Science.gov

Sample records for licl-kcl eutectic salts

  1. Molten salt eutectics from atomistic simulations.

    PubMed

    Jayaraman, Saivenkataraman; Thompson, Aidan P; von Lilienfeld, O Anatole

    2011-09-01

    Despite their importance for solar thermal power applications, phase-diagrams of molten salt mixture heat transfer fluids (HTFs) are not readily accessible from first principles. We present a molecular dynamics scheme general enough to identify eutectics of any HTF candidate mixture. The eutectic mixture and temperature are located using the liquid mixture free energy and the pure component solid-liquid free energy differences. The liquid mixture free energy is obtained using thermodynamic integration over particle identity transmutations sampled with molecular dynamics at a single temperature. Drawbacks of conventional phase diagram mapping methodologies are avoided by not considering solid mixtures, thereby evading expensive computations of solid phase free energies. Numerical results for binary and ternary mixtures of alkali nitrates agree well with experimental measurements.

  2. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES

    SciTech Connect

    2000-04-01

    This progress report on the Department of Energy project DE-FG-97FT97263 entitled, ''Catalytic Gasification of Coal Using Eutectic Salt Mixtures'', covers the period April-September 1998. The specific aims of the project for this period were to identify appropriate eutectic salt mixture catalysts for the gasification of Illinois No.6 coal, evaluate various impregnation or catalyst addition methods to improve catalyst dispersion, and evaluate gasification performance in a bench-scale fixed bed reactor. The project is being conducted jointly by Clark Atlanta University (CAU), the University of Tennessee Space Institute (UTSI) and the Georgia Institute of Technology (Georgia Tech) with CAU as the prime contractor. Several single salt catalysts and binary and ternary eutectic catalysts were investigated at Clark Atlanta University. Physical mixing and incipient wetness methods were investigated as catalyst addition techniques. Gasification was carried out using TGA at CAU and UTSI and with a fixed-bed reactor at UTSI. The results showed better gasification activity in the presence of the catalysts tested. The eutectic salt studies showed clear agreement between the melting points of the prepared eutectics and reported literature values. The order of catalytic activity observed was ternary > binary > single salt. With the soluble single salt catalysts, the incipient wetness method was found to give better results than physical mixing technique. Also, catalyst preparation conditions such as catalyst loading, drying time and temperature were found to influence the gasification rate. Based on the Clark Atlanta University studies on Task 1, the project team selected the 43.5%Li{sub 2}CO{sub 3}-31.5%Na{sub 2}CO{sub 3}-25%K{sub 2}CO{sub 3} ternary eutectic and the 29%Na{sub 2}CO{sub 3}-71%K{sub 2}CO{sub 3} and 2.3% KNO{sub 3}-97.7%K{sub 2}CO{sub 3} binary eutectic for the fixed bed studies at UTSI. The eutectic salts were found to be highly insoluble in aqueous medium. As a

  3. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES

    SciTech Connect

    1998-10-01

    This progress report on the Department of Energy project DE-FG-97FT97263 entitled, ''Catalytic Gasification of Coal Using Eutectic Salt Mixtures,'' covers the period April-September 1998. The specific aims of the project for this period were to identify appropriate eutectic salt mixture catalysts for the gasification of Illinois No.6 coal, evaluate various impregnation or catalyst addition methods to improve catalyst dispersion, and evaluate gasification performance in a bench-scale fixed bed reactor. The project is being conducted jointly by Clark Atlanta University (CAU), the University of Tennessee Space Institute (UTSI) and the Georgia Institute of Technology (Georgia Tech) with CAU as the prime contractor. Several single salt catalysts and binary and ternary eutectic catalysts were investigated at Clark Atlanta University. Physical mixing and incipient wetness methods were investigated as catalyst addition techniques. Gasification was carried out using TGA at CAU and UTSI and with a fixed-bed reactor at UTSI. The results showed better gasification activity in the presence of the catalysts tested. The eutectic salt studies showed clear agreement between the melting points of the prepared eutectics and reported literature values. The order of catalytic activity observed was ternary > binary > single salt. With the soluble single salt catalysts, the incipient wetness method was found to give better results than physical mixing technique. Also, catalyst preparation conditions such as catalyst loading, drying time and temperature were found to influence the gasification rate. Based on the Clark Atlanta University studies on Task 1, the project team selected the 43.5%Li{sub 2}CO{sub 3}-31.5%Na{sub 2}CO{sub 3}-25%K{sub 2}CO{sub 3} ternary eutectic and the 29%Na{sub 2}CO{sub 3}-71%K{sub 2}CO{sub 3} and 2.3%KNO{sub 3}-97.7%K{sub 2}CO{sub 3} binary eutectic for the fixed bed studies at UTSI. The eutectic salts were found to be highly insoluble in aqueous medium. As a

  4. Catalytic Gasification of Coal using Eutectic Salt Mixtures

    SciTech Connect

    Atul Sheth; Pradeep Agrawal; Yaw D. Yeboah

    1998-12-04

    The objectives of this study are to: identify appropriate eutectic salt mixture catalysts for coal gasification; assess agglomeration tendency of catalyzed coal; evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; evaluate the recovery, regeneration and recycle of the spent catalysts; and conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process. A review of the collected literature was carried out. The catalysts which have been used for gasification can be roughly classified under the following five groups: alkali metal salts; alkaline earth metal oxides and salts; mineral substances or ash in coal; transition metals and their oxides and salts; and eutectic salt mixtures. Studies involving the use of gasification catalysts have been conducted. However, most of the studies focused on the application of individual catalysts. Only two publications have reported the study of gasification of coal char in CO2 and steam catalyzed by eutectic salt mixture catalysts. By using the eutectic mixtures of salts that show good activity as individual compounds, the gasification temperature can be reduced possibly with still better activity and gasification rates due to improved dispersion of the molten catalyst on the coal particles. For similar metal/carbon atomic ratios, eutectic catalysts were found to be consistently more active than their respective single salts. But the exact roles that the eutectic salt mixtures play in these are not well understood and details of the mechanisms remain unclear. The effects of the surface property of coals and the application methods of eutectic salt mixture catalysts with coal chars on the reactivity of gasification will be studied. Based on our preliminary evaluation of the literature, a ternary

  5. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES

    SciTech Connect

    Unknown

    1999-04-01

    The project, ''Catalytic Gasification of Coal Using Eutectic Salt Mixtures'', is being conducted jointly by Clark Atlanta University (CAU), the University of Tennessee Space Institute (UTSI) and the Georgia Institute of Technology (GT). The aims of the project are to: identify appropriate eutectic salt mixture catalysts for the gasification of Illinois No.6 coal; evaluate various impregnation or catalyst addition methods to improve catalyst dispersion; evaluate effects of major process variables (e.g., temperature, system pressure, etc.) on coal gasification; evaluate the recovery, regeneration and recycle of the spent catalysts in a bench-scale fixed bed reactor; and conduct thorough analysis and modeling of the gasification process to provide a better understanding of the fundamental mechanisms and kinetics of the process. The eutectic catalysts increased gasification rate significantly. The methods of catalyst preparation and addition had significant effect on the catalytic activity and coal gasification. The incipient wetness method gave more uniform catalyst distribution than that of physical mixing for the soluble catalysts resulting in higher gasification rates for the incipient wetness samples. The catalytic activity increased by varying degrees with catalyst loading. The above results are especially important since the eutectic catalysts (with low melting points) yield significant gasification rates even at low temperatures. Among the ternary eutectic catalysts studied, the system 39% Li{sub 2}CO{sub 3}-38.5% Na{sub 2}CO{sub 3}-22.5% Rb{sub 2}CO{sub 3} showed the best activity and will be used for further bench scale fixed-bed gasification reactor in the next period. Based on the Clark Atlanta University studies in the previous reporting period, the project team selected the 43.5% Li{sub 2}CO{sub 3}-31.5% Na{sub 2}CO{sub 3}-25% K{sub 2}CO{sub 3} ternary eutectic and the 29% Na{sub 2}CO{sub 3}-71% K{sub 2}CO{sub 3} binary eutectic for the fixed-bed studies

  6. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES

    SciTech Connect

    Dr. Yaw D. Yeboah; Dr. Yong Xu; Dr. Atul Sheth; Dr. Pradeep Agrawal

    2001-12-01

    The Gas Research Institute (GRI) estimates that by the year 2010, 40% or more of U.S. gas supply will be provided by supplements including substitute natural gas (SNG) from coal. These supplements must be cost competitive with other energy sources. The first generation technologies for coal gasification e.g. the Lurgi Pressure Gasification Process and the relatively newer technologies e.g. the KBW (Westinghouse) Ash Agglomerating Fluidized-Bed, U-Gas Ash Agglomerating Fluidized-Bed, British Gas Corporation/Lurgi Slagging Gasifier, Texaco Moving-Bed Gasifier, and Dow and Shell Gasification Processes, have several disadvantages. These disadvantages include high severities of gasification conditions, low methane production, high oxygen consumption, inability to handle caking coals, and unattractive economics. Another problem encountered in catalytic coal gasification is deactivation of hydroxide forms of alkali and alkaline earth metal catalysts by oxides of carbon (CO{sub x}). To seek solutions to these problems, a team consisting of Clark Atlanta University (CAU, a Historically Black College and University, HBCU), the University of Tennessee Space Institute (UTSI) and Georgia Institute of Technology (Georgia Tech) proposed to identify suitable low melting eutectic salt mixtures for improved coal gasification. The research objectives of this project were to: Identify appropriate eutectic salt mixture catalysts for coal gasification; Assess agglomeration tendency of catalyzed coal; Evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; Determine catalyst dispersion at high carbon conversion levels; Evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; Evaluate the recovery, regeneration and recycle of the spent catalysts; and Conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process.

  7. Secondary Confinement of Water Observed in Eutectic Melting of Aqueous Salt Systems in Nanopores.

    PubMed

    Meissner, Jens; Prause, Albert; Findenegg, Gerhard H

    2016-05-19

    Freezing and melting of aqueous solutions of alkali halides confined in the cylindrical nanopores of MCM-41 and SBA-15 silica was probed by differential scanning calorimetry (DSC). We find that the confinement-induced shift of the eutectic temperature in the pores can be significantly greater than the shift of the melting temperature of pure water. Greatest shifts of the eutectic temperature are found for salts that crystallize as oligohydrates at the eutectic point. This behavior is explained by the larger fraction of pore volume occupied by salt hydrates as compared to anhydrous salts, on the assumption that precipitated salt constitutes an additional confinement for ice/water in the pores. A model based on this secondary confinement effect gives a good representation of the experimental data. Salt-specific secondary confinement may play a role in a variety of fields, from salt-impregnated advanced adsorbents and catalysts to the thermal weathering of building materials. PMID:27124392

  8. Secondary Confinement of Water Observed in Eutectic Melting of Aqueous Salt Systems in Nanopores.

    PubMed

    Meissner, Jens; Prause, Albert; Findenegg, Gerhard H

    2016-05-19

    Freezing and melting of aqueous solutions of alkali halides confined in the cylindrical nanopores of MCM-41 and SBA-15 silica was probed by differential scanning calorimetry (DSC). We find that the confinement-induced shift of the eutectic temperature in the pores can be significantly greater than the shift of the melting temperature of pure water. Greatest shifts of the eutectic temperature are found for salts that crystallize as oligohydrates at the eutectic point. This behavior is explained by the larger fraction of pore volume occupied by salt hydrates as compared to anhydrous salts, on the assumption that precipitated salt constitutes an additional confinement for ice/water in the pores. A model based on this secondary confinement effect gives a good representation of the experimental data. Salt-specific secondary confinement may play a role in a variety of fields, from salt-impregnated advanced adsorbents and catalysts to the thermal weathering of building materials.

  9. Emulsification Of Eutectic Salt Mixtures In Fluid Vehicles

    NASA Astrophysics Data System (ADS)

    Vanderhoff, J. W.; El-Aasser, M. S.; Hawkins, T. W.

    1988-05-01

    High-internal-phase-volume emulsions of 75 volt 3/18/79 potassium iodide/sodium iodide/ urea model eutectic salt mixture in 83.5/16.5 Sartomer R-45HT hydroxy-terminated polybutadi-ene/Nujol mineral oil binder mixture were prepared at 60°C using water-in-oil emulsifiers and cured with isophorone diisocyanate or Desmodur N-100. The Nujol mineral oil enhanced the emulsification with a negligible reduction in the tensile properties of the cured elastomer. The average emulsion droplet sizes were ca. 200 nm initially, but increased slowly during curing to 500-1000 nm. The coalescence of the emulsion droplets followed the second-order dependence predicted by the von Smoluchowski diffusion-controlled flocculation; the rate constants were 1.05x10-18 and 9.58x10-18 cc/droplet-sec for dirnethyldioctadecylammonium bromide and Span 85 sorbitan trioleate, respectively. The isophorone diisocyanate reacted with emulsifiers containing primary hydroxyl or amine groups, to give unstable emulsions or no emulsions at all. Dimethyldioctadecylammonium bromide with no primary hydroxyl or amine groups, however, did not react with isocyanates and gave stable emulsions. The reaction of the R-45HT hydroxy-terminated polybutadiene with isophorone diisocyanate followed the expec-ted second-order kinetics with a rate constant of 3.42x10-4 liters/mole-sec at 60°C. The tensile properties of the cured elastomers and emulsions generally increased with increasing NCO/OH ratio up to 1.6/1.0. With increasing volume fraction of dispersed phase, the maximum stress (tensile strength) decreased, the maximum strain (percent elongation) increased, and the initial modulus (tensile modulus) decreased, in contrast to the behavior of conventional filled polymer systems; however, the maximum stresses were in accord with theoretical values for a filled polymer in which the filler particles bear no load, the initial moduli were in accord with the predictions of an isostrain model, and the maximum strain increased

  10. Distillation and condensation of LiCl-KCl eutectic salts for a separation of pure salts from salt wastes from an electrorefining process

    NASA Astrophysics Data System (ADS)

    Eun, Hee Chul; Yang, Hee Chul; Lee, Han Soo; Kim, In Tae

    2009-12-01

    Salt separation and recovery from the salt wastes generated from a pyrochemical process is necessary to minimize the high-level waste volumes and to stabilize a final waste form. In this study, the thermal behavior of the LiCl-KCl eutectic salts containing rare earth oxychlorides or oxides was investigated during a vacuum distillation and condensation process. LiCl was more easily vaporized than the other salts (KCl and LiCl-KCl eutectic salt). Vaporization characteristics of LiCl-KCl eutectic salts were similar to that of KCl. The temperature to obtain the vaporization flux (0.1 g min -1 cm -2) was decreased by much as 150 °C by a reduction of the ambient pressure from 5 Torr to 0.5 Torr. Condensation behavior of the salt vapors was different with the ambient pressure. Almost all of the salt vapors were condensed and were formed into salt lumps during a salt distillation at the ambient pressure of 0.5 Torr and they were collected in the condensed salt storage. However, fine salt particles were formed when the salt distillation was performed at 10 Torr and it is difficult for them to be recovered. Therefore, it is thought that a salt vacuum distillation and condensation should be performed to recover almost all of the vaporized salts at a pressure below 0.5 Torr.

  11. Eutectic Salt Catalyzed Environmentally Benign and Highly Efficient Biginelli Reaction

    PubMed Central

    Azizi, Najmadin; Dezfuli, Sahar; Hahsemi, Mohmmad Mahmoodi

    2012-01-01

    A simple deep eutectic solvent based on tin (II) chloride was used as a dual catalyst and environmentally benign reaction medium for an efficient synthesis of 3,4-dihydropyrimidin-2(1H)-one derivatives, from aromatic and aliphatic aldehydes, 1,3-dicarbonyl compounds, and urea in good-to-excellent yields and short reaction time. This simple ammonium deep eutectic solvent, easily synthesized from choline chloride and tin chloride, is relatively inexpensive and recyclable, making it applicable for industrial applications. PMID:22649326

  12. Eutectic salt catalyzed environmentally benign and highly efficient Biginelli reaction.

    PubMed

    Azizi, Najmadin; Dezfuli, Sahar; Hahsemi, Mohmmad Mahmoodi

    2012-01-01

    A simple deep eutectic solvent based on tin (II) chloride was used as a dual catalyst and environmentally benign reaction medium for an efficient synthesis of 3,4-dihydropyrimidin-2(1H)-one derivatives, from aromatic and aliphatic aldehydes, 1,3-dicarbonyl compounds, and urea in good-to-excellent yields and short reaction time. This simple ammonium deep eutectic solvent, easily synthesized from choline chloride and tin chloride, is relatively inexpensive and recyclable, making it applicable for industrial applications. PMID:22649326

  13. Development of high temperature transport technology for LiCl-KCl eutectic salt in pyroprocessing

    SciTech Connect

    Lee, Sung Ho; Lee, Hansoo; Kim, In Tae; Kim, Jeong-Guk

    2013-07-01

    The development of high-temperature transport technologies for molten salt is a prerequisite and a key issue in the industrialization of pyro-reprocessing for advanced fuel cycle scenarios. The solution of a molten salt centrifugal pump was discarded because of the high corrosion power of a high temperature molten salt, so the suction pump solution was selected. An apparatus for salt transport experiments by suction was designed and tested using LiC-KCl eutectic salt. The experimental results of lab-scale molten salt transport by suction showed a 99.5% transport rate (ratio of transported salt to total salt) under a vacuum range of 100 mtorr - 10 torr at 500 Celsius degrees. The suction system has been integrated to the PRIDE (pyroprocessing integrated inactive demonstration) facility that is a demonstrator using non-irradiated materials (natural uranium and surrogate materials). The performance of the suction pump for the transport of molten salts has been confirmed.

  14. Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids

    SciTech Connect

    Raade, Justin; Roark, Thomas; Vaughn, John; Bradshaw, Robert

    2013-07-22

    Concentrating solar power (CSP) facilities are comprised of many miles of fluid-filled pipes arranged in large grids with reflective mirrors used to capture radiation from the sun. Solar radiation heats the fluid which is used to produce steam necessary to power large electricity generation turbines. Currently, organic, oil-based fluid in the pipes has a maximum temperature threshold of 400 °C, allowing for the production of electricity at approximately 15 cents per kilowatt hour. The DOE hopes to foster the development of an advanced heat transfer fluid that can operate within higher temperature ranges. The new heat transfer fluid, when used with other advanced technologies, could significantly decrease solar electricity cost. Lower costs would make solar thermal electricity competitive with gas and coal and would offer a clean, renewable source of energy. Molten salts exhibit many desirable heat transfer qualities within the range of the project objectives. Halotechnics developed advanced heat transfer fluids (HTFs) for application in solar thermal power generation. This project focused on complex mixtures of inorganic salts that exhibited a high thermal stability, a low melting point, and other favorable characteristics. A high-throughput combinatorial research and development program was conducted in order to achieve the project objective. Over 19,000 candidate formulations were screened. The workflow developed to screen various chemical systems to discover salt formulations led to mixtures suitable for use as HTFs in both parabolic trough and heliostat CSP plants. Furthermore, salt mixtures which will not interfere with fertilizer based nitrates were discovered. In addition for use in CSP, the discovered salt mixtures can be applied to electricity storage, heat treatment of alloys and other industrial processes.

  15. Purification of used eutectic (LiCl-KCl) salt electrolyte from pyroprocessing

    NASA Astrophysics Data System (ADS)

    Cho, Yung-Zun; Lee, Tae-Kyo; Eun, Hee-Chul; Choi, Jung-Hoon; Kim, In-Tae; Park, Geun-Il

    2013-06-01

    The separation characteristics of surrogate rare-earth fission products in a eutectic (LiCl-KCl) molten salt were investigated. This system is based on the eutectic salt used for the pyroprocessing treatment of used nuclear fuel (UNF). The investigation was performed using an integrated rare-earth separation apparatus comprising a precipitation reactor, a solid detachment device, and a layer separation device. To separate rare-earth fission products, a phosphate precipitation method using both Li3PO4 and K3PO4 as a precipitant was performed. The use of an equivalent phosphate precipitant composed of 0.408 molar ratio-K3PO4 and 0.592 molar ratio-Li3PO4 can preserve the original eutectic ratio, LiCl-0.592 molar ratio (or 45.2 wt%), as well as provide a high separation efficiency of over 99.5% under conditions of 550 °C and Ar sparging when using La, Nd, Ce, and Pr chlorides. The mixture of La, Nd, Ce, and Pr phosphate had a typical monoclinic (or monazite) structure, which has been proposed as a reliable host matrix for the permanent disposal of a high-level waste form. To maximize the reusability of purified eutectic waste salt after rare-earth separation, the successive rare-earth separation process, which uses both phosphate precipitation and an oxygen sparging method, were introduced and tested with eight rare-earth (Y, La, Ce, Pr, Nd, Sm, Eu and Gd) chlorides. In the successive rare-earth separation process, the phosphate reaction was terminated within 1 h at 550 °C, and a 4-8 h oxygen sparging time were required to obtain over a 99% separation efficiency at 700-750 °C. The mixture of rare-earth precipitates separated by the successive rare-earth separation process was found to be phosphate, oxychloride, and oxide. Through the successive rare-earth separation process, the eutectic ratio of purified salt maintained its original value, and impurity content including the residual precipitant of purified salt can be minimized.

  16. Assessment of plant toxicity threshold of several heat transfer and storage fluids and eutectic salts

    SciTech Connect

    Nishita, H.

    1980-10-01

    Plant toxicity threshold levels of several heat transfer and storage fluids and eutectic salts were determined by using a modified Neubauer technique. Barley seed germination and seedling growth were used for the toxicity tests. The general order of toxicity of the fluids applied to three mineral soils was ethylene gloycol > Dow 200 much greater than Caloria HT43 > Therminol 66. The toxicity order of the fluids applied to an organic soil was ethylene glycol > Caloria HT43 > Dow 200 > Therminol 66. Thus, Therminol 66 was the least toxic among the fluids used. Among the eutectic salts tested Dupont HITEC was more toxic than 8.4 percent NaCl-86.3 percent NaNO/sub 3/-5.3 percent Na/sub 2/SO/sub 4/ mixture in three of the four soils used. In the fourth soil there was no apparent difference of toxicity between the two salt mixtures. Depending on the fluid and the salt mixture, the toxicity threshold levels for barley seedlings ranged from 4451 to 317,488 ppM in the soils used.

  17. Study on a regeneration process of LiCl-KCl eutectic based waste salt generated from the pyrochemical process

    SciTech Connect

    Eun, H.C.; Cho, Y.Z.; Choi, J.H.; Kim, J.H.; Lee, T.K.; Park, H.S.; Kim, I.T.; Park, G.I.

    2013-07-01

    A regeneration process of LiCl-KCl eutectic waste salt generated from the pyrochemical process of spent nuclear fuel has been studied. This regeneration process is composed of a chemical conversion process and a vacuum distillation process. Through the regeneration process, a high efficiency of renewable salt recovery can be obtained from the waste salt and rare earth nuclides in the waste salt can be separated as oxide or phosphate forms. Thus, the regeneration process can contribute greatly to a reduction of the waste volume and a creation of durable final waste forms. (authors)

  18. EXAFS study into the speciation of metal salts dissolved in ionic liquids and deep eutectic solvents.

    PubMed

    Hartley, Jennifer M; Ip, Chung-Man; Forrest, Gregory C H; Singh, Kuldip; Gurman, Stephen J; Ryder, Karl S; Abbott, Andrew P; Frisch, Gero

    2014-06-16

    The speciation of metals in solution controls their reactivity, and this is extremely pertinent in the area of metal salts dissolved in ionic liquids. In the current study, the speciation of 25 metal salts is investigated in four deep eutectic solvents (DESs) and five imidazolium-based ionic liquids using extended X-ray absorption fine structure. It is shown that in diol-based DESs M(I) ions form [MCl2](-) and [MCl3](2-) complexes, while all M(II) ions form [MCl4](2-) complexes, with the exception of Ni(II), which exhibits a very unusual coordination by glycol molecules. This was also found in the X-ray crystal structure of the compound [Ni(phen)2(eg)]Cl2·2eg (eg = ethylene glycol). In a urea-based DES, either pure chloro or chloro-oxo coordination is observed. In [C6mim][Cl] pure chloro complexation is also observed, but coordination numbers are smaller (typically 3), which can be explained by the long alkyl chain of the cation. In [C2mim][SCN] metal ions are entirely coordinated by thiocyanate, either through the N or the S atom, depending on the hardness of the metal ion according to the hard-soft acid-base principle. With weaker coordinating anions, mixed coordination between solvent and solute anions is observed. The effect of hydrate or added water on speciation is insignificant for the diol-based DESs and small in other liquids with intermediate or strong ligands. One of the main findings of this study is that, with respect to metal speciation, there is no fundamental difference between deep eutectic solvents and classic ionic liquids. PMID:24897923

  19. Determination and evaluation of the thermophysical properties of an alkali carbonate eutectic molten salt.

    PubMed

    An, Xuehui; Cheng, Jinhui; Zhang, Peng; Tang, Zhongfeng; Wang, Jianqiang

    2016-08-15

    The thermal physical properties of Li2CO3-Na2CO3-K2CO3 eutectic molten salt were comprehensively investigated. It was found that the liquid salt can remain stable up to 658 °C (the onset temperature of decomposition) by thermal analysis, and so the investigations on its thermal physical parameters were undertaken from room temperature to 658 °C. The density was determined using a self-developed device, with an uncertainty of ±0.00712 g cm(-3). A cooling curve was obtained from the instrument, giving the liquidus temperature. For the first time, we report the obtainment of the thermal diffusivity using a laser flash method based on a special crucible design and establishment of a specific sample preparation method. Furthermore, the specific heat capacity was also obtained by use of DSC, and combined with thermal diffusivity and density, was used to calculate the thermal conductivity. We additionally built a rotating viscometer with high precision in order to determine the molten salt viscosity. All of these parameters play an important part in the energy storage and transfer calculation and safety evaluation for a system.

  20. A reactive distillation process for the treatment of LiCl-KCl eutectic waste salt containing rare earth chlorides

    NASA Astrophysics Data System (ADS)

    Eun, H. C.; Choi, J. H.; Kim, N. Y.; Lee, T. K.; Han, S. Y.; Lee, K. R.; Park, H. S.; Ahn, D. H.

    2016-11-01

    The pyrochemical process, which recovers useful resources (U/TRU metals) from used nuclear fuel using an electrochemical method, generates LiCl-KCl eutectic waste salt containing radioactive rare earth chlorides (RECl3). It is necessary to develop a simple process for the treatment of LiCl-KCl eutectic waste salt in a hot-cell facility. For this reason, a reactive distillation process using a chemical agent was achieved as a method to separate rare earths from the LiCl-KCl waste salt. Before conducting the reactive distillation, thermodynamic equilibrium behaviors of the reactions between rare earth (Nd, La, Ce, Pr) chlorides and the chemical agent (K2CO3) were predicted using software. The addition of the chemical agent was determined to separate the rare earth chlorides into an oxide form using these equilibrium results. In the reactive distillation test, the rare earth chlorides in LiCl-KCl eutectic salt were decontaminated at a decontamination factor (DF) of more than 5000, and were mainly converted into oxide (Nd2O3, CeO2, La2O3, Pr2O3) or oxychloride (LaOCl, PrOCl) forms. The LiCl-KCl was purified into a form with a very low concentration (<1 ppm) for the rare earth chlorides.

  1. A novel group of quaternary ammonium salts as ionic liquids and deep eutectic solvents

    NASA Astrophysics Data System (ADS)

    Sparrow, Christopher R.

    2011-12-01

    A growing number of non-toxic and biodegradable deep eutectic solvents (DES) have been discovered in recent years. This group encompasses the solidified crystalline material 3-(2-aminopyrimidin-1-yl)propanoate (3-2AP), a primary ammonium cation that is a construct of a typical DES. Synthesis of 3-(2-aminopyrimidin-1-yl)propanoate by quarternerization of the amine in the aromatic ring creates a novel deep eutectic solvent. An additional alteration to the DES construct is observed with the formation of a zwitterion between the positively charged quartenary amine group and the negatively charged carboxylate counter ion. The molecular arrangement, or construct, of a deep eutectic solvent will determine both its structure and application in industry. This report describes the synthesis and characterization of an 80:20 urea/3-2AP eutectic mixture with a melting point of 50°C, nearly 120°C lower than the melting temperature of 3-2AP (172.5°C). A cytotoxicity profile for 3-2AP exposed to A549 bronchoaveolar carcinoma cells revealed an LD50 of 337.65 mug/ml.

  2. Vacuum distillation of a mixture of LiCl-KCl eutectic salts and RE oxidative precipitates and a dechlorination and oxidation of RE oxychlorides.

    PubMed

    Eun, Hee Chul; Yang, Hee Chul; Cho, Yung Zun; Lee, Han Soo; Kim, In Tae

    2008-12-30

    In this study, a vacuum distillation of a mixture of LiCl-KCl eutectic salt and rare-earth oxidative precipitates was performed to separate a pure LiCl-KCl eutectic salt from the mixture. Also, a dechlorination and oxidation of the rare-earth oxychlorides was carried out to stabilize a final waste form. The mixture was distilled under a range of 710-759.5Torr of a reduced pressure at a fixed heating rate of 4 degrees C/min and the LiCl-KCl eutectic salt was completely separated from the mixture. The required time for the salt distillation and the starting temperature for the salt vaporization were lowered with a reduction in the pressure. Dechlorination and oxidation of the rare-earth oxychlorides was completed at a temperature below 1300 degrees C and this was dependent on the partial pressure of O2. The rare-earth oxychlorides (NdOCl/PrOCl) were transformed to oxides (Nd2O3/PrO2) during the dechlorination and oxidation process. These results will be utilized to design a concept for a process for recycling the waste salt from an electrorefining process. PMID:18440139

  3. Absorption characteristics of anions (I-, Br-, and Te2-) into zeolite in molten LiCl-KCl eutectic salt

    NASA Astrophysics Data System (ADS)

    Uozumi, Koichi; Sugihara, Kei; Kinoshita, Kensuke; Koyama, Tadafumi; Tsukada, Takeshi; Terai, Takayuki; Suzuki, Akihiro

    2014-04-01

    The behaviors of anion fission product (FP) elements to be absorbed into zeolite in molten LiCl-KCl eutectic salt were studied using iodine, bromine, and tellurium. First, the type-A zeolite was selected as the most suitable type of zeolite among type-A, type-X, and type-Y zeolites through experiments in which zeolites were heated together with LiCl-KCl-KI salt. As the next step, experiments in which the type-A zeolite was immersed in molten LiCl-KCl salt containing various concentrations of iodine, bromine, or tellurium were performed. The degree of absorption of the anion FP elements was evaluated using the separation factor (SF) value versus chlorine. Although the SF values for iodine and tellurium were higher than 1.0, which meant that these elements were absorbed into the type-A zeolite more intensively than chlorine in the salt, the corresponding value for bromine was approximately 1.0. The effects of coexisting cation FPs were also examined using cesium, strontium, and neodymium, and it was revealed that the SF values for iodine were less than those in the case without cation addition. On the other hand, the SF values for tellurium were not affected by the coexistence of cesium and strontium. Finally, the feasibility of the present pyroprocess flowsheet was evaluated by calculating the inventory of each anion FP in an electrorefiner based on the obtained SF values instead of temporary values for the anion FPs absorption, which were set due to lack of experimental data.

  4. Effects of temperature, concentration, and uranium chloride mixture on zirconium electrochemical studies in LiClsbnd KCl eutectic salt

    NASA Astrophysics Data System (ADS)

    Hoover, Robert O.; Yoon, Dalsung; Phongikaroon, Supathorn

    2016-08-01

    Experimental studies were performed to provide measurement and analysis of zirconium (Zr) electrochemistry in LiClsbnd KCl eutectic salt at different temperatures and concentrations using cyclic voltammetry (CV). An additional experimental set with uranium chloride added into the system forming UCl3sbnd ZrCl4sbnd LiClsbnd KCl was performed to explore the general behavior of these two species together. Results of CV experiments with ZrCl4 show complicated cathodic and anodic peaks, which were identified along with the Zr reactions. The CV results reveal that diffusion coefficients (D) of ZrCl4 and ZrCl2 as the function of temperature can be expressed as DZr(IV) = 0.00046exp(-3716/T) and DZr(II) = 0.027exp(-5617/T), respectively. The standard rate constants and apparent standard potentials of ZrCl4 at different temperatures were calculated. Furthermore, the results from the mixture of UCl3 and ZrCl4 indicate that high concentrations of UCl3 hide the features of the smaller concentration of ZrCl4 while Zr peaks become prominent as the concentration of ZrCl4 increases.

  5. Electrochemical Study on the Electrodeposition of U, Nd, Ce, La and Y on a Liquid Cadmium Cathode in a LiCl-KCl Eutectic Salt

    SciTech Connect

    Sung Bin Park; Jong Hyeon Lee; Sung Chan Hwang; Young Ho Kang; Joon Bo Shim; Han Soo Lee; Eung Ho Kim; Seong Won Park

    2007-07-01

    Electro-depositions of U, Nd, Ce, La and Y on a liquid cadmium cathode in a LiCl-KCl eutectic salt were studied by using an electrolytic cell. For the LiCl-KCl-UCl{sub 3}- NdCl{sub 3}-CeCl{sub 3}-LaCl{sub 3}-YCl{sub 3}/Cd system, cyclic voltammograms and polarization curves were measured and the electrochemical properties of the system were discussed. From the results of the electro-depositions of U and rare earth metals on the LCC, separation factors and recovery ratios of U and REs were obtained and co-electro-depositions of U and REs were investigated. (authors)

  6. Materials corrosion in molten LiF-NaF-KF eutectic salt under different reduction-oxidation conditions

    SciTech Connect

    Sellers, R. S.; Cheng, W. J.; Anderson, M. H.; Sridharan, K.; Wang, C. J.; Allen, T. R.

    2012-07-01

    Molten fluoride salts such as FLiNaK (LiF-NaF-KF: 46.5-11.5-42 mol %) have been proposed for use as secondary reactor coolants, media for transfer of high temperature process heat from nuclear reactors to chemical plants, and for concentrated solar power thermal energy storage. In molten fluoride salts, passive oxide films are chemically unstable, and corrosion is driven largely by the thermodynamically driven dissolution of alloying elements into the molten salt environment. Two alloys, Hastelloy{sup R} N and 316L stainless steel were exposed to molten FLiNaK salt in a 316L stainless steel crucible under argon cover gas for 1000 hours at 850 deg. C. Graphite was present in some of the crucibles with the goal of studying corrosion behavior of relevant reactor material combinations. In addition, a technique to reduce alloy corrosion through modification of the reduction-oxidation state was tested by the inclusion of zirconium to the system. Corrosion of 316L stainless steel was noted to occur primarily through surface depletion of chromium, an effect that was enhanced by the presence of graphite. Hastelloy{sup R} N experienced weight gain through electrochemical plating of corrosion products derived from the 316L stainless steel crucible. In the presence of zirconium, both alloys gained weight through plating of zirconium and as a result formed intermetallic layers. (authors)

  7. Electrochemistry and the mechanisms of nucleation and growth of neodymium during electroreduction from LiCl-KCl eutectic salts on Mo substrate

    NASA Astrophysics Data System (ADS)

    Tang, Hao; Pesic, Batric

    2015-03-01

    The electrochemical behavior of NdCl3 was studied on a Mo electrode in molten LiCl-KCl eutectic salts. The electroreduction of Nd(III)/Nd(0) involved two reaction steps, as confirmed by three different electrochemical techniques. In the first reaction step, Nd(III) is converted into soluble Nd(II), which undergoes further reduction into metallic Nd(0) in the second reaction step. The standard reaction rate constants for each reaction step were determined by Nicholson method. The rate constant values were used in Matsuda-Ayabe's criteria for testing the electrochemical reversibility. Accordingly, both reaction steps were quasi-reversible redox reactions. The nucleation mechanisms of neodymium metal deposited on a Mo substrate were predicted by using Scharifker-Hill model, and tested for the first time by scanning electron microscopy (SEM) studies of the electrode surface. The SEM studies confirmed that for the low initial concentration of NdCl3, neodymium nucleates and grows progressively, while for higher NdCl3 concentrations, the related mechanism is instantaneous. Both are governed by the aggregative growth mechanisms based on surface mobility of formed nanoclusters.

  8. Novel binary deep eutectic electrolytes for rechargeable Li-ion batteries based on mixtures of alkyl sulfonamides and lithium perfluoroalkylsulfonimide salts

    NASA Astrophysics Data System (ADS)

    Geiculescu, O. E.; DesMarteau, D. D.; Creager, S. E.; Haik, O.; Hirshberg, D.; Shilina, Y.; Zinigrad, E.; Levi, M. D.; Aurbach, D.; Halalay, I. C.

    2016-03-01

    Ionic liquids (IL's) were proposed for use in Li-ion batteries (LIBs), in order to mitigate some of the well-known drawbacks of LiPF6/mixed organic carbonates solutions. However, their large cations seriously decrease lithium transference numbers and block lithium insertion sites at electrode-electrolyte interfaces, leading to poor LIB rate performance. Deep eutectic electrolytes (DEEs) (which share some of the advantages of ILs but possess only one cation, Li+), were then proposed, in order to overcome the difficulties associated with ILs. We report herein on the preparation, thermal properties (melting, crystallization, and glass transition temperatures), transport properties (specific conductivity and viscosity) and thermal stability of binary DEEs based on mixtures of lithium bis(trifluoromethane)sulfonimide or lithium bis(fluoro)sulfonimide salts with an alkyl sulfonamide solvent. Promise for LIB applications is demonstrated by chronoamperometry on Al current collectors, and cycling behavior of negative and positive electrodes. Residual current densities of 12 and 45 nA cm-2 were observed at 5 V vs. Li/Li+ on aluminum, 1.5 and 16 nA cm-2 at 4.5 V vs. Li/Li+, respectively for LiFSI and LiTFSI based DEEs. Capacities of 220, 130, and 175 mAh· g-1 were observed at low (C/13 or C/10) rates, respectively for petroleum coke, LiMn1/3Ni1/3Co1/3O2 (a.k.a. NMC 111) and LiAl0.05Co0.15Ni0.8O2 (a.k.a. NCA).

  9. Deep eutectic liquid organic salt as a new solvent for liquid-phase microextraction and its application in ligandless extraction and preconcentraion of lead and cadmium in edible oils.

    PubMed

    Karimi, Mehdi; Dadfarnia, Shayessteh; Shabani, Ali Mohammad Haji; Tamaddon, Fatemeh; Azadi, Davood

    2015-11-01

    Deep eutectic liquid organic salt was used as the solvent and a liquid phase microextraction (DES-LPME) combined with electrothermal atomic absorption spectrometry (ETAAS) was developed for separation, preconcentration and determination of lead and cadmium in edible oils. A 4:1 mixture of deep eutectic solvent and 2% nitric acid (200 µL) was added to an oil sample. The mixture was vortexed and transferred into a water bath at 50 °C and stirred for 5 minutes. After the extraction was completed, the phases were separated by centrifugation, and the enriched analytes in the deep eutectic solvent phase were determined by ETAAS. Under optimized extraction conditions and for an oil sample of 28 g, enhancement factors of 198 and 195 and limits of detection (defined as 3 Sb/m) of 8 and 0. 2 ng kg(-1) were achieved for lead and cadmium respectively. The method was successfully applied to the determination of lead and cadmium in various edible oils. PMID:26452873

  10. Testing of pyrochemical centrifugal contactors

    SciTech Connect

    Chow, L.S.; Carls, E.L.; Basco, J.K.; Johnson, T.R.

    1996-08-01

    A centrifugal contactor that performs oxidation and reduction exchange reactions between molten metals and salts at 500 degrees Centigrade has been tested successfully at Argonne National Laboratory (ANL). The design is based on contactors for aqueous- organic systems operation near room temperature. In tests to demonstrate the performance of the pyrocontactor, cadmium and LICl- KCl eutectic salt were the immiscible solvent phases, and rare earths were the distributing solutes. The tests showed that the pyrocontactor mixed and separated the phases well, with stage efficiencies approaching 99% at rotor speeds near 2700 rpm. The contactor ran smoothly and reliably over the entire range of speeds that was tested.

  11. A Rich Morphological Diversity of Biosaline Drying Patterns Is Generated by Different Bacterial Species, Different Salts and Concentrations: Astrobiological Implications

    NASA Astrophysics Data System (ADS)

    Gómez Gómez, José María; Medina, Jesús; Rull, Fernando

    2016-07-01

    Biosaline formations (BSFs) are complex self-organized biomineral patterns formed by "hibernating" bacteria as the biofilm that contains them dries out. They were initially described in drying biofilms of Escherichia coli cells + NaCl. Due to their intricate 3-D morphology and anhydrobiosis, these biomineralogical structures are of great interest in astrobiology. Here we report experimental data obtained with various alkali halide salts (NaF, NaCl, NaBr, LiCl, KCl, CsCl) on BSF formation with E. coli and Bacillus subtilis bacteria at two saline concentrations: 9 and 18 mg/mL. Our results indicate that, except for LiCl, which is inactive, all the salts assayed are active during BSF formation and capable of promoting the generation of distinctive drying patterns at each salt concentration. Remarkably, the BSFs produced by these two bacterial species produce characteristic architectural hallmarks as the BSF dries. The potential biogenicity of these biosaline drying patterns is studied, and the astrobiological implications of these findings are discussed.

  12. Eutectic composite explosives containing ammonium nitrate

    SciTech Connect

    Stinecipher, M.M.

    1981-01-01

    The eutectic of ammonium nitrate (AN), the ammonium salt of 3,5-dinitro-1,2,4-triazole was prepared and its sensitivity and performance were studied. It was found that this AN formulation was unusual in that it performed ideally at small diameter, which indicated that it was a monomolecular explosive. Sensitivity tests included type 12 impact, Henkin thermal and wedge tests, and performance tests included rate stick/plate dent, cylinder, and aquarium tests. Results were compared with calculations, standard explosives, and another eutectic, ethylendiamine dinitrate (EDD)/AN.

  13. Temperature dependence of the elastic moduli and damping for polycrystalline LiF-22 pct CaF2 eutectic salt

    NASA Technical Reports Server (NTRS)

    Wolfenden, A.; Lastrapes, G.; Duggan, M. B.; Raj, S. V.

    1991-01-01

    Young's and shear moduli and damping were measured for as-cast polycrystalline LiF-(22 mol pct)CaF2 eutectic specimens as a function of temperature using the piezoelectric ultrasonic composite oscillator technique. The shear modulus decreased with increasing temperature from about 40 GPa at 295 K to about 30 GPa at 1000 K, while the Young modulus decreased from about 115 GPa at 295 K to about 35 GPa at 900 K. These values are compared with those derived from the rule of mixtures using elastic moduli data for LiF and CaF2 single crystals. It is shown that, while the shear modulus data agree reasonably well with the predicted trend, there is a large discrepancy between the theoretical calculations and the Young modulus values, where this disagreement increases with increasing temperature.

  14. Investigation of concentration-dependence of thermodynamic properties of lanthanum, yttrium, scandium and terbium in eutectic LiCl-KCl molten salt

    NASA Astrophysics Data System (ADS)

    Wang, Yafei; Zhou, Wentao; Zhang, Jinsuo

    2016-09-01

    Thermodynamic properties of rare earth metals in LiCl-KCl molten salt electrolyte are crucial to the development of electrochemical separation for the treatment of used nuclear fuels. In the present study, activity coefficient, apparent potential, and diffusion coefficient of lanthanum, yttrium, scandium, and terbium in the molten salt (58 at% LiCl and 42 at% KCl) were calculated by the method of molecular dynamics simulation up to a concentration around 3 at% at temperatures of 723 K and 773 K. It was found that the activity coefficient and the apparent potential increase with the species concentration while diffusion coefficient shows a trend of increase followed by decrease. The calculated results were validated by available measurement data of dilution cases. This research extends the range of data to a wide component and would provide further insight to the pyroprocessing design and safeguards.

  15. Thermodynamic Assessment of Hot Corrosion Mechanisms of Superalloys Hastelloy N and Haynes 242 in Eutectic Mixture of Molten Salts KF and ZrF4

    SciTech Connect

    Michael V. Glazoff

    2012-02-01

    The KF - ZrF4 system was considered for the application as a heat exchange agent in molten salt nuclear reactors (MSRs) beginning with the work carried out at ORNL in early fifties. Based on a combination of excellent properties such as thermal conductivity, viscosity in the molten state, and other thermo-physical and rheological properties, it was selected as one of possible candidates for the nuclear reactor secondary heat exchanger loop.

  16. Eutectics as improved pharmaceutical materials: design, properties and characterization.

    PubMed

    Cherukuvada, Suryanarayan; Nangia, Ashwini

    2014-01-28

    Eutectics are a long known class of multi-component solids with important and useful applications in daily life. In comparison to other multi-component crystalline solids, such as salts, solid solutions, molecular complexes and cocrystals, eutectics are less studied in terms of molecular structure organization and bonding interactions. Classically, a eutectic is defined based on its low melting point compared to the individual components. In this article, we attempt to define eutectics not just based on thermal methods but from a structural organization view point, and discuss their microstructures and properties as organic materials vis-a-vis solid solutions and cocrystals. The X-ray crystal structure of a cocrystal is different from that of the individual components whereas the unit cell of a solid solution is similar to that of one of the components. Eutectics are closer to the latter species in that their crystalline arrangement is similar to the parent components but they are different with respect to the structural integrity. A solid solution possesses structural homogeneity throughout the structure (single phase) but a eutectic is a heterogeneous ensemble of individual components whose crystal structures are like discontinuous solid solutions (phase separated). Thus, a eutectic may be better defined as a conglomerate of solid solutions. A structural analysis of cocrystals, solid solutions and eutectics has led to an understanding that materials with strong adhesive (hetero) interactions between the unlike components will lead to cocrystals whereas those having stronger cohesive (homo/self) interactions will more often give rise to solid solutions (for similar structures of components) and eutectics (for different structures of components). We demonstrate that the same crystal engineering principles which have been profitably utilized for cocrystal design in the past decade can now be applied to make eutectics as novel composite materials, illustrated by

  17. Generalized correlation for viscosity of binary eutectics

    SciTech Connect

    Sharma, S.K.; Wanchoo, R.K.; Gupta, R.; Jotshi, C.K.

    1995-12-31

    Heat and mass transfer plays an important role during phase transformation process involving phase change materials. These processes are greatly influenced by thermophysical properties of the material, such as, viscosity, density, thermal conductivity, etc. Viscosity is one of the prime factors which controls the crystal growth rate during crystallization/cooling process of the phase change material. It directs the movement of convection currents arising due to concentration gradient, near the interface of the growing crystal. Eutectics are the compounds having sharp transition temperatures corresponding to specific composition and do not suffer from phase segregation, a major problem in incongruent and semi-congruent melting salt hydrates. The viscometric behavior of the following five binary eutectics in the temperature range of 313--363 K has been studied: Mg(NO{sub 3}){sub 2}{center_dot}6H{sub 2}O-NH{sub 4}NO{sub 3}; MgNO{sub 3}{center_dot}6H{sub 2}O-MgCl{sub 2}{center_dot}6H{sub 2}O; CO(NH{sub 2}){sub 2}-NH{sub 4}NO{sub 3}; CO(NH{sub 2}){sub 2}-NH{sub 4}Br and CH{sub 3}CONH{sub 2}-NaBr. An empirical correlation between reduced viscosity and reduced temperature for molten binary eutectics showing Arrhenius behavior above their melting points has been reported. The correlation predicts the temperature dependence of the eutectic viscosity to within {+-}6. Consistency tests for viscosity data using reduced parameters have been reported. The empirical correlation developed from this study predicts very well, the viscosity of the molten eutectics and salt hydrates to within {+-}6% of the experimental values.

  18. New eutectic alloys and their heats of transformation

    NASA Technical Reports Server (NTRS)

    Farkas, D.; Birchenall, C. E.

    1985-01-01

    Eutectic compositions and congruently melting intermetallic compounds in binary and multicomponent systems among common elements such as Al, Ca, Cu, Mg, P, Si, and Zn may be useful for high temperature heat storage. In this work, heats of fusion of new multicomponent eutectics and intermetallic phases are reported, some of which are competitive with molten salts in heat storage density at high temperatures. The method used to determine unknown eutectic compositions combined results of differential thermal analysis, metallography, and microprobe analysis. The method allows determination of eutectic compositions in no more than three steps. The heats of fusion of the alloys were measured using commercial calorimeters, a differential thermal analyzer, and a differential scanning calorimeter.

  19. Study of eutectic formation

    NASA Technical Reports Server (NTRS)

    Wilcox, W. R.; Eisa, G. F.; Baskaran, V.; Richardson, D. C.

    1984-01-01

    A theory was developed for the influence of convection on the microstructure of lamellar eutectics. Convection is predicted to produce a coarser microstructure, especially at low freezing rates and large volume fractions of the minority phase. Similary convection is predicted to lower the interfacial undercooling, especially at low freezing rates. Experiments using spin-up/spin-down were performed on the Mn-Bi eutectic. This stirring had a dramatic effect on the microstructure, not only making it coarser but at low freezing rates also changing the morphology of the MnBi. The coarsering persisted to moderately high freezing rates. At the lowest freezing rate, vigorous stirring caused the MnBi to be concentrated at the periphery of the ingot and absent along the center. Progress was made on developing a technique for revealing the three-dimensional microstructure of the MnBi eutectic by time-lapse videotaping while etching.

  20. Semiconductor eutectic solar cell

    NASA Astrophysics Data System (ADS)

    Yue, A. S.; Yu, J. G.

    1986-12-01

    Two-phase semiconducting eutectics are potential device-materials. Of these, the SnSe-SnSe2 eutectic was chosen for studies in detail because it consists of multi-p/n-layers of SnSe and SnSe2 semiconductors. Since plasma frequency has not been detected in its infrared reflectance spectrum up to 40 micrometers of wavelength, it suggests that the SnSe-SnSe2 eutectic is a nondegenerate semiconductor. As-grown SnSe2 single crystals have hexagonal crystallographic structure and show n-type conductivity. Polycrystalline SnSe and SnSe2 films have been successfully prepared in vacuum using a close-space-vapor transport technique.

  1. Coatings for directional eutectics

    NASA Technical Reports Server (NTRS)

    Rairden, J. R.; Jackson, M. R.

    1976-01-01

    Coatings developed to provide oxidation protection for the directionally-solidified eutectic alloy NiTaC-B (4.4 weight percent Cr) were evaluated. Of seven Co-, Fe- and Ni-base coatings that were initially investigated, best resistance to cyclic oxidation was demonstrated by duplex coatings fabricated by depositing a layer of NiCrAl(Y) by vacuum evaporation from an electron beam source followed by deposition of an Al overlayer using the pack cementation process. It was found that addition of carbon to the coating alloy substantially eliminated the problem of fiber denudation in TaC-type eutectic alloys. Burner rig cycled NiTaC-B samples coated with Ni-20Cr-5Al-0.1C-0.1Y+Al and rupture-tested at 1100 deg C performed as well as or better than uncoated, vacuum cycled and air-tested NiTaC-13; however, a slight degradation with respect to uncoated material was noted in air-stress rupture tests at 870 deg C for both cycled and uncycled samples.

  2. Processing eutectics in space

    NASA Technical Reports Server (NTRS)

    Douglas, F. C.; Galasso, S. F.

    1975-01-01

    The investigations of directional solidification have indicated the necessity of establishing a secure foundation in earth-based laboratory processing in order to properly assess low-gravity processing. Emphasis was placed on evaluating the regularity of microstructure of the rod-like eutectic Al-Al3Ni obtained under different conditions of growth involving the parameters of thermal gradient, solidification rate, and interfacial curvature. In the case of Al-Al3Ni, where the Al3Ni phase appears as facets rods, solidification rate was determined to be a controlling parameter. Zone melting of thin eutectic films showed that for films of the order of 10 to 20 micrometers thick, the extra surface energy appears to act to stabilize a regular microstructure. The results suggest that the role of low-gravity as provided in space-laboratory processing of materials is to be sought in the possibility of generating a higher thermal gradient in the solidifying ingot for a given power input-output arrangement than can be obtained under normal one-g processes.

  3. Composition formulas of binary eutectics

    PubMed Central

    Ma, Y. P.; Dong, D. D.; Dong, C.; Luo, L. J.; Wang, Q.; Qiang, J. B.; Wang, Y. M.

    2015-01-01

    The present paper addresses the long-standing composition puzzle of eutectic points by introducing a new structural tool for the description of short-range-order structural unit, the cluster-plus-glue-atom model. In this model, any structure is dissociated into a 1st-neighbor cluster and a few glue atoms between the clusters, expressed by a cluster formula [cluster]gluex. This model is applied here to establish the structural model for eutectic liquids, assuming that a eutectic liquid consist of two subunits issued from the relevant eutectic phases, each being expressed by the cluster formula for ideal metallic glasses, i.e., [cluster](glue atom)1 or 3. A structural unit is then composed of two clusters from the relevant eutectic phases plus 2, 4, or 6 glue atoms. Such a dual cluster formulism is well validated in all boron-containing (except those located by the extreme phase diagram ends) and in some commonly-encountered binary eutectics, within accuracies below 1 at.%. The dual cluster formulas vary extensively and are rarely identical even for eutectics of close compositions. They are generally formed with two distinctly different cluster types, with special cluster matching rules such as cuboctahedron plus capped trigonal prism and rhombidodecahedron plus octahedral antiprism. PMID:26658618

  4. Electrochemical method of producing eutectic uranium alloy and apparatus

    DOEpatents

    Horton, James A.; Hayden, H. Wayne

    1995-01-01

    An apparatus and method for continuous production of liquid uranium alloys through the electrolytic reduction of uranium chlorides. The apparatus includes an electrochemical cell formed from an anode shaped to form an electrolyte reservoir, a cathode comprising a metal, such as iron, capable of forming a eutectic uranium alloy having a melting point less than the melting point of pure uranium, and molten electrolyte in the reservoir comprising a chlorine or fluorine containing salt and uranium chloride. The method of the invention produces an eutectic uranium alloy by creating an electrolyte reservoir defined by a container comprising an anode, placing an electrolyte in the reservoir, the electrolyte comprising a chlorine or fluorine containing salt and uranium chloride in molten form, positioning a cathode in the reservoir where the cathode comprises a metal capable of forming an uranium alloy having a melting point less than the melting point of pure uranium, and applying a current between the cathode and the anode.

  5. Natural deep eutectic solvents: cytotoxic profile.

    PubMed

    Hayyan, Maan; Mbous, Yves Paul; Looi, Chung Yeng; Wong, Won Fen; Hayyan, Adeeb; Salleh, Zulhaziman; Mohd-Ali, Ozair

    2016-01-01

    The purpose of this study was to investigate the cytotoxic profiles of different ternary natural deep eutectic solvents (NADESs) containing water. For this purpose, five different NADESs were prepared using choline chloride as a salt, alongside five hydrogen bond donors (HBD) namely glucose, fructose, sucrose, glycerol, and malonic acid. Water was added as a tertiary component during the eutectics preparation, except for the malonic acid-based mixture. Coincidentally, the latter was found to be more toxic than any of the water-based NADESs. A trend was observed between the cellular requirements of cancer cells, the viscosity of the NADESs, and their cytotoxicity. This study also highlights the first time application of the conductor-like screening model for real solvent (COSMO-RS) software for the analysis of the cytotoxic mechanism of NADESs. COSMO-RS simulation of the interactions between NADESs and cellular membranes' phospholipids suggested that NADESs strongly interacted with cell surfaces and that their accumulation and aggregation possibly defined their cytotoxicity. This reinforced the idea that careful selection of NADESs components is necessary, as it becomes evident that organic acids as HBD highly contribute to the increasing toxicity of these neoteric mixtures. Nevertheless, NADESs in general seem to possess relatively less acute toxicity profiles than their DESs parents. This opens the door for future large scale utilization of these mixtures. PMID:27386357

  6. Ethylenediamine salt of 5-nitrotetrazole and preparation

    DOEpatents

    Lee, Kien-yin; Coburn, Michael D.

    1985-01-01

    Ethylenediamine salt of 5-nitrotetrazole and preparation. This salt has been found to be useful as an explosive alone and in eutectic mixtures with ammonium nitrate and/or other explosive compounds. Its eutectic with ammonium nitrate has been demonstrated to behave in a similar manner to a monomolecular explosive such as TNT, and is less sensitive than the pure salt. Moreover, this eutectic mixture, which contains 87.8 mol % of ammonium nitrate, is close to the CO.sub.2 -balanced composition of 90 mol %, and has a relatively low melting point of 110.5 C. making it readily castable. The ternary eutectic system containing the ethylenediamine salt of 5-nitrotetrazole, ammonium nitrate and ethylenediamine dinitrate has a eutectic temperature of 89.5 C. and gives a measured detonation pressure of 24.8 GPa, which is 97.6% of the calculated value. Both the pure ethylenediamine salt and its known eutectic compounds behave in substantially ideal manner. Methods for the preparation of the salt are described.

  7. Functionalization of graphene using deep eutectic solvents

    NASA Astrophysics Data System (ADS)

    Hayyan, Maan; Abo-Hamad, Ali; AlSaadi, Mohammed AbdulHakim; Hashim, Mohd Ali

    2015-08-01

    Deep eutectic solvents (DESs) have received attention in various applications because of their distinctive properties. In this work, DESs were used as functionalizing agents for graphene due to their potential to introduce new functional groups and cause other surface modifications. Eighteen different types of ammonium- and phosphonium-salt-based DESs were prepared and characterized by FTIR. The graphene was characterized by FTIR, STA, Raman spectroscopy, XRD, SEM, and TEM. Additional experiments were performed to study the dispersion behavior of the functionalized graphene in different solvents. The DESs exhibited both reduction and functionalization effects on DES-treated graphene. Dispersion stability was investigated and then characterized by UV-vis spectroscopy and zeta potential. DES-modified graphene can be used in many applications, such as drug delivery, wastewater treatment, catalysts, composite materials, nanofluids, and biosensors. To the best of our knowledge, this is the first investigation on the use of DESs for graphene functionalization.

  8. Coatings for directional eutectics

    NASA Technical Reports Server (NTRS)

    Rairden, J. R.; Jackson, M. R.

    1976-01-01

    Significant advances have been made in the development of an environmentally stable coating for a very high strength, directionally solidified eutectic alloy designated NiTaC-13. Three duplex (two-layer) coatings survived 3,000 hours on a cyclic oxidation test (1,100 C to 90 C). These coatings were fabricated by first depositing a layer of NiCrAl(Y) by vacuum evaporation from an electron beam heated source, followed by depositing an aluminizing overlayer. The alloy after exposure with these coatings was denuded of carbide fibers at the substrate/coating interface. It was demonstrated that TaC fiber denudation can be greatly retarded by applying a carbon-bearing coating. The coating was applied by thermal spraying followed by aluminization. Specimens coated with NiCrAlCY+Al survived over 2,000 hours in the cyclic oxidation test with essentially no TaC denudation. Coating ductility was studied for coated and heat-treated bars, and stress rupture life at 871 C and 1,100 C was determined for coated and cycled bars.

  9. Ethylenediamine salt of 5-nitrotetrazole and preparation

    DOEpatents

    Lee, K.; Coburn, M.D.

    1984-05-17

    The ethylenediamine salt of 5-nitrotetrazole has been found to be useful as an explosive alone and in eutectic mixtures with ammonium nitrate and/or other explosive compounds. Its eutectic with ammonium nitrate has been demonstrated to behave in a similar manner to a monomolecular explosive such as TNT, and is less sensitive than the pure salt. Moreover, this eutectic mixture, which contains 87.8 mol% of ammonium nitrate, is close to the CO/sub 2/-balanced composition of 90 mol%, and has a relatively low melting point of 110.5 C making it readily castable. The ternary eutectic system containing the ethylenediamine salt of 5-nitrotetrazole, ammonium nitrate and ethylenediamine dinitrate has a eutectic temperature of 89.5 C and gives a measured detonation pressure of 24.8 GPa, which is 97.6% of the calculated value. Both the pure ethylenediamine salt and its known eutectic compounds behave in substantially ideal manner. Methods for the preparation of the salt are described.

  10. Directional Solidification of Eutectic Ceramics

    NASA Technical Reports Server (NTRS)

    Sayir, Ali

    2001-01-01

    Two major problems associated with structural ceramics are lack of damage tolerance and insufficient strength and creep resistance at very high temperatures of interest for aerospace application. This work demonstrated that the directionally solidified eutectics can have unique poly-phase microstructures and mechanical properties superior to either constituent alone. The constraining effect of unique eutectic microstructures result in higher resistance to slow crack growth and creep. Prospect of achieving superior properties through controlled solidification are presented and this technology can also be beneficial to produce new class of materials.

  11. Semiconductor eutectics for energy conversion

    NASA Astrophysics Data System (ADS)

    Yue, A. S.

    1983-04-01

    Directionally-oriented two-phase semiconducting eutectics are potential device-materials. A comprehensive search of the literature gives a list of semiconducting eutectic systems. Among these, the SnSe-SnSe2 was chosen for studies in detail. The SnSe-SnSe2 eutectic grown by the Bridgman technique has a multi-P/N-junction lamellar microstructure. Since its plasma frequency has not been detected within the infrared reflectance spectrum up to 40 micrometers of wavelength, it is, therefore, concluded that the SnSe-SnSe2 eutectic is a non-degenerate semiconductor. SnSe single crystals grown from the vapor phase have a hole concentration of 9.72 x 10(17) cm(+3) and a mobility of 154 cm(2)/sec-v at room temperature. This mobility is proportional to T/sup -1/3/ for T 1300 K and T/sup -2.25/ for T 1300 K. The index of reflection for SnSe single crystal has been determined froma wavelength of micrometers to a wavelength of 40 micrometers and was found to be 3.120 at 3 microns and 3.095 at 15 microns. A current-voltage characteristic expressed as I = I0 exp (qv/2.08 KT) was measured on a SnSe diode, which exhibits a negative resistance after the breakdown.

  12. Evaporation Behavior and Characterization of Eutectic Solvent and Ibuprofen Eutectic Solution.

    PubMed

    Phaechamud, Thawatchai; Tuntarawongsa, Sarun; Charoensuksai, Purin

    2016-10-01

    Liquid eutectic system of menthol and camphor has been reported as solvent and co-solvent for some drug delivery systems. However, surprisingly, the phase diagram of menthol-camphor eutectic has not been reported previously. The evaporation behavior, physicochemical, and thermal properties of this liquid eutectic and ibuprofen eutectic solution were characterized in this study. Differential scanning calorimetry (DSC) analysis indicated that a eutectic point of this system was near to 1:1 menthol/camphor and its eutectic temperature was -1°C. The solubility of ibuprofen in this eutectic was 282.11 ± 6.67 mg mL(-1) and increased the drug aqueous solubility fourfold. The shift of wave number from Fourier transform infrared spectroscopy (FTIR) indicated the hydrogen bonding of each compound in eutectic mixture. The weight loss from thermogravimetric analysis of menthol and camphor related to the evaporation and sublimation, respectively. Menthol demonstrated a lower apparent sublimation rate than camphor, and the evaporation rate of eutectic solvent was lower than the sublimation rate of camphor but higher than the evaporation of menthol. The evaporation rate of the ibuprofen eutectic solution was lower than that of the eutectic solvent because ibuprofen did not sublimate. This eutectic solvent prolonged the ibuprofen release with diffusion control. Thus, the beneficial information for thermal behavior and related properties of eutectic solvent comprising menthol-camphor and ibuprofen eutectic solution was attained successfully. The rather low evaporation of eutectic mixture will be beneficial for investigation and tracking the mechanism of transformation from nanoemulsion into nanosuspension in the further study using eutectic as oil phase. PMID:26669887

  13. Evaporation Behavior and Characterization of Eutectic Solvent and Ibuprofen Eutectic Solution.

    PubMed

    Phaechamud, Thawatchai; Tuntarawongsa, Sarun; Charoensuksai, Purin

    2016-10-01

    Liquid eutectic system of menthol and camphor has been reported as solvent and co-solvent for some drug delivery systems. However, surprisingly, the phase diagram of menthol-camphor eutectic has not been reported previously. The evaporation behavior, physicochemical, and thermal properties of this liquid eutectic and ibuprofen eutectic solution were characterized in this study. Differential scanning calorimetry (DSC) analysis indicated that a eutectic point of this system was near to 1:1 menthol/camphor and its eutectic temperature was -1°C. The solubility of ibuprofen in this eutectic was 282.11 ± 6.67 mg mL(-1) and increased the drug aqueous solubility fourfold. The shift of wave number from Fourier transform infrared spectroscopy (FTIR) indicated the hydrogen bonding of each compound in eutectic mixture. The weight loss from thermogravimetric analysis of menthol and camphor related to the evaporation and sublimation, respectively. Menthol demonstrated a lower apparent sublimation rate than camphor, and the evaporation rate of eutectic solvent was lower than the sublimation rate of camphor but higher than the evaporation of menthol. The evaporation rate of the ibuprofen eutectic solution was lower than that of the eutectic solvent because ibuprofen did not sublimate. This eutectic solvent prolonged the ibuprofen release with diffusion control. Thus, the beneficial information for thermal behavior and related properties of eutectic solvent comprising menthol-camphor and ibuprofen eutectic solution was attained successfully. The rather low evaporation of eutectic mixture will be beneficial for investigation and tracking the mechanism of transformation from nanoemulsion into nanosuspension in the further study using eutectic as oil phase.

  14. Electrochemical method of producing eutectic uranium alloy and apparatus

    DOEpatents

    Horton, J.A.; Hayden, H.W.

