Science.gov

Sample records for life cycle energy

  1. Comparing the Life Cycle Energy Consumption, Global ...

    EPA Pesticide Factsheets

    Managing the water-energy-nutrient nexus for the built environment requires, in part, a full system analysis of energy consumption, global warming and eutrophication potentials of municipal water services. As an example, we evaluated the life cycle energy use, greenhouse gas (GHG) emissions and aqueous nutrient releases of the whole anthropogenic municipal water cycle starting from raw water extraction to wastewater treatment and reuse/discharge for five municipal water and wastewater systems. The assessed options included conventional centralized services and four alternative options following the principles of source-separation and water fit-for-purpose. The comparative life cycle assessment identified that centralized drinking water supply coupled with blackwater energy recovery and on-site greywater treatment and reuse was the most energyand carbon-efficient water service system evaluated, while the conventional (drinking water and sewerage) centralized system ranked as the most energy- and carbon-intensive system. The electricity generated from blackwater and food residuals co-digestion was estimated to offset at least 40% of life cycle energy consumption for water/waste services. The dry composting toilet option demonstrated the lowest life cycle eutrophication potential. The nutrients in wastewater effluent are the dominating contributors for the eutrophication potential for the assessed system configurations. Among the parameters for which variability

  2. Carbon nanofiber polymer composites: evaluation of life cycle energy use.

    PubMed

    Khanna, Vikas; Bakshi, Bhavik R

    2009-03-15

    Holistic evaluation of emerging nanotechnologies using systems analysis is pivotal for guiding their safe and sustainable development. While toxicity studies of engineered nanomaterials are essential, understanding of the potential large scale impacts of nanotechnology is also critical for developing sustainable nanoproducts. This work evaluates the life cycle energetic impact associated with the production and use of carbon nanofiber (CNF) reinforced polymer nanocomposites (PNC). Specifically, both simple CNF and carbon nanofiber-glass fiber (CNF-GF) hybrid PNCs are evaluated and compared with steel for equal stiffness design. Life cycle inventory is developed based on published literature and best available engineering information. A cradle-to-gate comparison suggests that for equal stiffness design, CNF reinforced PNCs are 1.6-12 times more energy intensive than steel. It is anticipated that the product use phase may strongly influence whether any net savings in life cycle energy consumption can be realized. A case study involving the use of CNF and CNF-GF reinforced PNCs in the body panels of automobiles highlights that the use of PNCs with lower CNF loading ratios has the potential for net life cycle energy savings relative to steel owing to improved fuel economy benefits. Other factors such as cost, toxicity impact of CNF, and end-of-life issues specific to CNFs need to be considered to evaluate the final economic and environmental performance of CNF reinforced PNC materials.

  3. Battery energy storage systems life cycle costs case studies

    SciTech Connect

    Swaminathan, S.; Miller, N.F.; Sen, R.K.

    1998-08-01

    This report presents a comparison of life cycle costs between battery energy storage systems and alternative mature technologies that could serve the same utility-scale applications. Two of the battery energy storage systems presented in this report are located on the supply side, providing spinning reserve and system stability benefits. These systems are compared with the alternative technologies of oil-fired combustion turbines and diesel generators. The other two battery energy storage systems are located on the demand side for use in power quality applications. These are compared with available uninterruptible power supply technologies.

  4. Life cycle analysis of energy systems: Methods and experience

    SciTech Connect

    Morris, S.C.

    1992-08-01

    Fuel-cycle analysis if not the same as life-cycle analysis, although the focus on defining a comprehensive system for analysis leads toward the same path. This approach was the basis of the Brookhaven Reference Energy System. It provided a framework for summing total effects over an explicitly defined fuel cycle. This concept was computerized and coupled with an extensive data base in ESNS -- the Energy Systems Network Simulator. As an example, ESNS was the analytical basis for a comparison of health and environmental effects of several coal conversion technologies. With advances in computer systems and methods, however, ESNS has not been maintained at Brookhaven. The RES approach was one of the bases of the OECD COMPASS Project and the UNEP comparative assessment of environmental impacts of energy sources. An RES model alone has limitations in analyzing complex energy systems, e.g., it is difficult to handle feedback in the network. The most recent version of a series of optimization models is MARKAL, a dynamic linear programming model now used to assess strategies to reduce greenhouse gas emissions from the energy system. MARKAL creates an optimal set of reference energy systems over multiple time periods, automatically incorporating dynamic feedback and allowing fuel switching and end-use conservation to meet useful energy demands.

  5. Life cycle analysis of energy systems: Methods and experience

    SciTech Connect

    Morris, S.C.

    1992-01-01

    Fuel-cycle analysis if not the same as life-cycle analysis, although the focus on defining a comprehensive system for analysis leads toward the same path. This approach was the basis of the Brookhaven Reference Energy System. It provided a framework for summing total effects over an explicitly defined fuel cycle. This concept was computerized and coupled with an extensive data base in ESNS -- the Energy Systems Network Simulator. As an example, ESNS was the analytical basis for a comparison of health and environmental effects of several coal conversion technologies. With advances in computer systems and methods, however, ESNS has not been maintained at Brookhaven. The RES approach was one of the bases of the OECD COMPASS Project and the UNEP comparative assessment of environmental impacts of energy sources. An RES model alone has limitations in analyzing complex energy systems, e.g., it is difficult to handle feedback in the network. The most recent version of a series of optimization models is MARKAL, a dynamic linear programming model now used to assess strategies to reduce greenhouse gas emissions from the energy system. MARKAL creates an optimal set of reference energy systems over multiple time periods, automatically incorporating dynamic feedback and allowing fuel switching and end-use conservation to meet useful energy demands.

  6. Energy life cycle cost analysis: Guidelines for public agencies

    SciTech Connect

    1995-03-01

    The State of Washington encourages energy-efficient building designs for public agencies. The Washington State Energy Office (WSEO) supports this goal by identifying advances in building technology and sharing this information with the design community and public administrators responsible for major construction projects. Many proven technologies can reduce operating costs-and save energy-to an extent that justifies some increases in construction costs. WSEO prepared these Energy Life Cycle Cost Analysis (ELCCA) guidelines for the individuals who are responsible for preparing ELCCA submittals for public buildings. Key terms and abbreviations are provided in Appendix A. Chapters 1 and 2 serve as an overview-providing background, defining energy life cycle cost analysis, explaining which agencies and projects are affected by the ELCCA requirements, and identifying changes to the guidelines that have been made since 1990. They explain {open_quotes}what needs to happen{close_quotes} and {open_quotes}why it needs to happen.{close_quotes} Chapters 3 to 7 provide the {open_quotes}how to,{close_quotes} the instructions and forms needed to prepare ELCCA submittals.

  7. Solar energy demand (SED) of commodity life cycles.

    PubMed

    Rugani, Benedetto; Huijbregts, Mark A J; Mutel, Christopher; Bastianoni, Simone; Hellweg, Stefanie

    2011-06-15

    The solar energy demand (SED) of the extraction of 232 atmospheric, biotic, fossil, land, metal, mineral, nuclear, and water resources was quantified and compared with other energy- and exergy-based indicators. SED represents the direct and indirect solar energy required by a product or service during its life cycle. SED scores were calculated for 3865 processes, as implemented in the Ecoinvent database, version 2.1. The results showed that nonrenewable resources, and in particular minerals, formed the dominant contribution to SED. This large share is due to the indirect solar energy required to produce these resource inputs. Compared with other energy- and exergy-based indicators, SED assigns higher impact factors to minerals and metals and smaller impact factors to fossil energetic resources, land use, and nuclear energy. The highest differences were observed for biobased and renewable energy generation processes, whose relative contribution of renewable resources such as water, biomass, and land occupation was much lower in SED than in energy- and exergy-based indicators.

  8. Energy life cycle assessment of rice straw bio-energy derived from potential gasification technologies.

    PubMed

    Shie, Je-Lueng; Chang, Ching-Yuan; Chen, Ci-Syuan; Shaw, Dai-Gee; Chen, Yi-Hung; Kuan, Wen-Hui; Ma, Hsiao-Kan

    2011-06-01

    To be a viable alternative, a biofuel should provide a net energy gain and be capable of being produced in large quantities without reducing food supplies. Amounts of agricultural waste are produced and require treatment, with rice straw contributing the greatest source of such potential bio-fuel in Taiwan. Through life-cycle accounting, several energy indicators and four potential gasification technologies (PGT) were evaluated. The input energy steps for the energy life cycle assessment (ELCA) include collection, generator, torrefaction, crushing, briquetting, transportation, energy production, condensation, air pollution control and distribution of biofuels to the point of end use. Every PGT has a positive energy benefit. The input of energy required for the transportation and pre-treatment are major steps in the ELCA. On-site briquetting of refused-derived fuel (RDF) provides an alternative means of reducing transportation energy requirements. Bio-energy sources, such as waste rice straw, provide an ideal material for the bio-fuel plant.

  9. Comparison of energy-based indicators used in life cycle assessment tools for buildings

    EPA Science Inventory

    Traditionally, building rating systems focused on, among others, energy used during operational stage. Recently, there is a strong push by these rating systems to include the life cycle energy use of buildings, particularly using Life Cycle Assessment (LCA), by offering credits t...

  10. [Life cycle assessment of energy consumption and greenhouse gas emissions of cellulosic ethanol from corn stover].

    PubMed

    Tian, Wang; Liao, Cuiping; Li, Li; Zhao, Daiqing

    2011-03-01

    Life Cycle Assessment (LCA) is the only standardized tool currently used to assess environmental loads of products and processes. The life cycle analysis, as a part of LCA, is a useful and powerful methodology for studying life cycle energy efficiency and life cycle GHG emission. To quantitatively explain the potential of energy saving and greenhouse gas (GHG) emissions reduction of corn stover-based ethanol, we analyzed life cycle energy consumption and GHG emissions of corn stover-based ethanol by the method of life cycle analysis. The processes are dilute acid prehydrolysis and enzymatic hydrolysis. The functional unit was defined as 1 km distance driven by the vehicle. Results indicated: compared with gasoline, the corn stover-based E100 (100% ethanol) and E10 (a blend of 10% ethanol and 90% gasoline by volume) could reduce life cycle fossil energy consumption by 79.63% and 6.25% respectively, as well as GHG emissions by 53.98% and 6.69%; the fossil energy consumed by biomass stage was 68.3% of total fossil energy input, N-fertilizer and diesel were the main factors which contributed 45.78% and 33.26% to biomass stage; electricity production process contributed 42.06% to the net GHG emissions, the improvement of technology might reduce emissions markedly.

  11. Life-cycle energy analyses of electric vehicle storage batteries. Final report

    SciTech Connect

    Sullivan, D; Morse, T; Patel, P; Patel, S; Bondar, J; Taylor, L

    1980-12-01

    The results of several life-cycle energy analyses of prospective electric vehicle batteries are presented. The batteries analyzed were: Nickel-zinc; Lead-acid; Nickel-iron; Zinc-chlorine; Sodium-sulfur (glass electrolyte); Sodium-sulfur (ceramic electrolyte); Lithium-metal sulfide; and Aluminum-air. A life-cycle energy analysis consists of evaluating the energy use of all phases of the battery's life, including the energy to build it, operate it, and any credits that may result from recycling of the materials in it. The analysis is based on the determination of three major energy components in the battery life cycle: Investment energy, i.e., The energy used to produce raw materials and to manufacture the battery; operational energy i.e., The energy consumed by the battery during its operational life. In the case of an electric vehicle battery, this energy is the energy required (as delivered to the vehicle's charging circuit) to power the vehicle for 100,000 miles; and recycling credit, i.e., The energy that could be saved from the recycling of battery materials into new raw materials. The value of the life-cycle analysis approach is that it includes the various penalties and credits associated with battery production and recycling, which enables a more accurate determination of the system's ability to reduce the consumption of scarce fuels. The analysis of the life-cycle energy requirements consists of identifying the materials from which each battery is made, evaluating the energy needed to produce these materials, evaluating the operational energy requirements, and evaluating the amount of materials that could be recycled and the energy that would be saved through recycling. Detailed descriptions of battery component materials, the energy requirements for battery production, and credits for recycling, and the operational energy for an electric vehicle, and the procedures used to determine it are discussed.

  12. Life cycle inventory energy consumption and emissions for biodiesel versus petroleum diesel fueled construction vehicles.

    PubMed

    Pang, Shih-Hao; Frey, H Christopher; Rasdorf, William J

    2009-08-15

    Substitution of soy-based biodiesel fuels for petroleum diesel will alter life cycle emissions for construction vehicles. A life cycle inventory was used to estimate fuel cycle energy consumption and emissions of selected pollutants and greenhouse gases. Real-world measurements using a portable emission measurement system (PEMS) were made forfive backhoes, four front-end loaders, and six motor graders on both fuels from which fuel consumption and tailpipe emission factors of CO, HC, NO(x), and PM were estimated. Life cycle fossil energy reductions are estimated it 9% for B20 and 42% for B100 versus petroleum diesel based on the current national energy mix. Fuel cycle emissions will contribute a larger share of total life cycle emissions as new engines enter the in-use fleet. The average differences in life cycle emissions for B20 versus diesel are: 3.5% higher for NO(x); 11.8% lower for PM, 1.6% higher for HC, and 4.1% lower for CO. Local urban tailpipe emissions are estimated to be 24% lower for HC, 20% lower for CO, 17% lower for PM, and 0.9% lower for NO(x). Thus, there are environmental trade-offs such as for rural vs urban areas. The key sources of uncertainty in the B20 LCI are vehicle emission factors.

  13. Sustainable Energy Solutions Task 3.0:Life-Cycle Database for Wind Energy Systems

    SciTech Connect

    Twomey, Janet M.

    2010-03-01

    The benefits of wind energy had previously been captured in the literature at an overview level with relatively low transparency or ability to understand the basis for that information. This has limited improvement and decision-making to larger questions such as wind versus other electrical sources (such as coal-fired plants). This research project has established a substantially different approach which is to add modular, high granularity life cycle inventory (lci) information that can be used by a wide range of decision-makers, seeking environmental improvement. Results from this project have expanded the understanding and evaluation of the underlying factors that can improve both manufacturing processes and specifically wind generators. The use of life cycle inventory techniques has provided a uniform framework to understand and compare the full range of environmental improvement in manufacturing, hence the concept of green manufacturing. In this project, the focus is on 1. the manufacturing steps that transform materials and chemicals into functioning products 2. the supply chain and end-of-life influences of materials and chemicals used in industry Results have been applied to wind generators, but also impact the larger U.S. product manufacturing base. For chemicals and materials, this project has provided a standard format for each lci that contains an overview and description, a process flow diagram, detailed mass balances, detailed energy of unit processes, and an executive summary. This is suitable for integration into other life cycle databases (such as that at NREL), so that broad use can be achieved. The use of representative processes allows unrestricted use of project results. With the framework refined in this project, information gathering was initiated for chemicals and materials in wind generation. Since manufacturing is one of the most significant parts of the environmental domain for wind generation improvement, this project research has

  14. Long-term shifts in life-cycle energy efficiency and carbon intensity.

    PubMed

    Yeh, Sonia; Mishra, Gouri Shankar; Morrison, Geoff; Teter, Jacob; Quiceno, Raul; Gillingham, Kenneth; Riera-Palou, Xavier

    2013-03-19

    The quantity of primary energy needed to support global human activity is in large part determined by how efficiently that energy is converted to a useful form. We estimate the system-level life-cycle energy efficiency (EF) and carbon intensity (CI) across primary resources for 2005-2100. Our results underscore that although technological improvements at each energy conversion process will improve technology efficiency and lead to important reductions in primary energy use, market mediated effects and structural shifts toward less efficient pathways and pathways with multiple stages of conversion will dampen these efficiency gains. System-level life-cycle efficiency may decrease as mitigation efforts intensify, since low-efficiency renewable systems with high output have much lower GHG emissions than some high-efficiency fossil fuel systems. Climate policies accelerate both improvements in EF and the adoption of renewable technologies, resulting in considerably lower primary energy demand and GHG emissions. Life-cycle EF and CI of useful energy provide a useful metric for understanding dynamics of implementing climate policies. The approaches developed here reiterate the necessity of a combination of policies that target efficiency and decarbonized energy technologies. We also examine life-cycle exergy efficiency (ExF) and find that nearly all of the qualitative results hold regardless of whether we use ExF or EF.

  15. Life cycle assessment of biofuels: energy and greenhouse gas balances.

    PubMed

    Gnansounou, E; Dauriat, A; Villegas, J; Panichelli, L

    2009-11-01

    The promotion of biofuels as energy for transportation in the industrialized countries is mainly driven by the perspective of oil depletion, the concerns about energy security and global warming. However due to sustainability constraints, biofuels will replace only 10 to 15% of fossil liquid fuels in the transport sector. Several governments have defined a minimum target of GHG emissions reduction for those biofuels that will be eligible to public incentives, for example a 35% emissions reduction in case of biofuels in Members States of the European Union. This article points out the significant biases in estimating GHG balances of biofuels stemming from modelling choices about system definition and boundaries, functional unit, reference systems and allocation methods. The extent to which these choices influence the results is investigated. After performing a comparison and constructive criticism of various modelling choices, the LCA of wheat-to-bioethanol is used as an illustrative case where bioethanol is blended with gasoline at various percentages (E5, E10 and E85). The performance of these substitution options is evaluated as well. The results show a large difference in the reduction of the GHG emissions with a high sensitivity to the following factors: the method used to allocate the impacts between the co-products, the type of reference systems, the choice of the functional unit and the type of blend. The authors come out with some recommendations for basing the estimation of energy and GHG balances of biofuels on principles such as transparency, consistency and accuracy.

  16. Life-cycle energy and CO2 analysis of stormwater treatment devices.

    PubMed

    Andrew, R M; Vesely, E-T

    2008-01-01

    Environmental impacts associated with the construction, maintenance, and disposal of low-impact stormwater management devices are one aspect that should be considered during decision-making and life-cycle assessment (LCA) is a suitable method for quantifying such impacts. This paper reports a pilot study that employs LCA to compare life-cycle energy requirements and CO2 emissions of two stormwater devices in New Zealand. The two devices are a raingarden servicing an urban feeder road, and a sand filter that could have been installed in its stead. With an assumed life-time of 50 years, the life-cycle energy requirements of the built raingarden were almost 20% less than for the sand filter, while the CO2 emissions were 30% less. Our analysis shows that given the difference between the infiltration rates used in the raingarden design (0.3 m/day) and measured during monitoring (3 m/day) there was potential to make significantly greater life-time savings using a smaller design for the raingarden that would have also met the treatment efficiency expectations. The analysis highlights the significant contribution of transportation-of both materials and staff-and ongoing maintenance to a treatment device's life-cycle energy and CO2 profiles.

  17. Life cycle design metrics for energy generation technologies: Method, data, and case study

    NASA Astrophysics Data System (ADS)

    Cooper, Joyce; Lee, Seung-Jin; Elter, John; Boussu, Jeff; Boman, Sarah

    A method to assist in the rapid preparation of Life Cycle Assessments of emerging energy generation technologies is presented and applied to distributed proton exchange membrane fuel cell systems. The method develops life cycle environmental design metrics and allows variations in hardware materials, transportation scenarios, assembly energy use, operating performance and consumables, and fuels and fuel production scenarios to be modeled and comparisons to competing systems to be made. Data and results are based on publicly available U.S. Life Cycle Assessment data sources and are formulated to allow the environmental impact weighting scheme to be specified. A case study evaluates improvements in efficiency and in materials recycling and compares distributed proton exchange membrane fuel cell systems to other distributed generation options. The results reveal the importance of sensitivity analysis and system efficiency in interpreting case studies.

  18. Life-cycle energy efficiency and environmental impacts of bioethanol production from sweet potato.

    PubMed

    Wang, Mingxin; Shi, Yu; Xia, Xunfeng; Li, Dinglong; Chen, Qun

    2013-04-01

    Life-cycle assessment (LCA) was used to evaluate the energy efficiency and environmental impacts of sweet potato-based bioethanol production. The scope covered all stages in the life cycle of bioethanol production, including the cultivation and treatment, transport, as well as bioethanol conversion of sweet potato. Results show that the net energy ratio of sweet potato-based bioethanol is 1.48 and the net energy gain is 6.55 MJ/L. Eutrophication is identified as the most significant environmental impact category, followed by acidification, global warming, human toxicity, and photochemical oxidation. Sensitivity analysis reveals that steam consumption during bioethanol conversion exerts the most effect on the results, followed by sweet potato yields and fertilizers input. It is suggested that substituting coal with cleaner energy for steam generation in bioethanol conversion stage and promotion of better management practices in sweet potato cultivation stage could lead to a significant improvement of energy and environmental performance.

  19. Life cycle greenhouse gas and energy assessment of winegrape production in California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose: This study applies life cycle assessment (LCA) to assess greenhouse gas (GHG) emissions, energy use, and direct water use in winegrape production across common vineyard management scenarios in two representative growing regions of California, USA (Napa and Lodi). California hosts 90 percent...

  20. Life-cycle energy and greenhouse gas emission benefits of lightweighting in automobiles: review and harmonization.

    PubMed

    Kim, Hyung Chul; Wallington, Timothy J

    2013-06-18

    Replacing conventional materials (steel and iron) with lighter alternatives (e.g., aluminum, magnesium, and composites) decreases energy consumption and greenhouse gas (GHG) emissions during vehicle use but may increase energy consumption and GHG emissions during vehicle production. There have been many life cycle assessment (LCA) studies on the benefits of vehicle lightweighting, but the wide variety of assumptions used makes it difficult to compare results from the studies. To clarify the benefits of vehicle lightweighting we have reviewed the available literature (43 studies). The GHG emissions and primary energy results from 33 studies that passed a screening process were harmonized using a common set of assumptions (lifetime distance traveled, fuel-mass coefficient, secondary weight reduction factor, fuel consumption allocation, recycling rate, and energy intensity of materials). After harmonization, all studies indicate that using aluminum, glass-fiber reinforced plastic, and high strength steel to replace conventional steel decreases the vehicle life cycle energy use and GHG emissions. Given the flexibility in options implied by the variety of materials available and consensus that these materials have substantial energy and emissions benefits, it seems likely that lightweighting will be used increasingly to improve fuel economy and reduce life cycle GHG emissions from vehicles.

  1. Life cycle assessment of energy and CO2 emissions for residential buildings in Jakarta, Indonesia

    NASA Astrophysics Data System (ADS)

    Surahman, U.; Kubota, T.; Wijaya, A.

    2016-04-01

    In order to develop low energy and low carbon residential buildings, it is important to understand their detailed energy profiles. This study provides the results of life cycle assessment of energy and CO2 emissions for residential buildings in Jakarta, Indonesia. A survey was conducted in the city in 2012 to obtain both material inventory and household energy consumption data within the selected residential buildings (n=300), which are classified into three categories, namely simple, medium and luxurious houses. The results showed that the average embodied energy of simple, medium and luxurious houses was 58.5, 201.0, and 559.5 GJ, respectively. It was found that total embodied energy of each house can be explained by its total floor area alone with high accuracy in respective house categories. Meanwhile, it was seen that operational energy usage patterns varied largely among house categories as well as households especially in the simple and medium houses. The energy consumption for cooling was found to be the most significant factor of the increase in operational energy from simple to luxurious houses. Further, in the life cycle energy, the operational energy accounted for much larger proportions of about 86-92% than embodied energy regardless of the house categories. The life cycle CO2 emissions for medium and luxurious houses were larger than that of simple houses by 2 and 6 times on average. In the simple houses, cooking was the largest contributor to the CO2 emissions (25%), while the emissions caused by cooling increased largely with the house category and became the largest contributors in the medium (26%) and luxurious houses (41%).

  2. Functional unit, technological dynamics, and scaling properties for the life cycle energy of residences.

    PubMed

    Frijia, Stephane; Guhathakurta, Subhrajit; Williams, Eric

    2012-02-07

    Prior LCA studies take the operational phase to include all energy use within a residence, implying a functional unit of all household activities, but then exclude related supply chains such as production of food, appliances, and household chemicals. We argue that bounding the functional unit to provision of a climate controlled space better focuses the LCA on the building, rather than activities that occur within a building. The second issue explored in this article is how technological change in the operational phase affects life cycle energy. Heating and cooling equipment is replaced at least several times over the lifetime of a residence; improved efficiency of newer equipment affects life cycle energy use. The third objective is to construct parametric models to describe LCA results for a family of related products. We explore these three issues through a case study of energy use of residences: one-story and two-story detached homes, 1,500-3,500 square feet in area, located in Phoenix, Arizona, built in 2002 and retired in 2051. With a restricted functional unit and accounting for technological progress, approximately 30% of a building's life cycle energy can be attributed to materials and construction, compared to 0.4-11% in previous studies.

  3. Life Cycle Energy and Environmental Assessment of Aluminum-Intensive Vehicle Design

    SciTech Connect

    Das, Sujit

    2014-01-01

    Advanced lightweight materials are increasingly being incorporated into new vehicle designs by automakers to enhance performance and assist in complying with increasing requirements of corporate average fuel economy standards. To assess the primary energy and carbon dioxide equivalent (CO2e) implications of vehicle designs utilizing these materials, this study examines the potential life cycle impacts of two lightweight material alternative vehicle designs, i.e., steel and aluminum of a typical passenger vehicle operated today in North America. LCA for three common alternative lightweight vehicle designs are evaluated: current production ( Baseline ), an advanced high strength steel and aluminum design ( LWSV ), and an aluminum-intensive design (AIV). This study focuses on body-in-white and closures since these are the largest automotive systems by weight accounting for approximately 40% of total curb weight of a typical passenger vehicle. Secondary mass savings resulting from body lightweighting are considered for the vehicles engine, driveline and suspension. A cradle-to-cradle life cycle assessment (LCA) was conducted for these three vehicle material alternatives. LCA methodology for this study included material production, mill semi-fabrication, vehicle use phase operation, and end-of-life recycling. This study followed international standards ISO 14040:2006 [1] and ISO 14044:2006 [2], consistent with the automotive LCA guidance document currently being developed [3]. Vehicle use phase mass reduction was found to account for over 90% of total vehicle life cycle energy and CO2e emissions. The AIV design achieved mass reduction of 25% (versus baseline) resulting in reductions in total life cycle primary energy consumption by 20% and CO2e emissions by 17%. Overall, the AIV design showed the best breakeven vehicle mileage from both primary energy consumption and climate change perspectives.

  4. Determining the life cycle energy efficiency of six biofuel systems in China: a Data Envelopment Analysis.

    PubMed

    Ren, Jingzheng; Tan, Shiyu; Dong, Lichun; Mazzi, Anna; Scipioni, Antonio; Sovacool, Benjamin K

    2014-06-01

    This aim of this study was to use Data Envelopment Analysis (DEA) to assess the life cycle energy efficiency of six biofuels in China. DEA can differentiate efficient and non-efficient scenarios, and it can identify wasteful energy losses in biofuel production. More specifically, the study has examined the efficiency of six approaches for bioethanol production involving a sample of wheat, corn, cassava, and sweet potatoes as feedstocks and "old," "new," "wet," and "dry" processes. For each of these six bioethanol production pathways, the users can determine energy inputs such as the embodied energy for seed, machinery, fertilizer, diesel, chemicals and primary energy utilized for manufacturing, and outputs such as the energy content of the bioethanol and byproducts. The results indicate that DEA is a novel and feasible method for finding efficient bioethanol production scenarios and suggest that sweet potatoes may be the most energy-efficient form of ethanol production for China.

  5. Parking infrastructure: energy, emissions, and automobile life-cycle environmental accounting

    NASA Astrophysics Data System (ADS)

    Chester, Mikhail; Horvath, Arpad; Madanat, Samer

    2010-07-01

    The US parking infrastructure is vast and little is known about its scale and environmental impacts. The few parking space inventories that exist are typically regionalized and no known environmental assessment has been performed to determine the energy and emissions from providing this infrastructure. A better understanding of the scale of US parking is necessary to properly value the total costs of automobile travel. Energy and emissions from constructing and maintaining the parking infrastructure should be considered when assessing the total human health and environmental impacts of vehicle travel. We develop five parking space inventory scenarios and from these estimate the range of infrastructure provided in the US to be between 105 million and 2 billion spaces. Using these estimates, a life-cycle environmental inventory is performed to capture the energy consumption and emissions of greenhouse gases, CO, SO2, NOX, VOC (volatile organic compounds), and PM10 (PM: particulate matter) from raw material extraction, transport, asphalt and concrete production, and placement (including direct, indirect, and supply chain processes) of space construction and maintenance. The environmental assessment is then evaluated within the life-cycle performance of sedans, SUVs (sports utility vehicles), and pickups. Depending on the scenario and vehicle type, the inclusion of parking within the overall life-cycle inventory increases energy consumption from 3.1 to 4.8 MJ by 0.1-0.3 MJ and greenhouse gas emissions from 230 to 380 g CO2e by 6-23 g CO2e per passenger kilometer traveled. Life-cycle automobile SO2 and PM10 emissions show some of the largest increases, by as much as 24% and 89% from the baseline inventory. The environmental consequences of providing the parking spaces are discussed as well as the uncertainty in allocating paved area between parking and roadways.

  6. Reducing Life-Cycle Costs.

    ERIC Educational Resources Information Center

    Roodvoets, David L.

    2003-01-01

    Presents factors to consider when determining roofing life-cycle costs, explaining that costs do not tell the whole story; discussing components that should go into the decision (cost, maintenance, energy use, and environmental costs); and concluding that important elements in reducing life-cycle costs include energy savings through increased…

  7. Water loss control using pressure management: life-cycle energy and air emission effects.

    PubMed

    Stokes, Jennifer R; Horvath, Arpad; Sturm, Reinhard

    2013-10-01

    Pressure management is one cost-effective and efficient strategy for controlling water distribution losses. This paper evaluates the life-cycle energy use and emissions for pressure management zones in Philadelphia, Pennsylvania, and Halifax, Nova Scotia. It compares water savings using fixed-outlet and flow-modulated pressure control to performance without pressure control, considering the embedded electricity and chemical consumption in the lost water, manufacture of pipe and fittings to repair breaks caused by excess pressure, and pressure management. The resulting energy and emissions savings are significant. The Philadelphia and Halifax utilities both avoid approximately 130 million liters in water losses annually using flow-modulated pressure management. The conserved energy was 780 GJ and 1900 GJ while avoided greenhouse gas emissions were 50 Mg and 170 Mg a year by Philadelphia and Halifax, respectively. The life-cycle financial and environmental performance of pressure management systems compares favorably to the traditional demand management strategy of installing low-flow toilets. The energy savings may also translate to cost-effective greenhouse gas emission reductions depending on the energy mix used, an important advantage in areas where water and energy are constrained and/or expensive and greenhouse gas emissions are regulated as in California, for example.

  8. A Cumulative Energy Demand indicator (CED), life cycle based, for industrial waste management decision making

    SciTech Connect

    Puig, Rita; Fullana-i-Palmer, Pere; Bala, Alba

    2013-12-15

    Highlights: • We developed a methodology useful to environmentally compare industrial waste management options. • The methodology uses a Net Energy Demand indicator which is life cycle based. • The method was simplified to be widely used, thus avoiding cost driven decisions. • This methodology is useful for governments to promote the best environmental options. • This methodology can be widely used by other countries or regions around the world. - Abstract: Life cycle thinking is a good approach to be used for environmental decision-support, although the complexity of the Life Cycle Assessment (LCA) studies sometimes prevents their wide use. The purpose of this paper is to show how LCA methodology can be simplified to be more useful for certain applications. In order to improve waste management in Catalonia (Spain), a Cumulative Energy Demand indicator (LCA-based) has been used to obtain four mathematical models to help the government in the decision of preventing or allowing a specific waste from going out of the borders. The conceptual equations and all the subsequent developments and assumptions made to obtain the simplified models are presented. One of the four models is discussed in detail, presenting the final simplified equation to be subsequently used by the government in decision making. The resulting model has been found to be scientifically robust, simple to implement and, above all, fulfilling its purpose: the limitation of waste transport out of Catalonia unless the waste recovery operations are significantly better and justify this transport.

  9. A framework for energy use indicators and their reporting in life cycle assessment.

    PubMed

    Arvidsson, Rickard; Svanström, Magdalena

    2016-07-01

    Energy use is a common impact category in life cycle assessment (LCA). Many different energy use indicators are used in LCA studies, accounting for energy use in different ways. Often, however, the choice behind which energy use indicator is applied is poorly described and motivated. To contribute to a more purposeful selection of energy use indicators and to ensure consistent and transparent reporting of energy use in LCA, a general framework for energy use indicator construction and reporting in LCA studies will be presented in this article. The framework differentiates between 1) renewable and nonrenewable energies, 2) primary and secondary energies, and 3) energy intended for energy purposes versus energy intended for material purposes. This framework is described both graphically and mathematically. Furthermore, the framework is illustrated through application to a number of energy use indicators that are frequently used in LCA studies: cumulative energy demand (CED), nonrenewable cumulative energy demand (NRCED), fossil energy use (FEU), primary fossil energy use (PFEU), and secondary energy use (SEU). To illustrate how the application of different energy use indicators may lead to different results, cradle-to-gate energy use of the bionanomaterial cellulose nanofibrils (CNF) is assessed using 5 different indicators and showing a factor of 3 differences between the highest and lowest results. The relevance of different energy use indicators to different actors and contexts will be discussed, and further developments of the framework are then suggested. Integr Environ Assess Manag 2016;12:429-436. © 2015 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of SETAC.

  10. Life cycle energy and CO2 analysis of microalgae-to-biodiesel: preliminary results and comparisons.

    PubMed

    Khoo, H H; Sharratt, P N; Das, P; Balasubramanian, R K; Naraharisetti, P K; Shaik, S

    2011-05-01

    Despite claims that microalgal biofuels are environmentally friendlier alternatives to conventional fuels, debate surrounding its ecological benefits or drawbacks still exists. LCA is used to analyze various biofuel production technologies from 'cradle to gate'. Energy and CO(2) balances are carried out for a hypothetical integrated PBR-raceway microalgae-to-biodiesel production in Singapore. Based on a functional unit of 1 MJ biofuel, the total energy demands are 4.44 MJ with 13% from biomass production, 85% from lipid extraction, and 2% from biodiesel production. Sensitivity analysis was carried out for adjustments in energy requirements, percentage lipid contents, and lower/higher heating product value. An 'Optimistic Case' was projected with estimates of: 45% lipid content; reduced energy needs for lipid extraction (1.3 MJ per MJ biodiesel); and heating value of biodiesel (42 MJ/kg). The life cycle energy requirements dropped significantly by about 60%. The results are compared with other published case studies from other countries.

  11. Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers

    SciTech Connect

    Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers,Steve; McMahon, James

    2004-01-20

    In 2001, the U.S. Department of Energy (DOE) initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is the economic impacts on consumers of possible revisions to energy-efficiency standards. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. DOE's preferred approach involves comparing the total life-cycle cost (LCC) of owning and operating a more efficient appliance with the LCC for a baseline design. This study describes the method used to conduct the LCC analysis and presents the estimated change in LCC associated with more energy-efficient equipment. The results indicate that efficiency improvement relative to the baseline design can reduce the LCC in each of the product classes considered.

  12. Towards Robust Energy Systems Modeling: Examinging Uncertainty in Fossil Fuel-Based Life Cycle Assessment Approaches

    NASA Astrophysics Data System (ADS)

    Venkatesh, Aranya

    Increasing concerns about the environmental impacts of fossil fuels used in the U.S. transportation and electricity sectors have spurred interest in alternate energy sources, such as natural gas and biofuels. Life cycle assessment (LCA) methods can be used to estimate the environmental impacts of incumbent energy sources and potential impact reductions achievable through the use of alternate energy sources. Some recent U.S. climate policies have used the results of LCAs to encourage the use of low carbon fuels to meet future energy demands in the U.S. However, the LCA methods used to estimate potential reductions in environmental impact have some drawbacks. First, the LCAs are predominantly based on deterministic approaches that do not account for any uncertainty inherent in life cycle data and methods. Such methods overstate the accuracy of the point estimate results, which could in turn lead to incorrect and (consequent) expensive decision-making. Second, system boundaries considered by most LCA studies tend to be limited (considered a manifestation of uncertainty in LCA). Although LCAs can estimate the benefits of transitioning to energy systems of lower environmental impact, they may not be able to characterize real world systems perfectly. Improved modeling of energy systems mechanisms can provide more accurate representations of reality and define more likely limits on potential environmental impact reductions. This dissertation quantitatively and qualitatively examines the limitations in LCA studies outlined previously. The first three research chapters address the uncertainty in life cycle greenhouse gas (GHG) emissions associated with petroleum-based fuels, natural gas and coal consumed in the U.S. The uncertainty in life cycle GHG emissions from fossil fuels was found to range between 13 and 18% of their respective mean values. For instance, the 90% confidence interval of the life cycle GHG emissions of average natural gas consumed in the U.S was found to

  13. Life cycle assessment of energy from waste via anaerobic digestion: a UK case study.

    PubMed

    Evangelisti, Sara; Lettieri, Paola; Borello, Domenico; Clift, Roland

    2014-01-01

    Particularly in the UK, there is potential for use of large-scale anaerobic digestion (AD) plants to treat food waste, possibly along with other organic wastes, to produce biogas. This paper presents the results of a life cycle assessment to compare the environmental impacts of AD with energy and organic fertiliser production against two alternative approaches: incineration with energy production by CHP and landfill with electricity production. In particular the paper investigates the dependency of the results on some specific assumptions and key process parameters. The input Life Cycle Inventory data are specific to the Greater London area, UK. Anaerobic digestion emerges as the best treatment option in terms of total CO2 and total SO2 saved, when energy and organic fertiliser substitute non-renewable electricity, heat and inorganic fertiliser. For photochemical ozone and nutrient enrichment potentials, AD is the second option while incineration is shown to be the most environmentally friendly solution. The robustness of the model is investigated with a sensitivity analysis. The most critical assumption concerns the quantity and quality of the energy substituted by the biogas production. Two key issues affect the development and deployment of future anaerobic digestion plants: maximising the electricity produced by the CHP unit fuelled by biogas and to defining the future energy scenario in which the plant will be embedded.

  14. A Life-Cycle Assessment of Biofuels: Tracing Energy and Carbon through a Fuel-Production System

    ERIC Educational Resources Information Center

    Krauskopf, Sara

    2010-01-01

    A life-cycle assessment (LCA) is a tool used by engineers to make measurements of net energy, greenhouse gas production, water consumption, and other items of concern. This article describes an activity designed to walk students through the qualitative part of an LCA. It asks them to consider the life-cycle costs of ethanol production, in terms of…

  15. HIV Life Cycle

    MedlinePlus

    HIV Overview The HIV Life Cycle (Last updated 9/13/2016; last reviewed 9/8/2016) Key Points HIV gradually destroys the immune ... life cycle. What is the connection between the HIV life cycle and HIV medicines? Antiretroviral therapy (ART) ...

  16. Life cycle comparison of waste-to-energy alternatives for municipal waste treatment in Chilean Patagonia.

    PubMed

    Bezama, Alberto; Douglas, Carla; Méndez, Jacqueline; Szarka, Nóra; Muñoz, Edmundo; Navia, Rodrigo; Schock, Steffen; Konrad, Odorico; Ulloa, Claudia

    2013-10-01

    The energy system in the Region of Aysén, Chile, is characterized by a strong dependence on fossil fuels, which account for up to 51% of the installed capacity. Although the implementation of waste-to-energy concepts in municipal waste management systems could support the establishment of a more fossil-independent energy system for the region, previous studies have concluded that energy recovery systems are not suitable from an economic perspective in Chile. Therefore, this work intends to evaluate these technical options from an environmental perspective, using life cycle assessment as a tool for a comparative analysis, considering Coyhaique city as a case study. Three technical alternatives were evaluated: (i) landfill gas recovery and flaring without energy recovery; (ii) landfill gas recovery and energy use; and (iii) the implementation of an anaerobic digestion system for the organic waste fraction coupled with energy recovery from the biogas produced. Mass and energy balances of the three analyzed alternatives have been modeled. The comparative LCA considered global warming potential, abiotic depletion and ozone layer depletion as impact categories, as well as required raw energy and produced energy as comparative regional-specific indicators. According to the results, the use of the recovered landfill gas as an energy source can be identified as the most environmentally appropriate solution for Coyhaique, especially when taking into consideration the global impact categories.

  17. Comparison of life-cycle energy and emissions footprints of passenger transportation in metropolitan regions

    NASA Astrophysics Data System (ADS)

    Chester, Mikhail V.; Horvath, Arpad; Madanat, Samer

    2010-03-01

    A comparative life-cycle energy and emissions (greenhouse gas, CO, NO X, SO 2, PM 10, and VOCs) inventory is created for three U.S. metropolitan regions (San Francisco, Chicago, and New York City). The inventory captures both vehicle operation (direct fuel or electricity consumption) and non-operation components (e.g., vehicle manufacturing, roadway maintenance, infrastructure operation, and material production among others). While urban transportation inventories have been continually improved, little information exists identifying the particular characteristics of metropolitan passenger transportation and why one region may differ from the next. Using travel surveys and recently developed transportation life-cycle inventories, metropolitan inventories are constructed and compared. Automobiles dominate total regional performance accounting for 86-96% of energy consumption and emissions. Comparing system-wide averages, New York City shows the lowest end-use energy and greenhouse gas footprint compared to San Francisco and Chicago and is influenced by the larger share of transit ridership. While automobile fuel combustion is a large component of emissions, diesel rail, electric rail, and ferry service can also have strong contributions. Additionally, the inclusion of life-cycle processes necessary for any transportation mode results in significant increases (as large as 20 times that of vehicle operation) for the region. In particular, emissions of CO 2 from cement production used in concrete throughout infrastructure, SO 2 from electricity generation in non-operational components (vehicle manufacturing, electricity for infrastructure materials, and fuel refining), PM 10 in fugitive dust releases in roadway construction, and VOCs from asphalt result in significant additional inventory. Private and public transportation are disaggregated as well as off-peak and peak travel times. Furthermore, emissions are joined with healthcare and greenhouse gas monetized

  18. Life-cycle implications of using crop residues for various energy demands in China.

    PubMed

    Lu, Wei; Zhang, Tianzhu

    2010-05-15

    Crop residues are a critical component of the sustainable energy and natural resource strategy within a country. In this study, we use hybrid life-cycle environmental and economic analyses to evaluate and compare the atmospheric chemical, climatic, ecological, and economic issues associated with a set of energy conversion technologies that use crop residues for various energy demands in China. Our analysis combines conventional process-based life cycle assessment with economic input-output life cycle assessment. The results show that the return of crop residues to the fields, silo/amination and anaerobic digestion (household scale) offer the greatest ecological benefits, with net greenhouse gas reduction costs of US$3.1/tC, US$11.5/tC, and US$14.9/tC, respectively. However, if a positive net income for market-oriented operations is the overriding criterion for technology selection, the cofiring of crop residues with coal and crop residue gasification for power generation offer greater economic scope and technical feasibility, with net incomes of US$4.4/Mg and US$4.9/Mg, respectively. We identify that poor economies of scale and the absence of key technologies mean that enterprises that use pure combustion for power generation (US$212/tC), gasification for heat generation (US$366/tC) and large-scale anaerobic digestion for power generation (US$169/tC) or heat generation (US$206/tC) are all prone to operational deficits. In the near term, the Chinese government should also be cautious about any large-scale investment in bioethanol derived from crop residues because, with a carbon price of as high as US$748/tC, bioethanol is the most expensive of all energy conversion technologies in China.

  19. Energy use and emissions from marine vessels: a total fuel life cycle approach.

    PubMed

    Winebrake, James J; Corbett, James J; Meyer, Patrick E

    2007-01-01

    Regional and global air pollution from marine transportation is a growing concern. In discerning the sources of such pollution, researchers have become interested in tracking where along the total fuel life cycle these emissions occur. In addition, new efforts to introduce alternative fuels in marine vessels have raised questions about the energy use and environmental impacts of such fuels. To address these issues, this paper presents the Total Energy and Emissions Analysis for Marine Systems (TEAMS) model. TEAMS can be used to analyze total fuel life cycle emissions and energy use from marine vessels. TEAMS captures "well-to-hull" emissions, that is, emissions along the entire fuel pathway, including extraction, processing, distribution, and use in vessels. TEAMS conducts analyses for six fuel pathways: (1) petroleum to residual oil, (2) petroleum to conventional diesel, (3) petroleum to low-sulfur diesel, (4) natural gas to compressed natural gas, (5) natural gas to Fischer-Tropsch diesel, and (6) soybeans to biodiesel. TEAMS calculates total fuel-cycle emissions of three greenhouse gases (carbon dioxide, nitrous oxide, and methane) and five criteria pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, particulate matter with aerodynamic diameters of 10 microm or less, and sulfur oxides). TEAMS also calculates total energy consumption, fossil fuel consumption, and petroleum consumption associated with each of its six fuel cycles. TEAMS can be used to study emissions from a variety of user-defined vessels. This paper presents TEAMS and provides example modeling results for three case studies using alternative fuels: a passenger ferry, a tanker vessel, and a container ship.

  20. Analyzing the Life Cycle Energy Savings of DOE Supported Buildings Technologies

    SciTech Connect

    Cort, Katherine A.; Hostick, Donna J.; Dirks, James A.; Elliott, Douglas B.

    2009-08-31

    This report examines the factors that would potentially help determine an appropriate analytical timeframe for measuring the U.S. Department of Energy's Building Technology (BT) benefits and presents a summary-level analysis of the life cycle savings for BT’s Commercial Buildings Integration (CBI) R&D program. The energy savings for three hypothetical building designs are projected over a 100-year period using Building Energy Analysis and Modeling System (BEAMS) to illustrate the resulting energy and carbon savings associated with the hypothetical aging buildings. The report identifies the tasks required to develop a long-term analytical and modeling framework, and discusses the potential analytical gains and losses by extending an analysis into the “long-term.”

  1. Life-cycle energy savings potential from aluminum-intensive vehicles

    SciTech Connect

    Stodolsky, F.; Vyas, A.; Cuenca, R.; Gaines, L.

    1995-07-01

    The life-cycle energy and fuel-use impacts of US-produced aluminum-intensive passenger cars and passenger trucks are assessed. The energy analysis includes vehicle fuel consumption, material production energy, and recycling energy. A model that stimulates market dynamics was used to project aluminum-intensive vehicle market shares and national energy savings potential for the period between 2005 and 2030. We conclude that there is a net energy savings with the use of aluminum-intensive vehicles. Manufacturing costs must be reduced to achieve significant market penetration of aluminum-intensive vehicles. The petroleum energy saved from improved fuel efficiency offsets the additional energy needed to manufacture aluminum compared to steel. The energy needed to make aluminum can be reduced further if wrought aluminum is recycled back to wrought aluminum. We find that oil use is displaced by additional use of natural gas and nonfossil energy, but use of coal is lower. Many of the results are not necessarily applicable to vehicles built outside of the United States, but others could be used with caution.

  2. Deep Horizons - Implications of the deep carbon cycle for life, energy, and the environment (Invited)

    NASA Astrophysics Data System (ADS)

    Sherwood Lollar, B.; Ballentine, C. J.; Shock, E.

    2010-12-01

    B. Sherwood Lollar1, C.J. Ballentine2, E. Shock3 1Dept. of Geology, University of Toronto, Toronto, Ontario, Canada M5S 3B1 email bslollar@chem.utoronto.ca 2School of Earth, Atmospheric & Environ. Sci., Univ. of Manchester, UK M13 9PL 3School of Earth & Space Exploration, Arizona State Univ., Tempe, AZ 85287-1404 While well-developed models exist regarding surface biogeochemical carbon cycles on short-, medium- and long-term scales over geologic time, major unknowns persist concerning the deep carbon cycle, including the pathways and flux of carbon exchange between the surface and deep interior of the planet; the nature of microbial life in the Earth's deep subsurface; and the implications of the deep carbon cycle for energy resources and the environment. Major research questions include: What is the distribution, form and abundance of carbon in the deep crust and mantle? What is the nature of deep carbon flux and the timescale and mechanisms of recycling? Do the lower crust and mantle contribute biologically available carbon to the shallow subsurface and surface? To what extent does the deep carbon cycle support microbial ecosystems in the deep marine and/or deep terrestrial biosphere? What is the volume and depth of the Earth's habitable zone and what are the implications of this for the search for life on other planets and moons? What is the role of the deep carbon cycle in sustaining abiotic organic synthesis and what potential contribution might such chemical organic synthesis have made to the origin of life and the sustainability of deep microbial ecosystems? How does our understanding of the deep carbon cycle impact on emerging global issues such as climate change, energy and carbon sequestration? While fundamental to our understanding of the origin and evolution of life and the planet - these questions are also relevant to the major practical challenges facing science and society as we struggle with the implications of still increasing fossil fuel

  3. Life Cycle Assessment for Biofuels

    EPA Science Inventory

    A presentation based on life cycle assessment (LCA) for biofuels is given. The presentation focuses on energy and biofuels, interesting environmental aspects of biofuels, and how to do a life cycle assessment with some examples related to biofuel systems. The stages of a (biofuel...

  4. Life cycle assessment of two emerging sewage sludge-to-energy systems: evaluating energy and greenhouse gas emissions implications.

    PubMed

    Cao, Yucheng; Pawłowski, Artur

    2013-01-01

    A "cradle-to-grave" life cycle assessment was conducted to examine the energy and greenhouse gas (GHG) emission footprints of two emerging sludge-to-energy systems. One system employs a combination of anaerobic digestion (AD) and fast pyrolysis for bioenergy conversion, while the other excludes AD. Each system was divided into five process phases: plant construction, sludge pretreatment, sludge-to-bioenergy conversion, bioenergy utilizations and biochar management. Both systems achieved energy and GHG emission benefits, and the AD-involving system performed better than the AD-excluding system (5.30 vs. 0.63 GJ/t sludge in net energy gain and 0.63 vs. 0.47 t CO(2)eq/t sludge in emission credit for base case). Detailed contribution and sensitivity analyses were conducted to identify how and to what degree the different life-cycle phases are responsible for the energy and emission impacts. The energy and emission performances were significantly affected by variations in bioenergy production, energy requirement for sludge drying and end use of bioenergy.

  5. Ocean Thermal Energy Conversion Life Cycle Cost Assessment, Final Technical Report, 30 May 2012

    SciTech Connect

    Martel, Laura; Smith, Paul; Rizea, Steven; Van Ryzin, Joe; Morgan, Charles; Noland, Gary; Pavlosky, Rick; Thomas, Michael; Halkyard, John

    2012-05-30

    The Ocean Thermal Energy Conversion (OTEC) Life Cycle Cost Assessment (OLCCA) is a study performed by members of the Lockheed Martin (LM) OTEC Team under funding from the Department of Energy (DOE), Award No. DE-EE0002663, dated 01/01/2010. OLCCA objectives are to estimate procurement, operations and maintenance, and overhaul costs for two types of OTEC plants: -Plants moored to the sea floor where the electricity produced by the OTEC plant is directly connected to the grid ashore via a marine power cable (Grid Connected OTEC plants) -Open-ocean grazing OTEC plant-ships producing an energy carrier that is transported to designated ports (Energy Carrier OTEC plants) Costs are developed using the concept of levelized cost of energy established by DOE for use in comparing electricity costs from various generating systems. One area of system costs that had not been developed in detail prior to this analysis was the operations and sustainment (O&S) cost for both types of OTEC plants. Procurement costs, generally referred to as capital expense and O&S costs (operations and maintenance (O&M) costs plus overhaul and replacement costs), are assessed over the 30 year operational life of the plants and an annual annuity calculated to achieve a levelized cost (constant across entire plant life). Dividing this levelized cost by the average annual energy production results in a levelized cost of electricity, or LCOE, for the OTEC plants. Technical and production efficiency enhancements that could result in a lower value of the OTEC LCOE were also explored. The thermal OTEC resource for Oahu, Hawaii and projected build out plan were developed. The estimate of the OTEC resource and LCOE values for the planned OTEC systems enable this information to be displayed as energy supplied versus levelized cost of the supplied energy; this curve is referred to as an Energy Supply Curve. The Oahu Energy Supply Curve represents initial OTEC deployment starting in 2018 and demonstrates the

  6. Land-Energy Nexus: Life Cycle Land Use of Natural Gas-Fired Electricity

    NASA Astrophysics Data System (ADS)

    Heath, G.; Jordaan, S.; Macknick, J.; Mohammadi, E.; Ben-Horin, D.; Urrea, V.

    2014-12-01

    Comparisons of the land required for different types of energy are challenging due to the fact that upstream land use of fossil fuel technologies is not well characterized. This research focuses on improving estimates of the life cycle land use of natural gas-fired electricity through the novel combination of inventories of the location of natural gas-related infrastructure, satellite imagery analysis and gas production data. Land area per unit generation is calculated as the sum of natural gas life cycle stages divided by the throughput of natural gas, combined with the land use of the power plant divided by the generation of the power plant. Five natural gas life cycle stages are evaluated for their area: production, gathering, processing, transmission and disposal. The power plant stage is characterized by a thermal efficiency ηth, which converts MegaJoules (MJ) to kilowatt hours (kWh). We focus on seven counties in the Barnett shale region in Texas that represent over 90% of total Barnett Shale gas production. In addition to assessing the gathering and transmission pipeline network, approximately 500 sites are evaluated from the five life cycle stages plus power plants. For instance, assuming a 50 foot right-of-way for transmission pipelines, this part of the Barnett pipeline network occupies nearly 26,000 acres. Site, road and water components to total area are categorized. Methods are developed to scale up sampled results for each component type to the full population of sites within the Barnett. Uncertainty and variability are charaterized. Well-level production data are examined by integrating commercial datasets with advanced methods for quantifying estimated ultimate recovery (EUR) for wells, then summed to estimate natural gas produced in an entire play. Wells that are spatially coincident are merged using ArcGIS. All other sites are normalized by an estimate of gas throughput. Prior land use estimates are used to validate the satellite imagery analysis

  7. A low cost, high energy density and long cycle life potassium-sulfur battery for grid-scale energy storage

    SciTech Connect

    Lu, Xiaochuan; Bowden, Mark E.; Sprenkle, Vincent L.; Liu, Jun

    2015-08-15

    Alkali metal-sulfur batteries are attractive for energy storage applications because of their high energy density. Among the batteries, lithium-sulfur batteries typically use liquid in the battery electrolyte, which causes problems in both performance and safety. Sodium-sulfur batteries can use a solid electrolyte such as beta alumina but this requires a high operating temperature. Here we report a novel potassium-sulfur battery with K+-conducting beta-alumina as the electrolyte. Our studies indicate that liquid potassium exhibits much better wettability on the surface of beta-alumina compared to liquid sodium at lower temperatures. Based on this observation, we develop a potassium-sulfur battery that can operate at as low as 150°C with excellent performance. In particular, the battery shows excellent cycle life with negligible capacity fade in 1000 cycles because of the dense ceramic membrane. This study demonstrates a new battery with a high energy density, long cycle life, low cost and high safety, which is ideal for grid-scale energy storage.

  8. Factors influencing the life cycle burdens of the recovery of energy from residual municipal waste.

    PubMed

    Burnley, Stephen; Coleman, Terry; Peirce, Adam

    2015-05-01

    A life cycle assessment was carried out to assess a selection of the factors influencing the environmental impacts and benefits of incinerating the fraction of municipal waste remaining after source-separation for reuse, recycling, composting or anaerobic digestion. The factors investigated were the extent of any metal and aggregate recovery from the bottom ash, the thermal efficiency of the process, and the conventional fuel for electricity generation displaced by the power generated. The results demonstrate that incineration has significant advantages over landfill with lower impacts from climate change, resource depletion, acidification, eutrophication human toxicity and aquatic ecotoxicity. To maximise the benefits of energy recovery, metals, particularly aluminium, should be reclaimed from the residual bottom ash and the energy recovery stage of the process should be as efficient as possible. The overall environmental benefits/burdens of energy from waste also strongly depend on the source of the power displaced by the energy from waste, with coal giving the greatest benefits and combined cycle turbines fuelled by natural gas the lowest of those considered. Regardless of the conventional power displaced incineration presents a lower environmental burden than landfill.

  9. Life cycle assessment of innovative technology for energy production from automotive shredder residue.

    PubMed

    Rinaldi, Caterina; Masoni, Paolo; Salvati, Fabio; Tolve, Pietro

    2015-07-01

    Automotive Shredder Residue (ASR) is a problematic waste material remaining after shredding and recovery processes of end-of-life vehicles (ELVs). Its heterogeneous grain size and composition make difficult its recovery or disposal. Although ASR accounts for approximately 20% to 25% of the weight of an ELV, the European Union (EU)'s ELV Directive (2000/53/EC) requires that by 2015 a minimum 95% of the weight of an ELV must be reused or recovered, including a 10% weight energy recovery. The quantity of ASR is relevant: Approximately 2.4 million tons are generated in the EU each year and most of it is sent to landfills. This article describes a life cycle model of the "TEKNE-Fluff" process designed to make beneficial use of ASR that is based on the results of an experimental pilot plant for pyro-gasification, combustion, cogeneration, and emissions treatment of ASR. The goal of the research was the application of life cycle assessment (LCA) methodology to identify the environmental hot spots of the "TEKNE system" and use scenario analysis to check solutions to improve its environmental profile, supporting the design and industrialization process. The LCA was conducted based on data modeled from the experimental campaign. Moreover, different scenarios on shares of electricity and thermal energy produced by the cogeneration system and alternative treatment processes for the waste produced by the technology were compared. Despite the limitation of the research (results based on scaling up experimental data by modeling), impact assessment results are promising and sufficiently robust, as shown by Monte Carlo analysis. The TEKNE technology may become an interesting solution for the problem of ASR management: Besides representing an alternative to landfill disposal, the energy produced could avoid significant impacts on fossil resources depletion (a plant of 40,000 tons/y capacity could produce ∼ 147,000 GJ/yr, covering the annual need of ∼ 13,500 households).

