Science.gov

Sample records for life science characteristics

  1. Life sciences

    SciTech Connect

    Day, L.

    1991-04-01

    This document is the 1989--1990 Annual Report for the Life Sciences Divisions of the University of California/Lawrence Berkeley Laboratory. Specific progress reports are included for the Cell and Molecular Biology Division, the Research Medicine and Radiation Biophysics Division (including the Advanced Light Source Life Sciences Center), and the Chemical Biodynamics Division. 450 refs., 46 figs. (MHB)

  2. Educational challenges of molecular life science: Characteristics and implications for education and research.

    PubMed

    Tibell, Lena A E; Rundgren, Carl-Johan

    2010-01-01

    Molecular life science is one of the fastest-growing fields of scientific and technical innovation, and biotechnology has profound effects on many aspects of daily life-often with deep, ethical dimensions. At the same time, the content is inherently complex, highly abstract, and deeply rooted in diverse disciplines ranging from "pure sciences," such as math, chemistry, and physics, through "applied sciences," such as medicine and agriculture, to subjects that are traditionally within the remit of humanities, notably philosophy and ethics. Together, these features pose diverse, important, and exciting challenges for tomorrow's teachers and educational establishments. With backgrounds in molecular life science research and secondary life science teaching, we (Tibell and Rundgren, respectively) bring different experiences, perspectives, concerns, and awareness of these issues. Taking the nature of the discipline as a starting point, we highlight important facets of molecular life science that are both characteristic of the domain and challenging for learning and education. Of these challenges, we focus most detail on content, reasoning difficulties, and communication issues. We also discuss implications for education research and teaching in the molecular life sciences.

  3. Educational Challenges of Molecular Life Science: Characteristics and Implications for Education and Research

    PubMed Central

    Rundgren, Carl-Johan

    2010-01-01

    Molecular life science is one of the fastest-growing fields of scientific and technical innovation, and biotechnology has profound effects on many aspects of daily life—often with deep, ethical dimensions. At the same time, the content is inherently complex, highly abstract, and deeply rooted in diverse disciplines ranging from “pure sciences,” such as math, chemistry, and physics, through “applied sciences,” such as medicine and agriculture, to subjects that are traditionally within the remit of humanities, notably philosophy and ethics. Together, these features pose diverse, important, and exciting challenges for tomorrow's teachers and educational establishments. With backgrounds in molecular life science research and secondary life science teaching, we (Tibell and Rundgren, respectively) bring different experiences, perspectives, concerns, and awareness of these issues. Taking the nature of the discipline as a starting point, we highlight important facets of molecular life science that are both characteristic of the domain and challenging for learning and education. Of these challenges, we focus most detail on content, reasoning difficulties, and communication issues. We also discuss implications for education research and teaching in the molecular life sciences. PMID:20194805

  4. Life sciences.

    PubMed

    Martin-Brennan, Cindy; Joshi, Jitendra

    2003-12-01

    Space life sciences research activities are reviewed for 2003. Many life sciences experiments were lost with the tragic loss of STS-107. Life sciences experiments continue to fly as small payloads to the International Space Station (ISS) via the Russian Progress vehicle. Health-related studies continue with the Martian Radiation Environment Experiment (MARIE) aboard the Odyssey spacecraft, collecting data on the radiation environment in Mars orbit. NASA Ames increased nanotechnology research in all areas, including fundamental biology, bioastronautics, life support systems, and homeland security. Plant research efforts continued at NASA Kennedy, testing candidate crops for ISS. Research included plant growth studies at different light intensities, varying carbon dioxide concentrations, and different growth media. Education and outreach efforts included development of a NASA/USDA program called Space Agriculture in the Classroom. Canada sponsored a project called Tomatosphere, with classrooms across North America exposing seeds to simulated Mars environment for growth studies. NASA's Office of Biological and Physical Research released an updated strategic research plan.

  5. Life sciences.

    PubMed

    Martin-Brennan, Cindy; Joshi, Jitendra

    2003-12-01

    Space life sciences research activities are reviewed for 2003. Many life sciences experiments were lost with the tragic loss of STS-107. Life sciences experiments continue to fly as small payloads to the International Space Station (ISS) via the Russian Progress vehicle. Health-related studies continue with the Martian Radiation Environment Experiment (MARIE) aboard the Odyssey spacecraft, collecting data on the radiation environment in Mars orbit. NASA Ames increased nanotechnology research in all areas, including fundamental biology, bioastronautics, life support systems, and homeland security. Plant research efforts continued at NASA Kennedy, testing candidate crops for ISS. Research included plant growth studies at different light intensities, varying carbon dioxide concentrations, and different growth media. Education and outreach efforts included development of a NASA/USDA program called Space Agriculture in the Classroom. Canada sponsored a project called Tomatosphere, with classrooms across North America exposing seeds to simulated Mars environment for growth studies. NASA's Office of Biological and Physical Research released an updated strategic research plan. PMID:14696586

  6. Life sciences.

    PubMed

    Schmidt, Gregory K

    2002-12-01

    Space life sciences research activities are reviewed for the year. Highlights of animal studies were the first long-term flight of an animal enclosure module and an avian development facility on STS-108. Plant research efforts focused on a biomass production system for eventual use on the International Space Station (ISS), the PESTO experiment on ISS, and screening of several salad crop varieties for potential use in space. Health-related studies included the Martian Radiation Environment Experiment (MARIE) on the Mars Odyssey mission, presentation of results from NASA's Biomolecular Physics and Chemistry Program, and research related to human liver cell function in space through an agreement with StelSys. In industry and academia, a memorandum of understanding was signed between NASA and the biotechnology industry to enhance communication between NASA and the industry, expand commercial biotechnology space research and development, and expand formal and informal education of industry and the public regarding biotechnology and space research. NASA selected Purdue University to lead an NSCORT for advanced life support research to develop technologies to enable long-duration planetary mission and sustain human space colonies.

  7. Life sciences.

    PubMed

    Schmidt, Gregory K

    2002-12-01

    Space life sciences research activities are reviewed for the year. Highlights of animal studies were the first long-term flight of an animal enclosure module and an avian development facility on STS-108. Plant research efforts focused on a biomass production system for eventual use on the International Space Station (ISS), the PESTO experiment on ISS, and screening of several salad crop varieties for potential use in space. Health-related studies included the Martian Radiation Environment Experiment (MARIE) on the Mars Odyssey mission, presentation of results from NASA's Biomolecular Physics and Chemistry Program, and research related to human liver cell function in space through an agreement with StelSys. In industry and academia, a memorandum of understanding was signed between NASA and the biotechnology industry to enhance communication between NASA and the industry, expand commercial biotechnology space research and development, and expand formal and informal education of industry and the public regarding biotechnology and space research. NASA selected Purdue University to lead an NSCORT for advanced life support research to develop technologies to enable long-duration planetary mission and sustain human space colonies. PMID:12506925

  8. Educational Challenges of Molecular Life Science: Characteristics and Implications for Education and Research

    ERIC Educational Resources Information Center

    Tibell, Lena A. E.; Rundgren, Carl-Johan

    2010-01-01

    Molecular life science is one of the fastest-growing fields of scientific and technical innovation, and biotechnology has profound effects on many aspects of daily life--often with deep, ethical dimensions. At the same time, the content is inherently complex, highly abstract, and deeply rooted in diverse disciplines ranging from "pure sciences,"…

  9. Project management of life-science research projects: project characteristics, challenges and training needs.

    PubMed

    Beukers, Margot W

    2011-02-01

    Thirty-four project managers of life-science research projects were interviewed to investigate the characteristics of their projects, the challenges they faced and their training requirements. A set of ten discriminating parameters were identified based on four project categories: contract research, development, discovery and call-based projects--projects set up to address research questions defined in a call for proposals. The major challenges these project managers are faced with relate to project members, leadership without authority and a lack of commitment from the respective organization. Two-thirds of the project managers indicated that they would be interested in receiving additional training, mostly on people-oriented, soft skills. The training programs that are currently on offer, however, do not meet their needs.

  10. Project management of life-science research projects: project characteristics, challenges and training needs.

    PubMed

    Beukers, Margot W

    2011-02-01

    Thirty-four project managers of life-science research projects were interviewed to investigate the characteristics of their projects, the challenges they faced and their training requirements. A set of ten discriminating parameters were identified based on four project categories: contract research, development, discovery and call-based projects--projects set up to address research questions defined in a call for proposals. The major challenges these project managers are faced with relate to project members, leadership without authority and a lack of commitment from the respective organization. Two-thirds of the project managers indicated that they would be interested in receiving additional training, mostly on people-oriented, soft skills. The training programs that are currently on offer, however, do not meet their needs. PMID:21134487

  11. Bringing life sciences to life.

    PubMed

    David, L

    1996-03-01

    A brief review of the status of space life sciences research is provided with an emphasis on the contributions this research has made to life here on Earth. Physiological effects of weightlessness are discussed along with methods of prevention or treatment. Several technologies are described which have resulted in advances in improved health care and in other industries. In addition, the impact of space life sciences research on women's health issues and on future space travel are discussed.

  12. Characteristics and temporal trends in patient registries: focus on the life sciences industry, 1981–2012

    PubMed Central

    Travers, Karin; Sallum, Rachel H; Burns, Meghan D; Barr, Charles E; Beattie, Mary S; Pashos, Chris L; Luce, Bryan R

    2015-01-01

    Purpose Patient registries are used to monitor safety, examine real-world effectiveness, and may potentially contribute to comparative effectiveness research. To our knowledge, life sciences industry (LSI)-sponsored registries have not been systematically categorized. This study represents a first step toward understanding such registries over time. Methods Studies described as registries were identified in the ClinicalTrials.gov database. Characteristics from these registry records were abstracted and analyzed. Results Of 1202 registries identified, approximately 47% reported LSI sponsorship. These 562 LSI registries varied in focus: medical devices (n = 193, 34%), specific drugs (n = 173, 31%), procedures (n = 29, 5%), or particular diseases (n = 139, 25%). Thirty-three registries (<6%) evaluated pregnancy outcomes. The most common therapeutic area was cardiovascular (n = 234, 42%); others included endocrinology, immunology, oncology, musculoskeletal disorders, and neurology. The two most often measured outcomes were clinical effectiveness and safety, each of which appeared in 363/562 (65%) of LSI registries. Other outcomes included real-world clinical practice patterns (n = 122, 22%), patient-reported outcomes (n = 106, 19%), disease epidemiology/natural history (n = 69, 12%), and economic outcomes (n = 30, 5%). The number of LSI registries and their geographic diversity has increased over time. Conclusions The LSI registries represent a substantial proportion of all patient registries documented in ClinicalTrials.gov. These prospective studies are growing in number and encompass diverse therapeutic areas and geographic regions. Most registries measure multiple outcomes and capture real-world data that may be unavailable through other study designs. This classification of LSI registries documents their use for studying heterogeneity of diseases, examining treatment patterns, measuring patient-reported outcomes, examining economic outcomes, and performing

  13. Life sciences payloads for Shuttle

    NASA Technical Reports Server (NTRS)

    Dunning, R. W.

    1974-01-01

    The Life Sciences Program for utilization of the Shuttle in the 1980's is presented. Requirements for life sciences research experiments in space flight are discussed along with study results of designs to meet these requirements. The span of life sciences interests in biomedicine, biology, man system integration, bioinstrumentation and life support/protective systems is described with a listing of the research areas encompassed in these descriptions. This is followed by a description of the approach used to derive from the life sciences disciplines, the research functions and instrumentation required for an orbital research program. Space Shuttle design options for life sciences experiments are identified and described. Details are presented for Spacelab laboratories for dedicated missions, mini-labs with carry on characteristics and carry on experiments for shared payload missions and free flying satellites to be deployed and retrieved by the Shuttle.

  14. Life sciences report 1987

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Highlighted here are the major research efforts of the NASA Life Sciences Division during the past year. Topics covered include remote health care delivery in space, space biomedical research, gravitational biology, biospherics (studying planet Earth), the NASA Closed Ecological Life Support System (CELSS), exobiology, flight programs, international cooperation, and education programs.

  15. Life sciences recruitment objectives

    NASA Technical Reports Server (NTRS)

    Keefe, J. Richard

    1992-01-01

    The goals of the Life Sciences Division of the Office of Space Sciences and Application are to ensure the health, well being and productivity of humans in space and to acquire fundamental scientific knowledge in space life sciences. With these goals in mind Space Station Freedom represents substantial opportunities and significant challenges to the Life Sciences Division. For the first time it will be possible to replicate experimental data from a variety of simultaneously exposed species with appropriate controls and real-time analytical capabilities over extended periods of time. At the same time, a system for monitoring and ameliorating the physiological adaptations that occur in humans subjected to extended space flight must be evolved to provide the continuing operational support to the SSF crew. To meet its goals, and take advantage of the opportunities and overcome the challenges presented by Space Station Freedom, the Life Sciences Division is developing a suite of discipline-focused sequence. The research phase of the Life Sciences Space Station Freedom Program will commence with the utilization flights following the deployment of the U.S. laboratory module and achievement of Man Tended Capability. Investigators that want the Life Sciences Division to sponsor their experiment on SSF can do so in one of three ways: submitting a proposal in response to a NASA Research Announcement (NRA), submitting a proposal in response to an Announcement of Opportunity (AO), or submitting an unsolicited proposal. The scientific merit of all proposals will be evaluated by peer review panels. Proposals will also be evaluated based on relevance to NASA's missions and on the results of an Engineering and Cost Analyses. The Life Sciences Division expects that the majority of its funding opportunities will be announced through NRA's. It is anticipated that the first NRA will be released approximately three years before first element launch (currently scheduled for late 1995

  16. Life sciences and environmental sciences

    SciTech Connect

    Not Available

    1992-02-01

    The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER`s mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment, applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.

  17. Life sciences and environmental sciences

    SciTech Connect

    Not Available

    1992-02-01

    The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER's mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment, applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.

  18. Spacelab Life Sciences-1

    NASA Technical Reports Server (NTRS)

    Dalton, Bonnie P.; Jahns, Gary; Meylor, John; Hawes, Nikki; Fast, Tom N.; Zarow, Greg

    1995-01-01

    This report provides an historical overview of the Spacelab Life Sciences-1 (SLS-1) mission along with the resultant biomaintenance data and investigators' findings. Only the nonhuman elements, developed by Ames Research Center (ARC) researchers, are addressed herein. The STS-40 flight of SLS-1, in June 1991, was the first spacelab flown after 'return to orbit', it was also the first spacelab mission specifically designated as a Life Sciences Spacelab. The experiments performed provided baseline data for both hardware and rodents used in succeeding missions.

  19. Investigations Into Life Science.

    ERIC Educational Resources Information Center

    Mentzer, Dean Samuel

    This laboratory manual, containing 44 exercises, is intended to be used as part of an audio-tutorial approach to laboratory work in a life-science course for student nurses. Exercises include basic techniques of miscroscopy, microbiology, electrophysiology, routine biochemical analyses of blood and urine, and microscopic examination of prepared…

  20. Life sciences accomplishments

    NASA Technical Reports Server (NTRS)

    1985-01-01

    From its inception, the main charter of Life Sciences has been to define biomedical requirements for the design and development of spacecraft systems and to participate in NASA's scientific exploration of the universe. The role of the Life Sciences Division is to: (1) assure the health, well being and productivity of all individuals who fly in space; (2) study the origin, evolution, and distribution of life in the universe; and (3) to utilize the space environment as a tool for research in biology and medicine. The activities, programs, and accomplishments to date in the efforts to achieve these goals are detailed and the future challenges that face the division as it moves forward from the shuttle era to a permanent manned presence in space space station's are examined.

  1. Life Sciences Accomplishments 1994

    NASA Technical Reports Server (NTRS)

    Burnell, Mary Lou (Editor)

    1993-01-01

    The NASA Life and Biomedical Sciences and Applications Division (LBSAD) serves the Nation's life sciences community by managing all aspects of U.S. space-related life sciences research and technology development. The activities of the Division are integral components of the Nation's overall biological sciences and biomedical research efforts. However, NASA's life sciences activities are unique, in that space flight affords the opportunity to study and characterize basic biological mechanisms in ways not possible on Earth. By utilizing access to space as a research tool, NASA advances fundamental knowledge of the way in which weightlessness, radiation, and other aspects of the space-flight environment interact with biological processes. This knowledge is applied to procedures and technologies that enable humans to live and work in and explore space and contributes to the health and well-being of people on Earth. The activities of the Division are guided by the following three goals: Goal 1) Use microgravity and other unique aspects of the space environment to enhance our understanding of fundamental biological processes. Goal 2) Develop the scientific and technological foundations for supporting exploration by enabling productive human presence in space for extended periods. Goal 3) Apply our unique mission personnel, facilities, and technology to improve education, the quality of life on Earth, and U.S. competitiveness. The Division pursues these goals with integrated ground and flight programs involving the participation of NASA field centers, industry, and universities, as well as interactions with other national agencies and NASA's international partners. The published work of Division-sponsored researchers is a record of completed research in pursuit of these goals. During 1993, the LBSAD instituted significant changes in its experiment solicitation and peer review processes. For the first time, a NASA Research Announcement (NRA) was released requesting

  2. Spacelab Life Sciences Research Panel

    NASA Technical Reports Server (NTRS)

    Sulzman, Frank; Young, Laurence R.; Seddon, Rhea; Ross, Muriel; Baldwin, Kenneth; Frey, Mary Anne; Hughes, Rod

    2000-01-01

    This document describes some of the life sciences research that was conducted on Spacelab missions. Dr. Larry Young, Director of the National Space Biomedical Research Institute, provides an overview of the Life Sciences Spacelabs.

  3. Space shuttle and life sciences

    NASA Technical Reports Server (NTRS)

    Mason, J. A.

    1977-01-01

    During the 1980's, some 200 Spacelab missions will be flown on space shuttle in earth-orbit. Within these 200 missions, it is planned that at least 20 will be dedicated to life sciences research, projects which are yet to be outlined by the life sciences community. Objectives of the Life Sciences Shuttle/Spacelab Payloads Program are presented. Also discussed are major space life sciences programs including space medicine and physiology, clinical medicine, life support technology, and a variety of space biology topics. The shuttle, spacelab, and other life sciences payload carriers are described. Concepts for carry-on experiment packages, mini-labs, shared and dedicated spacelabs, as well as common operational research equipment (CORE) are reviewed. Current NASA planning and development includes Spacelab Mission Simulations, an Announcement of Planning Opportunity for Life Sciences, and a forthcoming Announcement of Opportunity for Flight Experiments which will together assist in forging a Life Science Program in space.

  4. Science for Real Life

    ERIC Educational Resources Information Center

    Hammerman, Elizabeth

    2008-01-01

    State and national standards identify what students should know and be able to do, including what it means to "do" science, the historical significance of science achievement and its ethical underpinnings, and science from the human perspective. Middle level science programs that address the full range of science standards and connect learning to…

  5. WOWBugs: New Life for Life Science.

    ERIC Educational Resources Information Center

    Matthews, Robert W.; And Others

    This book of life science activities introduces a new experimental animal--the WOWBug, "Melittobia digitata"--that is commonly found in nature but has never before been used in the precollege classroom. It includes 20 activities and experiments for grades 5-12, that cover topics from basic orientation to ecological interactions, from physical…

  6. Life Science, Environmental Education Guide.

    ERIC Educational Resources Information Center

    Project I-C-E, Green Bay, WI.

    This life science guide is one of a series of guides, K-12, that were developed by teachers to help introduce environmental education into the total curriculum. The materials contained in the guide are supplementary, and designed to aid the science teacher in providing the kinds of experiences needed by students to gain an understanding of the…

  7. Life sciences and Mars exploration

    NASA Technical Reports Server (NTRS)

    Sulzman, Frank M.; Rummel, John D.; Leveton, Lauren B.; Teeter, Ron

    1990-01-01

    The major life science considerations for Mars exploration missions are discussed. Radiation protection and countermeasures for zero gravity are discussed. Considerations of crew psychological health considerations and life support systems are addressed. Scientific opportunities presented by manned Mars missions are examined.

  8. Life Sciences Data Archive (LSDA)

    NASA Technical Reports Server (NTRS)

    Fitts, M.; Johnson-Throop, Kathy; Thomas, D.; Shackelford, K.

    2008-01-01

    In the early days of spaceflight, space life sciences data were been collected and stored in numerous databases, formats, media-types and geographical locations. While serving the needs of individual research teams, these data were largely unknown/unavailable to the scientific community at large. As a result, the Space Act of 1958 and the Science Data Management Policy mandated that research data collected by the National Aeronautics and Space Administration be made available to the science community at large. The Biomedical Informatics and Health Care Systems Branch of the Space Life Sciences Directorate at JSC and the Data Archive Project at ARC, with funding from the Human Research Program through the Exploration Medical Capability Element, are fulfilling these requirements through the systematic population of the Life Sciences Data Archive. This program constitutes a formal system for the acquisition, archival and distribution of data for Life Sciences-sponsored experiments and investigations. The general goal of the archive is to acquire, preserve, and distribute these data using a variety of media which are accessible and responsive to inquiries from the science communities.

  9. Breathing fresh life into life science education.

    PubMed

    Martin, Cyrus

    2014-12-15

    In the US, higher education in the life sciences is being overhauled. There is now a move both to change the way we teach biology students, emphasizing more engaging approaches, and to clearly define what it is a student should know. And for advanced degrees, there is a push to prepare students for a range of possible career paths, not just the tenure track. Cyrus Martin reports.

  10. NASA's life sciences program

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald A.

    1986-01-01

    NASA space missions from the Mercury through the Shuttle program have provided successively more data on the ability of humans to function in space for progressively longer periods of time. The Skylab program encouraged cooperation between medical and engineering personnel in the design of space suits, diet, food preparation, and cleanliness procedures and equipment, and the man-machine interface. Research is now concentrated on supporting man in space, evaluating the effects of the microgravity environment on humans, and modeling encounters with extraterrestrial life and the effects of human activities on terrestrial biota. Current levels of understanding of the physiological causes of human health problems produced by long-duration spaceflight are summarized. Experiments planned for the Shuttle, Spacelab, and the Space Station are outlined, noting the long-term goal of configuring the Space Station so that only food and hydrazine are needed to complete the life support system cycle.

  11. Space life sciences strategic plan

    NASA Astrophysics Data System (ADS)

    Nicogossian, Arnauld E.

    1992-05-01

    Over the last three decades the Life Sciences Program has significantly contributed to NASA's manned and unmanned exploration of space, while acquiring new knowledge in the fields of space biology and medicine. The national and international events which have led to the development and revision of NASA strategy will significantly affect the future of life sciences programs both in scope and pace. This document serves as the basis for synthesizing the options to be pursued during the next decade, based on the decisions, evolution, and guiding principles of the National Space Policy. The strategies detailed in this document are fully supportive of the Life Sciences Advisory Subcommittee's 'A Rationale for the Life Sciences,' and the recent Aerospace Medicine Advisory Committee report entitled 'Strategic Considerations for Support of Humans in Space and Moon/Mars Exploration Missions.' Information contained within this document is intended for internal NASA planning and is subject to policy decisions and direction, and to budgets allocated to NASA's Life Sciences Program.

  12. Space life sciences strategic plan

    NASA Technical Reports Server (NTRS)

    Nicogossian, Arnauld E.

    1992-01-01

    Over the last three decades the Life Sciences Program has significantly contributed to NASA's manned and unmanned exploration of space, while acquiring new knowledge in the fields of space biology and medicine. The national and international events which have led to the development and revision of NASA strategy will significantly affect the future of life sciences programs both in scope and pace. This document serves as the basis for synthesizing the options to be pursued during the next decade, based on the decisions, evolution, and guiding principles of the National Space Policy. The strategies detailed in this document are fully supportive of the Life Sciences Advisory Subcommittee's 'A Rationale for the Life Sciences,' and the recent Aerospace Medicine Advisory Committee report entitled 'Strategic Considerations for Support of Humans in Space and Moon/Mars Exploration Missions.' Information contained within this document is intended for internal NASA planning and is subject to policy decisions and direction, and to budgets allocated to NASA's Life Sciences Program.

  13. Investigations in Life Science, Junior High.

    ERIC Educational Resources Information Center

    Stephenson, Robert L.

    Developed for teachers of junior high school science classes, this unit presents ten investigations on plant growth, animal life, pond life, and general science interests. These investigations are designed to accompany any popular life science textbooks, may be used to supplement a year-long course in life science, are intended as a springboard…

  14. Space life sciences: A status report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The scientific research and supporting technology development conducted in the Space Life Sciences Program is described. Accomplishments of the past year are highlighted. Plans for future activities are outlined. Some specific areas of study include the following: Crew health and safety; What happens to humans in space; Gravity, life, and space; Sustenance in space; Life and planet Earth; Life in the Universe; Promoting good science and good will; Building a future for the space life sciences; and Benefits of space life sciences research.

  15. USSR Space Life Sciences Digest

    NASA Technical Reports Server (NTRS)

    Lewis, C. S. (Editor); Donnelly, K. L. (Editor)

    1980-01-01

    Research in exobiology, life sciences technology, space biology, and space medicine and physiology, primarily using data gathered on the Salyut 6 orbital space station, is reported. Methods for predicting, diagnosing, and preventing the effects of weightlessness are discussed. Psychological factors are discussed. The effects of space flight on plants and animals are reported. Bioinstrumentation advances are noted.

  16. Life Sciences in NASA's Mission

    NASA Technical Reports Server (NTRS)

    Nicogossian, Arnauld E.

    1999-01-01

    The topics of agency and enterprise goals, OLMSA organization, life sciences relationship to NASA/HEDS strategic plans, budget allocated by the HEDS strategic plan goals, 1998 successes, exploration and the International Space Station, congressional budgets, OLMSA grants, biomedical research and countermeasures, medical care, biologically inspired technologies, and publication, education and outreach are all presented in viewgraph form.

  17. USSR space life sciences digest

    SciTech Connect

    Lewis, C.S.; Donnelly, K.L.

    1980-01-01

    Research in exobiology, life sciences technology, space biology, and space medicine and physiology, primarily using data gathered on the Salyut 6 orbital space station, is reported. Methods for predicting, diagnosing, and preventing the effects of weightlessness are discussed. Psychological factors are discussed. The effects of space flight on plants and animals are reported. Bioinstrumentation advances are noted.

  18. Spacelab Life Sciences 1 - Dedicated life sciences mission

    NASA Technical Reports Server (NTRS)

    Womack, W. D.

    1990-01-01

    The Spacelab Life Sciences 1 (SLS-1) mission is discussed, and an overview of the SLS-1 Spacelab configuration is shown. Twenty interdisciplinary experiments, planned for this mission, are intended to explore the early stages of human and animal physiological adaptation to space flight conditions. Biomedical and gravitational biology experiments include cardiovascular and cardiopulmonary deconditioning, altered vestibular functions, altered metabolic functions (including altered fluid-electrolyte regulation), muscle atrophy, bone demineralization, decreased red blood cell mass, and altered immunologic responses.

  19. Informal science education: lifelong, life-wide, life-deep.

    PubMed

    Sacco, Kalie; Falk, John H; Bell, James

    2014-11-01

    Informal Science Education: Lifelong, Life-Wide, Life-Deep Informal science education cultivates diverse opportunities for lifelong learning outside of formal K-16 classroom settings, from museums to online media, often with the help of practicing scientists.

  20. Technologists and Technicians in the Life Sciences

    ERIC Educational Resources Information Center

    Wheeler, Melissa

    1978-01-01

    A variety of technical occupations that involve biological or life science education are discussed. These technical occupations are divided into agricultural, biological, marine science, and medical areas. (MDR)

  1. Spacelab life sciences 1 - Reprints of background life sciences publications

    NASA Technical Reports Server (NTRS)

    White, Ronald (Editor); Leonard, Joel (Editor)

    1991-01-01

    Results from investigations conducted in preparation for the first Spacelab life-sciences mission are summarized in selected previously published papers. Topics discussed are the role of calcium in osteoporosis, orthostaic hypotension, cardiovascular adjustments to gravitational stress, cell biology, exposure to stressful environments, heart-lung interactions in aerospace medicine, effects of weightlessness on human fluid and electrolyte physiology, macular bioaccelerometers on earth and in space, and metabolism of nonessential N-15-labeled amino acids and the measurement of human whole-body protein synthesis rates.

  2. A Consideratlon of Life Sciences

    NASA Astrophysics Data System (ADS)

    Nakamura, Keiko

    This paper is a record of Special Lecture at the awarding ceremony of the 22nd “Niwa Prize”. Lecturer describes the mechanism in biology, taking a biology as an information system. For instance, when we make a protain by genes, every substance like hormones and nezymes, which were made by genes, has information. The system of biology moves by the fact that an gene dose not move itself, but substances with information go around in the body. From the viewpoint of life sciences, lecturer proposes the necessity to reconsider information as a linkage of heart and substance.

  3. Life Sciences Division Spaceflight Hardware

    NASA Technical Reports Server (NTRS)

    Yost, B.

    1999-01-01

    The Ames Research Center (ARC) is responsible for the development, integration, and operation of non-human life sciences payloads in support of NASA's Gravitational Biology and Ecology (GB&E) program. To help stimulate discussion and interest in the development and application of novel technologies for incorporation within non-human life sciences experiment systems, three hardware system models will be displayed with associated graphics/text explanations. First, an Animal Enclosure Model (AEM) will be shown to communicate the nature and types of constraints physiological researchers must deal with during manned space flight experiments using rodent specimens. Second, a model of the Modular Cultivation System (MCS) under development by ESA will be presented to highlight technologies that may benefit cell-based research, including advanced imaging technologies. Finally, subsystems of the Cell Culture Unit (CCU) in development by ARC will also be shown. A discussion will be provided on candidate technology requirements in the areas of specimen environmental control, biotelemetry, telescience and telerobotics, and in situ analytical techniques and imaging. In addition, an overview of the Center for Gravitational Biology Research facilities will be provided.

  4. Spacelab Life Sciences 1, development towards successive life sciences flights

    NASA Technical Reports Server (NTRS)

    Dalton, B. P.; Jahns, G.; Hogan, R.

    1992-01-01

    A general review is presented of flight data and related hardware developments for Spacelab Life Sciences (SLS) 1 with an eye toward applying this knowledge to projected flight planning. Specific attention is given to the Research Animal Holding Facility (RAHF), the General Purpose Work Station (GPWS), the Small Mass Measuring Instrument (SMMI), and the Animal Enclosure Module (AEM). Preflight and in-flight testing methods are detailed including biocompatibility tests, parametric engineering sensitivity analyses, measurements of environmental parameters, and studies of operational interfaces. Particulate containment is demonstrated for some of the equipment, and successful use of the GPWS, RAHF, AEM, and SMMI are reported. The in-flight data are useful for developing more advanced hardware such as the AEM for SLS flight 2 and the modified RAHF for SLS flight 3.

  5. The Next Generation Science Standards and the Life Sciences

    ERIC Educational Resources Information Center

    Bybee, Rodger W.

    2013-01-01

    Using the life sciences, this article first reviews essential features of the "NRC Framework for K-12 Science Education" that provided a foundation for the new standards. Second, the article describes the important features of life science standards for elementary, middle, and high school levels. Special attention is paid to the teaching…

  6. Life Sciences Program Tasks and Bibliography

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1995. Additionally, this inaugural edition of the Task Book includes information for FY 1994 programs. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive Internet web page

  7. USSR Space Life Sciences Digest, issue 20

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran (Editor); Donaldson, P. Lynn (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1988-01-01

    Abstracts of research in the areas of biological rhythms, body fluids, botany, endrocrinology, enzymology, exobiology, genetics, human performance, immunology, life support systems, mathematical modeling, and numerous other topics related to space and life sciences are given.

  8. Space life sciences: Programs and projects

    NASA Technical Reports Server (NTRS)

    1989-01-01

    NASA space life science activities are outlined. Brief, general descriptions are given of research in the areas of biomedical research, space biology, closed loop life support systems, exobiology, and biospherics.

  9. Life Science for Visually Impaired Students.

    ERIC Educational Resources Information Center

    Malone, Larry; De Lucchi, Linda

    1979-01-01

    Describes life science activities for blind or visually impaired students including aquarium studies, plant germination, classroom animals, and outdoor activities designed with a multisensory approach. (MA)

  10. Life sciences utilization of Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Chambers, Lawrence P.

    1992-01-01

    Space Station Freedom will provide the United States' first permanently manned laboratory in space. It will allow, for the first time, long term systematic life sciences investigations in microgravity. This presentation provides a top-level overview of the planned utilization of Space Station Freedom by NASA's Life Sciences Division. The historical drivers for conducting life sciences research on a permanently manned laboratory in space as well as the advantages that a space station platform provides for life sciences research are discussed. This background information leads into a description of NASA's strategy for having a fully operational International Life Sciences Research Facility by the year 2000. Achieving this capability requires the development of the five discipline focused 'common core' facilities. Once developed, these facilities will be brought to the space station during the Man-Tended Capability phase, checked out and brought into operation. Their delivery must be integrated with the Space Station Freedom manifest. At the beginning of Permanent Manned Capability, the infrastructure is expected to be completed and the Life Sciences Division's SSF Program will become fully operational. A brief facility description, anticipated launch date and a focused objective is provided for each of the life sciences facilities, including the Biomedical Monitoring and Countermeasures (BMAC) Facility, Gravitational Biology Facility (GBF), Gas Grain Simulation Facility (GGSF), Centrifuge Facility (CF), and Controlled Ecological Life Support System (CELSS) Test Facility. In addition, hardware developed by other NASA organizations and the SSF International Partners for an International Life Sciences Research Facility is also discussed.

  11. JSC Human Life Sciences Project

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This section of the Life and Microgravity Spacelab (LMS) publication includes articles entitled: (1) E029 - Magnetic Resonance Imaging after Exposure to Microgravity; (2) E030 - Extended Studies of Pulmonary Function in Weightlessness; (3) E074 - Direct Measurement of the Initial Bone Response to Spaceflight in Humans; (4) E401 - The Effects of Microgravity on Skeletal Muscle Contractile Properties; (5) E407 - Effects of Microgravity on the Biochemical and Bioenergetic Characteristics of Human Skeletal Muscle; (6) E410 - Torso Rotation Experiment; (7) E920 - Effect of Weightlessness on Human Single Muscle Fiber Function; (8) E948 - Human Sleep, Circadian Rhythms and Performance in Space; (9) E963 - Microgravity Effects on Standardized Cognitive Performance Measures; and (10) E971 - Measurement of Energy Expenditures During Spaceflight Using the Doubly Labeled Water Method

  12. Career Exploration in the Life Sciences.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    The purpose of the teacher's guide is to acquaint junior high school students with occupations in the life sciences. By identifying life science and exploring the areas of biology (ecology and zoology) and medicine, students may become aware of the functions of the people involved in these areas and the value of their work. The material in the…

  13. Lipid mediators in life science.

    PubMed

    Murakami, Makoto

    2011-01-01

    "Lipid mediators" represent a class of bioactive lipids that are produced locally through specific biosynthetic pathways in response to extracellular stimuli. They are exported extracellularly, bind to their cognate G protein-coupled receptors (GPCRs) to transmit signals to target cells, and are then sequestered rapidly through specific enzymatic or non-enzymatic processes. Because of these properties, lipid mediators can be regarded as local hormones or autacoids. Unlike proteins, whose information can be readily obtained from the genome, we cannot directly read out the information of lipids from the genome since they are not genome-encoded. However, we can indirectly follow up the dynamics and functions of lipid mediators by manipulating the genes encoding a particular set of proteins that are essential for their biosynthesis (enzymes), transport (transporters), and signal transduction (receptors). Lipid mediators are involved in many physiological processes, and their dysregulations have been often linked to various diseases such as inflammation, infertility, atherosclerosis, ischemia, metabolic syndrome, and cancer. In this article, I will give an overview of the basic knowledge of various lipid mediators, and then provide an example of how research using mice, gene-manipulated for a lipid mediator-biosynthetic enzyme, contributes to life science and clinical applications.

