more frequently in the region of the alveolar ridge. Graphite tattoos occur in younger patients when compared with the amalgam type. Histologically, amalgam lesions represent impregnation of the reticular fibers of vessels and nerves with silver, whereas in cases of graphite tattoos, this impregnation is not observed, but it is common to observe a granulomatous inflammatory response, less evident in cases of amalgam tattoos. Both types of lesions require no treatment, but in some cases a biopsy may be done to rule out melanocytic lesions. PMID:26632800

  7. Synthesis of Conductive Polyurethane/Graphite Composites for Electromagnetic Interference Shielding

    NASA Astrophysics Data System (ADS)

    Puri, Pooja; Mehta, Rajeev; Rattan, Sunita

    2015-11-01

    Among various nanofillers for composite systems, carbon-based fillers such as graphite, carbon fibers, carbon black, carbon nanotubes, graphene, etc. are attracting great attention in both academia and industry for the advent of highly integrated electronic devices. The objective in fabricating such composite materials is to obtain distinct properties evolved from the synergistic effects of the component materials that may be exploited for various applications such as electronics and optical devices. In the present work, polyurethane/graphite composites have been synthesized with the aim of using them for electromagnetic shielding applications. The polyurethane/graphite composites were prepared through an in situ polymerization method in the presence of graphite nanoparticles. The prepared composites were characterized by scanning electron microscope, transmission electron microscope (TEM), and x-ray diffraction techniques. The shifting of the major peak of graphite nanoplatelets (GNPs) in prepared nanocomposites towards the left from 26.336° d-spacing = 3.381 Å to 25.374° d-spacing = 3.507 Å on a 2 θ scale indicates the intercalation type of dispersion in the prepared nanocomposites. This was further validated with the TEM characterization. The introduction of GNPs in polyurethane (PU) during in situ polymerization creates an electrical network in the resulting composite, which therefore makes it highly conductive. The prepared nanocomposite showed an electrical network at 2.2 vol.% of the percolation threshold in DC condition and a similar percolation threshold was found at 100 Hz in AC conditions. The maximum conductivity found at 6.5 vol.% of filler loading was 0.01 S/cm. The resulting composites were evaluated for electromagnetic interference (EMI) shielding at different filler loadings. The prepared PU/GNPs composites were found to be highly effective with shielding effectiveness of 19.34 dB, and with electromagnetic interference shielding materials at 0

  8. Thermal neutron scattering in graphite

    NASA Astrophysics Data System (ADS)

    Al-Qasir, Iyad Ibrahim

    Generation IV Very High Temperature Reactor (VHTR) concepts, are graphite moderated and gas cooled thermal spectrum reactors. The characteristics of the low energy (E < 1 eV) neutron spectrum in these reactors will be dictated by the process of neutron slowing-down and thermalization in the graphite moderator. The ability to accurately predict this process in these reactors can have significant neutronic and safety implications. In reactor design calculations, thermal neutron scattering cross section libraries are needed for the prediction of the thermal neutron environment in the core. Currently used libraries (ENDF/B-VII) are a product of the 1960s and remain based on many physical approximations. In addition, these libraries show noticeable discrepancies with experimental data. In this work, investigation of thermal neutron scattering in graphite as a function of temperature was performed. The fundamental input for the calculation of thermal neutron scattering cross sections, i.e., the phonon frequency distribution and/or the dispersion relations, was generated using a modern approach that is based on quantum mechanical electronic structure (ab initio) simulations combined with a lattice dynamics direct method supercell approach. The calculations were performed using the VASP and PHONON codes. The VASP calculations used the local density approximation, and the projector augmented-wave pseudopotential. A supercell of 144 atoms was used; and the integration over the Brillouin zone was confined to a 3x3x4 k-mesh generated by the Monkhorst-Pack scheme. A plane-wave basis set with an energy cutoff of 500 eV was applied. The corresponding dispersion relations, heat capacity, and phonon frequency distribution show excellent agreement with experimental data. Despite the use of the above techniques to produce more accurate input data, the examination of the results indicated persistence of the inconsistencies between calculations and measurements at neutron energies

  9. Graphite nanoreinforcements in polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Fukushima, Hiroyuki

    Nanocomposites composed of polymer matrices with clay reinforcements of less than 100 nm in size, are being considered for applications such as interior and exterior accessories for automobiles, structural components for portable electronic devices, and films for food packaging. While most nanocomposite research has focused on exfoliated clay platelets, the same nanoreinforcement concept can be applied to another layered material, graphite, to produce nanoplatelets and nanocomposites. Graphite is the stiffest material found in nature (Young's Modulus = 1060 GPa), having a modulus several times that of clay, but also with excellent electrical and thermal conductivity. The key to utilizing graphite as a platelet nanoreinforcement is in the ability to exfoliate this material. Also, if the appropriate surface treatment can be found for graphite, its exfoliation and dispersion in a polymer matrix will result in a composite with not only excellent mechanical properties but electrical properties as well, opening up many new structural applications as well as non-structural ones where electromagnetic shielding and high thermal conductivity are requirements. In this research, a new process to fabricate exfoliated nano-scale graphite platelets was established (Patent pending). The size of the resulted graphite platelets was less than 1 um in diameter and 10 nm in thickness, and the surface area of the material was around 100 m2/g. The reduction of size showed positive effect on mechanical properties of composites because of the increased edge area and more functional groups attached with it. Also various surface treatment techniques were applied to the graphite nanoplatelets to improve the surface condition. As a result, acrylamide grafting treatment was found to enhance the dispersion and adhesion of graphite flakes in epoxy matrices. The resulted composites showed better mechanical properties than those with commercially available carbon fibers, vapor grown carbon fibers

  10. Research on graphite reinforced glass matrix composites

    NASA Technical Reports Server (NTRS)

    Bacon, J. F.; Prewo, K. M.

    1977-01-01

    The results of research for the origination of graphite-fiber reinforced glass matrix composites are presented. The method selected to form the composites consisted of pulling the graphite fiber through a slurry containing powdered glass, winding up the graphite fiber and the glass it picks up on a drum, drying, cutting into segments, loading the tape segment into a graphite die, and hot pressing. During the course of the work, composites were made with a variety of graphite fibers in a glass matrix.

  11. Optimized Conditioning of Activated Reactor Graphite

    SciTech Connect

    Tress, G.; Doehring, L.; Pauli, H.; Beer, H.-F.

    2002-02-25

    The research reactor DIORIT at the Paul Scherrer Institute was decommissioned in 1993 and is now being dismantled. One of the materials to be conditioned is activated reactor graphite, approximately 45 tons. A cost effective conditioning method has been developed. The graphite is crushed to less than 6 mm and added to concrete and grout. This graphite concrete is used as matrix for embedding dismantling waste in containers. The waste containers that would have been needed for separate conditioning and disposal of activated reactor graphite are thus saved. Applying the new method, the cost can be reduced from about 55 SFr/kg to about 17 SFr/kg graphite.

  12. A unique perylene-based DNA intercalator: localization in cell nuclei and inhibition of cancer cells and tumors.

    PubMed

    Xu, Zejun; Guo, Kunru; Yu, Jieshi; Sun, Haili; Tang, Jun; Shen, Jie; Müllen, Klaus; Yang, Wantai; Yin, Meizhen

    2014-10-29

    To date, perylene derivatives have not been explored as DNA intercalator to inhibit cancer cells by intercalating into the base pairs of DNA. Herein, a water-soluble perylene bisimide (PBDI) that efficiently intercalates into the base pairs of DNA is synthesized. Excitingly, PBDI is superior to the commercial DNA intercalator, amonafide, for specific nuclear accumulation and effective suppression of cancer cells and tumors.

  13. AGC-2 Graphite Preirradiation Data Package

    SciTech Connect

    David Swank; Joseph Lord; David Rohrbaugh; William Windes

    2012-10-01

    The NGNP Graphite R&D program is currently establishing the safe operating envelope of graphite core components for a Very High Temperature Reactor (VHTR) design. The program is generating quantitative data necessary for predicting the behavior and operating performance of the new nuclear graphite grades. To determine the in-service behavior of the graphite for pebble bed and prismatic designs, the Advanced Graphite Creep (AGC) experiment is underway. This experiment is examining the properties and behavior of nuclear grade graphite over a large spectrum of temperatures, neutron fluences and compressive loads. Each experiment consists of over 400 graphite specimens that are characterized prior to irradiation and following irradiation. Six experiments are planned with the first, AGC-1, currently being irradiated in the Advanced Test Reactor (ATR) and pre-irradiation characterization of the second, AGC-2, completed. This data package establishes the readiness of 512 specimens for assembly into the AGC-2 capsule.

  14. Differentiation of renal beta-intercalated cells to alpha-intercalated and principal cells in culture.

    PubMed Central

    Fejes-Tóth, G; Náray-Fejes-Tóth, A

    1992-01-01

    The renal collecting duct is a heterogenous epithelium consisting of intercalated cells (ICC) and principal cells (PC). The origin of this cellular heterogeneity is not clear. To test the hypothesis that the two cell types might originate from one another, pure populations of ICC (beta subtype) and PC were isolated by fluorescence-activated cell sorting and grown on permeable supports. After the monolayers reached confluence, the expression of ICC- and PC-specific functions and antigens was monitored. Cultures of sorted beta-ICC, in addition to expressing ICC-specific functions (such as an electrogenic H+ secretion) and antigens, progressively acquired PC functions (amiloride-sensitive Na+ transport and K+ secretion). On day 6, cultures of sorted beta-ICC exhibited a lumen-negative transepithelial potential difference of 83 +/- 4 mV and a short circuit current of 107 +/- 15 microA/cm2 and created a lumen-to-bath K+ concentration ratio of approximately 10. The percentage of cells staining with two PC-specific antibodies was 53% and 65%. On the other hand, cultures of sorted PC failed to acquire ICC-specific functions while maintaining PC characteristics. To rule out preferential proliferation of a few contaminating PC as an explanation of these results, we have generated a continuous collecting duct cell line (M-1) originating from mice transgenic for the early region of simian virus 40. Cell lines cloned from M-1 cells exhibit both PC and ICC functions and show mutually exclusive heterogenous expression of PC and ICC antigens, demonstrating a common origin of the two cell types. These data indicate that while beta-ICC in culture can give rise to both alpha-ICC and PC, PC cannot convert to ICC, which raises the possibility that beta-ICC is the stem cell in the renal collecting duct. Differentiation of ICC to PC may explain the cellular heterogeneity in the cortical collecting duct. Images PMID:1608958

  15. High-pressure neutron-scattering studies of graphite and stage-two graphite-SbCl/sub 5/

    SciTech Connect

    Alzyab, B.; Perry, C.H.; Zahopoulos, C.; Pringle, O.A.; Nicklow, R.M.

    1988-07-15

    The longitudinal-acoustic (LA) phonons propagating along the c axis in highly oriented pyrolytic graphite (HOPG) were investigated as a function of pressure up to 20 kbar using inelastic-neutron-scattering techniques. The phonon frequencies varied as ..nu..(P,q) = A(P)sin(c(P)q/2), where A(P) and c(P) indicate the pressure dependences of the zone-center LO frequency of B/sub 1//sub g//sub >1/ symmetry and of the c-axis lattice spacing, respectively. From the measurements, the mode Grueneisen parameter for the LA branch was estimated to be 1.5 x 10/sup -2/ kbar/sup -1/ (independent of q); the elastic constant C/sub 33/ for HOPG was found to be 3.40 x 10/sup 11/ dyn/cm/sup 2/ at 1 bar with a pressure coefficient of (1/C/sub 33/)(dC/sub 33//dP) = 2.91 x 10/sup -2/ kbar/sup -1/. The measured c-axis spacings were 6.71 and 12.72 A for HOPG and stage-2 SbCl/sub 5/-intercalated graphite, respectively, at atmospheric pressure; the corresponding compressibilities (1/c)(dc/dP) were -2.24 x 10/sup -3/ kbar/sup -1/ (HOPG) and -2.28 x 10/sup -3/ kbar/sup -1/ (SbCl/sub 5/). Elastic-neutron-scattering studies up to 20 kbar were undertaken to search for stage transformations, but no evidence of any phase transition was observed.

  16. Composition and method for brazing graphite to graphite

    DOEpatents

    Taylor, A.J.; Dykes, N.L.

    1982-08-10

    A brazing material is described for joining graphite structures that can be used up to 2800/sup 0/C. The brazing material is formed of a paste-like composition of hafnium carbide and uranium oxide with a thermosetting resin. The uranium oxide is converted to uranium dicarbide during the brazing operation and then the hafnium carbide and uranium dicarbide form a liquid phase at a temperature about 2600/sup 0/C with the uranium diffusing and vaporizing from the joint area as the temperature is increased to about 2800/sup 0/C so as to provide a brazed joint consisting essentially of hafnium carbide. The resulting brazed joint is chemically and thermally compatible with the graphite structures.

  17. Graphene on Mica - Intercalated Water Trapped for Life

    PubMed Central

    Ochedowski, O.; Bussmann, B. Kleine; Schleberger, M.

    2014-01-01

    In this work we study the effect of thermal processing of exfoliated graphene on mica with respect to changes in graphene morphology and surface potential. Mild annealing to temperatures of about 200°C leads to the removal of small amounts of intercalated water at graphene edges. By heating to 600°C the areas without intercalated water are substantially increased enabling a quantification of the charge transfer properties of the water layer by locally resolved Kelvin probe force microscopy data. A complete removal on a global scale cannot be achieved because mica begins to decompose at temperatures above 600°C. By correlating Kelvin probe force microscopy and Raman spectroscopy maps we find a transition from p-type to n-type doping of graphene during thermal processing which is driven by the dehydration of the mica substrate and an accumulation of defects in the graphene sheet. PMID:25132493

  18. Reactivity of lithium intercalated into petroleum coke in carbonate electrolytes

    SciTech Connect

    Jean, M.; Tranchant, A.; Messina, R.

    1996-02-01

    There have been considerable efforts to develop lithium rocking chair batteries where the lithium metal anode is replaced by a nonmetal material capable of storing and exchanging large quantities of lithium ions. The results of a study of the reactivity of lithium intercalated into petroleum coke (Conoco) in a PC/EC/DMC (1/1/3 volume) mixture and LiCF{sub 3}SO{sub 3} as the lithium salt are presented here. The authors show the loss of intercalated lithium is due to its reactivity with the electrolyte and increases quasi-linearly during 1,000 h of storage, and thereafter becomes less important as the storage time increases. The storage of passivated petroleum coke electrodes without any lithium content allowed the authors to determine the rates of the precipitation and dissolution reactions involving the passivating layer.

  19. Intercalation of trichloroethene by sediment-associated clay minerals.

    PubMed

    Matthieu, D E; Brusseau, M L; Johnson, G R; Artiola, J L; Bowden, M L; Curry, J E

    2013-01-01

    The objective of this research was to examine the potential for intercalation of trichloroethene (TCE) by clay minerals associated with aquifer sediments. Sediment samples were collected from a field site in Tucson, AZ. Two widely used Montmorillonite specimen clays were employed as controls. X-ray diffraction, conducted with a controlled-environment chamber, was used to characterize smectite interlayer d-spacing for three treatments (bulk air-dry sample, sample mixed with synthetic groundwater, sample mixed with TCE-saturated synthetic groundwater). The results show that the d-spacing measured for the samples treated with TCE-saturated synthetic groundwater are larger (~26%) than those of the untreated samples for all field samples as well as the specimen clays. These results indicate that TCE was intercalated by the clay minerals, which may have contributed to the extensive elution tailing observed in prior miscible-displacement experiments conducted with this sediment.

  20. Controlling the photoconductivity: Graphene oxide and polyaniline self assembled intercalation

    SciTech Connect

    Vempati, Sesha; Ozcan, Sefika; Uyar, Tamer

    2015-02-02

    We report on controlling the optoelectronic properties of self-assembled intercalating compound of graphene oxide (GO) and HCl doped polyaniline (PANI). Optical emission and X-ray diffraction studies revealed a secondary doping phenomenon of PANI with –OH and –COOH groups of GO, which essentially arbitrate the intercalation. A control on the polarity and the magnitude of the photoresponse (PR) is harnessed by manipulating the weight ratios of PANI to GO (viz., 1:1.5 and 1:2.2 are abbreviated as PG1.5 and PG2.2, respectively), where ±PR = 100(R{sub Dark} – R{sub UV-Vis})/R{sub Dark} and R corresponds to the resistance of the device in dark or UV-Vis illumination. To be precise, the PR from GO, PANI, PG1.5, and PG2.2 are +34%, −111%, −51%, and +58%, respectively.

  1. Abl suppresses cell extrusion and intercalation during epithelium folding.

    PubMed

    Jodoin, Jeanne N; Martin, Adam C

    2016-09-15

    Tissue morphogenesis requires control over cell shape changes and rearrangements. In the Drosophila mesoderm, linked epithelial cells apically constrict, without cell extrusion or intercalation, to fold the epithelium into a tube that will then undergo epithelial-to-mesenchymal transition (EMT). Apical constriction drives tissue folding or cell extrusion in different contexts, but the mechanisms that dictate the specific outcomes are poorly understood. Using live imaging, we found that Abelson (Abl) tyrosine kinase depletion causes apically constricting cells to undergo aberrant basal cell extrusion and cell intercalation. abl depletion disrupted apical-basal polarity and adherens junction organization in mesoderm cells, suggesting that extruding cells undergo premature EMT. The polarity loss was associated with abnormal basolateral contractile actomyosin and Enabled (Ena) accumulation. Depletion of the Abl effector Enabled (Ena) in abl-depleted embryos suppressed the abl phenotype, consistent with cell extrusion resulting from misregulated ena Our work provides new insight into how Abl loss and Ena misregulation promote cell extrusion and EMT.

  2. INTERCALATION OF TRICHLOROETHENE BY SEDIMENT-ASSOCIATED CLAY MINERALS

    PubMed Central

    Matthieu, D.E.; Brusseau, M.L.; Johnson, G.R.; Artiola, J.L.; Bowden, M.L.; Curry, J.E.

    2012-01-01

    The objective of this research was to examine the potential for intercalation of trichloroethene (TCE) by clay minerals associated with aquifer sediments. Sediment samples were collected from a field site in Tucson, AZ. Two widely used Montmorillonite specimen clays were employed as controls. X-ray diffraction, conducted with a controlled-environment chamber, was used to characterize smectite interlayer d-spacing for three treatments (bulk air-dry sample, sample mixed with synthetic groundwater, sample mixed with TCE-saturated synthetic groundwater). The results show that the d-spacing measured for the samples treated with TCE-saturated synthetic groundwater are larger (~26%) than those of the untreated samples for all field samples as well as the specimen clays. These results indicate that TCE was intercalated by the clay minerals, which may have contributed to the extensive elution tailing observed in prior miscible-displacement experiments conducted with this sediment. PMID:22921434

  3. Intercalation of Trichloroethene by Sediment-Associated Clay Minerals

    SciTech Connect

    Matthieu, Donald E.; Brusseau, Mark; Johnson, G. R.; Artiola, J. L.; Bowden, Mark E.; Curry, J. E.

    2013-01-01

    The objective of this research was to examine the potential for intercalation of trichloroethene (TCE) by clay minerals associated with aquifer sediments. Sediment samples were collected from a field site inTucson, AZ. Two widely used Montmorillonite specimen clays were employed as controls. X-ray diffraction, conducted with a controlled-environment chamber, was used to characterize smectite interlayer dspacing for three treatments (bulk air-dry sample, sample mixed with synthetic groundwater, sample mixed with TCE-saturated synthetic groundwater). The results show that the d-spacing measured for the samples treated with TCE-saturated synthetic groundwater are larger (*26%) than those of the untreated samples for all field samples as well as the specimen clays. These results indicate that TCE was intercalated by the clay minerals, which may have contributed to the extensive elution tailing observed in prior miscible-displacement experiments conducted with this sediment.

  4. Controlling the photoconductivity: Graphene oxide and polyaniline self assembled intercalation

    NASA Astrophysics Data System (ADS)

    Vempati, Sesha; Ozcan, Sefika; Uyar, Tamer

    2015-02-01

    We report on controlling the optoelectronic properties of self-assembled intercalating compound of graphene oxide (GO) and HCl doped polyaniline (PANI). Optical emission and X-ray diffraction studies revealed a secondary doping phenomenon of PANI with -OH and -COOH groups of GO, which essentially arbitrate the intercalation. A control on the polarity and the magnitude of the photoresponse (PR) is harnessed by manipulating the weight ratios of PANI to GO (viz., 1:1.5 and 1:2.2 are abbreviated as PG1.5 and PG2.2, respectively), where ±PR = 100(RDark - RUV-Vis)/RDark and R corresponds to the resistance of the device in dark or UV-Vis illumination. To be precise, the PR from GO, PANI, PG1.5, and PG2.2 are +34%, -111%, -51%, and +58%, respectively.

  5. Amphiphilic properties of poly(oxyalkylene)amine-intercalated smectite aluminosilicates.

    PubMed

    Lin, Jiang-Jen; Chen, Yu-Min

    2004-05-11

    Layered aluminosilicates, including synthetic fluorine mica and natural montmorillonite (MMT), were intercalated with poly(oxypropylene)-polyamine quaternary salts with a 230-5000 molecular weight range. The X-ray basal spacing of these silicates had been expanded from 13.5 to 83.7 A for the synthetic mica and to 92.0 A for MMT. The relative silicate dimensions (300-1000 nm for synthetic mica and 80-100 nm for MMT) were ascertained by direct TEM observations in the case of the co-intercalated synthetic mica and MMT mixtures with Mw = 2000 quaternary ammonium salts. The tailored organic incorporation of synthetic mica and MMT clays could alter these hydrophilic clays, making them amphiphilic, and enable the lowering of toluene/water interfacial tension to 2.0 mN/m at the critical concentration of 0.1 wt %.

  6. Atomic and molecular spectra of vapors evolved in graphite furnace. Part 7: Alkaline metal sulfates and sulfides

    NASA Astrophysics Data System (ADS)

    Lemme, M.; Katskov, D. A.; Tittarelli, P.

    2004-01-01

    Thermal behavior and vapor absorption spectra of Li, Na and K sulfates and Li, Na sulfides in graphite vaporizers for atomic absorption spectrometry are investigated using a UV spectrometer with a charge-coupled device (CCD) detector. Fifty spectra in the wavelength range 190-380 nm are collected during the vaporization of 1 μg and 10 μg of metal as sulfide and sulfate, respectively, simultaneously to the increase of vaporizer temperature from 700 to 2700 K during 10 s. The behavior of transient spectra is compared for the pyrocoated tube and filter furnace. It is found that Na and K sulfates in the pyrocoated tube evolve, first, metal bound sulfur-oxygen compounds, while Li sulfate emanates S 2 vapor. For all substances studied, the vaporization involves active interaction with graphite, suggestively with formation of graphite-metal and graphite-sulfur intercalation compounds. Those compounds retained metal and sulfur until above 2000 K. Both vapor dissociation and decomposition of intercalation compounds are accompanied by appearance in gas phase of CS molecules. In the filter furnace at high temperature the structured spectrum between 190 and 210 nm is characteristic for all sulfur containing compounds. It is suggestively attributed to C nS m ( n> m) molecule. The samples of Li and Na sulfides do not retain initial chemical composition after dissolving, sampling from solution, drying and pyrolysis at 700 K. Their vapor spectra show the presence of sodium sulfate (or sulfite) and lithium oxide in the respective dry residues. The diffuse absorption bands at 190-230 nm with maxima at 200-210 nm precede or appear together with molecular spectra. The phenomenon is suggestively assigned to the light scattering on specific molecular clusters.