  10. Life cycle assessment modelling of waste-to-energy incineration in Spain and Portugal.

    PubMed

    Margallo, M; Aldaco, R; Irabien, A; Carrillo, V; Fischer, M; Bala, A; Fullana, P

    2014-06-01

    In recent years, waste management systems have been evaluated using a life cycle assessment (LCA) approach. A main shortcoming of prior studies was the focus on a mixture of waste with different characteristics. The estimation of emissions and consumptions associated with each waste fraction in these studies presented allocation problems. Waste-to-energy (WTE) incineration is a clear example in which municipal solid waste (MSW), comprising many types of materials, is processed to produce several outputs. This paper investigates an approach to better understand incineration processes in Spain and Portugal by applying a multi-input/output allocation model. The application of this model enabled predictions of WTE inputs and outputs, including the consumption of ancillary materials and combustibles, air emissions, solid wastes, and the energy produced during the combustion of each waste fraction.

  11. Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors.

    PubMed

    Jorquera, Orlando; Kiperstok, Asher; Sales, Emerson A; Embiruçu, Marcelo; Ghirardi, Maria L

    2010-02-01

    An analysis of the energy life-cycle for production of biomass using the oil-rich microalgae Nannochloropsis sp. was performed, which included both raceway ponds, tubular and flat-plate photobioreactors for algal cultivation. The net energy ratio (NER) for each process was calculated. The results showed that the use of horizontal tubular photobioreactors (PBRs) is not economically feasible ([NER]<1) and that the estimated NERs for flat-plate PBRs and raceway ponds is >1. The NER for ponds and flat-plate PBRs could be raised to significantly higher values if the lipid content of the biomass were increased to 60% dw/cwd. Although neither system is currently competitive with petroleum, the threshold oil cost at which this would occur was also estimated.

  12. Life cycle cost-based risk model for energy performance contracting retrofits

    NASA Astrophysics Data System (ADS)

    Berghorn, George H.

    Buildings account for 41% of the primary energy consumption in the United States, nearly half of which is accounted for by commercial buildings. Among the greatest energy users are those in the municipalities, universities, schools, and hospitals (MUSH) market. Correctional facilities are in the upper half of all commercial building types for energy intensity. Public agencies have experienced reduced capital budgets to fund retrofits; this has led to the increased use of energy performance contracts (EPC), which are implemented by energy services companies (ESCOs). These companies guarantee a minimum amount of energy savings resulting from the retrofit activities, which in essence transfers performance risk from the owner to the contractor. Building retrofits in the MUSH market, especially correctional facilities, are well-suited to EPC, yet despite this potential and their high energy intensities, efficiency improvements lag behind that of other public building types. Complexities in project execution, lack of support for data requests and sub-metering, and conflicting project objectives have been cited as reasons for this lag effect. As a result, project-level risks must be understood in order to support wider adoption of retrofits in the public market, in particular the correctional facility sub-market. The goal of this research is to understand risks related to the execution of energy efficiency retrofits delivered via EPC in the MUSH market. To achieve this goal, in-depth analysis and improved understanding was sought with regard to ESCO risks that are unique to EPC in this market. The proposed work contributes to this understanding by developing a life cycle cost-based risk model to improve project decision making with regard to risk control and reduction. The specific objectives of the research are: (1) to perform an exploratory analysis of the EPC retrofit process and identify key areas of performance risk requiring in-depth analysis; (2) to construct a

  13. Life cycle assessment of thermal waste-to-energy technologies: review and recommendations.

    PubMed

    Astrup, Thomas Fruergaard; Tonini, Davide; Turconi, Roberto; Boldrin, Alessio

    2015-03-01

    Life cycle assessment (LCA) has been used extensively within the recent decade to evaluate the environmental performance of thermal Waste-to-Energy (WtE) technologies: incineration, co-combustion, pyrolysis and gasification. A critical review was carried out involving 250 individual case-studies published in 136 peer-reviewed journal articles within 1995 and 2013. The studies were evaluated with respect to critical aspects such as: (i) goal and scope definitions (e.g. functional units, system boundaries, temporal and geographic scopes), (ii) detailed technology parameters (e.g. related to waste composition, technology, gas cleaning, energy recovery, residue management, and inventory data), and (iii) modeling principles (e.g. energy/mass calculation principles, energy substitution, inclusion of capital goods and uncertainty evaluation). Very few of the published studies provided full and transparent descriptions of all these aspects, in many cases preventing an evaluation of the validity of results, and limiting applicability of data and results in other contexts. The review clearly suggests that the quality of LCA studies of WtE technologies and systems including energy recovery can be significantly improved. Based on the review, a detailed overview of assumptions and modeling choices in existing literature is provided in conjunction with practical recommendations for state-of-the-art LCA of Waste-to-Energy.

  14. Geothermal Life Cycle Calculator

    DOE Data Explorer

    Sullivan, John

    2014-03-11

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  15. Comparing the Life Cycle Energy Consumption, GlobalWarming and Eutrophication Potentials of Several Water andWaste Service Options

    EPA Science Inventory

    Managing the water-energy-nutrient nexus for the built environment requires, in part, a full system analysis of energy consumption, global warming and eutrophication potentials of municipal water services. As an example, we evaluated the life cycle energy use, greenhouse gas (GHG...

  16. Comparing the Life Cycle Energy Consumption, Global Warming and Eutrophication Potentials of Several Water and Waste Service Options

    EPA Science Inventory

    Managing the water-energy-nutrient nexus for the built environment requires, in part, a full system analysis of energy consumption, global warming and eutrophication potentials of municipal water services. As an example, we evaluated the life cycle energy use, greenhouse gas (GHG...

  17. Battery cycle life balancing in a microgrid through flexible distribution of energy and storage resources

    NASA Astrophysics Data System (ADS)

    Khasawneh, Hussam J.; Illindala, Mahesh S.

    2014-09-01

    In this paper, a microgrid consisting of four fuel cell-battery hybrid Distributed Energy Resources (DERs) is devised for an industrial crusher-conveyor load. Each fuel cell was accompanied by a Li-ion battery to provide energy storage support under islanded condition of the microgrid since the fuel cells typically have poor transient response characteristics. After carrying out extensive modeling and analysis in MATLAB®, the battery utilization was found to vary significantly based on the DER's 'electrical' placement within the microgrid. This paper presents, under such conditions, a variety of battery life balancing solutions through the use of the new framework of Flexible Distribution of EneRgy and Storage Resources (FDERS). It is based on an in-situ reconfiguration approach through 'virtual' reactances that help in changing the 'electrical' position of each DER without physically displacing any component in the system. Several possible approaches toward balancing the battery utilization are compared in this paper taking advantage of the flexibility that FDERS offers. It was observed that the estimated battery life is dependent on factors such as cycling sequence, pattern, and occurrence.

  18. A cumulative energy demand indicator (CED), life cycle based, for industrial waste management decision making.

    PubMed

    Puig, Rita; Fullana-I-Palmer, Pere; Baquero, Grau; Riba, Jordi-Roger; Bala, Alba

    2013-12-01

    Life cycle thinking is a good approach to be used for environmental decision-support, although the complexity of the Life Cycle Assessment (LCA) studies sometimes prevents their wide use. The purpose of this paper is to show how LCA methodology can be simplified to be more useful for certain applications. In order to improve waste management in Catalonia (Spain), a Cumulative Energy Demand indicator (LCA-based) has been used to obtain four mathematical models to help the government in the decision of preventing or allowing a specific waste from going out of the borders. The conceptual equations and all the subsequent developments and assumptions made to obtain the simplified models are presented. One of the four models is discussed in detail, presenting the final simplified equation to be subsequently used by the government in decision making. The resulting model has been found to be scientifically robust, simple to implement and, above all, fulfilling its purpose: the limitation of waste transport out of Catalonia unless the waste recovery operations are significantly better and justify this transport.

  19. Life Cycle Assessment Projection of Photovoltaic Cells: A Case Study on Energy Demand of Quantum Wire Based Photovoltaic Technology Research

    NASA Astrophysics Data System (ADS)

    Mukherjee, Shilpi

    With increasing clean-energy demand, photovoltaic (PV) technologies have gained attention as potential long-term alternative to fossil fuel energy. However, PV research and manufacture still utilize fossil fuel-powered grid electricity. With continuous enhancement of solar conversion efficiency, it is imperative to assess whether overall life cycle efficiency is also being enhanced. Many new-material PV technologies are still in their research phase, and life cycle analyses of these technologies have not yet been performed. For best results, grid dependency must be minimized for PV research, and this can be accomplished by an analytical instrument called Life Cycle Assessment (LCA). LCA is the study of environmental impacts of a product throughout its life cycle. While there are some non-recoverable costs of research, energy is precious, and the PV research community should be aware of its energy consumption. LCA can help identify options for energy conservation through process optimization. A case study was conducted on the energy demand of a test-bed emerging PV technology using life cycle assessment methodology. The test-bed system chosen for this study was a new-material PV cell. The objective was to quantify the total energy demand for the research phase of the test-bed solar cell's life cycle. The objective was accomplished by collecting primary data on energy consumption for each process in the development of this solar cell. It was found that 937 kWh of energy was consumed for performing research on a single sample of the solar cell. For comparison, this energy consumption is 83% of Arkansas's average monthly residential electricity consumption. Life cycle inventory analysis showed that heating, ventilation, and air conditioning consumed the bulk of the energy of research. It is to be noted that the processes studied as part of the solar cell test-bed system are representative of a research process only. Life cycle thinking can identify energy hot-spots and

  20. Development of silver-zinc cells of improved cycle life and energy density

    NASA Astrophysics Data System (ADS)

    Serenyi, Roberto; James, Stanley D.

    1994-03-01

    Substantial increases in the cost effectiveness and range of naval underwater vehicles are possible by virtue of advances made, in this program, to silver-zinc, vehicle propulsion batteries. To improve battery cycle life and energy density, electropermeable membranes (EPM's) were used as additives and/or as coatings for the negative electrodes and as coatings for conventional separator materials. Also, bismuth oxide was tested as an additive to the negative electrodes and P2291-40/20, a radiation-grafted polyethylene film, as a separator used in conjunction with silver-treated cellophane. EPM's used as negative electrode additives and also as coatings for Celgard 2500 microporous polypropylene greatly improved cells. Cells with EPM's used as coatings for the negative electrodes failed rapidly because of an error in formulation. Cells with 10 percent bismuth oxide in the negative electrodes exhibited substantially lower capacity than the standard cells and were removed from the test. Cells with radiation-grafted polyethylene separators provided fewer cycles than the standard cells, with 5 percent higher capacity and 6 percent lower utilization of active materials by cycle 60. However, the slightly better capacity of these cells, realized due to the additional space available for active materials, does not compensate for their generally unimpressive performance.

  1. Vacuum thermal cycle life testing of high temperature thermal energy storage

    NASA Astrophysics Data System (ADS)

    Ponnappan, Rengasamy; Beam, Jerry E.

    1991-01-01

    An experimental program to investigate the corrosion compatibility of the high temperature thermal energy storage (TES) salts with Inconel-617 container was initiated at the Thermal Laboratory of the Wright Research and Development Center (WRDC) in 1985. Three fluoride eutectic mixtures: LiF-MgF2-KF, LiF-MgF2-NaF, and LiF-MgF2 having melting points in the neighborhood of 1000 K and heats of fusion above 750 kJ/kg were chosen. High purity analytical grade component salts were processed in oxygen and moisture-free inert atmosphere, and melted in situ in the Inconel-617 containers. The containers were sealed by electron beam-welding of the end caps thereby evacuating the void volume. The TES capsules thus formed were placed in a tubular vacuum furnace for continuous thermal cycle life testing by cycling them ±100 K from the eutectic temperature every 2 hours. The capsules have successfully undergone 40,000 hours and 10,000 cycles of testing as of April 1990 and continuing on the test. This is believed to be the longest record available on the TES corrosion compatibility data. The present results clearly indicate that careful processing and proper welding are key factors in obtaining a longlife TES salt-containment system.

  2. Identifying energy and carbon footprint optimization potentials of a sludge treatment line with Life Cycle Assessment.

    PubMed

    Remy, C; Lesjean, B; Waschnewski, J

    2013-01-01

    This study exemplifies the use of Life Cycle Assessment (LCA) as a tool to quantify the environmental impacts of processes for wastewater treatment. In a case study, the sludge treatment line of a large wastewater treatment plant (WWTP) is analysed in terms of cumulative energy demand and the emission of greenhouse gases (carbon footprint). Sludge treatment consists of anaerobic digestion, dewatering, drying, and disposal of stabilized sludge in mono- or co-incineration in power plants or cement kilns. All relevant forms of energy demand (electricity, heat, chemicals, fossil fuels, transport) and greenhouse gas emissions (fossil CO(2), CH(4), N(2)O) are accounted in the assessment, including the treatment of return liquor from dewatering in the WWTP. Results show that the existing process is positive in energy balance (-162 MJ/PE(COD) * a) and carbon footprint (-11.6 kg CO(2)-eq/PE(COD) * a) by supplying secondary products such as electricity from biogas production or mono-incineration and substituting fossil fuels in co-incineration. However, disposal routes for stabilized sludge differ considerably in their energy and greenhouse gas profiles. In total, LCA proves to be a suitable tool to support future investment decisions with information of environmental relevance on the impact of wastewater treatment, but also urban water systems in general.

  3. Dynamic hybrid life cycle assessment of energy and carbon of multicrystalline silicon photovoltaic systems.

    PubMed

    Zhai, Pei; Williams, Eric D

    2010-10-15

    This paper advances the life cycle assessment (LCA) of photovoltaic systems by expanding the boundary of the included processes using hybrid LCA and accounting for the technology-driven dynamics of embodied energy and carbon emissions. Hybrid LCA is an extended method that combines bottom-up process-sum and top-down economic input-output (EIO) methods. In 2007, the embodied energy was 4354 MJ/m(2) and the energy payback time (EPBT) was 2.2 years for a multicrystalline silicon PV system under 1700 kWh/m(2)/yr of solar radiation. These results are higher than those of process-sum LCA by approximately 60%, indicating that processes excluded in process-sum LCA, such as transportation, are significant. Even though PV is a low-carbon technology, the difference between hybrid and process-sum results for 10% penetration of PV in the U.S. electrical grid is 0.13% of total current grid emissions. Extending LCA from the process-sum to hybrid analysis makes a significant difference. Dynamics are characterized through a retrospective analysis and future outlook for PV manufacturing from 2001 to 2011. During this decade, the embodied carbon fell substantially, from 60 g CO(2)/kWh in 2001 to 21 g/kWh in 2011, indicating that technological progress is realizing reductions in embodied environmental impacts as well as lower module price.

  4. Life Cycle Assessment of Thermal Energy Storage: Two-Tank Indirect and Thermocline

    SciTech Connect

    Heath, G.; Turchi, C.; Burkhardt, J.; Kutscher, C.; Decker, T.

    2009-07-01

    In the United States, concentrating solar power (CSP) is one of the most promising renewable energy (RE) technologies for reduction of electric sector greenhouse gas (GHG) emissions and for rapid capacity expansion. It is also one of the most price-competitive RE technologies, thanks in large measure to decades of field experience and consistent improvements in design. One of the key design features that makes CSP more attractive than many other RE technologies, like solar photovoltaics and wind, is the potential for including relatively low-cost and efficient thermal energy storage (TES), which can smooth the daily fluctuation of electricity production and extend its duration into the evening peak hours or longer. Because operational environmental burdens are typically small for RE technologies, life cycle assessment (LCA) is recognized as the most appropriate analytical approach for determining their environmental impacts of these technologies, including CSP. An LCA accounts for impacts from all stages in the development, operation, and decommissioning of a CSP plant, including such upstream stages as the extraction of raw materials used in system components, manufacturing of those components, and construction of the plant. The National Renewable Energy Laboratory (NREL) is undertaking an LCA of modern CSP plants, starting with those of parabolic trough design.

  5. Equipment life cycle costs minimised.

    PubMed

    Kuligowski, Sharon

    2004-11-01

    With the cost of energy now a major component of building operating costs, NHS Trust managers increasingly focus on estimating total life cycle costs of equipment such as boiler room and heat, steam and incineration plant. "Life cycle costing" is a broad term and encompasses a wide range of techniques that take into account both initial and future costs as well as the savings of an investment over a period of time.

  6. Life-cycle thinking and the LEED rating system: global perspective on building energy use and environmental impacts.

    PubMed

    Al-Ghamdi, Sami G; Bilec, Melissa M

    2015-04-07

    This research investigates the relationship between energy use, geographic location, life cycle environmental impacts, and Leadership in Energy and Environmental Design (LEED). The researchers studied worldwide variations in building energy use and associated life cycle impacts in relation to the LEED rating systems. A Building Information Modeling (BIM) of a reference 43,000 ft(2) office building was developed and situated in 400 locations worldwide while making relevant changes to the energy model to meet reference codes, such as ASHRAE 90.1. Then life cycle environmental and human health impacts from the buildings' energy consumption were calculated. The results revealed considerable variations between sites in the U.S. and international locations (ranging from 394 ton CO2 equiv to 911 ton CO2 equiv, respectively). The variations indicate that location specific results, when paired with life cycle assessment, can be an effective means to achieve a better understanding of possible adverse environmental impacts as a result of building energy consumption in the context of green building rating systems. Looking at these factors in combination and using a systems approach may allow rating systems like LEED to continue to drive market transformation toward sustainable development, while taking into consideration both energy sources and building efficiency.

  7. Photovoltaics: Life-cycle Analyses

    SciTech Connect

    Fthenakis V. M.; Kim, H.C.

    2009-10-02

    Life-cycle analysis is an invaluable tool for investigating the environmental profile of a product or technology from cradle to grave. Such life-cycle analyses of energy technologies are essential, especially as material and energy flows are often interwoven, and divergent emissions into the environment may occur at different life-cycle-stages. This approach is well exemplified by our description of material and energy flows in four commercial PV technologies, i.e., mono-crystalline silicon, multi-crystalline silicon, ribbon-silicon, and cadmium telluride. The same life-cycle approach is applied to the balance of system that supports flat, fixed PV modules during operation. We also discuss the life-cycle environmental metrics for a concentration PV system with a tracker and lenses to capture more sunlight per cell area than the flat, fixed system but requires large auxiliary components. Select life-cycle risk indicators for PV, i.e., fatalities, injures, and maximum consequences are evaluated in a comparative context with other electricity-generation pathways.

  8. Life Cycle Analysis on Fossil Energy Ratio of Algal Biodiesel: Effects of Nitrogen Deficiency and Oil Extraction Technology

    PubMed Central

    Jian, Hou; Jing, Yang; Peidong, Zhang

    2015-01-01

    Life cycle assessment (LCA) has been widely used to analyze various pathways of biofuel preparation from “cradle to grave.” Effects of nitrogen supply for algae cultivation and technology of algal oil extraction on life cycle fossil energy ratio of biodiesel are assessed in this study. Life cycle fossil energy ratio of Chlorella vulgaris based biodiesel is improved by growing algae under nitrogen-limited conditions, while the life cycle fossil energy ratio of biodiesel production from Phaeodactylum tricornutum grown with nitrogen deprivation decreases. Compared to extraction of oil from dried algae, extraction of lipid from wet algae with subcritical cosolvents achieves a 43.83% improvement in fossil energy ratio of algal biodiesel when oilcake drying is not considered. The outcome for sensitivity analysis indicates that the algal oil conversion rate and energy content of algae are found to have the greatest effects on the LCA results of algal biodiesel production, followed by utilization ratio of algal residue, energy demand for algae drying, capacity of water mixing, and productivity of algae. PMID:26000338

  9. Life cycle analysis on fossil energy ratio of algal biodiesel: effects of nitrogen deficiency and oil extraction technology.

    PubMed

    Jian, Hou; Jing, Yang; Peidong, Zhang

    2015-01-01

    Life cycle assessment (LCA) has been widely used to analyze various pathways of biofuel preparation from "cradle to grave." Effects of nitrogen supply for algae cultivation and technology of algal oil extraction on life cycle fossil energy ratio of biodiesel are assessed in this study. Life cycle fossil energy ratio of Chlorella vulgaris based biodiesel is improved by growing algae under nitrogen-limited conditions, while the life cycle fossil energy ratio of biodiesel production from Phaeodactylum tricornutum grown with nitrogen deprivation decreases. Compared to extraction of oil from dried algae, extraction of lipid from wet algae with subcritical cosolvents achieves a 43.83% improvement in fossil energy ratio of algal biodiesel when oilcake drying is not considered. The outcome for sensitivity analysis indicates that the algal oil conversion rate and energy content of algae are found to have the greatest effects on the LCA results of algal biodiesel production, followed by utilization ratio of algal residue, energy demand for algae drying, capacity of water mixing, and productivity of algae.

  10. Biomass pyrolysis for biochar or energy applications? A life cycle assessment.

    PubMed

    Peters, Jens F; Iribarren, Diego; Dufour, Javier

    2015-04-21

    The application of biochar as a soil amendment is a potential strategy for carbon sequestration. In this paper, a slow pyrolysis system for generating heat and biochar from lignocellulosic energy crops is simulated and its life-cycle performance compared with that of direct biomass combustion. The use of the char as biochar is also contrasted with alternative use options: cofiring in coal power plants, use as charcoal, and use as a fuel for heat generation. Additionally, the influence on the results of the long-term stability of the biochar in the soil, as well as of biochar effects on biomass yield, is evaluated. Negative greenhouse gas emissions are obtained for the biochar system, indicating a significant carbon abatement potential. However, this is achieved at the expense of lower energy efficiency and higher impacts in the other assessed categories when compared to direct biomass combustion. When comparing the different use options of the pyrolysis char, the most favorable result is obtained for char cofiring substituting fossil coal, even assuming high long-term stability of the char. Nevertheless, a high sensitivity to biomass yield increase is found for biochar systems. In this sense, biochar application to low-quality soils where high yield increases are expected would show a more favorable performance in terms of global warming.

  11. Environmental & economic life cycle assessment of current & future sewage sludge to energy technologies.

    PubMed

    Mills, N; Pearce, P; Farrow, J; Thorpe, R B; Kirkby, N F

    2014-01-01

    The UK Water Industry currently generates approximately 800GWh pa of electrical energy from sewage sludge. Traditionally energy recovery from sewage sludge features Anaerobic Digestion (AD) with biogas utilisation in combined heat and power (CHP) systems. However, the industry is evolving and a number of developments that extract more energy from sludge are either being implemented or are nearing full scale demonstration. This study compared five technology configurations: 1 - conventional AD with CHP, 2 - Thermal Hydrolysis Process (THP) AD with CHP, 3 - THP AD with bio-methane grid injection, 4 - THP AD with CHP followed by drying of digested sludge for solid fuel production, 5 - THP AD followed by drying, pyrolysis of the digested sludge and use of the both the biogas and the pyrolysis gas in a CHP. The economic and environmental Life Cycle Assessment (LCA) found that both the post AD drying options performed well but the option used to create a solid fuel to displace coal (configuration 4) was the most sustainable solution economically and environmentally, closely followed by the pyrolysis configuration (5). Application of THP improves the financial and environmental performance compared with conventional AD. Producing bio-methane for grid injection (configuration 3) is attractive financially but has the worst environmental impact of all the scenarios, suggesting that the current UK financial incentive policy for bio-methane is not driving best environmental practice. It is clear that new and improving processes and technologies are enabling significant opportunities for further energy recovery from sludge; LCA provides tools for determining the best overall options for particular situations and allows innovation resources and investment to be focused accordingly.

  12. Life-cycle Energy Consumption of Urban Water System in Shenzhen, China

    NASA Astrophysics Data System (ADS)

    Li, W.; Liu, H.

    2015-12-01

    Within rapid urbanization and industrialization, Shenzhen, the first special economic zone in China, has been facing serious water shortage. More than 80% of water demand in Shenzhen, i.e., about 1.6 billion m3/yr, is satisfied by water diversion projects. A lot of energy has been used to extract, clean, store and transmit these water. In this paper, energy consumption of urban water system in Shenzhen, China was investigated from a life cycle perspective, and the water system can be divided into five subsystems, i.e., water diversion, water production & supply, household water use, sewage treatment and water reuse. Industrial water use was not considered here, because industrial production processes were so varied. The results showed that water diversion subsystem in Shenzhen consumed electricity of about 0.839 billion kWh/yr (0.53 kWh/m3), water production & supply subsystem about 1.241 billion kWh/yr (0.64 kWh/m3), household water use subsystem about 6.57 billion kWh/yr (9.65 kWh/m3) sewage treatment subsystem about 0.449 billion kWh/yr (0.29 kWh/m3) and water reuse treatment subsystem about 0.013 billion kWh/yr (0.33kWh/m3). So the human-related water system in Shenzhen consumes electricity of about 9.113 billion kWh/yr in total, accounting for about 11.0% of all the electricity use in Shenzhen. Among this, household water use subsystem consumed up to 72.1% of all electricity used in urban water system, followed by water production & supply subsystem (13.6%), water diversion subsystem (9.2%) and sewage treatment and reuse subsystem (5.1%). Unit energy consumption of sewage treatment and reuse subsystem was much less than that of water diversion subsystem, indicating local sewage resource development was advantageous on saving energy to water diversion from a long distance. Further, it implied that the best way to save energy in urban water system is to save portable water, since both water production and household use require to consume much energy.

  13. 10 CFR 436.12 - Life cycle cost methodology.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Life cycle cost methodology. 436.12 Section 436.12 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Methodology and Procedures for Life Cycle Cost Analyses § 436.12 Life cycle cost methodology. The life cycle cost...

  14. 10 CFR 436.12 - Life cycle cost methodology.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Life cycle cost methodology. 436.12 Section 436.12 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Methodology and Procedures for Life Cycle Cost Analyses § 436.12 Life cycle cost methodology. The life cycle cost...

  15. 10 CFR 436.12 - Life cycle cost methodology.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Life cycle cost methodology. 436.12 Section 436.12 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Methodology and Procedures for Life Cycle Cost Analyses § 436.12 Life cycle cost methodology. The life cycle cost...

  16. 10 CFR 436.12 - Life cycle cost methodology.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Life cycle cost methodology. 436.12 Section 436.12 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Methodology and Procedures for Life Cycle Cost Analyses § 436.12 Life cycle cost methodology. The life cycle cost...

  17. 10 CFR 436.12 - Life cycle cost methodology.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Life cycle cost methodology. 436.12 Section 436.12 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Methodology and Procedures for Life Cycle Cost Analyses § 436.12 Life cycle cost methodology. The life cycle cost...

  18. Life Cycle Comparison of Waste-to-Energy to Sanitary Landfill

    EPA Science Inventory

    Life cycle assessment (LCA) can be used to evaluate the environmental footprint of products, processes, and services. An LCA allows decision makers to compare products and processes through systematic evaluation of supply chains. Also known as a “cradle-to-grave” approach, LCA ev...

  19. A life cycle assessment of distributed energy production from organic waste: Two case studies in Europe.

    PubMed

    Evangelisti, Sara; Clift, Roland; Tagliaferri, Carla; Lettieri, Paola

    2017-03-22

    By means of the life cycle assessment methodology, the purpose of this study is to assess the environmental impact when biomethane from organic waste produced at residential level is used to supply energy to a group of dwellings in the distributed generation paradigm. Three different Combined Heat and Power systems, such as fuel cells, Stirling engine and micro gas turbine, installed at household level are assessed in two different settings: one in Northern Europe (UK) and one in Southern Europe (Italy). Different operating strategies are investigated for each technology. Moreover, marginal electricity production technologies are analysed to assess their influence on the results. This study has demonstrated that the type of bio-methane fed micro-CHP technology employed has a significantly different environmental impact: fuel cells are the most environmentally friendly solution in every category analysed; Stirling engines, although can supply heat to the largest number of dwellings are the least environmentally friendly technology. However, key factors investigated in the model presented in this paper influence the decision making on the type of technology adopted and the operating strategy to be implemented.

  20. Comparison of life cycle emissions and energy consumption for environmentally adapted metalworking fluid systems.

    PubMed

    Clarens, Andres F; Zimmerman, Julie B; Keoleian, Greg A; Hayes, Kim F; Skerlos, Steven J

    2008-11-15

    A number of environmentally adapted lubricants have been proposed in response to the environmental and health impacts of metalworking fluids (MWFs). The alternatives typically substitute petroleum with vegetable-based components and/or deliver minimum quantities of lubricant in gas rather than water, with the former strategy being more prevalent than the latter. A comparative life cycle assessment of water- and gas-based systems has shown that delivery of lubricants in air rather than water can reduce solid waste by 60%, water use by 90%, and aquatic toxicity by 80%, while virtually eliminating occupational health concerns. However, air-delivery of lubricants cannot be used for severe machining operations due to limitations of cooling and lubricant delivery. For such operations, lubricants delivered in supercritical carbon dioxide (scCO2) are effective while maintaining the health and environmental advantages of air-based systems. Although delivery conditions were found to significantly influence the environmental burdens of all fluids, energy consumption was relatively constant under expected operating conditions. Global warming potential (GWP) increased when delivering lubricants in gas rather than water though all classes of MWFs have low GWP compared with other factory operations. It is therefore concluded that the possibility of increased GWP when switching to gas-based MWFs is a reasonable tradeoff for definite and large reductions in aquatic toxicity, water use, solid waste, and occupational health risks.

  1. The sustainable water-energy nexus: Life-cycle impacts and feasibility of regional energy and water supply scenarios

    NASA Astrophysics Data System (ADS)

    Dale, Alexander T.

    Water and energy are critical, interdependent, and regional resources, and effective planning and policies around which sources to use requires combining information on environmental impacts, cost, and availability. Questions around shifting energy and water sources towards more renewable options, as well as the potential role of natural gas from shale formations are under intense discussion. Decisions on these issues will be made in the shadow of climate change, which will both impact and be impacted by energy and water supplies. This work developed a model for calculating the life-cycle environmental impacts of regional energy and water supply scenarios (REWSS). The model was used to discuss future energy pathways in Pennsylvania, future electricity impacts in Brazil, and future water pathways in Arizona. To examine energy in Pennsylvania, this work also developed the first process-based life-cycle assessment (LCA) of shale gas, focusing on greenhouse gas (GHG) emissions, energy consumption, and water consumption. This LCA confirmed results that shale gas is similar to conventional gas in GHG emissions, though potentially has a lower net energy due to a wide range of production rates for wells. Brazil's electricity-related impacts will rise as development continues. GHG emissions are shown to double by 2020 due to expanded natural gas (NG) and coal usage, with a rise of 390% by 2040 posssible with tropical hydropower reservoirs. While uncertainty around reservoir impacts is large, Brazil's low GHG emissions intensity and future carbon emissions targets are threatened by likely electricity scenarios. Pennsylvania's energy-related impacts are likely to hinge on whether NG is used as a replacement for coal, allowing GHG emissions to drop and then plateau at 93% of 2010 values; or as a transition fuel to expanded renewable energy sources, showing a steady decrease to 86% in 2035. Increased use of biofuels will dominate land occupation and may dominate water

  2. Material and energy recovery in integrated waste management systems. An evaluation based on life cycle assessment.

    PubMed

    Giugliano, Michele; Cernuschi, Stefano; Grosso, Mario; Rigamonti, Lucia

    2011-01-01

    This paper reports the environmental results, integrated with those arising from mass and energy balances, of a research project on the comparative analysis of strategies for material and energy recovery from waste, funded by the Italian Ministry of Education, University and Research. The project, involving the cooperation of five University research groups, was devoted to the optimisation of material and energy recovery activities within integrated municipal solid waste (MSW) management systems. Four scenarios of separate collection (overall value of 35%, 50% without the collection of food waste, 50% including the collection of food waste, 65%) were defined for the implementation of energetic, environmental and economic balances. Two sizes of integrated MSW management system (IWMS) were considered: a metropolitan area, with a gross MSW production of 750,000 t/year and an average province, with a gross MSW production of 150,000 t/year. The environmental analysis was conducted using Life Cycle Assessment methodology (LCA), for both material and energy recovery activities. In order to avoid allocation we have used the technique of the expansion of the system boundaries. This means taking into consideration the impact on the environment related to the waste management activities in comparison with the avoided impacts related to the saving of raw materials and primary energy. Under the hypotheses of the study, both for the large and for the small IWMS, the energetic and environmental benefits are higher than the energetic and environmental impacts for all the scenarios analysed in terms of all the indicators considered: the scenario with 50% separate collection in a drop-off scheme excluding food waste shows the most promising perspectives, mainly arising from the highest collection (and recycling) of all the packaging materials, which is the activity giving the biggest energetic and environmental benefits. Main conclusions of the study in the general field of the

  3. Material and energy recovery in integrated waste management systems. An evaluation based on life cycle assessment

    SciTech Connect

    Giugliano, Michele; Cernuschi, Stefano; Grosso, Mario; Rigamonti, Lucia

    2011-09-15

    This paper reports the environmental results, integrated with those arising from mass and energy balances, of a research project on the comparative analysis of strategies for material and energy recovery from waste, funded by the Italian Ministry of Education, University and Research. The project, involving the cooperation of five University research groups, was devoted to the optimisation of material and energy recovery activities within integrated municipal solid waste (MSW) management systems. Four scenarios of separate collection (overall value of 35%, 50% without the collection of food waste, 50% including the collection of food waste, 65%) were defined for the implementation of energetic, environmental and economic balances. Two sizes of integrated MSW management system (IWMS) were considered: a metropolitan area, with a gross MSW production of 750,000 t/year and an average province, with a gross MSW production of 150,000 t/year. The environmental analysis was conducted using Life Cycle Assessment methodology (LCA), for both material and energy recovery activities. In order to avoid allocation we have used the technique of the expansion of the system boundaries. This means taking into consideration the impact on the environment related to the waste management activities in comparison with the avoided impacts related to the saving of raw materials and primary energy. Under the hypotheses of the study, both for the large and for the small IWMS, the energetic and environmental benefits are higher than the energetic and environmental impacts for all the scenarios analysed in terms of all the indicators considered: the scenario with 50% separate collection in a drop-off scheme excluding food waste shows the most promising perspectives, mainly arising from the highest collection (and recycling) of all the packaging materials, which is the activity giving the biggest energetic and environmental benefits. Main conclusions of the study in the general field of the

  4. Bioenergy co-products derived from microalgae biomass via thermochemical conversion--life cycle energy balances and CO2 emissions.

    PubMed

    Khoo, H H; Koh, C Y; Shaik, M S; Sharratt, P N

    2013-09-01

    An investigation of the potential to efficiently convert lipid-depleted residual microalgae biomass using thermochemical (gasification at 850 °C, pyrolysis at 550 °C, and torrefaction at 300 °C) processes to produce bioenergy derivatives was made. Energy indicators are established to account for the amount of energy inputs that have to be supplied to the system in order to gain 1 MJ of bio-energy output. The paper seeks to address the difference between net energy input-output balances based on a life cycle approach, from "cradle-to-bioenergy co-products", vs. thermochemical processes alone. The experimental results showed the lowest results of Net Energy Balances (NEB) to be 0.57 MJ/MJ bio-oil via pyrolysis, and highest, 6.48 MJ/MJ for gas derived via torrefaction. With the complete life cycle process chain factored in, the energy balances of NEBLCA increased to 1.67 MJ/MJ (bio-oil) and 7.01 MJ/MJ (gas). Energy efficiencies and the life cycle CO2 emissions were also calculated.

  5. Mosquito Life Cycle

    EPA Pesticide Factsheets

    Knowing the stages of the mosquito's life will help you prevent mosquitoes around your home and help you choose the right pesticides for your needs, if you decide to use them. All mosquito species go through four distinct stages during their live cycle.

  6. LIFE-CYCLE ASSESSMENT

    EPA Science Inventory

    Life Cycle Assessment, or LCA, is an environmental accounting and mangement approach that consider all the aspects of resource use and environmental releases associated with an industrial system from cradle-to-grave. Specifically, it is a holistic view of environmental interacti...

  7. Optimization of data life cycles

    NASA Astrophysics Data System (ADS)

    Jung, C.; Gasthuber, M.; Giesler, A.; Hardt, M.; Meyer, J.; Rigoll, F.; Schwarz, K.; Stotzka, R.; Streit, A.

    2014-06-01

    Data play a central role in most fields of science. In recent years, the amount of data from experiment, observation, and simulation has increased rapidly and data complexity has grown. Also, communities and shared storage have become geographically more distributed. Therefore, methods and techniques applied to scientific data need to be revised and partially be replaced, while keeping the community-specific needs in focus. The German Helmholtz Association project "Large Scale Data Management and Analysis" (LSDMA) aims to maximize the efficiency of data life cycles in different research areas, ranging from high energy physics to systems biology. In its five Data Life Cycle Labs (DLCLs), data experts closely collaborate with the communities in joint research and development to optimize the respective data life cycle. In addition, the Data Services Integration Team (DSIT) provides data analysis tools and services which are common to several DLCLs. This paper describes the various activities within LSDMA and focuses on the work performed in the DLCLs.

  8. A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage.

    PubMed

    Pasta, Mauro; Wessells, Colin D; Huggins, Robert A; Cui, Yi

    2012-01-01

    New types of energy storage are needed in conjunction with the deployment of solar, wind and other volatile renewable energy sources and their integration with the electric grid. No existing energy storage technology can economically provide the power, cycle life and energy efficiency needed to respond to the costly short-term transients that arise from renewables and other aspects of grid operation. Here we demonstrate a new type of safe, fast, inexpensive, long-life aqueous electrolyte battery, which relies on the insertion of potassium ions into a copper hexacyanoferrate cathode and a novel activated carbon/polypyrrole hybrid anode. The cathode reacts rapidly with very little hysteresis. The hybrid anode uses an electrochemically active additive to tune its potential. This high-rate, high-efficiency cell has a 95% round-trip energy efficiency when cycled at a 5C rate, and a 79% energy efficiency at 50C. It also has zero-capacity loss after 1,000 deep-discharge cycles.

  9. Life-cycle fossil energy consumption and greenhouse gas emissions of bioderived chemicals and their conventional counterparts.

    PubMed

    Adom, Felix; Dunn, Jennifer B; Han, Jeongwoo; Sather, Norm

    2014-12-16

    Biomass-derived chemical products may offer reduced environmental impacts compared to their fossil-derived counterparts and could improve profit margins at biorefineries when coproduced with higher-volume, lower-profit margin biofuels. It is important to assess on a life-cycle basis the energy and environmental impacts of these bioproducts as compared to conventional, fossil-derived products. We undertook a life-cycle analysis of eight bioproducts produced from either algal-derived glycerol or corn stover-derived sugars. Selected on the basis of technology readiness and market potential, the bioproducts are propylene glycol, 1,3-propanediol, 3-hydroxypropionic acid, acrylic acid, polyethylene, succinic acid, isobutanol, and 1,4-butanediol. We developed process simulations to obtain energy and material flows in the production of each bioproduct and examined sensitivity of these flows to process design assumptions. Conversion process data for fossil-derived products were based on the literature. Conversion process data were combined with upstream parameters in the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model to generate life-cycle greenhouse gas (GHG) emissions and fossil energy consumption (FEC) for each bioproduct and its corresponding petroleum-derived product. The bioproducts uniformly offer GHG emissions reductions compared to their fossil counterparts ranging from 39 to 86% on a cradle-to-grave basis. Similarly, FEC was lower for bioproducts than for conventional products.

  10. 10 CFR 436.19 - Life cycle costs.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Life cycle costs. 436.19 Section 436.19 Energy DEPARTMENT... Procedures for Life Cycle Cost Analyses § 436.19 Life cycle costs. Life cycle costs are the sum of the... (d) Energy and/or water costs....

  11. 10 CFR 436.19 - Life cycle costs.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Life cycle costs. 436.19 Section 436.19 Energy DEPARTMENT... Procedures for Life Cycle Cost Analyses § 436.19 Life cycle costs. Life cycle costs are the sum of the... (d) Energy and/or water costs....

  12. 10 CFR 436.19 - Life cycle costs.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Life cycle costs. 436.19 Section 436.19 Energy DEPARTMENT... Procedures for Life Cycle Cost Analyses § 436.19 Life cycle costs. Life cycle costs are the sum of the... (d) Energy and/or water costs....

  13. 10 CFR 436.19 - Life cycle costs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Life cycle costs. 436.19 Section 436.19 Energy DEPARTMENT... Procedures for Life Cycle Cost Analyses § 436.19 Life cycle costs. Life cycle costs are the sum of the... (d) Energy and/or water costs....

  14. 10 CFR 436.19 - Life cycle costs.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Life cycle costs. 436.19 Section 436.19 Energy DEPARTMENT... Procedures for Life Cycle Cost Analyses § 436.19 Life cycle costs. Life cycle costs are the sum of the... (d) Energy and/or water costs....

  15. Life cycle energy and greenhouse gas emissions for an ethanol production process based on blue-green algae.

    PubMed

    Luo, Dexin; Hu, Zushou; Choi, Dong Gu; Thomas, Valerie M; Realff, Matthew J; Chance, Ronald R

    2010-11-15

    Ethanol can be produced via an intracellular photosynthetic process in cyanobacteria (blue-green algae), excreted through the cell walls, collected from closed photobioreactors as a dilute ethanol-in-water solution, and purified to fuel grade ethanol. This sequence forms the basis for a biofuel production process that is currently being examined for its commercial potential. In this paper, we calculate the life cycle energy and greenhouse gas emissions for three different system scenarios for this proposed ethanol production process, using process simulations and thermodynamic calculations. The energy required for ethanol separation increases rapidly for low initial concentrations of ethanol, and, unlike other biofuel systems, there is little waste biomass available to provide process heat and electricity to offset those energy requirements. The ethanol purification process is a major consumer of energy and a significant contributor to the carbon footprint. With a lead scenario based on a natural-gas-fueled combined heat and power system to provide process electricity and extra heat and conservative assumptions around the ethanol separation process, the net life cycle energy consumption, excluding photosynthesis, ranges from 0.55 MJ/MJ(EtOH) down to 0.20 MJ/ MJ(EtOH), and the net life cycle greenhouse gas emissions range from 29.8 g CO₂e/MJ(EtOH) down to 12.3 g CO₂e/MJ(EtOH) for initial ethanol concentrations from 0.5 wt % to 5 wt %. In comparison to gasoline, these predicted values represent 67% and 87% reductions in the carbon footprint for this ethanol fuel on a energy equivalent basis. Energy consumption and greenhouse gas emissions can be further reduced via employment of higher efficiency heat exchangers in ethanol purification and/ or with use of solar thermal for some of the process heat.

  16. Life-cycle assessment of energy use and greenhouse gas emissions of soybean-derived biodiesel and renewable fuels.

    PubMed

    Huo, Hong; Wang, Michael; Bloyd, Cary; Putsche, Vicky

    2009-02-01

    In this study, we used Argonne National Laboratory's Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model to assess the life-cycle energy and greenhouse gas (GHG) emission impacts of four soybean-derived fuels: biodiesel fuel produced via transesterification, two renewable diesel fuels (I and II) produced from different hydrogenation processes, and renewable gasoline produced from catalytic cracking. Five approaches were employed to allocate the coproducts: a displacement approach; two allocation approaches, one based on the energy value and the other based on the market value; and two hybrid approaches that integrated the displacement and allocation methods. The relative rankings of soybean-based fuels in terms of energy and environmental impacts were different under the different approaches, and the reasons were analyzed. Results from the five allocation approaches showed that although the production and combustion of soybean-based fuels might increase total energy use, they could have significant benefits in reducing fossil energy use (>52%), petroleum use (>88%), and GHG emissions (>57%) relative to petroleum fuels. This study emphasized the importance of the methods used to deal with coproduct issues and provided a comprehensive solution for conducting a life-cycle assessment of fuel pathways with multiple coproducts.

  17. Life-Cycle Assessment of Energy Use and Greenhouse Gas Emissions of Soybean-Derived Biodiesel and Renewable Fuels

    SciTech Connect

    Huo, H.; Wang, M.; Bloyd, C.; Putsche, V.

    2009-01-01

    In this study, we used Argonne National Laboratory's Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model to assess the life-cycle energy and greenhouse gas (GHG) emission impacts of four soybean-derived fuels: biodiesel fuel produced via transesterification, two renewable diesel fuels (I and II) produced from different hydrogenation processes, and renewable gasoline produced from catalytic cracking. Five approaches were employed to allocate the coproducts: a displacement approach; two allocation approaches, one based on the energy value and the other based on the market value; and two hybrid approaches that integrated the displacement and allocation methods. The relative rankings of soybean-based fuels in terms of energy and environmental impacts were different under the different approaches, and the reasons were analyzed. Results from the five allocation approaches showed that although the production and combustion of soybean-based fuels might increase total energy use, they could have significant benefits in reducing fossil energy use (>52%), petroleum use (>88%), and GHG emissions (>57%) relative to petroleum fuels. This study emphasized the importance of the methods used to deal with coproduct issues and provided a comprehensive solution for conducting a life-cycle assessment of fuel pathways with multiple coproducts.

  18. Prospects for energy efficiency improvement and reduction of emissions and life cycle costs for natural gas vehicles

    NASA Astrophysics Data System (ADS)

    Kozlov, A. V.; Terenchenko, A. S.; Luksho, V. A.; Karpukhin, K. E.

    2017-01-01

    This work is devoted to the experimental investigation of the possibilities to reduce greenhouse gas emissions and to increase energy efficiency of engines that use natural gas as the main fuel and the analysis of economic efficiency of use of dual fuel engines in vehicles compared to conventional diesel. The results of experimental investigation of a 190 kW dual-fuel engine are presented; it is shown that quantitative and qualitative working process control may ensure thermal efficiency at the same level as that of the diesel engine and in certain conditions 5...8% higher. The prospects for reduction of greenhouse gas emissions have been assessed. The technical and economic evaluation of use of dual fuel engines in heavy-duty vehicles has been performed, taking into account the total life cycle. It is shown that it is possible to reduce life cycle costs by two times.

  19. Development of a long cycle life sealed nickel-zinc battery for high energy-density applications

    SciTech Connect

    Coates, D.; Ferreira, E.; Charkey, A.

    1997-12-01

    Nickel-zinc battery technology is being developed for commercial applications requiring high energy density and high power capability. Current development cells have demonstrated the ability to deliver over 60 Watt-hours per kilogram at the one hour rate and more than 450 Watts per kilogram at the 12C rate. Cycle life has been improved to more than 600 cycles at 80% depth of discharge by using a patented, reduced solubility zinc electrode and an improved sealed cell design. More than 7,000 charge/discharge cycles at 10% depth-of-discharge have been completed. Large quantities of sealed prismatic cells have been manufactured, including a 220 V battery for a hybrid electric vehicle (HEV).

  20. Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types.

    SciTech Connect

    Wang, M.; Wu, M.; Huo, H.; Energy Systems

    2007-04-01

    Since the United States began a program to develop ethanol as a transportation fuel, its use has increased from 175 million gallons in 1980 to 4.9 billion gallons in 2006. Virtually all of the ethanol used for transportation has been produced from corn. During the period of fuel ethanol growth, corn farming productivity has increased dramatically, and energy use in ethanol plants has been reduced by almost by half. The majority of corn ethanol plants are powered by natural gas. However, as natural gas prices have skyrocketed over the last several years, efforts have been made to further reduce the energy used in ethanol plants or to switch from natural gas to other fuels, such as coal and wood chips. In this paper, we examine nine corn ethanol plant types--categorized according to the type of process fuels employed, use of combined heat and power, and production of wet distiller grains and solubles. We found that these ethanol plant types can have distinctly different energy and greenhouse gas emission effects on a full fuel-cycle basis. In particular, greenhouse gas emission impacts can vary significantly--from a 3% increase if coal is the process fuel to a 52% reduction if wood chips are used. Our results show that, in order to achieve energy and greenhouse gas emission benefits, researchers need to closely examine and differentiate among the types of plants used to produce corn ethanol so that corn ethanol production would move towards a more sustainable path.

  1. High electrochemical energy storage in self-assembled nest-like CoO nanofibers with long cycle life

    NASA Astrophysics Data System (ADS)

    Pramanik, Atin; Maiti, Sandipan; Sreemany, Monjoy; Mahanty, Sourindra

    2016-04-01

    Developing efficient electrode material is essential to keep pace with the demand for high energy density together with high power density and long cycle life in next generation energy storage devices. Herein, we report the electrochemical properties of hydrothermally synthesized CoO nanofibers of diameter 30-80 nm assembled in a nest-like morphology which showed a very high reversible lithium storage capacity of 2000 mA h g-1 after 600 cycles at 0.1 mA cm-2 as lithium-ion battery anode. Systematic investigation by ex situ transmission electron microscopy, X-ray photoelectron spectroscopy, cyclic voltammetry, and impedance spectroscopy at different cycling stages indicated that the extraordinary performance could be related to an enhancement in the Co2+↔Co x+ (2 < x ≤ 3) redox process in addition to the commonly believed structural and morphological evolution during cycling favoring generation of large number of accessible active sites for lithium insertion. Further, when examined as a supercapacitor electrode in 1.0 M KOH, a capacitance of 1167 F g-1 is achieved from these 1D CoO nanofibers after 10,000 charge discharge cycles at a high current density of 5 A g-1 demonstrating good application potential.

  2. Method applied to the background analysis of energy data to be considered for the European Reference Life Cycle Database (ELCD).

    PubMed

    Fazio, Simone; Garraín, Daniel; Mathieux, Fabrice; De la Rúa, Cristina; Recchioni, Marco; Lechón, Yolanda

    2015-01-01

    Under the framework of the European Platform on Life Cycle Assessment, the European Reference Life-Cycle Database (ELCD - developed by the Joint Research Centre of the European Commission), provides core Life Cycle Inventory (LCI) data from front-running EU-level business associations and other sources. The ELCD contains energy-related data on power and fuels. This study describes the methods to be used for the quality analysis of energy data for European markets (available in third-party LC databases and from authoritative sources) that are, or could be, used in the context of the ELCD. The methodology was developed and tested on the energy datasets most relevant for the EU context, derived from GaBi (the reference database used to derive datasets for the ELCD), Ecoinvent, E3 and Gemis. The criteria for the database selection were based on the availability of EU-related data, the inclusion of comprehensive datasets on energy products and services, and the general approval of the LCA community. The proposed approach was based on the quality indicators developed within the International Reference Life Cycle Data System (ILCD) Handbook, further refined to facilitate their use in the analysis of energy systems. The overall Data Quality Rating (DQR) of the energy datasets can be calculated by summing up the quality rating (ranging from 1 to 5, where 1 represents very good, and 5 very poor quality) of each of the quality criteria indicators, divided by the total number of indicators considered. The quality of each dataset can be estimated for each indicator, and then compared with the different databases/sources. The results can be used to highlight the weaknesses of each dataset and can be used to guide further improvements to enhance the data quality with regard to the established criteria. This paper describes the application of the methodology to two exemplary datasets, in order to show the potential of the methodological approach. The analysis helps LCA

  3. Life cycle assessment of energy self-sufficiency systems based on agricultural residues for organic arable farms.

    PubMed

    Kimming, M; Sundberg, C; Nordberg, A; Baky, A; Bernesson, S; Norén, O; Hansson, P-A

    2011-01-01

    The agricultural industry today consumes large amounts of fossil fuels. This study used consequential life cycle assessment (LCA) to analyse two potential energy self-sufficient systems for organic arable farms, based on agricultural residues. The analysis focused on energy balance, resource use and greenhouse gas (GHG) emissions. A scenario based on straw was found to require straw harvest from 25% of the farm area; 45% of the total energy produced from the straw was required for energy carrier production and GHG emissions were reduced by 9% compared with a fossil fuel-based reference scenario. In a scenario based on anaerobic digestion of ley, the corresponding figures were 13%, 24% and 35%. The final result was sensitive to assumptions regarding, e.g., soil carbon content and handling of by-products.

  4. Energy efficiency and environmental performance of bioethanol production from sweet sorghum stem based on life cycle analysis.

    PubMed

    Wang, Mingxin; Chen, Yahui; Xia, Xunfeng; Li, Jun; Liu, Jianguo

    2014-07-01

    Life cycle analysis method was used to evaluate the energy efficiency and environmental performance of bioethanol production from sweet sorghum stem in China. The scope covers three units, including plant cultivation, feedstock transport, and bioethanol conversion. Results show that the net energy ratio was 1.56 and the net energy gain was 8.37 MJ/L. Human toxicity was identified as the most significant negative environmental impact, followed by eutrophication and acidification. Steam generation in the bioethanol conversion unit contributed 82.28% and 48.26% to total human toxicity and acidification potential, respectively. Fertilizers loss from farmland represented 67.23% of total eutrophication potential. The results were significantly affected by the inventory allocation methods, vinasse reusing approaches, and feedstock yields. Reusing vinasse as fuel for steam generation and better cultivation practice to control fertilizer loss could significantly contribute to enhance the energy efficiency and environmental performance of bioethanol production from sweet sorghum stem.

  5. Biofuels via Fast Pyrolysis of Perennial Grasses: A Life Cycle Evaluation of Energy Consumption and Greenhouse Gas Emissions.

    PubMed

    Zaimes, George G; Soratana, Kullapa; Harden, Cheyenne L; Landis, Amy E; Khanna, Vikas

    2015-08-18

    A well-to-wheel (WTW) life cycle assessment (LCA) model is developed to evaluate the environmental profile of producing liquid transportation fuels via fast pyrolysis of perennial grasses: switchgrass and miscanthus. The framework established in this study consists of (1) an agricultural model used to determine biomass growth rates, agrochemical application rates, and other key parameters in the production of miscanthus and switchgrass biofeedstock; (2) an ASPEN model utilized to simulate thermochemical conversion via fast pyrolysis and catalytic upgrading of bio-oil to renewable transportation fuel. Monte Carlo analysis is performed to determine statistical bounds for key sustainability and performance measures including life cycle greenhouse gas (GHG) emissions and Energy Return on Investment (EROI). The results of this work reveal that the EROI and GHG emissions (gCO2e/MJ-fuel) for fast pyrolysis derived fuels range from 1.52 to 2.56 and 22.5 to 61.0 respectively, over the host of scenarios evaluated. Further analysis reveals that the energetic performance and GHG reduction potential of fast pyrolysis-derived fuels are highly sensitive to the choice of coproduct scenario and LCA allocation scheme, and in select cases can change the life cycle carbon balance from meeting to exceeding the renewable fuel standard emissions reduction threshold for cellulosic biofuels.

  6. High-Energy All-Solid-State Lithium Batteries with Ultralong Cycle Life.

    PubMed

    Yao, Xiayin; Liu, Deng; Wang, Chunsheng; Long, Peng; Peng, Gang; Hu, Yong-Sheng; Li, Hong; Chen, Liquan; Xu, Xiaoxiong

    2016-11-09

    High energy and power densities are the greatest challenge for all-solid-state lithium batteries due to the poor interfacial compatibility between electrodes and electrolytes as well as low lithium ion transfer kinetics in solid materials. Intimate contact at the cathode-solid electrolyte interface and high ionic conductivity of solid electrolyte are crucial to realizing high-performance all-solid-state lithium batteries. Here, we report a general interfacial architecture, i.e., Li7P3S11 electrolyte particles anchored on cobalt sulfide nanosheets, by an in situ liquid-phase approach. The anchored Li7P3S11 electrolyte particle size is around 10 nm, which is the smallest sulfide electrolyte particles reported to date, leading to an increased contact area and intimate contact interface between electrolyte and active materials. The neat Li7P3S11 electrolyte synthesized by the same liquid-phase approach exhibits a very high ionic conductivity of 1.5 × 10(-3) S cm(-1) with a particle size of 0.4-1.0 μm. All-solid-state lithium batteries employing cobalt sulfide-Li7P3S11 nanocomposites in combination with the neat Li7P3S11 electrolyte and Super P as the cathode and lithium metal as the anode exhibit excellent rate capability and cycling stability, showing reversible discharge capacity of 421 mAh g(-1) at 1.27 mA cm(-2) after 1000 cycles. Moreover, the obtained all-solid-state lithium batteries possesses very high energy and power densities, exhibiting 360 Wh kg(-1) and 3823 W kg(-1) at current densities of 0.13 and 12.73 mA cm(-2), respectively. This contribution demonstrates a new interfacial design for all-solid-state battery with high performance.

  7. The Life Cycle of Everyday Stuff.

    ERIC Educational Resources Information Center

    Reeske, Mike; Ireton, Shirley Watt

    Life cycle assessment is an important tool for technology planning as solid waste disposal options dwindle and energy prices continue to increase. This guide investigates the life cycles of products. The activities in this book are suitable for secondary earth science, environmental science, physical science, or integrated science lessons. The…

  8. Specification and implementation of IFC based performance metrics to support building life cycle assessment of hybrid energy systems

    SciTech Connect

    Morrissey, Elmer; O'Donnell, James; Keane, Marcus; Bazjanac, Vladimir

    2004-03-29

    Minimizing building life cycle energy consumption is becoming of paramount importance. Performance metrics tracking offers a clear and concise manner of relating design intent in a quantitative form. A methodology is discussed for storage and utilization of these performance metrics through an Industry Foundation Classes (IFC) instantiated Building Information Model (BIM). The paper focuses on storage of three sets of performance data from three distinct sources. An example of a performance metrics programming hierarchy is displayed for a heat pump and a solar array. Utilizing the sets of performance data, two discrete performance effectiveness ratios may be computed, thus offering an accurate method of quantitatively assessing building performance.