  14. John Greenleaf's life of science.

    PubMed

    Watenpaugh, Donald E

    2012-12-01

    This article summarizes the life and career of John E. Greenleaf, PhD. It complements an interview of Dr. Greenleaf sponsored by the American Physiological Society Living History Project found on the American Physiological Society website. Dr. Greenleaf is a "thought leader" and internationally renowned physiologist, with extensive contributions in human systems-level environmental physiology. He avoided self-aggrandizement and believed that deeds rather than words define one's legacy. Viewed another way, however, Greenleaf's words define his deeds: 48% of his 185 articles are first author works, which is an unusually high proportion for a scientist of his stature. He found that writing a thorough and thoughtful discussion section often led to novel ideas that drove future research. Beyond Greenleaf's words are the many students, postdocs, and collaborators lucky enough to have worked with him and thus learn and carry on his ways of science. His core principles included the following: avoid research "fads," embrace diversity, be the first subject in your own research, adhere to rules of fiscal responsibility, and respect administrative forces-but never back down from them when you know you are right. Greenleaf's integrity ensured he was usually right. He thrived on the axiom of many successful scientists: avoid falling in love with hypotheses, so that when unexpected findings appear, they arouse curiosity instead of fear. Dr. Greenleaf's legacy will include the John and Carol Greenleaf Award for prolific environmental and exercise-related publication in the Journal of Applied Physiology. PMID:23209002

  15. John Greenleaf's life of science.

    PubMed

    Watenpaugh, Donald E

    2012-12-01

    This article summarizes the life and career of John E. Greenleaf, PhD. It complements an interview of Dr. Greenleaf sponsored by the American Physiological Society Living History Project found on the American Physiological Society website. Dr. Greenleaf is a "thought leader" and internationally renowned physiologist, with extensive contributions in human systems-level environmental physiology. He avoided self-aggrandizement and believed that deeds rather than words define one's legacy. Viewed another way, however, Greenleaf's words define his deeds: 48% of his 185 articles are first author works, which is an unusually high proportion for a scientist of his stature. He found that writing a thorough and thoughtful discussion section often led to novel ideas that drove future research. Beyond Greenleaf's words are the many students, postdocs, and collaborators lucky enough to have worked with him and thus learn and carry on his ways of science. His core principles included the following: avoid research "fads," embrace diversity, be the first subject in your own research, adhere to rules of fiscal responsibility, and respect administrative forces-but never back down from them when you know you are right. Greenleaf's integrity ensured he was usually right. He thrived on the axiom of many successful scientists: avoid falling in love with hypotheses, so that when unexpected findings appear, they arouse curiosity instead of fear. Dr. Greenleaf's legacy will include the John and Carol Greenleaf Award for prolific environmental and exercise-related publication in the Journal of Applied Physiology.

  16. Life sciences interests in Mars missions

    NASA Technical Reports Server (NTRS)

    Rummel, John D.; Griffiths, Lynn D.

    1989-01-01

    NASA's Space Life Sciences research permeates plans for Mars missions and the rationale for the exploration of the planet. The Space Life Sciences program has three major roles in Mars mission studies: providing enabling technology for piloted missions, conducting scientific exploration related to the origin and evolution of life, and protecting space crews from the adverse physiological effects of space flight. This paper presents a rationale for exploration and some of the issues, tradeoffs, and visions being addressed in the Space Life Sciences program in preparation for Mars missions.

  17. Science gateways for semantic-web-based life science applications.

    PubMed

    Ardizzone, Valeria; Bruno, Riccardo; Calanducci, Antonio; Carrubba, Carla; Fargetta, Marco; Ingrà, Elisa; Inserra, Giuseppina; La Rocca, Giuseppe; Monforte, Salvatore; Pistagna, Fabrizio; Ricceri, Rita; Rotondo, Riccardo; Scardaci, Diego; Barbera, Roberto

    2012-01-01

    In this paper we present the architecture of a framework for building Science Gateways supporting official standards both for user authentication and authorization and for middleware-independent job and data management. Two use cases of the customization of the Science Gateway framework for Semantic-Web-based life science applications are also described.

  18. Life Cycle. K-6 Science Curriculum.

    ERIC Educational Resources Information Center

    Blueford, J. R.; And Others

    Life Cycle is one of the units of a K-6 unified science curriculum program. The unit consists of four organizing sub-themes: (1) past life (focusing on dinosaurs and fossil formation, types, and importance); (2) animal life (examining groups of invertebrates and vertebrates, cells, reproduction, and classification systems); (3) plant life…

  19. Space Life Sciences Research and Education Program

    NASA Technical Reports Server (NTRS)

    Coats, Alfred C.

    2001-01-01

    Since 1969, the Universities Space Research Association (USRA), a private, nonprofit corporation, has worked closely with the National Aeronautics and Space Administration (NASA) to advance space science and technology and to promote education in those areas. USRA's Division of Space Life Sciences (DSLS) has been NASA's life sciences research partner for the past 18 years. For the last six years, our Cooperative Agreement NCC9-41 for the 'Space Life Sciences Research and Education Program' has stimulated and assisted life sciences research and education at NASA's Johnson Space Center (JSC) - both at the Center and in collaboration with outside academic institutions. To accomplish our objectives, the DSLS has facilitated extramural research, developed and managed educational programs, recruited and employed visiting and staff scientists, and managed scientific meetings.

  20. Life sciences flight experiments program - Overview

    NASA Technical Reports Server (NTRS)

    Berry, W. E.; Dant, C. C.

    1981-01-01

    The considered LSFE program focuses on Spacelab life sciences missions planned for the 1984-1985 time frame. Life Sciences Spacelab payloads, launched at approximately 18-months intervals, will enable scientists to test hypotheses from such disciplines as vestibular physiology, developmental biology, biochemistry, cell biology, plant physiology, and a variety of other life sciences. An overview is presented of the LSFE program that will take advantage of the unique opportunities for biological experimentation possible on Spacelab. Program structure, schedules, and status are considered along with questions of program selection, and the science investigator working groups. A description is presented of the life sciences laboratory equipment program, taking into account the general purpose work station, the research animal holding facility, and the plant growth unit.

  1. The Early Years: "Life" Science

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2013-01-01

    Talking about death as part of a life cycle is often ignored or spoken about in hushed tones in early childhood. Books with "life cycle" in the title often do not include the death of the living organism in the information about the cycle. The concept of a complete life cycle does not appear in "A Framework for K-12 Science…

  2. Life sciences: Lawrence Berkeley Laboratory, 1988

    SciTech Connect

    Not Available

    1989-07-01

    Life Sciences Research at LBL has both a long history and a new visibility. The physics technologies pioneered in the days of Ernest O. Lawrence found almost immediate application in the medical research conducted by Ernest's brother, John Lawrence. And the tradition of nuclear medicine continues today, largely uninterrupted for more than 50 years. Until recently, though, life sciences research has been a secondary force at the Lawrence Berkeley Laboratory (LBL). Today, a true multi-program laboratory has emerged, in which the life sciences participate as a full partner. The LBL Human Genome Center is a contribution to the growing international effort to map the human genome. Its achievements represent LBL divisions, including Engineering, Materials and Chemical Sciences, and Information and Computing Sciences, along with Cell and Molecular Biology and Chemical Biodynamics. The Advanced Light Source Life Sciences Center will comprise not only beamlines and experimental end stations, but also supporting laboratories and office space for scientists from across the US. This effort reflects a confluence of scientific disciplines --- this time represented by individuals from the life sciences divisions and by engineers and physicists associated with the Advanced Light Source project. And finally, this report itself, the first summarizing the efforts of all four life sciences divisions, suggests a new spirit of cooperation. 30 figs.

  3. Breathing Life into Engineering: A Lesson Study Life Science Lesson

    ERIC Educational Resources Information Center

    Lawrence, Maria; Yang, Li-Ling; Briggs, May; Hession, Alicia; Koussa, Anita; Wagoner, Lisa

    2016-01-01

    A fifth grade life science lesson was implemented through a lesson study approach in two fifth grade classrooms. The research lesson was designed by a team of four elementary school teachers with the goal of emphasizing engineering practices consistent with the "Next Generation Science Standards" (NGSS) (Achieve Inc. 2013). The fifth…

  4. Experimental control requirements for life sciences

    NASA Technical Reports Server (NTRS)

    Berry, W. E.; Sharp, J. C.

    1978-01-01

    The Life Sciences dedicated Spacelab will enable scientists to test hypotheses in various disciplines. Building upon experience gained in mission simulations, orbital flight test experiments, and the first three Spacelab missions, NASA will be able to progressively develop the engineering and management capabilities necessary for the first Life Sciences Spacelab. Development of experiments for these missions will require implementation of life-support systems not previously flown in space. Plant growth chambers, animal holding facilities, aquatic specimen life-support systems, and centrifuge-mounted specimen holding units are examples of systems currently being designed and fabricated for flight.

  5. More Life-Science Experiments For Spacelab

    NASA Technical Reports Server (NTRS)

    Savage, P. D., Jr.; Dalton, B.; Hogan, R.; Leon, H.

    1991-01-01

    Report describes experiments done as part of Spacelab Life Sciences 2 mission (SLS-2). Research planned on cardiovascular, vestibular, metabolic, and thermal responses of animals in weightlessness. Expected to shed light on effects of prolonged weightlessness on humans.

  6. Physical and Life Sciences 2008 Science & Technology Highlights

    SciTech Connect

    Correll, D L; Hazi, A U

    2009-05-06

    This document highlights the outstanding research and development activities in the Physical and Life Sciences Directorate that made news in 2008. It also summarizes the awards and recognition received by members of the Directorate in 2008.

  7. LIFE AND EARTH SCIENCE, JUNIOR HIGH SCHOOL.

    ERIC Educational Resources Information Center

    MAHLER, FRED

    CURRICULUM GUIDES FOR GRADE 7 "LIFE SCIENCE" AND GRADE 8 "EARTH SCIENCE" WERE DEVELOPED BY 24 AREA TEACHERS AND THREE SAM HOUSTON STATE COLLEGE PROFESSORS. THE PROJECT WAS SUPPORTED BY THE TEXAS SMALL SCHOOL ASSOCIATION, THE LOCAL SCHOOLS, AND FUNDS FROM THE TITLE III PROGRAM. THE TEACHER GUIDES WERE PREPARED TO IMPROVE THE JUNIOR HIGH SCHOOL…

  8. Internet Reference Resources for the Life Sciences.

    ERIC Educational Resources Information Center

    Clark, Kathleen A.

    1997-01-01

    Over 60 Internet biological resources are reviewed in this report in which the life sciences have been defined to include all areas of biology, agriculture, and veterinary science except those that pertain to the environment or human medicine. Includes general collections; dictionaries and biographies; online monographs; company information…

  9. Life Science Curriculum Guide. Bulletin 1614.

    ERIC Educational Resources Information Center

    Louisiana State Dept. of Education, Baton Rouge. Div. of Academic Programs.

    This curriculum guide, developed to establish statewide curriculum standards for the Louisiana Competency-based Education Program, contains the minimum competencies and process skills that should be included in a life science course. It consists of: (1) a rationale for an effective science program; (2) a list and description of four major goals of…

  10. Learning Activities Packages, Earth Science and Life Science.

    ERIC Educational Resources Information Center

    Miller Junior High School, Marshalltown, IA.

    Thirteen "Learning Activities Packages" for junior high school students focus on earth science and life science. Individual packages can be used with some lecture and films. Each learning activity package lists behavioral objectives and concepts to be used. Lists of reading assignments and references, along with laboratory activities, are also…

  11. Life and Environment. Elementary Science Activity Series.

    ERIC Educational Resources Information Center

    Blackwell, Frank F.

    This book, a volume of the High/Scope Elementary Curriculum science books series, is designed to bring the essential features of plant and animal environments into focus. It contains activities that enable students to gain insights into the life histories of animals and plants, their habitats, and their place in the broader picture of life on…

  12. Life sciences flight experiments program, life sciences project division, procurement quality provisions

    NASA Technical Reports Server (NTRS)

    House, G.

    1980-01-01

    Methods are defined for implementing quality assurance policy and requirements for life sciences laboratory equipment, experimental hardware, integration and test support equipment, and integrated payloads.

  13. Physics transforming the life sciences.

    PubMed

    Onuchic, José N

    2014-10-08

    Biological physics is clearly becoming one of the leading sciences of the 21st century. This field involves the cross-fertilization of ideas and methods from biology and biochemistry on the one hand and the physics of complex and far from equilibrium systems on the other. Here I want to discuss how biological physics is a new area of physics and not simply applications of known physics to biological problems. I will focus in particular on the new advances in theoretical physics that are already flourishing today. They will become central pieces in the creation of this new frontier of science.

  14. Planning for life sciences research in space

    NASA Technical Reports Server (NTRS)

    Mallory, K. M., Jr.; Deutsch, S.

    1976-01-01

    Invitations to participate in planning the NASA Life Sciences Program in Space were mailed to members of the Life Sciences community at large during April 1975. The invitation is related to current planning for Life Sciences research in space during the 1980's, taking into account a use of the Space Shuttle, Spacelab, and the unmanned Biological Experiments Scientific Satellite (BESS). A response form to be completed and returned to NASA by the scientists included questions requesting suggestions on topics-for-research, laboratory equipment, and test specimens. A description of the invitation results is presented, taking into account general response, respondent specialties, laboratory equipment, test specimens, and research objectives. Attention is also given to an Announcement of Opportunities (AO) for the Space Transportation System. The AO was issued by the Office of Space Science in March 1976.

  15. Life Sciences Centrifuge Facility assessment

    NASA Technical Reports Server (NTRS)

    Benson, Robert H.

    1994-01-01

    This report provides an assessment of the status of the Centrifuge Facility being developed by ARC for flight on the International Space Station Alpha. The assessment includes technical status, schedules, budgets, project management, performance of facility relative to science requirements, and identifies risks and issues that need to be considered in future development activities.

  16. USSR Space Life Sciences Digest, issue 13

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Teeter, Ronald (Editor); Teeter, Ronald (Editor); Teeter, Ronald (Editor)

    1987-01-01

    This is the thirteenth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 39 papers recently published in Russian-language periodicals and bound collections, two papers delivered at an international life sciences symposium, and three new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Also included is a review of a recent Soviet-French symposium on Space Cytology. Current Soviet Life Sciences titles available in English are cited. The materials included in this issue have been identified as relevant to 31 areas of aerospace medicine and space biology. These areas are: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, cosmonaut training, cytology, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal systems, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, space biology, and space medicine.

  17. Science Education in Second Life

    ERIC Educational Resources Information Center

    Merchant, Zahira

    2010-01-01

    The purpose of the observational study was to investigate whether spaces in Second Life (SL) displaying interactive scientific exhibits can become potential avenues to promote inquiry in teaching scientific concepts. 42 SL spaces (islands) were selected using inclusion/exclusion criteria out of 155 spaces that were found using three different…

  18. Life Sciences Data Archive Scientific Development

    NASA Technical Reports Server (NTRS)

    Buckey, Jay C., Jr.

    1995-01-01

    The Life Sciences Data Archive will provide scientists, managers and the general public with access to biomedical data collected before, during and after spaceflight. These data are often irreplaceable and represent a major resource from the space program. For these data to be useful, however, they must be presented with enough supporting information, description and detail so that an interested scientist can understand how, when and why the data were collected. The goal of this contract was to provide a scientific consultant to the archival effort at the NASA-Johnson Space Center. This consultant (Jay C. Buckey, Jr., M.D.) is a scientist, who was a co-investigator on both the Spacelab Life Sciences-1 and Spacelab Life Sciences-2 flights. In addition he was an alternate payload specialist for the Spacelab Life Sciences-2 flight. In this role he trained on all the experiments on the flight and so was familiar with the protocols, hardware and goals of all the experiments on the flight. Many of these experiments were flown on both SLS-1 and SLS-2. This background was useful for the archive, since the first mission to be archived was Spacelab Life Sciences-1. Dr. Buckey worked directly with the archive effort to ensure that the parameters, scientific descriptions, protocols and data sets were accurate and useful.

  19. Synchrotron Radiation in Life Sciences

    SciTech Connect

    Stojanoff, Vivian; Northrup, Paul; Pietri, Ruth; Zhong, Zhong

    2012-05-01

    Synchrotron Radiation (SR) presents itself as a “play-ground” with a large range of methods and techniques suitable to unveil the mysteries of life. Here we attempt to present a few of these methods that complement those employed in the home laboratory. SR diffraction, spectroscopy and imaging methods relevant to the atomic structure determination and characterization of the properties and function of chemical compounds and macromolecules of biological relevance, are introduced.

  20. Life sciences flight experiments program mission science requirements document. The first life sciences dedicated Spacelab mission, part 1

    NASA Technical Reports Server (NTRS)

    Rummel, J. A.

    1982-01-01

    The Mission Science Requirements Document (MSRD) for the First Dedicated Life Sciences Mission (LS-1) represents the culmination of thousands of hours of experiment selection, and science requirement definition activities. NASA life sciences has never before attempted to integrate, both scientifically and operationally, a single mission dedicated to life sciences research, and the complexity of the planning required for such an endeavor should be apparent. This set of requirements completes the first phase of a continual process which will attempt to optimize (within available programmatic and mission resources) the science accomplished on this mission.

  1. Aerospace-Related Life Science Concepts for Use in Life Science Classes Grades 7-12.

    ERIC Educational Resources Information Center

    Williams, Mary H.; Rademacher, Jean

    The purpose of this guide is to provide the teacher of secondary school life science classes with resource materials for activities to familiarize students with recent discoveries in bioastronautics. Each section introduces a life science concept and a related aerospace concept, gives background information, suggested activities, and an annotated…

  2. Space Station and the life sciences

    NASA Technical Reports Server (NTRS)

    White, R. J.; Leonard, J. I.; Cramer, D. B.; Bishop, W. P.

    1983-01-01

    Previous fundamental research in space life sciences is examined, and consideration is devoted to studies relevant to Space Station activities. Microgravity causes weight loss, hemoconcentration, and orthostatic intolerance when astronauts returns to earth. Losses in bone density, bone calcium, and muscle nitrogen have also been observed, together with cardiovascular deconditioning, fluid-electrolyte metabolism alteration, and space sickness. Experiments have been performed with plants, bacteria, fungi, protozoa, tissue cultures, invertebrate species, and with nonhuman vertebrates, showing little effect on simple cell functions. The Spacelab first flight will feature seven life science experiments and the second flight, two. Further studies will be performed on later flights. Continued life science studies to optimize human performance in space are necessary for the efficient operation of a Space Station and the assembly of large space structures, particularly in interaction with automated machinery.

  3. Four educational programs in Space Life Sciences.

    PubMed

    Luttges, M W; Stodieck, L S; Klaus, D M

    1994-01-01

    Four different educational programs impacting Space Life Sciences are described: the NASA/USRA Advanced Design Program, the NASA Specialized Center of Research and Training (NSCORT) Program, the Centers for the Commercial Development of Space (CCDS) Program, and the NASA Graduate Research Fellow Program. Each program makes somewhat different demands on the students engaged in them. Each program, at the University of Colorado, involves Space Life Sciences training. While the Graduate Student Research Fellow and NSCORT Programs are discipline oriented, the Advanced Design and CCDS Programs are focused on design, technologies and applications. Clearly, the "training paradigms" differ for these educational endeavors. But, these paradigms can be made to mutually facilitate enthusiasm and motivation. Discipline-oriented academic programs, ideally, must be flexible enough to accommodate the emergent cross-disciplinary needs of Space Life Sciences students. Models for such flexibility and resultant student performance levels are discussed based upon actual academic and professional records. PMID:11537954

  4. Accommodating life sciences on the Space Station

    NASA Technical Reports Server (NTRS)

    Arno, Roger D.

    1987-01-01

    The NASA Ames Research Center Biological Research Project (BRP) is responsible for identifying and accommodating high priority life science activities, utilizing nonhuman specimens, on the Space Station and is charged to bridge the gap between the science community and the Space Station Program. This paper discusses the approaches taken by the BRP in accomodating these research objectives to constraints imposed by the Space Station System, while maintaining a user-friendly environment. Consideration is given to the particular research disciplines which are given priority, the science objectives in each of these disciplines, the functions and activities required by these objectives, the research equipment, and the equipment suits. Life sciences programs planned by the Space Station participating partners (USA, Europe, Japan, and Canada) are compared.

  5. Life sciences space biology project planning

    NASA Technical Reports Server (NTRS)

    Primeaux, G.; Newkirk, K.; Miller, L.; Lewis, G.; Michaud, R.

    1988-01-01

    The Life Sciences Space Biology (LSSB) research will explore the effect of microgravity on humans, including the physiological, clinical, and sociological implications of space flight and the readaptations upon return to earth. Physiological anomalies from past U.S. space flights will be used in planning the LSSB project.The planning effort integrates science and engineering. Other goals of the LSSB project include the provision of macroscopic view of the earth's biosphere, and the development of spinoff technology for application on earth.

  6. Space station freedom life sciences activities

    NASA Technical Reports Server (NTRS)

    Taylor, G. R.

    1994-01-01

    Life sciences activities being planned for Space Station Freedom (SSF) as of Fall 1992 are discussed. Planning for these activities is ongoing. Therefore, this description should be viewed as indicative of the prevailing ideas at one particular time in the SSF development cycle. The proposed contributions of the Canadian Space Agency (CSN) the European Space Agency (ESA), Japan, and the United States are all discussed in detail. In each case, the life sciences goals, and the way in which each partner proposes to achieve their goals, are reviewed.

  7. Visual monitoring of autonomous life sciences experimentation

    NASA Technical Reports Server (NTRS)

    Blank, G. E.; Martin, W. N.

    1987-01-01

    The design and implementation of a computerized visual monitoring system to aid in the monitoring and control of life sciences experiments on board a space station was investigated. A likely multiprocessor design was chosen, a plausible life science experiment with which to work was defined, the theoretical issues involved in the programming of a visual monitoring system for the experiment was considered on the multiprocessor, a system for monitoring the experiment was designed, and simulations of such a system was implemented on a network of Apollo workstations.

  8. Life Sciences Division annual report, 1988

    SciTech Connect

    Marrone, B.L.; Cram, L.S.

    1989-04-01

    This report summarizes the research and development activities of Los Alamos National Laboratory's Life Sciences Division for the calendar year 1988. Technical reports related to the current status of projects are presented in sufficient detail to permit the informed reader to assess their scope and significance. Summaries useful to the casual reader desiring general information have been prepared by the Group Leaders and appear in each group overview. Investigators on the staff of the Life Sciences Division will be pleased to provide further information.

  9. Space life sciences strategic plan, 1991

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Over the last three decades the life sciences program has significantly contributed to NASA's manned and unmanned exploration of space, while acquiring new knowledge in the fields of space biology and medicine. The national and international events which have led to the development and revision of NASA strategy will significantly affect the future of life sciences programs both in scope and pace. This document serves as the basis for synthesizing the option to be pursued during the next decade, based on the decisions, evolution, and guiding principles of the National Space Policy.

  10. "Physics and Life" for Europe's Science Teachers

    NASA Astrophysics Data System (ADS)

    2003-04-01

    interest in science and current scientific research. The goals of "Physics On Stage 3" [EWST Logo] "Physics on Stage 3" also aims to facilitate the exchange of good practice and innovative ideas among Europe's science teachers and to provide a forum for a broad debate among educators, administrators and policy-makers about the key problems in science education today. Moreover, it will make available the considerable, combined expertise of the EIROforum organisations to the European scientific teaching community, in order to promote the introduction of "fresh" science into the curricula and thus to convey a more realistic image of modern science to the pupils. "Physics on Stage 3" is concerned with basic science and also with the cross-over between different science disciplines - a trend becoming more and more important in today's science, which is not normally reflected in school curricula. A key element of the programme is to give teachers an up-to-date "insiders'" view of what is happening in science and to tell them about new, highly-diverse and interesting career opportunities for their pupils. Theme of the activities The theme of "Physics on Stage" this year is "Physics and Life" , reflecting the decision to broaden the Physics on Stage activities to encompass all the natural sciences. Including other sciences will augment the already successful concept, introducing a mixture of cross-over projects that highlight the multidisciplinary aspects of modern science. Among the many subjects to be presented are radiation, physics and the environment, astrobiology (the search for life beyond earth), complex systems, self-organising systems, sports science, the medical applications of physics, mathematics and epidemiology, etc. The main elements National activities "Physics on Stage 3" has already started and National Steering Committees in 22 countries, composed of eminent science teachers, scientists, administrators and others involved in se

  11. Human Life Science, Years 1 - 7.

    ERIC Educational Resources Information Center

    British Columbia Dept. of Education, Victoria. Curriculum Development Branch.

    Describes a Human Life Science program for the elementary school emphasizing physical, mental, emotional, and social growth. The program consists of two units: (1) The Human Body, and (2) Drugs, including Drug Information, Alcohol, and Tobacco. The guide outlines basic concepts to be developed, sets of objectives, background information, teaching…

  12. Skylab experiments. Volume 4: Life sciences

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The life sciences experiments conducted during Skylab missions are discussed. The general categories of the experiments are as follows: (1) mineral and hormonal balance, (2) hematology and immunology, (3) cardiovascular status, (4) energy expenditure, (5) neurophysiology, and (7) biology. Each experiment within the general category is further identified with respect to the scientific objectives, equipment used, performance, and data to be obtained.

  13. USSR Space Life Sciences Digest, Issue 26

    NASA Technical Reports Server (NTRS)

    Stone, Lydia Razran (Editor); Frey, Mary Ann (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1990-01-01

    This is the twenty-sixth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 35 journal papers or book chapters published in Russian and of 8 Soviet books. In addition, the proceedings of an Intercosmos conference on space biology and medicine are summarized.

  14. Science, Technology and the Quality of Life.

    ERIC Educational Resources Information Center

    King, Alexander

    In view of the changing relationship between science, technology, and the quality of life, future efforts need to be devoted to the use of new knowledge for social objectives rather than for economics and defense. The mass of problems facing society today, which to some extent are direct side effects of technological growth, appear to have three…

  15. 75 Easy Life Science Demonstrations. Teacher Book.

    ERIC Educational Resources Information Center

    Kardos, Thomas

    This book is a collection of life science classroom demonstrations. Explanations that review key concepts are included. Topics are: stimulus and response; gravitropism; phototropism; living organisms; carbon dioxide; gases emitted by plants; greenhouse effect; stomata; transpiration; leaf skeletons; seed growth; water evaporation in plants; carbon…

  16. DISCUS Seventh Grade, Life Sciences, Part Two.

    ERIC Educational Resources Information Center

    Duval County School Board, Jacksonville, FL. Project DISCUS.

    Included are instructional materials designed for use with disadvantaged students who have a limited reading ability and poor command of English. The guide is the second volume of a two volume, one year program in life science and contains these two units and activities: Reproduction and Development, 21 activities; and Genetics, 10 activities. A…

  17. DISCUS Seventh Grade, Life Sciences, Part One.

    ERIC Educational Resources Information Center

    Duval County School Board, Jacksonville, FL. Project DISCUS.

    Included are instructional materials designed for use with disadvantaged students who have a limited reading ability and poor command of English. The guide is the first volume of a two volume, one year program in life science and contains these three units and activities: Measurement, 7 activities; Ecology, 12 activities; and Energy Processes, 24…

  18. Science and Life: A Mainstreamed Secondary Science Program.

    ERIC Educational Resources Information Center

    Wielert, Jan S.; Johnston, Laneh M.

    1984-01-01

    A science and life program developed for mainstreamed secondary students is based on commercially available modules on such topics as pregnancy and fetal development, automobile safety, and heart disease. The program features cooperative group activities, peer tutoring, and ongoing evaluation. (CL)

  19. USSR Space Life Sciences Digest, issue 2

    NASA Technical Reports Server (NTRS)

    Hooke, L. R. (Editor); Radtke, M. (Editor); Garshnek, V. (Editor); Rowe, J. E. (Editor); Teeter, R. (Editor)

    1985-01-01

    The second issue of the bimonthly digest of USSR Space Life Sciences is presented. Abstracts are included for 39 Soviet periodical articles in 16 areas of aerospace medicine and space biology and published in Russian during the first half of 1985. Selected articles are illustrated with figures from the original. Translated introductions and tables of contents for 14 Russian books on 11 topics related to NASA's life science concerns are presented. Areas covered are: adaptation, biospheric, body fluids, botany, cardiovascular and respiratory systems, cybernetics and biomedical data processing, gastrointestinal system, group dynamics, habitability and environmental effects, health and medical treatment, hematology, immunology, life support systems, metabolism, musculoskeletal system, neurophysiology, psychology, radiobiology, and space biology. Two book reviews translated from Russian are included and lists of additional relevant titles available either in English or in Russian only are appended.

  20. USSR Space Life Sciences Digest, issue 1

    NASA Technical Reports Server (NTRS)

    Hooke, L. R.; Radtke, M.; Rowe, J. E.

    1985-01-01

    The first issue of the bimonthly digest of USSR Space Life Sciences is presented. Abstracts are included for 49 Soviet periodical articles in 19 areas of aerospace medicine and space biology, published in Russian during the first quarter of 1985. Translated introductions and table of contents for nine Russian books on topics related to NASA's life science concerns are presented. Areas covered include: botany, cardiovascular and respiratory systems, cybernetics and biomedical data processing, endocrinology, gastrointestinal system, genetics, group dynamics, habitability and environmental effects, health and medicine, hematology, immunology, life support systems, man machine systems, metabolism, musculoskeletal system, neurophysiology, perception, personnel selection, psychology, radiobiology, reproductive system, and space biology. This issue concentrates on aerospace medicine and space biology.

  1. Time in Physics and Life Science

    NASA Astrophysics Data System (ADS)

    Volovich, Igor. V.

    2009-02-01

    Some mathematical aspects of the concept of time in physics and life science are discussed. A theoretical model of time machine is a spacetime region with closed timelike curves. Possible production of mini time machines at CERN's Large Hadron Collider (LHC) is considered. It is argued that if the scale of quantum gravity is of the order of few TeVs, proton-proton collisions at the LHC could lead to the formation of traversable wormhole which is a model for the time machine. The wormhole production cross section at the LHC is of the same order as the cross section for the black hole production. We make also some comments on the role of time in life science. It is proposed to describe cells and other life phenomena by using framework of quantum field theory.

  2. USSR Space Life Sciences Digest, issue 14

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran; Teeter, Ronald; Radtke, Mike; Rowe, Joseph

    1988-01-01

    This is the fourteenth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 32 papers recently published in Russian language periodicals and bound collections and of three new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Also included is a review of a recent Soviet conference on Space Biology and Aerospace Medicine. Current Soviet life sciences titles available in English are cited. The materials included in this issue have been identified as relevant to the following areas of aerospace medicine and space biology: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal systems, habitability and environment effects, human performance, immunology, life support systems, mathematical modeling, metabolism, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, and space biology and medicine.

  3. USSR Space Life Sciences Digest, issue 3

    NASA Technical Reports Server (NTRS)

    Hooke, L. R. (Editor); Radtke, M. (Editor); Garshnek, V. (Editor); Rowe, J. E. (Editor); Teeter, R. (Editor)

    1985-01-01

    This is the third issue of NASA's USSR Space Life Sciences Digest. Abstracts are included for 46 Soviet periodical articles in 20 areas of aerospace medicine and space biology and published in Russian during the second third of 1985. Selected articles are illustrated with figures and tables from the original. In addition, translated introductions and tables of contents for seven Russian books on six topics related to NASA's life science concerns are presented. Areas covered are adaptation, biospherics, body fluids, botany, cardiovascular and respiratory systems, endocrinology, exobiology, gravitational biology, habitability and environmental effects, health and medical treatment, immunology, life support systems, metabolism, microbiology, musculoskeletal system; neurophysiology, nutrition, perception, personnel selection, psychology, radiobiology, and space physiology. Two book reviews translated from the Russian are included and lists of additional relevant titles available in English with pertinent ordering information are given.

  4. USSR Space Life Sciences Digest, issue 11

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor)

    1987-01-01

    This is the eleventh issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 54 papers recently published in Russian language periodicals and bound collections and of four new Soviet monographs. Selected abstracts are illustrated. Additional features include the translation of a paper presented in Russian to the United Nations, a review of a book on space ecology, and report of a conference on evaluating human functional capacities and predicting health. Current Soviet Life Sciences titles available in English are cited. The materials included in this issue have been identified as relevant to 30 areas of aerospace medicine and space biology. These areas are: adaptation, aviation physiology, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cosmonaut training, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal systems, group dynamics, genetics, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, and radiobiology.

  5. OBML - Ontologies in Biomedicine and Life Sciences.

    PubMed

    Herre, Heinrich; Hoehndorf, Robert; Kelso, Janet; Loebe, Frank; Schulz, Stefan

    2011-08-01

    The OBML 2010 workshop, held at the University of Mannheim on September 9-10, 2010, is the 2nd in a series of meetings organized by the Working Group "Ontologies in Biomedicine and Life Sciences" of the German Society of Computer Science (GI) and the German Society of Medical Informatics, Biometry and Epidemiology (GMDS). Integrating, processing and applying the rapidly expanding information generated in the life sciences - from public health to clinical care and molecular biology - is one of the most challenging problems that research in these fields is facing today. As the amounts of experimental data, clinical information and scientific knowledge increase, there is a growing need to promote interoperability of these resources, support formal analyses, and to pre-process knowledge for further use in problem solving and hypothesis formulation.The OBML workshop series pursues the aim of gathering scientists who research topics related to life science ontologies, to exchange ideas, discuss new results and establish relationships. The OBML group promotes the collaboration between ontologists, computer scientists, bio-informaticians and applied logicians, as well as the cooperation with physicians, biologists, biochemists and biometricians, and supports the establishment of this new discipline in research and teaching. Research topics of OBML 2010 included medical informatics, Semantic Web applications, formal ontology, bio-ontologies, knowledge representation as well as the wide range of applications of biomedical ontologies to science and medicine. A total of 14 papers were presented, and from these we selected four manuscripts for inclusion in this special issue.An interdisciplinary audience from all areas related to biomedical ontologies attended OBML 2010. In the future, OBML will continue as an annual meeting that aims to bridge the gap between theory and application of ontologies in the life sciences. The next event emphasizes the special topic of the ontology

  6. OBML - Ontologies in Biomedicine and Life Sciences.

    PubMed

    Herre, Heinrich; Hoehndorf, Robert; Kelso, Janet; Loebe, Frank; Schulz, Stefan

    2011-08-01

    The OBML 2010 workshop, held at the University of Mannheim on September 9-10, 2010, is the 2nd in a series of meetings organized by the Working Group "Ontologies in Biomedicine and Life Sciences" of the German Society of Computer Science (GI) and the German Society of Medical Informatics, Biometry and Epidemiology (GMDS). Integrating, processing and applying the rapidly expanding information generated in the life sciences - from public health to clinical care and molecular biology - is one of the most challenging problems that research in these fields is facing today. As the amounts of experimental data, clinical information and scientific knowledge increase, there is a growing need to promote interoperability of these resources, support formal analyses, and to pre-process knowledge for further use in problem solving and hypothesis formulation.The OBML workshop series pursues the aim of gathering scientists who research topics related to life science ontologies, to exchange ideas, discuss new results and establish relationships. The OBML group promotes the collaboration between ontologists, computer scientists, bio-informaticians and applied logicians, as well as the cooperation with physicians, biologists, biochemists and biometricians, and supports the establishment of this new discipline in research and teaching. Research topics of OBML 2010 included medical informatics, Semantic Web applications, formal ontology, bio-ontologies, knowledge representation as well as the wide range of applications of biomedical ontologies to science and medicine. A total of 14 papers were presented, and from these we selected four manuscripts for inclusion in this special issue.An interdisciplinary audience from all areas related to biomedical ontologies attended OBML 2010. In the future, OBML will continue as an annual meeting that aims to bridge the gap between theory and application of ontologies in the life sciences. The next event emphasizes the special topic of the ontology

  7. Improving science literacy and education through space life sciences.

    PubMed

    MacLeish, M Y; Moreno, N P; Tharp, B Z; Denton, J J; Jessup, G; Clipper, M C

    2001-01-01

    The National Space Biomedical Research Institute (NSBRI) encourages open involvement by scientists and the public at large in the Institute's activities. Through its Education and Public Outreach Program, the Institute is supporting national efforts to improve Kindergarten through grade twelve (K-12) and undergraduate education and to communicate knowledge generated by space life science research to lay audiences. Three academic institution Baylor College of Medicine, Morehouse School of Medicine and Texas A&M University are designing, producing, field-testing, and disseminating a comprehensive array of programs and products to achieve this goal. The objectives of the NSBRI Education and Public Outreach program are to: promote systemic change in elementary and secondary science education; attract undergraduate students--especially those from underrepresented groups--to careers in space life sciences, engineering and technology-based fields; increase scientific literacy; and to develop public and private sector partnerships that enhance and expand NSBRI efforts to reach students and families.