  7. Exfoliation and intercalation of montmorillonite by small peptides

    PubMed Central

    Block, Karin A.; Trusiak, Adrianna; Katz, Al; Alimova, Alexandra; Wei, Hui; Gottlieb, Paul; Steiner, Jeffrey C.

    2015-01-01

    Understanding structural changes in clay minerals induced by complexation with organic matter is relevant to soil science and agricultural applications. In this study, the effect of peptide storage in montmorillonite and the thermal stability of peptide-clay complexes was examined through characterization by X-ray diffraction (XRD), electron microscopy, UV absorption, and thermogravimetric analysis (TGA). XRD analysis of small peptide-montmorillonite clay complexes produced profiles consisting of reflections associated with the smectite 001 reflection and related peaks similar to that produced by a mixed layer clay mineral structure. Shifts in higher order diffraction maxima were attributed to disorder caused by the intercalation with the peptides. Increasing peptide concentrations resulted in greater shifts towards smaller 2θ from 6.37° (1.39 nm) to 5.45° (1.62 nm) as the interlayer space expanded. The expansion was accompanied by broadening of the 001 reflection (FWHM increases from 0.51 to 1.22° 2θ). The XRD line broadening was interpreted as caused by poorer crystallinity resulting from intercalation and tactoid exfoliation. SEM images revealed montmorillonite platelets with upwardly rolled edges that tend toward cylindrical structures with the production of tubules. High-resolution TEM images revealed bending of montmorillonite platelets, confirming exfoliation. The distribution of basal spacings in the micrographs was determined from the spatial frequencies obtained by Fourier analysis of density profiles. The distribution indicated the presence of discrete coherent crystallite domains. XRD and TGA results indicated that higher peptide concentrations resulted in a greater fraction of intercalated peptides and that surface adsorption of peptides mediated intercalation. Therefore, higher peptide concentration led to more stable organoclay complexes. However, UV absorption and TGA found that peptide adsorption onto montmorillonite had a finite limit at

  8. Synthesis and characterization of intercalated few-layer graphenes

    NASA Astrophysics Data System (ADS)

    Sato, Shogo; Ichikawa, Hiroaki; Iwata, Nobuyuki; Yamamoto, Hiroshi

    2014-02-01

    Toward achieving room-temperature superconductivity, FeCl3-intercalated few-layer graphenes (FeCl3-FLGs) and Ca-intercalated few-layer graphenes (Ca-FLGs) were synthesized. FeCl3-FLGs were synthesized by the two-zone method and Ca-FLGs were synthesized using Ca-Li alloy. The Raman spectra of the FeCl3-FLGs showed a lower-intensity peak at 1607 cm-1 than that of the corresponding bare G. The peak at 1607 cm-1 suggested that the sample was stage 4-5 FeCl3-FLGs. The room-temperature electrical resistivity of FeCl3-FLGs was 2.65 × 10-5 Ω·m, which linearly decreased with decreasing temperature with a marked change occurring at approximately 200 K. From a XRD pattern of Ca-FLGs, we concluded that Ca is intercalated in FLGs. The room-temperature resistivity of Ca-FLGs was 3.45 × 10-5 Ω·m, which increased with decreasing temperature.

  9. Graphite moderated (252)Cf source.

    PubMed

    Sajo-Bohus, Laszlo; Barros, Haydn; Greaves, Eduardo D; Vega-Carrillo, Hector Rene

    2015-06-01

    The Thorium molten-salt reactor is an attractive and affordable nuclear power option for developing countries with insufficient infrastructure and limited technological capability. In the aim of personnel training and experience gathering at the Universidad Simon Bolivar there is in progress a project of developing a subcritical thorium liquid-fuel reactor. The neutron source to run this subcritical reactor is a (252)Cf source and the reactor will use high-purity graphite as moderator. Using the MCNP5 code the neutron spectra of the (252)Cf in the center of the graphite moderator has been estimated along the channel where the liquid thorium salt will be inserted; also the ambient dose equivalent due to the source has been determined around the moderator.

  10. Fission Product Sorptivity in Graphite

    SciTech Connect

    Tompson, Jr., Robert V.; Loyalka, Sudarshan; Ghosh, Tushar; Viswanath, Dabir; Walton, Kyle; Haffner, Robert

    2015-04-01

    Both adsorption and absorption (sorption) of fission product (FP) gases on/into graphite are issues of interest in very high temperature reactors (VHTRs). In the original proposal, we proposed to use packed beds of graphite particles to measure sorption at a variety of temperatures and to use an electrodynamic balance (EDB) to measure sorption onto single graphite particles (a few μm in diameter) at room temperature. The use of packed beds at elevated temperature is not an issue. However, the TPOC requested revision of this initial proposal to included single particle measurements at elevated temperatures up to 1100 °C. To accommodate the desire of NEUP to extend the single particle EDB measurements to elevated temperatures it was necessary to significantly revise the plan and the budget. These revisions were approved. In the EDB method, we levitate a single graphite particle (the size, surface characteristics, morphology, purity, and composition of the particle can be varied) or agglomerate in the balance and measure the sorption of species by observing the changes in mass. This process involves the use of an electron stepping technique to measure the total charge on a particle which, in conjunction with the measured suspension voltages for the particle, allows for determinations of mass and, hence, of mass changes which then correspond to measurements of sorption. Accommodating elevated temperatures with this type of system required a significant system redesign and required additional time that ultimately was not available. These constraints also meant that the grant had to focus on fewer species as a result. Overall, the extension of the original proposed single particle work to elevated temperatures added greatly to the complexity of the proposed project and added greatly to the time that would eventually be required as well. This means that the bulk of the experimental progress was made using the packed bed sorption systems. Only being able to recruit one

  11. Poco Graphite Mirror Metrology Report

    NASA Technical Reports Server (NTRS)

    Kester, Thomas J.

    2005-01-01

    Recently a lightweight mirror technology was tested at Marshall Space Flight Center's Space Optic Manufacturing Technology Center (MSFC, SOMTC). The mirror is a Poco Graphite CVD Si clad SiC substrate. It was tested for cryogenic (cryo) survivability to 20deg Kelvin in SOMTC's X-ray Calibration and Cryogenic Test Facility. The surface figure of the mirror was measured before and after cry0 cycling. The test technique and results are discussed.

  12. Graphite/Thermoplastic-Pultrusion Die

    NASA Technical Reports Server (NTRS)

    Wilson, Maywood L.; Frye, Mark W.; Johnson, Gary S.; Stanfield, Clarence E.

    1990-01-01

    Attachment to extruder produces thermoplastic-impregnated graphite tape. Consists of profile die, fiber/resin collimator, and crosshead die body. Die designed to be attached to commercially available extrusion machine capable of extruding high-performance thermoplastics. Simple attachment to commercial extruder enables developers of composites to begin experimenting with large numbers of proprietary resins, fibers, and hybrid composite structures. With device, almost any possible fiber/resin combination fabricated.

  13. AGC-3 Graphite Preirradiation Data Analysis Report

    SciTech Connect

    William Windes; David Swank; David Rohrbaugh; Joseph Lord

    2013-09-01

    This report describes the specimen loading order and documents all pre-irradiation examination material property measurement data for the graphite specimens contained within the third Advanced Graphite Capsule (AGC-3) irradiation capsule. The AGC-3 capsule is third in six planned irradiation capsules comprising the Advanced Graphite Creep (AGC) test series. The AGC test series is used to irradiate graphite specimens allowing quantitative data necessary for predicting the irradiation behavior and operating performance of new nuclear graphite grades to be generated which will ascertain the in-service behavior of the graphite for pebble bed and prismatic Very High Temperature Reactor (VHTR) designs. The general design of AGC-3 test capsule is similar to the AGC-2 test capsule, material property tests were conducted on graphite specimens prior to loading into the AGC-3 irradiation assembly. However the 6 major nuclear graphite grades in AGC-2 were modified; two previous graphite grades (IG-430 and H-451) were eliminated and one was added (Mersen’s 2114 was added). Specimen testing from three graphite grades (PCEA, 2114, and NBG-17) was conducted at Idaho National Laboratory (INL) and specimen testing for two grades (IG-110 and NBG-18) were conducted at Oak Ridge National Laboratory (ORNL) from May 2011 to July 2013. This report also details the specimen loading methodology for the graphite specimens inside the AGC-3 irradiation capsule. The AGC-3 capsule design requires "matched pair" creep specimens that have similar dose levels above and below the neutron flux profile mid-plane to provide similar specimens with and without an applied load. This document utilized the neutron flux profile calculated for the AGC-3 capsule design, the capsule dimensions, and the size (length) of the selected graphite and silicon carbide samples to create a stacking order that can produce "matched pairs" of graphite samples above and below the AGC-3 capsule elevation mid-point to

  14. Graphite Nanoreinforcements for Aerospace Nanocomposites

    NASA Technical Reports Server (NTRS)

    Drzal, Lawrence T.

    2005-01-01

    New advances in the reinforcement of polymer matrix composite materials are critical for advancement of the aerospace industry. Reinforcements are required to have good mechanical and thermal properties, large aspect ratio, excellent adhesion to the matrix, and cost effectiveness. To fulfill the requirements, nanocomposites in which the matrix is filled with nanoscopic reinforcing phases having dimensions typically in the range of 1nm to 100 nm show considerably higher strength and modulus with far lower reinforcement content than their conventional counterparts. Graphite is a layered material whose layers have dimensions in the nanometer range and are held together by weak Van der Waals forces. Once these layers are exfoliated and dispersed in a polymer matrix as nano platelets, they have large aspect ratios. Graphite has an elastic modulus that is equal to the stiffest carbon fiber and 10-15 times that of other inorganic reinforcements, and it is also electrically and thermally conductive. If the appropriate surface treatment can be found for graphite, its exfoliation and dispersion in a polymer matrix will result in a composite with excellent mechanical properties, superior thermal stability, and very good electrical and thermal properties at very low reinforcement loadings.

  15. Development of polyphenylquinoxaline graphite composites

    NASA Technical Reports Server (NTRS)

    Hoggatt, J. T.; Hergenrother, P. M.; Shdo, J. G.

    1973-01-01

    The potential of polyphenylquinoxaline (PPQ)/graphite composites to serve as structural material at 316 C (600 F)has been demonstrated using a block copolymer, BlCo(13), PPQ derivative. Initially, thirteen polyphenylquinoxalines were evaluated. From this work, four candidate polymers were selected for preliminary evaluation as matrices for HMS graphite fiber reinforced composites. The preliminary composite evaluation enabled selection of one of the four polymers for advanced composite preparation and testing. Using an experimentally established cure schedule for each of the four polymers, preliminary laminates of 50% resin volume content, prepared without postcure, were tested for flexure strength and modulus, interlaminar shear strength (short beam), and tensile strength and modulus at ambient temperature. A block copolymer (Bl Co 13) derived from one mole p-bis (phenylglyoxalyl) benzene, one fourth mole 3,3'-diaminobenzidine and three-fourths mole 3,3', 4,4'-tetraminobenzophenone was selected for extensive study. Tensile, flexural, and interlaminar shear values were obtained after aging and testing postcured BlCo(13) laminates at 316 C (600 F). The potential of PPQ/graphite laminates to serve as short term structural materials at temperatures up to 371 C (700 F) was demonstrated through weight loss experiments.

  16. Electrochemical and in-situ scanning tunneling microscopy studies of bis(fluorosulfonyl)imide and bis(trifluoromethanesulfonyl)imide based ionic liquids on graphite and gold electrodes and lithium salt influence

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoyan; Chen, Chunlei; Yan, Jiawei; Mao, Bingwei

    2015-10-01

    We report electrochemical and in-situ scanning tunneling microscopy (STM) studies of surface processes on graphite and Au(111) electrodes in N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide (Py13FSI) and N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (Py13TFSI) ionic liquids in the absence and presence of LiTFSI salt. In both of neat ionic liquids, the intercalation of cations and exfoliation of HOPG layers occur during cathodic excursion. However, the surface decomposition of FSI anions can form an effective protection film on the surface, which suppresses the intercalation and exfoliation processes, while the surface decomposition of TFSI anions mainly causes etching of the surface, which makes the intercalation and exfoliation easier to proceed. The addition of Li salt can promote the formation of the protective film, especially in Py13FSI, and thus significantly suppress the intercalation and exfoliation processes. The discrepancies between these two ionic liquids are caused by the different anion interactions with graphite. Additionally, comparisons of the behaviors on HOPG and on Au(111) confirm that the surface processes are crucially dependent on the nature of the electrode. Trace amounts of oxygen and water can cause the formation of a film-like structure on Au(111), but show no apparent influence on HOPG.

  17. Photoinduced carrier generation and decay dynamics in intercalated and non-intercalated polymer:fullerene bulk heterojunctions.

    PubMed

    Rance, William L; Ferguson, Andrew J; McCarthy-Ward, Thomas; Heeney, Martin; Ginley, David S; Olson, Dana C; Rumbles, Garry; Kopidakis, Nikos

    2011-07-26

    The dependence of photoinduced carrier generation and decay on donor-acceptor nanomorphology is reported as a function of composition for blends of the polymer poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (pBTTT-C(14)) with two electron-accepting fullerenes: phenyl-C(71)-butyric acid methyl ester (PC(71)BM) or the bisadduct of phenyl-C(61)-butyric acid methyl ester (bis-PC(61)BM). The formation of partially or fully intercalated bimolecular crystals at weight ratios up to 1:1 for pBTTT-C(14):PC(71)BM blends leads to efficient exciton quenching due to a combination of static and dynamic mechanisms. At higher fullerene loadings, pure PC(71)BM domains are formed that result in an enhanced free carrier lifetime, as a consequence of spatial separation of the electron and hole into different phases, and the dominant contribution to the photoconductance comes from the high-frequency electron mobility in the fullerene clusters. In the pBTTT-C(14):bis-PC(61)BM system, phase separation results in a non-intercalated structure, independent of composition, which is characterized by exciton quenching that is dominated by a dynamic process, an enhanced carrier lifetime and a hole-dominated photoconductance signal. The results indicate that intercalation of fullerene into crystalline polymer domains is not detrimental to the density of long-lived carriers, suggesting that efficient organic photovoltaic devices could be fabricated that incorporate intercalated structures, provided that an additional pure fullerene phase is present for charge extraction.

  18. The influence of the graphitic structure on the electrochemical characteristics for the anode of secondary lithium batteries

    SciTech Connect

    Tatsumi, K.; Iwashita, N.; Sakaebe, H.; Shioyama, H.; Higuchi, S.; Mabuchi, A.; Fujimoto, H.

    1995-03-01

    Carbon is one of the best candidate materials for the negative electrode of rechargeable lithium batteries; however, the electrochemical characteristics are not fully understood in terms of the structure of the materials. The relationship linking the volume ration of the graphitic structure (P{sub 1}) of mesocarbon microbeads (MCMBS) and the electrochemical characteristics has been examined, and it was found that the capacity in the range between 0 to 0.25 V (vs. Li/Li{sup +}) in 1 mol/dm{sup 3} LiClO{sub 4}/ethylene carbonate (EC) + 1,2-diethoxyethane (DEE) electrolyte increased with an increase of the P{sub 1} of the MCMBs. This result shows that the lithium storage mechanism in this potential range is the lithium-intercalation reaction into the graphitic layers with the AB or ABC stacking. On the other hand, MCMB heat-treatment temperature (HTT) 1,000 C showed much larger capacity in the range between 0.25 to 1.3 V than higher HTT MCMBs, and it is suggested the interaction among each graphite layer is weaker in nongraphitized carbon than that in well-graphitized ones.

  19. Pyrolytic graphite gauge for measuring heat flux

    NASA Technical Reports Server (NTRS)

    Bunker, Robert C. (Inventor); Ewing, Mark E. (Inventor); Shipley, John L. (Inventor)

    2002-01-01

    A gauge for measuring heat flux, especially heat flux encountered in a high temperature environment, is provided. The gauge includes at least one thermocouple and an anisotropic pyrolytic graphite body that covers at least part of, and optionally encases the thermocouple. Heat flux is incident on the anisotropic pyrolytic graphite body by arranging the gauge so that the gauge surface on which convective and radiative fluxes are incident is perpendicular to the basal planes of the pyrolytic graphite. The conductivity of the pyrolytic graphite permits energy, transferred into the pyrolytic graphite body in the form of heat flux on the incident (or facing) surface, to be quickly distributed through the entire pyrolytic graphite body, resulting in small substantially instantaneous temperature gradients. Temperature changes to the body can thereby be measured by the thermocouple, and reduced to quantify the heat flux incident to the body.

  20. Uranium Oxide Aerosol Transport in Porous Graphite

    SciTech Connect

    Blanchard, Jeremy; Gerlach, David C.; Scheele, Randall D.; Stewart, Mark L.; Reid, Bruce D.; Gauglitz, Phillip A.; Bagaasen, Larry M.; Brown, Charles C.; Iovin, Cristian; Delegard, Calvin H.; Zelenyuk, Alla; Buck, Edgar C.; Riley, Brian J.; Burns, Carolyn A.

    2012-01-23

    The objective of this paper is to investigate the transport of uranium oxide particles that may be present in carbon dioxide (CO2) gas coolant, into the graphite blocks of gas-cooled, graphite moderated reactors. The transport of uranium oxide in the coolant system, and subsequent deposition of this material in the graphite, of such reactors is of interest because it has the potential to influence the application of the Graphite Isotope Ratio Method (GIRM). The GIRM is a technology that has been developed to validate the declared operation of graphite moderated reactors. GIRM exploits isotopic ratio changes that occur in the impurity elements present in the graphite to infer cumulative exposure and hence the reactor’s lifetime cumulative plutonium production. Reference Gesh, et. al., for a more complete discussion on the GIRM technology.

  1. METHOD FOR COATING GRAPHITE WITH METALLIC CARBIDES

    DOEpatents

    Steinberg, M.A.

    1960-03-22

    A method for producing refractory coatings of metallic carbides on graphite was developed. In particular, the graphite piece to be coated is immersed in a molten solution of 4 to 5% by weight of zirconium, titanium, or niobium dissolved in tin. The solution is heated in an argon atmosphere to above 1400 deg C, whereby the refractory metal reacts with the surface of the graphite to form a layer of metalic carbide. The molten solution is cooled to 300 to 400 deg C, and the graphite piece is removed. Excess tin is wiped from the graphite, which is then heated in vacuum to above 2300 deg C. The tin vaporizes from the graphite surface, leaving the surface coated with a tenacious layer of refractory metallic carbide.

  2. Electrochemical Investigation of Oxygen Intercalation into La 2CuO 4+ δPhases

    NASA Astrophysics Data System (ADS)

    Magnone, E.; Cerisola, G.; Ferretti, M.; Barbucci, A.

    1999-04-01

    In this work the electrochemical intercalation of oxygen in La2CuO4phases has been studied. Oxygen intercalation has been performed at different anodic potentials for fixed time in alkaline solution (1 M NaOH) at room temperature. The electrochemistry of the phenomena taking place at the oxide-solution interface has been investigated by cyclic voltammetry (CV), controlled-potential coulometry, and electrochemical impedance spectroscopy (EIS). The homogeneity of processed samples and the lattice parameters prior to and after oxygen intercalation have been verified by X-ray powder diffraction. SEM has been used to relate surface modification to the potential applied after electrochemical oxygen intercalation. The recent theories and knowledge of mechanisms of oxygen intercalation into the oxide lattice have been related to the experimental results. Oxygen intercalation seems to occur at potentials slightly lower than that of the oxygen evolution reaction (OER) and proceeds on a parallel pathway to O2evolution at more anodic potentials.

  3. Muon spin rotation study of the magnetic penetration depth in the intercalated graphite superconductor CaC{sub 6}.

    SciTech Connect

    Di Castro, D.; Kanigel, A.; Maisuradze, A.; Keren, A.; Postorino, P.; Rosenmann, D.; Welp, U.; Karapetrov, G.; Claus, H.; Hinks, D. G.; Amato, A.; Campuzano, J. C.; Univ. di Roma Tor Vergata; Technion; Univ. of Illinois at Chicago; Paul Scherrer Inst.; Univ. di Roma La Sapienza

    2010-07-26

    We report temperature- and magnetic field-dependent bulk muon spin rotation measurements in a c-axis-oriented superconductor CaC{sub 6} in the mixed state. Using both a simple second-moment analysis and the more precise analytical Ginzburg-Landau model, we obtained a field-independent in-plane magnetic penetration depth {lambda}{sub ab}(0)=72(3) nm. The temperature dependencies of the normalized muon spin relaxation rate and of the normalized superfluid density result to be identical and both are well represented by the clean limit BCS model with 2{Delta}/k{sub B}T{sub c} = 3.6(1), suggesting that CaC{sub 6} is a fully gapped BCS superconductor in the clean limit regime.

  4. Anticorrelation of Shubnikov-deHaas amplitudes and negative magnetoresistance magnitudes in intercalated pitch based graphite fibers

    NASA Technical Reports Server (NTRS)

    Woollam, John A.; Natarajan, V.; Brandt, Bruce

    1986-01-01

    In pitch based carbon fibers at low temperatures, simultaneous presence of a negative magnetoresistance and the Shubnikov-deHaas effect are found. The strengths of these effects correlate inversely. These results can be understood in terms of the amount of order vs disorder in the fiber, as described by Guigon and Oberlin from structural studies.

  5. Sealing nuclear graphite with pyrolytic carbon

    NASA Astrophysics Data System (ADS)

    Feng, Shanglei; Xu, Li; Li, Li; Bai, Shuo; Yang, Xinmei; Zhou, Xingtai

    2013-10-01

    Pyrolytic carbon (PyC) coatings were deposited on IG-110 nuclear graphite by thermal decomposition of methane at ∼1830 °C. The PyC coatings are anisotropic and airtight enough to protect IG-110 nuclear graphite against the permeation of molten fluoride salts and the diffusion of gases. The investigations indicate that the sealing nuclear graphite with PyC coating is a promising method for its application in Molten Salt Reactor (MSR).

  6. Removal of carbon-14 from irradiated graphite

    NASA Astrophysics Data System (ADS)

    Dunzik-Gougar, Mary Lou; Smith, Tara E.

    2014-08-01

    Approximately 250,000 tonnes of irradiated graphite waste exists worldwide and that quantity is expected to increase with decommissioning of Generation II reactors and deployment of Generation IV gas-cooled, graphite moderated reactors. This situation indicates the need for a graphite waste management strategy. On of the isotopes of great concern for long-term disposal of irradiated graphite is carbon-14 (14C), with a half-life of 5730 years. Study of irradiated graphite from some nuclear reactors indicates 14C is concentrated on the outer 5 mm of the graphite structure. The aim of the research presented here is to develop a practical method by which 14C can be removed. In parallel with these efforts, the same irradiated graphite material is being characterized to identify the chemical form of 14C in irradiated graphite. A nuclear-grade graphite, NBG-18, and a high-surface-area graphite foam, POCOFoam®, were exposed to liquid nitrogen (to increase the quantity of 14C precursor) and neutron-irradiated (1013 neutrons/cm2/s). During post-irradiation thermal treatment, graphite samples were heated in the presence of an inert carrier gas (with or without the addition of an oxidant gas), which carries off gaseous products released during treatment. Graphite gasification occurs via interaction with adsorbed oxygen complexes. Experiments in argon only were performed at 900 °C and 1400 °C to evaluate the selective removal of 14C. Thermal treatment also was performed with the addition of 3 and 5 vol% oxygen at temperatures 700 °C and 1400 °C. Thermal treatment experiments were evaluated for the effective selective removal of 14C. Lower temperatures and oxygen levels correlated to more efficient 14C removal.