    1995-01-10

    An apparatus and method are disclosed for continuous production of liquid uranium alloys through the electrolytic reduction of uranium chlorides. The apparatus includes an electrochemical cell formed from an anode shaped to form an electrolyte reservoir, a cathode comprising a metal, such as iron, capable of forming a eutectic uranium alloy having a melting point less than the melting point of pure uranium, and molten electrolyte in the reservoir comprising a chlorine or fluorine containing salt and uranium chloride. The method of the invention produces an eutectic uranium alloy by creating an electrolyte reservoir defined by a container comprising an anode, placing an electrolyte in the reservoir, the electrolyte comprising a chlorine or fluorine containing salt and uranium chloride in molten form, positioning a cathode in the reservoir where the cathode comprises a metal capable of forming an uranium alloy having a melting point less than the melting point of pure uranium, and applying a current between the cathode and the anode. 2 figures.

  15. Re-evaluation of the eutectic region of the LiBr-KBr-LiF system

    SciTech Connect

    Redey, L.; Guidotti, R.A.

    1996-05-01

    The separator pellet in a thermal battery consists of electrolyte immobilized by a binder (typically, MgO powder). The melting point of the electrolyte determines the effective operating window for its use in a thermal battery. The development of a two-hour thermal battery required the use of a molten salt that had a lower melting point and larger liquidus range than the LiCl-KCl eutectic which melts at 352 C. Several candidate eutectic electrolyte systems were evaluated for their suitability for this application. One was the LiCl-LiBr-KBr eutectic used at Argonne National Laboratories for high-temperature rechargeable batteries for electric-vehicle applications. Using a custom-designed high-temperature conductivity cell, the authors were able to readily determine the liquidus region for the various compositions studied around the original eutectic for the LiBr-KBr-LiF system. The actual eutectic composition was found to be 60.0 m/o LiBr-37.5 m/o KBr-2.5 m/o LiF with a melting point of 324 {+-} 0.5 C.

  16. Development of deep eutectic solvents applied in extraction and separation.

    PubMed

    Li, Xiaoxia; Row, Kyung Ho

    2016-09-01

    Deep eutectic solvents, as an alternative to ionic liquids, have greener credentials than ionic liquids, and have attracted considerable attention in related chemical research. Deep eutectic solvents have attracted increasing attention in chemistry for the extraction and separation of various target compounds from natural products. This review highlights the preparation of deep eutectic solvents, unique properties of deep eutectic solvents, and synthesis of deep-eutectic-solvent-based materials. On the other hand, application in the extraction and separation of deep eutectic solvents is also included in this report. In this paper, the available data and references in this field are reviewed to summarize the applications and developments of deep eutectic solvents. Based on the development of deep eutectic solvents, an exploitation of new deep eutectic solvents and deep eutectic solvents-based materials is expected to diversify into extraction and separation.

  17. Basic molten salt process-A new route for synthesis of nanocrystalline Li 4Ti 5O 12-TiO 2 anode material for Li-ion batteries using eutectic mixture of LiNO 3-LiOH-Li 2O 2

    NASA Astrophysics Data System (ADS)

    Rahman, M. M.; Wang, Jia-Zhao; Hassan, Mohd Faiz; Chou, Shulei; Wexler, David; Liu, Hua-Kun

    A nanocrystalline Li 4Ti 5O 12-TiO 2 duplex phase has been synthesized by a simple basic molten salt process (BMSP) using an eutectic mixture of LiNO 3-LiOH-Li 2O 2 at 400-500 °C. The microstructure and morphology of the Li 4Ti 5O 12-TiO 2 product are characterized by means of X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The sample prepared by heat-treating at 300 °C for 3 h (S-1) reveals dense agglomerates of ultra-fine nanocrystalline Li 4Ti 5O 12; with heat treatment at 400 °C for 3 h (S-2), there is a duplex crystallite size (fine < 10 nm, and coarse > 20 nm) of Li 4Ti 5O 12-TiO 2; at 500 °C for 3 h (S-3), a much coarser and less-dense distribution of lithium titanate (crystallite size ∼15-30 nm) is observed. According to the results of electrochemical testing, the S-2 sample shows initial discharge capacities of 193 mAh g -1 at 0.2 C, 168 mAh g -1 at 0.5 C, 146 mAh g -1 at 1 C, 135 mAh g -1 at 2 C, and 117 mAh g -1 at 5 C. After 100 cycles, the discharge capacity is 138 mAh g -1 at 1 C with a capacity retention of 95%. The S-2 sample yields the best electrochemical performance in terms of charge-discharge capacity and rate capability compared with other samples. Its superior electrochemical performance can be mainly attributed to the duplex crystallite structure, composed of fine (<10 nm) and coarse (>20) nm nanoparticles, where lithium ions can be stored within the grain boundary interfaces between the spinel Li 4Ti 5O 12 and the anatase TiO 2.

  18. Density measurements of the lithium fluoride/lithium sulfide eutectic at high temperature

    NASA Astrophysics Data System (ADS)

    Lloyd, Charles L.; Gilbert, James B.

    1994-10-01

    A straightforward and reliable method to determine densities of molten salts at high temperatures was de-veloped by Janz and Lorenz several years ago.[1] This method was followed in order to determine the density of the LiF/Li2S eutectic[2] over the temperature range of 1176 to 1355 K in which the eutectic is liquid. The rel-ative lack of data for this eutectic is surprising given its potential usefulness in the study of advanced batteries'31 and electrowinning of metals from molten sulfides.[41] The method is based on the fact that a solid piece of metal of known volume suspended from a pan balance into a molten salt will weigh less than if it were sus-pended in air at the same temperature. This difference in weight measured in grams will be equal to the buoyant force of the liquid at that temperature. The density of the salt bath can then readily be determined by dividing this difference by the volume of the solid piece of metal that is immersed in the bath. The procedure can be re-peated to give density values over a range of temperatures.

  19. Solidification and microstructures of binary ice-I/hydrate eutectic aggregates

    USGS Publications Warehouse

    McCarthy, C.; Cooper, R.F.; Kirby, S.H.; Rieck, K.D.; Stern, L.A.

    2007-01-01

    The microstructures of two-phase binary aggregates of ice-I + salt-hydrate, prepared by eutectic solidification, have been characterized by cryogenic scanning electron microscopy (CSEM). The specific binary systems studied were H2O-Na2SO4, H2O-MgSO4, H2O-NaCl, and H2O-H2SO4; these were selected based on their potential application to the study of tectonics on the Jovian moon Europa. Homogeneous liquid solutions of eutectic compositions were undercooled modestly (??T - 1-5 ??C); similarly cooled crystalline seeds of the same composition were added to circumvent the thermodynamic barrier to nucleation and to control eutectic growth under (approximately) isothermal conditions. CSEM revealed classic eutectic solidification microstructures with the hydrate phase forming continuous lamellae, discontinuous lamellae, or forming the matrix around rods of ice-I, depending on the volume fractions of the phases and their entropy of dissolving and forming a homogeneous aqueous solution. We quantify aspects of the solidification behavior and microstructures for each system and, with these data articulate anticipated effects of the microstructure on the mechanical responses of the materials.

  20. Effect of Eutectic Concentration on Conductivity in PEO:LiX Based Solid Polymer Electrolytes

    NASA Astrophysics Data System (ADS)

    Zhan, Pengfei; Ganapatibhotla, Lalitha; Maranas, Janna

    Polyethylene oxide (PEO) and lithium salt based solid polymer electrolytes (SPEs) have been widely proposed as a substitution for the liquid electrolyte in Li-ion batteries. As salt concentration varies, these systems demonstrate rich phase behavior. Conductivity as a function of salt concentration has been measured for decades and various concentration dependences have been observed. A PEO:LiX mixture can have one or two conductivity maximums, while some mixtures with salt of high ionic strength will have higher conductivity as the salt concentration decrease. The factors that affect the conductivity are specific for each sample. The universal factor that affects conductivity is still not clear. In this work, we measured the conductivity of a series of PEO:LiX mixtures and statistical analysis shows conductivity is affected by the concentration difference from the eutectic concentration (Δc). The correlation with Δc is stronger than the correlation with glass transition temperature. We believe that at the eutectic concentration, during the solidification process, unique structures can form which aid conduction. Currently at Dow Chemical.

  1. Stability of eutectic interface during directional solidification

    SciTech Connect

    Han, S.H.

    1996-04-23

    Directional solidification of eutectic alloys shows different types of eutectic morphologies. These include lamellar, rod, oscillating and tilting modes. The growth of these morphologies occurs with a macroscopically planar interface. However, under certain conditions, the planar eutectic front becomes unstable and gives rise to a cellular or a dendritic structure. This instability leads to the cellular/dendritic structure of either a primary phase or a two-phase structure. The objective of this work is to develop a fundamental understanding of the instability of eutectic structure into cellular/dendritic structures of a single phase and of two-phases. Experimental studies have been carried out to examine the transition from a planar to two-phase cellular and dendritic structures in a ceramic system of Alumina-Zirconia (Al{sub 2}O{sub 3}-ZrO{sub 2}) and in a transparent organic system of carbon tetrabromide and hexachloroethane (CBr{sub 4}-C{sub 2}Cl{sub 6}). Several aspects of eutectic interface stability have been examined.

  2. Directionally solidified eutectic alloy gamma-beta

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.

    1977-01-01

    A pseudobinary eutectic alloy composition was determined by a previously developed bleed-out technique. The directionally solidified eutectic alloy with a composition of Ni-37.4Fe-10.0Cr-9.6Al (in wt%) had tensile strengths decreasing from 1,090 MPa at room temperature to 54 MPa at 1,100 C. The low density, excellent microstructural stability, and oxidation resistance of the alloy during thermal cycling suggest that it might have applicability as a gas turbine vane alloy while its relatively low high temperature strength precludes its use as a blade alloy. A zirconium addition increased the 750 C strength, and a tungsten addition was ineffective. The gamma=beta eutectic alloys appeared to obey a normal freezing relation.

  3. Eutectic growth under acoustic levitation conditions.

    PubMed

    Xie, W J; Cao, C D; Lü, Y J; Wei, B

    2002-12-01

    Samples of Pb-Sn eutectic alloy with a high density of 8.5 x 10(3) kg/m(3) are levitated with a single-axis acoustic levitator, and containerlessly melted and then solidified in argon atmosphere. High undercoolings up to 38 K are obtained, which results in a microstructural transition of "lamellas-broken lamellas-dendrites." This transition is further investigated in the light of the coupled zone for eutectic growth and the effects of ultrasound. The breaking of regular eutectic lamellas and suppression of gravity-induced macrosegregation of (Pb) and (Sn) dendrites are explained by the complicated internal flow inside the levitated drop, which is jointly induced by the shape oscillation, bulk vibration and rotation of the levitated drop. The ultrasonic field is also found to drive forced surface vibration, which subsequently excites capillary ripples and catalyzes nucleation on the sample surface. PMID:12513291

  4. Fundamental Properties of Salts

    SciTech Connect

    Toni Y Gutknecht; Guy L Fredrickson

    2012-11-01

    Thermal properties of molten salt systems are of interest to electrorefining operations, pertaining to both the Fuel Cycle Research & Development Program (FCR&D) and Spent Fuel Treatment Mission, currently being pursued by the Department of Energy (DOE). The phase stability of molten salts in an electrorefiner may be adversely impacted by the build-up of fission products in the electrolyte. Potential situations that need to be avoided, during electrorefining operations, include (i) fissile elements build up in the salt that might approach the criticality limits specified for the vessel, (ii) electrolyte freezing at the operating temperature of the electrorefiner due to changes in the liquidus temperature, and (iii) phase separation (non-homogenous solution). The stability (and homogeneity) of the phases can be monitored by studying the thermal characteristics of the molten salts as a function of impurity concentration. Simulated salt compositions consisting of the selected rare earth and alkaline earth chlorides, with a eutectic mixture of LiCl-KCl as the carrier electrolyte, were studied to determine the melting points (thermal characteristics) using a Differential Scanning Calorimeter (DSC). The experimental data were used to model the liquidus temperature. On the basis of the this data, it became possible to predict a spent fuel treatment processing scenario under which electrorefining could no longer be performed as a result of increasing liquidus temperatures of the electrolyte.

  5. Pb-free Sn-Ag-Cu ternary eutectic solder

    DOEpatents

    Anderson, Iver E.; Yost, Frederick G.; Smith, John F.; Miller, Chad M.; Terpstra, Robert L.

    1996-06-18

    A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217.degree. C. and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid "mushy" zone) relative to the eutectic melting temperature (e.g. up to 15.degree. C. above the eutectic melting temperature).

  6. Pb-free Sn-Ag-Cu ternary eutectic solder

    DOEpatents

    Anderson, I.E.; Yost, F.G.; Smith, J.F.; Miller, C.M.; Terpstra, R.L.

    1996-06-18

    A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217 C and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid ``mushy`` zone) relative to the eutectic melting temperature (e.g. up to 15 C above the eutectic melting temperature). 5 figs.

  7. Assessing the toxicity and biodegradability of deep eutectic solvents.

    PubMed

    Wen, Qing; Chen, Jing-Xin; Tang, Yu-Lin; Wang, Juan; Yang, Zhen

    2015-08-01

    Deep eutectic solvents (DESs) have emerged as a new type of promising ionic solvents with a broad range of potential applications. Although their ecotoxicological profile is still poorly known, DESs are generally regarded as "green" because they are composed of ammonium salts and H-bond donors (HBDs) which are considered to be eco-friendly. In this work, cholinium-based DESs comprised of choline chloride (ChCl) and choline acetate (ChAc) as the salt and urea (U), acetamide (A), glycerol (G) and ethylene glycol (EG) as the HBD were evaluated for their toxic effects on different living organisms such as Escherichia coli (a bacterium), Allium sativum (garlic, a plant) and hydra (an invertebrate), and their biodegradabilities were assessed by means of closed bottle tests. These DESs possessed an anti-bacterial property and exhibited inhibitory effects on the test organisms adopted, depending on the composition and concentration of the DES. The mechanism for the impact of DESs and their components on different living organisms can be associated to their interactions with the cellular membranes. Not all DESs can be considered readily biodegradable. By extending the limited knowledge about the toxicity and biodegradation of this particular solvent family, this investigation on DESs provides insight into our structure-based understanding of their ecotoxicological behavior. PMID:25800513

  8. Corrosion of selected alloys in eutectic lithium-sodium-potassium carbonate at 900C

    SciTech Connect

    Coyle, R.T.; Thomas, T.M.; Schissel, P.

    1986-01-01

    There is an ongoing interest at the US Department of Energy in using molten salts as high temperature sensible heat storage media in advanced solar thermal systems. In this report, the compatibility of selected alloys in eutectic lithium-sodium-potassium carbonate, the salt that will be used in the near-term engineering experiments, has been evaluated at 900C. Several combinations of oxidation potential and acidity in the salt were used in the experiments. It was found that the extent of corrosion was dramatically lower for experiments conducted at high oxygen potential compared to experiments at low oxygen potential. For Inconel 600, Hastelloy N, and nickel the results indicated that corrosion rates substantially below 1 mm/year/side might reasonably be expected and that a reevaluation of alloys the showed poor corrosion resistance under low oxygen potential would be advisable.

  9. Investigation of residual anode material after electrorefining uranium in molten chloride salt

    NASA Astrophysics Data System (ADS)

    Rose, M. A.; Williamson, M. A.; Willit, J.

    2015-12-01

    A buildup of material at uranium anodes during uranium electrorefining in molten chloride salts has been observed. Potentiodynamic testing has been conducted using a three electrode cell, with a uranium working electrode in both LiCl/KCl eutectic and LiCl each containing ∼5 mol% UCl3. The anodic current response was observed at 50° intervals between 450 °C and 650 °C in the eutectic salt. These tests revealed a buildup of material at the anode in LiCl/KCl salt, which was sampled at room temperature, and analyzed using ICP-MS, XRD and SEM techniques. Examination of the analytical data, current response curves and published phase diagrams has established that as the uranium anode dissolves, the U3+ ion concentration in the diffusion layer surrounding the electrode rises precipitously to levels, which may at low temperatures exceed the solubility limit for UCl3 or in the case of the eutectic salt for K2UCl5. The reduction in current response observed at low temperature in eutectic salt is eliminated at 650 °C, where K2UCl5 is absent due to its congruent melting and only simple concentration polarization effects are seen. In LiCl similar concentration effects are seen though significantly longer time at applied potential is required to effect a reduction in the current response as compared to the eutectic salt.

  10. New eutectic ionic liquids for lipase activation and enzymatic preparation of biodiesel.

    PubMed

    Zhao, Hua; Baker, Gary A; Holmes, Shaletha

    2011-03-21

    The enzymatic preparation of biodiesel has been hampered by the lack of suitable solvents with desirable properties such as high lipase compatibility, low cost, low viscosity, high biodegradability, and ease of product separation. Recent interest in using ionic liquids (ILs) as advanced reaction media has led to fast reaction rates and high yields in the enzymatic synthesis of biodiesel. However, conventional (i.e., cation-anion paired) ILs based on imidazolium and other quaternary ammonium salts remain too expensive for wide application at industrial scales. In this study, we report on newly-synthesized eutectic ILs derived from choline acetate or choline chloride coupled with biocompatible hydrogen-bond donors, such as glycerol. These eutectic solvents have favorable properties including low viscosity, high biodegradability, and excellent compatibility with Novozym(®) 435, a commercial immobilized Candida antarctica lipase B. Furthermore, in a model biodiesel synthesis system, we demonstrate high reaction rates for the enzymatic transesterification of Miglyol(®) oil 812 with methanol, catalyzed by Novozym(®) 435 in choline acetate/glycerol (1:1.5 molar ratio). The high conversion (97%) of the triglyceride obtained within 3 h, under optimal conditions, suggests that these novel eutectic solvents warrant further exploration as potential media in the enzymatic production of biodiesel.

  11. New eutectic ionic liquids for lipase activation and enzymatic preparation of biodiesel†

    PubMed Central

    Zhao, Hua; Baker, Gary A.; Holmes, Shaletha

    2012-01-01

    The enzymatic preparation of biodiesel has been hampered by the lack of suitable solvents with desirable properties such as high lipase compatibility, low cost, low viscosity, high biodegradability, and ease of product separation. Recent interest in using ionic liquids (ILs) as advanced reaction media has led to fast reaction rates and high yields in the enzymatic synthesis of biodiesel. However, conventional (i.e., cation–anion paired) ILs based on imidazolium and other quaternary ammonium salts remain too expensive for wide application at industrial scales. In this study, we report on newly-synthesized eutectic ILs derived from choline acetate or choline chloride coupled with biocompatible hydrogen-bond donors, such as glycerol. These eutectic solvents have favorable properties including low viscosity, high biodegradability, and excellent compatibility with Novozym® 435, a commercial immobilized Candida antarctica lipase B. Furthermore, in a model biodiesel synthesis system, we demonstrate high reaction rates for the enzymatic transesterification of Miglyol® oil 812 with methanol, catalyzed by Novozym® 435 in choline acetate/glycerol (1 : 1.5 molar ratio). The high conversion (97%) of the triglyceride obtained within 3 h, under optimal conditions, suggests that these novel eutectic solvents warrant further exploration as potential media in the enzymatic production of biodiesel. PMID:21283901

  12. Eutectic-based ionic liquids with metal-containing anions and cations.

    PubMed

    Abbott, Andrew P; Barron, John C; Ryder, Karl S; Wilson, David

    2007-01-01

    Eutectic mixtures of zinc chloride and donor molecules such as urea and acetamide are described and it is proposed that these constitute a new class of ionic liquids. FAB-MS analysis shows that the liquids are made up of metal-containing anions and cations in which the donor is coordinated to the cation. Data on the viscosity, conductivity, density, phase behaviour and surface tension are presented and these are shown to be significantly different to other related ionic liquids that incorporate quaternary ammonium salts. The conductivity and viscosity are comparable with other ionic liquids and the data fit well to the Hole theory model recently proposed. PMID:17477454

  13. Two-stage eutectic metal brushes

    SciTech Connect

    Hsu, John S

    2009-07-14

    A two-stage eutectic metal brush assembly having a slip ring rigidly coupled to a shaft, the slip ring being electrically coupled to first voltage polarity. At least one brush is rigidly coupled to a second ring and slidingly engaged to the slip ring. Eutectic metal at least partially fills an annulus between the second ring and a stationary ring. At least one conductor is rigidly coupled to the stationary ring and electrically coupled to a second voltage polarity. Electrical continuity is maintained between the first voltage polarity and the second voltage polarity. Periodic rotational motion is present between the stationary ring and the second ring. Periodic rotational motion is also present between the brush and the slip ring.

  14. Crystallography of Alumina-YAG-Eutectic

    NASA Technical Reports Server (NTRS)

    Farmer, Serene C.; Sayir, Ali; Dickerson, Robert M.; Matson, Lawrence E.

    2000-01-01

    Multiple descriptions of the alumina-YAG eutectic crystallography appear in the ceramic literature. The orientation between two phases in a eutectic system has direct impact on residual stress, morphology, microstructural stability, and high temperature mechanical properties. A study to demonstrate that the different crystallographic relationships can be correlated with different growth constraints was undertaken. Fibers produced by Laser-Heated Float Zone (LHFZ) and Edge-defined Film-fed Growth (EFG) were examined. A map of the orientation relationship between Al2O3 and Y3Al5O12 and their relationship to the fiber growth axis as a function of pull rate are presented. Regions in which a single orientation predominates are identified.

  15. Estimated heats of fusion of fluoride salt mixtures suitable for thermal energy storage applications

    NASA Technical Reports Server (NTRS)

    Misra, A. K.; Whittenberger, J. D.

    1986-01-01

    The heats of fusion of several fluoride salt mixtures with melting points greater than 973 K were estimated from a coupled analysis of the available thermodynamic data and phase diagrams. Simple binary eutectic systems with and without terminal solid solutions, binary eutectics with congruent melting intermediate phases, and ternary eutectic systems were considered. Several combinations of salts were identified, most notable the eutectics LiF-22CaF2 and NaF-60MgF2 which melt at 1039 and 1273 K respectively which posses relatively high heats of fusion/gm (greater than 0.7 kJ/g). Such systems would seemingly be ideal candidates for the light weight, high energy storage media required by the thermal energy storage unit in advanced solar dynamic power systems envisioned for the future space missions.

  16. Solidification of the eutectic Ga-Sn alloy

    NASA Astrophysics Data System (ADS)

    Aleksandrov, V. D.; Frolova, S. A.; Amerkhanova, Sh. K.

    2016-05-01

    Cyclic thermal analysis is used to study the effect of overheating of the eutectic Ga-8.5 mol % Sn melt on the presolidification supercooling. It is found that, when the liquid eutectic is overheated above the eutectic temperature ( T e = 293.5 K) and is subsequently cooled, the dependence of the presolidification supercooling on the overheating temperature exhibits monotonic ascending behavior. The maximum supercooling after heating of the melt to 339 K is 26 K. The kinetic and thermodynamic parameters of eutectic solidification are calculated using the thermal analysis curves measured during melting.

  17. Electrodeposition of microcrystalline chromium from fused salts

    SciTech Connect

    Vargas, T.; Varma, R.; Brown, A.

    1987-01-01

    Chromium can be conveniently electroplated from fused chloride electrolytes. The deposition from LiCl-KCl (eutectic)-CrCl/sub 2/ melts is known to produce large crystal grains. Large grain size and other problems encountered in the electrodeposition of microcrystalline chromium from fused salt are discussed. The results indicate that combined use of forced electrolyte convection and a nucleating pulse in conjunction with a periodic reverse pulse produces fine-grained deposits.

  18. SEPARATION OF METAL SALTS BY ADSORPTION

    DOEpatents

    Gruen, D.M.

    1959-01-20

    It has been found that certain metal salts, particularly the halides of iron, cobalt, nickel, and the actinide metals, arc readily absorbed on aluminum oxide, while certain other salts, particularly rare earth metal halides, are not so absorbed. Use is made of this discovery to separate uranium from the rare earths. The metal salts are first dissolved in a molten mixture of alkali metal nitrates, e.g., the eutectic mixture of lithium nitrate and potassium nitrate, and then the molten salt solution is contacted with alumina, either by slurrying or by passing the salt solution through an absorption tower. The process is particularly valuable for the separation of actinides from lanthanum-group rare earths.

  19. Protease activation in glycerol-based deep eutectic solvents

    PubMed Central

    Zhao, Hua; Baker, Gary A.; Holmes, Shaletha

    2011-01-01

    Deep eutectic solvents (DESs) consisting of mixtures of a choline salt (chloride or acetate form) and glycerol are prepared as easily accessible, biodegradable, and inexpensive alternatives to conventional aprotic cation-anion paired ionic liquids. These DES systems display excellent fluidity coupled with thermal stability to nearly 200 °C. In this work, the transesterification activities of cross-linked proteases (subtilisin and α-chymotrypsin), immobilized on chitosan, were individually examined in these novel DESs. In the 1:2 molar ratio mixture of choline chloride/glycerol containing 3% (v/v) water, cross-linked subtilisin exhibited an excellent activity (2.9 μmo l min−1 g−1) in conjunction with a selectivity of 98% in the transesterification reaction of N-acetyl-L-phenylalanine ethyl ester with 1-propanol. These highly encouraging results advocate more extensive exploration of DESs in protease-mediated biotransformations of additional polar substrates and use of DESs in biocatalysis more generally. PMID:21909232

  20. Method for the production of uranium chloride salt

    DOEpatents

    Westphal, Brian R.; Mariani, Robert D.

    2013-07-02

    A method for the production of UCl.sub.3 salt without the use of hazardous chemicals or multiple apparatuses for synthesis and purification is provided. Uranium metal is combined in a reaction vessel with a metal chloride and a eutectic salt- and heated to a first temperature under vacuum conditions to promote reaction of the uranium metal with the metal chloride for the production of a UCl.sub.3 salt. After the reaction has run substantially to completion, the furnace is heated to a second temperature under vacuum conditions. The second temperature is sufficiently high to selectively vaporize the chloride salts and distill them into a condenser region.

  1. Insight into the Li2CO3-K2CO3 eutectic mixture from classical molecular dynamics: Thermodynamics, structure, and dynamics

    NASA Astrophysics Data System (ADS)

    Corradini, Dario; Coudert, François-Xavier; Vuilleumier, Rodolphe

    2016-03-01

    We use molecular dynamics simulations to study the thermodynamics, structure, and dynamics of the Li2CO3-K2CO3 (62:38 mol. %) eutectic mixture. We present a new classical non-polarizable force field for this molten salt mixture, optimized using experimental and first principles molecular dynamics simulations data as reference. This simple force field allows efficient molecular simulations of phenomena at long time scales. We use this optimized force field to describe the behavior of the eutectic mixture in the 900-1100 K temperature range, at pressures between 0 and 5 GPa. After studying the equation of state in these thermodynamic conditions, we present molecular insight into the structure and dynamics of the melt. In particular, we present an analysis of the temperature and pressure dependence of the eutectic mixture's self-diffusion coefficients, viscosity, and ionic conductivity.

  2. A LiAl/Cl sub 2 battery with a four-component alkali-metal chloride electrolyte

    SciTech Connect

    Thomas, D.L. ); Bennion, D.N. )

    1989-01-01

    A LiAl/Cl{sub 2} cell operating at 280{degrees}C was investigated. The electrolyte is a mixture of LiCl, KCl, RbCl, and CsCl with a eutectic melting point of 258 {degrees}C. The positive electrode is a gas-diffusion electrode formed by coating one side of a porous carbon electrode with PTFE. The limiting discharge current of the cell was controlled by solid-state diffusion of Li in the LiA1 alloy. Polarization of the Cl{sub 2} electrode was caused by the low cross-sectional area of the electrolyte film compared with the pore cross-sectional area. Deactivation of the positive electrode was caused by impurities, such as Cu{sup +}, in the electrolyte. Mathematical models of the negative and positive electrodes in a LiAl/Cl{sub 2} cell with a gas diffusion Cl{sub 2} electrode have been formulated. A thin film gas diffusion electrode model was used for the positive electrode, while solid-state diffusion of Li in {alpha}-LiAl was assumed to limit the negative electrode and the cell current. The thin film is liquid salt on the porous electrode walls through which chlorine diffuses.

  3. Use of Microgravity to Control the Microstructure of Eutectics

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Regel, Liya L.; Smith, Reginald W.

    1999-01-01

    The long term goal of this project is to be able to control the microstructure of directionally solidified eutectic alloys, through an improved understanding of the influence of convection. Prior experimental results on the influence of microgravity on the microstructure of fibrous eutectics have been contradictory. Theoretical work at Clarkson University showed that buoyancy-driven convection in the vertical Bridgman configuration is not vigorous enough to alter the concentration field in the melt sufficiently to cause a measurable change in microstructure when the eutectic grows at minimum supercooling. Currently, there are four other hypotheses that might explain the observed changes in microstructure of fibrous eutectics caused by convection: (1) Disturbance of the concentration boundary layer arising from an off-eutectic melt composition and growth at the extremum; (2) Disturbance of the concentration boundary layer of a habit-modifying impurity; (3) Disturbance of the concentration boundary layer arising from an off-eutectic interfacial composition due to non-extremum growth; and (4) A fluctuating freezing rate combined with differences in the kinetics of fiber termination and fiber formation. We favor the last of these hypotheses. Thus, the primary objective of the present grant is to determine experimentally and theoretically the influence of a periodically varying freezing rate on eutectic solidification. A secondary objective is to determine the influence of convection on the microstructure of at least one other eutectic alloy that might be suitable for flight experiments.

  4. Synthesis and electronic applications of oxide-metal eutectic composites

    SciTech Connect

    Holder, J. D.; Cochran, J. K.; Hill, D. N.; Chapman, A. T.; Clark, G. W.

    1980-01-01

    A review is given of important developments in the synthesis of oxide-metal eutectic composites and the composite application in the continuing development of field emitters. Known metal oxide-metal binary and ternary eutectic systems are listed. The synthesis, electrical conductivity, thermodynamics, and applications are discussed. (FS)

  5. Pattern selection dynamics in rod eutectics

    NASA Astrophysics Data System (ADS)

    Serefoglu, Melis

    The cooperative or diffusively coupled growth of multiple phases during solidification is one of the most widely observed and generally important classes of phase transformations in materials. Technologically, low melting temperature and small freezing range contribute to excellent casting fluidity and fine composite structures give rise to favorable properties. Both of these features contribute to the wide application of eutectic alloys in the casting, welding, and soldering of engineered components. Despite the broad-based technological importance, many fundamental questions regarding eutectic solidification remain unanswered, severely limiting our ability to employ computational methods in the prediction of microstructure for the effective design of new materials and processes. At the core of the most persistent questions, lie problems involving multicomponent thermodynamics, solid-liquid and solid-solid interfacial phenomena, morphological stability, chemical and thermal diffusion, and nucleation phenomena. In the current study, pattern selection dynamics in rod eutectics are investigated using systematic directional solidification experiments and phase field simulations. Directional solidification of a succinonitrile-camphor (SCN-DC) transparent alloy in thin slab geometries of various thicknesses reveals two main points. First, a velocity is indentified at which a transition in array basis vectors is observed in specimens with many rows of rods (i.e. bulk). This transition amounts to a 90 degree rotation of the rod array, shifting from alignment of 1st nearest neighbors to alignment of 2nd nearest neighbors along the slide wall. Second, significant array distortion is observed with decreasing slide thickness, delta, which ultimately leads to a single-row (quasi-3D) morphology where delta/lambda is on the order of unity. In our analysis of these observations, we use a geometrical model to describe the rod arrangement as a function of slide thickness, providing

  6. Solidification of eutectic system alloys in space (M-19)

    NASA Technical Reports Server (NTRS)

    Ohno, Atsumi

    1993-01-01

    It is well known that in the liquid state eutectic alloys are theoretically homogeneous under 1 g conditions. However, the homogeneous solidified structure of this alloy is not obtained because thermal convection and non-equilibrium solidification occur. The present investigators have clarified the solidification mechanisms of the eutectic system alloys under 1 g conditions by using the in situ observation method; in particular, the primary crystals of the eutectic system alloys never nucleated in the liquid, but instead did so on the mold wall, and the crystals separated from the mold wall by fluid motion caused by thermal convection. They also found that the equiaxed eutectic grains (eutectic cells) are formed on the primary crystals. In this case, the leading phase of the eutectic must agree with the phase of the primary crystals. In space, no thermal convection occurs so that primary crystals should not move from the mold wall and should not appear inside the solidified structure. Therefore no equiaxed eutectic grains will be formed under microgravity conditions. Past space experiments concerning eutectic alloys were classified into two types of experiments: one with respect to the solidification mechanisms of the eutectic alloys and the other to the unidirectional solidification of this alloy. The former type of experiment has the problem that the solidified structures between microgravity and 1 g conditions show little difference. This is why the flight samples were prepared by the ordinary cast techniques on Earth. Therefore it is impossible to ascertain whether or not the nucleation and growth of primary crystals in the melt occur and if primary crystals influence the formation of the equiaxed eutectic grains. In this experiment, hypo- and hyper-eutectic aluminum copper alloys which are near eutectic point are used. The chemical compositions of the samples are Al-32.4mass%Cu (Hypo-eutectic) and Al-33.5mass%Cu (hyper-eutectic). Long rods for the samples are

  7. Controlled Growth of Rubrene Nanowires by Eutectic Melt Crystallization

    PubMed Central

    Chung, Jeyon; Hyon, Jinho; Park, Kyung-Sun; Cho, Boram; Baek, Jangmi; Kim, Jueun; Lee, Sang Uck; Sung, Myung Mo; Kang, Youngjong

    2016-01-01

    Organic semiconductors including rubrene, Alq3, copper phthalocyanine and pentacene are crystallized by the eutectic melt crystallization. Those organic semiconductors form good eutectic systems with the various volatile crystallizable additives such as benzoic acid, salicylic acid, naphthalene and 1,3,5-trichlorobenzene. Due to the formation of the eutectic system, organic semiconductors having originally high melting point (Tm > 300 °C) are melted and crystallized at low temperature (Te = 40.8–133 °C). The volatile crystallizable additives are easily removed by sublimation. For a model system using rubrene, single crystalline rubrene nanowires are prepared by the eutectic melt crystallization and the eutectic-melt-assisted nanoimpinting (EMAN) technique. It is demonstrated that crystal structure and the growth direction of rubrene can be controlled by using different volatile crystallizable additives. The field effect mobility of rubrene nanowires prepared using several different crystallizable additives are measured and compared. PMID:26976527

  8. Controlled Growth of Rubrene Nanowires by Eutectic Melt Crystallization.

    PubMed

    Chung, Jeyon; Hyon, Jinho; Park, Kyung-Sun; Cho, Boram; Baek, Jangmi; Kim, Jueun; Lee, Sang Uck; Sung, Myung Mo; Kang, Youngjong

    2016-01-01

    Organic semiconductors including rubrene, Alq3, copper phthalocyanine and pentacene are crystallized by the eutectic melt crystallization. Those organic semiconductors form good eutectic systems with the various volatile crystallizable additives such as benzoic acid, salicylic acid, naphthalene and 1,3,5-trichlorobenzene. Due to the formation of the eutectic system, organic semiconductors having originally high melting point (Tm > 300 °C) are melted and crystallized at low temperature (Te = 40.8-133 °C). The volatile crystallizable additives are easily removed by sublimation. For a model system using rubrene, single crystalline rubrene nanowires are prepared by the eutectic melt crystallization and the eutectic-melt-assisted nanoimpinting (EMAN) technique. It is demonstrated that crystal structure and the growth direction of rubrene can be controlled by using different volatile crystallizable additives. The field effect mobility of rubrene nanowires prepared using several different crystallizable additives are measured and compared. PMID:26976527

  9. Controlled Growth of Rubrene Nanowires by Eutectic Melt Crystallization

    NASA Astrophysics Data System (ADS)

    Chung, Jeyon; Hyon, Jinho; Park, Kyung-Sun; Cho, Boram; Baek, Jangmi; Kim, Jueun; Lee, Sang Uck; Sung, Myung Mo; Kang, Youngjong

    2016-03-01

    Organic semiconductors including rubrene, Alq3, copper phthalocyanine and pentacene are crystallized by the eutectic melt crystallization. Those organic semiconductors form good eutectic systems with the various volatile crystallizable additives such as benzoic acid, salicylic acid, naphthalene and 1,3,5-trichlorobenzene. Due to the formation of the eutectic system, organic semiconductors having originally high melting point (Tm > 300 °C) are melted and crystallized at low temperature (Te = 40.8–133 °C). The volatile crystallizable additives are easily removed by sublimation. For a model system using rubrene, single crystalline rubrene nanowires are prepared by the eutectic melt crystallization and the eutectic-melt-assisted nanoimpinting (EMAN) technique. It is demonstrated that crystal structure and the growth direction of rubrene can be controlled by using different volatile crystallizable additives. The field effect mobility of rubrene nanowires prepared using several different crystallizable additives are measured and compared.

  10. Investigation on drug solubility enhancement using deep eutectic solvents and their derivatives.

    PubMed

    Li, Zheng; Lee, Ping I

    2016-05-30

    Deep eutectic solvent (DES) is a room temperature liquid typically formed by mixing two solid compounds, such as a quaternary ammonium salt (QAS) (e.g. choline chloride) and a hydrogen bond donor (HBD) (e.g. urea or a carboxylic acid) at their eutectic composition. Very often, a range of room temperature liquids can also be obtained near the eutectic composition. Hence, it is more convenient to introduce a more general term deep eutectic solvent derivatives (DESDs) to describe a wide range of DES-like derivatives including those derived from ternary mixtures. The melting point of the mixture is lowered because the hydrogen bonding between DESD components reduces the lattice energy of components of the eutectic system. Based on the analysis of available data for 22 such choline chloride-based DES pairs, we found that the observed melting point depression can be statistically correlated with the difference between the hydrogen bonding contribution (δh) and the polar contribution (δp) to the solubility parameter of the hydrogen bond donor (HBD) component. The correlation was validated with a new DESD based on glycolic acid and choline chloride, which form DESDs at a molar ratio between 1:1 and 1:4 with DES-like properties. As a room temperature liquid, this DESD exhibits a wide range of solubility enhancement on several weakly basic poorly water-soluble drugs. For example, the solubility of itraconazole, piroxicam, lidocaine, and posaconazole has been observed to increase by 6700, 430, 28, and 6400-fold, respectively as compared to their aqueous solubility at room temperature. Furthermore, another new ternary DESD based on choline chloride, glycolic acid, and oxalic acid at a molar ratio of 1:1.6:0.4 is shown to further increase the solubility of itraconazole to a remarkable level of 5.36mg/mL (a 53,600-fold increase!). Because the components of such DESDs can include those biodegradable ones that had previously been used in formulated human products, the potential

  11. Investigation on drug solubility enhancement using deep eutectic solvents and their derivatives.

    PubMed

    Li, Zheng; Lee, Ping I

    2016-05-30

    Deep eutectic solvent (DES) is a room temperature liquid typically formed by mixing two solid compounds, such as a quaternary ammonium salt (QAS) (e.g. choline chloride) and a hydrogen bond donor (HBD) (e.g. urea or a carboxylic acid) at their eutectic composition. Very often, a range of room temperature liquids can also be obtained near the eutectic composition. Hence, it is more convenient to introduce a more general term deep eutectic solvent derivatives (DESDs) to describe a wide range of DES-like derivatives including those derived from ternary mixtures. The melting point of the mixture is lowered because the hydrogen bonding between DESD components reduces the lattice energy of components of the eutectic system. Based on the analysis of available data for 22 such choline chloride-based DES pairs, we found that the observed melting point depression can be statistically correlated with the difference between the hydrogen bonding contribution (δh) and the polar contribution (δp) to the solubility parameter of the hydrogen bond donor (HBD) component. The correlation was validated with a new DESD based on glycolic acid and choline chloride, which form DESDs at a molar ratio between 1:1 and 1:4 with DES-like properties. As a room temperature liquid, this DESD exhibits a wide range of solubility enhancement on several weakly basic poorly water-soluble drugs. For example, the solubility of itraconazole, piroxicam, lidocaine, and posaconazole has been observed to increase by 6700, 430, 28, and 6400-fold, respectively as compared to their aqueous solubility at room temperature. Furthermore, another new ternary DESD based on choline chloride, glycolic acid, and oxalic acid at a molar ratio of 1:1.6:0.4 is shown to further increase the solubility of itraconazole to a remarkable level of 5.36mg/mL (a 53,600-fold increase!). Because the components of such DESDs can include those biodegradable ones that had previously been used in formulated human products, the potential

  12. Quantification of Primary Dendritic and Secondary Eutectic Nucleation Undercoolings in Rapidly Solidified Hypo-Eutectic Al-Cu Droplets

    NASA Astrophysics Data System (ADS)

    Bogno, A.-A.; Khatibi, P. Delshad; Henein, H.; Gandin, Ch.-A.

    2016-09-01

    This paper reports on the quantification of primary dendritic and secondary eutectic nucleation undercoolings during rapid solidification of impulse atomized hypo-eutectic Al-Cu droplets. The procedure consists in determining the eutectic fraction of each investigated droplet from the fraction of intermetallic Al2Cu obtained by Rietveld refinement analysis of neutrons scattering data. The corresponding eutectic nucleation undercooling is then deduced from the metastable phase diagram of the alloy. The primary dendritic nucleation undercooling is subsequently determined using semi-empirical coarsening models of secondary dendrite arms. The two nucleation undercoolings are finally used as input variables to run a microsegregation model for binary alloys. The fractions of eutectic computed by the microsegregation model compare very favorably with the experimental results.

  13. Eutectic growth: A closed problem for the solution of the steady-state growth of lamellar eutectics

    NASA Astrophysics Data System (ADS)

    Anestiev, L.; Froyen, L.

    2002-07-01

    The Jackson and Hunt theory was modified in order to get a better understanding of the driving forces of the eutectic's growth kinetics. A solution of the diffusion problem, based on more rigorous boundary conditions, was obtained and kinetic members were added in order to account for the growth kinetics of the specific phases composing the eutectic. It was unambiguously shown that the eutectic's growth problem is a closed problem, e.g., no additional assumptions are needed in order to obtain the eutectic growth velocity as a function of the phase's composition and the lamellae's width. The model proposed in the present article was further used to model the growth kinetics of different alloys, which exhibit eutectic structure and to derive some important kinetic parameters from the existing experimental data.

  14. High-temperature molten salt thermal energy storage systems for solar applications

    NASA Technical Reports Server (NTRS)

    Petri, R. J.; Claar, T. D.

    1980-01-01

    Alkali and alkaline earth carbonate latent-heat storage salts, metallic containment materials, and thermal conductivity enhancement materials were investigated to satisfy the high temperature (704 to 871 C) thermal energy storage requirements of advanced solar-thermal power generation concepts are described. Properties of the following six salts selected for compatibility studies are given: three pure carbonates, K2CO3, Li2CO3 and Na2CO3; two eutectic mixtures, BaCO3/Na2CO3 and K2CO3/NaCO3, and one off-eutectic mixture of Na2CO3/K2CO3.

  15. Containerless solidification of acoustically levitated Ni-Sn eutectic alloy

    NASA Astrophysics Data System (ADS)

    Geng, D. L.; Xie, W. J.; Wei, B.

    2012-10-01

    Containerless solidification of Ni-18.7at%Sn eutectic alloy has been achieved with a single-axis acoustic levitator. The temperature, motion, and oscillation of the sample were monitored by a high speed camera. The temperature of the sample can be determined from its image brightness, although the sample moves vertically and horizontally during levitation. The experimentally observed frequency of vertical motion is in good agreement with theoretical prediction. The sample undergoes shape oscillation before solidification finishes. The solidification microstructure of this alloy consists of a mixture of anomalous eutectic plus regular lamellar eutectic. This indicates the achievement of rapid solidification under acoustic levitation condition.

  16. Deep eutectic solvents as novel extraction media for protein partitioning.

    PubMed

    Zeng, Qun; Wang, Yuzhi; Huang, Yanhua; Ding, Xueqin; Chen, Jing; Xu, Kaijia

    2014-05-21

    Four kinds of green deep eutectic solvent (DES) were synthesized, including choline chloride (ChCl)-urea, tetramethylammonium chloride (TMACl)-urea, tetrapropylammonium bromide (TPMBr)-urea and ChCl-methylurea. An aqueous two-phase system (ATPS) based ChCl-urea DES was studied for the first time for the extraction of bovine serum albumin (BSA). Single factor experiments proved that the extraction efficiency of BSA was influenced by the mass of the DES, concentration of K2HPO4 solution, separation time and extraction temperature. The optimum conditions were determined through an orthogonal experiment with the four factors described above. The results showed that under the optimum conditions, the average extraction efficiency could reach up to 99.94%, 99.72%, 100.05% and 100.05% (each measured three times). The relative standard deviations (RSD) of extraction efficiencies in precision, repeatability and stability experiments were 0.5533% (n = 5), 0.8306% (n = 5) and 0.9829% (n = 5), respectively. UV-vis and FT-IR spectra confirmed that there were no chemical interactions between BSA and the DES in the extraction process, and the CD spectra proved that the conformation of BSA did not change after extraction. The conductivity, DLS and TEM were combined to investigate the microstructure of the top phase and the possible mechanism for the extraction. The results showed that hydrophobic interactions, hydrogen bonding interactions and the salting-out effect played important roles in the transfer process, and the aggregation and surrounding phenomenon were the main driving forces for the separation. All of these results proved that ionic liquid (IL)-based ATPSs could potentially be substituted with DES-based ATPSs to offer new possibilities in the extraction of proteins. PMID:24699681

  17. Orientational Jumps in (Acetamide + Electrolyte) Deep Eutectics: Anion Dependence.

    PubMed

    Das, Suman; Biswas, Ranjit; Mukherjee, Biswaroop

    2015-08-27

    All-atom molecular dynamics simulations have been carried out to investigate orientation jumps of acetamide molecules in three different ionic deep eutectics made of acetamide (CH3CONH2) and lithium salts of bromide (Br(–)), nitrate (NO3(–)) and perchlorate (ClO4(–)) at approximately 80:20 mole ratio and 303 K. Orientational jumps have been dissected into acetamide–acetamide and acetamide–ion catagories. Simulated jump characteristics register a considerable dependence on the anion identity. For example, large angle jumps are relatively less frequent in the presence of NO3(–) than in the presence of the other two anions. Distribution of jump angles for rotation of acetamide molecules hydrogen bonded (H-bonded) to anions has been found to be bimodal in the presence of Br(–) and is qualitatively different from the other two cases. Estimated energy barrier for orientation jumps of these acetamide molecules (H-bonded to anions) differ by a factor of ∼2 between NO3(–) and ClO4(–), the barrier height for the latter being lower and ∼0.5kBT. Relative radial and angular displacements during jumps describe the sequence ClO(4)– > NO3(–) > Br(–) and follow a reverse viscosity trend. Jump barrier for acetamide–acetamide pairs reflects weak dependence on anion identity and remains closer to the magnitude (∼0.7kBT) found for orientation jumps in molten acetamide. Jump time distributions exhibit a power law dependence of the type, P(tjump) ∝ A(tjump/τ)(−β), with both β and τ showing substantial anion dependence. The latter suggests the presence of dynamic heterogeneity in these systems and supports earlier conclusions from time-resolved fluorescence measurements. PMID:26131593

  18. RETRACTED: Neoteric FT-IR investigation on the functional groups of phosphonium-based deep eutectic solvents.

    PubMed

    Aissaoui, Tayeb; AlNashef, Inas M; Hayyan, Maan; Hashim, Mohd Ali

    2015-10-01

    Deep eutectic solvents (DESs) are novel solvent media that are currently under investigation as an alternative to ionic liquids and conventional solvents. The physical properties of DESs as well as their mild environmental footprint and potentially critical industrial application necessitate understanding the interaction of functional groups on both the salt and hydrogen bond donor (HBD). In this study, four DESs were prepared by mixing triethylenglycol, diethylenglycol, ethylenglycol, and glycerol as HBDs with methyltriphenylphosphonium bromide as a salt at a molar ratio of 1:4. Fourier transform infrared spectroscopy was conducted to highlight the chemical structure and mechanism of the combination of the four DESs. New spectra illustrating the combination of the functional groups of the HBDs and salt were observed and interpreted. This study is the first to investigate the properties of neoteric phosphonium-based DESs.

  19. Non-Covalent Derivatives: Cocrystals and Eutectics.

    PubMed

    Stoler, Emily; Warner, John C

    2015-01-01

    Non-covalent derivatives (NCDs) are formed by incorporating one (or more) coformer molecule(s) into the matrix of a parent molecule via non-covalent forces. These forces can include ionic forces, Van der Waals forces, hydrogen bonding, lipophilic-lipophilic interactions and pi-pi interactions. NCDs, in both cocrystal and eutectic forms, possess properties that are unique to their supramolecular matrix. These properties include critical product performance factors such as solubility, stability and bioavailability. NCDs have been used to tailor materials for a variety of applications and have the potential to be used in an even broader range of materials and processes. NCDs can be prepared using little or no solvent and none of the reagents typical to synthetic modifications. Thus, NCDs represent a powerfully versatile, environmentally-friendly and cost-effective opportunity. PMID:26287141

  20. Directionally solidified iron-base eutectic alloys

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.

    1976-01-01

    Pseudobinary eutectic alloys with nominal compositions of Fe-25Ta-22Ni-10Cr and Fe-15.5Nb-14.5Ni-6.0Cr were directionally solidified at 0.5 centimeter per hour. Their microstructure consisted of the fcc, iron solid-solution, matrix phase reinforced by about 41-volume-percent, hcp, faceted Fe2Ta fibers and 41-volume-percent, hcp, Fe2Nb lamellae for the tantalum- and niobium-containing alloys, respectively. The microstructural stability under thermal cycling and the temperature dependence of tensile properties were investigated. These alloys showed low elevated-temperature strength and were not considered suitable for application in aircraft-gas-turbine blades although they may have applicability as vane materials.

  1. Temperature Dependence of Behavior of Interface Between Molten Sn and LiCl-KCl Eutectic Melt Due to Rising Gas Bubble

    NASA Astrophysics Data System (ADS)

    Natsui, Shungo; Nashimoto, Ryota; Takai, Hifumi; Kumagai, Takehiko; Kikuchi, Tatsuya; Suzuki, Ryosuke O.

    2016-06-01

    The behavior of the interface between molten Sn and the LiCl-KCl eutectic melt system was observed directly. We found that the transient behavior of the interface exhibits considerable temperature dependence through a change in its physical properties. The "metal film" generated in the upper molten salt phase significantly influences the shape of the interface. Although the lifetime of the metal film depends on the gas flow rate, it is not affected by the buoyancy if the interfacial tension is dominant.

  2. Dynamics of rod eutectic growth patterns in confined geometry

    NASA Astrophysics Data System (ADS)

    Şerefoǧlu, Melis; Bottin-Rousseau, S.; Akamatsu, S.; Faivre, G.

    2012-01-01

    The dynamics of rod-like eutectics are examined using a directional solidification setup, which allows real-time observation of the whole solidification front in specimens of transparent eutectic alloys -here, succinonitrile-(D)camphor. In steady-state, rod eutectic growth patterns consist of triangular arrays, more or less disturbed by topological defects. In the absence of strong convection and of crystallographic anisotropy, the long-time evolution of the pattern is dominated by "imperfections" of the system, such as misalignment of the temperature gradient, and finite-size. In this study, we present experimental results on the finite-size effects on rod eutectics and show that a rod to lamella transition takes place as a result of finite-size effect only, at a given alloy concentration.

  3. Use of Microgravity to Control the Microstructure of Eutectics

    NASA Technical Reports Server (NTRS)

    Wilcox. William R.; Regel, Liya L.

    1999-01-01

    This grant began in June of 1996. Its long term goal is to be able to control the microstructure of directionally solidified eutectic alloys, through an improved understanding of the influence of convection. The primary objective of the projects in the present grant is to test hypotheses for the reported influence of microgravity on the microstructure of eutectics. The prior experimental results on the influence of microgravity on the microstructure of eutectics have been contradictory. With lamellar eutectics, microgravity had a negligible effect on the microstructure. Microgravity experiments with fibrous eutectics sometimes showed a finer microstructure and sometimes a coarser microstructure. Most research has been done on the MnBi/Bi rod-like eutectic. Larson and Pirich obtained a two-fold finer microstructure both from microgravity and by use of a magnetic field to quench buoyancy-driven convection. Smith, on the other hand, observed no change in microgravity. Prior theoretical work at Clarkson University showed that buoyancy-driven convection in the vertical Bridgman configuration is not vigorous enough to alter the concentration field in front of a growing eutectic sufficiently to cause a measurable change in microstructure. We assumed that the bulk melt was at the eutectic composition and that freezing occurred at the extremum, i.e. with minimum total undercooling at the freezing interface. There have been four hypotheses attempting to explain the observed changes in microstructure of fibrous eutectics caused by convection: I .A fluctuating freezing rate, combined with unequal kinetics for fiber termination and branching. 2. Off-eutectic composition, either in the bulk melt due to an off-eutectic feed or at the freezing interface because of departure from the extremum condition. 3. Presence of a strong habit modifying impurity whose concentration at the freezing interface would be altered by convection. At the beginning of the present grant, we favored the

  4. Hydrolase-catalyzed biotransformations in deep eutectic solvents.

    PubMed

    Gorke, Johnathan T; Srienc, Friedrich; Kazlauskas, Romas J

    2008-03-14

    Hydrolases show good catalytic activity in deep eutectic solvents, despite the presence of urea, which can denature enzymes, or alcohols, which can interfere with hydrolase-catalyzed reactions. PMID:18309428

  5. The mechanism of eutectic growth in highly anisotropic materials

    PubMed Central

    Shahani, Ashwin J.; Xiao, Xianghui; Voorhees, Peter W.

    2016-01-01

    In the past 50 years, there has been increasing interest—both theoretically and experimentally—in the problem of pattern formation of a moving boundary, such as a solidification front. One example of pattern formation is that of irregular eutectic solidification, in which the solid–liquid interface is non-isothermal and the interphase spacing varies in ways that are poorly understood. Here, we identify the growth mode of irregular eutectics, using reconstructions from four-dimensional (that is, time and space resolved) X-ray microtomography. Our results show that the eutectic growth process can be markedly different from that seen in previously used model systems and theories based on the ex situ analysis of microstructure. In light of our experimental findings, we present a coherent growth model of irregular eutectic solidification. PMID:27671764

  6. Optical properties of NaCl-NaF eutectics

    NASA Technical Reports Server (NTRS)

    Yue, A. S.; Yu, J. G.

    1976-01-01

    A new concept is advanced to explain the phenomenon of transmittance versus far-field infrared wavelength of the directionally solidified NaCl-NaF eutectic in terms of the two-dimensional Bragg Scattering and the polarization effect of Rayleigh scattering. This concept can be applied to other eutectic systems as long as the index of refraction of the matrix over a range of wavelength is known. Experimental data are in excellent agreement with the theoretical prediction.

  7. The microstructure of MnBi/Bi eutectic alloys

    NASA Technical Reports Server (NTRS)

    Ravishankar, P. S.; Wilcox, W. R.; Larson, D. J.

    1980-01-01

    Directionally solidified eutectic alloys of the system MnBi/Bi have been investigated with reference to the dependence of the fiber spacing on the growth rate and the interfacial temperature gradient. It is found that the fiber spacing varies as the inverse square root of the growth rate and does not depend on the temperature gradient in contrast to the claims that all faceted/non-faceted eutectics should show a temperature gradient influence.

  8. Preparation of Magnesium, Cobalt and Nickel Ferrite Nanoparticles from Metal Oxides using Deep Eutectic Solvents.

    PubMed

    Söldner, Anika; Zach, Julia; Iwanow, Melanie; Gärtner, Tobias; Schlosser, Marc; Pfitzner, Arno; König, Burkhard

    2016-09-01

    Natural deep eutectic solvents (DESs) dissolve simple metal oxides and are used as a reaction medium to synthesize spinel-type ferrite nanoparticles MFe2 O4 (M=Mg, Zn, Co, Ni). The best results for phase-pure spinel ferrites are obtained with the DES consisting of choline chloride (ChCl) and maleic acid. By employing DESs, the reactions proceed at much lower temperatures than usual for the respective solid-phase reactions of the metal oxides and at the same temperatures as synthesis with comparable calcination processes using metal salts. The method therefore reduces the overall required energy for the nanoparticle synthesis. Thermogravimetric analysis shows that the thermolysis process of the eutectic melts in air occurs in one major step. The phase-pure spinel-type ferrite particles are thoroughly characterized by X-ray diffraction, diffuse-reflectance UV/Vis spectroscopy, and scanning electron microscopy. The properties of the obtained nanoparticles are shown to be comparable to those obtained by other methods, illustrating the potential of natural DESs for processing metal oxides. PMID:27514793

  9. Preparation of Magnesium, Cobalt and Nickel Ferrite Nanoparticles from Metal Oxides using Deep Eutectic Solvents.

    PubMed

    Söldner, Anika; Zach, Julia; Iwanow, Melanie; Gärtner, Tobias; Schlosser, Marc; Pfitzner, Arno; König, Burkhard

    2016-09-01

    Natural deep eutectic solvents (DESs) dissolve simple metal oxides and are used as a reaction medium to synthesize spinel-type ferrite nanoparticles MFe2 O4 (M=Mg, Zn, Co, Ni). The best results for phase-pure spinel ferrites are obtained with the DES consisting of choline chloride (ChCl) and maleic acid. By employing DESs, the reactions proceed at much lower temperatures than usual for the respective solid-phase reactions of the metal oxides and at the same temperatures as synthesis with comparable calcination processes using metal salts. The method therefore reduces the overall required energy for the nanoparticle synthesis. Thermogravimetric analysis shows that the thermolysis process of the eutectic melts in air occurs in one major step. The phase-pure spinel-type ferrite particles are thoroughly characterized by X-ray diffraction, diffuse-reflectance UV/Vis spectroscopy, and scanning electron microscopy. The properties of the obtained nanoparticles are shown to be comparable to those obtained by other methods, illustrating the potential of natural DESs for processing metal oxides.

  10. Thermal Conductivity of Eutectic Nitrates and Nitrates/Expanded Graphite Composite as Phase Change Materials.

    PubMed

    Xiao, Xin; Zhang, Peng; Meng, Zhao-Nan; Li, Ming

    2015-04-01

    Nitrates and eutectic nitrate mixtures are considered as potential phase change materials (PCMs) for the middle-temperature-range solar energy storage applications. But the extensive utilization is restricted by the poor thermal conductivity and thermal stability. In the present study, sodium nitrate-potassium nitrate eutectic mixture was used as the base PCM, and expanded graphite (EG) was added to the mixture so as to improve the thermal conductivities. The elaboration method consists of a physically mixing of salt powders with or without EG, and the composite PCMs were cold-compressed to form shape-stabilized PCMs at room temperature. The thermal conductivities of the composite PCMs fabricated by cold-compression were investigated at different temperatures by the steady state method. The results showed that the addition of EG significantly enhanced the thermal conductivities. The thermal conductivities of pure nitrates and nitrates/EG composite PCMs in solid state showed the behavior of temperature dependant, and they slightly decreased with the increase of the temperature.

  11. Anodic behavior of lithium in a melt of a eutectic of lithium, potassium, and sodium nitrates

    SciTech Connect

    Volgin, M.A.; Gneushev, V.V. Denisova, L.N.

    1985-09-01

    Despite the importance of the problem of the anodic behavior of lithium in a melt of alkali metal nitrates, the kinetics and mechanism of this reaction had, according to the authors, been insufficiently studied. In this work, the anodic oxidation of lithium in a melt of a eutectic of the nitrates of lithium, sodium, and potassium at the temperature 423/sup 0/K by galvanostatic, potentiostatic, and potentiodynamic nonsteady-state methods. The electrochemical experiment, as well as an analysis of the phase diagram of the triple nitrate eutectic, showed that in the case of intensive anodic dissolution of lithium, enrichment of the layer near the electrode with lithium nitrate and its precipitation in the form of a solid salt film on the electrode are possible. At 423/sup 0/K, the first crystals of LiNO/sub 3/ may appear when its concentration is increased by 20%, which, according to the authors, is very realistic in the scale of the thin diffusion layer.

  12. Lamellar coupled growth in the neopentylglycol-(D)camphor eutectic

    NASA Astrophysics Data System (ADS)

    Witusiewicz, V. T.; Sturz, L.; Hecht, U.; Rex, S.

    2014-01-01

    Lamellar eutectic growth was investigated in the transparent organic alloy neopentylglycol-(D)camphor of eutectic composition (NPG-45.3 wt% DC) using bulk (3D) and thin (2D) samples. Two types of eutectic grains were observed in the polycrystalline samples, either with lamellae well aligned to the direction of solidification or inclined at an angle of 21.5±1.5°. The well aligned grains were used for determining lamellar spacing as function of growth velocity V and temperature gradient G. Based on these data the Jackson-Hunt constant was evaluated to be KJH=1.60±0.15 μm3 s-1. For low growth velocity experiments the contact angles for (DC) and (NPG) lamellae at eutectic triple junctions were also evaluated, being θ(DC)=50.9±4.1° and θ(NPG)=41.8±4.7°, respectively. Using these values, as well as phase diagram data and the Gibbs-Thomson coefficients, the chemical coefficient of diffusion of (D)camphor in the eutectic liquid at eutectic temperature 53 °C was estimated to be DL=97±15 μm2 s-1.

  13. Characterization of low-melting electrolytes for potential geothermal borehole power supplies: The LiBr-KBr-LiF eutectic

    SciTech Connect

    Guidotti, R.A.; Reinhardt, F.W.

    1998-05-01

    The suitability of modified thermal-battery technology for use as a potential power source for geothermal borehole applications is under investigation. As a first step, the discharge processes that take place in LiSi/LiBr-KBr-LiF/FeS{sub 2} thermal cells were studied at temperatures of 350 C and 400 C using pelletized cells with immobilized electrolyte. Incorporation of a reference electrode allowed the relative contribution of each electrode to the overall cell polarization to be determined. The results of single-cell tests are presented, along with preliminary data for cells based on a lower-melting CsBr-LiBr-KBr eutectic salt.

  14. Development of media for dynamic latent heat storage for the low-temperature range. Part 1: Thermal analyses of selected salt hydrate systems

    NASA Technical Reports Server (NTRS)

    Kanwischer, H.; Tamme, R.

    1985-01-01

    Phase change temperatures and phase change enthalpies of seventeen salt hydrates, three double salts, and four eutectics were measured thermodynamically and the results reported herein. Good results were obtained, especially for congruently melting salt hydrates. Incongruently melting salt hydrates appear less suitable for heat storage applications. The influence of the second phase - water, acid and hydroxide - to the latent heat is described. From these results, basic values of the working temperatures and storage capabilities of various storage media compositions may be derived.

  15. Traveling waves, two-phase fingers, and eutectic colonies in thin-sample directional solidification of a ternary eutectic alloy

    PubMed

    Akamatsu; Faivre

    2000-04-01

    We present an experimental investigation of the morphological transition of lamellar eutectic growth fronts called "formation of eutectic colonies" by the method of thin-sample directional solidification of a transparent model alloy, CBr4-C2Cl6. This morphological transition is due to the presence in the melt of traces of chemical components other than those of the base binary alloy (impurities). In this study, we use naphthalene as an impurity. The formation of eutectic colonies has generally been viewed as an impurity-driven Mullins-Sekerka instability of the envelope of the lamellar front. This traditional view neglects the strong interaction existing between the Mullins-Sekerka process and the dynamics of the lamellar pattern. This investigation brings to light several original features of the formation of eutectic colonies, in particular, the emission of long-wavelength traveling waves, and the appearance of dendritelike structures called two-phase fingers, which are connected with this interaction. We study the part played by these phenomena in the transition to eutectic colonies as a function of the impurity concentration. Recent theoretical results on the linear stability of ternary lamellar eutectic fronts [Plapp and Karma, Phys. Rev. E 60, 6865 (1999)] shed light on some aspects of the observed phenomena.

  16. Applicability evaluation of Deep Eutectic Solvents-Cellulase system for lignocellulose hydrolysis.

    PubMed

    Gunny, Ahmad Anas Nagoor; Arbain, Dachyar; Nashef, Enas Muen; Jamal, Parveen

    2015-04-01

    Deep Eutectic Solvents (DESs) have recently emerged as a new generation of ionic liquids for lignocellulose pretreatment. However, DESs contain salt components which tend to inactivate cellulase in the subsequent saccharification process. To alleviate this problem, it is necessary to evaluate the applicability of the DESs-Cellulase system. This was accomplished in the present study by first studying the stability of cellulase in the presence of selected DESs followed by applicability evaluation based on glucose production, energy consumption and kinetic performance. Results showed that the cellulase was able to retain more than 90% of its original activity in the presence of 10% (v/v) for glycerol based DES (GLY) and ethylene glycol based DES (EG). Furthermore, both DESs system exhibited higher glucose percentage enhancement and lower energy consumption as compared to diluted alkali system. Among the two DESs studied, EG showed comparatively better kinetic performance. PMID:25661309

  17. Applicability evaluation of Deep Eutectic Solvents-Cellulase system for lignocellulose hydrolysis.

    PubMed

    Gunny, Ahmad Anas Nagoor; Arbain, Dachyar; Nashef, Enas Muen; Jamal, Parveen

    2015-04-01

    Deep Eutectic Solvents (DESs) have recently emerged as a new generation of ionic liquids for lignocellulose pretreatment. However, DESs contain salt components which tend to inactivate cellulase in the subsequent saccharification process. To alleviate this problem, it is necessary to evaluate the applicability of the DESs-Cellulase system. This was accomplished in the present study by first studying the stability of cellulase in the presence of selected DESs followed by applicability evaluation based on glucose production, energy consumption and kinetic performance. Results showed that the cellulase was able to retain more than 90% of its original activity in the presence of 10% (v/v) for glycerol based DES (GLY) and ethylene glycol based DES (EG). Furthermore, both DESs system exhibited higher glucose percentage enhancement and lower energy consumption as compared to diluted alkali system. Among the two DESs studied, EG showed comparatively better kinetic performance.