  9. Life Cycle Assessment of the Energy Independence and Security Act of 2007: Ethanol - Global Warming Potential and Environmental Emissions

    SciTech Connect

    Heath, G. A.; Hsu, D. D.; Inman, D.; Aden, A.; Mann, M. K.

    2009-07-01

    The objective of this study is to use life cycle assessment (LCA) to evaluate the global warming potential (GWP), water use, and net energy value (NEV) associated with the EISA-mandated 16 bgy cellulosic biofuels target, which is assumed in this study to be met by cellulosic-based ethanol, and the EISA-mandated 15 bgy conventional corn ethanol target. Specifically, this study compares, on a per-kilometer-driven basis, the GWP, water use, and NEV for the year 2022 for several biomass feedstocks.

  10. Navigating wastewater energy recovery strategies: a life cycle comparison of anaerobic membrane bioreactor and conventional treatment systems with anaerobic digestion.

    PubMed

    Smith, Adam L; Stadler, Lauren B; Cao, Ling; Love, Nancy G; Raskin, Lutgarde; Skerlos, Steven J

    2014-05-20

    The objective of this study was to evaluate emerging anaerobic membrane bioreactor (AnMBR) technology in comparison with conventional wastewater energy recovery technologies. Wastewater treatment process modeling and systems analyses were combined to evaluate the conditions under which AnMBR may produce more net energy and have lower life cycle environmental emissions than high rate activated sludge with anaerobic digestion (HRAS+AD), conventional activated sludge with anaerobic digestion (CAS+AD), and an aerobic membrane bioreactor with anaerobic digestion (AeMBR+AD). For medium strength domestic wastewater treatment under baseline assumptions at 15 °C, AnMBR recovered 49% more energy as biogas than HRAS+AD, the most energy positive conventional technology considered, but had significantly higher energy demands and environmental emissions. Global warming impacts associated with AnMBR were largely due to emissions of effluent dissolved methane. For high strength domestic wastewater treatment, AnMBR recovered 15% more net energy than HRAS+AD, and the environmental emissions gap between the two systems was reduced. Future developments of AnMBR technology in low energy fouling control, increased flux, and management of effluent methane emissions would make AnMBR competitive with HRAS+AD. Rapid advancements in AnMBR technology must continue to achieve its full economic and environmental potential as an energy recovery strategy for domestic wastewater.

  11. A life cycle assessment of environmental performances of two combustion- and gasification-based waste-to-energy technologies.

    PubMed

    Arena, Umberto; Ardolino, Filomena; Di Gregorio, Fabrizio

    2015-07-01

    An attributional life cycle analysis (LCA) was developed to compare the environmental performances of two waste-to-energy (WtE) units, which utilize the predominant technologies among those available for combustion and gasification processes: a moving grate combustor and a vertical shaft gasifier coupled with direct melting. The two units were assumed to be fed with the same unsorted residual municipal waste, having a composition estimated as a European average. Data from several plants in operation were processed by means of mass and energy balances, and on the basis of the flows and stocks of materials and elements inside and throughout the two units, as provided by a specific substance flow analysis. The potential life cycle environmental impacts related to the operations of the two WtE units were estimated by means of the Impact 2002+ methodology. They indicate that both the technologies have sustainable environmental performances, but those of the moving grate combustion unit are better for most of the selected impact categories. The analysis of the contributions from all the stages of each specific technology suggests where improvements in technological solutions and management criteria should be focused to obtain further and remarkable environmental improvements.

  12. Comparison of life cycle carbon dioxide emissions and embodied energy in four renewable electricity generation technologies in New Zealand.

    PubMed

    Rule, Bridget M; Worth, Zeb J; Boyle, Carol A

    2009-08-15

    In order to make the best choice between renewable energy technologies, it is important to be able to compare these technologies on the basis of their sustainability, which may include a variety of social, environmental, and economic indicators. This study examined the comparative sustainability of four renewable electricity technologies in terms of their life cycle CO2 emissions and embodied energy, from construction to decommissioning and including maintenance (periodic component replacement plus machinery use), using life cycle analysis. The models developed were based on case studies of power plants in New Zealand, comprising geothermal, large-scale hydroelectric, tidal (a proposed scheme), and wind-farm electricity generation. The comparative results showed that tidal power generation was associated with 1.8 g of CO2/kWh, wind with 3.0 g of CO2/kWh, hydroelectric with 4.6 g of CO2/kWh, and geothermal with 5.6 g of CO2/kWh (not including fugitive emissions), and that tidal power generation was associated with 42.3 kJ/kWh, wind with 70.2 kJ/kWh, hydroelectric with 55.0 kJ/kWh, and geothermal with 94.6 kJ/kWh. Other environmental indicators, as well as social and economic indicators, should be applied to gain a complete picture of the technologies studied.

  13. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products, Part 3: LED Environmental Testing

    SciTech Connect

    Tuenge, Jason R.; Hollomon, Brad; Dillon, Heather E.; Snowden-Swan, Lesley J.

    2013-03-01

    This report covers the third part of a larger U.S. Department of Energy (DOE) project to assess the life-cycle environmental and resource impacts in the manufacturing, transport, use, and disposal of light-emitting diode (LED) lighting products in relation to incumbent lighting technologies. All three reports are available on the DOE website (www.ssl.energy.gov/tech_reports.html). • Part 1: Review of the Life-Cycle Energy Consumption of Incandescent, Compact Fluorescent and LED Lamps; • Part 2: LED Manufacturing and Performance; • Part 3: LED Environmental Testing. Parts 1 and 2 were published in February and June 2012, respectively. The Part 1 report included a summary of the life-cycle assessment (LCA) process and methodology, provided a literature review of more than 25 existing LCA studies of various lamp types, and performed a meta-analysis comparing LED lamps with incandescent and compact fluorescent lamps (CFLs). Drawing from the Part 1 findings, Part 2 performed a more detailed assessment of the LED manufacturing process and used these findings to provide a comparative LCA taking into consideration a wider range of environmental impacts. Both reports concluded that the life-cycle environmental impact of a given lamp is dominated by the energy used during lamp operation—the upstream generation of electricity drives the total environmental footprint of the product. However, a more detailed understanding of end-of-life disposal considerations for LED products has become increasingly important as their installation base has grown. The Part 3 study (reported herein) was undertaken to augment the LCA findings with chemical analysis of a variety of LED, CFL, and incandescent lamps using standard testing procedures. A total of 22 samples, representing 11 different models, were tested to determine whether any of 17 elements were present at levels exceeding California or Federal regulatory thresholds for hazardous waste. Key findings include: • The selected

  14. Techno-Economics & Life Cycle Assessment (Presentation)

    SciTech Connect

    Dutta, A.; Davis, R.

    2011-12-01

    This presentation provides an overview of the techno-economic analysis (TEA) and life cycle assessment (LCA) capabilities at the National Renewable Energy Laboratory (NREL) and describes the value of working with NREL on TEA and LCA.

  15. Uncertainty propagation in life cycle assessment of biodiesel versus diesel: global warming and non-renewable energy.

    PubMed

    Hong, Jinglan

    2012-06-01

    Uncertainty information is essential for the proper use of life cycle assessment and environmental assessments in decision making. To investigate the uncertainties of biodiesel and determine the level of confidence in the assertion that biodiesel is more environmentally friendly than diesel, an explicit analytical approach based on the Taylor series expansion for lognormal distribution was applied in the present study. A biodiesel case study demonstrates the probability that biodiesel has a lower global warming and non-renewable energy score than diesel, that is 92.3% and 93.1%, respectively. The results indicate the level of confidence in the assertion that biodiesel is more environmentally friendly than diesel based on the global warming and non-renewable energy scores.

  16. Evaluating new processes and concepts for energy and resource recovery from municipal wastewater with life cycle assessment.

    PubMed

    Remy, C; Boulestreau, M; Warneke, J; Jossa, P; Kabbe, C; Lesjean, B

    2016-01-01

    Energy and resource recovery from municipal wastewater is a pre-requisite for an efficient and sustainable water management in cities of the future. However, a sound evaluation of available processes and pathways is required to identify opportunities and short-comings of the different options and reveal synergies and potentials for optimization. For evaluating environmental impacts in a holistic view, the tool of life cycle assessment (LCA, ISO 14040/44) is suitable to characterize and quantify the direct and indirect effects of new processes and concepts. This paper gives an overview of four new processes and concepts for upgrading existing wastewater treatment plants towards energy positive and resource efficient wastewater treatment, based upon an evaluation of their environmental impacts with LCA using data from pilot and full-scale assessments of the considered processes.

  17. Review of life-cycle approaches coupled with data envelopment analysis: launching the CFP + DEA method for energy policy making.

    PubMed

    Vázquez-Rowe, Ian; Iribarren, Diego

    2015-01-01

    Life-cycle (LC) approaches play a significant role in energy policy making to determine the environmental impacts associated with the choice of energy source. Data envelopment analysis (DEA) can be combined with LC approaches to provide quantitative benchmarks that orientate the performance of energy systems towards environmental sustainability, with different implications depending on the selected LC + DEA method. The present paper examines currently available LC + DEA methods and develops a novel method combining carbon footprinting (CFP) and DEA. Thus, the CFP + DEA method is proposed, a five-step structure including data collection for multiple homogenous entities, calculation of target operating points, evaluation of current and target carbon footprints, and result interpretation. As the current context for energy policy implies an anthropocentric perspective with focus on the global warming impact of energy systems, the CFP + DEA method is foreseen to be the most consistent LC + DEA approach to provide benchmarks for energy policy making. The fact that this method relies on the definition of operating points with optimised resource intensity helps to moderate the concerns about the omission of other environmental impacts. Moreover, the CFP + DEA method benefits from CFP specifications in terms of flexibility, understanding, and reporting.

  18. Review of Life-Cycle Approaches Coupled with Data Envelopment Analysis: Launching the CFP + DEA Method for Energy Policy Making

    PubMed Central

    Vázquez-Rowe, Ian

    2015-01-01

    Life-cycle (LC) approaches play a significant role in energy policy making to determine the environmental impacts associated with the choice of energy source. Data envelopment analysis (DEA) can be combined with LC approaches to provide quantitative benchmarks that orientate the performance of energy systems towards environmental sustainability, with different implications depending on the selected LC + DEA method. The present paper examines currently available LC + DEA methods and develops a novel method combining carbon footprinting (CFP) and DEA. Thus, the CFP + DEA method is proposed, a five-step structure including data collection for multiple homogenous entities, calculation of target operating points, evaluation of current and target carbon footprints, and result interpretation. As the current context for energy policy implies an anthropocentric perspective with focus on the global warming impact of energy systems, the CFP + DEA method is foreseen to be the most consistent LC + DEA approach to provide benchmarks for energy policy making. The fact that this method relies on the definition of operating points with optimised resource intensity helps to moderate the concerns about the omission of other environmental impacts. Moreover, the CFP + DEA method benefits from CFP specifications in terms of flexibility, understanding, and reporting. PMID:25654136

  19. Rescaling of metal oxide nanocrystals for energy storage having high capacitance and energy density with robust cycle life.

    PubMed

    Jeong, Hyung Mo; Choi, Kyung Min; Cheng, Tao; Lee, Dong Ki; Zhou, Renjia; Ock, Il Woo; Milliron, Delia J; Goddard, William A; Kang, Jeung Ku

    2015-06-30

    Nanocrystals are promising structures, but they are too large for achieving maximum energy storage performance. We show that rescaling 3-nm particles through lithiation followed by delithiation leads to high-performance energy storage by realizing high capacitance close to the theoretical capacitance available via ion-to-atom redox reactions. Reactive force-field (ReaxFF) molecular dynamics simulations support the conclusion that Li atoms react with nickel oxide nanocrystals (NiO-n) to form lithiated core-shell structures (Ni:Li2O), whereas subsequent delithiation causes Ni:Li2O to form atomic clusters of NiO-a. This is consistent with in situ X-ray photoelectron and optical spectroscopy results showing that Ni(2+) of the nanocrystal changes during lithiation-delithiation through Ni(0) and back to Ni(2+). These processes are also demonstrated to provide a generic route to rescale another metal oxide. Furthermore, assembling NiO-a into the positive electrode of an asymmetric device enables extraction of full capacitance for a counter negative electrode, giving high energy density in addition to robust capacitance retention over 100,000 cycles.

  20. Rescaling of metal oxide nanocrystals for energy storage having high capacitance and energy density with robust cycle life

    PubMed Central

    Jeong, Hyung Mo; Choi, Kyung Min; Cheng, Tao; Lee, Dong Ki; Zhou, Renjia; Ock, Il Woo; Milliron, Delia J.; Goddard, William A.; Kang, Jeung Ku

    2015-01-01

    Nanocrystals are promising structures, but they are too large for achieving maximum energy storage performance. We show that rescaling 3-nm particles through lithiation followed by delithiation leads to high-performance energy storage by realizing high capacitance close to the theoretical capacitance available via ion-to-atom redox reactions. Reactive force-field (ReaxFF) molecular dynamics simulations support the conclusion that Li atoms react with nickel oxide nanocrystals (NiO-n) to form lithiated core–shell structures (Ni:Li2O), whereas subsequent delithiation causes Ni:Li2O to form atomic clusters of NiO-a. This is consistent with in situ X-ray photoelectron and optical spectroscopy results showing that Ni2+ of the nanocrystal changes during lithiation–delithiation through Ni0 and back to Ni2+. These processes are also demonstrated to provide a generic route to rescale another metal oxide. Furthermore, assembling NiO-a into the positive electrode of an asymmetric device enables extraction of full capacitance for a counter negative electrode, giving high energy density in addition to robust capacitance retention over 100,000 cycles. PMID:26080421

  1. Life cycle assessment of urban waste management: Energy performances and environmental impacts. The case of Rome, Italy

    SciTech Connect

    Cherubini, Francesco Bargigli, Silvia; Ulgiati, Sergio

    2008-12-15

    Landfilling is nowadays the most common practice of waste management in Italy in spite of enforced regulations aimed at increasing waste pre-sorting as well as energy and material recovery. In this work we analyse selected alternative scenarios aimed at minimizing the unused material fraction to be delivered to the landfill. The methodological framework of the analysis is the life cycle assessment, in a multi-method form developed by our research team. The approach was applied to the case of municipal solid waste (MSW) management in Rome, with a special focus on energy and material balance, including global and local scale airborne emissions. Results, provided in the form of indices and indicators of efficiency, effectiveness and environmental impacts, point out landfill activities as the worst waste management strategy at a global scale. On the other hand, the investigated waste treatments with energy and material recovery allow important benefits of greenhouse gas emission reduction (among others) but are still affected by non-negligible local emissions. Furthermore, waste treatments leading to energy recovery provide an energy output that, in the best case, is able to meet 15% of the Rome electricity consumption.

  2. Application of hybrid life cycle approaches to emerging energy technologies--the case of wind power in the UK.

    PubMed

    Wiedmann, Thomas O; Suh, Sangwon; Feng, Kuishuang; Lenzen, Manfred; Acquaye, Adolf; Scott, Kate; Barrett, John R

    2011-07-01

    Future energy technologies will be key for a successful reduction of man-made greenhouse gas emissions. With demand for electricity projected to increase significantly in the future, climate policy goals of limiting the effects of global atmospheric warming can only be achieved if power generation processes are profoundly decarbonized. Energy models, however, have ignored the fact that upstream emissions are associated with any energy technology. In this work we explore methodological options for hybrid life cycle assessment (hybrid LCA) to account for the indirect greenhouse gas (GHG) emissions of energy technologies using wind power generation in the UK as a case study. We develop and compare two different approaches using a multiregion input-output modeling framework - Input-Output-based Hybrid LCA and Integrated Hybrid LCA. The latter utilizes the full-sized Ecoinvent process database. We discuss significance and reliability of the results and suggest ways to improve the accuracy of the calculations. The comparison of hybrid LCA methodologies provides valuable insight into the availability and robustness of approaches for informing energy and environmental policy.

  3. Life Cycle of Stars

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In this stunning picture of the giant galactic nebula NGC 3603, the crisp resolution of NASA's Hubble Space Telescope captures various stages of the life cycle of stars in one single view. To the upper left of center is the evolved blue supergiant called Sher 25. The star has a unique circumstellar ring of glowing gas that is a galactic twin to the famous ring around the supernova 1987A. The grayish-bluish color of the ring and the bipolar outflows (blobs to the upper right and lower left of the star) indicates the presence of processed (chemically enriched) material. Near the center of the view is a so-called starburst cluster dominated by young, hot Wolf-Rayet stars and early O-type stars. A torrent of ionizing radiation and fast stellar winds from these massive stars has blown a large cavity around the cluster. The most spectacular evidence for the interaction of ionizing radiation with cold molecular-hydrogen cloud material are the giant gaseous pillars to the right of the cluster. These pillars are sculptured by the same physical processes as the famous pillars Hubble photographed in the M16 Eagle Nebula. Dark clouds at the upper right are so-called Bok globules, which are probably in an earlier stage of star formation. To the lower left of the cluster are two compact, tadpole-shaped emission nebulae. Similar structures were found by Hubble in Orion, and have been interpreted as gas and dust evaporation from possibly protoplanetary disks (proplyds). This true-color picture was taken on March 5, 1999 with the Wide Field Planetary Camera 2.

  4. Life Cycle of a Pencil.

    ERIC Educational Resources Information Center

    Reeske, Mike

    2000-01-01

    Explains a project called "Life Cycle of a Pencil" which was developed by the National Science Teachers Association (NSTA) and the U.S. Environmental Protection Agency (USEPA). Describes the life cycle of a pencil in stages starting from the first stage of design to the sixth stage of product disposal. (YDS)

  5. Energy and emission benefits of alternative transportation liquid fuels derived from switchgrass: a fuel life cycle assessment.

    PubMed

    Wu, May; Wu, Ye; Wang, Michael

    2006-01-01

    We conducted a mobility chains, or well-to-wheels (WTW), analysis to assess the energy and emission benefits of cellulosic biomass for the U.S. transportation sector in the years 2015-2030. We estimated the life-cycle energy consumption and emissions associated with biofuel production and use in light-duty vehicle (LDV) technologies by using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model. Analysis of biofuel production was based on ASPEN Plus model simulation of an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity. Our study revealed that cellulosic biofuels as E85 (mixture of 85% ethanol and 15% gasoline by volume), FTD, and DME offer substantial savings in petroleum (66-93%) and fossil energy (65-88%) consumption on a per-mile basis. Decreased fossil fuel use translates to 82-87% reductions in greenhouse gas emissions across all unblended cellulosic biofuels. In urban areas, our study shows net reductions for almost all criteria pollutants, with the exception of carbon monoxide (unchanged), for each of the biofuel production option examined. Conventional and hybrid electric vehicles, when fueled with E85, could reduce total sulfur oxide (SO(x)) emissions to 39-43% of those generated by vehicles fueled with gasoline. By using bio-FTD and bio-DME in place of diesel, SO(x) emissions are reduced to 46-58% of those generated by diesel-fueled vehicles. Six different fuel production options were compared. This study strongly suggests that integrated heat and power co-generation by means of gas turbine combined cycle is a crucial factor in the energy savings and emission reductions.

  6. Life cycle assessment of an intensive sewage treatment plant in Barcelona (Spain) with focus on energy aspects.

    PubMed

    Bravo, L; Ferrer, I

    2011-01-01

    Life Cycle Assessment was used to evaluate environmental impacts associated to a full-scale wastewater treatment plant (WWTP) in Barcelona Metropolitan Area, with a treatment capacity of 2 million population equivalent, focussing on energy aspects and resources consumption. The wastewater line includes conventional pre-treatment, primary settler, activated sludge with nitrogen removal, and tertiary treatment; and the sludge line consists of thickening, anaerobic digestion, cogeneration, dewatering and thermal drying. Real site data were preferably included in the inventory. Environmental impacts of the resulting impact categories were determined by the CLM 2 baseline method. According to the results, the combustion of natural gas in the cogeneration engine is responsible for the main impact on Climate Change and Depletion of Abiotic Resources, while the combustion of biogas in the cogeneration unit accounts for a minor part. The results suggest that the environmental performance of the WWTP would be enhanced by increasing biogas production through improved anaerobic digestion of sewage sludge.

  7. Life-Cycle Energy Use and Greenhouse Gas Emissions of a Building-Scale Wastewater Treatment and Nonpotable Reuse System.

    PubMed

    Hendrickson, Thomas P; Nguyen, Mi T; Sukardi, Marsha; Miot, Alexandre; Horvath, Arpad; Nelson, Kara L

    2015-09-01

    Treatment and water reuse in decentralized systems is envisioned to play a greater role in our future urban water infrastructure due to growing populations and uncertainty in quality and quantity of traditional water resources. In this study, we utilized life-cycle assessment (LCA) to analyze the energy consumption and greenhouse gas (GHG) emissions of an operating Living Machine (LM) wetland treatment system that recycles wastewater in an office building. The study also assessed the performance of the local utility's centralized wastewater treatment plant, which was found to be significantly more efficient than the LM (79% less energy, 98% less GHG emissions per volume treated). To create a functionally equivalent comparison, the study developed a hypothetical scenario in which the same LM design flow is recycled via centralized infrastructure. This comparison revealed that the current LM has energy consumption advantages (8% less), and a theoretically improved LM design could have GHG advantages (24% less) over the centralized reuse system. The methodology in this study can be applied to other case studies and scenarios to identify conditions under which decentralized water reuse can lower GHG emissions and energy use compared to centralized water reuse when selecting alternative approaches to meet growing water demands.

  8. Assessing Location and Scale of Urban Nonpotable Water Reuse Systems for Life-Cycle Energy Consumption and Greenhouse Gas Emissions.

    PubMed

    Kavvada, Olga; Horvath, Arpad; Stokes-Draut, Jennifer R; Hendrickson, Thomas P; Eisenstein, William A; Nelson, Kara L

    2016-12-20

    Nonpotable water reuse (NPR) is one option for conserving valuable freshwater resources. Decentralization can improve distribution system efficiency by locating treatment closer to the consumer; however, small treatment systems may have higher unit energy and greenhouse-gas (GHG) emissions. This research explored the trade-off between residential NPR systems using a life-cycle approach to analyze the energy use and GHG emissions. Decentralized and centralized NPR options are compared to identify where decentralized systems achieve environmental advantages over centralized reuse alternatives, and vice versa, over a range of scales and spatial and demographic conditions. For high-elevation areas far from the centralized treatment plant, decentralized NPR could lower energy use by 29% and GHG emissions by 28%, but in low-elevation areas close to the centralized treatment plant, decentralized reuse could be higher by up to 85% (energy) and 49% (GHG emissions) for the scales assessed (20-2000 m(3)/day). Direct GHG emissions from the treatment processes were found to be highly uncertain and variable and were not included in the analysis. The framework presented can be used as a planning support tool to reveal the environmental impacts of integrating decentralized NPR with existing centralized wastewater infrastructure and can be adapted to evaluate different treatment technology scales for reuse.

  9. Sensitivity of Pumping Energy on the Life Cycle Impacts of a Commercial Rainwater Harvesting System

    EPA Science Inventory

    assessed using a functional unit of 1 m3 of rainwater and municipal water delivery for flushing toilets and urinals in a four story-commercial building in DC. We collect primary data on CRWH including designs and amount of materials from the ARCSA partners and compile the life cy...

  10. 10 CFR 434.607 - Life cycle cost analysis criteria.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Life cycle cost analysis criteria. 434.607 Section 434.607 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Compliance Alternative § 434.607 Life cycle...

  11. 10 CFR 434.607 - Life cycle cost analysis criteria.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Life cycle cost analysis criteria. 434.607 Section 434.607 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Compliance Alternative § 434.607 Life cycle...

  12. 10 CFR 434.607 - Life cycle cost analysis criteria.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Life cycle cost analysis criteria. 434.607 Section 434.607 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Compliance Alternative § 434.607 Life cycle...

  13. 10 CFR 434.607 - Life cycle cost analysis criteria.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Life cycle cost analysis criteria. 434.607 Section 434.607 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Compliance Alternative § 434.607 Life cycle...

  14. 10 CFR 434.607 - Life cycle cost analysis criteria.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Life cycle cost analysis criteria. 434.607 Section 434.607 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Compliance Alternative § 434.607 Life cycle...

  15. Life cycle energy and greenhouse gas analysis of a large-scale vertically integrated organic dairy in the United States.

    PubMed

    Heller, Martin C; Keoleian, Gregory A

    2011-03-01

    In order to manage strategies to curb climate change, systemic benchmarking at a variety of production scales and methods is needed. This study is the first life cycle assessment (LCA) of a large-scale, vertically integrated organic dairy in the United States. Data collected at Aurora Organic Dairy farms and processing facilities were used to build a LCA model for benchmarking the greenhouse gas (GHG) emissions and energy consumption across the entire milk production system, from organic feed production to post-consumer waste disposal. Energy consumption and greenhouse gas emissions for the entire system (averaged over two years of analysis) were 18.3 MJ per liter of packaged fluid milk and 2.3 kg CO(2 )equiv per liter of packaged fluid milk, respectively. Methane emissions from enteric fermentation and manure management account for 27% of total system GHG emissions. Transportation represents 29% of the total system energy use and 15% of the total GHG emissions. Utilization of renewable energy at the farms, processing plant, and major transport legs could lead to a 16% reduction in system energy use and 6.4% less GHG emissions. Sensitivity and uncertainty analysis reveal that alternative meat coproduct allocation methods can lead to a 2.2% and 7.5% increase in overall system energy and GHG, respectively. Feed inventory data source can influence system energy use by -1% to +10% and GHG emission by -4.6% to +9.2%, and uncertainties in diffuse emission factors contribute -13% to +25% to GHG emission.

  16. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration

    SciTech Connect

    Damgaard, Anders; Riber, Christian; Fruergaard, Thilde; Hulgaard, Tore; Christensen, Thomas H.

    2010-07-15

    Incineration of municipal solid waste is a debated waste management technology. In some countries it is the main waste management option whereas in other countries it has been disregarded. The main discussion point on waste incineration is the release of air emissions from the combustion of the waste, but also the energy recovery efficiency has a large importance. The historical development of air pollution control in waste incineration was studied through life-cycle-assessment modelling of eight different air pollution control technologies. The results showed a drastic reduction in the release of air emissions and consequently a significant reduction in the potential environmental impacts of waste incineration. Improvements of a factor 0.85-174 were obtained in the different impact potentials as technology developed from no emission control at all, to the best available emission control technologies of today (2010). The importance of efficient energy recovery was studied through seven different combinations of heat and electricity recovery, which were modelled to substitute energy produced from either coal or natural gas. The best air pollution control technology was used at the incinerator. It was found that when substituting coal based energy production total net savings were obtained in both the standard and toxic impact categories. However, if the substituted energy production was based on natural gas, only the most efficient recovery options yielded net savings with respect to the standard impacts. With regards to the toxic impact categories, emissions from the waste incineration process were always larger than those from the avoided energy production based on natural gas. The results shows that the potential environmental impacts from air emissions have decreased drastically during the last 35 years and that these impacts can be partly or fully offset by recovering energy which otherwise should have been produced from fossil fuels like coal or natural gas.

  17. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration.

    PubMed

    Damgaard, Anders; Riber, Christian; Fruergaard, Thilde; Hulgaard, Tore; Christensen, Thomas H

    2010-07-01

    Incineration of municipal solid waste is a debated waste management technology. In some countries it is the main waste management option whereas in other countries it has been disregarded. The main discussion point on waste incineration is the release of air emissions from the combustion of the waste, but also the energy recovery efficiency has a large importance. The historical development of air pollution control in waste incineration was studied through life-cycle-assessment modelling of eight different air pollution control technologies. The results showed a drastic reduction in the release of air emissions and consequently a significant reduction in the potential environmental impacts of waste incineration. Improvements of a factor 0.85-174 were obtained in the different impact potentials as technology developed from no emission control at all, to the best available emission control technologies of today (2010). The importance of efficient energy recovery was studied through seven different combinations of heat and electricity recovery, which were modelled to substitute energy produced from either coal or natural gas. The best air pollution control technology was used at the incinerator. It was found that when substituting coal based energy production total net savings were obtained in both the standard and toxic impact categories. However, if the substituted energy production was based on natural gas, only the most efficient recovery options yielded net savings with respect to the standard impacts. With regards to the toxic impact categories, emissions from the waste incineration process were always larger than those from the avoided energy production based on natural gas. The results shows that the potential environmental impacts from air emissions have decreased drastically during the last 35 years and that these impacts can be partly or fully offset by recovering energy which otherwise should have been produced from fossil fuels like coal or natural gas.

  18. Long- vs. short-term energy storage technologies analysis : a life-cycle cost study : a study for the DOE energy storage systems program.

    SciTech Connect

    Schoenung, Susan M.; Hassenzahl, William V.

    2003-08-01

    This report extends an earlier characterization of long-duration and short-duration energy storage technologies to include life-cycle cost analysis. Energy storage technologies were examined for three application categories--bulk energy storage, distributed generation, and power quality--with significant variations in discharge time and storage capacity. More than 20 different technologies were considered and figures of merit were investigated including capital cost, operation and maintenance, efficiency, parasitic losses, and replacement costs. Results are presented in terms of levelized annual cost, $/kW-yr. The cost of delivered energy, cents/kWh, is also presented for some cases. The major study variable was the duration of storage available for discharge.

  19. 10 CFR 455.64 - Life-cycle cost methodology.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Life-cycle cost methodology. 455.64 Section 455.64 Energy..., Hospitals, Units of Local Government, and Public Care Institutions § 455.64 Life-cycle cost methodology. (a) The life-cycle cost methodology under § 455.63(b) of this part is a systematic comparison of...

  20. 10 CFR 455.64 - Life-cycle cost methodology.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Life-cycle cost methodology. 455.64 Section 455.64 Energy..., Hospitals, Units of Local Government, and Public Care Institutions § 455.64 Life-cycle cost methodology. (a) The life-cycle cost methodology under § 455.63(b) of this part is a systematic comparison of...

  1. Daylighting Strategies for U. S. Air Force Office Facilities: Economic Analysis of Building Energy Performance and Life-Cycle Cost Modeling with Monte Carlo Method

    DTIC Science & Technology

    2009-03-26

    approximately $15-23 billion annually in energy consumption. Our research findings show that electrochromic windows have the lowest energy consumption...make emerging daylighitng technology, such as electrochromic windows, viable. Finally, we demonstrate the robustness of probabilistic life-cycle... Electrochromic Windows ...........................................................................................35 Windows and Daylighting

  2. Life-cycle energy and GHG emissions of forest biomass harvest and transport for biofuel production in Michigan

    DOE PAGES

    Zhang, Fengli; Johnson, Dana M.; Wang, Jinjiang

    2015-04-01

    High dependence on imported oil has increased U.S. strategic vulnerability and prompted more research in the area of renewable energy production. Ethanol production from renewable woody biomass, which could be a substitute for gasoline, has seen increased interest. This study analysed energy use and greenhouse gas emission impacts on the forest biomass supply chain activities within the State of Michigan. A life-cycle assessment of harvesting and transportation stages was completed utilizing peer-reviewed literature. Results for forest-delivered ethanol were compared with those for petroleum gasoline using data specific to the U.S. The analysis from a woody biomass feedstock supply perspective uncoveredmore » that ethanol production is more environmentally friendly (about 62% less greenhouse gas emissions) compared with petroleum based fossil fuel production. Sensitivity analysis was conducted with key inputs associated with harvesting and transportation operations. The results showed that research focused on improving biomass recovery efficiency and truck fuel economy further reduced GHG emissions and energy consumption.« less

  3. Life-cycle energy and GHG emissions of forest biomass harvest and transport for biofuel production in Michigan

    SciTech Connect

    Zhang, Fengli; Johnson, Dana M.; Wang, Jinjiang

    2015-04-01

    High dependence on imported oil has increased U.S. strategic vulnerability and prompted more research in the area of renewable energy production. Ethanol production from renewable woody biomass, which could be a substitute for gasoline, has seen increased interest. This study analysed energy use and greenhouse gas emission impacts on the forest biomass supply chain activities within the State of Michigan. A life-cycle assessment of harvesting and transportation stages was completed utilizing peer-reviewed literature. Results for forest-delivered ethanol were compared with those for petroleum gasoline using data specific to the U.S. The analysis from a woody biomass feedstock supply perspective uncovered that ethanol production is more environmentally friendly (about 62% less greenhouse gas emissions) compared with petroleum based fossil fuel production. Sensitivity analysis was conducted with key inputs associated with harvesting and transportation operations. The results showed that research focused on improving biomass recovery efficiency and truck fuel economy further reduced GHG emissions and energy consumption.

  4. ENERGY DEMANDS AND OTHER ENVIRONMENTAL IMPACTS ACROSS THE LIFE CYCLE OF BIOETHANOL USED AS FUEL

    EPA Science Inventory

    Most assessments of converting biomass to fuels are limited to energy and greenhouse gas (GHG) balances to determine if there is a net loss or gain. A fairly consistent conclusion of these studies is that the use of bio-ethanol in place of conventional fuels leads to a net gain....

  5. Innovation & Risk Management Result in Energy and Life-Cycle Savings.

    ERIC Educational Resources Information Center

    Anstrand, David E.; Singh, J. B.

    1999-01-01

    Examines a Pennsylvania school's successful planning, design, and bidding process for acquiring a geothermal heat pump (GHP)system whose subsequent efficiency became award-winning for environmental excellence. Charts and statistical tables describe the GHP's energy savings. Concluding comments review the lessons learned from the process. (GR)

  6. Life Cycle Greenhouse Gas Emissions and Energy Analysis of Passive House with Variable Construction Materials

    NASA Astrophysics Data System (ADS)

    Baďurová, Silvia; Ponechal, Radoslav; Ďurica, Pavol

    2013-11-01

    The term "passive house" refers to rigorous and voluntary standards for energy efficiency in a building, reducing its ecological footprint. There are many ways how to build a passive house successfully. These designs as well as construction techniques vary from ordinary timber constructions using packs of straw or constructions of clay. This paper aims to quantify environmental quality of external walls in a passive house, which are made of a timber frame, lightweight concrete blocks and sand-lime bricks in order to determine whether this constructional form provides improved environmental performance. Furthermore, this paper assesses potential benefit of energy savings at heating of houses in which their external walls are made of these three material alternatives. A two storey residential passive house, with floorage of 170.6 m2, was evaluated. Some measurements of air and surface temperatures were done as a calibration etalon for a method of simulation.

  7. 10 CFR 433.8 - Life-cycle costing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Life-cycle costing. 433.8 Section 433.8 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.8 Life-cycle costing. Each Federal agency shall determine...

  8. 10 CFR 433.8 - Life-cycle costing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Life-cycle costing. 433.8 Section 433.8 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.8 Life-cycle costing. Each Federal agency shall determine...

  9. 10 CFR 433.8 - Life-cycle costing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Life-cycle costing. 433.8 Section 433.8 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR THE DESIGN AND CONSTRUCTION OF NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.8 Life-cycle costing....

  10. 10 CFR 433.8 - Life-cycle costing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Life-cycle costing. 433.8 Section 433.8 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR THE DESIGN AND CONSTRUCTION OF NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.8 Life-cycle costing....

  11. 10 CFR 433.8 - Life-cycle costing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Life-cycle costing. 433.8 Section 433.8 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.8 Life-cycle costing. Each Federal agency shall determine...

  12. Sustainability Efficiency Factor: Measuring Sustainability in Advanced Energy Systems through Exergy, Exergoeconomic, Life Cycle, and Economic Analyses

    NASA Astrophysics Data System (ADS)

    Boldon, Lauren

    The Encyclopedia of Life Support Systems defines sustainability or industrial ecology as "the wise use of resources through critical attention to policy, social, economic, technological, and ecological management of natural and human engineered capital so as to promote innovations that assure a higher degree of human needs fulfilment, or life support, across all regions of the world, while at the same time ensuring intergenerational equity" (Encyclopedia of Life Support Systems 1998). Developing and integrating sustainable energy systems to meet growing energy demands is a daunting task. Although the technology to utilize renewable energies is well understood, there are limited locations which are ideally suited for renewable energy development. Even in areas with significant wind or solar availability, backup or redundant energy supplies are still required during periods of low renewable generation. This is precisely why it would be difficult to make the switch directly from fossil fuel to renewable energy generation. A transition period in which a base-load generation supports renewables is required, and nuclear energy suits this need well with its limited life cycle emissions and fuel price stability. Sustainability is achieved by balancing environmental, economic, and social considerations, such that energy is produced without detriment to future generations through loss of resources, harm to the environment, etcetera. In essence, the goal is to provide future generations with the same opportunities to produce energy that the current generation has. This research explores sustainability metrics as they apply to a small modular reactor (SMR)-hydrogen production plant coupled with wind energy and storage technologies to develop a new quantitative sustainability metric, the Sustainability Efficiency Factor (SEF), for comparison of energy systems. The SEF incorporates the three fundamental aspects of sustainability and provides SMR or nuclear hybrid energy system

  13. Energy intensity, life-cycle greenhouse gas emissions, and economic assessment of liquid biofuel pipelines.

    PubMed

    Strogen, Bret; Horvath, Arpad; Zilberman, David

    2013-12-01

    Petroleum fuels are predominantly transported domestically by pipelines, whereas biofuels are almost exclusively transported by rail, barge, and truck. As biofuel production increases, new pipelines may become economically attractive. Location-specific variables impacting pipeline viability include construction costs, availability and costs of alternative transportation modes, electricity prices and emissions (if priced), throughput, and subsurface temperature. When transporting alcohol or diesel-like fuels, pipelines have a lower direct energy intensity than rail, barge, and trucks if fluid velocity is under 1 m/s for 4-inch diameter pipelines and 2 m/s for 8-inch or larger pipelines. Across multiple hypothetical state-specific scenarios, profit-maximizing design velocities range from 1.2 to 1.9 m/s. In costs and GHG emissions, optimized pipelines outperform trucks in each state and rail and barge in most states, if projected throughput exceeds four billion liters/year. If emissions are priced, optimum design diameters typically increase to reduce pumping energy demands, increasing the cost-effectiveness of pipeline projects.

  14. Life cycle assessment of a rock crusher

    SciTech Connect

    Landfield, A.H.; Karra, V.

    1999-07-01

    Nordberg, Inc., a capital equipment manufacturer, performed a Life Cycle Assessment study on its rock crusher to aid in making decisions on product design and energy improvements. Life Cycle Assessment (LCA) is a relatively new cutting edge environmental tool recently standardized by ISO that provides quantitative environmental and energy data on products or processes. This paper commences with a brief introduction to LCA and presents the system boundaries, modeling and assumptions for the rock crusher study. System boundaries include all life major cycle stages except manufacturing and assembly of the crusher. Results of the LCA show that over 99% of most of the flows into and out of the system may be attributed to the use phase of the rock crusher. Within the use phase itself, over 95% of each environmental inflow and outflow (with some exceptions) are attributed to electricity consumption, and not the replacement of spares/wears or lubricating oil over the lifetime of the crusher. Results tables and charts present selected environmental flows, including CO{sub 2} NOx, SOx, particulate matter, and energy consumption, for each of the rock crusher life cycle stages and the use phase. This paper aims to demonstrate the benefits of adopting a rigorous scientific approach to assess energy and environmental impacts over the life cycle of capital equipment. Nordberg has used these results to enhance its engineering efforts toward developing an even more energy efficient machine to further progress its vision of providing economic solutions to its customers by reducing the crusher operating (mainly electricity) costs.

  15. Material and energy recovery in integrated waste management systems: a life-cycle costing approach.

    PubMed

    Massarutto, Antonio; de Carli, Alessandro; Graffi, Matteo

    2011-01-01

    A critical assumption of studies assessing comparatively waste management options concerns the constant average cost for selective collection regardless the source separation level (SSL) reached, and the neglect of the mass constraint. The present study compares alternative waste management scenarios through the development of a desktop model that tries to remove the above assumption. Several alternative scenarios based on different combinations of energy and materials recovery are applied to two imaginary areas modelled in order to represent a typical Northern Italian setting. External costs and benefits implied by scenarios are also considered. Scenarios are compared on the base of the full cost for treating the total waste generated in the area. The model investigates the factors that influence the relative convenience of alternative scenarios.

  16. Life cycle assessment of lignocellulosic ethanol: a review of key factors and methods affecting calculated GHG emissions and energy use.

    PubMed

    Gerbrandt, Kelsey; Chu, Pei Lin; Simmonds, Allison; Mullins, Kimberley A; MacLean, Heather L; Griffin, W Michael; Saville, Bradley A

    2016-04-01

    Lignocellulosic ethanol has potential for lower life cycle greenhouse gas emissions compared to gasoline and conventional grain-based ethanol. Ethanol production 'pathways' need to meet economic and environmental goals. Numerous life cycle assessments of lignocellulosic ethanol have been published over the last 15 years, but gaps remain in understanding life cycle performance due to insufficient data, and model and methodological issues. We highlight key aspects of these issues, drawing on literature and a case study of corn stover ethanol. Challenges include the complexity of feedstock/ecosystems and market-mediated aspects and the short history of commercial lignocellulosic ethanol facilities, which collectively have led to uncertainty in GHG emissions estimates, and to debates on LCA methods and the role of uncertainty in decision making.

  17. Life-cycle energy use and greenhouse gas emissions of production of bioethanol from sorghum in the United States

    PubMed Central

    2013-01-01

    Background The availability of feedstock options is a key to meeting the volumetric requirement of 136.3 billion liters of renewable fuels per year beginning in 2022, as required in the US 2007 Energy Independence and Security Act. Life-cycle greenhouse gas (GHG) emissions of sorghum-based ethanol need to be assessed for sorghum to play a role in meeting that requirement. Results Multiple sorghum-based ethanol production pathways show diverse well-to-wheels (WTW) energy use and GHG emissions due to differences in energy use and fertilizer use intensity associated with sorghum growth and differences in the ethanol conversion processes. All sorghum-based ethanol pathways can achieve significant fossil energy savings. Relative to GHG emissions from conventional gasoline, grain sorghum-based ethanol can reduce WTW GHG emissions by 35% or 23%, respectively, when wet or dried distillers grains with solubles (DGS) is the co-product and fossil natural gas (FNG) is consumed as the process fuel. The reduction increased to 56% or 55%, respectively, for wet or dried DGS co-production when renewable natural gas (RNG) from anaerobic digestion of animal waste is used as the process fuel. These results do not include land-use change (LUC) GHG emissions, which we take as negligible. If LUC GHG emissions for grain sorghum ethanol as estimated by the US Environmental Protection Agency (EPA) are included (26 g CO2e/MJ), these reductions when wet DGS is co-produced decrease to 7% or 29% when FNG or RNG is used as the process fuel. Sweet sorghum-based ethanol can reduce GHG emissions by 71% or 72% without or with use of co-produced vinasse as farm fertilizer, respectively, in ethanol plants using only sugar juice to produce ethanol. If both sugar and cellulosic bagasse were used in the future for ethanol production, an ethanol plant with a combined heat and power (CHP) system that supplies all process energy can achieve a GHG emission reduction of 70% or 72%, respectively, without or

  18. Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics (Fact Sheet)

    SciTech Connect

    Not Available

    2012-11-01

    The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that helps to clarify inconsistent and conflicting life cycle GHG emission estimates in the published literature and provide more precise estimates of life cycle GHG emissions from PV systems.

  19. Life-cycle analysis of energy use, greenhouse gas emissions, and water consumption in the 2016 MYPP algal biofuel scenarios

    SciTech Connect

    Frank, Edward; Pegallapati, Ambica K.; Davis, Ryan; Markham, Jennifer; Coleman, Andre; Jones, Sue; Wigmosta, Mark S.; Zhu, Yunhua

    2016-06-16

    The Department of Energy (DOE) Bioenergy Technologies Office (BETO) Multi-year Program Plan (MYPP) describes the bioenergy objectives pursued by BETO, the strategies for achieving those objectives, the current state of technology (SOT), and a number of design cases that explore cost and operational performance required to advance the SOT towards middle and long term goals (MYPP, 2016). Two options for converting algae to biofuel intermediates were considered in the MYPP, namely algal biofuel production via lipid extraction and algal biofuel production by thermal processing. The first option, lipid extraction, is represented by the Combined Algae Processing (CAP) pathway in which algae are hydrolyzed in a weak acid pretreatment step. The treated slurry is fermented for ethanol production from sugars. The fermentation stillage contains most of the lipids from the original biomass, which are recovered through wet solvent extraction. The process residuals after lipid extraction, which contain much of the original mass of amino acids and proteins, are directed to anaerobic digestion (AD) for biogas production and recycle of N and P nutrients. The second option, thermal processing, comprises direct hydrothermal liquefaction (HTL) of the wet biomass, separation of aqueous, gas, and oil phases, and treatment of the aqueous phase with catalytic hydrothermal gasification (CHG) to produce biogas and to recover N and P nutrients. The present report describes a life cycle analysis of energy use and greenhouse gas (GHG) emissions of the CAP and HTL options for the three scenarios just described. Water use is also reported. Water use during algal biofuel production comes from evaporation during cultivation, discharge to bleed streams to control pond salinity (“blowdown”), and from use during preprocessing and upgrading. For scenarios considered to date, most water use was from evaporation and, secondarily, from bleed streams. Other use was relatively small at the level of

  20. Life cycle air emissions impacts and ownership costs of light-duty vehicles using natural gas as a primary energy source.

    PubMed

    Luk, Jason M; Saville, Bradley A; MacLean, Heather L

    2015-04-21

    This paper aims to comprehensively distinguish among the merits of different vehicles using a common primary energy source. In this study, we consider compressed natural gas (CNG) use directly in conventional vehicles (CV) and hybrid electric vehicles (HEV), and natural gas-derived electricity (NG-e) use in plug-in battery electric vehicles (BEV). This study evaluates the incremental life cycle air emissions (climate change and human health) impacts and life cycle ownership costs of non-plug-in (CV and HEV) and plug-in light-duty vehicles. Replacing a gasoline CV with a CNG CV, or a CNG CV with a CNG HEV, can provide life cycle air emissions impact benefits without increasing ownership costs; however, the NG-e BEV will likely increase costs (90% confidence interval: $1000 to $31 000 incremental cost per vehicle lifetime). Furthermore, eliminating HEV tailpipe emissions via plug-in vehicles has an insignificant incremental benefit, due to high uncertainties, with emissions cost benefits between -$1000 and $2000. Vehicle criteria air contaminants are a relatively minor contributor to life cycle air emissions impacts because of strict vehicle emissions standards. Therefore, policies should focus on adoption of plug-in vehicles in nonattainment regions, because CNG vehicles are likely more cost-effective at providing overall life cycle air emissions impact benefits.

  1. Menopause: A Life Cycle Transition.

    ERIC Educational Resources Information Center

    Evarts, Barbara Kess; Baldwin, Cynthia

    1998-01-01

    Family therapists need to address the issue of menopause proactively to be of benefit to couples and families during this transitional period in the family life cycle. Physical, psychological, and psychosocial factors affecting the menopausal woman and her family, and ways to address these issues in counseling are discussed. (Author/EMK)

  2. Life Cycle Impact Assessment (videotape)

    EPA Science Inventory

    Originally developed for the US EPA Regions, this presentation is available to the general public via the internet. The presentation focuses on the basics of Life Cycle Impact Assessment (LCIA) including the ISO 14040 series framework and a quick overview of each of the steps wi...

  3. Sourcing Life Cycle Inventory Data

    EPA Science Inventory

    The collection and validation of quality lifecycle inventory (LCI) data can be the most difficult and time-consuming aspect of developing a life cycle assessment (LCA). Large amounts of process and production data are needed to complete the LCI. For many studies, the LCA analyst ...

  4. Background qualitative analysis of the European reference life cycle database (ELCD) energy datasets - part II: electricity datasets.

    PubMed

    Garraín, Daniel; Fazio, Simone; de la Rúa, Cristina; Recchioni, Marco; Lechón, Yolanda; Mathieux, Fabrice

    2015-01-01

    The aim of this paper is to identify areas of potential improvement of the European Reference Life Cycle Database (ELCD) electricity datasets. The revision is based on the data quality indicators described by the International Life Cycle Data system (ILCD) Handbook, applied on sectorial basis. These indicators evaluate the technological, geographical and time-related representativeness of the dataset and the appropriateness in terms of completeness, precision and methodology. Results show that ELCD electricity datasets have a very good quality in general terms, nevertheless some findings and recommendations in order to improve the quality of Life-Cycle Inventories have been derived. Moreover, these results ensure the quality of the electricity-related datasets to any LCA practitioner, and provide insights related to the limitations and assumptions underlying in the datasets modelling. Giving this information, the LCA practitioner will be able to decide whether the use of the ELCD electricity datasets is appropriate based on the goal and scope of the analysis to be conducted. The methodological approach would be also useful for dataset developers and reviewers, in order to improve the overall Data Quality Requirements of databases.

  5. The Model Life-cycle: Training Module

    EPA Pesticide Factsheets

    Model Life-Cycle includes identification of problems & the subsequent development, evaluation, & application of the model. Objectives: define ‘model life-cycle’, explore stages of model life-cycle, & strategies for development, evaluation, & applications.

  6. Comparative life-cycle energy payback analysis of multi-junction a-SiGe and nanocrystalline/a-Si modules

    SciTech Connect

    Fthenakis, V.; Kim, H.

    2010-07-15

    Despite the publicity of nanotechnologies in high tech industries including the photovoltaic sector, their life-cycle energy use and related environmental impacts are understood only to a limited degree as their production is mostly immature. We investigated the life-cycle energy implications of amorphous silicon (a-Si) PV designs using a nanocrystalline silicon (nc-Si) bottom layer in the context of a comparative, prospective life-cycle analysis framework. Three R and D options using nc-Si bottom layer were evaluated and compared to the current triple-junction a-Si design, i.e., a-Si/a-SiGe/a-SiGe. The life-cycle energy demand to deposit nc-Si was estimated from parametric analyses of film thickness, deposition rate, precursor gas usage, and power for generating gas plasma. We found that extended deposition time and increased gas usages associated to the relatively high thickness of nc-Si lead to a larger primary energy demand for the nc-Si bottom layer designs, than the current triple-junction a-Si. Assuming an 8% conversion efficiency, the energy payback time of those R and D designs will be 0.7-0.9 years, close to that of currently commercial triple-junction a-Si design, 0.8 years. Future scenario analyses show that if nc-Si film is deposited at a higher rate (i.e., 2-3 nm/s), and at the same time the conversion efficiency reaches 10%, the energy-payback time could drop by 30%.

  7. [Life cycle assessment on oxygen biofuels].

    PubMed

    Yi, Hong-hong; Zhu, Yong-qing; Wang, Jian-xin; Hao, Ji-ming

    2005-11-01

    Life Cycle Assessment (LCA) was used to compare energy consumption and pollutant emissions of two oxygen biofuels, ethanol and methyl ester, which were mixed with gasoline and diesel oil at levels of 10% and 30% of the biofuel. The future of oxygen-containing biofuels was analyzed and forecasted. The results show that the mixture of biofuels and petroleum products can reduce crude oil consumption, but only methyl ester alternative fuel can reduce fossil fuel consumption. Use of methyl ester mixtures would reduce NOx by 50% compared to gasoline or diesel on a life cycle basis; however, NOx would increase using ethanol. Each alternative fuel mixture reduced PM10 emissions from the vehicle and methyl ester decreased VOCs. The SO2 emissions from the fuel production processes, which account for about 80% of SO2 life cycle emissions, must be strictly controlled.

  8. Calendar and PHEV Cycle Life Aging of High-Energy, Lithium-Ion Cells Containing Blended Spinel and Layered Oxide Cathodes

    SciTech Connect

    J. Belt

    2011-12-01

    One hundred seven commercially available, off-the-shelf, 1.2-Ah cells were tested for calendar life and CS cycle- and CD cycle-life using the new USABC PHEV Battery Test Manual. Here, the effects of temperature on calendar life, on CS cycle life, and on CD cycle life; the effects of SOC on calendar life and on CS cycle life; and the effects of rest time on CD cycle life were investigated. The results indicated that the test procedures caused performance decline in the cells in an expected manner, calendar < CS cycling < CD cycling. In some cases, the kinetic law changed with test type, from linear-with-time to about t2. Additionally, temperature was found to stress the cells more than SOC, causing increased changes in performance with increasing temperature.

  9. Calendar and PHEV Cycle Life Aging of High-Energy, Lithium-Ion Cells Containing Blended Spinel and Layered-Oxide Cathodes

    SciTech Connect

    Jeffrey R. Belt; I. Bloom

    2011-12-01

    One hundred seven commercially available, off-the-shelf, 1.2-Ah cells were tested for calendar life and CS cycle- and CD cycle-life using the new USABC PHEV Battery Test Manual. Here, the effects of temperature on calendar life, on CS cycle life, and on CD cycle life; the effects of SOC on calendar life and on CS cycle life; and the effects of rest time on CD cycle life were investigated. The results indicated that the test procedures caused performance decline in the cells in an expected manner, calendar < CS cycling < CD cycling. In some cases, the kinetic law changed with test type, from linear-with-time to about t2. Additionally, temperature was found to stress the cells more than SOC, causing increased changes in performance with increasing temperature.

  10. Green cheese: partial life cycle assessment of greenhouse gas emissions and energy intensity of integrated dairy production and bioenergy systems.

    PubMed

    Aguirre-Villegas, H A; Passos-Fonseca, T H; Reinemann, D J; Armentano, L E; Wattiaux, M A; Cabrera, V E; Norman, J M; Larson, R

    2015-03-01

    The objective of this study was to evaluate the effect of integrating dairy and bioenergy systems on land use, net energy intensity (NEI), and greenhouse gas (GHG) emissions. A reference dairy farm system representative of Wisconsin was compared with a system that produces dairy and bioenergy products. This integrated system investigates the effects at the farm level when the cow diet and manure management practices are varied. The diets evaluated were supplemented with varying amounts of dry distillers grains with solubles and soybean meal and were balanced with different types of forages. The manure-management scenarios included manure land application, which is the most common manure disposal method in Wisconsin, and manure anaerobic digestion (AD) to produce biogas. A partial life cycle assessment from cradle to farm gate was conducted, where the system boundaries were expanded to include the production of biofuels in the analysis and the environmental burdens between milk and bioenergy products were partitioned by system expansion. Milk was considered the primary product and the functional unit, with ethanol, biodiesel, and biogas considered co-products. The production of the co-products was scaled according to milk production to meet the dietary requirements of each selected dairy ration. Results indicated that land use was 1.6 m2, NEI was 3.86 MJ, and GHG emissions were 1.02 kg of CO2-equivalents per kilogram of fat- and protein-corrected milk (FPCM) for the reference system. Within the integrated dairy and bioenergy system, diet scenarios that maximize dry distillers grains with solubles and implement AD had the largest reduction of GHG emissions and NEI, but the greatest increase in land use compared with the reference system. Average land use ranged from 1.68 to 2.01 m2/kg of FPCM; NEI ranged from -5.62 to -0.73 MJ/kg of FPCM; and GHG emissions ranged from 0.63 to 0.77 kg of CO2-equivalents/kg of FPCM. The AD contributed 65% of the NEI and 77% of the GHG

  11. Does It Have a Life Cycle?

    ERIC Educational Resources Information Center

    Keeley, Page

    2010-01-01

    If life continues from generation to generation, then all plants and animals must go through a life cycle, even though it may be different from organism to organism. Is this what students have "learned," or do they have their own private conceptions about life cycles? The formative assessment probe "Does It Have a Life Cycle?" reveals some…

  12. Pilot-scale data provide enhanced estimates of the life cycle energy and emissions profile of algae biofuels produced via hydrothermal liquefaction.

    PubMed

    Liu, Xiaowei; Saydah, Benjamin; Eranki, Pragnya; Colosi, Lisa M; Greg Mitchell, B; Rhodes, James; Clarens, Andres F

    2013-11-01

    Life cycle assessment (LCA) has been used widely to estimate the environmental implications of deploying algae-to-energy systems even though no full-scale facilities have yet to be built. Here, data from a pilot-scale facility using hydrothermal liquefaction (HTL) is used to estimate the life cycle profiles at full scale. Three scenarios (lab-, pilot-, and full-scale) were defined to understand how development in the industry could impact its life cycle burdens. HTL-derived algae fuels were found to have lower greenhouse gas (GHG) emissions than petroleum fuels. Algae-derived gasoline had significantly lower GHG emissions than corn ethanol. Most algae-based fuels have an energy return on investment between 1 and 3, which is lower than petroleum biofuels. Sensitivity analyses reveal several areas in which improvements by algae bioenergy companies (e.g., biocrude yields, nutrient recycle) and by supporting industries (e.g., CO2 supply chains) could reduce the burdens of the industry.

  13. Li3PO4 Matrix Enables a Long Cycle Life and High Energy Efficiency Bismuth-Based Battery.

    PubMed

    Sun, Chuan-Fu; Hu, Junkai; Wang, Peng; Cheng, Xi-Yuan; Lee, Sang Bok; Wang, YuHuang

    2016-09-14

    Bismuth is a lithium-ion battery anode material that can operate at an equilibrium potential higher than graphite and provide a capacity twice as high as that of Li4Ti5O12, making it intrinsically free from lithium plating that may cause catastrophic battery failure. However, the potential of bismuth is hampered by its inferior cyclability (limited to tens of cycles). Here, we propose an "ion conductive solid-state matrix" approach to address this issue. By homogeneously confining bismuth nanoparticles in a solid-state γ-Li3PO4 matrix that is electrochemically formed in situ, the resulting composite anode exhibits a reversible capacity of 280 mA hours per gram (mA h/g) at a rate of 100 mA/g and a record cyclability among bismuth-based anodes up to 500 cycles with a capacity decay rate of merely 0.071% per cycle. We further show that full-cell batteries fabricated from this composite anode and commercial LiFePO4 cathode deliver a stable cell voltage of ∼2.5 V and remarkable energy efficiency up to 86.3%, on par with practical batteries (80-90%). This work paves a way for harnessing bismuth-based battery chemistry for the design of high capacity, safer lithium-ion batteries to meet demanding applications such as electric vehicles.