  7. Synthesis of ACECLOFENAC/HYDROXYPROPYL-β-CYCLODEXTRIN Intercalated Layered Double Hydroxides and Controlled Release Properties

    NASA Astrophysics Data System (ADS)

    Li, Shifeng; Shen, Yanming; Liu, Dongbin; Fan, Lihui; Wu, Keke; Xiao, Min

    2013-06-01

    Aceclofenac (AC)/hydroxypropyl-β-cyclodextrin (HP-β-CD) complex intercalated layered double hydroxides (LDHs) have been synthesized by reconstruction method. X-ray diffraction, Fourier transform infrared and thermal gravimetric analyses indicated a successful intercalation of AC/HP-β-CD complex into the LDHs gallery. The AC release properties were also studied in different pH values buffer solution. The results indicate that the AC/HP-β-CD intercalated LDH has a potential application in drug delivery agent.

  8. High field superconductivity in alkali metal intercalates of MoS2

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Flood, D. J.; Wagoner, D. E.; Somoano, R. B.; Rembaum, A.

    1973-01-01

    In the search for better high temperature, high critical field superconductors, a class of materials was found which have layered structures and can be intercalated with various elements and compounds. Since a large number of compounds can be formed, intercalation provides a method of control of superconducting properties. They also provide the possible medium for excitonic superconductivity. Results of magnetic field studies are presented on alkali metal (Na, K, Rb, and Cs) intercalated MoS2 (2H polymorph).

  9. Magnetic field effects on superconductivity in alkali metal intercalates of MoS2

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Flood, D. J.; Wagoner, D. E.; Somoano, R. B.; Rembaum, A.

    1972-01-01

    The effects of a magnetic field on the superconducting transition in MoS2 intercalated with potassium and sodium were studied. It was found that the potassium intercalated MoS2 has better properties in a magnetic field. In zero magnetic field the transition to superconductivity begins near 6.4 K. Diagrams of the basic circuitry for superconducting transition studies, and charts showing critical magnetic field versus critical temperature for the intercalated MoS2 are included.

  10. NGNP Graphite Selection and Acquisition Strategy

    SciTech Connect

    Burchell, T.; Bratton, R.; Windes, W.

    2007-09-30

    The nuclear graphite (H-451) previously used in the United States for High-Temperature Reactors (HTRs) is no longer available. New graphites have been developed and are considered suitable candidates for the Next-Generation Nuclear Plant (NGNP). A complete properties database for these new, available, candidate grades of graphite must be developed to support the design and licensing of NGNP core components. Data are required for the physical, mechanical (including radiation-induced creep), and oxidation properties of graphites. Moreover, the data must be statistically sound and take account of in-billet, between billets, and lot-to-lot variations of properties. These data are needed to support the ongoing development1 of the risk-derived American Society of Mechanical Engineers (ASME) graphite design code (a consensus code being prepared under the jurisdiction of the ASME by gas-cooled reactor and NGNP stakeholders including the vendors). The earlier Fort St. Vrain design of High-Temperature Reactor (HTRs) used deterministic performance models for H-451, while the NGNP will use new graphite grades and risk-derived (probabilistic) performance models and design codes, such as that being developed by the ASME. A radiation effects database must be developed for the currently available graphite materials, and this requires a substantial graphite irradiation program. The graphite Technology Development Plan (TDP)2 describes the data needed and the experiments planned to acquire these data in a timely fashion to support NGNP design, construction, and licensing. The strategy for the selection of appropriate grades of graphite for the NGNP is discussed here. The final selection of graphite grades depends upon the chosen reactor type and vendor because the reactor type (pebble bed or prismatic block) has a major influence on the graphite chosen by the designer. However, the time required to obtain the needed irradiation data for the selected NGNP graphite is sufficiently

  11. Nanostructured carbon films with oriented graphitic planes

    SciTech Connect

    Teo, E. H. T.; Kalish, R.; Kulik, J.; Kauffmann, Y.; Lifshitz, Y.

    2011-03-21

    Nanostructured carbon films with oriented graphitic planes can be deposited by applying energetic carbon bombardment. The present work shows the possibility of structuring graphitic planes perpendicular to the substrate in following two distinct ways: (i) applying sufficiently large carbon energies for deposition at room temperature (E>10 keV), (ii) utilizing much lower energies for deposition at elevated substrate temperatures (T>200 deg. C). High resolution transmission electron microscopy is used to probe the graphitic planes. The alignment achieved at elevated temperatures does not depend on the deposition angle. The data provides insight into the mechanisms leading to the growth of oriented graphitic planes under different conditions.

  12. METHOD FOR COATING GRAPHITE WITH NIOBIUM CARBIDE

    DOEpatents

    Kane, J.S.; Carpenter, J.H.; Krikorian, O.H.

    1962-01-16

    A method is given for coating graphite with a hard, tenacious layer of niobium carbide up to 30 mils or more thick. The method makes use of the discovery that niobium metal, if degassed and heated rapidly below the carburization temperature in contact with graphite, spreads, wets, and penetrates the graphite without carburization. The method includes the obvious steps of physically contacting niobium powders or other physical forms of niobium with graphite, degassing the assembly below the niobium melting point, e.g., 1400 deg C, heating to about 2200 to 2400 deg C within about 15 minutes while outgassing at a high volume throughput, and thereafter carburizing the niobium. (AEC)

  13. Tuning the properties of polymer bulk heterojunction solar cells by adjusting fullerene size to control intercalation

    SciTech Connect

    Cates, N.C.

    2010-02-24

    We demonstrate that intercalation of fullerene derivatives between the side chains of conjugated polymers can be controlled by adjusting the fullerene size and compare the properties of intercalated and nonintercalated poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene) (pBTTT):fullerene blends. The intercalated blends, which exhibit optimal solar-cell performance at 1:4 polymer:fullerene by weight, have better photoluminescence quenching and lower absorption than the nonintercalated blends, which optimize at 1:1. Understanding how intercalation affects performance will enable more effective design of polymer:fullerene solar cells.

  14. Potential Modulated Intercalation of Alkali Cations into Metal Hexacyanoferrate Coated Electrodes

    SciTech Connect

    Daniel T. Schwartz; Bekki Liu; Marlina Lukman; Kavita M. Jeerage; William A. Steen; Haixia Dai; Qiuming Yu; J. Antonio Medina

    2002-02-18

    Nickel hexacyanoferrate is a polynuclear inorganic ion intercalation material that loads (intercalates) and elutes (deintercalates) alkali cations from its structure when electrochemically reduced and oxidized, respectively. Nickel hexacyanoferrrate (NiHCF) is known to preferentially intercalate cesium over all other alkali cations, thus providing a basis for a separation scheme that can tackle DOE's radiocesium contamination problem. This program studied fundamental issues in alkalization intercalation and deintercalation in nickel hexacyanoferrate compounds, with the goal of (1) quantifying the ion exchange selectivity properties from cation mixtures, (2) enhancing ion exchange capacities, and (3) and understanding the electrochemically-switched ion exchange process (ESIX).

  15. Proceedings of the conference on electrochemistry of carbon allotropes: Graphite, fullerenes and diamond

    SciTech Connect

    Kinoshita, K.; Scherson, D.

    1998-02-01

    This conference provided an opportunity for electrochemists, physicists, materials scientists and engineers to meet and exchange information on different carbon allotropes. The presentations and discussion among the participants provided a forum to develop recommendations on research and development which are relevant to the electrochemistry of carbon allotropes. The following topics which are relevant to the electrochemistry of carbon allotropes were addressed: Graphitized and disordered carbons, as Li-ion intercalation anodes for high-energy-density, high-power-density Li-based secondary batteries; Carbons as substrate materials for catalysis and electrocatalysis; Boron-doped diamond film electrodes; and Electrochemical characterization and electrosynthesis of fullerenes and fullerene-type materials. Abstracts of the presentations are presented.

  16. Graphitized-carbon fiber/carbon char fuel

    SciTech Connect

    Cooper, John F.

    2007-08-28

    A method for recovery of intact graphitic fibers from fiber/polymer composites is described. The method comprises first pyrolyzing the graphite fiber/polymer composite mixture and then separating the graphite fibers by molten salt electrochemical oxidation.

  17. Gasifiable carbon-graphite fibers

    NASA Technical Reports Server (NTRS)

    Humphrey, Marshall F. (Inventor); Ramohalli, Kumar N. R. (Inventor); Dowler, Warren L. (Inventor)

    1982-01-01

    Fine, carbon-graphite fibers do not combust during the combustion of a composite and are expelled into the air as fine conductive particles. Coating of the fibers with a salt of a metal having a work function below 4.2 eV such as an alkaline earth metal salt, e.g., calcium acetate, catalytically enhances combustion of the fibers at temperatures below 1000.degree. C. such that the fibers self-support combustion and burn to produce a non-conductive ash. Fire-polishing the fibers before application of the coating is desirable to remove sizing to expose the carbon surface to the catalyst.

  18. Resin/graphite fiber composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.; Jones, R. J.; Vaughan, R. W.

    1972-01-01

    High temperature resin matrices suitable for use in advanced graphite fiber composites for jet engine applications were evaluated. A series of planned, sequential screening experiments with resin systems in composite form were performed to reduce the number of candidates to a single A-type polyimide resin that repetitively produced void-free, high strength and modulus composites acceptable for use in the 550 F range for 1000 hours. An optimized processing procedure was established for this system. Extensive mechanical property studies characterized this single system, at room temperature, 500 F, 550 F and 600 F, for various exposure times.

  19. Benchmarking thermal neutron scattering in graphite

    NASA Astrophysics Data System (ADS)

    Zhou, Tong

    A Slowing-Down-Time experiment was designed and performed at the Oak Ridge National Laboratory (ORNL) by using the Oak Ridge Electron Linear Accelerator (ORELA) as a neutron source to study the neutron thermalization in graphite at room and higher temperatures. The MCNP5 code was utilized to simulate the detector responses and help optimize the experimental design including the size of the graphite assembly, furnace, shielding system and detector position. To facilitate such analysis, MCNP5 version 1.30 was modified to enable perturbation calculation using point detector type tallies. By using the modified MCNP5 code, the sensitivity of the experimental models to the graphite total thermal neutron cross-sections was studied to optimize the design of the experiment. Measurements of slowing-down-time spectrum in graphite were performed at room temperature for a 70x70x70 cm graphite pile by using a Li-6 scintillator and a U-235 fission counter at different locations. The measurements were directly compared to Monte Carlo simulations that use different graphite thermal neutron scattering cross-section libraries. Simulations based on the ENDF/B-VI graphite library were found to have a 30%-40% disagreement with the measurements. In addition to the graphite SDT experiment, which provided the data in the energy region above the graphite Bragg-cutoff energy, transmission experiments were performed for different types of graphite samples using the NIST 8.9 A beam (located at NG-6) to investigating the energy region below the Bragg-cutoff energy. Measurements confirmed that reactor grade graphite, which is a two phase material (crystalline graphite and binder (amorphous-like) carbon), has different thermal neutron scattering cross section from pyrolytic graphite (crystalline graphite). The experiments presented in this work compliment each other and provide an experimental data set which can be used to benchmark graphite thermal neutron scattering cross section libraries that

  20. The intercalated nuclear complex of the primate amygdala.

    PubMed

    Zikopoulos, Basilis; John, Yohan J; García-Cabezas, Miguel Ángel; Bunce, Jamie G; Barbas, Helen

    2016-08-25

    The organization of the inhibitory intercalated cell masses (IM) of the primate amygdala is largely unknown despite their key role in emotional processes. We studied the structural, topographic, neurochemical and intrinsic connectional features of IM neurons in the rhesus monkey brain. We found that the intercalated neurons are not confined to discrete cell clusters, but form a neuronal net that is interposed between the basal nuclei and extends to the dorsally located anterior, central, and medial nuclei of the amygdala. Unlike the IM in rodents, which are prominent in the anterior half of the amygdala, the primate inhibitory net stretched throughout the antero-posterior axis of the amygdala, and was most prominent in the central and posterior extent of the amygdala. There were two morphologic types of intercalated neurons: spiny and aspiny. Spiny neurons were the most abundant; their somata were small or medium size, round or elongated, and their dendritic trees were round or bipolar, depending on location. The aspiny neurons were on average slightly larger and had varicose dendrites with no spines. There were three non-overlapping neurochemical populations of IM neurons, in descending order of abundance: (1) Spiny neurons that were positive for the striatal associated dopamine- and cAMP-regulated phosphoprotein (DARPP-32+); (2) Aspiny neurons that expressed the calcium-binding protein calbindin (CB+); and (3) Aspiny neurons that expressed nitric oxide synthase (NOS+). The unique combinations of structural and neurochemical features of the three classes of IM neurons suggest different physiological properties and function. The three types of IM neurons were intermingled and likely interconnected in distinct ways, and were innervated by intrinsic neurons within the amygdala, or by external sources, in pathways that underlie fear conditioning and anxiety. PMID:27256508

  1. Li(V0.5Ti0.5)S2 as a 1 V lithium intercalation electrode

    PubMed Central

    Clark, Steve J.; Wang, Da; Armstrong, A. Robert; Bruce, Peter G.

    2016-01-01

    Graphite, the dominant anode in rechargeable lithium batteries, operates at ∼0.1 V versus Li+/Li and can result in lithium plating on the graphite surface, raising safety concerns. Titanates, for example, Li4Ti5O12, intercalate lithium at∼1.6 V versus Li+/Li, avoiding problematic lithium plating at the expense of reduced cell voltage. There is interest in 1 V anodes, as this voltage is sufficiently high to avoid lithium plating while not significantly reducing cell potential. The sulfides, LiVS2 and LiTiS2, have been investigated as possible 1 V intercalation electrodes but suffer from capacity fading, large 1st cycle irreversible capacity or polarization. Here we report that the 50/50 solid solution, Li1+x(V0.5Ti0.5)S2, delivers a reversible capacity to store charge of 220 mAhg−1 (at 0.9 V), 99% of theoretical, at a rate of C/2, retaining 205 mAhg−1 at C-rate (92% of theoretical). Rate capability is excellent with 200 mAhg−1 at 3C. C-rate is discharge in 1 h. Polarization is low, 100 mV at C/2. To the best of our knowledge, the properties/performances of Li(V0.5Ti0.5)S2 exceed all previous 1 V electrodes. PMID:26996753

  2. Fluorinated graphite fibers as a new engineering material: Promises and challenges

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh; Long, Martin

    1989-01-01

    Pitch based graphitized carbon fibers with electrical resistivity of 300 micro-Ohm/cm were brominated and partially debrominated to 18 percent bromine at room temperature, and then fluorinated at 300 to 450 C, either continuously or intermittently for several cycles. In addition, on fluorine and titanium fluoride intercalated fiber sample was fluorinated at 270 C from the same fiber source. The mass and conductivity of the brominated-debrominated then fluorinated fibers (with fluorine-to-carbon atom ratio of 0.54 or higher) stabilized at room temperature air in a few days. However, at 200 C, these values decreased rapidly and then more slowly, throughout a 2-week test period. The electrically insulative or semiconductive fibers were found to be compatible with epoxy and have the fluorine-to-carbon atom ratio of 0.65 to 0.68, thermal conductivity of 5 to 24 W/m-K, electrical resistivity of 10(exp 4) to 10(exp 11) Ohm/cm, tensile strength of 70 to 150 ksi, Young's modulus of 20 to 30 msi, and CTE (coefficient of thermal expansion) values of 7 ppm/deg C. Data of these physical property values are preliminary. However, it is concluded that these physical properties can be tailor-made. They depend largely on the fluorine content of the final products and the intercalant in the fibers before fluorination, and, to a smaller extent, on the fluorination temperature histogram.

  3. Intercalation of small hydrophobic molecules in lipid bilayers containing cholesterol

    SciTech Connect

    Worcester, D.L.; Hamacher, K.; Kaiser, H.; Kulasekere, R.; Torbet, J.

    1994-12-31

    Partitioning of small hydrophobic molecules into lipid bilayers containing cholesterol has been studied using the 2XC diffractometer at the University of Missouri Research Reactor. Locations of the compounds were determined by Fourier difference methods with data from both deuterated and undeuterated compounds introduced into the bilayers from the vapor phase. Data fitting procedures were developed for determining how well the compounds were localized. The compounds were found to be localized in a narrow region at the center of the hydrophobic layer, between the two halves of the bilayer. The structures are therefore intercalated structures with the long axis of the molecules in the plane of the bilayer.

  4. Lithium Intercalation in Core-Shell Materials-Theoretical Analysis

    SciTech Connect

    Suthar, B; Subramanian, VR

    2014-03-04

    Core-shell composite structures are potential candidates for Li-ion battery electrodes as they can take advantage of materials with higher energy density and materials with higher cyclability. This paper derives an analytical solution for isotropic 1-dimensional diffusion with galvanostatic boundary condition in composite slab, cylinder and sphere using separation of variables method. A general interfacial condition has been used to represent the dynamics at the interface of the composite material rendering the solution useful for wide variety of battery materials. Using the derived analytical solution for diffusion, intercalation induced stresses were estimated for spherical core-shell materials. (C) 2014 The Electrochemical Society. All rights reserved.

  5. Highly p-doped epitaxial graphene obtained by fluorine intercalation

    NASA Astrophysics Data System (ADS)

    Walter, Andrew L.; Jeon, Ki-Joon; Bostwick, Aaron; Speck, Florian; Ostler, Markus; Seyller, Thomas; Moreschini, Luca; Kim, Yong Su; Chang, Young Jun; Horn, Karsten; Rotenberg, Eli

    2011-05-01

    We present a method for decoupling epitaxial graphene grown on SiC(0001) by intercalation of a layer of fluorine at the interface. The fluorine atoms do not enter into a covalent bond with graphene but rather saturate the substrate Si bonds. This configuration of the fluorine atoms induces a remarkably large hole density of p ≈4.5×1013 cm-2, equivalent to the location of the Fermi level at 0.79 eV above the Dirac point ED.

  6. Intercalation of graphene on iridium with sodium atoms

    NASA Astrophysics Data System (ADS)

    Rut'kov, E. V.; Gall', N. R.

    2015-06-01

    It has been shown that sodium atoms deposited on the surface of graphene atop iridium at T ≤ 850 K diffuse under the graphene layer into an intercalated state and accumulate there in significant concentrations ˜(2-3) × 1014 atoms cm-2. The release of the atoms from under the graphene "carpet" takes place upon destruction of the layer at T ≥ 1800 K. The physical nature of the differences in the processes of release of atoms of different alkali metals from under graphene has been discussed.

  7. Developments in Hollow Graphite Fiber Technology

    NASA Technical Reports Server (NTRS)

    Stallcup, Michael; Brantley, Lott W., Jr. (Technical Monitor)

    2002-01-01

    Hollow graphite fibers will be lighter than standard solid graphite fibers and, thus, will save weight in optical components. This program will optimize the processing and properties of hollow carbon fibers developed by MER and to scale-up the processing to produce sufficient fiber for fabricating a large ultra-lightweight mirror for delivery to NASA.

  8. Mineral Resource of the Month: Graphite

    USGS Publications Warehouse

    Olson, Donald W.

    2008-01-01

    Graphite, a grayish black opaque mineral with a metallic luster, is one of four forms of pure crystalline carbon (the others are carbon nanotubes, diamonds and fullerenes). It is one of the softest minerals and it exhibits perfect basal (one-plane) cleavage. Graphite is the most electrically and thermally conductive of the nonmetals, and it is chemically inert.

  9. Inhibition of Oxidation in Nuclear Graphite

    SciTech Connect

    Phil Winston; James W. Sterbentz; William E. Windes

    2013-10-01

    Graphite is a fundamental material of high temperature gas cooled nuclear reactors, providing both structure and neutron moderation. Its high thermal conductivity, chemical inertness, thermal heat capacity, and high thermal structural stability under normal and off normal conditions contribute to the inherent safety of these reactor designs. One of the primary safety issues for a high temperature graphite reactor core is the possibility of rapid oxidation of the carbon structure during an off normal design basis event where an oxidizing atmosphere (air ingress) can be introduced to the hot core. Although the current Generation IV high temperature reactor designs attempt to mitigate any damage caused by a postualed air ingress event, the use of graphite components that inhibit oxidation is a logical step to increase the safety of these reactors. Recent experimental studies of graphite containing between 5.5 and 7 wt% boron carbide (B4C) indicate that oxidation is dramatically reduced even at prolonged exposures at temperatures up to 900°C. The proposed addition of B4C to graphite components in the nuclear core would necessarily be enriched in B-11 isotope in order to minimize B-10 neutron absorption and graphite swelling. The enriched boron can be added to the graphite during billet fabrication. Experimental oxidation rate results and potential applications for borated graphite in nuclear reactor components will be discussed.

  10. Tire containing thermally exfoliated graphite oxide

    NASA Technical Reports Server (NTRS)

    Prud'homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2011-01-01

    A tire, tire lining or inner tube, containing a polymer composite, made of at least one rubber and/or at least one elastomer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g.

  11. SIMPLIFIED SODIUM GRAPHITE REACTOR SYSTEM

    DOEpatents

    Dickinson, R.W.

    1963-03-01

    This patent relates to a nuclear power reactor comprising a reactor vessel, shielding means positioned at the top of said vessel, means sealing said reactor vessel to said shielding means, said vessel containing a quantity of sodium, a core tank, unclad graphite moderator disposed in said tank, means including a plurality of process tubes traversing said tank for isolating said graphite from said sodium, fuel elements positioned in said process tubes, said core tank being supported in spaced relation to the walls and bottom of said reactor vessel and below the level of said sodium, neutron shielding means positioned adjacent said core tank between said core tank and the walls of said vessel, said neutron shielding means defining an annuiar volume adjacent the inside wall of said reactor vessel, inlet plenum means below said core tank for providing a passage between said annular volume and said process tubes, heat exchanger means removably supported from the first-named shielding means and positioned in said annular volume, and means for circulating said sodium over said neutron shielding means down through said heat exchanger, across said inlet plenum and upward through said process tubes, said last-named means including electromagnetic pumps located outside said vessel and supported on said vessel wall between said heat exchanger means and said inlet plenum means. (AEC)

  12. Hydrogen storage in graphite nanofibers

    SciTech Connect

    Park, C.; Tan, C.D.; Hidalgo, R.; Baker, R.T.K.; Rodriguez, N.M.

    1998-08-01

    Graphite nanofibers (GNF) are a type of material that is produced by the decomposition of carbon containing gases over metal catalyst particles at temperatures around 600 C. These molecularly engineered structures consist of graphene sheets perfectly arranged in a parallel, perpendicular or at angle orientation with respect to the fiber axis. The most important feature of the material is that only edges are exposed. Such an arrangement imparts the material with unique properties for gas adsorption because the evenly separated layers constitute the most ordered set of nanopores that can accommodate an adsorbate in the most efficient manner. In addition, the non-rigid pore walls can also expand so as to accommodate hydrogen in a multilayer conformation. Of the many varieties of structures that can be produced the authors have discovered that when gram quantities of a selected number of GNF are exposed to hydrogen at pressures of {approximately} 2,000 psi, they are capable of adsorbing and storing up to 40 wt% of hydrogen. It is believed that a strong interaction is established between hydrogen and the delocalized p-electrons present in the graphite layers and therefore a new type of chemistry is occurring within these confined structures.

  13. Development of polyphenylquinoxaline graphite composites

    NASA Technical Reports Server (NTRS)

    Hoggatt, J. T.; Hill, S. G.; Shdo, J. G.