  18. Are deep eutectic solvents benign or toxic?

    PubMed

    Hayyan, Maan; Hashim, Mohd Ali; Hayyan, Adeeb; Al-Saadi, Mohammed A; AlNashef, Inas M; Mirghani, Mohamed E S; Saheed, Olorunnisola Kola

    2013-02-01

    In continuation of investigation for environmentally benign protocol for new solvents termed deep eutectic solvents (DESs), it is herein reported results concerning the toxicity and cytotoxicity of choline chloride (ChCl) based DESs with four hydrogen bond donors including glycerine, ethylene glycol, triethylene glycol and urea. The toxicity was investigated using two Gram positive bacteria Bacillus subtilis and Staphylococcus aureus, and two Gram negative bacteria Escherichia coli and Pseudomonas aeruginosa. The cytotoxicity effect was tested using the Artemia salina leach. It was found that there was no toxic effect for the tested DESs on all of the studied bacteria confirming their benign effects on these bacteria. Nevertheless, it was found that the cytotoxicity of DESs was much higher than their individual components (e.g. glycerine, ChCl) indicating that their toxicological behavior is different. For our best knowledge this is the first time that toxicity and cytotoxicity of DESs were studied. The toxicity and cytotoxicity of DESs varied depending on the structure of components. Careful usage of the terms non-toxicity and biodegradability must be considered. More investigation on this matter is required. PMID:23200570

  19. Ultrasound in lead-bismuth eutectic

    SciTech Connect

    Dierckx, M.; Van Dyck, D.

    2011-07-01

    The Belgian Nuclear Research Centre (SCK.CEN) is in the process of designing MYRRHA, a new multi-purpose irradiation facility to replace the ageing BR2. MYRRHA is a fast spectrum reactor cooled with lead-bismuth eutectic (LBE). As liquid metal is opaque to visual light, ultrasonic measurement techniques are selected to fulfill essential tasks that, according to our assessment, will be demanded by licensing authorities, in particular: fuel assembly identification and localization of a lost fuel assembly. To that end, a considerable research effort at SCK.CEN is devoted to study ultrasonic propagation in LBE. As ultrasonic experiments in LBE are elaborate and expensive to set up, we are particularly interested in to what extent experiments in water can be extrapolated to LBE - one of the main focuses of this article. We describe and present results of a first experiment with this goal which shows that the signal to noise ratio is better in LBE and that we even see small diffuse reflections up to 40 deg. off normal. On the other hand, we do not see internal reflections in stainless steel objects in LBE which we do in water. Therefore, we conclude that experiments in water can be used to validate algorithms for LBE on the condition that they do not rely on internal reflections. We also present solutions to tackle the essential tasks: fuel assembly identification and lost object localization. The requirements for the ultrasonic equipment implementing these solutions are also discussed. (authors)

  20. Molten salt pyrolysis of latex. [synthetic hydrocarbon fuel production using the Guayule shrub

    NASA Technical Reports Server (NTRS)

    Bauman, A. J. (Inventor)

    1981-01-01

    Latex-rich plants such as Guayule or extracts thereof are pyrolyzed in an inert nitrogen atmosphere inorganic salt melts such as a LiCl/KCl eutectic at a temperature of about 500 C. The yield is over 60% of a highly aromatic, combustible hydrocarbon oil suitable for use as a synthetic liquid fuel.

  1. The thermal conductivity of the molten NaNO3-KNO3 eutectic between 525 and 590 K

    NASA Astrophysics Data System (ADS)

    Diguilio, R. M.; Teja, A. S.

    1992-07-01

    Molten salts are one of the few remaining classes of fluids for which standardquality (±1% accuracy) data on thermal conductivity have not hitherto been available. We have therefore developed a new apparatus based on the transient hot-wire technique to obtain reference-quality measurements of the thermal conductivity of molten salts at high temperatures. Liquid metal-filled quartz capillaries served as insulated hot wires in our method, and in addition, a two-wire technique was used in order to obtain absolute values of the thermal conductivity. New data for the NaNO3-KNO3 eutectic between 525 and 590 K are reported in this paper and comparisons with other recent measurements are shown.

  2. Following the electroreduction of uranium dioxide to uranium in LiCl-KCl eutectic in situ using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Brown, L. D.; Abdulaziz, R.; Jervis, R.; Bharath, V. J.; Atwood, R. C.; Reinhard, C.; Connor, L. D.; Simons, S. J. R.; Inman, D.; Brett, D. J. L.; Shearing, P. R.

    2015-09-01

    The electrochemical reduction of uranium dioxide to metallic uranium has been investigated in lithium chloride-potassium chloride eutectic molten salt. Laboratory based electrochemical studies have been coupled with in situ energy dispersive X-ray diffraction, for the first time, to deduce the reduction pathway. No intermediate phases were identified using the X-ray diffraction before, during or after electroreduction to form α-uranium. This suggests that the electrochemical reduction occurs via a single, 4-electron-step, process. The rate of formation of α-uranium is seen to decrease during electrolysis and could be a result of a build-up of oxygen anions in the molten salt. Slow transport of O2- ions away from the UO2 working electrode could impede the electrochemical reduction.

  3. Patterned eutectic bonding with Al/Ge thin films for MEMS

    NASA Astrophysics Data System (ADS)

    Zavracky, Paul M.; Vu, Bao

    1995-09-01

    In this paper, we report our results using eutectic bonding with the aluminum/germanium alloy to create high quality bonds. The results of a series of experiments conducted to optimize eutectic alloy bonding for MEMS are described. Issues discussed include surface preparation, eutectic composition, bonding apparatus and bonding conditions (temperature and time).

  4. Ternary eutectic dendrites: Pattern formation and scaling properties

    SciTech Connect

    Rátkai, László; Szállás, Attila; Pusztai, Tamás; Mohri, Tetsuo; Gránásy, László

    2015-04-21

    Extending previous work [Pusztai et al., Phys. Rev. E 87, 032401 (2013)], we have studied the formation of eutectic dendrites in a model ternary system within the framework of the phase-field theory. We have mapped out the domain in which two-phase dendritic structures grow. With increasing pulling velocity, the following sequence of growth morphologies is observed: flat front lamellae → eutectic colonies → eutectic dendrites → dendrites with target pattern → partitionless dendrites → partitionless flat front. We confirm that the two-phase and one-phase dendrites have similar forms and display a similar scaling of the dendrite tip radius with the interface free energy. It is also found that the possible eutectic patterns include the target pattern, and single- and multiarm spirals, of which the thermal fluctuations choose. The most probable number of spiral arms increases with increasing tip radius and with decreasing kinetic anisotropy. Our numerical simulations confirm that in agreement with the assumptions of a recent analysis of two-phase dendrites [Akamatsu et al., Phys. Rev. Lett. 112, 105502 (2014)], the Jackson-Hunt scaling of the eutectic wavelength with pulling velocity is obeyed in the parameter domain explored, and that the natural eutectic wavelength is proportional to the tip radius of the two-phase dendrites. Finally, we find that it is very difficult/virtually impossible to form spiraling two-phase dendrites without anisotropy, an observation that seems to contradict the expectations of Akamatsu et al. Yet, it cannot be excluded that in isotropic systems, two-phase dendrites are rare events difficult to observe in simulations.

  5. Lead-bismuth eutectic technology for Hyperion reactor

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Kapernick, R. J.; McClure, P. R.; Trapp, T. J.

    2013-10-01

    A small lead-bismuth eutectic-cooled reactor concept (referred to as the Hyperion reactor concept) is being studied at Los Alamos National Laboratory and Hyperion Power Generation. In this report, a critical assessment of the lead-bismuth eutectic technology for Hyperion reactor is presented based on currently available knowledge. Included are: material compatibility, oxygen control, thermal hydraulics, polonium control. The key advances in the technology and their applications to Hyperion reactor design are analyzed. Also, the near future studies in main areas of the technology are recommended for meeting the design requirements.

  6. Effect of Flow due to Density Change on Eutectic Growth

    NASA Astrophysics Data System (ADS)

    McFadden, G. B.; Coriell, S. R.; Mitchell, W. F.; Murray, B. T.; Andrews, J. B.; Arikawa, J.

    2001-11-01

    The Jackson-Hunt model of eutectic growth is extended to allow for different densities of the phases. The density differences give rise to fluid flow which is calculated from a series solution of the fluid flow equations in the Stokes flow approximation. The solute diffusion equation with flow terms is then solved numerically using an adaptive refinement and multigrid algorithm (PLTMG). The interface undercoolings and volume fractions are calculated as a function of spacing for tin-lead and iron-carbon eutectic alloys and for an aluminum-indium monotectic alloy. The numerical results are compared with various approximations based on the Jackson-Hunt analysis.

  7. Effect of flow due to density change on eutectic growth

    NASA Astrophysics Data System (ADS)

    Coriell, S. R.; McFadden, G. B.; Mitchell, W. F.; Murray, B. T.; Andrews, J. B.; Arikawa, Y.

    2001-04-01

    The Jackson-Hunt model of eutectic growth is extended to allow for different densities of the phases. The density differences give rise to fluid flow which is calculated from a series solution of the fluid flow equations in the Stokes flow approximation. The solute diffusion equation with flow terms is then solved numerically using an adaptive refinement and multigrid algorithm. The interface undercoolings and volume fractions are calculated as a function of spacing for tin-lead and iron-carbon eutectic alloys and for an aluminum-indium monotectic alloy. The numerical results are compared with various approximations based on the Jackson-Hunt analysis.

  8. Structure Property Relationships in Imidazole-based Deep Eutectic Mixtures

    NASA Astrophysics Data System (ADS)

    Terheggen, Logan; Cosby, Tyler; Sangoro, Joshua

    2015-03-01

    Deep eutectic mixtures of levulinic acid with a systematic series of imidazoles are measured by broadband dielectric spectroscopy, differential scanning calorimetry, and Fourier transform infrared spectroscopy to investigate the impact of steric interactions on charge transport and structural dynamics. An enhancement of dc conductivity is found in each of the imidazoles upon the addition of levulinic acid. However, the extent of increase is dependent upon the alkyl substitution on the imidazole ring. These results highlight the importance of molecular structure on hydrogen bonding and charge transport in deep eutectic mixtures.

  9. Prebiotic phosphate ester syntheses in a deep eutectic solvent.

    PubMed

    Gull, Maheen; Zhou, Manshui; Fernández, Facundo M; Pasek, Matthew A

    2014-02-01

    We report a route to synthesize a wide range of organophosphates of biological significance in a deep eutectic solvent (2:1 urea and choline chloride), utilizing various orthophosphate sources. Heating an organic alcohol in the solvent along with a soluble phosphorus source yields phosphorus esters of choline as well as that of the added organic in yields between 15 to 99 %. In addition, phosphite analogs of biological phosphates and peptides were also formed by the simple mixing of reagents and heating at 60-70 °C in the deep eutectic solvent. The presented dehydration reactions are relevant to prebiotic and green chemistry in alternative solvents. PMID:24368625

  10. Microstructural evolution of eutectic gold-tin solder joints

    NASA Astrophysics Data System (ADS)

    Song, Ho Geon

    Current trends toward miniaturization and the use of lead (Pb)-free solders in electronic packaging present new problems in the reliability of solder joints. This study was performed in order to understand the microstructure and microstructural evolution of small volumes of nominally eutectic Au-Sn solder joints (80Au-20Sn by weight), which gives insight into properties and reliability. The study particularly concentrated on the effects that the joint size and the type of substrate metallization have on both the bulk and interface microstructures of the joints. The systems studied were eutectic Au-Sn on Cu and Cu/electroless Ni/Au and for each system, two sets of sample geometries were used. Eutectic Au-Sn solder joints on Cu have microstructures that are very coarse on the scale of the joint, where the microstructure is strongly affected by the amount of Cu dissolution during reflow process. During aging, steady diffusion of Cu leads to the growth of Cu-rich interfacial intermetallic layers, significant consumption of substrate Cu, and formation of Kirkendall pores along the interface. Thermal cycling of the joints caused decomposition of the thick zeta(Cu)-phase into a fine-grained multiphase microstructure. The microstructures of eutectic Au-Sn solder joints on Cu/electroless Ni/Au are also very coarse due to the dissolution of Au used as a protective layer during soldering. Electroless Ni is shown to effectively act as a diffusion barrier for Cu. The electroless Ni near the interface evolves into a complicated structure due to the interfacial reaction. The solubility characteristics and diffusional behavior of substrate metals into eutectic Au-Sn solder determines the detailed microstructure and microstructural evolution of the ultrafine eutectic Au-Sn joints. Two important things to be noted from the results are as follows: First, the overall microstructures of these joints are very coarse with respect to the size of joint, and hence the properties of the

  11. Selecting Resolving Agents with Respect to Their Eutectic Compositions.

    PubMed

    Szeleczky, Zsolt; Semsey, Sándor; Bagi, Péter; Pálovics, Emese; Faigl, Ferenc; Fogassy, Elemér

    2016-03-01

    In order to develop a resolution procedure for a given racemic compound, the first and the most important step is finding the most suitable resolving agent. We studied 18 individual resolutions that were carried out with resolving agents having high eutectic composition. We found that very high enantiomeric excess values were obtained in all cases. We assume that the eutectic composition of a given resolving agent is one of the most important properties that should always be considered during the search for the most efficient resolving agent. PMID:26797938

  12. Deep eutectic solvent-assisted synthesis of biodegradable polyesters with antibacterial properties.

    PubMed

    García-Argüelles, Sara; Serrano, M Concepción; Gutiérrez, María C; Ferrer, M Luisa; Yuste, Luis; Rojo, Fernando; del Monte, Francisco

    2013-07-30

    Bacterial infection related to the implantation of medical devices represents a serious clinical complication, with dramatic consequences for many patients. In past decades, numerous attempts have been made to develop materials with antibacterial and/or antifouling properties by the incorporation of antibiotic and/or antiseptic compounds. In this context, deep eutectic solvents (DESs) are acquiring increasing interest not only as efficient carriers of active principle ingredients (APIs) but also as assistant platforms for the synthesis of a wide repertoire of polymer-related materials. Herein, we have successfully prepared biodegradable poly(octanediol-co-citrate) polyesters with acquired antibacterial properties by the DES-assisted incorporation of quaternary ammonium or phosphonium salts into the polymer network. In the resulting polymers, the presence of these salts (i.e., choline chloride, tetraethylammonium bromide, hexadecyltrimethylammonium bromide, and methyltriphenylphosphonium bromide) inhibits bacterial growth in the early postimplantation steps, as tested in cultures of Escherichia coli on solid agar plates. Later, positive polymer cytocompatibility is expected to support cell colonization, as anticipated from in vitro preliminary studies with L929 fibroblasts. Finally, the attractive elastic properties of these polyesters permit matching those of soft tissues such as skin. For all of these reasons, we envisage the utility of some of these antibacterial, biocompatible, and biodegradable polyesters as potential candidates for the preparation of antimicrobial wound dressings. These results further emphasize the enormous versatility of DES-assisted synthesis for the incorporation, in the synthesis step, of a wide palette of APIs into polymeric networks suitable for biomedical applications.

  13. Eutectic bonds on wafer scale by thin film multilayers

    NASA Astrophysics Data System (ADS)

    Christensen, Carsten; Bouwstra, Siebe

    1996-09-01

    The use of gold based thin film multilayer systems for forming eutectic bonds on wafer scale is investigated and preliminary results will be presented. On polished 4 inch wafers different multilayer systems are developed using thin film techniques and bonded afterwards under reactive atmospheres and different bonding temperatures and forces. Pull tests are performed to extract the bonding strengths.

  14. Directional solidification of eutectic composites in space environment

    NASA Technical Reports Server (NTRS)

    Yue, A. S.

    1972-01-01

    The Ni-Ni3Ta eutectic and a nickel-base alloy containing 30 wt pct Ta were solidified unidirectionally in an electron beam floating zone melting apparatus. It was found that the volume fraction of the Ni3Ta phase in the Ni-Ni3Ta eutectic mixture was increased from 7.6 to 36 volume pct in agreement with the theory as predicted. Tensile properties of the randomly solidified and unidirectionally solidified Ni-Ni3Ta eutectic were determined as function of solidification rate and temperature. It was found that the ultimate tensile strength decreased as both the test temperature and solidification rate increased. An elongation of 40 pct was obtained for a nickelbase alloy containing 30 wt at room temperature. This unusually large elongation was attributed to the superplastic behavior of the alloy. The critical currents versus the external fields at 2.5, 3.0, 3.5 and 4.2 deg for the unidirectionally solidified Pb-Sn eutectic were measured. The values of critical fields at zero critical currents were obtained by extrapolation.

  15. Microstructural evolution of eutectic Au-Sn solder joints

    SciTech Connect

    Song, Ho Geon

    2002-05-31

    Current trends toward miniaturization and the use of lead(Pb)-free solder in electronic packaging present new problems in the reliability of solder joints. This study was performed in order to understand the microstructure and microstructural evolution of small volumes of nominally eutectic Au-Sn solder joints (80Au-20Sn by weight), which gives insight into properties and reliability.

  16. Eutectic alloys. Citations from the International Aerospace Abstracts data base

    NASA Technical Reports Server (NTRS)

    Moore, P.

    1980-01-01

    These 250 abstracts from the international literature provide summaries of the preparation, treatments, composition and structure, and properties of eutectic alloys. Techniques for directional solidification and treatments including glazing, coating, and fiber reinforcement are discussed. In addition to the mechanical and thermal properties, the superconducting, corrosion, resistance, and thermionic emission and adsorption properties are described.

  17. Improving agar electrospinnability with choline-based deep eutectic solvents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One percent agar (% wt) was dissolved in the deep eutectic solvent (DES), (2-hydroxyethyl) trimethylammonium chloride/urea at a 1:2 molar ratio, and successfully electrospun into nanofibers. An existing electrospinning set-up, operated at 50 deg C, was adapted for use with an ethanol bath to collect...

  18. Summary of the Workshop on Molten Salt Reactor Technologies Commemorating the 50th Anniversary of the Startup of the Molten Salt Reactor Experiment

    SciTech Connect

    Betzler, Benjamin R; Mays, Gary T

    2016-01-01

    A workshop on Molten Salt Reactor (MSR) technologies commemorating the 50th anniversary of the Molten Salt Reactor Experiment (MSRE) was held at Oak Ridge National Laboratory on October 15 16, 2015. The MSRE represented a pioneering experiment that demonstrated an advanced reactor technology: the molten salt eutectic-fueled reactor. A multinational group of more than 130 individuals representing a diverse set of stakeholders gathered to discuss the historical, current, and future technical challenges and paths to deployment of MSR technology. This paper provides a summary of the key messages from this workshop.

  19. Alcohol based-deep eutectic solvent (DES) as an alternative green additive to increase rotenone yield

    SciTech Connect

    Othman, Zetty Shafiqa; Hassan, Nur Hasyareeda; Zubairi, Saiful Irwan

    2015-09-25

    Deep eutectic solvents (DESs) are basically molten salts that interact by forming hydrogen bonds between two added components at a ratio where eutectic point reaches a melting point lower than that of each individual component. Their remarkable physicochemical properties (similar to ionic liquids) with remarkable green properties, low cost and easy handling make them a growing interest in many fields of research. Therefore, the objective of pursuing this study is to analyze the potential of alcohol-based DES as an extraction medium for rotenone extraction from Derris elliptica roots. DES was prepared by a combination of choline chloride, ChCl and 1, 4-butanediol at a ratio of 1/5. The structure of elucidation of DES was analyzed using FTIR, {sup 1}H-NMR and {sup 13}C-NMR. Normal soaking extraction (NSE) method was carried out for 14 hours using seven different types of solvent systems of (1) acetone; (2) methanol; (3) acetonitrile; (4) DES; (5) DES + methanol; (6) DES + acetonitrile; and (7) [BMIM] OTf + acetone. Next, the yield of rotenone, % (w/w), and its concentration (mg/ml) in dried roots were quantitatively determined by means of RP-HPLC. The results showed that a binary solvent system of [BMIM] OTf + acetone and DES + acetonitrile was the best solvent system combination as compared to other solvent systems. It contributed to the highest rotenone content of 0.84 ± 0.05% (w/w) (1.09 ± 0.06 mg/ml) and 0.84 ± 0.02% (w/w) (1.03 ± 0.01 mg/ml) after 14 hours of exhaustive extraction time. In conclusion, a combination of the DES with a selective organic solvent has been proven to have a similar potential and efficiency as of ILs in extracting bioactive constituents in the phytochemical extraction process.

  20. Alcohol based-deep eutectic solvent (DES) as an alternative green additive to increase rotenone yield

    NASA Astrophysics Data System (ADS)

    Othman, Zetty Shafiqa; Hassan, Nur Hasyareeda; Zubairi, Saiful Irwan

    2015-09-01

    Deep eutectic solvents (DESs) are basically molten salts that interact by forming hydrogen bonds between two added components at a ratio where eutectic point reaches a melting point lower than that of each individual component. Their remarkable physicochemical properties (similar to ionic liquids) with remarkable green properties, low cost and easy handling make them a growing interest in many fields of research. Therefore, the objective of pursuing this study is to analyze the potential of alcohol-based DES as an extraction medium for rotenone extraction from Derris elliptica roots. DES was prepared by a combination of choline chloride, ChCl and 1, 4-butanediol at a ratio of 1/5. The structure of elucidation of DES was analyzed using FTIR, 1H-NMR and 13C-NMR. Normal soaking extraction (NSE) method was carried out for 14 hours using seven different types of solvent systems of (1) acetone; (2) methanol; (3) acetonitrile; (4) DES; (5) DES + methanol; (6) DES + acetonitrile; and (7) [BMIM] OTf + acetone. Next, the yield of rotenone, % (w/w), and its concentration (mg/ml) in dried roots were quantitatively determined by means of RP-HPLC. The results showed that a binary solvent system of [BMIM] OTf + acetone and DES + acetonitrile was the best solvent system combination as compared to other solvent systems. It contributed to the highest rotenone content of 0.84 ± 0.05% (w/w) (1.09 ± 0.06 mg/ml) and 0.84 ± 0.02% (w/w) (1.03 ± 0.01 mg/ml) after 14 hours of exhaustive extraction time. In conclusion, a combination of the DES with a selective organic solvent has been proven to have a similar potential and efficiency as of ILs in extracting bioactive constituents in the phytochemical extraction process.

  1. Use of Microgravity to Control the Microstructure of Eutectics

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Regel, Liya L.; Smith, Reginald W.

    1998-01-01

    This grant began in June of 1996. Its long term goal is to be able to control the microstructure of directionally solidified eutectic alloys, through an improved understanding of the influence of convection. The primary objective of the present projects is to test hypotheses for the reported influence of microgravity on the microstructure of three fibrous eutectics (MnBi-Bi, InSb-NiSb, Al3Ni-Al). A secondary objective is to determine the influence of convection on the microstructure of other eutectic alloys. Two doctoral students and a masters student supported as a teaching assistant were recruited for this research. Techniques were developed for directional solidification of MnBi-Bi eutectics with periodic application of current pulses to produce an oscillatory freezing rate. Image analysis techniques were developed to obtain the variation in MnBi fiber spacing, which was found to be normally distributed. The mean and standard deviation of fiber spacing were obtained for several freezing conditions. Eighteen ampoules were prepared for use in the gradient freeze furnace QUELD developed at Queen's University for use in microgravity. Nine of these ampoules will be solidified soon at Queen's in a ground-based model. We hope to solidify the other nine in the QUELD that is mounted on the Canadian Microgravity Isolation Mount on MIR. Techniques are being developed for directional solidification of the Al-Si eutectic at different freezing rates, with and without application of accelerated crucible rotation to induce convection. For the first time, theoretical methods are being developed to analyze eutectic solidification with an oscillatory freezing rate. In a classical sharp-interface model, we found that an oscillatory freezing rate increases the deviation of the average interfacial composition from the eutectic, and increases the undercooling of the two phases by different amounts. This would be expected to change the volume fraction solidifying and the fiber spacing

  2. The transient phase eutectic process for ceramic-metal bonding

    NASA Astrophysics Data System (ADS)

    Chapman, Thomas Richard

    A new method of ceramic-metal bonding using a transient gas-metal eutectic liquid is proposed, confirmed, and investigated using nickel/copper-oxygen/alumina as a model system. A low temperature gas-metal eutectic melt may be made transient (by solidification) through interaction with a more refractory metal component providing a ceramic-metal bond with good wetting, high strength, a broad process window (relative to conventional gas-metal eutectic bonds), high thermal stability, and controlled thermoelastic stress; transport of a more active species to the ceramic interface may further improve adherence. A eutectic between the low-melting component (copper) and a gas (oxygen) forms at the interface between the refractory metal (nickel) and ceramic (alumina). This interfacial liquid wets the surfaces and promotes bonding. Because the entire copper interlayer is melted, the processing window is wider than conventional gas-metal eutectic in terms of temperature, atmosphere, and time. The liquid (Cu-O) dissolves the active, refractory component (Ni) providing transport to the interface where a refractory bond phase (NiAl2O4) forms. Interactions at temperature consume the liquid phase causing isothermal solidification. Diffusional homogenization further increases the solidus temperature of the joint. Multilayer bond structures were produced using both foils and plating. Oxygen additions were investigated using pre-oxidation of each metal and/or oxidation in-situ. The best bonds resulted from foils combining nickel pre-oxidation with a eutectic atmosphere. The oxide layer slows the oxidation kinetics of the nickel which allows eutectic liquid to form providing wetting, reaction, and adherence to the ceramic. The interfacial bond structure consists of a uniform, thin (sub-micron) reaction layer of nickel-aluminate (NiAl2 O4) spinel. Adhesion is comparable to current technologies and can exceed the ceramic strength. Typical peel failure occurs at the metal

  3. The UC2-x - Carbon eutectic: A laser heating study

    NASA Astrophysics Data System (ADS)

    Manara, D.; Boboridis, K.; Morel, S.; De Bruycker, F.

    2015-11-01

    The UC2-x - carbon eutectic has been studied by laser heating and fast multi-wavelength pyrometry under inert atmosphere. The study has been carried out on three compositions, two of which close to the phase boundary of the UC2-x - C miscibility gap (with C/U atomic ratios 2 and 2.1), and one, more crucial, with a large excess of carbon (C/U = 2.82). The first two compositions were synthesised by arc-melting. This synthesis method could not be applied to the last composition, which was therefore completed directly by laser irradiation. The U - C - O composition of the samples was checked by using a combustion method in an ELTRA® analyser. The eutectic temperature, established to be 2737 K ± 20 K, was used as a radiance reference together with the cubic - tetragonal (α → β) solid state transition, fixed at 2050 K ± 20 K. The normal spectral emissivity of the carbon-richer compounds increases up to 0.7, whereas the value 0.53 was established for pure hypostoichiometric uranium dicarbide at the limit of the eutectic region. This increase is analysed in the light of the demixing of excess carbon, and used for the determination of the liquidus temperature (3220 K ± 50 K for UC2.82). Due to fast solid state diffusion, also fostered by the cubic - tetragonal transition, no obvious signs of a lamellar eutectic structure could be observed after quenching to room temperature. The eutectic surface C/UC2-x composition could be qualitatively, but consistently, followed during the cooling process with the help of the recorded radiance spectra. Whereas the external liquid surface is almost entirely constituted by uranium dicarbide, it gets rapidly enriched in demixed carbon upon freezing. Demixed carbon seems to quickly migrate towards the inner bulk during further cooling. At the α → β transition, uranium dicarbide covers again the almost entire external surface.

  4. Measurements of the partial electronic conductivity in lithium chloride - potassium chloride molten salts

    SciTech Connect

    Reynolds, G.J.; Huggins, R.A.; Lee, M.C.Y.

    1983-05-01

    The partial electronic conductivity of the lithium chloride-potassium chloride eutectic molten salt electrolyte has been studied as a function of lithium activity, temperature and melt composition using the Wagner asymmetric d-c polarization technique. Measurements were made over the temperature range 383-465/sup 0/C and at lithium activities extending from 1.95 X 10/sup -7/ to unity. The results confirmed the applicability of this technique to molten salt systems. The partial electronic conductivity was shown to be much greater than the partial hole conductivity over the range of lithium activities investigated, and was found to increase monotonically with temperature and lithium activity, but decreased on addition of excess LiCl to the eutectic composition. Approximate values of self-discharge currents for cells utilizing an ''Al/LiAl'' negative electrode and a LiCl-KCl molten salt electrolyte have been calculated.

  5. Effect of Freeze Concentration of Various Salt Solutions on the Denaturation of Carp Myofibrils

    NASA Astrophysics Data System (ADS)

    Takahashi, Katsuaki; Inoue, Norio; Shinano, Haruo

    The apparent rate constants of freeze inactivation (KF) at different storage temperatures for various salts were calculated. Comparisons were then made among salts with relation to storage temperature and ionic strength of unfrozen salt solutions. For three kinds of sulfates with high eutectic points,hardly any change occured in relation to the storage temperature and ionic strength. The reason was thought to be the weaker action of sulfates to protein denaturation. The KF values of six kinds of salts (namely NH4Cl, NaNO3, Mg(NO3)3, BaCl2, CaCl2 and MgCl2 ) were highest in the temperature range of - 6~-14 °C. The extent of denaturation in the KF value differed for each salt,although,no relationship was found between maximum KF value and eutectic point. A possible explanation for the above results relates to the amount and ionic strength of unfrozen salt solution. The log KF increased with an increase in ionic strength,and reached a maximum at about 0.9 due to the effect of salt concentration. However,above an ionic strength of 0.9, the log KF decreased with an increase in ionic strength due to the decrease of unfrozen salt solution.

  6. Fluoride salts as phase change materials for thermal energy storage in the temperature range 1000-1400 K

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1988-01-01

    Eutectic compositions and congruently melting intermediate compounds in binary and ternary fluoride salt systems were characterized for potential use as latent heat of fusion phase change materials to store thermal energy in the temperature range 1000-1400 K. The melting points and eutectic compositions for many systems with published phase diagrams were experimentally verified and new eutectic compositions having melting points between 1000 and 1400 K were identified. Heats of fusion of several binary and ternary eutectics and congruently melting compounds were experimentally measured by differential scanning calorimetry. For a few systems in which heats of mixing in the melts have been measured, heats of fusion of the eutectics were calculated from thermodynamic considerations and good agreement was obtained between the measured and calculated values. Several combinations of salts with high heats of fusion per unit mass (greater than 0.7 kJ/g) have been identified for possible use as phase change materials in advanced solar dynamic space power applications.

  7. Densities of some molten fluoride salt mixtures suitable for heat storage in space power applications

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1988-01-01

    Liquid densities were determined for a number of fluoride salt mixtures suitable for heat storage in space power applications, using a procedure that consisted of measuring the loss of weight of an inert bob in the melt. The density apparatus was calibrated with pure LiF and NaF at different temperatures. Density data for safe binary and ternary fluoride salt eutectics and congruently melting intermediate compounds are presented. In addition, a comparison was made between the volumetric heat storage capacity of different salt mixtures.

  8. ac impedance measurements of molten salt thermal batteries

    NASA Astrophysics Data System (ADS)

    Singh, Pritpal; Guidotti, Ronald A.; Reisner c, David

    Non-destructive testing of thermal batteries without activating them is a challenging proposition. Molten salt thermal batteries are activated by raising their temperature to above the melting point of the salt constituting the electrolyte. One approach that we have considered is to raise the temperature of the molten salt electrolyte to a temperature below the melting point so that the battery does not get activated yet may provide sufficient mobility of the ionic species to be able to obtain some useful ac impedance measurements. This hypothesis was put to the test for two Li(Si)/FeS 2 molten salt batteries with two electrolytes of different melting points—a standard LiCl-KCl eutectic that melts at 352 °C and a LiBr-KBr-LiCl eutectic with a melting point of 319 °C. ac impedance measurements as a function of frequency and temperature below the melting point are presented for single cells and batteries.

  9. Development of green betaine-based deep eutectic solvent aqueous two-phase system for the extraction of protein.

    PubMed

    Li, Na; Wang, Yuzhi; Xu, Kaijia; Huang, Yanhua; Wen, Qian; Ding, Xueqin

    2016-05-15

    Six kinds of new type of green betaine-based deep eutectic solvents (DESs) have been synthesized. Deep eutectic solvent aqueous two-phase systems (DES-ATPS) were established and successfully applied in the extraction of protein. Betaine-urea (Be-U) was selected as the suitable extractant. Single factor experiments were carried out to determine the optimum conditions of the extraction process, such as the salt concentration, the mass of DES, the separation time, the amount of protein, the temperature and the pH value. The extraction efficiency could achieve to 99.82% under the optimum conditions. Mixed sample and practical sample analysis were discussed. The back extraction experiment was implemented and the back extraction efficiency could reach to 32.66%. The precision experiment, repeatability experiment and stability experiment were investigated. UV-vis, FT-IR and circular dichroism (CD) spectra confirmed that the conformation of protein was not changed during the process of extraction. The mechanisms of extraction were researched by dynamic light scattering (DLS), the measurement of the conductivity and transmission electron microscopy (TEM). DES-protein aggregates and embraces phenomenon play considerable roles in the separation process. All of these results indicated that betaine-based DES-ATPS may provide a potential substitute new method for the separation of proteins. PMID:26992491

  10. Examination of Liquid Fluoride Salt Heat Transfer

    SciTech Connect

    Yoder Jr, Graydon L

    2014-01-01

    The need for high efficiency power conversion and energy transport systems is increasing as world energy use continues to increase, petroleum supplies decrease, and global warming concerns become more prevalent. There are few heat transport fluids capable of operating above about 600oC that do not require operation at extremely high pressures. Liquid fluoride salts are an exception to that limitation. Fluoride salts have very high boiling points, can operate at high temperatures and low pressures and have very good heat transfer properties. They have been proposed as coolants for next generation fission reactor systems, as coolants for fusion reactor blankets, and as thermal storage media for solar power systems. In each case, these salts are used to either extract or deliver heat through heat exchange equipment, and in order to design this equipment, liquid salt heat transfer must be predicted. This paper discusses the heat transfer characteristics of liquid fluoride salts. Historically, heat transfer in fluoride salts has been assumed to be consistent with that of conventional fluids (air, water, etc.), and correlations used for predicting heat transfer performance of all fluoride salts have been the same or similar to those used for water conventional fluids an, water, etc). A review of existing liquid salt heat transfer data is presented, summarized, and evaluated on a consistent basis. Less than 10 experimental data sets have been found in the literature, with varying degrees of experimental detail and measured parameters provided. The data has been digitized and a limited database has been assembled and compared to existing heat transfer correlations. Results vary as well, with some data sets following traditional correlations; in others the comparisons are less conclusive. This is especially the case for less common salt/materials combinations, and suggests that additional heat transfer data may be needed when using specific salt eutectics in heat transfer

  11. Coatings for directional eutectics. [for corrosion and oxidation resistance

    NASA Technical Reports Server (NTRS)

    Felten, E. J.; Strangman, T. E.; Ulion, N. E.

    1974-01-01

    Eleven coating systems based on MCrAlY overlay and diffusion aluminide prototypes were evaluated to determine their capability for protecting the gamma/gamma prime-delta directionally solidified eutectic alloy (Ni-20Cb-6Cr-2.5Al) in gas turbine engine applications. Furnace oxidation and hot corrosion, Mach 0.37 burner-rig, tensile ductility, stress-rupture and thermomechanical fatigue tests were used to evaluate the coated gamma/gamma prime-delta alloy. The diffusion aluminide coatings provided adequate oxidation resistance at 1144 K (1600 F) but offered very limited protection in 114 K (1600 F) hot corrosion and 1366 K (2000 F) oxidation tests. A platinum modified NiCrAlY overlay coating exhibited excellent performance in oxidation testing and had no adverse effects upon the eutectic alloy.

  12. Metastable Eutectic Equilibrium in Natural Environments: Recent Developments and Research Opportunities

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Fans J. M.; Nuth, Joseph A., II; Jablonska, Mariola; Karner, James M.

    2000-01-01

    Chemical ordering at metastable eutectics was recognized in non-equilibrium gas-to- solid condensation experiments to constrain 'silicate' dust formation in O-rich circumstellar environments. The predictable metastable eutectic behavior successfully predicted the observed ferromagnesiosilica, compositions of circumstellar dust, presolar and solar nebula grains in the matrix of the collected aggregate IDPs. Many of the experimentally determined metastable eutectic solids match the fundamental building blocks of common rock-forming layer silicates: this could have implications for the origin of Life. The physical conditions conducive to metastable eutectic behavior, i.e. high temperature and (ultra)fast quenching, lead to unique amorphous, typically nano- to micrometer-sized, materials. The new paradigm of metastable eutectic behavior opens the door to new and exciting research opportunities in uncovering the many implications of these unique amorphous and typically nano- to micrometer-sized, metastable eutectic materials.

  13. Metastable Eutectic Equilibrium in Natural Environments: Recent Development and Research Opportunities

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.; Nuth, Joseph A., III; Jablonska, Mariola; Karner, James M.

    2000-01-01

    Chemical ordering at metastable eutectics was recognized in non-equilibrium gas-to- solid condensation experiments to constrain 'silicate' dust formation in O-rich circumstellar environments. The predictable metastable eutectic behavior successfully predicted the observed ferromagnesiosilica compositions of circumstellar dust presolar and solar nebula grains in the matrix of the collected aggregate IDPs (Interplanetary Dust Particles). Many of the experimentally determined metastable eutectic solids match the fundamental building blocks of common rock-forming layer silicates: this could have implications for the origin of Life. The physical conditions conducive to metastable eutectic behavior, i.e. high temperature and (ultra) fast quenching, lead to unique amorphous, typically nano- to micrometer-sized, materials. The new paradigm of metastable eutectic behavior opens the door to new and exciting research opportunities in uncovering the many implications of these unique amorphous, and typically nano-to micrometer-sized, metastable eutectic materials.

  14. Eutectic-Free Superalloy Made By Directional Solidification

    NASA Technical Reports Server (NTRS)

    Schmidt, Deborah Dianne

    1995-01-01

    By suitable control of thermal conditions in directional-solidification process, supperalloy structural and machine components (e.g., turbine blades) cast with microstructures enhancing resistance to fatigue. Specific version of process and thermal conditions chosen to reduce micro-segregation during solidification and to minimize or eliminate script carbide and eutectic-phase inclusions, which are brittle inclusions found to decrease resistance to fatigue.

  15. Evaluation of ultrasonic signals from diffusion and eutectic bond interfaces

    NASA Astrophysics Data System (ADS)

    Brown, C. M.

    1980-12-01

    A research program is in progress at Rocky Flats to determine correlations between ultrasonic signal content and diffusion or eutectic bond joint condition, and to develop a computer-controlled scanning, data acquisition and analysis system which utilizes these correlations and waveform analysis techniques. The initial efforts to determine effective ultrasonic waveform parameters to characterize the strength of bond interfaces is complete. A development version of a computer-controlled, automated scanning and data acquisition system is in operation.

  16. An approximate formula for recalescence in binary eutectic alloys

    NASA Technical Reports Server (NTRS)

    Ohsaka, K.; Trinh, E. H.

    1993-01-01

    In alloys, solidification takes place along various paths which may be ascertained via phase diagrams; while there would be no single formula applicable to all alloys, an approximate formula for a specific solidification path would be useful in estimating the fraction of the solid formed during recalescence. A formulation is here presented of recalescence in binary eutectic alloys. This formula is applied to Ag-Cu alloys which are of interest in containerless solidification, due to their formation of supersaturated solutions.

  17. Eutectic Syntheses of Graphitic Carbon with High Pyrazinic Nitrogen Content.

    PubMed

    Fechler, Nina; Zussblatt, Niels P; Rothe, Regina; Schlögl, Robert; Willinger, Marc-Georg; Chmelka, Bradley F; Antonietti, Markus

    2016-02-10

    Mixtures of phenols/ketones and urea show eutectic behavior upon gentle heating. These mixtures possess liquid-crystalline-like phases that can be processed. The architecture of phenol/ketone acts as structure-donating motif, while urea serves as melting-point reduction agent. Condensation at elevated temperatures results in nitrogen-containing carbons with remarkably high nitrogen content of mainly pyrazinic nature. PMID:26178584

  18. [Study on transdermal absorption of borneol-salicylic acid eutectic mixture].

    PubMed

    Cui, D X; Sugibayashi, K; Morimoto, Y; Li, F L

    1989-01-01

    Borneol is an organic drug having property to form eutectic mixture with salicylic acid. We compared the transdermal absorption rate of borneol alone with that of borneol-salicylic acid eutectic mixture in hairless rats. The results showed that the borneol-salicylic acid eutectic mixture can evidently increase the absorption rate of borneol and provided a method for manufacturing borneol preparation which can easily be absorbed transdermally.

  19. Ge-Au eutectic bonding of Ge {100} single crystals

    NASA Astrophysics Data System (ADS)

    Knowlton, W. B.; Itoh, K. M.; Beeman, J. W.; Emes, J. H.; Loretto, D.; Haller, E. E.

    1993-11-01

    We present preliminary results on the eutectic bonding between two {100} Ge single crystal surfaces using thin films of Au ranging from 900Å/surface to 300Å/surface and Pd (10% the thickness of Au). Following bonding, plan view optical microscopy (OM) of the cleaved interface of samples with Au thicknesses ≤ 500Å/surface show a eutectic morphology more conducive to phonon transmission through the bond interface. High resolution transmission electron microscopy (HRTEM) cross sectional interface studies of a 300Å/surface Au sample show <100> epitaxial growth of Ge. In sections of the bond, lattice continuity of the Ge is apparent through the interface. TEM studies also reveal <110> heteroepitaxial growth of Au with a Au-Ge lattice mismatch of less than 2%. Eutectic bonds with 200Å/surface Au have been attained with characterization pending. An optical polishing technique for Ge has been optimized to insure intimate contact between the Ge surfaces prior to bonding. Interferometry analysis of the optically polished Ge surface shows that surface height fluctuations lie within ±150Å across an interval of 1mm. Characterization of phonon transmission through the interface is discussed with respect to low temperature detection of ballistic phonons.

  20. Local anesthetic cream prepared from lidocaine-tetracaine eutectic mixture.

    PubMed

    Ohzeki, Keiichi; Kitahara, Masaki; Suzuki, Noriko; Taguchi, Kyoji; Yamazaki, Yuki; Akiyama, Shinji; Takahashi, Kentaro; Kanzaki, Yasushi

    2008-04-01

    Local anesthetic creams for the clinical treatment of conditions such as postherpetic neuralgia were prepared as an in-house formulation from the eutectic mixture of lidocaine-tetracaine (LT cream) using two eutectic mixtures of local anesthetic (EMLA) type bases. The LT formulation was compared with a lidocaine-prilocaine (LP cream) eutectic mixture formulated using the same base as EMLA. The chemical stability of lidocaine was examined in advance and was found to be stable for more than 3 months either in LT cream or in LP cream. The release rate of lidocaine from the formulated creams was examined using a cellulose ester membrane. The release rate of lidocaine from LT cream was similar to that from LP cream. The release rate of tetracaine was slightly slower than that of lidocaine in LT cream reflecting the larger molecular size of tetracaine. The penetration rate was examined in vitro using a Yucatan micropig skin. The penetration rate of lidocaine was similar between LT and LP creams. Infiltration anesthesia action examined in guinea pigs indicated that the difference between the two creams was statistically insignificant. The present study suggests the equivalence of the LT and LP creams as a local anesthetic and the potential of LT cream for clinical use either in the easy formulation or in the low-cost formulation.

  1. Eutectic melting of LiBH4-KBH4.

    PubMed

    Ley, Morten B; Roedern, Elsa; Jensen, Torben R

    2014-11-28

    Eutectic melting in mixtures of alkali and alkali earth metal borohydrides can pave the way for new applications as fast ionic conductors, and facilitate hydrogen release by low temperature chemical reactions and convenient nanoconfinement. Here, we determine the eutectic composition for the lithium potassium borohydride system, 0.725LiBH4-0.275KBH4, with the lowest melting point, Tmelt ∼105 °C, of all known alkali and alkali earth metal borohydride mixtures. Mechanochemistry and manual mixing of LiBH4-KBH4 mixtures facilitate the formation of LiK(BH4)2. However, the melting or heat treatments used in this work do not produce LiK(BH4)2. The bimetallic borohydride dissociates into the monometallic borohydrides at ∼95 °C and partial melting occurs at ∼105 °C. Analysis of the unit cell volumes of LiBH4, KBH4 and LiK(BH4)2 in the temperature range 25 to 90 °C indicates that the formation of the bimetallic borohydride is facilitated by a more dense packing as compared to the reactants. Thus, LiK(BH4)2 is considered metastable and the formation is pressure induced. A phase diagram for the LiBH4-KBH4 system is established, which illustrates the low eutectic melting point and the stability range for the bimetallic borohydride, LiK(BH4)2.

  2. Chlorate salts and solutions on Mars

    NASA Astrophysics Data System (ADS)

    Hanley, Jennifer; Chevrier, Vincent F.; Berget, Deanna J.; Adams, Robert D.

    2012-04-01

    Chlorate (ClO3-) is an intermediate oxidation species between chloride (Cl-) and perchlorate (ClO4-), both of which were found at the landing site by the Wet Chemistry Lab (WCL). The chlorate ion is almost as stable as perchlorate, and appears to be associated with perchlorate in most terrestrial reservoirs (e.g. Atacama and Antarctica). It is possible that chlorate contributed to the ion sensor response on the WCL, yet was masked by the strong perchlorate signal. However, very little is known about chlorate salts and their effect on the stability of water. We performed evaporation rate experiments in our Mars simulation chamber, which enabled us to determine the activity of water for various concentrations. From this we constructed solubility diagrams for NaClO3, KClO3, Mg(ClO3)2 and Ca(ClO3)2, and determined the Pitzer parameters for each salt. Chlorate salt eutectic temperatures range from 270 K (KClO3) to 204 K (Mg(ClO3)2). Modeling the addition of chlorate to the initial WCL solutions shows that it precipitates in concentrations comparable to other common salts, such as gypsum and epsomite, and implies that chlorates may play an important role in the wet chemistry on Mars.

  3. Near-Eutectic Ternary Mo-Si-B Alloys: Microstructures and Creep Properties

    NASA Astrophysics Data System (ADS)

    Hasemann, G.; Kaplunenko, D.; Bogomol, I.; Krüger, M.

    2016-08-01

    In the present work, the microstructural evolution during the solidification of different near-eutectic Mo-Si-B alloys was investigated. The alloy compositions were chosen from the vicinity of the eutectic region with respect to published liquidus projections. The aim was to identify a eutectic alloy composition in the Mo-rich region of the system, which would be suitable for directional solidification (DS). In a second step, two alloy compositions were prepared via DS and first creep results of these near-eutectic DS alloys are presented and discussed.

  4. High Magnetic Field-Induced Formation of Banded Microstructures in Lamellar Eutectic Alloys During Directional Solidification

    NASA Astrophysics Data System (ADS)

    Li, Xi; Fautrelle, Yves; Gagnoud, Annie; Ren, Zhongming; Moreau, Rene

    2016-08-01

    The influences of high magnetic field (up to 12 T) on the morphology of Pb-Sn and Al-Al2Cu lamellar eutectics during directional solidification were investigated. The experimental results indicate that, along with a decrease in eutectic spacing, the banded structure forms at lower growth speeds under high magnetic field and the band spacing decreases as the magnetic field increases. Moreover, the application of a magnetic field enriches the Cu solute in the liquid ahead of the liquid/solid interface during directional solidification of an Al-Al2Cu eutectic alloy. The effects of high magnetic field on the eutectic points of non-ferromagnetic alloys and the stress acting on the eutectic lamellae during directional solidification have been studied. Both thermodynamic evaluation and DTA measurements reveal that the high magnetic field has a negligible effect on the eutectic points of non-ferromagnetic alloys. However, the high magnetic field caused an increase of the nucleation temperature and undercooling. The numerical results indicate that a considerable stress is produced on the eutectic lamellae during directional solidification under high magnetic field. The formation of a banded structure in a lamellar eutectic during directional solidification under high magnetic field may be attributed to both the buildup of the solute in the liquid ahead of the liquid/solid interface and the stress acting on the eutectic lamellae.

  5. Bonding of sapphire to sapphire by eutectic mixture of aluminum oxide and zirconium oxide

    NASA Technical Reports Server (NTRS)

    Deluca, J. J. (Inventor)

    1979-01-01

    An element comprising sapphire, ruby or blue sapphire can be bonded to another element of such material with a eutectic mixture of aluminum oxide and zirconium oxide. The bonding mixture may be applied in the form of a distilled water slurry or by electron beam vapor deposition. In one embodiment the eutectic is formed in situ by applying a layer of zirconium oxide and then heating the assembly to a temperature above the eutectic temperature and below the melting point of the material from which the elements are formed. The formation of a sapphire rubidium maser cell utilizing eutectic bonding is shown.

  6. Bonding of sapphire to sapphire by eutectic mixture of aluminum oxide and zirconium oxide

    NASA Technical Reports Server (NTRS)

    Deluca, J. J. (Inventor)

    1975-01-01

    Bonding of an element comprising sapphire, ruby or blue sapphire to another element of such material with a eutectic mixture of aluminum oxide and zirconium oxide is discussed. The bonding mixture may be applied in the form of a distilled water slurry or by electron beam vapor deposition. In one embodiment the eutectic is formed in situ by applying a layer of zirconium oxide and then heating the assembly to a temperature above the eutectic temperature and below the melting point of the material from which the elements are formed. The formation of a sapphire rubidium maser cell utilizing eutectic bonding is shown.

  7. Phosphate salts

    MedlinePlus

    ... taken by mouth or used as enemas. Indigestion. Aluminum phosphate and calcium phosphate are FDA-permitted ingredients ... Phosphate salts containing sodium, potassium, aluminum, or calcium are LIKELY SAFE for most people when taken by mouth short-term, when sodium phosphate is inserted into the ...

  8. Extended storage-in-place or MSRE fuel salt and flush salt

    SciTech Connect

    Notz, K.J.

    1985-09-01

    The solidified fuel salt and flush salt from the Molten Salt Reactor Experiment (MSRE) have been stored at the Oak Ridge National Laboratory (ORNL) since the reactor was shut down in 1969. The fluoride salt eutectic, containing 37 kg of uranium plus plutonium and fission products, is safely contained in three heavy-walled Hastelloy tanks, which are located inside a reinforced concrete cell. Removal of these salts to a remote location is not feasible until an appropriate repository has been identified, built, and placed in operation. Since this may take many years, extended storage-in-place was critically evaluated. The evaluation, which involved a preliminary assessment of several options for enhancing the integrity of in-place storage, including containment improvements, the addition of chemical getters and neutron poisons, and entombment in concrete, showed that this approach was a rational and safe solution to the problem for the short term. Entombment is essentially nonreversible, but the other options are open-ended; they do not limit the future selection of a final disposal option. Specific actions and improvements that would enhance safe containment during extended storage and would also be of future benefit, regardless of which disposal option is finally selected, were identified. 20 refs., 5 figs., 22 tabs.

  9. Electrochemical fabrication of nanoporous copper films in choline chloride-urea deep eutectic solvent.

    PubMed

    Zhang, Q B; Abbott, Andrew P; Yang, C

    2015-06-14

    Nanoporous copper films were fabricated by a facile electrochemical alloying/dealloying process without the need of a template. A deep eutectic solvent made from choline chloride (ChCl) and urea was used with zinc oxide as the metal salt. Cyclic voltammetry was used to characterise the electrochemical reduction of zinc and follow Cu-Zn alloy formation on the copper substrate at elevated temperatures from 353 to 393 K. The alloy formation was confirmed by X-ray diffraction spectra. 3D, open and bicontinuous nanoporous copper films were obtained by in situ electrochemically etching (dealloying) of the zinc component in the Cu-Zn surface alloys at an appropriate potential (-0.4 V vs. Ag). This dealloying process was found to be highly temperature dependent and surface diffusion controlled, which involved the self-assembly of copper atoms at the alloy/electrolyte interface. Additionally, the effects of the deposition parameters, including deposition temperature, current density as well as total charge density on resulting the microstructure were investigated by scanning electron microscopy, and atomic force microscope. PMID:25972227

  10. Ionic liquids in biotransformations: from proof-of-concept to emerging deep-eutectic-solvents.

    PubMed

    Domínguez de María, Pablo; Maugeri, Zaira

    2011-04-01

    Ionic liquids (ILs) have been extensively assessed in biotransformations with different purposes, for example, non-conventional (co-)solvents, performance additives, coating agents for immobilizing/stabilizing enzymes, and IL-membrane-based processes. Fuelled by their premature labelling as 'green solvents', academic research has flourished. However, in recent years environmental aspects related to ILs have been strongly addressed, stating that many ILs commonly used cannot be regarded as 'green derivatives'. Likewise, ILs costs are still a barrier for practical uses. Attempting to combine sustainability with the promising added-values of ILs, the third generation of ILs is currently under development. Likewise, deep-eutectic-solvents (DESs) appear in the horizon as an attractive and cost-effective option for using ionic solvents in biotransformations. DESs are often produced by gently warming and stirring two (bio-based and cheap) salts (e.g. choline chloride and urea). First successful uses of DES in biotransformations were reported recently. It may be expected that knowledge accumulated in (second generation) ILs and biotransformations could be turned into real applications by using these DESs, and third generation ILs, in the coming years. PMID:21112808

  11. Synthesis and thermo-physical properties of deep eutectic solvent-based graphene nanofluids

    NASA Astrophysics Data System (ADS)

    Fang, Y. K.; Osama, M.; Rashmi, W.; Shahbaz, K.; Khalid, M.; Mjalli, F. S.; Farid, M. M.

    2016-02-01

    This study introduces a new class of heat transfer fluids by dispersing functionalised graphene oxide nanoparticles (GNPs) in ammonium and phosphonium-based deep eutectic solvents (DESs) without the aid of a surfactant. Different molar ratios of salts and hydrogen bond donors (HBD) were used to synthesise DESs for the preparation of different concentrations of graphene nanofluids (GNFs). The concentrations of GNPs were 0.01 wt%, 0.02 wt% and 0.05 wt %. Homogeneous and stable suspensions of nanofluids were obtained by high speed homogenisation and an ultrasonication process. The stability of the GNFs was determined through visual observation for 4 weeks followed by a centrifugal process (5000-20 000 rpm) for 30 min in addition to zeta potential studies. Dispersion of the GNPs in DES was observed using an optical microscope. The synthesised DES-based GNFs showed no particle agglomeration and formation of sediments in the nanofluids. Thermo-physical properties such as thermal conductivity and specific heat of the nanofluids were also investigated in this research. The highest thermal conductivity enhancement of 177% was observed. The findings of this research provide a new class of engineered fluid for heat transfer applications as a function of temperature, type and composition DESs as well as the GNPs concentration.

  12. Prebiotic chemistry in eutectic solutions at the water-ice matrix.

    PubMed

    Menor-Salván, César; Marín-Yaseli, Margarita R

    2012-08-21

    A crystalline ice matrix at subzero temperatures can maintain a liquid phase where organic solutes and salts concentrate to form eutectic solutions. This concentration effect converts the confined reactant solutions in the ice matrix, sometimes making condensation and polymerisation reactions occur more favourably. These reactions occur at significantly high rates from a prebiotic chemistry standpoint, and the labile products can be protected from degradation. The experimental study of the synthesis of nitrogen heterocycles at the ice-water system showed the efficiency of this scenario and could explain the origin of nucleobases in the inner Solar System bodies, including meteorites and extra-terrestrial ices, and on the early Earth. The same conditions can also favour the condensation of monomers to form ribonucleic acid and peptides. Together with the synthesis of these monomers, the ice world (i.e., the chemical evolution in the range between the freezing point of water and the limit of stability of liquid brines, 273 to 210 K) is an under-explored experimental model in prebiotic chemistry. PMID:22660387

  13. Enhanced electroanalysis in lithium potassium eutectic (LKE) using microfabricated square microelectrodes.

    PubMed

    Corrigan, Damion K; Blair, Ewen O; Terry, Jonathan G; Walton, Anthony J; Mount, Andrew R

    2014-11-18

    Molten salts (MSs) are an attractive medium for chemical and electrochemical processing and as a result there is demand for MS-compatible analysis technologies. However, MSs containing redox species present a challenging environment in which to perform analytical measurements because of their corrosive nature, significant thermal convection and the high temperatures involved. This paper outlines the fabrication and characterization of microfabricated square microelectrodes (MSMs) designed for electrochemical analysis in MS systems. Their design enables precise control over electrode dimension, the minimization of stress because of differential thermal expansion through design for high temperature operation, and the minimization of corrosive attack through effective insulation. The exemplar MS system used for characterization was lithium chloride/potassium chloride eutectic (LKE), which has potential applications in pyrochemical nuclear fuel reprocessing, metal refining, molten salt batteries and electric power cells. The observed responses for a range of redox ions between 400 and 500 °C (673 and 773 K) were quantitative and typical of microelectrodes. MSMs also showed the reduced iR drop, steady-state diffusion-limited response, and reduced sensitivity to convection seen for microelectrodes under ambient conditions and expected for these electrodes in comparison to macroelectrodes. Diffusion coefficients were obtained in close agreement with literature values, more readily and at greater precision and accuracy than both macroelectrode and previous microelectrode measurements. The feasibility of extracting individual physical parameters from mixtures of redox species (as required in reprocessing) and of the prolonged measurement required for online monitoring was also demonstrated. Together, this demonstrates that MSMs provide enhanced electrode devices widely applicable to the characterization of redox species in a range of MS systems.

  14. Enhanced electroanalysis in lithium potassium eutectic (LKE) using microfabricated square microelectrodes.

    PubMed

    Corrigan, Damion K; Blair, Ewen O; Terry, Jonathan G; Walton, Anthony J; Mount, Andrew R

    2014-11-18

    Molten salts (MSs) are an attractive medium for chemical and electrochemical processing and as a result there is demand for MS-compatible analysis technologies. However, MSs containing redox species present a challenging environment in which to perform analytical measurements because of their corrosive nature, significant thermal convection and the high temperatures involved. This paper outlines the fabrication and characterization of microfabricated square microelectrodes (MSMs) designed for electrochemical analysis in MS systems. Their design enables precise control over electrode dimension, the minimization of stress because of differential thermal expansion through design for high temperature operation, and the minimization of corrosive attack through effective insulation. The exemplar MS system used for characterization was lithium chloride/potassium chloride eutectic (LKE), which has potential applications in pyrochemical nuclear fuel reprocessing, metal refining, molten salt batteries and electric power cells. The observed responses for a range of redox ions between 400 and 500 °C (673 and 773 K) were quantitative and typical of microelectrodes. MSMs also showed the reduced iR drop, steady-state diffusion-limited response, and reduced sensitivity to convection seen for microelectrodes under ambient conditions and expected for these electrodes in comparison to macroelectrodes. Diffusion coefficients were obtained in close agreement with literature values, more readily and at greater precision and accuracy than both macroelectrode and previous microelectrode measurements. The feasibility of extracting individual physical parameters from mixtures of redox species (as required in reprocessing) and of the prolonged measurement required for online monitoring was also demonstrated. Together, this demonstrates that MSMs provide enhanced electrode devices widely applicable to the characterization of redox species in a range of MS systems. PMID:25284431

  15. Evaluation of 2.25Cr-1Mo Alloy for Containment of LiCl/KCl Eutectic during the Pyrometallurgical Processing of Used Nuclear Fuel

    SciTech Connect

    B.R. Westphal; S.X. Li; G.L. Fredrickson; D. Vaden; T.A. Johnson; J.C. Wass

    2011-03-01

    Recovery of uranium from the Mk-IV and Mk-V electrorefiner vessels containing a LiCl/KCl eutectic salt has been on-going for 14 and 12 years, respectively, during the pyrometallurgical processing of used nuclear fuel. Although austenitic stainless steels are typically utilized for LiCl/KCl salt systems, the presence of cadmium in the Mk-IV electrorefiner dictates an alternate material. A 2.25Cr-1Mo alloy (ASME SA-387) was chosen due to the absence of nickel in the alloy which has a considerable solubility in cadmium. Using the transition metal impurities (iron, chromium, nickel, molybdenum, and manganese) in the electrorefined uranium products, an algorithm was developed to derive values for the contribution of the transition metals from the various input sources. Weight loss and corrosion rate data for the Mk-V electrorefiner vessel were then generated based on the transition metal impurities in the uranium products. To date, the corrosion rate of the 2.25Cr-1Mo alloy in LiCl/KCl eutectic is outstanding assuming uniform (i.e. non-localized) conditions.

  16. Eutectic Morphology of Al-7Si-0.3Mg Alloys with Scandium Additions

    NASA Astrophysics Data System (ADS)

    Pandee, Phromphong; Gourlay, C. M.; Belyakov, S. A.; Ozaki, Ryota; Yasuda, Hideyuki; Limmaneevichitr, Chaowalit

    2014-09-01

    The mechanisms of Al-Si eutectic refinement due to scandium (Sc) additions have been studied in an Al-7Si-0.3Mg foundry alloy. The evolution of eutectic microstructure is studied by thermal analysis and interrupted solidification, and the distribution of Sc is studied by synchrotron micro-XRF mapping. Sc is shown to cause significant refinement of the eutectic silicon. The results show that Sc additions strongly suppress the nucleation of eutectic silicon due to the formation of ScP instead of AlP. Sc additions change the macroscopic eutectic growth mode to the propagation of a defined eutectic front from the mold walls opposite to the heat flux direction similar to past work with Na, Ca, and Y additions. It is found that Sc segregates to the eutectic aluminum and AlSi2Sc2 phases and not to eutectic silicon, suggesting that impurity-induced twinning does not operate. The results suggest that Sc refinement is mostly caused by the significantly reduced silicon nucleation frequency and the resulting increase in mean interface growth rate.

  17. Refinement of Promising Coating Compositions for Directionally Cast Eutectics

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Felten, E. J.; Benden, R. S.

    1976-01-01

    The successful application of high creep strength, directionally solidified gamma/gamma prime-delta (Ni-19.7Cb-6Cr-2.5Al) eutectic superalloy turbine blades requires the development of suitable coatings for airfoil, root and internal blade surfaces. In order to improve coatings for the gamma/gamma prime-delta alloy, the current investigation had the goals of (1) refining promising coating compositions for directionally solidified eutectics, (2) evaluating the effects of coating/ substrate interactions on the mechanical properties of the alloy, and (3) evaluating diffusion aluminide coatings for internal surfaces. Burner rig cyclic oxidation, furnace cyclic hot corrosion, ductility, and thermal fatigue tests indicated that NiCrAlY+Pt(63 to 127 micron Ni-18Cr-12Al-0.3Y + 6 micron Pt) and NiCrAlY(63 to 127 micron Ni-18Cr-12Al-0.3Y) coatings are capable of protecting high temperature gas path surfaces of eutectic alloy airfoils. Burner rig (Mach 0.37) testing indicated that the useful coating life of the 127 micron thick coatings exceeded 1000 hours at 1366 K (2000 deg F). Isothermal fatigue and furnance hot corrosion tests indicated that 63 micron NiCrAlY, NiCrAlY + Pt and platinum modified diffusion aluminide (Pt + Al) coating systems are capable of protecting the relatively cooler surfaces of the blade root. Finally, a gas phase coating process was evaluated for diffusion aluminizing internal surfaces and cooling holes of air-cooled gamma/gamma prime-delta turbine blades.

  18. Solidification of NaCl-NaF eutectic in space

    NASA Technical Reports Server (NTRS)

    Yue, A. S.; Yu, J. G.

    1974-01-01

    Continuous and discontinuous NaF fibers, embedded in a NaCl matrix, have been produced in space and on earth, respectively. The production of continuous fibers in a eutectic mixture was attributed to the absence of convection current in the liquid during solidification in space. Image transmission and optical transmittance measurements of transverse sections of the space-grown and earth-grown ingots were made with a light microscope and a spectrometer. It was found that better optical properties were obtained from samples grown in space. This was attributed to a better alignment of NaF fibers along the ingot axis.

  19. Divorced Eutectic Solidification of Mg-Al Alloys

    NASA Astrophysics Data System (ADS)

    Monas, Alexander; Shchyglo, Oleg; Kim, Se-Jong; Yim, Chang Dong; Höche, Daniel; Steinbach, Ingo

    2015-08-01

    We present simulations of the nucleation and equiaxed dendritic growth of the primary hexagonal close-packed -Mg phase followed by the nucleation of the -phase in interdendritic regions. A zoomed-in region of a melt channel under eutectic conditions is investigated and compared with experiments. The presented simulations allow prediction of the final properties of an alloy based on process parameters. The obtained results give insight into the solidification processes governing the microstructure formation of Mg-Al alloys, allowing their targeted design for different applications.

  20. Creep in Directionally Solidified NiAl-Mo Eutectics

    SciTech Connect

    Dudova, Marie; Kucharova, Kveta; Bartak, Tomas; Bei, Hongbin; George, Easo P; Somsen, Ch.; Dlouhy, A.