  8. NASA's Space Life Sciences Training Program

    NASA Technical Reports Server (NTRS)

    Coulter, G.; Lewis, L.; Atchison, D.

    1994-01-01

    The Space Life Sciences Training Program (SLSTP) is an intensive, six-week training program held every summer since 1985 at the Kennedy Space Center (KSC). A major goal of the SLSTP is to develop a cadre of qualified scientists and engineers to support future space life sciences and engineering challenges. Hand-picked, undergraduate college students participate in lectures, laboratory sessions, facility tours, and special projects: including work on actual Space Shuttle flight experiments and baseline data collection. At NASA Headquarters (HQ), the SLSTP is jointly sponsored by the Life Sciences Division and the Office of Equal Opportunity Programs: it has been very successful in attracting minority students and women to the fields of space science and engineering. In honor of the International Space Year (ISY), 17 international students participated in this summer's program. An SLSTP Symposium was held in Washington D. C., just prior to the World Space Congress. The Symposium attracted over 150 SLSTP graduates for a day of scientific discussions and briefings concerning educational and employment opportunities within NASA and the aerospace community. Future plans for the SLSTP include expansion to the Johnson Space Center in 1995.

  9. Unraveling the Complexities of Life Sciences Data.

    PubMed

    Higdon, Roger; Haynes, Winston; Stanberry, Larissa; Stewart, Elizabeth; Yandl, Gregory; Howard, Chris; Broomall, William; Kolker, Natali; Kolker, Eugene

    2013-03-01

    The life sciences have entered into the realm of big data and data-enabled science, where data can either empower or overwhelm. These data bring the challenges of the 5 Vs of big data: volume, veracity, velocity, variety, and value. Both independently and through our involvement with DELSA Global (Data-Enabled Life Sciences Alliance, DELSAglobal.org), the Kolker Lab ( kolkerlab.org ) is creating partnerships that identify data challenges and solve community needs. We specialize in solutions to complex biological data challenges, as exemplified by the community resource of MOPED (Model Organism Protein Expression Database, MOPED.proteinspire.org ) and the analysis pipeline of SPIRE (Systematic Protein Investigative Research Environment, PROTEINSPIRE.org ). Our collaborative work extends into the computationally intensive tasks of analysis and visualization of millions of protein sequences through innovative implementations of sequence alignment algorithms and creation of the Protein Sequence Universe tool (PSU). Pushing into the future together with our collaborators, our lab is pursuing integration of multi-omics data and exploration of biological pathways, as well as assigning function to proteins and porting solutions to the cloud. Big data have come to the life sciences; discovering the knowledge in the data will bring breakthroughs and benefits.

  10. NASA's Space Life Sciences Training Program.

    PubMed

    Coulter, G; Lewis, L; Atchison, D

    1994-01-01

    The Space Life Sciences Training Program (SLSTP) is an intensive, six-week training program held every summer since 1985 at the Kennedy Space Center (KSC). A major goal of the SLSTP is to develop a cadre of qualified scientists and engineers to support future space life sciences and engineering challenges. Hand-picked, undergraduate college students participate in lectures, laboratory sessions, facility tours, and special projects: including work on actual Space Shuttle flight experiments and baseline data collection. At NASA Headquarters (HQ), the SLSTP is jointly sponsored by the Life Sciences Division and the Office of Equal Opportunity Programs: it has been very successful in attracting minority students and women to the fields of space science and engineering. In honor of the International Space Year (ISY), 17 international students participated in this summer's program. An SLSTP Symposium was held in Washington D.C., just prior to the World Space Congress. The Symposium attracted over 150 SLSTP graduates for a day of scientific discussions and briefings concerning educational and employment opportunities within NASA and the aerospace community. Future plans for the SLSTP include expansion to the Johnson Space Center in 1995.

  11. Computational thinking in life science education.

    PubMed

    Rubinstein, Amir; Chor, Benny

    2014-11-01

    We join the increasing call to take computational education of life science students a step further, beyond teaching mere programming and employing existing software tools. We describe a new course, focusing on enriching the curriculum of life science students with abstract, algorithmic, and logical thinking, and exposing them to the computational "culture." The design, structure, and content of our course are influenced by recent efforts in this area, collaborations with life scientists, and our own instructional experience. Specifically, we suggest that an effective course of this nature should: (1) devote time to explicitly reflect upon computational thinking processes, resisting the temptation to drift to purely practical instruction, (2) focus on discrete notions, rather than on continuous ones, and (3) have basic programming as a prerequisite, so students need not be preoccupied with elementary programming issues. We strongly recommend that the mere use of existing bioinformatics tools and packages should not replace hands-on programming. Yet, we suggest that programming will mostly serve as a means to practice computational thinking processes. This paper deals with the challenges and considerations of such computational education for life science students. It also describes a concrete implementation of the course and encourages its use by others.

  12. Computational Thinking in Life Science Education

    PubMed Central

    Rubinstein, Amir; Chor, Benny

    2014-01-01

    We join the increasing call to take computational education of life science students a step further, beyond teaching mere programming and employing existing software tools. We describe a new course, focusing on enriching the curriculum of life science students with abstract, algorithmic, and logical thinking, and exposing them to the computational “culture.” The design, structure, and content of our course are influenced by recent efforts in this area, collaborations with life scientists, and our own instructional experience. Specifically, we suggest that an effective course of this nature should: (1) devote time to explicitly reflect upon computational thinking processes, resisting the temptation to drift to purely practical instruction, (2) focus on discrete notions, rather than on continuous ones, and (3) have basic programming as a prerequisite, so students need not be preoccupied with elementary programming issues. We strongly recommend that the mere use of existing bioinformatics tools and packages should not replace hands-on programming. Yet, we suggest that programming will mostly serve as a means to practice computational thinking processes. This paper deals with the challenges and considerations of such computational education for life science students. It also describes a concrete implementation of the course and encourages its use by others. PMID:25411839

  13. USSR Space Life Sciences Digest, issue 28

    NASA Technical Reports Server (NTRS)

    Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)

    1990-01-01

    This is the twenty-eighth issue of NASA's Space Life Sciences Digest. It contains abstracts of 60 journal papers or book chapters published in Russian and of 3 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 20 areas of space biology and medicine. These areas include: adaptation, aviation medicine, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, hematology, human performance, immunology, life support systems, mathematical modeling, musculoskeletal system, neurophysiology, personnel selection, psychology, radiobiology, reproductive system, and space medicine.

  14. USSR Space Life Sciences Digest, issue 31

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1990-01-01

    This is the thirty first issue of NASA's Space Life Sciences Digest. It contains abstracts of 55 journal papers or book chapters published in Russian and of 5 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 18 areas of space biology and medicine. These areas include: adaptation, biological rhythms, cardiovascular and respiratory systems, endocrinology, enzymology, genetics, group dynamics, habitability and environmental effects, hematology, life support systems, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, psychology, radiobiology, and space biology and medicine.

  15. USSR Space Life Sciences Digest, issue 30

    NASA Technical Reports Server (NTRS)

    Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)

    1991-01-01

    This is the thirtieth issue of NASA's Space Life Sciences Digest. It contains abstracts of 47 journal papers or book chapters published in Russian and of three Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 20 areas of space biology and medicine. These areas include: adaptation, biospheric research, cardiovascular and respiratory systems, endocrinology, equipment and instrumentation, gastrointestinal system, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, musculoskeletal system, neurophysiology, nutrition, psychology, radiobiology, and space biology and medicine.

  16. Biosecurity policies at international life science journals.

    PubMed

    van Aken, Jan; Hunger, Iris

    2009-03-01

    The prospect of bioterrorism has raised concerns about the potential abuse of scientific information for malign purposes and the pressure on scientific publishers to prevent the publication of "recipes" for weapons of mass destruction. Here we present the results of a survey of 28 major life science journals--20 English-language international journals and 3 Chinese and 5 Russian journals--with regard to their biosecurity policies and procedures. The survey addressed the extent to which life science journals have implemented biosecurity procedures in recent years, how authors and reviewers are advised about these procedures and the underlying concerns, and what the practical experiences have been. Few of the English-language publishers and none of the Russian and Chinese publishers surveyed implement formal biosecurity policies or inform their authors and reviewers about potentially sensitive issues in this area.

  17. Data issues in the life sciences

    PubMed Central

    Thessen, Anne E.; Patterson, David J.

    2011-01-01

    Abstract We review technical and sociological issues facing the Life Sciences as they transform into more data-centric disciplines - the “Big New Biology”. Three major challenges are: 1) lack of comprehensive standards; 2) lack of incentives for individual scientists to share data; 3) lack of appropriate infrastructure and support. Technological advances with standards, bandwidth, distributed computing, exemplar successes, and a strong presence in the emerging world of Linked Open Data are sufficient to conclude that technical issues will be overcome in the foreseeable future. While motivated to have a shared open infrastructure and data pool, and pressured by funding agencies in move in this direction, the sociological issues determine progress. Major sociological issues include our lack of understanding of the heterogeneous data cultures within Life Sciences, and the impediments to progress include a lack of incentives to build appropriate infrastructures into projects and institutions or to encourage scientists to make data openly available. PMID:22207805

  18. USSR Space Life Sciences Digest, issue 4

    NASA Technical Reports Server (NTRS)

    Hooke, L. R. (Editor); Radtke, M. (Editor); Garshnek, V. (Editor); Teeter, R. (Editor); Rowe, J. E. (Editor)

    1986-01-01

    The fourth issue of NASA's USSR Space Life Science Digest includes abstracts for 42 Soviet periodical articles in 20 areas of aerospace medicine and space biology and published in Russian during the last third of 1985. Selected articles are illustrated with figures and tables from the original. In addition, translated introductions and tables of contents for 17 Russian books on 12 topics related to NASA's life science concerns are presented. Areas covered are: adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, exobiology, habitability and environmental effects, health and medical treatment, hematology, histology, human performance, immunology, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, perception, personnel selection, psychology, and radiobiology. Two book reviews translated from the Russian are included and lists of additional relevant titles available in English with pertinent ordering information are given.

  19. The International Space Life Sciences Working Group.

    PubMed

    Vernikos, J; Ahlf, P R

    1998-07-01

    The International Space Life Sciences Working Group (ISLSWG) is made up of representatives from five space agencies: the National Aeronautics and Space Administration (NASA), the European Space Agency (ESA), the Canadian Space Agency (CSA), the Centre National d'Etudes Spatiale (CNES), the Deutsches Zentrum fur Luft- und Raumfahrt (DLR, formerly the Deutsche Agentur fur Raumfahrtangelegenheiten or DARA), and the National Space Development Agency of Japan (NASDA). The group met for the first time in 1989, and since that time has developed a Strategic Plan and has taken concrete steps to implement this plan. The result is a closely coordinated international program of Space Life Sciences which will enable optimal utilization of space flight opportunities.

  20. Ames Research Center life sciences payload

    NASA Technical Reports Server (NTRS)

    Callahan, P. X.; Tremor, J. W.

    1982-01-01

    In response to a recognized need for an in-flight animal housing facility to support Spacelab life sciences investigators, a rack and system compatible Research Animal Holding Facility (RAHF) has been developed. A series of ground tests is planned to insure its satisfactory performance under certain simulated conditions of flight exposure and use. However, even under the best conditions of simulation, confidence gained in ground testing will not approach that resulting from actual spaceflight operation. The Spacelab Mission 3 provides an opportunity to perform an inflight Verification Test (VT) of the RAHF. Lessons learned from the RAHF-VT and baseline performance data will be invaluable in preparation for subsequent dedicated life sciences missions.

  1. Cornell University Life Sciences Core Laboratories Center

    PubMed Central

    VanEe, J.; Schweitzer, P.; Wang, W.; Li, Y.; Zhang, S.; Williams, R.; Deng, K.Y.; Pillardy, J.; Sun, Q.; Stelick, T.; Spisak, J.; Paronett, E.; Cote, L.; Cameron, R.; Zhao, J.; Hover, B.; Kresovich, J.; Xin, Y.; Figueroa, M.; Shaknovich, R.; Monni, S.; Unnsteinsdottir, U.; Sherwood, R.; Ptak, C.; Yan, H.; Bayles, C.; Xia, G.; Doran, R.; Bukowski, R.; Myers, C.; Ponnala, L.; Stefanov, S.; Howard, M.; Flaherty, J.; Manocchia, A.; Dodge, E.; Smith, K.; Aquadro, C.; Lin, D.; Melnick, A.; Zipfel, W.; Soloway, P.; Jin, M.; Clark, A.; Siepel, A.; Rose, J.K.C.; Grills, G.S.

    2010-01-01

    CF-13 The Cornell University Life Sciences Core Laboratories Center (CLC) provides an array of genomics, proteomics, imaging and informatics shared research resources and services to the university community and to outside investigators. The CLC includes fee-for-service research, technology testing and development, and educational components. The Center has nine core facilities, including DNA sequencing and genotyping, microarrays, epigenomics, proteomics and mass spectrometry, high throughput screening, microscopy and imaging, mouse transgenics, bioinformatics, and bio-IT. The CLC is part of a New York State designated Center for Advanced Technology in Life Science Enterprise. The mission of the CLC is to promote research in the life sciences with advanced technologies in a shared resource environment. Use of the CLC resources and services is steadily increasing due to the growth in the number and types of cores in the center, to the expansion of exiting services and the implementation of new core technologies, and to the coordinated integration and synergy of services between the CLC cores. Multidisciplinary support for multi-functional instrument platforms is implemented by coordinated operations of the CLC core facilities. CLC core users are offered coordinated project consultations with the directors and staff of all relevant cores during the design, data production and analysis phases of their projects. The CLC is also involved in establishing and supporting multidisciplinary research projects that involve both intercampus initiatives and multi-institutional collaborations. With a concentration of advanced instrumentation and expertise in their applications, the CLC is a key resource for life sciences basic research and medical research for investigators at Cornell University and at other academic institutions and commercial enterprises.

  2. "Physics and Life" for Europe's Science Teachers

    NASA Astrophysics Data System (ADS)

    2003-04-01

    interest in science and current scientific research. The goals of "Physics On Stage 3" [EWST Logo] "Physics on Stage 3" also aims to facilitate the exchange of good practice and innovative ideas among Europe's science teachers and to provide a forum for a broad debate among educators, administrators and policy-makers about the key problems in science education today. Moreover, it will make available the considerable, combined expertise of the EIROforum organisations to the European scientific teaching community, in order to promote the introduction of "fresh" science into the curricula and thus to convey a more realistic image of modern science to the pupils. "Physics on Stage 3" is concerned with basic science and also with the cross-over between different science disciplines - a trend becoming more and more important in today's science, which is not normally reflected in school curricula. A key element of the programme is to give teachers an up-to-date "insiders'" view of what is happening in science and to tell them about new, highly-diverse and interesting career opportunities for their pupils. Theme of the activities The theme of "Physics on Stage" this year is "Physics and Life" , reflecting the decision to broaden the Physics on Stage activities to encompass all the natural sciences. Including other sciences will augment the already successful concept, introducing a mixture of cross-over projects that highlight the multidisciplinary aspects of modern science. Among the many subjects to be presented are radiation, physics and the environment, astrobiology (the search for life beyond earth), complex systems, self-organising systems, sports science, the medical applications of physics, mathematics and epidemiology, etc. The main elements National activities "Physics on Stage 3" has already started and National Steering Committees in 22 countries, composed of eminent science teachers, scientists, administrators and others involved in setting school curricula, are now

  3. Life sciences issues affecting space exploration.

    PubMed

    White, R J; Leonard, J I; Leveton, L; Gaiser, K; Teeter, R

    1990-12-01

    The U.S. space program is undertaking a serious examination of new initiatives in human space exploration involving permanent colonies on the Moon and an outpost on Mars. Life scientists have major responsibilities to the crew, to assure their health, productivity, and safety throughout the mission and the postflight rehabilitation period; to the mission, to provide a productive working environment; and to the scientific community, to advance knowledge and understanding of human adaptation to the space environment. Critical areas essential to the support of human exploration include protection from the radiation hazards of the space environment, reduced gravity countermeasures, artificial gravity, medical care, life support systems, and behavior, performance, and human factors in an extraterrestrial environment. Developing solutions to these concerns is at the heart of the NASA Life Sciences ground-based and flight research programs. Facilities analogous to planetary outposts are being considered in Antarctica and other remote settings. Closed ecological life support systems will be tested on Earth and Space Station. For short-duration simulations and tests, the Space Shuttle and Spacelab will be used. Space Station Freedom will provide the essential scientific and technological research in areas that require long exposures to reduced gravity conditions. In preparation for Mars missions, research on the Moon will be vital. As the challenges of sustaining humans on space are resolved, advances in fundamental science, medicine and technology will follow.

  4. Life sciences issues affecting space exploration.

    PubMed

    White, R J; Leonard, J I; Leveton, L; Gaiser, K; Teeter, R

    1990-12-01

    The U.S. space program is undertaking a serious examination of new initiatives in human space exploration involving permanent colonies on the Moon and an outpost on Mars. Life scientists have major responsibilities to the crew, to assure their health, productivity, and safety throughout the mission and the postflight rehabilitation period; to the mission, to provide a productive working environment; and to the scientific community, to advance knowledge and understanding of human adaptation to the space environment. Critical areas essential to the support of human exploration include protection from the radiation hazards of the space environment, reduced gravity countermeasures, artificial gravity, medical care, life support systems, and behavior, performance, and human factors in an extraterrestrial environment. Developing solutions to these concerns is at the heart of the NASA Life Sciences ground-based and flight research programs. Facilities analogous to planetary outposts are being considered in Antarctica and other remote settings. Closed ecological life support systems will be tested on Earth and Space Station. For short-duration simulations and tests, the Space Shuttle and Spacelab will be used. Space Station Freedom will provide the essential scientific and technological research in areas that require long exposures to reduced gravity conditions. In preparation for Mars missions, research on the Moon will be vital. As the challenges of sustaining humans on space are resolved, advances in fundamental science, medicine and technology will follow. PMID:11541483

  5. Improving science literacy and education through space life sciences

    NASA Technical Reports Server (NTRS)

    MacLeish, M. Y.; Moreno, N. P.; Tharp, B. Z.; Denton, J. J.; Jessup, G.; Clipper, M. C.

    2001-01-01

    The National Space Biomedical Research Institute (NSBRI) encourages open involvement by scientists and the public at large in the Institute's activities. Through its Education and Public Outreach Program, the Institute is supporting national efforts to improve Kindergarten through grade twelve (K-12) and undergraduate education and to communicate knowledge generated by space life science research to lay audiences. Three academic institution Baylor College of Medicine, Morehouse School of Medicine and Texas A&M University are designing, producing, field-testing, and disseminating a comprehensive array of programs and products to achieve this goal. The objectives of the NSBRI Education and Public Outreach program are to: promote systemic change in elementary and secondary science education; attract undergraduate students--especially those from underrepresented groups--to careers in space life sciences, engineering and technology-based fields; increase scientific literacy; and to develop public and private sector partnerships that enhance and expand NSBRI efforts to reach students and families. c 2001. Elsevier Science Ltd. All rights reserved.

  6. Life Sciences Program Tasks and Bibliography for FY 1997

    NASA Technical Reports Server (NTRS)

    Nelson, John C. (Editor)

    1998-01-01

    This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1997. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive internet web page.

  7. Life Sciences Program Tasks and Bibliography for FY 1996

    NASA Technical Reports Server (NTRS)

    Nelson, John C. (Editor)

    1997-01-01

    This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1996. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive Internet web page.

  8. USSR Space Life Sciences Digest, issue 9

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran; Radtke, Mike; Teeter, Ronald; Rowe, Joseph E.

    1987-01-01

    This is the ninth issue of NASA's USSR Space Lifes Sciences Digest. It contains abstracts of 46 papers recently published in Russian language periodicals and bound collections and of a new Soviet monograph. Selected abstracts are illustrated with figures and tables from the original. Additional features include reviews of a Russian book on biological rhythms and a description of the papers presented at a conference on space biology and medicine. A special feature describes two paradigms frequently cited in Soviet space life sciences literature. Information about English translations of Soviet materials available to readers is provided. The abstracts included in this issue have been identified as relevant to 28 areas of aerospace medicine and space biology. These areas are: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal system, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, morphology and cytology, musculoskeletal system, nutrition, neurophysiology, operational medicine, perception, personnel selection, psychology, radiobiology, and space biology and medicine.

  9. USSR Space Life Sciences Digest, issue 6

    NASA Technical Reports Server (NTRS)

    Hooke, L. R. (Editor); Radtke, M. (Editor); Teeter, R. (Editor); Rowe, J. E. (Editor)

    1986-01-01

    This is the sixth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 54 papers recently published in Russian language periodicals and bound collections and of 10 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Additional features include a table of Soviet EVAs and information about English translations of Soviet materials available to readers. The topics covered in this issue have been identified as relevant to 26 areas of aerospace medicine and space biology. These areas are adaptation, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, exobiology, genetics, habitability and environment effects, health and medical treatment, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism., microbiology, morphology and cytology, musculoskeletal system, neurophysiology, nutrition, perception, personnel selection, psychology, radiobiology, reproductive biology, and space medicine.

  10. USSR Space Life Sciences Digest, issue 15

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1988-01-01

    This is the 15th issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 59 papers published in Russian language periodicals or presented at conferences and of two new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. An additional feature is a review of a conference devoted to the physiology of extreme states. The abstracts included in this issue have been identified as relevant to 29 areas of space biology and medicine. These areas are adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, endocrinology, enzymology, equipment and instrumentation, exobiology, genetics, habitability and environment effects, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception. personnel selection, psychology, radiobiology, reproductive biology, and space biology and medicine.

  11. USSR Space Life Sciences Digest, issue 25

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1990-01-01

    This is the twenty-fifth issue of NASA's Space Life Sciences Digest. It contains abstracts of 42 journal papers or book chapters published in Russian and of 3 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 26 areas of space biology and medicine. These areas include: adaptation, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, exobiology, gravitational biology, habitability and environmental effects, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, psychology, radiobiology, reproductive system, and space biology and medicine.

  12. USSR Space Life Sciences Digest, issue 7

    NASA Technical Reports Server (NTRS)

    Hooke, L. R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor)

    1986-01-01

    This is the seventh issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 29 papers recently published in Russian language periodicals and bound collections and of 8 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Additional features include two interviews with the Soviet Union's cosmonaut physicians and others knowledgable of the Soviet space program. The topics discussed at a Soviet conference on problems in space psychology are summarized. Information about English translations of Soviet materials available to readers is provided. The topics covered in this issue have been identified as relevant to 29 areas of aerospace medicine and space biology. These areas are adaptation, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, exobiology, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, morphology and cytology, musculoskeletal system, neurophysiology, nutrition, perception, personnel selection, psychology, radiobiology, and space medicine.

  13. USSR Space Life Sciences Digest, issue 29

    NASA Technical Reports Server (NTRS)

    Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)

    1991-01-01

    This is the twenty-ninth issue of NASA's Space Life Sciences Digest. It is a double issue covering two issues of the Soviet Space Biology and Aerospace Medicine Journal. Issue 29 contains abstracts of 60 journal papers or book chapters published in Russian and of three Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. A review of a book on environmental hygiene and a list of papers presented at a Soviet conference on space biology and medicine are also included. The materials in this issue were identified as relevant to 28 areas of space biology and medicine. The areas are: adaptation, aviation medicine, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, digestive system, endocrinology, equipment and instrumentation, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, musculoskeletal system, neurophysiology, nutrition, personnel selection, psychology, radiobiology, reproductive system, space biology and medicine, and the economics of space flight.

  14. USSR Space Life Sciences Digest, issue 19

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran (Editor); Donaldson, P. Lynn (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1988-01-01

    This is the 19th issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 47 papers published in Russian language periodicals or presented at conferences and of 5 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Reports on two conferences, one on adaptation to high altitudes, and one on space and ecology are presented. A book review of a recent work on high altitude physiology is also included. The abstracts in this issue have been identified as relevant to 33 areas of space biology and medicine. These areas are: adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, enzymology, biology, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, and space biology and medicine.

  15. USSR Space Life Sciences Digest, Issue 10

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran; Radtke, Mike; Teeter, Ronald; Garshnek, Victoria; Rowe, Joseph E.

    1987-01-01

    The USSR Space Life Sciences Digest contains abstracts of 37 papers recently published in Russian language periodicals and bound collections and of five new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Additional features include the translation of a book chapter concerning use of biological rhythms as a basis for cosmonaut selection, excerpts from the diary of a participant in a long-term isolation experiment, and a picture and description of the Mir space station. The abstracts included in this issue were identified as relevant to 25 areas of aerospace medicine and space biology. These areas are adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, morphology and cytology, musculosketal system, neurophysiology, nutrition, personnel selection, psychology, and radiobiology.

  16. USSR Space Life Sciences Digest, issue 16

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Siegel, Bette (Editor); Donaldson, P. Lynn (Editor); Leveton, Lauren B. (Editor); Rowe, Joseph (Editor)

    1988-01-01

    This is the sixteenth issue of NASA's USSR Life Sciences Digest. It contains abstracts of 57 papers published in Russian language periodicals or presented at conferences and of 2 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. An additional feature is the review of a book concerned with metabolic response to the stress of space flight. The abstracts included in this issue are relevant to 33 areas of space biology and medicine. These areas are: adaptation, biological rhythms, bionics, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, exobiology, gastrointestinal system, genetics, gravitational biology, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, reproductive biology, and space biology.

  17. USSR Space Life Sciences Digest, Issue 18

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran (Editor); Donaldson, P. Lynn (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1988-01-01

    This is the 18th issue of NASA's USSR Life Sciences Digest. It contains abstracts of 50 papers published in Russian language periodicals or presented at conferences and of 8 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. A review of a recent Aviation Medicine Handbook is also included. The abstracts in this issue have been identified as relevant to 37 areas of space biology and medicine. These areas are: adaptation, aviation medicine, biological rhythms, biospherics, body fluids, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, enzymology, equipment and instrumentation, exobiology, gastrointestinal system, genetics, gravitational biology, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, reproductive biology, space biology and medicine, and space industrialization.

  18. USSR Space Life Sciences Digest, issue 21

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran; Donaldson, P. Lynn; Garshnek, Victoria; Rowe, Joseph

    1989-01-01

    This is the twenty-first issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 37 papers published in Russian language periodicals or books or presented at conferences and of a Soviet monograph on animal ontogeny in weightlessness. Selected abstracts are illustrated with figures and tables from the original. A book review of a work on adaptation to stress is also included. The abstracts in this issue have been identified as relevant to 25 areas of space biology and medicine. These areas are: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, enzymology, equipment and instrumentation, exobiology, gravitational biology, habitability and environmental effects, hematology, human performance, life support systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, operational medicine, perception, psychology, and reproductive system.

  19. USSR Space Life Sciences Digest, issue 32

    NASA Technical Reports Server (NTRS)

    Stone, Lydia Razran (Editor); Rowe, Joseph (Editor)

    1992-01-01

    This is the thirty-second issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 34 journal or conference papers published in Russian and of 4 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 18 areas of space biology and medicine. These areas include: adaptation, aviation medicine, biological rhythms, biospherics, cardiovascular and respiratory systems, developmental biology, exobiology, habitability and environmental effects, human performance, hematology, mathematical models, metabolism, microbiology, musculoskeletal system, neurophysiology, operational medicine, and reproductive system.

  20. Mapping method in life sciences and beyond

    NASA Astrophysics Data System (ADS)

    Molski, Marcin

    2013-10-01

    A mapping procedure applied to conversion of arbitrary differentiable mathematical functions into power ones is characterized. It can be employed to obtain the power law fractal function with parameter dependent exponent identified with fractal dimension of the system under consideration. In this way one may investigate the fractal dynamics of different phenomena in the life sciences and beyond. The generalized fractal function can be used to describe biological processes including: neurogenesis, tumour progression, psychophysical and cognitive learning processes, which can be incorporated into the area of possible applications.

  1. Telemetric Sensors for the Space Life Sciences

    NASA Technical Reports Server (NTRS)

    Hines, John W.; Somps, Chris J.; Madou, Marc; Jeutter, Dean C.; Singh, Avtar; Connolly, John P. (Technical Monitor)

    1996-01-01

    Telemetric sensors for monitoring physiological changes in animal models in space are being developed by NASA's Sensors 2000! program. The sensors measure a variety of physiological measurands, including temperature, biopotentials, pressure, flow, acceleration, and chemical levels, and transmit these signals from the animals to a remote receiver via a wireless link. Thus physiologic information can be obtained continuously and automatically without animal handling, tethers, or percutaneous leads. We report here on NASA's development and testing of advanced wireless sensor systems for space life sciences research.

  2. Spacelab life sciences 2 post mission report

    NASA Technical Reports Server (NTRS)

    Buckey, Jay C.

    1994-01-01

    Jay C. Buckey, M.D., Assistant Professor of Medicine at The University of Texas Southwestern Medical Center at Dallas served as an alternate payload specialist astronaut for the Spacelab Life Sciences 2 Space Shuttle Mission from January 1992 through December 1993. This report summarizes his opinions on the mission and offers suggestions in the areas of selection, training, simulations, baseline data collection and mission operations. The report recognizes the contributions of the commander, payload commander and mission management team to the success of the mission. Dr. Buckey's main accomplishments during the mission are listed.

  3. Advanced Biotelemetry Systems for Space Life Sciences

    NASA Technical Reports Server (NTRS)

    Hines, John W.; Connolly, John P. (Technical Monitor)

    1994-01-01

    The Sensors 2000! Program at NASA-Ames Research Center is developing an Advanced Biotelemetry System (ABTS) for Space Life Sciences applications. This modular suite of instrumentation is planned to be used in operational spaceflight missions, ground-based research and development experiments, and collaborative, technology transfer and commercialization activities. The measured signals will be transmitted via radio-frequency (RF), electromagnetic or optical carriers and direct-connected leads to a remote ABTS receiver and data acquisition system for data display, storage, and transmission to Earth. Intermediate monitoring and display systems may be hand held or portable, and will allow for personalized acquisition and control of medical and physiological data.

  4. Life Sciences Laboratories for the Shuttle/Spacelab

    NASA Technical Reports Server (NTRS)

    Schulte, L. O.; Kelly, H. B.; Secord, T. C.

    1976-01-01

    Space Shuttle and Spacelab missions will provide scientists with their first opportunity to participate directly in research in space for all scientific disciplines, particularly the Life Sciences. Preparations are already underway to ensure the success of these missions. The paper summarizes the results of the 1975 NASA-funded Life Sciences Laboratories definition study which defined several long-range life sciences research options and the laboratory designs necessary to accomplish high-priority life sciences research. The implications and impacts of Spacelab design and development on the life sciences missions are discussed. An approach is presented based upon the development of a general-purposs laboratory capability and an inventory of common operational research equipment for conducting life sciences research. Several life sciences laboratories and their capabilities are described to demonstrate the systems potentially available to the experimenter for conducting biological and medical research.

  5. Life Sciences Space Station planning document: A reference payload for the Life Sciences Research Facility

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Space Station, projected for construction in the early 1990s, will be an orbiting, low-gravity, permanently manned facility providing unprecedented opportunities for scientific research. Facilities for Life Sciences research will include a pressurized research laboratory, attached payloads, and platforms which will allow investigators to perform experiments in the crucial areas of Space Medicine, Space Biology, Exobiology, Biospherics and Controlled Ecological Life Support System (CELSS). These studies are designed to determine the consequences of long-term exposure to space conditions, with particular emphasis on assuring the permanent presence of humans in space. The applied and basic research to be performed, using humans, animals, and plants, will increase our understanding of the effects of the space environment on basic life processes. Facilities being planned for remote observations from platforms and attached payloads of biologically important elements and compounds in space and on other planets (Exobiology) will permit exploration of the relationship between the evolution of life and the universe. Space-based, global scale observations of terrestrial biology (Biospherics) will provide data critical for understanding and ultimately managing changes in the Earth's ecosystem. The life sciences community is encouraged to participate in the research potential the Space Station facilities will make possible. This document provides the range and scope of typical life sciences experiments which could be performed within a pressurized laboratory module on Space Station.

  6. Spacelab Life Science-1 Mission Onboard Photograph

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Spacelab Life Science -1 (SLS-1) was the first Spacelab mission dedicated solely to life sciences. The main purpose of the SLS-1 mission was to study the mechanisms, magnitudes, and time courses of certain physiological changes that occur during space flight, to investigate the consequences of the body's adaptation to microgravity and readjustment to Earth's gravity, and bring the benefits back home to Earth. The mission was designed to explore the responses of the heart, lungs, blood vessels, kidneys, and hormone-secreting glands to microgravity and related body fluid shifts; examine the causes of space motion sickness; and study changes in the muscles, bones, and cells. This photograph shows astronaut Rhea Seddon conducting an inflight study of the Cardiovascular Deconditioning experiment by breathing into the cardiovascular rebreathing unit. This experiment focused on the deconditioning of the heart and lungs and changes in cardiopulmonary function that occur upon return to Earth. By using noninvasive techniques of prolonged expiration and rebreathing, investigators can determine the amount of blood pumped out of the heart (cardiac output), the ease with which blood flows through all the vessels (total peripheral resistance), oxygen used and carbon dioxide released by the body, and lung function and volume changes. SLS-1 was launched aboard the Space Shuttle Orbiter Columbia (STS-40) on June 5, 1995.