    1974-01-01

    This exploratory program was divided into four basic tasks. The initial phase was devoted toward investigating processing variables associated with previously developed PPO resins. These polymers were derived from p-bis(phenyl glyoxalyl)benzene reacted with 3,3'-diamino benzidine and/or 3,3',4,4'-tetramino benzophenone. Four new phenyl quinoxaline polymers were synthesized and characterized in Tasks 2 and 3. These consisted of a hydroxyl group containing PPQ synthesized from 3,3'-diamino benzidine (DAB), m-bis(phenyl glyoxal)benzene and m-bis(p'-hydroxy phenyl glyoxalyl) benzene; a cyano group containing PPQ from the reaction of DAB and p-bis(p'-cyano phenoxy phenyl glyoxalyl)benzene; an end-capped block copolymer; and a polymer from the reaction of 3,3',4,4'-tetraamino benzo phenone and m-bis(phenyl glyoxalyl)benzene. The latter two polymers were chosen for composite studies in the latter two tasks of the program. Mechanical properties of the graphite reinforced PPQ composites were determined over the temperature range of +21 C to 316 C. Flexural strengths of the HMS graphite fiber composites were in excess of 8.97 X 10 to the 8th power N/sq m (130,000 psi) at +21 C (70 F) with over 50% strength retention at +316 C.

  14. Research on graphite reinforced glass matrix composites

    NASA Technical Reports Server (NTRS)

    Bacon, J. F.; Prewo, K. M.; Thompson, E. R.

    1978-01-01

    A composite that can be used at temperatures up to 875 K with mechanical properties equal or superior to graphite fiber reinforced epoxy composites is presented. The composite system consist of graphite fiber, uniaxially or biaxially, reinforced borosilicate glass. The mechanical and thermal properties of such a graphite fiber reinforced glass composite are described, and the system is shown to offer promise as a high performance structural material. Specific properties that were measured were: a modified borosilicate glass uniaxially reinforced by Hercules HMS graphite fiber has a three-point flexural strength of 1030 MPa, a four-point flexural strength of 964 MPa, an elastic modulus of 199 GPa and a failure strain of 0.0052. The preparation and properties of similar composites with Hercules HTS, Celanese DG-102, Thornel 300 and Thornel Pitch graphite fibers are also described.

  15. Microstructural Characterization of Next Generation Nuclear Graphites

    SciTech Connect

    Karthik Chinnathambi; Joshua Kane; Darryl P. Butt; William E. Windes; Rick Ubic

    2012-04-01

    This article reports the microstructural characteristics of various petroleum and pitch based nuclear graphites (IG-110, NBG-18, and PCEA) that are of interest to the next generation nuclear plant program. Bright-field transmission electron microscopy imaging was used to identify and understand the different features constituting the microstructure of nuclear graphite such as the filler particles, microcracks, binder phase, rosette-shaped quinoline insoluble (QI) particles, chaotic structures, and turbostratic graphite phase. The dimensions of microcracks were found to vary from a few nanometers to tens of microns. Furthermore, the microcracks were found to be filled with amorphous carbon of unknown origin. The pitch coke based graphite (NBG-18) was found to contain higher concentration of binder phase constituting QI particles as well as chaotic structures. The turbostratic graphite, present in all of the grades, was identified through their elliptical diffraction patterns. The difference in the microstructure has been analyzed in view of their processing conditions.

  16. NLP-1: a DNA intercalating hypoxic cell radiosensitizer and cytotoxin

    SciTech Connect

    Panicucci, R.; Heal, R.; Laderoute, K.; Cowan, D.; McClelland, R.A.; Rauth, A.M.

    1989-04-01

    The 2-nitroimidazole linked phenanthridine, NLP-1 (5-(3-(2-nitro-1-imidazoyl)-propyl)-phenanthridinium bromide), was synthesized with the rationale of targeting the nitroimidazole to DNA via the phenanthridine ring. The drug is soluble in aqueous solution (greater than 25 mM) and stable at room temperature. It binds to DNA with a binding constant 1/30 that of ethidium bromide. At a concentration of 0.5 mM, NLP-1 is 8 times more toxic to hypoxic than aerobic cells at 37 degrees C. This concentration is 40 times less than the concentration of misonidazole, a non-intercalating 2-nitroimidazole, required for the same degree of hypoxic cell toxicity. The toxicity of NLP-1 is reduced at least 10-fold at 0 degrees C. Its ability to radiosensitize hypoxic cells is similar to misonidazole at 0 degrees C. Thus the putative targeting of the 2-nitroimidazole, NLP-1, to DNA, via its phenanthridine group, enhances its hypoxic toxicity, but not its radiosensitizing ability under the present test conditions. NLP-1 represents a lead compound for intercalating 2-nitroimidazoles with selective toxicity for hypoxic cells.

  17. Intercalation of cellulase enzyme into a hydrotalcite layer structure

    NASA Astrophysics Data System (ADS)

    Zou, N.; Plank, J.

    2015-01-01

    A new inorganic-organic hybrid material whereby cellulase enzyme is incorporated into a hydrotalcite type layered double hydroxide (LDH) structure is reported. The Mg2Al-cellulase-LDH was synthesized via co-precipitation from Mg/Al nitrate at pH=9.6. Characterization was performed using X-ray powder diffraction (XRD), small angle X-ray scattering (SAXS), elemental analysis, infrared spectroscopy (IR) and thermogravimetry (TG). From XRD and SAXS measurements, a d-value of ~5.0 nm was identified for the basal spacing of the Mg2Al-cellulase-LDH. Consequently, the cellulase enzyme (hydrodynamic diameter ~6.6 nm) attains a slightly compressed conformation when intercalated. Formation of the LDH hybrid was also confirmed via scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Mg2Al-cellulase-LDH phases appear as ~20 nm thin foils which are intergrown to flower-like aggregates. Activity of the enzyme was retained after deintercalation from the Mg2Al-LDH framework using anion exchange. Accordingly, cellulase is not denatured during the intercalation process, and LDH presents a suitable host structure for time-controlled release of the biomolecule.

  18. Modeling of alkyl quaternary ammonium cations intercalated into montmorillonite lattice

    SciTech Connect

    Daoudi, El Mehdi; Boughaleb, Yahia; El Gaini, Layla; Meghea, Irina; Bakasse, Mina

    2013-05-15

    Highlights: ► The modification of montmorillonites by three surfactants increases the basal spacing. ► The model proposed show a bilayer conformation for the surfactant ODTMA. ► The DODMA and TOMA surfactants adopt a paraffin type arrangement. ► Behavior of surfactants in interlayer space was confirmed by TGA and ATR analysis. - Abstract: The objective of this work was to study the conformation of the quaternary ammonium cations viz., octadecyl trimethyl ammonium (ODTMA), dioctadecyl dimethyl ammonium (DMDOA) and trioctadecyl methyl ammonium (TOMA) intercalated within montmorillonite. The modified montmorillonite was characterized by X-ray diffraction in small angle (SAXS), thermal analysis (TGA) and infrared spectroscopy of attenuated total reflection (ATR). The modification of organophilic montmorillonites by the three surfactants ODTMA, DMDOA and TOMA increases the basal spacing from their respective intercalated distances of 1.9 nm, 2.6 nm and 3.4 nm respectively. The increase in the spacing due to the basic organic modification was confirmed by the results of thermal analysis (TGA) and infrared spectroscopy (ATR), and also supported by theoretical calculations of longitudinal and transversal chain sizes of these alkyl quaternary ammonium cations.

  19. An intercalation-locked parallel-stranded DNA tetraplex

    SciTech Connect

    Tripathi, S.; Zhang, D.; Paukstelis, P. J.

    2015-01-27

    DNA has proved to be an excellent material for nanoscale construction because complementary DNA duplexes are programmable and structurally predictable. However, in the absence of Watson–Crick pairings, DNA can be structurally more diverse. Here, we describe the crystal structures of d(ACTCGGATGAT) and the brominated derivative, d(ACBrUCGGABrUGAT). These oligonucleotides form parallel-stranded duplexes with a crystallographically equivalent strand, resulting in the first examples of DNA crystal structures that contains four different symmetric homo base pairs. Two of the parallel-stranded duplexes are coaxially stacked in opposite directions and locked together to form a tetraplex through intercalation of the 5'-most A–A base pairs between adjacent G–G pairs in the partner duplex. The intercalation region is a new type of DNA tertiary structural motif with similarities to the i-motif. 1H–1H nuclear magnetic resonance and native gel electrophoresis confirmed the formation of a parallel-stranded duplex in solution. Finally, we modified specific nucleotide positions and added d(GAY) motifs to oligonucleotides and were readily able to obtain similar crystals. This suggests that this parallel-stranded DNA structure may be useful in the rational design of DNA crystals and nanostructures.

  20. An intercalation-locked parallel-stranded DNA tetraplex

    DOE PAGESBeta

    Tripathi, S.; Zhang, D.; Paukstelis, P. J.

    2015-01-27

    DNA has proved to be an excellent material for nanoscale construction because complementary DNA duplexes are programmable and structurally predictable. However, in the absence of Watson–Crick pairings, DNA can be structurally more diverse. Here, we describe the crystal structures of d(ACTCGGATGAT) and the brominated derivative, d(ACBrUCGGABrUGAT). These oligonucleotides form parallel-stranded duplexes with a crystallographically equivalent strand, resulting in the first examples of DNA crystal structures that contains four different symmetric homo base pairs. Two of the parallel-stranded duplexes are coaxially stacked in opposite directions and locked together to form a tetraplex through intercalation of the 5'-most A–A base pairs betweenmore » adjacent G–G pairs in the partner duplex. The intercalation region is a new type of DNA tertiary structural motif with similarities to the i-motif. 1H–1H nuclear magnetic resonance and native gel electrophoresis confirmed the formation of a parallel-stranded duplex in solution. Finally, we modified specific nucleotide positions and added d(GAY) motifs to oligonucleotides and were readily able to obtain similar crystals. This suggests that this parallel-stranded DNA structure may be useful in the rational design of DNA crystals and nanostructures.« less

  1. An intercalation-locked parallel-stranded DNA tetraplex

    PubMed Central

    Tripathi, Shailesh; Zhang, Daoning; Paukstelis, Paul J.

    2015-01-01

    DNA has proved to be an excellent material for nanoscale construction because complementary DNA duplexes are programmable and structurally predictable. However, in the absence of Watson–Crick pairings, DNA can be structurally more diverse. Here, we describe the crystal structures of d(ACTCGGATGAT) and the brominated derivative, d(ACBrUCGGABrUGAT). These oligonucleotides form parallel-stranded duplexes with a crystallographically equivalent strand, resulting in the first examples of DNA crystal structures that contains four different symmetric homo base pairs. Two of the parallel-stranded duplexes are coaxially stacked in opposite directions and locked together to form a tetraplex through intercalation of the 5′-most A–A base pairs between adjacent G–G pairs in the partner duplex. The intercalation region is a new type of DNA tertiary structural motif with similarities to the i-motif. 1H–1H nuclear magnetic resonance and native gel electrophoresis confirmed the formation of a parallel-stranded duplex in solution. Finally, we modified specific nucleotide positions and added d(GAY) motifs to oligonucleotides and were readily able to obtain similar crystals. This suggests that this parallel-stranded DNA structure may be useful in the rational design of DNA crystals and nanostructures. PMID:25628357

  2. Strong magneto-crystalline anisotropy in transition metal intercalated dichalcogenides

    NASA Astrophysics Data System (ADS)

    Loganathan, Vaideesh; Nevidomskyy, Andriy; Zhu, Jian-Xin

    2015-03-01

    A figure of merit for hard ferromagnets is proportional to the magneto-crystalline anisotropy energy (MAE), which measures the energy cost of deviations from easy-axis magnetization. Materials containing elements with strong spin-orbit coupling and large ordered moment have been found to be strongly anisotropic. Due to the scarce availability of rare earths, hard magnets without rare earths are desirable, and intercalated metal dichalcogenides, A0 . 25 MS2 (A=Fe,Mn; M=Ta,Nb), are one such candidate. We have performed first-principles LDA+U calculations on these materials. The MAE was calculated using two approaches, from the total energy difference between easy and hard magnetic directions using the non-collinear method; and using the torque method. Along with a saturated moment of 4 μB , we find MAE of about 10meV. This corresponds to an anisotropy field of about 60 T, comparable to those of rare-earth magnets. Substitution of Ta with Nb yields minor change in MAE, suggesting that the spin-orbit coupling effect contributes less to the anisotropy than the crystal structure. We find that the MAE in Fe intercalated compounds strongly depends on the value of the Hubbard U. We also study the effect on MAE of lattice strain, which can be used to tune the anisotropy.

  3. Duplex-Selective Ruthenium-based DNA Intercalators

    PubMed Central

    Shade, Chad M.; Kennedy, Robert D.; Rouge, Jessica L.; Rosen, Mari S.; Wang, Mary X.; Seo, Soyoung E.; Clingerman, Daniel J.

    2016-01-01

    We report the design and synthesis of small molecules that exhibit enhanced luminescence in the presence of duplex rather than single-stranded DNA. The local environment presented by a well-known [Ru(dipyrido[2,3-a:3',2'-c]phenazine)L2]2+-based DNA intercalator was modified by functionalizing the bipyridine ligands with esters and carboxylic acids. By systematically varying the number and charge of the pendant groups, it was determined that decreasing the electrostatic interaction between the intercalator and the anionic DNA backbone reduced single-strand interactions and translated to better duplex specificity. In studying this class of complexes, a single RuII complex emerged that selectively luminesces in the presence of duplex DNA with little to no background from interacting with single stranded DNA. This complex shows promise as a new dye capable of selectively staining double versus single-stranded DNA in gel electrophoresis, which cannot be done with conventional SYBR dyes. PMID:26119581

  4. Role of the intercalated disc in cardiac propagation and arrhythmogenesis

    PubMed Central

    Kleber, Andre G.; Saffitz, Jeffrey E.

    2014-01-01

    This review article discusses mechanisms underlying impulse propagation in cardiac muscle with specific emphasis on the role of the cardiac cell-to-cell junction, called the “intercalated disc.”The first part of this review deals with the role of gap junction channels, formed by connexin proteins, as a determinant of impulse propagation. It is shown that, depending on the underlying structure of the cellular network, decreasing the conductance of gap junction channels (so-called “electrical uncoupling”) may either only slow, or additionally stabilize propagation and reverse unidirectional propagation block to bidirectional propagation. This is because the safety factor for propagation increases with decreasing intercellular electrical conductance. The role of heterogeneous connexin expression, which may be present in disease states, is also discussed. The hypothesis that so-called ephaptic impulse transmission plays a role in heart and can substitute for electrical coupling has been revived recently. Whereas ephaptic transmission can be demonstrated in theoretical simulations, direct experimental evidence has not yet been presented. The second part of this review deals with the interaction of three protein complexes at the intercalated disc: (1) desmosomal and adherens junction proteins, (2) ion channel proteins, and (3) gap junction channels consisting of connexins. Recent work has revealed multiple interactions between these three protein complexes which occur, at least in part, at the level of protein trafficking. Such interactions are likely to play an important role in the pathogenesis of arrhythmogenic cardiomyopathy, and may reveal new therapeutic concepts and targets. PMID:25368581

  5. Electron Beam Irradiated Intercalated CNT Yarns For Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Waters, Deborah L.; Gaier, James R.; Williams, Tiffany S.; Lopez Calero, Johnny E.; Ramirez, Christopher; Meador, Michael A.

    2015-01-01

    Multi-walled CNT yarns have been experimentally and commercially created to yield lightweight, high conductivity fibers with good tensile properties for application as electrical wiring and multifunctional tendons. Multifunctional tendons are needed as the cable structures in tensegrity robots for use in planetary exploration. These lightweight robust tendons can provide mechanical strength for movement of the robot in addition to power distribution and data transmission. In aerospace vehicles, such as Orion, electrical wiring and harnessing mass can approach half of the avionics mass. Use of CNT yarns as electrical power and data cables could reduce mass of the wiring by thirty to seventy percent. These fibers have been intercalated with mixed halogens to increase their specific electrical conductivity to that near copper. This conductivity, combined with the superior strength and fatigue resistance makes it an attractive alternative to copper for wiring and multifunctional tendon applications. Electron beam irradiation has been shown to increase mechanical strength in pristine CNT fibers through increased cross-linking. Both pristine and intercalated CNT yarns have been irradiated using a 5-megavolt electron beam for various durations and the conductivities and tensile properties will be discussed. Structural information obtained using a field emission scanning electron microscope, energy dispersive X-ray spectroscopy (EDS), and Raman spectroscopy will correlate microstructural details with bulk properties.

  6. Modeling Fission Product Sorption in Graphite Structures

    SciTech Connect

    Szlufarska, Izabela; Morgan, Dane; Allen, Todd

    2013-04-08

    The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high- temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributions of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission

  7. AGC-2 Graphite Preirradiation Data Analysis Report

    SciTech Connect

    William Windes; W. David Swank; David Rohrbaugh; Joseph Lord

    2013-08-01

    This report described the specimen loading order and documents all pre-irradiation examination material property measurement data for the graphite specimens contained within the second Advanced Graphite Capsule (AGC-2) irradiation capsule. The AGC-2 capsule is the second in six planned irradiation capsules comprising the Advanced Graphite Creep (AGC) test series. The AGC test series is used to irradiate graphite specimens allowing quantitative data necessary for predicting the irradiation behavior and operating performance of new nuclear graphite grades to be generated which will ascertain the in-service behavior of the graphite for pebble bed and prismatic Very High Temperature Reactor (VHTR) designs. Similar to the AGC-1 specimen pre-irradiation examination report, material property tests were conducted on specimens from 18 nuclear graphite types but on an increased number of specimens (512) prior to loading into the AGC-2 irradiation assembly. All AGC-2 specimen testing was conducted at Idaho National Laboratory (INL) from October 2009 to August 2010. This report also details the specimen loading methodology for the graphite specimens inside the AGC-2 irradiation capsule. The AGC-2 capsule design requires “matched pair” creep specimens that have similar dose levels above and below the neutron flux profile mid-plane to provide similar specimens with and without an applied load. This document utilized the neutron flux profile calculated for the AGC-2 capsule design, the capsule dimensions, and the size (length) of the selected graphite and silicon carbide samples to create a stacking order that can produce “matched pairs” of graphite samples above and below the AGC-2 capsule elevation mid-point to provide specimens with similar neutron dose levels.

  8. Synthesis and Catalytic Performance of Gold Intercalated in the Walls of Mesoporous Silica.

    PubMed

    Ji, Yazhou; Caskey, Christopher; Richards, Ryan M

    2015-01-01

    As a promising catalytically active nano reactor, gold nanoparticles intercalated in mesoporous silica (GMS) were successfully synthesized and properties of the materials were investigated. We used a one pot sol-gel approach to intercalate gold nano particles in the walls of mesoporous silica. To start with the synthesis, P123 was used as template to form micelles. Then TESPTS was used as a surface modification agent to intercalate gold nano particles. Following this process, TEOS was added in as a silica source which underwent a polymerization process in acid environment. After hydrothermal processing and calcination, the final product was acquired. Several techniques were utilized to characterize the porosity, morphology and structure of the gold intercalated mesoporous silica. The results showed a stable structure of mesoporous silica after gold intercalation. Through the oxidation of benzyl alcohol as a benchmark reaction, the GMS materials showed high selectivity and recyclability.

  9. Oxygen Intercalation of Graphene on Transition Metal Substrate: An Edge-Limited Mechanism.

    PubMed

    Ma, Liang; Zeng, Xiao Cheng; Wang, Jinlan

    2015-10-15

    Oxygen intercalation has been proven to be an efficient experimental approach to decouple chemical vapor deposition grown graphene from metal substrate with mild damage, thereby enabling graphene transfer. However, the mechanism of oxygen intercalation and associated rate-limiting step are still unclear on the molecular level. Here, by using density functional theory, we evaluate the thermodynamics stability of graphene edge on transition metal surface in the context of oxygen and explore various reaction pathways and energy barriers, from which we can identify the key steps as well as the roles of metal passivated graphene edges during the oxygen intercalation. Our calculations suggest that in well-controlled experimental conditions, oxygen atoms can be easily intercalated through either zigzag or armchair graphene edges on metal surface, whereas the unwanted graphene oxidation etching can be suppressed. Oxygen intercalation is, thus, an efficient and low-damage way to decouple graphene from a metal substrate while it allows reusing metal substrate for graphene growth.

  10. Investigation of the electrochemically active surface area and lithium diffusion in graphite anodes by a novel OsO4 staining method

    NASA Astrophysics Data System (ADS)

    Pfaffmann, Lukas; Birkenmaier, Claudia; Müller, Marcus; Bauer, Werner; Mitsch, Tim; Feinauer, Julian; Krämer, Yvonne; Scheiba, Frieder; Hintennach, Andreas; Schleid, Thomas; Schmidt, Volker; Ehrenberg, Helmut

    2016-03-01

    Negative electrodes of lithium-ion batteries generally consist of graphite-based active materials. In order to realize batteries with a high current density and therefore accelerated charging processes, the intercalation of lithium and the diffusion processes of these carbonaceous materials must be understood. In this paper, we visualized the electrochemical active surface area for three different anode materials using a novel OsO4 staining method in combination with scanning electron microscopy techniques. The diffusion behavior of these three anode materials is investigated by potentiostatic intermittent titration technique measurements. From those we determine the diffusion coefficient with and without consideration of the electrochemical active surface area.

  11. Promising Cell Configuration for Next-Generation Energy Storage: Li2S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte.

    PubMed

    Li, Zhe; Zhang, Shiguo; Terada, Shoshi; Ma, Xiaofeng; Ikeda, Kohei; Kamei, Yutaro; Zhang, Ce; Dokko, Kaoru; Watanabe, Masayoshi

    2016-06-29

    Lithium-ion sulfur batteries with a [graphite|solvate ionic liquid electrolyte|lithium sulfide (Li2S)] structure are developed to realize high performance batteries without the issue of lithium anode. Li2S has recently emerged as a promising cathode material, due to its high theoretical specific capacity of 1166 mAh/g and its great potential in the development of lithium-ion sulfur batteries with a lithium-free anode such as graphite. Unfortunately, the electrochemical Li(+) intercalation/deintercalation in graphite is highly electrolyte-selective: whereas the process works well in the carbonate electrolytes inherited from Li-ion batteries, it cannot take place in the ether electrolytes commonly used for Li-S batteries, because the cointercalation of the solvent destroys the crystalline structure of graphite. Thus, only very few studies have focused on graphite-based Li-S full cells. In this work, simple graphite-based Li-S full cells were fabricated employing electrolytes beyond the conventional carbonates, in combination with highly loaded Li2S/graphene composite cathodes (Li2S loading: 2.2 mg/cm(2)). In particular, solvate ionic liquids can act as a single-phase electrolyte simultaneously compatible with both the Li2S cathode and the graphite anode and can further improve the battery performance by suppressing the shuttle effect. Consequently, these lithium-ion sulfur batteries show a stable and reversible charge-discharge behavior, along with a very high Coulombic efficiency. PMID:27282172

  12. Graphite Oxidation Thermodynamics/Reactions

    SciTech Connect

    Propp, W.A.

    1998-09-01

    The vulnerability of graphite-matrix spent nuclear fuel to oxidation by the ambient atmosphere if the fuel canister is breached was evaluated. Thermochemical and kinetic data over the anticipated range of storage temperatures (200 to 400 C) were used to calculate the times required for a total carbon mass loss of 1 mgcm-2 from a fuel specimen. At 200 C, the time required to produce even this small loss is large, 900,000 yr. However, at 400 C the time required is only 1.9 yr. The rate of oxidation at 200 C is negligible, and the rate even at 400 C is so small as to be of no practical consequence. Therefore, oxidation of the spent nuclear fuel upon a loss of canister integrity is not anticipated to be a concern based upon the results of this study.

  13. Development of polyphenylquinoxaline graphite composites

    NASA Technical Reports Server (NTRS)

    Shdo, J. D.