    2011-01-01

    A directionally solidified NiAl-Mo eutectic and an NiAl intermetallic, having respective nominal compositions Ni-45.5Al-9Mo and Ni-45.2Al (at.%), were loaded in compression at 1073 and 1173 K. Formidable strengthening by regularly distributed Mo fibres (average diameter 600 nm, volume fraction 14%) was observed. The fibres can support compression stresses transferred from the plastically deforming matrix up to a critical stress of the order of 2.5 GPa, at which point they yield. Microstructural evidence is provided for the dislocation-mediated stress transfer from the NiAl to the Mo phase.

  1. Composition gradients in electrolyzed LiCl-KCl eutectic melts

    NASA Astrophysics Data System (ADS)

    Vallet, C. E.; Heatherly, D. E.; Braunstein, J.

    1983-12-01

    Analysis of transport in a mixed electrolyte has previously predicted significant composition gradients in the LiCl-KCl electrolyte of high temperature LiS/ batteries. Composition gradients in quenched electrolyzed LiCl-KCl eutectic contained in yttria felt are measured with high distance resolution by scanning electron microscopy with energy dispersive X-ray spectroscopy. The reported results include composition profiles of LiCl-KCl coontained in porous Y2O3 and electrolyzed in three cells, two with solid Li-Al electrodes and one with a porous Li-Al anode.

  2. Charge Transport and Structural Dynamics in Deep Eutectic Mixtures

    NASA Astrophysics Data System (ADS)

    Cosby, Tyler; Holt, Adam; Terheggen, Logan; Griffin, Philip; Benson, Roberto; Sangoro, Joshua

    2015-03-01

    Charge transport and structural dynamics in a series of imidazole and carboxylic acid-based deep eutectic mixtures are investigated by broadband dielectric spectroscopy, dynamic light scattering, 1H nuclear magnetic resonance spectroscopy, calorimetry, and Fourier transform infrared spectroscopy. It is found that the extended hydrogen-bonded networks characteristic of imidazoles are broken down upon addition of carboxylic acids, resulting in an increase in dc conductivity of the mixtures. These results are discussed within the framework of recent theories of hydrogen bonding and proton transport.

  3. 3D Synchrotron Imaging of a Directionally Solidified Ternary Eutectic

    NASA Astrophysics Data System (ADS)

    Dennstedt, Anne; Helfen, Lukas; Steinmetz, Philipp; Nestler, Britta; Ratke, Lorenz

    2016-03-01

    For the first time, the microstructure of directionally solidified ternary eutectics is visualized in three dimensions, using a high-resolution technique of X-ray tomography at the ESRF. The microstructure characterization is conducted with a photon energy, allowing to clearly discriminate the three phases Ag2Al, Al2Cu, and α-Aluminum solid solution. The reconstructed images illustrate the three-dimensional arrangement of the phases. The Ag2Al lamellae perform splitting and merging as well as nucleation and disappearing events during directional solidification.

  4. Supercooling effects in faceted eutectic Nb-Si alloys

    NASA Technical Reports Server (NTRS)

    Gokhale, A. B.; Sarkar, G.; Abbaschian, G. J.; Haygarth, J. C.; Wojcik, C.

    1988-01-01

    The effect of melt supercooling on the microstructure of an Nb-58 at. pct Si alloy is investigated experimentally using an electromagnetic levitation apparatus. It is found that, starting with an alloy nominally of eutectic composition, nucleation of Nb5Si3 occurs in the supercooled liquid first. Upon further cooling, the remaining liquid continues to supercool until the second phase, NbSi2 is nucleated, which is commonly accompanied by rapid recalescence. The primary phase exibits a eutectoid-type decomposition. The observations are discussed with reference to the results of quantitative microstructural measurements, compositional and thermal analysis, and preliminary thermodynamic modeling of the phase diagram.

  5. Microstructure and mechanical properties of eutectic nickel alloy coatings

    NASA Astrophysics Data System (ADS)

    Bezborodov, V. P.; Saraev, Yu N.

    2016-04-01

    The paper discusses the peculiarities of a structure and a coating composition after reflow. It was established that the structure of coatings from nickel alloy is a solid solution based on nickel, the eutectic of γ-Ni+Ni3B composition and dispersed reinforcing particles. The content of alloying elements in the initial powder material determines the type of the coating structure and the formation of hypoeutectic or hypereutectic structures. The influence of formation conditions on the structure and physical-mechanical properties of the coatings is considered in this paper.

  6. Deep eutectic solvents in countercurrent and centrifugal partition chromatography.

    PubMed

    Roehrer, Simon; Bezold, Franziska; García, Eva Marra; Minceva, Mirjana

    2016-02-19

    Deep eutectic solvents (DESs) were evaluated as solvents in centrifugal partition chromatography, a liquid-liquid chromatography separation technology. To this end, the partition coefficients of ten natural compounds of different hydrophobicity were determined in non-aqueous biphasic systems containing DES. The influence of the composition of DESs and the presence of water in the biphasic system on the partition coefficient were also examined. In addition, several process relevant physical properties of the biphasic system, such as the density and viscosity of the phases, were measured. A mixture of three to four hydrophobic compounds was successfully separated in a centrifugal partition extractor using a heptane/ethanol/DES biphasic system.

  7. Pattern Formation and Growth Kinetics in Eutectic Systems

    SciTech Connect

    Teng, Jing

    2007-01-01

    Growth patterns during liquid/solid phase transformation are governed by simultaneous effects of heat and mass transfer mechanisms, creation of new interfaces, jump of the crystallization units from liquid to solid and their rearrangement in the solid matrix. To examine how the above processes influence the scale of microstructure, two eutectic systems are chosen for the study: a polymeric system polyethylene glycol-p-dibromobenzene (PEG-DBBZ) and a simple molecular system succinonitrile (SCN)-camphor. The scaling law for SCN-camphor system is found to follow the classical Jackson-Hunt model of circular rod eutectic, where the diffusion in the liquid and the interface energy are the main physics governing the two-phase pattern. In contrast, a significantly different scaling law is observed for the polymer system. The interface kinetics of PEG phase and its solute concentration dependence thus have been critically investigated for the first time by directional solidification technique. A model is then proposed that shows that the two-phase pattern in polymers is governed by the interface diffusion and the interface kinetics. In SCN-camphor system, a new branch of eutectic, elliptical shape rodl, is found in thin samples where only one layer of camphor rods is present. It is found that the orientation of the ellipse can change from the major axis in the direction of the thickness to the direction of the width as the velocity and/or the sample thickness is decreased. A theoretical model is developed that predicts the spacing and orientation of the elliptical rods in a thin sample. The single phase growth patterns of SCN-camphor system were also examined with emphasis on the three-dimensional single cell and cell/dendrite transition. For the 3D single cell in a capillary tube, the entire cell shape ahead of the eutectic front can be described by the Saffmann-Taylor finger only at extremely low growth rate. A 3D directional solidification model is developed to

  8. Localized removal of the Au-Si eutectic bonding layer for the selective release of microstructures

    NASA Astrophysics Data System (ADS)

    Gradin, Henrik; Braun, Stefan; Stemme, Göran; van der Wijngaart, Wouter

    2009-10-01

    This paper presents and investigates a novel technique for the footprint and thickness-independent selective release of Au-Si eutectically bonded microstructures through the localized removal of their eutectic bond interface. The technique is based on the electrochemical removal of the gold in the eutectic layer and the selectivity is provided by patterning the eutectic layer and by proper electrical connection or isolation of the areas to be etched or removed, respectively. The gold removal results in a porous silicon layer, acting similar to standard etch holes in a subsequent sacrificial release etching. The paper presents the principle and the design requirements of the technique. First test devices were fabricated and the method successfully demonstrated. Furthermore, the paper investigates the release mechanism and the effects of different gold layouts on both the eutectic bonding and the release procedure.

  9. Ternary eutectic growth of nanostructured thermoelectric Ag-Pb-Te materials

    SciTech Connect

    Wu, Hsin-jay; Chen, Sinn-wen; Foo, Wei-jian; Jeffrey Snyder, G.

    2012-07-09

    Nanostructured Ag-Pb-Te thermoelectric materials were fabricated by unidirectionally solidifying the ternary Ag-Pb-Te eutectic and near-eutectic alloys using the Bridgeman method. Specially, the Bridgman-grown eutectic alloy exhibited a partially aligned lamellar microstructure, which consisted of Ag{sub 5}Te{sub 3} and Te phases, with additional 200-600 nm size particles of PbTe. The self-assembled interfaces altered the thermal and electronic transport properties in the bulk Ag-Pb-Te eutectic alloy. Presumably due to phonon scattering from the nanoscale microstructure, a low thermal conductivity ({kappa} = 0.3 W/mK) was achieved of the eutectic alloy, leading to a zT peak of 0.41 at 400 K.

  10. Investigation of Fixed Points Exceeding 2500 °C Using Metal Carbide-Carbon Eutectics

    NASA Astrophysics Data System (ADS)

    Sasajima, N.; Yamada, Y.; Sakuma, F.

    2003-09-01

    The melting and freezing plateaus of four metal carbide-carbon (MC-C) eutectics, B4C-C, δ(Mo carbide)-C, TiC-C and ZrC-C eutectics were investigated by radiation thermometry for the first time. The observed melting temperatures were 2386 °C, 2583 °C, 2761 °C and 2883 °C, respectively. The plateau shapes of δ(Mo carbide)-C, TiC-C and ZrC-C eutectics are relatively flat compared to the quite rounded plateau shape of the B4C-C eutectic. The results indicate that MC-C eutectics can establish a new series of high-temperature fixed points above 2500 °C.

  11. Directionally solidified pseudo-binary eutectics of Ni-Cr-/Hf,Zr/

    NASA Technical Reports Server (NTRS)

    Kim, Y. G.; Ashbrook, R. L.

    1975-01-01

    This report is concerned with the experimental determination of pseudo binary eutectic compositions and the directional solidification of the Ni-Cr-Hf,Zr, and Ni-Cr-Zr eutectic alloys. To determine unknown eutectics, chemical analyses were made of material bled from near eutectic ingots during incipient melting. Nominal compositions in weight per cent of Ni-18.6Cr-24.0Hf, Ni-19.6Cr-12.8Zr-2.8Hf, and Ni-19.2Cr-14.8Zr formed aligned pseudo-binary eutectic structures. The melting points were about 1270 C. The reinforcing intermetallic phases were identified as noncubic (Ni,Cr)7Hf2 and (Ni,Cr)7(Hf,Zr)2, and face centered cubic (Ni,Cr)5Zr. The volume fraction of the reinforcing phases were about 0.5.

  12. Eutectic Solder Bonding for Highly Manufacturable Microelectromechanical Systems Probe Card

    NASA Astrophysics Data System (ADS)

    Kim, Bonghwan

    2011-06-01

    We developed eutectic solder bonding for the microelectromechanical systems (MEMS) probe card. We tested various eutectic solder materials, such as Sn, AgSn, and AuSn, and investigated the bonding ability of Sn-based multi-element alloys and their resistance to chemical solutions. The Sn-based alloys were formed by sputtering, electroplating, and the use of solder paste. According to our experimental results, Sn-rich solders, such as Ag3.5Sn, Ag3.5Sn96Cu0.5, and Sn, were severely damaged by silicon wet etchant such as potassium hydroxide (KOH) and tetramethylammonium hydroxide (TMAH). On the other hand Au80Sn20 was resistant to those chemicals. In order to verify the joint bondability of the solders, we used a cantilever probe beam, and bump which were made of nickel and nickel alloy. After flip-chip bonding of the cantilever beam and the bump with Au80Sn20 solder paste, we measured the contact force to verify the mechanical strength. We then re-inspected it with X-rays and found no voids in the joint.

  13. New insights into eutectic cream skin penetration enhancement.

    PubMed

    Fiala, Sarah; Roman, Marie; Inacio, Ricardo; Mashal, Sumaia; Brown, Marc B; Jones, Stuart A

    2016-02-29

    The manner in which the eutectic cream EMLA enhances the percutaneous penetration of lidocaine and prilocaine into human skin is still not fully understood. The purpose of this study was to investigate if the modification of drug aggregation played a role in the way EMLA facilitates delivery. Light scattering analysis of lidocaine alone in water gave a critical aggregation concentration (CAC) of 572 μM and a mean aggregate size of 58.8 nm. The analysis of prilocaine in identical conditions gave a CAC of 1177 μM and a mean aggregate size of 105.7 ± 24.8 nm. When the two drugs were mixed at their eutectic 1:1 ratio in water the CAC reduced to 165.8 μM and the aggregate size was 43.82 nm. This lidocaine-prilocaine interaction in water was further modified upon addition of polyoxyethylene hydrogenated castor oil, the surfactant in the EMLA aqueous phase, to produce aggregates of <20 nm. The physical characterisation data suggested that it was the EMLA cream's surfactant that modified the drug molecular interactions in the aqueous continuous phase and caused a 6 fold higher drug penetration through human epidermal tissue compared to the oil formulations tested in this study. PMID:26732522

  14. Enhanced electrochemical detection of quercetin by Natural Deep Eutectic Solvents.

    PubMed

    Gomez, Federico José Vicente; Espino, Magdalena; de Los Angeles Fernandez, María; Raba, Julio; Silva, María Fernanda

    2016-09-14

    New trends in analytical chemistry encourage the development of smart techniques and methods aligned with Green Chemistry. In this sense, Natural Deep Eutectic Solvents represents an excellent opportunity as a new generation of green solvents. In this work a new application for them has been proposed and demonstrated. These solvents were synthesized by combinations of inexpensive and natural components like, Glucose, Fructose, Citric acid and Lactic acid. The different natural solvents were easily prepared and added to buffer solution in different concentrations, allowing the enhancement of electrochemical detection of an important representative antioxidant like quercetin (QR) with improved signal up to 380%. QR is a ubiquitous flavonoid widespread in plants and food of plant origin. The proposed method using phosphate buffer with a eutectic mixture of Citric acid, Glucose and water in combination with carbon screen printed electrodes exhibited a good analytical performance. Detection and quantification limits were of 7.97 and 26.3 nM respectively; and repeatability with %RSDs of 1.41 and 7.49 for peak potential and intensity respectively. In addition, it has proved to be faster, greener and cheaper than other sensors and chromatographic methods available with the additional advantage of being completely portable. Furthermore, the obtained results demonstrated that the proposed method is able for the determination of QR in complex food samples.

  15. Differential Microscopic Mobility of Components within a Deep Eutectic Solvent

    DOE PAGES

    Wagle, Durgesh V.; Baker, Gary A.; Mamontov, Eugene

    2015-07-13

    From macroscopic measurements of deep eutectic solvents such as glyceline (1:2 molar ratio of choline chloride to glycerol), the long-range translational diffusion of the larger cation (choline) is known to be slower compared to that of the smaller hydrogen bond donor (glycerol). However, when the diffusion dynamics are analyzed on the subnanometer length scale, we discover that the displacements associated with the localized diffusive motions are actually larger for choline. This counterintuitive diffusive behavior can be understood as follows. The localized diffusive motions confined in the transient cage of neighbor particles, which precede the cage-breaking long-range diffusion jumps, are moremore » spatially constrained for glycerol than for choline because of the stronger hydrogen bonds the former makes with chloride anions. The implications of differential localized mobility of the constituents should be especially important for applications where deep eutectic solvents are confined on the nanometer length scale and their long-range translational diffusion is strongly inhibited (e.g., within microporous media).« less

  16. Differential Microscopic Mobility of Components within a Deep Eutectic Solvent

    SciTech Connect

    Wagle, Durgesh V.; Baker, Gary A.; Mamontov, Eugene

    2015-07-13

    From macroscopic measurements of deep eutectic solvents such as glyceline (1:2 molar ratio of choline chloride to glycerol), the long-range translational diffusion of the larger cation (choline) is known to be slower compared to that of the smaller hydrogen bond donor (glycerol). However, when the diffusion dynamics are analyzed on the subnanometer length scale, we discover that the displacements associated with the localized diffusive motions are actually larger for choline. This counterintuitive diffusive behavior can be understood as follows. The localized diffusive motions confined in the transient cage of neighbor particles, which precede the cage-breaking long-range diffusion jumps, are more spatially constrained for glycerol than for choline because of the stronger hydrogen bonds the former makes with chloride anions. The implications of differential localized mobility of the constituents should be especially important for applications where deep eutectic solvents are confined on the nanometer length scale and their long-range translational diffusion is strongly inhibited (e.g., within microporous media).

  17. Anthracene + Pyrene Solid Mixtures: Eutectic and Azeotropic Character

    PubMed Central

    Rice, James W.; Fu, Jinxia; Suuberg, Eric M.

    2010-01-01

    To better characterize the thermodynamic behavior of a binary polycyclic aromatic hydrocarbon mixture, thermochemical and vapor pressure experiments were used to examine the phase behavior of the anthracene (1) + pyrene (2) system. A solid-liquid phase diagram was mapped for the mixture. A eutectic point occurs at 404 K at x1 = 0.22. A model based on eutectic formation can be used to predict the enthalpy of fusion associated with the mixture. For mixtures that contain x1 < 0.90, the enthalpy of fusion is near that of pure pyrene. This and X-ray diffraction results indicate that mixtures of anthracene and pyrene have pyrene-like crystal structures and energetics until the composition nears that of pure anthracene. Solid-vapor equilibrium studies show that mixtures of anthracene and pyrene form solid azeotropes at x1 of 0.03 and 0.14. Additionally, mixtures at x1 = 0.99 sublime at the vapor pressure of pure anthracene, suggesting that anthracene behavior is not significantly influenced by x2 = 0.01 in the crystal structure. PMID:21116474

  18. Anthracene + Pyrene Solid Mixtures: Eutectic and Azeotropic Character.

    PubMed

    Rice, James W; Fu, Jinxia; Suuberg, Eric M

    2010-09-01

    To better characterize the thermodynamic behavior of a binary polycyclic aromatic hydrocarbon mixture, thermochemical and vapor pressure experiments were used to examine the phase behavior of the anthracene (1) + pyrene (2) system. A solid-liquid phase diagram was mapped for the mixture. A eutectic point occurs at 404 K at x(1) = 0.22. A model based on eutectic formation can be used to predict the enthalpy of fusion associated with the mixture. For mixtures that contain x(1) < 0.90, the enthalpy of fusion is near that of pure pyrene. This and X-ray diffraction results indicate that mixtures of anthracene and pyrene have pyrene-like crystal structures and energetics until the composition nears that of pure anthracene. Solid-vapor equilibrium studies show that mixtures of anthracene and pyrene form solid azeotropes at x(1) of 0.03 and 0.14. Additionally, mixtures at x(1) = 0.99 sublime at the vapor pressure of pure anthracene, suggesting that anthracene behavior is not significantly influenced by x(2) = 0.01 in the crystal structure.

  19. Enhanced electrochemical detection of quercetin by Natural Deep Eutectic Solvents.

    PubMed

    Gomez, Federico José Vicente; Espino, Magdalena; de Los Angeles Fernandez, María; Raba, Julio; Silva, María Fernanda

    2016-09-14

    New trends in analytical chemistry encourage the development of smart techniques and methods aligned with Green Chemistry. In this sense, Natural Deep Eutectic Solvents represents an excellent opportunity as a new generation of green solvents. In this work a new application for them has been proposed and demonstrated. These solvents were synthesized by combinations of inexpensive and natural components like, Glucose, Fructose, Citric acid and Lactic acid. The different natural solvents were easily prepared and added to buffer solution in different concentrations, allowing the enhancement of electrochemical detection of an important representative antioxidant like quercetin (QR) with improved signal up to 380%. QR is a ubiquitous flavonoid widespread in plants and food of plant origin. The proposed method using phosphate buffer with a eutectic mixture of Citric acid, Glucose and water in combination with carbon screen printed electrodes exhibited a good analytical performance. Detection and quantification limits were of 7.97 and 26.3 nM respectively; and repeatability with %RSDs of 1.41 and 7.49 for peak potential and intensity respectively. In addition, it has proved to be faster, greener and cheaper than other sensors and chromatographic methods available with the additional advantage of being completely portable. Furthermore, the obtained results demonstrated that the proposed method is able for the determination of QR in complex food samples. PMID:27566343

  20. Preliminary study of the electrolysis of aluminum sulfide in molten salts

    SciTech Connect

    Minh, N.Q.; Loutfy, R.O.; Yao, N.P.

    1983-02-01

    A preliminary laboratory-scale study of the electrolysis of aluminum sulfide in molten salts investigated the (1) solubility of Al/sub 2/S/sub 3/ in molten salts, (2) electrochemical behavior of Al/sub 2/S/sub 3/, and (3) electrolysis of Al/sub 2/S/sub 3/ with the determination of current efficiency as a function of current density. The solubility measurements show that MgCl/sub 2/-NaCl-KCl eutectic electrolyte at 1023 K can dissolve up to 3.3 mol % sulfide. The molar ratio of sulfur to aluminum in the eutectic is about one, which suggests that some sulfur remains undissolved, probably in the form of MgS. The experimental data and thermodynamic calculations suggest that Al/sub 2/S/sub 3/ dissolves in the eutectic to form AlS/sup +/ species in solution. Addition of AlCl/sub 3/ to the eutectic enhances the solubility of Al/sub 2/S/sub 3/; the solubility increases with increasing AlCl/sub 3/ concentration. The electrode reaction mechanism for the electrolysis of Al/sub 2/S/sub 3/ was elucidated by using linear sweep voltammetry. The cathodic reduction of aluminum-ion-containing species to aluminum proceeds by a reversible, diffusion-controlled, three-electron reaction. The anodic reaction involves the two-electron discharge of sulfide-ion-containing species, followed by the fast dimerization of sulfur atoms to S/sub 2/. Electrolysis experiments show that Al/sub 2/S/sub 3/ dissolved in molten MgCl/sub 2/-NaCl-KCl eutectic or in eutectic containing AlCl/sub 3/ can be electrolyzed to produce aluminum and sulfur. In the eutectic at 1023 K, the electrolysis can be conducted up to about 300 mA/cm/sup 2/ for the saturation solubility of Al/sub 2/S/sub 3/. Although these preliminary results are promising, additional studies are needed to elucidate many critical operating parameters before the technical potential of the electrolysis can be accurately assessed. 20 figures, 18 tables.

  1. Rapidly solidified Ag-Cu eutectics: A comparative study using drop-tube and melt fluxing techniques

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Mullis, A. M.; Cochrane, R. F.

    2016-03-01

    A comparative study of rapid solidification of Ag-Cu eutectic alloy processed via melt fluxing and drop-tube techniques is presented. A computational model is used to estimate the cooling rate and undercooling of the free fall droplets as this cannot be determined directly. SEM micrographs show that both materials consist of lamellar and anomalous eutectic structures. However, below the critical undercooling the morphologies of each are different in respect of the distribution and volume of anomalous eutectic. The anomalous eutectic in flux- undercooled samples preferentially forms at cell boundaries around the lamellar eutectic in the cell body. In drop-tube processed samples it tends to distribute randomly inside the droplets and at much smaller volume fractions. That the formation of the anomalous eutectic can, at least in part, be suppressed in the drop-tube is strongly suggestive that the formation of anomalous eutectic occurs via remelting process, which is suppressed by rapid cooling during solidification.

  2. Experimental and Theoretical Investigations of the Solidification of Eutectic Al-Si Alloy

    NASA Technical Reports Server (NTRS)

    Sen, S.; Catalina, A. V.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    The eutectic alloys have a wide spectrum of applications due to their good castability and physical and mechanical properties. The interphase spacing resulting during solidification is an important microstructural feature that significantly influences the mechanical behavior of the material. Thus, knowledge of the evolution of the interphase spacing during solidification is necessary in order to properly design the solidification process and optimize the material properties. While the growth of regular eutectics is rather well understood, the irregular eutectics such as Al-Si or Fe-graphite exhibit undercoolings and lamellar spacings much larger than those theoretically predicted. Despite of a considerable amount of experimental and theoretical work a clear understanding of the true mechanism underlying the spacing selection in irregular eutectics is yet to be achieved. A new experimental study of the solidification of the eutectic Al-Si alloy will be reported in this paper. The measured interface undercoolings and lamellar spacing will be compared to those found in the literature in order to get more general information regarding the growth mechanism of irregular eutectics. A modification of the present theory of the eutectic growth is also proposed. The results of the modified mathematical model, accounting for a non-isothermal solid/liquid interface, will be compared to the experimental measurements.

  3. Fission product ion exchange between zeolite and a molten salt

    NASA Astrophysics Data System (ADS)

    Gougar, Mary Lou D.

    The electrometallurgical treatment of spent nuclear fuel (SNF) has been developed at Argonne National Laboratory (ANL) and has been demonstrated through processing the sodium-bonded SNF from the Experimental Breeder Reactor-II in Idaho. In this process, components of the SNF, including U and species more chemically active than U, are oxidized into a bath of lithium-potassium chloride (LiCl-KCl) eutectic molten salt. Uranium is removed from the salt solution by electrochemical reduction. The noble metals and inactive fission products from the SNF remain as solids and are melted into a metal waste form after removal from the molten salt bath. The remaining salt solution contains most of the fission products and transuranic elements from the SNF. One technique that has been identified for removing these fission products and extending the usable life of the molten salt is ion exchange with zeolite A. A model has been developed and tested for its ability to describe the ion exchange of fission product species between zeolite A and a molten salt bath used for pyroprocessing of spent nuclear fuel. The model assumes (1) a system at equilibrium, (2) immobilization of species from the process salt solution via both ion exchange and occlusion in the zeolite cage structure, and (3) chemical independence of the process salt species. The first assumption simplifies the description of this physical system by eliminating the complications of including time-dependent variables. An equilibrium state between species concentrations in the two exchange phases is a common basis for ion exchange models found in the literature. Assumption two is non-simplifying with respect to the mathematical expression of the model. Two Langmuir-like fractional terms (one for each mode of immobilization) compose each equation describing each salt species. The third assumption offers great simplification over more traditional ion exchange modeling, in which interaction of solvent species with each other

  4. Electrochemical Synthesis of Magnesium Hexaboride by Molten Salt Technique.

    PubMed

    Angappan, S; Kalaiselvi, N; Sudha, R; Visuvasam, A

    2014-01-01

    The present work reports electrochemical synthesis of MgB6 from molten salts using the precursor consists of LiF-B2O3-MgCl2. An attempt has been made to synthesize metastable phase MgB6 crystal by electrolysis method. DTA/TGA studies were made to determine the eutectic point of the melt and it was found to be around 900°C. The electrolysis was performed at 900°C under argon atmosphere, at current density of 1.5 A/cm(2). The electrodeposited crystals were examined using XRD, SEM, and XPS. From the above studies, the electrochemical synthesis method for hypothetical MgB6 from chloro-oxy-fluoride molten salt system is provided. Mechanism for the formation of magnesium hexaboride is discussed.

  5. Electrochemical Synthesis of Magnesium Hexaboride by Molten Salt Technique

    PubMed Central

    Angappan, S.; Kalaiselvi, N.; Sudha, R.; Visuvasam, A.

    2014-01-01

    The present work reports electrochemical synthesis of MgB6 from molten salts using the precursor consists of LiF–B2O3–MgCl2. An attempt has been made to synthesize metastable phase MgB6 crystal by electrolysis method. DTA/TGA studies were made to determine the eutectic point of the melt and it was found to be around 900°C. The electrolysis was performed at 900°C under argon atmosphere, at current density of 1.5 A/cm2. The electrodeposited crystals were examined using XRD, SEM, and XPS. From the above studies, the electrochemical synthesis method for hypothetical MgB6 from chloro-oxy-fluoride molten salt system is provided. Mechanism for the formation of magnesium hexaboride is discussed. PMID:27350961

  6. Electrodeposition of copper composites from deep eutectic solvents based on choline chloride.

    PubMed

    Abbott, Andrew P; El Ttaib, Khalid; Frisch, Gero; McKenzie, Katy J; Ryder, Karl S

    2009-06-01

    Here we describe for the first time the electrolytic deposition of copper and copper composites from a solution of the metal chloride salt in either urea-choline chloride, or ethylene glycol-choline chloride based eutectics. We show that the deposition kinetics and thermodynamics are quite unlike those in aqueous solution under comparable conditions and that the copper ion complexation is also different. The mechanism of copper nucleation is studied using chronoamperometry and it is shown that progressive nucleation leads to a bright nano-structured deposit. In contrast, instantaneous nucleation, at lower concentrations of copper ions, leads to a dull deposit. This work also pioneers the use of the electrochemical quartz crystal microbalance (EQCM) to monitor both current efficiency and the inclusion of inert particulates into the copper coatings. This technique allows the first in situ quantification or particulate inclusion. It was found that the composition of composite material was strongly dependent on the amount of species suspended in solution. It was also shown that the majority of material was dragged onto the surface rather than settling on to it. The distribution of the composite material was found to be even throughout the coating. This technology is important because it facilitates deposition of bright copper coatings without co-ligands such as cyanide. The incorporation of micron-sized particulates into ionic liquids has resulted, in one case, in a decrease in viscosity. This observation is both unusual and surprising; we explain this here in terms of an increase in the free volume of the liquid and local solvent perturbation. PMID:19458829

  7. Solvatochromic probe behavior within choline chloride-based deep eutectic solvents: effect of temperature and water.

    PubMed

    Pandey, Ashish; Pandey, Siddharth

    2014-12-18

    Deep eutectic solvents (DESs) have shown potential as promising environmentally friendly alternatives to conventional solvents. Many common and popular DESs are obtained by simply mixing a salt and a H-bond donor. Properties of such a DES depend on its constituents. Change in temperature and addition of water, a benign cosolvent, can change the physicochemical properties of DESs. The effect of changing temperature and addition of water on solvatochromic probe behavior within three DESs formed from choline chloride combined with 1,2-ethanediol, glycerol, and urea, respectively, in 1:2 mol ratios termed ethaline, glyceline, and reline is presented. Increase in temperature results in reduced H-bond donating acidity of the DESs. Dipolarity/polarizability and H-bond accepting basicity do not change with changing temperature of the DESs. The response of the fluorescence probe pyrene also indicates a decrease in the polarity of the DESs as temperature is increased. Addition of water to DES results in increased dipolarity/polarizability and a decrease in H-bond accepting basicity. Except for pyrene, solvatochromic probes exhibit responses close to those predicted from ideal-additive behavior with slight preferential solvation by DES within the aqueous mixtures. Pyrene response reveals significant preferential solvation by DES and/or the presence of solvent-solvent interactions, especially within aqueous mixtures of ethaline and glyceline, the DESs constituted of H-bond donors with hydroxyl functionalities. FTIR absorbance and Raman spectroscopic measurements of aqueous DES mixtures support the outcomes from solvatochromic probe responses. Aqueous mixtures of ethaline and glyceline possess relatively more interspecies H-bonds as compared to aqueous mixtures of reline, where interstitial accommodation of water within the reline molecular network appears to dominate. PMID:25418894

  8. Self Assembled Structures by Directional Solidification of Eutectics

    NASA Technical Reports Server (NTRS)

    Dynys, Frederick W.; Sayir, Ali

    2004-01-01

    Interest in ordered porous structures has grown because of there unique properties such as photonic bandgaps, high backing packing density and high surface to volume ratio. Inspired by nature, biometric strategies using self assembled organic molecules dominate the development of hierarchical inorganic structures. Directional solidification of eutectics (DSE) also exhibit self assembly characteristics to form hierarchical metallic and inorganic structures. Crystallization of diphasic materials by DSE can produce two dimensional ordered structures consisting of rods or lamella. By selective removal of phases, DSE is capable to fabricate ordered pore arrays or ordered pin arrays. Criteria and limitations to fabricate hierarchical structures will be presented. Porous structures in silicon base alloys and ceramic systems will be reported.

  9. Alkaline extraction of polonium from liquid lead bismuth eutectic

    NASA Astrophysics Data System (ADS)

    Heinitz, S.; Neuhausen, J.; Schumann, D.

    2011-07-01

    The production of highly radiotoxic polonium isotopes poses serious safety concerns for the development of future nuclear systems cooled by lead bismuth eutectic (LBE). In this paper it is shown that polonium can be extracted efficiently from LBE using a mixture of alkaline metal hydroxides (NaOH + KOH) in a temperature range between 180 and 350 °C. The extraction ratio was analyzed for different temperatures, gas blankets and phase ratios. A strong dependence of the extraction performance on the redox properties of the cover gas was found. While hydrogen facilitates the removal of polonium, oxygen has a negative influence on the extraction. These findings open new possibilities to back up the safety of future LBE based nuclear facilities.

  10. Eutectic bonding of contacts to silicon solar cells

    NASA Astrophysics Data System (ADS)

    Giuliano, M. N.

    A process of eutectic wetting and bonding of contact preforms is described which can serve as weld points for interconnection of solar cells. The procedure obviates the need for welding too close to the shallow diffused junction of a solar cell and therefore minimizes mechanical or electrical degradation that is likely when welding directly to the cell metallization. In addition, control of welding parameters is simplified because the weld interconnection is now made to a relatively thick metal preform which is firmly attached to the solar cell. Gold clad kovar was used in this preliminary study. Bond strength was excellent and survived temperature cycling to liquid nitrogen temperature. Electrical performance degradation after alloying was erratic and varied from little or no degradation to severe shunting. The reasons for the loss in fill-factor which is frequently encountered with the present process and choice of materials are not clear at this time. Possible explanations and recommendations for future work are discussed.

  11. Production of lysozyme nanofibers using deep eutectic solvent aqueous solutions.

    PubMed

    Silva, Nuno H C S; Pinto, Ricardo J B; Freire, Carmen S R; Marrucho, Isabel M

    2016-11-01

    Amyloid fibrils have recently gained a lot of attention due to their morphology, functionality and mechanical strength, allowing for their application in nanofiber-based materials, biosensors, bioactive membranes and tissue engineering scaffolds. The in vitro production of amyloid fibrils is still a slow process, thus hampering the massive production of nanofibers and its consequent use. This work presents a new and faster (2-3h) fibrillation method for hen egg white lysozyme (HEWL) using a deep eutectic solvent based on cholinium chloride and acetic acid. Nanofibers with dimensions of 0.5-1μm in length and 0.02-0.1μm in thickness were obtained. Experimental variables such as temperature and pH were also studied, unveiling their influence in fibrillation time and nanofibers morphology. These results open a new scope for protein fibrillation into nanofibers with applications ranging from medicine to soft matter and nanotechnology. PMID:27478961

  12. Glass transition and mixing thermodynamics of a binary eutectic system.

    PubMed

    Tu, Wenkang; Chen, Zeming; Gao, Yanqin; Li, Zijing; Zhang, Yaqi; Liu, Riping; Tian, Yongjun; Wang, Li-Min

    2014-02-28

    A quantitative evaluation of the contribution of mixing thermodynamics to glass transition is performed for a binary eutectic benzil and m-nitroaniline system. The microcalorimetric measurements of the enthalpy of mixing give small and positive values, typically ~200 J mol(-1) for the equimolar mixture. The composition dependence of the glass transition temperature, T(g), is found to show a large and negative deviation from the ideal mixing rule. The Gordon-Taylor and Couchman-Karasz models are subsequently applied to interpret the T(g) behavior, however, only a small fraction of the deviation is explained. The analyses of the experimental results manifest quantitatively the importance of the mixing thermodynamics in the glass transition in miscible systems.

  13. Deep eutectic solvent pretreatment and subsequent saccharification of corncob.

    PubMed

    Procentese, Alessandra; Johnson, Erin; Orr, Valerie; Garruto Campanile, Anna; Wood, Jeffery A; Marzocchella, Antonio; Rehmann, Lars

    2015-09-01

    Ionic liquid (ILs) pretreatment of lignocellulosic biomass has attracted broad scientific interest, despite high costs, possible toxicity and energy intensive recycling. An alternative group of ionic solvents with similar physicochemical properties are deep eutectic solvents (DESs). Corncob residues were pretreated with three different DES systems: choline chloride and glycerol, choline chloride and imidazole, choline chloride and urea. The pretreated biomass was characterised in terms of lignin content, sugars concentration, enzymatic digestibility and crystallinity index. A reduction of lignin and hemicellulose content resulted in increased crystallinity of the pretreated biomass while the crystallinity of the cellulose fraction could be reduced, depending on DES system and operating conditions. The subsequent enzymatic saccharification was enhanced in terms of rate and extent. A total of 41 g fermentable sugars (27 g glucose and 14 g xylose) could be recovered from 100g corncob, representing 76% (86% and 63%) of the initially available carbohydrates. PMID:26005926

  14. The electrodeposition of silver composites using deep eutectic solvents.

    PubMed

    Abbott, Andrew P; El Ttaib, Khalid; Frisch, Gero; Ryder, Karl S; Weston, David

    2012-02-21

    Silver is an important metal for electronic connectors, however, it is extremely soft and wear can be a significant issue. This paper describes how improved wear resistant silver coatings can be obtained from the electrolytic deposition of silver from a solution of AgCl in an ethylene glycol/choline chloride based Deep Eutectic Solvent. An up to 10-fold decrease in the wear volume is observed by the incorporation of SiC or Al(2)O(3) particles. The work also addresses the fundamental aspect of speciation of silver chloride in solution using EXAFS to probe solution structure. The size but not the nature of the composite particles is seen to change the morphology and grain size of the silver deposit. Grain sizes are shown to be consistent with previous nucleation studies. The addition of LiF is found to significantly affect the deposit morphology and improve wear resistance. PMID:22249451

  15. Transmission laser bonding of low melting eutectic alloys

    NASA Astrophysics Data System (ADS)

    Hoff, C.; Cromwell, K.; Hermsdorf, J.; Akin, M.; Wurz, M. C.; Kaierle, S.; Maier, H. J.; Overmeyer, L.

    2016-03-01

    Transparent polymers with low glass transition temperatures are flexible materials and can serve as an optical waveguide or as substrates for the layer structure in applications such as humidity or temperature sensors. The background of this publication is the development of a laser-based process to bond silicon chips, which serve as emitter or detector in an optical system, on a substrate, without exposing the substrate to thermo-mechanical stress. Using transmission laser bonding of low-melting eutectic alloys, the necessary energy can be coupled into the fusion zone precisely to reduce the process time. In this paper, Si-chips with 52In48Sn and 66In34Bi layers are investigated to bond on rigid substrates. Experimental results are presented, which illustrate the mechanical stability of these compounds.

  16. Production of lysozyme nanofibers using deep eutectic solvent aqueous solutions.

    PubMed

    Silva, Nuno H C S; Pinto, Ricardo J B; Freire, Carmen S R; Marrucho, Isabel M

    2016-11-01

    Amyloid fibrils have recently gained a lot of attention due to their morphology, functionality and mechanical strength, allowing for their application in nanofiber-based materials, biosensors, bioactive membranes and tissue engineering scaffolds. The in vitro production of amyloid fibrils is still a slow process, thus hampering the massive production of nanofibers and its consequent use. This work presents a new and faster (2-3h) fibrillation method for hen egg white lysozyme (HEWL) using a deep eutectic solvent based on cholinium chloride and acetic acid. Nanofibers with dimensions of 0.5-1μm in length and 0.02-0.1μm in thickness were obtained. Experimental variables such as temperature and pH were also studied, unveiling their influence in fibrillation time and nanofibers morphology. These results open a new scope for protein fibrillation into nanofibers with applications ranging from medicine to soft matter and nanotechnology.

  17. Facile pretreatment of lignocellulosic biomass using deep eutectic solvents.

    PubMed

    Zhang, Cheng-Wu; Xia, Shu-Qian; Ma, Pei-Sheng

    2016-11-01

    In this work, three kinds of deep eutectic solvents (DESs) were facilely prepared and used in the pretreatment of corncob, including monocarboxylic acid/choline chloride, dicarboxylic acid/choline chloride and polyalcohol/choline chloride. The enhanced delignification and subsequent enzymatic hydrolysis efficiency were found to be related to the acid amount, acid strength and the nature of hydrogen bond acceptors. The XRD, SEM and FT-IR results consistently indicated that the structures of corncob were disrupted by the removal of lignin and hemicellulose in the pretreatment process. In addition, the optimal pretreatment temperature and time were 90°C and 24h, respectively. This study explored the roles of various DESs combinations, pretreatment temperature and time to better utilize the DESs in the pretreatment of lignocellulosic biomass. PMID:27468171

  18. Eutectic superalloys by edge-defined, film-fed growth

    NASA Technical Reports Server (NTRS)

    Hurley, G. F.

    1975-01-01

    The feasibility of producing directionally solidified eutectic alloy composites by edge-defined, film-fed growth (EFG) was carried out. The three eutectic alloys which were investigated were gamma + delta, gamma/gamma prime + delta, and a Co-base TaC alloy containing Cr and Ni. Investigations into the compatibility and wettability of these metals with various carbides, borides, nitrides, and oxides disclosed that compounds with the largest (negative) heats of formation were most stable but poorest wetting. Nitrides and carbides had suitable stability and low contact angles but capillary rise was observed only with carbides. Oxides would not give capillary rise but would probably fulfill the other wetting requirements of EFG. Tantalum carbide was selected for most of the experimental portion of the program based on its exhibiting spontaneous capillary rise and satisfactory slow rate of degradation in the liquid metals. Samples of all three alloys were grown by EFG with the major experimental effort restricted to gamma + delta and gamma/gamma prime + delta alloys. In the standard, uncooled EFG apparatus, the thermal gradient was inferred from the growth speed and was 150 to 200 C/cm. This value may be compared to typical gradients of less than 100 C/cm normally achieved in a standard Bridgman-type apparatus. When a stream of helium was directed against the side of the bar during growth, the gradient was found to improve to about 250 C/cm. In comparison, a theoretical gradient of 700 C/cm should be possible under ideal conditions, without the use of chills. Methods for optimizing the gradient in EFG are discussed, and should allow attainment of close to the theoretical for a particular configuration.

  19. The influence of ternary alloying elements on the Al-Si eutectic microstructure and the Si morphology

    NASA Astrophysics Data System (ADS)

    Darlapudi, A.; McDonald, S. D.; Terzi, S.; Prasad, A.; Felberbaum, M.; StJohn, D. H.

    2016-01-01

    The influence of the ternary alloying elements Cu, Mg and Fe on the Al-Si eutectic microstructure is investigated using a commercial purity Al-10 wt%Si alloy in unmodified and Sr-modified conditions. A change in the Al-Si eutectic microstructure was associated with a change in the nucleation density of the eutectic grains caused by the addition of ternary alloying elements. When the ternary alloying element addition resulted in an increase in the eutectic nucleation frequency, a fibrous to flake-like transition was observed within the eutectic grain. When the ternary alloying element addition decreased the eutectic nucleation frequency significantly, a change in the eutectic morphology from flake-like to a mixture of flake-like and fibrous morphologies was observed. The mechanism of Al-Si eutectic modification is discussed. The growth velocity of the eutectic grain - liquid interface and the constitutional driving force available for growth are proposed as important parameters that influence the degree of eutectic modification in Al-Si alloys.

  20. Rapid growth and formation mechanism of ultrafine structural oxide eutectic ceramics by laser direct forming

    NASA Astrophysics Data System (ADS)

    Su, H. J.; Zhang, J.; Liu, L.; Eckert, J.; Fu, H. Z.

    2011-11-01

    Melt growth of oxide eutectic is an important and fast-growing research topic in the fields of both applied physics and materials science. Rapid one-step fabrication of melt-grown oxide ceramics with large size is developed using laser direct forming. The near 100% density of Al2O3/YAG eutectic ceramic in situ composite free of pore and cracks is rapidly melted/solidified directly from Al2O3-Y2O3 powder without any preforming or sintering. Uniform three-dimensional network of ultrafine nanostructured eutectic microstructure is obtained. The direct experimental evidence of faceted-nonfaceted eutectic transition at high growth rate is presented and the physical model of the microstructural formation based on atom cluster elementary process is proposed. This technology provides a rapid freeform fabrication of high-performance complex shaped ceramics for various applications.

  1. Effect of boron on the microstructure of near-eutectic Al-Si alloys

    SciTech Connect

    Wu Yuying . E-mail: wyy532001@163.com; Liu Xiangfa; Bian Xiufang

    2007-02-15

    The effect of boron on the microstructure of a near-eutectic Al-Si alloy (ZL109) was investigated by scanning electron microscopy (SEM) and electron beam microprobe analysis (EPMA). It was found that {alpha}-Al dendrites and eutectic clusters were significantly refined by the addition of boron. Another interesting discovery is that the near-eutectic alloy exhibited hypereutectic structure characteristics when the level of boron added exceeds 0.3%, i.e., primary Si is precipitated in the eutectic microstructure. A new type of nucleation substrate for the primary Si is found, Al {sub x}Ca {sub m}B {sub n}Si. This appears to be the main reason for the precipitation of primary Si.

  2. Modeled Salt Density for Nuclear Material Estimation in the Treatment of Spent Nuclear Fuel

    SciTech Connect

    DeeEarl Vaden; Robert. D. Mariani

    2010-09-01

    Spent metallic nuclear fuel is being treated in a pyrometallurgical process that includes electrorefining the uranium metal in molten eutectic LiCl-KCl as the supporting electrolyte. We report a model for determining the density of the molten salt. Inventory operations account for the net mass of salt and for the mass of actinides present. It was necessary to know the molten salt density but difficult to measure, and it was decided to model the salt density for the initial treatment operations. The model assumes that volumes are additive for the ideal molten salt solution as a starting point; subsequently a correction factor for the lanthanides and actinides was developed. After applying the correction factor, the percent difference between the net salt mass in the electrorefiner and the resulting modeled salt mass decreased from more than 4.0% to approximately 0.1%. As a result, there is no need to measure the salt density at 500 C for inventory operations; the model for the salt density is found to be accurate.

  3. Electrolyte salts for power sources

    DOEpatents

    Doddapaneni, N.; Ingersoll, D.

    1995-11-28

    Electrolyte salts are disclosed for power sources comprising salts of phenyl polysulfonic acids and phenyl polyphosphonic acids. The preferred salts are alkali and alkaline earth metal salts, most preferably lithium salts. 2 figs.

  4. Electrolyte salts for power sources

    DOEpatents

    Doddapaneni, Narayan; Ingersoll, David

    1995-01-01

    Electrolyte salts for power sources comprising salts of phenyl polysulfonic acids and phenyl polyphosphonic acids. The preferred salts are alkali and alkaline earth metal salts, most preferably lithium salts.

  5. Template-Directed Directionally Solidified 3D Mesostructured AgCl-KCl Eutectic Photonic Crystals.

    PubMed

    Kim, Jinwoo; Aagesen, Larry K; Choi, Jun Hee; Choi, Jaewon; Kim, Ha Seong; Liu, Jinyun; Cho, Chae-Ryong; Kang, Jin Gu; Ramazani, Ali; Thornton, Katsuyo; Braun, Paul V

    2015-08-19

    3D mesostructured AgCl-KCl photonic crystals emerge from colloidal templating of eutectic solidification. Solvent removal of the KCl phase results in a mesostructured AgCl inverse opal. The 3D-template-induced confinement leads to the emergence of a complex microstructure. The 3D mesostructured eutectic photonic crystals have a large stop band ranging from the near-infrared to the visible tuned by the processing.

  6. Eutectic structures in friction spot welding joint of aluminum alloy to copper

    NASA Astrophysics Data System (ADS)

    Shen, Junjun; Suhuddin, Uceu F. H.; Cardillo, Maria E. B.; dos Santos, Jorge F.

    2014-05-01

    A dissimilar joint of AA5083 Al alloy and copper was produced by friction spot welding. The Al-MgCuAl2 eutectic in both coupled and divorced manners were found in the weld. At a relatively high temperature, mass transport of Cu due to plastic deformation, material flow, and atomic diffusion, combined with the alloy system of AA5083 are responsible for the ternary eutectic melting.

  7. Investigation of a eutectic mixture of sodium acetate trihydrate and urea as latent heat storage

    SciTech Connect

    Jing-Hua Li; Gui-En Zhang; Jin-Yun Wang )

    1991-01-01

    In this paper, the pseudobinary system CH{sub 3}COONa {times} 3H{sub 2}O{bond}CO(NH{sub 2}){sub 2} is studied by means of differential scanning calorimetry (DSC). Its eutectic mixture is found to melt congruently at 30C, its heat of fusion is 200.5 J/g, considering the temperature of phase change and its heat storage capacity. This eutectic mixture is an excellent material for latent heat storage of solar energy.

  8. Eutectic structures in friction spot welding joint of aluminum alloy to copper

    SciTech Connect

    Shen, Junjun Suhuddin, Uceu F. H.; Cardillo, Maria E. B.; Santos, Jorge F. dos

    2014-05-12

    A dissimilar joint of AA5083 Al alloy and copper was produced by friction spot welding. The Al-MgCuAl{sub 2} eutectic in both coupled and divorced manners were found in the weld. At a relatively high temperature, mass transport of Cu due to plastic deformation, material flow, and atomic diffusion, combined with the alloy system of AA5083 are responsible for the ternary eutectic melting.

  9. A Molten Salt Lithium-Oxygen Battery.

    PubMed

    Giordani, Vincent; Tozier, Dylan; Tan, Hongjin; Burke, Colin M; Gallant, Betar M; Uddin, Jasim; Greer, Julia R; McCloskey, Bryan D; Chase, Gregory V; Addison, Dan

    2016-03-01

    Despite the promise of extremely high theoretical capacity (2Li + O2 ↔ Li2O2, 1675 mAh per gram of oxygen), many challenges currently impede development of Li/O2 battery technology. Finding suitable electrode and electrolyte materials remains the most elusive challenge to date. A radical new approach is to replace volatile, unstable and air-intolerant organic electrolytes common to prior research in the field with alkali metal nitrate molten salt electrolytes and operate the battery above the liquidus temperature (>80 °C). Here we demonstrate an intermediate temperature Li/O2 battery using a lithium anode, a molten nitrate-based electrolyte (e.g., LiNO3-KNO3 eutectic) and a porous carbon O2 cathode with high energy efficiency (∼95%) and improved rate capability because the discharge product, lithium peroxide, is stable and moderately soluble in the molten salt electrolyte. The results, supported by essential state-of-the-art electrochemical and analytical techniques such as in situ pressure and gas analyses, scanning electron microscopy, rotating disk electrode voltammetry, demonstrate that Li2O2 electrochemically forms and decomposes upon cycling with discharge/charge overpotentials as low as 50 mV. We show that the cycle life of such batteries is limited only by carbon reactivity and by the uncontrolled precipitation of Li2O2, which eventually becomes electrically disconnected from the O2 electrode. PMID:26871485

  10. A Molten Salt Lithium-Oxygen Battery.

    PubMed

    Giordani, Vincent; Tozier, Dylan; Tan, Hongjin; Burke, Colin M; Gallant, Betar M; Uddin, Jasim; Greer, Julia R; McCloskey, Bryan D; Chase, Gregory V; Addison, Dan

    2016-03-01

    Despite the promise of extremely high theoretical capacity (2Li + O2 ↔ Li2O2, 1675 mAh per gram of oxygen), many challenges currently impede development of Li/O2 battery technology. Finding suitable electrode and electrolyte materials remains the most elusive challenge to date. A radical new approach is to replace volatile, unstable and air-intolerant organic electrolytes common to prior research in the field with alkali metal nitrate molten salt electrolytes and operate the battery above the liquidus temperature (>80 °C). Here we demonstrate an intermediate temperature Li/O2 battery using a lithium anode, a molten nitrate-based electrolyte (e.g., LiNO3-KNO3 eutectic) and a porous carbon O2 cathode with high energy efficiency (∼95%) and improved rate capability because the discharge product, lithium peroxide, is stable and moderately soluble in the molten salt electrolyte. The results, supported by essential state-of-the-art electrochemical and analytical techniques such as in situ pressure and gas analyses, scanning electron microscopy, rotating disk electrode voltammetry, demonstrate that Li2O2 electrochemically forms and decomposes upon cycling with discharge/charge overpotentials as low as 50 mV. We show that the cycle life of such batteries is limited only by carbon reactivity and by the uncontrolled precipitation of Li2O2, which eventually becomes electrically disconnected from the O2 electrode.

  11. Highlights of the Salt Extraction Process

    NASA Astrophysics Data System (ADS)

    Abbasalizadeh, Aida; Seetharaman, Seshadri; Teng, Lidong; Sridhar, Seetharaman; Grinder, Olle; Izumi, Yukari; Barati, Mansoor

    2013-11-01

    This article presents the salient features of a new process for the recovery of metal values from secondary sources and waste materials such as slag and flue dusts. It is also feasible in extracting metals such as nickel and cobalt from ores that normally are difficult to enrich and process metallurgically. The salt extraction process is based on extraction of the metals from the raw materials by a molten salt bath consisting of NaCl, LiCl, and KCl corresponding to the eutectic composition with AlCl3 as the chlorinating agent. The process is operated in the temperature range 973 K (700°C) to 1173 K (900°C). The process was shown to be successful in extracting Cr and Fe from electric arc furnace (EAF) slag. Electrolytic copper could be produced from copper concentrate based on chalcopyrite in a single step. Conducting the process in oxygen-free atmosphere, sulfur could be captured in the elemental form. The method proved to be successful in extracting lead from spent cathode ray tubes. In order to prevent the loss of AlCl3 in the vapor form and also chlorine gas emission at the cathode during the electrolysis, liquid aluminum was used. The process was shown to be successful in extracting Nd and Dy from magnetic scrap. The method is a highly promising process route for the recovery of strategic metals. It also has the added advantage of being environmentally friendly.

  12. An Overview of Liquid Fluoride Salt Heat Transport Systems

    SciTech Connect

    Holcomb, David Eugene; Cetiner, Sacit M

    2010-09-01

    Heat transport is central to all thermal-based forms of electricity generation. The ever increasing demand for higher thermal efficiency necessitates power generation cycles transitioning to progressively higher temperatures. Similarly, the desire to provide direct thermal coupling between heat sources and higher temperature chemical processes provides the underlying incentive to move toward higher temperature heat transfer loops. As the system temperature rises, the available materials and technology choices become progressively more limited. Superficially, fluoride salts at {approx}700 C resemble water at room temperature being optically transparent and having similar heat capacity, roughly three times the viscosity, and about twice the density. Fluoride salts are a leading candidate heat-transport material at high temperatures. Fluoride salts have been extensively used in specialized industrial processes for decades, yet they have not entered widespread deployment for general heat transport purposes. This report does not provide an exhaustive screening of potential heat transfer media and other high temperature liquids such as alkali metal carbonate eutectics or chloride salts may have economic or technological advantages. A particular advantage of fluoride salts is that the technology for their use is relatively mature as they were extensively studied during the 1940s-1970s as part of the U.S. Atomic Energy Commission's program to develop molten salt reactors (MSRs). However, the instrumentation, components, and practices for use of fluoride salts are not yet developed sufficiently for commercial implementation. This report provides an overview of the current understanding of the technologies involved in liquid salt heat transport (LSHT) along with providing references to the more detailed primary information resources. Much of the information presented here derives from the earlier MSR program. However, technology has evolved over the intervening years, and

  13. Phase transformation and deformation behavior of NiTi-Nb eutectic joined NiTi wires.

    PubMed

    Wang, Liqiang; Wang, Cong; Zhang, Lai-Chang; Chen, Liangyu; Lu, Weijie; Zhang, Di

    2016-01-01

    NiTi wires were brazed together via eutectic reaction between NiTi and Nb powder deposited at the wire contact region. Phase transformation and deformation behavior of the NiTi-Nb eutectic microstructure were investigated using transmission electron microscopy (TEM) and cyclic loading-unloading tests. Results show that R phase and B19' martensite transformation are induced by plastic deformation. R phase transformation, which significantly contributes to superelasticity, preferentially occurs at the interfaces between NiTi and eutectic region. Round-shaped Nb-rich phase with rod-like and lamellar-type eutectics are observed in eutectic regions. These phases appear to affect the deformation behavior of the brazed NiTi-Nb region via five distinct stages in stress-strain curves: (I) R phase reorientation, (II) R phase transformation from parent phase, (III) elastic deformation of reoriented martensite accompanied by the plastic deformation of Nb-rich phase and lamellar NiTi-Nb eutectic, (IV) B19' martensitic transformation, and (V) plastic deformation of the specimen. PMID:27049025

  14. Thermal storage in ammonium alum/ammonium nitrate eutectic for solar space heating applications

    SciTech Connect

    Jotshi, C.K.; Hsieh, C.K.; Goswami, D.Y.; Klausner, J.F.; Srinivasan, N.

    1998-02-01

    Ammonium alum and ammonium nitrate in the weight ratio of 1:1 form a eutectic that melts at 53 C and solidifies at 48 C. The thermophysical properties of this eutectic were measured in detail and the eutectic was found to have properties desirable for energy storage for solar space heating applications. The eutectic was encapsulated in 0.0254-m diameter high-density polyethylene (HDPE) balls and packed into a cylindrical bed in a scale model for testing its heat transfer characteristics when exposed to an air flow. Test results indicate that the thermal extraction efficiency of the model was 89% with an uncertainty of {+-} 8.0%. The packed bed had a Stanton number value in close agreement with that predicted with an empirical equation for sensible heat extraction from the eutectic in the solid phase. This Stanton number was increased by about 74% for sensible heat extraction from the eutectic in the liquid phase, a phenomenon not previously reported in the literature.

  15. Ternary eutectic growth of Ag-Cu-Sb alloy within ultrasonic field

    NASA Astrophysics Data System (ADS)

    Zhai, Wei; Hong, Zhenyu; Wei, Bingbo

    2007-08-01

    The liquid to solid transformation of ternary Ag42.4Cu21.6Sb36 eutectic alloy was accomplished in an ultrasonic field with a frequency of 35 kHz, and the growth mechanism of this ternary eutectic was examined. Theoretical calculations predict that the sound intensity in the liquid phase at the solidification interface increases gradually as the interface moves up from the sample bottom to its top. The growth mode of ( ɛ + θ + Sb) ternary eutectic exhibits a transition of “divorced eutectic—mixture of anomalous and regular structures—regular eutectic” along the sample axis due to the inhomogeneity of sound field distribution. In the top zone with the highest sound intensity, the cavitation effect promotes the three eutectic phases to nucleate independently, while the acoustic streaming efficiently suppresses the coupled growth of eutectic phases. In the meantime, the ultrasonic field accelerates the solute transportation at the solid-liquid interface, which reduces the solute solubility of eutectic phases.

  16. Formation mechanism of primary phases and eutectic structures within undercooled Pb-Sb-Sn ternary alloys

    NASA Astrophysics Data System (ADS)

    Wang, Weili; Dai, Fuping; Wei, Bingbo

    2007-08-01

    The solidification characteristics of three types of Pb-Sb-Sn ternary alloys with different primary phases were studied under substantial undercooling conditions. The experimental results show that primary (Pb) and SbSn phases grow in the dendritic mode, whereas primary (Sb) phase exhibits faceted growth in the form of polygonal blocks and long strips. (Pb) solid solution phase displays strong affinity with SbSn intermetallic compound so that they produce various morphologies of pseudobinary eutectics, but it can only grow in the divorced eutectic mode together with (Sb) phase. Although (Sb) solid solution phase and SbSn intermetallic compound may grow cooperatively within ternary eutectic microstructures, they seldom form pseudobinary eutectics independently. The (Pb)+(Sb)+SbSn ternary eutectic structure usually shows lamellar morphology, but appears as anomalous eutectic when its volume fraction becomes small. EDS analyses reveal that all of the three primary (Pb), (Sb) and SbSn phases exhibit conspicuous solute trapping effect during rapid solidification, which results in the remarkable extension of solute solubility.

  17. A fundamental investigation into the effects of eutectic formation on transmembrane transport.

    PubMed

    Fiala, Sarah; Jones, Stuart A; Brown, Marc B

    2010-06-30

    Eutectic systems enhance the permeation of therapeutic agents across biological barriers, but the mechanism by which this occurs has not previously been elucidated. Using human skin it has proven difficult to isolate the fundamental effects of eutectic formation on molecule diffusion and partition from those that arise as a consequence of the simultaneous application of two agents. The aim of this work was to employ a model hydrophobic membrane to understand the fundamental permeation characteristics of two agents when applied as a eutectic mixture. Lidocaine and prilocaine were selected as model agents and infinite-dose permeation studies were carried out using pre-calibrated Franz diffusion cells with two thicknesses of silicone membrane. Membrane solubility was determined by HCl solution extraction and the membrane diffusion coefficients were calculated from the permeation lag-times. The maximum permeation enhancement was achieved using a eutectic mixture at a 0.7:0.3 prilocaine/lidocaine ratio. A higher solubility of both agents in silicone membrane, enhanced diffusivity of prilocaine and superior release of both drugs, all contributed to produce enhanced permeation from the eutectic mixtures. Deconvolution of the transmembrane transport process suggests that the eutectic enhancement phenomena is a consequence of more favorable permeation characteristics of the two molecules in the absence of a formulation vehicle which competes in the transport process.

  18. Phase transformation and deformation behavior of NiTi-Nb eutectic joined NiTi wires

    PubMed Central

    Wang, Liqiang; Wang, Cong; Zhang, Lai-Chang; Chen, Liangyu; Lu, Weijie; Zhang, Di

    2016-01-01

    NiTi wires were brazed together via eutectic reaction between NiTi and Nb powder deposited at the wire contact region. Phase transformation and deformation behavior of the NiTi-Nb eutectic microstructure were investigated using transmission electron microscopy (TEM) and cyclic loading-unloading tests. Results show that R phase and B19′ martensite transformation are induced by plastic deformation. R phase transformation, which significantly contributes to superelasticity, preferentially occurs at the interfaces between NiTi and eutectic region. Round-shaped Nb-rich phase with rod-like and lamellar-type eutectics are observed in eutectic regions. These phases appear to affect the deformation behavior of the brazed NiTi-Nb region via five distinct stages in stress-strain curves: (I) R phase reorientation, (II) R phase transformation from parent phase, (III) elastic deformation of reoriented martensite accompanied by the plastic deformation of Nb-rich phase and lamellar NiTi-Nb eutectic, (IV) B19′ martensitic transformation, and (V) plastic deformation of the specimen. PMID:27049025

  19. The roles of Eu during the growth of eutectic Si in Al-Si alloys

    PubMed Central

    Li, Jiehua; Hage, Fredrik; Wiessner, Manfred; Romaner, Lorenz; Scheiber, Daniel; Sartory, Bernhard; Ramasse, Quentin; Schumacher, Peter

    2015-01-01

    Controlling the growth of eutectic Si and thereby modifying the eutectic Si from flake-like to fibrous is a key factor in improving the properties of Al-Si alloys. To date, it is generally accepted that the impurity-induced twinning (IIT) mechanism and the twin plane re-entrant edge (TPRE) mechanism as well as poisoning of the TPRE mechanism are valid under certain conditions. However, IIT, TPRE or poisoning of the TPRE mechanism cannot be used to interpret all observations. Here, we report an atomic-scale experimental and theoretical investigation on the roles of Eu during the growth of eutectic Si in Al-Si alloys. Both experimental and theoretical investigations reveal three different roles: (i) the adsorption at the intersection of Si facets, inducing IIT mechanism, (ii) the adsorption at the twin plane re-entrant edge, inducing TPRE mechanism or poisoning of the TPRE mechanism, and (iii) the segregation ahead of the growing Si twins, inducing a solute entrainment within eutectic Si. This investigation not only demonstrates a direct experimental support to the well-accepted poisoning of the TPRE and IIT mechanisms, but also provides a full picture about the roles of Eu atoms during the growth of eutectic Si, including the solute entrainment within eutectic Si. PMID:26328541

  20. The roles of Eu during the growth of eutectic Si in Al-Si alloys.

    PubMed

    Li, Jiehua; Hage, Fredrik; Wiessner, Manfred; Romaner, Lorenz; Scheiber, Daniel; Sartory, Bernhard; Ramasse, Quentin; Schumacher, Peter

    2015-09-02

    Controlling the growth of eutectic Si and thereby modifying the eutectic Si from flake-like to fibrous is a key factor in improving the properties of Al-Si alloys. To date, it is generally accepted that the impurity-induced twinning (IIT) mechanism and the twin plane re-entrant edge (TPRE) mechanism as well as poisoning of the TPRE mechanism are valid under certain conditions. However, IIT, TPRE or poisoning of the TPRE mechanism cannot be used to interpret all observations. Here, we report an atomic-scale experimental and theoretical investigation on the roles of Eu during the growth of eutectic Si in Al-Si alloys. Both experimental and theoretical investigations reveal three different roles: (i) the adsorption at the intersection of Si facets, inducing IIT mechanism, (ii) the adsorption at the twin plane re-entrant edge, inducing TPRE mechanism or poisoning of the TPRE mechanism, and (iii) the segregation ahead of the growing Si twins, inducing a solute entrainment within eutectic Si. This investigation not only demonstrates a direct experimental support to the well-accepted poisoning of the TPRE and IIT mechanisms, but also provides a full picture about the roles of Eu atoms during the growth of eutectic Si, including the solute entrainment within eutectic Si.