  7. Spacelab Life Science-1 Mission Onboard Photograph

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The laboratory module in the cargo bay of the Space Shuttle Orbiter Columbia was photographed during the Spacelab Life Science-1 (SLS-1) mission. SLS-1 was the first Spacelab mission dedicated solely to life sciences. The main purpose of the SLS-1 mission was to study the mechanisms, magnitudes, and time courses of certain physiological changes that occur during space flight, to investigate the consequences of the body's adaptation to microgravity and readjustment to Earth's gravity, and to bring the benefits back home to Earth. The mission was designed to explore the responses of the heart, lungs, blood vessels, kidneys, and hormone-secreting glands to microgravity and related body fluid shifts; examine the causes of space motion sickness; and study changes in the muscles, bones and cells. The five body systems being studied were: The Cardiovascular/Cardiopulmonary System (heart, lungs, and blood vessels), the Renal/Endocrine System (kidney and hormone-secreting organs), the Immune System (white blood cells), the Musculoskeletal System (muscles and bones), and the Neurovestibular System (brain and nerves, eyes, and irner ear). The SLS-1 was launched aboard the Space Shuttle Orbiter Columbia (STS-40) on June 5, 1995.

  8. Science at the supermarket: multiplication, personalization and consumption of science in everyday life.

    PubMed

    Tateo, Luca

    2014-06-01

    Which is the kind science's psychological guidance upon everyday life? I will try to discuss some issues about the role that techno-scientific knowledge plays in sense-making and decision making about practical questions of life. This relation of both love and hate, antagonism and connivance is inscribable in a wider debate between a trend of science to intervene in fields that are traditionally prerogative of political, religious or ethical choices, and, on the other side, the position of those who aim at stemming "technocracy" and governing these processes. I argue that multiplication, personalization and consumption are the characteristics of the relationship between science, technology and society in the age of "multiculturalism" and "multi-scientism". This makes more difficult but intriguing the study and understanding of the processes through which scientific knowledge is socialized. Science topics, like biotech, climate change, etc. are today an unavoidable reference frame. It is not possible to not know them and to attach them to the most disparate questions. Like in the case of Moscovici's "Freud for all seasons", the fact itself that the members of a group or a society believe in science as a reference point for others, roots its social representation and the belief that it can solve everyday life problems. PMID:24578069

  9. Science at the supermarket: multiplication, personalization and consumption of science in everyday life.

    PubMed

    Tateo, Luca

    2014-06-01

    Which is the kind science's psychological guidance upon everyday life? I will try to discuss some issues about the role that techno-scientific knowledge plays in sense-making and decision making about practical questions of life. This relation of both love and hate, antagonism and connivance is inscribable in a wider debate between a trend of science to intervene in fields that are traditionally prerogative of political, religious or ethical choices, and, on the other side, the position of those who aim at stemming "technocracy" and governing these processes. I argue that multiplication, personalization and consumption are the characteristics of the relationship between science, technology and society in the age of "multiculturalism" and "multi-scientism". This makes more difficult but intriguing the study and understanding of the processes through which scientific knowledge is socialized. Science topics, like biotech, climate change, etc. are today an unavoidable reference frame. It is not possible to not know them and to attach them to the most disparate questions. Like in the case of Moscovici's "Freud for all seasons", the fact itself that the members of a group or a society believe in science as a reference point for others, roots its social representation and the belief that it can solve everyday life problems.

  10. Spacelab J: Microgravity and life sciences

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Spacelab J is a joint venture between NASA and the National Space Development Agency of Japan (NASDA). Using a Spacelab pressurized long module, 43 experiments will be performed in the areas of microgravity and life sciences. These experiments benefit from the microgravity environment available on an orbiting Shuttle. Removed from the effects of gravity, scientists will seek to observe processes and phenomena impossible to study on Earth, to develop new and more uniform mixtures, to study the effects of microgravity and the space environment on living organisms, and to explore the suitability of microgravity for certain types of research. Mission planning and an overview of the experiments to be performed are presented. Orbital research appears to hold many advantages for microgravity science investigations, which on this mission include electronic materials, metals and alloys, glasses and ceramics, fluid dynamics and transport phenomena, and biotechnology. Gravity-induced effects are eliminated in microgravity. This allows the investigations on Spacelab J to help scientists develop a better understanding of how these gravity-induced phenomena affect both processing and products on Earth and to observe subtle phenomena that are masked in gravity. The data and samples from these investigations will not only allow scientists to better understand the materials but also will lead to improvements in the methods used in future experiments. Life sciences research will collect data on human adaptation to the microgravity environment, investigate ways of assisting astronauts to readapt to normal gravity, explore the effects of microgravity and radiation on living organisms, and gather data on the fertilization and development of organisms in the absence of gravity. This research will improve crew comfort and safety on future missions while helping scientists to further understand the human body.

  11. Spacelab J: Microgravity and life sciences

    NASA Astrophysics Data System (ADS)

    Spacelab J is a joint venture between NASA and the National Space Development Agency of Japan (NASDA). Using a Spacelab pressurized long module, 43 experiments will be performed in the areas of microgravity and life sciences. These experiments benefit from the microgravity environment available on an orbiting Shuttle. Removed from the effects of gravity, scientists will seek to observe processes and phenomena impossible to study on Earth, to develop new and more uniform mixtures, to study the effects of microgravity and the space environment on living organisms, and to explore the suitability of microgravity for certain types of research. Mission planning and an overview of the experiments to be performed are presented. Orbital research appears to hold many advantages for microgravity science investigations, which on this mission include electronic materials, metals and alloys, glasses and ceramics, fluid dynamics and transport phenomena, and biotechnology. Gravity-induced effects are eliminated in microgravity. This allows the investigations on Spacelab J to help scientists develop a better understanding of how these gravity-induced phenomena affect both processing and products on Earth and to observe subtle phenomena that are masked in gravity. The data and samples from these investigations will not only allow scientists to better understand the materials but also will lead to improvements in the methods used in future experiments. Life sciences research will collect data on human adaptation to the microgravity environment, investigate ways of assisting astronauts to readapt to normal gravity, explore the effects of microgravity and radiation on living organisms, and gather data on the fertilization and development of organisms in the absence of gravity. This research will improve crew comfort and safety on future missions while helping scientists to further understand the human body.

  12. Devices development and techniques research for space life sciences

    NASA Astrophysics Data System (ADS)

    Zhang, A.; Liu, B.; Zheng, C.

    The development process and the status quo of the devices and techniques for space life science in China and the main research results in this field achieved by Shanghai Institute of Technical Physics SITP CAS are reviewed concisely in this paper On the base of analyzing the requirements of devices and techniques for supporting space life science experiments and researches one designment idea of developing different intelligent modules with professional function standard interface and easy to be integrated into system is put forward and the realization method of the experiment system with intelligent distributed control based on the field bus are discussed in three hierarchies Typical sensing or control function cells with certain self-determination control data management and communication abilities are designed and developed which are called Intelligent Agents Digital hardware network system which are consisted of the distributed Agents as the intelligent node is constructed with the normative opening field bus technology The multitask and real-time control application softwares are developed in the embedded RTOS circumstance which is implanted into the system hardware and space life science experiment system platform with characteristic of multitasks multi-courses professional and instant integration will be constructed

  13. James Clerk Maxwell: Life and science

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.

    2016-07-01

    Maxwell's life and science are presented with an account of the progression of Maxwell's research on electromagnetic theory. This is appropriate for the International Year of Light and Light-based Technologies, 2015. Maxwell's own confidence in his 1865 electromagnetic theory of light is examined, along with some of the difficulties he faced and the difficulties faced by some of his followers. Maxwell's interest in radiation pressure and electromagnetic stress is addressed, as well as subsequent developments. Some of Maxwell's other contributions to physics are discussed with an emphasis on the kinetic and molecular theory of gases. Maxwell's theistic perspective on science is illustrated, accompanied by examples of perspectives on Maxwell and his science provided by his peers and accounts of his interactions with those peers. Appendices examine the peer review of Maxwell's 1865 electromagnetic theory paper and the naming of the Maxwell Garnett effective media approximation and provide various supplemental perspectives. From Maxwell's publications and correspondence there is evidence he had a high regard for Michael Faraday. Examples of Maxwell's contributions to electromagnetic terminology are noted.

  14. Technology transfer in the Life Sciences. (Latest citations from the Life Sciences Collection database). Published Search

    SciTech Connect

    Not Available

    1994-03-01

    The bibliography contains citations concerning technology transfer in the life sciences. Topics include technology transfer in biogas energy production, biotechnology, pollution control, aquaculture, agriculture, oceanography, and forestry. Technology transfer to developing countries and to small businesses, as well as university-industry partnerships, is described. (Contains a minimum of 67 citations and includes a subject term index and title list.)

  15. Fall 1978 Directory - Assembly of Life Sciences, National Research Council.

    ERIC Educational Resources Information Center

    National Academy of Sciences, Washington, DC.

    This directory of the Assembly of Life Sciences (ALS), National Research Council, reflects the status of all committees, their membership, Corresponding Societies, and ALS staff as of October, 1978. Organization charts illustrate the relationship between the Assembly of Life Sciences and the general structure of the National Academy of Sciences,…

  16. Scope and Sequence. Life Sciences, Physical Sciences, Earth and Space Sciences. A Summer Curriculum Development Project.

    ERIC Educational Resources Information Center

    Cortland-Madison Board of Cooperative Educational Services, Cortland, NY.

    Presented is a booklet containing scope and sequence charts for kindergarten and grades 1 to 6 science units. Overviews and lists of major concepts for units in the life, physical, and earth/space sciences are provided in tables for each grade level. Also presented are seven complete units, one for each grade level. Following a table of contents,…

  17. Space Station accommodation engineering for Life Sciences Research Facilities

    NASA Technical Reports Server (NTRS)

    Hilchey, J.; Gustan, E.; Rudiger, C. E.

    1984-01-01

    Exploratory studies conducted by NASA Marshall Space Flight Center and several contractors in connection with defining the design requirements, parameters, and tradeoffs of the Life Sciences Research Facilities for nonhuman test subjects aboard the Space Station are reviewed. The major system discriminators which determine the size of the accommodation system are identified, along with a number of mission options. Moreover, characteristics of several vivarium concepts are summarized, focusing on the cost, size, variable-g capability, and the number of specimens accommodated. Finally, the objectives of the phase B studies of the Space Station Laboratory, which are planned for FY85, are described.

  18. Spacelab Life Sciences 1 - The stepping stone

    NASA Technical Reports Server (NTRS)

    Dalton, B. P.; Leon, H.; Hogan, R.; Clarke, B.; Tollinger, D.

    1988-01-01

    The Spacelab Life Sciences (SLS-1) mission scheduled for launch in March 1990 will study the effects of microgravity on physiological parameters of humans and animals. The data obtained will guide equipment design, performance of activities involving the use of animals, and prediction of human physiological responses during long-term microgravity exposure. The experiments planned for the SLS-1 mission include a particulate-containment demonstration test, integrated rodent experiments, jellyfish experiments, and validation of the small-mass measuring instrument. The design and operation of the Research Animal Holding Facility, General-Purpose Work Station, General-Purpose Transfer Unit, and Animal Enclosure Module are discussed and illustrated with drawings and diagrams.

  19. USSR space life sciences digest, issue 27

    NASA Technical Reports Server (NTRS)

    Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1990-01-01

    This is the twenty-fifth issue of NASA's Space Life Sciences Digest. It contains abstracts of 30 journal papers or book chapters published in Russian and of 2 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 18 areas of space biology and medicine. These areas include: adaptation, aviation medicine, biological rhythms, biospherics, botany, cardiovascular and respiratory systems, endocrinology, enzymology, exobiology, habitability and environmental effects, hematology, immunology, metabolism, musculoskeletal system, neurophysiology, radiobiology, and space medicine. A Soviet book review of a British handbook of aviation medicine and a description of the work of the division on aviation and space medicine of the Moscow Physiological Society are also included.

  20. Life Sciences Implications of Lunar Surface Operations

    NASA Technical Reports Server (NTRS)

    Chappell, Steven P.; Norcross, Jason R.; Abercromby, Andrew F.; Gernhardt, Michael L.

    2010-01-01

    The purpose of this report is to document preliminary, predicted, life sciences implications of expected operational concepts for lunar surface extravehicular activity (EVA). Algorithms developed through simulation and testing in lunar analog environments were used to predict crew metabolic rates and ground reaction forces experienced during lunar EVA. Subsequently, the total metabolic energy consumption, the daily bone load stimulus, total oxygen needed, and other variables were calculated and provided to Human Research Program and Exploration Systems Mission Directorate stakeholders. To provide context to the modeling, the report includes an overview of some scenarios that have been considered. Concise descriptions of the analog testing and development of the algorithms are also provided. This document may be updated to remain current with evolving lunar or other planetary surface operations, assumptions and concepts, and to provide additional data and analyses collected during the ongoing analog research program.

  1. Nanosystem Characterization Tools in the Life Sciences

    NASA Astrophysics Data System (ADS)

    Kumar, Challa S. S. R.

    2006-01-01

    This first dedicated, all-encompassing text characterizes nanomaterials intended for biological or physiological environments and biomedical applications, in particular for medicine, healthcare, pharmaceuticals and human wellness. It finally fills the gap for a concise overview of a wide range of different characterization techniques and how to best employ them in the context of nanoscale life science research. It thus serves as a single source of information gathering up the knowledge otherwise spread over many journal articles, and provides an overall picture to members of all the disciplines involved. This handy volume covers all important probing techniques, including nuclear and electron spin resonance, light scattering, infrared and Raman spectroscopy, atomic force microscopy, magnetic resonance, tomography, x-ray techniques, and microbalance measurement of antibody binding. Biochemists, biologists, chemists, materials scientists, and materials engineers as well as all others working in the pharmaceutical and chemical industries or at related research institutions will here a book of great value and importance.

  2. Ames life science telescience testbed evaluation

    NASA Technical Reports Server (NTRS)

    Haines, Richard F.; Johnson, Vicki; Vogelsong, Kristofer H.; Froloff, Walt

    1989-01-01

    Eight surrogate spaceflight mission specialists participated in a real-time evaluation of remote coaching using the Ames Life Science Telescience Testbed facility. This facility consisted of three remotely located nodes: (1) a prototype Space Station glovebox; (2) a ground control station; and (3) a principal investigator's (PI) work area. The major objective of this project was to evaluate the effectiveness of telescience techniques and hardware to support three realistic remote coaching science procedures: plant seed germinator charging, plant sample acquisition and preservation, and remote plant observation with ground coaching. Each scenario was performed by a subject acting as flight mission specialist, interacting with a payload operations manager and a principal investigator expert. All three groups were physically isolated from each other yet linked by duplex audio and color video communication channels and networked computer workstations. Workload ratings were made by the flight and ground crewpersons immediately after completing their assigned tasks. Time to complete each scientific procedural step was recorded automatically. Two expert observers also made performance ratings and various error assessments. The results are presented and discussed.

  3. Organism support for life sciences spacelab experiments

    NASA Technical Reports Server (NTRS)

    Drake, G. L.; Heppner, D. B.

    1976-01-01

    This paper presents an overview of the U.S. life sciences laboratory concepts envisioned for the Shuttle/Spacelab era. The basic development approach is to provide a general laboratory facility supplemented by specific experiment hardware as required. The laboratory concepts range from small carry-on laboratories to fully dedicated laboratories in the Spacelab pressurized module. The laboratories will encompass a broad spectrum of research in biology and biomedicine requiring a variety of research organisms. The environmental control and life support of these organisms is a very important aspect of the success of the space research missions. Engineering prototype organism habitats have been designed and fabricated to be compatible with the Spacelab environment and the experiment requirements. These first-generation habitat designs and their subsystems have supported plants, cells/tissues, invertebrates, and small vertebrates in limited evaluation tests. Special handling and transport equipment required for the ground movement of the experiment organisms at the launch/landing site have been built and tested using these initial habitat prototypes.

  4. USSR Space Life Sciences Digest, issue 8

    NASA Technical Reports Server (NTRS)

    Hooke, L. R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor)

    1985-01-01

    This is the eighth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 48 papers recently published in Russian language periodicals and bound collections and of 10 new Soviet monographs. Selected abstracts are illustrated with figures and tables. Additional features include reviews of two Russian books on radiobiology and a description of the latest meeting of an international working group on remote sensing of the Earth. Information about English translations of Soviet materials available to readers is provided. The topics covered in this issue have been identified as relevant to 33 areas of aerospace medicine and space biology. These areas are: adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cosmonaut training, cytology, endocrinology, enzymology, equipment and instrumentation, exobiology, gastrointestinal system, genetics, group dynamics, habitability and environment effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, personnel selection, psychology, reproductive biology, and space biology and medicine.

  5. Life sciences - On the critical path for missions of exploration

    NASA Technical Reports Server (NTRS)

    Sulzman, Frank M.; Connors, Mary M.; Gaiser, Karen

    1988-01-01

    Life sciences are important and critical to the safety and success of manned and long-duration space missions. The life science issues covered include gravitational physiology, space radiation, medical care delivery, environmental maintenance, bioregenerative systems, crew and human factors within and outside the spacecraft. The history of the role of life sciences in the space program is traced from the Apollo era, through the Skylab era to the Space Shuttle era. The life science issues of the space station program and manned missions to the moon and Mars are covered.

  6. Life-sciences research opportunities in commercial suborbital space flight

    NASA Astrophysics Data System (ADS)

    Shelhamer, Mark

    2014-11-01

    Commercial suborbital space flights will reach altitudes above 100 km, with 3-5 min of weightlessness bracketed by high-g launch and landing phases. The proposed frequency of these flights, and the large passenger population, present interesting opportunities for researchers in the life sciences. The characteristics of suborbital flight are between those of parabolic and orbital flights, opening up new scientific possibilities and easing the burden for obtaining access to 0g. There are several areas where these flights might be used for research in the life sciences: (1) operational research: preparation for “real” space flight, such as rehearsal of medical procedures, (2) applied research-to answer questions relevant to long-term space flight; (3) passenger health and safety-effects on passengers, relevant to screening and training; (4) basic research in physiological mechanisms-to address issues of fundamental science. We describe possible projects in each of these categories. One in particular spans several areas. Based on the anticipated suborbital flight profiles, observations from parabolic flight, and the wide range of fitness and experience levels of suborbital passengers, sensorimotor disturbances such as motion sickness and disorientation are major concerns. Protocols for pre-flight adaptation of sensorimotor responses might help to alleviate some of these problems, based on results from research in the initial flights. This would improve the passenger experience and add to the knowledge base relevant to space flight more generally.

  7. Natural products in modern life science

    PubMed Central

    Göransson, Ulf; Alsmark, Cecilia; Wedén, Christina; Backlund, Anders

    2010-01-01

    questions in Nature can be of value to increase the attraction for young students in modern life science. PMID:20700376

  8. NASDA life science experiment facilities for ISS

    NASA Astrophysics Data System (ADS)

    Tanigaki, F.; Masuda, D.; Yano, S.; Fujimoto, N.; Kamigaichi, S.

    National Space Development Agency of Japan (NASDA) has been developing various experiment facilities to conduct space biology researches in KIBO (JEM). The Cell Biology Experiment Facility (CBEF) and the Clean Bench (CB) are installed into JEM Life Science Rack. The Biological Experiment Units (BEU) are operated in the CBEF and the CB for many kinds of experiments on cells, tissues, plants, microorganisms, or small animals. It is possible for all researchers to use these facilities under the system of the International Announcement of Opportunity. The CBEF is a CO2 incubator to provide a controlled environment (temperature, humidity, and CO2 concentration), in which a rotating table is equipped to make variable gravity (0-2g) for reference experiments. The containers called "Canisters" can be used to install the BEU in the CBEF. The CBEF supplies power, command, sensor, and video interfaces for the BEU through the utility connectors of Canisters. The BEU is a multiuser system consisting of chambers and control segments. It is operated by pre-set programs and by commands from the ground. NASDA is currently developing three types of the BEU: the Plant Experiment Unit (PEU) for plant life cycle observations and the Cell Experiment Unit (CEU1&2) for cell culture experiments. The PEU has an automated watering system with a water sensor, an LED matrix as a light source, and a CCD camera to observe the plant growth. The CEUs have culture chambers and an automated cultural medium exchange system. Engineering models of the PEU and CEU1 have been accomplished. The preliminary design of CEU2 is in progress. The design of the BEU will be modified to meet science requirements of each experiment. The CB provides a closed aseptic work-space (Operation Chamber) with gloves for experiment operations. Samples and the BEU can be manually handled in the CB. The CB has an air lock (Disinfection Chamber) to prevent contamination, and HEPA filters to make class-100-equivalent clean air

  9. The presentation of science in everyday life: the science show

    NASA Astrophysics Data System (ADS)

    Watermeyer, Richard

    2013-09-01

    This paper constitutes a case-study of the `science show' model of public engagement employed by a company of science communicators focused on the popularization of science, technology, engineering and mathematics (STEM) subject disciplines with learner constituencies. It examines the potential of the science show to foster the interest and imagination of young learners in STEM; challenge popular pre/misconceptions of science and scientists; reveal the broadness, plurality and everyday relevance of science; and induce a more fluent and equitable science nexus between expert and non-expert or learner groups. Discussion focuses on conversations with members of a UK and university based science communication outfit who comment on the potential of the science show as a model of non-formal science education and science engagement and the necessary conditions for its success.

  10. USSR Space Life Sciences Digest, volume 1, no. 3

    NASA Technical Reports Server (NTRS)

    Wallace, P. M.

    1980-01-01

    An overview of the developments and direction of the USSR Space Life Sciences Program is given. Highlights of launches, program development, and mission planning are given. Results of ground-based research and space flight studies are summarized. Topics covered include: space medicine and physiology; space biology; and life sciences technology.

  11. USSR Space Life Sciences Digest, volume 1, no. 4

    NASA Technical Reports Server (NTRS)

    Paulson, L. D.

    1980-01-01

    An overview of the developments and direction of the USSR Space Life Sciences Program is given. Highlights of launches, program development, and mission planning are given. Results of ground-based research and space flight studies are summarized. Topics covered include: space medicine and physiology; space biology, and life sciences and technology.

  12. 76 FR 17621 - Biotech Life Science Trade Mission to China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-30

    ... International Trade Administration Biotech Life Science Trade Mission to China AGENCY: International Trade... Biotechnology Life Sciences trade mission to China on October 17-20, 2011. Led by a senior Department of Commerce official, the mission to China is intended to include representatives from a variety of...

  13. USSR Space Life Sciences Digest, volume 2, no.1

    NASA Technical Reports Server (NTRS)

    Paulson, L. D.

    1981-01-01

    An overview of the developments and direction of the USSR Space Life Sciences Program is given. Highlights of launches, program development, and mission planning are given. Results of ground-based research and space flight studies are summarized. Topics covered include: space medicine and physiology; space biology; and life sciences technology.

  14. USSR Space Life Sciences Digest, volume 2, no. 2

    NASA Technical Reports Server (NTRS)

    Paulson, L. D.

    1981-01-01

    An overview of the developments and direction of the USSR Space Life Sciences Program is given. Highlights of launches, program development, and mission planning are given. Results of ground-based research and space flight studies are summarized. Topics covered include: space medicine and physiology; space biology; and life sciences and technology.

  15. Life science payloads planning study integration facility survey results

    NASA Technical Reports Server (NTRS)

    Wells, G. W.; Brown, N. E.; Nelson, W. G.

    1976-01-01

    The integration facility survey effort described is structured to examine the facility resources needed to conduct life science payload (LSP) integration checkout activities at NASA-JSC. The LSP integration facility operations and functions are defined along with the LSP requirements for facility design. A description of available JSC life science facilities is presented and a comparison of accommodations versus requirements is reported.

  16. The Presentation of Science in Everyday Life: The Science Show

    ERIC Educational Resources Information Center

    Watermeyer, Richard

    2013-01-01

    This paper constitutes a case-study of the "science show" model of public engagement employed by a company of science communicators focused on the popularization of science, technology, engineering and mathematics (STEM) subject disciplines with learner constituencies. It examines the potential of the science show to foster the interest…

  17. Sensor Systems for Space Life Sciences

    NASA Technical Reports Server (NTRS)

    Somps, Chris J.; Hines, John W.; Connolly, John P. (Technical Monitor)

    1995-01-01

    Sensors 2000! (S2K!) is a NASA Ames Research Center engineering initiative designed to provide biosensor and bio-instrumentation systems technology expertise to NASA's life sciences spaceflight programs. S2K! covers the full spectrum of sensor technology applications, ranging from spaceflight hardware design and fabrication to advanced technology development, transfer and commercialization. S2K! is currently developing sensor systems for space biomedical applications on BION (a Russian biosatellite focused on Rhesus Monkey physiology) and NEUROLAB (a Space Shuttle flight devoted to neuroscience). It's Advanced Technology Development-Biosensors (ATD-B) project focuses efforts in five principle areas: biotelemetry Systems, chemical and biological sensors, physiological sensors, advanced instrumentation architectures, and data and information management. Technologies already developed and tested included, application-specific sensors, preamplifier hybrids, modular programmable signal conditioners, power conditioning and distribution systems, and a fully implantable dual channel biotelemeter. Systems currently under development include a portable receiver system compatible with an off-the-shelf analog biotelemeter, a 4 channel digital biotelemetry system which monitors pH, a multichannel, g-processor based PCM biotelemetry system, and hand-held personal monitoring systems. S2K! technology easily lends itself to telescience and telemedicine applications as a front-end measurement and data acquisition device, suitable for obtaining and configuring physiological information, and processing that information under control from a remote location.

  18. The Dutch Techcentre for Life Sciences: Enabling data-intensive life science research in the Netherlands.

    PubMed

    Eijssen, Lars; Evelo, Chris; Kok, Ruben; Mons, Barend; Hooft, Rob

    2015-01-01

    We describe the Data programme of the Dutch Techcentre for Life Sciences (DTL, www.dtls.nl). DTL is a new national organisation in scientific research that facilitates life scientists with technologies and technological expertise in an era where new projects often are data-intensive, multi-disciplinary, and multi-site. It is run as a lean not-for-profit organisation with research organisations (both academic and industrial) as paying members. The small staff of the organisation undertakes a variety of tasks that are necessary to perform or support modern academic research, but that are not easily undertaken in a purely academic setting. DTL Data takes care of such tasks related to data stewardship, facilitating exchange of knowledge and expertise, and brokering access to e-infrastructure. DTL also represents the Netherlands in ELIXIR, the European infrastructure for life science data. The organisation is still being fine-tuned and this will continue over time, as it is crucial for this kind of organisation to adapt to a constantly changing environment. However, already being underway for several years, our experiences can benefit researchers in other fields or other countries setting up similar initiatives.

  19. The Dutch Techcentre for Life Sciences: Enabling data-intensive life science research in the Netherlands

    PubMed Central

    Eijssen, Lars; Evelo, Chris; Kok, Ruben; Mons, Barend; Hooft, Rob

    2016-01-01

    We describe the Data programme of the Dutch Techcentre for Life Sciences (DTL, www.dtls.nl). DTL is a new national organisation in scientific research that facilitates life scientists with technologies and technological expertise in an era where new projects often are data-intensive, multi-disciplinary, and multi-site. It is run as a lean not-for-profit organisation with research organisations (both academic and industrial) as paying members. The small staff of the organisation undertakes a variety of tasks that are necessary to perform or support modern academic research, but that are not easily undertaken in a purely academic setting. DTL Data takes care of such tasks related to data stewardship, facilitating exchange of knowledge and expertise, and brokering access to e-infrastructure. DTL also represents the Netherlands in ELIXIR, the European infrastructure for life science data. The organisation is still being fine-tuned and this will continue over time, as it is crucial for this kind of organisation to adapt to a constantly changing environment. However, already being underway for several years, our experiences can benefit researchers in other fields or other countries setting up similar initiatives. PMID:26913186

  20. Teaching Life Sciences to Blind and Visually Impaired Learners

    ERIC Educational Resources Information Center

    Fraser, William John; Maguvhe, Mbulaheni Obert

    2008-01-01

    This study reports on the teaching of life sciences (biology) to blind and visually impaired learners in South Africa at 11 special schools with specific reference to the development of science process skills in outcomes-based classrooms. Individual structured interviews were conducted with nine science educators teaching at the different special…

  1. Green Plants. Life Science in Action. Teacher's Manual and Workbook.

    ERIC Educational Resources Information Center

    Friedland, Mary

    The Science in Action series is designed to teach practical science concepts to special-needs students. It is intended to develop students' problem-solving skills by teaching them to observe, record, analyze, conclude, and predict. This document contains a student workbook which deals with basic principles of life science. Six separate units…

  2. Semantic Web technologies for the big data in life sciences.

    PubMed

    Wu, Hongyan; Yamaguchi, Atsuko

    2014-08-01

    The life sciences field is entering an era of big data with the breakthroughs of science and technology. More and more big data-related projects and activities are being performed in the world. Life sciences data generated by new technologies are continuing to grow in not only size but also variety and complexity, with great speed. To ensure that big data has a major influence in the life sciences, comprehensive data analysis across multiple data sources and even across disciplines is indispensable. The increasing volume of data and the heterogeneous, complex varieties of data are two principal issues mainly discussed in life science informatics. The ever-evolving next-generation Web, characterized as the Semantic Web, is an extension of the current Web, aiming to provide information for not only humans but also computers to semantically process large-scale data. The paper presents a survey of big data in life sciences, big data related projects and Semantic Web technologies. The paper introduces the main Semantic Web technologies and their current situation, and provides a detailed analysis of how Semantic Web technologies address the heterogeneous variety of life sciences big data. The paper helps to understand the role of Semantic Web technologies in the big data era and how they provide a promising solution for the big data in life sciences.

  3. Semantic Web technologies for the big data in life sciences.

    PubMed

    Wu, Hongyan; Yamaguchi, Atsuko

    2014-08-01

    The life sciences field is entering an era of big data with the breakthroughs of science and technology. More and more big data-related projects and activities are being performed in the world. Life sciences data generated by new technologies are continuing to grow in not only size but also variety and complexity, with great speed. To ensure that big data has a major influence in the life sciences, comprehensive data analysis across multiple data sources and even across disciplines is indispensable. The increasing volume of data and the heterogeneous, complex varieties of data are two principal issues mainly discussed in life science informatics. The ever-evolving next-generation Web, characterized as the Semantic Web, is an extension of the current Web, aiming to provide information for not only humans but also computers to semantically process large-scale data. The paper presents a survey of big data in life sciences, big data related projects and Semantic Web technologies. The paper introduces the main Semantic Web technologies and their current situation, and provides a detailed analysis of how Semantic Web technologies address the heterogeneous variety of life sciences big data. The paper helps to understand the role of Semantic Web technologies in the big data era and how they provide a promising solution for the big data in life sciences. PMID:25224624

  4. The "Next Generation Science Standards" and the Life Sciences

    ERIC Educational Resources Information Center

    Bybee, Rodger W.

    2013-01-01

    Publication of the "Next Generation Science Standards" will be just short of two decades since publication of the "National Science Education Standards" (NRC 1996). In that time, biology and science education communities have advanced, and the new standards will reflect that progress (NRC 1999, 2007, 2009; Kress and Barrett…

  5. Teaching Advanced Life Sciences in an Animal Context: Agricultural Science Teacher Voices

    ERIC Educational Resources Information Center

    Balschweid, Mark; Huerta, Alexandria

    2008-01-01

    The purpose of this qualitative study was to determine agricultural science teacher comfort with a new high school Advanced Life Science: Animal course and determine their perceptions of student impact. The advanced science course is eligible for college credit. The teachers revealed they felt confident of their science background in preparation…

  6. Japan's patent issues relating to life science therapeutic inventions.

    PubMed

    Tessensohn, John A

    2014-09-01

    Japan has made 'innovation in science and technology' as one of its central pillars to ensure high growth in its next stage of economic development and its life sciences market which hosts regenerative medicine was proclaimed to be 'the best market in the world right now.' Although life science therapeutic inventions are patentable subject matter under Japanese patent law, there are nuanced obviousness and enablement challenges under Japanese patent law that can be surmounted in view of some encouraging Japanese court developments in fostering a pro-patent applicant environment in the life sciences therapeutic patent field. Nevertheless, great care must be taken when drafting and prosecuting such patent applications in the world's second most important life sciences therapeutic market. PMID:25089628

  7. Japan's patent issues relating to life science therapeutic inventions.

    PubMed

    Tessensohn, John A

    2014-09-01

    Japan has made 'innovation in science and technology' as one of its central pillars to ensure high growth in its next stage of economic development and its life sciences market which hosts regenerative medicine was proclaimed to be 'the best market in the world right now.' Although life science therapeutic inventions are patentable subject matter under Japanese patent law, there are nuanced obviousness and enablement challenges under Japanese patent law that can be surmounted in view of some encouraging Japanese court developments in fostering a pro-patent applicant environment in the life sciences therapeutic patent field. Nevertheless, great care must be taken when drafting and prosecuting such patent applications in the world's second most important life sciences therapeutic market.

  8. NASA Johnson Space Center Life Sciences Data System

    NASA Technical Reports Server (NTRS)

    Rahman, Hasan; Cardenas, Jeffery

    1994-01-01

    The Life Sciences Project Division (LSPD) at JSC, which manages human life sciences flight experiments for the NASA Life Sciences Division, augmented its Life Sciences Data System (LSDS) in support of the Spacelab Life Sciences-2 (SLS-2) mission, October 1993. The LSDS is a portable ground system supporting Shuttle, Spacelab, and Mir based life sciences experiments. The LSDS supports acquisition, processing, display, and storage of real-time experiment telemetry in a workstation environment. The system may acquire digital or analog data, storing the data in experiment packet format. Data packets from any acquisition source are archived and meta-parameters are derived through the application of mathematical and logical operators. Parameters may be displayed in text and/or graphical form, or output to analog devices. Experiment data packets may be retransmitted through the network interface and database applications may be developed to support virtually any data packet format. The user interface provides menu- and icon-driven program control and the LSDS system can be integrated with other workstations to perform a variety of functions. The generic capabilities, adaptability, and ease of use make the LSDS a cost-effective solution to many experiment data processing requirements. The same system is used for experiment systems functional and integration tests, flight crew training sessions and mission simulations. In addition, the system has provided the infrastructure for the development of the JSC Life Sciences Data Archive System scheduled for completion in December 1994.

  9. Future prospects for space life sciences from a NASA perspective

    NASA Technical Reports Server (NTRS)

    White, Ronald J.; Lujan, Barbara F.

    1989-01-01

    Plans for future NASA research programs in the life sciences are reviewed. Consideration is given to international cooperation in space life science research, the NASA approach to funding life science research, and research opportunities using the Space Shuttle, the Space Station, and Biological Satellites. Several specific programs are described, including the Centrifuge Project to provide a controlled acceleration environment for microgravity studies, the Rhesus Project to conduct biomedical research using rhesus monkeys, and the LifeSat international biosatellite project. Also, the Space Biology Initiative to design and develop life sciences laboratory facilities for the Space Shuttle and the Space Station and the Extended Duration Crew Operations program to study crew adaptation needs are discussed.