    1976-01-01

    Six polyphenylquinoxalines (PPQ) containing pendant cyano (CN) groups were synthesized. The polymers were characterized in terms of inherent viscosity, glass transition temperature, softening temperature and weight loss due to aging in air at 316 C (600 F). The potential for crosslinking PPQs by trimerization of pendant CN groups was investigated. A polymer derived from 1 mole 3,3,4,4 -tetraaminobenzophenone, .2 mole p-bis(p -cyanophenoxyphenylglyoxalyl)benzene and .8 mole p-bis(phenylglyoxalyl)benzene was selected for more extensive characterization in HM-S graphite fiber-reinforced composites. Mechanical properties were determined using composites made from HM-S fiber and polymer and composites made from HM-S fiber, polymer and a potential CN group trimerization catalyst. Composite mechanical properties, inter-laminar shear strength and flexure properties, were determined over the temperature range of +21 C to 316 C.

  14. Resin/graphite fiber composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.

    1974-01-01

    Processing techniques were developed for the fabrication of both polyphenylquinoxaline and polyimide composites by the in situ polymerization of monomeric reactants directly on the graphite reinforcing fibers, rather than using previously prepared prepolymer varnishes. Void-free polyphenylquinoxaline composites were fabricated and evaluated for room and elevated flexure and shear properties. The technology of the polyimide system was advanced to the point where the material is ready for commercial exploitation. A reproducible processing cycle free of operator judgment factors was developed for fabrication of void-free composites exhibiting excellent mechanical properties and a long time isothermal life in the range of 288 C to 316 C. The effects of monomer reactant stoichiometry and process modification on resin flow were investigated. Demonstration of the utility and quality of this polyimide system was provided through the successful fabrication and evaluation of four complex high tip speed fan blades.

  15. The characterization of fluorinated graphite

    SciTech Connect

    Hagaman, E.W.; Gakh, A.A.; Annis, B.K.

    1995-12-31

    The characterization of solid fossil fuels by chemical and spectroscopic methods requires extensive modelling in less complex systems for chemical proof of principle and technique development. In previous work coal was fluorinated with dilute, elemental fluorine under conditions that were expected to lead to materials that contain only fluoromethine moieties. The solid state, cross polarization/magic angle spinning (CP/MAS) {sup 13}C NMR spectra of the fluorinated coal are complex, indicating more chemical modification than originally anticipated. Our goal in the coal derivatization was to sequentially increase the severity of the fluorination and observe by {sup 19}F and {sup 13}C NMR the type and concentration of fluorine functional groups created in the coal milieu. This requires the ability to discriminate between C, CF, CF{sub 2}, and CF, moieties in the coal matrix. The task can be accomplished by implementing the spectral editing technique of Wu and Zilm which distinguishes different kinds of carbon resonances, especially CH and CH{sub 2} resonances. These experiments utilize cross polarization (CP) and polarization inversion (PI) to effect the discrimination. Our version of this experiment is a triple resonance experiment that incorporates {sup 19}F-{sup 13}C CP, PI, and simultaneous {sup 1}H and {sup 19}F dipolar decoupling. In order to evaluate the elemental fluorine chemistry in a matrix simpler than coal, fluorinated graphite was prepared. X-ray photoelectron spectroscopy (XPS) was used to characterize the surface species, i.e., count CF, CF{sub 2} and CF{sub 3} species. These well-characterized samples are the models we will use to test the NIVIR editing experiments. The XPS and atomic force microscopy (AFM) data on the first fluorinated graphites we have prepared are reported in this paper.

  16. THE NEXT GENERATION NUCLEAR PLANT GRAPHITE PROGRAM

    SciTech Connect

    William E. Windes; Timothy D. Burchell; Robert L. Bratton

    2008-09-01

    Developing new nuclear grades of graphite used in the core of a High Temperature Gas-cooled Reactor (HTGR) is one of the critical development activities being pursued within the Next Generation Nuclear Plant (NGNP) program. Graphite’s thermal stability (in an inert gas environment), high compressive strength, fabricability, and cost effective price make it an ideal core structural material for the HTGR reactor design. While the general characteristics necessary for producing nuclear grade graphite are understood, historical “nuclear” grades no longer exist. New grades must be fabricated, characterized, and irradiated to demonstrate that current grades of graphite exhibit acceptable non-irradiated and irradiated properties upon which the thermo-mechanical design of the structural graphite in NGNP is based. The NGNP graphite R&D program has selected a handful of commercially available types for research and development activities necessary to qualify this nuclear grade graphite for use within the NGNP reactor. These activities fall within five primary areas; 1) material property characterization, 2) irradiated material property characterization, 3) modeling, and 4) ASTM test development, and 5) ASME code development efforts. Individual research and development activities within each area are being pursued with the ultimate goal of obtaining a commercial operating license for the nuclear graphite from the US NRC.

  17. Removal of metals from aqueous solution and sea water by functionalized graphite nanoplatelets based electrodes.

    PubMed

    Mishra, Ashish Kumar; Ramaprabhu, S

    2011-01-15

    In the present wok, we have demonstrated the simultaneous removal of sodium and arsenic (pentavalent and trivalent) from aqueous solution using functionalized graphite nanoplatelets (f-GNP) based electrodes. In addition, these electrodes based water filter was used for multiple metals removal from sea water. Graphite nanoplatelets (GNP) were prepared by acid intercalation and thermal exfoliation. Functionalization of GNP was done by further acid treatment. Material was characterized by different characterization techniques. Performance of supercapacitor based water filter was analyzed for the removal of high concentration of arsenic (trivalent and pentavalent) and sodium as well as for desalination of sea water, using cyclic voltametry (CV) and inductive coupled plasma-optical emission spectroscopy (ICP-OES) techniques. Adsorption isotherms and kinetic characteristics were studied for the simultaneous removal of sodium and arsenic (both trivalent and pentavalent). Maximum adsorption capacities of 27, 29 and 32 mg/g for arsenate, arsenite and sodium were achieved in addition to good removal efficiency for sodium, magnesium, calcium and potassium from sea water.

  18. Self-Printing on Graphitic Nanosheets with Metal Borohydride Nanodots for Hydrogen Storage

    NASA Astrophysics Data System (ADS)

    Li, Yongtao; Ding, Xiaoli; Zhang, Qingan

    2016-08-01

    Although the synthesis of borohydride nanostructures is sufficiently established for advancement of hydrogen storage, obtaining ultrasmall (sub-10 nm) metal borohydride nanocrystals with excellent dispersibility is extremely challenging because of their high surface energy, exceedingly strong reducibility/hydrophilicity and complicated composition. Here, we demonstrate a mechanical-force-driven self-printing process that enables monodispersed (~6 nm) NaBH4 nanodots to uniformly anchor onto freshly-exfoliated graphitic nanosheets (GNs). Both mechanical-forces and borohydride interaction with GNs stimulate NaBH4 clusters intercalation/absorption into the graphite interlayers acting as a ‘pen’ for writing, which is accomplished by exfoliating GNs with the ‘printed’ borohydrides. These nano-NaBH4@GNs exhibit favorable thermodynamics (decrease in ∆H of ~45%), rapid kinetics (a greater than six-fold increase) and stable de-/re-hydrogenation that retains a high capacity (up to ~5 wt% for NaBH4) compared with those of micro-NaBH4. Our results are helpful in the scalable fabrication of zero-dimensional complex hydrides on two-dimensional supports with enhanced hydrogen storage for potential applications.

  19. Performance simulation of an advanced cylindrical thermionic fuel element with a graphite reservoir

    NASA Astrophysics Data System (ADS)

    Young, Timothy J.; Thayer, Kevin L.; Ramalingam, Mysore L.

    1993-07-01

    This paper describes the analytical work to optimize the steady-state electrical and thermal characteristics of an advanced, power producing, cylindrical thermionic fuel element (TFE) operating in a space nuclear reactor. The thermionic converter was equipped with an integral, lamellar graphite-cesium reservoir attached to the non-nuclear fueled TFE emitter lead as a means for supplying cesium vapor for efficient thermionic emission. Five intercalated cesium-graphite compounds were chosen for this analysis and the optimum position for the placement of each candidate reservoir in the TFE lead region was determined. The Advanced Thermionic Initiative (ATI) thermal spectrum, 'driverless' nuclear reactor configuration, with an output of 36 kWe, was used as a basis for the calculations. A coupled thermionic and thermal-hydraulic computer program was integrated with a lead region thermal model to calculate the thermal and electrical output characteristics of the TFE for different reservoir locations. The results of this analysis indicate that the temperature distribution in the lead region of the TFE at steady-state is such that only four of the candidate reservoirs analyzed could be located on the lead and supply the requisite cesium vapor pressure for optimum TFE operation.

  20. Self-Printing on Graphitic Nanosheets with Metal Borohydride Nanodots for Hydrogen Storage.

    PubMed

    Li, Yongtao; Ding, Xiaoli; Zhang, Qingan

    2016-08-03

    Although the synthesis of borohydride nanostructures is sufficiently established for advancement of hydrogen storage, obtaining ultrasmall (sub-10 nm) metal borohydride nanocrystals with excellent dispersibility is extremely challenging because of their high surface energy, exceedingly strong reducibility/hydrophilicity and complicated composition. Here, we demonstrate a mechanical-force-driven self-printing process that enables monodispersed (~6 nm) NaBH4 nanodots to uniformly anchor onto freshly-exfoliated graphitic nanosheets (GNs). Both mechanical-forces and borohydride interaction with GNs stimulate NaBH4 clusters intercalation/absorption into the graphite interlayers acting as a 'pen' for writing, which is accomplished by exfoliating GNs with the 'printed' borohydrides. These nano-NaBH4@GNs exhibit favorable thermodynamics (decrease in ∆H of ~45%), rapid kinetics (a greater than six-fold increase) and stable de-/re-hydrogenation that retains a high capacity (up to ~5 wt% for NaBH4) compared with those of micro-NaBH4. Our results are helpful in the scalable fabrication of zero-dimensional complex hydrides on two-dimensional supports with enhanced hydrogen storage for potential applications.

  1. Self-Printing on Graphitic Nanosheets with Metal Borohydride Nanodots for Hydrogen Storage

    PubMed Central

    Li, Yongtao; Ding, Xiaoli; Zhang, Qingan

    2016-01-01

    Although the synthesis of borohydride nanostructures is sufficiently established for advancement of hydrogen storage, obtaining ultrasmall (sub-10 nm) metal borohydride nanocrystals with excellent dispersibility is extremely challenging because of their high surface energy, exceedingly strong reducibility/hydrophilicity and complicated composition. Here, we demonstrate a mechanical-force-driven self-printing process that enables monodispersed (~6 nm) NaBH4 nanodots to uniformly anchor onto freshly-exfoliated graphitic nanosheets (GNs). Both mechanical-forces and borohydride interaction with GNs stimulate NaBH4 clusters intercalation/absorption into the graphite interlayers acting as a ‘pen’ for writing, which is accomplished by exfoliating GNs with the ‘printed’ borohydrides. These nano-NaBH4@GNs exhibit favorable thermodynamics (decrease in ∆H of ~45%), rapid kinetics (a greater than six-fold increase) and stable de-/re-hydrogenation that retains a high capacity (up to ~5 wt% for NaBH4) compared with those of micro-NaBH4. Our results are helpful in the scalable fabrication of zero-dimensional complex hydrides on two-dimensional supports with enhanced hydrogen storage for potential applications. PMID:27484735

  2. In Situ Raman Microscopy of a Single Graphite Microflake Electrode in a Li(+)-containing Electrolyte

    NASA Technical Reports Server (NTRS)

    Shi, Qing-Fang; Dokko, Kaoru; Scherson, Daniel A.

    2003-01-01

    Highly detailed Raman spectra from a single KS-44 graphite microflake electrode as a function of the applied potential have been collected in situ using a Raman microscope and a sealed spectroelectrochemical cell isolated from the laboratory environment. Correlations were found between the Raman spectral features and the various Li(+) intercalation stages while recording in real time Raman spectra during a linear potential scan from 0.7 down ca. 0.0V vs Li/Li(+) at a rate of 0.1 mV/s in a 1M LiClO4 solution in a 1:l (by volume) ethylene carbonate (EC):diethyl carbonate (DEC) mixture. In particular, clearly defined isosbestic points were observed for data collected in the potential range where the transition between dilute phase 1 and phase 4 of lithiated graphite is known to occur, i.e. 0.157 < E < 0.215 vs Li/Li(+). Statistical analysis of the spectroscopic data within this region made it possible to determine independently the fraction of each of the two phases present as a function of potential without relying on coulometric information and then predict, based on the proposed stoichiometry for the transition, a spectrally-derived voltammetric feature.

  3. Self-Printing on Graphitic Nanosheets with Metal Borohydride Nanodots for Hydrogen Storage.

    PubMed

    Li, Yongtao; Ding, Xiaoli; Zhang, Qingan

    2016-01-01

    Although the synthesis of borohydride nanostructures is sufficiently established for advancement of hydrogen storage, obtaining ultrasmall (sub-10 nm) metal borohydride nanocrystals with excellent dispersibility is extremely challenging because of their high surface energy, exceedingly strong reducibility/hydrophilicity and complicated composition. Here, we demonstrate a mechanical-force-driven self-printing process that enables monodispersed (~6 nm) NaBH4 nanodots to uniformly anchor onto freshly-exfoliated graphitic nanosheets (GNs). Both mechanical-forces and borohydride interaction with GNs stimulate NaBH4 clusters intercalation/absorption into the graphite interlayers acting as a 'pen' for writing, which is accomplished by exfoliating GNs with the 'printed' borohydrides. These nano-NaBH4@GNs exhibit favorable thermodynamics (decrease in ∆H of ~45%), rapid kinetics (a greater than six-fold increase) and stable de-/re-hydrogenation that retains a high capacity (up to ~5 wt% for NaBH4) compared with those of micro-NaBH4. Our results are helpful in the scalable fabrication of zero-dimensional complex hydrides on two-dimensional supports with enhanced hydrogen storage for potential applications. PMID:27484735

  4. Preparations and characterizations of novel graphite-like materials and some high oxidation state fluorine chemistry

    SciTech Connect

    Shen, Ciping

    1992-11-01

    Novel graphite-like materials, BC{sub x} (6>x{ge}3), have been prepared using BCl{sub 3} and C{sub 6}H{sub 6} at 800--1000C, and C{sub x}N (14>x{ge}5) have been synthesized using C{sub 5}H{sub 5}N and Cl{sub 2} at 680C--986C. Bulk and thin film characterization were used to study the structure and bonding in these solids. C{sub 8}K(NH{sub 3}){sub 1.1} was prepared by reacting C{sub 8}K with gaseous NH{sub 3}. The carbon sub-lattice is hexagonal: a = 2.47 {Angstrom}, c = 6.47 {Angstrom}. The smaller a parameter and lower conductivity are attributed to smaller electron transfer from K to the conduction band solvation of K by NH{sub 3}. A simplified liquid phase method for synthesizing Li-graphite intercalation compounds has been developed; synthesis of a lamellar mixed conductor, C{sub x}{sup +}Li{sub 2}N{sup {minus}}, has been attempted. Stability and conductivity of (BN){sub 3}SO{sub 3}F have been studied; it was shown to be metallic with a specific conductivity of 1.5 S{center_dot}cm{sup {minus}1}. Its low conductivity is attributed to the low mobility of holes in BN sheets.

  5. Copper-Intercalated Birnessite as a Water Oxidation Catalyst.

    PubMed

    Thenuwara, Akila C; Shumlas, Samantha L; Attanayake, Nuwan H; Cerkez, Elizabeth B; McKendry, Ian G; Frazer, Laszlo; Borguet, Eric; Kang, Qing; Zdilla, Michael J; Sun, Jianwei; Strongin, Daniel R

    2015-11-24

    We report a synthetic method to increase the catalytic activity of birnessite toward water oxidation by intercalating copper in the interlayer region of the layered manganese oxide. Intercalation of copper, verified by XRD, XPS, ICP, and Raman spectroscopy, was accomplished by exposing a suspension of birnessite to a Cu(+)-bearing precursor molecule that underwent disproportionation in solution to yield Cu(0) and Cu(2+). Electrocatalytic studies showed that the Cu-modified birnessite exhibited an overpotential for water oxidation of ∼490 mV (at 10 mA/cm(2)) and a Tafel slope of 126 mV/decade compared to ∼700 mV (at 10 mA/cm(2)) and 240 mV/decade, respectively, for birnessite without copper. Impedance spectroscopy results suggested that the charge transfer resistivity of the Cu-modified sample was significantly lower than Cu-free birnessite, suggesting that Cu in the interlayer increased the conductivity of birnessite leading to an enhancement of water oxidation kinetics. Density functional theory calculations show that the intercalation of Cu(0) into a layered MnO2 model structure led to a change of the electronic properties of the material from a semiconductor to a metallic-like structure. This conclusion from computation is in general agreement with the aforementioned impedance spectroscopy results. X-ray photoelectron spectroscopy (XPS) showed that Cu(0) coexisted with Cu(2+) in the prepared Cu-modified birnessite. Control experiments using birnessite that was decorated with only Cu(2+) showed a reduction in water oxidation kinetics, further emphasizing the importance of Cu(0) for the increased activity of birnessite. The introduction of Cu(0) into the birnessite structure also increased the stability of the electrocatalyst. At a working current of 2 mA, the Cu-modified birnessite took ∼3 times longer for the overpotential for water oxdiation to increase by 100 mV compared to when Cu was not present in the birnessite. PMID:26477450

  6. Thermal and flammability characterization of graphite composites

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.

    1986-01-01

    Thermal, mechanical, and flammability properties of graphite composites fabricated with XU71775/H795, a bismaleimide/vinyl-polystyrylpyridine formulation; H795, a bismaleimide; Cycom 6162, a phenolic; and PSP 6022M, a polystyrylpyridine and two types of graphite reinforcement were evaluated and compared with a composite made with an epoxy resin as a matrix. The measured properties included limiting-oxygen index, smoke evolution, thermal degradation products, total-heat release, heat-release rates, mass loss, flame spread, ignition resistance, thermogravimetric analysis, and selected mechanical properties. It was found that the combination of XU71775/H795 with the graphite tape was the optimum design giving the lowest heat release rate.

  7. Structural change of graphite during electron irradiation

    SciTech Connect

    Koike, J. . Dept. of Mechanical Engineering); Pedraza, D.F. )

    1992-01-01

    Highly oriented pyrolytic graphite was irradiated at room temperature with 300-keV electrons. High resolution transmission electron microscopy and electron energy loss spectroscopy were employed to study the structure of electron-irradiated graphite. Results consistently indicated absence of long-range order periodicity in the basal plane, and loose retention of the c-axis periodicity. Structure was modeled based on a mixture of sixfold and non-sixfold atom rings. Formation of non-sixfold atom rings was related to the observed buckling and discontinuity of the original graphite basal plane.

  8. Structural change of graphite during electron irradiation

    SciTech Connect

    Koike, J.; Pedraza, D.F.

    1992-12-31

    Highly oriented pyrolytic graphite was irradiated at room temperature with 300-keV electrons. High resolution transmission electron microscopy and electron energy loss spectroscopy were employed to study the structure of electron-irradiated graphite. Results consistently indicated absence of long-range order periodicity in the basal plane, and loose retention of the c-axis periodicity. Structure was modeled based on a mixture of sixfold and non-sixfold atom rings. Formation of non-sixfold atom rings was related to the observed buckling and discontinuity of the original graphite basal plane.

  9. Adsorption of lead over graphite oxide.

    PubMed

    Olanipekun, Opeyemi; Oyefusi, Adebola; Neelgund, Gururaj M; Oki, Aderemi

    2014-01-24

    The adsorption efficiency and kinetics of removal of lead in presence of graphite oxide (GO) was determined using the Atomic Absorption Spectrophotometer (AAS). The GO was prepared by the chemical oxidation of graphite and characterized using FTIR, SEM, TGA and XRD. The adsorption efficiency of GO for the solution containing 50, 100 and 150 ppm of Pb(2+) was found to be 98%, 91% and 71% respectively. The adsorption ability of GO was found to be higher than graphite. Therefore, the oxidation of activated carbon in removal of heavy metals may be a viable option to reduce pollution in portable water.

  10. Graphite Fluoride Fiber Composites For Heat Sinking

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh; Long, Martin; Stahl, Mark

    1989-01-01

    Graphite fluoride fiber/polymer composite materials consist of graphite fluoride fibers in epoxy, polytetrafluoroethylene, or polyimide resin. Combines high electrical resistivity with high thermal conductivity and solves heat-transfer problems of many electrical systems. Commercially available in powder form, for use as dry lubricant or cathode material in lithium batteries. Produced by direct fluorination of graphite powder at temperature of 400 to 650 degree C. Applications include printed-circuit boards for high-density power electronics, insulators for magnetic-field cores like those found in alternators and transformers, substrates for thin-film resistors, and electrical-protection layers in aircraft de-icers.

  11. High electrical resistivity carbon/graphite fibers

    NASA Technical Reports Server (NTRS)

    Vogel, F. L.; Forsman, W. C.

    1980-01-01

    Carbon/graphite fibers were chemically oxidized in the liquid phase to fibers of graphite oxide. Resistivity increases as high as 10,000 times were obtained, the oxidized fiber decomposed on exposure to atmosphere. A factor of 1,000 remained as a stable increment. The largest change observed was 1,000,000 times. Best results were obtained on the most highly graphitized fibers. Electrochemical oxidation yielded a lower increase--about 10 times, but provided a controllable method of synthesis and insight to the mechanism of reaction. Tensile tests indicated that the strength of the fiber on oxidation was decreased by no more than 25 percent.

  12. Method for molding threads in graphite panels

    DOEpatents

    Short, William W.; Spencer, Cecil

    1994-01-01

    A graphite panel (10) with a hole (11) having a damaged thread (12) is repaired by drilling the hole (11) to remove all of the thread and make a new hole (13) of larger diameter. A bolt (14) with a lubricated thread (17) is placed in the new hole (13) and the hole (13) is packed with graphite cement (16) to fill the hole and the thread on the bolt. The graphite cement (16) is cured, and the bolt is unscrewed therefrom to leave a thread (20) in the cement (16) which is at least as strong as that of the original thread (12).

  13. Method for molding threads in graphite panels

    DOEpatents

    Short, W.W.; Spencer, C.

    1994-11-29

    A graphite panel with a hole having a damaged thread is repaired by drilling the hole to remove all of the thread and making a new hole of larger diameter. A bolt with a lubricated thread is placed in the new hole and the hole is packed with graphite cement to fill the hole and the thread on the bolt. The graphite cement is cured, and the bolt is unscrewed therefrom to leave a thread in the cement which is at least as strong as that of the original thread. 8 figures.

  14. Brownian friction coefficient of Kr/graphite.

    NASA Astrophysics Data System (ADS)

    Boutchko, R.

    1998-03-01

    Calculations of the Brownian friction coefficient of fluid Kr/graphite are described. The phonon frequencies and polarization vectors are calculated for a thick graphite slab using the Benedek-Onida bond charge model(G. Benedek and G. Onida, Phys. Rev. B 47), 16471 (1993). The fluctuating forces on the adatom from the substrate are expressed in terms of the graphite fluctuation spectrum. The friction coefficient is expressed in terms of a spectral density to be derived from the slab calculations. The relation of the results to diffusive processes in monolayer fluids(F. Y. Hansen, L. W. Bruch, and H. Taub, Phys. Rev. B 54), 14077 (1996). is discussed.