  1. Evaluation and modeling of the eutectic composition of various drug-polyethylene glycol solid dispersions.

    PubMed

    Baird, Jared A; Taylor, Lynne S

    2011-06-01

    The purpose of this study was to gain a better understanding of which factors contribute to the eutectic composition of drug-polyethylene glycol (PEG) blends and to compare experimental values with predictions from the semi-empirical model developed by Lacoulonche et al. Eutectic compositions of various drug-PEG 3350 solid dispersions were predicted, assuming athermal mixing, and compared to experimentally determined eutectic points. The presence or absence of specific interactions between the drug and PEG 3350 were investigated using Fourier transform infrared (FT-IR) spectroscopy. The eutectic composition for haloperidol-PEG and loratadine-PEG solid dispersions was accurately predicted using the model, while predictions for aceclofenac-PEG and chlorpropamide-PEG were very different from those experimentally observed. Deviations in the model prediction from ideal behavior for the systems evaluated were confirmed to be due to the presence of specific interactions between the drug and polymer, as demonstrated by IR spectroscopy. Detailed analysis showed that the eutectic composition prediction from the model is interdependent on the crystal lattice energy of the drug compound (evaluated from the melting temperature and the heat of fusion) as well as the nature of the drug-polymer interactions. In conclusion, for compounds with melting points less than 200°C, the model is ideally suited for predicting the eutectic composition of systems where there is an absence of drug-polymer interactions. PMID:20141502

  2. Phase transformation and deformation behavior of NiTi-Nb eutectic joined NiTi wires.

    PubMed

    Wang, Liqiang; Wang, Cong; Zhang, Lai-Chang; Chen, Liangyu; Lu, Weijie; Zhang, Di

    2016-04-06

    NiTi wires were brazed together via eutectic reaction between NiTi and Nb powder deposited at the wire contact region. Phase transformation and deformation behavior of the NiTi-Nb eutectic microstructure were investigated using transmission electron microscopy (TEM) and cyclic loading-unloading tests. Results show that R phase and B19' martensite transformation are induced by plastic deformation. R phase transformation, which significantly contributes to superelasticity, preferentially occurs at the interfaces between NiTi and eutectic region. Round-shaped Nb-rich phase with rod-like and lamellar-type eutectics are observed in eutectic regions. These phases appear to affect the deformation behavior of the brazed NiTi-Nb region via five distinct stages in stress-strain curves: (I) R phase reorientation, (II) R phase transformation from parent phase, (III) elastic deformation of reoriented martensite accompanied by the plastic deformation of Nb-rich phase and lamellar NiTi-Nb eutectic, (IV) B19' martensitic transformation, and (V) plastic deformation of the specimen.

  3. Spontaneous Formation of Eutectic Crystal Structures in Binary and Ternary Charged Colloids due to Depletion Attraction

    PubMed Central

    Toyotama, Akiko; Okuzono, Tohru; Yamanaka, Junpei

    2016-01-01

    Crystallization of colloids has extensively been studied for past few decades as models to study phase transition in general. Recently, complex crystal structures in multi-component colloids, including alloy and eutectic structures, have attracted considerable attention. However, the fabrication of 2D area-filling colloidal eutectics has not been reported till date. Here, we report formation of eutectic structures in binary and ternary aqueous colloids due to depletion attraction. We used charged particles + linear polyelectrolyte systems, in which the interparticle interaction could be represented as a sum of the electrostatic, depletion, and van der Waals forces. The interaction was tunable at a lengthscale accessible to direct observation by optical microscopy. The eutectic structures were formed because of interplay of crystallization of constituent components and accompanying fractionation. An observed binary phase diagram, defined by a mixing ratio and inverse area fraction of the particles, was analogous to that for atomic and molecular eutectic systems. This new method also allows the adjustment of both the number and wavelengths of Bragg diffraction peaks. Furthermore, these eutectic structures could be immobilized in polymer gel to produce self-standing materials. The present findings will be useful in the design of the optical properties of colloidal crystals. PMID:26984298

  4. Spontaneous Formation of Eutectic Crystal Structures in Binary and Ternary Charged Colloids due to Depletion Attraction

    NASA Astrophysics Data System (ADS)

    Toyotama, Akiko; Okuzono, Tohru; Yamanaka, Junpei

    2016-03-01

    Crystallization of colloids has extensively been studied for past few decades as models to study phase transition in general. Recently, complex crystal structures in multi-component colloids, including alloy and eutectic structures, have attracted considerable attention. However, the fabrication of 2D area-filling colloidal eutectics has not been reported till date. Here, we report formation of eutectic structures in binary and ternary aqueous colloids due to depletion attraction. We used charged particles + linear polyelectrolyte systems, in which the interparticle interaction could be represented as a sum of the electrostatic, depletion, and van der Waals forces. The interaction was tunable at a lengthscale accessible to direct observation by optical microscopy. The eutectic structures were formed because of interplay of crystallization of constituent components and accompanying fractionation. An observed binary phase diagram, defined by a mixing ratio and inverse area fraction of the particles, was analogous to that for atomic and molecular eutectic systems. This new method also allows the adjustment of both the number and wavelengths of Bragg diffraction peaks. Furthermore, these eutectic structures could be immobilized in polymer gel to produce self-standing materials. The present findings will be useful in the design of the optical properties of colloidal crystals.

  5. Fluoride salts and container materials for thermal energy storage applications in the temperature range 973 to 1400 K

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.; Whittenberger, J. Daniel

    1987-01-01

    Multicomponent fluoride salt mixtures were characterized for use as latent heat of fusion heat storage materials in advanced solar dynamic space power systems with operating temperatures in the range of 973 to 1400 K. The melting points and eutectic composition for many systems with published phase diagrams were verified, and several new eutectic compositions were identified. Additionally, the heats of fusion of several binary and ternary eutectics and congruently melting intermediate compounds were measured by differential scanning calorimetry. The extent of corrosion of various metals by fluoride melts was estimated from thermodynamic considerations, and equilibrium conditions inside a containment vessel were calculated as functions of the initial moisture content of the salt and free volume above the molten salt. Preliminary experimental data on the corrosion of commercial, high-temperature alloys in LiF-19.5CaF2 and NaF-27CaF2-36MgF2 melts are presented and compared to the thermodynamic predictions.

  6. Fluoride salts and container materials for thermal energy storage applications in the temperature range 973 - 1400 K

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.; Whittenberger, J. Daniel

    1987-01-01

    Multicomponent fluoride salt mixtures were characterized for use as latent heat of fusion heat storage materials in advanced solar dynamic space power systems with operating temperatures in the range of 973 to 1400 K. The melting points and eutectic composition for many systems with published phase diagrams were verified, and several new eutectic compositions were identified. Additionally, the heats of fusion of several binary and ternary eutectics and congruently melting intermediate compounds were measured by differential scanning calorimetry. The extent of corrosion of various metals by fluoride melts was estimated from thermodynamic considerations, and equilibrium conditions inside a containment vessel were calculated as functions of the initial moisture content of the salt and free volume above the molten salt. Preliminary experimental data on the corrosion of commercial, high-temperature alloys in LiF-19.5CaF2 and NaF-27CaF2-36MgF2 melts are presented and compared to the thermodynamic predictions.

  7. Preparation of eutectic substrate mixtures for enzymatic conversion of ATC to L-cysteine at high concentration levels.

    PubMed

    Youn, Sung Hun; Park, Hae Woong; Choe, Deokyeong; Shin, Chul Soo

    2014-06-01

    High concentration eutectic substrate solutions for the enzymatic production of L-cysteine were prepared. Eutectic melting of binary mixtures consisting of D,L-2-amino-Δ(2)-thiazoline-4-carboxylic acid (ATC) as a substrate and malonic acid occurred at 39 °C with an ATC mole fraction of 0.5. Formation of eutectic mixtures was confirmed using SEM, SEM-EDS, and XPS surface analyses. Sorbitol, MnSO4, and NaOH were used as supplements for the enzymatic reactions. Strategies for sequential addition of five compounds, including a binary ATC mixture and supplements, during preparation of eutectic substrate solutions were established. Eutectic substrate solutions were stable for 24 h. After 6 h of enzymatic reactions, a 550 mM L-cysteine yield was obtained from a 670 mM eutectic ATC solution.

  8. Effects of Minute Addition of Ni on Microstructure and Mechanical Properties of Sn-Zn Eutectic Alloy

    NASA Astrophysics Data System (ADS)

    Pandey, P.; Tiwary, C. S.; Chattopadhyay, K.

    2016-10-01

    The current work explores the effects of a small addition of Ni on the microstructure and mechanical properties of Sn-Zn eutectic solder alloy (Sn-14.9 at.%Zn). In two sets of experiments, Ni is either added to the eutectic alloy or Zn in the eutectic alloy is replaced by an increasing amount of Ni. The study indicates that small additions of Ni in eutectic Sn-Zn solder (˜0.017 at.%) refines the eutectic microstructure together with the appearance of the small amount of primary Zn plates. Increasing the Ni content to 0.142 at.% and beyond, then an intermetallic phase ϒ-Ni5Zn21 with dendritic morphology appears in the microstructure along with dendrites of primary Sn. The scale of eutectic microstructure shows a decreasing trend till 0.902 at.%Ni with eutectic spacing of 1.98 ± 0.32 μm for this alloy. Further addition of Ni coarsens the microstructure. The replacement of Zn with Ni in the eutectic composition follows a similar trend with a lesser refinement of the microstructure. In both the scenarios, the addition of a small amount of Ni increases the eutectic temperatures till a critical concentration is reached beyond which one can observe a decrease in the eutectic point. The trend is similar for the solid solubility of Zn in Sn while the trend is opposite for the measured eutectic composition, which decreases at the initial stages of Ni addition. Through a detailed measurement of mechanical properties, the study establishes significant improvement of the strength of Sn-Zn solder with small additions of Ni in the alloy with a maximum hardness of 26 ± 1 HV and 0.2% proof stress of 72 ± 3 MPa at room temperature for the eutectic alloy with 0.902 at.%Ni.

  9. Effects of Minute Addition of Ni on Microstructure and Mechanical Properties of Sn-Zn Eutectic Alloy

    NASA Astrophysics Data System (ADS)

    Pandey, P.; Tiwary, C. S.; Chattopadhyay, K.

    2016-06-01

    The current work explores the effects of a small addition of Ni on the microstructure and mechanical properties of Sn-Zn eutectic solder alloy (Sn-14.9 at.%Zn). In two sets of experiments, Ni is either added to the eutectic alloy or Zn in the eutectic alloy is replaced by an increasing amount of Ni. The study indicates that small additions of Ni in eutectic Sn-Zn solder (˜0.017 at.%) refines the eutectic microstructure together with the appearance of the small amount of primary Zn plates. Increasing the Ni content to 0.142 at.% and beyond, then an intermetallic phase ϒ-Ni5Zn21 with dendritic morphology appears in the microstructure along with dendrites of primary Sn. The scale of eutectic microstructure shows a decreasing trend till 0.902 at.%Ni with eutectic spacing of 1.98 ± 0.32 μm for this alloy. Further addition of Ni coarsens the microstructure. The replacement of Zn with Ni in the eutectic composition follows a similar trend with a lesser refinement of the microstructure. In both the scenarios, the addition of a small amount of Ni increases the eutectic temperatures till a critical concentration is reached beyond which one can observe a decrease in the eutectic point. The trend is similar for the solid solubility of Zn in Sn while the trend is opposite for the measured eutectic composition, which decreases at the initial stages of Ni addition. Through a detailed measurement of mechanical properties, the study establishes significant improvement of the strength of Sn-Zn solder with small additions of Ni in the alloy with a maximum hardness of 26 ± 1 HV and 0.2% proof stress of 72 ± 3 MPa at room temperature for the eutectic alloy with 0.902 at.%Ni.

  10. Physical properties of liquid NaF-LiF-LaF3 and NaF-LiF-NdF3 eutectic alloys

    NASA Astrophysics Data System (ADS)

    Bulavin, L.; Plevachuk, Yu.; Sklyarchuk, V.; Shtablavyy, I.; Faidiuk, N.; Savchuk, R.

    2013-02-01

    Electrical conductivity, thermoelectric power and viscosity measurements were carried out for the ionic liquid mixtures, formed after melting of the NaF-LiF-LaF3 and NaF-LiF-NdF3 eutectics in the wide temperature intervals above the melting points. It was found that temperature coefficient of the thermoelectric power of the both ionic mixtures changes a sign, at 948 ± 5 K in NaF-LiF-LaF3 and at 973 ± 5 K in NaF-LiF-NdF3. It was shown that temperature dependence of viscosity correlates with electrophysical data. The results can be used in choosing a blanket for the liquid salt reactor.

  11. The effect of porosity and gamma-gamma-prime eutectic content on the fatigue behavior of hydrogen charged PWA 1480

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Dreshfield, R. L.; Gabb, T. P.

    1991-01-01

    The study addresses the effect of systematically varying gamma-gamma-prime eutectic content and porosity level on the fatigue life of a hydrogen-charged single crystal PWA 1480 superalloy. Four microstructural variants are produced, and differences in gamma-gamma-prime eutectic morphology among the four processing variants are analyzed. Single valued tensile test data indicate that the tensile and yield strength of the PWA 1480 are degraded by hydrogen charging, with the exception of the material given a eutectic solution treatment. It is shown that the reduction of the fatigue life can be minimized by a duplex thermomechanical treatment consisting of a eutectic solution followed by hot isostatic pressing.

  12. Potentiometric Sensor for Real-Time Monitoring of Multivalent Ion Concentrations in Molten Salt

    SciTech Connect

    Peter A. Zink; Jan-Fong Jue; Brenda E. Serrano; Guy L. Fredrickson; Ben F. Cowan; Steven D. Herrmann; Shelly X. Li

    2010-07-01

    Electrorefining of spent metallic nuclear fuel in high temperature molten salt systems is a core technology in pyroprocessing, which in turn plays a critical role in the development of advanced fuel cycle technologies. In electrorefining, spent nuclear fuel is treated electrochemically in order to effect separations between uranium, noble metals, and active metals, which include the transuranics. The accumulation of active metals in a lithium chloride-potassium chloride (LiCl-KCl) eutectic molten salt electrolyte occurs at the expense of the UCl3-oxidant concentration in the electrolyte, which must be periodically replenished. Our interests lie with the accumulation of active metals in the molten salt electrolyte. The real-time monitoring of actinide concentrations in the molten salt electrolyte is highly desirable for controlling electrochemical operations and assuring materials control and accountancy. However, real-time monitoring is not possible with current methods for sampling and chemical analysis. A new solid-state electrochemical sensor is being developed for real-time monitoring of actinide ion concentrations in a molten salt electrorefiner. The ultimate function of the sensor is to monitor plutonium concentrations during electrorefining operations, but in this work gadolinium was employed as a surrogate material for plutonium. In a parametric study, polycrystalline sodium beta double-prime alumina (Na-ß?-alumina) discs and tubes were subject to vapor-phase exchange with gadolinium ions (Gd3+) using a gadolinium chloride salt (GdCl3) as a precursor to produce gadolinium beta double-prime alumina (Gd-ß?-alumina) samples. Electrochemical impedance spectroscopy and microstructural analysis were performed on the ion-exchanged discs to determine the relationship between ion exchange and Gd3+ ion conductivity. The ion-exchanged tubes were configured as potentiometric sensors in order to monitor real-time Gd3+ ion concentrations in mixtures of gadolinium

  13. Investigating microstructural evolution during the electroreduction of UO2 to U in LiCl-KCl eutectic using focused ion beam tomography

    NASA Astrophysics Data System (ADS)

    Brown, L. D.; Abdulaziz, R.; Tjaden, B.; Inman, D.; Brett, D. J. L.; Shearing, P. R.

    2016-11-01

    Reprocessing of spent nuclear fuels using molten salt media is an attractive alternative to liquid-liquid extraction techniques. Pyroelectrochemical processing utilizes direct, selective, electrochemical reduction of uranium dioxide, followed by selective electroplating of a uranium metal. Thermodynamic prediction of the electrochemical reduction of UO2 to U in LiCl-KCl eutectic has shown to be a function of the oxide ion activity. The pO2- of the salt may be affected by the microstructure of the UO2 electrode. A uranium dioxide filled "micro-bucket" electrode has been partially electroreduced to uranium metal in molten lithium chloride-potassium chloride eutectic. This partial electroreduction resulted in two distinct microstructures: a dense UO2 and a porous U metal structure were characterised by energy dispersive X-ray spectroscopy. Focused ion beam tomography was performed on five regions of this electrode which revealed an overall porosity ranging from 17.36% at the outer edge to 3.91% towards the centre, commensurate with the expected extent of reaction in each location. The pore connectivity was also seen to reduce from 88.32% to 17.86% in the same regions and the tortuosity through the sample was modelled along the axis of propagation of the electroreduction, which was seen to increase from a value of 4.42 to a value of infinity (disconnected pores). These microstructural characteristics could impede the transport of O2- ions resulting in a change in the local pO2- which could result in the inability to perform the electroreduction.

  14. Accelerator-driven subcritical fission in molten salt core: Closing the nuclear fuel cycle for green nuclear energy

    NASA Astrophysics Data System (ADS)

    McIntyre, Peter; Assadi, Saeed; Badgley, Karie; Baker, William; Comeaux, Justin; Gerity, James; Kellams, Joshua; McInturff, Al; Pogue, Nathaniel; Phongikaroon, Supathorn; Sattarov, Akhdiyor; Simpson, Michael; Sooby, Elizabeth; Tsvetkov, Pavel

    2013-04-01

    A technology for accelerator-driven subcritical fission in a molten salt core (ADSMS) is being developed as a basis for the destruction of the transuranics in used nuclear fuel. The molten salt fuel is a eutectic mixture of NaCl and the chlorides of the transuranics and fission products. The core is driven by proton beams from a strong-focusing cyclotron stack. This approach uniquely provides an intrinsically safe means to drive a core fueled only with transuranics, thereby eliminating competing breeding terms.

  15. Accelerator-driven subcritical fission in molten salt core: Closing the nuclear fuel cycle for green nuclear energy

    SciTech Connect

    McIntyre, Peter; Assadi, Saeed; Badgley, Karie; Baker, William; Comeaux, Justin; Gerity, James; Kellams, Joshua; McInturff, Al; Pogue, Nathaniel; Sattarov, Akhdiyor; Sooby, Elizabeth; Tsvetkov, Pavel; Phongikaroon, Supathorn; Simpson, Michael

    2013-04-19

    A technology for accelerator-driven subcritical fission in a molten salt core (ADSMS) is being developed as a basis for the destruction of the transuranics in used nuclear fuel. The molten salt fuel is a eutectic mixture of NaCl and the chlorides of the transuranics and fission products. The core is driven by proton beams from a strong-focusing cyclotron stack. This approach uniquely provides an intrinsically safe means to drive a core fueled only with transuranics, thereby eliminating competing breeding terms.

  16. Properties of Polyvinylpyrrolidone in a Deep Eutectic Solvent.

    PubMed

    Sapir, Liel; Stanley, Christopher B; Harries, Daniel

    2016-05-19

    Deep eutectic solvents (DES) are mixtures of two or more components with high melting temperatures, which form a liquid at room temperature. These DES hold great promise as green solvents for chemical processes, as they are inexpensive and environmentally friendly. Specifically, they present a unique solvating environment to polymers that is different from water. Here, we use small angle neutron scattering to study the polymer properties of the common, water-soluble, polyvinylpyrrolidone (PVP) in the prominent DES formed by a 1:2 molar mixture of choline chloride and urea. We find that the polymer adopts a slightly different structure in DES than in water, so that at higher concentrations the polymer favors a more expanded conformation compared to the same concentration in water. Yet, the osmotic pressure of PVP solutions in DES is very similar to that in water, indicating that both solvents are of comparable quality and that the DES components interact favorably with PVP. The osmotic pressure measurements within this novel class of promising solvents should be of value toward future technological applications as well as for osmotic stress experiments in nonaqueous environments. PMID:26963367

  17. Improving agar electrospinnability with choline-based deep eutectic solvents.

    PubMed

    Sousa, Ana M M; Souza, Hiléia K S; Uknalis, Joseph; Liu, Shih-Chuan; Gonçalves, Maria P; Liu, LinShu

    2015-09-01

    Very recently our group has produced novel agar-based fibers by an electrospinning technique using water as solvent and polyvinyl alcohol (PVA) as co-blending polymer. Here, we tested the deep eutectic solvent (DES), (2-hydroxyethyl)trimethylammonium chloride/urea prepared at 1:2 molar ratio, as an alternative solvent medium for agar electrospinning. The electrospun materials were collected with an ethanol bath adapted to a previous electrospinning set-up. One weight percent agar-in-DES showed improved viscoelasticity and hence, spinnability, when compared to 1 wt% agar-in-water and pure agar nanofibers were successfully electrospun if working above the temperature of sol-gel transition (∼80 °C). By changing the solvent medium we decreased the PVA concentration (5 wt% starting solution) and successfully produced composite fibers with high agar contents (50/50 agar/PVA). Best composite fibers were formed with the 50/50 and 30/70 agar/PVA solutions. These fibers were mechanically resistant, showed tailorable surface roughness and diverse size distributions, with most of the diameters falling in the sub-micron range. Both nano and micro forms of agar fibers (used separately or combined) may have potential for the design of new and highly functional agar-based materials. PMID:26116384

  18. Use of eutectic mixture of local anesthetics in children.

    PubMed

    Dutta, S

    1999-01-01

    The Eutectic Mixture of Local Anesthetics (EMLA) is a topical application, which has proved to be a useful medication for providing pain relief among children. It is an emulsion containing a 1:1 mixture of lidocaine and prilocaine. The high concentration of the uncharged anesthetic base in the microdroplets of the emulsion ensure effective skin penetration. In the pediatric population EMLA has been shown to be efficacious when it is used prior to venipuncture, cannulation, lumbar puncture, laser treatment of port wine stains, curettage of molluscum contagiosum or vaccination. For several of these indications, the efficacy has been documented by double blind controlled trials, that have used objective and quasi-objective scales for assessing pain relief. The dose of EMLA is between 0.5 to 1 gram, and the cream should be applied half to one hour prior to the procedure. Local side effects are very mild, and the only systemic side effect of importance is the risk of methemoglobinemia in young infants. The literature has conflicting reports about the safety of EMLA in neonates.

  19. Eutectic Phases in Ice Facilitate Nonenzymatic Nucleic Acid Synthesis

    NASA Astrophysics Data System (ADS)

    Kanavarioti, Anastassia; Monnard, Pierre-Alain; Deamer, David W.

    2001-09-01

    Polymeric compounds similar to oligonucleotides are relevant to the origin of life and particularly to the concept of an RNA world. Although short oligomers of RNA can be synthesized nonenzymatically under laboratory conditions by second-order reactions in concentrated solutions, there is no consensus on how these polymers could have been synthesized de novo on the early Earth from dilute solutions of monomers. To address this question in the context of an RNA world, we have explored ice eutectic phases as a reaction medium. When an aqueous solution freezes, the solutes become concentrated in the spaces between the ice crystals. The increased concentration offsets the effect of the lower temperature and accelerates the reaction. Here we show that in the presence of metal ions in dilute solutions, frozen samples of phosphoimidazolide-activated uridine react within days at -18°C to form oligouridylates up to 11 bases long. Product yields typically exceed 90%, and ~30% of the oligomers include one or more 3‧-5‧ linkages. These conditions facilitate not only the notoriously difficult oligouridylate synthesis, but also the oligomerization of activated cytidylate, adenylate, and guanylate. To our knowledge, this represents the first report to indicate that ice matrices on the early Earth may have accelerated certain prebiotic polymerization reactions.

  20. Microanalysis of an oxidized cobalt oxide: Zirconia eutectic

    SciTech Connect

    Bentley, J.; McKernan, S.; Carter, C.B.; Revcolevschi, A.

    1993-12-31

    The compositions of CoO, Co{sub 3}O{sub 4}, and Ca-stabilized cubic ZrO{sub 2} in an oxidized directionally solidified CoO-ZrO{sub 2} eutectic were determined by PEELS and EDS. An oxygen gradient exists across the Co{sub 3}O{sub 4} with highest levels near the ZrO{sub 2} interface. Oxygen ELNES for CoO and Co{sub 3}O{sub 4} are quite different; published oxygen ELNES have been incorrectly attributed to CoO. Normalized Co-L{sub 23} white line intensity (WLI) ratios for CoO and Co{sub 3}O{sub 4} are similar (0.53 {plus_minus} 0.02) but L{sub 3}/L{sub 2} WLI ratios are 3.88 and 2.58, respectively. ELCE data suggest Co{sub 3}O{sub 4} has the inverse spinel structure.

  1. Salt tectonics on Venus

    SciTech Connect

    Wood, C.A.; Amsbury, D.

    1986-05-01

    The discovery of a surprisingly high deuterium/hydrogen ratio on Venus immediately led to the speculation that Venus may have once had a volume of surface water comparable to that of the terrestrial oceans. The authors propose that the evaporation of this putative ocean may have yielded residual salt deposits that formed various terrain features depicted in Venera 15 and 16 radar images. By analogy with models for the total evaporation of the terrestrial oceans, evaporite deposits on Venus should be at least tens to hundreds of meters thick. From photogeologic evidence and in-situ chemical analyses, it appears that the salt plains were later buried by lava flows. On Earth, salt diapirism leads to the formation of salt domes, anticlines, and elongated salt intrusions - features having dimensions of roughly 1 to 100 km. Due to the rapid erosion of salt by water, surface evaporite landforms are only common in dry regions such as the Zagros Mountains of Iran, where salt plugs and glaciers exist. Venus is far drier than Iran; extruded salt should be preserved, although the high surface temperature (470/sup 0/C) would probably stimulate rapid salt flow. Venus possesses a variety of circular landforms, tens to hundreds of kilometers wide, which could be either megasalt domes or salt intrusions colonizing impact craters. Additionally, arcurate bands seen in the Maxwell area of Venus could be salt intrusions formed in a region of tectonic stress. These large structures may not be salt features; nonetheless, salt features should exist on Venus.

  2. The Effect of Temperature on Kinetics and Diffusion Coefficients of Metallocene Derivatives in Polyol-Based Deep Eutectic Solvents

    PubMed Central

    Bahadori, Laleh; Chakrabarti, Mohammed Harun; Manan, Ninie Suhana Abdul; Hashim, Mohd Ali; Mjalli, Farouq Sabri; AlNashef, Inas Muen; Brandon, Nigel

    2015-01-01

    The temperature dependence of the density, dynamic viscosity and ionic conductivity of several deep eutectic solvents (DESs) containing ammonium-based salts and hydrogen bond donvnors (polyol type) are investigated. The temperature-dependent electrolyte viscosity as a function of molar conductivity is correlated by means of Walden’s rule. The oxidation of ferrocene (Fc/Fc+) and reduction of cobaltocenium (Cc+/Cc) at different temperatures are studied by cyclic voltammetry and potential-step chronoamperometry in DESs. For most DESs, chronoamperometric transients are demonstrated to fit an Arrhenius-type relation to give activation energies for the diffusion of redox couples at different temperatures. The temperature dependence of the measured conductivities of DES1 and DES2 are better correlated with the Vogel-Tamman-Fulcher equation. The kinetics of the Fc/Fc+ and Cc+/Cc electrochemical systems have been investigated over a temperature range from 298 to 338 K. The heterogeneous electron transfer rate constant is then calculated at different temperatures by means of a logarithmic analysis. The glycerol-based DES (DES5) appears suitable for further testing in electrochemical energy storage devices. PMID:26642045

  3. Simultaneous extraction of flavonoids from Chamaecyparis obtusa using deep eutectic solvents as additives of conventional extractions solvents.

    PubMed

    Tang, Baokun; Park, Ha Eun; Row, Kyung Ho

    2015-01-01

    Three flavones (quercetin, myricetin and amentoflavone) were extracted from Chamaecyparis obtusa leaves using deep eutectic solvents (DESs) as additives to conventional extractions solvents. Sixteen DESs were synthesized from different salts and hydrogen bond donors. In addition, C. obtusa was extracted under optimal conditions of methanol as the solvent in the heating process (60°C) for 120 min at a solid/liquid ratio of 80%. Under these optimal conditions, a good linear relationship was observed at analyte concentrations ranging from 5.0 to 200.0 μg/mL (R(2) > 0.999). The extraction recovery ranged from 96.7 to 103.3% with the inter- and intraday relative standard deviations of <4.97%. Under the optimal conditions, from C. obtusa, the quantities of quercetin, myricetin and amentoflavone extracted were 325.90, 8.66 and 50.34 µg/mL, respectively. Overall, DESs are expected to have a wide range of applications.

  4. The Effect of Temperature on Kinetics and Diffusion Coefficients of Metallocene Derivatives in Polyol-Based Deep Eutectic Solvents.

    PubMed

    Bahadori, Laleh; Chakrabarti, Mohammed Harun; Manan, Ninie Suhana Abdul; Hashim, Mohd Ali; Mjalli, Farouq Sabri; AlNashef, Inas Muen; Brandon, Nigel

    2015-01-01

    The temperature dependence of the density, dynamic viscosity and ionic conductivity of several deep eutectic solvents (DESs) containing ammonium-based salts and hydrogen bond donvnors (polyol type) are investigated. The temperature-dependent electrolyte viscosity as a function of molar conductivity is correlated by means of Walden's rule. The oxidation of ferrocene (Fc/Fc+) and reduction of cobaltocenium (Cc+/Cc) at different temperatures are studied by cyclic voltammetry and potential-step chronoamperometry in DESs. For most DESs, chronoamperometric transients are demonstrated to fit an Arrhenius-type relation to give activation energies for the diffusion of redox couples at different temperatures. The temperature dependence of the measured conductivities of DES1 and DES2 are better correlated with the Vogel-Tamman-Fulcher equation. The kinetics of the Fc/Fc+ and Cc+/Cc electrochemical systems have been investigated over a temperature range from 298 to 338 K. The heterogeneous electron transfer rate constant is then calculated at different temperatures by means of a logarithmic analysis. The glycerol-based DES (DES5) appears suitable for further testing in electrochemical energy storage devices. PMID:26642045

  5. PySALT: SALT science pipeline

    NASA Astrophysics Data System (ADS)

    Crawford, S. M.; Still, M.; Schellart, P.; Balona, L.; Buckley, D. A. H.; Gulbis, A. A. S.; Kniazev, A.; Kotze, M.; Loaring, N.; Nordsieck, K. H.; Pickering, T. E.; Potter, S.; Romero Colmenero, E.; Vaisanen, P.; Wiliams, T.; Zietsman, E.

    2012-07-01

    The PySALT user package contains the primary reduction and analysis software tools for the SALT telescope. Currently, these tools include basic data reductions for RSS and SALTICAM in both imaging, spectroscopic, and slot modes. Basic analysis software for slot mode data is also provided. These tools are primarily written in python/PyRAF with some additional IRAF code.

  6. Low-salt diet

    MedlinePlus

    ... away from foods that are always high in salt. Some common ones are: Processed foods, such as cured or smoked meats, bacon, hot dogs, sausage, bologna, ham, and salami ... salt with other seasonings. Pepper, garlic, herbs, and lemon ...

  7. The fluids in salt.

    USGS Publications Warehouse

    Roedder, E.

    1984-01-01

    The characteristics of fluid inclusions in salt, the geological processes through which these fluids evolve, and the possible problems such inclusions pose for nuclear waste disposal in salt beds or domes are reviewed.-J.A.Z.

  8. What Are Bath Salts?

    MedlinePlus

    ... Are bath salts becoming more popular? Marsha Lopez Hi, Lauren. Nope! Actually quite the opposite! This family ... and how dangerous for your body? Michelle Rankin Hi ParkerPanella - Bath salts are drugs known as synthetic ...

  9. Utah: Salt Lake Region

    Atmospheric Science Data Center

    2014-05-15

    article title:  Winter and Summer Views of the Salt Lake Region     View Larger Image Magnificent views of the region surrounding Salt Lake City, Utah are captured in these winter and summer images from the ...

  10. Molten salt electrolyte separator

    DOEpatents

    Kaun, Thomas D.

    1996-01-01

    A molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication.

  11. Electrochemical studies and analysis of 1-10 wt% UCl3 concentrations in molten LiCl-KCl eutectic

    NASA Astrophysics Data System (ADS)

    Hoover, Robert O.; Shaltry, Michael R.; Martin, Sean; Sridharan, Kumar; Phongikaroon, Supathorn

    2014-09-01

    Three electrochemical methods - cyclic voltammetry (CV), chronopotentiometry (CP), and anodic stripping voltammetry (ASV) - were applied to solutions of up to 10 wt% UCl3 in the molten LiCl-KCl eutectic salt at 500 °C to determine electrochemical properties and behaviors and to help provide a scientific basis for the development of an in situ electrochemical probe for determining the concentration of uranium in a used nuclear fuel electrorefiner. Diffusion coefficients of UCl4 and UCl3 were calculated to be (6.72 ± 0.360) × 10-6 cm2/s and (1.04 ± 0.17) × 10-5 cm2/s, respectively. Apparent standard reduction potentials were determined to be (-0.381 ± 0.013) V and (-1.502 ± 0.076) V vs. 5 mol% Ag/AgCl or (-1.448 ± 0.013) V and (-2.568 ± 0.076) V vs. Cl2/Cl- for the U(IV)/U(III) and U(III)/U redox couples, respectively. In comparing this data with supercooled thermodynamic data to determine activity coefficients, the thermodynamic database used was important with resulting activity coefficients ranging from 2.34 × 10-3 to 1.08 × 10-2 for UCl4 and 4.94 × 10-5 to 4.50 × 10-4 for UCl3. Of anodic stripping voltammetry and cyclic voltammetry anodic or cathodic peaks, the CV cathodic peak height divided by square root of scan rate was shown to be the most reliable method of determining UCl3 concentration in the molten salt.

  12. The experimental study of the polonium-210 release from Li17-Pb83 eutectic

    SciTech Connect

    Schipakin, O.; Borisov, N.; Churkin, S.

    1994-12-31

    The polonium contamination hazard arise as a result of accidental Po-210 release from breeding blanket material - melted Li17Pb83 eutectic - in the environment. The experimental study of Po-210 release rates from eutectic were carry out in atmosphere of noble gases and air with different humidity in 1992-1993. In these experiments used method of carrier-gas flowing above melted eutectic surface. The main findings presented by RDIPE and Karpov Institute are: (1) The polonium-210 release rate strongly increase with eutectic temperature from 150 to 450{degrees}C. (2) The Po-210 release rate in the noble carrier-gas is in proportion with polonium concentration in eutectic in studied range from 10{sup {minus}7} to 10{sup {minus}4} Ci/g. (3) The Po-210 release rate in air remarkably effected by the surface oxide film also. (4) In these experiments for the first time were studied differently gaseous and aerosol polonium-210 fractions release rates. The experimental results and corresponding estimates showed needs the technological and accidental cleaning systems equipped by complex filters of gaseous and aerosols polonium-210 forms.

  13. An aluminum-germanium eutectic structure for silicon wafer bonding technology

    NASA Astrophysics Data System (ADS)

    Perez-Quintana, I.; Ottaviani, G.; Tonini, R.; Felisari, L.; Garavaglia, M.; Oggioni, L.; Morin, D.

    2005-08-01

    An aluminum-germanium eutectic bonding technology has been used to uniformly bond two silicon wafers for MEMS packaging at temperatures as low as 450 °C, well below the aluminum-silicon eutectic temperature (577 °C). A device silicon wafer has been put in contact with a cap wafer where an aluminum film covered by a germanium film has been thermally evaporated. The annealing has been performed in a vacuum furnace under uniaxial pressure variable from 1.8 up to 30 kbar. The samples have been analyzed with various analytical techniques. 4He+ MeV Rutherford Backscattering Spectrometry (RBS) has been used to measure the thicknesses of the deposited films and to follow the aluminum-germanium intermixing, Scanning Acoustic Microscope (SAM) to control the uniformity of the bonding, Scanning Electron Microscope (SEM) associated with electron induced X-ray fluorescence to analyze composition, morphology and elements distribution in the film between the two bonded wafers. The temperatures for the annealing were selected above and below the Ge-Al the eutectic temperature. At temperatures below the eutectic no-bonding has been obtained for any applied pressure. Above the eutectic bonding occurs. The formation of a liquid film is mandatory to obtain a reproducible and robust bonding. The pressure is necessary to improve the contacts between the two wafers; its role in the metallurgy of the bonding needs to be explored.

  14. Thermal storage in ammonium alum/ammonium nitrate eutectic for solar space heating

    SciTech Connect

    Goswami, D.Y.; Jotshi, C.K.; Klausner, J.F.; Hsieh, C.K.; Srinivasan, N.

    1995-10-01

    Ammonium alum and ammonium nitrate in the weight ratio of 1:1 forms a eutectic that melts at 53 C and crystallizes at 48 C. The latent heat of fusion of this eutectic was found to be 215 kJ/kg. Its enthalpy as measured by drop calorimetry was found to be 287 kJ/kg in the temperature range of 24--65 C, which is 1.67 times greater than water (172.2 kJ/kg) and 8.75 times greater than rock (32.8 kJ/kg). Upon several heating/cooling cycles, phase separation was observed. However, by adding 5% attapulgite clay to this eutectic mixture, phase separation was prevented. This eutectic was encapsulated in 0.0254m diameter HDPE hollow balls and subjected to about 1,100 heating/cooling cycles in the temperature range between 25 and 65 C. At the end of these cycles, the decrease in enthalpy was found to be 5%. A scale model of the heat storage unit was fabricated to investigate the heat transfer characteristics of this eutectic encapsulated in HDPE balls. The thermal extraction efficiency of the system was measured with the recirculation of hot air during charging and was found to be in the range of 85--98%.

  15. PU/SS EUTECTIC ASSESSMENT IN 9975 PACKAGINGS IN A STORAGE FACILITY DURING EXTENDED FIRE

    SciTech Connect

    Gupta, N.

    2012-03-26

    In a radioactive material (RAM) packaging, the formation of eutectic at the Pu/SS (plutonium/stainless steel) interface is a serious concern and must be avoided to prevent of leakage of fissile material to the environment. The eutectic temperature for the Pu/SS is rather low (410 C) and could seriously impact the structural integrity of the containment vessel under accident conditions involving fire. The 9975 packaging is used for long term storage of Pu bearing materials in the DOE complex where the Pu comes in contact with the stainless steel containment vessel. Due to the serious consequences of the containment breach at the eutectic site, the Pu/SS interface temperature is kept well below the eutectic formation temperature of 410 C. This paper discusses the thermal models and the results for the extended fire conditions (1500 F for 86 minutes) that exist in a long term storage facility and concludes that the 9975 packaging Pu/SS interface temperature is well below the eutectic temperature.

  16. Phase behavior of elastin-like synthetic recombinamers in deep eutectic solvents.

    PubMed

    Nardecchia, Stefania; Gutiérrez, María C; Ferrer, M Luisa; Alonso, Matilde; López, Isabel M; Rodríguez-Cabello, J Carlos; del Monte, Francisco

    2012-07-01

    Deep eutectic solvents promoted the stabilization of the collapsed state of elastin-like recombinamers - and the subsequent formation of aggregates - upon the loss of the structural water molecules involved in hydrophobic hydration. Cryo-etch scanning electron microscopy allowed the observation of these aggregates in neat deep eutectic solvents. The suppression of the lower critical solution temperature transition, observed by differential scanning calorimetry and dynamic light scattering, confirmed the presence of the elastin-like recombinamers in their collapsed state. Actually, the transition from the collapsed to the expanded state was suppressed even after moderate aqueous dilution - for water contents ranging from nil to ca. 45 wt % - and it was only recovered upon further addition of water - above 50 wt %. These features revealed the preferred stabilization of the collapsed state in not only neat deep eutectic solvents but also partially hydrated deep eutectic solvents. We consider that the capability to trigger the lower critical solution temperature transition by partial hydration of deep eutectic solvent may open interesting perspectives for nano(bio)technological applications of elastin-like recombinamers. PMID:22632070

  17. A quantitative study of factors influencing lamellar eutectic morphology during solidification

    NASA Technical Reports Server (NTRS)

    Kaukler, W. F. S.

    1981-01-01

    The factors that influence the shape of the solid-liquid interface of a lamellar binary eutectic alloy are evaluated. Alloys of carbon tetrabromide and hexachloroethane which serve as a transparent analogue of lamellar metallic eutectics are used. The observed interface shapes are analyzed by computer-aided methods. The solid-liquid interfacial free energies of each of the individual phases comprising the eutectic system are measured as a function of composition using a 'grain boundary groove' technique. The solid-liquid interfacial free energy of the two phases are evaluated directly from the eutectic interface. The phase diagram for the system, the heat of fusion as a function of composition, and the density as a function of composition are measured. The shape of the eutectic interface is controlled mainly by the solid-liquid and solid-solid interfacial free energy relationships at the interface and by the temperature gradient present, rather than by interlamellar diffusion in the liquid at the interface, over the range of growth rates studied.

  18. Deformation and fracture of a directionally solidified NiAl-28Cr-6Mo eutectic alloy

    NASA Technical Reports Server (NTRS)

    Chen, X. F.; Johnson, D. R.; Noebe, R. D.; Oliver, B. F.

    1995-01-01

    A directionally solidified alloy based on the NiAl-(Cr, Mo) eutectic was examined by transmission and scanning electron microscopy to characterize the microstructure and room temperature deformation and fracture behavior. The microstructure consisted of a lamellar morphology with a group of zone axes (111) growth direction for both the NiAl and (Cr, Mo) phases. The interphase boundary between the eutectic phases was semicoherent and composed of a well-defined dislocation network. In addition, a fine array of coherent NiAl precipitates was dispersed throughout the (Cr, Mo) phase. The eutectic morphology was stable at 1300 K with only coarsening of the NiAl precipitates occurring after heat treatment for 1.8 ks (500 h). Fracture of the aligned eutectic is characterized primarily by a crack bridging/renucleation mechanism and is controlled by the strength of the semicoherent interface between the two phases. However, contributions to the toughness of the eutectic may arise from plastic deformation of the NiAl phase and the geometry associated with the fracture surface.

  19. Deformation and fracture of a directionally solidified NiAl-28Cr-6Mo eutectic alloy

    SciTech Connect

    Chen, X.F.; Johnson, D.R.; Noebe, R.D.; Oliver, B.F.

    1995-05-01

    A directionally solidified alloy based on the NiAl-(Cr, Mo) eutectic was examined by transmission and scanning electron microscopy to characterize the microstructure and room temperature deformation and fracture behavior. The microstructure consisted of a lamellar morphology with a group of zone axes (111) growth direction for both the NiAl and (Cr, Mo) phases. The interphase boundary between the eutectic phases was semicoherent and composed of a well-defined dislocation network. In addition, a fine array of coherent NiAl precipitates was dispersed throughout the (Cr, Mo) phase. The eutectic morphology was stable at 1300 K with only coarsening of the NiAl precipitates occurring after heat treatment for 1.8 ks (500 h). Fracture of the aligned eutectic is characterized primarily by a crack bridging/renucleation mechanism and is controlled by the strength of the semicoherent interface between the two phases. However, contributions to the toughness of the eutectic may arise from plastic deformation of the NiAl phase and the geometry associated with the fracture surface.

  20. Construction and Characterization of Mini-ruthenium-Carbon Eutectic Cells for Industrial Use

    NASA Astrophysics Data System (ADS)

    Diril, A.; Bourson, F.; Parga, C.; Sadli, M.

    2015-12-01

    High-temperature eutectic fixed points have proved to be convenient tools for temperature scale dissemination and thermometer calibrations/checks at temperatures above 1100°C. In order to investigate the feasibility of metal-carbon eutectic cells in industrial applications as a means for assessing the traceability of non-contact thermometers, a batch of cells was constructed at LNE-Cnam, NPL, and TUBITAK UME. Compared to the usual dimensions of high-temperature fixed point cells (45 mm in length × 24 mm in diameter), a new cell design was created to fit with industrial applications. TUBITAK UME constructed and characterized five ruthenium-carbon (Ru-C) eutectic cells of dimensions 24 mm in length × 24 mm in diameter. One of these cells has been selected and characterized at CEA premises. Ru-C eutectic cells have been evaluated in terms of short-term repeatability, reproducibility, furnace effect, sharp temperature ramps, and the effect of cell location. Measurements at TÜBİTAK UME have been performed with a transfer standard pyrometer calibrated at the copper point and a BB3500pg high-temperature blackbody furnace was used for construction and measurement. For the measurements at CEA, a Land Standard—HIMERT S1 radiation thermometer and a VITI induction furnace were used. In this article results of the measurements at TÜBİTAK UME and CEA will be presented. The possible use of these mini-eutectic cells as industrial temperature standards will be discussed.

  1. Molten salt technology

    SciTech Connect

    Lovering, D.G.

    1982-01-01

    In this volume, the historical background, scope, problems, economics, and future applications of molten salt technologies are discussed. Topics presented include molten salts in primary production of aluminum, general principles and handling and safety of the alkali metals, first-row transition metals, group VIII metals and B-group elements, solution electrochemistry, transport phenomena, corrosion in different molten salts, cells with molten salt electrolytes and reactants, fuel cell design, hydrocracking and liquefaction, heat storage in phase change materials, and nuclear technologies.

  2. Retrospective salt tectonics

    SciTech Connect

    Jackson, M.P.A.

    1996-12-31

    The conceptual breakthroughs in understanding salt tectonics can be recognized by reviewing the history of salt tectonics, which divides naturally into three parts: the pioneering era, the fluid era, and the brittle era. The pioneering era (1856-1933) featured the search for a general hypothesis of salt diapirism, initially dominated by bizarre, erroneous notions of igneous activity, residual islands, in situ crystallization, osmotic pressures, and expansive crystallization. Gradually data from oil exploration constrained speculation. The effects of buoyancy versus orogeny were debated, contact relations were characterized, salt glaciers were discovered, and the concepts of downbuilding and differential loading were proposed as diapiric mechanisms. The fluid era (1933-{approximately}1989) was dominated by the view that salt tectonics resulted from Rayleigh-Taylor instabilities in which a dense fluid overburden having negligible yield strength sinks into a less dense fluid salt layer, displacing it upward. Density contrasts, viscosity contrasts, and dominant wavelengths were emphasized, whereas strength and faulting of the overburden were ignored. During this era, palinspastic reconstructions were attempted; salt upwelling below thin overburdens was recognized; internal structures of mined diapirs were discovered; peripheral sinks, turtle structures, and diapir families were comprehended; flow laws for dry salt were formulated; and contractional belts on divergent margins and allochthonous salt sheets were recognized. The 1970s revealed the basic driving force of salt allochthons, intrasalt minibasins, finite strains in diapirs, the possibility of thermal convection in salt, direct measurement of salt glacial flow stimulated by rainfall, and the internal structure of convecting evaporites and salt glaciers. The 1980`s revealed salt rollers, subtle traps, flow laws for damp salt, salt canopies, and mushroom diapirs.

  3. Solidification of high temperature molten salts for thermal energy storage systems

    NASA Technical Reports Server (NTRS)

    Sheffield, J. W.

    1981-01-01

    The solidification of phase change materials for the high temperature thermal energy storage system of an advanced solar thermal power system has been examined theoretically. In light of the particular thermophysical properties of candidate phase change high temperature salts, such as the eutectic mixture of NaF - MgF2, the heat transfer characteristics of one-dimensional inward solidification for a cylindrical geometry have been studied. The Biot number for the solidified salt is shown to be the critical design parameter for constant extraction heat flux. A fin-on-fin design concept of heat transfer surface augmentation is proposed in an effort to minimize the effects of the salt's low thermal conductivity and large volume change upon fusing.

  4. 21 CFR 100.155 - Salt and iodized salt.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Salt and iodized salt. 100.155 Section 100.155... FOR HUMAN CONSUMPTION GENERAL Specific Administrative Rulings and Decisions § 100.155 Salt and iodized salt. (a) For the purposes of this section, the term iodized salt or iodized table salt is...

  5. 21 CFR 100.155 - Salt and iodized salt.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Salt and iodized salt. 100.155 Section 100.155... FOR HUMAN CONSUMPTION GENERAL Specific Administrative Rulings and Decisions § 100.155 Salt and iodized salt. (a) For the purposes of this section, the term iodized salt or iodized table salt is...

  6. 21 CFR 100.155 - Salt and iodized salt.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Salt and iodized salt. 100.155 Section 100.155... FOR HUMAN CONSUMPTION GENERAL Specific Administrative Rulings and Decisions § 100.155 Salt and iodized salt. (a) For the purposes of this section, the term iodized salt or iodized table salt is...

  7. 21 CFR 100.155 - Salt and iodized salt.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Salt and iodized salt. 100.155 Section 100.155... FOR HUMAN CONSUMPTION GENERAL Specific Administrative Rulings and Decisions § 100.155 Salt and iodized salt. (a) For the purposes of this section, the term iodized salt or iodized table salt is...

  8. 21 CFR 100.155 - Salt and iodized salt.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Salt and iodized salt. 100.155 Section 100.155... FOR HUMAN CONSUMPTION GENERAL Specific Administrative Rulings and Decisions § 100.155 Salt and iodized salt. (a) For the purposes of this section, the term iodized salt or iodized table salt is...

  9. A Galinstan-Filled Capillary Probe for Thermal Conductivity Measurements and Its Application to Molten Eutectic {KNO}_3-{NaNO}_3-{NO}_2 (HTS) up to 700 K

    NASA Astrophysics Data System (ADS)

    Le Brun, Niccolò; Markides, Christos N.

    2015-11-01

    The successful measurement of the thermal conductivity of molten salts is a challenging undertaking due to the electrically conducting and possibly also aggressive nature of the materials, as well as the elevated temperatures at which these data are required. For accurate and reproducible measurements, it is important to develop a suitable experimental apparatus and methodology. In this study, we explore a modified version of the transient hot-wire method, which employs a molten-metal-filled capillary in order to circumvent some of the issues encountered in previous studies. Specifically, by using a novel flexible U-shaped quartz-capillary, filled with a eutectic mixture of gallium, indium and tin, commercially known as Galinstan, we proceed to measure the thermal conductivity of molten eutectic {KNO}_3-{NaNO}_3-{NaNO}_2. The new probe is demonstrated as being able to measure the thermal conductivity of this molten salt, which is found to range from 0.48 {W}{\\cdot }{m}^{-1}{\\cdot }{K}^{-1} at 500 K to 0.47 {W}{\\cdot }{m}^{-1}{\\cdot }{K}^{-1} at close to 700 K, with an overall expanded uncertainty (95 % confidence) of 3.1 %. The quartz is found to retain its electrically insulating properties and no current leakage is detected in the sample over the investigated temperature range. The thermal conductivity data reported in the present study are also used to elucidate a partial disagreement found in the literature for this material.

  10. Directional solidification of the alumina-zirconia ceramic eutectic system

    SciTech Connect

    Boldt, C.

    1994-07-27

    It is possible to produce alumina-zirconia ceramic samples through existing solidification techniques. The resulting microstructures typically consist of rods of zirconia in an alumina matrix, although a lamellar structure has been noted in some cases. In nearly all cases, colony growth was present which may possibly result from grain size, repeated nucleation events, and lamellar oscillations. In the same vein, it appears that the amount of impurities within the system might be the underlying cause for the colony growth. Colony growth was diminished through impurity control as the higher purity samples exhibited colony free behavior. In addition to colony formations, faceted alumina dendrites or nonfaceted zirconia dendrites may result in the ceramic if the sample is solidified out of the coupled zone. In all cases, for larger-sized Bridgman samples, a lower limit in the eutectic spacing was noted. The solidification model which includes the kinetic effect has been developed, although the effect appears to be negligible under present experimental conditions. A spacing limit might also occur due to the result of heat flow problems. Heat flow out of the ceramic is difficult to control, often causing radial and not axial growth. This behavior is exaggerated in the presence of impurities. Thus, higher purity powders should always be used. Higher purity samples, in addition to yielding a more microstructurally uniform ceramic, also showed increased directionality. In the future, the kinetic model needs to be examined in more detail, and further research needs to be accomplished in the area of molten ceramics. Once better system constants are in place, the kinetic model will give a better indication of the behavior in the alumina-zirconia system.

  11. Substrate-enhanced supercooling in AuSi eutectic droplets.

    PubMed

    Schülli, T U; Daudin, R; Renaud, G; Vaysset, A; Geaymond, O; Pasturel, A

    2010-04-22

    The phenomenon of supercooling in metals-that is, the preservation of a disordered, fluid phase in a metastable state well below the melting point-has led to speculation that local atomic structure configurations of dense, symmetric, but non-periodic packing act as the main barrier for crystal nucleation. For liquids in contact with solids, crystalline surfaces induce layering of the adjacent atoms in the liquid and may prevent or lower supercooling. This seed effect is supposed to depend on the local lateral order adopted in the last atomic layers of the liquid in contact with the crystal. Although it has been suggested that there might be a direct coupling between surface-induced lateral order and supercooling, no experimental observation of such lateral ordering at interfaces is available. Here we report supercooling in gold-silicon (AuSi) eutectic droplets, enhanced by a Au-induced (6 x 6) reconstruction of the Si(111) substrate. In situ X-ray scattering and ab initio molecular dynamics reveal that pentagonal atomic arrangements of Au atoms at this interface favour a lateral-ordering stabilization process of the liquid phase. This interface-enhanced stabilization of the liquid state shows the importance of the solid-liquid interaction for the structure of the adjacent liquid layers. Such processes are important for present and future technologies, as fluidity and crystallization play a key part in soldering and casting, as well as in processing and controlling chemical reactions for microfluidic devices or during the vapour-liquid-solid growth of semiconductor nanowires.

  12. Hygroscopic salts and the potential for life on Mars.

    PubMed

    Davila, Alfonso F; Duport, Luis Gago; Melchiorri, Riccardo; Jänchen, Jochen; Valea, Sergio; de Los Rios, Asunción; Fairén, Alberto G; Möhlmann, Diedrich; McKay, Christopher P; Ascaso, Carmen; Wierzchos, Jacek

    2010-01-01

    Hygroscopic salts have been detected in soils in the northern latitudes of Mars, and widespread chloride-bearing evaporitic deposits have been detected in the southern highlands. The deliquescence of hygroscopic minerals such as chloride salts could provide a local and transient source of liquid water that would be available for microorganisms on the surface. This is known to occur in the Atacama Desert, where massive halite evaporites have become a habitat for photosynthetic and heterotrophic microorganisms that take advantage of the deliquescence of the salt at certain relative humidity (RH) levels. We modeled the climate conditions (RH and temperature) in a region on Mars with chloride-bearing evaporites, and modeled the evolution of the water activity (a(w)) of the deliquescence solutions of three possible chloride salts (sodium chloride, calcium chloride, and magnesium chloride) as a function of temperature. We also studied the water absorption properties of the same salts as a function of RH. Our climate model results show that the RH in the region with chloride-bearing deposits on Mars often reaches the deliquescence points of all three salts, and the temperature reaches levels above their eutectic points seasonally, in the course of a martian year. The a(w) of the deliquescence solutions increases with decreasing temperature due mainly to the precipitation of unstable phases, which removes ions from the solution. The deliquescence of sodium chloride results in transient solutions with a(w) compatible with growth of terrestrial microorganisms down to 252 K, whereas for calcium chloride and magnesium chloride it results in solutions with a(w) below the known limits for growth at all temperatures. However, taking the limits of a(w) used to define special regions on Mars, the deliquescence of calcium chloride deposits would allow for the propagation of terrestrial microorganisms at temperatures between 265 and 253 K, and for metabolic activity (no growth) at

  13. Hygroscopic salts and the potential for life on Mars.

    PubMed

    Davila, Alfonso F; Duport, Luis Gago; Melchiorri, Riccardo; Jänchen, Jochen; Valea, Sergio; de Los Rios, Asunción; Fairén, Alberto G; Möhlmann, Diedrich; McKay, Christopher P; Ascaso, Carmen; Wierzchos, Jacek

    2010-01-01

    Hygroscopic salts have been detected in soils in the northern latitudes of Mars, and widespread chloride-bearing evaporitic deposits have been detected in the southern highlands. The deliquescence of hygroscopic minerals such as chloride salts could provide a local and transient source of liquid water that would be available for microorganisms on the surface. This is known to occur in the Atacama Desert, where massive halite evaporites have become a habitat for photosynthetic and heterotrophic microorganisms that take advantage of the deliquescence of the salt at certain relative humidity (RH) levels. We modeled the climate conditions (RH and temperature) in a region on Mars with chloride-bearing evaporites, and modeled the evolution of the water activity (a(w)) of the deliquescence solutions of three possible chloride salts (sodium chloride, calcium chloride, and magnesium chloride) as a function of temperature. We also studied the water absorption properties of the same salts as a function of RH. Our climate model results show that the RH in the region with chloride-bearing deposits on Mars often reaches the deliquescence points of all three salts, and the temperature reaches levels above their eutectic points seasonally, in the course of a martian year. The a(w) of the deliquescence solutions increases with decreasing temperature due mainly to the precipitation of unstable phases, which removes ions from the solution. The deliquescence of sodium chloride results in transient solutions with a(w) compatible with growth of terrestrial microorganisms down to 252 K, whereas for calcium chloride and magnesium chloride it results in solutions with a(w) below the known limits for growth at all temperatures. However, taking the limits of a(w) used to define special regions on Mars, the deliquescence of calcium chloride deposits would allow for the propagation of terrestrial microorganisms at temperatures between 265 and 253 K, and for metabolic activity (no growth) at

  14. Ionic liquids and deep eutectic solvents in natural products research: mixtures of solids as extraction solvents.

    PubMed

    Dai, Yuntao; van Spronsen, Jaap; Witkamp, Geert-Jan; Verpoorte, Robert; Choi, Young Hae

    2013-11-22

    Mixtures of solid chemicals may become liquid under certain conditions. These liquids are characterized by the formation of strong ionic (ionic liquids) or hydrogen bonds (deep eutectic solvents). Due to their extremely low vapor pressure, they are now widely used in polymer chemistry and synthetic organic chemistry, yet little attention has been paid to their use as extraction solvents of natural products. This review summarizes the preparation of ionic liquids and deep eutectic solvents with natural product components and recent progress in their applications to the extraction and analysis of natural products as well as the recovery of extracted compounds from their extracts. Additionally, various factors affecting extraction features of ionic liquids and deep eutectic solvents, as well as potential useful technologies including microwave and ultrasound to increase the extraction efficiency, are discussed.

  15. Studies on physicochemical properties of the eutectic and monotectic in the urea—p. chloronitrobenzene system

    NASA Astrophysics Data System (ADS)

    Rai, U. S.; Rai, R. N.

    1996-12-01

    The phase diagram of an organic analog of a nonmetal—nonmetal-type system involving urea and p. chloronitrobenzene shows the formation of a eutectic (0.982 mole fraction of p. chloronitrobenzene) and a monotectic (0.020 mole fraction of p. chloronitrobenzene) with a liquid miscibility gap in the system. The linear velocity of crystallization ( v) data determined at different undercoolings ( ΔT) by measuring the rate of advance of an interface in a capillary obey the Hillig—Turnbull equation, v = u( ΔT) n, where u and n are constants depending on the solidification behaviour of the materials involved. From the enthalpy of fusion of the pure components, the eutectic and the monotectic, enthalpy of mixing, excess thermodynamic functions, entropy of fusion and interfacial energy were calculated. Optical microphotographs of the eutectic and monotectic give their characteristic features.

  16. Computer simulation, thermodynamic and microstructural studies of benzamide benzoic acid eutectic system

    NASA Astrophysics Data System (ADS)

    Singh, N. B.; Das, S. S.; Singh, N. P.; Agrawal, Tanvi

    2008-05-01

    Phase diagram of benzamide-benzoic acid system has been studied by the thaw-melt method. Linear velocities of crystallization of the components and the eutectic mixture were determined at different undercoolings. Values of the heat of fusion were obtained from DSC studies. Excess Gibbs free energy, excess enthalpy and excess entropy of mixing were calculated. In order to know the nature of interaction between the two components, FT-IR spectral analyses were done. In addition to these studies, computer simulation has been done to obtain an idea about the interaction energy and the optimized geometry of the eutectic mixture. Microstructural studies showed the formation of an irregular structure in the eutectic mixture, which changed with aging and on addition of impurities.

  17. Numerical study of the effect of the shape of the phase diagram on the eutectic freezing temperature

    SciTech Connect

    Ode, M.; Shimono, M.; Sasajima, N.; Yamada, Y.; Bloembergen, P.

    2013-09-11

    To evaluate the reliability of metal-carbon eutectic systems as fixed points for the next generation of high-temperature standards the effect of thermodynamic properties related to the shape of eutectic phase diagram on the freezing temperature is investigated within the context of the numerical multi-phase-field model. The partition coefficient and liquidus slopes of the two solids involved in the eutectic reaction are varied deliberately and independently. The difference between the eutectic temperature and the freezing temperature is determined in dependence of the solid/liquid (s/l) interface shape and concentration. Where appropriate reference is made to the Jackson-Hunt analytical theory. It is shown that there are mainly two typical conditions to decrease the undercooling: 1) a small liquidus slope and 2) the associated difference between the eutectic composition and the liquid composition during solidification.

  18. Microstructural variations induced by gravity level during directional solidification of near-eutectic iron-carbon type alloys

    NASA Technical Reports Server (NTRS)

    Stefanescu, Doru M.; Fiske, Michael R.; Curreri, Peter A.

    1986-01-01

    The effects of gravity on the microstructure of directionally solidified near-eutectic cast irons are studied, using a Bridgman-type automatic directional solidification furnace aboard a NASA KC-135 aircraft which flies parabolic arcs and generates alternating periods of low-g (0.01 to 0.001 g, 30 seconds long) and high-g (1.8 g, 1.5 minutes long). Results show a refinement of the interlamellar spacing of the eutectic during low-g processing of metastable Fe-C eutectic alloys. Low-g processing of stable Fe-C-Si eutectic alloys (lamellar or spheroidal graphic) results in a coarsening of the eutectic grain structure. Secondary dendrite arm spacing of austenite increases in low-g and decreases in high-g. The effectiveness of low-gravity in the removal of buoyancy-driven graphite phase segregation is demonstrated.

  19. Transformation of eutectic emulsion to nanosuspension fabricating with solvent evaporation and ultrasonication technique.

    PubMed

    Phaechamud, Thawatchai; Tuntarawongsa, Sarun

    2016-01-01

    Eutectic solvent can solubilize high amount of some therapeutic compounds. Volatile eutectic solvent is interesting to be used as solvent in the preparation of nanosuspension with emulsion solvent evaporation technique. The mechanism of transformation from the eutectic emulsion to nanosuspension was investigated in this study. The 30% w/w ibuprofen eutectic solution was used as the internal phase, and the external phase is composed of Tween 80 as emulsifier. Ibuprofen nanosuspension was prepared by eutectic emulsion solvent evaporating method followed with ultrasonication. During evaporation process, the ibuprofen concentration in emulsion droplets was increased leading to a drug supersaturation but did not immediately recrystallize because of low glass transition temperature (T g) of ibuprofen. The contact angle of the internal phase on ibuprofen was apparently lower than that of the external phase at all times of evaporation, indicating that the ibuprofen crystals were preferentially wetted by the internal phase than the external phase. From calculated dewetting value ibuprofen crystallization occurred in the droplet. Crystallization of the drug was initiated with external mechanical force, and the particle size of the drug was larger due to Ostwald ripening. Cavitation force from ultrasonication minimized the ibuprofen crystals to the nanoscale. Particle size and zeta potential of formulated ibuprofen nanosuspension were 330.87±51.49 nm and -31.1±1.6 mV, respectively, and exhibited a fast dissolution. Therefore, the combination of eutectic emulsion solvent evaporation method with ultrasonication was favorable for fabricating an ibuprofen nanosuspension, and the transformation mechanism was attained successfully. PMID:27366064

  20. Transformation of eutectic emulsion to nanosuspension fabricating with solvent evaporation and ultrasonication technique

    PubMed Central

    Phaechamud, Thawatchai; Tuntarawongsa, Sarun

    2016-01-01

    Eutectic solvent can solubilize high amount of some therapeutic compounds. Volatile eutectic solvent is interesting to be used as solvent in the preparation of nanosuspension with emulsion solvent evaporation technique. The mechanism of transformation from the eutectic emulsion to nanosuspension was investigated in this study. The 30% w/w ibuprofen eutectic solution was used as the internal phase, and the external phase is composed of Tween 80 as emulsifier. Ibuprofen nanosuspension was prepared by eutectic emulsion solvent evaporating method followed with ultrasonication. During evaporation process, the ibuprofen concentration in emulsion droplets was increased leading to a drug supersaturation but did not immediately recrystallize because of low glass transition temperature (Tg) of ibuprofen. The contact angle of the internal phase on ibuprofen was apparently lower than that of the external phase at all times of evaporation, indicating that the ibuprofen crystals were preferentially wetted by the internal phase than the external phase. From calculated dewetting value ibuprofen crystallization occurred in the droplet. Crystallization of the drug was initiated with external mechanical force, and the particle size of the drug was larger due to Ostwald ripening. Cavitation force from ultrasonication minimized the ibuprofen crystals to the nanoscale. Particle size and zeta potential of formulated ibuprofen nanosuspension were 330.87±51.49 nm and −31.1±1.6 mV, respectively, and exhibited a fast dissolution. Therefore, the combination of eutectic emulsion solvent evaporation method with ultrasonication was favorable for fabricating an ibuprofen nanosuspension, and the transformation mechanism was attained successfully. PMID:27366064

  1. Structural and phonon transmission study of Ge-Au-Ge eutectically bonded interfaces

    SciTech Connect

    Knowlton, W.B. |

    1995-07-01

    This thesis presents a structural analysis and phonon transparency investigation of the Ge-Au-Ge eutectic bond interface. Interface development was intended to maximize the interfacial ballistic phonon transparency to enhance the detection of the dark matter candidate WIMPs. The process which was developed provides an interface which produces minimal stress, low amounts of impurities, and insures Ge lattice continuity through the interface. For initial Au thicknesses of greater than 1,000 {angstrom} Au per substrate side, eutectic epitaxial growth resulted in a Au dendritic structure with 95% cross sectional and 90% planar Au interfacial area coverages. In sections in which Ge bridged the interface, lattice continuity across the interface was apparent. Epitaxial solidification of the eutectic interface with initial Au thicknesses < 500 A per substrate side produced Au agglomerations thereby reducing the Au planar interfacial area coverage to as little as 30%. The mechanism for Au coalescence was attributed to lateral diffusion of Ge and Au in the liquid phase during solidification. Phonon transmission studies were performed on eutectic interfaces with initial Au thicknesses of 1,000 {angstrom}, 500 {angstrom}, and 300 {angstrom} per substrate side. Phonon imaging of eutectically bonded samples with initial Au thicknesses of 300 {angstrom}/side revealed reproducible interfacial percent phonon transmissions from 60% to 70%. Line scan phonon imaging verified the results. Phonon propagation TOF spectra distinctly showed the predominant phonon propagation mode was ballistic. This was substantiated by phonon focusing effects apparent in the phonon imaging data. The degree of interface transparency to phonons and resulting phonon propagation modes correlate with the structure of the interface following eutectic solidification. Structural studies of samples with initial Au thickness of 1,000 {angstrom}/side appear to correspond with the phonon transmission study.