  14. 10 CFR 435.8 - Life-cycle costing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Life-cycle costing. 435.8 Section 435.8 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise Residential Buildings. § 435.8...

  15. 10 CFR 435.8 - Life-cycle costing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Life-cycle costing. 435.8 Section 435.8 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise Residential Buildings. § 435.8...

  16. 10 CFR 435.8 - Life-cycle costing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Life-cycle costing. 435.8 Section 435.8 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise Residential Buildings. § 435.8...

  17. 10 CFR 435.8 - Life-cycle costing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Life-cycle costing. 435.8 Section 435.8 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise Residential Buildings. § 435.8...

  18. 10 CFR 435.8 - Life-cycle costing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Life-cycle costing. 435.8 Section 435.8 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise Residential Buildings. § 435.8...

  19. Technology development life cycle processes.

    SciTech Connect

    Beck, David Franklin

    2013-05-01

    This report and set of appendices are a collection of memoranda originally drafted in 2009 for the purpose of providing motivation and the necessary background material to support the definition and integration of engineering and management processes related to technology development. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. As presented herein, the material begins with a survey of open literature perspectives on technology development life cycles, including published data on %E2%80%9Cwhat went wrong.%E2%80%9D The main thrust of the material presents a rational expose%CC%81 of a structured technology development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of the systems engineering process. The material concludes with a discussion on the use of multiple measures to assess technology maturity, including consideration of the viewpoint of potential users.

  20. Energy use and carbon footprints differ dramatically for diverse wastewater-derived carbonaceous substrates: An integrated exploration of biokinetics and life-cycle assessment.

    PubMed

    Li, Yanbo; Wang, Xu; Butler, David; Liu, Junxin; Qu, Jiuhui

    2017-03-21

    Energy neutrality and reduction of carbon emissions are significant challenges to the enhanced sustainability of wastewater treatment plants (WWTPs). Harvesting energy from wastewater carbonaceous substrates can offset energy demands and enable net power generation; yet, there is limited research about how carbonaceous substrates influence energy and carbon implications of WWTPs with integrated energy recovery at systems-level. Consequently, this research uses biokinetics modelling and life cycle assessment philology to explore this notion, by tracing and assessing the quantitative flows of energy embodied or captured, and by exploring the carbon footprint throughout an energy-intensive activated sludge process with integrated energy recovery facilities. The results indicate that energy use and carbon footprint per cubic meter of wastewater treated, varies markedly with the carbon substrate. Compared with systems driven with proteins, carbohydrates or other short-chain fatty acids, systems fed with acetic acid realized energy neutrality with maximal net gain of power from methane combustion (0.198 kWh) and incineration of residual biosolids (0.153 kWh); and also achieved a negative carbon footprint (72.6 g CO2). The findings from this work help us to better understand and develop new technical schemes for improving the energy efficiency of WWTPs by repurposing the stream of carbon substrates across systems.

  1. Life cycle assessment of mobile phone housing.

    PubMed

    Yang, Jian-xin; Wang, Ru-song; Fu, Hao; Liu, Jing-ru

    2004-01-01

    The life cycle assessment of the mobile phone housing in Motorola(China) Electronics Ltd. was carried out, in which materials flows and environmental emissions based on a basic production scheme were analyzed and assessed. In the manufacturing stage, such primary processes as polycarbonate molding and surface painting are included, whereas different surface finishing technologies like normal painting, electroplate, IMD and VDM etc. were assessed. The results showed that housing decoration plays a significant role within the housing life cycle. The most significant environmental impact from housing production is the photochemical ozone formation potential. Environmental impacts of different decoration techniques varied widely, for example, the electroplating technique is more environmentally friendly than VDM. VDM consumes much more energy and raw material. In addition, the results of two alternative scenarios of dematerialization showed that material flow analysis and assessment is very important and valuable in selecting an environmentally friendly process.

  2. LIFE CYCLE DESIGN OF AMORPHOUS SILICON PHOTOVOLTAIC MODULES

    EPA Science Inventory

    The life cycle design framework was applied to photovoltaic module design. The primary objective of this project was to develop and evaluate design metrics for assessing and guiding the Improvement of PV product systems. Two metrics were used to assess life cycle energy perform...

  3. 10 CFR 455.64 - Life-cycle cost methodology.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... for energy conservation measures to shift demand or to use renewable energy resources, the numerator... respect to energy conservation measures to shift demand or to use renewable energy resources, the... 10 Energy 3 2012-01-01 2012-01-01 false Life-cycle cost methodology. 455.64 Section 455.64...

  4. 10 CFR 455.64 - Life-cycle cost methodology.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... for energy conservation measures to shift demand or to use renewable energy resources, the numerator... respect to energy conservation measures to shift demand or to use renewable energy resources, the... 10 Energy 3 2014-01-01 2014-01-01 false Life-cycle cost methodology. 455.64 Section 455.64...

  5. Life cycle of cytosolic prions.

    PubMed

    Hofmann, Julia; Vorberg, Ina

    2013-01-01

    Prions are self-templating protein aggregates that were originally identified as the causative agent of prion diseases in mammals, but have since been discovered in other kingdoms. Mammalian prions represent a unique class of infectious agents that are composed of misfolded prion protein. Prion proteins usually exist as soluble proteins but can refold and assemble into highly ordered, self-propagating prion polymers. The prion concept is also applicable to a growing number of non-Mendelian elements of inheritance in lower eukaryotes. While prions identified in mammals are clearly pathogens, prions in lower eukaryotes can be either detrimental or beneficial to the host. Prion phenotypes in fungi are transmitted vertically from mother to daughter cells during cell division and horizontally during mating or abortive mating, but extracellular phases have not been reported. Recent findings now demonstrate that in a mammalian cell environment, protein aggregates derived from yeast prion domains exhibit a prion life cycle similar to mammalian prions propagated ex vivo. This life cycle includes a soluble state of the protein, an induction phase by exogenous prion fibrils, stable replication of prion entities, vertical transmission to progeny and natural horizontal transmission to neighboring cells. Our data reveal that mammalian cells contain all co-factors required for cytosolic prion propagation and dissemination. This has important implications for understanding prion-like properties of disease-related protein aggregates. In light of the growing number of identified functional amyloids, cell-to-cell propagation of cytosolic protein conformers might not only be relevant for the spreading of disease-associated proteins, but might also be of more general relevance under non-disease conditions.

  6. Life cycle of cytosolic prions

    PubMed Central

    Hofmann, Julia; Vorberg, Ina

    2013-01-01

    Prions are self-templating protein aggregates that were originally identified as the causative agent of prion diseases in mammals, but have since been discovered in other kingdoms. Mammalian prions represent a unique class of infectious agents that are composed of misfolded prion protein. Prion proteins usually exist as soluble proteins but can refold and assemble into highly ordered, self-propagating prion polymers. The prion concept is also applicable to a growing number of non-Mendelian elements of inheritance in lower eukaryotes. While prions identified in mammals are clearly pathogens, prions in lower eukaryotes can be either detrimental or beneficial to the host. Prion phenotypes in fungi are transmitted vertically from mother to daughter cells during cell division and horizontally during mating or abortive mating, but extracellular phases have not been reported. Recent findings now demonstrate that in a mammalian cell environment, protein aggregates derived from yeast prion domains exhibit a prion life cycle similar to mammalian prions propagated ex vivo. This life cycle includes a soluble state of the protein, an induction phase by exogenous prion fibrils, stable replication of prion entities, vertical transmission to progeny and natural horizontal transmission to neighboring cells. Our data reveal that mammalian cells contain all co-factors required for cytosolic prion propagation and dissemination. This has important implications for understanding prion-like properties of disease-related protein aggregates. In light of the growing number of identified functional amyloids, cell-to-cell propagation of cytosolic protein conformers might not only be relevant for the spreading of disease-associated proteins, but might also be of more general relevance under non-disease conditions. PMID:24021964

  7. Life cycle assessment of electronic waste treatment

    SciTech Connect

    Hong, Jinglan; Shi, Wenxiao; Wang, Yutao; Chen, Wei; Li, Xiangzhi

    2015-04-15

    Highlights: • Life cycle assessment of electronic waste recycling is quantified. • Key factors for reducing the overall environmental impact are indentified. • End-life disposal processes provide significant environmental benefits. • Efficiently reduce the improper disposal amount of e-waste is highly needed. • E-waste incineration can generate significant environmental burden. - Abstract: Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers)

  8. Multishelled NiO Hollow Microspheres for High-performance Supercapacitors with Ultrahigh Energy Density and Robust Cycle Life

    PubMed Central

    Qi, Xinhong; Zheng, Wenji; Li, Xiangcun; He, Gaohong

    2016-01-01

    Multishelled NiO hollow microspheres for high-performance supercapacitors have been prepared and the formation mechanism has been investigated. By using resin microspheres to absorb Ni2+ and subsequent proper calcinations, the shell numbers, shell spacing and exterior shell structure were facilely controlled via varying synthetic parameters. Particularly, the exterior shell structure that accurately associated with the ion transfer is finely controlled by forming a single shell or closed exterior double-shells. Among multishelled NiO hollow microspheres, the triple-shelled NiO with an outer single-shelled microspheres show a remarkable capacity of 1280 F g−1 at 1 A g−1, and still keep a high value of 704 F g−1 even at 20 A g−1. The outstanding performances are attributed to its fast ion/electron transfer, high specific surface area and large shell space. The specific capacitance gradually increases to 108% of its initial value after 2500 cycles, demonstrating its high stability. Importantly, the 3S-NiO-HMS//RGO@Fe3O4 asymmetric supercapacitor shows an ultrahigh energy density of 51.0 Wh kg−1 at a power density of 800 W kg−1, and 78.8% capacitance retention after 10,000 cycles. Furthermore, multishelled NiO can be transferred into multishelled Ni microspheres with high-efficient H2 generation rate of 598.5 mL H2 min−1 g−1Ni for catalytic hydrolysis of NH3BH3 (AB). PMID:27616420

  9. Life cycle energy and greenhouse gas profile of a process for the production of ammonium sulfate from nitrogen-fixing photosynthetic cyanobacteria.

    PubMed

    Razon, Luis F

    2012-03-01

    In this paper, an alternative means for nitrogen fixation that may consume less energy and release less greenhouse gases than the Haber-Bosch process is explored. A life-cycle assessment was conducted on a process to: culture the cyanobacterium, Anabaena sp. ATCC 33047, in open ponds; harvest the biomass and exopolysaccharides and convert these to biogas; strip and convert the ammonia from the biogas residue to ammonium sulfate; dry the ammonium sulfate solution to ammonium sulfate crystals and transport the finished product. The results suggest that substantial reductions in non-renewable energy use and greenhouse gas emissions may be realized. The study opens the possibility that Haber-Bosch ammonia may be replaced with ammonia from a biomass process which simultaneously generates renewable energy. The process is intrinsically safer than the Haber-Bosch process. However, there are trade-offs in terms of land use and possibly, water.

  10. Life cycle assessment of electronic waste treatment.

    PubMed

    Hong, Jinglan; Shi, Wenxiao; Wang, Yutao; Chen, Wei; Li, Xiangzhi

    2015-04-01

    Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers).

  11. Assessment of potential life-cycle energy and greenhouse gas emission effects from using corn-based butanol as a transportation fuel.

    SciTech Connect

    Wu, M.; Wang, M.; Liu, J.; Huo, H.; Energy Systems

    2008-01-01

    Since advances in the ABE (acetone-butanol-ethanol) fermentation process in recent years have led to significant increases in its productivity and yields, the production of butanol and its use in motor vehicles have become an option worth evaluating. This study estimates the potential life-cycle energy and emission effects associated with using bio-butanol as a transportation fuel. It employs a well-to-wheels (WTW) analysis tool: the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The estimates of life-cycle energy use and greenhouse gas (GHG) emissions are based on an Aspen Plus(reg. sign) simulation for a corn-to-butanol production process, which describes grain processing, fermentation, and product separation. Bio-butanol-related WTW activities include corn farming, corn transportation, butanol production, butanol transportation, and vehicle operation. In this study, we also analyzed the bio-acetone that is coproduced with bio-butanol as an alternative to petroleum-based acetone. We then compared the results for bio-butanol with those of conventional gasoline. Our study shows that driving vehicles fueled with corn-based butanol produced by the current ABE fermentation process could result in substantial fossil energy savings (39%-56%) and avoid large percentage of the GHG emission burden, yielding a 32%-48% reduction relative to using conventional gasoline. On energy basis, a bushel of corn produces less liquid fuel from the ABE process than that from the corn ethanol dry mill process. The coproduction of a significant portion of acetone from the current ABE fermentation presents a challenge. A market analysis of acetone, as well as research and development on robust alternative technologies and processes that minimize acetone while increase the butanol yield, should be conducted.

  12. Assessment of potential life-cycle energy and greenhouse gas emission effects from using corn-based butanol as a transportation fuel.

    PubMed

    Wu, May; Wang, Michael; Liu, Jiahong; Huo, Hong

    2008-01-01

    Since advances in the ABE (acetone-butanol-ethanol) fermentation process in recent years have led to significant increases in its productivity and yields, the production of butanol and its use in motor vehicles have become an option worth evaluating. This study estimates the potential life-cycle energy and emission effects associated with using bio-butanol as a transportation fuel. It employs a well-to-wheels (WTW) analysis tool: the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The estimates of life-cycle energy use and greenhouse gas (GHG) emissions are based on an Aspen Plus(R) simulation for a corn-to-butanol production process, which describes grain processing, fermentation, and product separation. Bio-butanol-related WTW activities include corn farming, corn transportation, butanol production, butanol transportation, and vehicle operation. In this study, we also analyzed the bio-acetone that is coproduced with bio-butanol as an alternative to petroleum-based acetone. We then compared the results for bio-butanol with those of conventional gasoline. Our study shows that driving vehicles fueled with corn-based butanol produced by the current ABE fermentation process could result in substantial fossil energy savings (39%-56%) and avoid large percentage of the GHG emission burden, yielding a 32%-48% reduction relative to using conventional gasoline. On energy basis, a bushel of corn produces less liquid fuel from the ABE process than that from the corn ethanol dry mill process. The coproduction of a significant portion of acetone from the current ABE fermentation presents a challenge. A market analysis of acetone, as well as research and development on robust alternative technologies and processes that minimize acetone while increase the butanol yield, should be conducted.

  13. 10 CFR 436.42 - Evaluation of Life-Cycle Cost Effectiveness.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Evaluation of Life-Cycle Cost Effectiveness. 436.42... PROGRAMS Agency Procurement of Energy Efficient Products § 436.42 Evaluation of Life-Cycle Cost...) ENERGY STAR qualified and FEMP designated products may be assumed to be life-cycle cost-effective. (b)...

  14. 10 CFR 436.42 - Evaluation of Life-Cycle Cost Effectiveness.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Evaluation of Life-Cycle Cost Effectiveness. 436.42... PROGRAMS Agency Procurement of Energy Efficient Products § 436.42 Evaluation of Life-Cycle Cost...) ENERGY STAR qualified and FEMP designated products may be assumed to be life-cycle cost-effective. (b)...

  15. Life Cycle Assessment of Wall Systems

    NASA Astrophysics Data System (ADS)

    Ramachandran, Sriranjani

    Natural resource depletion and environmental degradation are the stark realities of the times we live in. As awareness about these issues increases globally, industries and businesses are becoming interested in understanding and minimizing the ecological footprints of their activities. Evaluating the environmental impacts of products and processes has become a key issue, and the first step towards addressing and eventually curbing climate change. Additionally, companies are finding it beneficial and are interested in going beyond compliance using pollution prevention strategies and environmental management systems to improve their environmental performance. Life-cycle Assessment (LCA) is an evaluative method to assess the environmental impacts associated with a products' life-cycle from cradle-to-grave (i.e. from raw material extraction through to material processing, manufacturing, distribution, use, repair and maintenance, and finally, disposal or recycling). This study focuses on evaluating building envelopes on the basis of their life-cycle analysis. In order to facilitate this analysis, a small-scale office building, the University Services Building (USB), with a built-up area of 148,101 ft2 situated on ASU campus in Tempe, Arizona was studied. The building's exterior envelope is the highlight of this study. The current exterior envelope is made of tilt-up concrete construction, a type of construction in which the concrete elements are constructed horizontally and tilted up, after they are cured, using cranes and are braced until other structural elements are secured. This building envelope is compared to five other building envelope systems (i.e. concrete block, insulated concrete form, cast-in-place concrete, steel studs and curtain wall constructions) evaluating them on the basis of least environmental impact. The research methodology involved developing energy models, simulating them and generating changes in energy consumption due to the above mentioned

  16. An ideal sealed source life-cycle

    SciTech Connect

    Tompkins, Joseph Andrew

    2009-01-01

    In the last 40 years, barriers to compliant and timely disposition of radioactive sealed sources have become apparent. The story starts with the explosive growth of nuclear gauging technologies in the 1960s. Dozens of companies in the US manufactured sources and many more created nuclear solutions to industrial gauging problems. Today they do not yet know how many Cat 1, 2, or 3 sources there are in the US. There are, at minimum, tens of thousands of sources, perhaps hundreds of thousands of sources. Affordable transportation solutions to consolidate all of these sources and disposition pathways for these sources do not exist. The root problem seems to be a lack of necessary regulatory framework that has allowed all of these problems to accumulate with no national plan for solving the problem. In the 1960s, Pu-238 displaced Pu-239 for most neutron and alpha source applications. In the 1970s, the availability of inexpensive Am-241 resulted in a proliferation of low energy gamma sources used in nuclear gauging, well logging, pacemakers, and X-ray fluorescence applications for example. In the 1980s, rapid expansion of worldwide petroleum exploration resulted in the expansion of Am-241 sources into international locations. Improvements of technology and regulation resulted in a change in isotopic distribution as Am-241 made Pu-239 and Pu-238 obsolete. Many early nuclear gauge technologies have been made obsolete as they were replaced by non-nuclear technoogies. With uncertainties in source end of life disposition and increased requirements for sealed source security, nuclear gauging technology is the last choice for modern process engineering gauging solutions. Over the same period, much was learned about licensing LLW disposition facilities as evident by the closure of early disposition facilities like Maxey Flats. The current difficulties in sealed source disposition start with adoption of the NLLW policy act of 1985, which created the state LLW compact system they

  17. Life-cycle assessment of a Waste-to-Energy plant in central Norway: Current situation and effects of changes in waste fraction composition.

    PubMed

    Lausselet, Carine; Cherubini, Francesco; Del Alamo Serrano, Gonzalo; Becidan, Michael; Strømman, Anders Hammer

    2016-12-01

    Waste-to-Energy (WtE) plants constitute one of the most common waste management options to deal with municipal solid waste. WtE plants have the dual objective to reduce the amount of waste sent to landfills and simultaneously to produce useful energy (heat and/or power). Energy from WtE is gaining steadily increasing importance in the energy mix of several countries. Norway is no exception, as energy recovered from waste currently represents the main energy source of the Norwegian district heating system. Life-cycle assessments (LCA) of WtE systems in a Norwegian context are quasi-nonexistent, and this study assesses the environmental performance of a WtE plant located in central Norway by combining detailed LCA methodology with primary data from plant operations. Mass transfer coefficients and leaching coefficients are used to trace emissions over the various life-cycle stages from waste logistics to final disposal of the ashes. We consider different fractions of input waste (current waste mix, insertion of 10% car fluff, 5% clinical waste and 10% and 50% wood waste), and find a total contribution to Climate Change Impact Potential ranging from 265 to 637gCO2eq/kg of waste and 25 to 61gCO2eq/MJ of heat. The key drivers of the environmental performances of the WtE system being assessed are the carbon biogenic fraction and the lower heating value of the incoming waste, the direct emissions at the WtE plant, the leaching of the heavy metals at the landfill sites and to a lesser extent the use of consumables. We benchmark the environmental performances of our WtE systems against those of fossil energy systems, and we find better performance for the majority of environmental impact categories, including Climate Change Impact Potential, although some trade-offs exist (e.g. higher impacts on Human Toxicity Potential than natural gas, but lower than coal). Also, the insertion of challenging new waste fractions is demonstrated to be an option both to cope with the excess

  18. LIFE CYCLE ASSESSMENT: PRINCIPLES AND PRACTICE

    EPA Science Inventory

    The following document provides an introductory overview of Life Cycle Assessment (LCA) and describes the general uses and major components of LCA. This document is an update and merger of two previous EPA documents on LCA ("Life Cycle Assessment: Inventory Guidelines and Princip...

  19. From life cycle talking to taking action

    EPA Science Inventory

    The series of Life Cycle Management (LCM) conferences has aimed to create a platform for users and developers of life cycle assessment tools to share their experiences as they challenge traditional environmental management practices, which are narrowly confined (“gate-to-gate”) a...

  20. The priming of periodical cicada life cycles.

    PubMed

    Grant, Peter R

    2005-04-01

    Periodical cicadas in the genus Magicicada have unusually long life cycles for insects, with periodicities of either 13 or 17 years. Biologists have explained the evolution of these prime number period lengths in terms of resource limitation, enemy avoidance, hybridization and climate change. Here, I question two aspects of these explanations: that the origin of the life cycles was associated with Pleistocene ice age events, and that they evolved from shorter life cycles through the lengthening of nymphal stages in annual increments. Instead, I suggest that these life cycles evolved earlier than the Pleistocene and involved an abrupt transition from a nine-year to a 13-year life cycle, driven, in part, by interspecific competition.

  1. Life Cycle Assessment of Carbon Fiber-Reinforced Polymer Composites

    SciTech Connect

    Das, Sujit

    2011-01-01

    Carbon fiber-reinforced polymer matrix composites is gaining momentum with the pressure to lightweight vehicles, however energy-intensity and cost remain some of the major barriers before this material could be used in large-scale automotive applications. A representative automotive part, i.e., a 30.8 kg steel floor pan having a 17% weight reduction potential with stringent cash performance requirements has been considered for the life cycle energy and emissions analysis based on the latest developments occurring in the precursor type (conventional textile-based PAN vs. renewable-based lignin), part manufacturing (conventional SMC vs. P4) and fiber recycling technologies. Carbon fiber production is estimated to be about 14 times more energy-intensive than conventional steel production, however life cycle primary energy use is estimated to be quite similar to the conventional part, i.e., 18,500 MJ/part, especially when considering the uncertainty in LCI data that exists from using numerous sources in the literature. Lignin P4 technology offers the most life cycle energy and CO2 emissions benefits compared to a conventional stamped steel technology. With a 20% reduction in energy use in the lignin conversion to carbon fiber and free availability of lignin as a by-product of ethanol and wood production, a 30% reduction in life cycle energy use could be obtained. A similar level of life cycle energy savings could also be obtained with a higher part weight reduction potential of 43%.

  2. A data management life-cycle

    USGS Publications Warehouse

    Ferderer, David A.

    2001-01-01

    Documented, reliable, and accessible data and information are essential building blocks supporting scientific research and applications that enhance society's knowledge base (fig. 1). The U.S. Geological Survey (USGS), a leading provider of science data, information, and knowledge, is uniquely positioned to integrate science and natural resource information to address societal needs. The USGS Central Energy Resources Team (USGS-CERT) provides critical information and knowledge on the quantity, quality, and distribution of the Nation's and the world's oil, gas, and coal resources. By using a life-cycle model, the USGS-CERT Data Management Project is developing an integrated data management system to (1) promote access to energy data and information, (2) increase data documentation, and (3) streamline product delivery to the public, scientists, and decision makers. The project incorporates web-based technology, data cataloging systems, data processing routines, and metadata documentation tools to improve data access, enhance data consistency, and increase office efficiency

  3. 10 CFR 436.42 - Evaluation of Life-Cycle Cost Effectiveness.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) ENERGY STAR qualified and FEMP designated products may be assumed to be life-cycle cost-effective. (b) In... 10 Energy 3 2014-01-01 2014-01-01 false Evaluation of Life-Cycle Cost Effectiveness. 436.42 Section 436.42 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND...

  4. 10 CFR 436.42 - Evaluation of Life-Cycle Cost Effectiveness.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) ENERGY STAR qualified and FEMP designated products may be assumed to be life-cycle cost-effective. (b) In... 10 Energy 3 2013-01-01 2013-01-01 false Evaluation of Life-Cycle Cost Effectiveness. 436.42 Section 436.42 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND...

  5. 10 CFR 436.42 - Evaluation of Life-Cycle Cost Effectiveness.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) ENERGY STAR qualified and FEMP designated products may be assumed to be life-cycle cost-effective. (b) In... 10 Energy 3 2012-01-01 2012-01-01 false Evaluation of Life-Cycle Cost Effectiveness. 436.42 Section 436.42 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND...

  6. A Life Cycle Assessment (LCA) comparison of three management options for waste papers: bioethanol production, recycling and incineration with energy recovery.

    PubMed

    Wang, Lei; Templer, Richard; Murphy, Richard J

    2012-09-01

    This study uses Life Cycle Assessment (LCA) to assess the environmental profiles and greenhouse gas (GHG) emissions for bioethanol production from waste papers and to compare them with the alternative waste management options of recycling or incineration with energy recovery. Bioethanol production scenarios both with and without pre-treatments were conducted. It was found that an oxidative lime pre-treatment reduced GHG emissions and overall environmental burdens for a newspaper-to-bioethanol process whereas a dilute acid pre-treatment raised GHG emissions and overall environmental impacts for an office paper-to-bioethanol process. In the comparison of bioethanol production systems with alternative management of waste papers by different technologies, it was found that the environmental profiles of each system vary significantly and this variation affects the outcomes of the specific comparisons made. Overall, a number of configurations of bioethanol production from waste papers offer environmentally favourable or neutral profiles when compared with recycling or incineration.

  7. Life Cycle. K-6 Science Curriculum.

    ERIC Educational Resources Information Center

    Blueford, J. R.; And Others

    Life Cycle is one of the units of a K-6 unified science curriculum program. The unit consists of four organizing sub-themes: (1) past life (focusing on dinosaurs and fossil formation, types, and importance); (2) animal life (examining groups of invertebrates and vertebrates, cells, reproduction, and classification systems); (3) plant life…

  8. NiH2 Cycle Life Study

    NASA Technical Reports Server (NTRS)

    Hollandsworth, Roger P.; Armantrout, Jon D.; Rao, Gopalakrishna M.

    2002-01-01

    Cycle life studies have been performed at Eagle Picher Technologies (EPT), on HST Mantech design cells with various pedigrees of slurry and dry sinter processed electrodes, to evaluate peak load voltage performance during generic load profile testing. These tests provide information for determining voltage and capacity fade (degradation) mechanisms, and their impact on nickel hydrogen cell cycle life. Comparison of peak load voltage fade, as a function of State of Charge and cycle life, with capacity data from HST indicates that the cycle life limiting mechanism is due to impedance growth, and formation of a second discharge plateau. With a second plateau on discharge, capacity from the cell is still available, but at an unacceptable low voltage of 0.8 V per cell (17.6 V battery). Data shows that cell impedance increases with cycle number and depth of discharge, as expected.

  9. Optimizing product life cycle processes in design phase

    NASA Astrophysics Data System (ADS)

    Faneye, Ola. B.; Anderl, Reiner

    2002-02-01

    Life cycle concepts do not only serve as basis in assisting product developers understand the dependencies between products and their life cycles, they also help in identifying potential opportunities for improvement in products. Common traditional concepts focus mainly on energy and material flow across life phases, necessitating the availability of metrics derived from a reference product. Knowledge of life cycle processes won from an existing product is directly reused in its redesign. Depending on sales volume nevertheless, the environmental impact before product optimization can be substantial. With modern information technologies today, computer-aided life cycle methodologies can be applied well before product use. On the basis of a virtual prototype, life cycle processes are analyzed and optimized, using simulation techniques. This preventive approach does not only help in minimizing (or even eliminating) environmental burdens caused by product, costs incurred due to changes in real product can also be avoided. The paper highlights the relationship between product and life cycle and presents a computer-based methodology for optimizing the product life cycle during design, as presented by SFB 392: Design for Environment - Methods and Tools at Technical University, Darmstadt.

  10. All about Animal Life Cycles. Animal Life for Children. [Videotape].

    ERIC Educational Resources Information Center

    2000

    While watching the development from tadpole to frog, caterpillar to butterfly, and pup to wolf, children learn about the life cycles of animals, the different stages of development, and the average life spans of a variety of creatures. This videotape correlates to the following National Science Education Standards for Life Science: characteristics…

  11. Analysis of life cycle assessment of food/energy/waste systems and development and analysis of microalgae cultivation/wastewater treatment inclusive system

    NASA Astrophysics Data System (ADS)

    Armstrong, Kristina Ochsner

    Across the world, crises in food, energy, land and water resources, as well as waste and greenhouse gas accumulation are inspiring research into the interactions among these environmental pressures. In the food/energy/waste problem set, most of the research is focused on describing the antagonistic relationships between food, energy and waste; these relationships are often analyzed with life cycle assessment (LCA). These analyses often include reporting of metrics of environmental performance with few functional units, often focusing on energy use, productivity and environmental impact while neglecting water use, food nutrition and safety. Additionally, they are often attributional studies with small scope which report location-specific parameters only. This thesis puts forth a series of recommendations to amend the current practice of LCA to combat these limitations and then utilizes these suggestions to analyze a synergistic food/waste/energy system. As an example analysis, this thesis describes the effect of combining wastewater treatment and microalgae cultivation on the productivity and scalability of the synergistic system. To ameliorate the high nutrient and water demands of microalgae cultivation, many studies suggest that microalgae be cultivated in wastewater so as to achieve large scale and low environmental costs. While cultivation studies have found this to be true, none explore the viability of the substitution in terms of productivity and scale-up. The results of this study suggest that while the integrated system may be suitable for low-intensity microalgae cultivation, for freshwater microalgae species or wastewater treatment it is not suitable for high intensity salt water microalgae cultivation. This study shows that the integration could result in reduced lipid content, high wastewater requirements, no greenhouse gas emissions benefit and only a small energy benefit.

  12. Comparing environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy--a life cycle perspective.

    PubMed

    De Vries, J W; Vinken, T M W J; Hamelin, L; De Boer, I J M

    2012-12-01

    The aim of this work was to assess the environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy, from a life cycle perspective. This included assessing environmental impacts and land use change emissions (LUC) required to replace used co-substrates for anaerobic digestion. Environmental impact categories considered were climate change, terrestrial acidification, marine and freshwater eutrophication, particulate matter formation, land use, and fossil fuel depletion. Six scenarios were evaluated: mono-digestion of manure, co-digestion with: maize silage, maize silage and glycerin, beet tails, wheat yeast concentrate (WYC), and roadside grass. Mono-digestion reduced most impacts, but represented a limited source for bio-energy. Co-digestion with maize silage, beet tails, and WYC (competing with animal feed), and glycerin increased bio-energy production (up to 568%), but at expense of increasing climate change (through LUC), marine eutrophication, and land use. Co-digestion with wastes or residues like roadside grass gave the best environmental performance.

  13. The potential of bio-methane as bio-fuel/bio-energy for reducing greenhouse gas emissions: a qualitative assessment for Europe in a life cycle perspective.

    PubMed

    Tilche, Andrea; Galatola, Michele

    2008-01-01

    Anaerobic digestion is a well known process that (while still capable of showing new features) has experienced several waves of technological development. It was "born" as a wastewater treatment system, in the 1970s showed promise as an alternative energy source (in particular from animal waste), in the 1980s and later it became a standard for treating organic-matter-rich industrial wastewater, and more recently returned to the market for its energy recovery potential, making use of different biomasses, including energy crops. With the growing concern around global warming, this paper looks at the potential of anaerobic digestion in terms of reduction of greenhouse gas (GHG) emissions. The potential contribution of anaerobic digestion to GHG reduction has been computed for the 27 EU countries on the basis of their 2005 Kyoto declarations and using life cycle data. The theoretical potential contribution of anaerobic digestion to Kyoto and EU post-Kyoto targets has been calculated. Two different possible biogas applications have been considered: electricity production from manure waste, and upgraded methane production for light goods vehicles (from landfill biogas and municipal and industrial wastewater treatment sludges). The useful heat that can be produced as by-product from biogas conversion into electricity has not been taken into consideration, as its real exploitation depends on local conditions. Moreover the amount of biogas already produced via dedicated anaerobic digestion processes has also not been included in the calculations. Therefore the overall gains achievable would be even higher than those reported here. This exercise shows that biogas may considerably contribute to GHG emission reductions in particular if used as a biofuel. Results also show that its use as a biofuel may allow for true negative GHG emissions, showing a net advantage with respect to other biofuels. Considering also energy crops that will become available in the next few years as a

  14. Life cycle cost based program decisions

    NASA Technical Reports Server (NTRS)

    Dick, James S.

    1991-01-01

    The following subject areas are covered: background (space propulsion facility assessment team final report); changes (Advanced Launch System, National Aerospace Plane, and space exploration initiative); life cycle cost analysis rationale; and recommendation to panel.

  15. LIFE CYCLE IMPACT ASSESSMENT - A GLOBAL PERSPECTIVE

    EPA Science Inventory

    Research within the field of life cycle impact assessment has greatly improved since the work of Heijungs and Guinee in 1992. Methodologies are currently available to address specific locations within North America, Europe and Asia. Internationally researchers are working togethe...

  16. Managing the Life Cycle Risks of Nanomaterials

    DTIC Science & Technology

    2009-07-01

    is available. 117 Eurekalert (2009) 35 Final Managing the Life Cycle Risks of...nanotechnologies, MEPs say," http://www.euractiv.com/en/science/data-market-nanotechnologies-meps/article-180893, April, 2 2009. Eurekalert . "Southwest Nano

  17. LIFE CYCLE ASSESSMENT: AN INTERNATIONAL EXPERIENCE

    EPA Science Inventory

    Life Cycle Assessment (LCA) is used to evaluate environmental burdens associated with a product, process or activity by identifying and quantifying relevant inputs and outputs of the defined system and evaluating their potential impacts. This article outlines the four components ...

  18. Life-cycle cost analysis task summary

    NASA Technical Reports Server (NTRS)

    Mckenzie, M.

    1980-01-01

    The DSN life cycle cost (LCC) analysis methodology was completed. The LCC analysis methodology goals and objectives are summarized, as well as the issues covered by the methodology, its expected use, and its long range implications.

  19. LIFE CYCLE ASSESSMENT OF GASOLINE BLENDING OPTIONS

    EPA Science Inventory

    A life cycle assessment has been done to compare the potential environmental impacts of various gasoline blends that meet octane and vapour pressure specifications. The main blending components of alkylate, cracked gasoline and reformate have different octane and vapour pressure...

  20. Life Cycle Greenhouse Gas Emissions from Electricity Generation

    SciTech Connect

    None, None

    2013-01-01

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  1. An Integrated Approach to Life Cycle Analysis

    NASA Technical Reports Server (NTRS)

    Chytka, T. M.; Brown, R. W.; Shih, A. T.; Reeves, J. D.; Dempsey, J. A.

    2006-01-01

    Life Cycle Analysis (LCA) is the evaluation of the impacts that design decisions have on a system and provides a framework for identifying and evaluating design benefits and burdens associated with the life cycles of space transportation systems from a "cradle-to-grave" approach. Sometimes called life cycle assessment, life cycle approach, or "cradle to grave analysis", it represents a rapidly emerging family of tools and techniques designed to be a decision support methodology and aid in the development of sustainable systems. The implementation of a Life Cycle Analysis can vary and may take many forms; from global system-level uncertainty-centered analysis to the assessment of individualized discriminatory metrics. This paper will focus on a proven LCA methodology developed by the Systems Analysis and Concepts Directorate (SACD) at NASA Langley Research Center to quantify and assess key LCA discriminatory metrics, in particular affordability, reliability, maintainability, and operability. This paper will address issues inherent in Life Cycle Analysis including direct impacts, such as system development cost and crew safety, as well as indirect impacts, which often take the form of coupled metrics (i.e., the cost of system unreliability). Since LCA deals with the analysis of space vehicle system conceptual designs, it is imperative to stress that the goal of LCA is not to arrive at the answer but, rather, to provide important inputs to a broader strategic planning process, allowing the managers to make risk-informed decisions, and increase the likelihood of meeting mission success criteria.

  2. Life Cycle of the Career Teacher.

    ERIC Educational Resources Information Center

    Steffy, Betty E., Ed.; Wolfe, Michael P, Ed.; Pasch, Suzanne H., Ed.; Enz, Billie J., Ed.

    This book demonstrates how teachers and administrators can work collaboratively on maintaining continual growth, focusing on the Life Cycle of the Career Teacher Model, which crosses the continuum of practice from preservice preparation through professional development. Case studies illustrate the Reflection-Renewal-Growth Cycle Model in action.…

  3. Connections: Life Cycle Kinesthetic Learning.

    ERIC Educational Resources Information Center

    Energy Office, Grand Junction, CO.

    An understanding of the environment and peoples' role in its preservation and destruction must be acquired in order to circumvent the current threat of environmental deterioration. This document provides lessons developed to help students and others reconnect with the natural systems which sustain life. The following activities are provided for…

  4. Life cycle assessment as an analytical tool in strategic environmental assessment. Lessons learned from a case study on municipal energy planning in Sweden

    SciTech Connect

    Bjoerklund, Anna

    2012-01-15

    Life cycle assessment (LCA) is explored as an analytical tool in strategic environmental assessment (SEA), illustrated by case where a previously developed SEA process was applied to municipal energy planning in Sweden. The process integrated decision-making tools for scenario planning, public participation and environmental assessment. This article describes the use of LCA for environmental assessment in this context, with focus on methodology and practical experiences. While LCA provides a systematic framework for the environmental assessment and a wider systems perspective than what is required in SEA, LCA cannot address all aspects of environmental impact required, and therefore needs to be complemented by other tools. The integration of LCA with tools for public participation and scenario planning posed certain methodological challenges, but provided an innovative approach to designing the scope of the environmental assessment and defining and assessing alternatives. - Research highlights: Black-Right-Pointing-Pointer LCA was explored as analytical tool in an SEA process of municipal energy planning. Black-Right-Pointing-Pointer The process also integrated LCA with scenario planning and public participation. Black-Right-Pointing-Pointer Benefits of using LCA were a systematic framework and wider systems perspective. Black-Right-Pointing-Pointer Integration of tools required some methodological challenges to be solved. Black-Right-Pointing-Pointer This proved an innovative approach to define alternatives and scope of assessment.

  5. The Professional Life Cycle of Teachers.

    ERIC Educational Resources Information Center

    Huberman, Michael

    1989-01-01

    This article discusses trends in the literature related to phases or stages in the professional life of teachers. It then presents the results of a study involving 160 secondary teachers in Switzerland. Findings suggest that four modal sequences are applicable to the professional life cycle of teachers. (IAH)

  6. High Cycle-life Shape Memory Polymer at High Temperature

    NASA Astrophysics Data System (ADS)

    Kong, Deyan; Xiao, Xinli

    2016-09-01

    High cycle-life is important for shape memory materials exposed to numerous cycles, and here we report shape memory polyimide that maintained both high shape fixity (Rf) and shape recovery (Rr) during the more than 1000 bending cycles tested. Its critical stress is 2.78 MPa at 250 °C, and the shape recovery process can produce stored energy of 0.218 J g‑1 at the efficiency of 31.3%. Its high Rf is determined by the large difference in storage modulus at rubbery and glassy states, while the high Rr mainly originates from its permanent phase composed of strong π-π interactions and massive chain entanglements. Both difference in storage modulus and overall permanent phase were preserved during the bending deformation cycles, and thus high Rf and Rr were observed in every cycle and the high cycle-life will expand application areas of SMPs enormously.

  7. High Cycle-life Shape Memory Polymer at High Temperature

    PubMed Central

    Kong, Deyan; Xiao, Xinli

    2016-01-01

    High cycle-life is important for shape memory materials exposed to numerous cycles, and here we report shape memory polyimide that maintained both high shape fixity (Rf) and shape recovery (Rr) during the more than 1000 bending cycles tested. Its critical stress is 2.78 MPa at 250 °C, and the shape recovery process can produce stored energy of 0.218 J g−1 at the efficiency of 31.3%. Its high Rf is determined by the large difference in storage modulus at rubbery and glassy states, while the high Rr mainly originates from its permanent phase composed of strong π-π interactions and massive chain entanglements. Both difference in storage modulus and overall permanent phase were preserved during the bending deformation cycles, and thus high Rf and Rr were observed in every cycle and the high cycle-life will expand application areas of SMPs enormously. PMID:27641148

  8. The Life Cycle of Engineered Nanoparticles.

    PubMed

    González-Gálvez, David; Janer, Gemma; Vilar, Gemma; Vílchez, Alejandro; Vázquez-Campos, Socorro

    2017-01-01

    The first years in the twenty-first century have meant the inclusion of nanotechnology in most industrial sectors, from very specific sensors to construction materials. The increasing use of nanomaterials in consumer products has raised concerns about their potential risks for workers, consumers and the environment. In a comprehensive risk assessment or life cycle assessment, a life cycle schema is the starting point necessary to build up the exposure scenarios and study the processes and mechanisms driving to safety concerns. This book chapter describes the processes that usually occur at all the stages of the life cycle of the nano-enabled product, from the nanomaterial synthesis to the end-of-life of the products. Furthermore, release studies reported in literature related to these processes are briefly discussed.

  9. Life cycle analyses and resource assessments.

    PubMed

    Fredga, Karl; Mäler, Karl-Göran

    2010-01-01

    Prof. Ulgiati stresses that we should always use an ecosystem view when transforming energy from one form to another. Sustainable growth and development of both environmental and human-dominated systems require optimum use of available resources for maximum power output. We have to adapt to the laws of nature because nature has to take care of all the waste products we produce. The presentation addresses a much needed shift away from linear production and consumption pattern, toward reorganization of economies and lifestyle that takes complexity--of resources, of the environment and of the economy--into proper account. The best way to reach maximum yield from the different kinds of biomass is to use biorefineries. Biorefinery is defined as the sustainable processing of biomass into a spectrum of marketable products like heat, power, fuels, chemicals, food, feed, and materials. However, biomass from agricultural land must be used for the production of food and not fuel. Prof. Voss focuses on the sustainability of energy supply chains and energy systems. Life cycle analyses (LCA) provides the conceptual framework for a comprehensive comparative evaluation of energy supply options with regard to their resource requirements as well as the health and environmental impact. Full scope LCA considers not only the emissions from plant operation, construction, and decommissioning but also the environmental burdens and resource requirements associated with the entire lifetime of all relevant upstream and downstream processes within the energy chain. This article describes the results of LCA analyses for state-of-the-art heating and electricity systems as well as of advanced future systems. Total costs are used as a measure for the overall resource consumption.

  10. An Overview of Biodiesel and Petroleum Diesel Life Cycles

    SciTech Connect

    Sheehan, John; Camobreco, Vince; Duffield, James; Graboski, Michael; Shapouri, Housein

    1998-05-01

    This overview is extracted from a detailed, comprehensive report entitled Life Cycle Inventories of Biodiesel and Petroleum Diesel for Use in an Urban Bus. This report presents the findings from a study of the life cycle inventories (LCIs) for petroleum diesel and biodiesel. An LCI comprehensively quantifies all the energy and environmental flows associated with a product from “cradle to grave.” It provides information on raw materials extracted from the environment; energy resources consumed; and air, water, and solid waste emissions generated.

  11. Material and energy flows in the materials production, assembly, and end-of-life stages of the automotive lithium-ion battery life cycle

    SciTech Connect

    Dunn, J.B.; Gaines, L.; Barnes, M.; Wang, M.; Sullivan, J.

    2012-06-21

    This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn{sub 2}O{sub 4}). These data are incorporated into Argonne National Laboratory's Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn{sub 2}O{sub 4} as the cathode material using Argonne's Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new or updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.

  12. Material and Energy Flows in the Materials Production, Assembly, and End-of-Life Stages of the Automotive Lithium-Ion Battery Life Cycle

    SciTech Connect

    Dunn, Jennifer B.; Gaines, Linda; Barnes, Matthew; Sullivan, John L.; Wang, Michael

    2014-01-01

    This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn₂O₄). These data are incorporated into Argonne National Laboratory’s Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn₂O₄ as the cathode material using Argonne’s Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new or updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.

  13. From "farm to fork" strawberry system: current realities and potential innovative scenarios from life cycle assessment of non-renewable energy use and green house gas emissions.

    PubMed

    Girgenti, Vincenzo; Peano, Cristiana; Baudino, Claudio; Tecco, Nadia

    2014-03-01

    In this study, we analysed the environmental profile of the strawberry industry in Northern Italy. The analysis was conducted using two scenarios as reference systems: strawberry crops grown in unheated plastic tunnels using currently existing cultivation techniques, post-harvest management practices and consumption patterns (scenario 1) and the same strawberry cultivation chain in which some of the materials used were replaced with bio-based materials (scenario 2). In numerous studies, biodegradable polymers have been shown to be environmentally friendly, thus potentially reducing environmental impacts. These materials can be recycled into carbon dioxide and water through composting. Many materials, such as Mater-BI® and PLA®, are also derived from renewable resources. The methodology chosen for the environmental analysis was a life cycle assessment (LCA) based on a consequential approach developed to assess a product's overall environmental impact from the production system to its usage and disposal. In the field stage, a traditional mulching film (non-biodegradable) could be replaced with a biodegradable product. This change would result in waste production of 0 kg/ha for the bio-based product compared to 260 kg/ha of waste for polyethylene (PE). In the post-harvest stage, the issue addressed was the use and disposal of packaging materials. The innovative scenario evaluated herein pertains to the use of new packaging materials that increase the shelf life of strawberries, thereby decreasing product losses while increasing waste management efficiency at the level of a distribution platform and/or sales outlet. In the event of product deterioration or non-sale of the product, the packaging and its contents could be collected together as organic waste without any additional processes because the packaging is compostable according to EN13432. Scenario 2 would achieve reductions of 20% in the global warming potential and non-renewable energy impact categories.

  14. Climate regulation, energy provisioning and water purification: Quantifying ecosystem service delivery of bioenergy willow grown on riparian buffer zones using life cycle assessment.

    PubMed

    Styles, David; Börjesson, Pål; D'Hertefeldt, Tina; Birkhofer, Klaus; Dauber, Jens; Adams, Paul; Patil, Sopan; Pagella, Tim; Pettersson, Lars B; Peck, Philip; Vaneeckhaute, Céline; Rosenqvist, Håkan

    2016-12-01

    Whilst life cycle assessment (LCA) boundaries are expanded to account for negative indirect consequences of bioenergy such as indirect land use change (ILUC), ecosystem services such as water purification sometimes delivered by perennial bioenergy crops are typically neglected in LCA studies. Consequential LCA was applied to evaluate the significance of nutrient interception and retention on the environmental balance of unfertilised energy willow planted on 50-m riparian buffer strips and drainage filtration zones in the Skåne region of Sweden. Excluding possible ILUC effects and considering oil heat substitution, strategically planted filter willow can achieve net global warming potential (GWP) and eutrophication potential (EP) savings of up to 11.9 Mg CO2e and 47 kg PO4e ha(-1) year(-1), respectively, compared with a GWP saving of 14.8 Mg CO2e ha(-1) year(-1) and an EP increase of 7 kg PO4e ha(-1) year(-1) for fertilised willow. Planting willow on appropriate buffer and filter zones throughout Skåne could avoid 626 Mg year(-1) PO4e nutrient loading to waters.

  15. CCA-treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW landfill disposal.

    PubMed

    Jambeck, Jenna; Weitz, Keith; Solo-Gabriele, Helena; Townsend, Timothy; Thorneloe, Susan

    2007-01-01

    Chromated copper arsenate (CCA)-treated wood is a preservative treated wood construction product that grew in use in the 1970s for both residential and industrial applications. Although some countries have banned the use of the product for some applications, others have not, and the product continues to enter the waste stream from construction, demolition and remodeling projects. CCA-treated wood as a solid waste is managed in various ways throughout the world. In the US, CCA-treated wood is disposed primarily within landfills; however some of the wood is combusted in waste-to-energy (WTE) facilities. In other countries, the predominant disposal option for wood, sometimes including CCA-treated wood, is combustion for the production of energy. This paper presents an estimate of the quantity of CCA-treated wood entering the disposal stream in the US, as well as an examination of the trade-offs between landfilling and WTE combustion of CCA-treated wood through a life-cycle assessment and decision support tool (MSW DST). Based upon production statistics, the estimated life span and the phaseout of CCA-treated wood, recent disposal projections estimate the peak US disposal rate to occur in 2008, at 9.7 million m(3). CCA-treated wood, when disposed with construction and demolition (C&D) debris and municipal solid waste (MSW), has been found to increase arsenic and chromium concentrations in leachate. For this reason, and because MSW landfills are lined, MSW landfills have been recommended as a preferred disposal option over unlined C&D debris landfills. Between landfilling and WTE for the same mass of CCA-treated wood, WTE is more expensive (nearly twice the cost), but when operated in accordance with US Environmental Protection Agency (US EPA) regulations, it produces energy and does not emit fossil carbon emissions. If the wood is managed via WTE, less landfill area is required, which could be an influential trade-off in some countries. Although metals are concentrated

  16. Experimental and life cycle assessment analysis of gas emission from mechanically-biologically pretreated waste in a landfill with energy recovery.

    PubMed

    Di Maria, Francesco; Sordi, Alessio; Micale, Caterina

    2013-11-01

    The global gaseous emissions produced by landfilling the Mechanically Sorted Organic Fraction (MSOF) with different weeks of Mechanical Biological Treatment (MBT) was evaluated for an existing waste management system. One MBT facility and a landfill with internal combustion engines fuelled by the landfill gas for electrical energy production operate in the waste management system considered. An experimental apparatus was used to simulate 0, 4, 8 and 16weeks of aerobic stabilization and the consequent biogas potential (Nl/kg) of a large sample of MSOF withdrawn from the full-scale MBT. Stabilization achieved by the waste was evaluated by dynamic oxygen uptake and fermentation tests. Good correlation coefficients (R(2)), ranging from 0.7668 to 0.9772, were found between oxygen uptake, fermentation and anaerobic test values. On the basis of the results of several anaerobic tests, the methane production rate k (year(-1)) was evaluated. k ranged from 0.436 to 0.308year(-1) and the bio-methane potential from 37 to 12Nm(3)/tonne, respectively, for the MSOF with 0 and 16weeks of treatment. Energy recovery from landfill gas ranged from about 11 to 90kWh per tonne of disposed MSOF depending on the different scenario investigated. Life cycle analysis showed that the scenario with 0weeks of pre-treatment has the highest weighted global impact even if opposite results were obtained with respect to the single impact criteria. MSOF pre-treatment periods longer than 4weeks showed rather negligible variation in the global impact of system emissions.

  17. Experimental and life cycle assessment analysis of gas emission from mechanically–biologically pretreated waste in a landfill with energy recovery

    SciTech Connect

    Di Maria, Francesco Sordi, Alessio; Micale, Caterina

    2013-11-15

    Highlights: • Bio-methane landfill emissions from different period (0, 4, 8, 16 weeks) MTB waste have been evaluated. • Electrical energy recoverable from landfill gas ranges from 11 to about 90 kW h/tonne. • Correlation between oxygen uptake, energy recovery and anaerobic gas production shows R{sup 2} ranging from 0.78 to 0.98. • LCA demonstrate that global impact related to gaseous emissions achieve minimum for 4 week of MBT. - Abstract: The global gaseous emissions produced by landfilling the Mechanically Sorted Organic Fraction (MSOF) with different weeks of Mechanical Biological Treatment (MBT) was evaluated for an existing waste management system. One MBT facility and a landfill with internal combustion engines fuelled by the landfill gas for electrical energy production operate in the waste management system considered. An experimental apparatus was used to simulate 0, 4, 8 and 16 weeks of aerobic stabilization and the consequent biogas potential (Nl/kg) of a large sample of MSOF withdrawn from the full-scale MBT. Stabilization achieved by the waste was evaluated by dynamic oxygen uptake and fermentation tests. Good correlation coefficients (R{sup 2}), ranging from 0.7668 to 0.9772, were found between oxygen uptake, fermentation and anaerobic test values. On the basis of the results of several anaerobic tests, the methane production rate k (year{sup −1}) was evaluated. k ranged from 0.436 to 0.308 year{sup −1} and the bio-methane potential from 37 to 12 N m{sup 3}/tonne, respectively, for the MSOF with 0 and 16 weeks of treatment. Energy recovery from landfill gas ranged from about 11 to 90 kW h per tonne of disposed MSOF depending on the different scenario investigated. Life cycle analysis showed that the scenario with 0 weeks of pre-treatment has the highest weighted global impact even if opposite results were obtained with respect to the single impact criteria. MSOF pre-treatment periods longer than 4 weeks showed rather negligible variation

  18. Waste management through life cycle assessment of products

    NASA Astrophysics Data System (ADS)

    Borodin, Yu V.; Aliferova, T. E.; Ncube, A.

    2015-04-01

    The rapid growth of a population in a country can contribute to high production of waste. Municipal waste and industrial waste can bring unhealthy and unpleasant environment or even diseases to human beings if the wastes are not managed properly.With increasing concerns over waste and the need for ‘greener’ products, it is necessary to carry out Life Cycle Assessments of products and this will help manufacturers take the first steps towards greener designs by assessing their product's carbon output. Life Cycle Assessment (LCA) is a process to evaluate the environmental burdens associated with a product, process or activity by identifying and quantifying energy and materials used and wastes released to the environment, and to assess the impact of those energy and material used and released to the environment. The aim of the study was to use a life cycle assessment approach to determine which waste disposal options that will substantially reduce the environmental burdens posed by the Polyethylene Terephthalate (PET) bottle. Several important observations can be made. 1) Recycling of the PET bottle waste can significantly reduce the energy required across the life cycle because the high energy inputs needed to process the requisite virgin materials greatly exceeds the energy needs of the recycling process steps. 2) Greenhouse gases can be reduced by opting for recycling instead of landfilling and incineration. 3) Quantity of waste emissions released from different disposal options was identified. 4) Recycling is the environmentally preferable disposal method for the PET bottle. Industry can use the tools and data in this study to evaluate the health, environmental, and energy implications of the PET bottle. LCA intends to aid decision-makers in this respect, provided that the scientific underpinning is available. Strategic incentives for product development and life cycle management can then be developed.

  19. A Robust Hybrid Zn-Battery with Ultralong Cycle Life.

    PubMed

    Li, Bing; Quan, Junye; Loh, Adeline; Chai, Jianwei; Chen, Ye; Tan, Chaoliang; Ge, Xiaoming; Hor, T S Andy; Liu, Zhaolin; Zhang, Hua; Zong, Yun

    2017-01-11

    Advanced batteries with long cycle life and capable of harnessing more energies from multiple electrochemical reactions are both fundamentally interesting and practically attractive. Herein, we report a robust hybrid zinc-battery that makes use of transition-metal-based redox reaction (M-O-OH → M-O, M = Ni and Co) and oxygen reduction reaction (ORR) to deliver more electrochemical energies of comparably higher voltage with much longer cycle life. The hybrid battery was constructed using an integrated electrode of NiCo2O4 nanowire arrays grown on carbon-coated nickel foam, coupled with a zinc plate anode in alkaline electrolyte. Benefitted from the M-O/M-O-OH redox reactions and rich ORR active sites in NiCo2O4, the battery has concurrently exhibited high working voltage (by M-O-OH → M-O) and high energy density (by ORR). The good oxygen evolution reaction (OER) activity of the electrode and the reversible M-O ↔ M-O-OH reactions also enabled smooth recharging of the batteries, leading to excellent cycling stabilities. Impressively, the hybrid batteries maintained highly stable charge-discharge voltage profile under various testing conditions, for example, almost no change was observed over 5000 cycles at a current density of 5 mA cm(-2) after some initial stabilization. With merits of higher working voltage, high energy density, and ultralong cycle life, such hybrid batteries promise high potential for practical applications.

  20. 10 CFR 455.64 - Life-cycle cost methodology.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... present value. The format for displaying life-cycle costs shall be a savings-to-investment ratio. (b) An...-investment ratio is the ratio of the present value of net cost savings attributable to an energy conservation measure to the present value of the net increase in investment, maintenance and operating, and...

  1. Planning Evaluation through the Program Life Cycle

    ERIC Educational Resources Information Center

    Scheirer, Mary Ann; Mark, Melvin M.; Brooks, Ariana; Grob, George F.; Chapel, Thomas J.; Geisz, Mary; McKaughan, Molly; Leviton, Laura

    2012-01-01

    Linking evaluation methods to the several phases of a program's life cycle can provide evaluation planners and funders with guidance about what types of evaluation are most appropriate over the trajectory of social and educational programs and other interventions. If methods are matched to the needs of program phases, evaluation can and should…

  2. Farinon microwave end of life cycle

    SciTech Connect

    Poe, R.C.

    1996-06-24

    This engineering report evaluates alternatives for the replacement of the Farinon microwave radio system. The system is beyond its expected life cycle and has decreasing maintainability. Principal applications supported by the Farinon system are two electrical utility monitor and control systems, the Integrated Transfer Trip System (ITTS), and the Supervisory Control and Data Acquisition (SCADA) system.