  10. Kant on anatomy and the status of the life sciences.

    PubMed

    Olson, Michael J

    2016-08-01

    This paper contributes to recent interest in Kant's engagement with the life sciences by focusing on one corner of those sciences that has received comparatively little attention: physical and comparative anatomy. By attending to remarks spread across Kant's writings, we gain some insight into Kant's understanding of the disciplinary limitations but also the methodological sophistication of the study of anatomy and physiology. Insofar as Kant highlights anatomy as a paradigmatic science guided by the principle of teleology in the Critique of the Power of Judgment, a more careful study of Kant's discussions of anatomy promises to illuminate some of the obscurities of that text and of his understanding of the life sciences more generally. In the end, it is argued, Kant's ambivalence with regard to anatomy gives way to a pessimistic conclusion about the possibility that anatomy, natural history, and, by extension, the life sciences more generally might one day become true natural sciences. PMID:27474188

  11. Kant on anatomy and the status of the life sciences.

    PubMed

    Olson, Michael J

    2016-08-01

    This paper contributes to recent interest in Kant's engagement with the life sciences by focusing on one corner of those sciences that has received comparatively little attention: physical and comparative anatomy. By attending to remarks spread across Kant's writings, we gain some insight into Kant's understanding of the disciplinary limitations but also the methodological sophistication of the study of anatomy and physiology. Insofar as Kant highlights anatomy as a paradigmatic science guided by the principle of teleology in the Critique of the Power of Judgment, a more careful study of Kant's discussions of anatomy promises to illuminate some of the obscurities of that text and of his understanding of the life sciences more generally. In the end, it is argued, Kant's ambivalence with regard to anatomy gives way to a pessimistic conclusion about the possibility that anatomy, natural history, and, by extension, the life sciences more generally might one day become true natural sciences.

  12. Evaluation of Life Sciences and Social Sciences Course Books in Term of Societal Sexuality

    ERIC Educational Resources Information Center

    Aykac, Necdet

    2012-01-01

    This study aims to evaluate primary school Life Sciences (1st, 2nd, and 3rd grades) and Social Sciences (4th, 5th, and 6th grades) course books in terms of gender discrimination. This study is a descriptive study aiming to evaluate the primary school Life Sciences (1st, 2nd, 3rd grades) and Social Sciences (4th, 5th, and 6th grades) course books…

  13. The Centrifuge Facility Life Sciences Glovebox configuration study

    NASA Technical Reports Server (NTRS)

    Sun, Sidney C.; Goulart, Carla V.

    1992-01-01

    Crew operations associated with nonhuman life sciences research on Space Station Freedom will be conducted in the Life Sciences Glovebox, whose enclosed work volume must accommodate numerous life science procedures. Two candidate Glovebox work volume concepts have been developed: one in which two operators work side-by-side, and another that conforms to the reach envelope of a single operator. Six test volunteers tested the concepts according to preestablished operational criteria. The wrap-around, single-operator concept has been judged the superior system.

  14. NASA Now: Life Science: Portable Life Support System

    NASA Video Gallery

    Spacesuit engineer Antja Chambers discusses the Portable Life Support System, a backpack the astronauts wear during spacewalks. It provides oxygen for the astronauts, protects them from the harsh c...

  15. NASA Now: Life Science: Human Life Support on the ISS

    NASA Video Gallery

    The environmental and thermal operating systems, or ETHOS, monitors the life support system and the cooling system on the International Space Station. Find out from ETHOS operator Tess Caswell abou...

  16. Real-Life Maths and Science

    ERIC Educational Resources Information Center

    Shields, Tanya

    2012-01-01

    As a primary teacher in a large junior school the author would spend many Sunday afternoons planning exciting science lessons only to find they did not include sufficient mathematical knowledge and skills. At the time, the Numeracy Strategy was spreading through classrooms like wildfire. Meanwhile, science lessons were progressing under the…

  17. Life sciences building, north rear, also showing north hall to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Life sciences building, north rear, also showing north hall to the right, and the library in the center distance. - San Bernardino Valley College, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  18. The International Space Life Sciences Strategic Planning Working Group

    NASA Technical Reports Server (NTRS)

    White, Ronald J.; Rabin, Robert; Lujan, Barbara F.

    1993-01-01

    Throughout the 1980s, ESA and the space agencies of Canada, Germany, France, Japan, and the U.S. have pursued cooperative projects bilaterally and multilaterally to prepare for, and to respond to, opportunities in space life sciences research previously unapproachable in scale and sophistication. To cope effectively with likely future space research opportunities, broad, multilateral, coordinated strategic planning is required. Thus, life scientists from these agencies have allied to form the International Space Life Sciences Strategic Planning Working Group. This Group is formally organized under a charter that specifies the purpose of the Working Group as the development of an international strategic plan for the space life sciences, with periodic revisions as needed to keep the plan current. The plan will be policy-, not operations-oriented. The Working Group also may establish specific implementation teams to coordinate multilateral science policy in specific areas; such teams have been established for space station utilization, and for sharing of flight equipment.

  19. Earth benefits from NASA research and technology. Life sciences applications

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This document provides a representative sampling of examples of Earth benefits in life-sciences-related applications, primarily in the area of medicine and health care, but also in agricultural productivity, environmental monitoring and safety, and the environment. This brochure is not intended as an exhaustive listing, but as an overview to acquaint the reader with the breadth of areas in which the space life sciences have, in one way or another, contributed a unique perspective to the solution of problems on Earth. Most of the examples cited were derived directly from space life sciences research and technology. Some examples resulted from other space technologies, but have found important life sciences applications on Earth. And, finally, we have included several areas in which Earth benefits are anticipated from biomedical and biological research conducted in support of future human exploration missions.

  20. Opportunities and Challenges for the Life Sciences Community

    PubMed Central

    Stewart, Elizabeth; Ozdemir, Vural

    2012-01-01

    Abstract Twenty-first century life sciences have transformed into data-enabled (also called data-intensive, data-driven, or big data) sciences. They principally depend on data-, computation-, and instrumentation-intensive approaches to seek comprehensive understanding of complex biological processes and systems (e.g., ecosystems, complex diseases, environmental, and health challenges). Federal agencies including the National Science Foundation (NSF) have played and continue to play an exceptional leadership role by innovatively addressing the challenges of data-enabled life sciences. Yet even more is required not only to keep up with the current developments, but also to pro-actively enable future research needs. Straightforward access to data, computing, and analysis resources will enable true democratization of research competitions; thus investigators will compete based on the merits and broader impact of their ideas and approaches rather than on the scale of their institutional resources. This is the Final Report for Data-Intensive Science Workshops DISW1 and DISW2. The first NSF-funded Data Intensive Science Workshop (DISW1, Seattle, WA, September 19–20, 2010) overviewed the status of the data-enabled life sciences and identified their challenges and opportunities. This served as a baseline for the second NSF-funded DIS workshop (DISW2, Washington, DC, May 16–17, 2011). Based on the findings of DISW2 the following overarching recommendation to the NSF was proposed: establish a community alliance to be the voice and framework of the data-enabled life sciences. After this Final Report was finished, Data-Enabled Life Sciences Alliance (DELSA, www.delsall.org) was formed to become a Digital Commons for the life sciences community. PMID:22401659

  1. Opportunities and challenges for the life sciences community.

    PubMed

    Kolker, Eugene; Stewart, Elizabeth; Ozdemir, Vural

    2012-03-01

    Twenty-first century life sciences have transformed into data-enabled (also called data-intensive, data-driven, or big data) sciences. They principally depend on data-, computation-, and instrumentation-intensive approaches to seek comprehensive understanding of complex biological processes and systems (e.g., ecosystems, complex diseases, environmental, and health challenges). Federal agencies including the National Science Foundation (NSF) have played and continue to play an exceptional leadership role by innovatively addressing the challenges of data-enabled life sciences. Yet even more is required not only to keep up with the current developments, but also to pro-actively enable future research needs. Straightforward access to data, computing, and analysis resources will enable true democratization of research competitions; thus investigators will compete based on the merits and broader impact of their ideas and approaches rather than on the scale of their institutional resources. This is the Final Report for Data-Intensive Science Workshops DISW1 and DISW2. The first NSF-funded Data Intensive Science Workshop (DISW1, Seattle, WA, September 19-20, 2010) overviewed the status of the data-enabled life sciences and identified their challenges and opportunities. This served as a baseline for the second NSF-funded DIS workshop (DISW2, Washington, DC, May 16-17, 2011). Based on the findings of DISW2 the following overarching recommendation to the NSF was proposed: establish a community alliance to be the voice and framework of the data-enabled life sciences. After this Final Report was finished, Data-Enabled Life Sciences Alliance (DELSA, www.delsall.org ) was formed to become a Digital Commons for the life sciences community. PMID:22401659

  2. Moral Principles and the Life Sciences: Choices about Moral Matters

    ERIC Educational Resources Information Center

    Johnson, David; Brett, William

    2005-01-01

    Today, more than at any other time in human history, biologists are or should be concerned about the morality of biological research and newly developed technologies. Two questions confront any scientist or science student concerned about morality and the life sciences. Is there some theoretical framework that might be used to assist in deciding…

  3. Thinking Connections: Concept Maps for Life Science. Book B.

    ERIC Educational Resources Information Center

    Burggraf, Frederick

    The concept maps contained in this book (for grades 7-12) span 35 topics in life science. Topics were chosen using the National Science Education Standards as a guide. The practice exercise in concept mapping is included to give students an idea of what the tasks ahead will be in content rich maps. Two levels of concept maps are included for each…

  4. Energy--Structure--Life, A Learning System for Understanding Science.

    ERIC Educational Resources Information Center

    Bixby, Louis W.; And Others

    Material for the first year of Energy/Structure/Life, a two-year high school program in integrated science, is contained in this learning guide. The program, a sequence of physics, chemistry, and biology, presents the physical science phase during the first year with these 13 chapters: (1) distance/time/velocity; (2) velocity/change/acceleration;…

  5. The Number of Life Science Graduates from Australian Tertiary Institutions.

    ERIC Educational Resources Information Center

    Stern, W.; Burchett, M.

    1979-01-01

    This survey sought to determine if, from 1968-77, the number of college graduates in the life sciences corresponds with the enrollment growth in biology at the secondary level. Results are considered for the fields of agriculture, biological sciences, and health care/therapy. Implications for course offerings are discussed. (Author/SJL)

  6. Bioinformatics: Current Practice and Future Challenges for Life Science Education

    ERIC Educational Resources Information Center

    Hack, Catherine; Kendall, Gary

    2005-01-01

    It is widely predicted that the application of high-throughput technologies to the quantification and identification of biological molecules will cause a paradigm shift in the life sciences. However, if the biosciences are to evolve from a predominantly descriptive discipline to an information science, practitioners will require enhanced skills in…

  7. Organisms, Grade One. Teacher's Guide. Life Science for Guam.

    ERIC Educational Resources Information Center

    Shafer, Jeffrey E.

    This guide is a result of two years' piloting and revising the Science Curriculum Improvement Study (SCIS) program for the students of Guam. The life science portions of SCIS were chosen and adapted for the ecology of the area. Program flexibility is stressed and outdoor activities are encouraged. Used in grade one, the topic of organisms is…

  8. Life and Microgravity Sciences Spacelab Mission: Human Research Pilot Study

    NASA Technical Reports Server (NTRS)

    Arnaud, Sara B. (Editor); Walker, Karen R. (Editor); Hargens, Alan (Editor)

    1996-01-01

    The Life Sciences, Microgravity Science and Spacelab Mission contains a number of human experiments directed toward identifying the functional, metabolic and neurological characteristics of muscle weakness and atrophy during space flight. To ensure the successful completion of the flight experiments, a ground-based pilot study, designed to mimic the flight protocols as closely as possible, was carried out in the head-down tilt bed rest model. This report records the rationales, procedures, preliminary results and estimated value of the pilot study, the first of its kind, for 12 of the 13 planned experiments in human research. The bed rest study was conducted in the Human Research Facility at Ames Research Center from July 11 - August 28, 1995. Eight healthy male volunteers performed the experiments before, during and after 17 days bed rest. The immediate purposes of this simulation were to integrate the experiments, provide data in a large enough sample for publication of results, enable investigators to review individual experiments in the framework of a multi-disciplinary study and relay the experience of the pilot study to the mission specialists prior to launch.

  9. 7th Grade Life Science Units Modified for ESOL Students--Middle School.

    ERIC Educational Resources Information Center

    Bernache, Carolyn; Jones, Jacqueline

    A set of supplemental materials for teaching grade 7 life sciences to beginning and intermediate students of English as a second language (ESL) includes an introductory section on teaching the ESL student and six instructional units. The introductory section discusses the special classroom needs and characteristics of the ESL student and provides…

  10. Life and Biomedical Sciences and Applications Advisory Subcommittee Meeting

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The proceedings of the August 1995 meeting of the Life and Biomedical Sciences and Applications Advisory Subcommittee (LBSAAS) are summarized. The following topics were addressed by the Subcommittee members: the activities and status of the LBSA Division; program activities of the Office of Life and Microgravity Sciences and Applications (OLMSA); the medical Countermeasures Program; and the Fettman Report on animal research activities at ARC. Also presented were a history and overview of the activities of the Space Station Utilization Advisory Committee and the Advanced Life Support Program (ALSP). The meeting agenda and a list of the Subcommittee members and meeting attendees are included as appendices.

  11. Information Handling in the Life Sciences.

    ERIC Educational Resources Information Center

    Steere, William C., Ed.

    Special problems in the handling of biological information arise from the diversity of biological subject matter and the complexity of biological approaches towards phenomena of the living world. This state-of-the-art report on communications of information in the biological sciences provides information on: (1) users of biological information,…

  12. Life Science Literacy of an Undergraduate Population

    ERIC Educational Resources Information Center

    Medina, Stephanie R.; Ortlieb, Evan; Metoyer, Sandra

    2014-01-01

    Science content knowledge is a concern for educators in the United States because performance has stagnated for the past decade. Investigators designed this study to determine the current levels of scientific literacy among undergraduate students in a freshman-level biology course (a core requirement for majors and nonmajors), identify factors…

  13. Hearing Female Voices in Life Science Classrooms.

    ERIC Educational Resources Information Center

    Dunlap, Julie

    1990-01-01

    The author makes a case for keeping sensitivity and intuitive approaches in the science classroom. The importance of emotional connections with other organisms, considered a critical part of enriched, effective scientific thinking, is emphasized. Female and male learning styles are described. (KR)

  14. Creating Aliens: The Ultimate Life Sciences Activity.

    ERIC Educational Resources Information Center

    Beltramo, Dan

    2001-01-01

    Describes a seven-week project completed by the author's eighth-grade science students (as they studied "the chemistry of living things") in which they designed an alien and its world using the scientific concepts that they learned in class. Compares class presentations using PowerPoint software to presentations using posterboard. (SR)

  15. Life science teachers' decision making on sex education

    NASA Astrophysics Data System (ADS)

    Gill, Puneet Singh

    The desires of young people and especially young bodies are constructed at the intersections of policies that set the parameters of sex education policies, the embodied experiences of students in classrooms, and the way bodies are discussed in the complex language of science. Moreover, more research points to the lack of scientifically and medically accurate information about sex education. Through this research, I hope to extend the discussion about sex education to life science classrooms, where youth can discuss how sex occurs according to scientific concepts and processes. However, science classrooms are caught in a double bind: They maintain positivist methods of teaching science while paying little attention to the nature of science or the nature and function of science that offer explanations of scientific phenomena. In this study, I describe how science teachers made decisions about what to include or not include about sexuality in a life science classroom and the discursive frameworks that shaped these decisions. I also analyzed the ways that these relationships functioned to produce certain truths, or discourses. The current trends in research concerning SSI are pointing to understanding how controversial issues are framed according to personal philosophies, identities, and teaching approaches. If we can understand science teachers' inner aspects as they relate to sexuality education, we can also understand the deep-seeded motivations behind how these specific issues are being taught. In science classrooms where a discussion of the body is part of the curriculum, specific discourses of the body and sex/sexuality are excluded. In this study, I describe how science teachers made decisions about what to include or not include about sexuality in a life science classroom and the discursive practices that shaped these decisions.

  16. Prehistoric Life, Science (Experimental): 5311.15.

    ERIC Educational Resources Information Center

    Jenks, Lois

    Presented is a survey course of the biological and geological history of the earth which includes: (1) theories of the formation of the earth, (2) theories of the formation of life, (3) geological eras (calendar), (4) fossil formation and fossil fuels, and (5) modern-day research. This course is intended for junior high level and no previous…

  17. Characteristics of Adolescents Who Report Very High Life Satisfaction

    ERIC Educational Resources Information Center

    Gilman, Rich; Huebner, E. Scott

    2006-01-01

    This study investigated the characteristics of adolescents who report high levels of life global satisfaction. A total of 485 adolescents completed the "Students' Life Satisfaction Scale" (SLSS) (Huebner, E. S. (1991). "Sch. Psychol. Int." 12: 231-240.) along with self-report measures of intrapersonal, interpersonal, and school-related…

  18. Measuring the returns to NASA life sciences research and development

    NASA Astrophysics Data System (ADS)

    Hertzfeld, Henry R.

    1998-01-01

    The National Aeronautics and Space Administration has invested in R&D in the life sciences for forty years. The thrust of this investment has been directed toward the support of human beings in space flight and in space activities. There are many documented examples of beneficial services and products now used in everyday life and medical practice that can be traced to origins in the R&D of the space program. However, a framework for quantitatively documenting, characterizing, and analyzing these public benefits has eluded researchers. This paper will present the results of a pilot project that includes the development of a methodology for assessing the economic benefits from NASA life sciences R&D and for realistically evaluating the financial leverage that private companies which are either involved in NASA R&D or which have ``bootstrapped'' NASA R&D into commercial products have realized. The results will show that the NASA life sciences investments are more engineering oriented, and more typically show results in the fields of instrumentation and medical devices. This is substantially different in nature from the focus of the National Institutes of Health, which is organized around the diagnosis and treatment of diseases. The appropriate measures of benefits for engineering-oriented products are economic parameters that focus on capital equipment. NIH benefits are more typically measured by human labor parameters, including the much more difficult to quantify measures of the quality and delivery of medical services. Although there is tremendous overlap in the goals and outputs of NASA life sciences and NIH investments, and NASA R&D is also very concerned with human beings and the quality of life, NIH is the overwhelming large source of life sciences R&D funds in the US. NASA has a special niche in life sciences R&D that supports the NASA mission as well as overall research issues in the life sciences. This paper evaluates the economic benefits of NASA's life

  19. Future opportunities and trends for e-infrastructures and life sciences: going beyond the grid to enable life science data analysis.

    PubMed

    Duarte, Afonso M S; Psomopoulos, Fotis E; Blanchet, Christophe; Bonvin, Alexandre M J J; Corpas, Manuel; Franc, Alain; Jimenez, Rafael C; de Lucas, Jesus M; Nyrönen, Tommi; Sipos, Gergely; Suhr, Stephanie B

    2015-01-01

    With the increasingly rapid growth of data in life sciences we are witnessing a major transition in the way research is conducted, from hypothesis-driven studies to data-driven simulations of whole systems. Such approaches necessitate the use of large-scale computational resources and e-infrastructures, such as the European Grid Infrastructure (EGI). EGI, one of key the enablers of the digital European Research Area, is a federation of resource providers set up to deliver sustainable, integrated and secure computing services to European researchers and their international partners. Here we aim to provide the state of the art of Grid/Cloud computing in EU research as viewed from within the field of life sciences, focusing on key infrastructures and projects within the life sciences community. Rather than focusing purely on the technical aspects underlying the currently provided solutions, we outline the design aspects and key characteristics that can be identified across major research approaches. Overall, we aim to provide significant insights into the road ahead by establishing ever-strengthening connections between EGI as a whole and the life sciences community. PMID:26157454

  20. Future opportunities and trends for e-infrastructures and life sciences: going beyond the grid to enable life science data analysis.

    PubMed

    Duarte, Afonso M S; Psomopoulos, Fotis E; Blanchet, Christophe; Bonvin, Alexandre M J J; Corpas, Manuel; Franc, Alain; Jimenez, Rafael C; de Lucas, Jesus M; Nyrönen, Tommi; Sipos, Gergely; Suhr, Stephanie B

    2015-01-01

    With the increasingly rapid growth of data in life sciences we are witnessing a major transition in the way research is conducted, from hypothesis-driven studies to data-driven simulations of whole systems. Such approaches necessitate the use of large-scale computational resources and e-infrastructures, such as the European Grid Infrastructure (EGI). EGI, one of key the enablers of the digital European Research Area, is a federation of resource providers set up to deliver sustainable, integrated and secure computing services to European researchers and their international partners. Here we aim to provide the state of the art of Grid/Cloud computing in EU research as viewed from within the field of life sciences, focusing on key infrastructures and projects within the life sciences community. Rather than focusing purely on the technical aspects underlying the currently provided solutions, we outline the design aspects and key characteristics that can be identified across major research approaches. Overall, we aim to provide significant insights into the road ahead by establishing ever-strengthening connections between EGI as a whole and the life sciences community.

  1. Future opportunities and trends for e-infrastructures and life sciences: going beyond the grid to enable life science data analysis

    PubMed Central

    Duarte, Afonso M. S.; Psomopoulos, Fotis E.; Blanchet, Christophe; Bonvin, Alexandre M. J. J.; Corpas, Manuel; Franc, Alain; Jimenez, Rafael C.; de Lucas, Jesus M.; Nyrönen, Tommi; Sipos, Gergely; Suhr, Stephanie B.

    2015-01-01

    With the increasingly rapid growth of data in life sciences we are witnessing a major transition in the way research is conducted, from hypothesis-driven studies to data-driven simulations of whole systems. Such approaches necessitate the use of large-scale computational resources and e-infrastructures, such as the European Grid Infrastructure (EGI). EGI, one of key the enablers of the digital European Research Area, is a federation of resource providers set up to deliver sustainable, integrated and secure computing services to European researchers and their international partners. Here we aim to provide the state of the art of Grid/Cloud computing in EU research as viewed from within the field of life sciences, focusing on key infrastructures and projects within the life sciences community. Rather than focusing purely on the technical aspects underlying the currently provided solutions, we outline the design aspects and key characteristics that can be identified across major research approaches. Overall, we aim to provide significant insights into the road ahead by establishing ever-strengthening connections between EGI as a whole and the life sciences community. PMID:26157454

  2. STS-40 Spacelab Life Sciences 1 (SLS-1): The first dedicated spacelab life sciences mission

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Successful exploration of space depends on the health and well-being of people who travel and work there. For this reason, the National Aeronautics and Space Administration (NASA) has dedicated several Space Shuttle missions to examine how living and working in space affects the human body. Spacelab Life Sciences 1 (SLS-1) is the first of these missions. The main purpose of the SLS-1 mission is to study the mechanisms, magnitudes, and time courses of certain physiological changes that occur during space flight and to investigate the consequences of the body's adaptation to microgravity and readjustment to gravity upon return to Earth. How does space flight influence the heart and circulatory system, metabolic processes, the muscles and bones, and the cells? If responses to weightlessness are undesirable, how can they be prevented or controlled? Will the human body maintain its physical and chemical equilibrium during months aboard a space station and years-long missions to Mars? When crews return to Earth, what can they expect to experience as their bodies readjust to Earth's gravity? With the SLS-1 experiments, NASA is addressing some of these questions. Various aspects of the SLS-1 are discussed.

  3. Bringing Climate Change into the Life Science Classroom: Essentials, Impacts on Life, and Addressing Misconceptions

    ERIC Educational Resources Information Center

    Hawkins, Amy J.; Stark, Louisa A.

    2016-01-01

    Climate change is at the forefront of our cultural conversation about science, influencing everything from presidential debates to Leonardo DiCaprio's 2016 Oscar acceptance speech. The topic is becoming increasingly socially and scientifically relevant but is no closer to being resolved. Most high school students take a life science course but…

  4. Bad science [perspectives on graduate life].

    PubMed

    Liu, Zen

    2012-01-01

    On a picturesque summer day a few months ago, a friend and I were walking along a New Jersey boardwalk when we ran into a group of older women who recently retired from nursing. Casual conversation over a beautifully staged beach wedding taking place that afternoon turned naturally into a discussion of our various professions. Upon hearing that my friend was in medical school, the women began shrieking with a level of delight and adoration that could only be matched by his own mother's overflowing pride. In his embarrassment, my friend quickly attempted to shift attention onto me by divulging that I was also in school to become a doctor-the kind that does science and research. Their faces immediately belied their bewilderment over why they should care about this different kind of doctor, and the blatant indifference on their comically over expressive faces was so jarring that I could not contain my own hysterical laughter.

  5. Priority of discovery in the life sciences

    PubMed Central

    Vale, Ronald D; Hyman, Anthony A

    2016-01-01

    The job of a scientist is to make a discovery and then communicate this new knowledge to others. For a scientist to be successful, he or she needs to be able to claim credit or priority for discoveries throughout their career. However, despite being fundamental to the reward system of science, the principles for establishing the "priority of discovery" are rarely discussed. Here we break down priority into two steps: disclosure, in which the discovery is released to the world-wide community; and validation, in which other scientists assess the accuracy, quality and importance of the work. Currently, in biology, disclosure and an initial validation are combined in a journal publication. Here, we discuss the advantages of separating these steps into disclosure via a preprint, and validation via a combination of peer review at a journal and additional evaluation by the wider scientific community. PMID:27310529

  6. Priority of discovery in the life sciences.

    PubMed

    Vale, Ronald D; Hyman, Anthony A

    2016-01-01

    The job of a scientist is to make a discovery and then communicate this new knowledge to others. For a scientist to be successful, he or she needs to be able to claim credit or priority for discoveries throughout their career. However, despite being fundamental to the reward system of science, the principles for establishing the "priority of discovery" are rarely discussed. Here we break down priority into two steps: disclosure, in which the discovery is released to the world-wide community; and validation, in which other scientists assess the accuracy, quality and importance of the work. Currently, in biology, disclosure and an initial validation are combined in a journal publication. Here, we discuss the advantages of separating these steps into disclosure via a preprint, and validation via a combination of peer review at a journal and additional evaluation by the wider scientific community. PMID:27310529

  7. Life Sciences in the Ticino: Two Scientists - Two Stories.

    PubMed

    Fürst, Susanne Lauber

    2014-12-01

    Luca Varani, PhD, a group leader in Structural Biology at the Institute for Research in Biomedicine, Bellinzona, and Marco Brini, founder and CEO of EnvEve SA, in the Tecnopolo in Manno, describe their life sciences background, their careers and why they percieve their ideal situation being a basic scientist who wants to remain in science, or being an entrepreneur respectively. PMID:26508605

  8. Telescience testbedding for life science missions on the Space Station

    NASA Technical Reports Server (NTRS)

    Rasmussen, D.; Mian, A.; Bosley, J.

    1988-01-01

    'Telescience', defined as the ability of distributed system users to perform remote operations associated with NASA Space Station life science operations, has been explored by a developmental testbed project allowing rapid prototyping to evaluate the functional requirements of telescience implementation in three areas: (1) research planning and design, (2) remote operation of facilities, and (3) remote access to data bases for analysis. Attention is given to the role of expert systems in telescience, its use in realistic simulation of Space Shuttle payload remote monitoring, and remote interaction with life science data bases.

  9. Analysis of debris from Spacelab Space Life Sciences-1

    NASA Astrophysics Data System (ADS)

    Caruso, S. V.; Rodgers, E. B.; Huff, T. L.

    1992-07-01

    Airborne microbiological and particulate contamination generated aboard Spacelab modules is a potential safety hazard. In order to shed light on the characteristics of these contaminants, microbial and chemical/particulate analyses were performed on debris vacuumed from cabin and avionics air filters in the Space Life Sciences-1 (SLS-1) module of the Space Transportation System 40 (STS-40) mission 1 month after landing. The debris was sorted into categories (e.g., metal, nonmetal, hair/fur, synthetic fibers, food particles, insect fragments, etc.). Elemental analysis of particles was done by energy dispersive analysis of x rays (metals) and Fourier transform infrared spectroscopy (nonmetals). Scanning electron micrographs were done of most particles. Microbiological samples were grown on R2A culture medium and identified. Clothing fibers dominated the debris by volume. Other particles, all attributed to the crew, resulted from abrasions and impacts during missions operations (e.g., paint chips, plastic, electronic scraps and clothing fibers). All bacterial species identified are commonly found in the atmosphere or on the human body. Bacillus sp. was the most frequently seen bacterium. One of the bacterial species, Enterobacter agglomerans, could cause illness in crew members with depressed immune systems.

  10. Analysis of debris from Spacelab Space Life Sciences-1

    NASA Technical Reports Server (NTRS)

    Caruso, S. V.; Rodgers, E. B.; Huff, T. L.

    1992-01-01

    Airborne microbiological and particulate contamination generated aboard Spacelab modules is a potential safety hazard. In order to shed light on the characteristics of these contaminants, microbial and chemical/particulate analyses were performed on debris vacuumed from cabin and avionics air filters in the Space Life Sciences-1 (SLS-1) module of the Space Transportation System 40 (STS-40) mission 1 month after landing. The debris was sorted into categories (e.g., metal, nonmetal, hair/fur, synthetic fibers, food particles, insect fragments, etc.). Elemental analysis of particles was done by energy dispersive analysis of x rays (metals) and Fourier transform infrared spectroscopy (nonmetals). Scanning electron micrographs were done of most particles. Microbiological samples were grown on R2A culture medium and identified. Clothing fibers dominated the debris by volume. Other particles, all attributed to the crew, resulted from abrasions and impacts during missions operations (e.g., paint chips, plastic, electronic scraps and clothing fibers). All bacterial species identified are commonly found in the atmosphere or on the human body. Bacillus sp. was the most frequently seen bacterium. One of the bacterial species, Enterobacter agglomerans, could cause illness in crew members with depressed immune systems.

  11. Exploring the living universe: A strategy for space life sciences

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The status and goals of NASA's life sciences programs are examined. Ways and mean for attaining these goals are suggested. The report emphasizes that a stronger life sciences program is imperative if the U.S. space policy is to construct a permanently manned space station and achieve its stated goal of expanding the human presence beyond earth orbit into the solar system. The same considerations apply in regard to the other major goal of life sciences: to study the biological processes and life in the universe. A principal recommendation of the report is for NASA to expand its program of ground- and space-based research contributing to resolving questions about physiological deconditioning, radiation exposure, potential psychological difficulties, and life support requirements that may limit stay times for personnel on the Space Station and complicate missions of more extended duration. Other key recommendations call for strengthening programs of biological systems research in: controlled ecological life support systems for humans in space, earth systems central to understanding the effects on the earth's environment of both natural and human activities, and exobiology.

  12. Space life sciences perspectives for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Young, Laurence R.

    1992-01-01

    It is now generally acknowledged that the life science discipline will be the primary beneficiary of Space Station Freedom. The unique facility will permit advances in understanding the consequences of long duration exposure to weightlessness and evaluation of the effectiveness of countermeasures. It will also provide an unprecedented opportunity for basic gravitational biology, on plants and animals as well as human subjects. The major advantages of SSF are the long duration exposure and the availability of sufficient crew to serve as subjects and operators. In order to fully benefit from the SSF, life sciences will need both sufficient crew time and communication abilities. Unlike many physical science experiments, the life science investigations are largely exploratory, and frequently bring unexpected results and opportunities for study of newly discovered phenomena. They are typically crew-time intensive, and require a high degree of specialized training to be able to react in real time to various unexpected problems or potentially exciting findings. Because of the long duration tours and the large number of experiments, it will be more difficult than with Spacelab to maintain astronaut proficiency on all experiments. This places more of a burden on adequate communication and data links to the ground, and suggests the use of AI expert system technology to assist in astronaut management of the experiment. Typical life science experiments, including those flown on Spacelab Life Sciences 1, will be described from the point of view of the demands on the astronaut. A new expert system, 'PI in a Box,' will be introduced for SLS-2, and its applicability to other SSF experiments discussed. (This paper consists on an abstract and ten viewgraphs.)

  13. Service engineering for grid services in medicine and life science.

    PubMed

    Weisbecker, Anette; Falkner, Jürgen

    2009-01-01

    Clearly defined services with appropriate business models are necessary in order to exploit the benefit of grid computing for industrial and academic users in medicine and life sciences. In the project Services@MediGRID the service engineering approach is used to develop those clearly defined grid services and to provide sustainable business models for their usage.

  14. Introduction to Life Science (Introduccion a la Ciencia Biologica).

    ERIC Educational Resources Information Center

    Barnhard, Diana; And Others

    These materials were developed to meet an expressed need for bilingual materials for a secondary school Life Science Course. Eight units were prepared. These include the following topics: (1) Introduction to the Scientific Method; (2) The Microscope; (3) The Cell; (4) Single-celled Protists, Plants, and Animals; (5) Multicellular Living Things;…

  15. North side, facing the courtyard. Life Science Building is to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    North side, facing the courtyard. Life Science Building is to the left, out of view, and the library is to the right. Also out of view. - San Bernardino Valley College, Classics Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  16. Courtyard between the library, at left, and the life sciences ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Courtyard between the library, at left, and the life sciences building, at right. The north end of the administration building is just out of view to the right. - San Bernardino Valley College, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  17. Assessment of a Bioinformatics across Life Science Curricula Initiative

    ERIC Educational Resources Information Center

    Howard, David R.; Miskowski, Jennifer A.; Grunwald, Sandra K.; Abler, Michael L.

    2007-01-01

    At the University of Wisconsin-La Crosse, we have undertaken a program to integrate the study of bioinformatics across the undergraduate life science curricula. Our efforts have included incorporating bioinformatics exercises into courses in the biology, microbiology, and chemistry departments, as well as coordinating the efforts of faculty within…

  18. The LAILAPS search engine: relevance ranking in life science databases.

    PubMed

    Lange, Matthias; Spies, Karl; Bargsten, Joachim; Haberhauer, Gregor; Klapperstück, Matthias; Leps, Michael; Weinel, Christian; Wünschiers, Röbbe; Weissbach, Mandy; Stein, Jens; Scholz, Uwe

    2010-01-15

    Search engines and retrieval systems are popular tools at a life science desktop. The manual inspection of hundreds of database entries, that reflect a life science concept or fact, is a time intensive daily work. Hereby, not the number of query results matters, but the relevance does. In this paper, we present the LAILAPS search engine for life science databases. The concept is to combine a novel feature model for relevance ranking, a machine learning approach to model user relevance profiles, ranking improvement by user feedback tracking and an intuitive and slim web user interface, that estimates relevance rank by tracking user interactions. Queries are formulated as simple keyword lists and will be expanded by synonyms. Supporting a flexible text index and a simple data import format, LAILAPS can easily be used both as search engine for comprehensive integrated life science databases and for small in-house project databases. With a set of features, extracted from each database hit in combination with user relevance preferences, a neural network predicts user specific relevance scores. Using expert knowledge as training data for a predefined neural network or using users own relevance training sets, a reliable relevance ranking of database hits has been implemented. In this paper, we present the LAILAPS system, the concepts, benchmarks and use cases. LAILAPS is public available for SWISSPROT data at http://lailaps.ipk-gatersleben.de.

  19. Sustainable Infrastructures for Life Science Communication: Workshop Summary

    ERIC Educational Resources Information Center

    Brown, Elizabeth Stallman; Yeung, Laurence; Sawyer, Keegan

    2014-01-01

    Advances in the life sciences--from the human genome to biotechnology to personalized medicine and sustainable communities--have profound implications for the well-being of society and the natural world. Improved public understanding of such scientific advances has the potential to benefit both individuals and society through enhanced quality of…

  20. A Life-Science Action Course for Junior High School

    ERIC Educational Resources Information Center

    Henley ,Wes W.