  2. Transformation of eutectic emulsion to nanosuspension fabricating with solvent evaporation and ultrasonication technique.

    PubMed

    Phaechamud, Thawatchai; Tuntarawongsa, Sarun

    2016-01-01

    Eutectic solvent can solubilize high amount of some therapeutic compounds. Volatile eutectic solvent is interesting to be used as solvent in the preparation of nanosuspension with emulsion solvent evaporation technique. The mechanism of transformation from the eutectic emulsion to nanosuspension was investigated in this study. The 30% w/w ibuprofen eutectic solution was used as the internal phase, and the external phase is composed of Tween 80 as emulsifier. Ibuprofen nanosuspension was prepared by eutectic emulsion solvent evaporating method followed with ultrasonication. During evaporation process, the ibuprofen concentration in emulsion droplets was increased leading to a drug supersaturation but did not immediately recrystallize because of low glass transition temperature (T g) of ibuprofen. The contact angle of the internal phase on ibuprofen was apparently lower than that of the external phase at all times of evaporation, indicating that the ibuprofen crystals were preferentially wetted by the internal phase than the external phase. From calculated dewetting value ibuprofen crystallization occurred in the droplet. Crystallization of the drug was initiated with external mechanical force, and the particle size of the drug was larger due to Ostwald ripening. Cavitation force from ultrasonication minimized the ibuprofen crystals to the nanoscale. Particle size and zeta potential of formulated ibuprofen nanosuspension were 330.87±51.49 nm and -31.1±1.6 mV, respectively, and exhibited a fast dissolution. Therefore, the combination of eutectic emulsion solvent evaporation method with ultrasonication was favorable for fabricating an ibuprofen nanosuspension, and the transformation mechanism was attained successfully.

  3. The influences of convection on directional solidification of eutectic Bi/MnBi

    NASA Technical Reports Server (NTRS)

    Larson, David J., Jr.

    1988-01-01

    Eutectic alloys of Bi-Mn were directionally solidified using the Bridgman-Stockbarger technique to determine the influences of gravitationally-driven thermo-solutal convection on the Bi-MnBi rod eutectic. Experiments were conducted that varied the level of convection by varying the growth parameters and growth orientation, by microgravity damping, by applied magnetic field damping, and by imposing forced convection. Peltier interface demarcation and in situ thermocouple measurements were used to monitor interface velocity and thermal gradient and to evaluate interface planarity.

  4. Ionic liquids and deep eutectic mixtures: sustainable solvents for extraction processes.

    PubMed

    Pena-Pereira, Francisco; Namieśnik, Jacek

    2014-07-01

    In recent years, ionic liquids and deep eutectic mixtures have demonstrated great potential in extraction processes relevant to several scientific and technological activities. This review focuses on the applicability of these sustainable solvents in a variety of extraction techniques, including but not limited to liquid- and solid-phase (micro) extraction, microwave-assisted extraction, ultrasound-assisted extraction and pressurized liquid extraction. Selected applications of ionic liquids and deep eutectic mixtures on analytical method development, removal of environmental pollutants, selective isolation, and recovery of target compounds, purification of fuels, and azeotrope breaking are described and discussed.

  5. Solubility and excessive thermodynamic characteristics of Pr and Nd in the Ga-Sn eutectic alloy

    NASA Astrophysics Data System (ADS)

    Melchakov, S. Yu.; Yamshchikov, L. F.; Osipenko, A. G.; Pozdeev, P. A.; Rusakov, M. A.

    2015-08-01

    The praseodymium and neodymium solubilities in the gallium-tin eutectic melt were measured for the first time in a temperature range of 423-1073 K using a high-temperature sampling technique. The data on the activity and solubility are used to calculate the activity coefficients, the excessive thermodynamic characteristics of α-praseodymium and α-neodymium in the Ga-Sn eutectic melts, and the separation factor for the Pr/Nd pair on gallium-tin electrodes in chloride melts.

  6. Salt-hydrate thermal-energy-storage system for space heating and air conditioning. Final report, December 1, 1977-June 30, 1980

    SciTech Connect

    MacCracken, C.D.; Armstrong, J.M.; MacCracken, M.M.; Silvetti, B.M.

    1980-01-01

    Latent heat storage equipment is being developed using 3 different salts. They are sodium sulfate pentahydrate which melts at 46/sup 0/C, magnesium chloride hexahydrate which melts at 115/sup 0/C, and a eutectic combination of seven different materials which melts at 7/sup 0/C. Development work is reported on stirring pumps, tank and tubing materials, and field filling of the salts into their tanks. Performance testing is also reported. Good performance is reported for the tank/heat exchangers with all three salts. Both the 115/sup 0/C and 46/sup 0/C salts are almost equivalent in volume storage to water/ice. The 7/sup 0/C salt, however, begins at about 56% of the BTU's per cubic foot of water/ice and declines due to separation to 40% after repeated cycling. (LEW)

  7. How polar are choline chloride-based deep eutectic solvents?

    PubMed

    Pandey, Ashish; Rai, Rewa; Pal, Mahi; Pandey, Siddharth

    2014-01-28

    Developing and characterizing green solvents with low toxicity and cost is one of the most important issues in chemistry. Deep Eutectic Solvents (DESs), in this regard, have shown tremendous promise. Compared to popular organic solvents, DESs possess negligible VOCs and are non-flammable. Compared to ionic liquids, which share many characteristics but are ionic compounds and not ionic mixtures, DESs are cheaper to make, much less toxic and mostly biodegradable. An estimate of the polarity associated with DESs is essential if they are to be used as green alternatives to common organic solvents in industries and academia. As no one physical parameter can satisfactorily represent solute-solvent interactions within a medium, polarity of DESs is assessed through solvatochromic optical spectroscopic responses of several UV-vis absorbance and molecular fluorescence probes. Information on the local microenvironment (i.e., the cybotactic region) that surrounds several solvatochromic probes [betaine dye, pyrene, pyrene-1-carboxaldehyde, 1-anilino-8-naphthalene sulfonate (ANS), p-toluidinyl-6-naphthalene sulfonate (TNS), 6-propionyl-2-(dimethylaminonaphthalene) (PRODAN), coumarin-153, and Nile Red] for four common and popular DESs formed from choline chloride combined with 1,2-ethanediol, glycerol, urea, and malonic acid, respectively, in 1 : 2 molar ratios termed ethaline, glyceline, reline, and maline is obtained and used to assess the effective polarity afforded by each of these DESs. The four DESs as indicated by these probe responses are found to be fairly dipolar in nature. Absorbance probe betaine dye and fluorescence probes ANS, TNS, PRODAN, coumarin-153, and Nile Red, whose solvatochromic responses are based on photoinduced charge-transfer, imply ethaline and glyceline, DESs formed using alcohol-based H-bond donors, to be relatively more dipolar in nature as compared to reline and maline. The pyrene polarity scale, which is based on polarity-induced changes in

  8. How polar are choline chloride-based deep eutectic solvents?

    PubMed

    Pandey, Ashish; Rai, Rewa; Pal, Mahi; Pandey, Siddharth

    2014-01-28

    Developing and characterizing green solvents with low toxicity and cost is one of the most important issues in chemistry. Deep Eutectic Solvents (DESs), in this regard, have shown tremendous promise. Compared to popular organic solvents, DESs possess negligible VOCs and are non-flammable. Compared to ionic liquids, which share many characteristics but are ionic compounds and not ionic mixtures, DESs are cheaper to make, much less toxic and mostly biodegradable. An estimate of the polarity associated with DESs is essential if they are to be used as green alternatives to common organic solvents in industries and academia. As no one physical parameter can satisfactorily represent solute-solvent interactions within a medium, polarity of DESs is assessed through solvatochromic optical spectroscopic responses of several UV-vis absorbance and molecular fluorescence probes. Information on the local microenvironment (i.e., the cybotactic region) that surrounds several solvatochromic probes [betaine dye, pyrene, pyrene-1-carboxaldehyde, 1-anilino-8-naphthalene sulfonate (ANS), p-toluidinyl-6-naphthalene sulfonate (TNS), 6-propionyl-2-(dimethylaminonaphthalene) (PRODAN), coumarin-153, and Nile Red] for four common and popular DESs formed from choline chloride combined with 1,2-ethanediol, glycerol, urea, and malonic acid, respectively, in 1 : 2 molar ratios termed ethaline, glyceline, reline, and maline is obtained and used to assess the effective polarity afforded by each of these DESs. The four DESs as indicated by these probe responses are found to be fairly dipolar in nature. Absorbance probe betaine dye and fluorescence probes ANS, TNS, PRODAN, coumarin-153, and Nile Red, whose solvatochromic responses are based on photoinduced charge-transfer, imply ethaline and glyceline, DESs formed using alcohol-based H-bond donors, to be relatively more dipolar in nature as compared to reline and maline. The pyrene polarity scale, which is based on polarity-induced changes in

  9. Photochemistry of triarylsulfonium salts

    SciTech Connect

    Dektar, J.L.; Hacker, N.P. )

    1990-08-01

    The photolysis of triphenylsulfonium, tris(4-methylphenyl)sulfonium, tris(4-chlorophenyl)sulfonium, several monosubstituted (4-F, 4-Cl, 4-Me, 4-MeO, 4-PhS, and 4-PhCO), and disubstituted (4,4{prime}-Me{sub 2} and 4,4{prime}-(MeO){sub 2}) triphenylsulfonium salts was examined in solution. It was found that direct irradiation of triphenylsulfonium salts produced new rearrangement products, phenylthiobiphenyls, along with diphenyl sulfide, which had been previously reported. Similarly, the triarylsulfonium salts, with the exception of the (4-(phenylthio)phenyl)diphenylsulfonium salts produced new rearrangement products, phenylthiobiphenyls, along with diphenyl sulfide, which had been previously reported. Similarly, the triarylsulfonium salts, with the exception of the (4-(phenylthio)phenyl)diphenylsulfonium salts, gave the new rearrangement products. The mechanism for direct photolysis is proposed to occur from the singlet excited states to give a predominant heterolytic cleavage along with some homolytic cleavage.

  10. A history of salt.

    PubMed

    Cirillo, M; Capasso, G; Di Leo, V A; De Santo, N G

    1994-01-01

    The medical history of salt begins in ancient times and is closely related to different aspects of human history. Salt may be extracted from sea water, mineral deposits, surface encrustations, saline lakes and brine springs. In many inland areas, wood was used as a fuel source for evaporation of brine and this practice led to major deafforestation in central Europe. Salt played a central role in the economies of many regions, and is often reflected in place names. Salt was also used as a basis for population censuses and taxation, and salt monopolies were practised in many states. Salt was sometimes implicated in the outbreak of conflict, e.g. the French Revolution and the Indian War of Independence. Salt has also been invested with many cultural and religious meanings, from the ancient Egyptians to the Middle Ages. Man's innate appetite for salt may be related to his evolution from predominantly vegetarian anthropoids, and it is noteworthy that those people who live mainly on protein and milk or who drink salty water do not generally salt their food, whereas those who live mainly on vegetables, rice and cereals use much more salt. Medicinal use tended to emphasize the positive aspects of salt, e.g. prevention of putrefaction, reduction of tissue swelling, treatment of diarrhea. Evidence was also available to ancient peoples of its relationship to fertility, particularly in domestic animals. The history of salt thus represents a unique example for studying the impact of a widely used dietary substance on different important aspects of man's life, including medical philosophy.

  11. Iodised salt is safe.

    PubMed

    Ranganathan, S

    1995-01-01

    Iodine deficiency disorders are prevalent in all the States and Union Territories in India. Under the National Iodine Deficiency Disorders control programme, the Government of India has adopted a strategy to iodisation of all edible salt in the country which is a long term and sustainable preventive solution to eliminate iodine deficiency disorders. The benefits to be derived from universal salt iodisation are more to the population. Iodised salt is safe and does not cause any side effect. PMID:8690505

  12. Chlorination of UO 2, PuO 2 and rare earth oxides using ZrCl 4 in LiCl-KCl eutectic melt

    NASA Astrophysics Data System (ADS)

    Sakamura, Yoshiharu; Inoue, Tadashi; Iwai, Takashi; Moriyama, Hirotake

    2005-04-01

    A new chlorination method using ZrCl 4 in a molten salt bath has been investigated for the pyrometallurgical reprocessing of nuclear fuels. ZrCl 4 has a high reactivity with oxygen but is not corrosive to refractory metals such as steel. Rare earth oxides (La 2O 3, CeO 2, Nd 2O 3 and Y 2O 3) and actinide oxides (UO 2 and PuO 2) were allowed to react with ZrCl 4 in a LiCl-KCl eutectic salt at 773 K to give a metal chloride solution and a precipitate of ZrO 2. An addition of zirconium metal as a reductant was effective in chlorinating the dioxides. When the oxides were in powder form, the reaction was observed to progress rapidly. Cyclic voltammetry provided a convenient way of establishing when the reaction was completed. It was demonstrated that the ZrCl 4 chlorination method, free from corrosive gas, was very simple and useful.

  13. Dosimetry using silver salts

    DOEpatents

    Warner, Benjamin P.

    2003-06-24

    The present invention provides a method for detecting ionizing radiation. Exposure of silver salt AgX to ionizing radiation results in the partial reduction of the salt to a mixture of silver salt and silver metal. The mixture is further reduced by a reducing agent, which causes the production of acid (HX) and the oxidized form of the reducing agent (R). Detection of HX indicates that the silver salt has been exposed to ionizing radiation. The oxidized form of the reducing agent (R) may also be detected. The invention also includes dosimeters employing the above method for detecting ionizing radiation.

  14. Deep eutectic solvents as novel extraction media for phenolic compounds from model oil.

    PubMed

    Gu, Tongnian; Zhang, Mingliang; Tan, Ting; Chen, Jia; Li, Zhan; Zhang, Qinghua; Qiu, Hongdeng

    2014-10-11

    Deep eutectic solvents (DES) as a new kind of green solvent were used for the first time to excellently extract phenolic compounds from model oil. It was also proved that DES could be used to extract other polar compounds from non-polar or weakly-polar solvents by liquid-phase microextraction.

  15. The binary eutectic of NSAIDS and two-phase liquid system for enhanced membrane permeation.

    PubMed

    Yuan, Xudong; Capomacchia, A C

    2005-01-01

    The eutectic properties of binary mixtures of some nonsteroidal anti-inflammatory drugs (NSAIDs) with ibuprofen were studied using differential scanning calorimetry (DSC) and phase equilibrium diagrams. The melting points of selected NSAIDs were significantly depressed due to binary eutectic formation with ibuprofen. Ketoprofen and ibuprofen were selected to study the effect of eutectic formation on membrane permeation using Franz diffusion cells and snake skin as the model membrane. The presence of aqueous isopropyl alcohol (IPA) was necessary to completely transform the solid drugs into an oily state at ambient temperature. As much as the 99.6% of ibuprofen and the 88.8% of ketoprofen added were found in the oily phase of the two-phase liquid system formed when aqueous IPA was added to the eutectic mixture. Due to the high drug concentration in the oily phase, and maximum thermodynamic activity, the two-phase liquid system showed enhanced membrane permeation rates of ibuprofen (37.5 microg/cm2/hr) and ketoprofen (33.4 microg/cm2/hr) compared to other reference preparations used. PMID:15776808

  16. Use of Eutectic Fixed Points to Characterize a Spectrometer for Earth Observations

    NASA Astrophysics Data System (ADS)

    Salim, Saber G. R.; Fox, Nigel P.; Woolliams, Emma R.; Winkler, Rainer; Pegrum, Heather M.; Sun, Tong; Grattan, Ken T. V.

    2007-12-01

    A small palm-sized, reference spectrometer, mounted on a remote-controlled model helicopter is being developed and tested by the National Physical Laboratory (NPL) in conjunction with City University, London. The developed system will be used as a key element for field vicarious calibration of optical earth observation systems in the visible-near infrared (VNIR) region. The spectrometer is hand held, low weight, and uses a photodiode array. It has good stray light rejection and wide spectral coverage, allowing simultaneous measurements from 400 to 900 nm. The spectrometer is traceable to NPL’s primary standard cryogenic radiometer via a high-temperature metal-carbon eutectic fixed-point blackbody. Once the fixed-point temperature has been determined (using filter radiometry), the eutectic provides a high emissivity and high stability source of known spectral radiance over the emitted spectral range. All wavelength channels of the spectrometer can be calibrated simultaneously using the eutectic transition without the need for additional instrumentation. The spectrometer itself has been characterized for stray light performance and wavelength accuracy. Its long-term and transportation stability has been proven in an experiment that determined the “World’s Bluest Sky”—a process that involved 56 flights, covering 100,000 km in 72 days. This vicarious calibration methodology using a eutectic standard is presented alongside the preliminary results of an evaluation study of the spectrometer characteristics.

  17. Deep eutectic solvents as novel extraction media for phenolic compounds from model oil.

    PubMed

    Gu, Tongnian; Zhang, Mingliang; Tan, Ting; Chen, Jia; Li, Zhan; Zhang, Qinghua; Qiu, Hongdeng

    2014-10-11

    Deep eutectic solvents (DES) as a new kind of green solvent were used for the first time to excellently extract phenolic compounds from model oil. It was also proved that DES could be used to extract other polar compounds from non-polar or weakly-polar solvents by liquid-phase microextraction. PMID:25144155

  18. Directional solidification processing of eutectic alloys in the Ni Al V system

    NASA Astrophysics Data System (ADS)

    Milenkovic, S.; Coelho, A. A.; Caram, R.

    2000-04-01

    Intermetallic matrix composites (IMCs) offer attractive properties, such as high toughness of the metal coupled with low density, high modulus and high strength of the intermetallics. Among a large number of the intermetallics, a particular interest has been shown in the NiAl intermetallic compound, since it exhibits several advantages over the currently used nickel-based superalloys. Recently, there has been a renewed interest in directional solidification of the eutectic alloys as a concept of reinforcing intermetallics with in situ refractory metals. The present study is related to the study of the eutectic alloys in the ternary NiAl-V system. The eutectic composition and temperature were accurately determined. It was concluded that the solidification behaviour of the Ni-Al-V eutectic is strongly dependent on the growth conditions, namely growth rate and orientation, and that it can be easily modified. Also, it was observed that the orientation of the grain, i.e., the direction of growth is the determining factor in the lamellar/rod transition as well as in the morphology of the degenerated structure.

  19. A New Analytical Approach to Predict Spacing Selection in Lamellar and Rod Eutectic Systems

    NASA Technical Reports Server (NTRS)

    Catalina, Adrian V.; Sen, Subhayu; Stefanescu, Doru M.

    2003-01-01

    The Jackson and Hunt (JH) theory has been modified to relax the assumption of isothermal solid liquid interface used in their treatment. Based on the predictions of this modified theory, the traditional definitions of regular and irregular eutectics are revised. For regular eutectics, the new model identifies a range of spacing within the limits defined by the minimum undercooling of the a and beta phases. For the irregular Al-Si eutectic system, two different spacing selection mechanisms were identified: (1) for a particular growth rate, a nearly isothermal interface can be achieved at a unique minimum spacing lambda (sub t); (2) the average spacing (lambda (sub av) greater than lambda (sub t) is essentially dictated by the undercooling of the faceted phase. Based on the modified theoretical model, a semiempirical expression has been developed to account for the influence of the temperature gradient, which is dominant in the irregular Al-Si system. The behavior of the Fe-Fe3C eutectic is also discussed. The theoretical calculations have been found to be in good agreement with the published experimental measurements.

  20. A New Analytical Approach to Predict Spacing Selection in Lamellar and Rod Eutectic Systems

    NASA Technical Reports Server (NTRS)

    Catalina, Adrian V.; Sen, Subhayu; Stefanescu, D. M.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The Jackson and Hunt (JH) theory has been modified to relax the assumption of isothermal solid/liquid interface(SLI) used in their treatment. Based on the predictions of this modified theory the traditional definitions of regular and irregular eutectics are revised. For regular eutectics the new model identifies a range of spacing within the limits defined by the minimum undercooling of the alpha and beta phase. For the irregular Al-Si eutectic system two different spacing selection mechanisms were identified: a) for a particular growth rate, a nearly isothermal interface can be achieved at a unique minimum spacing lambda(sub I); b) the average spacing (lambda(sub av) greater than lambda(sub I)) is essentially dictated by the undercooling of the faceted phase. Based on the modified theoretical model a semiempirical expression has been developed to account for the influence of the temperature gradient, which is dominant in the irregular Al-Si system. The behavior of the Fe-Fe3C eutectic is also discussed The theoretical calculations have been found to be in good agreement with the published experimental measurements.

  1. Free energy change of off-eutectic binary alloys on solidification

    NASA Technical Reports Server (NTRS)

    Ohsaka, K.; Trinh, E. H.; Lin, J.-C.; Perepezko, J. H.

    1991-01-01

    A formula for the free energy difference between the undercooled liquid phase and the stable solid phase is derived for off-eutectic binary alloys in which the equilibrium solid/liquid transition takes place over a certain temperature range. The free energy change is then evaluated numerically for a Bi-25 at. pct Cd alloy modeled as a sub-subregular solution.

  2. Oxygen-iron interaction in liquid lead-bismuth eutectic alloy.

    PubMed

    Aerts, A; Gavrilov, S; Manfredi, G; Marino, A; Rosseel, K; Lim, J

    2016-07-20

    Iron released by steel corrosion was found to be a key impurity in reactions with dissolved oxygen in liquid lead-bismuth eutectic alloys. The iron-oxygen-magnetite equilibrium was characterized, allowing the quantification of phenomena that are important for long-term operation of lead-alloy based installations such as corrosion rate control and management of precipitates. PMID:27383127

  3. Studies of Al-Al 3Ni eutectic mixtures as insertion anodes in rechargeable lithium batteries

    NASA Astrophysics Data System (ADS)

    Machill, S.; Rahner, D.

    This contribution will give a short overview of aluminium-nickel eutectic mixture alloys as the anode materials in lithium secondary batteries. These compounds allow to create an alloy matrix of modified grain size with stabilizing properties toward 'mechanical stressing' during charge/discharge processes of lithium. Several electrochemical techniques have been used to investigate the electrochemical behaviour of these lithium-inserting materials.

  4. Efficient continuous synthesis of high purity deep eutectic solvents by twin screw extrusion.

    PubMed

    Crawford, D E; Wright, L A; James, S L; Abbott, A P

    2016-03-18

    Mechanochemical synthesis has been applied to the rapid synthesis of Deep Eutectic Solvents (DESs), including Reline 200 (choline chloride : urea, 1 : 2), in a continuous flow methodology by Twin Screw Extrusion (TSE). This gave products in higher purity and with Space Time Yields (STYs), four orders of magnitude greater than for batch methods. PMID:26911554

  5. Characterization of thermal behavior of deep eutectic solvents and their potential as drug solubilization vehicles.

    PubMed

    Morrison, Henry G; Sun, Changquan C; Neervannan, Sesha

    2009-08-13

    Deep eutectic solvent (DES) is a new class of solvents typically formed by mixing choline chloride with hydrogen bond donors such as amines, acids, and alcohols. Most DES's are non-reactive with water, biodegradable, and have acceptable toxicity profiles. Urea-choline chloride and malonic acid-choline chloride eutectic systems were characterized using differential scanning calorimetry (DSC) and thermal microscopy. A potential new 2:1 urea-choline chloride cocrystal with a melting point of 25 degrees C was characterized at the eutectic composition. The formation of this cocrystal suggests that DES should not be universally explained by simple eutectic melting, and may be useful in guiding the search for new DES systems. The lack of nucleation of the malonic acid-choline chloride system prohibited the construction of a phase diagram for this system using DSC. We also investigated possible uses of DES in solubilizing poorly soluble compounds for enhanced bioavailability in early drug development such as toxicology studies. For five poorly soluble model compounds, solubility in DES is 5 to 22,000 folds more than that in water. Thus, DES can be a promising vehicle for increasing exposure of poorly soluble compounds in preclinical studies. PMID:19477257

  6. Theoretical and numerical study of lamellar eutectic three-phase growth in ternary alloys.

    PubMed

    Choudhury, Abhik; Plapp, Mathis; Nestler, Britta

    2011-05-01

    We investigate lamellar three-phase patterns that form during the directional solidification of ternary eutectic alloys in thin samples. A distinctive feature of this system is that many different geometric arrangements of the three phases are possible, contrary to the widely studied two-phase patterns in binary eutectics. Here, we first analyze the case of stable lamellar coupled growth of a symmetric model ternary eutectic alloy, using a Jackson-Hunt-type calculation in thin film geometry, for arbitrary configurations, and derive expressions for the front undercooling as a function of velocity and spacing. Next, we carry out phase-field simulations to test our analytic predictions and to study the instabilities of the simplest periodic lamellar arrays. For large spacings, we observe different oscillatory modes that are similar to those found previously for binary eutectics and that can be classified using the symmetry elements of the steady-state pattern. For small spacings, we observe a new instability that leads to a change in the sequence of the phases. Its onset can be well predicted by our analytic calculations. Finally, some preliminary phase-field simulations of three-dimensional growth structures are also presented.

  7. Preparation, heat treatment, and mechanical properties of the uranium-5 weight percent chromium eutectic alloy

    SciTech Connect

    Townsend, A. B.

    1980-10-01

    The eutectic alloy of uranium-5 wt % chromium (U-5Cr) was prepared from high-purity materials and cast into 1-in.-thick ingots. This material was given several simple heat treatments, the mechanical properties of these heat-treated samples were determined; and the microstructure was examined. Some data on the melting point and transformation temperatures were obtained.

  8. The binary eutectic of NSAIDS and two-phase liquid system for enhanced membrane permeation.

    PubMed

    Yuan, Xudong; Capomacchia, A C

    2005-01-01

    The eutectic properties of binary mixtures of some nonsteroidal anti-inflammatory drugs (NSAIDs) with ibuprofen were studied using differential scanning calorimetry (DSC) and phase equilibrium diagrams. The melting points of selected NSAIDs were significantly depressed due to binary eutectic formation with ibuprofen. Ketoprofen and ibuprofen were selected to study the effect of eutectic formation on membrane permeation using Franz diffusion cells and snake skin as the model membrane. The presence of aqueous isopropyl alcohol (IPA) was necessary to completely transform the solid drugs into an oily state at ambient temperature. As much as the 99.6% of ibuprofen and the 88.8% of ketoprofen added were found in the oily phase of the two-phase liquid system formed when aqueous IPA was added to the eutectic mixture. Due to the high drug concentration in the oily phase, and maximum thermodynamic activity, the two-phase liquid system showed enhanced membrane permeation rates of ibuprofen (37.5 microg/cm2/hr) and ketoprofen (33.4 microg/cm2/hr) compared to other reference preparations used.

  9. A novel LiCl-BaCl2:Eu2+ eutectic scintillator for thermal neutron detection

    NASA Astrophysics Data System (ADS)

    Wu, Yuntao; Lukosi, Eric D.; Zhuravleva, Mariya; Lindsey, Adam C.; Melcher, Charles L.

    2015-10-01

    A natLiCl-BaCl2:Eu2+ eutectic scintillator was synthesized by the vertical Bridgman method aiming at the application of thermal neutron detection. The molar ratio of LiCl and BaCl2 was 75.1/24.9, which corresponds to the eutectic composition in the LiCl-BaCl2 system. The grown eutectic showed a periodic microstructure of BaCl2:Eu2+ and LiCl phases with 2-3 μm thickness. The α-particle induced radioluminescence spectrum of the scintillator showed an intense emission peak at 406 nm due to the Eu2+ 5d1→4f emission from the BaCl2:Eu2+ phase and an additional weak emission peak at 526 nm. The scintillation decay time was 412 ns. LiCl-BaCl2:Eu2+ eutectic samples exhibited non-correlated neutron detection efficiency and light yield as a function of crystal length, suggesting material non-uniformities within the boule. The relative light yield was equal to or greater than that of Nucsafe lithium glass. Gamma-ray exposures indicate that gamma/neutron threshold discrimination for higher energy gamma-rays will be limited.

  10. Refinement of Eutectic Si in High Purity Al-5Si Alloys with Combined Ca and P Additions

    NASA Astrophysics Data System (ADS)

    Ludwig, Thomas Hartmut; Li, Jiehua; Schaffer, Paul Louis; Schumacher, Peter; Arnberg, Lars

    2015-01-01

    The effects of combined additions of Ca and P on the eutectic Si in a series of high purity Al-5 wt pct Si alloys have been investigated with the entrained droplet technique and complementary sets of conventional castings. Differential scanning calorimetry (DSC) and thermal analysis were used to investigate the eutectic droplet undercooling and the recalescence undercooling, respectively. Optical microscopy, SEM, EPMA, and TEM were employed to characterize the resultant microstructures. It was found that 250 ppm Ca addition to Al-5Si wt pct alloys with higher P contents leads to a significant increase of the eutectic droplet undercooling. For low or moderate cooling rates, the TEM results underline that Ca additions do not promote Si twinning. Thus, a higher twin density cannot be expected in Ca containing Al-Si alloys after, e.g., sand casting. Consequently, a refinement of the eutectic Si from coarse flake-like to fine plate-like structure, rather than a modification of the eutectic Si to a fibrous morphology, was achieved. This strongly indicates that the main purpose of Ca additions is to counteract the coarsening effect of the eutectic Si imposed by higher P concentrations. Significant multiple Si twinning was observed in melt-spun condition; however, this can be attributed to the higher cooling rate. After DSC heating (slow cooling), most of Si twins disappeared. Thus, the well-accepted impurity-induced twinning mechanism may be not valid in the case of Ca addition. The possible refinement mechanisms were discussed in terms of nucleation and growth of eutectic Si. We propose that the pre-eutectic Al2Si2Ca phase and preferential formation of Ca3P2 deactivate impurity particles, most likely AlP, poisoning the nucleation sites for eutectic Si.

  11. The fabrication of all-silicon micro gas chromatography columns using gold diffusion eutectic bonding

    NASA Astrophysics Data System (ADS)

    Radadia, A. D.; Salehi-Khojin, A.; Masel, R. I.; Shannon, M. A.

    2010-01-01

    Temperature programming of gas chromatography (GC) separation columns accelerates the elution rate of chemical species through the column, increasing the speed of analysis, and hence making it a favorable technique to speedup separations in microfabricated GCs (micro-GC). Temperature-programmed separations would be preferred in an all-silicon micro-column compared to a silicon-Pyrex® micro-column given that the thermal conductivity and diffusivity of silicon is 2 orders of magnitude higher than Pyrex®. This paper demonstrates how to fabricate all-silicon micro-columns that can withstand the temperature cycling required for temperature-programmed separations. The columns were sealed using a novel bonding process where they were first bonded using a gold eutectic bond, then annealed at 1100 °C to allow gold diffusion into silicon and form what we call a gold diffusion eutectic bond. The gold diffusion eutectic-bonded micro-columns when examined using scanning electron microscopy (SEM), scanning acoustic microscopy (SAM) and blade insertion techniques showed bonding strength comparable to the previously reported anodic-bonded columns. Gas chromatography-based methane injections were also used as a novel way to investigate proper sealing between channels. A unique methane elution peak at various carrier gas inlet pressures demonstrated the suitability of gold diffusion eutectic-bonded channels as micro-GC columns. The application of gold diffusion eutectic-bonded all-silicon micro-columns to temperature-programmed separations (120 °C min-1) was demonstrated with the near-baseline separation of n-C6 to n-C12 alkanes in 35 s.

  12. Transient and steady state creep response of ice I and magnesium sulfate hydrate eutectic aggregates

    USGS Publications Warehouse

    McCarthy, C.; Cooper, R.F.; Goldsby, D.L.; Durham, W.B.; Kirby, S.H.

    2011-01-01

    Using uniaxial compression creep experiments, we characterized the transient and steady state deformation behaviors of eutectic aggregates of system ice I and MgSO4 11H2O (MS11; meridianiite), which has significance because of its likely presence on moons of the outer solar system. Synthetic samples of eutectic liquid bulk composition, which produce eutectic colonies containing 0.35-0.50 volume fraction MS11, were tested as functions of colony size and lamellar spacing, temperature (230-250 K), and confining pressure (0.1 and 50 MPa) to strains ???0.2. Up to a differential stress of 6 MPa, the ice I-MS11 aggregates display an order of magnitude higher effective viscosity and higher stress sensitivity than do aggregates of pure polycrystalline ice at the same conditions. The creep data and associated microstructural observations demonstrate, however, that the aggregates are additionally more brittle than pure ice, approaching rate-independent plasticity that includes rupture of the hydrate phase at 6-8 MPa, depending on the scale of the microstructure. Microstructures of deformed samples reveal forms of semibrittle flow in which the hydrate phase fractures while the ice phase deforms plastically. Semibrittle flow in the icy shell of a planetary body would truncate the lithospheric strength envelope and thereby decrease the depth to the brittle-ductile transition by 55% and reduce the failure limit for compressional surface features from 10 to ???6 MPa. A constitutive equation that includes eutectic colony boundary sliding and intracolony flow is used to describe the steady state rheology of the eutectic aggregates. Copyright ?? 2011 by the American Geophysical Union.

  13. Natural deep eutectic solvents as new potential media for green technology.

    PubMed

    Dai, Yuntao; van Spronsen, Jaap; Witkamp, Geert-Jan; Verpoorte, Robert; Choi, Young Hae

    2013-03-01

    Developing new green solvents is one of the key subjects in Green Chemistry. Ionic liquids (ILs) and deep eutectic solvents, thus, have been paid great attention to replace current harsh organic solvents and have been applied to many chemical processing such as extraction and synthesis. However, current ionic liquids and deep eutectic solvents have still limitations to be applied to a real chemical industry due to toxicity against human and environment and high cost of ILs and solid state of most deep eutectic solvents at room temperature. Recently we discovered that many plant abundant primary metabolites changed their state from solid to liquid when they were mixed in proper ratio. This finding made us hypothesize that natural deep eutectic solvents (NADES) play a role as alternative media to water in living organisms and tested a wide range of natural products, which resulted in discovery of over 100 NADES from nature. In order to prove deep eutectic feature the interaction between the molecules was investigated by nuclear magnetic resonance spectroscopy. All the tested NADES show clear hydrogen bonding between components. As next step physical properties of NADES such as water activity, density, viscosity, polarity and thermal properties were measured as well as the effect of water on the physical properties. In the last stage the novel NADES were applied to the solubilization of wide range of biomolecules such as non-water soluble bioactive natural products, gluten, starch, and DNA. In most cases the solubility of the biomolecules evaluated in this study was greatly higher than water. Based on the results the novel NADES may be expected as potential green solvents at room temperature in diverse fields of chemistry.

  14. The surface tension force of anisotropic interphase boundaries is perpendicular to the solidification front during eutectic growth

    NASA Astrophysics Data System (ADS)

    Bottin-Rousseau, S.; Şerefoǧlu, M.; Akamatsu, S.; Faivre, G.

    2012-01-01

    The irregular growth dynamics of the so-called locked (tilted) lamellar eutectic grains that are observed in directional solidification of nonfaceted/nonfaceted eutectic alloys, is attributable to a strong surface tension anisotropy of the interphase boundaries, which enters into the local-equilibrium (Young-Herring) condition at the trijunctions of the solid-liquid interfaces. Based on real-time observations of locked eutectic growth in thin samples, we propose that the lamellar tilt angle is selected by the system in such a way that the Hoffmann-Calm surface tension force (vec sigma vector) of the interphase boundaries is approximatively perpendicular to the solidification front.

  15. Deep eutectic solvents: sustainable media for nanoscale and functional materials.

    PubMed

    Wagle, Durgesh V; Zhao, Hua; Baker, Gary A

    2014-08-19

    Deep eutectic solvents (DESs) represent an alternative class of ionic fluids closely resembling room-temperature ionic liquids (RTILs), although, strictly speaking, they are distinguished by the fact that they also contain an organic molecular component (typically, a hydrogen bond donor like a urea, amide, acid, or polyol), frequently as the predominant constituent. Practically speaking, DESs are attractive alternatives to RTILs, sharing most of their remarkable qualities (e.g., tolerance to humidity, negligible vapor pressure, thermostability, wide electrochemical potential windows, tunability) while overcoming several limitations associated with their RTIL cousins. Particularly, DESs are typically, less expensive, more synthetically accessible (typically, from bulk commodity chemicals using solvent/waste-free processes), nontoxic, and biodegradable. In this Account, we provide an overview of DESs as designer solvents to create well-defined nanomaterials including shape-controlled nanoparticles, electrodeposited films, metal-organic frameworks, colloidal assemblies, hierarchically porous carbons, and DNA/RNA architectures. These breakthroughs illustrate how DESs can fulfill multiple roles in directing chemistry at the nanoscale: acting as supramolecular template, metal/carbon source, sacrificial agent (e.g., ammonia release from urea), and/or redox agent, all in the absence of formal stabilizing ligand (here, solvent and stabilizer are one and the same). The ability to tailor the physicochemical properties of DESs is central to controlling their interfacial behavior. The preorganized "supramolecular" nature of DESs provides a soft template to guide the formation of bimodal porous carbon networks or the evolution of electrodeposits. A number of essential parameters (viscosity, polarity, surface tension, hydrogen bonding), plus coordination with solutes/surfaces, all play significant roles in modulating species reactivity and mass transport properties governing the

  16. Deep eutectic solvents: sustainable media for nanoscale and functional materials.

    PubMed

    Wagle, Durgesh V; Zhao, Hua; Baker, Gary A

    2014-08-19

    Deep eutectic solvents (DESs) represent an alternative class of ionic fluids closely resembling room-temperature ionic liquids (RTILs), although, strictly speaking, they are distinguished by the fact that they also contain an organic molecular component (typically, a hydrogen bond donor like a urea, amide, acid, or polyol), frequently as the predominant constituent. Practically speaking, DESs are attractive alternatives to RTILs, sharing most of their remarkable qualities (e.g., tolerance to humidity, negligible vapor pressure, thermostability, wide electrochemical potential windows, tunability) while overcoming several limitations associated with their RTIL cousins. Particularly, DESs are typically, less expensive, more synthetically accessible (typically, from bulk commodity chemicals using solvent/waste-free processes), nontoxic, and biodegradable. In this Account, we provide an overview of DESs as designer solvents to create well-defined nanomaterials including shape-controlled nanoparticles, electrodeposited films, metal-organic frameworks, colloidal assemblies, hierarchically porous carbons, and DNA/RNA architectures. These breakthroughs illustrate how DESs can fulfill multiple roles in directing chemistry at the nanoscale: acting as supramolecular template, metal/carbon source, sacrificial agent (e.g., ammonia release from urea), and/or redox agent, all in the absence of formal stabilizing ligand (here, solvent and stabilizer are one and the same). The ability to tailor the physicochemical properties of DESs is central to controlling their interfacial behavior. The preorganized "supramolecular" nature of DESs provides a soft template to guide the formation of bimodal porous carbon networks or the evolution of electrodeposits. A number of essential parameters (viscosity, polarity, surface tension, hydrogen bonding), plus coordination with solutes/surfaces, all play significant roles in modulating species reactivity and mass transport properties governing the

  17. Progress in Studying Salt Secretion from the Salt Glands in Recretohalophytes: How Do Plants Secrete Salt?

    PubMed Central

    Yuan, Fang; Leng, Bingying; Wang, Baoshan

    2016-01-01

    To survive in a saline environment, halophytes have evolved many strategies to resist salt stress. The salt glands of recretohalophytes are exceptional features for directly secreting salt out of a plant. Knowledge of the pathway(s) of salt secretion in relation to the function of salt glands may help us to change the salt-tolerance of crops and to cultivate the extensive saline lands that are available. Recently, ultrastructural studies of salt glands and the mechanism of salt secretion, particularly the candidate genes involved in salt secretion, have been illustrated in detail. In this review, we summarize current researches on salt gland structure, salt secretion mechanism and candidate genes involved, and provide an overview of the salt secretion pathway and the asymmetric ion transport of the salt gland. A new model recretohalophyte is also proposed. PMID:27446195

  18. SALT for Language Acquisition.

    ERIC Educational Resources Information Center

    Bancroft, W. Jane

    1996-01-01

    Discusses Schuster's Suggestive-Accelerative Learning Techniques (SALT) Method, which combines Lozanov's Suggestopedia with such American methods as Asher's Total Physical Response and Galyean's Confluent Education. The article argues that students trained with the SALT Method have higher achievement scores and better attitudes than others. (14…

  19. Hydroxycarboxylic acids and salts

    DOEpatents

    Kiely, Donald E; Hash, Kirk R; Kramer-Presta, Kylie; Smith, Tyler N

    2015-02-24

    Compositions which inhibit corrosion and alter the physical properties of concrete (admixtures) are prepared from salt mixtures of hydroxycarboxylic acids, carboxylic acids, and nitric acid. The salt mixtures are prepared by neutralizing acid product mixtures from the oxidation of polyols using nitric acid and oxygen as the oxidizing agents. Nitric acid is removed from the hydroxycarboxylic acids by evaporation and diffusion dialysis.

  20. Utah: Salt Lake City

    Atmospheric Science Data Center

    2014-05-15

    ... backdrops for the 2002 Winter Olympics, to be held in Salt Lake City, Utah. The mountains surrounding Salt Lake City are renowned for ... western edge of the Rocky Mountains and eastern rim of the Great Basin. This early-winter image pair was acquired by the Multi-angle ...

  1. Molten salt electrolyte separator

    DOEpatents

    Kaun, T.D.

    1996-07-09

    The patent describes a molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication. 5 figs.

  2. Integrated Salt Studies

    NASA Astrophysics Data System (ADS)

    Urai, Janos L.; Kukla, Peter A.

    2015-04-01

    The growing importance of salt in the energy, subsurface storage, and chemical and food industries also increases the challenges with prediction of geometries, kinematics, stress and transport in salt. This requires an approach, which integrates a broader range of knowledge than is traditionally available in the different scientific and engineering disciplines. We aim to provide a starting point for a more integrated understanding of salt, by presenting an overview of the state of the art in a wide range of salt-related topics, from (i) the formation and metamorphism of evaporites, (ii) rheology and transport properties, (iii) salt tectonics and basin evolution, (iv) internal structure of evaporites, (v) fluid flow through salt, to (vi) salt engineering. With selected case studies we show how integration of these domains of knowledge can bring better predictions of (i) sediment architecture and reservoir distribution, (ii) internal structure of salt for optimized drilling and better cavern design, (iii) reliable long-term predictions of deformations and fluid flow in subsurface storage. A fully integrated workflow is based on geomechanical models, which include all laboratory and natural observations and links macro- and micro-scale studies. We present emerging concepts for (i) the initiation dynamics of halokinesis, (ii) the rheology and deformation of the evaporites by brittle and ductile processes, (iii) the coupling of processes in evaporites and the under- and overburden, and (iv) the impact of the layered evaporite rheology on the structural evolution.

  3. Soluble salts at the Phoenix Lander site, Mars: A reanalysis of the Wet Chemistry Laboratory data

    NASA Astrophysics Data System (ADS)

    Toner, J. D.; Catling, D. C.; Light, B.

    2014-07-01

    The Wet Chemistry Laboratory (WCL) on the Phoenix Mars Scout Lander analyzed soils for soluble ions and found Ca2+, Mg2+, Na+, K+, Cl-, SO42-, and ClO4-. The salts that gave rise to these ions can be inferred using aqueous equilibrium models; however, model predictions are sensitive to the initial solution composition. This is problematic because the WCL data is noisy and many different ion compositions are possible within error bounds. To better characterize ion concentrations, we reanalyzed WCL data using improvements to original analyses, including Kalman optimal smoothing and ion-pair corrections. Our results for Rosy Red are generally consistent with previous analyses, except that Ca2+ and Cl- concentrations are lower. In contrast, ion concentrations in Sorceress 1 and Sorceress 2 are significantly different from previous analyses. Using the more robust Rosy Red WCL analysis, we applied equilibrium models to determine salt compositions within the error bounds of the reduced data. Modeling with FREZCHEM predicts that WCL solutions evolve Ca-Mg-ClO4-rich compositions at low temperatures. These unusual compositions are likely influenced by limitations in the experimental data used to parameterize FREZCHEM. As an alternative method to evaluate salt assemblages, we employed a chemical divide model based on the eutectic temperatures of salts. Our chemical divide model predicts that the most probable salts in order of mass abundance are MgSO4·11H2O (meridianiite), MgCO3·nH2O, Mg(ClO4)2·6H2O, NaClO4·2H2O, KClO4, NaCl·2H2O (hydrohalite), and CaCO3 (calcite). If ClO3- is included in the chemical divide model, then NaClO3 precipitates instead of NaClO4·2H2O and Mg(ClO3)2·6H2O precipitates in addition to Mg(ClO4)2·6H2O. These salt assemblages imply that at least 1.3 wt.% H2O is bound in the soil, noting that we cannot account for water in hydrated insoluble salts or deliquescent brines. All WCL solutions within error bounds precipitate Mg(ClO4)2·6H2O and/or Mg

  4. [Salt and cancer].

    PubMed

    Strnad, Marija

    2010-05-01

    Besides cardiovascular disease, a high salt intake causes other adverse health effects, i.e., gastric and some other cancers, obesity (risk factor for many cancer sites), Meniere's disease, worsening of renal disease, triggering an asthma attack, osteoporosis, exacerbation of fluid retention, renal calculi, etc. Diets containing high amounts of food preserved by salting and pickling are associated with an increased risk of cancers of the stomach, nose and throat. Because gastric cancer is still the most common cancer in some countries (especially in Japan), its prevention is one of the most important aspects of cancer control strategy. Observations among Japanese immigrants in the U.S.A. and Brazil based on the geographic differences, the trend in cancer incidence with time, and change in the incidence patterns indicate that gastric cancer is closely associated with dietary factors such as the intake of salt and salted food. The findings of many epidemiological studies suggest that high dietary salt intake is a significant risk factor for gastric cancer and this association was found to be strong in the presence of Helicobacter (H.) pylori infection with atrophic gastritis. A high-salt intake strips the lining of the stomach and may make infection with H. pylori more likely or may exacerbate the infection. Salting, pickling and smoking are traditionally popular ways of preparing food in Japan and some parts of Asia. In addition to salt intake, cigarette smoking and low consumption of fruit and vegetables increase the risk of stomach cancer. However, it is not known whether it is specifically the salt in these foods or a combination of salt and other chemicals that can cause cancer. One study identified a mutagen in nitrite-treated Japanese salted fish, and chemical structure of this mutagen suggests that it is derived from methionine and that salt and nitrite are precursors for its formation. Working under conditions of heat stress greatly increased the workers

  5. Water purification using organic salts

    DOEpatents

    Currier, Robert P.

    2004-11-23

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  6. Automated detection and characterization of microstructural features: application to eutectic particles in single crystal Ni-based superalloys

    NASA Astrophysics Data System (ADS)

    Tschopp, M. A.; Groeber, M. A.; Fahringer, R.; Simmons, J. P.; Rosenberger, A. H.; Woodward, C.

    2010-03-01

    Serial sectioning methods continue to produce an abundant amount of image data for quantifying the three-dimensional nature of material microstructures. Here, we discuss a methodology to automate detecting and characterizing eutectic particles taken from serial images of a production turbine blade made of a heat-treated single crystal Ni-based superalloy (PWA 1484). This method includes two important steps for unassisted eutectic particle characterization: automatically identifying a seed point within each particle and segmenting the particle using a region growing algorithm with an automated stop point. Once detected, the segmented eutectic particles are used to calculate microstructural statistics for characterizing and reconstructing statistically representative synthetic microstructures for single crystal Ni-based superalloys. The significance of this work is its ability to automate characterization for analysing the 3D nature of eutectic particles.

  7. Growth and microstructure evolution of the Nb{sub 2}Al-Al{sub 3}Nb eutectic in situ composite

    SciTech Connect

    Rios, C.T.; Ferrandini, P.L.; Milenkovic, S.; Caram, R. . E-mail: rcaram@fem.unicamp.br

    2005-03-15

    In situ composite materials obtained by directional growth of eutectic alloys usually show improved properties, that make them potential candidates for high temperature applications. The eutectic alloy found in the Al-Nb system is composed of the two intermetallic phases Al{sub 3}Nb (D0{sub 22}) and Nb{sub 2}Al (D8{sub b}). This paper describes the directional solidification of an Al-Nb eutectic alloy using a Bridgman type facility at growth rates varying from 1.0 to 2.9 cm/h. Longitudinal and transverse sections of grown samples were characterized regarding the solidification microstructure by using optical and scanning electron microscopy, energy dispersive spectroscopy (EDS) and X-ray diffraction. Despite both phases being intermetallic compounds, the eutectic microstructure obtained was very regular. The results obtained were discussed regarding the effect of the growth rate on the microstructure, lamellar-rod transition and variation of phase volume fraction.

  8. Crushed Salt Constitutive Model

    SciTech Connect

    Callahan, G.D.

    1999-02-01

    The constitutive model used to describe the deformation of crushed salt is presented in this report. Two mechanisms -- dislocation creep and grain boundary diffusional pressure solution -- are combined to form the basis for the constitutive model governing the deformation of crushed salt. The constitutive model is generalized to represent three-dimensional states of stress. Upon complete consolidation, the crushed-salt model reproduces the Multimechanism Deformation (M-D) model typically used for the Waste Isolation Pilot Plant (WIPP) host geological formation salt. New shear consolidation tests are combined with an existing database that includes hydrostatic consolidation and shear consolidation tests conducted on WIPP and southeastern New Mexico salt. Nonlinear least-squares model fitting to the database produced two sets of material parameter values for the model -- one for the shear consolidation tests and one for a combination of the shear and hydrostatic consolidation tests. Using the parameter values determined from the fitted database, the constitutive model is validated against constant strain-rate tests. Shaft seal problems are analyzed to demonstrate model-predicted consolidation of the shaft seal crushed-salt component. Based on the fitting statistics, the ability of the model to predict the test data, and the ability of the model to predict load paths and test data outside of the fitted database, the model appears to capture the creep consolidation behavior of crushed salt reasonably well.

  9. Revealing heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys.

    PubMed

    Li, Jiehua; Hage, Fredrik S; Liu, Xiangfa; Ramasse, Quentin; Schumacher, Peter

    2016-04-28

    The heterogeneous nucleation of primary Si and eutectic Si can be attributed to the presence of AlP. Although P, in the form of AlP particles, is usually observed in the centre of primary Si, there is still a lack of detailed investigations on the distribution of P within primary Si and eutectic Si in hypereutectic Al-Si alloys at the atomic scale. Here, we report an atomic-scale experimental investigation on the distribution of P in hypereutectic Al-Si alloys. P, in the form of AlP particles, was observed in the centre of primary Si. However, no significant amount of P was detected within primary Si, eutectic Si and the Al matrix. Instead, P was observed at the interface between the Al matrix and eutectic Si, strongly indicating that P, in the form of AlP particles (or AlP 'patch' dependent on the P concentration), may have nucleated on the surface of the Al matrix and thereby enhanced the heterogeneous nucleation of eutectic Si. The present investigation reveals some novel insights into heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys and can be used to further develop heterogeneous nucleation mechanisms based on adsorption.

  10. A comparative study of the microstructures observed in statically cast and continuously cast Bi-In-Sn ternary eutectic alloy

    SciTech Connect

    Sengupta, S.; Soda, H.; McLean, A.; Rutter, J.W.

    2000-01-01

    A ternary eutectic alloy with a composition of 57.2 pct Bi, 24.8 pct In, and 18 pct Sn was continuously cast into wire of 2 mm diameter with casting speeds of 14 and 79 mm/min using the Ohno Continuous Casting (OCC) process. The microstructures obtained were compared with those of statically cast specimens. Extensive segregation of massive Bi blocks, Bi complex structures, and tin-rich dendrites was found in specimens that were statically cast. Decomposition of {radical}Sn by a eutectoid reaction was confirmed based on microstructural evidence. Ternary eutectic alloy with a cooling rate of approximately 1 C/min formed a double binary eutectic. The double binary eutectic consisted of regions of BiIn and decomposed {radical}Sn in the form of a dendrite cell structure and regions of Bi and decomposed {radical}Sn in the form of a complex-regular cell. The Bi complex-regular cells, which are a ternary eutectic constituent, existed either along the boundaries of the BiIn-decomposed {radical}Sn dendrite cells or at the front of elongated dendrite cell structures. In the continuously cast wires, primary Sn dendrites coupled with a small Bi phase were uniformly distributed within the Bi-In alloy matrix. Neither massive Bi phase, Bi complex-regular cells, no BiIn eutectic dendrite cells were observed, resulting in a more uniform microstructure in contrast to the heavily segregated structures of the statically cast specimens.

  11. Revealing heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys.

    PubMed

    Li, Jiehua; Hage, Fredrik S; Liu, Xiangfa; Ramasse, Quentin; Schumacher, Peter

    2016-01-01

    The heterogeneous nucleation of primary Si and eutectic Si can be attributed to the presence of AlP. Although P, in the form of AlP particles, is usually observed in the centre of primary Si, there is still a lack of detailed investigations on the distribution of P within primary Si and eutectic Si in hypereutectic Al-Si alloys at the atomic scale. Here, we report an atomic-scale experimental investigation on the distribution of P in hypereutectic Al-Si alloys. P, in the form of AlP particles, was observed in the centre of primary Si. However, no significant amount of P was detected within primary Si, eutectic Si and the Al matrix. Instead, P was observed at the interface between the Al matrix and eutectic Si, strongly indicating that P, in the form of AlP particles (or AlP 'patch' dependent on the P concentration), may have nucleated on the surface of the Al matrix and thereby enhanced the heterogeneous nucleation of eutectic Si. The present investigation reveals some novel insights into heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys and can be used to further develop heterogeneous nucleation mechanisms based on adsorption. PMID:27120994

  12. A feasibility study of a diffusion barrier between Ni-Cr-Al coatings and nickel-based eutectic alloys

    NASA Technical Reports Server (NTRS)

    Young, S. G.; Zellars, G. R.

    1978-01-01

    Coating systems have been proposed for potential use on eutectic alloy components in high-temperature gas turbine engines. In a study to prevent the deterioration of such systems by diffusion, a tungsten sheet 25 microns thick was placed between eutectic alloys and an Ni-Cr-Al layer. Layered test specimens were aged at 1100 C for as long as 500 h. Without the tungsten barrier the delta phase of the eutectic deteriorated by diffusion of niobium into the Ni-Cr-Al. Insertion of the tungsten barrier stopped the diffusion of niobium from the delta phase. Chromium diffusion from the Ni-Cr-Al into the gamma/gamma-prime phase of the eutectic was greatly reduced by the barrier. However, the barrier thickness decreased with time, and tungsten diffused into both the Ni-Cr-Al and the eutectic. When the delta platelets were aligned parallel rather than perpendicular to the Ni-Cr-Al layer, diffusion into the eutectic was reduced.

  13. Revealing heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys

    PubMed Central

    Li, Jiehua; Hage, Fredrik S.; Liu, Xiangfa; Ramasse, Quentin; Schumacher, Peter

    2016-01-01

    The heterogeneous nucleation of primary Si and eutectic Si can be attributed to the presence of AlP. Although P, in the form of AlP particles, is usually observed in the centre of primary Si, there is still a lack of detailed investigations on the distribution of P within primary Si and eutectic Si in hypereutectic Al-Si alloys at the atomic scale. Here, we report an atomic-scale experimental investigation on the distribution of P in hypereutectic Al-Si alloys. P, in the form of AlP particles, was observed in the centre of primary Si. However, no significant amount of P was detected within primary Si, eutectic Si and the Al matrix. Instead, P was observed at the interface between the Al matrix and eutectic Si, strongly indicating that P, in the form of AlP particles (or AlP ‘patch’ dependent on the P concentration), may have nucleated on the surface of the Al matrix and thereby enhanced the heterogeneous nucleation of eutectic Si. The present investigation reveals some novel insights into heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys and can be used to further develop heterogeneous nucleation mechanisms based on adsorption. PMID:27120994

  14. An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems

    SciTech Connect

    Pattrick Calderoni

    2010-09-01

    Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogenous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R&D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part of the

  15. Cooking without salt

    MedlinePlus

    ... flavor and nutrition. Plant-based foods -- carrots, spinach, apples, and peaches -- are naturally salt-free. Sun-dried ... types of pepper, including black, white, green, and red. Experiment with vinegars (white and red wine, rice ...

  16. Molten salt electrochemistry

    SciTech Connect

    Gallegos, U.F.; Williamson, M.A.

    1997-12-31

    The objective of this work is to develop preparation and clean-up processes for the fuel and carrier salt used in the Los Alamos Accelerator-Driven Transmutation Technology molten salt nuclear system. The front-end or fuel preparation process focuses on the removal of fission products, uranium, and zirconium from spent nuclear fuel by utilizing electrochemical methods. The same method provide the separation of the transition metal fission products at the back end of the fuel cycle. Molten salts provide a natural medium for the separation of actinides and fission products from one another because they are robust, radiation resistant solvents that can be recycled. The presentation will describe the design of the electrochemistry system, the method used for salt purification, and results of preliminary experiments.

  17. Shaking the Salt Habit

    MedlinePlus

    ... use the pepper shaker or mill. Add fresh lemon juice instead of salt to season fish and ... soups, salads, vegetables, tomatoes, potatoes Ginger: Chicken, fruits Lemon juice: Lean meats, fish, poultry, salads, vegetables Mace: ...

  18. Amine salts of nitroazoles

    DOEpatents

    Kienyin Lee; Stinecipher, M.M.

    1993-10-26

    Compositions of matter, a method of providing chemical energy by burning said compositions, and methods of making said compositions are described. These compositions are amine salts of nitroazoles. 1 figure.

  19. Electrodialysis technology for salt recovery from aluminum salt cake

    SciTech Connect

    Hryn, J. N.; Krumdick, G.; Graziano, D.; Sreenivasarao, K.

    2000-02-02

    Electrodialysis technology for recovering salt from aluminum salt cake is being developed at Argonne National Laboratory. Salt cake, a slag-like aluminum-industry waste stream, contains aluminum metal, salt (NaCl and KCl), and nonmetallics (primarily aluminum oxide). Salt cake can be recycled by digesting with water and filtering to recover the metal and oxide values. A major obstacle to widespread salt cake recycling is the cost of recovering salt from the process brine. Electrodialysis technology developed at Argonne appears to be a cost-effective approach to handling the salt brines, compared to evaporation or disposal. In Argonne's technology, the salt brine is concentrated until salt crystals are precipitated in the electrodialysis stack; the crystals are recovered downstream. The technology is being evaluated on the pilot scale using Eurodia's EUR 40-76-5 stack.

  20. Shaped ceramic eutectic plates grown from the melt and their properties

    NASA Astrophysics Data System (ADS)

    Benamara, Omar; Lebbou, Kheirreddine

    2016-09-01

    Al2O3-YAG-ZrO2 eutectic ceramic plates 10 mm in width, 2.4 mm in thickness and 100 mm in length were directionally grown by micro-pulling down technique under different growth rate (0.1-1 mm/min). The effects of the solidification rate on the crystallographic orientation and microstructure properties were analyzed in considerable detail. The microstructure spacing λ depends on the pulling rate v following the law: λ = 7 . 2 v-1/2 where λ is in μm and v in μm/s. For low growth rate (v<0.25), the ternary eutectic plates had homogeneous and regular microstructures and higher pulling rate heterogeneity in the morphology corresponding to colonies presence. The annealed plates did not undergo chemical reaction but slight grain growth was observed.

  1. Formation of Silicon-Gold Eutectic Bond Using Localized Heating Method

    NASA Astrophysics Data System (ADS)

    Lin, Liwei; Cheng, Yu-Ting; Najafi, Khalil

    1998-11-01

    A new bonding technique is proposed by using localized heating to supplythe bonding energy.Heating is achieved by applying a dc current through micromachined heaters made of gold which serves as both the heating and bonding material.At the interface of silicon and gold, the formation of eutectic bond takes place in about 5 minutes.Assembly of two substrates in microfabrication processescan be achieved by using this method.In this paper the following important results are obtained:1) Gold diffuses into silicon to form a strong eutectic bond by means of localized heating.2) The bonding strength reaches the fracture toughness of the bulk silicon.3) This bonding technique greatly simplifies device fabrication andassembly processes.

  2. Directional solidification of (Ti, Zr) carbide-(Ti, Zr) diboride eutectics

    SciTech Connect

    Sorrell, C.C.; Beratan, H.R.; Bradt, R.C.; Stubican, V.C.

    1984-03-01

    The ZrC-ZrB2, ZrC-TiB2, and TiC-TiB2 metal diboride-metal carbide pseudo-binary eutectic systems have been successfully solidified directionally by means of the floating zone method. The first and third of these eutectics possess a morphology consisting of columnar grains of parallel lamellae with interlamellar spacings that adhere to the lambda-squared (R) C relationship, while the second is noted to solidify in a Chinese calligraphy-like morphology of broken and deformed lamellae. This phenomenon may be related to solid solution effects, but it did not prevent the interlamellar spacings from following the aforementioned law. The calligraphic effect's values are larger than those of the other two systems, and the constant, C, is accordingly about an order of magnitude larger. All three of these cubic-hexagonal systems exhibited identical epitaxial relationships. 24 references.

  3. Phase field simulation of a directional solidification of a ternary eutectic Mo-Si-B Alloy

    NASA Astrophysics Data System (ADS)

    Kazemi, O.; Hasemann, G.; Krüger, M.; Halle, T.

    2016-03-01

    We present a eutectic Phase-Field Model for a Mo-Si-B alloy at ternary eutectic composition (Mo-17.5Si-8B), under a constant thermal gradient. The process parameters like cooling rate and thermal gradient were obtained directly from the experimental procedure of zone melting. The equilibrium interface geometries and interface mobility were calculated using an isotropic model. The phase equilibria and the other thermodynamic parameters are obtained by linearizing the Mo-Si-B ternary phase diagram. We have investigated the effect of process parameters on the lamellar growth pattern and lamella pattern stability with respect to the Jackson-Hunt minimum undercooling spacing theory. In order to examine the generated results by the model, they were validated with experimental observed microstructures and measurements and showed to be in a good agreement with the experimental observations.

  4. Eutectic bonding of a Ti sputter coated, carbon aerogel wafer to a Ni foil

    SciTech Connect

    Jankowski, A.F.; Hayes, J.P.; Kanna, R.L.

    1994-06-01

    The formation of high energy density, storage devices is achievable using composite material systems. Alternate layering of carbon aerogel wafers and Ni foils with rnicroporous separators is a prospective composite for capacitor applications. An inherent problem exists to form a physical bond between Ni and the porous carbon wafer. The bonding process must be limited to temperatures less than 1000{degrees}C, at which point the aerogel begins to degrade. The advantage of a low temperature eutectic in the Ni-Ti alloy system solves this problem. Ti, a carbide former, is readily adherent as a sputter deposited thin film onto the carbon wafer. A vacuum bonding process is then used to join the Ni foil and Ti coating through eutectic phase formation. The parameters required for successfld bonding are described along with a structural characterization of the Ni foil-carbon aerogel wafer interface.

  5. Solutal convection induced macrosegregation and the dendrite to composite transition in off-eutectic alloys

    NASA Technical Reports Server (NTRS)

    Boettinger, W. J.; Biancaniello, F. S.; Coriell, S. R.

    1981-01-01

    The effect of solute gradient induced convection during vertical solidification on the macrosegregation of Pb-rich Pb-Sn off-eutectic alloys is determined experimentally as a function of composition and growth rate. In many cases macrosegregation is sufficient to prevent the plane front solidification of the alloy. The transition from dendritic to composite structure is found to occur when the composition of the solid is close enough to the eutectic composition to satisfy a stability criterion based on the ratio of the liquid temperature gradient to growth rate. A vertical or horizontal magnetic field of 0.1 T (1 kilogauss) does not reduce macrosegregation, but downward solidification (liquid below solid) virtually eliminates macrosegregation in small (3 mm) diameter samples.

  6. Eutectic interactions in binary systems containing cholesterol, cholesteryl esters and triacylglycerols.

    PubMed

    Dorset, D L

    1990-11-12

    Binary phase behavior of saturated cholesterol esters with trilaurin or cholesterol, and cholesterol with trilaurin, is studied. The existence of specific molecular interactions is detected by comparing the liquidus curve of the eutectic with ideal theory of freezing point depression and correcting the theoretical curve with the Bragg-Williams model when necessary. X-ray data indicate that all eutectic solids are nearly totally fractionated. The phase diagrams are sometimes well-explained by ideal solution theory indicating that polar interactions (e.g., the hydrogen bonding of cholesterol) are much less important than van der Waals interactions between neighboring molecules. However, the hydrogen bonding networks of cholesterol can lead to nonideal solution behavior with other lipids, a phenomenon consistent with previous observations on simpler molecular binaries. An observed nonideal solution behavior of triacylglycerol with cholesterol esters, on the other hand, is unexpected since significant polar interactions are expected to be 'buried' in the predominant nonpolar volume of the molecules involved.