  3. MAKING LIFE CYCLE INVENTORY DATA AVAILABLE

    EPA Science Inventory

    Making Life Cycle Inventory Data Available

    Mary Ann Curran
    US EPA, National Risk Management Research Laboratory
    Address: 26 W. Martin Luther King Drive (MS-466)
    Cincinnati, OH 45268 USA
    Phone: 513-569-7782
    Fax: 513-569-7111
    E-Mail: curran.maryann@...

  4. The Life Cycle of the Japanese Family.

    ERIC Educational Resources Information Center

    Kumagai, Fumie

    1984-01-01

    Analyzes the existing Japanese population data, focusing on changes in the timing of events in a family life cycle of Japanese women. Analysis revealed that the overall pattern of the family career of Japanese women today closely resembles that of their American and Canadian counterparts. (LLL)

  5. A Life Cycle Model for Career Teachers.

    ERIC Educational Resources Information Center

    Steffy, Betty E.; Wolfe, Michael P.

    2001-01-01

    As teachers progress through their careers, they must grow and transform to remain effective. The Life Cycle of the Career Teacher model, which is an application of Mezirow's transformation theory, provides the framework to ensure that all students have competent, caring, and qualified teachers, addressing six stages and transitions teachers face…

  6. BROAD-BASED ENVIRONMENTAL LIFE CYCLE ASSESSMENT

    EPA Science Inventory

    Pollution prevention through Life Cycle Assessment (LCA) is a departure from evaluating waste management options that look mainly at single issues such as recyclability or reduced toxicity. An LCA is a snapshot in time of inputs and outputs. It can be used as an objective technic...

  7. Life cycle cost report of VHLW cask

    SciTech Connect

    1995-06-01

    This document, the Life Cycle Cost Report (LCCR) for the VHLW Cask, presents the life cycle costs for acquiring, using, and disposing of the VHLW casks. The VHLW cask consists of a ductile iron cask body, called the shielding insert, which is used for storage and transportation, and ultimately for disposal of Defense High Level Waste which has been vitrified and placed into VHLW canisters. Each ductile iron VHLW shielding insert holds one VHLW canister. For transportation, the shielding insert is placed into a containment overpack. The VHLW cask as configured for transportation is a legal weight truck cask which will be licensed by NRC. The purpose of this LCCR is to present the development of the life cycle costs for using the VHLW cask to transport VHLW canisters from the generating sites to a disposal site. Life cycle costs include the cost of acquiring, operating, maintaining, and ultimately dispositioning the VHLW cask and its associated hardware. This report summarizes costs associated with transportation of the VHLW casks. Costs are developed on the basis of expected usage, anticipated source and destination locations, and expected quantities of VHLW which must be transported. DOE overhead costs, such as the costs associated with source and destination facility handling of the VHLW, are not included. Also not included are costs exclusive to storage or disposal of the VHLW waste.

  8. A model for life cycle records management

    SciTech Connect

    Tayfun, A.C.; Gibson, S.

    1996-10-01

    The primary objective of this paper is to update an old Records Management concept; the management of records according to the records life cycle. Accordingly, the authors are presenting a new version of the Records Management life cycle model and its associated elements. The basic concept is that every record progresses through three phases; a record is created, is used and maintained, and dispositioned. In this presentation, the authors update the very old straight line model and the more current circular model with a new model that essentially combines the two. The model portrays Records Management as having a distinct straight-line beginning, a circular use and maintenance phase, and a distinct straight-line end. The presentation maps Records Management Program elements and activities against the phases depicted in the model. The authors believe that this new records life cycle model is an enhanced physical representation of the process. This presentation is designed to help put all of the specialized Records Management topics that participants have heard about during the conference in the perspective of the records life cycle.

  9. The changing nature of life cycle assessment

    PubMed Central

    McManus, Marcelle C.; Taylor, Caroline M.

    2015-01-01

    LCA has evolved from its origins in energy analysis in the 1960s and 70s into a wide ranging tool used to determine impacts of products or systems over several environmental and resource issues. The approach has become more prevalent in research, industry and policy. Its use continues to expand as it seeks to encompass impacts as diverse as resource accounting and social well being. Carbon policy for bioenergy has driven many of these changes. Enabling assessment of complex issues over a life cycle basis is beneficial, but the process is sometimes difficult. LCA's use in framing is increasingly complex and more uncertain, and in some cases, irreconcilable. The charged environment surrounding biofuels and bioenergy exacerbates all of these. Reaching its full potential to help guide difficult policy discussions and emerging research involves successfully managing LCA's transition from attributional to consequential and from retrospective to prospective. This paper examines LCA's on-going evolution and its use within bioenergy deployment. The management of methodological growth in the context of the unique challenges associated with bioenergy and biofuels is explored. Changes seen in bioenergy LCA will bleed into other LCA arenas, especially where it is important that a sustainable solution is chosen. PMID:26664146

  10. Energy-Efficient Routes for the Production of Gasoline from Biogas and Pyrolysis Oil—Process Design and Life-Cycle Assessment

    PubMed Central

    2017-01-01

    Two novel routes for the production of gasoline from pyrolysis oil (from timber pine) and biogas (from ley grass) are simulated, followed by a cradle-to-gate life-cycle assessment of the two production routes. The main aim of this work is to conduct a holistic evaluation of the proposed routes and benchmark them against the conventional route of producing gasoline from natural gas. A previously commercialized method of synthesizing gasoline involves conversion of natural gas to syngas, which is further converted to methanol, and then as a last step, the methanol is converted to gasoline. In the new proposed routes, the syngas production step is different; syngas is produced from a mixture of pyrolysis oil and biogas in the following two ways: (i) autothermal reforming of pyrolysis oil and biogas, in which there are two reactions in one reactor (ATR) and (ii) steam reforming of pyrolysis oil and catalytic partial oxidation of biogas, in which there are separated but thermally coupled reactions and reactors (CR). The other two steps to produce methanol from syngas, and gasoline from methanol, remain the same. The purpose of this simulation is to have an ex-ante comparison of the performance of the new routes against a reference, in terms of energy and sustainability. Thus, at this stage of simulations, nonrigorous, equilibrium-based models have been used for reactors, which will give the best case conversions for each step. For the conventional production route, conversion and yield data available in the literature have been used, wherever available.The results of the process design showed that the second method (separate, but thermally coupled reforming) has a carbon efficiency of 0.53, compared to the conventional route (0.48), as well as the first route (0.40). The life-cycle assessment results revealed that the newly proposed processes have a clear advantage over the conventional process in some categories, particularly the global warming potential and primary

  11. LIFE Materials: Fuel Cycle and Repository Volume 11

    SciTech Connect

    Shaw, H; Blink, J A

    2008-12-12

    The fusion-fission LIFE engine concept provides a path to a sustainable energy future based on safe, carbon-free nuclear power with minimal nuclear waste. The LIFE design ultimately offers many advantages over current and proposed nuclear energy technologies, and could well lead to a true worldwide nuclear energy renaissance. When compared with existing and other proposed future nuclear reactor designs, the LIFE engine exceeds alternatives in the most important measures of proliferation resistance and waste minimization. The engine needs no refueling during its lifetime. It requires no removal of fuel or fissile material generated in the LIFE engine. It leaves no weapons-attractive material at the end of life. Although there is certainly a need for additional work, all indications are that the 'back end' of the fuel cycle does not to raise any 'showstopper' issues for LIFE. Indeed, the LIFE concept has numerous benefits: (1) Per unit of electricity generated, LIFE engines would generate 20-30 times less waste (in terms of mass of heavy metal) requiring disposal in a HLW repository than does the current once-through fuel cycle. (2) Although there may be advanced fuel cycles that can compete with LIFE's low mass flow of heavy metal, all such systems require reprocessing, with attendant proliferation concerns; LIFE engines can do this without enrichment or reprocessing. Moreover, none of the advanced fuel cycles can match the low transuranic content of LIFE waste. (3) The specific thermal power of LIFE waste is initially higher than that of spent LWR fuel. Nevertheless, this higher thermal load can be managed using appropriate engineering features during an interim storage period, and could be accommodated in a Yucca-Mountain-like repository by appropriate 'staging' of the emplacement of waste packages during the operational period of the repository. The planned ventilation rates for Yucca Mountain would be sufficient for LIFE waste to meet the thermal constraints of

  12. Life cycle planning: An evolving concept

    SciTech Connect

    Moore, P.J.R.; Gorman, I.G.

    1994-12-31

    Life-cycle planning is an evolving concept in the management of oil and gas projects. BHP Petroleum now interprets this idea to include all development planning from discovery and field appraisal to final abandonment and includes safety, environmental, technical, plant, regulatory, and staffing issues. This article describes in the context of the Timor Sea, how despite initial successes and continuing facilities upgrades, BHPP came to perceive that current operations could be the victim of early development successes, particularly in the areas of corrosion and maintenance. The search for analogies elsewhere lead to the UK North Sea, including the experiences of Britoil and BP, both of which performed detailed Life of Field studies in the later eighties. These materials have been used to construct a format and content for total Life-cycle plans in general and the social changes required to ensure their successful application in Timor Sea operations and deployment throughout Australia.

  13. Optimization of life cycle management costs

    SciTech Connect

    Banerjee, A.K.

    1994-12-31

    As can be seen from the case studies, a LCM program needs to address and integrate, in the decision process, technical, political, licensing, remaining plant life, component replacement cycles, and financial issues. As part of the LCM evaluations, existing plant programs, ongoing replacement projects, short and long-term operation and maintenance issues, and life extension strategies must be considered. The development of the LCM evaluations and the cost benefit analysis identifies critical technical and life cycle cost parameters. These {open_quotes}discoveries{close_quotes} result from the detailed and effective use of a consistent, quantifiable, and well documented methodology. The systematic development and implementation of a plant-wide LCM program provides for an integrated and structured process that leads to the most practical and effective recommendations. Through the implementation of these recommendations and cost effective decisions, the overall power production costs can be controlled and ultimately lowered.

  14. Cradle-to-gate life cycle inventory of vancomycin hydrochloride.

    PubMed

    Ponder, Celia; Overcash, Michael

    2010-02-15

    A life cycle analysis on the cradle-to-gate production of vancomycin hydrochloride, which begins at natural resource extraction and spans through factory (gate) production, not only shows all inputs, outputs, and energy usage to manufacture the product and all related supply chain chemicals, but can highlight where process changes would have the greatest impact on raw material and energy consumption and emissions. Vancomycin hydrochloride is produced by a low-yield fermentation process that accounts for 47% of the total cradle-to-gate energy. The fermentation step consumes the most raw materials and energy cradle-to-gate. Over 75% of the total cradle-to-gate energy consumption is due to steam use; sterilization within fermentation is the largest user of steam. Aeration and agitation in the fermentation vessels use 65% of the cradle-to-gate electrical energy. To reduce raw materials, energy consumption, and the associated environmental footprint of producing vancomycin hydrochloride, other sterilization methods, fermentation media, nutrient sources, or synthetic manufacture should be investigated. The reported vancomycin hydrochloride life cycle inventory is a part of a larger life cycle study of the environmental consequences of the introduction of biocide-coated medical textiles for the prevention of MRSA (methicillin-resistant Staphylococcus aureus) nosocomial infections.

  15. Life cycle assessment analysis of supercritical coal power units

    NASA Astrophysics Data System (ADS)

    Ziębik, Andrzej; Hoinka, Krzysztof; Liszka, Marcin

    2010-09-01

    This paper presents the Life Cycle Assessment (LCA) analysis concerning the selected options of supercritical coal power units. The investigation covers a pulverized power unit without a CCS (Carbon Capture and Storage) installation, a pulverized unit with a "post-combustion" installation (MEA type) and a pulverized power unit working in the "oxy-combustion" mode. For each variant the net electric power amounts to 600 MW. The energy component of the LCA analysis has been determined. It describes the depletion of non-renewable natural resources. The energy component is determined by the coefficient of cumulative energy consumption in the life cycle. For the calculation of the ecological component of the LCA analysis the cumulative CO2 emission has been applied. At present it is the basic emission factor for the LCA analysis of power plants. The work also presents the sensitivity analysis of calculated energy and ecological factors.

  16. [Carbon balance analysis of corn fuel ethanol life cycle].

    PubMed

    Zhang, Zhi-shan; Yuan, Xi-gang

    2006-04-01

    The quantity of greenhouse gas emissions (net carbon emissions) of corn-based fuel ethanol, which is known as an alternative for fossil fuel is an important criteria for evaluating its sustainability. The methodology of carbon balance analysis for fuel ethanol from corn was developed based on principles of life cycle analysis. For the production state of fuel ethanol from summer corn in China, carbon budgets in overall life cycle of the ethanol were evaluated and its main influence factors were identified. It presents that corn-based fuel ethanol has no obvious reduction of carbon emissions than gasoline, and potential improvement in carbon emission of the life cycle of corn ethanol could be achieved by reducing the nitrogen fertilizer and irrigation electricity used in the corn farming and energy consumption in the ethanol conversion process.

  17. Life cycle assessment part 2: current impact assessment practice.

    PubMed

    Pennington, D W; Potting, J; Finnveden, G; Lindeijer, E; Jolliet, O; Rydberg, T; Rebitzer, G

    2004-07-01

    Providing our society with goods and services contributes to a wide range of environmental impacts. Waste generation, emissions and the consumption of resources occur at many stages in a product's life cycle-from raw material extraction, energy acquisition, production and manufacturing, use, reuse, recycling, through to ultimate disposal. These all contribute to impacts such as climate change, stratospheric ozone depletion, photooxidant formation (smog), eutrophication, acidification, toxicological stress on human health and ecosystems, the depletion of resources and noise-among others. The need exists to address these product-related contributions more holistically and in an integrated manner, providing complimentary insights to those of regulatory/process-oriented methodologies. A previous article (Part 1, Rebitzer et al., 2004) outlined how to define and model a product's life cycle in current practice, as well as the methods and tools that are available for compiling the associated waste, emissions and resource consumption data into a life cycle inventory. This article highlights how practitioners and researchers from many domains have come together to provide indicators for the different impacts attributable to products in the life cycle impact assessment (LCIA) phase of life cycle assessment (LCA).

  18. Uncertainty in Life Cycle Assessment of Nanomaterials

    NASA Astrophysics Data System (ADS)

    Seager, T. P.; Linkov, I.

    Despite concerns regarding environmental fate and toxicology, engineered nanostructured material manufacturing is expanding at an increasingly rapid pace. In particular, the unique properties of single walled carbon nanotubes (SWCNT) have made them attractive in many areas, including high-tech power applications such as experimental batteries, fuel cells or electrical wiring. The intensity of research interest in SWCNT has raised questions regarding the life cycle environmental impact of nanotechnologies, including assessment of: worker and consumer safety, greenhouse gas emissions, toxicological risks associated with production or product emissions and the disposition of nanoproducts at end of life. However, development of appropriate nanotechnology assessment tools has lagged progress in the nanotechnologies themselves. In particular, current approaches to life cycle assessment (LCA) — originally developed for application in mature manufacturing industries such as automobiles and chemicals — suffer from several shortcomings that make applicability to nanotechnologies problematic. Among these are uncertainties related to the variability of material properties, toxicity and risk, technology performance in the use phase, nanomaterial degradation and change during the product life cycle and the impact assessment stage of LCA. This chapter expounds upon the unique challenges presented by nanomaterials in general, specifies sources of uncertainty and variability in LCA of SWCNT for use in electric and hybrid vehicle batteries and makes recommendations for modeling and decision-making using LCA in a multi-criteria decision analysis framework under conditions of high uncertainty.1

  19. Maritime vessel obsolescence, life cycle cost and design service life

    NASA Astrophysics Data System (ADS)

    Dinu, O.; Ilie, A. M.

    2015-11-01

    Maritime vessels have long service life and great costs of building, manning, operating, maintaining and repairing throughout their life. Major actions are needed to repair, renovate, sometime built or even replace those scrapped when technology or demand changes determine obsolescence. It is regarded as a concern throughout vessel's entire life cycle and reflects changes in expectation regarding performances in functioning, safety and environmental effects. While service live may differ from physical lives, expectations about physical lives is the main factors that determines design service life. Performance and failure are illustrated conceptually and represented in a simplified form considering the evolution of vessels parameters during its service life. In the proposed methodology an accumulated vessel lifecycle cost is analyzed and obsolescence is characterized from ship's design, performances, maintenance and management parameters point of view. Romanian ports feeding Black Sea are investigated in order to provide comprehensive information on: number and types of vessels, transport capacity and life cycle length. Recommendations are to be made in order to insure a best practice in lifecycle management in order to reduce costs.

  20. Life-Cycle Data Management at NOAA

    NASA Astrophysics Data System (ADS)

    de la Beaujardiere, J.

    2014-12-01

    The US National Oceanic and Atmospheric Administration (NOAA) operates over a hundred observing systems which span the environment from the bottom of the ocean to the surface of the Sun. The resulting data are essential for immediate priorities such as weather forecasting, and the data also constitute an irreplaceable resource collected at great cost. It is therefore necessary to carefully preserve this information for ongoing scientific use, for new research and applications, and to ensure reproducibility of scientific conclusions. The NOAA data life-cycle includes activities in three major phases: planning and production, management of the resulting data, and usage activities. This paper will describe current work by the NOAA Environmental Data Management Committee (EDMC), Data Management Integration Team (DMIT), and the NOAA National Data Centers in areas including DM planning, documentation, cataloging, data access, and preservation and stewardship to improve and standardize policies and practices for life-cycle data management.

  1. Life Cycle Costing in Government Procurement.

    DTIC Science & Technology

    1985-05-01

    majority of this work, treatment is also given to state procurement policies . Primary Sources: Decisions of the Comptroller General Federal...decisions has become clear to a number of procurement policy makers.2 While still quite limited, the consideration of post-acquisition costs is...make no mention of life cycle Ii costing. However, the concepts and policies dictated by 29 _ Comp. Gen. Report B-178214, May 21, 1973, where the

  2. Trusted Computing Exemplar: Life Cycle Management Plan

    DTIC Science & Technology

    2014-12-12

    15. SUBJECT TERMS Machinery control systems, MCS, life cycle security, high assurance, system security, trustworthy systems 16. SECURITY... manufacturing process, and how the product is built and packaged for a customer. The Delivery procedures describe how the product is built so that it...customer must take to securely install and configure the product. It is acceptable to split the Delivery procedures into its manufacturing and customer

  3. Life cycle assessment of biodiesel production in China.

    PubMed

    Liang, Sai; Xu, Ming; Zhang, Tianzhu

    2013-02-01

    This study aims to evaluate energy, economic, and environmental performances of seven categories of biodiesel feedstocks by using the mixed-unit input-output life cycle assessment method. Various feedstocks have different environmental performances, indicating potential environmental problem-shift. Jatropha seed, castor seed, waste cooking oil, and waste extraction oil are preferred feedstocks for biodiesel production in the short term. Positive net energy yields and positive net economic benefits of biodiesel from these four feedstocks are 2.3-52.0% of their life cycle energy demands and 74.1-448.4% of their economic costs, respectively. Algae are preferred in the long term mainly due to their less arable land demands. Special attention should be paid to potential environmental problems accompanying feedstock choice: freshwater use, ecotoxicity potentials, photochemical oxidation potential, acidification potential and eutrophication potential. Moreover, key processes are identified by sensitivity analysis to direct future technology improvements. Finally, supporting measures are proposed to optimize China's biodiesel development.

  4. 19 CFR 207.27 - Short life cycle products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Short life cycle products. 207.27 Section 207.27... SUBSIDIZED EXPORTS TO THE UNITED STATES Final Determinations, Short Life Cycle Products § 207.27 Short life... short life cycle merchandise which has been the subject of two or more affirmative...

  5. 19 CFR 207.27 - Short life cycle products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 3 2011-04-01 2011-04-01 false Short life cycle products. 207.27 Section 207.27... SUBSIDIZED EXPORTS TO THE UNITED STATES Final Determinations, Short Life Cycle Products § 207.27 Short life... short life cycle merchandise which has been the subject of two or more affirmative...

  6. A geospatial data life cycle services framework

    NASA Astrophysics Data System (ADS)

    Meyer, Jörg; Ehbrecht, Carsten; Kindermann, Stephan

    2014-05-01

    We present an OGC standards based framework enabling the stepwise development and integration of data life cycle management services. We concentrate on data life cycle steps after the data generation: data identification, replication, publication and distribution. The framework exposes various data transport, data checking and metadata generation functionalities as individual services. These services can be chained to support users in cross institutional data management activities. The framework is currently being deployed as part of a distributed climate and environmental data life cycle lab initially supporting the following data management activities: - data transport and replication between home institute and a data center - data quality control at a remote compute site or remote data center - assignment of persistent identifiers to data entities - publication of quality results as well as data at a data portal A concrete application scenario is shown, where climate model data is transported to a data center and checked and published as part of a worldwide data federation. From a technology perspective the following basic services are integrated in the application scenario: - iRods middleware based data transport - Handle based persistent identifier assignment - domain specific quality control software - data publication services provided by the worldwide earth system grid data federation (ESGF). All these basic services are wrapped as OGC web processing services and integrated in the presented framework. Next steps include the integration of data services provided by the European EUDAT data infrastructure as well as supporting specific observational data application scenarios.

  7. Conceptual Framework To Extend Life Cycle Assessment ...

    EPA Pesticide Factsheets

    Life Cycle Assessment (LCA) is a decision-making tool that accounts for multiple impacts across the life cycle of a product or service. This paper presents a conceptual framework to integrate human health impact assessment with risk screening approaches to extend LCA to include near-field chemical sources (e.g., those originating from consumer products and building materials) that have traditionally been excluded from LCA. A new generation of rapid human exposure modeling and high-throughput toxicity testing is transforming chemical risk prioritization and provides an opportunity for integration of screening-level risk assessment (RA) with LCA. The combined LCA and RA approach considers environmental impacts of products alongside risks to human health, which is consistent with regulatory frameworks addressing RA within a sustainability mindset. A case study is presented to juxtapose LCA and risk screening approaches for a chemical used in a consumer product. The case study demonstrates how these new risk screening tools can be used to inform toxicity impact estimates in LCA and highlights needs for future research. The framework provides a basis for developing tools and methods to support decision making on the use of chemicals in products. This paper presents a conceptual framework for including near-field exposures into Life Cycle Assessment using advanced human exposure modeling and high-throughput tools

  8. Long cycle life rechargeable lithium batteries

    NASA Technical Reports Server (NTRS)

    Pasquariello, D. M.; Willstaedt, E. B.; Abraham, K. M.

    1992-01-01

    Cycle life and safety of delta-LiAl/TiS2 cells were evaluated using laboratory and AA-size cells. Analysis of the alloys (which contained 60, 70, 80, or 85 wt-pct. lithium and are designated 60 LiAl etc.) showed them to contain a mixture of elemental Li and Al4Li9. Cycling efficiencies correlated with the amount of free lithium in the anode. Using an electrolyte with the composition 48 v/o THF:48 v/o 2-MeTHF:4 v/o 2-MeF/LiAsF6(1.5M), a 70 LiAl/TiS2 laboratory cell yielded a cycling efficiency of 96.4 pct. when cycled at a 100 pct. discharge depth which compares well with Li anode cycling efficiencies of 96 to 97.5 pct. obtained previously in this electrolyte. The highest cycling efficiency of any delta-LiAl/TiS2 laboratory cell was 96.7 pct. when the 60 LiAl alloy was used with the 35 v/o PC:35 v/o EC:30 v/o triglyme/LiAsF6(1.0M) electrolyte. The 70 LiAl alloy was selected for further testing in AA cells since it was malleable for the fabrication of spirally wound electrodes, and its overall cycling performance was sufficiently good. AA-size 70 LiAl/TiS2 cells appear to have capacity/rate properties similar to those for identical Li/TiS2 cells. The use of the delta-LiAl alloy anodes does not appear to offer any safety advantage when cycled cells are shorted or heated.

  9. Techno-economic and life-cycle modeling and analysis of various energy storage technologies coupled with a solar photovoltaic array

    NASA Astrophysics Data System (ADS)

    Peterson, Brian Andrew

    Renewable energies, such as wind and solar, are a growing piece of global energy consumption. The chief motivation to develop renewable energy is two-fold: reducing carbon dioxide emissions and reducing dependence on diminishing fossil fuel supplies. Energy storage is critical to the growth of renewable energy because it allows for renewably-generated electricity to be consumed at times when renewable sources are unavailable, and it also enhances power quality (maintaining voltage and frequency) on an electric grid which becomes increasingly unstable as more renewable energy is added. There are numerous means of storing energy with different advantages, but none has emerged as the clear solution of choice for renewable energy storage. This thesis attempts to explore the current and developing state of energy storage and how it can be efficiently implemented with crystalline silicon solar photovotlaics, which has a minimum expected lifetime of 25 years assumed in this thesis. A method of uniformly comparing vastly different energy storage technologies using empirical data was proposed. Energy storage technologies were compared based on both economic valuation over the system life and cradle-to-gate pollution rates for systems with electrochemical batteries. For stationary, non-space-constrained settings, lead-acid batteries proved to be the most economical. Carbon-enhanced lead-acid batteries were competitive, showing promise as an energy storage technology. Lithium-ion batteries showed the lowest pollution rate of electrochemical batteries examined, but both lithium-ion and lead-acid batteries produce comparable carbon dioxide to coal-derived electricity.

  10. Life Cycle Impact Assessment Research Developments and Needs

    EPA Science Inventory

    Life Cycle Impact Assessment (LCIA) developments are explained along with key publications which record discussions which comprised ISO 14042 and SETAC document development, UNEP SETAC Life Cycle Initiative research, and research from public and private research institutions. It ...

  11. U.S. Life Cycle Inventory Database Roadmap (Brochure)

    SciTech Connect

    Deru, M.

    2009-08-01

    Life cycle inventory data are the primary inputs for conducting life cycle assessment studies. Studies based on high-quality data that are consistent, accurate, and relevant allow for robust, defensible, and meaningful results.

  12. U.S. Life Cycle Inventory Database Roadmap

    SciTech Connect

    none,

    2009-08-01

    Life cycle inventory data are the primary inputs for conducting life cycle assessment studies. Studies based on high-quality data that are consistent, accurate, and relevant allow for robust, defensible, and meaningful results.

  13. Cycle life test of secondary spacecraft cells

    NASA Technical Reports Server (NTRS)

    Harkness, J. D.

    1980-01-01

    The results of the life cycling program on rechargeable calls are reported. Information on required data, the use of which the data will be put, application details, including orbital description, charge control methods, load rquirements, etc., are given. Cycle tests were performed on 660 sealed, nickel cadmium cells. The cells consisted of seven sample classifications ranging form 3.0 to 20 amp. hours. Nickel cadmium, silver cadmium, and silver zinc sealed cells, excluding synchronous orbit and accelerated test packs were added. The capacities of the nickel cadmium cells, the silver cadmium and the silver zinc cells differed in range of amp hrs. The cells were cylced under different load, charge control, and temperature conditions. All cell packs are recharged by use of a pack voltage limit. All charging is constant current until the voltage limit is reached.

  14. Future of lignite resources: a life cycle analysis.

    PubMed

    Wang, Qingsong; Liu, Wei; Yuan, Xueliang; Zheng, Xiaoning; Zuo, Jian

    2016-12-01

    Lignite is a low-quality energy source which accounts for 13 % of China's coal reserves. It is imperative to improve the quality of lignite for large-scale utilization. To further explore and analyze the influence of various key processes on the environment and economic costs, a lignite drying and compression technology is evaluated using an integrated approach of life cycle assessment and life cycle costs. Results showed that lignite mining, direct air emissions, and electricity consumption have most significant impacts on the environment. An integrated evaluation of life cycle assessment and life cycle costs showed that the most significant contributor to the environmental impacts and economic costs was the lignite mining process. The impact of transportation and wastewater treatment process on the environment and economic costs was small enough to be ignored. Critical factors were identified for reducing the environmental and economic impacts of lignite drying and compression technology. These findings provide useful inputs for both industrial practice and policy making for exploitation, processing, and utilization of lignite resources.

  15. Sustainability metrics: life cycle assessment and green design in polymers.

    PubMed

    Tabone, Michaelangelo D; Cregg, James J; Beckman, Eric J; Landis, Amy E

    2010-11-01

    This study evaluates the efficacy of green design principles such as the "12 Principles of Green Chemistry," and the "12 Principles of Green Engineering" with respect to environmental impacts found using life cycle assessment (LCA) methodology. A case study of 12 polymers is presented, seven derived from petroleum, four derived from biological sources, and one derived from both. The environmental impacts of each polymer's production are assessed using LCA methodology standardized by the International Organization for Standardization (ISO). Each polymer is also assessed for its adherence to green design principles using metrics generated specifically for this paper. Metrics include atom economy, mass from renewable sources, biodegradability, percent recycled, distance of furthest feedstock, price, life cycle health hazards and life cycle energy use. A decision matrix is used to generate single value metrics for each polymer evaluating either adherence to green design principles or life-cycle environmental impacts. Results from this study show a qualified positive correlation between adherence to green design principles and a reduction of the environmental impacts of production. The qualification results from a disparity between biopolymers and petroleum polymers. While biopolymers rank highly in terms of green design, they exhibit relatively large environmental impacts from production. Biopolymers rank 1, 2, 3, and 4 based on green design metrics; however they rank in the middle of the LCA rankings. Polyolefins rank 1, 2, and 3 in the LCA rankings, whereas complex polymers, such as PET, PVC, and PC place at the bottom of both ranking systems.

  16. Software Development Life Cycle Security Issues

    NASA Astrophysics Data System (ADS)

    Kaur, Daljit; Kaur, Parminder

    2011-12-01

    Security is now-a-days one of the major problems because of many reasons. Security is now-a-days one of the major problems because of many reasons. The main cause is that software can't withstand security attacks because of vulnerabilities in it which are caused by defective specifications design and implementation. We have conducted a survey asking software developers, project managers and other people in software development about their security awareness and implementation in Software Development Life Cycle (SDLC). The survey was open to participation for three weeks and this paper explains the survey results.

  17. The Life Cycle of Stratospheric Aerosol Particles

    NASA Technical Reports Server (NTRS)

    Hamill, Patrick; Jensen, Eric J.; Russell, P. B.; Bauman, Jill J.

    1997-01-01

    This paper describes the life cycle of the background (nonvolcanic) stratospheric sulfate aerosol. The authors assume the particles are formed by homogeneous nucleation near the tropical tropopause and are carried aloft into the stratosphere. The particles remain in the Tropics for most of their life, and during this period of time a size distribution is developed by a combination of coagulation, growth by heteromolecular condensation, and mixing with air parcels containing preexisting sulfate particles. The aerosol eventually migrates to higher latitudes and descends across isentropic surfaces to the lower stratosphere. The aerosol is removed from the stratosphere primarily at mid- and high latitudes through various processes, mainly by isentropic transport across the tropopause from the stratosphere into the troposphere.

  18. 10 CFR 435.306 - Selecting a life cycle effective proposed building design.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Selecting a life cycle effective proposed building design. 435.306 Section 435.306 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for...

  19. 10 CFR 435.306 - Selecting a life cycle effective proposed building design.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Selecting a life cycle effective proposed building design. 435.306 Section 435.306 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for...

  20. 10 CFR 435.306 - Selecting a life cycle effective proposed building design.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Selecting a life cycle effective proposed building design. 435.306 Section 435.306 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for...

  1. 10 CFR 435.306 - Selecting a life cycle effective proposed building design.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Selecting a life cycle effective proposed building design. 435.306 Section 435.306 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for...

  2. 10 CFR 435.306 - Selecting a life cycle effective proposed building design.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Selecting a life cycle effective proposed building design. 435.306 Section 435.306 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for...

  3. Penetration of hydrogen-based energy system and its potential for causing global environmental change: Scoping risk analysis based on life cycle thinking

    SciTech Connect

    Kikuchi, Ryunosuke . E-mail: kikuchi@mail.esac.pt

    2006-03-15

    A hydrogen-based economy seems superficially to be environmentally friendly, and many people have worked toward its realization. Today hydrogen is mainly produced by decarbonizing fossil fuels (e.g. natural gas), and in the future decarbonization of both fossil fuels and biomass will play a leading role in the production of hydrogen. The main purpose of this paper is to suggest the identification of potential environmental risks in terms of 'life cycle thinking' (which considers all aspects from production to utilization) with regard to the hydrogen-based economy to come. Hydrogen production by decarbonization results in CO{sub 2} emissions. The final destination of the recovered CO{sub 2} is uncertain. Furthermore, there is a possibility that hydrogen molecules will escape to the atmosphere, posing risks that could occasion global environmental changes such as depletion of stratospheric ozone, temperature change in the stratosphere and change of the hydrides cycle through global vaporization. Based on the results of simulation, requirements regarding the following items are proposed to minimize potential risks: hydrogen source, production and storage loss.

  4. Life-cycle analysis and the ecology of biofuels.

    PubMed

    Davis, Sarah C; Anderson-Teixeira, Kristina J; Delucia, Evan H

    2009-03-01

    Biofuels have been proposed as an ecologically benign alternative to fossil fuels. There is, however, considerable uncertainty in the scientific literature about their ecological benefit. Here, we review studies that apply life-cycle analysis (LCA), a computational tool for assessing the efficiency and greenhouse gas (GHG) impact of energy systems, to biofuel feedstocks. Published values for energy efficiency and GHG differ significantly even for an individual species, and we identify three major sources of variation in these LCA results. By providing new information on biogeochemistry and plant physiology, ecologists and plant scientists can increase the accuracy of LCA for biofuel production systems.

  5. HUBBLE SNAPSHOT CAPTURES LIFE CYCLE OF STARS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this stunning picture of the giant galactic nebula NGC 3603, the crisp resolution of NASA's Hubble Space Telescope captures various stages of the life cycle of stars in one single view. To the upper right of center is the evolved blue supergiant called Sher 25. The star has a unique circumstellar ring of glowing gas that is a galactic twin to the famous ring around the supernova 1987A. The grayish-bluish color of the ring and the bipolar outflows (blobs to the upper right and lower left of the star) indicates the presence of processed (chemically enriched) material. Near the center of the view is a so-called starburst cluster dominated by young, hot Wolf-Rayet stars and early O-type stars. A torrent of ionizing radiation and fast stellar winds from these massive stars has blown a large cavity around the cluster. The most spectacular evidence for the interaction of ionizing radiation with cold molecular-hydrogen cloud material are the giant gaseous pillars to the right and lower left of the cluster. These pillars are sculptured by the same physical processes as the famous pillars Hubble photographed in the M16 Eagle Nebula. Dark clouds at the upper right are so-called Bok globules, which are probably in an earlier stage of star formation. To the lower left of the cluster are two compact, tadpole-shaped emission nebulae. Similar structures were found by Hubble in Orion, and have been interpreted as gas and dust evaporation from possibly protoplanetary disks (proplyds). The 'proplyds' in NGC 3603 are 5 to 10 times larger in size and correspondingly also more massive. This single view nicely illustrates the entire stellar life cycle of stars, starting with the Bok globules and giant gaseous pillars, followed by circumstellar disks, and progressing to evolved massive stars in the young starburst cluster. The blue supergiant with its ring and bipolar outflow marks the end of the life cycle. The color difference between the supergiant's bipolar outflow and the diffuse

  6. A Review of Battery Life-Cycle Analysis. State of Knowledge and Critical Needs

    SciTech Connect

    Sullivan, J. L.; Gaines, L.

    2010-10-01

    This report examines battery life-cycle assessments with a focus on cradle-to-gate (CTG) energy and greenhouse gas (GHG) and criteria emissions. This includes battery manufacturing and as the production of materials that make up batteries. The report covers both what is known about battery life cycles, as well as what needs to be established for better environmental evaluations.

  7. Life Cycle Assessment of Metals: A Scientific Synthesis

    PubMed Central

    Nuss, Philip; Eckelman, Matthew J.

    2014-01-01

    We have assembled extensive information on the cradle-to-gate environmental burdens of 63 metals in their major use forms, and illustrated the interconnectedness of metal production systems. Related cumulative energy use, global warming potential, human health implications and ecosystem damage are estimated by metal life cycle stage (i.e., mining, purification, and refining). For some elements, these are the first life cycle estimates of environmental impacts reported in the literature. We show that, if compared on a per kilogram basis, the platinum group metals and gold display the highest environmental burdens, while many of the major industrial metals (e.g., iron, manganese, titanium) are found at the lower end of the environmental impacts scale. If compared on the basis of their global annual production in 2008, iron and aluminum display the largest impacts, and thallium and tellurium the lowest. With the exception of a few metals, environmental impacts of the majority of elements are dominated by the purification and refining stages in which metals are transformed from a concentrate into their metallic form. Out of the 63 metals investigated, 42 metals are obtained as co-products in multi output processes. We test the sensitivity of varying allocation rationales, in which the environmental burden are allocated to the various metal and mineral products, on the overall results. Monte-Carlo simulation is applied to further investigate the stability of our results. This analysis is the most comprehensive life cycle comparison of metals to date and allows for the first time a complete bottom-up estimate of life cycle impacts of the metals and mining sector globally. We estimate global direct and indirect greenhouse gas emissions in 2008 at 3.4 Gt CO2-eq per year and primary energy use at 49 EJ per year (9.5% of global use), and report the shares for all metals to both impact categories. PMID:24999810

  8. Life cycle assessment of metals: a scientific synthesis.

    PubMed

    Nuss, Philip; Eckelman, Matthew J

    2014-01-01

    We have assembled extensive information on the cradle-to-gate environmental burdens of 63 metals in their major use forms, and illustrated the interconnectedness of metal production systems. Related cumulative energy use, global warming potential, human health implications and ecosystem damage are estimated by metal life cycle stage (i.e., mining, purification, and refining). For some elements, these are the first life cycle estimates of environmental impacts reported in the literature. We show that, if compared on a per kilogram basis, the platinum group metals and gold display the highest environmental burdens, while many of the major industrial metals (e.g., iron, manganese, titanium) are found at the lower end of the environmental impacts scale. If compared on the basis of their global annual production in 2008, iron and aluminum display the largest impacts, and thallium and tellurium the lowest. With the exception of a few metals, environmental impacts of the majority of elements are dominated by the purification and refining stages in which metals are transformed from a concentrate into their metallic form. Out of the 63 metals investigated, 42 metals are obtained as co-products in multi output processes. We test the sensitivity of varying allocation rationales, in which the environmental burden are allocated to the various metal and mineral products, on the overall results. Monte-Carlo simulation is applied to further investigate the stability of our results. This analysis is the most comprehensive life cycle comparison of metals to date and allows for the first time a complete bottom-up estimate of life cycle impacts of the metals and mining sector globally. We estimate global direct and indirect greenhouse gas emissions in 2008 at 3.4 Gt CO2-eq per year and primary energy use at 49 EJ per year (9.5% of global use), and report the shares for all metals to both impact categories.

  9. The influence of catalysts on biofuel life cycle analysis (LCA)

    DOE PAGES

    Benavides, Pahola Thathiana; Cronauer, Donald C.; Adom, Felix K.; ...

    2017-01-21

    Catalysts play an important role in biofuel production but are rarely included in biofuel life cycle analysis (LCA). In this work, we estimate the cradle-to-gate energy consumption and greenhouse gas (GHG) emissions of Pt/γ-Al2O3, CoMo/γ-Al2O3, and ZSM-5, catalysts that could be used in processes to convert biomass to biofuels. We also consider the potential impacts of catalyst recovery and recycling. Integrating the energy and environmental impacts of CoMo/γ-Al2O3 and ZSM-5 into an LCA of renewable gasoline produced via in-situ and ex-situ fast pyrolysis of a blended woody feedstock revealed that the ZSM-5, with cradle-to-gate GHG emissions of 7.7 kg CO2e/kg,more » could influence net life-cycle GHG emissions of the renewable gasoline (1.7 gCO2e/MJ for the in-situ process, 1.2 gCO2e/MJ for the ex-situ process) by up to 14% depending on the loading rate. CoMo/γ-Al2O3 had a greater GHG intensity (9.6 kg CO2e/kg) than ZSM-5, however, it contributed approximately only 1% to the life-cycle GHG emissions of the renewable gasoline because of the small amount of this catalyst needed per kg of biofuel produced. As a result, given that catalysts can contribute significantly to biofuel life-cycle GHG emissions depending on the GHG intensity of their production and their consumption rates, biofuel LCAs should consider the potential influence of catalysts on LCA results.« less

  10. STUDIES ON THE LIFE CYCLE OF SPIROCHETES

    PubMed Central

    DeLamater, Edward D.; Wiggall, Richter H.; Haanes, Merle

    1950-01-01

    A series of observations with the phase contrast microscope on the occurrence of a complex life cycle in the pathogenic Treponema pallidum as it occurs in the syphilitic rabbit testis has been presented and it seems likely from these observations that there are two means of vegetative reproduction, consisting of (1) transverse division (the most important under usual conditions); and (2) the production of gemmae or buds which eventuate into unispirochetal cysts comparable to those described for saprophytic forms, within each of which single spirochetes develop and differentiate, and from which they subsequently emerge. In addition preliminary evidence is presented which suggests that a more complex process is involved in which multispirochetal cysts develop following aggregation of two or more organisms. Within each of these larger cysts numerous organisms develop and subsequently emerge as tangled ropes. Following emergence, they subsequently undergo transverse division and gemmae formation, and so reproduce vegetatively. Subsequent papers will elaborate upon these processes. PMID:15436933

  11. CPL Materials Life Cycle Test Facility

    NASA Astrophysics Data System (ADS)

    Buchko, Matthew T.

    1992-07-01

    The Capillary Pumped Loop (CPL) Materials Life Cycle Test Facility at the Goddard Space Flight Center (GSFC) will identify the operational parameters controlling the performance of a CPL over an extended period of time. The primary purpose of the facility is to investigate the long-term chemical compatibility between the anhydrous ammonia working fluid and the CPL materials of construction. Chemical reactions occurring within the system may produce non-condensable gases or particulate debris that can lead to a degradation in system performance. Small liquid samples will be drawn from the system at specific time intervals and analyzed to check for the presence of non-condensable gases. Periodic maximum and minimum heat load tests will be performed on the CPL to monitor trends in the overall system performance.

  12. Impact of biological treatments of bio-waste for nutrients, energy and bio-methane recovery in a life cycle perspective.

    PubMed

    Di Maria, Francesco; Micale, Caterina; Contini, Stefano; Morettini, Emanuela

    2016-06-01

    Composting of the source-segregated organic fraction of municipal solid waste was compared in a life cycle perspective with conventional anaerobic digestion (AD), aimed at electricity substitution, and with AD aimed at biogas upgrading into bio-methane. Three different uses of the bio-methane were considered: injection in the natural gas grid for civil heating needs; use as fuel for high efficiency co-generation; use as fuel for vehicles. Scenarios with biogas upgrading showed quite similar impact values, generally higher than those of composting and conventional AD, for which there was a lower impact. A decisive contribution to the higher impact of the scenarios with bio-methane production was by the process for biogas upgrading. In any case the substitution of natural gas with bio-methane resulted in higher avoided impacts compared to electricity substitution by conventional AD. The uncertainty analysis confirmed the positive values for eutrophication, acidification and particulate matter. Large uncertainty was determined for global warming and photochemical ozone formation.

  13. LIFE CYCLE ASSESSMENT FOR PC BLEND 2 AIRCRAFT RADOME DEPAINTER

    EPA Science Inventory

    This report describes the life cycle assessment on a potential replacement solvent blend for aircraft radome depainting at the Oklahoma City Air Logistics Center at Tinker Air Force Base. The life cycle assessment is composed of three separate but interrelated components: life cy...

  14. Going with the flow: Life cycle costing for industrial pumpingsystems

    SciTech Connect

    Tutterow, Vestal; Hovstadius, Gunnar; McKane, Aimee

    2002-07-08

    Industries worldwide depend upon pumping systems for theirdaily operation. These systems account for nearly 20 percent of theworld's industrial electrical energy demand and range from 25-50 percentof the energy usage in certain industrial plant operations. Purchasedecisions for a pump and its related system components are typicallybased upon a low bid, rather than the cost to operate the system over itslifetime. Additionally, plant facilities personnel are typically focussedon maintaining existing pumping system reliability rather than optimizingthe systems for best energy efficiency. To ensure the lowest energy andmaintenance costs, equipment life, and other benefits, the systemcomponents must be carefully matched to each other, and remain sothroughout their working lives. Life Cycle Cost (LCC) analysis is a toolthat can help companies minimize costs and maximize energy efficiency formany types of systems, including pumping systems. Increasing industryawareness of the total cost of pumping system ownership through lifecycle cost analysis is a goal of the US Department of Energy (DOE). Thispaper will discuss what DOE and its industry partners are doing to createthis awareness. A guide book, Pump Life Cycle Costs: A Guide to LCCAnalysis for Pumping Systems, developed by the Hydraulic Institute (HI)and Europump (two pump manufacturer trade associations) with DOEinvolvement, will be overviewed. This guide book is the result of thediligent efforts of many members of both associations, and has beenreviewed by a group of industrial end-users. The HI/Europump Guideprovides detailed guidance on the design and maintenance of pumpingsystems to minimize the cost of ownership, as well as LCC analysis. DOE,Hydraulic Institute, and other organizations' efforts to promote LCCanalysis, such as pump manufacturers adopting LCC analysis as a marketingstrategy, will be highlighted and a relevant case studyprovided.

  15. High cycle life secondary lithium battery

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Carter, Boyd J. (Inventor); Shen, David H. (Inventor); Somoano, Robert B. (Inventor)

    1985-01-01

    A secondary battery (10) of high energy density and long cycle is achieved by coating the separator (18) with a film (21) of cationic polymer such as polyvinyl-imidazoline. The binder of the positive electrode (14) such as an ethylene-propylene elastomer binder (26) containing particles (28) of TiS.sub.2 chalcogenide can also be modified to contain sulfone functional groups by incorporating liquid or solid sulfone materials such as 0.1 to 5 percent by weight of sulfolane into the binder. The negative lithium electrode (14), separator (18) and positive electrode (16) are preferably spirally wound and disposed within a sealed casing (17) containing terminals (32, 34). The modified separator and positive electrode are more wettable by the electrolytes in which a salt is dissolved in a polar solvent such as sulfolane.

  16. A life cycle assessment of non-renewable energy use and greenhouse gas emissions associated with blueberry and raspberry production in northern Italy.

    PubMed

    Girgenti, Vincenzo; Peano, Cristiana; Bounous, Michele; Baudino, Claudio

    2013-08-01

    This study examined the emissions produced during the pre-farm, farm and post-farm phases of the production cycle of raspberries and giant American whortleberries (blueberries) cultivated in one of the best-adapted areas in northern Italy. The pre-farm phase included the greenhouse gas emissions from the production of plants in the nursery and the transportation of the plants to the production farms. The farm phase involved the emissions of greenhouse gases from chemical products, the water used for irrigation, the generation of waste, and the consumption of electricity and other energy. The post-farm phase comprised the transportation of the products to the distribution centre (DC) and their storage in the DC. The use phase is not included in the system, nor is transportation from the supermarket to the home of the final consumer, but the disposal of the packaging is nevertheless taken into account. Indeed, the use of traditional plastic materials during both the field phase (nursery and cultivation) and the post-harvesting phase (packaging) produced the greatest estimated impact.

  17. MED-SUV Data Life Cycle

    NASA Astrophysics Data System (ADS)

    Sangianantoni, Agata; Puglisi, Giuseppe; Spampinato, Letizia; Tulino, Sabrina

    2015-04-01

    The MED-SUV project aims to implement a digital e-infrastructure for data access in order to promote the monitoring and study of key volcanic regions prone to volcanic hazards, and thus improve hazard assessment, according to the rationale of Supersite GEO initiative to Vesuvius- Campi Flegrei and Mt Etna, currently identified as Permanent Supersites. The present study focuses on the life cycle of MED-SUV data generated in the first period of the project and highlights the managing approach, as well as the crucial steps to be implemented for ensuring that data will be properly and ethically managed and can be used and accessed from both MED-SUV and the external community. The process is conceived outlining how research data being handled as the project progresses, describing what data are collected, processed or generated and how these data are going to be shared and made available through Open Access. Data cycle begins with their generation and ends with the deposit in the digital infrastructure, its key series of stages through which MED-SUV data passes are Collection, Data citation, Categorization of data, Approval procedure, Registration of datasets, Application of licensing models, and PID assignment. This involves a combination of procedures and practices taking into account the scientific core mission and the priorities of the project as well as the potential legal issues related to the management and protection of the Intellectual Property. We believe that the implementation of this process constitutes a significant encouragement in MED-SUV data sharing and as a consequence a better understanding on the volcanic processes, hazard assessment and a better integration with other Supersites projects.

  18. Calibration Variability of 15 High Use Life Fitness Cycle Ergometers

    DTIC Science & Technology

    2013-12-02

    regression of Calories on Watts for the Life Fitness cycle ergometers , the regression equation (Calories = 0.7204 * Watts + 13.04) can be used to compute...DATES COVERED - 4. TITLE AND SUBTITLE Calibration Variability of 15 High Use Life Fitness Cycle Ergometers 5a. CONTRACT NUMBER 5b. GRANT...Classic and the Life Fitness 95C Version 4 cycle ergometers as a cardio testing alternative to the 1.5 mile run. The cardio alternative test involves

  19. Microalgal biomass production pathways: evaluation of life cycle environmental impacts

    PubMed Central

    2013-01-01

    Background Microalgae are touted as an attractive alternative to traditional forms of biomass for biofuel production, due to high productivity, ability to be cultivated on marginal lands, and potential to utilize carbon dioxide (CO2) from industrial flue gas. This work examines the fossil energy return on investment (EROIfossil), greenhouse gas (GHG) emissions, and direct Water Demands (WD) of producing dried algal biomass through the cultivation of microalgae in Open Raceway Ponds (ORP) for 21 geographic locations in the contiguous United States (U.S.). For each location, comprehensive life cycle assessment (LCA) is performed for multiple microalgal biomass production pathways, consisting of a combination of cultivation and harvesting options. Results Results indicate that the EROIfossil for microalgae biomass vary from 0.38 to 1.08 with life cycle GHG emissions of −46.2 to 48.9 (g CO2 eq/MJ-biomass) and direct WDs of 20.8 to 38.8 (Liters/MJ-biomass) over the range of scenarios analyzed. Further anaylsis reveals that the EROIfossil for production pathways is relatively location invariant, and that algae’s life cycle energy balance and GHG impacts are highly dependent on cultivation and harvesting parameters. Contrarily, algae’s direct water demands were found to be highly sensitive to geographic location, and thus may be a constraining factor in sustainable algal-derived biofuel production. Additionally, scenarios with promising EROIfossil and GHG emissions profiles are plagued with high technological uncertainty. Conclusions Given the high variability in microalgae’s energy and environmental performance, careful evaluation of the algae-to-fuel supply chain is necessary to ensure the long-term sustainability of emerging algal biofuel systems. Alternative production scenarios and technologies may have the potential to reduce the critical demands of biomass production, and should be considered to make algae a viable and more efficient biofuel alternative

  20. Systematic Review and Harmonization of Life Cycle GHG Emission Estimates for Electricity Generation Technologies (Presentation)

    SciTech Connect

    Heath, G.

    2012-06-01

    This powerpoint presentation to be presented at the World Renewable Energy Forum on May 14, 2012, in Denver, CO, discusses systematic review and harmonization of life cycle GHG emission estimates for electricity generation technologies.

  1. Comparison of algae cultivation methods for bioenergy production using a combined life cycle assessment and life cycle costing approach.

    PubMed

    Resurreccion, Eleazer P; Colosi, Lisa M; White, Mark A; Clarens, Andres F

    2012-12-01

    Algae are an attractive energy source, but important questions still exist about the sustainability of this technology on a large scale. Two particularly important questions concern the method of cultivation and the type of algae to be used. This present study combines elements of life cycle analysis (LCA) and life cycle costing (LCC) to evaluate open pond (OP) systems and horizontal tubular photobioreactors (PBRs) for the cultivation of freshwater (FW) or brackish-to-saline water (BSW) algae. Based on the LCA, OPs have lower energy consumption and greenhouse gas emissions than PBRs; e.g., 32% less energy use for construction and operation. According to the LCC, all four systems are currently financially unattractive investments, though OPs are less so than PBRs. BSW species deliver better energy and GHG performance and higher profitability than FW species in both OPs and PBRs. Sensitivity analyses suggest that improvements in critical cultivation parameters (e.g., CO(2) utilization efficiency or algae lipid content), conversion parameters (e.g., anaerobic digestion efficiency), and market factors (e.g., costs of CO(2) and electricity, or sale prices for algae biodiesel) could alter these results.

  2. Life cycle assessment of Japanese high-temperature conductive adhesives.

    PubMed

    Andrae, Anders S G; Itsubo, Norihiro; Yamaguchi, Hiroshi; Inaba, Atsushi

    2008-04-15

    The electrically conductive adhesives (ECA) are on the verge of a breakthrough as reliable interconnection materials for electronic components. As the ban of lead (Pb) in the electronics industry becomes a reality, the ECA's could be attractive overall alternatives to high melting point (HMP) Pb-based solder pastes. Environmental life cycle assessment (LCA) was used to estimate trade-offs between the energy use and the potential toxicity of two future types of ECA's and one HMP Pb-based. The probability is around 90% that the overall CO2 emissions from an ECA based on a tin-bismuth alloy are lower than for a silver-epoxy based ECA, whereas the probability is about 80% that the cumulative energy demand would be lower. It is more uncertain whether the tin-bismuth ECA would contribute to less CO2, or consume less energy, than a HMP Pb-based solder paste. Moreover, for the impact categories contributing to the life-cycle impact assessment method based on end point modeling (LIME) damage category of human health, the tin-bismuth ECA shows a 25 times lower score, and a silver-epoxy based ECA shows an 11 times lower score than the HMP Pb-based solder paste. In order to save resources and decrease CO2 emissions it is recommended to increase the collection and recycling of printed board assemblies using silver-epoxy based ECA.

  3. Environmental life cycle comparison of algae to other bioenergy feedstocks.

    PubMed

    Clarens, Andres F; Resurreccion, Eleazer P; White, Mark A; Colosi, Lisa M

    2010-03-01

    Algae are an attractive source of biomass energy since they do not compete with food crops and have higher energy yields per area than terrestrial crops. In spite of these advantages, algae cultivation has not yet been compared with conventional crops from a life cycle perspective. In this work, the impacts associated with algae production were determined using a stochastic life cycle model and compared with switchgrass, canola, and corn farming. The results indicate that these conventional crops have lower environmental impacts than algae in energy use, greenhouse gas emissions, and water regardless of cultivation location. Only in total land use and eutrophication potential do algae perform favorably. The large environmental footprint of algae cultivation is driven predominantly by upstream impacts, such as the demand for CO(2) and fertilizer. To reduce these impacts, flue gas and, to a greater extent, wastewater could be used to offset most of the environmental burdens associated with algae. To demonstrate the benefits of algae production coupled with wastewater treatment, the model was expanded to include three different municipal wastewater effluents as sources of nitrogen and phosphorus. Each provided a significant reduction in the burdens of algae cultivation, and the use of source-separated urine was found to make algae more environmentally beneficial than the terrestrial crops.

  4. Life-Cycle Assessment of Pyrolysis Bio-Oil Production*

    SciTech Connect

    Steele, Philip; Puettmann, Maureen E.; Penmetsa, Venkata Kanthi; Cooper, Jerome E.

    2012-07-01

    As part ofthe Consortium for Research on Renewable Industrial Materials' Phase I life-cycle assessments ofbiofuels, lifecycle inventory burdens from the production of bio-oil were developed and compared with measures for residual fuel oil. Bio-oil feedstock was produced using whole southern pine (Pinus taeda) trees, chipped, and converted into bio-oil by fast pyrolysis. Input parameters and mass and energy balances were derived with Aspen. Mass and energy balances were input to SimaPro to determine the environmental performance of bio-oil compared with residual fuel oil as a heating fuel. Equivalent functional units of 1 MJ were used for demonstrating environmental preference in impact categories, such as fossil fuel use and global warming potential. Results showed near carbon neutrality of the bio-oil. Substituting bio-oil for residual fuel oil, based on the relative carbon emissions of the two fuels, estimated a reduction in CO2 emissions by 0.075 kg CO2 per MJ of fuel combustion or a 70 percent reduction in emission over residual fuel oil. The bio-oil production life-cycle stage consumed 92 percent of the total cradle-to-grave energy requirements, while feedstock collection, preparation, and transportation consumed 4 percent each. This model provides a framework to better understand the major factors affecting greenhouse gas emissions related to bio-oil production and conversion to boiler fuel during fast pyrolysis.

  5. The Life-cycle of Operons

    SciTech Connect

    Price, Morgan N.; Arkin, Adam P.; Alm, Eric J.

    2005-11-18

    Operons are a major feature of all prokaryotic genomes, but how and why operon structures vary is not well understood. To elucidate the life-cycle of operons, we compared gene order between Escherichia coli K12 and its relatives and identified the recently formed and destroyed operons in E. coli. This allowed us to determine how operons form, how they become closely spaced, and how they die. Our findings suggest that operon evolution is driven by selection on gene expression patterns. First, both operon creation and operon destruction lead to large changes in gene expression patterns. For example, the removal of lysA and ruvA from ancestral operons that contained essential genes allowed their expression to respond to lysine levels and DNA damage, respectively. Second, some operons have undergone accelerated evolution, with multiple new genes being added during a brief period. Third, although most operons are closely spaced because of a neutral bias towards deletion and because of selection against large overlaps, highly expressed operons tend to be widely spaced because of regulatory fine-tuning by intervening sequences. Although operon evolution seems to be adaptive, it need not be optimal: new operons often comprise functionally unrelated genes that were already in proximity before the operon formed.