    1972-01-01

    Several suggestions are provided for making life-science programs effective in junior high schools. Teacher's job can be made lighter if advanced planning and execution are done wisely. Problems ranging from shortage of space to final grading are discussed. Workable solutions are suggested for each situation. (PS)

  1. USSR Space Life Sciences Digest, volume 2, no. 4

    NASA Technical Reports Server (NTRS)

    Lewis, C. S.; Donnelly, K.

    1981-01-01

    Soviet scientists are making significant contributions to the field of space medicine and biology through their active manned space program, frequent biosatellites, and extensive ground-based research. An overview of the developments and direction of the USSR Space Life Sciences Program is provided.

  2. Improving Reuse in Software Development for the Life Sciences

    ERIC Educational Resources Information Center

    Iannotti, Nicholas V.

    2013-01-01

    The last several years have seen unprecedented advancements in the application of technology to the life sciences, particularly in the area of data generation. Novel scientific insights are now often driven primarily by software development supporting new multidisciplinary and increasingly multifaceted data analysis. However, despite the…

  3. Collaborating in Life Science Research Groups: The Question of Authorship

    ERIC Educational Resources Information Center

    Muller, Ruth

    2012-01-01

    This qualitative study explores how life science postdocs' perceptions of contemporary academic career rationales influence how they relate to collaboration within research groups. One consequential dimension of these perceptions is the high value assigned to publications. For career progress, postdocs consider producing publications and…

  4. Introductory Life Science Mathematics and Quantitative Neuroscience Courses

    ERIC Educational Resources Information Center

    Duffus, Dwight; Olifer, Andrei

    2010-01-01

    We describe two sets of courses designed to enhance the mathematical, statistical, and computational training of life science undergraduates at Emory College. The first course is an introductory sequence in differential and integral calculus, modeling with differential equations, probability, and inferential statistics. The second is an…

  5. A Few Steps toward a Science of Mental Life

    ERIC Educational Resources Information Center

    Dehaene, Stanislas

    2007-01-01

    Under what conditions can a true "science of mental life" arise from psychological investigations? Can psychology formulate scientific laws of a general nature, comparable in soundness to the laws of physics? I argue that the search for such laws must return to the forefront of psychological and developmental research, an enterprise that requires…

  6. USSR Space Life Sciences Digest, volume 2, no. 3

    NASA Technical Reports Server (NTRS)

    Lewis, C. S.

    1981-01-01

    Soviet scientists are making significant contributions to the field of space medicine and biology through their active manned space program, frequent biosatellites, and extensive ground-based research. An overview of the developments and direction of the USSR Space Life Sciences Program is provided.

  7. TÜV - Zertifizierungen in der Life Science Branche

    NASA Astrophysics Data System (ADS)

    Schaff, Peter; Gerbl-Rieger, Susanne; Kloth, Sabine; Schübel, Christian; Daxenberger, Andreas; Engler, Claus

    Life Sciences [1] (Lebenswissenschaften) sind ein globales Innovationsfeld mit Anwendungen der Bio- und Medizinwissenschaften, der Pharma-, Chemie-, Kosmetik- und Lebensmittelindustrie. Diese Branche zeichnet sich durch eine stark interdisziplinäre Ausrichtung aus, mit Anwendung wissenschaftlicher Erkenntnisse und Einsatz von Ausgangsstoffen aus der modernen Biologie, Chemie und Humanmedizin sowie gezielter marktwirtschaftlich orientierter Arbeit.

  8. Bioinformatics and the Politics of Innovation in the Life Sciences

    PubMed Central

    Zhou, Yinhua; Datta, Saheli; Salter, Charlotte

    2016-01-01

    The governments of China, India, and the United Kingdom are unanimous in their belief that bioinformatics should supply the link between basic life sciences research and its translation into health benefits for the population and the economy. Yet at the same time, as ambitious states vying for position in the future global bioeconomy they differ considerably in the strategies adopted in pursuit of this goal. At the heart of these differences lies the interaction between epistemic change within the scientific community itself and the apparatus of the state. Drawing on desk-based research and thirty-two interviews with scientists and policy makers in the three countries, this article analyzes the politics that shape this interaction. From this analysis emerges an understanding of the variable capacities of different kinds of states and political systems to work with science in harnessing the potential of new epistemic territories in global life sciences innovation. PMID:27546935

  9. The Moon as a 'real-time' life sciences laboratory

    NASA Astrophysics Data System (ADS)

    Garshnek, V.

    1994-06-01

    A lunar life sciences laboratory would be an ideal learning center to develop science capabilities to extend humans to Mars. It could be initiated without a large amount of preparatory human research due to previous lunar experience, short flight time (3 days), and the ability to gather 'real time' life sciences data. Human studies can go beyond previous zero-g research providing information on lunar 1/6 gravity effects (an early data point in determining whether long-term fractional gravity can assist in maintaining health and performance) and insight into whether a Mars transfer vehicle should be designed for artificial-g (and, if so, whether fractional-g might be adequate). Insights into human behavior/performance can also be gained. A lunar biological laboratory could provide a means of conducting long-duration experiments on the biological effects of radiation and fractional gravity (in animals and plants).

  10. Memories for life: a review of the science and technology

    PubMed Central

    O'Hara, Kieron; Morris, Richard; Shadbolt, Nigel; Hitch, Graham J; Hall, Wendy; Beagrie, Neil

    2006-01-01

    This paper discusses scientific, social and technological aspects of memory. Recent developments in our understanding of memory processes and mechanisms, and their digital implementation, have placed the encoding, storage, management and retrieval of information at the forefront of several fields of research. At the same time, the divisions between the biological, physical and the digital worlds seem to be dissolving. Hence, opportunities for interdisciplinary research into memory are being created, between the life sciences, social sciences and physical sciences. Such research may benefit from immediate application into information management technology as a testbed. The paper describes one initiative, memories for life, as a potential common problem space for the various interested disciplines. PMID:16849265

  11. Teacher Characteristics and Pedagogy in Political Science

    ERIC Educational Resources Information Center

    Hartlaub, Stephen G.; Lancaster, Frank A.

    2008-01-01

    The college classroom is both an intimate and an alien environment. Most professors have an intimate knowledge of what they do in their own classrooms while possessing very little knowledge of what other professors, even at their own institution, do in their classrooms. Each year, faculty in political science departments construct their courses…

  12. Life sciences experiments in the first Spacelab mission

    NASA Technical Reports Server (NTRS)

    Huffstetler, W. J.; Rummel, J. A.

    1978-01-01

    The development of the Shuttle Transportation System (STS) by the United States and the Spacelab pressurized modules and pallets by the European Space Agency (ESA) presents a unique multi-mission space experimentation capability to scientists and researchers of all disciplines. This capability is especially pertinent to life scientists involved in all areas of biological and behavioral research. This paper explains the solicitation, evaluation, and selection process involved in establishing life sciences experiment payloads. Explanations relative to experiment hardware development, experiment support hardware (CORE) concepts, hardware integration and test, and concepts of direct Principal Investigator involvement in the missions are presented as they are being accomplished for the first Spacelab mission. Additionally, discussions of future plans for life sciences dedicated Spacelab missions are included in an attempt to define projected capabilities for space research in the 1980s utilizing the STS.

  13. Extraterrestrial life in light of recent planetary science

    NASA Astrophysics Data System (ADS)

    Stanley, Matthew

    2016-03-01

    Since at least the time of the Greeks, we have wondered whether the universe cares about us. Is the universe friendly to life, with fecund planets scattered through the heavens? Or is it indifferent, with our green globe a fluke among barren rocks? Modern scientists articulate this puzzle in the form of the anthropic principle, and try to quantify it with the Drake equation. Both seek to link the science we find in our corner of the universe to truly cosmological claims about life and the laws of nature. Until very recently, these questions have been accessible only to speculation. But the amazing progress in planetary science of the last two decades has finally given us an opportunity to begin to test these ideas. This paper will examine how our recent studies of planets within and beyond our solar system may help us grapple with the riddles of the anthropic principle and how life fits into a universe of natural laws.

  14. Life sciences research on the space station: An introduction

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Space Station will provide an orbiting, low gravity, permanently manned facility for scientific research, starting in the 1990s. The facilities for life sciences research are being designed to allow scientific investigators to perform research in Space Medicine and Space Biology, to study the consequences of long-term exposure to space conditions, and to allow for the permanent presence of humans in space. This research, using humans, animals, and plants, will provide an understanding of the effects of the space environment on the basic processes of life. In addition, facilities are being planned for remote observations to study biologically important elements and compounds in space and on other planets (exobiology), and Earth observations to study global ecology. The life sciences community is encouraged to plan for participation in scientific research that will be made possible by the Space Station research facility.

  15. Exploring the living universe: A strategy for space life sciences

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The knowledge obtained by space life sciences will play a pivotal role as humankind reaches out to explore the solar system. Information is needed concerning the existence of life beyond the Earth, the potential interactions between planets and living organisms, and the possibilities for humans to inhabit space safely and productively. Programs in the involved disciplines are an integral part of NASA's current and future missions. To realize their objectives, the development and operation of diverse ground and flight facilities and clost coordination with numerous scientific and governmental organizations in the U.S. and abroad are required. The status and goals of the life sciences programs are examined. Ways and means for attaining these goals are suggested.

  16. Enhancing interdisciplinary, mathematics, and physical science in an undergraduate life science program through physical chemistry.

    PubMed

    Pursell, David P

    2009-01-01

    BIO2010 advocates enhancing the interdisciplinary, mathematics, and physical science components of the undergraduate biology curriculum. The Department of Chemistry and Life Science at West Point responded by developing a required physical chemistry course tailored to the interests of life science majors. To overcome student resistance to physical chemistry, students were enabled as long-term stakeholders who would shape the syllabus by selecting life science topics of interest to them. The initial 2 yr of assessment indicates that students have a positive view of the course, feel they have succeeded in achieving course outcome goals, and that the course is relevant to their professional future. Instructor assessment of student outcome goal achievement via performance on exams and labs is comparable to that of students in traditional physical chemistry courses. Perhaps more noteworthy, both student and instructor assessment indicate positive trends from year 1 to year 2, presumably due to the student stakeholder effect.

  17. Research on Life Science and Life Support Engineering Problems of Manned Deep Space Exploration Mission

    NASA Astrophysics Data System (ADS)

    Qi, Bin; Guo, Linli; Zhang, Zhixian

    2016-07-01

    Space life science and life support engineering are prominent problems in manned deep space exploration mission. Some typical problems are discussed in this paper, including long-term life support problem, physiological effect and defense of varying extraterrestrial environment. The causes of these problems are developed for these problems. To solve these problems, research on space life science and space medical-engineering should be conducted. In the aspect of space life science, the study of space gravity biology should focus on character of physiological effect in long term zero gravity, co-regulation of physiological systems, impact on stem cells in space, etc. The study of space radiation biology should focus on target effect and non-target effect of radiation, carcinogenicity of radiation, spread of radiation damage in life system, etc. The study of basic biology of space life support system should focus on theoretical basis and simulating mode of constructing the life support system, filtration and combination of species, regulation and optimization method of life support system, etc. In the aspect of space medical-engineering, the study of bio-regenerative life support technology should focus on plants cultivation technology, animal-protein production technology, waste treatment technology, etc. The study of varying gravity defense technology should focus on biological and medical measures to defend varying gravity effect, generation and evaluation of artificial gravity, etc. The study of extraterrestrial environment defense technology should focus on risk evaluation of radiation, monitoring and defending of radiation, compound prevention and removal technology of dust, etc. At last, a case of manned lunar base is analyzed, in which the effective schemes of life support system, defense of varying gravity, defense of extraterrestrial environment are advanced respectively. The points in this paper can be used as references for intensive study on key

  18. An on-orbit viewpoint of life sciences research

    NASA Technical Reports Server (NTRS)

    Lichtenberg, Byron K.

    1992-01-01

    As a Payload Specialist and a life science researcher, I want to present several issues that impact life science research in space. During early space station operations, life science and other experiments will be conducted in a time-critical manner and there will be the added duties of both space shuttle and space station systems operation (and the concomittent training overhead). Life sciences research is different from other science research done in space because the crew is involved both as an operator and as a subject. There is a need for pre- and post-flight data collection as well as in flight data collection. It is imperative that the life science researcher incorporate the crew members into their team early enough in the training cycle to fully explain the science and to make the crew aware of the importance and sensitivities of the experiment. During the pre-flight phase, the crew is incredibly busy with a myriad of duties. Therefore, it is difficult to get 'pristine' subjects for the baseline data collection. There are also circadian shifts, travel, and late nights to confound the data. During this time it is imperative that the researcher develop, along with the crew, a realistic estimate of crew-time required for their experiment. In flight issues that affect the researcher are the additional activities of the crew, the stresses inherent in space flight, and the difficulty of getting early in-flight data. During SSF activities, the first day or two will be taken up with rendezvous and docking. Other issues are the small number of subjects on any given flight, the importance of complete and concise procedures, and the vagaries of on-board data collection. Post flight, the crew is tired and experiences a 'relaxation.' This along with circadian shifts and rapid re-adaptation to 1-g make immediate post-flight data collection difficult. Finally, the blending of operational medicine and research can result in either competition for resources (crew time, etc

  19. Technology transfer in the life sciences. (Latest citations from the Life Sciences Collection data base). Published Search

    SciTech Connect

    Not Available

    1992-09-01

    The bibliography contains citations concerning technology transfer in the life sciences. Topics include technology transfer in biogas energy production, biotechnology, pollution control, aquaculture, agriculture, oceanography, and forestry. Technology transfer to developing countries and to small businesses, as well as university-industry partnerships, is described. (Contains a minimum of 71 citations and includes a subject term index and title list.)

  20. Is Vacation Apprenticeship of Undergraduate Life Science Students a Model for Human Capacity Development in the Life Sciences?

    ERIC Educational Resources Information Center

    Downs, Colleen Thelma

    2010-01-01

    A life sciences undergraduate apprenticeship initiative was run during the vacations at a South African university. In particular, the initiative aimed to increase the number of students from disadvantaged backgrounds. Annually 12-18 undergraduate biology students were apprenticed to various institutions during the January and July vacations from…

  1. Bioinformatics: Current practice and future challenges for life science education.

    PubMed

    Hack, Catherine; Kendall, Gary

    2005-03-01

    It is widely predicted that the application of high-throughput technologies to the quantification and identification of biological molecules will cause a paradigm shift in the life sciences. However, if the biosciences are to evolve from a predominantly descriptive discipline to an information science, practitioners will require enhanced skills in mathematics, computing, and statistical analysis. Universities have responded to the widely perceived skills gap primarily by developing masters programs in bioinformatics, resulting in a rapid expansion in the provision of postgraduate bioinformatics education. There is, however, a clear need to improve the quantitative and analytical skills of life science undergraduates. This article reviews the response of academia in the United Kingdom and proposes the learning outcomes that graduates should achieve to cope with the new biology. While the analysis discussed here uses the development of bioinformatics education in the United Kingdom as an illustrative example, it is hoped that the issues raised will resonate with all those involved in curriculum development in the life sciences.

  2. International Space Station Research and Facilities for Life Sciences

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Ruttley, Tara M.

    2009-01-01

    Assembly of the International Space Station is nearing completion in fall of 2010. Although assembly has been the primary objective of its first 11 years of operation, early science returns from the ISS have been growing at a steady pace. Laboratory facilities outfitting has increased dramatically 2008-2009 with the European Space Agency s Columbus and Japanese Aerospace Exploration Agency s Kibo scientific laboratories joining NASA s Destiny laboratory in orbit. In May 2009, the ISS Program met a major milestone with an increase in crew size from 3 to 6 crewmembers, thus greatly increasing the time available to perform on-orbit research. NASA will launch its remaining research facilities to occupy all 3 laboratories in fall 2009 and winter 2010. To date, early utilization of the US Operating Segment of the ISS has fielded nearly 200 experiments for hundreds of ground-based investigators supporting international and US partner research. With a specific focus on life sciences research, this paper will summarize the science accomplishments from early research aboard the ISS- both applied human research for exploration, and research on the effects of microgravity on life. We will also look ahead to the full capabilities for life sciences research when assembly of ISS is complete in 2010.

  3. Small Science: Infants and Toddlers Experiencing Science in Everyday Family Life

    NASA Astrophysics Data System (ADS)

    Sikder, Shukla; Fleer, Marilyn

    2014-09-01

    Vygotsky (1987) stated that the restructured form of everyday concepts learned at home and in the community interact with scientific concepts introduced in formal school settings, leading to a higher level of scientific thinking for school-aged children. But, what does this mean for the scientific learning of infants and toddlers? What kinds of science learning are afforded at home during this early period of life? The study reported in this paper sought to investigate the scientific development of infants-toddlers (10 to 36 months) growing up in Bangladeshi families living in Australia and Singapore. Four families were studied over 2 years. Digital video observations were made of everyday family life and analysed using Vygotsky's theoretical framework of everyday concepts and scientific concepts (51 h of digital observations). While there are many possibilities for developing scientific concepts in infants-toddlers' everyday life, our study found four categories of what we have called small science: multiple possibilities for science; discrete science; embedded science and counter intuitive science. The findings of this study contribute to the almost non-existent literature into infants and toddlers' scientific development and advance new understandings of early childhood science education.

  4. Small Science: Infants and Toddlers Experiencing Science in Everyday Family Life

    NASA Astrophysics Data System (ADS)

    Sikder, Shukla; Fleer, Marilyn

    2015-06-01

    Vygotsky (1987) stated that the restructured form of everyday concepts learned at home and in the community interact with scientific concepts introduced in formal school settings, leading to a higher level of scientific thinking for school-aged children. But, what does this mean for the scientific learning of infants and toddlers? What kinds of science learning are afforded at home during this early period of life? The study reported in this paper sought to investigate the scientific development of infants-toddlers (10 to 36 months) growing up in Bangladeshi families living in Australia and Singapore. Four families were studied over 2 years. Digital video observations were made of everyday family life and analysed using Vygotsky's theoretical framework of everyday concepts and scientific concepts (51 h of digital observations). While there are many possibilities for developing scientific concepts in infants-toddlers' everyday life, our study found four categories of what we have called small science: multiple possibilities for science; discrete science; embedded science and counter intuitive science. The findings of this study contribute to the almost non-existent literature into infants and toddlers' scientific development and advance new understandings of early childhood science education.

  5. Marcello Malpighi and the difficult birth of modern life sciences.

    PubMed

    Piccolino, M

    1999-01-01

    All his life, Marcello Malpighi (1628-1694), the founder of modern microscopic anatomy, was unwillingly involved in difficult debates within a reactionary medical milieu that questioned the significance of modern science and its utility to medicine. Malpighi's responses to his detractors, included in posthumous works first published in 1697 by the Royal Society, offer an important insight into a critical phase of scientific progress in the 17th century and help to reveal the prevailing conception of science. In some ways, Malpighi's views predate important ideas in modern biology.

  6. Operational considerations for the Space Station Life Science Glovebox

    NASA Technical Reports Server (NTRS)

    Rasmussen, Daryl N.; Bosley, John J.; Vogelsong, Kristofer; Schnepp, Tery A.; Phillips, Robert W.

    1988-01-01

    The U.S. Laboratory (USL) module on Space Station will house a biological research facility for multidisciplinary research using living plant and animal specimens. Environmentally closed chambers isolate the specimen habitats, but specimens must be removed from these chambers during research procedures as well as while the chambers are being cleaned. An enclosed, sealed Life Science Glovebox (LSG) is the only locale in the USL where specimens can be accessed by crew members. This paper discusses the key science, engineering and operational considerations and constraints involving the LSG, such as bioisolation, accessibility, and functional versatility.

  7. Vision and change in introductory physics for the life sciences

    NASA Astrophysics Data System (ADS)

    Mochrie, S. G. J.

    2016-07-01

    Since 2010, our physics department has offered a re-imagined calculus-based introductory physics sequence for the life sciences. These courses include a selection of biologically and medically relevant topics that we believe are more meaningful to undergraduate premedical and biological science students than those found in a traditional course. In this paper, we highlight new aspects of the first-semester course, and present a comparison of student evaluations of this course versus a more traditional one. We also present the effect on student perception of the relevance of physics to biology and medicine after having taken this course.

  8. SLS-1: The first dedicated life sciences shuttle flight

    NASA Astrophysics Data System (ADS)

    Phillips, Robert W.

    1992-05-01

    Spacelab Life Sciences 1 was the first space laboratory dedicated to life science research. It was launched into orbit in early June 1991 aboard the space shuttle Columbia. The data from this flight have greatly expanded our knowledge of the effects of microgravity on human physiology as data were collected in-flight, not just pre and post. Principal goals of the mission were the measurement of rapid and semichronic (8 days) changes in the cardiovascular and cardiopulmonary systems during the flight and then to measure the rate of readaptation following return to Earth. Results from the four teams involved in that research will be presented in this panel. In addition to the cardiovascular-cardiopulmonary research, extensive metabolic studies encompassed fluid, electrolyte and energy balance, renal function, hematology and musculoskeletal changes. Finally, the crew participated in several neurovestibular studies. Overall, the mission was an outstanding success and has provided much new information on the lability of human responses to the space environment.

  9. A Practical Guide to Photoacoustic Tomography in the Life Sciences

    PubMed Central

    Wang, Lihong V.; Yao, Junjie

    2016-01-01

    The life sciences can benefit greatly from imaging technologies that connect microscopic discoveries with macroscopic observations. Photoacoustic tomography (PAT), a highly sensitive modality for imaging rich optical absorption contrast over a wide range of spatial scales at high speed, is uniquely positioned for this need. In PAT, endogenous contrast reveals tissue’s anatomical, functional, metabolic, and histologic properties, and exogenous contrast provides molecular and cellular specificity. The spatial scale of PAT covers organelles, cells, tissues, organs, and small-animal organisms. Consequently, PAT is complementary to other imaging modalities in contrast mechanism, penetration, spatial resolution, and temporal resolution. We review the fundamentals of PAT and provide practical guidelines to the broad life science community for matching PAT systems with research needs. We also summarize the most promising biomedical applications of PAT, discuss related challenges, and envision its potential to lead to further breakthroughs. PMID:27467726

  10. Venture Capital Investment in the Life Sciences in Switzerland.

    PubMed

    Hosang, Markus

    2014-12-01

    Innovation is one of the main driving factors for continuous and healthy economic growth and welfare. Switzerland as a resource-poor country is particularly dependent on innovation, and the life sciences, which comprise biotechnologies, (bio)pharmaceuticals, medical technologies and diagnostics, are one of the key areas of innovative strength of Switzerland. Venture capital financing and venture capitalists (frequently called 'VCs') and investors in public equities have played and still play a pivotal role in financing the Swiss biotechnology industry. In the following some general features of venture capital investment in life sciences as well as some opportunities and challenges which venture capital investors in Switzerland are facing are highlighted. In addition certain means to counteract these challenges including the 'Zukunftsfonds Schweiz' are discussed.

  11. Life Sciences Division and Center for Human Genome Studies 1994

    SciTech Connect

    Cram, L.S.; Stafford, C.

    1995-09-01

    This report summarizes the research and development activities of the Los Alamos National Laboratory`s Life Sciences Division and the biological aspects of the Center for Human Genome Studies for the calendar year 1994. The technical portion of the report is divided into two parts, (1) selected research highlights and (2) research projects and accomplishments. The research highlights provide a more detailed description of a select set of projects. A technical description of all projects is presented in sufficient detail so that the informed reader will be able to assess the scope and significance of each project. Summaries useful to the casual reader desiring general information have been prepared by the group leaders and appear in each group overview. Investigators on the staff of the Life Sciences Division will be pleased to provide further information.

  12. MIT-KSC space life sciences telescience testbed

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A Telescience Life Sciences Testbed is being developed. The first phase of this effort consisted of defining the experiments to be performed, investigating the various possible means of communication between KSC and MIT, and developing software and hardware support. The experiments chosen were two vestibular sled experiments: a study of ocular torsion produced by Y axis linear acceleration, based on the Spacelab D-1 072 Vestibular Experiment performed pre- and post-flight at KSC; and an optokinetic nystagmus (OKN)/linear acceleration interaction experiment. These two experiments were meant to simulate actual experiments that might be performed on the Space Station and to be representative of space life sciences experiments in general in their use of crew time and communications resources.

  13. Kierkegaard and psychology as the science of the "multifarious life".

    PubMed

    Klempe, Sven Hroar

    2013-09-01

    The aim of this paper is to demonstrate the actuality of some considerations around psychology made by the Danish philosopher Søren Kierkegaard (1813-1855). According to him psychology is about the "multifarious" life, which is a term that pinpoints the challenges psychology still have when it comes to including changes and genetic perspectives on its understanding of actual living. Yet Kierkegaard discusses psychology in relationship to metaphysics, which is an almost forgotten perspective. His understanding opens up for narrowing the definition of psychology down to the science of subjectivity, which at the same time elevates psychology to being the only science that focuses on the actual human life. Yet Kierkegaard's most important contribution to psychology is to maintain a radical distinction between subjectivity and objectivity, and in this respect the psychology of today is challenged.

  14. The NASA Space Life Sciences Training Program - Preparing the way

    NASA Technical Reports Server (NTRS)

    Biro, Ronald; Munsey, Bill; Long, Irene

    1990-01-01

    Attention is given to the goals and methods adopted in the NASA Space Life Sciences Training Program (SLSTP) for preparing scientists and engineers for space-related life-sciences research and operations. The SLSTP is based on six weeks of projects and lectures which give an overview of payload processing and experiment flow in the space environment. The topics addressed in the course of the program include descriptions of space vehicles, support hardware, equipment, and research directions. Specific lecture topics include the gravity responses of plants, mission integration of a flight experiment, and the cardiovascular deconditioning. The SLSTP is shown to be an important part of the process of recruiting and training qualified scientists and engineers to support space activities.

  15. SLS-1: The first dedicated life sciences shuttle flight

    NASA Technical Reports Server (NTRS)

    Phillips, Robert W.

    1992-01-01

    Spacelab Life Sciences 1 was the first space laboratory dedicated to life science research. It was launched into orbit in early June 1991 aboard the space shuttle Columbia. The data from this flight have greatly expanded our knowledge of the effects of microgravity on human physiology as data were collected in-flight, not just pre and post. Principal goals of the mission were the measurement of rapid and semichronic (8 days) changes in the cardiovascular and cardiopulmonary systems during the flight and then to measure the rate of readaptation following return to Earth. Results from the four teams involved in that research will be presented in this panel. In addition to the cardiovascular-cardiopulmonary research, extensive metabolic studies encompassed fluid, electrolyte and energy balance, renal function, hematology and musculoskeletal changes. Finally, the crew participated in several neurovestibular studies. Overall, the mission was an outstanding success and has provided much new information on the lability of human responses to the space environment.

  16. Venture Capital Investment in the Life Sciences in Switzerland.

    PubMed

    Hosang, Markus

    2014-12-01

    Innovation is one of the main driving factors for continuous and healthy economic growth and welfare. Switzerland as a resource-poor country is particularly dependent on innovation, and the life sciences, which comprise biotechnologies, (bio)pharmaceuticals, medical technologies and diagnostics, are one of the key areas of innovative strength of Switzerland. Venture capital financing and venture capitalists (frequently called 'VCs') and investors in public equities have played and still play a pivotal role in financing the Swiss biotechnology industry. In the following some general features of venture capital investment in life sciences as well as some opportunities and challenges which venture capital investors in Switzerland are facing are highlighted. In addition certain means to counteract these challenges including the 'Zukunftsfonds Schweiz' are discussed. PMID:26508600

  17. Physician characteristics associated with decisions to withdraw life support.

    PubMed Central

    Christakis, N A; Asch, D A

    1995-01-01

    OBJECTIVE. This study was undertaken to identify attributes of physicians associated with physicians' decisions to withdraw life support. METHODS. Of the 862 Pennsylvania internists surveyed and asked to make decisions in response to hypothetical vignettes and to report their actual experience with the withdrawal of life support, 485 (56%) responded. The data were analyzed with regression models. RESULTS. With other factors controlled, physicians were more willing to withdraw life support if they were young, practiced in a tertiary care setting, or spent more time in clinical practice; they were less willing if they were Catholic or Jewish. Physicians reported a higher frequency of actually withdrawing life support if they were young, had more contact with ICU patients, spent more time in clinical practice, or were specialists. Physicians with a greater willingness to withdraw were more likely to report having done so. CONCLUSIONS. Physicians' personal characteristics are associated with both their preferences and their practice in the withdrawal of life support, and a greater willingness to withdraw is associated with a higher frequency of withdrawal. The influence of physician characteristics demonstrates that patient preferences and clinical circumstances do not exclusively govern such ethical decisions. PMID:7892921

  18. Social science in a stem cell laboratory: what happened when social and life sciences met.

    PubMed

    Stacey, Glyn; Stephens, Neil

    2012-01-01

    We describe the experience of conducting intensive social science research at the UK Stem Cell Bank from the viewpoint of both the person conducting the social science research and the Director of the Bank. We detail the initial misunderstandings and concerns held by both and the problems these caused. Then we describe how the relationship developed as the project progressed and shared benefits became apparent. Finally, while acknowledging potential areas of tension between the life and social sciences, we suggest further interaction between the disciplines would prove beneficial for both and speculate as to how this may be achieved. In the discussion we identify a set of learning points from our experience and definitions of social science terminology that may help to inform future engagements between life and social scientists.

  19. Spacelab Life Sciences-2 ARC payload - An overview

    NASA Technical Reports Server (NTRS)

    Savage, P. D., Jr.; Dalton, B.; Hogan, R.; Leon, H.

    1988-01-01

    The effects of microgravity on the anatomy and physiology of rodent and primate systems will be investigated on the Spacelab Life Sciences 2 (SLS-2) mission. Here, the payload being developed at NASA Ames Research Center (ARC) is described and illustrated with drawings. The ARC payload will build upon the success of previous missions. Experiments includes asssessment of rodent cardiovascular and vestibular system responses, primate thermoregulation and metabolic responses.

  20. Introductory Life Science Mathematics and Quantitative Neuroscience Courses

    PubMed Central

    Olifer, Andrei

    2010-01-01

    We describe two sets of courses designed to enhance the mathematical, statistical, and computational training of life science undergraduates at Emory College. The first course is an introductory sequence in differential and integral calculus, modeling with differential equations, probability, and inferential statistics. The second is an upper-division course in computational neuroscience. We provide a description of each course, detailed syllabi, examples of content, and a brief discussion of the main issues encountered in developing and offering the courses. PMID:20810971

  1. Life Sciences Research and Development Opportunities During Suborbital Space Flight

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.

    2010-01-01

    Suborbital space platforms provide a unique opportunity for Space Life Sciences in the next few years. The opportunities include: physiological characterization of the first few minutes of space flight; evaluation of a wide-variety of medical conditions during periods of hyper and hypo-gravity through physiological monitoring; and evaluation of new biomedical and environmental health technologies under hyper and hypo-gravity conditions

  2. Digest of Russian Space Life Sciences, issue 33

    NASA Technical Reports Server (NTRS)

    Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)

    1993-01-01

    This is the thirty-third issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 55 papers published in Russian journals. The abstracts in this issue have been identified as relevant to the following areas of space biology and medicine: biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, equipment and instrumentation, gastrointestinal system, genetics, hematology, human performance, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, psychology, radiobiology, and reproductive system.

  3. Is Vacation Apprenticeship of Undergraduate Life Science Students a Model for Human Capacity Development in the Life Sciences?

    NASA Astrophysics Data System (ADS)

    Thelma Downs, Colleen

    2010-03-01

    A life sciences undergraduate apprenticeship initiative was run during the vacations at a South African university. In particular, the initiative aimed to increase the number of students from disadvantaged backgrounds. Annually 12-18 undergraduate biology students were apprenticed to various institutions during the January and July vacations from 2005 to 2007. This was to develop their skills and interests in the biological sciences, particularly in biocontrol and entomology. Results suggest that this "grassroots" approach increased the number of Black and female students in the life sciences. In particular, it developed their knowledge of the discipline of science and of how it progresses. For most students it enthused and motivated them in the pursuit of their studies and in considering postgraduate research. Students benefited socially from the interactions with researchers and staff, and learnt the protocols of research institutions. Economically most students benefited as they had financial loans for their studies, and the additional monies assisted them in meeting some of the payments. It is proposed that this undergraduate apprenticeship be used as a model for human capacity development at an undergraduate level that can be adopted in the other sciences and universities. This provides an alternative to the current South African National Research Foundation model, a top-down approach, that is aimed at recruiting Black and female students at the postgraduate level.

  4. NASA space life sciences research and education support program

    NASA Technical Reports Server (NTRS)

    Jones, Terri K.

    1995-01-01

    USRA's Division of Space Life Sciences (DSLS) was established in 1983 as the Division of Space Biomedicine to facilitate participation of the university community in biomedical research programs at the NASA Johnson Space Center (JSC). The DSLS is currently housed in the Center for Advanced Space Studies (CASS), sharing quarters with the Division of Educational Programs and the Lunar and Planetary Institute. The DSLS provides visiting scientists for the Johnson Space Center; organizes conferences, workshops, meetings, and seminars; and, through subcontracts with outside institutions, supports NASA-related research at more than 25 such entities. The DSLS has considerable experience providing visiting scientists, experts, and consultants to work in concert with NASA Life Sciences researchers to define research missions and goals and to perform a wide variety of research administration and program management tasks. The basic objectives of this contract have been to stimulate, encourage, and assist research and education in the NASA life sciences. Scientists and experts from a number of academic and research institutions in this country and abroad have been recruited to support NASA's need to find a solution to human physiological problems associated with living and working in space and on extraterrestrial bodies in the solar system.

  5. Improving life sciences information retrieval using semantic web technology.

    PubMed

    Quan, Dennis

    2007-05-01

    The ability to retrieve relevant information is at the heart of every aspect of research and development in the life sciences industry. Information is often distributed across multiple systems and recorded in a way that makes it difficult to piece together the complete picture. Differences in data formats, naming schemes and network protocols amongst information sources, both public and private, must be overcome, and user interfaces not only need to be able to tap into these diverse information sources but must also assist users in filtering out extraneous information and highlighting the key relationships hidden within an aggregated set of information. The Semantic Web community has made great strides in proposing solutions to these problems, and many efforts are underway to apply Semantic Web techniques to the problem of information retrieval in the life sciences space. This article gives an overview of the principles underlying a Semantic Web-enabled information retrieval system: creating a unified abstraction for knowledge using the RDF semantic network model; designing semantic lenses that extract contextually relevant subsets of information; and assembling semantic lenses into powerful information displays. Furthermore, concrete examples of how these principles can be applied to life science problems including a scenario involving a drug discovery dashboard prototype called BioDash are provided.