  7. Micelle structure in a deep eutectic solvent: a small-angle scattering study.

    PubMed

    Sanchez-Fernandez, A; Edler, K J; Arnold, T; Heenan, R K; Porcar, L; Terrill, N J; Terry, A E; Jackson, A J

    2016-05-18

    In recent years many studies into green solvents have been undertaken and deep eutectic solvents (DES) have emerged as sustainable and green alternatives to conventional solvents since they may be formed from cheap non-toxic organic precursors. In this study we examine amphiphile behaviour in these novel media to test our understanding of amphiphile self-assembly within environments that have an intermediate polarity between polar and non-polar extremes. We have built on our recently published results to present a more detailed structural characterisation of micelles of sodium dodecylsulfate (SDS) within the eutectic mixture of choline chloride and urea. Here we show that SDS adopts an unusual cylindrical aggregate morphology, unlike that seen in water and other polar solvents. A new morphology transition to shorter aggregates was found with increasing concentration. The self-assembly of SDS was also investigated in the presence of water; which promotes the formation of shorter aggregates. PMID:27157993

  8. Development of Ti/Ti{sub 3}Sn functionally gradient material produced by eutectic bonding method

    SciTech Connect

    Kirihara, S.; Takeda, M.; Tsujimoto, T.

    1996-07-15

    Although many materials which have a single function have been developed, future needs are anticipated to include materials which have various functions. A functionally gradient material (FGM) which has characteristics of two different materials is a promising candidate for multi-functional material. The present methods for production of FGM, however, are very complicated and costly. In this study the authors answer the serious problem of high production cost by fabricating the FGM by a eutectic bonding method. This fabrication method includes structural control of FGM by changing the cooling process. They describe Ti/Ti{sub 3}Sn FGM obtained by the eutectic bonding method, and tell how the structure of its composition gradient part is changed by controlling the cooling process.

  9. Microstructures in oxide eutectic fibers grown by a modified micro-pulling-down method

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Akira; Epelbaum, Boris M.; Hasegawa, Kenji; Durbin, Stephen D.; Fukuda, Tsuguo

    1999-09-01

    The micro-pulling-down method has been adapted to grow fibers with diameters as small as 150 μm. We describe the use of this method to grow fibers of the oxide eutectic materials Al 2O 3/Y 3Al 5O 12 and Al 2O 3/GdAlO 3, which have exceptional mechanical properties at high temperature. The "Chinese script" microstructure of Al 2O 3/Y 3Al 5O 12 is stable and uniform, and varies with the pulling rate in the same way as the conventional lamellar eutectics. The microstructure of Al 2O 3/GdAlO 3 is finer, but less stable and homogeneous, particularly at high pulling rate. Fibers produced at low growth rate exhibited self-cladding by the sapphire phase.

  10. Feasibility study of tungsten as a diffusion barrier between nickel-chromium-aluminum and Gamma/Gamma prime - Delta eutectic alloys

    NASA Technical Reports Server (NTRS)

    Young, S. G.; Zellars, G. R.

    1978-01-01

    Coating systems proposed for potential use on eutectic alloy components in high-temperature gas turbine engines were studied with emphasis on deterioration of such systems by diffusion. A 1-mil thick W sheet was placed between eutectic alloys and a NiCrAl layer. Layered test specimens were aged at 1100 C for as long as long as 500 hours. Without the W barrier, the delta phase of the eutectic deteriorated by diffusion of Nb into the NiCrAl. Insertion of the W barrier stopped the diffusion of Nb from delta. Chromium diffusion from the NiCrAl into the gamma/gamma prime phase of the eutectic was greatly reduced by the barrier. However, the barrier thickness decreased with time; and W diffused into both the NiCrAl and the eutectic. When the delta platelets were alined parallel to the NiCrAl layer, rather than perpendicular, diffusion into the eutectic was reduced.

  11. Mass transport in bedded salt and salt interbeds

    SciTech Connect

    Hwang, Y.; Pigford, T.H.; Chambre, P.L.; Lee, W.W.L.

    1989-08-01

    Salt is the proposed host rock for geologic repositories of nuclear waste in several nations because it is nearly dry and probably impermeable. Although experiments and experience at potential salt sites indicate that salt may contain brine, the low porosity, creep, and permeability of salt make it still a good choice for geologic isolation. In this paper we summarize several mass-transfer and transport analyses of salt repositories. The mathematical details are given in our technical reports.

  12. Investigation of TiC C Eutectic and WC C Peritectic High-Temperature Fixed Points

    NASA Astrophysics Data System (ADS)

    Sasajima, Naohiko; Yamada, Yoshiro

    2008-06-01

    TiC C eutectic (2,761°C) and WC C peritectic (2,749°C) fixed points were investigated to compare their potential as high-temperature thermometric reference points. Two TiC C and three WC C fixed-point cells were constructed, and the melting and freezing plateaux were evaluated by means of radiation thermometry. The repeatability of the TiC C eutectic within a day was 60 mK with a melting range roughly 200 mK. The repeatability of the melting temperature of the WC C peritectic within 1 day was 17 mK with a melting range of ˜70 mK. The repeatability of the freezing temperature of the WC C peritectic was 21 mK with a freezing range less than 20 mK. One of the TiC C cells was constructed from a TiC and graphite powder mixture. The filling showed the reaction with the graphite crucible was suppressed and the ingot contained less voids, although the lack of high-purity TiC powder poses a problem. The WC C cells were easily constructed, like metal carbon eutectic cells, without any evident reaction with the crucible. From these results, it is concluded that the WC C peritectic has more potential than the TiC C eutectic as a high-temperature reference point. The investigation of the purification of the TiC C cell during filling and the plateau observation are also reported.

  13. Electrode potentials of uranium in the LiCl-KCl-CsCl eutectic melt

    NASA Astrophysics Data System (ADS)

    Maltsev, D. S.; Volkovich, V. A.; Vladykin, E. N.; Vasin, B. D.

    2015-08-01

    The electrode potentials of uranium in the melt of the eutectic mixture of lithium, potassium, and cesium chlorides are measured in the temperature range 573-1073 K. Formal standard potentials E U * (III)/U and the main thermodynamic characteristics of uranium trichloride in the LiCl-KCl-CsCl melt are calculated, and the electronic absorption spectra of UCl 6 3- ions are measured.

  14. Salt Lake City, Utah

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Salt Lake City, Utah, will host the 2002 Winter Olympic Games. The city is located on the southeastern shore of the Great Salt Lake and sits to the west of the Wasatch Mountains, which rise more than 3,500 meters (10,000 feet) above sea level. The city was first settled in 1847 by pioneers seeking relief from religious persecution. Today Salt Lake City, the capital of Utah, is home to more than 170,000 residents. This true-color image of Salt Lake City was acquired by the Enhanced Thematic Mapper Plus (ETM+), flying aboard Landsat 7, on May 26, 2000. The southeastern tip of the Great Salt Lake is visible in the upper left of the image. The furrowed green and brown landscape running north-south is a portion of the Wasatch Mountains, some of which are snow-capped (white pixels). The greyish pixels in the center of the image show the developed areas of the city. A number of water reservoirs can be seen east of the mountain range. Salt Lake City International Airport is visible on the northwestern edge of the city. About 20 miles south of the airport is the Bingham Canyon Copper Mine (tan pixels), the world's largest open pit excavation. See also this MODIS image of Utah. Image courtesy NASA Landsat7 Science Team and USGS Eros Data Center

  15. Identification of salt-alloy combinations for thermal energy storage applications in advanced solar dynamic power systems

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Misra, A. K.

    1987-01-01

    Thermodynamic calculations based on the available data for flouride salt systems reveal that a number of congruently melting compositions and eutectics exist which have the potential to meet the lightweight, high energy storage requirements imposed for advanced solar dynamic systems operating between about 1000 and 1400 K. Compatibility studies to determine suitable containment alloys to be used with NaF-22CaF2-13MgF2, NaF-32CaF2, and NaF-23MgF2 have been conducted at the eutectic temperature + 25 K for each system. For these three NaF-based eutectics, none of the common, commercially available high temperature alloys appear to offer adequate corrosion resistance for a long lifetime; however mild steel, pure nickel and Nb-1Zr could prove useful. These latter materials suggest the possibility that a strong, corrosion resistant, nonrefractory, elevated temperature alloy based on the Ni-Ni3Nb system could be developed.

  16. Thermal Stability of FeS2 Cathode Material in "Thermal" Batteries: Effect of Dissolved Oxides in Molten Salt Electrolytes

    NASA Astrophysics Data System (ADS)

    Masset, Patrick J.

    2008-09-01

    The thermal stability of FeS2 cathode material for thermal batteries is investigated in the LiCl-KCl eutectic containing up to 10 wt% Li2O (used as anti-peak). The results show that the decomposition of pyrite shifts to higher temperatures in the presence of molten salts as the S2 gas is repressed by the liquid phase. For high lithium oxide contents the decomposition temperature of pyrite decreases by 100 °C. In addition Li2FeS2 as reaction product is evidenced whereas Li3Fe2S4 is expected from literature data.

  17. Physical chemistry of the organic analog of metal metal eutectic and monotectic alloys

    NASA Astrophysics Data System (ADS)

    Rai, U. S.; Rai, R. N.

    1998-01-01

    The phase diagram of an organic analog of a metal-metal system involving succinonitrile (SCN) and carbontetrabromide (CTB) shows the formation of a eutectic (0.996 mole fraction of SCN) and a monotectic (0.040 mole fraction of SCN) with a wide range of miscibility gap in the system. The consolute temperature is 111.5°C above the monotectic horizontal. The growth data, determined by measuring the rate of movement of solid-liquid interface in a capillary, at different undercooling (Δ T) suggest that they obey the parabolic law, v= u(Δ T) n, where v is the linear velocity of crystallization and u and n are constants depending on the nature of materials involved. Using enthalpy of fusion of the pure components, the eutectic and the monotectic, entropy of fusion, Jackson's roughness parameter, interfacial energy, size of the critical nucleus and excess thermodynamic functions were calculated. While microstructural investigations of pure components give dendritic microstructures, those of eutectic and monotectic give characteristic lamellar structures.

  18. Innovative Poly(Ionic Liquid)s by the Polymerization of Deep Eutectic Monomers.

    PubMed

    Isik, Mehmet; Ruiperez, Fernando; Sardon, Haritz; Gonzalez, Alba; Zulfiqar, Sonia; Mecerreyes, David

    2016-07-01

    The incorporation of ionic liquid (IL) chemistry into functional polymers has extended the properties and applications of polyelectrolytes. However, ILs are expensive due to the presence of fluorinated anions or complicated synthetic steps which limit their technological viability. Here, we show a new family of poly(ionic liquid)s (PILs) which are based in cheap and renewable chemicals and involves facile synthetic approaches. Thus, deep eutectic monomers (DEMs) are prepared for the first time by using quaternary ammonium compounds and various hydrogen bond donors such as citric acid, terephthalic acid or an amidoxime. The deep eutectic formation is made through a simple mixing of the ingredients. Differential scanning calorimetry, nuclear magnetic resonance (NMR) and computational studies reveal the formation of the DEMs due to the ionic interactions. The resulting DEMs are liquid which facilitates their polymerization using mild photopolymerization or polycondensation strategies. Spectroscopic characterizations reveal the successful formation of the polymers. By this way, a new family of PILs can be synthesized which can be used for different applications. As an example, the polymers show promising performance as solid CO2 sorbents. Altogether the deep eutectic monomer route can lead to non-toxic, cheap and easy-to-prepare alternatives to current PILs for different applications.

  19. A New Co-C Eutectic Fixed-Point Cell for Thermocouple Calibration at

    NASA Astrophysics Data System (ADS)

    Failleau, G.; Deuzé, T.; Jouin, D.; Mokdad, S.; Briaudeau, S.; Sadli, M.

    2014-07-01

    The eutectic Co-C is a promising system to serve as a thermometric fixed point beyond the freezing point of copper (). Some national metrology institutes have developed, characterized, and compared their Co-C fixed-point cells based on conventional designs. Indeed, the fixed-point cells constructed are directly inspired by the technologies applied to the fixed points of the ITS-90 to the lower levels of temperature. By studying the eutectic metal-carbon systems, is appears that the high temperatures of implementation give a set of difficulties, such as the strong mechanical stresses on the graphite crucibles, due to the important thermal expansion of the eutectic alloys during their phase transitions. If these devices are suitable with research activities to serve like primary standards, it is not envisaged to propose them for a direct application to the calibration activities for the industry. As regards the limited robustness of the conventional fixed-point cells constructed, an intensive use of these device would not be reasonable, in term of cost for example. In this paper, a new Co-C fixed-point design is introduced. This low cost device has been developed specifically for intensive use in thermocouple calibration activities, with the aim of achieving the lowest level of uncertainties as is practicable. Thus, in this paper, the metrological characterization of this device is also presented, and a direct comparison to a primary Co-C fixed-point cell previously constructed is discussed.

  20. Zero-gravity growth of NaF-NaCl eutectics in the NASA Skylab program

    NASA Technical Reports Server (NTRS)

    Yue, A. S.; Allen, F. G.; Yu, J. G.

    1976-01-01

    Continuous and discontinuous NaF fibers, embedded in a NaCl matrix, were produced in space and on earth. The production of continuous fibers in a eutectic mixture is attributed to the absence of convection current in the liquid during solidification in space. Image transmission and optical transmittance measurements of transverse sections of the space-grown and earth-grown ingots were made with a light microscope and a spectrometer. It is shown that better optical properties were obtained from samples grown in space. This was attributed to a better alignment of NaF fibers along the ingot axis. A new concept is advanced to explain the phenomenon of transmittance versus far infrared wavelength of the directionally solidified NaCl-NaF eutectic in terms of the two-dimensional Bragg Scattering and the polarization effect of Rayleigh scattering. This concept can be applied to other eutectic systems as long as the index of refraction of the matrix over a range of wavelengths is known. Experimental data are in agreement with the theoretical prediction.

  1. Natural deep eutectic solvents as a new extraction media for phenolic metabolites in Carthamus tinctorius L.

    PubMed

    Dai, Yuntao; Witkamp, Geert-Jan; Verpoorte, Robert; Choi, Young Hae

    2013-07-01

    Developing green solvents with low toxicity and cost is an important issue for the biochemical industry. Synthetic ionic liquids and deep eutectic solvents have received considerable attention due to their negligible volatility at room temperature, high solubilization ability, and tunable selectivity. However, the potential toxicity of the synthetic ionic liquids and the solid state at room temperature of most deep eutectic solvents hamper their application as extraction solvents. In this study, a wide range of recently discovered natural ionic liquids and deep eutectic solvents (NADES) composed of natural compounds were investigated for the extraction of phenolic compounds of diverse polarity. Safflower was selected as a case study because its aromatic pigments cover a wide range of polarities. Many advantageous features of NADES (such as their sustainability, biodegradability combined with acceptable pharmaceutical toxicity profiles, and their high solubilization power of both polar and nonpolar compounds) suggest their potential as green solvents for extraction. Experiments with different NADES and multivariate data analysis demonstrated that the extractability of both polar and less polar metabolites was greater with NADES than conventional solvents. The water content in NADES proved to have the biggest effect on the yield of phenolic compounds. Most major phenolic compounds were recovered from NADES with a yield between 75% and 97%. This study reveals the potential of NADES for applications involving the extraction of bioactive compounds from natural sources.

  2. A New Analytical Approach to Predict Spacing Selection in Lamellar and Rod Eutectic Systems

    NASA Technical Reports Server (NTRS)

    Catalina, Adrian V.; Sen, Subhayu; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    In this paper, we reexamine the Jackson and Hunt (JH) theory and relax the assumption of isothermal solid/liquid interface(SLI) used in their treatment. A modification of the term B. in the expression of the solute concentration profile is also proposed. Based on the predictions of this modified theory the traditional definitions of regular and irregular eutectics are discussed. For regular eutectics the new model identifies a range of spacing within the limits defined by the minimum undercooling of the alpha and beta phase. For the irregular Al-Si eutectic system in particular we identified two different spacing selection mechanisnis: a) for a particular growth rate, a nearly isothermal interface can be achieved at a unique minimum spacing lambda(sub I); b) the average spacing in the microstructure (lambda(sub av) > lambda(sub I)) is essentially dictated by the undercooling of the faceted phase. Based on the modified theoretical model a semi-empirical expression has been developed to account for the influence of the temperature gradient. The theoretical calculations have been found to be in good agreement with the published experimental measurements.

  3. Lamellar Spacing Selection in Al-Si Eutectic System: a Theoretical Investigation

    NASA Technical Reports Server (NTRS)

    Catalina, Adrian V.; Sen, Subhayu; Curreri, Peter A.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    It is well known that irregular eutectics such as Al-Si and Fe-C exhibit larger lamellar spacings and undercoolings compared to the predictions made by the Jackson and Hunt (JH) theory. In this paper, we reexamine the JH theory and relax some of the assumptions used in that treatment. The modified theoretical model has enhanced capabilities to predict the lamellar spacing in both regular and irregular eutectics. For the Al-Si system in particular we identified two different spacing selection mechanisms:a) for a particular growth rate, a nearly isothermal interface can be achieved at a unique minimum spacing lambda(sub I); b) the average spacing in the microstructure (lambda(sub av) greater than lambda(sub I)) is essentially dictated by the undercooling of the faceted phase. Based on the modified theoretical model a semi-empirical expression has been developed to account for the influence of the temperature gradient. Application of a Mullin and Sekerka type stability analysis for eutectics will also be presented and the results compared to the modified JH model. It will be shown that the both theoretical approaches are in good agreement with each other and also with the published experimental measurements.

  4. Thermal unfolding and refolding of lysozyme in deep eutectic solvents and their aqueous dilutions.

    PubMed

    Esquembre, Rocio; Sanz, Jesus M; Wall, J Gerard; del Monte, Francisco; Mateo, C Reyes; Ferrer, M Luisa

    2013-07-21

    The stability of hen's egg white lysozyme in different choline chloride-based pseudo-concentrated and neat deep eutectic solvents (DESs) has been studied by means of intrinsic fluorescence and CD spectroscopy. Thermal unfolding experiments carried out in non-diluted urea:choline chloride and glycerol:choline chloride eutectic solvents (UCCl-DES and GCCl-DES, respectively) showed the accumulation at certain temperatures of discrete, partially folded intermediates that displayed a high content of secondary structure and a disrupted tertiary structure. Reversibility of the unfolding process was incomplete in these circumstances, with the urea-based DES showing higher protein structure destabilization upon thermal treatment. On the other hand, aqueous dilution of the eutectic mixtures allowed the recovery of a reversible, two-state denaturation process. Lysozyme activity was also affected in neat and pseudo-concentrated GCCl-DES, with an increasing recovery of activity upon aqueous dilution, and full restoration after DES removal through extensive dialysis. These results suggest that protein interactions at room temperature are reversible and depend on the DES components and on the aqueous content of the original DES dilution. PMID:23722327

  5. Spectrophotometric and electrochemical study of neptunium ions in molten NaCl-CsCl eutectic

    NASA Astrophysics Data System (ADS)

    Uehara, Akihiro; Nagai, Takayuki; Fujii, Toshiyuki; Shirai, Osamu; Yamana, Hajimu

    2013-06-01

    The chemical oxidation states of NpO2+, Np4+ and Np3+ in NaCl-CsCl eutectic were controlled by using Cl2, O2, H2 and Ar gas mixtures, the redox behavior and electronic absorption properties of their Np ions were studied. The Np4+ was prepared from NpO2Cl by bubbling Cl2 gas into the melt in the presence of carbon rod. Np3+ was quantitatively prepared by bubbling H2-Ar gas mixture. The molar absorptivities of NpO2+, Np4+ and Np3+ were determined in molten NaCl-CsCl eutectic at 923 K and hypersensitive transitions of Np4+ and Np3+ ions were assigned. Since the polarizing ability of the cations in the NaCl-CsCl eutectic is lower than that in some other melts, it has been shown that the coordination symmetry of the Np-Cl complex is higher. In the electrochemical measurement of Np4+, the cathodic current for the reduction of Np4+ was found to be controlled by the diffusion of Np4+. The temperature dependence of the diffusion coefficient between 823 and 923 K was formulated to be lnD=-4304/T-6.172. The formal redox potential of the Np4+|Np3+ couple depended on the temperature, this dependence was formulated as ENp|Np∘'=-1.313+6.210×10-4T V (vs. Cl2|Cl-).

  6. Ge-Au eutectic bonding of Ge {l_brace}100{r_brace} single crystals

    SciTech Connect

    Knowlton, W.B.; Beeman, J.W.; Emes, J.H.; Loretto, D.; Itoh, K.M.; Haller, E.E. |

    1993-08-01

    We present preliminary results on eutectic bonding between two (100) Ge single crystal surfaces using thin films of Au ranging from 900{Angstrom}/surface and Pd(10% the thickness of Au). Following bonding, plan view optical microscopy (OM) of the cleaved interface of samples with Au thicknesses {le} 500{Angstrom}/surface show a eutectic morphology more conducive to phonon transmission through the bond interface. High resolution transmission electron microscopy (HRTEM) cross sectional interface studies of a 300{Angstrom}/surface Au sample show <100> epitaxial growth of Ge. In sections of the bond, lattice continuity of the Ge is apparent through the interface. TEM studies also reveal <110> heteroepitaxial growth of Au with a Au-Ge lattice mismatch of less than 2%. Eutectic bonds with 200{Angstrom}/surface Au have been attained with characterization pending. An optical polishing technique for Ge has been optimized to insure intimate contact between the Ge surfaces prior to bonding. Interferometry analysis of the optically polished Ge surface shows that surface height fluctuations lie within {plus_minus}150{Angstrom} across an interval of 1mm. Characterization of phonon transmission through the interface is discussed with respect to low temperature detection of ballistic phonons.

  7. H, not O or pressure, causes eutectic T depression in the Fe-FeS System to 8 GPa

    NASA Astrophysics Data System (ADS)

    Buono, Antonio S.; Walker, David

    2015-04-01

    The Fe-FeS system maintains a eutectic temperature of 990 ± 10 °C to at least 8 GPa if starting materials and pressure media are rigorously dehydrated. Literature reports of pressure-induced freezing point depression of the eutectic for the Fe-FeS system are not confirmed. Modest addition of oxygen alone is confirmed to cause negligible freezing point depression at 6 GPa. Addition of H alone causes a progressive decrease in the eutectic temperature with P in the Fe-FeS-H system to below 965 °C at 6 GPa to below 950 °C at 8 GPa. It is our hypothesis that moisture contamination in unrigorously dried experiments may be an H source for freezing point depression. O released from H2O disproportionation reacts with Fe and is sequestered as ferropericlase along the sample capsules walls, leaving the H to escape the system and/or enter the Fe-FeS mixture. The observed occurrence of ferropericlase on undried MgO capsule margins is otherwise difficult to explain, because an alternate source for the oxygen in the ferropericlase layer is difficult to identify. This study questions the use of pressure-depressed Fe-S eutectic temperatures and suggests that the lower eutectic temperatures sometimes reported are achieved by moving into the ternary Fe-S-H system. These results adjust slightly the constraints on eutectic temperatures allowed for partly solidified cores on small planets. H substantially diminishes the temperature extent of the melting interval in Fe-S by reducing the melting points of the crystalline phases more than it depresses the eutectic.

  8. Great Salt Lake, Utah

    USGS Publications Warehouse

    Stephens, Doyle W.; Gardner, Joe F.

    1999-01-01

    This document is intended as a source of general information and facts about Great Salt Lake, Utah. This U.S. Geological Survey information sheet answers frequently asked questions about Great Salt Lake. Topics include: History, salinity, brine shrimp, brine flies, migratory birds, and recreation. Great Salt Lake, the shrunken remnant of prehistoric Lake Bonneville, has no outlet. Dissolved salts accumulate in the lake by evaporation. Salinity south of the causeway has ranged from 6 percent to 27 percent over a period of 22 years (2 to 7 times saltier than the ocean). The high salinity supports a mineral industry that extracts about 2 million tons of salt from the lake each year. The aquatic ecosystem consists of more than 30 species of organisms. Harvest of its best-known species, the brine shrimp, annually supplies millions of pounds of food for the aquaculture industry worldwide. The lake is used extensively by millions of migratory and nesting birds and is a place of solitude for people. All this occurs in a lake that is located at the bottom of a 35,000-square-mile drainage basin that has a human population of more than 1.5 million.

  9. Development of High-Temperature Transport Technologies of Molten Salt Slurry in Pyrometallurgical Reprocessing

    NASA Astrophysics Data System (ADS)

    Hijikata, Takatoshi; Koyama, Tadafumi

    Pyrometallurgical-reprocessing is one of the most promising technologies for advanced fuel cycle with favorable economic potential and intrinsic proliferation resistance. The development of transport technology for molten salt is a key issue in the industrialization of pyro-reprocessing. As for pure molten LiCl-KCl eutectic salt at approximately 773 K, we have already reported the successful results of transport using gravity and a centrifugal pump. However, molten salt in an electrorefiner mixes with insoluble fines when spent fuel is dissolved in porous anode basket. The insoluble consists of noble metal fission products, such as Pd, Ru, Mo, and Zr. There have been very few transport studies of a molten salt slurry (metal fines-molten salt mixture). Hence, transport experiments on a molten salt slurry were carried out to investigate the behavior of the slurry in a tube. The apparatus used in the transport experiments on the molten salt slurry consisted of a supply tank, a 10° inclined transport tube (10 mm inner diameter), a valve, a filter, and a recovery tank. Stainless steel (SS) fines with diameters from 53 to 415 μm were used. To disperse these fines homogenously, the molten salt and fines were stirred in the supply tank by an impeller at speeds from 1200 to 2100 rpm. The molten salt slurry containing 0.04 to 0.4 vol.% SS fines was transported from the supply tank to the recovery tank through the transportation tube. In the recovery tank, the fines were separated from the molten salt by the filter to measure the transport behavior of molten salt and SS fines. When the velocity of the slurry was 0.02 m/s, only 1% of the fines were transported to the recovery tank. On the other hand, most of the fines were transported when the velocity of the slurry was more than 0.8 m/s. Consequently, the molten salt slurry can be transported when the velocity is more than 0.8 m/s.

  10. Microstructural development and mechanical behavior of eutectic bismuth-tin and eutectic indium-tin in response to high temperature deformation

    SciTech Connect

    Goldstein, J.L.F. |

    1993-11-01

    The mechanical behavior and microstructure of eutectic Bi-Sn and In-Sn solders were studied in parallel in order to better understand high temperature deformation of these alloys. Bi-Sn solder joints were made with Cu substrates, and In-Sn joints were made with either Cu or Ni substrates. The as-cast microstructure of Bi-Sn is complex regular, with the two eutectic phases interconnected in complicated patterns. The as-cast microstructure of In-Sn depends on the substrate. In-Sn on Cu has a non-uniform microstructure caused by diffusion of Cu into the solder during sample preparation, with regions of the Sn-rich {gamma} phase imbedded in a matrix of the In-rich {beta} phase. The microstructure of In-Sn on Ni is uniform and lamellar and the two phases are strongly coupled. The solders deform non-uniformly, with deformation concentrating in a band along the length of the sample for Bi-Sn and In-Sn on Cu, though the deformation is more diffuse in In-Sn than in Bi-Sn. Deformation of In-Sn on Ni spreads throughout the width of the joint. The different deformation patterns affect the shape of the stress-strain curves. Stress-strain curves for Bi-Sn and In-Sn on Cu exhibit sharp decays in the engineering stress after reaching a peak. Most of this stress decay is removed for In-Sn on Ni. The creep behavior of In-Sn also depends on the substrate, with the creep deformation controlled by the soft P phase of the eutectic for In-Sn on Cu and controlled by the harder {gamma} phase for In-Sn on Ni. When In-Sn on Ni samples are aged, the microstructure coarsens and changes to an array of {gamma} phase regions in a matrix of the {beta} phase, and the creep behavior changes to resemble that of In-Sn on Cu. The creep behavior of Bi-Sn changes with temperature. Two independent mechanisms operate at lower temperatures, but there is still some question as to whether one or both of these, or a third mechanism, operates at higher temperatures.

  11. Mineral resource of the month: salt

    USGS Publications Warehouse

    Kostick, Dennis S.

    2010-01-01

    The article presents information on various types of salt. Rock salt is either found from underground halite deposits or near the surface. Other types of salt include solar salt, salt brine, and vacuum pan salt. The different uses of salt are also given including its use as a flavor enhancer, as a road deicing agent, and to manufacture sodium hydroxide.

  12. Gas releases from salt

    SciTech Connect

    Ehgartner, B.; Neal, J.; Hinkebein, T.

    1998-06-01

    The occurrence of gas in salt mines and caverns has presented some serious problems to facility operators. Salt mines have long experienced sudden, usually unexpected expulsions of gas and salt from a production face, commonly known as outbursts. Outbursts can release over one million cubic feet of methane and fractured salt, and are responsible for the lives of numerous miners and explosions. Equipment, production time, and even entire mines have been lost due to outbursts. An outburst creates a cornucopian shaped hole that can reach heights of several hundred feet. The potential occurrence of outbursts must be factored into mine design and mining methods. In caverns, the occurrence of outbursts and steady infiltration of gas into stored product can effect the quality of the product, particularly over the long-term, and in some cases renders the product unusable as is or difficult to transport. Gas has also been known to collect in the roof traps of caverns resulting in safety and operational concerns. The intent of this paper is to summarize the existing knowledge on gas releases from salt. The compiled information can provide a better understanding of the phenomena and gain insight into the causative mechanisms that, once established, can help mitigate the variety of problems associated with gas releases from salt. Outbursts, as documented in mines, are discussed first. This is followed by a discussion of the relatively slow gas infiltration into stored crude oil, as observed and modeled in the caverns of the US Strategic Petroleum Reserve. A model that predicts outburst pressure kicks in caverns is also discussed.

  13. Superimpose signal processing method for micro-scale thermal imaging of solar salts at high temperature

    NASA Astrophysics Data System (ADS)

    Morikawa, Junko; Zamengo, Massimiliano; Kato, Yukitaka

    2016-05-01

    The global interest in energy applications activates the advanced study about the molten salts in the usage of fluids in the power cycle, such as for transport and heat storage in solar power facilities. However, the basic properties of molten salts show a general scattering in characterization especially in thermal properties. It is suggested that new studies are required on the measurement of thermal properties of solar salts using recent technologies. In this study, micro-scale heat transfer and phase change in molten salts are presented using our originally developed device: the micro-bolometer Infrared focal plane arrays (IR FPA) measuring system is a portable type instrument, which is re-designed to measure the thermal phenomena in high temperature up to 700 °C or higher. The superimpose system is newly setup adjusted to the signal processing in high temperature to realize the quantitative thermal imaging, simultaneously. The portable type apparatus for a quantitative micro-scale thermography using a micro-bolometer has been proposed based on an achromatic lens design to capture a micro-scale image in the long-wave infrared, a video signal superimposing for the real time emissivity correction, and a pseudo acceleration of a timeframe. Combined with the superimpose technique, the micro-scale thermal imaging in high temperature is achieved and the molten flows of the solar salts, sodium nitrate, and potassium nitrate are successfully observed. The solar salt, the mixture of sodium nitrate and potassium nitrate, shows a different shape of exothermic heat front morphology in the lower phase transition (solidification) temperature than the nitrates on cooling. The proposed measuring technique will be utilized to accelerate the screening step to determine the phase diagram and the eutectics of the multiple mixtures of candidate molten salts, which may be used as heat transport medium from the concentrated solar power to a processing plant for thermal energy

  14. Dielectric Relaxations of (Acetamide + Electrolyte) Deep Eutectic Solvents in the Frequency Window, 0.2 ≤ ν/GHz ≤ 50: Anion and Cation Dependence.

    PubMed

    Mukherjee, Kallol; Das, Anuradha; Choudhury, Samiran; Barman, Anjan; Biswas, Ranjit

    2015-06-25

    Dielectric relaxation (DR) measurements in the frequency range 0.2 ≤ ν/GHz ≤ 50 have been carried out for neat molten acetamide and six different (acetamide + electrolyte) deep eutectic solvents (DESs) for investigating ion effects on DR dynamics in these ionic DESs. Electrolytes used are lithium salts of bromide (LiBr), nitrate (LiNO3), and perchlorate (LiClO4); sodium salts of perchlorate (NaClO4) and thiocyante (NaSCN); and potassium thiocyanate (KSCN). With these electrolytes acetamide forms DESs approximately at an 80:20 mol ratio. Simultaneous fits to the measured permittivity (ε′) and loss (ε″) spectra of these DESs at ∼293 K require a sum of four Debye (4-D) processes with relaxation times spread over picosecond to nanosecond regime. In contrast, DR spectra for neat molten acetamide (∼354 K) depict 2-D relaxation with time constants ∼50 ps and ∼5 ps. For both the neat and ionic systems, the undetected dispersion, ε∞ – n(D)2, remains to be ∼3–4. Upon comparison, measured DR dynamics reveal pronounced anion and cation effects. Estimated static dielectric constants (ε0) from fits for these DESs cover the range 12 < ε0 < 30 and are remarkably lower than that (ε0 ∼ 64) measured for molten acetamide at ∼354 K. Hydrodynamic effective rotation volumes (Veff) estimated from the slowest DR relaxation time constants vary with ion identity and are much smaller than the molecular volume of acetamide. This decrease of ε0 and Veff is attributed respectively to the pinning of acetamide molecules by ions and orientation jumps and undetected portion to the limited frequency coverage employed in these measurements PMID:26012789

  15. The Great Salt Lake

    USGS Publications Warehouse

    Hassibe, W.R.; Keck, W.G.

    1991-01-01

    The western part of the conterminous United States is often thought of as being a desert without any large bodies of water. In the desert area of western Utah, however, lies Great Salt Lake, which in 1986 covered approximately 2,300 square miles and contained 30 million acre-feet of water (an acre-foot is the amount of water necessary to cover 1 acre of land with water 1 foot in depth or about 326,000 gallons). To emphasize its size, the Great Salt Lake is the largest lake west of the Mississippi River, larger than the states of Rhode Island and Delaware.

  16. Mechanism for salt scaling

    NASA Astrophysics Data System (ADS)

    Valenza, John J., II

    Salt scaling is superficial damage caused by freezing a saline solution on the surface of a cementitious body. The damage consists of the removal of small chips or flakes of binder. The discovery of this phenomenon in the early 1950's prompted hundreds of experimental studies, which clearly elucidated the characteristics of this damage. In particular it was shown that a pessimum salt concentration exists, where a moderate salt concentration (˜3%) results in the most damage. Despite the numerous studies, the mechanism responsible for salt scaling has not been identified. In this work it is shown that salt scaling is a result of the large thermal expansion mismatch between ice and the cementitious body, and that the mechanism responsible for damage is analogous to glue-spalling. When ice forms on a cementitious body a bi-material composite is formed. The thermal expansion coefficient of the ice is ˜5 times that of the underlying body, so when the temperature of the composite is lowered below the melting point, the ice goes into tension. Once this stress exceeds the strength of the ice, cracks initiate in the ice and propagate into the surface of the cementitious body, removing a flake of material. The glue-spall mechanism accounts for all of the characteristics of salt scaling. In particular, a theoretical analysis is presented which shows that the pessimum concentration is a consequence of the effect of brine pockets on the mechanical properties of ice, and that the damage morphology is accounted for by fracture mechanics. Finally, empirical evidence is presented that proves that the glue-small mechanism is the primary cause of salt scaling. The primary experimental tool used in this study is a novel warping experiment, where a pool of liquid is formed on top of a thin (˜3 mm) plate of cement paste. Stresses in the plate, including thermal expansion mismatch, result in warping of the plate, which is easily detected. This technique revealed the existence of

  17. Microstructure of the Sn-Cu{sub 6}Sn{sub 5} fibrous eutectic and its modification by segregation

    SciTech Connect

    Drevet, B.; Camel, D.; Favier, J.J.

    1996-10-01

    The influence of segregation due to thermal convection on the microstructure of Sn-Cu{sub 6}Sn{sub 5} fibrous eutectic alloys is studied in a Bridgman type configuration. The eutectic microstructure is characterized by means of image analysis, X-ray diffraction and scanning and transmission electron microscopy. In the absence of segregation, the eutectic is regular and its growth controlled by that of the Cu{sub 6}Sn{sub 5} fibers. The effect of interphases on eutectic spacing, through orientation relationships between fibers and matrix, is also evidenced. The influence of segregation can be summed up by the following effects. At first, in agreement with the Jackson and Hunt model, it leads to a variation of the eutectic spacing which results from a variation of the fiber volume fraction. Then, the spacing is much greater than the one obtained in the absence of segregation, due to a different tin growth plane and non-optimized fiber/matrix orientation relationships. Finally, the absence of steady state leads to a large dispersion of the spacing associated with a microstructural disorder.

  18. A Comparison between Growth Morphology of "Eutectic" Cells/Dendrites and Single-Phase Cells/Dendrites

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Raj, S. V.; Locci, I. E.

    2003-01-01

    Directionally solidified (DS) intermetallic and ceramic-based eutectic alloys with an in-situ composite microstructure containing finely distributed, long aspect ratio, fiber, or plate reinforcements are being seriously examined for several advanced aero-propulsion applications. In designing these alloys, additional solutes need to be added to the base eutectic composition in order to improve heir high-temperature strength, and provide for adequate toughness and resistance to environmental degradation. Solute addition, however, promotes instability at the planar liquid-solid interface resulting in the formation of two-phase eutectic "colonies." Because morphology of eutectic colonies is very similar to the single-phase cells and dendrites, the stability analysis of Mullins and Sekerka has been extended to describe their formation. Onset of their formation shows a good agreement with this approach; however, unlike the single-phase cells and dendrites, there is limited examination of their growth speed dependence of spacing, morphology, and spatial distribution. The purpose of this study is to compare the growth speed dependence of the morphology, spacing, and spatial distribution of eutectic cells and dendrites with that for the single-phase cells and dendrites.

  19. Unitized paramagnetic salt thermometer

    SciTech Connect

    Abraham, B.M.

    1982-06-01

    The details of construction and assembly of a cerous magnesium nitrate (CMN) paramagnetic thermometer are presented. The thermometer is a small unit consisting of a primary, two secondaries, the salt pill, and thermal links. The thermometer calibration changes very little on successive coolings and is reliable to 35 mK. A typical calibration curve is also presented.

  20. Dalapon, sodium salt

    Integrated Risk Information System (IRIS)

    Dalapon , sodium salt ; CASRN 75 - 99 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  1. Uranium, soluble salts

    Integrated Risk Information System (IRIS)

    Uranium , soluble salts ; no CASRN Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  2. Thallium (I), soluble salts

    Integrated Risk Information System (IRIS)

    Thallium ( I ) , soluble salts ; CASRN Various Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarc

  3. Nickel, soluble salts

    Integrated Risk Information System (IRIS)

    Nickel , soluble salts ; CASRN Various Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  4. Chlorite (sodium salt)

    Integrated Risk Information System (IRIS)

    Chlorite ( sodium salt ) ; CASRN 7758 - 19 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarc

  5. SALT and Spelling Achievement.

    ERIC Educational Resources Information Center

    Nelson, Joan

    A study investigated the effects of suggestopedic accelerative learning and teaching (SALT) on the spelling achievement, attitudes toward school, and memory skills of fourth-grade students. Subjects were 20 male and 28 female students from two self-contained classrooms at Kennedy Elementary School in Rexburg, Idaho. The control classroom and the…

  6. Sodium (Salt or Sodium Chloride)

    MedlinePlus

    ... reduce the salt in your diet and for information, strategies, and tools you need to lead a healthier ... reduce the salt in your diet and get information, strategies, and tools you need to lead a healthier ...

  7. Metals removal from spent salts

    DOEpatents

    Hsu, Peter C.; Von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Brummond, William A.; Adamson, Martyn G.

    2002-01-01

    A method and apparatus for removing metal contaminants from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents may be added to precipitate the metal oxide and/or the metal as either metal oxide, metal hydroxide, or as a salt. The precipitated materials are filtered, dried and packaged for disposal as waste or can be immobilized as ceramic pellets. More than about 90% of the metals and mineral residues (ashes) present are removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be spray-dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 1.0 ppm of contaminants.

  8. Actinide removal from spent salts

    DOEpatents

    Hsu, Peter C.; von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Adamson, Martyn G.

    2002-01-01

    A method for removing actinide contaminants (uranium and thorium) from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents are added to precipitate the thorium as thorium oxide and/or the uranium as either uranium oxide or as a diuranate salt. The precipitated materials are filtered, dried and packaged for disposal as radioactive waste. About 90% of the thorium and/or uranium present is removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 0.1 ppm of thorium or uranium.

  9. Containerless processing and rapid solidification of Nb-Si alloys in the niobium-rich eutectic range

    NASA Technical Reports Server (NTRS)

    Hofmeister, W. H.; Bayuzick, R. J.; Robinson, M. B.; Bertero, G. A.

    1991-01-01

    Containerless processing and rapid solidification techniques were used to process Nb-Si alloys in the Nb-rich eutectic range. Electromagnetically levitated drops were melted and subsequently splat-quenched from different temperatures. A variety of eutectic morphologies was obtained as a function of the degree of superheating or undercooling of the drops prior to splatting. Metallic glass was observed only in drops quenched from above the melting temperature. Microstructures of splats deeply undercooled prior to quenching were very fine and uniform. These results are discussed in terms of classic nucleation theory concepts and the expected heat evolution at different regions of the splat during the rapid quenching process. The locations of the coupled-zone boundaries for the alpha-Nb + Nb3Si eutectic are also suggested.

  10. Doubly ionic hydrogen bond interactions within the choline chloride-urea deep eutectic solvent.

    PubMed

    Ashworth, Claire R; Matthews, Richard P; Welton, Tom; Hunt, Patricia A

    2016-07-21

    Deep eutectic solvents (DESs) are exemplars of systems with the ability to form neutral, ionic and doubly ionic H-bonds. Herein, the pairwise interactions of the constituent components of the choline chloride-urea DES are examined. Evidence is found for a tripodal CHCl doubly ionic H-bond motif. Moreover it is found that the covalency of doubly ionic H-bonds can be greater than, or comparable with, neutral and ionic examples. In contrast to many traditional solvents, an "alphabet soup" of many different types of H-bond (OHO[double bond, length as m-dash]C, NHO[double bond, length as m-dash]C, OHCl, NHCl, OHNH, CHCl, CHO[double bond, length as m-dash]C, NHOH and NHNH) can form. These H-bonds exhibit substantial flexibility in terms of number and strength. It is anticipated that H-bonding will have a significant impact on the entropy of the system and thus could play an important role in the formation of the eutectic. The 2 : 1 urea : choline-chloride eutectic point of this DES is often associated with the formation of a [Cl(urea)2](-) complexed anion. However, urea is found to form a H-bonded urea[choline](+) complexed cation that is energetically competitive with [Cl(urea)2](-). The negative charge on [Cl(urea)2](-) is found to remain localised on the chloride, moreover, the urea[choline](+) complexed cation forms the strongest H-bond studied here. Thus, there is potential to consider a urea[choline](+)·urea[Cl](-) interaction. PMID:27328990

  11. Doubly ionic hydrogen bond interactions within the choline chloride-urea deep eutectic solvent.

    PubMed

    Ashworth, Claire R; Matthews, Richard P; Welton, Tom; Hunt, Patricia A

    2016-07-21

    Deep eutectic solvents (DESs) are exemplars of systems with the ability to form neutral, ionic and doubly ionic H-bonds. Herein, the pairwise interactions of the constituent components of the choline chloride-urea DES are examined. Evidence is found for a tripodal CHCl doubly ionic H-bond motif. Moreover it is found that the covalency of doubly ionic H-bonds can be greater than, or comparable with, neutral and ionic examples. In contrast to many traditional solvents, an "alphabet soup" of many different types of H-bond (OHO[double bond, length as m-dash]C, NHO[double bond, length as m-dash]C, OHCl, NHCl, OHNH, CHCl, CHO[double bond, length as m-dash]C, NHOH and NHNH) can form. These H-bonds exhibit substantial flexibility in terms of number and strength. It is anticipated that H-bonding will have a significant impact on the entropy of the system and thus could play an important role in the formation of the eutectic. The 2 : 1 urea : choline-chloride eutectic point of this DES is often associated with the formation of a [Cl(urea)2](-) complexed anion. However, urea is found to form a H-bonded urea[choline](+) complexed cation that is energetically competitive with [Cl(urea)2](-). The negative charge on [Cl(urea)2](-) is found to remain localised on the chloride, moreover, the urea[choline](+) complexed cation forms the strongest H-bond studied here. Thus, there is potential to consider a urea[choline](+)·urea[Cl](-) interaction.

  12. Long-time dynamics of the directional solidification of rodlike eutectics.

    PubMed

    Perrut, Mikaël; Akamatsu, Silvère; Bottin-Rousseau, Sabine; Faivre, Gabriel

    2009-03-01

    We report long-duration real-time observations of the dynamics of hexagonal (rodlike) directional-solidification patterns in bulk samples of a transparent eutectic alloy. A slight forward curvature of the isotherms induces a slow dilatation of the growth pattern at constant solidification rate and triggers the rod-splitting instability. At long times, the rod-splitting frequency exactly balances the dilatation driven by the curved isotherms. The growth pattern is then disordered and nonstationary but has a sharply selected mean spacing. Well-ordered growth patterns can be grown using time-dependent solidification rates.

  13. Phase selection during crystallization of undercooled liquid eutectic lead-tin alloys

    NASA Technical Reports Server (NTRS)

    Fecht, H. J.

    1991-01-01

    During rapid solidification substantial amounts of undercooling are in general required for formation of metastable phases. Crystallization at varying levels of undercooling and melting of metastable phases were studied during slow cooling and heating of emulsified PB-Sn alloys. Besides the experimental demonstration of the reversibility of metastable phase equilibra, two different principal solidification paths have been identified and compared with the established metastable phase diagram and predictions from classical nucleation theory. The results suggest that the most probable solidification path is described by the 'step rule' resulting in the formation of metastable phases at low undercooling, whereas the stable eutectic phase mixture crystallizes without metastable phase formation at high undercooling.

  14. Spatial profile of thermoelectric effects during Peltier pulsing in Bi and Bi/MnBi eutectic

    NASA Technical Reports Server (NTRS)

    Silberstein, R. P.; Larson, D. J., Jr.

    1987-01-01

    The spatial profile of the thermal transients that occur during and following the current pulsing associated with Peltier Interface Demarcation during directional solidification is studied. Results for pure Bi are presented in detail and compared with corresponding results for the Bi/MnBi eutectic. Significant thermal transients occur throughout the sample that can be accounted for by the Peltier effect, the Thomson effect, and Joule heating. These effects are separated and their behavior is studied as a function of time, current density, and position with respect to the solid/liquid interface.

  15. Microstructural changes in eutectic tin-lead alloy due to severe bending

    SciTech Connect

    SHEN,Y.-L.; ABEYTA,M.C.; FANG,HUEI ELIOT

    2000-02-29

    Severe plastic deformation in an eutectic tin-lead alloy is studied by imposing fast bending at room temperature, in an attempt to examine the microstructural response in the absence of thermally activated diffusion processes. A change in microstructure due to this purely mechanically imposed load is observed: the tin-rich matrix phase appears to be extruded out of the narrow region between neighboring layers of the lead-rich phase and alterations in the colony structure occur. A micromechanism is proposed to rationalize the experimental observations.

  16. Structural Characterization of Lead-Bismuth Eutectic Corrosion of Stainless Steel by Ultrasonic and Metallographic Analysis

    SciTech Connect

    Loewen, Eric Paul; Bisanz, George

    2002-12-01

    Metallic test coupons subjected to corrosion in a lead–bismuth eutectic (LBE) were analyzed by both ultrasound and scanning electron microscope (SEM). The advantages and disadvantages of each method are given, and the possibility of using ultrasound as a screening process for SEM is presented. Visual data from each method are given, and the data derived from each method are compared and contrasted. Use of both ultrasound and SEM is recommended for future analysis of corrosion coupons, and development of a better methodology will increase the portion of the analysis workload obtainable by ultrasound.

  17. Fabrication and Characterization of a Lead Zirconate Titanate Micro Energy Harvester Based on Eutectic Bonding

    NASA Astrophysics Data System (ADS)

    Li, Yi-Gui; Sun, Jian; Yang, Chun-Sheng; Liu, Jing-Quan; Sugiyama, Susumu; Tanaka, Katsuhiko

    2011-06-01

    A lead zirconate titanate(PZT)-Si energy harvester cantilever with PZT bulk ceramics is fabricated by eutectic bonding, polishing and dicing processes. The feasibility of this process is studied using a successful operation of the cantilever in both actuation and harvesting modes. The first prototype made from a PZT-Au-Si cantiliever is tested. The testing results show the voltage output of 632 mV at the frequency of 815 Hz when the excitation acceleration is 0.5 g. The PZT and silicon layers are bonded together to form a sandwiched structure using a gold layer as an intermediate layer.

  18. Evaluation of an advanced directionally solidified gamma/gamma'-alpha Mo eutectic alloy

    NASA Technical Reports Server (NTRS)

    Henry, M. F.; Jackson, M. R.; Gigliotti, M. F. X.; Nelson, P. B.

    1979-01-01

    An attempt was made to improve on the properties of the candidate jet engine turbine blade material AG-60, a gamma/gamma prime-alpha Mo eutectic composite. Alloy 38 (AG-170) was evaluated in the greatest detail. This alloy, Ni-5.88 A1-29.74 Mo-1.65 V-1.2C Re (weight percent), represents an improvement beyond AG-60, based on mechanical testing of the transverse and/or longitudinal orientations over a range of temperatures in tension, shear, rupture, and rupture after thermal exposure. It is likely that other alloys in the study represent a similar improvement.

  19. Zero-gravity growth of a sodium chloride-lithium fluoride eutectic mixture

    NASA Technical Reports Server (NTRS)

    Yue, A. S.; Yeh, C. W.; Yue, B. K.

    1982-01-01

    Continuous and discontinuous lithium fluoride fibers embedded in a sodium chloride matrix were produced in space and on Earth, respectively. The production of continuous fibers in a eutectic mixture was attributed to the absence of convective current in the liquid during solidification in space. Image transmission and optical transmittance measurements of transverse sections of the space-grown and Earth-grown ingots were made with a light microscope and a spectrometer. It was found that better optical properties were obtained from samples grown in space. This was attributed to a better alignment of lithium fluoride fibers along the growth direction.

  20. The effect of low Au concentrations on the properties of eutectic Sn/Pb

    SciTech Connect

    Kramer, P.A.

    1992-05-01

    This study was of the effects moderately low Au concentrations ({le} 10 wt%) have on the mechanical properties and microstructure of an eutectic Sn/Pb alloy. Vibration (60--90 Hz swept sine wave for 30 hours) and thermal cycling (0--110C for 1450 cycles) reliability tests were performed on fine pitch leaded chip carriers using eutectic Sn/Pb solder on PCBs (printed circuit boards) with 0, 5, 10, 20, and 50{mu}in nominal Au thicknesses. Testing was also performed on double shear creep specimens consisting of arrays of regular pitch joints. There was a dramatic increase in the number of joints containing voids with increasing Au concentration, an effect more pronounced in the creep joints than in the reliability joints. These voids tended to coalesce and grow during rework simulation of the reliability joints. AuSn{sub 4} intermetallics present in toe of 4.8 wt% (50 {mu}in) Au vibration joints rotated from initial vertical perpendicular to surface of PCB metallization, solidification positions to roughly horizontal (parallel to plating surface) orientations during rework simulation and during aging of the parts. The AuSn{sub 4} intermetallics in the toe of the 4.8 wt% (50{mu}in) Au reflowed joints also rotated after vibration testing. No joint failures were observed in either vibration tested or thermally cycled specimens. Cracks formed in some of the vibration tested specimen joints under the heel of the gull-wing lead at Pb-rich phases. Thermally cycled specimens showed eutectic microstructure and intermetallic coarsening without crack formation. Creep tests showed loss of the superplasticity in eutectic Sn/Pb alloys with even the lowest Au concentration tested of 0.2 wt% Au. Intermetallic rotation was not a factor in crack propagation, but void presence was. Cracks tended to form in joints containing voids before forming in void-free joints. Crack propagation followed Sn/Sn grain boundaries and Sn/Pb phase boundaries from Pb-rich phase to Pb-rich phase.

  1. Thermodynamic properties of gadolinium in Ga-Sn and Ga-Zn eutectic based alloys

    NASA Astrophysics Data System (ADS)

    Maltsev, Dmitry S.; Volkovich, Vladimir A.; Yamshchikov, Leonid F.; Chukin, Andrey V.

    2016-09-01

    Thermodynamic properties of gadolinium in Ga-Sn and Ga-Zn eutectic based alloys were studied. Temperature dependences of gadolinium activity in the studied alloys were determined at 573-1073 K employing the EMF method. Solubility of gadolinium in the Ga-Sn and Ga-Zn alloys was measured at 462-1073 K using IMCs sedimentation method. Activity coefficients as well as partial and excess thermodynamic functions of gadolinium in the studied alloys were calculated on the basis of the obtained experimental data.

  2. An electrochemical study of uranium behaviour in LiCl-KCl-CsCl eutectic melt

    NASA Astrophysics Data System (ADS)

    Maltsev, D. S.; Volkovich, V. A.; Vasin, B. D.; Vladykin, E. N.

    2015-12-01

    Electrochemical behaviour of uranium was studied in the low melting ternary LiCl-KCl-CsCl eutectic at 573-1073 K employing potentiometry, cyclic voltammetry and chronopotentiometry. Uranium electrode potentials were measured directly and U(III)/U(IV) red-ox potentials were determined from the results of cyclic voltammetry measurements. Formal standard electrode and red-ox potentials of uranium, and thermodynamic properties of uranium chlorides in the studied melt were calculated. Diffusion coefficients of U(III) and U(IV) ions were determined using cyclic voltammetry and chronopotentiometry.

  3. (abstract) A Brief, Selective Review of Thermal Cycling Fatigue in Eutectic Tin-Lead Solder

    NASA Technical Reports Server (NTRS)

    Winslow, J. W.; Silveira, C. de

    1993-01-01

    This paper reviews selected parts of the current literature relevant to thermo-mechanical fatigue mechanisms in eutectic tin-lead solder, and suggests a general outline to account for some observed failures. The field is found to be complex. One recent experimental study finds some failure modes to be sensitive to joint geometry. Attempts to extrapolate from test environments to service environments have had only limited success. Much work remains to be done before fatigue failures in this material can be considered as under practical control.

  4. Deposition studies of lithium and bismuth at tungsten microelectrodes in LiCl:KCl eutectic

    NASA Astrophysics Data System (ADS)

    Carlin, Richard T.; Osteryoung, Robert A.

    1989-05-01

    Tungsten microelectrodes (diam = 25 microns) have been used to study the deposition and stripping behavior of Li/Li(+) and Bi/Bi(3+) in the LiCl:KCl eutectic at 400 C. The Li deposition current can be simulated assuming the growth of a single hemisphere of liquid metal on the microelectrode. High stripping current densities were observed and quantitated using standard electrochemical equipment. An inverted microscope assembly was employed for in situ observation of the Li/Li(+) deposition and stripping processes at the microelectrode. A precipitate appears to form in the melt surrounding the electrode during Li deposition.

  5. Compatibility of Lead-Bismuth Eutectic with SiC-Coated Graphite at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Chakraborty, Poulami; Ghosh, Abhijit; Dey, Gautam Kumar

    2016-08-01

    Uniform coating of β-silicon carbide (β-SiC) was formed over a graphite pellet through slurry-based silicon coating followed by in situ reaction at 1873 K (1600 °C). The coated pellet was exposed to molten lead-bismuth eutectic (LBE) at 1173 K (900 °C) in static condition for 200 h. Weight loss measurement, X-ray diffraction, and secondary electron microscopy-energy-dispersive spectroscopy confirmed that the SiC coating could effectively prevent molten LBE from attacking the inner graphite material.

  6. Resistance of a gamma/gamma prime - delta directionally solidified eutectic alloy to recrystallization

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Scheuermann, C. M.; Andrews, C. W.

    1975-01-01

    The lamellar directionally solidified nickel-base eutectic alloy gamma/gamma prime-delta has potential as an advanced turbine blade material. The microstructural stability of this alloy was investigated. Specimens were plastically deformed by uniform compression or Brinell indentation, then annealed between 705 and 1120 C. Microstructural changes observed after annealing included gamma prime coarsening, pinch-off and spheroidization of delta lamellae, and the appearance of an unidentified blocky phase in surface layers. All but the first of these was localized in severely deformed regions, suggesting that microstructural instability is not a serious problem in the use of this alloy.

  7. Mechanical behavior of the directionally solidified gamma/gamma prime - delta eutectic alloy

    NASA Technical Reports Server (NTRS)

    Barkalow, R. H.; Jackson, J. J.; Gell, M.; Leverant, G. R.

    1975-01-01

    The eutectic alloy Ni-20.0%Cb-2.5%Al-6.0%Cr was tested in short-term creep and long-term exposure to service conditions to assess its suitability for high temperature turbine blade applications. Long-time exposure showed the lamellar microstructure of the alloy to be exceptionally stable. Other properties tested were notch sensitivity, isothermal and thermomechanical fatigue strength, shear strength, and transverse ductility. It was shown that this alloy is superior to the best currently available directionally solidified superalloys over the temperature/stress conditions encountered in turbine airfoils.

  8. Frequency-Switchable Metamaterial Absorber Injecting Eutectic Gallium-Indium (EGaIn) Liquid Metal Alloy

    PubMed Central

    Ling, Kenyu; Kim, Hyung Ki; Yoo, Minyeong; Lim, Sungjoon

    2015-01-01

    In this study, we demonstrated a new class of frequency-switchable metamaterial absorber in the X-band. Eutectic gallium-indium (EGaIn), a liquid metal alloy, was injected in a microfluidic channel engraved on polymethyl methacrylate (PMMA) to achieve frequency switching. Numerical simulation and experimental results are presented for two cases: when the microfluidic channels are empty, and when they are filled with liquid metal. To evaluate the performance of the fabricated absorber prototype, it is tested with a rectangular waveguide. The resonant frequency was successfully switched from 10.96 GHz to 10.61 GHz after injecting liquid metal while maintaining absorptivity higher than 98%. PMID:26561815

  9. A Directionally Solidified Iron-chromium-aluminum-tantalum Carbide Eutectic Alloy

    NASA Technical Reports Server (NTRS)

    Harf, F. H.

    1977-01-01

    A eutectic alloy, Fe-13.6CR-3.7Al+9TaC, was directionally solidified in a high gradient furnace, producing a microstructure of alined TaC fibers in an oxidation resistant alpha-iron matrix. Tensile and stress rupture properties, thermal cycling resistance, and microstructures were evaluated. The alloy displays at 1000 C an ultimate tensile strength of 58 MPa and a 100-hour rupture life at a stress of 21 MPa. Thermal cycling to 1100 C induces faceting in the TaC fibers.

  10. Internal zone growth method for producing metal oxide metal eutectic composites

    DOEpatents

    Clark, Grady W.; Holder, John D.; Pasto, Arvid E.

    1980-01-01

    An improved method for preparing a cermet comprises preparing a compact having about 85 to 95 percent theoretical density from a mixture of metal and metal oxide powders from a system containing a eutectic composition, and inductively heating the compact in a radiofrequency field to cause the formation of an internal molten zone. The metal oxide particles in the powder mixture are effectively sized relative to the metal particles to permit direct inductive heating of the compact by radiofrequency from room temperature. Surface melting is prevented by external cooling or by effectively sizing the particles in the powder mixture.

  11. Thermophysical properties and eutectic growth of electrostatically levitated and substantially undercooled liquid Zr91.2Si8.8 alloy

    NASA Astrophysics Data System (ADS)

    Hu, L.; Li, L. H.; Yang, S. J.; Wei, B.

    2015-02-01

    We present the thermophysical properties and eutectic growth of undercooled liquid Zr91.2Si8.8 alloy at electrostatic levitation state. The obtained maximum undercooling is 371 K, which reaches up to 0.2TE. The density of liquid alloy decreases linearly with increasing temperature. The ratio of specific heat to emissivity is measured and the specific heat is derived accordingly. The solidification microstructure is composed of αZr and Zr3Si phases and displays a transition from lamellar eutectic to anomalous eutectic with the enhancement of undercooling. The growth velocity of lamellar eutectic is measured to be only 1 mm/s, whereas it increased to 90 mm/s for anomalous eutectic.

  12. Novel band gap-tunable K-Na co-doped graphitic carbon nitride prepared by molten salt method

    NASA Astrophysics Data System (ADS)

    Zhao, Jiannan; Ma, Lin; Wang, Haoying; Zhao, Yanfeng; Zhang, Jian; Hu, Shaozheng

    2015-03-01

    Novel band gap-tunable K-Na co-doped graphitic carbon nitride was prepared by molten salt method using melamine, KCl, and NaCl as precursor. X-ray diffraction (XRD), N2 adsorption, Scanning electron microscope (SEM), UV-vis spectroscopy, Photoluminescence (PL), and X-ray photoelectron spectroscopy (XPS) were used to characterize the prepared catalysts. The CB and VB potentials of graphitic carbon nitride could be tuned from -1.09 and +1.55 eV to -0.29 and +2.25 eV by controlling the weight ratio of eutectic salts to melamine. Besides, ions doping inhibited the crystal growth of graphitic carbon nitride, enhanced the surface area, and increased the separation rate of photogenerated electrons and holes. The visible-light-driven Rhodamine B (RhB) photodegradation and mineralization performances were significantly improved after K-Na co-doping.

  13. The size effect on solidification in eutectic bismuth-tin (Bi-Sn) nanowires by in-situ annealing processes.

    PubMed

    Chen, Shih-Hsun; Wang, Chiu-Yen; Chen, Lih-Juann; Liu, Tzeng-Feng; Chaol, Chuen-Guang

    2010-10-01

    The size effects on solidification and the formation mechanism of the segmented eutectic Bi-43Sn nanowires during in situ annealing have been investigated. A directional solidification along the wire axis limits the segmented eutectic nanowire to arrange axially during the in situ annealing processes due to directional solidification. In 70 nm nanowires, the small size confines the convection in liquid, which results in differences in the microstructure and composition profiles between 70 and 200 nm nanowires. In the vacuum hydraulic pressure injection process, the directional cooling helps the formation of single crystal, and the isotropic solidification leads to polycrystalline microstructure.

  14. Nano-eutectic structure formation and soft magnetic properties of bulk ternary Fe-B-M (M = Si, Cu) alloys

    NASA Astrophysics Data System (ADS)

    Huang, Huili; Yang, Changlin; Song, Qijiao; Ye, Ke; Liu, Feng

    2016-07-01

    The bulk Fe-B-M (M = Si, Cu) ternary eutectic alloys with nano-lamellar structure and excellent soft magnetic properties were successfully prepared by undercooling combined with Cu-mold casting. Different effects of Si and Cu elements on the structural refinement and soft magnetic properties were studied. The results show that the lamellar spacing can be decreased to less than 50 nm with addition of Si or Cu of 1 at. % into the Fe-B eutectic alloy. Based on the classical random anisotropy model, a quantitative correlation between the intrinsic coercivity (HC) and the lamellar spacing (λ) was also obtained.

  15. Salt stress or salt shock: which genes are we studying?

    PubMed

    Shavrukov, Yuri

    2013-01-01

    Depending on the method of NaCl application, whether gradual or in a single step, plants may experience either salt stress or salt shock, respectively. The first phase of salt stress is osmotic stress. However, in the event of salt shock, plants suffer osmotic shock, leading to cell plasmolysis and leakage of osmolytes, phenomena that do not occur with osmotic stress. Patterns of gene expression are different in response to salt stress and salt shock. Salt stress initiates relatively smooth changes in gene expression in response to osmotic stress and a more pronounced change in expression of significant numbers of genes related to the ionic phase of salt stress. There is a considerable time delay between changes in expression of genes related to the osmotic and ionic phases of salt stress. In contrast, osmotic shock results in strong, rapid changes in the expression of genes with osmotic function, and fewer changes in ionic-responsive genes that occur earlier. There are very few studies in which the effects of salt stress and salt shock are described in parallel experiments. However, the patterns of changes in gene expression observed in these studies are consistently as described above, despite the use of diverse plant species. It is concluded that gene expression profiles are very different depending the method of salt application. Imposition of salt stress by gradual exposure to NaCl rather than salt shock with a single application of a high concentration of NaCl is recommended for genetic and molecular studies, because this more closely reflects natural incidences of salinity. PMID:23186621

  16. Molten salt techniques. Volume 3

    SciTech Connect

    Lovering, D.G.; Gale, R.J.

    1987-01-01

    This collection of five papers on molten salts deals with the following specific topics: the actinides and their salts, including their availability along with techniques and equipment for their handling, preparation, purification, and physical property measurement; cryolite systems and methods for their handling, preparation, and thermodynamic and physicochemical property assessment, as well as the use of electrodes in molten cryolite; the theory, construction, and application of reference electrodes for molten salt electrolytes; neutron diffraction in molten salt systems including isotope exchange methods for sample preparation; and dry boxes and inert atmosphere techniques for molten salt handling and analysis.