  6. Automation life-cycle cost model

    NASA Technical Reports Server (NTRS)

    Gathmann, Thomas P.; Reeves, Arlinda J.; Cline, Rick; Henrion, Max; Ruokangas, Corinne

    1992-01-01

    The problem domain being addressed by this contractual effort can be summarized by the following list: Automation and Robotics (A&R) technologies appear to be viable alternatives to current, manual operations; Life-cycle cost models are typically judged with suspicion due to implicit assumptions and little associated documentation; and Uncertainty is a reality for increasingly complex problems and few models explicitly account for its affect on the solution space. The objectives for this effort range from the near-term (1-2 years) to far-term (3-5 years). In the near-term, the envisioned capabilities of the modeling tool are annotated. In addition, a framework is defined and developed in the Decision Modelling System (DEMOS) environment. Our approach is summarized as follows: Assess desirable capabilities (structure into near- and far-term); Identify useful existing models/data; Identify parameters for utility analysis; Define tool framework; Encode scenario thread for model validation; and Provide transition path for tool development. This report contains all relevant, technical progress made on this contractual effort.

  7. The Life-cycle of Operons

    SciTech Connect

    Price, Morgan N.; Arkin, Adam P.; Alm, Eric J.

    2007-03-15

    Operons are a major feature of all prokaryotic genomes, buthow and why operon structures vary is not well understood. To elucidatethe life-cycle of operons, we compared gene order between Escherichiacoli K12 and its relatives and identified the recently formed anddestroyed operons in E. coli. This allowed us to determine how operonsform, how they become closely spaced, and how they die. Our findingssuggest that operon evolution may be driven by selection on geneexpression patterns. First, both operon creation and operon destructionlead to large changes in gene expression patterns. For example, theremoval of lysA and ruvA from ancestral operons that contained essentialgenes allowed their expression to respond to lysine levels and DNAdamage, respectively. Second, some operons have undergone acceleratedevolution, with multiple new genes being added during a brief period.Third, although genes within operons are usually closely spaced becauseof a neutral bias toward deletion and because of selection against largeoverlaps, genes in highly expressed operons tend to be widely spacedbecause of regulatory fine-tuning by intervening sequences. Althoughoperon evolution may be adaptive, it need not be optimal: new operonsoften comprise functionally unrelated genes that were already inproximity before the operon formed.

  8. The principles of life-cycle analysis

    SciTech Connect

    Hill, L.J.; Hunsaker, D.B.; Curlee, T.R.

    1996-05-01

    Decisionmakers representing government agencies must balance competing objectives when deciding on the purchase and sale of assets. The goal in all cases should be to make prudent or financially {open_quotes}cost-effective{close_quotes} decisions. That is, the revenues from the purchase or sale of assets should exceed any out-of-pocket costs to obtain the revenues. However, effects external to these financial considerations such as promoting environmental quality, creating or maintaining jobs, and abiding by existing regulations should also be considered in the decisionmaking process. In this paper, we outline the principles of life-cycle analysis (LCA), a framework that allows decisionmakers to make informed, balanced choices over the period of time affected by the decision, taking into account important external effects. Specifically, LCA contains three levels of analysis for any option: (1) direct financial benefits (revenues) and out-of-pocket costs for a course of action; (2) environmental and health consequences of a decision; and (3) other economic and socio-institutional effects. Because some of the components of LCA are difficult to value in monetary terms, the outcome of the LCA process is not generally a yes-no answer. However, the framework allows the decisionmaker to at least qualitatively consider all relevant factors in analyzing options, promoting sound decisionmaking in the process.

  9. Developmental Milestones Across the Programmatic Life Cycle

    PubMed Central

    Glover-Kudon, Rebecca; DeGroff, Amy; Rohan, Elizabeth A.; Preissle, Judith; Boehm, Jennifer E.

    2015-01-01

    BACKGROUND In 2005 through 2009, the Centers for Disease Control and Prevention (CDC) funded 5 sites to implement a colorectal cancer screening program for uninsured, low-income populations. These 5 sites composed a demonstration project intended to explore the feasibility of establishing a national colorectal cancer screening program through various service delivery models. METHODS A longitudinal, multiple case study was conducted to understand and document program implementation processes. Using metaphor as a qualitative analytic technique, evaluators identified stages of maturation across the programmatic life cycle. RESULTS Analysis rendered a working theory of program development during screening implementation. In early stages, program staff built relationships with CDC and local partners around screening readiness, faced real-world challenges putting program policies into practice, revised initial program designs, and developed new professional skills. Midterm implementation was defined by establishing program cohesiveness and expanding programmatic reach. In later stages of implementation, staff focused on sustainability and formal program closeout, which prompted reflection about personal and programmatic accomplishments. CONCLUSIONS Demonstration sites evolved through common developmental stages during screening implementation. Findings elucidate ways to target technical assistance to more efficiently move programs along their maturation trajectory. In practical terms, the time and cost associated with guiding a program to maturity may be potentially shortened to maximize return on investment for both organizations and clients receiving service benefits. PMID:23868487

  10. Cycle life testing of 8-cm mercury ion thruster cathodes

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.

    1976-01-01

    Two main cathodes have successfully completed 2800 and 1980 cycles and three neutralizers, 3928, 3050, and 2850 cycles in ongoing cycle life tests of flight-type cathode-isolator-vaporizer and neutralizer-isolator-vaporizer assemblies for the 4.45 mN 8-cm Hg ion thruster system. Each cycle included one hour of cathode operation. Starting and operating conditions simulated those expected in a typical auxiliary propulsion mission duty cycle. This paper presents the cycle life test results and also results of an insert comparison test which led to the selection of a rolled foil insert type for the 8-cm Engineering Model Thruster cathodes.

  11. Cycle life testing of 8-cm mercury ion thruster cathodes

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.

    1976-01-01

    Two main cathodes have successfully completed 2800 and 1980 cycles and three neutralizers, 3928, 3050, and 2850 cycles in ongoing cycle life tests of flight-type cathode-isolator-vaporizer and neutralizer-isolator-vaporizer assemblies for the 4.45 mN 8-cm Hg ion thruster system. Each cycle included one hour of cathode operation. Starting and operating conditions simulated those expected in a typical auxiliary propulsion mission duty cycle. The cycle life test results are presented along with results of an insert comparison test which led to the selection of a rolled foil insert type for the 8-cm Engineering Model Thruster cathodes.

  12. Life cycle assessment of biomethane use in Argentina.

    PubMed

    Morero, Betzabet; Groppelli, Eduardo; Campanella, Enrique A

    2015-04-01

    Renewable substitutes for natural gas, such as biogas, require adequate treatment to remove impurities. This paper presents the life cycle and environmental impact of upgrading biogas using absorption-desorption process with three different solvents: water, diglycolamine and polyethylene glycol dimethyl ether. The results showed that water produces a minor impact in most of the considered categories, and an economic analysis showed that water is the most feasible solvent for obtaining the lowest payback period. This analysis includes three different sources for biogas production and two end uses for biomethane. The use of different wastes as sources results in different environmental impacts depending on the type of energy used in the anaerobic digestion. The same situation occurs when considering the use of biomethane as a domestic fuel or for power generation. Using energy from biogas to replace conventional energy sources in production and upgrading biogas significantly reduce the environmental impacts of processes.

  13. Power Systems Life Cycle Analysis Tool (Power L-CAT).

    SciTech Connect

    Andruski, Joel; Drennen, Thomas E.

    2011-01-01

    The Power Systems L-CAT is a high-level dynamic model that calculates levelized production costs and tracks environmental performance for a range of electricity generation technologies: natural gas combined cycle (using either imported (LNGCC) or domestic natural gas (NGCC)), integrated gasification combined cycle (IGCC), supercritical pulverized coal (SCPC), existing pulverized coal (EXPC), nuclear, and wind. All of the fossil fuel technologies also include an option for including carbon capture and sequestration technologies (CCS). The model allows for quick sensitivity analysis on key technical and financial assumptions, such as: capital, O&M, and fuel costs; interest rates; construction time; heat rates; taxes; depreciation; and capacity factors. The fossil fuel options are based on detailed life cycle analysis reports conducted by the National Energy Technology Laboratory (NETL). For each of these technologies, NETL's detailed LCAs include consideration of five stages associated with energy production: raw material acquisition (RMA), raw material transport (RMT), energy conversion facility (ECF), product transportation and distribution (PT&D), and end user electricity consumption. The goal of the NETL studies is to compare existing and future fossil fuel technology options using a cradle-to-grave analysis. The NETL reports consider constant dollar levelized cost of delivered electricity, total plant costs, greenhouse gas emissions, criteria air pollutants, mercury (Hg) and ammonia (NH3) emissions, water withdrawal and consumption, and land use (acreage).

  14. Background and Reflections on the Life Cycle Assessment Harmonization Project

    SciTech Connect

    Heath, G. A.; Mann, M. K.

    2012-04-01

    Despite the ever-growing body of life cycle assessment (LCA) literature on electricity generation technologies, inconsistent methods and assumptions hamper comparison across studies and pooling of published results. Synthesis of the body of previous research is necessary to generate robust results to assess and compare environmental performance of different energy technologies for the benefit of policy makers, managers, investors, and citizens. With funding from the U.S. Department of Energy, the National Renewable Energy Laboratory initiated the LCA Harmonization Project in an effort to rigorously leverage the numerous individual studies to develop collective insights. The goals of this project were to: (1) understand the range of published results of LCAs of electricity generation technologies, (2) reduce the variability in published results that stem from inconsistent methods and assumptions, and (3) clarify the central tendency of published estimates to make the collective results of LCAs available to decision makers in the near term. The LCA Harmonization Project's initial focus was evaluating life cycle greenhouse gas (GHG) emissions from electricity generation technologies. Six articles from this first phase of the project are presented in a special supplemental issue of the Journal of Industrial Ecology on Meta-Analysis of LCA: coal (Whitaker et al. 2012), concentrating solar power (Burkhardt et al. 2012), crystalline silicon photovoltaics (PVs) (Hsu et al. 2012), thin-film PVs (Kim et al. 2012), nuclear (Warner and Heath 2012), and wind (Dolan and Heath 2012). Harmonization is a meta-analytical approach that addresses inconsistency in methods and assumptions of previously published life cycle impact estimates. It has been applied in a rigorous manner to estimates of life cycle GHG emissions from many categories of electricity generation technologies in articles that appear in this special supplemental supplemental issue, reducing the variability and

  15. LIFE vs. LWR: End of the Fuel Cycle

    SciTech Connect

    Farmer, J C; Blink, J A; Shaw, H F

    2008-10-02

    The worldwide energy consumption in 2003 was 421 quadrillion Btu (Quads), and included 162 quads for oil, 99 quads for natural gas, 100 quads for coal, 27 quads for nuclear energy, and 33 quads for renewable sources. The projected worldwide energy consumption for 2030 is 722 quads, corresponding to an increase of 71% over the consumption in 2003. The projected consumption for 2030 includes 239 quads for oil, 190 quads for natural gas, 196 quads for coal, 35 quads for nuclear energy, and 62 quads for renewable sources [International Energy Outlook, DOE/EIA-0484, Table D1 (2006) p. 133]. The current fleet of light water reactors (LRWs) provides about 20% of current U.S. electricity, and about 16% of current world electricity. The demand for electricity is expected to grow steeply in this century, as the developing world increases its standard of living. With the increasing price for oil and gasoline within the United States, as well as fear that our CO2 production may be driving intolerable global warming, there is growing pressure to move away from oil, natural gas, and coal towards nuclear energy. Although there is a clear need for nuclear energy, issues facing waste disposal have not been adequately dealt with, either domestically or internationally. Better technological approaches, with better public acceptance, are needed. Nuclear power has been criticized on both safety and waste disposal bases. The safety issues are based on the potential for plant damage and environmental effects due to either nuclear criticality excursions or loss of cooling. Redundant safety systems are used to reduce the probability and consequences of these risks for LWRs. LIFE engines are inherently subcritical, reducing the need for systems to control the fission reactivity. LIFE engines also have a fuel type that tolerates much higher temperatures than LWR fuel, and has two safety systems to remove decay heat in the event of loss of coolant or loss of coolant flow. These features of

  16. A life cycle database for parasitic acanthocephalans, cestodes, and nematodes.

    PubMed

    Benesh, Daniel P; Lafferty, Kevin D; Kuris, Armand

    2017-03-01

    Parasitologists have worked out many complex life cycles over the last ~150 yr, yet there have been few efforts to synthesize this information to facilitate comparisons among taxa. Most existing host-parasite databases focus on particular host taxa, do not distinguish final from intermediate hosts, and lack parasite life-history information. We summarized the known life cycles of trophically transmitted parasitic acanthocephalans, cestodes, and nematodes. For 973 parasite species, we gathered information from the literature on the hosts infected at each stage of the parasite life cycle (8,510 host-parasite species associations), what parasite stage is in each host, and whether parasites need to infect certain hosts to complete the life cycle. We also collected life-history data for these parasites at each life cycle stage, including 2,313 development time measurements and 7,660 body size measurements. The result is the most comprehensive data summary available for these parasite taxa. In addition to identifying gaps in our knowledge of parasite life cycles, these data can be used to test hypotheses about life cycle evolution, host specificity, parasite life-history strategies, and the roles of parasites in food webs.

  17. A life cycle database for parasitic acanthocephalans, cestodes, and nematodes

    USGS Publications Warehouse

    Benesh, Daniel P.; Lafferty, Kevin D.; Kuris, Armand

    2017-01-01

    Parasitologists have worked out many complex life cycles over the last ~150 years, yet there have been few efforts to synthesize this information to facilitate comparisons among taxa. Most existing host-parasite databases focus on particular host taxa, do not distinguish final from intermediate hosts, and lack parasite life-history information. We summarized the known life cycles of trophically transmitted parasitic acanthocephalans, cestodes, and nematodes. For 973 parasite species, we gathered information from the literature on the hosts infected at each stage of the parasite life cycle (8510 host-parasite species associations), what parasite stage is in each host, and whether parasites need to infect certain hosts to complete the life cycle. We also collected life-history data for these parasites at each life cycle stage, including 2313 development time measurements and 7660 body size measurements. The result is the most comprehensive data summary available for these parasite taxa. In addition to identifying gaps in our knowledge of parasite life cycles, these data can be used to test hypotheses about life cycle evolution, host specificity, parasite life-history strategies, and the roles of parasites in food webs.

  18. Integrated design strategy for product life-cycle management

    NASA Astrophysics Data System (ADS)

    Johnson, G. Patrick

    2001-02-01

    Two major trends suggest new considerations for environmentally conscious manufacturing (ECM) -- the continuation of dematerialization and the growing trend toward goods becoming services. A diversity of existing research could be integrated around those trends in ways that can enhance ECM. Major research-based achievements in information, computation, and communications systems, sophisticated and inexpensive sensing capabilities, highly automated and precise manufacturing technologies, and new materials continue to drive the phenomenon of dematerialization - the reduction of the material and energy content of per capita GDP. Knowledge is also growing about the sociology, economics, mathematics, management and organization of complex socio-economic systems. And that has driven a trend towards goods evolving into services. But even with these significant trends, the value of material, energy, information and human resources incorporated into the manufacture, use and disposal of modern products and services often far exceeds the benefits realized. Multi-disciplinary research integrating these drivers with advances in ECM concepts could be the basis for a new strategy of production. It is argued that a strategy of integrating information resources with physical and human resources over product life cycles, together with considering products as streams of service over time, could lead to significant economic payoff. That strategy leads to an overall design concept to minimize costs of all resources over the product life cycle to more fully capture benefits of all resources incorporated into modern products. It is possible by including life cycle monitoring, periodic component replacement, re-manufacture, salvage and human factor skill enhancement into initial design.

  19. Life as a set of matter transformation cycles: ecological attributes of life.

    PubMed

    Bartsev, S I; Mezhevikin, V V; Okhonin, V A

    2001-01-01

    An approach to searching for extraterrestrial life on the base of "autotroph" concept of the origin of life is presented in the paper. According to this concept the origin of life took place in three stages. The first stage was developed inside the global geochemical cycle in which the turnover of different chemical transformations was implemented by solar radiation and/or heat energy of bowels of the Earth. At the second stage, after the autocatalytic systems have emerged these systems evolved as a result of "natural selection" by autocatalysis parameters up to emergence of special inheritance systems that drastically improved the autocatalysis parameters. The best in terms of autocatalysis parameters were the autocatalysis systems based on phase-separated particles where complex structures can form not only on the basis of covalent interactions. Such autocatalysis systems can emerge only in liquid in a certain range of temperatures and pressures. At this stage the geochemical cycle complicated involving new substances. At the third stage the evolution involved improvement of inheritance systems resulting in formation of the modern type of genetic apparatus. This concept formed the basis to consider approaches to experimental modeling of major aspects of the origin of life and to outlining some general features of life that can extend the sensitive horizon of searching for extraterrestrial life.

  20. Break free from the product life cycle.

    PubMed

    Moon, Youngme

    2005-05-01

    Most firms build their marketing strategies around the concept of the product life cycle--the idea that after introduction, products inevitably follow a course of growth, maturity, and decline. It doesn't have to be that way, says HBS marketing professor Youngme Moon. By positioning their products in unexpected ways, companies can change how customers mentally categorize them. In doing so, they can shift products lodged in the maturity phase back--and catapult new products forward--into the growth phase. The author describes three positioning strategies that marketers use to shift consumers' thinking. Reverse positioning strips away"sacred" product attributes while adding new ones (JetBlue, for example, withheld the expected first-class seating and in-flight meals on its planes while offering surprising perks like leather seats and extra legroom). Breakaway positioning associates the product with a radically different category (Swatch chose not to associate itself with fine jewelry and instead entered the fashion accessory category). And stealth positioning acclimates leery consumers to a new offering by cloaking the product's true nature (Sony positioned its less-than-perfect household robot as a quirky pet). Clayton Christensen described how new, simple technologies can upend a market. In an analogous way, these positioning strategies can exploit the vulnerability of established categories to new positioning. A company can use these techniques to go on the offensive and transform a category by demolishing its traditional boundaries. Companies that disrupt a category through positioning create a lucrative place to ply their wares--and can leave category incumbents scrambling.

  1. Life cycle assessment of gasoline blending options.

    PubMed

    Mata, Teresa M; Smith, Raymond L; Young, Douglas M; Costa, Carlos A V

    2003-08-15

    A life cycle assessment has been done to compare the potential environmental impacts of various gasoline blends that meet octane and vapor pressure specifications. The main blending components of alkylate, cracked gasoline, and reformate have different octane and vapor pressure values as well as different potential environmental impacts. Because the octane and vapor pressure values are nonlinearly related to impacts, the results of this study show that some blends are better for the environment than others. To determine blending component compositions, simulations of a reformer were done at various operating conditions. The reformate products of these simulations had a wide range of octane values and potential environmental impacts. Results of the study indicate that for low-octane gasoline (95 Research Octane Number), lower reformer temperatures and pressures generally decrease the potential environmental impacts. However, different results are obtained for high-octane gasoline (98 RON), where increasing reformer temperatures and pressures increase the reformate octane values faster than the potential environmental impacts. The higher octane values for reformate allow blends to have less reformate, and therefore high-octane gasoline can have lower potential environmental impacts when the reformer is operated at higher temperatures and pressures. In the blends studied, reformate and cracked gasoline have the highest total impacts, of which photochemical ozone creation is the largest contributor (assuming all impact categories are equally weighted). Alkylate has a much lower total potential environmental impact but does have higher impact values for human toxicity by ingestion, aquatic toxicity, terrestrial toxicity, and acidification. Therefore, depending on environmental priorities, different gasoline blends and operating conditions should be chosen to meet octane and vapor pressure specifications.

  2. A Comparative Analysis of Life-Cycle Assessment Tools for ...

    EPA Pesticide Factsheets

    We identified and evaluated five life-cycle assessment tools that community decision makers can use to assess the environmental and economic impacts of end-of-life (EOL) materials management options. The tools evaluated in this report are waste reduction mode (WARM), municipal solid waste-decision support tool (MSW-DST), solid waste optimization life-cycle framework (SWOLF), environmental assessment system for environmental technologies (EASETECH), and waste and resources assessment for the environment (WRATE). WARM, MSW-DST, and SWOLF were developed for US-specific materials management strategies, while WRATE and EASETECH were developed for European-specific conditions. All of the tools (with the exception of WARM) allow specification of a wide variety of parameters (e.g., materials composition and energy mix) to a varying degree, thus allowing users to model specific EOL materials management methods even outside the geographical domain they are originally intended for. The flexibility to accept user-specified input for a large number of parameters increases the level of complexity and the skill set needed for using these tools. The tools were evaluated and compared based on a series of criteria, including general tool features, the scope of the analysis (e.g., materials and processes included), and the impact categories analyzed (e.g., climate change, acidification). A series of scenarios representing materials management problems currently relevant to c

  3. Life Cycle Thinking, Measurement and Management for Food System Sustainability.

    PubMed

    Pelletier, Nathan

    2015-07-07

    Food systems critically contribute to our collective sustainability outcomes. Improving food system sustainability requires life cycle thinking, measurement and management strategies. This article reviews the status quo and future prospects for bringing life cycle approaches to food system sustainability to the fore.

  4. THE EPA'S EMERGING FOCUS ON LIFE CYCLE ASSESSMENT

    EPA Science Inventory

    EPA has been actively engaged in LCA research since 1990 to help advance the methodology and application of life cycle thinking in decision making. Across the Agency consideration of the life cycle concept is increasing in the development of policies and programs. A major force i...

  5. LIFE-CYCLE IMPACT ASSESSMENT DEMONSTRATION FOR THE BGU-24

    EPA Science Inventory

    The primary goal of this project was to develop and demonstrate a life-cycle impact assessment (LCIA) approach using existing life-cycle inventory (LCI) data on one of the propellants, energetics, and pyrotechnic (PEP) materials of interest to the U.S. Department of Defense (DoD)...

  6. The lesbian family life cycle: a contextual approach.

    PubMed

    Slater, S; Mencher, J

    1991-07-01

    A recent broadening of family life cycle theory to include the various family norms deriving from ethnic differences, single parenting, divorce, and remarriage has not extended to the lesbian family experience. The need to articulate a lesbian family life cycle is underscored here with particular attention to the specific challenges and coping mechanisms of this particular family experience.

  7. USING LIFE CYCLE ASSESSMENT TOOLS FOR INTEGRATED PRODUCT POLICY

    EPA Science Inventory

    The European Union's new Integrated Product Policy directs governments and companies to consider the entire product life cycle, from cradle to grave, in their environmental decision-making process. A life-cycle based approach is intended to lead toward true environmental improvem...

  8. Addressing software security risk mitigations in the life cycle

    NASA Technical Reports Server (NTRS)

    Gilliam, David; Powell, John; Haugh, Eric; Bishop, Matt

    2003-01-01

    The NASA Office of Safety and Mission Assurance (OSMA) has funded the Jet Propulsion Laboratory (JPL) with a Center Initiative, 'Reducing Software Security Risk through an Integrated Approach' (RSSR), to address this need. The Initiative is a formal approach to addressing software security in the life cycle through the instantiation of a Software Security Assessment Instrument (SSAI) for the development and maintenance life cycles.

  9. LCACCESS: A GLOBAL DIRECTORY OF LIFE CYCLE ASSESSMENT RESOURCES

    EPA Science Inventory

    LCAccess is an EPA-sponsored website intended to promote the use of Life Cycle Assessment (LCA) in business decision-making by faciliatating access to data sources that are useful in developing a life cycle inventory (LCI). While LCAccess does not itself contain data, it is a sea...

  10. Comparison of Life Cycle Costs for LLRW Management in Texas

    SciTech Connect

    Baird, R. D.; Rogers, B. C.; Chau, N.; Kerr, Thomas A

    1999-08-01

    This report documents a comparison of life-cycle costs of an assured isolation facility in Texas versus the life-cycle costs for a traditional belowground low-level radioactive waste disposal facility designed for the proposed site near Sierra Blanca, Texas.

  11. PRODUCT LIFE-CYCLE ASSESSMENT: INVENTORY GUIDELINES AND PRINCIPLES

    EPA Science Inventory

    The Life Cycle Assessment (LCA) can be used as an objective technical tool to evaluate the environmental consequences of a product, process, or activity holistically, across its entire life cycle. omplete LCA can be viewed as consisting of three complementary components (1) the i...

  12. A Game to Teach the Life Cycles of Fungi

    ERIC Educational Resources Information Center

    Blum, Abraham

    1976-01-01

    Presented is a biological game utilized to teach fungi life cycles to secondary biology students. The game is designed to overcome difficulties of correlating schematic drawings with images seen through the microscope, correlating life cycles of fungi and host, and understanding cyclic development of fungi. (SL)

  13. Test of US Federal Life Cycle Inventory Data Interoperability

    EPA Science Inventory

    Life cycle assessment practitioners must gather data from a variety of sources. For modeling activities in the US, practitioners may wish to use life cycle inventory data from public databases and libraries provided by US government entities. An exercise was conducted to test if ...

  14. Dealing with Emergy Algebra in the Life Cycle Assessment Framework

    EPA Science Inventory

    The Life Cycle Inventory (LCI) represents one of the four steps of the Life Cycle Assessment (LCA) methodology, which is a standardized procedure (ISO 14040:2006) to estimate the environmental impacts generated by the production, use and disposal of goods and services. In this co...

  15. LIFE CYCLE IMPACT ASSESSMENT AN INTRODUCTION AND INTERNATIONAL UPDATE

    EPA Science Inventory

    Research within the field of Life Cycle Impact Assessment (LCIA) has greatly improved since the work of Heijungs and Guinee in 1992. Within the UNEP / SETAC Life Cycle Initiative an effort is underway to provide recommendations about the direction of research and selection of LC...

  16. LIFE-CYCLE IMPACT ASSESSMENT DEMONSTRATION FOR THE GBU-24

    EPA Science Inventory

    The primary goal of this project was to develop and demonstrate a life-cycle impact assessment (LCIA) approach using existing life-cycle inventory (LCI) data on one of the propellants, energetics, and pyro-technic (PEP) materials of interest to the U.S. Department of Defense (DoD...

  17. Software security checklist for the software life cycle

    NASA Technical Reports Server (NTRS)

    Gilliam, D. P.; Wolfe, T. L.; Sherif, J. S.

    2002-01-01

    A formal approach to security in the software life cycle is essential to protect corporate resources. However, little thought has been given to this aspect of software development. Due to its criticality, security should be integrated as a formal approach in the software life cycle.

  18. Family Development and the Family Life Cycle: An Empirical Evaluation.

    ERIC Educational Resources Information Center

    Spanier, Graham; And Others

    The concept of family life cycle has become increasingly prominent in the study of family development--the formation, maintenance, change, and dissolution of marriage and family relations. An evaluation of this concept is accomplished by examining the relationships between three possible stratification schemes: stage of the family life cycle,…

  19. THE INTERNATIONAL WORKSHOP ON ELECTRICITY DATA FOR LIFE CYCLE INVENTORIES

    EPA Science Inventory

    A three day workshop was held in October 2001 to discuss life cycle inventory data for electricity production. Electricity was selected as the topic for discussion since it features very prominently in the LCA results for most product life cycles, yet there is no consistency in h...

  20. EVALUATING THE GREENNESS OF IONIC LIQUIDS VIA LIFE CYCLE ASSESSMENT

    EPA Science Inventory

    Ionic Liquids have been suggested as "greener" replacements to traditional solvents. However, the environmental impacts of the life cycle phases have not been studied. Such a "cradle to gate" Life Cycle Assessment (LCA) for comparing the environmental impact of various solvents...

  1. Comprehensive life cycle inventories of alternative wastewater treatment systems.

    PubMed

    Foley, Jeffrey; de Haas, David; Hartley, Ken; Lant, Paul

    2010-03-01

    Over recent decades, the environmental regulations on wastewater treatment plants (WWTP) have trended towards increasingly stringent nutrient removal requirements for the protection of local waterways. However, such regulations typically ignore other environmental impacts that might accompany apparent improvements to the WWTP. This paper quantitatively defines the life cycle inventory of resources consumed and emissions produced in ten different wastewater treatment scenarios (covering six process configurations and nine treatment standards). The inventory results indicate that infrastructure resources, operational energy, direct greenhouse gas (GHG) emissions and chemical consumption generally increase with increasing nitrogen removal, especially at discharge standards of total nitrogen <5 mgN L(-1). Similarly, infrastructure resources and chemical consumption increase sharply with increasing phosphorus removal, but operational energy and direct GHG emissions are largely unaffected. These trends represent a trade-off of negative environmental impacts against improved local receiving water quality. However, increased phosphorus removal in WWTPs also represents an opportunity for increased resource recovery and reuse via biosolids applied to agricultural land. This study highlights that where biosolids displace synthetic fertilisers, a negative environmental trade-off may also occur by increasing the heavy metals discharged to soil. Proper analysis of these positive and negative environmental trade-offs requires further life cycle impact assessment and an inherently subjective weighting of competing environmental costs and benefits.

  2. Life-cycle assessment (LCA) methodology applied to energetic materials

    SciTech Connect

    Reardon, P.T.

    1995-03-01

    The objective of the Clean Agile Manufacturing of Propellants, Explosives, and pyrotechnics (CAMPEP) program is to develop and demonstrate the feasibility of using modeling, alternate materials and processing technology to reduce PEO life-cycle pollution by up to 90%. Traditional analyses of factory pollution treat the manufacturing facility as the singular pollution source. The life cycle of a product really begins with raw material acquisition and includes all activities through ultimate disposal. The life cycle thus includes other facilities besides the principal manufacturing facility. The pollution generated during the product life cycle is then integrated over the total product lifetime, or represents a ``cradle to grave`` accounting philosophy. This paper addresses a methodology for producing a life-cycle inventory assessment.

  3. Estimates of Embodied Global Energy and Air-Emission Intensities of Japanese Products for Building a Japanese Input–Output Life Cycle Assessment Database with a Global System Boundary

    PubMed Central

    2012-01-01

    To build a life cycle assessment (LCA) database of Japanese products embracing their global supply chains in a manner requiring lower time and labor burdens, this study estimates the intensity of embodied global environmental burden for commodities produced in Japan. The intensity of embodied global environmental burden is a measure of the environmental burden generated globally by unit production of the commodity and can be used as life cycle inventory data in LCA. The calculation employs an input–output LCA method with a global link input–output model that defines a global system boundary grounded in a simplified multiregional input–output framework. As results, the intensities of embodied global environmental burden for 406 Japanese commodities are determined in terms of energy consumption, greenhouse-gas emissions (carbon dioxide, methane, nitrous oxide, perfluorocarbons, hydrofluorocarbons, sulfur hexafluoride, and their summation), and air-pollutant emissions (nitrogen oxide and sulfur oxide). The uncertainties in the intensities of embodied global environmental burden attributable to the simplified structure of the global link input–output model are quantified using Monte Carlo simulation. In addition, by analyzing the structure of the embodied global greenhouse-gas intensities we characterize Japanese commodities in the context of LCA embracing global supply chains. PMID:22881452

  4. Estimates of embodied global energy and air-emission intensities of Japanese products for building a Japanese input-output life cycle assessment database with a global system boundary.

    PubMed

    Nansai, Keisuke; Kondo, Yasushi; Kagawa, Shigemi; Suh, Sangwon; Nakajima, Kenichi; Inaba, Rokuta; Tohno, Susumu

    2012-08-21

    To build a life cycle assessment (LCA) database of Japanese products embracing their global supply chains in a manner requiring lower time and labor burdens, this study estimates the intensity of embodied global environmental burden for commodities produced in Japan. The intensity of embodied global environmental burden is a measure of the environmental burden generated globally by unit production of the commodity and can be used as life cycle inventory data in LCA. The calculation employs an input-output LCA method with a global link input-output model that defines a global system boundary grounded in a simplified multiregional input-output framework. As results, the intensities of embodied global environmental burden for 406 Japanese commodities are determined in terms of energy consumption, greenhouse-gas emissions (carbon dioxide, methane, nitrous oxide, perfluorocarbons, hydrofluorocarbons, sulfur hexafluoride, and their summation), and air-pollutant emissions (nitrogen oxide and sulfur oxide). The uncertainties in the intensities of embodied global environmental burden attributable to the simplified structure of the global link input-output model are quantified using Monte Carlo simulation. In addition, by analyzing the structure of the embodied global greenhouse-gas intensities we characterize Japanese commodities in the context of LCA embracing global supply chains.

  5. Life cycle testing of sodium/sulfur satellite battery cells

    NASA Astrophysics Data System (ADS)

    Flake, Richard A.

    Test results on sodium sulfur cells developed presently by the Air Force for NaS rechargeable batteries for baseload power applications are summarized. Cycle life data are presented on fourteen cells, some of which have accumulated more than 1900 days on test and/or more than 6000 cycles. Results demonstrated cycle life times to be sufficient for use on satellites in high-altitude orbits.

  6. Life cycle cost assessment of future low heat rejection engines

    NASA Technical Reports Server (NTRS)

    Petersen, D. R.

    1986-01-01

    The Adiabatic Diesel Engine Component Development (ADECD) represents a project which has the objective to accelerate the development of highway truck engines with advanced technology aimed at reduced fuel consumption. The project comprises three steps, including the synthesis of a number of engine candidate designs, the coupling of each with a number of systems for utilizing exhaust gas energy, and the evaluation of each combination in terms of desirability. Particular attention is given to the employed evaluation method and the development of this method. The objective of Life Cycle Cost (LCC) evaluation in the ADECD program was to select the best from among 42 different low heat rejection engine (LHRE)/exhaust energy recovery system configurations. The LCC model is discussed along with a maintenance cost model, the evaluation strategy, the selection of parameter ranges, and a full factorial analysis.

  7. Geographic variation in life cycle strategies of a progenetic trematode.

    PubMed

    Herrmann, Kristin K; Poulin, Robert

    2012-02-01

    Numerous parasite species have evolved complex life cycles with multiple, subsequent hosts. In trematodes, each transmission event in multi-host life cycles selects for various adaptations, one of which is facultative life cycle abbreviation. This typically occurs through progenesis, i.e., precocious maturity and reproduction via self-fertilization within the second intermediate host. Progenesis eliminates the need for the definitive host and facilitates life cycle completion. Adopting a progenetic cycle may be a conditional strategy in response to environmental cues related to low probability of transmission to the definitive host. Here, the effects of environmental factors on the reproductive strategy of the progenetic trematode Stegodexamene anguillae were investigated using comparisons among populations. In the 3-host life cycle, S. anguillae sexually reproduces within eel definitive hosts, whereas in the progenetic life cycle, S. anguillae reproduces by selfing within the metacercaria cyst in tissues of small fish intermediate hosts. Geographic variation was found in the frequency of progenesis, independent of eel abundance. Progenesis was affected by abundance and length of the second intermediate fish host as well as encystment site within the host. The present study is the first to compare life cycle strategies among parasite populations, providing insight into the often unrecognized plasticity in parasite developmental strategies and transmission.

  8. Multidisciplinary life cycle metrics and tools for green buildings.

    PubMed

    Helgeson, Jennifer F; Lippiatt, Barbara C

    2009-07-01

    Building sector stakeholders need compelling metrics, tools, data, and case studies to support major investments in sustainable technologies. Proponents of green building widely claim that buildings integrating sustainable technologies are cost effective, but often these claims are based on incomplete, anecdotal evidence that is difficult to reproduce and defend. The claims suffer from 2 main weaknesses: 1) buildings on which claims are based are not necessarily "green" in a science-based, life cycle assessment (LCA) sense and 2) measures of cost effectiveness often are not based on standard methods for measuring economic worth. Yet, the building industry demands compelling metrics to justify sustainable building designs. The problem is hard to solve because, until now, neither methods nor robust data supporting defensible business cases were available. The US National Institute of Standards and Technology (NIST) Building and Fire Research Laboratory is beginning to address these needs by developing metrics and tools for assessing the life cycle economic and environmental performance of buildings. Economic performance is measured with the use of standard life cycle costing methods. Environmental performance is measured by LCA methods that assess the "carbon footprint" of buildings, as well as 11 other sustainability metrics, including fossil fuel depletion, smog formation, water use, habitat alteration, indoor air quality, and effects on human health. Carbon efficiency ratios and other eco-efficiency metrics are established to yield science-based measures of the relative worth, or "business cases," for green buildings. Here, the approach is illustrated through a realistic building case study focused on different heating, ventilation, air conditioning technology energy efficiency. Additionally, the evolution of the Building for Environmental and Economic Sustainability multidisciplinary team and future plans in this area are described.

  9. Low Cycle Fatigue Behavior and Life Prediction of a Cast Cobalt-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Yang, Ho-Young; Kim, Jae-Hoon; Yoo, Keun-Bong

    Co-base superalloys have been applied in the stationary components of gas turbine owing to their excellent high temperature properties. Low cycle fatigue data on ECY-768 reported in a companion paper were used to evaluate fatigue life prediction models. In this study, low cycle fatigue tests are performed as the variables of total strain range and temperatures. The relations between plastic and total strain energy densities and number of cycles to failure are examined in order to predict the low cycle fatigue life of Cobalt-based super alloy at different temperatures. The fatigue lives is evaluated using predicted by Coffin-Manson method and strain energy methods is compared with the measured fatigue lives at different temperatures. The microstructure observing was performed for how affect able to low-cycle fatigue life by increasing the temperature.

  10. Comparative life cycle assessment of standard and green roofs.

    PubMed

    Saiz, Susana; Kennedy, Christopher; Bass, Brad; Pressnail, Kim

    2006-07-01

    Life cycle assessment (LCA) is used to evaluate the benefits, primarily from reduced energy consumption, resulting from the addition of a green roof to an eight story residential building in Madrid. Building energy use is simulated and a bottom-up LCA is conducted assuming a 50 year building life. The key property of a green roof is its low solar absorptance, which causes lower surface temperature, thereby reducing the heat flux through the roof. Savings in annual energy use are just over 1%, but summer cooling load is reduced by over 6% and reductions in peak hour cooling load in the upper floors reach 25%. By replacing the common flat roof with a green roof, environmental impacts are reduced by between 1.0 and 5.3%. Similar reductions might be achieved by using a white roof with additional insulation for winter, but more substantial reductions are achieved if common use of green roofs leads to reductions in the urban heat island.

  11. A Life-Cycle Comparison of Alternative Automobile Fuels.

    PubMed

    MacLean, Heather L; Lave, Lester B; Lankey, Rebecca; Joshi, Satish

    2000-10-01

    We examine the life cycles of gasoline, diesel, compressed natural gas (CNG), and ethanol (C2H5OH)-fueled internal combustion engine (ICE) automobiles. Port and direct injection and spark and compression ignition engines are examined. We investigate diesel fuel from both petroleum and biosources as well as C2H5OH from corn, herbaceous bio-mass, and woody biomass. The baseline vehicle is a gasoline-fueled 1998 Ford Taurus. We optimize the other fuel/powertrain combinations for each specific fuel as a part of making the vehicles comparable to the baseline in terms of range, emissions level, and vehicle lifetime. Life-cycle calculations are done using the economic input-output life-cycle analysis (EIO-LCA) software; fuel cycles and vehicle end-of-life stages are based on published model results. We find that recent advances in gasoline vehicles, the low petroleum price, and the extensive gasoline infrastructure make it difficult for any alternative fuel to become commercially viable. The most attractive alternative fuel is compressed natural gas because it is less expensive than gasoline, has lower regulated pollutant and toxics emissions, produces less greenhouse gas (GHG) emissions, and is available in North America in large quantities. However, the bulk and weight of gas storage cylinders required for the vehicle to attain a range comparable to that of gasoline vehicles necessitates a redesign of the engine and chassis. Additional natural gas transportation and distribution infrastructure is required for large-scale use of natural gas for transportation. Diesel engines are extremely attractive in terms of energy efficiency, but expert judgment is divided on whether these engines will be able to meet strict emissions standards, even with reformulated fuel. The attractiveness of direct injection engines depends on their being able to meet strict emissions standards without losing their greater efficiency. Biofuels offer lower GHG emissions, are sustainable, and

  12. A life-cycle comparison of alternative automobile fuels.

    PubMed

    MacLean, H L; Lave, L B; Lankey, R; Joshi, S

    2000-10-01

    We examine the life cycles of gasoline, diesel, compressed natural gas (CNG), and ethanol (C2H5OH)-fueled internal combustion engine (ICE) automobiles. Port and direct injection and spark and compression ignition engines are examined. We investigate diesel fuel from both petroleum and biosources as well as C2H5OH from corn, herbaceous bio-mass, and woody biomass. The baseline vehicle is a gasoline-fueled 1998 Ford Taurus. We optimize the other fuel/powertrain combinations for each specific fuel as a part of making the vehicles comparable to the baseline in terms of range, emissions level, and vehicle lifetime. Life-cycle calculations are done using the economic input-output life-cycle analysis (EIO-LCA) software; fuel cycles and vehicle end-of-life stages are based on published model results. We find that recent advances in gasoline vehicles, the low petroleum price, and the extensive gasoline infrastructure make it difficult for any alternative fuel to become commercially viable. The most attractive alternative fuel is compressed natural gas because it is less expensive than gasoline, has lower regulated pollutant and toxics emissions, produces less greenhouse gas (GHG) emissions, and is available in North America in large quantities. However, the bulk and weight of gas storage cylinders required for the vehicle to attain a range comparable to that of gasoline vehicles necessitates a redesign of the engine and chassis. Additional natural gas transportation and distribution infrastructure is required for large-scale use of natural gas for transportation. Diesel engines are extremely attractive in terms of energy efficiency, but expert judgment is divided on whether these engines will be able to meet strict emissions standards, even with reformulated fuel. The attractiveness of direct injection engines depends on their being able to meet strict emissions standards without losing their greater efficiency. Biofuels offer lower GHG emissions, are sustainable, and

  13. Life cycle assessment of bagasse waste management options.

    PubMed

    Kiatkittipong, Worapon; Wongsuchoto, Porntip; Pavasant, Prasert

    2009-05-01

    Bagasse is mostly utilized for steam and power production for domestic sugar mills. There have been a number of alternatives that could well be applied to manage bagasse, such as pulp production, conversion to biogas and electricity production. The selection of proper alternatives depends significantly on the appropriateness of the technology both from the technical and the environmental points of view. This work proposes a simple model based on the application of life cycle assessment (LCA) to evaluate the environmental impacts of various alternatives for dealing with bagasse waste. The environmental aspects of concern included global warming potential, acidification potential, eutrophication potential and photochemical oxidant creation. Four waste management scenarios for bagasse were evaluated: landfilling with utilization of landfill gas, anaerobic digestion with biogas production, incineration for power generation, and pulp production. In landfills, environmental impacts depended significantly on the biogas collection efficiency, whereas incineration of bagasse to electricity in the power plant showed better environmental performance than that of conventional low biogas collection efficiency landfills. Anaerobic digestion of bagasse in a control biogas reactor was superior to the other two energy generation options in all environmental aspects. Although the use of bagasse in pulp mills created relatively high environmental burdens, the results from the LCA revealed that other stages of the life cycle produced relatively small impacts and that this option might be the most environmentally benign alternative.

  14. Life cycle assessment of bagasse waste management options

    SciTech Connect

    Kiatkittipong, Worapon; Wongsuchoto, Porntip; Pavasant, Prasert

    2009-05-15

    Bagasse is mostly utilized for steam and power production for domestic sugar mills. There have been a number of alternatives that could well be applied to manage bagasse, such as pulp production, conversion to biogas and electricity production. The selection of proper alternatives depends significantly on the appropriateness of the technology both from the technical and the environmental points of view. This work proposes a simple model based on the application of life cycle assessment (LCA) to evaluate the environmental impacts of various alternatives for dealing with bagasse waste. The environmental aspects of concern included global warming potential, acidification potential, eutrophication potential and photochemical oxidant creation. Four waste management scenarios for bagasse were evaluated: landfilling with utilization of landfill gas, anaerobic digestion with biogas production, incineration for power generation, and pulp production. In landfills, environmental impacts depended significantly on the biogas collection efficiency, whereas incineration of bagasse to electricity in the power plant showed better environmental performance than that of conventional low biogas collection efficiency landfills. Anaerobic digestion of bagasse in a control biogas reactor was superior to the other two energy generation options in all environmental aspects. Although the use of bagasse in pulp mills created relatively high environmental burdens, the results from the LCA revealed that other stages of the life cycle produced relatively small impacts and that this option might be the most environmentally benign alternative.

  15. Life cycle assessment of domestic and agricultural rainwater harvesting systems.

    PubMed

    Ghimire, Santosh R; Johnston, John M; Ingwersen, Wesley W; Hawkins, Troy R

    2014-04-01

    To further understanding of the environmental implications of rainwater harvesting and its water savings potential relative to conventional U.S. water delivery infrastructure, we present a method to perform life cycle assessment of domestic rainwater harvesting (DRWH) and agricultural rainwater harvesting (ARWH) systems. We also summarize the design aspects of DRWH and ARWH systems adapted to the Back Creek watershed, Virginia. The baseline design reveals that the pump and pumping electricity are the main components of DRWH and ARWH impacts. For nonpotable uses, the minimal design of DRWH (with shortened distribution distance and no pump) outperforms municipal drinking water in all environmental impact categories except ecotoxicity. The minimal design of ARWH outperforms well water in all impact categories. In terms of watershed sustainability, the two minimal designs reduced environmental impacts, from 58% to 78% energy use and 67% to 88% human health criteria pollutants, as well as avoiding up to 20% blue water (surface/groundwater) losses, compared to municipal drinking water and well water. We address potential environmental and human health impacts of urban and rural RWH systems in the region. The Building for Environmental and Economic Sustainability (BEES) model-based life cycle inventory data were used for this study.

  16. The Physician's Life Cycle: Picketing the Outposts

    PubMed Central

    McSherry, J. A.

    1981-01-01

    The changes which occur in a physician's life relate to stages of personal and professional development. The balance between the demands of practice and the needs of self and family is critical. Early establishment of personal goals and priorities makes it easy to avoid specific hazards which would otherwise compromise enjoyment of a full life and a productive career. A lifelong personal program of medical education nourishes the professional interest which sustains a busy practitioner throughout a demanding career.

  17. Comparative life cycle assessment and life cycle costing of four disposal scenarios for used polyethylene terephthalate bottles in Mauritius.

    PubMed

    Foolmaun, Rajendra Kumar; Ramjeeawon, Toolseeram

    2012-09-01

    The annual rise in population growth coupled with the flourishing tourism industry in Mauritius has lead to a considerable increase in the amount of solid waste generated. In parallel, the disposal of non-biodegradable wastes, especially plastic packaging and plastic bottles, has also shown a steady rise. Improper disposal of used polyethylene terephthalate (PET) bottles constitutes an eyesore to the environmental landscape and is a threat to the flourishing tourism industry. It is of utmost importance, therefore, to determine a suitable disposal method for used PET bottles which is not only environmentally efficient but is also cost effective. This study investigated the environmental impacts and the cost effectiveness of four selected disposal alternatives for used PET bottles in Mauritius. The four disposal routes investigated were: 100% landfilling; 75% incineration with energy recovery and 25% landfilling; 40% flake production (partial recycling) and 60% landfilling; and 75% flake production and 25% landfilling. Environmental impacts of the disposal alternatives were determined using ISO standardized life cycle assessment (LCA) and with the support of SimaPro 7.1 software. Cost effectiveness was determined using life cycle costing (LCC). Collected data were entered into a constructed Excel-based model to calculate the different cost categories, Net present values, damage costs and payback periods. LCA and LCC results indicated that 75% flake production and 25% landfilling was the most environmentally efficient and cost-effective disposal route for used PET bottles in Mauritius.

  18. The Adult Life Cycle: Exploration and Implications.

    ERIC Educational Resources Information Center

    Baile, Susan

    Most of the frameworks that have been constructed to mark off the changes in the cycle of adulthood are characterized by a particular focus such as developmental ages, the role of age and timing, or ego development. The theory of Erik Erikson, based upon his clinical observations, represents these crucial turning points in human development: ages…

  19. Life Cycle Assessment of Domestic and Agricultural Rainwater Harvesting Systems

    EPA Science Inventory

    To further understanding of the environmental implications of rainwater harvesting and its water savings potential relative to conventional U.S. water delivery infrastructure, we present a method to perform life cycle assessment of domestic rainwater harvesting (DRWH) and agricul...

  20. Information system life-cycle and documentation standards, volume 1

    NASA Technical Reports Server (NTRS)

    Callender, E. David; Steinbacher, Jody

    1989-01-01

    The Software Management and Assurance Program (SMAP) Information System Life-Cycle and Documentation Standards Document describes the Version 4 standard information system life-cycle in terms of processes, products, and reviews. The description of the products includes detailed documentation standards. The standards in this document set can be applied to the life-cycle, i.e., to each phase in the system's development, and to the documentation of all NASA information systems. This provides consistency across the agency as well as visibility into the completeness of the information recorded. An information system is software-intensive, but consists of any combination of software, hardware, and operational procedures required to process, store, or transmit data. This document defines a standard life-cycle model and content for associated documentation.

  1. A new data architecture for advancing life cycle assessment

    EPA Science Inventory

    IntroductionLife cycle assessment (LCA) has a technical architecture that limits data interoperability, transparency, and automated integration of external data. More advanced information technologies offer promise for increasing the ease with which information can be synthesized...

  2. LIFE CYCLE DESIGN OF MILK AND JUICE PACKAGING

    EPA Science Inventory

    A life cycle design demonstration project was initiated between the U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Dow Chemical Company, and the University of Michigan to investigate milk and juice packagie design. The primary objective of ...

  3. LIFE CYCLE IMPACT ASSESSMENT: A GLOBAL PERSPECTIVE, II

    EPA Science Inventory

    Research within the field of Life Cycle Impact Assessment (LCIA) has greatly improved since the work of Heijungs and Guinee in 1992. Methodologies are currently available to address specific locations within North America, Europe, and Asia. Internationally, researchers are work...

  4. Comparison of different building shells - life cycle assessment.

    PubMed

    Rixrath, Doris; Wartha, Christian

    2016-07-01

    The Renewable Energy and Efficiency Action (REACT) project is a European Union-funded cross-border cooperative venture featuring the participation of companies and researchers from the Austrian state of Burgenland and western Slovakia that is developing zero-energy concepts for newly built single-family homes. A variety of building structures are defined for family houses, and the different impacts they have on the environment are evaluated over the entire life cycle. This paper aims to compare the environmental impacts of different building shells during both the construction and the demolition phases. However, the operation phase of the building is not evaluated. One of the findings of the project thus far is that the demolition and disposal of building materials should be included in any such evaluation. For some environmental impact assessment categories, both demolition and disposal are important. The environmental impacts of various end-of-life scenarios can differ greatly based on the disposal method (e.g., landfill, incineration, recycling) chosen and on the proportion of recycled content. Furthermore, the results show that manufacturing building materials from renewable resources can have strong environmental impacts, particularly when substantial amounts of fossil fuel are required in their production. Integr Environ Assess Manag 2016;12:437-444. © 2016 SETAC.

  5. A Life Cycle Assessment of a Magnesium Automotive Front End

    SciTech Connect

    Das, Sujit; Dubreuil, Alain; Bushi, Lindita; Tharumarajah, Ambalavanar

    2009-01-01

    The Magnesium Front End Research and Development (MFERD) project under the sponsorship of Canada, China and USA aims to develop key technologies and a knowledge base for increased use of magnesium in automobile. The goal of this life cycle assessment (LCA) study is to compare the energy and potential environmental impacts of advanced magnesium based front end parts of a North America built 2007 GM-Cadillac CTS with the standard carbon steel based design. This LCA uses the 'cradle-to-grave' approach by including primary material production, semi-fabrication production, autoparts manufacturing and assembly, transportation, use phase and end-of-life processing of autoparts. This LCA study was done in compliance with international standards ISO 14040:2006 and ISO 14044:2006. Furthermore, the LCA results for aluminum based front end autopart are presented. While weight savings result in reductions in energy use and carbon dioxide emissions during the use of the car, the impacts of fabrication and recycling of lightweight materials are substantial in regard to steel. Pathways for improving sustainability of magnesium use in automobiles through material management and technology improvements including recycling are also discussed.

  6. Life cycle costs for chemical process pumps

    SciTech Connect

    Urwin, B.; Blong, R.; Jamieson, C.; Erickson, B.

    1998-01-01

    Though construction and startup costs are always a concern, proper investment in equipment and installation will save money down the line. This is particularly important for heavily used items, such as centrifugal pumps, one of the workhouses of the chemical process industries (CPI). By properly sizing and installing a centrifugal pump, the life and efficiency of the pump can be increased. At the same time, maintenance costs can be reduced. When considering a new pump, there are several areas that require attention. The first is the baseplate design. The impeller is another area of concern. The seal chamber, the third area of importance, must be designed for proper heat dissipation and lubrication of seal faces. Lastly, the power end must be considered. Optimum bearing life, effective oil cooling and minimum shaft deflection are all vital. The paper discusses installation costs, operating cost, maintenance cost, seal environment, and extended bearing life.

  7. Life-Cycle Analysis of Aircraft Turbine Engines

    DTIC Science & Technology

    1977-11-01

    8217total dej’ot wind batse) costs , Theii other budget. ctcourbta, providted by vi’giite flintily (not, by application). include BPI&5)0, Suppor’t...acquire early visibility of cost magnitudes, proportions, and trends associated with a new engine’s life cycle, and to identify "drivers" that increase... cost and can have the effect of lowering capability. Later in the life cycle, logistics managers can use the methodology and the feedback it produces

  8. Analysis of Energy, Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate

    SciTech Connect

    Yong X. Tao; Yimin Zhu

    2012-04-26

    It has been widely recognized that the energy saving benefits of GSHP systems are best realized in the northern and central regions where heating needs are dominant or both heating and cooling loads are comparable. For hot and humid climate such as in the states of FL, LA, TX, southern AL, MS, GA, NC and SC, buildings have much larger cooling needs than heating needs. The Hybrid GSHP (HGSHP) systems therefore have been developed and installed in some locations of those states, which use additional heat sinks (such as cooling tower, domestic water heating systems) to reject excess heat. Despite the development of HGSHP the comprehensive analysis of their benefits and barriers for wide application has been limited and often yields non-conclusive results. In general, GSHP/HGSHP systems often have higher initial costs than conventional systems making short-term economics unattractive. Addressing these technical and financial barriers call for additional evaluation of innovative utility programs, incentives and delivery approaches. From scientific and technical point of view, the potential for wide applications of GSHP especially HGSHP in hot and humid climate is significant, especially towards building zero energy homes where the combined energy efficient GSHP and abundant solar energy production in hot climate can be an optimal solution. To address these challenges, this report presents gathering and analyzing data on the costs and benefits of GSHP/HGSHP systems utilized in southern states using a representative sample of building applications. The report outlines the detailed analysis to conclude that the application of GSHP in Florida (and hot and humid climate in general) shows a good potential.

  9. LIFE CYCLE MANAGEMENT OF MUNICIPAL SOLID WASTE

    EPA Science Inventory

    This is a large, complex project in which a number of different research activities are taking place concurrently to collect data, develop cost and LCI methodologies, construct a database and decision support tool, and conduct case studies with communities to support the life cyc...

  10. A comprehensive life cycle assessment (LCA) of Jatropha biodiesel production in India.

    PubMed

    Kumar, Sunil; Singh, Jasvinder; Nanoti, S M; Garg, M O

    2012-04-01

    A life cycle approach was adopted for energy, green house gas (GHG) emissions and renewability assessment for production of 1ton of Jatropha biodiesel. Allocation and displacement approaches were applied for life cycle inventory, process energy and process GHG emission attribution to co-products. The results of process energy and GHG emission analyses revealed that the amount of process energy consumption and GHG emission in the individual stages of the life cycle assessment (LCA) were a strong function of co-product handling and irrigation. The GHG emission reduction with respect to petroleum diesel for generating 1GJ energy varied from 40% to 107% and NER values from 1.4 to 8.0 depending upon the methodology used for energy and emission distribution between product and co-products as well as irrigation applied. However, GHG emission reduction values of 54 and 40 and NER (net energy ratio) values of 1.7 and 1.4 for irrigated and rain-fed scenarios, respectively indicate the eco-friendly nature and renewability of biodiesel even in the worst scenario where total life cycle inventory (LCI), process energy and GHG emission were allocated to biodiesel only.

  11. Life Cycle Inventory of Biodiesel and Petroleum Diesel for Use in an Urban Bus

    SciTech Connect

    Sheehan, John; Camobreco, Vince; Duffield, James; Graboski, Michael; Graboski, Michael; Shapouri, Housein

    1998-05-01

    This report presents the findings from a study of the life cycle inventories (LCIs) for petroleum diesel and biodiesel. An LCI is a comprehensive quantification of all the energy and environmental flows associated with a product from “cradle to grave.” It provides information on raw materials extracted from the environment; energy resources consumed; air, water, and solid waste emissions generated.

  12. Exergetic life cycle assessment of hydrogen production from renewables

    NASA Astrophysics Data System (ADS)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.