  15. Superconductivity and Intercalation State in the Lithium-Hexamethylenediamine-Intercalated Superconductor Lix(C6H16N2)yFe2-zSe2: Dependence on the Intercalation Temperature and Lithium Content

    NASA Astrophysics Data System (ADS)

    Hosono, Shohei; Noji, Takashi; Hatakeda, Takehiro; Kawamata, Takayuki; Kato, Masatsune; Koike, Yoji

    2016-10-01

    The superconductivity and intercalation statein the lithium-and hexamethylenediamine (HMDA)-intercalated superconductor Li$_x$(C$_6$H$_{16}$N$_2$)$_y$Fe$_{2-z}$Se$_2$ have been investigated from powder x-ray diffraction, thermogravimetric and magnetic susceptibility measurements, changing the intercalation temperature, $T_i$, and the Li content, $x$. Both Li and HMDA have been co-intercalated stably up to $x$ = 2 roughly in the molar ratio of $x : y = 2 : 1$. In the case of $T_i$ = 45$^\\circ$C, it has been found that both Li and HMDA are co-intercalated locally at the edge of FeSe crystals, indicating that both Li and HMDA are hard to diffuse into the inside of FeSe crystals at 45$^\\circ$C. In the case of $T_i$ = 100$^\\circ$C, on the other hand, it has been found that both Li and HMDA diffuse into the inside of FeSe crystals, so that $T_c$ tends to increase with increasing $x$ from ~30 K at $x$ = 1 up to 38 K at $x$ = 2 owing to the increase of electron carriers doped from Li into the FeSe layers.

  16. Monolithic porous graphitic carbons obtained through catalytic graphitization of carbon xerogels

    NASA Astrophysics Data System (ADS)

    Kiciński, Wojciech; Norek, Małgorzata; Bystrzejewski, Michał

    2013-01-01

    Pyrolysis of organic xerogels accompanied by catalytic graphitization and followed by selective-combustion purification was used to produce porous graphitic carbons. Organic gels impregnated with iron(III) chloride or nickel(II) acetate were obtained through polymerization of resorcinol and furfural. During the pyrolysis stage graphitization of the gel matrix occurs, which in turn develops mesoporosity of the obtained carbons. The evolution of the carbon into graphitic structures is strongly dependent on the concentrations of the transition metal. Pyrolysis leads to monoliths of carbon xerogel characterized by substantially enhanced mesoporosity resulting in specific surface areas up to 400 m2/g. Removal of the amorphous carbon by selective-combustion purification reduces the xerogels' mesoporosity, occasionally causing loss of their mechanical strength. The graphitized carbon xerogels were investigated by means of SEM, XRD, Raman scattering, TG-DTA and N2 physisorption. Through this procedure well graphitized carbonaceous materials can be obtained as bulk pieces.

  17. The Role of Cesium Cation in Controlling Interphasial Chemistry on Graphite Anode in Propylene Carbonate-Rich Electrolytes

    SciTech Connect

    Xiang, Hongfa; Mei, Donghai; Yan, Pengfei; Bhattacharya, Priyanka; Burton, Sarah D.; Cresce, Arthur V.; Cao, Ruiguo; Engelhard, Mark H.; Bowden, Mark E.; Zhu, Zihua; Polzin, Bryant; Wang, Chong M.; Xu, Kang; Zhang, Jiguang; Xu, Wu

    2015-09-10

    Propylene carbonate (PC) is seldom used in lithium-ion batteries (LIBs) due to its sustained co-intercalation into graphene structure and the eventual graphite exfoliation, despite potential advantages it brings, such as wider liquid range and lower cost. Here we discover that cesium cation (Cs+), originally used to suppress dendrite growth of Li metal anode, directs the formation of solid electrolyte interphase (SEI) on graphitic anode in PC-rich electrolytes through preferential solvation. Effective suppression of PC-decomposition and graphite-exfoliation was achieved when the ratio of ethylene carbonate (EC)/PC in electrolytes was so adjusted that the reductive decomposition of Cs+-(EC)m (1≤m≤2) complex precedes that of Li+-(PC)n (3≤n≤5). The interphase directed by Cs+ is stable, ultrathin and compact, leading to significant improvements in LIB performances. In a broader context, the accurate tailoring of SEI chemical composition by introducing a new solvation center represents a fundamental breakthrough in manipulating interfacial reactions processes that once were elusive.

  18. Stable dispersions of polymer-coated graphitic nanoplatelets

    NASA Technical Reports Server (NTRS)

    Stankovich, Sasha (Inventor); Nguyen, Sonbinh T. (Inventor); Ruoff, Rodney S. (Inventor)

    2011-01-01

    A method of making a dispersion of reduced graphite oxide nanoplatelets involves providing a dispersion of graphite oxide nanoplatelets and reducing the graphite oxide nanoplatelets in the dispersion in the presence of a reducing agent and a polymer. The reduced graphite oxide nanoplatelets are reduced to an extent to provide a higher C/O ratio than graphite oxide. A stable dispersion having polymer-treated reduced graphite oxide nanoplatelets dispersed in a dispersing medium, such as water or organic liquid is provided. The polymer-treated, reduced graphite oxide nanoplatelets can be distributed in a polymer matrix to provide a composite material.

  19. Dielectric properties of halloysite and halloysite-formamide intercalate

    SciTech Connect

    Adamczyk, M. Rok, M.; Wolny, A.; Orzechowski, K.

    2014-01-14

    Due to a high increase in electromagnetic pollution, the protection from non-ionizing electromagnetic radiation (EMR) represents an important problem of contemporary environmental science. We are searching for natural materials with the potential for EMR screening. We have discovered that hydro-halloysite has interesting properties as an EMR absorber. Unfortunately, it is a very unstable material. Drying it for even a short period of time leads to the loss of desired properties. In the paper, we have demonstrated that the intercalation of halloysite (the process of introducing guest molecules into the mineral structure) makes it possible to recover the ability to absorb an electromagnetic wave and obtain a promising material for electromagnetic field shielding applications.

  20. Gas insulated transmission line having low inductance intercalated sheath

    DOEpatents

    Cookson, Alan H.

    1978-01-01

    A gas insulated transmission line including an outer sheath, an inner conductor disposed within the outer sheath, and an insulating gas between the inner conductor and the outer sheath. The outer sheath comprises an insulating tube having first and second ends, and having interior and exterior surfaces. A first electrically conducting foil is secured to the interior surface of the insulating tube, is spirally wound from one tube end to the second tube end, and has a plurality of overlapping turns. A second electrically conducting foil is secured to the exterior surface of the insulating tube, and is spirally wound in the opposite direction from the first electrically conducting foil. By winding the foils in opposite directions, the inductances within the intercalated sheath will cancel each other out.

  1. Morphology and Structure of Amino-fatty Acid Intercalated Montmorillonite

    NASA Astrophysics Data System (ADS)

    Reyes, Larry; Sumera, Florentino

    2015-04-01

    Natural clays and its modified forms have been studied for their wide range of applications, including polymer-layered silicate, catalysts and adsorbents. For nanocomposite production, montmorillonite (MMT) clays are often modified with organic surfactants to favor its intermixing with the polymer matrix. In the present study, Na+-montmorillonite (Na+-MMT) was subjected to organo-modification with a protonated 12-aminolauric acid (12-ALA). The amount of amino fatty acid surfactants loaded was 25, 50, 100 and 200% the cation exchange capacity (CEC) of Na+-MMT (25CEC-AMMT, 50CEC-AMMT, 100CEC-AMMT and 200CEC-AMMT). Fatty acid-derived surfactants are an attractive resource of intercalating agents for clays due to their renewability and abundance. X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) were performed to determine the occurrence of intercalation of 12-ALA and their molecular structure in the clay's silicates. XRD analysis revealed that the interlayer spacing between the alumino-silicate layers increased from 1.25 nm to 1.82 nm with increasing ALA content. The amino fatty acid chains were considered to be in a flat monolayer structure at low surfactant loading, and a bilayered to a pseudotrilayered structure at high surfactant loading. On the other hand, FTIR revealed that the alkyl chains adopt a gauche conformation, indicating their disordered state based on their CH2symmetric and asymmetric vibrations. Thermogravimetric analyses (TGA) allows the determination of the moisture and organic content in clays. Here, TGA revealed that the surfactant in the clay was thermally stable, with Td ranging from 353° C to 417° C. The difference in the melting behavior of the pristine amino fatty acids and confined fatty acids in the interlayer galleries of the clay were evaluated by Differential Scanning Calorimerty (DSC). The melting temperatures (Tm) of the amino fatty acid in the clay were initially found to be higher than those of the free

  2. Tuning thermal conductivity in molybdenum disulfide by electrochemical intercalation

    PubMed Central

    Zhu, Gaohua; Liu, Jun; Zheng, Qiye; Zhang, Ruigang; Li, Dongyao; Banerjee, Debasish; Cahill, David G.

    2016-01-01

    Thermal conductivity of two-dimensional (2D) materials is of interest for energy storage, nanoelectronics and optoelectronics. Here, we report that the thermal conductivity of molybdenum disulfide can be modified by electrochemical intercalation. We observe distinct behaviour for thin films with vertically aligned basal planes and natural bulk crystals with basal planes aligned parallel to the surface. The thermal conductivity is measured as a function of the degree of lithiation, using time-domain thermoreflectance. The change of thermal conductivity correlates with the lithiation-induced structural and compositional disorder. We further show that the ratio of the in-plane to through-plane thermal conductivity of bulk crystal is enhanced by the disorder. These results suggest that stacking disorder and mixture of phases is an effective mechanism to modify the anisotropic thermal conductivity of 2D materials. PMID:27767030

  3. Many electron correlations in stage-1 graphene intercalation compounds

    SciTech Connect

    Acharya, Sidharth Sharma, Raman

    2015-05-15

    Many electron correlations in stage-1 graphene intercalation compounds (GICs) are studied in generalized-random-phase-approximation. With this approximation, we are able to study short range exchange and correlation effects in GICs. These exchange correlations leads to BCS superconducting states in which one electron correlates with another via its correlation hole to form a stable pair of electrons known as Cooper pair. Cooper pair energies are calculated as the excitations in S(q,ω) following a method similar to exciton energy calculations. Short range effects governing local field correction G(q,ω) are studied for all wave vectors and frequencies. We have found a reasonable agreement between our results and the earlier theoretical results.

  4. Dielectric properties of halloysite and halloysite-formamide intercalate

    NASA Astrophysics Data System (ADS)

    Adamczyk, M.; Rok, M.; Wolny, A.; Orzechowski, K.

    2014-01-01

    Due to a high increase in electromagnetic pollution, the protection from non-ionizing electromagnetic radiation (EMR) represents an important problem of contemporary environmental science. We are searching for natural materials with the potential for EMR screening. We have discovered that hydro-halloysite has interesting properties as an EMR absorber. Unfortunately, it is a very unstable material. Drying it for even a short period of time leads to the loss of desired properties. In the paper, we have demonstrated that the intercalation of halloysite (the process of introducing guest molecules into the mineral structure) makes it possible to recover the ability to absorb an electromagnetic wave and obtain a promising material for electromagnetic field shielding applications.

  5. Intercalation of graphene on iridium with samarium atoms

    NASA Astrophysics Data System (ADS)

    Afanas'eva, E. Yu.; Rut'kov, E. V.; Gall, N. R.

    2016-07-01

    Intercalation of graphene on Ir (111) with Sm atoms is studied by methods of thermal desorption spectroscopy and thermionic emission. It is shown that adsorption of samarium at T = 300 K on graphene to concentrations of N ≤ 6 × 1014 atoms cm-2 followed by heating of the substrate leads to practically complete escape of adsorbate underneath the graphene layer. At N > 6 × 1014 atoms cm-2 and increasing temperature, a fraction of adsorbate remains on graphene in the form of two-dimensional "gas" and samarium islands and are desorbed in the range of temperatures of 1000-1200 K. Samarium remaining under the graphene is desorbed from the surface in the temperature range 1200-2150 K. Model conceptions for the samarium-graphene-iridium system in a wide temperature range are developed.

  6. Superhydrophilic graphite surfaces and water-dispersible graphite colloids by electrochemical exfoliation

    NASA Astrophysics Data System (ADS)

    Li, Yueh-Feng; Chen, Shih-Ming; Lai, Wei-Hao; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2013-08-01

    Superhydrophilic graphite surfaces and water-dispersible graphite colloids are obtained by electrochemical exfoliation with hydrophobic graphite electrodes. Such counterintuitive characteristics are caused by partial oxidation and investigated by examining both graphite electrodes and exfoliated particles after electrolysis. The extent of surface oxidation can be explored through contact angle measurement, scanning electron microscope, electrical sheet resistance, x-ray photoelectron spectroscopy, zeta-potential analyzer, thermogravimetric analysis, UV-visible, and Raman spectroscopy. The degree of wettability of the graphite anode can be altered by the electrolytic current and time. The water contact angle declines generally with increasing the electrolytic current or time. After a sufficient time, the graphite anode becomes superhydrophilic and its hydrophobicity can be recovered by peeling with adhesive tape. This consequence reveals that the anodic graphite is oxidized by oxygen bubbles but the oxidation just occurs at the outer layers of the graphite sheet. Moreover, the characteristics of oxidation revealed by UV peak shift, peak ratio between D and G bands, and negative zeta-potential indicate the presence of graphite oxide on the outer shell of the exfoliated colloids. However, thermogravimetric analysis for the extent of decomposition of oxygen functional groups verifies that the amount of oxygen groups is significantly less than that of graphite oxide prepared via Hummer method. The structure of this partially oxidized graphite may consist of a graphite core covered with an oxidized shell. The properties of the exfoliated colloids are also influenced by pH of the electrolytic solution. As pH is increased, the extent of oxidation descends and the thickness of oxidized shell decreases. Those results reveal that the degree of oxidation of exfoliated nanoparticles can be manipulated simply by controlling pH.

  7. Investigation of Ceramic, Graphite, and Chrome-plated Graphite Nozzles on Rocket Engine

    NASA Technical Reports Server (NTRS)

    Kinney, George R; Lidman, William G

    1949-01-01

    The use of ceramic material for rocket nozzles and the effectiveness of preventing oxidation and erosion of graphite nozzles by chrome-plating the internal surface were investigated. A supported ceramic nozzle, cracked by initial operation, was operated a second time without further cracking or damage. Chrome-plating the internal surface of graphite nozzles effectively prevented oxidation and erosion that occurred during operation with unprotected graphite.

  8. Superhydrophilic graphite surfaces and water-dispersible graphite colloids by electrochemical exfoliation

    SciTech Connect

    Li, Yueh-Feng; Chen, Shih-Ming; Lai, Wei-Hao; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2013-08-14

    Superhydrophilic graphite surfaces and water-dispersible graphite colloids are obtained by electrochemical exfoliation with hydrophobic graphite electrodes. Such counterintuitive characteristics are caused by partial oxidation and investigated by examining both graphite electrodes and exfoliated particles after electrolysis. The extent of surface oxidation can be explored through contact angle measurement, scanning electron microscope, electrical sheet resistance, x-ray photoelectron spectroscopy, zeta-potential analyzer, thermogravimetric analysis, UV-visible, and Raman spectroscopy. The degree of wettability of the graphite anode can be altered by the electrolytic current and time. The water contact angle declines generally with increasing the electrolytic current or time. After a sufficient time, the graphite anode becomes superhydrophilic and its hydrophobicity can be recovered by peeling with adhesive tape. This consequence reveals that the anodic graphite is oxidized by oxygen bubbles but the oxidation just occurs at the outer layers of the graphite sheet. Moreover, the characteristics of oxidation revealed by UV peak shift, peak ratio between D and G bands, and negative zeta-potential indicate the presence of graphite oxide on the outer shell of the exfoliated colloids. However, thermogravimetric analysis for the extent of decomposition of oxygen functional groups verifies that the amount of oxygen groups is significantly less than that of graphite oxide prepared via Hummer method. The structure of this partially oxidized graphite may consist of a graphite core covered with an oxidized shell. The properties of the exfoliated colloids are also influenced by pH of the electrolytic solution. As pH is increased, the extent of oxidation descends and the thickness of oxidized shell decreases. Those results reveal that the degree of oxidation of exfoliated nanoparticles can be manipulated simply by controlling pH.

  9. Advantages of GPU technology in DFT calculations of intercalated graphene

    NASA Astrophysics Data System (ADS)

    Pešić, J.; Gajić, R.

    2014-09-01

    Over the past few years, the expansion of general-purpose graphic-processing unit (GPGPU) technology has had a great impact on computational science. GPGPU is the utilization of a graphics-processing unit (GPU) to perform calculations in applications usually handled by the central processing unit (CPU). Use of GPGPUs as a way to increase computational power in the material sciences has significantly decreased computational costs in already highly demanding calculations. A level of the acceleration and parallelization depends on the problem itself. Some problems can benefit from GPU acceleration and parallelization, such as the finite-difference time-domain algorithm (FTDT) and density-functional theory (DFT), while others cannot take advantage of these modern technologies. A number of GPU-supported applications had emerged in the past several years (www.nvidia.com/object/gpu-applications.html). Quantum Espresso (QE) is reported as an integrated suite of open source computer codes for electronic-structure calculations and materials modeling at the nano-scale. It is based on DFT, the use of a plane-waves basis and a pseudopotential approach. Since the QE 5.0 version, it has been implemented as a plug-in component for standard QE packages that allows exploiting the capabilities of Nvidia GPU graphic cards (www.qe-forge.org/gf/proj). In this study, we have examined the impact of the usage of GPU acceleration and parallelization on the numerical performance of DFT calculations. Graphene has been attracting attention worldwide and has already shown some remarkable properties. We have studied an intercalated graphene, using the QE package PHonon, which employs GPU. The term ‘intercalation’ refers to a process whereby foreign adatoms are inserted onto a graphene lattice. In addition, by intercalating different atoms between graphene layers, it is possible to tune their physical properties. Our experiments have shown there are benefits from using GPUs, and we reached an

  10. FennoFlakes: a project for identifying flake graphite ores in the Fennoscandian shield and utilizing graphite in different applications

    NASA Astrophysics Data System (ADS)

    Palosaari, Jenny; Eklund, O.; Raunio, S.; Lindfors, T.; Latonen, R.-M.; Peltonen, J.; Smått, J.-H.; Kauppila, J.; Lund, S.; Sjöberg-Eerola, P.; Blomqvist, R.; Marmo, J.

    2016-04-01

    Natural graphite is a strategic mineral, since the European Commission stated (Report on critical raw materials for the EU (2014)) that graphite is one of the 20 most critical materials for the European Union. The EU consumed 13% of all flake graphite in the world but produced only 3%, which stresses the demand of the material. Flake graphite, which is a flaky version of graphite, forms under high metamorphic conditions. Flake graphite is important in different applications like batteries, carbon brushes, heat sinks etc. Graphene (a single layer of graphite) can be produced from graphite and is commonly used in many nanotechnological applications, e.g. in electronics and sensors. The steps to obtain pure graphene from graphite ore include fragmentation, flotation and exfoliation, which can be cumbersome and resulting in damaging the graphene layers. We have started a project named FennoFlakes, which is a co-operation between geologists and chemists to fill the whole value chain from graphite to graphene: 1. Exploration of graphite ores (geological and geophysical methods). 2. Petrological and geochemical analyses on the ores. 3. Development of fragmentation methods for graphite ores. 4. Chemical exfoliation of the enriched flake graphite to separate flake graphite into single and multilayer graphene. 5. Test the quality of the produced material in several high-end applications with totally environmental friendly and disposable material combinations. Preliminary results show that flake graphite in high metamorphic areas has better qualities compared to synthetic graphite produced in laboratories.

  11. Synthesis and characterization of montmorillonite clay intercalated with molecular magnetic compounds

    SciTech Connect

    Martins, Marcel G.; Martins, Daniel O.T.A.; Carvalho, Beatriz L.C. de; Mercante, Luiza A.; Soriano, Stéphane; Andruh, Marius; Vieira, Méri D.; Vaz, Maria G.F.

    2015-08-15

    In this work montmorillonite (MMT) clay, whose matrix was modified with an ammonium salt (hexadecyltrimethylammonium bromide – CTAB), was employed as an inorganic host for the intercalation of three different molecular magnetic compounds through ion exchange: a nitronyl nitroxide derivative 2-[4-(N-ethyl)-pyridinium]-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (p-EtRad{sup +}) and two binuclear coordination compounds, [Ni(valpn)Ln]{sup 3+}, where H{sub 2}valpn stands for 1,3-propanediyl-bis(2-iminomethylene-6-methoxy-phenol), and Ln=Gd{sup III}; Dy{sup III}. The pristine MMT and the intercalated materials were characterized by X-ray powder diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and magnetic measurements. The X-ray diffraction data analysis showed an increase of the interlamellar space of the intercalated MMT, indicating the intercalation of the magnetic compounds. Furthermore, the magnetic properties of the hybrid compounds were investigated, showing similar behavior as the pure magnetic guest species. - Graphical abstract: Montmorillonite clay was employed as inorganic host for the intercalation of three different molecular magnetic compounds through ion exchange - Highlights: • Montmorillonite was employed as a host material. • Three molecular magnetic compounds were intercalated through ion exchange. • The compounds were successful intercalated maintaining the layered structure. • The hybrid materials exhibited similar magnetic behavior as the pure magnetic guest.

  12. Single-molecule kinetics and footprinting of DNA bis-intercalation: the paradigmatic case of Thiocoraline

    PubMed Central

    Camunas-Soler, Joan; Manosas, Maria; Frutos, Silvia; Tulla-Puche, Judit; Albericio, Fernando; Ritort, Felix

    2015-01-01

    DNA bis-intercalators are widely used in molecular biology with applications ranging from DNA imaging to anticancer pharmacology. Two fundamental aspects of these ligands are the lifetime of the bis-intercalated complexes and their sequence selectivity. Here, we perform single-molecule optical tweezers experiments with the peptide Thiocoraline showing, for the first time, that bis-intercalation is driven by a very slow off-rate that steeply decreases with applied force. This feature reveals the existence of a long-lived (minutes) mono-intercalated intermediate that contributes to the extremely long lifetime of the complex (hours). We further exploit this particularly slow kinetics to determine the thermodynamics of binding and persistence length of bis-intercalated DNA for a given fraction of bound ligand, a measurement inaccessible in previous studies of faster intercalating agents. We also develop a novel single-molecule footprinting technique based on DNA unzipping and determine the preferred binding sites of Thiocoraline with one base-pair resolution. This fast and radiolabelling-free footprinting technique provides direct access to the binding sites of small ligands to nucleic acids without the need of cleavage agents. Overall, our results provide new insights into the binding pathway of bis-intercalators and the reported selectivity might be of relevance for this and other anticancer drugs interfering with DNA replication and transcription in carcinogenic cell lines. PMID:25690887

  13. Single-molecule kinetics and footprinting of DNA bis-intercalation: the paradigmatic case of Thiocoraline.

    PubMed

    Camunas-Soler, Joan; Manosas, Maria; Frutos, Silvia; Tulla-Puche, Judit; Albericio, Fernando; Ritort, Felix

    2015-03-11

    DNA bis-intercalators are widely used in molecular biology with applications ranging from DNA imaging to anticancer pharmacology. Two fundamental aspects of these ligands are the lifetime of the bis-intercalated complexes and their sequence selectivity. Here, we perform single-molecule optical tweezers experiments with the peptide Thiocoraline showing, for the first time, that bis-intercalation is driven by a very slow off-rate that steeply decreases with applied force. This feature reveals the existence of a long-lived (minutes) mono-intercalated intermediate that contributes to the extremely long lifetime of the complex (hours). We further exploit this particularly slow kinetics to determine the thermodynamics of binding and persistence length of bis-intercalated DNA for a given fraction of bound ligand, a measurement inaccessible in previous studies of faster intercalating agents. We also develop a novel single-molecule footprinting technique based on DNA unzipping and determine the preferred binding sites of Thiocoraline with one base-pair resolution. This fast and radiolabelling-free footprinting technique provides direct access to the binding sites of small ligands to nucleic acids without the need of cleavage agents. Overall, our results provide new insights into the binding pathway of bis-intercalators and the reported selectivity might be of relevance for this and other anticancer drugs interfering with DNA replication and transcription in carcinogenic cell lines. PMID:25690887

  14. Laboratory for Characterization of Irradiated Graphite

    SciTech Connect

    Karen A. Moore

    2010-03-01

    The newly completed Idaho National Laboratory (INL) Carbon Characterization Laboratory (CCL) is located in Labs C19 and C20 of the Idaho National Laboratory Research Center (IRC). The CCL was established under the Next Generation Nuclear Plant (NGNP) Project to support graphite and ceramic composite research and development activities. The research is in support of the Advanced Graphite Creep (AGC) experiment — a major material irradiation experiment within the NGNP Graphite program. The CCL is designed to characterize and test low activated irradiated materials such as high purity graphite, carbon-carbon composites, and silicon-carbide composite materials. The laboratory is fully capable of characterizing material properties for both irradiated and nonirradiated materials.