  6. Crafting a science life: Learning from twentieth century women

    NASA Astrophysics Data System (ADS)

    Lenz, Michele Ann

    This study examined how women in the field of science craft a science life. Within a historical and cultural framework, the study analyzed the autobiographies, biographies, and other written works of five noted women scientists who lived during the time period of 1878 through 1992. The women scientists chosen for the study were Lise Meitner, Florence Seibert, Barbara McClintock, Rita Levi-Montalcini, and Rosalind Franklin. Together they represented the three major science disciplines of biology, chemistry and physics. I attempted to make sense of my own science life using the stories of the women scientists as a framework. Situating my experiences within the context of the lives of the women scientists allowed me to use a phenomenological approach to discern commonalities within their lives and my own. The results indicated that the women scientists and myself encountered multiple obstacles in terms of access and equity. However, it was also indicated that all of the women in the study developed a variety of techniques, including resistance and accommodation, in order to navigate these obstacles while still being able to pursue their chosen career path. These women did, however, make great sacrifices that cost them personally, emotionally, financially, and even in terms of their career advancement. Their success was closely tied to their ability to forge their own path, to create their own way of living, and to accept themselves as nonconformists.

  7. Multimedia: Bringing the Sciences to Life--Experiences with Multimedia in the Life Sciences.

    ERIC Educational Resources Information Center

    Cavender, Jane F.; Rutter, Steve M.

    "Straight" lecturing as the only method for information delivery was at one time an efficient means of college teaching. Increased enrollment in the biological sciences, the diversity of preparedness of the students, and the variety of learning preferences of the students require new ways of disseminating information and assessing classroom…

  8. Phenomenology and the life sciences: Clarifications and complementarities.

    PubMed

    Sheets-Johnstone, Maxine

    2015-12-01

    This paper first clarifies phenomenology in ways essential to demonstrating its basic concern with Nature and its recognition of individual and cultural differences as well as commonalities. It furthermore clarifies phenomenological methodology in ways essential to understanding the methodology itself, its purpose, and its consequences. These clarifications show how phenomenology, by hewing to the dynamic realities of life itself and experiences of life itself, counters reductive thinking and "embodiments" of one kind and another. On the basis of these clarifications, the paper then turns to detailing conceptual complementarities between phenomenology and the life sciences, particularly highlighting studies in coordination dynamics. In doing so, it brings to light fundamental relationships such as those between mind and motion and between intrinsic dynamics and primal animation. It furthermore highlights the common concern with origins in both phenomenology and evolutionary biology: the history of how what is present is related to its inception in the past and to its transformations from past to present.

  9. Accelerated life testing effects on CMOS microcircuit characteristics

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The 250 C, 200C and 125C accelerated tests are described. The wear-out distributions from the 250 and 200 C tests were used to estimate the activation energy between the two test temperatures. The duration of the 125 C test was not sufficient to bring the test devices into the wear-out region. It was estimated that, for the most complex of the three devices types, the activation energy between 200 C and 125 C should be at least as high as that between 250 C and 200 C. The practicality of the use of high temperature for the accelerated life tests from the point of view of durability of equipment is assessed. Guidlines for the development of accelerated life-test conditions are proposed. The use of the silicon nitride overcoat to improve the high temperature accelerated life-test characteristics of CMOS microcircuits is described.

  10. "Walk along Life Science Bldg>(Chemistry & I Bldg. in view)." ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    "Walk along Life Science Bldg>(Chemistry & I Bldg. in view)." 1960. Photo no. 548. Partial oblique view of the south front, Life Science Building, looking to the northeast. - San Bernardino Valley College, Life Science Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  11. Learning Life Sciences: Design and Development of a Virtual Molecular Biology Learning Lab

    ERIC Educational Resources Information Center

    Zumbach, Joerg; Schmitt, Stefanie; Reimann, Peter; Starkloff, Philipp

    2006-01-01

    The life sciences, in particular molecular genetics, have become a pivotal area of research and innovation, and at the same time are amongst the most controversially discussed in today's society. Despite this discussion, the demand for life science expertise increases rapidly, creating a growing need for life science education in particular and…

  12. Inspiring the Next Generation in Space Life Sciences

    NASA Technical Reports Server (NTRS)

    Hayes, Judith

    2010-01-01

    Competitive summer internships in space life sciences at NASA are awarded to college students every summer. Each student is aligned with a NASA mentor and project that match his or her skills and interests, working on individual projects in ongoing research activities. The interns consist of undergraduate, graduate, and medical students in various majors and disciplines from across the United States. To augment their internship experience, students participate in the Space Life Sciences Summer Institute (SLSSI). The purpose of the Institute is to offer a unique learning environment that focuses on the current biomedical issues associated with human spaceflight; providing an introduction of the paradigms, problems, and technologies of modern spaceflight cast within the framework of life sciences. The Institute faculty includes NASA scientists, physicians, flight controllers, engineers, managers, and astronauts; and fosters a multi-disciplinary science approach to learning with a particular emphasis on stimulating experimental creativity and innovation within an operational environment. This program brings together scientists and students to discuss cutting-edge solutions to problems in space physiology, environmental health, and medicine; and provides a familiarization of the various aspects of space physiology and environments. In addition to the lecture series, behind-the-scenes tours are offered that include the Neutral Buoyancy Laboratory, Mission Control Center, space vehicle training mockups, and a hands-on demonstration of the Space Shuttle Advanced Crew Escape Suit. While the SLSSI is managed and operated at the Johnson Space Center in Texas, student interns from the other NASA centers (Glenn and Ames Research Centers, in Ohio and California) also participate through webcast distance learning capabilities.

  13. Life In Space: An Introduction To Space Life Sciences And The International Space Station

    NASA Astrophysics Data System (ADS)

    Fong, Kevin

    2001-11-01

    The impact of the space environment upon living organisms is profound. Its effects range from alterations in sub-cellular processes to changes in the structure and function of whole organ systems. As the number of astronaut and cosmonaut crews flown in space has grown, so to has our understanding of the effects of the space environment upon biological systems. There are many parallels between the physiology of space flight and terrestrial disease processes, and the response of astronaut crews themselves to long-duration space deployment is therefore of central interest. In the next 15 years the International Space Station (ISS) will serve as a permanently manned dedicated life and physical sciences platform for the further investigation of these phenomena. The European Space Agency's Columbus module will hold the bulk of the ISS life science capability and, in combination with NASA's Human Research Facility (HRF) will accommodate the rack mounted experimental apparatus. The programme of experimentation will include efforts in fundamental biology, human physiology, behavioural science and space biomedical research. In the four decades since Yuri Gagarin first orbited the Earth, space life science has emerged as a field of study in its own right. The ISS takes us into the next era of human space exploration, and it is hoped that its programme of research will yield new insights, novel therapeutic interventions, and improved biotechnology for terrestrial application.

  14. Promoting Prospective Elementary Teachers' Learning to Use Formative Assessment for Life Science Instruction

    ERIC Educational Resources Information Center

    Sabel, Jaime L.; Forbes, Cory T.; Zangori, Laura

    2015-01-01

    To support elementary students' learning of core, standards-based life science concepts highlighted in the "Next Generation Science Standards," prospective elementary teachers should develop an understanding of life science concepts and learn to apply their content knowledge in instructional practice to craft elementary science learning…

  15. A Descriptive Study of Alternative Life and Physical Science Conceptions of Preservice Elementary Teachers.

    ERIC Educational Resources Information Center

    Arditzoglou, Sophia Yani; Crawley, Frank E.

    The purpose of this study was to identify alternative life and physical science concepts possessed by preservice elementary science teachers (n=49). Science textbooks used in grades 5 and 6 were surveyed and a literature review of alternative life and physical science concepts was conducted. Results of the survey and literature review resulted in…

  16. Engaging in science inquiry: Prospective elementary teachers' learning in an innovative life science course

    NASA Astrophysics Data System (ADS)

    Haefner, Leigh Boardman

    2001-10-01

    This study examined prospective elementary teachers' learning about science inquiry in the context of an innovative life science course that engaged them in an original science investigation. Eleven elementary education majors participated in the study. A multiple case study approach that was descriptive, interpretive, and framed by grounded theory was employed. Primary data sources included transcripts of semi-structured interviews, text associated with online threaded discussions, and course project documents, such as lesson plans and written reflections. Secondary data sources included videotaped class sessions and field notes. Data were analyzed using analytical induction techniques, and trustworthiness was developed through the use of multiple data sources, triangulation of data, and the use of counterexamples to the assertions. Three major findings emerged from the cross-case analysis. First, engaging in an original science investigation assisted prospective teachers in becoming more attentive to the processes of science and developing more elaborated and data-driven explanations of how science is practiced. Second, when prospective teachers struggled with particular aspects of their investigations, those aspects became foci of change in their thinking about science and doing science. Third, as prospective teachers came to place a greater emphasis on questions, observations, and experimentation as fundamental aspects of doing science, they became more accepting of approaches to teaching science that encourage children's questions about science phenomena. Implications include the need to re-conceptualize teacher preparation programs to include multiple opportunities to engage prospective teachers in learning science as inquiry, and attend to connections among subject matter knowledge, subject-specific pedagogy and experiences with children.

  17. An examination of perceived characteristics of career scientists and Delaware science students who do and do not participate in the Science Olympiad

    NASA Astrophysics Data System (ADS)

    Hounsell, Thomas Sidney

    2001-08-01

    The purpose of this study was to determine the characteristics possessed by career scientists and by middle and high school students who were considered good in science, as identified by their Science Olympiad coaches, judges, science teachers, and other students. The participants in this study included students who participated in the Science Olympiad and honors science students who had not participated in the Science Olympiad. The students in this study attended secondary schools within the State of Delaware. The adult participants were teachers, Science Olympiad coaches, and judges also from the State of Delaware. The participating scientists were either employed by a Delaware Hospital or by a company involved in medical research located in New Jersey. The framework for this study was developed around a descriptive research design utilizing four question surveys and interviews. For example, participants were asked to list the characteristics that they considered most evident among successful science students. They also listed the characteristics that Science Olympiad competitors demonstrated more frequently than the general student population. In this study the specific characteristics indicated by all groups surveyed were intelligence, task orientation, and problem-solving skills. Self-motivation was also strongly noted by all groups in their interviews. The data gathered suggested satisfaction from numerous rewards associated with participation in the Science Olympiad. Specifically mentioned rewards were medals, new knowledge, self-confidence, real life experience, problem-solving experience, a chance to do hands-on science, and completing tasks with a team. The primary recommendations for further research were: to investigate the possible influence of participation in the Science Olympiad on science as a career choice; a repeat of this study involving a larger and more diverse national group; and a study that further examines the characteristics of "good

  18. Life Science Start-up Activities at the Universities of Applied Sciences (UAS).

    PubMed

    Huber, Gerda

    2014-12-01

    The universities of applied sciences (UAS) provide several values for the society and economy of a country. Besides education of high level professionals, transfer of knowledge from research to applications in industry or as new start-up companies is an important task. This is done in different ways in the various disciplines. In Life Sciences, a key industry branch in Switzerland, innovation is a competitive success factor and research findings from UAS/Life Sciences contribute to the valorization of new technologies to products, services and to business performance. In order to foster awareness for the innovation need of industry, UAS install processes and support for transfer of research and technology results to marketable applications. Furthermore they may facilitate contacts of researchers and students with entrepreneurs in order to animate start-up founding as a true alternative to being employed. Access to coaching and entrepreneurial training completes the essential basis. PMID:26508606

  19. Teachers' Characteristics and Science Teachers' Classroom Behaviour: Evidence from Science Classroom Surveys

    ERIC Educational Resources Information Center

    Ajaja, Patrick O.; Eravwoke, Urhievwejire Ochuko

    2013-01-01

    The major purpose of this study was to find out if there is any influence of teachers' characteristics on science teacher's classroom behaviours and determine the kind of relationship between teachers' characteristics and classroom behaviours. To guide this study, five research questions and hypotheses were raised, stated, answered, and tested at…

  20. Increasing student learning through space life sciences education.

    PubMed

    Moreno, Nancy P; Roberts, J Kyle; Tharp, Barbara Z; Denk, James P; Cutler, Paula H; Thomson, William A

    2005-01-01

    Scientists and educators at Baylor College of Medicine are using space life sciences research areas as themes for middle school science and health instructional materials. This paper discusses study findings of the most recent unit, Food and Fitness, which teaches concepts related to energy and nutrition through guided inquiry. Results of a field test involving more than 750 students are reported. Use of the teaching materials resulted in significant knowledge gains by students as measured on a pre/post assessment administered by teachers. In addition, an analysis of the time spent by each teacher on each activity suggested that it is preferable to conduct all of the activities in the unit with students rather than allocating the same total amount of time on just a subset of the activities.

  1. Increasing student learning through space life sciences education

    NASA Astrophysics Data System (ADS)

    Moreno, Nancy P.; Kyle Roberts, J.; Tharp, Barbara Z.; Denk, James P.; Cutler, Paula H.; Thomson, William A.

    2005-05-01

    Scientists and educators at Baylor College of Medicine are using space life sciences research areas as themes for middle school science and health instructional materials. This paper discusses study findings of the most recent unit, Food and Fitness, which teaches concepts related to energy and nutrition through guided inquiry. Results of a field test involving more than 750 students are reported. Use of the teaching materials resulted in significant knowledge gains by students as measured on a pre/post assessment administered by teachers. In addition, an analysis of the time spent by each teacher on each activity suggested that it is preferable to conduct all of the activities in the unit with students rather than allocating the same total amount of time on just a subset of the activities.

  2. Food, Environment, Engineering and Life Sciences Program (Invited)

    NASA Astrophysics Data System (ADS)

    Mohtar, R. H.; Whittaker, A.; Amar, N.; Burgess, W.

    2009-12-01

    Food, Environment, Engineering and Life Sciences Program Nadia Amar, Wiella Burgess, Rabi H. Mohtar, and Dale Whitaker Purdue University Correspondence: mohtar@purdue.edu FEELS, the Food, Environment, Engineering and Life Sciences Program is a grant of the National Science Foundation for the College of Agriculture at Purdue University. FEELS’ mission is to recruit, retain, and prepare high-achieving students with financial difficulties to pursue STEM (Science, Technology, Engineering, and Mathematics) careers. FEELS achieves its goals offering a scholarship of up to 10,000 per student each year, academic, research and industrial mentors, seminars, study tables, social and cultural activities, study abroad and community service projects. In year one, nine low-income, first generation and/or ethnic minority students joined the FEELS program. All 9 FEELS fellows were retained in Purdue’s College of Agriculture (100%) with 7 of 9 (77.7%) continuing to pursue STEM majors. FEELS fellows achieved an average GPA in their first year of 3.05, compared to the average GPA of 2.54 for low-income non- FEELS students in the College of Agriculture. A new cohort of 10 students joined the program in August 2009. FEELS fellows received total scholarships of nearly 50,000 for the 2008-2009 academic year. These scholarships were combined with a holistic program that included the following key elements: FEELS Freshman Seminars I and II, 2 study tables per week, integration activities and frequent meetings with FEELS academic mentors and directors. Formative assessments of all FEELS activities were used to enhance the first year curriculum for the second cohort. Cohort 1 will continue into their second year where the focus will be on undergraduate research. More on FEELS programs and activities: www.purdue.edu/feels.

  3. Darwin and the origin of life: public versus private science.

    PubMed

    Strick, James E

    2009-12-01

    In the first twenty years after the publication of Darwin's On the Origin of Species, an intense debate took place within the ranks of Darwin's supporters over exactly what his theory implied about the means by which the original living organism formed on Earth. Many supporters of evolutionary science also supported the doctrine of spontaneous generation: life forming from nonliving material not just once but many times up to the present day. Darwin was ambivalent on this topic. He feared its explosive potential to drive away liberal-minded Christians who might otherwise be supporters. His ambivalent wording created still more confusion, both among friends and foes, about what Darwin actually believed about the origin of life. A famous lecture by Thomas H. Huxley in 1870 set forth what later became the 'party line' Darwinian position on the subject.

  4. Space Station Centrifuge: A Requirement for Life Science Research

    NASA Technical Reports Server (NTRS)

    Smith, Arthur H.; Fuller, Charles A.; Johnson, Catherine C.; Winget, Charles M.

    1992-01-01

    A centrifuge with the largest diameter that can be accommodated on Space Station Freedom is required to conduct life science research in the microgravity environment of space. (This was one of the findings of a group of life scientists convened at the University of California, Davis, by Ames Research Center.) The centrifuge will be used as a research tool to understand how gravity affects biological processes; to provide an on-orbit one-g control; and to assess the efficacy of using artificial gravity to counteract the deleterious biological effect of space flight. The rationale for the recommendation and examples of using ground-based centrifugation for animal and plant acceleration studies are presented. Included are four appendixes and an extensive bibliography of hypergravity studies.

  5. Philosophical Approaches towards Sciences of Life in Early Cybernetics

    NASA Astrophysics Data System (ADS)

    Montagnini, Leone

    2008-07-01

    The article focuses on the different conceptual and philosophical approaches towards the sciences of life operating in the backstage of Early Cybernetics. After a short reconstruction of the main steps characterizing the origins of Cybernetics, from 1940 until 1948, the paper examines the complementary conceptual views between Norbert Wiener and John von Neumann, as a "fuzzy thinking" versus a "logical thinking", and the marked difference between the "methodological individualism" shared by both of them versus the "methodological collectivism" of most of the numerous scientists of life and society attending the Macy Conferences on Cybernetics. The main thesis sustained here is that these different approaches, quite invisible to the participants, were different, maybe even opposite, but they could provoke clashes, as well as cooperate in a synergic way.

  6. Darwin and the origin of life: public versus private science.

    PubMed

    Strick, James E

    2009-12-01

    In the first twenty years after the publication of Darwin's On the Origin of Species, an intense debate took place within the ranks of Darwin's supporters over exactly what his theory implied about the means by which the original living organism formed on Earth. Many supporters of evolutionary science also supported the doctrine of spontaneous generation: life forming from nonliving material not just once but many times up to the present day. Darwin was ambivalent on this topic. He feared its explosive potential to drive away liberal-minded Christians who might otherwise be supporters. His ambivalent wording created still more confusion, both among friends and foes, about what Darwin actually believed about the origin of life. A famous lecture by Thomas H. Huxley in 1870 set forth what later became the 'party line' Darwinian position on the subject. PMID:19879001

  7. Life sciences get important new data from Spacelab mission. III

    NASA Technical Reports Server (NTRS)

    Schuiling, Roelof L.; Young, Steven

    1991-01-01

    An investigation of the effects of weightlessness on the human body is reported that was conducted on a flight of the Space Shuttle Columbia. Experiments are described regarding zero-gravity effects on the human perception of balance, the growth of lymphocytes, and general life-sciences examinations of body mass, body fluid, pulmonary parameters, and echocardiograph imaging. Specific attention is given to the day-to-day operations of the mission, and particular emphasis is given to the study of rodents and jellyfish reacting to microgravity.

  8. Life sciences on-line: A study in hypermedia application

    NASA Technical Reports Server (NTRS)

    Christman, Linda A.; Hoang, Nam V.; Proctor, David R.

    1990-01-01

    The main objective was to determine the feasibility of using a computer-based interactive information recall module for the Life Sciences Project Division (LSPD) at NASA, Johnson Space Center. LSPD personnel prepare payload experiments to test and monitor physiological functions in zero gravity. Training refreshers and other types of online help are needed to support personnel in their tasks during mission testing and in flight. Results of a survey of other hypermedia and multimedia developers and lessons learned by the developer of the LSPD prototype module are presented. Related issues and future applications are also discussed and further hypermedia development within the LSPD is recommended.

  9. Life Sciences and the web: a new era for collaboration

    PubMed Central

    Sagotsky, Jonathan A; Zhang, Le; Wang, Zhihui; Martin, Sean; Deisboeck, Thomas S

    2008-01-01

    The World Wide Web has revolutionized how researchers from various disciplines collaborate over long distances. This is nowhere more important than in the Life Sciences, where interdisciplinary approaches are becoming increasingly powerful as a driver of both integration and discovery. Data access, data quality, identity, and provenance are all critical ingredients to facilitate and accelerate these collaborative enterprises and it is here where Semantic Web technologies promise to have a profound impact. This paper reviews the need for, and explores advantages of as well as challenges with these novel Internet information tools as illustrated with examples from the biomedical community. PMID:18594519

  10. Professional Networks in the Life Sciences: Linking the Linked

    PubMed Central

    Deisboeck, Thomas S.; Sagotsky, Jonathan

    2010-01-01

    The world wide web has furthered the emergence of a multitude of online expert communities. Continued progress on many of the remaining complex scientific questions requires a wide ranging expertise spectrum with access to a variety of distinct data types. Moving beyond peer-to-peer to community-to-community interaction is therefore one of the biggest challenges for global interdisciplinary Life Sciences research, including that of cancer. Cross-domain data query, access, and retrieval will be important innovation areas to enable and facilitate this interaction in the coming years. PMID:20838607

  11. Patenting the life sciences at the European Patent Office.

    PubMed

    Gates, Christina

    2014-12-01

    The European patent system is very much like those of the United States and other major countries. Patent applications can be filed as a first filing, as a priority application, or as a national phase of a Patent Cooperation Treaty application. The applications are searched, rigorously examined, and ultimately granted, with the time periods varying somewhat depending on the application type. The object of this article is to highlight some of the differences between the U.S. and European systems, particularly as they relate to life sciences. PMID:25342060

  12. Conceptual planning for Space Station life sciences human research project

    NASA Technical Reports Server (NTRS)

    Primeaux, Gary R.; Miller, Ladonna J.; Michaud, Roger B.

    1986-01-01

    The Life Sciences Research Facility dedicated laboratory is currently undergoing system definition within the NASA Space Station program. Attention is presently given to the Humam Research Project portion of the Facility, in view of representative experimentation requirement scenarios and with the intention of accommodating the Facility within the Initial Operational Capability configuration of the Space Station. Such basic engineering questions as orbital and ground logistics operations and hardware maintenance/servicing requirements are addressed. Biospherics, calcium homeostasis, endocrinology, exercise physiology, hematology, immunology, muscle physiology, neurosciences, radiation effects, and reproduction and development, are among the fields of inquiry encompassed by the Facility.

  13. Life sciences biomedical research planning for Space Station

    NASA Technical Reports Server (NTRS)

    Primeaux, Gary R.; Michaud, Roger; Miller, Ladonna; Searcy, Jim; Dickey, Bernistine

    1987-01-01

    The Biomedical Research Project (BmRP), a major component of the NASA Life Sciences Space Station Program, incorporates a laboratory for the study of the effects of microgravity on the human body, and the development of techniques capable of modifying or counteracting these effects. Attention is presently given to a representative scenario of BmRP investigations and associated engineering analyses, together with an account of the evolutionary process by which the scenarios and the Space Station design requirements they entail are identified. Attention is given to a tether-implemented 'variable gravity centrifuge'.

  14. TOPICAL REVIEW: Fluorescence lifetime imaging microscopy in life sciences

    NASA Astrophysics Data System (ADS)

    Willem Borst, Jan; Visser, Antonie J. W. G.

    2010-10-01

    Fluorescence lifetime imaging microscopy (FLIM) and fluorescence anisotropy imaging microscopy (FAIM) are versatile tools for the investigation of the molecular environment of fluorophores in living cells. Owing to nanometre-scale interactions via Förster resonance energy transfer (FRET), FLIM and FAIM are powerful microscopy methods for the detection of conformational changes and protein-protein interactions reflecting the biochemical status of live cells. This review provides an overview of recent advances in photonics techniques, quantitative data analysis methods and applications in the life sciences.

  15. Life sciences research in space: The requirement for animal models

    NASA Technical Reports Server (NTRS)

    Fuller, C. A.; Philips, R. W.; Ballard, R. W.

    1987-01-01

    Use of animals in NASA space programs is reviewed. Animals are needed because life science experimentation frequently requires long-term controlled exposure to environments, statistical validation, invasive instrumentation or biological tissue sampling, tissue destruction, exposure to dangerous or unknown agents, or sacrifice of the subject. The availability and use of human subjects inflight is complicated by the multiple needs and demands upon crew time. Because only living organisms can sense, integrate and respond to the environment around them, the sole use of tissue culture and computer models is insufficient for understanding the influence of the space environment on intact organisms. Equipment for spaceborne experiments with animals is described.

  16. Spacelab Life Sciences-1 electrical diagnostic expert system

    NASA Technical Reports Server (NTRS)

    Kao, C. Y.; Morris, W. S.

    1989-01-01

    The Spacelab Life Sciences-1 (SLS-1) Electrical Diagnostic (SLED) expert system is a continuous, real time knowledge-based system to monitor and diagnose electrical system problems in the Spacelab. After fault isolation, the SLED system provides corrective procedures and advice to the ground-based console operator. The SLED system updates its knowledge about the status of Spacelab every 3 seconds. The system supports multiprocessing of malfunctions and allows multiple failures to be handled simultaneously. Information which is readily available via a mouse click includes: general information about the system and each component, the electrical schematics, the recovery procedures of each malfunction, and an explanation of the diagnosis.

  17. [Characteristics of the quality of life of medical students].

    PubMed

    Zikmundová, K; Zavázalová, H; Vozehová, S; Lavicka, F

    2002-01-01

    Lifestyle is one of the most important determinants of health. The authors are interested in the characteristics of medical students' life and they used the anonymous questionnaire study. The sample was 152 persons and this study is continuing. The article presents some information about nutrition, negative events (smoking, alcohol, and drugs), sports activities and sleep. The investigated data are indicators of using knowledge by medical students in their extra-school activities (healthy lifestyle). From the current data there is the fact that nutrition habits and day regime are not so ideal. The fact about consumption of drugs, alcohol, smoking habit and sleeping time is nearly satisfied.

  18. Factors in life science textbooks that may deter girls' interest in science

    NASA Astrophysics Data System (ADS)

    Potter, Ellen F.; Rosser, Sue V.

    In order to examine factors that may deter girls' interest in science, five seventh-grade life science textbooks were analyzed for sexism in language, images, and curricular content, and for features of activities that have been found to be useful for motivating girls. Although overt sexism was not apparent, subtle forms of sexism in the selection of language, images, and curricular content were found. Activities had some features useful to girls, but other features were seldom included. Teachers may wish to use differences that were found among texts as one basis for text selection.

  19. Design concepts for the Centrifuge Facility Life Sciences Glovebox

    NASA Technical Reports Server (NTRS)

    Sun, Sidney C.; Horkachuck, Michael J.; Mckeown, Kellie A.

    1989-01-01

    The Life Sciences Glovebox will provide the bioisolated environment to support on-orbit operations involving non-human live specimens and samples for human life sceinces experiments. It will be part of the Centrifuge Facility, in which animal and plant specimens are housed in bioisolated Habitat modules and transported to the Glovebox as part of the experiment protocols supported by the crew. At the Glovebox, up to two crew members and two habitat modules must be accommodated to provide flexibility and support optimal operations. This paper will present several innovative design concepts that attempt to satisfy the basic Glovebox requirements. These concepts were evaluated for ergonomics and ease of operations using computer modeling and full-scale mockups. The more promising ideas were presented to scientists and astronauts for their evaluation. Their comments, and the results from other evaluations are presented. Based on the evaluations, the authors recommend designs and features that will help optimize crew performance and facilitate science accommodations, and specify problem areas that require further study.

  20. The Bioperl toolkit: Perl modules for the life sciences.

    PubMed

    Stajich, Jason E; Block, David; Boulez, Kris; Brenner, Steven E; Chervitz, Stephen A; Dagdigian, Chris; Fuellen, Georg; Gilbert, James G R; Korf, Ian; Lapp, Hilmar; Lehväslaiho, Heikki; Matsalla, Chad; Mungall, Chris J; Osborne, Brian I; Pocock, Matthew R; Schattner, Peter; Senger, Martin; Stein, Lincoln D; Stupka, Elia; Wilkinson, Mark D; Birney, Ewan

    2002-10-01

    The Bioperl project is an international open-source collaboration of biologists, bioinformaticians, and computer scientists that has evolved over the past 7 yr into the most comprehensive library of Perl modules available for managing and manipulating life-science information. Bioperl provides an easy-to-use, stable, and consistent programming interface for bioinformatics application programmers. The Bioperl modules have been successfully and repeatedly used to reduce otherwise complex tasks to only a few lines of code. The Bioperl object model has been proven to be flexible enough to support enterprise-level applications such as EnsEMBL, while maintaining an easy learning curve for novice Perl programmers. Bioperl is capable of executing analyses and processing results from programs such as BLAST, ClustalW, or the EMBOSS suite. Interoperation with modules written in Python and Java is supported through the evolving BioCORBA bridge. Bioperl provides access to data stores such as GenBank and SwissProt via a flexible series of sequence input/output modules, and to the emerging common sequence data storage format of the Open Bioinformatics Database Access project. This study describes the overall architecture of the toolkit, the problem domains that it addresses, and gives specific examples of how the toolkit can be used to solve common life-sciences problems. We conclude with a discussion of how the open-source nature of the project has contributed to the development effort. PMID:12368254

  1. Unique life sciences research facilities at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Mulenburg, G. M.; Vasques, M.; Caldwell, W. F.; Tucker, J.

    1994-01-01

    The Life Science Division at NASA's Ames Research Center has a suite of specialized facilities that enable scientists to study the effects of gravity on living systems. This paper describes some of these facilities and their use in research. Seven centrifuges, each with its own unique abilities, allow testing of a variety of parameters on test subjects ranging from single cells through hardware to humans. The Vestibular Research Facility allows the study of both centrifugation and linear acceleration on animals and humans. The Biocomputation Center uses computers for 3D reconstruction of physiological systems, and interactive research tools for virtual reality modeling. Psycophysiological, cardiovascular, exercise physiology, and biomechanical studies are conducted in the 12 bed Human Research Facility and samples are analyzed in the certified Central Clinical Laboratory and other laboratories at Ames. Human bedrest, water immersion and lower body negative pressure equipment are also available to study physiological changes associated with weightlessness. These and other weightlessness models are used in specialized laboratories for the study of basic physiological mechanisms, metabolism and cell biology. Visual-motor performance, perception, and adaptation are studied using ground-based models as well as short term weightlessness experiments (parabolic flights). The unique combination of Life Science research facilities, laboratories, and equipment at Ames Research Center are described in detail in relation to their research contributions.

  2. Life Science Research In Space: The Spacelab Era

    NASA Astrophysics Data System (ADS)

    Farrell, R. M.; Cramer, D. B.; Reid, D. H.

    1982-02-01

    This manuscript summarizes the events leading to the first Spacelab mission dedicated exclusively to life sciences experimentation. This mission is currently planned for a Space Shuttle flight in the 1984-1985 time frame. Following publication of a NASA Announce ment of Opportunity in 1978, approximately 400 proposals were received from researchers in universities, government laboratories, and industrial firms both in the U. S. and abroad. In 1979, 87 candidate experiments were selected for definition studies to identify the detailed resources which would need to be accommodated by the Spacelab. These proposals addressed problems encountered in man's previous space flight experience, such as space motion sickness, cardiovascular deconditioning, muscle wasting, calcium loss and a reduction in red cell mass. Additionally, experiments were selected in areas of bioengineering, behavior and performance, Plant physiology, and cell biology. Animal species (rodents and small primates) to be investigated will be housed in a specially-developed animal holding facility which will provide all life support requirements for the animals. Human subjects will consist of a Mission Specialist Astronaut and up to four Payload Specialists. Plant species will be housed in Plant Growth Units. A general purpose work station and biological containment facility will provide the working area for much of the in-space experimentation. A comprehensive array of flight qualified laboratory equipment will be made available by NASA to Principal Investigators for in-flight use by the Payload Specialists. This equipment includes microscopes, biotelemetry systems, cameras, centrifuges, refrigerators, and similar equipment. All of this equipment has been designed for use in weightlessness. The process to develop a primary payload of about 20 experiments is now underway for Spacelab mission number four, the first dedicated life sciences flight. Under the overall guidance of NASA Headquarters

  3. The International Space Station human life sciences experiment implementation process

    NASA Technical Reports Server (NTRS)

    Miller, L. J.; Haven, C. P.; McCollum, S. G.; Lee, A. M.; Kamman, M. R.; Baumann, D. K.; Anderson, M. E.; Buderer, M. C.

    2001-01-01

    The selection, definition, and development phases of a Life Sciences flight research experiment has been consistent throughout the past decade. The implementation process, however, has changed significantly within the past two years. This change is driven primarily by the shift from highly integrated, dedicated research missions on platforms with well defined processes to self contained experiments with stand alone operations on platforms which are being concurrently designed. For experiments manifested on the International Space Station (ISS) and/or on short duration missions, the more modular, streamlined, and independent the individual experiment is, the more likely it is to be successfully implemented before the ISS assembly is completed. During the assembly phase of the ISS, science operations are lower in priority than the construction of the station. After the station has been completed, it is expected that more resources will be available to perform research. The complexity of implementing investigations increases with the logistics needed to perform the experiment. Examples of logistics issues include- hardware unique to the experiment; large up and down mass and volume needs; access to crew and hardware during the ascent or descent phases; maintenance of hardware and supplies with a limited shelf life,- baseline data collection schedules with lengthy sessions or sessions close to the launch or landing; onboard stowage availability, particularly cold stowage; and extensive training where highly proficient skills must be maintained. As the ISS processes become better defined, experiment implementation will meet new challenges due to distributed management, on-orbit resource sharing, and adjustments to crew availability pre- and post-increment. c 2001. Elsevier Science Ltd. All rights reserved.

  4. Visions of the Future: Chemistry and Life Science

    NASA Astrophysics Data System (ADS)

    Thompson, J. Michael T.

    2001-07-01

    What does the future of science hold? Who is making the discoveries that will help shape this future? What areas of research show the greatest promise? Find definitive and insightful answers to such questions as these in the three volumes of Visions of the Future: Astronomy and Earth Science, Chemistry and Life Science, and Physics and Electronics. Representing a careful selection of authoritative articles published in a special issue of Philosophical Transactions--the world's longest-running scientific journal--the chapters explore such themes as: -- The Big Bang -- Humankind's exploration of the solar system -- The deep interior of the Earth -- Global warming and climate change -- Atoms and molecules in motion -- New materials and processes -- Nature's secrets of biological growth and form -- Understanding the human body and mind -- Quantum physics and its relationship to relativity theory and human consciousness -- Exotic quantum computing and data storage -- Telecommunications and the Internet Written by leading young scientists, the timely contributions convey the excitement and enthusiasm that they have for their research and a preview of future research directions. J.M.T. Thompson is Professor of Nonlinear Dynamics and Director of the Center for Nonlinear Dynamics at University College London. Professor Thompson has published widely on instabilities, bifurcations, catastrophe theory and chaos. He was a Senior SERC Fellow, served on the IMA Council, and, in 1985, was awarded the Ewing Medal of the Institution of Civil Engineers. Currently, he is Editor of the Royal Society's Philosophical Transactions (Series A) which is the world's longest running scientific journal.

  5. Accelerated life testing effects on CMOS microcircuit characteristics

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This report covers the time period from May 1976 to December 1979 and encompasses the three phases of accelerated testing: Phase 1, the 250 C testing; Phase 2, the 200 C testing; and Phase 3, the 125 C testing. The duration of the test in Phase 1 and Phase 2 was sufficient to take the devices into the wear out region. The wear out distributions were used to estimate the activation energy between the 250 C and the 200 C test temperatures. The duration of the 125 C test, 20,000 hours, was not sufficient to bring the test devices into the wear out region; consequently the third data point at 125 C for determining the consistency of activation energy could not be obtained. It was estimated that, for the most complex of the three device types, the activation energy between 200 C and 125 C should be at least as high as that between 250 C and 200 C. The practicality of the use of high temperature for the accelerated life tests from the point of view of durability of equipment was assessed. Guidelines for the development of accelerated life test conditions were proposed. The use of the silicon nitride overcoat to improve the high temperature accelerated life test characteristics of CMOS microcircuits was explored in Phase 4 of this study and is attached as an appendix to this report.