    Life cycle assessment is extended to exergetic life cycle assessment and used to evaluate the exergy efficiency, economic effectiveness and environmental impact of producing hydrogen using wind and solar energy in place of fossil fuels. The product hydrogen is considered a fuel for fuel cell vehicles and a substitute for gasoline. Fossil fuel technologies for producing hydrogen from natural gas and gasoline from crude oil are contrasted with options using renewable energy. Exergy efficiencies and greenhouse gas and air pollution emissions are evaluated for all process steps, including crude oil and natural gas pipeline transportation, crude oil distillation and natural gas reforming, wind and solar electricity generation, hydrogen production through water electrolysis, and gasoline and hydrogen distribution and utilization. The use of wind power to produce hydrogen via electrolysis, and its application in a fuel cell vehicle, exhibits the lowest fossil and mineral resource consumption rate. However, the economic attractiveness, as measured by a "capital investment effectiveness factor," of renewable technologies depends significantly on the ratio of costs for hydrogen and natural gas. At the present cost ratio of about 2 (per unit of lower heating value or exergy), capital investments are about five times lower to produce hydrogen via natural gas rather than wind energy. As a consequence, the cost of wind- and solar-based electricity and hydrogen is substantially higher than that of natural gas. The implementation of a hydrogen fuel cell instead of an internal combustion engine permits, theoretically, an increase in a vehicle's engine efficiency of about of two times. Depending on the ratio in engine efficiencies, the substitution of gasoline with "renewable" hydrogen leads to (a) greenhouse gas (GHG) emissions reductions of 12-23 times for hydrogen from wind and 5-8 times for hydrogen from solar energy, and (b) air pollution (AP) emissions reductions of 38

  13. Evaluation program for secondary spacecraft cells: Cycle life test

    NASA Technical Reports Server (NTRS)

    Harkness, J. D.

    1979-01-01

    The service life and storage stability for several storage batteries were determined. The batteries included silver-zinc batteries, nickel-cadmium batteries, and silver-cadmium batteries. The cell performance characteristics and limitations are to be used by spacecraft power systems planners and designers. A statistical analysis of the life cycle prediction and cause of failure versus test conditions is presented.

  14. LIFE CYCLE DESIGN OF A FUEL TANK SYSTEM

    EPA Science Inventory

    This life cycle design (LCD) project was a collaborative effort between the National Pollution Prevention Center at the University of Michigan, General Motors (GM), and the U.S. Environmental Protection Agency (EPA). The primary objective of this project was to apply life cyc...

  15. Models of life: epigenetics, diversity and cycles

    NASA Astrophysics Data System (ADS)

    Sneppen, Kim

    2017-04-01

    This review emphasizes aspects of biology that can be understood through repeated applications of simple causal rules. The selected topics include perspectives on gene regulation, phage lambda development, epigenetics, microbial ecology, as well as model approaches to diversity and to punctuated equilibrium in evolution. Two outstanding features are repeatedly described. One is the minimal number of rules to sustain specific states of complex systems for a long time. The other is the collapse of such states and the subsequent dynamical cycle of situations that restitute the system to a potentially new metastable state.

  16. Models of life: epigenetics, diversity and cycles.

    PubMed

    Sneppen, Kim

    2017-01-20

    This review emphasizes aspects of biology that can be understood through repeated applications of simple causal rules. The selected topics include perspectives on gene regulation, phage lambda development, epigenetics, microbial ecology, as well as model approaches to diversity and to punctuated equilibrium in evolution. Two outstanding features are repeatedly described. One is the minimal number of rules to sustain specific states of complex systems for a long time. The other is the collapse of such states and the subsequent dynamical cycle of situations that restitute the system to a potentially new metastable state.

  17. Life cycle assessment of a biomass gasification combined-cycle power system

    SciTech Connect

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a technoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  18. Life cycle evaluation of emerging lignocellulosic ethanol conversion technologies.

    PubMed

    Spatari, Sabrina; Bagley, David M; MacLean, Heather L

    2010-01-01

    Lignocellulosic ethanol holds promise for addressing climate change and energy security issues associated with personal transportation through lowering the fuel mixes' carbon intensity and petroleum demand. We compare the technological features and life cycle environmental impacts of near- and mid-term ethanol bioconversion technologies in the United States. Key uncertainties in the major processes: pre-treatment, hydrolysis, and fermentation are evaluated. The potential to reduce fossil energy use and greenhouse gas (GHG) emissions varies among bioconversion processes, although all options studied are considerably more attractive than gasoline. Anticipated future performance is found to be considerably more attractive than that published in the literature as being achieved to date. Electricity co-product credits are important in characterizing the GHG impacts of different ethanol production pathways; however, in the absence of near-term liquid transportation fuel alternatives to gasoline, optimizing ethanol facilities to produce ethanol (as opposed to co-products) is important for reducing the carbon intensity of the road transportation sector and for energy security.

  19. 76 FR 41525 - Hewlett Packard Global Parts Supply Chain, Global Product Life Cycles Management Unit Including...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-14

    ... Parts Supply Chain, Global Product Life Cycles Management Unit, including teleworkers reporting to... Employment and Training Administration Hewlett Packard Global Parts Supply Chain, Global Product Life Cycles... Chain, Global Product Life Cycles Management Unit, including teleworkers reporting to Houston,...

  20. Developmental plasticity and the evolution of animal complex life cycles

    PubMed Central

    Minelli, Alessandro; Fusco, Giuseppe

    2010-01-01

    Metazoan life cycles can be complex in different ways. A number of diverse phenotypes and reproductive events can sequentially occur along the cycle, and at certain stages a variety of developmental and reproductive options can be available to the animal, the choice among which depends on a combination of organismal and environmental conditions. We hypothesize that a diversity of phenotypes arranged in developmental sequence throughout an animal's life cycle may have evolved by genetic assimilation of alternative phenotypes originally triggered by environmental cues. This is supported by similarities between the developmental mechanisms mediating phenotype change and alternative phenotype determination during ontogeny and the common ecological condition that favour both forms of phenotypic variation. The comparison of transcription profiles from different developmental stages throughout a complex life cycle with those from alternative phenotypes in closely related polyphenic animals is expected to offer critical evidence upon which to evaluate our hypothesis. PMID:20083638

  1. Impacts of Vehicle Weight Reduction via Material Substitution on Life-Cycle Greenhouse Gas Emissions

    SciTech Connect

    Kelly, Jarod C.; Sullivan, John L.; Burnham, Andrew; Elgowainy, Amgad

    2015-10-20

    This study examines the vehicle-cycle impacts associated with substituting lightweight materials for those currently found in light-duty passenger vehicles. We determine part-based energy use and greenhouse gas (GHG) emission ratios by collecting material substitution data from both the literature and automotive experts and evaluating that alongside known mass-based energy use and GHG emission ratios associated with material pair substitutions. Several vehicle parts, along with full vehicle systems, are examined for lightweighting via material substitution to observe the associated impact on GHG emissions. Results are contextualized by additionally examining fuel-cycle GHG reductions associated with mass reductions relative to the baseline vehicle during the use phase and also determining material pair breakeven driving distances for GHG emissions. The findings show that, while material substitution is useful in reducing vehicle weight, it often increases vehicle-cycle GHGs depending upon the material substitution pair. However, for a vehicle’s total life cycle, fuel economy benefits are greater than the increased burdens associated with the vehicle manufacturing cycle, resulting in a net total life-cycle GHG benefit. The vehicle cycle will become increasingly important in total vehicle life-cycle GHGs, since fuel-cycle GHGs will be gradually reduced as automakers ramp up vehicle efficiency to meet fuel economy standards.

  2. Life cycle risk assessment of bottom ash reuse.

    PubMed

    Shih, Hsiu-ching; Ma, Hwong-wen

    2011-06-15

    The life cycle thinking was integrated with risk assessment to develop the life cycle risk assessment (LCRA) methodology in this study. Because LCRA assessed risks from a life cycle perspective of the concerned policies, it was helpful to identify important sources, contaminants, receptors and exposure pathways along the life cycle of reuse activities. The case study showed that different reuse scenarios resulted in risk shift between different life stages and receptors, and using duration of pavement was an essential factor for risk management. When ash reuse strategies were made based on a focus on the stage of reuse, the rank of strategies were shown to be different from the one based on the total population risks over the entire life cycle. This demonstrated the importance of decision criteria used in selecting reuse strategies. The results also showed that when bottom ash was reused, the health risk was shifted to the laborers; the individual risks of laborers were higher than residents through exposure to Cr and Cd via inhalation and dermal contact. Although the population risk at the treatment stage was the highest, the smaller size of exposed population would make it quite effective to reduce the risk of the laborers.

  3. Long life nickel electrodes for a nickel-hydrogen cell: Cycle life tests

    NASA Technical Reports Server (NTRS)

    Lim, H. S.; Verzwyvelt, S. A.

    1985-01-01

    In order to develop a long life nickel electrode for a Ni/H2 cell, the cycle life of nickel electrodes was tested in Ni/H2 boiler plate cells. A 19 test cell matrix was made of various nickel electrode designs including three levels each of plaque mechanical strength, median pore size of the plaque, and active material loading. Test cells were cycled to the end of their life (0.5v) in a 45 minute low Earth orbit cycle regime at 80% depth-of-discharge. It is shown that the active material loading level affects the cycle life the most with the optimum loading at 1.6 g/cc void. Mechanical strength does not affect the cycle life noticeably in the bend strength range of 400 to 700 psi. It is found that the best plaque is made of INCO nickel powder type 287 and has median pore size of 13 micron.

  4. Role of nondestructive evaluation in life cycle management

    SciTech Connect

    Martz, H.

    1997-12-18

    This paper provides an overview of some common NDE methods and several examples for the use of different NDE techniques throughout the life cycle of a product. NDE techniques are being used to help determine material properties, design new implants, extend the service life of aircraft, and help dispose of radioactive waste in a safe manner. It is the opinion of this author and others that the NDE community needs to work more closely with end users in the life cycle of a product to better incorporate NDE techniques. The NDE community needs to highlight the importance of NDE in the entire life-cycle process of a product by showing real costs savings to the manufacturing community.

  5. Life Cycle Reversal in Aurelia sp.1 (Cnidaria, Scyphozoa)

    PubMed Central

    He, Jinru; Zheng, Lianming; Zhang, Wenjing; Lin, Yuanshao

    2015-01-01

    The genus Aurelia is one of the major contributors to jellyfish blooms in coastal waters, possibly due in part to hydroclimatic and anthropogenic causes, as well as their highly adaptive reproductive traits. Despite the wide plasticity of cnidarian life cycles, especially those recognized in certain Hydroza species, the known modifications of Aurelia life history were mostly restricted to its polyp stage. In this study, we document the formation of polyps directly from the ectoderm of degenerating juvenile medusae, cell masses from medusa tissue fragments, and subumbrella of living medusae. This is the first evidence for back-transformation of sexually mature medusae into polyps in Aurelia sp.1. The resulting reconstruction of the schematic life cycle of Aurelia reveals the underestimated potential of life cycle reversal in scyphozoan medusae, with possible implications for biological and ecological studies. PMID:26690755

  6. Life Cycle Reversal in Aurelia sp.1 (Cnidaria, Scyphozoa).

    PubMed

    He, Jinru; Zheng, Lianming; Zhang, Wenjing; Lin, Yuanshao

    2015-01-01

    The genus Aurelia is one of the major contributors to jellyfish blooms in coastal waters, possibly due in part to hydroclimatic and anthropogenic causes, as well as their highly adaptive reproductive traits. Despite the wide plasticity of cnidarian life cycles, especially those recognized in certain Hydroza species, the known modifications of Aurelia life history were mostly restricted to its polyp stage. In this study, we document the formation of polyps directly from the ectoderm of degenerating juvenile medusae, cell masses from medusa tissue fragments, and subumbrella of living medusae. This is the first evidence for back-transformation of sexually mature medusae into polyps in Aurelia sp.1. The resulting reconstruction of the schematic life cycle of Aurelia reveals the underestimated potential of life cycle reversal in scyphozoan medusae, with possible implications for biological and ecological studies.

  7. Transpiration during life cycle in controlled wheat growth

    NASA Technical Reports Server (NTRS)

    Volk, Tyler; Rummel, John D.

    1989-01-01

    A previously-developed model of wheat growth, designed for convenient incorporation into system-level models of advanced space life support systems is described. The model is applied to data from an experiment that grew wheat under controlled conditions and measured fresh biomass and cumulated transpiration as a function of time. The adequacy of modeling the transpiration as proportional to the inedible biomass, and an age factor which varies during the life cycle, are examined. Results indicate that during the main phase of vegetative growth in the first half of the life cycle, the rate of transpiration per unit mass of inedible biomass is more than double the rate during the phase of grain development and maturation during latter half of the life cycle.

  8. Life Cycle Assessment of Biochar - EuroChar Project

    NASA Astrophysics Data System (ADS)

    Rack, M.; Woods, J.

    2012-04-01

    One of the most significant challenges faced by modern-day society is that of global warming. An exclusive focus on reducing the greenhouse gas (GHG) emissions will not suffice and therefore technologies capable of removing CO2 directly from the atmosphere at low or minimal cost are gaining increased attention. The production and use of biochar is an example of such an emerging mitigation strategy. However, as with any novel product, process and technology it is vital to conduct an assessment of the entire life cycle in order to determine the environmental impacts of the new concept in addition to analysing the other sustainability criteria. Life Cycle Assessment (LCA), standardized by ISO (2006a), is an example of a tool used to calculate the environmental impacts of a product or process. Imperial College London will follow the guidelines and recommendations of the ISO 14040 series (ISO 2002, ISO 2006a-b) and the International Life Cycle Data System (ILCD) Handbook (EC JRC IES, 2010a-e), and will use the SimaPro software to conduct a LCA of the biochar supply chains for the EuroChar project. EuroChar ('biochar for Carbon sequestration and large-scale removal of GHG from the atmosphere') is a project funded by the European Commission under its Seventh Framework Programme (FP7). EuroChar aims to investigate and reduce uncertainties around the impacts of, and opportunities for, biochar and, in particular, explore a possible introduction into modern agricultural systems in Europe, thereby moving closer to the determination of the true potential of biochar. EuroChar will use various feedstocks, ranging from wheat straw to olive residues and poplar, as feedstocks for biochar production and will focus on two conversion technologies, Hydrothermal Carbonization (HTC) and Thermochemical Carbonization (TC), followed by the application of the biochar in crop-growth field trials in England, France and Italy. In April 2012, the EuroChar project will be at its halfway mark and

  9. Storing Renewable Energy in the Hydrogen Cycle.

    PubMed

    Züttel, Andreas; Callini, Elsa; Kato, Shunsuke; Atakli, Züleyha Özlem Kocabas

    2015-01-01

    An energy economy based on renewable energy requires massive energy storage, approx. half of the annual energy consumption. Therefore, the production of a synthetic energy carrier, e.g. hydrogen, is necessary. The hydrogen cycle, i.e. production of hydrogen from water by renewable energy, storage and use of hydrogen in fuel cells, combustion engines or turbines is a closed cycle. Electrolysis splits water into hydrogen and oxygen and represents a mature technology in the power range up to 100 kW. However, the major technological challenge is to build electrolyzers in the power range of several MW producing high purity hydrogen with a high efficiency. After the production of hydrogen, large scale and safe hydrogen storage is required. Hydrogen is stored either as a molecule or as an atom in the case of hydrides. The maximum volumetric hydrogen density of a molecular hydrogen storage is limited to the density of liquid hydrogen. In a complex hydride the hydrogen density is limited to 20 mass% and 150 kg/m(3) which corresponds to twice the density of liquid hydrogen. Current research focuses on the investigation of new storage materials based on combinations of complex hydrides with amides and the understanding of the hydrogen sorption mechanism in order to better control the reaction for the hydrogen storage applications.

  10. Application of life cycle analysis: The case of green bullets

    SciTech Connect

    Bogard, J.S.; Yuracko, K.L.; Murray, M.E.; Lowden, R.A.; Vaughn, N.L.

    1998-06-01

    Life-cycle analysis (LCA) has been used to analyze the desirability of replacing lead with a composite of tungsten and tin in projectile slugs used in small arms ammunition at US Department of Energy (DOE) training facilities for security personnel. The analysis includes consideration of costs, performance, environmental and human health impacts, availability of raw materials, and stakeholder acceptance. The DOE expends approximately 10 million rounds of small-arms ammunition each year training security personnel. This deposits over 300,000 pounds of lead and copper annually into DOE firing ranges, contributing to lead migration in the surrounding environment. Human lead intake occurs by inhalation of contaminated indoor firing range air and air containing lead particles that are resuspended during regular maintenance and cleanup, and by skin absorption while cleaning weapons. Projectiles developed by researchers at Oak Ridge National Laboratory (ORNL) using a composite of tungsten and tin perform as well as, or better than, those fabricated using lead. A cost analysis shows that tungsten-tin is less costly to use than lead, since, for the current number of rounds used annually, the higher tungsten-tin purchase price is small compared with higher maintenance costs associated with lead. The tungsten-tin composite presents a much smaller potential for adverse human health and environmental impacts than lead. Only a small fraction of the world`s tungsten production occurs in the United States, however, and market-economy countries account for only around 15% of world tungsten production. Life cycle analysis clearly shows that advantages outweigh risks in replacing lead with tungsten-tin in small-caliber projectiles at DOE training facilities. Concerns about the availability of raw tungsten are mitigated by the ease of converting back to lead (if necessary) and the recyclability of tungsten-tin rounds.

  11. Model of environmental life cycle assessment for coal mining operations.

    PubMed

    Burchart-Korol, Dorota; Fugiel, Agata; Czaplicka-Kolarz, Krystyna; Turek, Marian

    2016-08-15

    This paper presents a novel approach to environmental assessment of coal mining operations, which enables assessment of the factors that are both directly and indirectly affecting the environment and are associated with the production of raw materials and energy used in processes. The primary novelty of the paper is the development of a computational environmental life cycle assessment (LCA) model for coal mining operations and the application of the model for coal mining operations in Poland. The LCA model enables the assessment of environmental indicators for all identified unit processes in hard coal mines with the life cycle approach. The proposed model enables the assessment of greenhouse gas emissions (GHGs) based on the IPCC method and the assessment of damage categories, such as human health, ecosystems and resources based on the ReCiPe method. The model enables the assessment of GHGs for hard coal mining operations in three time frames: 20, 100 and 500years. The model was used to evaluate the coal mines in Poland. It was demonstrated that the largest environmental impacts in damage categories were associated with the use of fossil fuels, methane emissions and the use of electricity, processing of wastes, heat, and steel supports. It was concluded that an environmental assessment of coal mining operations, apart from direct influence from processing waste, methane emissions and drainage water, should include the use of electricity, heat and steel, particularly for steel supports. Because the model allows the comparison of environmental impact assessment for various unit processes, it can be used for all hard coal mines, not only in Poland but also in the world. This development is an important step forward in the study of the impacts of fossil fuels on the environment with the potential to mitigate the impact of the coal industry on the environment.

  12. Life cycle assessment in support of sustainable transportation

    NASA Astrophysics Data System (ADS)

    Eckelman, Matthew J.

    2013-06-01

    In our rapidly urbanizing world, sustainable transportation presents a major challenge. Transportation decisions have considerable direct impacts on urban society, both positive and negative, for example through changes in transit times and economic productivity, urban connectivity, tailpipe emissions and attendant air quality concerns, traffic accidents, and noise pollution. Much research has been dedicated to quantifying these direct impacts for various transportation modes. Transportation planning decisions also result in a variety of indirect environmental and human health impacts, a portion of which can accrue outside of the transit service area and so outside of the local decision-making process. Integrated modeling of direct and indirect impacts over the life cycle of different transportation modes provides decision support that is more comprehensive and less prone to triggering unintended consequences than a sole focus on direct tailpipe emissions. The recent work of Chester et al (2013) in this journal makes important contributions to this research by examining the environmental implications of introducing bus rapid transit and light rail in Los Angeles using life cycle assessment (LCA). Transport in the LA region is dominated by automobile trips, and the authors show that potential shifts to either bus or train modes would reduce energy use and emissions of criteria air pollutants, on an average passenger mile travelled basis. This work compares not just the use of each vehicle, but also upstream impacts from its manufacturing and maintenance, as well as the construction and maintenance of the entire infrastructure required for each mode. Previous work by the lead author (Chester and Horvath 2009), has shown that these non-operational sources and largely non-local can dominate life cycle impacts from transportation, again on an average (or attributional) basis, for example increasing rail-related GHG emissions by >150% over just operational emissions

  13. Evaluation of Cycle Life and Characterization of YTP 45 Ah Li-Ion Battery for EMU

    NASA Technical Reports Server (NTRS)

    Deng, Yi; Jeevarajan, Judith; Rehm, Raymond; Bragg, Bobby; Strangways, Brad

    2002-01-01

    Li-ion batteries, with longer cycle life and higher energy density features, are now more and more attractive and applied in multiple fields. The YTP 45 Ah Li-ion battery has been evaluated here and may be employed in EMU in the future. Evaluations were on: (1) Cycle life tests - 500 cycles total (completed 40 cycles in simulated shuttle use mode and 460 cycles in an accelerated use mode, and recorded differential voltage of individual cell in battery); (2) Characterization test - discharge capacity measurement in environment temperature of -10, 25, 50 C before and after 500 cycles; and (3) Thermal testing - charge and discharge at 50 C and -10 C before and after 500 cycles. The battery showed less than a 9% drop of initial discharge capacity and energy within 500 cycles with 475 cycles 59% DOD plus 25 cycles 100% DOD. The EOD voltage ranged from 16.0 to 18.0 V, which fits the requirement for operating the EMU.

  14. The NCI Thesaurus quality assurance life cycle.

    PubMed

    de Coronado, Sherri; Wright, Lawrence W; Fragoso, Gilberto; Haber, Margaret W; Hahn-Dantona, Elizabeth A; Hartel, Francis W; Quan, Sharon L; Safran, Tracy; Thomas, Nicole; Whiteman, Lori

    2009-06-01

    The National Cancer Institute Enterprise Vocabulary Services (NCI EVS) uses a wide range of quality assurance (QA) techniques to maintain and extend NCI Thesaurus (NCIt). NCIt is a reference terminology and biomedical ontology used in a growing number of NCI and other systems that extend from translational and basic research through clinical care to public information and administrative activities. Both automated and manual QA techniques are employed throughout the editing and publication cycle, which includes inserting and editing NCIt in NCI Metathesaurus. NCI EVS conducts its own additional periodic and ongoing content QA. External reviews, and extensive evaluation by and interaction with EVS partners and other users, have also played an important part in the QA process. There have always been tensions and compromises between meeting the needs of dependent systems and providing consistent and well-structured content; external QA and feedback have been important in identifying and addressing such issues. Currently, NCI EVS is exploring new approaches to broaden external participation in the terminology development and QA process.

  15. Electric-bus life-cycle cost study. Final report

    SciTech Connect

    1997-12-01

    A detailed study of the Santa Barbara Metropolitan Transit District (MTD) electric-bus program was conducted and resulted in a comprehensive set of cost data. These costs are compared with the life cycle costs of diesel buses. Direct comparisons of the life cycle costs of battery-electric buses and of diesel-fueled buses were not found to be meaningful without considering the environmental costs and benefits associated with both vehicle types; some of these factors are discussed in the study. The duty cycles most appropriate to the two bus types are not generally comparable. Electric shuttle-bus life cycle costs with flooded-cell lead-acid battery are 108% of the costs attributable to a diesel shuttle. Costs with the maintenance-free lead-acid and flooded-cell nickel-cadmium batteries are 113% and 117% relative to diesel, respectively. The monetary value attributed to emissions avoided by the use of electric buses depends on the local air quality situation. Labor costs are the major component of electric-bus life cycle costs, incremental advances in the enabling technologies will bring electric-bus costs close to those of diesel-fueled buses. Advances in battery technology will widen the range of duty cycles appropriate to electric buses.

  16. Life cycle water footprints of nonfood biomass fuels in China.

    PubMed

    Zhang, Tingting; Xie, Xiaomin; Huang, Zhen

    2014-04-01

    This study presented life cycle water footprints (WFs) of biofuels from biomass in China based on the resource distribution, climate conditions, soil conditions and crop growing characteristics. Life cycle WFs including blue, green and gray water were evaluated for the selected fuel pathways. Geographical differences of water requirements were revealed to be different by locations. The results indicated that water irrigation requirements were significantly different from crop to crop, ranging from 2-293, 78-137, and 17-621 m(3)/ha, for sweet sorghum, cassava, and Jatropha curcas L., respectively. Four biofuel pathways were selected on this basis to analyze the life cycle WF: cassava based bioethanol in Guangxi, sweet sorghum based bioethanol in Northeast China, Jatropha curcal L. based biodiesel in Yunnan and microalgae based biodiesel in Hainan. The life cycle WFs of bioethanol from cassava and sweet sorghum were 3708, and 17 156 m(3) per ton of bioethanol, respectively, whereas for biodiesel produced from Jatropha curcas L. and microalgae, they were 5787, and 31 361 m(3) per ton of biodiesel, respectively. The crop growing stage was the main contributor to the whole life cycle of each pathway. Compared to blue and green water, gray water was significant due to the use of fertilizer during the growing of biomass. From the perspective of the WF, cassava based bioethanol in Guangxi and Jatropha based biodiesel in Yunnan were suitable for promotion, whereas the promotion for microalage based biodiesel in Hainan required improvement on technology.

  17. Life cycle assessment for sustainable metropolitan water systems planning.

    PubMed

    Lundie, Sven; Peters, Gregory M; Beavis, Paul C

    2004-07-01

    Life Cycle Assessment (LCA) is useful as an information tool for the examination of alternative future scenarios for strategic planning. Developing a life cycle assessment for a large water and wastewater system involves making methodological decisions about the level of detail which is retained through different stages of the process. In this article we discuss a methodology tailored to strategic planning needs which retains a high degree of model segmentation in order to enhance modeling of a large, complex system. This is illustrated by a case study of Sydney Water, which is Australia's largest water service provider. A prospective LCA was carried out to examine the potential environmental impacts of Sydney Water's total operations in the year 2021. To our knowledge this is the first study to create an LCA model of an integrated water and wastewater system with this degree of complexity. A "base case" system model was constructed to represent current operating assets as augmented and upgraded to 2021. The base case results provided a basis for the comparison of alternative future scenarios and for conclusions to be drawn regarding potential environmental improvements. The scenarios can be roughly classified in two categories: (1) options which improve the environmental performance across all impact categories and (2) options which improve one indicator and worsen others. Overall environmental improvements are achieved in all categories by the scenarios examining increased demand management, energy efficiency, energy generation, and additional energy recovery from biosolids. The scenarios which examined desalination of seawater and the upgrades of major coastal sewage treatment plants to secondary and tertiary treatment produced an improvement in one environmental indicator but deteriorations in all the other impact categories, indicating the environmental tradeoffs within the system. The desalination scenario produced a significant increase in greenhouse gas

  18. Animal Life Cycles. Animal Life in Action[TM]. Schlessinger Science Library. [Videotape].

    ERIC Educational Resources Information Center

    2000

    This 23-minute videotape for grades 5-8, presents the myriad of animal life that exists on the planet. Students can view and perform experiments and investigations that help explain animal traits and habits. The stages of life that animals pass through--birth, growth, maturation, reproduction, and death--make up the life cycle. Students learn…

  19. Early-Life Origins of Life-Cycle Well-Being: Research and Policy Implications

    ERIC Educational Resources Information Center

    Currie, Janet; Rossin-Slater, Maya

    2015-01-01

    Mounting evidence across different disciplines suggests that early-life conditions can have consequences on individual outcomes throughout the life cycle. Relative to other developed countries, the United States fares poorly on standard indicators of early-life health, and this disadvantage may have profound consequences not only for population…

  20. The life cycle of the Madden-Julian oscillation

    NASA Technical Reports Server (NTRS)

    Hendon, Harry H.; Salby, Murry L.

    1994-01-01

    A composite life cycle of the Madden-Julian oscillation (MJO) is constructed from the cross covariance between outgoing longwave radiation (OLR), wind, and temperature. To focus on the role of convection, the composite is based on episodes when a discrete signal in OLR is present. The composite convective anomaly possesses a predominantly zonal wavenumber 2 structure that is confined to the eastern hemisphere. There, it propagates eastward at about 5 m/s and evolves through a systematic cycle of amplification and decay. Unlike the convective anomaly, the circulation anomaly is not confined to the eastern hemisphere. The circulation anomaly displays characteristics of both a forced response, coupled to the convective anomaly as it propagates across the eastern hemisphere, and a radiating response, which propagates away from the convective anomaly into the western hemisphere at about 10 m/s. The forced response appears as a coupled Rossby-Kelvin wave while the radiating response displays predominantly Kelvin wave features. When it is amplifying, the convective anomaly is positively correlated to the temperature perturbation, which implies production of eddy available potential energy (EAPE). A similar correlation between upper-tropospheric divergence and temperature implies conversion of EAPE to eddy kinetic energy during this time. When it is decaying, temperature has shifted nearly into quadrature with convection, so their correlation and production of EAPE are then small. The same correspondence to the amplification and decay of the disturbance is mirrored in the phase relationship between surface convergence and anomalous convection. The correspondence of surface convergence to the amplification and decay of the convective anomaly suggests that frictional wave- Conditional Instability of the Second Kind (CISK) plays a key role in generating the MJO.

  1. The life cycle of Drosophila orphan genes.

    PubMed

    Palmieri, Nicola; Kosiol, Carolin; Schlötterer, Christian

    2014-02-19

    Orphans are genes restricted to a single phylogenetic lineage and emerge at high rates. While this predicts an accumulation of genes, the gene number has remained remarkably constant through evolution. This paradox has not yet been resolved. Because orphan genes have been mainly analyzed over long evolutionary time scales, orphan loss has remained unexplored. Here we study the patterns of orphan turnover among close relatives in the Drosophila obscura group. We show that orphans are not only emerging at a high rate, but that they are also rapidly lost. Interestingly, recently emerged orphans are more likely to be lost than older ones. Furthermore, highly expressed orphans with a strong male-bias are more likely to be retained. Since both lost and retained orphans show similar evolutionary signatures of functional conservation, we propose that orphan loss is not driven by high rates of sequence evolution, but reflects lineage-specific functional requirements. DOI: http://dx.doi.org/10.7554/eLife.01311.001.

  2. Geothermal activity helps life survive glacial cycles.

    PubMed

    Fraser, Ceridwen I; Terauds, Aleks; Smellie, John; Convey, Peter; Chown, Steven L

    2014-04-15

    Climate change has played a critical role in the evolution and structure of Earth's biodiversity. Geothermal activity, which can maintain ice-free terrain in glaciated regions, provides a tantalizing solution to the question of how diverse life can survive glaciations. No comprehensive assessment of this "geothermal glacial refugia" hypothesis has yet been undertaken, but Antarctica provides a unique setting for doing so. The continent has experienced repeated glaciations that most models indicate blanketed the continent in ice, yet many Antarctic species appear to have evolved in almost total isolation for millions of years, and hence must have persisted in situ throughout. How could terrestrial species have survived extreme glaciation events on the continent? Under a hypothesis of geothermal glacial refugia and subsequent recolonization of nongeothermal regions, we would expect to find greater contemporary diversity close to geothermal sites than in nongeothermal regions, and significant nestedness by distance of this diversity. We used spatial modeling approaches and the most comprehensive, validated terrestrial biodiversity dataset yet created for Antarctica to assess spatial patterns of diversity on the continent. Models clearly support our hypothesis, indicating that geothermally active regions have played a key role in structuring biodiversity patterns in Antarctica. These results provide critical insights into the evolutionary importance of geothermal refugia and the history of Antarctic species.

  3. Geothermal activity helps life survive glacial cycles

    PubMed Central

    Fraser, Ceridwen I.; Terauds, Aleks; Smellie, John; Convey, Peter; Chown, Steven L.

    2014-01-01

    Climate change has played a critical role in the evolution and structure of Earth’s biodiversity. Geothermal activity, which can maintain ice-free terrain in glaciated regions, provides a tantalizing solution to the question of how diverse life can survive glaciations. No comprehensive assessment of this “geothermal glacial refugia” hypothesis has yet been undertaken, but Antarctica provides a unique setting for doing so. The continent has experienced repeated glaciations that most models indicate blanketed the continent in ice, yet many Antarctic species appear to have evolved in almost total isolation for millions of years, and hence must have persisted in situ throughout. How could terrestrial species have survived extreme glaciation events on the continent? Under a hypothesis of geothermal glacial refugia and subsequent recolonization of nongeothermal regions, we would expect to find greater contemporary diversity close to geothermal sites than in nongeothermal regions, and significant nestedness by distance of this diversity. We used spatial modeling approaches and the most comprehensive, validated terrestrial biodiversity dataset yet created for Antarctica to assess spatial patterns of diversity on the continent. Models clearly support our hypothesis, indicating that geothermally active regions have played a key role in structuring biodiversity patterns in Antarctica. These results provide critical insights into the evolutionary importance of geothermal refugia and the history of Antarctic species. PMID:24616489

  4. Life cycle assessment of ethanol derived from sawdust.

    PubMed

    Roy, Poritosh; Dutta, Animesh

    2013-12-01

    The life cycle of ethanol derived from sawdust by enzymatic hydrolysis process is evaluated to determine if environmentally preferable and economically viable ethanol can be produced. Two scenarios are considered to estimate net energy consumption, greenhouse gas (GHG) emission and production costs. The estimated net energy consumption, GHG emission and production costs are 12.29-13.37 MJ/L, 0.75-0.92 kg CO2 e/L and about $0.98-$1.04/L, respectively depending on the scenarios of this study. The result confirmed that environmental benefit can be gained with present technologies; however, economic viability remains doubtful unless Feed-in Tariff (FiT) is considered. The production cost of ethanol reduces to $0.5/L, if FiT is considered to be $0.025/MJ. This study indicates that the implementation of FiT program for ethanol industry not only helps Ontario mitigate GHG emissions, but may also attract more investment and create rural employment opportunities.

  5. Life Cycle Inventory (LCI) Data-Treatment Chemicals ...

    EPA Pesticide Factsheets

    This report estimates environmental emission factors (EmF) for key chemicals, construction and treatment materials, transportation/on-site equipment, and other processes used at remediation sites. The basis for chemical, construction, and treatment material EmFs is life cycle inventory (LCI) data extracted from secondary data sources and compiled using the openLCA software package. The US EPA MOVES 2014 model was used to derive EmFs from combustion profiles for a number of transportation and on-site equipment processes. The EmFs were calculated for use in US EPA’s Spreadsheets for Environmental Footprint Analysis (SEFA). EmFs are reported for cumulative energy demand (CED), global warming potential (GWP), criteria pollutants (e.g. NOX, SOX, and PM10), hazardous air pollutants (HAPs), and water use. Since the USEPA launched its green remediation program, metrics such as impacts, outcomes, and environmental burdens of remediation actions have been difficult to assess. This research includes metrics to quantify RCRA and CERCLA remediation actions. Metrics include: greenhouse gases, energy demand, water use, SOX, NOX, PM10, and hazardous air pollutants. The primary user of this project is EPA's Region 9 Superfund and Technology Office for input into the SEFA tool. SEFA is a set of analytical workbooks used to quantify the environmental footprint of a site cleanup in order to achieve a greener cleanup. SEFA permits users to enter actual or anticipated data on site

  6. Life-Cycle Evaluation of Concrete Building Construction as a Strategy for Sustainable Cities

    SciTech Connect

    Stadel, Alexander; Gursel, Petek; Masanet, Eric

    2012-01-18

    Structural materials in commercial buildings in the United States account for a significant fraction of national energy use, resource consumption, and greenhouse gas (GHG) emissions. Robust decisions for balancing and minimizing these various environmental effects require that structural materials selections follow a life-cycle, systems modeling approach. This report provides a concise overview of the development and use of a new life-cycle assessment (LCA) model for structural materials in U.S. commercial buildings-the Berkeley Lab Building Materials Pathways (B-PATH) model. B-PATH aims to enhance environmental decision-making in the commercial building LCA, design, and planning communities through the following key features: (1) Modeling of discrete technology options in the production, transportation, construction, and end of life processes associated U.S. structural building materials; (2) Modeling of energy supply options for electricity provision and directly combusted fuels across the building life cycle; (3) Comprehensiveness of relevant building mass and energy flows and environmental indicators; (4) Ability to estimate modeling uncertainties through easy creation of different life-cycle technology and energy supply pathways for structural materials; and (5) Encapsulation of the above features in a transparent public use model. The report summarizes literature review findings, methods development, model use, and recommendations for future work in the area of LCA for commercial buildings.

  7. Life-Cycle Analysis of Alternative Aviation Fuels in GREET

    SciTech Connect

    Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S.

    2012-06-01

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1_2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or(2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55–85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources — such as natural gas and coal — could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet

  8. Life-cycle analysis of alternative aviation fuels in GREET

    SciTech Connect

    Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S.

    2012-07-23

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet

  9. Global life cycle releases of engineered nanomaterials

    NASA Astrophysics Data System (ADS)

    Keller, Arturo A.; McFerran, Suzanne; Lazareva, Anastasiya; Suh, Sangwon

    2013-06-01

    Engineered nanomaterials (ENMs) are now becoming a significant fraction of the material flows in the global economy. We are already reaping the benefits of improved energy efficiency, material use reduction, and better performance in many existing and new applications that have been enabled by these technological advances. As ENMs pervade the global economy, however, it becomes important to understand their environmental implications. As a first step, we combined ENM market information and material flow modeling to produce the first global assessment of the likely ENM emissions to the environment and landfills. The top ten most produced ENMs by mass were analyzed in a dozen major applications. Emissions during the manufacturing, use, and disposal stages were estimated, including intermediate steps through wastewater treatment plants and waste incineration plants. In 2010, silica, titania, alumina, and iron and zinc oxides dominate the ENM market in terms of mass flow through the global economy, used mostly in coatings/paints/pigments, electronics and optics, cosmetics, energy and environmental applications, and as catalysts. We estimate that 63-91 % of over 260,000-309,000 metric tons of global ENM production in 2010 ended up in landfills, with the balance released into soils (8-28 %), water bodies (0.4-7 %), and atmosphere (0.1-1.5 %). While there are considerable uncertainties in the estimates, the framework for estimating emissions can be easily improved as better data become available. The material flow estimates can be used to quantify emissions at the local level, as inputs for fate and transport models to estimate concentrations in different environmental compartments.

  10. DWPF Air Lift Pump Life Cycle Evaluation

    SciTech Connect

    IMRICH, KENNETH

    2004-03-15

    The Defense Waste Processing Facility (DWPF) air lift pump was successfully tested at Clemson for 72 days of operation. It provided sufficient flow to pump molten glass without excessive foaming. Slurry feeding also did not reveal any problems with cold cap stability. Metallurgically the Inconel 690 (690) portions of the pump were in excellent condition with no visual evidence of degradation even in high flow regions, i.e., air/melt interface and glass discharge regions. Spinel deposits, which completely covered the air passage on one side, were found at the inlet of each platinum/rhodium (Pt/Rh) nozzle. Although the deposits were extensive, they were porous and did not have an adverse effect on the operation of the pump. The technique used to secure the platinum/rhodium nozzles to the 690 housing appeared to be adequate with only minor oxidation of the 690 threads and glass in-leakage. Galvanic attack was observed where the nozzle formed a seal with the 690. Significant pitting of the 690 was observed around the entire seal. Intergranular cracking of the Pt/Rh alloy was extensive but the cause could not be determined. Testing would be required to evaluate the degradation. Data from the performance test and the metallurgical evaluation are being used to modify the design of the first DWPF production air lift pump. It will be fabricated entirely from 690 and use argon as the purge gas. It is intended to have a service life of 6 months. Recommendations for insertion, operation, and inspection of the pump are also included in this report. Performance data collected from the operation of the production pump will be used to further optimize the design. Laboratory exposure tests should also be performed to evaluate the galvanic effect between platinum/rhodium and 690.

  11. Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation: Systematic Review and Harmonization

    SciTech Connect

    Warner, E. S.; Heath, G. A.

    2012-04-01

    A systematic review and harmonization of life cycle assessment (LCA) literature of nuclear electricity generation technologies was performed to determine causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions to clarify the state of knowledge and inform decision making. LCA literature indicates that life cycle GHG emissions from nuclear power are a fraction of traditional fossil sources, but the conditions and assumptions under which nuclear power are deployed can have a significant impact on the magnitude of life cycle GHG emissions relative to renewable technologies. Screening 274 references yielded 27 that reported 99 independent estimates of life cycle GHG emissions from light water reactors (LWRs). The published median, interquartile range (IQR), and range for the pool of LWR life cycle GHG emission estimates were 13, 23, and 220 grams of carbon dioxide equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh), respectively. After harmonizing methods to use consistent gross system boundaries and values for several important system parameters, the same statistics were 12, 17, and 110 g CO{sub 2}-eq/kWh, respectively. Harmonization (especially of performance characteristics) clarifies the estimation of central tendency and variability. To explain the remaining variability, several additional, highly influential consequential factors were examined using other methods. These factors included the primary source energy mix, uranium ore grade, and the selected LCA method. For example, a scenario analysis of future global nuclear development examined the effects of a decreasing global uranium market-average ore grade on life cycle GHG emissions. Depending on conditions, median life cycle GHG emissions could be 9 to 110 g CO{sub 2}-eq/kWh by 2050.

  12. Early Life Cycle Cost Trade Study By Parametric Analysis

    NASA Astrophysics Data System (ADS)

    Dehm, Roy; Patrakis, Stan

    1982-06-01

    Unit production cost and life cycle cost tradestudy considerations are basic to the affordability of a new product. A major portion of the life cycle cost of a product, including production cost, are found to result from decisions made early in the planning phases of a program. Computerized parametric cost modeling generates cost estimates using the information that is available before the developing of engineering detail. The RCA PRICE program, available to all potential users, is used to illustrate the input requirements and steps necessary for parametric estimating of costs for development, production and support in the life cycle of a product. A laser rangefinder equipment is used as a product example to show the utility of this analysis.

  13. Quantifying Cost Risk Early in the Life Cycle

    SciTech Connect

    B. Mar

    2004-11-04

    A new method for analyzing life cycle cost risk on large programs is presented that responds to an increased emphasis on improving sustainability for long-term programs. This method provides better long-term risk assessment and risk management techniques. It combines standard Monte Carlo analysis of risk drivers and a new data-driven method developed by the BMDO. The approach permits quantification of risks throughout the entire life cycle without resorting to difficult to support subjective methods. The BMDO methodology is shown to be relatively straightforward to apply to a specific component or process within a project using standard technical risk assessment methods. The total impact on system is obtained using the program WBS, which allows for the capture of correlated risks shared by multiple WBS items. Once the correlations and individual component risks are captured, a Monte Carlo simulation can be run using a modeling tool such as ANALYTICA to produce the overall life cycle cost risk.

  14. Security Risks: Management and Mitigation in the Software Life Cycle

    NASA Technical Reports Server (NTRS)

    Gilliam, David P.

    2004-01-01

    A formal approach to managing and mitigating security risks in the software life cycle is requisite to developing software that has a higher degree of assurance that it is free of security defects which pose risk to the computing environment and the organization. Due to its criticality, security should be integrated as a formal approach in the software life cycle. Both a software security checklist and assessment tools should be incorporated into this life cycle process and integrated with a security risk assessment and mitigation tool. The current research at JPL addresses these areas through the development of a Sotfware Security Assessment Instrument (SSAI) and integrating it with a Defect Detection and Prevention (DDP) risk management tool.

  15. The Force of Selection on the Human Life Cycle

    PubMed Central

    Jones, James Holland

    2011-01-01

    In this paper, I present evidence for a robust and quite general force of selection on the human life cycle. The force of selection acts in remarkably invariant ways on human life histories, despite a great abundance of demographic diversity. Human life histories are highly structured, with mortality and fertility changing substantially through the life cycle. This structure necessitates the use of structured population models to understand human life history evolution. Using such structured models, I find that the vital rates to which fitness is most sensitive are pre-reproductive survival probabilities, particularly the survival of children ages 0–4. The fact that the preponderance of selection falls on transitions related to recruitment combined with the late age at first reproduction characteristic of the human life cycle, creates a fitness bottleneck out of recruitment. Because of this, antagonistic pleiotropy with any trait that detracts from the constituent transitions to recruitment is expected. I explore the predictors of variation in the force of selection on early survival. High fertility increases the selective premium placed on early survivorship, while high life expectancy at birth decreases it. PMID:22003281

  16. A hydrostatic pressure-cycle energy harvester

    NASA Astrophysics Data System (ADS)

    Shafer, Michael W.; Hahn, Gregory; Morgan, Eric

    2015-04-01

    There have been a number of new applications for energy harvesting with the ever-decreasing power consumption of microelectronic devices. In this paper we explore a new area of marine animal energy harvesting for use in powering tags known as bio-loggers. These devices record data about the animal or its surroundings, but have always had limited deployment times due to battery depletion. Reduced solar irradiance below the water's surface provides the impetus to explore other energy harvesting concepts beyond solar power for use on marine animals. We review existing tag technologies in relation to this application, specifically relating to energy consumption. Additionally, we propose a new idea for energy harvesting, using hydrostatic pressure changes as a source for energy production. We present initial testing results of a bench-top model and show that the daily energy harvesting potential from this technology can meet or exceed that consumed by current marine bio-logging tags. The application of this concept in the arena of bio-logging technology could substantially increase bio-logger deployment lifetimes, allowing for longitudinal studies over the course of multiple breeding and/or migration cycles.

  17. Transport of Passive Tracers in Baroclinic Wave Life Cycles

    NASA Technical Reports Server (NTRS)

    Stone, Elizabeth M.; Randel, William J.; Stanford, John L.

    1999-01-01

    The transport of passive tracers in idealized baroclinic wave life cycles is studied using output from the National Center for Atmospheric Research Community Climate Model (CCM2). Two life cycles, LCn and LCs, are simulated, starting with baroclinically unstable initial conditions similar to those used by Thorncroft et al. in their study of two life cycle paradigms. The two life cycles LCn and LCs have different initial horizontal wind shear structures that result in distinctive nonlinear development. In terms of potential vorticity-potential temperature (PV-theta) diagnostics, the LCn case is characterized by thinning troughs that are advected anti-cyclonically and equatorward, while the LCs case has broadening troughs that wrap up cyclonically and poleward. Four idealized passive tracers are included in the model to be advected by the semi-Lagrangian transport scheme of the CCM2, and their evolutions are investigated throughout the life cycles. Tracer budgets are analyzed in terms of the transformed Eulerian mean constituent transport formalism in pressure coordinates and also in isentropic coordinates. Results for both LCn and LCs show transport that is downgradient with respect to the background structure of the tracer field, but with a characteristic spatial structure that maximizes in the middle to high latitudes. For the idealized tropospheric tracers in this study, this represents a net upward and poleward transport that enhances concentrations at high latitudes. These results vary little with the initial distribution of the constituent field. The time tendency of the tracer is influenced most strongly by the eddy flux term. with the largest transport occurring during the nonlinear growth stage of the life cycle. The authors also study the transport of a lower-stratospheric tracer, to examine stratosphere-troposphere exchange for baroclinic waves.

  18. Ecology and Life Cycle Patterns of Echinococcus Species.

    PubMed

    Romig, T; Deplazes, P; Jenkins, D; Giraudoux, P; Massolo, A; Craig, P S; Wassermann, M; Takahashi, K; de la Rue, M

    2017-01-01

    The genus Echinococcus is composed of eight generally recognized species and one genotypic cluster (Echinococcus canadensis cluster) that may in future be resolved into one to three species. For each species, we review existing information on transmission routes and life cycles in different geographical contexts and - where available - include basic biological information of parasites and hosts (e.g., susceptibility of host species). While some Echinococcus spp. are transmitted in life cycles that involve predominantly domestic animals (e.g., dog - livestock cycles), others are wildlife parasites that do or do not interact with domestic transmission. In many cases, life cycle patterns of the same parasite species differ according to geography. Simple life cycles contrast with transmission patterns that are highly complex, involving multihost systems that may include both domestic and wild mammals. Wildlife transmission may be primary or secondary, i.e., resulting from spillovers from domestic animals. For most of the species and regions, existing information does not yet permit a conclusive description of transmission systems. Such data, however, would be highly relevant, e.g., for anticipation of geographical changes of the presence and frequency of these parasites in a warming world, or for initiating evidence-based control strategies.

  19. Improving Life-Cycle Cost Management of Spacecraft Missions

    NASA Technical Reports Server (NTRS)

    Clardy, Dennon

    2010-01-01

    This presentation will explore the results of a recent NASA Life-Cycle Cost study and how project managers can use the findings and recommendations to improve planning and coordination early in the formulation cycle and avoid common pitfalls resulting in cost overruns. The typical NASA space science mission will exceed both the initial estimated and the confirmed life-cycle costs by the end of the mission. In a fixed-budget environment, these overruns translate to delays in starting or launching future missions, or in the worst case can lead to cancelled missions. Some of these overruns are due to issues outside the control of the project; others are due to the unpredictable problems (unknown unknowns) that can affect any development project. However, a recent study of life-cycle cost growth by the Discovery and New Frontiers Program Office identified a number of areas that are within the scope of project management to address. The study also found that the majority of the underlying causes for cost overruns are embedded in the project approach during the formulation and early design phases, but the actual impacts typically are not experienced until late in the project life cycle. Thus, project management focus in key areas such as integrated schedule development, management structure and contractor communications processes, heritage and technology assumptions, and operations planning, can be used to validate initial cost assumptions and set in place management processes to avoid the common pitfalls resulting in cost overruns.

  20. Addressing software security and mitigations in the life cycle

    NASA Technical Reports Server (NTRS)

    Gilliam, David; Powell, John; Haugh, Eric; Bishop, Matt

    2004-01-01

    Traditionally, security is viewed as an organizational and Information Technology (IT) systems function comprising of firewalls, intrusion detection systems (IDS), system security settings and patches to the operating system (OS) and applications running on it. Until recently, little thought has been given to the importance of security as a formal approach in the software life cycle. The Jet Propulsion Laboratory has approached the problem through the development of an integrated formal Software Security Assessment Instrument (SSAI) with six foci for the software life cycle.

  1. Addressing software security and mitigations in the life cycle

    NASA Technical Reports Server (NTRS)

    Gilliam, David; Powell, John; Haugh, Eric; Bishop, Matt

    2003-01-01

    Traditionally, security is viewed as an organizational and Information Technology (IIJ systems function comprising of Firewalls, intrusion detection systems (IDS), system security settings and patches to the operating system (OS) and applications running on it. Until recently, little thought has been given to the importance of security as a formal approach in the software life cycle. The Jet Propulsion Laboratory has approached the problem through the development of an integrated formal Software Security Assessment Instrument (SSAI) with six foci for the software life cycle.

  2. Structural considerations for a software life cycle dynamic simulation model

    NASA Technical Reports Server (NTRS)

    Tausworthe, R. C.; Mckenzie, M.; Lin, C. Y.

    1983-01-01

    This paper presents the results of a preliminary study into the prospects for simulating the software implementation and maintenance life cycle process, with the aim of producing a computerized tool for use by management and software engineering personnel in project planning, tradeoff studies involving product, environmental, situational, and technological factors, and training. The approach taken is the modular application of a 'flow of resource' concept to the systems dynamics simulation modeling technique. The software life cycle process is represented as a number of stochastic, time-varying, interacting work tasks that each achieves one of the project milestones. Each task is characterized by the item produced, the personnel applied, and the budgetary profile.

  3. Research requirements to reduce civil helicopter life cycle cost

    NASA Technical Reports Server (NTRS)

    Blewitt, S. J.

    1978-01-01

    The problem of the high cost of helicopter development, production, operation, and maintenance is defined and the cost drivers are identified. Helicopter life cycle costs would decrease by about 17 percent if currently available technology were applied. With advanced technology, a reduction of about 30 percent in helicopter life cycle costs is projected. Technological and managerial deficiencies which contribute to high costs are examined, basic research and development projects which can reduce costs include methods for reduced fuel consumption; improved turbine engines; airframe and engine production methods; safety; rotor systems; and advanced transmission systems.

  4. The TMIS life-cycle process document, revision A

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Technical and Management Information System (TMIS) Life-Cycle Process Document describes the processes that shall be followed in the definition, design, development, test, deployment, and operation of all TMIS products and data base applications. This document is a roll out of TMIS Standards Document (SSP 30546). The purpose of this document is to define the life cycle methodology that the developers of all products and data base applications and any subsequent modifications shall follow. Included in this methodology are descriptions of the tasks, deliverables, reviews, and approvals that are required before a product or data base application is accepted in the TMIS environment.

  5. The life cycle cost of integrated logistic support

    NASA Astrophysics Data System (ADS)

    Florio, U. G.

    Scheduling of preventive maintenance within the general context of the life cycle cost of integrated logistic support is discussed. The principal categories of support cost are considered and a procedure of optimizing the total cost for the evaluation of a fundamental logistic parameters is developed using Markov models. The Markov approach allows the examination of the functional relationships between system reliability, maintenance policies and the costs of integrated logistic support. The life cycle cost of the logistic support is optimized, and the results permit a correct cost/efficiency scaling of the support.

  6. Research on conceptual/innovative design for the life cycle

    NASA Technical Reports Server (NTRS)

    Cagan, Jonathan; Agogino, Alice M.

    1990-01-01

    The goal of this research is developing and integrating qualitative and quantitative methods for life cycle design. The definition of the problem includes formal computer-based methods limited to final detailing stages of design; CAD data bases do not capture design intent or design history; and life cycle issues were ignored during early stages of design. Viewgraphs outline research in conceptual design; the SYMON (SYmbolic MONotonicity analyzer) algorithm; multistart vector quantization optimization algorithm; intelligent manufacturing: IDES - Influence Diagram Architecture; and 1st PRINCE (FIRST PRINciple Computational Evaluator).

  7. The Life Cycle and Life Span of Namibian Fairy Circles

    PubMed Central

    Tschinkel, Walter R.

    2012-01-01

    In Namibia of southwestern Africa, the sparse grasslands that develop on deep sandy soils under rainfall between 50 and 100 mm per annum are punctuated by thousands of quasi-circular bare spots, usually surrounded by a ring of taller grass. The causes of these so-called “fairy circles” are unknown, although a number of hypotheses have been proposed. This paper provides a more complete description of the variation in size, density and attributes of fairy circles in a range of soil types and situations. Circles are not permanent; their vegetative and physical attributes allow them to be arranged into a life history sequence in which circles appear (birth), develop (mature) and become revegetated (die). Occasionally, they also enlarge. The appearance and disappearance of circles was confirmed from satellite images taken 4 years apart (2004, 2008). The frequency of births and deaths as a fraction of the total population of circles allowed the calculation of an approximate turnover rate, and from this, an estimate of circle lifespan. Lifespan appeared to vary with circle size, with small circles averaging about 24 years, and larger ones 43–75 years. Overall lifespan averaged about 41 yr. A second, independent estimate of lifespan was made by revisiting circles 2 to 9 years after their clear status had been confirmed. This resulted in a lifespan estimate of about 60 years. Any causal explanation of fairy circles must include their birth, development and death, their mean lifespan and the variation of their features under different conditions. PMID:22761663

  8. Environmental life cycle assessment of nanosilver-enabled bandages.

    PubMed

    Pourzahedi, Leila; Eckelman, Matthew J

    2015-01-06

    Over 400 tons of silver nanoparticles (AgNPs) are produced annually, 30% of which are used in medical applications due to their antibacterial properties. The widespread use of AgNPs has implications over the entire life cycle of medical products, from production to disposal, including but not limited to environmental releases of nanomaterials themselves. Here a cradle-to-grave life cycle assessment from nanoparticle synthesis to end-of-life incineration was performed for a commercially available nanosilver-enabled medical bandage. Emissions were linked to multiple categories of environmental impacts, making primary use of the TRACI 2.1 impact assessment method, with specific consideration of nanosilver releases relative to all other (non-nanosilver) emissions. Modeling results suggest that (1) environmental impacts of AgNP synthesis are dominated by upstream electricity production, with the exception of life cycle ecotoxicity where the largest contributor is mining wastes, (2) AgNPs are the largest contributor to impacts of the bandage for all impact categories considered despite low AgNP loading, and (3) impacts of bandage production are several times those bandage incineration, including nanosilver releases to the environment. These results can be used to prioritize research and policy measures in order to improve the overall ecotoxicity burdens of nanoenabled products under a life cycle framework.

  9. Transpiration during life cycle in controlled wheat growth

    NASA Technical Reports Server (NTRS)

    Volk, Tyler; Rummel, John D.

    1990-01-01

    A previously developed model of wheat growth, designed for convenient incorporation into system level models of advanced space life support systems is described. The model is applied to data from an experiment that grew wheat under controlled conditions and measured fresh biomass and cumulated transpiration as a function of time. The adequacy of modeling the transpiration as proportional to the inedible biomass and an age factor that varies during the life cycle are discussed.

  10. Life cycle assessment of switchgrass- and corn stover-derived ethanol-fueled automobiles.

    PubMed

    Spatari, Sabrina; Zhang, Yimin; MacLean, Heather L

    2005-12-15

    Utilizing domestically produced cellulose-derived ethanol for the light-duty vehicle fleet can potentially improve the environmental performance and sustainability of the transport and energy sectors of the economy. A life cycle assessment model was developed to examine environmental implications of the production and use of ethanol in automobiles in Ontario, Canada. The results were compared to those of low-sulfur reformulated gasoline (RFG) in a functionally equivalent automobile. Two time frames were evaluated, one near-term (2010), which examines converting a dedicated energy crop (switchgrass) and an agricultural residue (corn stover) to ethanol; and one midterm (2020), which assumes technological improvements in the switchgrass-derived ethanol life cycle. Near-term results show that, compared to a RFG automobile, life cycle greenhouse gas (GHG) emissions are 57% lower for an E85-fueled automobile derived from switchgrass and 65% lower for ethanol from corn stover, on a grams of CO2 equivalent per kilometer basis. Corn stover ethanol exhibits slightly lower life cycle GHG emissions, primarily due to sharing emissions with grain production. Through projected improvements in crop and ethanol yields, results for the mid-term scenario show that GHG emissions could be 25-35% lower than those in 2010 and that, even with anticipated improvements in RFG automobiles, E85 automobiles could still achieve up to 70% lower GHG emissions across the life cycle.