  15. Immobilization of Rocky Flats Graphite Fines Residue

    SciTech Connect

    Rudisill, T.S.

    1999-04-06

    The development of the immobilization process for graphite fines has proceeded through a series of experimental programs. The experimental procedures and results from each series of experiments are discussed in this report.

  16. Analysis of Picosecond Pulsed Laser Melted Graphite

    DOE R&D Accomplishments Database

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M. S.; Huang, C. Y.; Malvezzi, A. M.; Bloembergen, N.

    1986-12-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm{sup -1} and the disorder-induced mode at 1360 cm{sup -1}, the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nanosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence.

  17. Tribology of alumina-graphite composites

    NASA Astrophysics Data System (ADS)

    Yu, Chih-Yuan

    Alumina-graphite composites, which combine high wear resistance and self-lubricity, are a potential and promising candidate for advanced tribological applications. The processing, mechanical properties and tribology of alumina-graphite composites are discussed. Full density is difficult to achieve by a pressureless sintering route. Porosity of the composites increases with graphite content which causes the strength, modulus of elasticity, and hardness of the composites to decrease. The increased porosity does cause the fracture toughness to slightly increases. Tribology of alumina-graphite composites was studied with a pin-on-disk tribometer with emphasis on the following aspects: the graphite content in both pin and disk, the graphite flake size and the orientation of the graphite flakes. Scan electronic microscopy (SEM) and X-ray diffraction are utilized to examine and characterize the wear debris and the worn surface. Results confirmed that it is necessary to optimize the structure and the supply of lubricant to improve the tribological behavior and that the arrangements of sliding couples also affect the tribology of self-lubricated ceramic composites. Continuous measurements of the friction coefficients were collected at high frequency in an attempt to correlate the tribology of alumina-graphite composites to vibrations introduced by friction. While these measurements indicate that the time frequency behavior of tribology is an important area of study, conclusions regarding the frequency response of different sliding couples could not be definitively stated. Finally, a new concept connecting instantaneous wear coefficient and instantaneous contact stress is proposed for prediction of wear behavior of brittle materials.

  18. GRAPHITE PRODUCTION UTILIZING URANYL NITRATE HEXAHYDRATE CATALYST

    DOEpatents

    Sheinberg, H.; Armstrong, J.R.; Schell, D.H.

    1964-03-10

    ABS>The graphitizing of a mixture composed of furfuryl alcohol binder and uranyl nitrate hexahydrate hardener and the subsequent curing, baking, and graphitizing with pressure being initially applied prior to curing are described. The pressure step may be carried out by extrusion, methyl cellulose being added to the mixture before the completion of extrusion. Uranium oxide may be added to the graphitizable mixture prior to the heating and pressure steps. The graphitizable mixture may consist of discrete layers of different compositions. (AEC)

  19. Induction graphitizing furnace acceptance test report

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The induction furnace was designed to provide the controlled temperature and environment required for the post-cure, carbonization and graphitization processes for the fabrication of a fibrous graphite NERVA nozzle extension. The acceptance testing required six tests and a total operating time of 298 hrs. Low temperature mode operations, 120 to 850 C, were completed in one test run. High temperature mode operations, 120 to 2750 C, were completed during five tests.

  20. Graphite Composite Panel Polishing Fixture

    NASA Technical Reports Server (NTRS)

    Hagopian, John; Strojny, Carl; Budinoff, Jason

    2011-01-01

    The use of high-strength, lightweight composites for the fixture is the novel feature of this innovation. The main advantage is the light weight and high stiffness-to-mass ratio relative to aluminum. Meter-class optics require support during the grinding/polishing process with large tools. The use of aluminum as a polishing fixture is standard, with pitch providing a compliant layer to allow support without deformation. Unfortunately, with meter-scale optics, a meter-scale fixture weighs over 120 lb (.55 kg) and may distort the optics being fabricated by loading the mirror and/or tool used in fabrication. The use of composite structures that are lightweight yet stiff allows standard techniques to be used while providing for a decrease in fixture weight by almost 70 percent. Mounts classically used to support large mirrors during fabrication are especially heavy and difficult to handle. The mount must be especially stiff to avoid deformation during the optical fabrication process, where a very large and heavy lap often can distort the mount and optic being fabricated. If the optic is placed on top of the lapping tool, the weight of the optic and the fixture can distort the lap. Fixtures to support the mirror during fabrication are often very large plates of aluminum, often 2 in. (.5 cm) or more in thickness and weight upwards of 150 lb (68 kg). With the addition of a backing material such as pitch and the mirror itself, the assembly can often weigh over 250 lb (.113 kg) for a meter-class optic. This innovation is the use of a lightweight graphite panel with an aluminum honeycomb core for use as the polishing fixture. These materials have been used in the aerospace industry as structural members due to their light weight and high stiffness. The grinding polishing fixture consists of the graphite composite panel, fittings, and fixtures to allow interface to the polishing machine, and introduction of pitch buttons to support the optic under fabrication. In its

  1. Structure and functionality of bromine doped graphite.

    PubMed

    Hamdan, Rashid; Kemper, A F; Cao, Chao; Cheng, H P

    2013-04-28

    First-principles calculations are used to study the enhanced in-plane conductivity observed experimentally in Br-doped graphite, and to study the effect of external stress on the structure and functionality of such systems. The model used in the numerical calculations is that of stage two doped graphite. The band structure near the Fermi surface of the doped systems with different bromine concentrations is compared to that of pure graphite, and the charge transfer between carbon and bromine atoms is analyzed to understand the conductivity change along different high symmetry directions. Our calculations show that, for large interlayer separation between doped graphite layers, bromine is stable in the molecular form (Br2). However, with increased compression (decreased layer-layer separation) Br2 molecules tend to dissociate. While in both forms, bromine is an electron acceptor. The charge exchange between the graphite layers and Br atoms is higher than that with Br2 molecules. Electron transfer to the Br atoms increases the number of hole carriers in the graphite sheets, resulting in an increase of conductivity. PMID:23635160

  2. Structure and functionality of bromine doped graphite

    SciTech Connect

    Hamdan, Rashid; Kemper, A. F.; Cao Chao; Cheng, H. P.

    2013-04-28

    First-principles calculations are used to study the enhanced in-plane conductivity observed experimentally in Br-doped graphite, and to study the effect of external stress on the structure and functionality of such systems. The model used in the numerical calculations is that of stage two doped graphite. The band structure near the Fermi surface of the doped systems with different bromine concentrations is compared to that of pure graphite, and the charge transfer between carbon and bromine atoms is analyzed to understand the conductivity change along different high symmetry directions. Our calculations show that, for large interlayer separation between doped graphite layers, bromine is stable in the molecular form (Br{sub 2}). However, with increased compression (decreased layer-layer separation) Br{sub 2} molecules tend to dissociate. While in both forms, bromine is an electron acceptor. The charge exchange between the graphite layers and Br atoms is higher than that with Br{sub 2} molecules. Electron transfer to the Br atoms increases the number of hole carriers in the graphite sheets, resulting in an increase of conductivity.

  3. Structure and functionality of bromine doped graphite.

    PubMed

    Hamdan, Rashid; Kemper, A F; Cao, Chao; Cheng, H P

    2013-04-28

    First-principles calculations are used to study the enhanced in-plane conductivity observed experimentally in Br-doped graphite, and to study the effect of external stress on the structure and functionality of such systems. The model used in the numerical calculations is that of stage two doped graphite. The band structure near the Fermi surface of the doped systems with different bromine concentrations is compared to that of pure graphite, and the charge transfer between carbon and bromine atoms is analyzed to understand the conductivity change along different high symmetry directions. Our calculations show that, for large interlayer separation between doped graphite layers, bromine is stable in the molecular form (Br2). However, with increased compression (decreased layer-layer separation) Br2 molecules tend to dissociate. While in both forms, bromine is an electron acceptor. The charge exchange between the graphite layers and Br atoms is higher than that with Br2 molecules. Electron transfer to the Br atoms increases the number of hole carriers in the graphite sheets, resulting in an increase of conductivity.

  4. Measurement of the cleavage energy of graphite

    PubMed Central

    Wang, Wen; Dai, Shuyang; Li, Xide; Yang, Jiarui; Srolovitz, David J.; Zheng, Quanshui

    2015-01-01

    The basal plane cleavage energy (CE) of graphite is a key material parameter for understanding many of the unusual properties of graphite, graphene and carbon nanotubes. Nonetheless, a wide range of values for the CE has been reported and no consensus has yet emerged. Here we report the first direct, accurate experimental measurement of the CE of graphite using a novel method based on the self-retraction phenomenon in graphite. The measured value, 0.37±0.01 J m−2 for the incommensurate state of bicrystal graphite, is nearly invariant with respect to temperature (22 °C≤T≤198 °C) and bicrystal twist angle, and insensitive to impurities from the atmosphere. The CE for the ideal ABAB graphite stacking, 0.39±0.02 J m−2, is calculated based on a combination of the measured CE and a theoretical calculation. These experimental measurements are also ideal for use in evaluating the efficacy of competing theoretical approaches. PMID:26314373

  5. Synthesis of reduced graphene oxide intercalated ZnO quantum dots nanoballs for selective biosensing detection

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Zhao, Minggang; Li, Yingchun; Fan, Sisi; Ding, Longjiang; Liang, Jingjing; Chen, Shougang

    2016-07-01

    ZnO quantum dots (QDs), reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs) are always used in sensors due to their excellent electrochemical characteristics. In this work, ZnO QDs were intercalated by rGO sheets with cross-linked MWCNTs to construct intercalation nanoballs. A MWCNTs/rGO/ZnO QDs 3D hierarchical architecture was fabricated on supporting Ni foam, which exhibited excellent mechanical, kinetic and electrochemical properties. The intercalation construction can introduce strong interfacial effects to improve the surface electronic state. The selectively determinate of uric acid, dopamine, and ascorbic acid by an electrode material using distinct applied potentials was realized.

  6. High voltage and high specific capacity dual intercalating electrode Li-ion batteries

    NASA Technical Reports Server (NTRS)

    West, William C. (Inventor); Blanco, Mario (Inventor)

    2010-01-01

    The present invention provides high capacity and high voltage Li-ion batteries that have a carbonaceous cathode and a nonaqueous electrolyte solution comprising LiF salt and an anion receptor that binds the fluoride ion. The batteries can comprise dual intercalating electrode Li ion batteries. Methods of the present invention use a cathode and electrode pair, wherein each of the electrodes reversibly intercalate ions provided by a LiF salt to make a high voltage and high specific capacity dual intercalating electrode Li-ion battery. The present methods and systems provide high-capacity batteries particularly useful in powering devices where minimizing battery mass is important.

  7. Unique properties of α-NaFeO{sub 2}: De-intercalation of sodium via hydrolysis and the intercalation of guest molecules into the extract solution

    SciTech Connect

    Monyoncho, Evans; Bissessur, Rabin

    2013-07-15

    Graphical abstract: - Highlights: • Facile de-intercalating Na from NaFeO2. • Formation of layered sodium hydrogen carbonate hydrate. • Intercalation chemistry on layered sodium hydrogen carbonate hydrate. - Abstract: We report on a versatile method for the de-intercalation of Na from α-NaFeO{sub 2} by using water to produce α-Na{sub 1−x}FeO{sub 2}, where x ≈ 1. This de-intercalation technique provides an excellent route to ion exchange Na with other metal ions in α-NaFeO{sub 2}. The hydrolysis mechanism is provided. We show that the extracted solution captures CO{sub 2} from the atmosphere leading to the formation of sodium hydrogen carbonate hydrate crystals. The lamellar structure of the hydrate crystals was confirmed by powder X-ray diffraction, and were found Na-deficient via elemental analysis. Intercalation of guest molecules such as polymers, alcohols, and inorganic ions into the gallery space of the newly formed sodium hydrogen carbonate hydrate crystals was demonstrated by the use of powder X-ray diffraction technique. The reported materials were also characterized by Mössbauer spectroscopy, thermogravimetric analysis, differential scanning calorimetry, infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy.

  8. Femtosecond carrier dynamics in graphite

    NASA Astrophysics Data System (ADS)

    Seibert, K.; Cho, G. C.; Kütt, W.; Kurz, H.; Reitze, D. H.; Dadap, J. I.; Ahn, H.; Downer, M. C.; Malvezzi, A. M.

    1990-08-01

    We present a comprehensive report of pump-probe reflectivity and transmission measurements on highly oriented pyrolytic graphite with 50 fs time resolution. The experiments trace the generation, relaxation, and recombination of nonequilibrium carriers in a quasi-two-dimensional semimetallic solid over a wide range of experimental parameters. The fluence of excitation at hν=2.0 eV was varied between 10-6 and 10-2 J/cm2, below the threshold for optical damage, while probe pulses in the photon energy range 1.5

  9. Resin/graphite fiber composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.

    1974-01-01

    Techniques were developed that provided thermo-oxidatively stable A-type polyimide/graphite fiber composites using the approach of in situ polymerization of monomeric reactants directly on reinforcing fibers, rather than employing separately prepared prepolymer varnish. This was accomplished by simply mixing methylene dianiline and two ester-acids and applying this solution to the fibers for subsequent molding. Five different formulated molecular weight resins were examined, and an optimized die molding procedure established for the 1500 formulated molecular weight system. Extensive ultrasonic inspection of composites was successfully utilized as a technique for monitoring laminate quality. Composite mechanical property studies were conducted with this polyimide resin at room temperature and after various time exposures in a thermo-oxidative environment at 561 K (550 F), 589 K (600 F) and 617 K (650 F). It was determined that such composites have a long term life in the temperature range of 561 K to 589 K. The final phase involved the fabrication and evaluation of a series of demonstration airfoil specimens.

  10. Thermal cycling graphite-polyimide

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Hagaman, J. A.

    1979-01-01

    The effects of repetitive thermal cycling on the temperature-thermal deformation relation of graphite-polyimide were determined. The bending and axial strains, measured with strain gages, of unsymmetric 0 deg sub 2/90 deg sub 2 and 0 deg sub 4/90 deg sub 4 laminates were used as an indication of thermal deformation. The strains were measured as a function of temperature and two temperature ranges were used, room temperature to 180 C and room temperature to 315 C. Five cycles were run in each temperature range and the cycling was done in quasistatic fashion. The response of a flat 0 deg sub 8 laminate was measured as were the effects of repetitive cycling on the strain gages themselves. A piece-wise linear theory, based on classical lamination theory and using the variation of mechanical and thermal expansion properties with temperature, was compared with the experimental results. The correlation between theoretical predictions and experimental results for the thinner laminate was poor.

  11. Graphene prepared by thermal reduction–exfoliation of graphite oxide: Effect of raw graphite particle size on the properties of graphite oxide and graphene

    SciTech Connect

    Dao, Trung Dung; Jeong, Han Mo

    2015-10-15

    Highlights: • Effect of raw graphite particle size on properties of GO and graphene is reported. • Size of raw graphite affects oxidation degree and chemical structure of GO. • Highly oxidized GO results in small-sized but well-exfoliated graphene. • GO properties affect reduction degree, structure, and conductivity of graphene. - Abstract: We report the effect of raw graphite size on the properties of graphite oxide and graphene prepared by thermal reduction–exfoliation of graphite oxide. Transmission electron microscope analysis shows that the lateral size of graphene becomes smaller when smaller size graphite is used. X-ray diffraction analysis confirms that graphite with smaller size is more effectively oxidized, resulting in a more effective subsequent exfoliation of the obtained graphite oxide toward graphene. X-ray photoelectron spectroscopy demonstrates that reduction of the graphite oxide derived from smaller size graphite into graphene is more efficient. However, Raman analysis suggests that the average size of the in-plane sp{sup 2}-carbon domains on graphene is smaller when smaller size graphite is used. The enhanced reduction degree and the reduced size of sp{sup 2}-carbon domains contribute contradictively to the electrical conductivity of graphene when the particle size of raw graphite reduces.

  12. Synthesis of new oligothiophene derivatives and their intercalation compounds: Orientation effects

    USGS Publications Warehouse

    Ibrahim, M.A.; Lee, B.-G.; Park, N.-G.; Pugh, J.R.; Eberl, D.D.; Frank, A.J.

    1999-01-01

    The orientation dependence of intercalated oligothiophene derivatives in vermiculite and metal disulfides MS2 (M = Mo, Ti and Zr) on the pendant group on the thiophene ring and the host material was studied by X-ray diffraction (XRD) and solid state nuclear magnetic resonance spectroscopy. Amino and nitro derivatives of bi-, ter- and quarter-thiophenes were synthesized for the first time. The amino-oligothiophenes were intercalated into vermiculite by an exchange reaction with previously intercalated octadecylammonium vermiculite and into MS2 by the intercalation-exfoliation technique. Analysis of the XRD data indicates that a monolayer of amino-oligothiophene orients perpendicularly to the silicate surface in vermiculite and lies flat in the van der Waals gap of MS2.

  13. Acrylate intercalation and in situ polymerization in iron-, cobalt-, or manganese-substituted nickel hydroxides.

    PubMed

    Vaysse, C; Guerlou-Demourgues, L; Duguet, E; Delmas, C

    2003-07-28

    A chimie douce route based on successive redox and exchange reactions has allowed us to prepare new hybrid organic-inorganic materials, composed of polyacrylate macromolecules intercalated into layered double hydroxides (LDHs), deriving from Ni(OH)(2). Monomer intercalation and in situ polymerization mechanisms have appeared to be strongly dependent upon the nature of the substituting cation in the slabs. In the case of iron-based LDHs, a phase containing acrylate monomeric intercalates has been isolated and identified by X-ray diffraction and infrared spectroscopy. Second, interslab free-radical polymerization of acrylate anions has been successfully initiated using potassium persulfate. In cobalt- or manganese-based LDHs, one-step polymerization has been observed, leading directly to a material containing polyacrylate intercalate. PMID:12870945

  14. Optimization of the Thermoelectric Figure of Merit in Crystalline C60 with Intercalation Chemistry.

    PubMed

    Kim, Jeong Yun; Grossman, Jeffrey C

    2016-07-13

    Crystalline C60 is an appealing candidate material for thermoelectric (TE) applications due to its extremely low thermal conductivity and potentially high electrical conductivity with metal atom intercalation. We investigate the TE properties of crystalline C60 intercalated with alkali and alkaline earth metals using both classical and quantum mechanical calculations. For the electronic structure, our results show that variation of intercalated metal atoms has a large impact on energy dispersions, which leads to broad tunability of the power factor. For the thermal transport, we show that dopants introduce strong phonon scattering into crystalline C60, leading to considerably lower thermal conductivity. Taking both into account, our calculations suggest that appropriate choice of metal atom intercalation in crystalline C60 could yield figures of merit near 1 at room temperature.

  15. Optimization of the Thermoelectric Figure of Merit in Crystalline C60 with Intercalation Chemistry.

    PubMed

    Kim, Jeong Yun; Grossman, Jeffrey C

    2016-07-13

    Crystalline C60 is an appealing candidate material for thermoelectric (TE) applications due to its extremely low thermal conductivity and potentially high electrical conductivity with metal atom intercalation. We investigate the TE properties of crystalline C60 intercalated with alkali and alkaline earth metals using both classical and quantum mechanical calculations. For the electronic structure, our results show that variation of intercalated metal atoms has a large impact on energy dispersions, which leads to broad tunability of the power factor. For the thermal transport, we show that dopants introduce strong phonon scattering into crystalline C60, leading to considerably lower thermal conductivity. Taking both into account, our calculations suggest that appropriate choice of metal atom intercalation in crystalline C60 could yield figures of merit near 1 at room temperature. PMID:27322341

  16. The Benzyl Moiety in a Quinoxaline-Based Scaffold Acts as a DNA Intercalation Switch.

    PubMed

    Mahata, Tridib; Kanungo, Ajay; Ganguly, Sudakshina; Modugula, Eswar Kalyan; Choudhury, Susobhan; Pal, Samir Kumar; Basu, Gautam; Dutta, Sanjay

    2016-06-27

    Quinoxaline antibiotics intercalate dsDNA and exhibit antitumor properties. However, they are difficult to synthesize and their structural complexity impedes a clear mechanistic understanding of DNA binding. Therefore design and synthesis of minimal-intercalators, using only part of the antibiotic scaffold so as to retain the key DNA-binding property, is extremely important. Reported is a unique example of a monomeric quinoxaline derivative of a 6-nitroquinoxaline-2,3-diamine scaffold which binds dsDNA by two different modes. While benzyl derivatives bound DNA in a sequential fashion, with intercalation as the second event, nonbenzyl derivatives showed only the first binding event. The benzyl intercalation switch provides important insights about molecular architecture which control specific DNA binding modes and would be useful in designing functionally important monomeric quinoxaline DNA binders and benchmarking molecular simulations.

  17. Intercalating dyes for enhanced contrast in second-harmonic generation imaging of protein crystals.

    PubMed

    Newman, Justin A; Scarborough, Nicole M; Pogranichniy, Nicholas R; Shrestha, Rashmi K; Closser, Richard G; Das, Chittaranjan; Simpson, Garth J

    2015-07-01

    The second-harmonic generation (SHG) activity of protein crystals was found to be enhanced by up to ∼1000-fold by the intercalation of SHG phores within the crystal lattice. Unlike the intercalation of fluorophores, the SHG phores produced no significant background SHG from solvated dye or from dye intercalated into amorphous aggregates. The polarization-dependent SHG is consistent with the chromophores adopting the symmetry of the crystal lattice. In addition, the degree of enhancement for different symmetries of dyes is consistent with theoretical predictions based on the molecular nonlinear optical response. Kinetics studies indicate that intercalation arises over a timeframe of several minutes in lysozyme, with detectable enhancements within seconds. These results provide a potential means to increase the overall diversity of protein crystals and crystal sizes amenable to characterization by SHG microscopy. PMID:26143918

  18. Reversible chemochromic MoO3 nanoribbons through zerovalent metal intercalation.

    PubMed

    Wang, Mengjing; Koski, Kristie J

    2015-03-24

    Molybdenum trioxide (α-MoO3) is a 2D layered oxide with use in electrochromic and photochromic devices owing to its ability to reversibly change color between transparent and light blue with electrochemical or hydrogen intercalation. Despite its significant application potential, MoO3 performance is largely limited by the destructiveness of these intercalation techniques, insignificant coloration, and slow color response. We demonstrate a reversible chemochromic method, using intercalation of zerovalent metals into α-MoO3 nanoribbons (Sn, ∼2 at. %; Co, ∼4 at. %), to chemically alter MoO3 from transparent white to a deep blue indigo, resulting in enhanced coloration and chemically tunable optical properties. We present two strategies to reversibly tune the color response of MoO3 nanoribbons. Chromism can be reversed (i) by complete oxidative deintercalation with hydrogen peroxide or iodine or (ii) through a temperature-driven disorder-order phase transition of the intercalated zerovalent metal. PMID:25734624

  19. Fabrication of a single layer graphene by copper intercalation on a SiC(0001) surface

    SciTech Connect

    Yagyu, Kazuma; Tochihara, Hiroshi; Tomokage, Hajime; Suzuki, Takayuki; Tajiri, Takayuki; Kohno, Atsushi; Takahashi, Kazutoshi

    2014-02-03

    Cu atoms deposited on a zero layer graphene grown on a SiC(0001) substrate, intercalate between the zero layer graphene and the SiC substrate after the thermal annealing above 600 °C, forming a Cu-intercalated single layer graphene. On the Cu-intercalated single layer graphene, a graphene lattice with superstructure due to moiré pattern is observed by scanning tunneling microscopy, and specific linear dispersion at the K{sup ¯} point as well as a characteristic peak in a C{sub 1s} core level spectrum, which is originated from a free-standing graphene, is confirmed by photoemission spectroscopy. The Cu-intercalated single layer graphene is found to be n-doped.