  17. Cerebral salt wasting syndrome.

    PubMed

    Harrigan, M R

    2001-01-01

    There is significant evidence to show that many patients with hyponatremia and intracranial disease who were previously diagnosed with SIADH actually have CSW. The critical difference between SIADH and CSW is that CSW involves renal salt loss leading to hyponatremia and volume loss, whereas SIADH is a euvolemic or hypervolemic condition. Attention to volume status in patients with hyponatremia is essential. The primary treatment for CSW is water and salt replacement. The mechanisms underlying CSW are not understood but may involve ANP or other natriuretic factors and direct neural influence on renal function. Future investigation is needed to better define the incidence of CSW in patients with intracranial disease, identify other disorders that can lead to CSW, and elucidate the mechanisms underlying this syndrome.

  18. SALT IN AYURVEDA I

    PubMed Central

    Mooss, N S

    1987-01-01

    In basic Ayurveda texts, Susruta, Caraka and Vagbhata, some quite specific Salts (Lavanam) have been described and their properties and actions are enumerated. By comparing those accounts with the present methods of preparation, conclusions have been made and evidently spurious methods are pointed out. The reported properties of Saindhava, Samudra, Vida, Sauvarcha, Romaka, Audbhida, Gutika, the Katu Group, Krsna and Pamsuja Lavanas are discussed in terms of their chemical constituents here and, thus, the authors establish its inter-connections. PMID:22557573

  19. Wafer-level-scale package of MEMS device by eutectic bonding method

    NASA Astrophysics Data System (ADS)

    Chen, Sihai; Ma, Hong; Chen, Mingxiang; Xiong, Tao; Liu, Sheng; Yi, Xinjian

    2003-12-01

    This paper reports the preliminary results for an on-going program in wafer-level MEMS package. In this particular paper, three closed-loop microheaters of 5μm, 7μm and 9μm width were designed. By reactive ion sputtering technique, two classes of samples were presented. The first one was first co-sputtered with nickel / chromium (Ni/Cr) alloy and then sputtered with gold(Au) metal as heating material; the second one was sputtered with Cr, tin (Sn) and Au respectively as heating material. The bonding of the former sample based on the Ni/Cr and Au heating material failed. The eutectic bonding experiment of the later sample based on the Cr, Sn and Au heating material by global heating method was completed in annealing oven at temperature of about 400 for 20 minutes. The SEM testing result showed the eutectic bonding of Au-Sn by global heating was successful. More results will be reported in future.

  20. Wafer-level scale package of MEMS device by eutectic bonding method

    NASA Astrophysics Data System (ADS)

    Chen, Sihai; Ma, Hong; Chen, Mingxiang; Xiong, Tao; Liu, Sheng; Yi, Xinjian

    2004-01-01

    This paper reports the preliminary results for an on-going program in wafer-level MEMS package. In this particular paper, three closed-loop microheaters of 5μm, 7μm and 9μm width were designed. By reactive ion sputtering technique, two classes of samples were presented. The first one was first co-sputtered with nickel / chromium (Ni/Cr) alloy and then sputtered with gold(Au) metal as heating material; the second one was sputtered with Cr, tin (Sn) and Au respectively as heating material. The bonding of the former sample based on the Ni/Cr and Au heating material failed. The eutectic bonding experiment of the later sample based on the Cr, Sn and Au heating material by global heating method was completed in annealing oven at temperature of about 400 deg. C. for 20 minutes. The SEM testing result showed the eutectic bonding of Au-Sn by global heating was successful. More results will be reported in future.

  1. Solidification and thermal behaviour of binary organic eutectic and monotectic; succinonitrile pyrene system

    NASA Astrophysics Data System (ADS)

    Rai, U. S.; Pandey, Pinky

    2003-02-01

    Transparent binary alloy models are important in metallurgical and materials science, as phase transformations can be observed during solidification. This communication concerns the solidification and thermal studies of succinonitrile (SCN)-pyrene (PY) system, which is an organic analogue of a metal-nonmetal-type system. Phase diagram of the SCN-PY system, determined by the thaw-melt method shows the formation of a monotectic and a eutectic at 143.3°C and 55.3°C with 0.025 and 0.744 mole fractions of SCN, respectively. The critical solution temperature of the system lies 48.7°C above the monotectic temperature. The growth velocity ( v) data at different undercoolings obtained from the capillary method, obey the Hillig-Turnbull equation, v= u(Δ T) n. The heats of fusion of the binary as well as single materials were obtained from the DSC (Mettler DSC-4000 system) from which the entropy of fusion, enthalpy of mixing, Jackson's roughness parameter, excess thermodynamic functions, interfacial energy and radius of the critical nucleus were calculated. The optical microphotographs of the eutectic and monotectic show their characteristic features.

  2. Magnetic deep eutectic solvents molecularly imprinted polymers for the selective recognition and separation of protein.

    PubMed

    Liu, Yanjin; Wang, Yuzhi; Dai, Qingzhou; Zhou, Yigang

    2016-09-14

    A novel and facile magnetic deep eutectic solvents (DES) molecularly imprinted polymers (MIPs) for the selective recognition and separation of Bovine hemoglobin (BHb) was prepared. The new-type DES was adopted as the functional monomer which would bring molecular imprinted technology to a new direction. The amounts of DES were optimized. The obtained magnetic DES-MIPs were characterized with fourier transform infrared spectrometry (FT-IR), thermogravimetric analysis (TGA), field emission scanning electron microscope (FESEM), dynamic light scattering (DLS), elemental analysis and vibrating sample magnetometer (VSM). The results suggested that the imprinted polymers were successfully formed and possessed a charming magnetism. The maximum adsorption capability (Qmax) and dissociation constant (KL) were analyzed by Langmuir isotherms (R(2) = 0.9983) and the value were estimated to be 175.44 mg/g and 0.035 mg/mL for the imprinted particles. And the imprinted particles showed a high imprinting factor of 4.77. In addition, the magnetic DES-MIPs presented outstanding recognition specificity and selectivity so that it can be utilized to separate template protein from the mixture of proteins and real samples. Last but not least, the combination of deep eutectic solvents and molecular imprinted technology in this paper provides a new perspective for the recognition and separation of proteins. PMID:27566352

  3. Physicochemical characterisation and antimicrobial phototoxicity of an anionic porphyrin in natural deep eutectic solvents.

    PubMed

    Wikene, Kristine Opsvik; Rukke, Håkon Valen; Bruzell, Ellen; Tønnesen, Hanne Hjorth

    2016-08-01

    Natural deep eutectic solvents (NADES) are a newly discovered group of eutectics which has shown promise as a solvent in antimicrobial photodynamic therapy (aPDT). The purpose of this study was to investigate preparations of an anionic porphyrin, meso-tetra-(4-carboxyphenyl)-porphine (TCPP), solubilised in NADES, with regard to their physicochemical and antibacterial properties. The NADES CS (pH∼0), ChX (pH∼4) and MFG (pH∼1) solubilised TCPP with absorption maximum ∼443nm and emission maximum ∼678nm, indicating formation of the TCPP dication. Dilution of TCPP-NADES>1:1 (water) reduced the physical stability of the preparations. The photostability half-lives of TCPP in methanol, MFG, and CS were ∼9h, 6.9h and 3.2h, respectively. Nanomolar concentrations of TCPP solubilised in diluted MFG combined with ⩽27J/cm(2) blue light increased Gram-positive and Gram-negative bacterial phototoxicity, >99.98% and 96% bacterial reduction, respectively, compared to TCPP in PBS/ethanol under equivalent treatment conditions. TCPP solubilised in diluted CS was toxic to bacteria both in the absence (36-72% reduction) and presence of light. TCPP in CS, and in the CS component citric acid, induced a TCPP-concentration dependent increase in Gram-negative phototoxicity relative to controls, which was most pronounced for TCPP-CS. The mechanism behind the increased toxicity is unknown. PMID:27269504

  4. Thermal Characterization of Lauric-Stearic Acid/Expanded Graphite Eutectic Mixture as Phase Change Materials.

    PubMed

    Zhu, Hua; Zhang, Peng; Meng, Zhaonan; Li, Ming

    2015-04-01

    The eutectic mixture of lauric acid (LA) and stearic acid (SA) is a desirable phase change material (PCM) due to the constant melting temperature and large latent heat. However, its poor thermal conductivity has hampered its broad utilization. In the present study, pure LA, SA and the mixtures with various mass fractions of LA-SA were used as the basic PCMs, and 10 wt% expanded graphite (EG) was added to enhance the thermal conductivities. The phase change behaviors, microstructural analysis, thermal conductivities and thermal stabilities of the mixtures of PCMs were investigated by differential scanning calorimetry (DSC), scanning electronic microscope (SEM), transient plane source (TPS) and thermogravimetric analysis (TGA), respectively. The results show that the LA-SA binary mixture of mixture ratio of 76.3 wt%: 23.7 wt% forms an eutectic mixture, which melts at 38.99 °C and has a latent heat of 159.94 J/g. The melted fatty acids are well absorbed by the porous network of EG and they have a good thermal stability. Furthermore, poor thermal conductivities can be well enhanced by the addition of EG.

  5. Low tritium partial pressure permeation system for mass transport measurement in lead lithium eutectic

    DOE PAGES

    Pawelko, R. J.; Shimada, M.; Katayama, K.; Fukada, S.; Humrickhouse, P. W.; Terai, T.

    2015-11-28

    This paper describes a new experimental system designed to investigate tritium mass transfer properties in materials important to fusion technology. Experimental activities were carried out at the Safety and Tritium Applied Research (STAR) facility located at the Idaho National Laboratory (INL). The tritium permeation measurement system was developed as part of the Japan/US TITAN collaboration to investigate tritium mass transfer properties in liquid lead lithium eutectic (LLE) alloy. The experimental system is configured to measure tritium mass transfer properties at low tritium partial pressures. Initial tritium permeation scoping tests were conducted on a 1 mm thick α-Fe plate to determinemore » operating parameters and to validate the experimental technique. A second series of permeation tests was then conducted with the α-Fe plate covered with an approximately 8.5 mm layer of liquid lead lithium eutectic alloy (α-Fe/LLE). We present preliminary tritium permeation data for α-Fe and α-Fe/LLE at temperatures between 400 and 600°C and at tritium partial pressures between 1.7E-3 and 2.5 Pa in helium. Preliminary results for the α-Fe plate and α-Fe/LLE indicate that the data spans a transition region between the diffusion-limited regime and the surface-limited regime. In conclusion, additional data is required to determine the existence and range of a surface-limited regime.« less

  6. Microstructures in a ternary eutectic alloy: devising metrics based on neighbourhood relationships

    NASA Astrophysics Data System (ADS)

    Dennstedt, A.; Choudhury, A.; Ratke, L.; Nestler, B.

    2016-03-01

    Ternary eutectics, where three phases form simultaneously from the melt, present an opportunity to study the fundamental science of microstructural pattern formation during the process of solidification. In this paper we investigate these phenomena, both experimentally and by phase-field simulations. The aim is to develop necessary characterisation tools which can be applied to both experimentally determined and simulated microstructures for a quantitative comparison between simulations and experiments. In SEM images of experimental cross sections of directionally solidified Ag-Al-Cu ternary eutectic alloy at least six different types of microstructures are observed. Corresponding 3D phase-field simulations for different solidification conditions and compositions allow us to span and isolate the material parameters which influence the formation of three-phase patterns. Both experimental and simulated microstructures were analysed regarding interface lengths, triple points and number of neighbours. As a result of this integrated experimental and computational effort we conclude that neighbourhood relationships as described herein, turn out to be an appropriate basis to characterise order in patterns.

  7. Thermodynamics of neptunium in LiCl-KCl eutectic/liquid bismuth systems

    SciTech Connect

    Sakamura, Y.; Shirai, O.; Iwai, T.; Suzuki, Y.

    2000-02-01

    Thermodynamic properties of neptunium in LiCl-KCl eutectic/liquid bismuth systems in the temperature range 400--500 C have been studied using a galvanic cell method for the pyrometallurgical reprocessing of nuclear spent fuels. The standard potential of the Np/Np(III) couple vs. the Ag/AgCl (1 wt% AgCl) reference electrode in LiCl-KCl eutectic was measured and given by the equation E{sub Np/Np(III)}{sup 0} = {minus}2.0667 + 0.0007892 T ({sigma} = 0.0009), where E is in volts, T is in kelvin, and {sigma} is the standard deviation. The potential of neptunium-bismuth alloy, E{sub Np-Bi}, was measured as a function of neptunium concentration, X{sub Np in Bi}. The curves for E{sub Bi-Np} vs. log X{sub Np in Bi} indicated the neptunium solubility in liquid bismuth to be 0.34 {+-} 0.02, 0.61 {+-} 0.08, and 1.06 {+-} 0.09 ({+-}{sigma}) atom % at 400, 450, and 500 C, respectively. The excess partial free energy of neptunium in liquid bismuth was represented by the equation, {Delta}{bar G}{sub Np}{sup xs} (kcal/g atom) = {minus}32.5 ({+-}0.7) + 0.0072 ({+-}0.0010) T. The values of the solubility and excess partial free energy for neptunium were closer to those for plutonium rather than uranium.

  8. Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues.

    PubMed

    Cooper, Emily R; Andrews, Christopher D; Wheatley, Paul S; Webb, Paul B; Wormald, Philip; Morris, Russell E

    2004-08-26

    The challenges associated with synthesizing porous materials mean that new classes of zeolites (zeotypes)-such as aluminosilicate zeolites and zeolite analogues-together with new methods of preparing known zeotypes, continue to be of great importance. Normally these materials are prepared hydrothermally with water as the solvent in a sealed autoclave under autogenous pressure. The reaction mixture usually includes an organic template or 'structure-directing agent' that guides the synthesis pathway towards particular structures. Here we report the preparation of aluminophosphate zeolite analogues by using ionic liquids and eutectic mixtures. An imidazolium-based ionic liquid acts as both solvent and template, leading to four zeotype frameworks under different experimental conditions. The structural characteristics of the materials can be traced back to the solvent chemistry used. Because of the vanishingly low vapour pressure of ionic liquids, synthesis takes place at ambient pressure, eliminating safety concerns associated with high hydrothermal pressures. The ionic liquid can also be recycled for further use. A choline chloride/urea eutectic mixture is also used in the preparation of a new zeotype framework. PMID:15329717

  9. Creep deformation behavior in eutectic Sn-Ag solder joints using a novel mapping technique

    SciTech Connect

    Lucas, J.P.; Guo, F.; McDougall, J.; Bieler, T.R.; Subramanian, K.N.; Park, J.K.

    1999-11-01

    Creep deformation behavior was measured for 60--100 {micro}m thick solder joints. The solder joints investigated consisted of: (1) non-composite solder joints made with eutectic Sn-Ag solder, and (2) composite solder joints with eutectic Sn-Ag solder containing 20 vol.%, 5 {micro}m diameter in-situ Cu{sub 6}Sn{sub 5} intermetallic reinforcements. All creep testing in this study was carried out at room temperature. Qualitative and quantitative assessment of creep deformation was characterized on the solder joints. Creep deformation was analyzed using a novel mapping technique where a geometrical-regular line pattern was etched over the entire solder joint using excimer laser ablation. During creep, the laser-ablation (LA) pattern becomes distorted due to deformation in the solder joint. By imaging the distortion of laser-ablation patterns using the SEM, actual deformation mapping for the entire solder joint is revealed. The technique involves sequential optical/digital imaging of the deformation versus time history during creep. By tracing and recording the deformation of the LA patterns on the solder over intervals of time, local creep data are obtained in many locations in the joint. This analysis enables global and localized creep shear strains and strain rate to be determined.

  10. Research into the microstructure and mechanical behavior of eutectic Bi-Sn and In-Sn

    SciTech Connect

    Goldstein, J.L.F.; Mei, Z.; Morris, J.W. Jr. |

    1993-08-01

    This manuscript reports on research into two low-melting, lead-free solder alloys, eutectic Bi-Sn and eutectic In-Sn. The microstructures were found to depend on both cooling rate and substrate, with the greatest variability in the In-Sn alloy. The nature of the intermetallic layer formed at the solder-substrate interface depends on both the solder and the substrate (Cu versus Ni). Also, the microstructure of the Bi-Sn can recrystallize during deformation, which is not the case with In-Sn. Data from creep and constant strain rate tests are given for slowly cooled samples. The creep behavior of In-Sn is constant with temperature, but the creep seems to be controlled by the In-rich phase in In-Sn on Cu and by the Sn-rich phase in In-Sn on Ni. Bi-Sn exhibits different creep behavior at temperatures above 40 {degrees}C than at 20 {degrees}C or lower. Stress-strain curves of Bi-Sn on Cu and In-Sn on Cu are similar, while In-Sn on Ni behaves differently. This is explained in terms of the deformation patterns in the alloys.

  11. Low tritium partial pressure permeation system for mass transport measurement in lead lithium eutectic

    SciTech Connect

    Pawelko, R. J.; Shimada, M.; Katayama, K.; Fukada, S.; Humrickhouse, P. W.; Terai, T.

    2015-11-28

    This paper describes a new experimental system designed to investigate tritium mass transfer properties in materials important to fusion technology. Experimental activities were carried out at the Safety and Tritium Applied Research (STAR) facility located at the Idaho National Laboratory (INL). The tritium permeation measurement system was developed as part of the Japan/US TITAN collaboration to investigate tritium mass transfer properties in liquid lead lithium eutectic (LLE) alloy. The experimental system is configured to measure tritium mass transfer properties at low tritium partial pressures. Initial tritium permeation scoping tests were conducted on a 1 mm thick α-Fe plate to determine operating parameters and to validate the experimental technique. A second series of permeation tests was then conducted with the α-Fe plate covered with an approximately 8.5 mm layer of liquid lead lithium eutectic alloy (α-Fe/LLE). We present preliminary tritium permeation data for α-Fe and α-Fe/LLE at temperatures between 400 and 600°C and at tritium partial pressures between 1.7E-3 and 2.5 Pa in helium. Preliminary results for the α-Fe plate and α-Fe/LLE indicate that the data spans a transition region between the diffusion-limited regime and the surface-limited regime. In conclusion, additional data is required to determine the existence and range of a surface-limited regime.

  12. Thermodynamics of reaction of praseodymium with gallium-indium eutectic alloy

    NASA Astrophysics Data System (ADS)

    Melchakov, S. Yu.; Ivanov, V. A.; Yamshchikov, L. F.; Volkovich, V. A.; Osipenko, A. G.; Kormilitsyn, M. V.

    2013-06-01

    Thermodynamic properties of Ga-In eutectic alloys saturated with praseodymium were determined for the first time employing the electromotive force method. The equilibrium potentials of the Pr-In alloys saturated with praseodymium (8.7-12.1 mol.% Pr) and Pr-Ga-In alloys (containing 0.0012-6.71 mol.% Pr) were measured between 573-1073 K. Pr-In alloy containing solid PrIn3 with known thermodynamic properties was used as the reference electrode when measuring the potentials of ternary Pr-In-Ga alloys. Activity, partial and excessive thermodynamic functions of praseodymium in alloys with indium and Ga-In eutectic were calculated. Activity (a), activity coefficients (γ) and solubility (X) of praseodymium in the studied temperature range can be expressed by the following equations: lgaα-Pr(In) = 4.425 - 11965/T ± 0.026. lgаα-Pr(Ga-In) = 5.866 - 14766/T ± 0.190. lgγα-Pr(Ga-In) = 2.351 - 9996/T ± 0.39. lgХPr(Ga-In) = 3.515 - 4770/T ± 0.20.

  13. A Promising New Class of High-Temperature Alloys: Eutectic High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Lu, Yiping; Dong, Yong; Guo, Sheng; Jiang, Li; Kang, Huijun; Wang, Tongmin; Wen, Bin; Wang, Zhijun; Jie, Jinchuan; Cao, Zhiqiang; Ruan, Haihui; Li, Tingju

    2014-08-01

    High-entropy alloys (HEAs) can have either high strength or high ductility, and a simultaneous achievement of both still constitutes a tough challenge. The inferior castability and compositional segregation of HEAs are also obstacles for their technological applications. To tackle these problems, here we proposed a novel strategy to design HEAs using the eutectic alloy concept, i.e. to achieve a microstructure composed of alternating soft fcc and hard bcc phases. As a manifestation of this concept, an AlCoCrFeNi2.1 (atomic portion) eutectic high-entropy alloy (EHEA) was designed. The as-cast EHEA possessed a fine lamellar fcc/B2 microstructure, and showed an unprecedented combination of high tensile ductility and high fracture strength at room temperature. The excellent mechanical properties could be kept up to 700°C. This new alloy design strategy can be readily adapted to large-scale industrial production of HEAs with simultaneous high fracture strength and high ductility.

  14. A promising new class of high-temperature alloys: eutectic high-entropy alloys.

    PubMed

    Lu, Yiping; Dong, Yong; Guo, Sheng; Jiang, Li; Kang, Huijun; Wang, Tongmin; Wen, Bin; Wang, Zhijun; Jie, Jinchuan; Cao, Zhiqiang; Ruan, Haihui; Li, Tingju

    2014-01-01

    High-entropy alloys (HEAs) can have either high strength or high ductility, and a simultaneous achievement of both still constitutes a tough challenge. The inferior castability and compositional segregation of HEAs are also obstacles for their technological applications. To tackle these problems, here we proposed a novel strategy to design HEAs using the eutectic alloy concept, i.e. to achieve a microstructure composed of alternating soft fcc and hard bcc phases. As a manifestation of this concept, an AlCoCrFeNi2.1 (atomic portion) eutectic high-entropy alloy (EHEA) was designed. The as-cast EHEA possessed a fine lamellar fcc/B2 microstructure, and showed an unprecedented combination of high tensile ductility and high fracture strength at room temperature. The excellent mechanical properties could be kept up to 700°C. This new alloy design strategy can be readily adapted to large-scale industrial production of HEAs with simultaneous high fracture strength and high ductility. PMID:25160691

  15. Influence of Lanthanum on Solidification, Microstructure, and Mechanical Properties of Eutectic Al-Si Piston Alloy

    NASA Astrophysics Data System (ADS)

    Ahmad, R.; Asmael, M. B. A.

    2016-07-01

    The effects of Lanthanum (La) concentration on the solidification parameters of the α-Al, Al-Si, and Al-Cu phases and on the microstructure, tensile, and hardness properties of eutectic Al-Si-Cu-Mg alloy were systematically investigated. The solidification parameters were examined using computer-aided cooling curve thermal analysis (CA-CCTA). The cooling curve and microstructure analysis showed that La altered the Si structure. The nucleation and growth temperatures of eutectic Si decreased when 0.3 wt.% La was added, and a high depression temperature was obtained with 1.0 wt.% La. High amounts of La considerably modified the Si structure and decreased the area and aspect ratio by 69.9 and 51%, respectively. The thermal analysis result recorded a faster freezing time with the La addition and a 36% alteration in the secondary dendrite arm spacing. Two secondary or ternary La-rich intermetallic phases were formed with needle- and plate-like structures. Furthermore, the mechanical properties were investigated by hardness and tensile tests with different La concentrations. The addition of small amounts of La (0.1 wt.%) significantly improved the ultimate tensile strength and quality index of the Al-Si-Cu-Mg alloy. In addition, the hardness value of Al-11Si-Cu increased by 7-8% with the increasing amount of La added.

  16. Vibration Monitoring Using Fiber Optic Sensors in a Lead-Bismuth Eutectic Cooled Nuclear Fuel Assembly.

    PubMed

    De Pauw, Ben; Lamberti, Alfredo; Ertveldt, Julien; Rezayat, Ali; van Tichelen, Katrien; Vanlanduit, Steve; Berghmans, Francis

    2016-04-21

    Excessive fuel assembly vibrations in nuclear reactor cores should be avoided in order not to compromise the lifetime of the assembly and in order to prevent the occurrence of safety hazards. This issue is particularly relevant to new reactor designs that use liquid metal coolants, such as, for example, a molten lead-bismuth eutectic. The flow of molten heavy metal around and through the fuel assembly may cause the latter to vibrate and hence suffer degradation as a result of, for example, fretting wear or mechanical fatigue. In this paper, we demonstrate the use of optical fiber sensors to measure the fuel assembly vibration in a lead-bismuth eutectic cooled installation which can be used as input to assess vibration-related safety hazards. We show that the vibration characteristics of the fuel pins in the fuel assembly can be experimentally determined with minimal intrusiveness and with high precision owing to the small dimensions and properties of the sensors. In particular, we were able to record local strain level differences of about 0.2 μϵ allowing us to reliably estimate the vibration amplitudes and modal parameters of the fuel assembly based on optical fiber sensor readings during different stages of the operation of the facility, including the onset of the coolant circulation and steady-state operation.

  17. Review of fuel/cladding eutectic formation in metallic SFR fuel pins

    SciTech Connect

    Denman, M.; Todreas, N.; Driscoll, M.

    2012-07-01

    Sodium-cooled Fast Reactors (SFRs) remain a strong contender amongst the Generation IV reactor concepts. Metallic fuel has been a primary fuel option for SFR designers in the US and was used extensively in the first generation of SFRs. One of the benefits of metallic fuel is its chemical compatibility with the coolant; unfortunately this compatibility does not extend to steel cladding at elevated temperatures. It has been known that uranium, plutonium, and rare earths diffuse with cladding constituents to form a low melting point fuel/cladding eutectic which acts to thin the cladding once the interfacial temperature rises above the system liquidus temperature. Since the 1960's, many experiments have been performed and published to evaluate the rate of fuel/cladding eutectic formation and the temperature above which melting will begin as a function of fuel/cladding interfacial temperature, time at temperature, fuel constituents (uranium, fissium or uranium (plutonium) zirconium), cladding type (stainless steel 316, stainless steel 306, D9 or HT9), beginning of life linear power, plutonium enrichment and burnup. The results of these tests, however, remain scattered across conference and journal papers spanning 50 years. The tests used to collect this data also varied in experimental procedure throughout the years. This paper will consolidate the experimental data into four groups of similar test conditions and expand upon the testing performed for each group in detail. A companion paper in PSA 2011 will discuss predictive correlations formulated from this database. (authors)

  18. Nucleation and Growth of Graphite in Eutectic Spheroidal Cast Iron: Modeling and Testing

    NASA Astrophysics Data System (ADS)

    Carazo, Fernando D.; Dardati, Patricia M.; Celentano, Diego J.; Godoy, Luis A.

    2016-06-01

    A new model of graphite growth during the continuous cooling of eutectic spheroidal cast iron is presented in this paper. The model considers the nucleation and growth of graphite from pouring to room temperature. The microstructural model of solidification accounts for the eutectic as divorced and graphite growth rate as a function of carbon gradient at the liquid in contact with the graphite. In the solid state, the microstructural model takes into account three stages for graphite growth, namely (1) from the end of solidification to the upper bound of intercritical stable eutectoid, (2) during the intercritical stable eutectoid, and (3) from the lower bound of intercritical stable eutectoid to room temperature. The micro- and macrostructural models are coupled using a sequential multiscale approach. Numerical results for graphite fraction and size distribution are compared with experimental results obtained from a cylindrical cup, in which the graphite volumetric fraction and size distribution were obtained using the Schwartz-Saltykov approach. The agreements between the experimental and numerical results for the fraction of graphite and the size distribution of spheroids reveal the importance of numerical models in the prediction of the main aspects of graphite in spheroidal cast iron.

  19. Local coordination state of rare earth in eutectic scintillators for neutron detector applications

    PubMed Central

    Masai, Hirokazu; Yanagida, Takayuki; Mizoguchi, Teruyasu; Ina, Toshiaki; Miyazaki, Takamichi; Kawaguti, Noriaki; Fukuda, Kentaro

    2015-01-01

    Atomic distribution in phosphors for neutron detection has not been fully elucidated, although their ionization efficiency is strongly dependent on the state of the rare earth in the matrix. In this work, we examine optical properties of Eu-doped 80LiF-20CaF2 eutectics for neutron detector applications based on the Eu distribution. At low concentrations, aggregation of Eu cations is observed, whereas homogeneous atomic dispersion in the CaF2 layer, to substitute Ca2+ ions, is observed in the eutectics at high concentrations. Eu LIII edge X-ray absorption fine structure (XAFS) analysis suggests that neutron responses do not depend on the amount of Eu2+ ions. However, transparency, which depends on an ordered lamellar structure, is found to be important for a high light yield in neutron detection. The results confirm the effectiveness of the basic idea concerning the separation of radiation absorbers and activators in particle radiation scintillation and present potential for further improvement of novel bulk detectors. PMID:26292726

  20. Thermal Characterization of Lauric-Stearic Acid/Expanded Graphite Eutectic Mixture as Phase Change Materials.

    PubMed

    Zhu, Hua; Zhang, Peng; Meng, Zhaonan; Li, Ming

    2015-04-01

    The eutectic mixture of lauric acid (LA) and stearic acid (SA) is a desirable phase change material (PCM) due to the constant melting temperature and large latent heat. However, its poor thermal conductivity has hampered its broad utilization. In the present study, pure LA, SA and the mixtures with various mass fractions of LA-SA were used as the basic PCMs, and 10 wt% expanded graphite (EG) was added to enhance the thermal conductivities. The phase change behaviors, microstructural analysis, thermal conductivities and thermal stabilities of the mixtures of PCMs were investigated by differential scanning calorimetry (DSC), scanning electronic microscope (SEM), transient plane source (TPS) and thermogravimetric analysis (TGA), respectively. The results show that the LA-SA binary mixture of mixture ratio of 76.3 wt%: 23.7 wt% forms an eutectic mixture, which melts at 38.99 °C and has a latent heat of 159.94 J/g. The melted fatty acids are well absorbed by the porous network of EG and they have a good thermal stability. Furthermore, poor thermal conductivities can be well enhanced by the addition of EG. PMID:26353580

  1. A Promising New Class of High-Temperature Alloys: Eutectic High-Entropy Alloys

    PubMed Central

    Lu, Yiping; Dong, Yong; Guo, Sheng; Jiang, Li; Kang, Huijun; Wang, Tongmin; Wen, Bin; Wang, Zhijun; Jie, Jinchuan; Cao, Zhiqiang; Ruan, Haihui; Li, Tingju

    2014-01-01

    High-entropy alloys (HEAs) can have either high strength or high ductility, and a simultaneous achievement of both still constitutes a tough challenge. The inferior castability and compositional segregation of HEAs are also obstacles for their technological applications. To tackle these problems, here we proposed a novel strategy to design HEAs using the eutectic alloy concept, i.e. to achieve a microstructure composed of alternating soft fcc and hard bcc phases. As a manifestation of this concept, an AlCoCrFeNi2.1 (atomic portion) eutectic high-entropy alloy (EHEA) was designed. The as-cast EHEA possessed a fine lamellar fcc/B2 microstructure, and showed an unprecedented combination of high tensile ductility and high fracture strength at room temperature. The excellent mechanical properties could be kept up to 700°C. This new alloy design strategy can be readily adapted to large-scale industrial production of HEAs with simultaneous high fracture strength and high ductility. PMID:25160691

  2. A Trail of Salts

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This graph shows the relative abundances of sulfur (in the form of sulfur tri-oxide) and chlorine at three Meridiani Planum sites: soil measured in the small crater where Opportunity landed; the rock dubbed 'McKittrick' in the outcrop lining the inner edge of the crater; and the rock nicknamed 'Guadalupe,' also in the outcrop. The 'McKittrick' data shown here were taken both before and after the rover finished grinding the rock with its rock abrasion tool to expose fresh rock underneath. The 'Guadalupe' data were taken after the rover grounded the rock. After grinding both rocks, the sulfur abundance rose to high levels, nearly five times higher than that of the soil. This very high sulfur concentration reflects the heavy presence of sulfate salts (approximately 30 percent by weight) in the rocks. Chloride and bromide salts are also indicated. Such high levels of salts strongly suggest the rocks contain evaporite deposits, which form when water evaporates or ice sublimes into the atmosphere.

  3. Modeling Solute Thermokinetics in LiCI-KCI Molten Salt for Nuclear Waste Separation

    SciTech Connect

    Morgan, Dane; Eapen, Jacob

    2013-10-01

    at the eutectic composition (58 mol% LiCl, 42 mol% KCl), which is used for treating spent EBR-II fuel. The same process being used for EBRII fuel is currently being studied for widespread international implementation. The methods will focus on first-principles and first- principles derived interatomic potential based simulations, primarily using molecular dynamics. Results will be validated against existing literature and parallel ongoing experimental efforts. The simulation results will be of value for interpreting experimental results, validating analytical models, and for optimizing waste separation by potentially developing new salt configurations and operating conditions.

  4. Salt and hypertension: is salt dietary reduction worth the effort?

    PubMed

    Frisoli, Tiberio M; Schmieder, Roland E; Grodzicki, Tomasz; Messerli, Franz H

    2012-05-01

    In numerous epidemiologic, clinical, and experimental studies, dietary sodium intake has been linked to blood pressure, and a reduction in dietary salt intake has been documented to lower blood pressure. In young subjects, salt intake has a programming effect in that blood pressure remains elevated even after a high salt intake has been reduced. Elderly subjects, African Americans, and obese patients are more sensitive to the blood pressure-lowering effects of a decreased salt intake. Depending on the baseline blood pressure and degree of salt intake reduction, systolic blood pressure can be lowered by 4 to 8 mm Hg. A greater decrease in blood pressure is achieved when a reduced salt intake is combined with other lifestyle interventions, such as adherence to Dietary Approaches to Stop Hypertension. A high salt intake has been shown to increase not only blood pressure but also the risk of stroke, left ventricular hypertrophy, and proteinuria. Adverse effects associated with salt intake reduction, unless excessive, seem to be minimal. However, data linking a decreased salt intake to a decrease in morbidity and mortality in hypertensive patients are not unanimous. Dietary salt intake reduction can delay or prevent the incidence of antihypertensive therapy, can facilitate blood pressure reduction in hypertensive patients receiving medical therapy, and may represent a simple cost-saving mediator to reduce cardiovascular morbidity and mortality.

  5. Synthesis of chalcogenide and pnictide crystals in salt melts using a steady-state temperature gradient

    NASA Astrophysics Data System (ADS)

    Chareev, D. A.; Volkova, O. S.; Geringer, N. V.; Koshelev, A. V.; Nekrasov, A. N.; Osadchii, V. O.; Osadchii, E. G.; Filimonova, O. N.

    2016-07-01

    Some examples of growing crystals of metals, alloys, chalcogenides, and pnictides in melts of halides of alkali metals and aluminum at a steady-state temperature gradient are described. Transport media are chosen to be salt melts of eutectic composition with the participation of LiCl, NaCl, KCl, RbCl, CsCl, AlCl3, AlBr3, KBr, and KI in a temperature range of 850-150°C. Some crystals have been synthesized only using a conducting contour. This technique of crystal growth is similar to the electrochemical method. In some cases, to exclude mutual influence, some elements have been isolated and forced to migrate to the crystal growth region through independent channels. As a result, crystals of desired quality have been obtained using no special equipment and with sizes sufficient for study under laboratory conditions.

  6. Boron carbon nitride nanostructures from salt melts: tunable water-soluble phosphors.

    PubMed

    Lei, Weiwei; Portehault, David; Dimova, Rumiana; Antonietti, Markus

    2011-05-11

    A simple, high yield, chemical process is developed to fabricate layered h-BN nanosheets and BCNO nanoparticles with a diameter of ca. 5 nm at 700 °C. The use of the eutectic LiCl/KCl salt melt medium enhances the kinetics of the reaction between sodium borohydride and urea or guanidine as well as the dispersion of the nanoparticles in water. The carbon content can be tuned from 0 to 50 mol % by adjusting the reactant ratio, thus providing precise control of the light emission of the particles in the range 440-528 nm while reaching a quantum yield of 26%. Because of their green synthesis, low toxicity, small size, and stability against aggregation in water, the as-obtained photoluminescent BCNO nanoparticles show promise for diagnostics and optoelectronics. PMID:21506566

  7. Solid-liquid interfacial energy of solid succinonitrile solution in equilibrium with succinonitrile-neopentylglycol eutectic liquid

    NASA Astrophysics Data System (ADS)

    Karadağ, Saadet B.; Altıntas, Yemliha; Öztürk, Esra; Aksöz, Sezen; Keşlioğlu, Kâzım; Maraşlı, Necmettin

    2013-10-01

    The grain boundary groove shapes for solid succinonitrile solution (SCN-5 mole% NPG) in equilibrium with the succinonitrile (SCN)-neopentylglycol (NPG) eutectic liquid (SCN-9.55 mole% NPG) have been directly observed by using a horizontal linear temperature gradient apparatus at 317.1 K equilibrium temperature. From the observed grain boundary groove shapes, the Gibbs-Thomson coefficient (Г) and solid-liquid interfacial energy (σSL) of solid SCN solution have been determined to be (5.43±0.50)×10-8 K m and (8.09±1.21)×10-3 J m-2, respectively. The grain boundary energy of solid SCN solution has been determined to be (14.22±2.28)×10-3 J m-2 from the observed grain boundary groove shapes. The thermal conductivity for SCN-9.55 mole% NPG eutectic solid phase and the thermal conductivity ratio of eutectic liquid phase to eutectic solid phase at the melting temperature have also been measured with a radial heat flow apparatus and Bridgman type growth apparatus, respectively.

  8. Nanophase diagram of binary eutectic Au-Ge nanoalloys for vapor-liquid-solid semiconductor nanowires growth.

    PubMed

    Lu, Haiming; Meng, Xiangkang

    2015-06-08

    Although the vapor-liquid-solid growth of semiconductor nanowire is a non-equilibrium process, the equilibrium phase diagram of binary alloy provides important guidance on the growth conditions, such as the temperature and the equilibrium composition of the alloy. Given the small dimensions of the alloy seeds and the nanowires, the known phase diagram of bulk binary alloy cannot be expected to accurately predict the behavior of the nanowire growth. Here, we developed a unified model to describe the size- and dimensionality-dependent equilibrium phase diagram of Au-Ge binary eutectic nanoalloys based on the size-dependent cohesive energy model. It is found that the liquidus curves reduce and shift leftward with decreasing size and dimensionality. Moreover, the effects of size and dimensionality on the eutectic composition are small and negligible when both components in binary eutectic alloys have the same dimensionality. However, when two components have different dimensionality (e.g. Au nanoparticle-Ge nanowire usually used in the semiconductor nanowires growth), the eutectic composition reduces with decreasing size.

  9. Determining the thermodynamic melting parameters of sulfamethoxazole, trimethoprim, urea, nicodin, and their double eutectics by differential scanning calorimetry

    NASA Astrophysics Data System (ADS)

    Agafonova, E. V.; Moshchenskii, Yu. V.; Tkachenko, M. L.

    2013-08-01

    The literature data on the thermodynamic melting characteristics of sulfamethoxazole, urea, trimethoprim, and nicodin are analyzed for individual compounds. Their enthalpies and melting points, either individually or in the composition of eutectics, are found by means of DSC. The entropies of fusion and the cryoscopic constants of individual compounds are calculated.

  10. Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control.

    PubMed

    Sarkar, Sujoy; Sampath, S

    2016-05-11

    A ternary, ionically conducting, deep eutectic solvent based on acetamide, urea and gallium nitrate is reported for the electrodeposition of gallium nitride/gallium indium nitride under ambient conditions; blue and white light emitting photoluminescent deposits are obtained under potential control. PMID:27074315

  11. Dynamics of salt playa polygons

    NASA Astrophysics Data System (ADS)

    Goehring, L.; Fourrière, A.

    2014-12-01

    In natural salt playa or in evaporation pools for the salt extraction industry, one can sometimes see surprising regular structures formed by ridges of salt. These ridges connect together to form a self-organized network of polygons one to two meters in diameter, which we call salt polygons. Here we propose a mechanism based on porous media convection of salty water in soil to explain the formation and the scaling of the salt polygons. Surface evaporation causes a steady upward flow of salty water, which can cause precipitation near the surface. A vertical salt gradient then builds up in the porous soil, with heavy salt-saturated water lying over the less salty source water. This can drive convection when a threshold is reached, given by a critical Rayleigh number of about 7. We suggest that the salt polygons are the surface expression of the porous medium convection, with salt crystallizing along the positions of the convective downwellings. To study this instability directly, we developed a 2D analogue experiment using a Hele-Shaw cell filled with a porous medium saturated with a salt solution and heated from above. We perform a linear stability analysis of this system, and find that it is unstable to convection, with a most unstable wavelength that is set by a balance between salt diffusion and water evaporation. The Rayleigh number in our experiment is controlled by the particle size of our model soil, and the evaporation rate. We obtain results that scale with the observation of natural salt polygons. Using dye, we observe the convective movement of salty water and find downwelling convective plumes underneath the spots where surface salt ridges form, as shown in the attached figure.

  12. EBSD Study of the Influence of a High Magnetic Field on the Microstructure and Orientation of the Al-Si Eutectic During Directional Solidification

    NASA Astrophysics Data System (ADS)

    Li, Xi; Fautrelle, Yves; Gagnoud, Annie; Ren, Zhongming; Moreau, Rene

    2016-06-01

    The effect of a high magnetic field on the morphology of the Al-Si eutectic was investigated using EBSD technology. The results revealed that the application of the magnetic field modified the morphology of the Al-Si eutectic significantly. Indeed, the magnetic field destroyed the coupled growth of the Al-Si eutectic and caused the formation of the divorced α-Al and Si dendrites at low growth speeds (≤1 μm/s). The magnetic field was also found to refine the eutectic grains and reduce the eutectic spacing at the initial growth stage. Moreover, the magnetic field caused the occurrence of the columnar-to-equiaxed transition of the α-Al phase in the Al-Si eutectic. The abovementioned effects were enhanced as the magnetic field increased. This result should be attributed to the magnetic field restraining the interdiffusion of Si and Al atoms in liquid ahead of the liquid/solid interface and the thermoelectric magnetic force acting on the eutectic lamellae under the magnetic field.

  13. Temperature effect on laser-induced breakdown spectroscopy spectra of molten and solid salts

    SciTech Connect

    Cynthia Hanson; Supathorn Phongikaroon; Jill R. Scott

    2014-07-01

    Laser-induced breakdown spectroscopy (LIBS) has been investigated as a potential analytical tool to improve operations and safeguards for electrorefiners, such as those used in processing spent nuclear fuel. This study set out to better understand the effect of sample temperature and physical state on LIBS spectra of molten and solid salts by building calibration curves of cerium and assessing self-absorption, plasma temperature, electron density, and local thermal equilibrium (LTE). Samples were composed of a LiCl–KCl eutectic salt, an internal standard of MnCl2, and varying concentrations of CeCl3 (0.1, 0.3, 0.5, 0.8, and 1.0 wt.% Ce) under different temperatures (773, 723, 673, 623, and 573 K). Analysis of salts in their molten form is preferred as plasma plumes from molten samples experienced less self-absorption, less variability in plasma temperature, and higher clearance of the minimum electron density required for local thermal equilibrium. These differences are attributed to plasma dynamics as a result of phase changes. Spectral reproducibility was also better in the molten state due to sample homogeneity.

  14. Electrochemical separation of actinides and fission products in molten salt electrolyte

    SciTech Connect

    Gay, R. L.; Grantham, L. F.; Fusselman, S. P.; Grimmett, D. L.; Roy, J. J.

    1995-09-15

    Molten salt electrochemical separation may be applied to accelerator-based conversion (ABC) and transmutation systems by dissolving the fluoride transport salt in LiCl-KCl eutectic solvent. The resulting fluoride-chloride mixture will contain small concentrations of fission product rare earths (La, Nd, Gd, Pr, Ce, Eu, Sm, and Y) and actinides (U, Np, Pu, Am, and Cm). The Gibbs free energies of formation of the metal chlorides are grouped advantageously such that the actinides can be deposited on a solid cathode with the majority of the rare earths remaining in the electrolyte. Thus, the actinides are recycled for further transmutation. Rockwell and its partners have measured the thermodynamic properties of the metal chlorides of interest (rare earths and actinides) and demonstrated separation of actinides from rare earths in laboratory studies. A model is being developed to predict the performance of a commercial electrochemical cell for separations starting with PUREX compositions. This model predicts excellent separation of plutonium and other actinides from the rare earths in metal-salt systems.

  15. Unexpected phase assemblages in inclusions with ternary H2O-salt fluids at low temperatures

    NASA Astrophysics Data System (ADS)

    Bakker, Ronald J.; Baumgartner, Miriam

    2012-06-01

    Phase assemblages and temperatures of phase changes provide important information about the bulk properties of fluid inclusions, and are typically obtained by microthermometry. Inclusions are synthesized in natural quartz containing an aqueous fluid with a composition in the ternary systems of H2O-NaCl2-CaCl2, H2O-NaCl-MgCl2, and H2O-CaCl2-MgCl2. This study reveals that these fluid inclusions may behave highly unpredictably at low temperatures due to the formation of metastable phase assemblages. Eutectic temperatures cannot be detected in most of the fluid inclusions containing these ternary systems. Nucleation of a variety of solid ice and salt-hydrate phases in single fluid inclusions is often partly inhibited. Raman spectroscopy at low temperatures provides an important tool for interpreting and understanding microthermometric experiments, and visualizing stable and metastable phase assemblages. Final dissolution temperatures of ice, salt-hydrates, and salt must be treated with care, as they can only be interpreted by purely empirical or thermodynamic models at stable conditions.

  16. A stress-state modified strain based failure criterion for evaluating the structural integrity of an inner eutectic barrier.

    SciTech Connect

    Miller, David Russell; Harding, David Cameron; Akin, Lili A.; Yoshimura, Richard Hiroyuki

    2010-09-01

    A slight modification of a package to transport solid metal contents requires inclusion of a thin titanium liner to protect against possible eutectic formation in 10 CFR 71.74 regulatory fire accident conditions. Under severe transport regulatory impact conditions, the package contents could impart high localized loading of the liner, momentarily pinching it between the contents and the thick containment vessel, and inducing some plasticity near the contact point. Actuator and drop table testing of simulated contents impacts against liner/containment vessel structures nearly bounded the potential plastic strain and stress triaxiality conditions, without any ductile tearing of the eutectic barrier. Additional bounding was necessary in some cases beyond the capability of the actuator and drop table tests, and in these cases a stress-modified evolution integral over the plastic strain history was successfully used as a failure criterion to demonstrate that structural integrity was maintained. The Heaviside brackets only allow the evolution integral to accumulate value when the maximum principal stress is positive, since failure is never observed under pure hydrostatic pressure, where the maximum principal stress is negative. Detailed finite element analyses of myriad possible impact orientations and locations between package contents and the thin eutectic barrier under regulatory impact conditions have shown that not even the initiation of a ductile tear occurs. Although localized plasticity does occur in the eutectic barrier, it is not the primary containment boundary and is thus not subject to ASME stress allowables from NRC Regulatory Guide 7.6. These analyses were used to successfully demonstrate that structural integrity of the eutectic barrier was maintained in all 10 CFR 71.73 and 71.74 regulatory accident conditions. The NRC is currently reviewing the Safety Analysis Report.

  17. Cerebral salt wasting syndrome.

    PubMed

    Uygun, M A; Ozkal, E; Acar, O; Erongun, U

    1996-01-01

    Hyponatremia following acute or chronic central nervous system injury which is due to excessive Na+ loss in the urine without an increase in the body fluid, has been described as Cerebral Salt Wasting Syndrome (CSWS). This syndrome is often confused with dilutional hyponatremia secondary to inappropriate ADH secretion. Accurate diagnosis and management are mandatory for to improve the course of the disease. In this study a patient with CSW Syndrome is presented and the treatment and diagnosis of this syndrome are discussed in view of the literature.

  18. Molten salt lithium cells

    DOEpatents

    Raistrick, I.D.; Poris, J.; Huggins, R.A.

    1980-07-18

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell which may be operated at temperatures between about 100 to 170/sup 0/C. The cell is comprised of an electrolyte, which preferably includes lithium nitrate, and a lithium or lithium alloy electrode.

  19. Molten salt lithium cells

    DOEpatents

    Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.

    1983-01-01

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  20. Molten salt lithium cells

    DOEpatents

    Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.

    1982-02-09

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  1. Electrolyte salts for nonaqueous electrolytes

    DOEpatents

    Amine, Khalil; Zhang, Zhengcheng; Chen, Zonghai

    2012-10-09

    Metal complex salts may be used in lithium ion batteries. Such metal complex salts not only perform as an electrolyte salt in a lithium ion batteries with high solubility and conductivity, but also can act as redox shuttles that provide overcharge protection of individual cells in a battery pack and/or as electrolyte additives to provide other mechanisms to provide overcharge protection to lithium ion batteries. The metal complex salts have at least one aromatic ring. The aromatic moiety may be reversibly oxidized/reduced at a potential slightly higher than the working potential of the positive electrode in the lithium ion battery. The metal complex salts may also be known as overcharge protection salts.

  2. Explosive double salts and preparation

    DOEpatents

    Cady, Howard H.; Lee, Kien-yin

    1984-01-01

    Applicants have discovered a new composition of matter which is an explosive addition compound of ammonium nitrate (AN) and diethylenetriamine trinitrate (DETN) in a 50:50 molar ratio. The compound is stable over extended periods of time only at temperatures higher than 46.degree. C., decomposing to a fine-grained eutectic mixture (which is also believed to be new) of AN and DETN at temperatures lower than 46.degree. C. The compound of the invention has an x-ray density of 1.61 g/cm.sup.3, explodes to form essentially only gaseous products, has higher detonation properties (i.e., detonation velocity and pressure) than those of any mechanical mixture having the same density and composition as the compound of the invention, is a quite insensitive explosive material, can be cast at temperatures attainable by high pressure steam, and is prepared from inexpensive ingredients. Methods of preparing the compound of the invention and the fine-grained eutectic composition of the invention are given.

  3. Electrical conductivity of a system of Ag2SO4:AgI eutectic added to 30Li2SO4:70Ag2SO4

    NASA Astrophysics Data System (ADS)

    Chandrayan, V. R.; Tejpal, A.; Singh, K.

    1989-10-01

    The electrical conductivity of rapidly quenched specimens of 48Ag2SO4:52AgI eutectic added to 30Li2SO4:70Ag2SO4 has been measured as a function of frequency and temperature. The results show a significant enhancement in the conductivity of the 30Li2SO4:70Ag2SO4 system with a maximum value at 12.5 mol. pct eutectic. This phenomenon is explained in terms of the dispersive nature of the fine eutectic crystallites in the crystalline matrix of the Li2SO4:Ag2SO4 system.

  4. Preparation of ibuprofen-loaded liquid suppository using eutectic mixture system with menthol.

    PubMed

    Yong, Chul Soon; Oh, Yu-Kyoung; Jung, Se Hyun; Rhee, Jong-Dal; Kim, Ho-Dong; Kim, Chong-Kook; Choi, Han-Gon

    2004-12-01

    To prepare an ibuprofen-loaded liquid suppository using eutectic mixture with menthol, the effects of menthol and poloxamer 188 (P 188) on the aqueous solubility of ibuprofen were investigated. The physicochemical properties such as gelation temperature, gel strength and bioadhesive force of various formulations composed of ibuprofen, menthol and P 188 were investigated. Then, the pharmacokinetic study of ibuprofen delivered by the liquid suppositories composed of P 188 and menthol were then performed. In the absence of P 188, the solubility of ibuprofen increased until the ratio of menthol to ibuprofen increased from 0:10 to 4:6 followed by an abrupt decrease in solubility above the ratio of 4:6, indicating that four parts of ibuprofen formed eutectic mixture with six parts of menthol. In the presence of P 188, the solutions with the same ratio showed abrupt increase in the solubility of ibuprofen. Furthermore, the solution with ratio of 4:6 showed more than 2.5- and 6-fold increase in the solubility of ibuprofen compared with that without additives and that without menthol, respectively. The poloxamer gel with menthol/ibuprofen ratio of 1:9 and higher than 15% poloxamer 188 showed the maximum solubility of ibuprofen, 1.2mg/ml. Ibuprofen increased the gelation temperature and weakened the gel strength and bioadhesive force of liquid suppositories. However, menthol did the opposite due to forming the eutectic mixture with ibuprofen. The ibuprofen-loaded liquid suppository [P 188/menthol/ibuprofen (15/0.25/2.5%)] with the maximum ibuprofen solubility of 1.2mg/ml was administered easily to the anus and to remain at the administered site without leakage after the dose. Furthermore, it gave significantly higher initial plasma concentrations, Cmax and AUC of ibuprofen than did solid suppository, indicating that the drug from poloxamer gel could be more absorbed than that from solid one in rats. Thus, the liquid suppository system with P 188 and menthol, a more

  5. Numerical experiment of cyclic layering in a solidified binary eutectic melt

    NASA Astrophysics Data System (ADS)

    Toramaru, Atsushi; Matsumoto, Mitsuo

    2012-02-01

    In shallow magmatic intrusions, a characteristic layering structure (hereafter referred to as cyclic layering) can sometimes be observed. This cyclic layering is caused by double diffusion and crystallization kinetics, and different from what is observed as rhythmic layering caused by gravity. The cyclic layering is visualized as differential weathering in response to the differential stiffness caused by textural variations such as those in the volume fraction, number density, and size of vesicles or crystals. The spacing of layers seems to increase according to a geometric progression, like as in Liesegang bands of a diffusion-precipitation system. In order to understand the development condition for cyclic layering and the characteristics of textural variations, such as the spacing of layering in crystallized multi-component melts by conductive cooling, we carried out a numerical experiment on the 1D crystallization process of a binary eutectic melt. This simulation took into account the cooling from contact with country rock as well as the compositional and thermal diffusion and the kinetics of diffusion-limited crystallization. The governing equations include dimensionless control parameters describing the relative importance of thermal diffusion or compositional diffusion (Lewis number, Le) and the effective latent heat release (Stefan number, St). From the results of the numerical experiments, it was found that the layering develops through eutectic oscillation (compositional and thermal oscillation below the eutectic point), suggesting that the bi-activating condition, whereby both phases cooperatively activate their crystallization rates, is essential for the development of layering. No layering is observed at the margin, and the length of the region with no layering increases exponentially with decreasing St. The amplitude of textural oscillation decreases with decreasing St. Thus, practically no layering develops at small latent heat release. Three types

  6. Electrochromic Salts, Solutions, and Devices

    SciTech Connect

    Burrell, Anthony K.; Warner, Benjamin P.; McClesky, T. Mark

    2008-11-11

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  7. Electrochromic salts, solutions, and devices

    SciTech Connect

    Burrell, Anthony K.; Warner, Benjamin P.; McClesky,7,064,212 T. Mark

    2006-06-20

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  8. Electrochromic Salts, Solutions, and Devices

    SciTech Connect

    Burrell, Anthony K.; Warner, Benjamin P.; McClesky, T. Mark

    2008-10-14

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  9. Salt appetite in the elderly.

    PubMed

    Hendi, Khadeja; Leshem, Micah

    2014-11-28

    The present study investigated whether salt appetite in the elderly is impaired similar to thirst because of the commonality of their physiological substrates and whether alterations in salt appetite are related to mood. Elderly (65-85 years, n 30) and middle-aged (45-58 years, n 30) men and women were compared in two test sessions. Thirst, psychophysical ratings of taste solutions, dietary Na and energy intakes, seasoning with salt and sugar, number of salty and sweet snacks consumed, preferred amounts of salt in soup and sugar in tea, and an overall measure of salt appetite and its relationship with mood, nocturia and sleep were measured. Elderly participants were found to be less thirsty and respond less to thirst. In contrast, no impairment of salt appetite was found in them, and although they had a reduced dietary Na intake, it dissipated when corrected for their reduced dietary energy intake. Diet composition and Na intake were found to be similar in middle-aged and elderly participants, despite the lesser intake in elderly participants. There were no age-related differences in the intensity of taste or hedonic profile of Na, in salting habits, in tests of salting soup, or number of salty snacks consumed. No relationship of any measure of salt appetite with mood measured by the Positive and Negative Affect Schedule, frequency of nocturia, or sleep duration was observed. The age-related impairment of the physiology of mineralofluid regulation, while compromising thirst and fluid intake, spares salt appetite, suggesting that salt appetite in humans is not regulated physiologically. Intact salt appetite in the elderly might be utilised judiciously to prevent hyponatraemia, increase thirst and improve appetite. PMID:25287294

  10. Batteries using molten salt electrolyte

    DOEpatents

    Guidotti, Ronald A.

    2003-04-08

    An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

  11. [Salt consumption and cerebrovascular diseases].

    PubMed

    Demarin, Vida; Morović, Sandra

    2010-05-01

    Stroke is the second leading cause of death and disability in Croatia. Risk factors for cerebrovascular disease can be divided into evidence-based risk factors and those with supposed relationship. Strong evidence suggests that current salt consumption is one of the most important factors influencing the increase in blood pressure, along with the risk of cerebrovascular disease. Hypertension is an important modifiable risk factor for stroke. Studies on salt have shown that a decrease in blood pressure is in correlation with lower salt intake. Over-consumption of salt carries a higher risk of cerebrovascular disease in overweight individuals. Conservative estimates suggest that salt intake reduction by 3 g/day could reduce the stroke rate by 13%; this percentage would be almost double if salt intake be reduced by 6 g/day and triple with a 9 g/day reduction. Salt intake reduction by 9 g/day could reduce the stroke rate by almost 30%. This corresponds to about 20,500 prevented strokes each year. There is evidence supporting a positive correlation of salt intake and stroke, independent of hypertension. The introduction of salt reduction proposal should be considered in future updates of recommendations for stroke prevention.

  12. Molten salt techniques. Volume 2

    SciTech Connect

    Gale, R.J.; Lovering, D.G.

    1984-01-01

    This is the second volume in a series addressing the practical aspects of molten salt research. The book covers experiments with alkali metal carbonates, oxides, silicates, phosphates and borates. Additional sections cover molten salt spectroscopy, electrochemistry, and automated admittance spectroscopy of the semiconductor/molten salt electrolyte interface. Particular emphasis is given to safety considerations for working with these high temperature, often corrosive materials. Planning of experiments is of interest, and several experiments are described. Attention is given to the selection of materials to be used in this research, including the purification of the salts themselves, and the requirements for laboratory apparatus.

  13. Dietary Salt Intake and Hypertension

    PubMed Central

    2014-01-01

    Over the past century, salt has been the subject of intense scientific research related to blood pressure elevation and cardiovascular mortalities. Moderate reduction of dietary salt intake is generally an effective measure to reduce blood pressure. However, recently some in the academic society and lay media dispute the benefits of salt restriction, pointing to inconsistent outcomes noted in some observational studies. A reduction in dietary salt from the current intake of 9-12 g/day to the recommended level of less than 5-6 g/day will have major beneficial effects on cardiovascular health along with major healthcare cost savings around the world. The World Health Organization (WHO) strongly recommended to reduce dietary salt intake as one of the top priority actions to tackle the global non-communicable disease crisis and has urged member nations to take action to reduce population wide dietary salt intake to decrease the number of deaths from hypertension, cardiovascular disease and stroke. However, some scientists still advocate the possibility of increased risk of CVD morbidity and mortality at extremes of low salt intake. Future research may inform the optimal sodium reduction strategies and intake targets for general populations. Until then, we have to continue to build consensus around the greatest benefits of salt reduction for CVD prevention, and dietary salt intake reduction strategies must remain at the top of the public health agenda. PMID:25061468

  14. The Chemical Kinetics of Alkaline Extraction of Tellurium from Lead-Bismuth Eutectic

    SciTech Connect

    Laurence E. Auman; Eric P. Loewen; Thomas F. Gesell; Shuji Ohno

    2005-07-01

    Polonium-210 is an important radioactive product of neutron activation of molten lead-bismuth eutectic, a promising candidate coolant for advanced fast nuclear reactors. The radiological hazard potential associated with polonium can be significantly reduced by continuous online removal of polonium from the coolant. The removal method under investigation in this research is alkaline extraction. Chemical kinetic measurements were made to determine first and second order rate constants, activation energy, and heat of reaction at various temperatures using tellurium as a surrogate. First and second order alkaline extraction rate constants were measured to be: k1 = 10.05 e –52,274/RT and k2 = 167 e –97,224/RT. Alkaline extraction is dependent on temperature and was found to follow the Arrhenius rate law. The activation energy (Ea) ranged between 52,274 – 97,224 J mol-1. With a strong foundation of surrogate work completed, this work should be validated using polonium-210.

  15. Fabrication of capacitive absolute pressure sensor using Si-Au eutectic bonding in SOI wafer

    NASA Astrophysics Data System (ADS)

    Ryeol Lee, Kang; Kim, Kunnyun; Park, Hyo-Derk; Kim, Yong Kook; Choi, Seung-Woo; Choi, Woo-Beom

    2006-04-01

    A capacitive absolute pressure sensor was fabricated using a large deflected diaphragm with a sealed vacuum cavity formed by removing handling silicon wafer and oxide layers from a SOI wafer after eutectic bonding of a silicon wafer to the SOI wafer. The deflected displacements of the diaphragm formed by the vacuum cavity in the fabricated sensor were similar to simulation results. Initial capacitance values were about 2.18pF and 3.65pF under normal atmosphere, where the thicknesses of the diaphragm used to fabricate the vacuum cavity were 20 µm and 30 µm, respectively. Also, it was confirmed that the differences of capacitance value from 1000hPa to 5hPa were about 2.57pF and 5.35pF, respectively.

  16. Directionally solidified lamellar eutectic superalloys by edge-defined, film-fed growth. [including tensile tests

    NASA Technical Reports Server (NTRS)

    Hurley, G. F.

    1975-01-01

    A program was performed to scale up the edge-defined, film-fed growth (EFG) method for the gamma/gamma prime-beta eutectic alloy of the nominal composition Ni-19.7 Cb - 6 Cr-2.5 Al. Procedures and problem areas are described. Flat bars approximately 12 x 1.7 x 200 mm were grown, mostly at speeds of 38 mm/hr, and tensile tests on these bars at 25 and 1000 C showed lower strength than expected. The feasibility of growing hollow airfoils was also demonstrated by growing bars over 200 mm long with a teardrop shaped cross-section, having a major dimension of 12 mm and a maximum width of 5 mm.

  17. Self-organized Sr leads to solid state twinning in nano-scaled eutectic Si phase.

    PubMed

    Albu, M; Pal, A; Gspan, C; Picu, R C; Hofer, F; Kothleitner, G

    2016-01-01

    A new mechanism for twin nucleation in the eutectic Al-Si alloy with trace Sr impurities is proposed. Observations made by sub-angstrom resolution scanning transmission electron microscopy and X-ray probing proved the presence of <110> Sr columns located preferentially at twin boundaries. Density functional theory simulations indicate that Sr atoms bind in the Si lattice only along the <110> direction, with preferential positions at first and second nearest neighbors for interstitial and substitutional Sr, respectively. Density functional theory total energy calculations confirm that twin nucleation at Sr columns is energetically favorable. Hence, twins may nucleate in Si precipitates after solidification, which provides a different perspective to the currently accepted mechanism which suggests twin formation during precipitate growth. PMID:27527789

  18. Transverse tensile and stress rupture properties of gamma/gamma prime-delta directionally solidified eutectic

    NASA Technical Reports Server (NTRS)

    Gray, H. H.

    1976-01-01

    Tensile and stress rupture properties were determined primarily at 760 C for specimens oriented at various angles (0 deg, 10 deg, 45 deg, and 90 deg) from the solidification direction of bars and/or slabs of the Ni-20Cb-6Cr-2.5A (gamma/gamma prime-delta) eutectic. Threaded-head specimens yielded longer rupture lives with significantly less scatter than did tapered-head specimens. Miniature specimens are suitable for determining traverse tensile and rupture properties of 1.2 centimeter diameter bar stock. The 300 hour rupture stress at 760 C for specimens oriented at 10 deg from the solidification direction was reduced from 740 to 460 MPa, and to 230 MPa for material oriented at either 45 deg or 90 deg.

  19. Tailoring properties of natural deep eutectic solvents with water to facilitate their applications.

    PubMed

    Dai, Yuntao; Witkamp, Geert-Jan; Verpoorte, Robert; Choi, Young Hae

    2015-11-15

    Previously it was demonstrated that natural deep eutectic solvents (NADES) are promising green solvents for the extraction of natural products. However, despite their potential, an obvious disadvantage of NADES is the high viscosity. Here we explored the dilution effect on the structures and physicochemical properties of NADES and their improvements of applications using quercetin and carthamin. The results of FT-IR and (1)H NMR experiments demonstrated that there are intensive H-bonding interactions between the two components of NADES and dilution with water caused the interactions weaken gradually and even disappeared completely at around 50% (v/v) water addition. A small amount of water could reduce the viscosity of NADES to the range of water and increase the conductivity by up to 100 times for some NADES. This study provides the basis for modulating NADES in a controllable way for their applications in food processing, enzyme reactions, pharmaceuticals and cosmetics. PMID:25976992

  20. Single-fluxon controlled resistance switching in centimeter-long superconducting gallium-indium eutectic nanowires.

    PubMed

    Zhao, Weiwei; Bischof, Jesse L; Hutasoit, Jimmy; Liu, Xin; Fitzgibbons, Thomas C; Hayes, John R; Sazio, Pier J A; Liu, Chaoxing; Jain, Jainendra K; Badding, John V; Chan, M H W

    2015-01-14

    The ability to manipulate a single quantum object, such as a single electron or a single spin, to induce a change in a macroscopic observable lies at the heart of nanodevices of the future. We report an experiment wherein a single superconducting flux quantum, or a fluxon, can be exploited to switch the resistance of a nanowire between two discrete values. The experimental geometry consists of centimeter-long nanowires of superconducting Ga-In eutectic, with spontaneously formed Ga nanodroplets along the length of the nanowire. The nonzero resistance occurs when a Ga nanodroplet traps one or more superconducting fluxons, thereby driving a Josephson weak-link created by a second nearby Ga nanodroplet normal. The fluxons can be inserted or flipped by careful manipulation of the magnetic field or temperature to produce one of many metastable states of the system. PMID:25426926