  11. Earth's Changing Energy and Water Cycles

    NASA Astrophysics Data System (ADS)

    Trenberth, K. E.

    2008-05-01

    A new assessment of the flows of energy through the climate system will be presented. It features an imbalance at the top-of-atmosphere owing to an enhanced greenhouse effect that produces global warming. Most of the surplus energy trapped increases ocean heat content. Large upwards surface thermal radiation is offset by back radiation from greenhouse gases and clouds in the atmosphere. At the surface, the net losses of energy are greatest through evapotranspiration, followed closely by net radiation, while sensible heat losses are much smaller. This highlights the vital role of the hydrological cycle and why direct changes in the water cycle are a consequence of climate change. Nonetheless, net changes in surface evaporation are fairly modest and a much larger percentage change occurs in the water-holding capacity as atmospheric temperatures increase (4% per °F). A consequence is increased water vapor in the atmosphere which feeds all storms and thus leads to more intense precipitation; increased water vapor, heavier rains and stronger storms are already observed to be happening. However, the disparity between modestly enhanced evaporation and heavier rains means decreases in frequency of precipitation and enhanced droughts. With more precipitation per unit of upward motion in the atmosphere, the atmospheric circulation weakens, causing monsoons to falter. Observed changes in Atlantic hurricanes will be used to illustrate some of these aspects. Understanding these profound consequences of climate change is especially important for water managers. In reality that includes everyone.

  12. Ethanol or bioelectricity? Life cycle assessment of lignocellulosic bioenergy use in light-duty vehicles.

    PubMed

    Luk, Jason M; Pourbafrani, Mohammad; Saville, Bradley A; MacLean, Heather L

    2013-09-17

    Our study evaluates life cycle energy use and GHG emissions of lignocellulosic ethanol and bioelectricity use in U.S. light-duty vehicles. The well-to-pump, pump-to-wheel, and vehicle cycle stages are modeled. All ethanol (E85) and bioelectricity pathways have similar life cycle fossil energy use (~ 100 MJ/100 vehicle kilometers traveled (VKT)) and net GHG emissions (~5 kg CO2eq./100 VKT), considerably lower (65-85%) than those of reference gasoline and U.S. grid-electricity pathways. E85 use in a hybrid vehicle and bioelectricity use in a fully electric vehicle also have similar life cycle biomass and total energy use (~ 350 and ~450 MJ/100 VKT, respectively); differences in well-to-pump and pump-to-wheel efficiencies can largely offset each other. Our energy use and net GHG emissions results contrast with findings in literature, which report better performance on these metrics for bioelectricity compared to ethanol. The primary source of differences in the studies is related to our development of pathways with comparable vehicle characteristics. Ethanol or vehicle electrification can reduce petroleum use, while bioelectricity may displace nonpetroleum energy sources. Regional characteristics may create conditions under which either ethanol or bioelectricity may be the superior option; however, neither has a clear advantage in terms of GHG emissions or energy use.

  13. Life cycle impact assessment: a challenge for risk analysts.

    PubMed

    Matthews, H Scott; Lave, Lester; MacLean, Heather

    2002-10-01

    Modern technology, together with an advanced economy, can provide a good or service in myriad ways, giving us choices on what to produce and how to produce it. To make those choices more intelligently, society needs to know not only the market price of each alternative, but the associated health and environmental consequences. A fair comparison requires evaluating the consequences across the whole "life cycle"--from the extraction of raw materials and processing to manufacture/construction, use, and end-of-life--of each alternative. Focusing on only one stage (e.g., manufacture) of the life cycle is often misleading. Unfortunately, analysts and researchers still have only rudimentary tools to quantify the materials and energy inputs and the resulting damage to health and the environment. Life cycle assessment (LCA) provides an overall framework for identifying and evaluating these implications. Since the 1960s, considerable progress has been made in developing methods for LCA, especially in characterizing, qualitatively and quantitatively, environmental discharges. However, few of these analyses have attempted to assess the quantitative impact on the environment and health of material inputs and environmental discharges Risk analysis and LCA are connected closely. While risk analysis has characterized and quantified the health risks of exposure to a toxicant, the policy implications have not been clear. Inferring that an occupational or public health exposure carries a nontrivial risk is only the first step in formulating a policy response. A broader framework, including LCA, is needed to see which response is likely to lower the risk without creating high risks elsewhere. Even more important, LCA has floundered at the stage of translating an inventory of environmental discharges into estimates of impact on health and the environment. Without the impact analysis, policymakers must revert to some simple rule, such as that all discharges, regardless of which chemical

  14. From Instructional Systems Design to Managing the Life Cycle of Knowledge in Organizations

    ERIC Educational Resources Information Center

    Salisbury, Mark

    2008-01-01

    This article describes a framework for managing the life cycle of knowledge in organizations. The framework emerges from years of work with the laboratories and facilities that are under the direction of the U.S. Department of Energy (DOE). The article begins by describing the instructional systems design (ISD) process and how it is used to…

  15. Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power (Fact Sheet)

    SciTech Connect

    Not Available

    2012-11-01

    The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that makes great strides in clarifying inconsistent and conflicting GHG emission estimates in the published literature while providing more precise estimates of GHG emissions from utility-scale CSP systems.

  16. Life cycle environmental and economic tradeoffs of using fast pyrolysis products for power generation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bio-oils produced from small-scale pyrolysis technology may have economic and environmental benefits for both densifying agricultural biomass and supplying local bio-energy markets (e.g., Renewable Portfolio Standards). This study presents a life cycle assessment (LCA) of a farm-scale bio-oil produ...

  17. Life Cycle Assessment Software for Product and Process Sustainability Analysis

    ERIC Educational Resources Information Center

    Vervaeke, Marina

    2012-01-01

    In recent years, life cycle assessment (LCA), a methodology for assessment of environmental impacts of products and services, has become increasingly important. This methodology is applied by decision makers in industry and policy, product developers, environmental managers, and other non-LCA specialists working on environmental issues in a wide…

  18. A comparison of major petroleum life cycle models | Science ...

    EPA Pesticide Factsheets

    Many organizations have attempted to develop an accurate well-to-pump life cycle model of petroleum products in order to inform decision makers of the consequences of its use. Our paper studies five of these models, demonstrating the differences in their predictions and attempting to evaluate their data quality. Carbon dioxide well-to-pump emissions for gasoline showed a variation of 35 %, and other pollutants such as ammonia and particulate matter varied up to 100 %. Differences in allocation do not appear to explain differences in predictions. Effects of these deviations on well-to-wheels passenger vehicle and truck transportation life cycle models may be minimal for effects such as global warming potential (6 % spread), but for respiratory effects of criteria pollutants (41 % spread) and other impact categories, they can be significant. A data quality assessment of the models’ documentation revealed real differences between models in temporal and geographic representativeness, completeness, as well as transparency. Stakeholders may need to consider carefully the tradeoffs inherent when selecting a model to conduct life cycle assessments for systems that make heavy use of petroleum products. This is a qualitative and quantitative comparison of petroleum LCA models intended for an expert audience interested in better understanding the data quality of existing petroleum life cycle models and the quantitative differences between these models.

  19. A Review of "Life Cycle: How We Grow and Change"

    ERIC Educational Resources Information Center

    Digioia, Melissa Keyes

    2010-01-01

    Sexuality education curricula designed for youths with special needs are sparse. "Life Cycle: How We Grow and Change" (Vavricheck & Tolle, 2008) is a new curriculum by clinical social workers Sherrie Mansfield Vavricheck and R. Kay Tolle. Each chapter addresses a particular developmental stage between birth and death. Lessons within each chapter…

  20. A comparison of major petroleum life cycle models

    EPA Science Inventory

    Many organizations have attempted to develop an accurate well-to-pump life cycle model of petroleum products in order to inform decision makers of the consequences of its use. Our paper studies five of these models, demonstrating the differences in their predictions and attemptin...

  1. Monte Carlo simulation by computer for life-cycle costing

    NASA Technical Reports Server (NTRS)

    Gralow, F. H.; Larson, W. J.

    1969-01-01

    Prediction of behavior and support requirements during the entire life cycle of a system enables accurate cost estimates by using the Monte Carlo simulation by computer. The system reduces the ultimate cost to the procuring agency because it takes into consideration the costs of initial procurement, operation, and maintenance.

  2. Guidance on Data Quality Assessment for Life Cycle Inventory Data

    EPA Science Inventory

    Data quality within Life Cycle Assessment (LCA) is a significant issue for the future support and development of LCA as a decision support tool and its wider adoption within industry. In response to current data quality standards such as the ISO 14000 series, various entities wit...

  3. Title IV Cash Management Life Cycle Training. Participant's Guide.

    ERIC Educational Resources Information Center

    Department of Education, Washington, DC.

    This participant's guide includes: "Introduction: Welcome to Cash Management Life Cycle Training"; "Module 1: Review of Cash Management Principles" (cash management overview and activity); "Module 2: Common Origination and Disbursement (COD) System Overview" (e.g., full participants and phase-in participants, COD…

  4. LCACCESS: PROMOTING THE USE OF LIFE CYCLE ASSESSMENT

    EPA Science Inventory

    Evaluating environmental impacts holistically from raw material acquisition, through manufacture, to use and disposal using a life cycle perspective is gradually being viewed by environmental managers and decision-makers as an important element in the tools that are used to achie...

  5. Optimizing conceptual aircraft designs for minimum life cycle cost

    NASA Technical Reports Server (NTRS)

    Johnson, Vicki S.

    1989-01-01

    A life cycle cost (LCC) module has been added to the FLight Optimization System (FLOPS), allowing the additional optimization variables of life cycle cost, direct operating cost, and acquisition cost. Extensive use of the methodology on short-, medium-, and medium-to-long range aircraft has demonstrated that the system works well. Results from the study show that optimization parameter has a definite effect on the aircraft, and that optimizing an aircraft for minimum LCC results in a different airplane than when optimizing for minimum take-off gross weight (TOGW), fuel burned, direct operation cost (DOC), or acquisition cost. Additionally, the economic assumptions can have a strong impact on the configurations optimized for minimum LCC or DOC. Also, results show that advanced technology can be worthwhile, even if it results in higher manufacturing and operating costs. Examining the number of engines a configuration should have demonstrated a real payoff of including life cycle cost in the conceptual design process: the minimum TOGW of fuel aircraft did not always have the lowest life cycle cost when considering the number of engines.

  6. Information System Life-Cycle And Documentation Standards (SMAP DIDS)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Although not computer program, SMAP DIDS written to provide systematic, NASA-wide structure for documenting information system development projects. Each DID (data item description) outlines document required for top-quality software development. When combined with management, assurance, and life cycle standards, Standards protect all parties who participate in design and operation of new information system.

  7. Life Cycle Assessment Framework for Indoor Emissions of Synthetic Nanoparticles

    EPA Science Inventory

    Life-Cycle Assessment (LCA) is a well-established method to evaluate impacts of chemicals on the environment and human health along the lifespan of products. However, the increasingly produced and applied nanomaterials (defined as one dimension <100 nm) show particular characteri...

  8. The genetic covariance between life cycle stages separated by metamorphosis.

    PubMed

    Aguirre, J David; Blows, Mark W; Marshall, Dustin J

    2014-08-07

    Metamorphosis is common in animals, yet the genetic associations between life cycle stages are poorly understood. Given the radical changes that occur at metamorphosis, selection may differ before and after metamorphosis, and the extent that genetic associations between pre- and post-metamorphic traits constrain evolutionary change is a subject of considerable interest. In some instances, metamorphosis may allow the genetic decoupling of life cycle stages, whereas in others, metamorphosis could allow complementary responses to selection across the life cycle. Using a diallel breeding design, we measured viability at four ontogenetic stages (embryo, larval, juvenile and adult viability), in the ascidian Ciona intestinalis and examined the orientation of additive genetic variation with respect to the metamorphic boundary. We found support for one eigenvector of G: (gobsmax ), which contrasted larval viability against embryo viability and juvenile viability. Target matrix rotation confirmed that while gobsmax shows genetic associations can extend beyond metamorphosis, there is still considerable scope for decoupled phenotypic evolution. Therefore, although genetic associations across metamorphosis could limit that range of phenotypes that are attainable, traits on either side of the metamorphic boundary are capable of some independent evolutionary change in response to the divergent conditions encountered during each life cycle stage.

  9. Validation of a hybrid life-cycle inventory analysis method.

    PubMed

    Crawford, Robert H

    2008-08-01

    The life-cycle inventory analysis step of a life-cycle assessment (LCA) may currently suffer from several limitations, mainly concerned with the use of incomplete and unreliable data sources and methods of assessment. Many past LCA studies have used traditional inventory analysis methods, namely process analysis and input-output analysis. More recently, hybrid inventory analysis methods have been developed, combining these two traditional methods in an attempt to minimise their limitations. In light of recent improvements, these hybrid methods need to be compared and validated, as these too have been considered to have several limitations. This paper evaluates a recently developed hybrid inventory analysis method which aims to improve the limitations of previous methods. It was found that the truncation associated with process analysis can be up to 87%, reflecting the considerable shortcomings in the quantity of process data currently available. Capital inputs were found to account for up to 22% of the total inputs to a particular product. These findings suggest that current best-practice methods are sufficiently accurate for most typical applications, but this is heavily dependent upon data quality and availability. The use of input-output data assists in improving the system boundary completeness of life-cycle inventories. However, the use of input-output analysis alone does not always provide an accurate model for replacing process data. Further improvements in the quantity of process data currently available are needed to increase the reliability of life-cycle inventories.

  10. USING LIFE CYCLE ASSESSMENT TOOLS FOR INTEGRATED PRODUCT POLICY

    EPA Science Inventory

    There is a growing awareness that a single issue approach to an environmental problem may not lead to an effective long-term strategy. Instead, governments and industries around the world are seeing the value and need to look at the entire life cycle of products and processes fro...

  11. AN INTERNATIONAL WORKSHOP ON LIFE CYCLE IMPACT ASSESSMENT SOPHISTICATION

    EPA Science Inventory

    On November 29-30,1998 in Brussels, an international workshop was held to discuss Life Cycle Impact Assessment (LCIA) Sophistication. Approximately 50 LCA experts attended the workshop from North America, Europe, and Asia. Prominant practicioners and researchers were invited to ...

  12. U.S. EPA'S RESEARCH ON LIFE-CYCLE ANALYSIS

    EPA Science Inventory

    Life-cycle analysis (LCA) consists of looking at a product, process or activity from its inception through its completion. or consumer products, this includes the stages of raw material acquisition, manufacturing and fabrication, distribution, consumer use/reuse and final disposa...

  13. Biological catalysis of the hydrological cycle: life's thermodynamic function

    NASA Astrophysics Data System (ADS)

    Michaelian, K.

    2011-01-01

    Darwinian theory depicts life as being overwhelmingly consumed by a fight for survival in a hostile environment. However, from a thermodynamic perspective, life is a dynamic out of equilibrium process, stabilizing and coevolving in concert with its abiotic environment. The living component of the biosphere on the surface of the Earth of greatest biomass, the plants and cyanobacteria, are involved in the transpiration of a vast amount of water. Transpiration is part of the global water cycle, and it is this cycle that distinguishes Earth from its apparently life barren neighboring planets, Venus and Mars. The dissipation of sunlight into heat by organic molecules in the biosphere and its coupling to the water cycle (as well as other abiotic processes), is by far the greatest entropy producing process occurring on Earth. Life, from this perspective, can be viewed as performing an important thermodynamic function; acting as a dynamic catalyst by aiding irreversible abiotic process such as the water cycle, hurricanes, and ocean and wind currents to produce entropy. The role of animals in this view is that of unwitting but dedicated servants of the plants and cyanobacteria, helping them to grow and to spread into initially inhospitable areas.

  14. LIFE CYCLE DESIGN OF IN-MOLD SURFACING FILM

    EPA Science Inventory

    Since 1990, the NRMRL has been at the forefront in the development of Life Cycle Assessment as a methodology for environmental assessment. In 1994, NRMRL established an LCA Team to organize individual efforts into a comprehensive research program. The LCA Team coordinates work in...

  15. 19 CFR 207.27 - Short life cycle products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 3 2013-04-01 2013-04-01 false Short life cycle products. 207.27 Section 207.27 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION NONADJUDICATIVE INVESTIGATIONS INVESTIGATIONS OF WHETHER INJURY TO DOMESTIC INDUSTRIES RESULTS FROM IMPORTS SOLD AT LESS THAN FAIR VALUE OR...

  16. 19 CFR 207.27 - Short life cycle products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 3 2012-04-01 2012-04-01 false Short life cycle products. 207.27 Section 207.27 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION NONADJUDICATIVE INVESTIGATIONS INVESTIGATIONS OF WHETHER INJURY TO DOMESTIC INDUSTRIES RESULTS FROM IMPORTS SOLD AT LESS THAN FAIR VALUE OR...

  17. 19 CFR 207.27 - Short life cycle products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 3 2014-04-01 2014-04-01 false Short life cycle products. 207.27 Section 207.27 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION NONADJUDICATIVE INVESTIGATIONS INVESTIGATIONS OF WHETHER INJURY TO DOMESTIC INDUSTRIES RESULTS FROM IMPORTS SOLD AT LESS THAN FAIR VALUE OR...

  18. The Role of Companion Animals throughout the Family Life Cycle

    ERIC Educational Resources Information Center

    Turner, Wendy G.

    2005-01-01

    This paper examines the roles that companion animals play in the lives of American families, and discusses how those roles change as families progress through the stages of the family life cycle. It highlights the importance of pets in the lives of children and the benefits they receive from such relationships. It also presents information…

  19. Incorporating exposure science into life-cycle assessment

    EPA Science Inventory

    Life-cycle assessment (LCA) is used to estimate the potential for environmental damage that may be caused by a product or process, ideally before the product or process begins. LCA includes all of the steps from extracting natural resources through manufacturing through product u...

  20. LIFE CYCLE IMPACT ASSESSMENT FOR INCREASING INDUSTRIAL SUSTAINABILITY

    EPA Science Inventory

    Life Cycle Impact Assessment (LCIA) can be a very useful decision support tool for assisting in environmental decision making to allow the pursuit of increasing sustainability. Increasing sustainability will be defined and presented as a more concrete and quantifiable goal when c...

  1. Self Concept Development through the Adult Life Cycle.

    ERIC Educational Resources Information Center

    Lynch, Mervin D.; Lynch, Carol Lee

    1991-01-01

    The developmental model of self-concept proposed by M. Lynch and M. Levy (1982) is extended through the entire adult life cycle. Self-concept is seen as a set of cognitive rules that have affective or cognitive consequences and that operate like the ego functions proposed by Freud. (SLD)

  2. Life Cycle Assessment as an Environmental Management Tool

    EPA Science Inventory

    Listed by Time Magazine as the method behind calculating “Ecological Intelligence,” one of “10 Ideas Changing the World Right Now” (March 23, 2009), Life Cycle Assessment (LCA) is the tool that is used to understand the environmental impacts of the products we make and sell. Jo...

  3. ENVIRONMENTAL COMPARISON OF GASOLINE BLENDING OPTIONS USING LIFE CYCLE ASSESSMENT

    EPA Science Inventory

    A life cycle assessment has been done on various gasoline blends, The purpose of this study is to compare several gasoline blends of 95 and 98 octaine, that meet the vapour pressure upper limit requirement of 60 kPa. This study accounts for the gasoline losses due to evaporation ...

  4. Pets, Attachment, and Well-Being across the Life Cycle.

    ERIC Educational Resources Information Center

    Sable, Pat

    1995-01-01

    Using an ethological framework, explores the ways in which family pets, in particular dogs and cats, provide certain components of attachment that contribute to emotional and social well-being throughout the life cycle. Implications are identified for social policies that will protect and maintain this bond for particular populations. (RJM)

  5. DDP - a tool for life-cycle risk management

    NASA Technical Reports Server (NTRS)

    Cornford, S. L.; Feather, M. S.; Hicks, K. A.

    2001-01-01

    At JPL we have developed, and implemented, a process for achieving life-cycle risk management. This process has been embodied in a software tool and is called Defect Detection and Prevention (DDP). The DDP process can be succinctly stated as: determine where we want to be, what could get in the way and how we will get there.

  6. Life Cycle Assessment of a Parabolic Trough Concentrating Solar Power Plant and Impacts of Key Design Alternatives: Preprint

    SciTech Connect

    Heath, G. A.; Burkhardt, J. J.; Turchi, C. S.

    2011-09-01

    Climate change and water scarcity are important issues for today's power sector. To inform capacity expansion decisions, hybrid life cycle assessment is used to evaluate a reference design of a parabolic trough concentrating solar power (CSP) facility located in Daggett, California, along four sustainability metrics: life cycle greenhouse gas (GHG) emissions, water consumption, cumulative energy demand (CED), and energy payback time (EPBT). This wet-cooled, 103 MW plant utilizes mined nitrate salts in its two-tank, thermal energy storage (TES) system. Design alternatives of dry-cooling, a thermocline TES, and synthetically-derived nitrate salt are evaluated. During its life cycle, the reference CSP plant is estimated to emit 26 g CO2eq per kWh, consume 4.7 L/kWh of water, and demand 0.40 MJeq/kWh of energy, resulting in an EPBT of approximately 1 year. The dry-cooled alternative is estimated to reduce life cycle water consumption by 77% but increase life cycle GHG emissions and CED by 8%. Synthetic nitrate salts may increase life cycle GHG emissions by 52% compared to mined. Switching from two-tank to thermocline TES configuration reduces life cycle GHG emissions, most significantly for plants using synthetically-derived nitrate salts. CSP can significantly reduce GHG emissions compared to fossil-fueled generation; however, dry-cooling may be required in many locations to minimize water consumption.

  7. Comparative life cycle assessment of three biohydrogen pathways.

    PubMed

    Djomo, Sylvestre Njakou; Blumberga, Dagnija

    2011-02-01

    A life cycle assessment was performed to quantify and compare the energetic and environmental performances of hydrogen from wheat straw (WS-H(2)), sweet sorghum stalk (SSS-H(2)), and steam potato peels (SPP-H(2)). Inventory data were derived from a pilot plant. Impacts were assessed using the impact 2002+ method. When co-product was not considered, the greenhouse gas (GHG) emissions were 5.60 kg CO(2eq) kg(-1) H(2) for WS-H(2), 5.32 kg CO(2eq) kg(-1) H(2) for SSS-H(2), and 5.18 kg CO(2eq) kg(-1) H(2) for SPP-H(2). BioH(2) pathways reduced GHG emissions by 52-56% compared to diesel and by 54-57% compared to steam methane reforming production of H(2). The energy ratios (ER) were also comparable: 1.08 for WS-H(2), 1.14 for SSS-H(2) and 1.17 for SPP-H(2). A shift from SPP-H(2) to WS-H(2) would therefore not affect the ER and GHG emissions of these BioH(2) pathways. When co-product was considered, a shift from SPP-H(2) to WS-H(2) or SSS-H(2) decreased the ER, while increasing the GHG emissions significantly. Co-product yield should be considered when selecting BioH(2) feedstocks.

  8. Conducting an Agricultural Life Cycle Assessment: Challenges and Perspectives

    PubMed Central

    Caffrey, Kevin R.; Veal, Matthew W.

    2013-01-01

    Agriculture is a diverse field that produces a wide array of products vital to society. As global populations continue to grow the competition for natural resources will increase pressure on agricultural production of food, fiber, energy, and various high value by-products. With elevated concerns related to environmental impacts associated with the needs of a growing population, a life cycle assessment (LCA) framework can be used to determine areas of greatest impact and compare reduction strategies for agricultural production systems. The LCA methodology was originally developed for industrial operations but has been expanded to a wider range of fields including agriculture. There are various factors that increase the complexity of determining impacts associated with agricultural production including multiple products from a single system, regional and crop specific management techniques, temporal variations (seasonally and annually), spatial variations (multilocation production of end products), and the large quantity of nonpoint emission sources. The lack of consistent methodology of some impacts that are of major concern to agriculture (e.g., land use and water usage) increases the complexity of this analysis. This paper strives to review some of these issues and give perspective to the LCA practitioner in the field of agriculture. PMID:24391463

  9. Fluoxetine effects assessment on the life cycle of aquatic invertebrates.

    PubMed

    Péry, A R R; Gust, M; Vollat, B; Mons, R; Ramil, M; Fink, G; Ternes, T; Garric, J

    2008-09-01

    Fluoxetine is a serotonin re-uptake inhibitor, generally used as an antidepressant. It is suspected to provoke substantial effects in the aquatic environment. This study reports the effects of fluoxetine on the life cycle of four invertebrate species, Daphnia magna, Hyalella azteca and the snail Potamopyrgus antipodarum exposed to fluoxetine spiked-water and the midge Chironomus riparius exposed to fluoxetine-spiked sediments. For D. magna, a multi-generational study was performed with exposition of newborns from exposed organisms. Effects of fluoxetine could be found at low measured concentrations (around 10microgl(-1)), especially for parthenogenetic reproduction of D. magna and P. antipodarum. For daphnids, newborns length was impacted by fluoxetine and the second generation of exposed individuals showed much more pronounced effects than the first one, with a NOEC of 8.9microgl(-1). For P. antipodarum, significant decrease of reproduction was found for concentrations around 10microgl(-1). In contrast, we found no effect on the reproduction of H. azteca but a significant effect on growth, which resulted in a NOEC of 33microgl(-1), expressed in nominal concentration. No effect on C. riparius could be found for measured concentrations up to 59.5mgkg(-1). General mechanistic energy-based models showed poor relevance for data analysis, which suggests that fluoxetine targets specific mechanisms of reproduction.

  10. Food waste minimization from a life-cycle perspective.

    PubMed

    Bernstad Saraiva Schott, A; Andersson, T

    2015-01-01

    This article investigates potentials and environmental impacts related to household food waste minimization, based on a case study in Southern Sweden. In the study, the amount of avoidable and unavoidable food waste currently being disposed of by households was assessed through waste composition analyses and the different types of avoidable food waste were classified. Currently, both avoidable and unavoidable food waste is either incinerated or treated through anaerobic digestion. A hypothetical scenario with no generation of avoidable food waste and either anaerobic digestion or incineration of unavoidable food waste was compared to the current situation using the life-cycle assessment method, limited to analysis of global warming potential (GWP). The results from the waste composition analyses indicate that an average of 35% of household food waste is avoidable. Minimization of this waste could result in reduction of greenhouse gas emissions of 800-1400 kg/tonne of avoidable food waste. Thus, a minimization strategy would result in increased avoidance of GWP compared to the current situation. The study clearly shows that although modern alternatives for food waste treatment can result in avoidance of GWP through nutrient and energy recovery, food waste prevention yields far greater benefits for GWP compared to both incineration and anaerobic digestion.

  11. Life cycle assessment of biochar cofiring with coal.

    PubMed

    Huang, Yu-Fong; Syu, Fu-Siang; Chiueh, Pei-Te; Lo, Shang-Lien

    2013-03-01

    This study used life cycle assessment software SimaPro 7.2 and impact assessment model IMPACT 2002+ to evaluate the environmental impact and benefits of a biochar cofiring supply chain used for electricity generation. The biochar was assumed to be produced by rice straw torrefaction and the case study was located in Taoyuan County, Taiwan. This supply chain may provide impact reduction benefits in five categories (aquatic ecotoxicity, terrestrial ecotoxicity, land occupation, global warming, and non-renewable energy) but cause higher impacts than coal firing systems in other categories. Damage assessment of cofiring systems indicated that damage to human health was higher while the damage categories of ecosystem quality, climate change, and resources were lower. Carbon reduction could be 4.32 and 4.68metric tons CO2eq/ha/yr at 10% and 20% cofiring ratios, respectively. The improvement of electricity generation efficiency of cofiring systems may be the most important factor for reducing its environmental impact.

  12. Life cycle and landscape impacts of biofuel production

    NASA Astrophysics Data System (ADS)

    Hill, J.

    2012-12-01

    Achieving the biofuel volumes mandated in the Renewable Fuels Standard of the United States Energy Independence and Security Act of 2007 will require large amounts of biomass such as crop residues and dedicated bioenergy crops. Growing sufficient amounts of these feedstocks would greatly transform the agricultural landscape of the United States, and depending on where and how they are grown, may have vastly different implications for the sustainability of the biofuels industry. This presentation describes ongoing research into how biomass can best be produced on the landscape so as to benefit rural economies and provide ecosystem services such as greenhouse gas mitigation and improved air quality. The focus is on newly developed methods for integrating spatial and temporal information into life cycle assessment so as to both allow for more detailed impact assessment and to provide insight into how to improve efficiency along bioenergy production supply chains. Results will benefit stakeholders both by offering recommendations for guiding sustainable growth of the emerging bioeconomy and by advancing understanding of the inherent tradeoffs among alternate scenarios.

  13. Identifying improvement potentials in cement production with life cycle assessment.

    PubMed

    Boesch, Michael Elias; Hellweg, Stefanie

    2010-12-01

    Cement production is an environmentally relevant process responsible for 5% of total anthropogenic carbon dioxide emissions and 7% of industrial fuel use. In this study, life cycle assessment is used to evaluate improvement potentials in the cement production process in Europe and the USA. With a current fuel substitution rate of 18% in Europe and 11% in the USA, both regions have a substantial potential to reduce greenhouse gas emissions and save virgin resources by further increasing the coprocessing of waste fuels. Upgrading production technology would be particularly effective in the USA where many kiln systems with very low energy efficiency are still in operation. Using best available technology and a thermal substitution rate of 50% for fuels, greenhouse gas emissions could be reduced by 9% for Europe and 18% for the USA per tonne of cement. Since clinker production is the dominant pollution producing step in cement production, the substitution of clinker with mineral components such as ground granulated blast furnace slag or fly ash is an efficient measure to reduce the environmental impact. Blended cements exhibit substantially lower environmental footprints than Portland cement, even if the substitutes feature lower grindability and require additional drying and large transport distances. The highest savings in CO(2) emissions and resource consumption are achieved with a combination of measures in clinker production and cement blending.

  14. Cradle-to-gate life cycle assessment for a cradle-to-cradle cycle: biogas-to-bioplastic (and back).

    PubMed

    Rostkowski, Katherine H; Criddle, Craig S; Lepech, Michael D

    2012-09-18

    At present, most synthetic organic materials are produced from fossil carbon feedstock that is regenerated over time scales of millions of years. Biobased alternatives can be rapidly renewed in cradle-to-cradle cycles (1-10 years). Such materials extend landfill life and decrease undesirable impacts due to material persistence. This work develops a LCA for synthesis of polyhydroxybutyrate (PHB) from methane with subsequent biodegradation of PHB back to biogas (40-70% methane, 30-60% carbon dioxide). The parameters for this cradle-to-cradle cycle for PHB production are developed and used as the basis for a cradle-to-gate LCA. PHB production from biogas methane is shown to be preferable to its production from cultivated feedstock due to the energy and land required for the feedstock cultivation and fermentation. For the PHB-methane cycle, the major challenges are PHB recovery and demands for energy. Some or all of the energy requirements can be satisfied using renewable energy, such as a portion of the collected biogas methane. Oxidation of 18-26% of the methane in a biogas stream can meet the energy demands for aeration and agitation, and recovery of PHB synthesized from the remaining 74-82%. Effective coupling of waste-to-energy technologies could thus conceivably enable PHB production without imported carbon and energy.

  15. Evolutionary ecology of Odonata: a complex life cycle perspective.

    PubMed

    Stoks, Robby; Córdoba-Aguilar, Alex

    2012-01-01

    Most insects have a complex life cycle with ecologically different larval and adult stages. We present an ontogenetic perspective to analyze and summarize the complex life cycle of Odonata within an evolutionary ecology framework. Morphological, physiological, and behavioral pathways that generate carry-over effects across the aquatic egg and larval stages and the terrestrial adult stage are identified. We also highlight several mechanisms that can decouple life stages including compensatory mechanisms at the larval and adult stages, stressful and stochastic events during metamorphosis, and stressful environmental conditions at the adult stage that may overrule effects of environmental conditions in the preceding stage. We consider the implications of these findings for the evolution, selection, and fitness of odonates; underline the role of the identified numerical and carry-over effects in shaping population and metapopulation dynamics and the community structure across habitat boundaries; and discuss implications for applied conservation issues.

  16. Life-Cycle-Cost Evaluation on Degradation Diagnosis for Cables

    NASA Astrophysics Data System (ADS)

    Shimakage, Toyonari; Wu, Kai; Kato, Takeyoshi; Okamoto, Tatsuki; Suzuoki, Yasuo

    Degradation diagnosis is aimed at preventing unexpected failure and extending the service life of electric power apparatuses. It is, however, necessary to investigate the economic feasibility of degradation diagnosis, because the life-cycle cost of cable maintenance changes with the diagnostic parameters such as diagnosis cost, diagnosis interval and replacement criterion. In this paper, based on the actual data of water-tree degradation, we proposed a method of life-cycle-cost evaluation and evaluated the economic effect of degradation diagnosis. We also discussed the economic feasibility of practical nondestructive diagnosis of 6.6 kV XLPE cable, i. e. DC leakage current measurement and residual charge measurement, and compared the economic effects of these methods. As a result, the residual charge measurement is economically feasible and has higher effectiveness than the DC leakage current measurement.

  17. Externalities in a life cycle model with endogenous survival☆

    PubMed Central

    Kuhn, Michael; Wrzaczek, Stefan; Prskawetz, Alexia; Feichtinger, Gustav

    2011-01-01

    We study socially vs individually optimal life cycle allocations of consumption and health, when individual health care curbs own mortality but also has a spillover effect on other persons’ survival. Such spillovers arise, for instance, when health care activity at aggregate level triggers improvements in treatment through learning-by-doing (positive externality) or a deterioration in the quality of care through congestion (negative externality). We combine an age-structured optimal control model at population level with a conventional life cycle model to derive the social and private value of life. We then examine how individual incentives deviate from social incentives and how they can be aligned by way of a transfer scheme. The age-patterns of socially and individually optimal health expenditures and the transfer rate are derived. Numerical analysis illustrates the working of our model. PMID:28298810

  18. Signal relay during the life cycle of Dictyostelium.

    PubMed

    Mahadeo, Dana C; Parent, Carole A

    2006-01-01

    A fundamental property of multicellular organisms is signal relay, the process by which information is transmitted from one cell to another. The integration of external information, such as nutritional status or developmental cues, is critical to the function of organisms. In addition, the spatial organizations of multicellular organisms require intricate signal relay mechanisms. Signal relay is remarkably exhibited during the life cycle of the social amoebae Dictyostelium discoideum, a eukaryote that retains a simple way of life, yet it has greatly contributed to our knowledge of the mechanisms cells use to communicate and integrate information. This chapter focuses on the molecules and mechanisms that Dictyostelium employs during its life cycle to relay temporal and spatial cues that are required for survival.

  19. A new concept for high-cycle-life LEO: Rechargeable MnO2-hydrogen

    NASA Technical Reports Server (NTRS)

    Appleby, A. J.; Dhar, H. P.; Kim, Y. J.; Murphy, O. J.

    1989-01-01

    The nickel-hydrogen secondary battery system, developed in the early 1970s, has become the system of choice for geostationary earth orbit (GEO) applications. However, for low earth orbit (LEO) satellites with long expected lifetimes the nickel positive limits performance. This requires derating of the cell to achieve very long cycle life. A new system, rechargeable MnO2-Hydrogen, which does not require derating, is described here. For LEO applications, it promises to have longer cycle life, high rate capability, a higher effective energy density, and much lower self-discharge behavior than those of the nickel-hydrogen system.

  20. The cardiac cycle: regulation and energy oscillations.

    PubMed

    Wikman-Coffelt, J; Sievers, R; Coffelt, R J; Parmley, W W

    1983-08-01

    Cyclical changes in energy-related metabolites were observed in glucose-perfused but not pyruvate-perfused isolated working rat hearts. A chronological study of various phases of the cardiac cycle indicated maximum changes in metabolites occurred at half time to peak pressure (dF/dtmax). The high-energy phosphates ATP and phosphocreatine, as well as the glycolytic metabolites, glucose 6-phosphate and pyruvate, reached minimum values immediately prior to peak systole and maximum values during late diastole. The products of high-energy phosphate hydrolysis, ADP, inorganic phosphate, and creatine, as well as the regulator, adenosine 3',5'-cyclic monophosphate, showed the phase alternate. It was necessary to study cyclical changes in a maximally stressed glucose-perfused heart because the cyclical changes were small and appeared to be the result of rate-limiting steps in glycolysis and the slow transport of NADH into the mitochondria. For stressing the heart, thereby increasing ATP utilization and augmenting cyclical changes, the afterload chamber was set at 110 mmHg, and the perfusate contained high concentrations of calcium (3.5 mM, free) and isoproterenol (5 X 10(-9) M). When correction was made for binding and compartmentation of metabolites, data indicated that the free energy of ATP hydrolysis was preserved during the contraction process by a continuous binding and recycling of ADP.

  1. Cycle-life improvement study for secondary silver-zinc batteries

    SciTech Connect

    Giltner, L.J.

    1997-12-01

    This paper presents an introductory discussion of the general characteristics and advantages of the silver-zinc, manually activated, rechargeable battery. Cycle-life limitations are discussed and the test results of a cycle-life improvement study, completed in 1995, are provided. The results of this study indicate a significant improvement in cycle-life over the baseline design for certain variations in the separator system. The silver-zinc (Ag-Zn) battery system has been uniquely efficient to satisfy high energy density applications in a very extensive range of commercial, military, aerospace and marine applications. These programs have demonstrated the high reliability and safety of this battery system for over forty years.

  2. Life cycle sustainability of solid oxide fuel cells: From methodological aspects to system implications

    NASA Astrophysics Data System (ADS)

    Mehmeti, Andi; McPhail, Stephen J.; Pumiglia, Davide; Carlini, Maurizio

    2016-09-01

    This study reviews the status of life cycle assessment (LCA) of Solid Oxide Fuel Cells (SOFCs) and methodological aspects, communicates SOFC environmental performance, and compares the environmental performance with competing power production technologies using a life cycle perspective. Results indicate that power generation using SOFCs can make a significant contribution to the aspired-to greener energy future. Despite superior environmental performance, empirical studies indicate that economic performance is predominantly the highest-ranked criterion in the decision making process. Future LCA studies should attempt to employ comprehensive dynamic multi-criteria environmental impact analysis coupled with economic aspects, to allow a robust comparison of results. A methodology framework is proposed to achieve simultaneously ambitious socio-economic and environmental objectives considering all life cycle stages and their impacts.

  3. The Life Cycle of an OpenStudio Measure: Development, Testing, Distribution, and Application

    SciTech Connect

    2016-08-12

    An OpenStudio Measure is a script that can manipulate an OpenStudio model and associated data to apply energy conservation measures (ECMs), run supplemental simulations, or visualize simulation results. The OpenStudio software development kit (SDK) and accessibility of the Ruby scripting language makes measure authorship accessible to both software developers and energy modelers. This paper discusses the life cycle of an OpenStudio Measure from development, testing, and distribution, to application.

  4. Algae biodiesel life cycle assessment using current commercial data.

    PubMed

    Passell, Howard; Dhaliwal, Harnoor; Reno, Marissa; Wu, Ben; Ben Amotz, Ami; Ivry, Etai; Gay, Marcus; Czartoski, Tom; Laurin, Lise; Ayer, Nathan

    2013-11-15

    Autotrophic microalgae represent a potential feedstock for transportation fuels, but life cycle assessment (LCA) studies based on laboratory-scale or theoretical data have shown mixed results. We attempt to bridge the gap between laboratory-scale and larger scale biodiesel production by using cultivation and harvesting data from a commercial algae producer with ∼1000 m(2) production area (the base case), and compare that with a hypothetical scaled up facility of 101,000 m(2) (the future case). Extraction and separation data are from Solution Recovery Services, Inc. Conversion and combustion data are from the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model (GREET). The LCA boundaries are defined as "pond-to-wheels". Environmental impacts are quantified as NER (energy in/energy out), global warming potential, photochemical oxidation potential, water depletion, particulate matter, and total NOx and SOx. The functional unit is 1 MJ of energy produced in a passenger car. Results for the base case and the future case show an NER of 33.4 and 1.37, respectively and GWP of 2.9 and 0.18 kg CO2-equivalent, respectively. In comparison, petroleum diesel and soy diesel show an NER of 0.18 and 0.80, respectively and GWP of 0.12 and 0.025, respectively. A critical feature in this work is the low algal productivity (3 g/m(2)/day) reported by the commercial producer, relative to the much higher productivities (20-30 g/m(2)/day) reported by other sources. Notable results include a sensitivity analysis showing that algae with an oil yield of 0.75 kg oil/kg dry biomass in the future case can bring the NER down to 0.64, more comparable with petroleum diesel and soy biodiesel. An important assumption in this work is that all processes are fully co-located and that no transport of intermediate or final products from processing stage to stage is required.

  5. Estimating soil carbon change and biofuel life-cycle greenhouse gas emissions with economic, ecosystem and life-cycle models

    NASA Astrophysics Data System (ADS)

    Qin, Z.; Dunn, J.; Kwon, H. Y.; Mueller, S.; Wander, M.

    2015-12-01

    Land-use change (LUC) resulting from biofuel feedstock production can alter soil organic carbon (SOC) stocks of lands producing those crops and the crops they displace, possibly resulting in greenhouse gas (GHG) emissions. LUC GHG emissions included in biofuel life cycle analysis (LCA) have at times been estimated to be so great that biofuels did not offer a greenhouse gas reduction compared to conventional fossil fuels. To improve the accuracy of emissions estimates, SOC changes must be considered at a finer spatial resolution and take into account climate, soil, land use and management factors. This study reports on the incorporation of global LUC as predicted by a computable general equilibrium model (i.e., GTAP) and spatially-explicit modeled SOC estimates (using surrogate CENTURY) for various biofuel feedstock scenarios into a widely-used LCA model (i.e., GREET). Resulting estimates suggest: SOC changes associated with domestic corn production might contribute 2-6% or offset as much as 5% of total corn ethanol life-cycle GHG emissions. On the other hand, domestic LUC GHG emissions for switchgrass ethanol have the potential offset up to 60% of GHG emissions in the fuel's life cycle. Further, large SOC sequestration is predicted for Miscanthus feedstock production, enabling Miscanthus-based ethanol systems to offset all life-cycle GHG emissions and create a net carbon sink. LUC GHG emissions for ethanol derived from corn stover are small compared to other sources. Total life-cycle GHG emissions (g CO2eq MJ-1, 100cm soil) were estimated to be 59-66 for corn ethanol, 14 for stover ethanol, 18-26 for switchgrass ethanol, and -7 - -0.6 for Miscanthus ethanol.

  6. Novel electrolyte additives to enhance zinc electrode cycle life

    SciTech Connect

    Doddapaneni, N.; Ingersoll, D.

    1995-11-01

    Electrochemical power sources that utilize zinc electrodes possess many advantages. Zinc is abundantly available, benign, inexpensive, stable over a wide operating temperature range, and has a high oxidation potential. In spite of these advantageous characteristics, rechargeable electrochemical systems based on zinc chemistry have not found widespread use. The major disadvantages of zinc electrodes are that they have limited cycle life due to zinc slumping and zinc electrode shape changes in alkaline solutions resulting from the solubility of zincate (Zn(OH){sub 4}{sup 2-}) in these solutions. As a result, premature cell failure often results due to cell shorting caused by dendritic growth as well as zinc slumping. In this paper we describe the chemical and physical characteristics of electrolyte solutions employing additives, particularly for zinc based electrochemical systems. These electrolytes are prepared using the alkali metal salts of 1,3,5-phenyltrisulfonic acid in combination with potassium hydroxide. The alkali metal salts of the acid possess good thermal stability, good ionic conductivity, and have a wide electrochemical voltage window in aqueous systems. With these electrolyte solutions improved cycle life was achieved in Zn/NiOOH and Zn/AgO. Improved cycle life with this additive is attributed to decreased zincate solubility, resulting in reduced zinc slumping and electrode shape changes. In addition, increased shelf-life and reduced self-discharge were also observed in many alkaline power sources.

  7. Cycle of waste heat energy transformation

    NASA Astrophysics Data System (ADS)

    Bormann, H.; Voneynatten, C.; Krause, R.; Rudolph, W.; Gneuss, G.; Groesche, F.

    1983-08-01

    Transformation of industrial waste heat with temperatures up to 300 C into mechanical or electrical energy using organic Rankine cycles technique is considered. Behavior of working fluid was studied and plant components were optimized. A pilot plant (generated power 30 kW) was installed under industrial operating conditions. The working fluid is a fluorochlorohydrocarbon; the expansion machine is a piston type steam engine. The results of the pilot plant were used for the planning and building of a prototype plant (120 kW) with an additional power heat coupling for preheating the boiler heat water. The waste heat source is a calciner process. The predicted results are obtained although full working load is not reached due to reduced available waste heat of the calciner process.

  8. Development of a Life Cycle Inventory of Water Consumption Associated with the Production of Transportation Fuels

    SciTech Connect

    Lampert, David J.; Cai, Hao; Wang, Zhichao; Keisman, Jennifer; Wu, May; Han, Jeongwoo; Dunn, Jennifer; Sullivan, John L.; Elgowainy, Amgad; Wang, Michael; Keisman, Jennifer

    2015-10-01

    The production of all forms of energy consumes water. To meet increased energy demands, it is essential to quantify the amount of water consumed in the production of different forms of energy. By analyzing the water consumed in different technologies, it is possible to identify areas for improvement in water conservation and reduce water stress in energy-producing regions. The transportation sector is a major consumer of energy in the United States. Because of the relationships between water and energy, the sustainability of transportation is tied to management of water resources. Assessment of water consumption throughout the life cycle of a fuel is necessary to understand its water resource implications. To perform a comparative life cycle assessment of transportation fuels, it is necessary first to develop an inventory of the water consumed in each process in each production supply chain. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is an analytical tool that can used to estimate the full life-cycle environmental impacts of various transportation fuel pathways from wells to wheels. GREET is currently being expanded to include water consumption as a sustainability metric. The purpose of this report was to document data sources and methodologies to estimate water consumption factors (WCF) for the various transportation fuel pathways in GREET. WCFs reflect the quantity of freshwater directly consumed per unit production for various production processes in GREET. These factors do not include consumption of precipitation or low-quality water (e.g., seawater) and reflect only water that is consumed (i.e., not returned to the source from which it was withdrawn). The data in the report can be combined with GREET to compare the life cycle water consumption for different transportation fuels.

  9. Regenerable Microbial Check Valve - Life cycle tests results

    NASA Technical Reports Server (NTRS)

    Atwater, James E.; Wheeler, Richard R., Jr.; Olivadoti, J. T.; Sauer, Richard L.; Flanagan, David T.

    1992-01-01

    Life cycle regeneration testing of the Microbial Check Valve (MCV) that is used on the Shuttle Orbiter to provide microbial control of potable water is currently in progress. Four beds are being challenged with simulated reclaimed waters and repeatedly regenerated. Preliminary results indicate that contaminant systems exhibit unique regeneration periodicities. Cyclic throughput diminishes with increasing cumulative flow. It is considered to be feasible to design a regenerable MCV system which will function without human intervention and with minimal resupply penalty for the 30 year life of the Space Station.

  10. Long Life Nickel Electrodes for a Nickel-hydrogen Cell: Cycle Life Tests

    NASA Technical Reports Server (NTRS)

    Lim, H. S.; Verzwyvelt, S. A.

    1984-01-01

    In order to develop a long life nickel electrode for a Ni/H2 cell, cycle life tests of nickel electrodes were carried out in Hi/H2 boiler plate cells. A 19 test cell matrix was made of various nickel electrode designs including three levels each of plaque mechanical strength, median pore size of the plaque, and active material loading. Test cells were cycled to the end of their life (0.5v) in a 45-minute low earth orbit cycle regime at 80% depth-of-discharge. The results show that the active material loading level affects the cycle life the most with the optimum loading at 1.6 g/cc void. Mechanical strength did not affect the cycle life noticeably in the bend strength range of 400 to 700 psi. The best plaque type appears to be one which is made of INCO nickel powder type 287 and has a median pore size of 13 micron.

  11. Transcriptome analyses of the Giardia lamblia life cycle.

    PubMed

    Birkeland, Shanda R; Preheim, Sarah P; Davids, Barbara J; Cipriano, Michael J; Palm, Daniel; Reiner, David S; Svärd, Staffan G; Gillin, Frances D; McArthur, Andrew G

    2010-11-01

    We quantified mRNA abundance from 10 stages in the Giardia lamblia life cycle in vitro using Serial Analysis of Gene Expression (SAGE). 163 abundant transcripts were expressed constitutively. 71 transcripts were upregulated specifically during excystation and 42 during encystation. Nonetheless, the transcriptomes of cysts and trophozoites showed major differences. SAGE detected co-expressed clusters of 284 transcripts differentially expressed in cysts and excyzoites and 287 transcripts in vegetative trophozoites and encysting cells. All clusters included known genes and pathways as well as proteins unique to Giardia or diplomonads. SAGE analysis of the Giardia life cycle identified a number of kinases, phosphatases, and DNA replication proteins involved in excystation and encystation, which could be important for examining the roles of cell signaling in giardial differentiation. Overall, these data pave the way for directed gene discovery and a better understanding of the biology of G. lamblia.

  12. A model for a knowledge-based system's life cycle

    NASA Technical Reports Server (NTRS)

    Kiss, Peter A.

    1990-01-01

    The American Institute of Aeronautics and Astronautics has initiated a Committee on Standards for Artificial Intelligence. Presented here are the initial efforts of one of the working groups of that committee. The purpose here is to present a candidate model for the development life cycle of Knowledge Based Systems (KBS). The intent is for the model to be used by the Aerospace Community and eventually be evolved into a standard. The model is rooted in the evolutionary model, borrows from the spiral model, and is embedded in the standard Waterfall model for software development. Its intent is to satisfy the development of both stand-alone and embedded KBSs. The phases of the life cycle are detailed as are and the review points that constitute the key milestones throughout the development process. The applicability and strengths of the model are discussed along with areas needing further development and refinement by the aerospace community.

  13. Goals of stability evaluation throughout the vaccine life cycle.

    PubMed

    Krause, Philip R

    2009-11-01

    Stability studies play a critical role in assuring product quality at all points in the vaccine life cycle. At and after licensure, stability studies on quality attributes (including potency) provide a critical link between marketed and clinically evaluated vaccine product, addressing important regulatory concerns by assuring that product quality is maintained throughout the dating period. During development, stability studies are done to assure product quality and to obtain the data needed to support licensure. Stability studies may also be performed after licensure to assure that product continues to perform as it did pre-licensure, as well as to evaluate the effect on product quality of deliberately introduced manufacturing changes. At each phase in the product life cycle, it is important to consider the goals of stability evaluation and to perform appropriate statistical analyses in order to assure and reach appropriate conclusions about product quality.

  14. Life cycle benefits, challenges, and the potential of recycled aluminum

    SciTech Connect

    Martchek, K.J.

    1997-12-31

    Recently, a number of prominent articles have appeared in the national press questioning the environmental benefits and economic rationale of post consumer materials recycling. This paper reviews the evolution of aluminum recycling and then examines its role in the life cycle of aluminum products based on the most recent industry studies conducted in Europe and North America. The environmental and economic viability of today`s recovery and reuse of aluminum products is explored based on these life cycle assessments and current market conditions. This paper then summarizes technology and issues associated with aluminum recycling including the current state of automotive aluminum dismantling, shredding, recycle and reuse. Afterwards, the paper highlights opportunities for recovering the full environmental and economic potential of aluminum recycling based on emerging technologies, ``producer responsibility`` legislation, voluntary initiatives, and product design considerations.

  15. "ATLAS" Advanced Technology Life-cycle Analysis System

    NASA Technical Reports Server (NTRS)

    Lollar, Louis F.; Mankins, John C.; ONeil, Daniel A.

    2004-01-01

    Making good decisions concerning research and development portfolios-and concerning the best systems concepts to pursue - as early as possible in the life cycle of advanced technologies is a key goal of R&D management This goal depends upon the effective integration of information from a wide variety of sources as well as focused, high-level analyses intended to inform such decisions Life-cycle Analysis System (ATLAS) methodology and tool kit. ATLAS encompasses a wide range of methods and tools. A key foundation for ATLAS is the NASA-created Technology Readiness. The toolkit is largely spreadsheet based (as of August 2003). This product is being funded by the Human and Robotics The presentation provides a summary of the Advanced Technology Level (TRL) systems Technology Program Office, Office of Exploration Systems, NASA Headquarters, Washington D.C. and is being integrated by Dan O Neil of the Advanced Projects Office, NASA/MSFC, Huntsville, AL

  16. The elusive life cycle of scyphozoan jellyfish – metagenesis revisited

    PubMed Central

    Ceh, Janja; Gonzalez, Jorge; Pacheco, Aldo S.; Riascos, José M.

    2015-01-01

    Massive proliferations of scyphozoan jellyfish considerably affect human industries and irreversibly change food webs. Efforts to understand the role of jellyfish in marine ecosystems are based on a life cycle model described 200 years ago. According to this paradigm the pelagic medusae is considered seasonal and alternates with the benthic polyp stage from which it derives. However, we provide evidence that a) the occurrence of several species of medusae is not restricted to a season in the year, they overwinter, b) polyp- and medusa generations are neither temporally nor spatially separated, and c) “metagenesis” which is defined as the alternation between sexual and asexual generations does not always occur. Hence we recommend additions to the current model and argue that the scyphozoan life cycle should be considered multi-modal, rather than metagenetic. The implications of these findings for jellyfish proliferations, including possible consequences and associated environmental drivers, are discussed. PMID:26153534

  17. Full cost accounting for the life cycle of coal.

    PubMed

    Epstein, Paul R; Buonocore, Jonathan J; Eckerle, Kevin; Hendryx, Michael; Stout Iii, Benjamin M; Heinberg, Richard; Clapp, Richard W; May, Beverly; Reinhart, Nancy L; Ahern, Melissa M; Doshi, Samir K; Glustrom, Leslie

    2011-02-01

    Each stage in the life cycle of coal-extraction, transport, processing, and combustion-generates a waste stream and carries multiple hazards for health and the environment. These costs are external to the coal industry and are thus often considered "externalities." We estimate that the life cycle effects of coal and the waste stream generated are costing the U.S. public a third to over one-half of a trillion dollars annually. Many of these so-called externalities are, moreover, cumulative. Accounting for the damages conservatively doubles to triples the price of electricity from coal per kWh generated, making wind, solar, and other forms of nonfossil fuel power generation, along with investments in efficiency and electricity conservation methods, economically competitive. We focus on Appalachia, though coal is mined in other regions of the United States and is burned throughout the world.

  18. The elusive life cycle of scyphozoan jellyfish--metagenesis revisited.

    PubMed

    Ceh, Janja; Gonzalez, Jorge; Pacheco, Aldo S; Riascos, José M

    2015-07-08

    Massive proliferations of scyphozoan jellyfish considerably affect human industries and irreversibly change food webs. Efforts to understand the role of jellyfish in marine ecosystems are based on a life cycle model described 200 years ago. According to this paradigm the pelagic medusae is considered seasonal and alternates with the benthic polyp stage from which it derives. However, we provide evidence that a) the occurrence of several species of medusae is not restricted to a season in the year, they overwinter, b) polyp- and medusa generations are neither temporally nor spatially separated, and c) "metagenesis" which is defined as the alternation between sexual and asexual generations does not always occur. Hence we recommend additions to the current model and argue that the scyphozoan life cycle should be considered multi-modal, rather than metagenetic. The implications of these findings for jellyfish proliferations, including possible consequences and associated environmental drivers, are discussed.

  19. The elusive life cycle of scyphozoan jellyfish - metagenesis revisited

    NASA Astrophysics Data System (ADS)

    Ceh, Janja; Gonzalez, Jorge; Pacheco, Aldo S.; Riascos, José M.

    2015-07-01

    Massive proliferations of scyphozoan jellyfish considerably affect human industries and irreversibly change food webs. Efforts to understand the role of jellyfish in marine ecosystems are based on a life cycle model described 200 years ago. According to this paradigm the pelagic medusae is considered seasonal and alternates with the benthic polyp stage from which it derives. However, we provide evidence that a) the occurrence of several species of medusae is not restricted to a season in the year, they overwinter, b) polyp- and medusa generations are neither temporally nor spatially separated, and c) “metagenesis” which is defined as the alternation between sexual and asexual generations does not always occur. Hence we recommend additions to the current model and argue that the scyphozoan life cycle should be considered multi-modal, rather than metagenetic. The implications of these findings for jellyfish proliferations, including possible consequences and associated environmental drivers, are discussed.

  20. Uncovering the global life cycles of the rare earth elements.

    PubMed

    Du, Xiaoyue; Graedel, T E

    2011-01-01

    The rare earth elements (REE) are a group of fifteen elements with unique properties that make them indispensable for a wide variety of emerging, critical technologies. Knowledge of the life cycles of REE remains sparse, despite the current heightened interest in their future availability. Mining is heavily concentrated in China, whose monopoly position and potential restriction of exports render primary supplies vulnerable to short and long-term disruption. To provide an improved perspective we derived the first quantitative life cycles (for the year 2007) for ten REE: lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), and yttrium (Y). Of these REE, Ce and Nd in-use stocks are highest; the in-use stocks of most REE show significant accumulation in modern society. Industrial scrap recycling occurs only from magnet manufacture. We believe there is no post-customer recycling of any of these elements.