  20. Oxygen intercalation under graphene on Ir(111): energetics, kinetics, and the role of graphene edges.

    PubMed

    Grånäs, Elin; Knudsen, Jan; Schröder, Ulrike A; Gerber, Timm; Busse, Carsten; Arman, Mohammad A; Schulte, Karina; Andersen, Jesper N; Michely, Thomas

    2012-11-27

    Using X-ray photoemission spectroscopy (XPS) and scanning tunneling microscopy (STM) we resolve the temperature-, time-, and flake size-dependent intercalation phases of oxygen underneath graphene on Ir(111) formed upon exposure to molecular oxygen. Through the applied pressure of molecular oxygen the atomic oxygen created on the bare Ir terraces is driven underneath graphene flakes. The importance of substrate steps and of the unbinding of graphene flake edges from the substrate for the intercalation is identified. With the use of CO titration to selectively remove oxygen from the bare Ir terraces the energetics of intercalation is uncovered. Cluster decoration techniques are used as an efficient tool to visualize intercalation processes in real space.

  1. Intercalating dyes for enhanced contrast in second-harmonic generation imaging of protein crystals

    PubMed Central

    Newman, Justin A.; Scarborough, Nicole M.; Pogranichniy, Nicholas R.; Shrestha, Rashmi K.; Closser, Richard G.; Das, Chittaranjan; Simpson, Garth J.

    2015-01-01

    The second-harmonic generation (SHG) activity of protein crystals was found to be enhanced by up to ∼1000-fold by the intercalation of SHG phores within the crystal lattice. Unlike the intercalation of fluorophores, the SHG phores produced no significant background SHG from solvated dye or from dye intercalated into amorphous aggregates. The polarization-dependent SHG is consistent with the chromophores adopting the symmetry of the crystal lattice. In addition, the degree of enhancement for different symmetries of dyes is consistent with theoretical predictions based on the molecular nonlinear optical response. Kinetics studies indicate that intercalation arises over a timeframe of several minutes in lysozyme, with detectable enhancements within seconds. These results provide a potential means to increase the overall diversity of protein crystals and crystal sizes amenable to characterization by SHG microscopy. PMID:26143918

  2. Method of producing exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    DOEpatents

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z.

    2010-11-02

    The present invention provides a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of graphite, graphite oxide, or a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  3. Electrochemical potential of intercalation phase: Li/V 2O 5 system

    NASA Astrophysics Data System (ADS)

    Wu, Qi-Hui

    2006-12-01

    In the communication, the use of photoelectron spectroscopy in evaluating the electrochemical potentials for intercalation phase (Li/V 2O 5 system) is presented. Two contributions, i.e. Fermi level shift and formation of surface dipole, are the main factors in the change of battery voltage during the Li intercalation. It was found that the formation of surface dipole plays more important role in the decrease of the battery voltage due to the adsorption of Li on the surface.

  4. Direct observation of Dirac cone in multilayer silicene intercalation compound CaSi2.

    PubMed

    Noguchi, Eiichi; Sugawara, Katsuaki; Yaokawa, Ritsuko; Hitosugi, Taro; Nakano, Hideyuki; Takahashi, Takashi

    2015-02-01

    Calcium-intercalated multilayer silicene CaSi2 exhibits a massless Dirac-cone π-electron-band dispersion like graphene, while the Dirac point is about 2 eV away from the Fermi level due to diiimide-based charge transfer from the Ca atoms to the silicene layers. This indicates that the graphene-like electronic structure with a massless Dirac cone is stably formed in the metal-intercalated multilayer silicene.

  5. PMR Graphite Engine Duct Development

    NASA Technical Reports Server (NTRS)

    Stotler, C. L.; Yokel, S. A.

    1989-01-01

    The objective was to demonstrate the cost and weight advantages that could be obtained by utilizing the graphite/PMR15 material system to replace titanium in selected turbofan engine applications. The first component to be selected as a basis for evaluation was the outer bypass duct of the General Electric F404 engine. The operating environment of this duct was defined and then an extensive mechanical and physical property test program was conducted using material made by processing techniques which were also established by this program. Based on these properties, design concepts to fabricate a composite version of the duct were established and two complete ducts fabricated. One of these ducts was proof pressure tested and then run successfully on a factory test engine for over 1900 hours. The second duct was static tested to 210 percent design limit load without failure. An improved design was then developed which utilized integral composite end flanges. A complete duct was fabricated and successfully proof pressure tested. The net results of this effort showed that a composite version of the outer duct would be 14 percent lighter and 30 percent less expensive that the titanium duct. The other type of structure chosen for investigation was the F404 fan stator assembly, including the fan stator vanes. It was concluded that it was feasible to utilize composite materials for this type structure but that the requirements imposed by replacing an existing metal design resulted in an inefficient composite design. It was concluded that if composites were to be effectively used in this type structure, the design must be tailored for composite application from the outset.

  6. Chemical modification of graphite surfaces using chitosan as a mediator

    SciTech Connect

    Hatley, M.E.; Albahadily, F.N.

    1995-12-01

    Several techniques for modifying graphite surfaces have been utilized the last two decades. Some of these techniques have a few limitations which include monolayer coverage and nonspecific binding to the graphite surfaces. In this report, we describe a novel approach to modify graphite surfaces using chitosan. The graphite is coated with an acidic chitosan solution. After drying, a chitosan film is formed on the graphite surfaces. Glutaraldehyde is attached to the chitosan through an amide linkage. The desired modifiers which contain amine groups are then attached to the free end of the glutaraldehyde. Utilization of the modified graphite surfaces in paste electrodes will be discussed.

  7. Intercalation of acrylic acid and sodium acrylate into kaolinite and their in situ polymerization

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Li, Yanfeng; Pan, Xiaobing; Jia, Xin; Wang, Xiaolong

    2007-02-01

    Novel nano-composites of poly (acrylic acid)-kaolinite were prepared, and intercalation and in situ polymerization were used in this process. The nano-composites were obtained by in situ polymerization of acrylic acid (AA) and sodium acrylate (AANa) intercalated into organo-kaolinite, which was obtained by refining and chemically modifying with solution intercalation step in order to increase the basal plane distance of the original clay. The modification was completed by using dimethyl-sulfoxide (DMSO)/methanol and potassium acetate (KAc)/water systems step by step. The materials were characterized with the help of XRD, FT-IR and TEM; the results confirmed that poly(acrylic acid) (PAA) and poly(sodium acrylate) (PAANa) were intercalated into the interlamellar spaces of kaolinite, the resulting copolymer composites (CC0 : copolymer crude kaolinite composite, CC1 : copolymer DMSO kaolinite composite, CC2 : copolymer KAc kaolinite composite) of CC2 exhibited a lamellar nano-composite with a mixed nano-morphology, and partial exfoliation of the intercalating clay platelets should be the main morphology. Finally, the effect of neutralization degree on the intercalation behavior was also investigated.

  8. Intercalation and Distribution of Silver in the Transition Metal Dichalcogenide 1T-TITANIUM-DISULFIDE.

    NASA Astrophysics Data System (ADS)

    Kaluarachchi, Dayakanthi

    The intercalation and motion of silver (Ag) in partially intercalated titanium disulphide (TiS _{rm 2}) crystals were studied using a scanning Auger electron microscope with ion sputtering, a scanning electron microscope with an x-ray fluorescence attachment, an optical microscope and radioactive tracers. The x-ray fluorescence results indicated a rapid conversion of stage 1 Ag into stage 2 Ag at room temperature and a stationary behavior of the stage 2 Ag after the stage conversion was completed. The radioactive tracer results showed that stage 2 Ag was mobile during the stage 1 to stage 2 conversion and also when a crystal was being intercalated. The motion of stage 2 Ag in the bulk of a crystal was observed only when stage 1 was present in the crystal. Auger analysis with ion sputtering yielded the 3-dimensional distribution of Ag in a partially intercalated stage 2 crystal. Ag was observed to be intercalated across the crystal surface region while the bulk was intercalated only for a short distance, indicating that the Ag has a high rate of motion near the crystal surface. A stage 2 region with a high Ag concentration was observed to be unstable near the crystal surface.

  9. In Situ Intercalation Dynamics in Inorganic–Organic Layered Perovskite Thin Films

    PubMed Central

    2014-01-01

    The properties of layered inorganic semiconductors can be manipulated by the insertion of foreign molecular species via a process known as intercalation. In the present study, we investigate the phenomenon of organic moiety (R-NH3I) intercalation in layered metal-halide (PbI2)-based inorganic semiconductors, leading to the formation of inorganic–organic (IO) perovskites [(R-NH3)2PbI4]. During this intercalation strong resonant exciton optical transitions are created, enabling study of the dynamics of this process. Simultaneous in situ photoluminescence (PL) and transmission measurements are used to track the structural and exciton evolution. On the basis of the experimental observations, a model is proposed which explains the process of IO perovskite formation during intercalation of the organic moiety through the inorganic semiconductor layers. The interplay between precursor film thickness and organic solution concentration/solvent highlights the role of van der Waals interactions between the layers, as well as the need for maintaining stoichiometry during intercalation. Nucleation and growth occurring during intercalation matches a Johnson–Mehl–Avrami–Kolmogorov model, with results fitting both ideal and nonideal cases. PMID:24905435

  10. Synthesis of (cinnamate-zinc layered hydroxide) intercalation compound for sunscreen application

    PubMed Central

    2013-01-01

    Background Zinc layered hydroxide (ZLH) intercalated with cinnamate, an anionic form of cinnamic acid (CA), an efficient UVA and UVB absorber, have been synthesized by direct method using zinc oxide (ZnO) and cinnamic acid as the precursor. Results The resulting obtained intercalation compound, ZCA, showed a basal spacing of 23.9 Å as a result of cinnamate intercalated in a bilayer arrangement between the interlayer spaces of ZLH with estimated percentage loading of cinnamate of about 40.4 % w/w. The UV–vis absorption spectrum of the intercalation compound showed excellent UVA and UVB absorption ability. Retention of cinnamate in ZLH interlayers was tested against media usually came across with sunscreen usage to show low release over an extended period of time. MTT assay of the intercalation compound on human dermal fibroblast (HDF) cells showed cytotoxicity of ZCA to be concentration dependent and is overall less toxic than its precursor, ZnO. Conclusions (Cinnamate-zinc layered hydroxide) intercalation compound is suitable to be used as a safe and effective sunscreen with long UV protection effect. PMID:23383738

  11. Intercalation of amino acids and peptides into Mg-Al layered double hydroxide by reconstruction method.

    PubMed

    Nakayama, Hirokazu; Wada, Natsuko; Tsuhako, Mitsutomo

    2004-01-28

    The intercalation of amino acids and some peptides into Mg-Al layered double hydroxide known as hydrotalcite was examined. Although the intercalation by ion-exchange method was unsuccessful, all the amino acids except for Lys and Arg, and peptides examined could be intercalated into the layered double hydroxide by reconstruction method using Mg-Al oxide precursor. The uptake amounts of amino acids and peptides were 0.9-2.7 mmol per 1 g of LDH. Intercalation compounds were examined by using XRD and solid-state NMR. For Gly, Ala, Ser, Thr, Pro, Asn, Gln, Asp, Glu, and aspartame the intercalation accompanied the expansion of interlayer distance of the solid products, whereas the other amino acids and oligoglycine showed no expansion. The intercalation mechanism and release profile in K(2)CO(3) aqueous solution were also investigated. And the cointercalation of amino acids and peptides into Mg-Al LDH and easy release of amino acids from the LDH layer were found.

  12. Sugar-anionic clay composite materials: intercalation of pentoses in layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Aisawa, Sumio; Hirahara, Hidetoshi; Ishiyama, Kayoko; Ogasawara, Wataru; Umetsu, Yoshio; Narita, Eiichi

    2003-09-01

    The intercalation of non-ionized guest pentoses (ribose and 2-deoxyribose) into the Mg-Al and Zn-Al layered double hydroxides (LDHs) was carried out at 298 K by the calcination-rehydration reaction using the Mg-Al and Zn-Al oxide precursors calcined at 773 K. The resulting solid products reconstructed the LDH structure with incorporating pentoses, and the maximum amount of ribose intercalated by the Mg-Al oxide precursor was approximately 20 times that by the Zn-Al oxide precursor. The ribose/Mg-Al LDH was observed to have the expanded LDH structure with a broad (003) spacing of 0.85 nm. As the thickness of the LDH hydroxide basal layer is 0.48 nm, the interlayer distance of the ribose/Mg-Al LDH is 0.37 nm. This value corresponds to molecular size of ribose in thickness (0.36 nm), supporting that ribose is horizontally oriented in the interlayer space of LDH. The maximum amount of ribose intercalated by the Mg-Al oxide precursor was approximately 5 times that of 2-deoxyribose. Ribose is substituted only by the hydroxyl group at C-2 position for 2-deoxyribose. Therefore, the number of hydroxyl group of sugar is essentially important for the intercalation of sugar molecule into the LDH, suggesting that the intercalation behavior of sugar for the LDH was greatly influenced by hydrogen bond between hydroxyl group of the intercalated pentose and the LDH hydroxide basal layers.

  13. Preparation, characterization, and evaluation of a heparin-benzalkonium chloride-graphite oxide/polymethylvinyl siloxane nanocomposite.

    PubMed

    Zhou, Ninglin; Xu, Dong; Zhang, Jun; Ma, Yinchen; Yuan, Jiang; Shen, Jian

    2012-06-01

    A heparin (Hep)-benzalkonium chloride (C12)-graphite oxide (GO)/polymethylvinyl siloxane (PMVS) nancomposite was prepared via melting intercalation at different temperatures. Scanning electron microscopy images showed the Hep-C12-GO was well dispersed into PMVS processed at 100°C. Mechanical properties measurement demonstrated that the addition of Hep-C12-GO maintained its strength. XRD data indicated that Hep-C12-GO lost its layer structure completely. FTIR results suggested that Hep-C12-GO interacted with PMVS strongly. Antibacterial activity of resulting nanocomposite was evaluated using zone of inhibition and bacteria adhesion methods. The results demonstrated that Hep-C12-GO/PMVS had a good capability against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. Antithrombogenic properties were assessed using platelet adhesion experiment and the results showed that Hep-C12-GO/PMVS was blood-compatible.

  14. Xin proteins and intercalated disc maturation, signaling and diseases

    PubMed Central

    Wang, Qinchuan; Lin, Jenny Li-Chun; Wu, Kuo-Ho; Wang, Da-Zhi; Reiter, Rebecca S.; Sinn, Haley W.; Lin, Cheng-I; Lin, Jim Jung-Ching

    2012-01-01

    Intercalated discs (ICDs) are cardiac-specific structures responsible for mechanical and electrical communication among adjacent cardiomyocytes and are implicated in signal transduction. The striated muscle-specific Xin repeat-containing proteins localize to ICDs and play critical roles in ICD formation and cardiac function. Knocking down the Xin gene in chicken embryos collapses the wall of developing heart chambers and leads to abnormal cardiac morphogenesis. In mammals, a pair of paralogous genes, Xinalpha and Xinbeta exist. Ablation of the mouse Xinalpha (mXinalpha) does not affect heart development. Instead, mXinalpha-deficient mice show adult late-onset cardiac hypertrophy and cardiomyopathy with conduction defects. The mXinalpha-deficient hearts up-regulate mouse Xinbeta (mXinbeta), suggesting a partial compensatory role of mXinbeta. Complete loss of mXinbeta, however, leads to failure of forming ICD, mis-localization of mXinalpha, and early postnatal lethality. In this review, we will briefly discuss recent advances in the anatomy and function of ICDs. We will then review what we know about Xin repeat-containing proteins and how this protein family promotes ICD maturation and stability for normal cardiac function. PMID:22652799

  15. Two different ground states in K-intercalated polyacenes

    NASA Astrophysics Data System (ADS)

    Phan, Quynh T. N.; Heguri, Satoshi; Tamura, Hiroyuki; Nakano, Takehito; Nozue, Yasuo; Tanigaki, Katsumi

    2016-02-01

    The electronic states of potassium- (K-) intercalated zigzag-type polycyclic aromatic (PLA) hydrocarbon [polyacene PLAs] Kx(PLAs ) are studied for a series of the four smallest molecules: naphthalene (NN), anthracene (AN), tetracene (TN), and pentacene (PN), focusing on their 1:1 stoichiometric phases. Clear experimental differences are identified between the first group [K1(NN ) and K1(AN ) ] and the second group [K1(TN ) and K1(PN ) ] by magnetic, vibrational, and optical measurements. The first group is categorized as a Mott insulator with an antiferromagnetic ground state with energy of ˜10 meV, whereas the second group is classified as a band insulator via dimer formation due to the spin Peierls instability. In the latter system, the first thermally accessible triplet states are located far apart from the singlet ground states and are not detected by electron spin-resonance spectroscopy until 300 K being very different from what is observed for the hole-doped PN reported earlier. The results give a new systematic understanding on the electronic states of electron-doped PLAs sensitive to the energetic balance among on-site Coulomb repulsion, bandwidth, and the Peierls instability.

  16. Influence of corannulene's curved carbon lattice (C{sub 20}H{sub 10}) on lithium intercalation.

    SciTech Connect

    Scanlon, L. G.

    1998-06-08

    Ab initio molecular orbital calculations have been used to investigate the influence of corannulene's curved carbon lattice (C{sub 20}H{sub 10}) on lithium intercalation. This has been approximated by investigating the reaction of lithium atoms with either the corannulene molecule directly or with a sandwich structure formed from two corannulene molecules. In the first case, one corannulene molecule, three, six and seven lithiums have been used to form Li{sub 3}(C{sub 20}H{sub 10}), Li{sub 6}(C{sub 20}H{sub 10}) and Li{sub 7}(C{sub 20}H{sub 10}). The last complex has a lithium to carbon ratio of 1:2.86 indicative of a high capacity lithium carbon anode versus the 1:6 ratio found in stage 1 lithium intercalated graphite. The change in Gibbs energy for formation of Li{sub 3}(C{sub 20}H{sub 10}) with a multiplicity of 4 (3 unpaired electrons) is -4.75 kcal/mole. However, when a multiplicity of 2 is used (1 unpaired electron), the change in Gibbs energy is -8.49 kcal/mole. The change in Gibbs energy for formation of Li{sub 6}(C{sub 20}H{sub 10}) and Li{sub 7}(C{sub 20}H{sub 10}) (multiplicity of 2) are -26.48 and -26.47 kcal/mole, respectively. In all the lithium corannulene complexes described, each complex has a molecular orbital composed only of lithium orbitals, indicative of lithium cluster formation. However, in the formation of Li{sub 3}(C{sub 20}H{sub 10}) with three lithium atoms intercalated between two corannulene carbon lattices, there are no molecular orbitals indicative of lithium cluster formation. The multiplicity for this chemical system is 4 and the corannulene lattices are stacked one over the other like saucers. The corannulene carbon lattices are separated by approximately 4.5 {angstrom}. The separations between lithiums are 3.13, 3.60 and 3.79 {angstrom}. These results are in contrast to those found in the Li{sub 3}C{sub 60} endohedral complex with a multiplicity of 4. In this complex there is a molecular orbital composed only of lithium orbitals

  17. Carbon Nanotubes Growth on Graphite Fibers

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, Ching-Hua; Lehoczky, S. L.; Muntele, I.; Ila, D.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Carbon nanotubes (CNT) were synthesized on graphite fibers by thermal Chemical Vapor Deposition (CVD). On the fiber surface, iron nanoparticles are coated and act as catalysts for CNT growth. The growth temperature ranges from 550 to 1000 C at an ambient pressure. Methane and hydrogen gases with methane contents of 10% to 100% are used for the CNT synthesis. At high growth temperatures (greater than 800 C), the rapid inter-diffusion of the transition metal iron on the graphite surface results in a rough fiber surface with no CNT grown on the surface. When the growth temperature is relatively low (650 - 800 C), CNT are fabricated on the graphite surface with catalytic particles on the nanotube top ends. Using micro Raman spectroscopy in the breath mode region, single-walled or multi-walled CNT can be determined, depending on methane concentrations.

  18. Graphite based Schottky diodes formed semiconducting substrates

    NASA Astrophysics Data System (ADS)

    Schumann, Todd; Tongay, Sefaattin; Hebard, Arthur

    2010-03-01

    We demonstrate the formation of semimetal graphite/semiconductor Schottky barriers where the semiconductor is either silicon (Si), gallium arsenide (GaAs) or 4H-silicon carbide (4H-SiC). The fabrication can be as easy as allowing a dab of graphite paint to air dry on any one of the investigated semiconductors. Near room temperature, the forward-bias diode characteristics are well described by thermionic emission, and the extracted barrier heights, which are confirmed by capacitance voltage measurements, roughly follow the Schottky-Mott relation. Since the outermost layer of the graphite electrode is a single graphene sheet, we expect that graphene/semiconductor barriers will manifest similar behavior.

  19. Graphite oxidation modeling for application in MELCOR.

    SciTech Connect

    Gelbard, Fred

    2009-01-01

    The Arrhenius parameters for graphite oxidation in air are reviewed and compared. One-dimensional models of graphite oxidation coupled with mass transfer of oxidant are presented in dimensionless form for rectangular and spherical geometries. A single dimensionless group is shown to encapsulate the coupled phenomena, and is used to determine the effective reaction rate when mass transfer can impede the oxidation process. For integer reaction order kinetics, analytical expressions are presented for the effective reaction rate. For noninteger reaction orders, a numerical solution is developed and compared to data for oxidation of a graphite sphere in air. Very good agreement is obtained with the data without any adjustable parameters. An analytical model for surface burn-off is also presented, and results from the model are within an order of magnitude of the measurements of burn-off in air and in steam.

  20. Nondestructive evaluation of nuclear-grade graphite

    SciTech Connect

    Kunerth, D. C.; McJunkin, T. R.

    2012-05-17

    The material of choice for the core of the high-temperature gas-cooled reactors being developed by the U.S. Department of Energy's Next Generation Nuclear Plant Program is graphite. Graphite is a composite material whose properties are highly dependent on the base material and manufacturing methods. In addition to the material variations intrinsic to the manufacturing process, graphite will also undergo changes in material properties resulting from radiation damage and possible oxidation within the reactor. Idaho National Laboratory is presently evaluating the viability of conventional nondestructive evaluation techniques to characterize the material variations inherent to manufacturing and in-service degradation. Approaches of interest include x-ray radiography, eddy currents, and ultrasonics.