  6. Ninth Graders' Learning Interests, Life Experiences and Attitudes towards Science & Technology

    ERIC Educational Resources Information Center

    Chang, Shu-Nu; Yeung, Yau-Yuen; Cheng, May Hung

    2009-01-01

    Students' learning interests and attitudes toward science have both been studied for decades. However, the connection between them with students' life experiences about science and technology has not been addressed much. The purpose of this study is to investigate students' learning interests and life experiences about science and technology, and…

  7. 46 CFR 160.001-2 - General characteristics of life preservers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false General characteristics of life preservers. 160.001-2..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Life Preservers, General § 160.001-2 General characteristics of life preservers. (a) A life preserver must be of such...

  8. 46 CFR 160.001-2 - General characteristics of life preservers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 6 2013-10-01 2013-10-01 false General characteristics of life preservers. 160.001-2..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Life Preservers, General § 160.001-2 General characteristics of life preservers. (a) A life preserver must be of such...

  9. 46 CFR 160.001-2 - General characteristics of life preservers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 6 2012-10-01 2012-10-01 false General characteristics of life preservers. 160.001-2..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Life Preservers, General § 160.001-2 General characteristics of life preservers. (a) A life preserver must be of such...

  10. 46 CFR 160.001-2 - General characteristics of life preservers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 6 2014-10-01 2014-10-01 false General characteristics of life preservers. 160.001-2..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Life Preservers, General § 160.001-2 General characteristics of life preservers. (a) A life preserver must be of such...

  11. Incorporating Genomics and Bioinformatics across the Life Sciences Curriculum

    SciTech Connect

    Ditty, Jayna L.; Kvaal, Christopher A.; Goodner, Brad; Freyermuth, Sharyn K.; Bailey, Cheryl; Britton, Robert A.; Gordon, Stuart G.; Heinhorst, Sabine; Reed, Kelynne; Xu, Zhaohui; Sanders-Lorenz, Erin R.; Axen, Seth; Kim, Edwin; Johns, Mitrick; Scott, Kathleen; Kerfeld, Cheryl A.

    2011-08-01

    Undergraduate life sciences education needs an overhaul, as clearly described in the National Research Council of the National Academies publication BIO 2010: Transforming Undergraduate Education for Future Research Biologists. Among BIO 2010's top recommendations is the need to involve students in working with real data and tools that reflect the nature of life sciences research in the 21st century. Education research studies support the importance of utilizing primary literature, designing and implementing experiments, and analyzing results in the context of a bona fide scientific question in cultivating the analytical skills necessary to become a scientist. Incorporating these basic scientific methodologies in undergraduate education leads to increased undergraduate and post-graduate retention in the sciences. Toward this end, many undergraduate teaching organizations offer training and suggestions for faculty to update and improve their teaching approaches to help students learn as scientists, through design and discovery (e.g., Council of Undergraduate Research [www.cur.org] and Project Kaleidoscope [www.pkal.org]). With the advent of genome sequencing and bioinformatics, many scientists now formulate biological questions and interpret research results in the context of genomic information. Just as the use of bioinformatic tools and databases changed the way scientists investigate problems, it must change how scientists teach to create new opportunities for students to gain experiences reflecting the influence of genomics, proteomics, and bioinformatics on modern life sciences research. Educators have responded by incorporating bioinformatics into diverse life science curricula. While these published exercises in, and guidelines for, bioinformatics curricula are helpful and inspirational, faculty new to the area of bioinformatics inevitably need training in the theoretical underpinnings of the algorithms. Moreover, effectively integrating bioinformatics into

  12. Challenges and Opportunities for Education about Dual Use Issues in the Life Sciences

    ERIC Educational Resources Information Center

    National Academies Press, 2011

    2011-01-01

    The Challenges and Opportunities for Education About Dual Use Issues in the Life Sciences workshop was held to engage the life sciences community on the particular security issues related to research with dual use potential. More than 60 participants from almost 30 countries took part and included practicing life scientists, bioethics and…

  13. CURRICULUM GUIDES IN BIOLOGY--LIFE SCIENCE, BIOLOGY--GENERAL, AND BIOLOGY--ADVANCED PLACEMENT.

    ERIC Educational Resources Information Center

    WESNER, GORDON E.; AND OTHERS

    "BIOLOGY--LIFE SCIENCE" IS GEARED TO STUDENTS OF AVERAGE ABILITY, "BIOLOGY--GENERAL" IS OFFERED FOR THOSE WHO HAVE COMPLETED "BIOLOGY--GENERAL" IN GRADES 10 OR 11 AND WHO WISH TO PURSUE COLLEGE LEVEL STUDY WHILE IN GRADE 12. THE NONTECHNICAL "BIOLOGY--LIFE SCIENCE" HAS OUTLINED UNITS IN ORGANIZING FOOD, ORGAN SYSTEMS, HEALTH, CONTINUANCE OF LIFE,…

  14. Toward an Ecosystem for Innovation in a Newly Industrialized Economy: Singapore and the Life Sciences

    ERIC Educational Resources Information Center

    Wong, Poh-Kam

    2006-01-01

    In the late 1990s the Singapore government embarked on a set of far-reaching strategies intended to develop the city-state into one of the major life science R&D and industrial clusters in Asia. Besides efforts to attract leading overseas life science companies to establish operations in Singapore, the government has developed new life science…

  15. Biographical Sources in the Sciences--Life, Earth and Physical Sciences (1989-2006). LC Science Tracer Bullet. TB 06-4

    ERIC Educational Resources Information Center

    Freitag, Ruth, Comp.; Bradley, Michelle Cadoree, Comp.

    2006-01-01

    This guide offers a systematic approach to the wide variety of published biographical information on men and women of science in the life, earth and physical sciences, primarily from 1989 to 2006, and complements Library of Congress Science Tracer Bullet "TB88-3" ("Biographical Sources in the Sciences," compiled 1988 [ED306074]) and "TB06-7"…

  16. Environmental control and life support systems analysis for a Space Station life sciences animal experiment

    NASA Technical Reports Server (NTRS)

    So, Kenneth T.; Hall, John B., Jr.; Thompson, Clifford D.

    1987-01-01

    NASA's Langley and Goddard facilities have evaluated the effects of animal science experiments on the Space Station's Environmental Control and Life Support System (ECLSS) by means of computer-aided analysis, assuming an animal colony consisting of 96 rodents and eight squirrel monkeys. Thirteen ECLSS options were established for the reclamation of metabolic oxygen and waste water. Minimum cost and weight impacts on the ECLSS are found to accrue to the system's operation in off-nominal mode, using electrochemical CO2 removal and a static feed electrolyzer for O2 generation.

  17. First-principles quantum chemistry in the life sciences.

    PubMed

    van Mourik, Tanja

    2004-12-15

    The area of computational quantum chemistry, which applies the principles of quantum mechanics to molecular and condensed systems, has developed drastically over the last decades, due to both increased computer power and the efficient implementation of quantum chemical methods in readily available computer programs. Because of this, accurate computational techniques can now be applied to much larger systems than before, bringing the area of biochemistry within the scope of electronic-structure quantum chemical methods. The rapid pace of progress of quantum chemistry makes it a very exciting research field; calculations that are too computationally expensive today may be feasible in a few months' time! This article reviews the current application of 'first-principles' quantum chemistry in biochemical and life sciences research, and discusses its future potential. The current capability of first-principles quantum chemistry is illustrated in a brief examination of computational studies on neurotransmitters, helical peptides, and DNA complexes.

  18. Enabling human exploration of space - A life sciences overview

    NASA Technical Reports Server (NTRS)

    Gaiser, Karen K.; Sulzman, Frank M.

    1989-01-01

    In the transition from the short-duration missions of the Space Shuttle era to long-duration exploration missions, the health and safety of crewmembers must be ensured. The body undergoes many complex physiological changes as a result of its adaptation to a microgravity environment and U.S. and Soviet experiences have shown that time is required for readaptation to gravity. The consequences of these changes for the extended exploration missions envisioned for the future are unknown. A Mars mission may require crewmembers to spend many months in microgravity, and then work effectively in a one-third gravity environment. Other problems may arise when returning crewmembers must readapt to earth's gravity. Life Sciences activities are being planned to systematically address the physiological issues involved with long-term manned exploration missions, through ground-based studies and flight investigations on the Shuttle and Space Station Freedom. The areas of focus are artificial gravity, radiation, health care, and space human factors.

  19. Spacelab mission 4 - The first dedicated life sciences mission

    NASA Technical Reports Server (NTRS)

    Perry, T. W.; Reid, D. H.

    1983-01-01

    Plans for the first Spacelab-4 mission dedicated entirely to the life sciences, are reviewed. The thrust of the scientific mission scheduled for late 1985 will be to study the acute effects of weightlessness on living systems, particularly humans. The payload of the Spacelab compartment will contain 24 experiments of which approximately half will involve humans. Among the major areas of interest are cardiovascular and pulmonary function, vestibular function, renal and endocrine physiology, hematology, nitrogen balance, immunological function, the gravitational biology of plants, inflight fertilization of frogs' eggs and the effects of zero gravity on monkeys and rats. In selecting the array of experiments an effort was made to combine investigations with complementary scientific objectives to develop animal models of human biological problems.

  20. Development of life sciences equipment for microgravity and hypergravity simulation

    NASA Technical Reports Server (NTRS)

    Mulenburg, G. M.; Evans, J.; Vasques, M.; Gundo, D. P.; Griffith, J. B.; Harper, J.; Skundberg, T.

    1994-01-01

    The mission of the Life Science Division at the NASA Ames Research Center is to investigate the effects of gravity on living systems in the spectrum from cells to humans. The range of these investigations is from microgravity, as experienced in space, to Earth's gravity, and hypergravity. Exposure to microgravity causes many physiological changes in humans and other mammals including a headward shift of body fluids, atrophy of muscles - especially the large muscles of the legs - and changes in bone and mineral metabolism. The high cost and limited opportunity for research experiments in space create a need to perform ground based simulation experiments on Earth. Models that simulate microgravity are used to help identify and quantify these changes, to investigate the mechanisms causing these changes and, in some cases, to develop countermeasures.

  1. Life Sciences Division and Center for Human Genome Studies

    SciTech Connect

    Spitzmiller, D.; Bradbury, M.; Cram, S.

    1992-05-01

    This report summarizes the research and development activities of Los Alamos National Laboratories Life Sciences Division and biological aspects of the Center for Human Genome Studies for the calendar year 1991. Selected research highlights include: yeast artificial chromosome libraries from flow sorted human chromosomes 16 and 21; distances between the antigen binding sites of three murine antibody subclasses measured using neutron and x-ray scattering; NFCR 10th anniversary highlights; kinase-mediated differences found in the cell cycle regulation of normal and transformed cells; and detecting mutations that cause Gaucher's disease by denaturing gradient gel electrophoresis. Project descriptions include: genomic structure and regulation, molecular structure, cytometry, cell growth and differentiation, radiation biology and carcinogenesis, and pulmonary biology.

  2. Schema driven assignment and implementation of life science identifiers (LSIDs).

    PubMed

    Bafna, Sapna; Humphries, Julian; Miranker, Daniel P

    2008-10-01

    Life science identifier (LSID) is a global unique identifier standard intended to help rationalize the unique archival requirements of biological data. We describe LSID implementation architecture such that data managed by a relational database management system may be integrated with the LSID protocol as an add-on layer. The approach requires a database administrator (DBA) to specify an export schema detailing the content and structure of the archived data, and a mapping of the existing database to that schema. This specification can be expressed using SQL view syntax. In effect, we define a SQL-like language for implementing LSIDs. We describe the mapping of the view definition to an implementation as a set of databases triggers and a fixed runtime library. Thus a compiler for a domain-specific language could be written that would reduce the implementation of LSIDs to the task of writing SQL view-like definitions.

  3. Life science research in space - The Spacelab era

    NASA Technical Reports Server (NTRS)

    Farrell, R. M.; Cramer, D. B.; Reid, D. H.

    1982-01-01

    The events leading up to Spacelab mission 4, which is to be dedicated exclusively to life sciences experimentation in 1984-85, are described. Out of 400 experiment proposals initially received and assessed, 87 candidates were chosen for definition studies to identify the resources which would be required. These proposals addressed such problems encountered in previous space flights as space motion sickness, cardiovascular deconditioning and muscle wasting, calcium loss, and red cell mass reduction. Additional experiments were selected from bioengineering, plant physiology, and cell biology. Human subjects will consist of a Mission Specialist Astronaut and up to four Payload Specialists. Equipment to be used in experimentation includes biotelemetry systems, microscopes, cameras, centrifuges and refrigerators, all of which have been designed for use in weightless conditions. The 87 candidate experiments will be further reduced to about 20.

  4. The International Space Station human life sciences experiment implementation process.

    PubMed

    Miller, L J; Haven, C P; McCollum, S G; Lee, A M; Kamman, M R; Baumann, D K; Anderson, M E; Buderer, M C

    2001-01-01

    The selection, definition, and development phases of a Life Sciences flight research experiment has been consistent throughout the past decade. The implementation process, however, has changed significantly within the past two years. This change is driven primarily by the shift from highly integrated, dedicated research missions on platforms with well defined processes to self contained experiments with stand alone operations on platforms which are being concurrently designed. For experiments manifested on the International Space Station (ISS) and/or on short duration missions, the more modular, streamlined, and independent the individual experiment is, the more likely it is to be successfully implemented before the ISS assembly is completed. During the assembly phase of the ISS, science operations are lower in priority than the construction of the station. After the station has been completed, it is expected that more resources will be available to perform research. The complexity of implementing investigations increases with the logistics needed to perform the experiment. Examples of logistics issues include- hardware unique to the experiment; large up and down mass and volume needs; access to crew and hardware during the ascent or descent phases; maintenance of hardware and supplies with a limited shelf life,- baseline data collection schedules with lengthy sessions or sessions close to the launch or landing; onboard stowage availability, particularly cold stowage; and extensive training where highly proficient skills must be maintained. As the ISS processes become better defined, experiment implementation will meet new challenges due to distributed management, on-orbit resource sharing, and adjustments to crew availability pre- and post-increment.

  5. The international space station human life sciences experiment implementation process

    NASA Astrophysics Data System (ADS)

    Miller, LadonnaJ.; Haven, CynthiaP.; McCollum, SuzanneG.; Lee, AngeleneM.; Kamman, MichelleR.; Baumann, DavidK.; Anderson, MarkE.; Buderer, MelvinC.

    2001-08-01

    The selection, definition, and development phases of a Life Sciences flight research experiment has been consistent throughout the past decade. The implementation process, however, has changed significantly within the past two years. This change is driven primarily by the shift from highly integrated, dedicated research missions on platforms with well defined processes to self contained experiments with stand alone operations on platforms which are being concurrently designed. For experiments manifested on the International Space Station (ISS) and / or on short duration missions, the more modular, streamlined, and independent the individual experiment is, the more likely it is to be successfully implemented before the ISS assembly is completed. During the assembly phase of the ISS, science operations are lower in priority than the construction of the station. After the station has been completed, it is expected that more resources will be available to perform research. The complexity of implementing investigations increases with the logistics needed to perform the experiment. Examples of logistics issues include: hardware unique to the experiment; large up and down mass and volume needs; access to crew and hardware during the ascent or descent phases; maintenance of hardware and supplies with a limited shelf life; baseline data collection schedules with lengthy sessions or sessions close to the launch or landing; onboard stowage availability, particularly cold stowage; and extensive training where highly proficient skills must be maintained. As the ISS processes become better defined, experiment implementation will meet new challenges due to distributed management, on-orbit resource sharing, and adjustments to crew availability pre- and post-increment.

  6. Definition of Life Sciences laboratories for shuttle/Spacelab. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Research requirements and the laboratories needed to support a Life Sciences research program during the shuttle/Spacelab era were investigated. A common operational research equipment inventory was developed to support a comprehensive but flexible Life Sciences program. Candidate laboratories and operational schedules were defined and evaluated in terms of accomodation with the Spacelab and overall program planning. Results provide a firm foundation for the initiation of a life science program for the shuttle era.

  7. The uses of radiotracers in the life sciences

    NASA Astrophysics Data System (ADS)

    Ruth, Thomas J.

    2009-01-01

    Radionuclides have been used to follow physical, chemical and biological processes almost from the time of their discovery. Probably the application with the biggest impact has been in the medical field where radionuclides have been incorporated into biologically active molecules and used to diagnose a wide variety of diseases and to treat many disorders. Other uses in the life sciences, in general, are related to using a radioactive isotope as marker for an existing species such as nitrogen-13 in plant studies or copper-67 to track copper catalysts in phytoplankton. This review describes in general terms these uses as well as providing the reader with the background related to the physical properties of radioactive decay, the concepts associated with the production of radionuclides using reactors or accelerators and the fundamentals of imaging radioactivity. The advances in imaging technology in recent years has had a profound impact on the use of radionuclides in positron emission tomography and the coupling of other imaging modalities to provide very precise insights into human disease. The variety of uses for radiotracers in science is almost boundless dependent only upon ones imagination.

  8. Elite male faculty in the life sciences employ fewer women.

    PubMed

    Sheltzer, Jason M; Smith, Joan C

    2014-07-15

    Women make up over one-half of all doctoral recipients in biology-related fields but are vastly underrepresented at the faculty level in the life sciences. To explore the current causes of women's underrepresentation in biology, we collected publicly accessible data from university directories and faculty websites about the composition of biology laboratories at leading academic institutions in the United States. We found that male faculty members tended to employ fewer female graduate students and postdoctoral researchers (postdocs) than female faculty members did. Furthermore, elite male faculty--those whose research was funded by the Howard Hughes Medical Institute, who had been elected to the National Academy of Sciences, or who had won a major career award--trained significantly fewer women than other male faculty members. In contrast, elite female faculty did not exhibit a gender bias in employment patterns. New assistant professors at the institutions that we surveyed were largely comprised of postdoctoral researchers from these prominent laboratories, and correspondingly, the laboratories that produced assistant professors had an overabundance of male postdocs. Thus, one cause of the leaky pipeline in biomedical research may be the exclusion of women, or their self-selected absence, from certain high-achieving laboratories. PMID:24982167

  9. Elite male faculty in the life sciences employ fewer women.

    PubMed

    Sheltzer, Jason M; Smith, Joan C

    2014-07-15

    Women make up over one-half of all doctoral recipients in biology-related fields but are vastly underrepresented at the faculty level in the life sciences. To explore the current causes of women's underrepresentation in biology, we collected publicly accessible data from university directories and faculty websites about the composition of biology laboratories at leading academic institutions in the United States. We found that male faculty members tended to employ fewer female graduate students and postdoctoral researchers (postdocs) than female faculty members did. Furthermore, elite male faculty--those whose research was funded by the Howard Hughes Medical Institute, who had been elected to the National Academy of Sciences, or who had won a major career award--trained significantly fewer women than other male faculty members. In contrast, elite female faculty did not exhibit a gender bias in employment patterns. New assistant professors at the institutions that we surveyed were largely comprised of postdoctoral researchers from these prominent laboratories, and correspondingly, the laboratories that produced assistant professors had an overabundance of male postdocs. Thus, one cause of the leaky pipeline in biomedical research may be the exclusion of women, or their self-selected absence, from certain high-achieving laboratories.

  10. [The role of ideas in knowledge and life sciences].

    PubMed

    Viniegra-Velázquez, Leonardo

    2014-01-01

    In this paper about the role of ideas within knowledge, the importance of identifying theoretical problems beyond empirical ones (scientific facts) are emphasized. Theoretical problems arise when we reflect upon what underlies scientific discourse: a) Paradigms that rule logical thought and way of understanding. b) Inveterate beliefs and convictions. c) Universally accepted theories considered the objective reality. The paradigm proposed by E. Morin of disjunction, reduction, simplification and exclusion (DRSE) is discussed, as well as its effects in the splitting of humanistic culture from science and the predominance of analytical tradition in exclusion of the synthetic one in scientific research. The premises of neopositivism that rule scientific work are criticized and alternatives that recognize the importance of explicative ideas are proposed. By arguing that intellectual possibilities depend on ideas, it is highlighted the approaching quality of every theory and its potential contributions: comprehension, explication, understanding and description. The DRSE paradigm underlines mechanism which is the prevailing approach to understand living beings in both health and illness (the optimized machine and the broken down one), and the mechanist causality (MC) used to identify causes of disease and its natural history. The attributes of MC are described, demonstrating its limitations to understand human life and its vicissitudes. Alternative theories to understand both health and disease such as: cultural history of disease, the environment interiorization and anticipation theory and the contextual causality, are introduced and discussed briefly. The text concludes with the importance of recognizing theoretical problems along the way of knowledge about life, health and disease.

  11. Investment and Return in International Space Life Sciences Research Cooperation

    NASA Technical Reports Server (NTRS)

    McPhee, Jancy C.; White, Ronald J.

    2007-01-01

    Today, a worldwide community of life scientists interested in space research is attempting to improve the understanding of general biological processes, aid the development of procedures to reduce the biomedically-related risks of space flight, and/or directly support the health care of people who fly in space. Unfortunately, limited resource and subject availability and the technical challenges of performing space experiments have all hampered the full growth and development of space life sciences research. For many years, international cooperation in this field has been considered an attractive approach towards overcoming some of these difficulties, since pooling resources and sharing results would enhance the knowledge of all cooperating partners. International cooperative activities, however, require an investment by each partner and, just as in many other endeavors, the research gain can be directly related to the investment made. In this paper, the authors will discuss three possible levels of cooperation: sharing of data from independent investigations, harmonious integration of pre-designed independent investigations, and de novo design of an integrated suite of investigations using a joint investigator team. The degree of investment and potential return for each level of cooperation will be described.

  12. Evaluation of an international doctoral educational program in space life sciences: The Helmholtz Space Life Sciences Research School (SpaceLife) in Germany

    NASA Astrophysics Data System (ADS)

    Hellweg, C. E.; Spitta, L. F.; Kopp, K.; Schmitz, C.; Reitz, G.; Gerzer, R.

    2016-01-01

    Training young researchers in the field of space life sciences is essential to vitalize the future of spaceflight. In 2009, the DLR Institute of Aerospace Medicine established the Helmholtz Space Life Sciences Research School (SpaceLife) in cooperation with several universities, starting with 22 doctoral candidates. SpaceLife offered an intensive three-year training program for early-stage researchers from different fields (biology, biomedicine, biomedical engineering, physics, sports, nutrition, plant and space sciences). The candidates passed a multistep selection procedure with a written application, a self-presentation to a selection committee, and an interview with the prospective supervisors. The selected candidates from Germany as well as from abroad attended a curriculum taught in English. An overview of space life sciences was given in a workshop with introductory lectures on space radiation biology and dosimetry, space physiology, gravitational biology and astrobiology. The yearly Doctoral Students' Workshops were also interdisciplinary. During the first Doctoral Students' Workshop, every candidate presented his/her research topic including hypothesis and methods to be applied. The progress report was due after ∼1.5 years and a final report after ∼3 years. The candidates specialized in their subfield in advanced lectures, Journal Clubs, practical trainings, lab exchanges and elective courses. The students attended at least one transferable skills course per year, starting with a Research Skills Development course in the first year, a presentation and writing skills course in the second year, and a career and leadership course in the third year. The whole program encompassed 303 h and was complemented by active conference participation. In this paper, the six years' experience with this program is summarized in order to guide other institutions in establishment of structured Ph.D. programs in this field. The curriculum including elective courses is

  13. Ames Life Science Data Archive: Translational Rodent Research at Ames

    NASA Technical Reports Server (NTRS)

    Wood, Alan E.; French, Alison J.; Ngaotheppitak, Ratana; Leung, Dorothy M.; Vargas, Roxana S.; Maese, Chris; Stewart, Helen

    2014-01-01

    The Life Science Data Archive (LSDA) office at Ames is responsible for collecting, curating, distributing and maintaining information pertaining to animal and plant experiments conducted in low earth orbit aboard various space vehicles from 1965 to present. The LSDA will soon be archiving data and tissues samples collected on the next generation of commercial vehicles; e.g., SpaceX & Cygnus Commercial Cargo Craft. To date over 375 rodent flight experiments with translational application have been archived by the Ames LSDA office. This knowledge base of fundamental research can be used to understand mechanisms that affect higher organisms in microgravity and help define additional research whose results could lead the way to closing gaps identified by the Human Research Program (HRP). This poster will highlight Ames contribution to the existing knowledge base and how the LSDA can be a resource to help answer the questions surrounding human health in long duration space exploration. In addition, it will illustrate how this body of knowledge was utilized to further our understanding of how space flight affects the human system and the ability to develop countermeasures that negate the deleterious effects of space flight. The Ames Life Sciences Data Archive (ALSDA) includes current descriptions of over 700 experiments conducted aboard the Shuttle, International Space Station (ISS), NASA/MIR, Bion/Cosmos, Gemini, Biosatellites, Apollo, Skylab, Russian Foton, and ground bed rest studies. Research areas cover Behavior and Performance, Bone and Calcium Physiology, Cardiovascular Physiology, Cell and Molecular Biology, Chronobiology, Developmental Biology, Endocrinology, Environmental Monitoring, Gastrointestinal Physiology, Hematology, Immunology, Life Support System, Metabolism and Nutrition, Microbiology, Muscle Physiology, Neurophysiology, Pharmacology, Plant Biology, Pulmonary Physiology, Radiation Biology, Renal, Fluid and Electrolyte Physiology, and Toxicology. These

  14. Aspects of science engagement, student background, and school characteristics: Impacts on science achievement of U.S. students

    NASA Astrophysics Data System (ADS)

    Grabau, Larry J.

    Science achievement of U.S. students has lagged significantly behind other nations; educational reformers have suggested science engagement may enhance this critical measure. The 2006 Program for International Student Assessment (PISA) was science-focused and measured science achievement along with nine aspects of science engagement: science self-efficacy, science self-concept, enjoyment of science, general interest in learning science, instrumental motivation for science, future-oriented science motivation, general value of science, personal value of science, and science-related activities. I used multilevel modeling techniques to address both aspects of science engagement and science achievement as outcome variables in the context of student background and school characteristics. Treating aspects of science engagement as outcome variables provided tests for approaches for their enhancement; meanwhile, treating science achievement as the outcome variable provided tests for the influence of the aspects of science engagement on science achievement under appropriate controls. When aspects of science engagement were treated as outcome variables, gender and father's SES had frequent (significant) influences, as did science teaching strategies which focused on applications or models and hands-on activities over-and-above influences of student background and other school characteristics. When science achievement was treated as the outcome variable, each aspect of science engagement was significant, and eight had medium or large effect sizes (future-oriented science motivation was the exception). The science teaching strategy which involved hands-on activities frequently enhanced science achievement over-and-above influences of student background and other school characteristics. Policy recommendations for U.S. science educators included enhancing eight aspects of science engagement and implementing two specific science teaching strategies (focus on applications or models

  15. New challenges for Life Sciences flight project management.

    PubMed

    Huntoon, C L

    1999-01-01

    Scientists have conducted studies involving human spaceflight crews for over three decades. These studies have progressed from simple observations before and after each flight to sophisticated experiments during flights of several weeks up to several months. The findings from these experiments are available in the scientific literature. Management of these flight experiments has grown into a system fashioned from the Apollo Program style, focusing on budgeting, scheduling and allocation of human and material resources. While these areas remain important to the future, the International Space Station (ISS) requires that the Life Sciences spaceflight experiments expand the existing project management methodology. The use of telescience with state-the-art information technology and the multi-national crews and investigators challenges the former management processes. Actually conducting experiments on board the ISS will be an enormous undertaking and International Agreements and Working Groups will be essential in giving guidance to the flight project management Teams forged in this matrix environment must be competent to make decisions and qualified to work with the array of engineers, scientists, and the spaceflight crews. In order to undertake this complex task, data systems not previously used for these purposes must be adapted so that the investigators and the project management personnel can all share in important information as soon as it is available. The utilization of telescience and distributed experiment operations will allow the investigator to remain involved in their experiment as well as to understand the numerous issues faced by other elements of the program The complexity in formation and management of project teams will be a new kind of challenge for international science programs. Meeting that challenge is essential to assure success of the International Space Station as a laboratory in space.

  16. New challenges for Life Sciences flight project management

    NASA Technical Reports Server (NTRS)

    Huntoon, C. L.

    1999-01-01

    Scientists have conducted studies involving human spaceflight crews for over three decades. These studies have progressed from simple observations before and after each flight to sophisticated experiments during flights of several weeks up to several months. The findings from these experiments are available in the scientific literature. Management of these flight experiments has grown into a system fashioned from the Apollo Program style, focusing on budgeting, scheduling and allocation of human and material resources. While these areas remain important to the future, the International Space Station (ISS) requires that the Life Sciences spaceflight experiments expand the existing project management methodology. The use of telescience with state-the-art information technology and the multi-national crews and investigators challenges the former management processes. Actually conducting experiments on board the ISS will be an enormous undertaking and International Agreements and Working Groups will be essential in giving guidance to the flight project management Teams forged in this matrix environment must be competent to make decisions and qualified to work with the array of engineers, scientists, and the spaceflight crews. In order to undertake this complex task, data systems not previously used for these purposes must be adapted so that the investigators and the project management personnel can all share in important information as soon as it is available. The utilization of telescience and distributed experiment operations will allow the investigator to remain involved in their experiment as well as to understand the numerous issues faced by other elements of the program The complexity in formation and management of project teams will be a new kind of challenge for international science programs. Meeting that challenge is essential to assure success of the International Space Station as a laboratory in space.

  17. New challenges for Life Sciences flight project management.

    PubMed

    Huntoon, C L

    1999-01-01

    Scientists have conducted studies involving human spaceflight crews for over three decades. These studies have progressed from simple observations before and after each flight to sophisticated experiments during flights of several weeks up to several months. The findings from these experiments are available in the scientific literature. Management of these flight experiments has grown into a system fashioned from the Apollo Program style, focusing on budgeting, scheduling and allocation of human and material resources. While these areas remain important to the future, the International Space Station (ISS) requires that the Life Sciences spaceflight experiments expand the existing project management methodology. The use of telescience with state-the-art information technology and the multi-national crews and investigators challenges the former management processes. Actually conducting experiments on board the ISS will be an enormous undertaking and International Agreements and Working Groups will be essential in giving guidance to the flight project management Teams forged in this matrix environment must be competent to make decisions and qualified to work with the array of engineers, scientists, and the spaceflight crews. In order to undertake this complex task, data systems not previously used for these purposes must be adapted so that the investigators and the project management personnel can all share in important information as soon as it is available. The utilization of telescience and distributed experiment operations will allow the investigator to remain involved in their experiment as well as to understand the numerous issues faced by other elements of the program The complexity in formation and management of project teams will be a new kind of challenge for international science programs. Meeting that challenge is essential to assure success of the International Space Station as a laboratory in space. PMID:11542522

  18. Discourse in science communities: Issues of language, authority, and gender in a life sciences laboratory

    NASA Astrophysics Data System (ADS)

    Conefrey, Theresa Catherine

    Government-sponsored and private research initiatives continue to document the underrepresentation of women in the sciences. Despite policy initiatives, women's attrition rates each stage of their scientific careers remain higher than those of their male colleagues. In order to improve retention rates more information is needed about why many drop out or do not succeed as well as they could. While broad sociological studies and statistical surveys offer a valuable overview of institutional practices, in-depth qualitative analyses are needed to complement these large-scale studies. This present study goes behind statistical generalizations about the situation of women in science to explore the actual experience of scientific socialization and professionalization. Beginning with one reason often cited by women who have dropped out of science: "a bad lab experience," I explore through detailed observation in a naturalistic setting what this phrase might actually mean. Using ethnographic and discourse analytic methods, I present a detailed analysis of the discourse patterns in a life sciences laboratory group at a large research university. I show how language accomplishes the work of indexing and constituting social constraints, of maintaining or undermining the hierarchical power dynamics of the laboratory, of shaping members' presentation of self, and of modeling social and professional skills required to "do science." Despite the widespread conviction among scientists that "the mind has no sex," my study details how gender marks many routine interactions in the lab, including an emphasis on competition, a reinforcement of sex-role stereotypes, and a conversational style that is in several respects more compatible with men's than women's forms of talk.

  19. A Strategy for Reorientation of Post-Graduate Courses in Life Sciences

    ERIC Educational Resources Information Center

    Jayaraman, J.

    1975-01-01

    The Binational Conference on Life Sciences in Bangalore in 1971 made recommendations for reorganization of teaching and research in life sciences (e.g. integration of botany and zoology departments). The author notes administrative reasons why changes have not been implemented and outlines notes administrative reasons why changes have not been…

  20. Spacelab Life Sciences (SLS) echocardiograph in mockup rack in JSC's Bldg 36

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Spacelab Life Sciences (SLS) life sciences laboratory equipment (LSLE) echocardiograph is documented in the JSC Bioengineering and Test Support Facility Bldg 36. Displayed on the echocardiograph monitor is a heart image. The echocardiograph equipment is located in Rack 6 and will be used in conjunction with Experiment No. 294 Cardiovascular Adaptation to Zero Gravity during the STS-40 SLS-1 mission.

  1. Changing Lives: The Baltimore City Community College Life Sciences Partnership with the University of Maryland, Baltimore

    ERIC Educational Resources Information Center

    Carroll, Vanessa G.; Harris-Bondima, Michelle; Norris, Kathleen Kennedy; Williams, Carolane

    2010-01-01

    Baltimore City Community College (BCCC) leveraged heightened student interest and enrollment in the sciences and allied health with Maryland's world-leading biotechnology industry to build a community college life sciences learning and research center right on the University of Maryland, Baltimore's downtown BioPark campus. The BCCC Life Sciences…

  2. Introducing Molecular Life Science Students to Model Building Using Computer Simulations

    ERIC Educational Resources Information Center

    Aegerter-Wilmsen, Tinri; Kettenis, Dik; Sessink, Olivier; Hartog, Rob; Bisseling, Ton; Janssen, Fred

    2006-01-01

    Computer simulations can facilitate the building of models of natural phenomena in research, such as in the molecular life sciences. In order to introduce molecular life science students to the use of computer simulations for model building, a digital case was developed in which students build a model of a pattern formation process in…

  3. Computer Literacy for Life Sciences: Helping the Digital-Era Biology Undergraduates Face Today's Research

    ERIC Educational Resources Information Center

    Smolinski, Tomasz G.

    2010-01-01

    Computer literacy plays a critical role in today's life sciences research. Without the ability to use computers to efficiently manipulate and analyze large amounts of data resulting from biological experiments and simulations, many of the pressing questions in the life sciences could not be answered. Today's undergraduates, despite the ubiquity of…

  4. Understanding a Pakistani Science Teacher's Practice through a Life History Study

    ERIC Educational Resources Information Center

    Halai, Nelofer

    2011-01-01

    The purpose of the single case life history study was to understand a female science teacher's conceptions of the nature of science as explicit in her practice. While this paper highlights these understandings, an additional purpose is to give a detailed account of the process of creating a life history account through more than 13 in-depth…

  5. Trade secrets in life science and pharmaceutical companies.

    PubMed

    Nealey, Tara; Daignault, Ronald M; Cai, Yu

    2015-04-01

    Trade secret protection arises under state common law and state statutes. In general, a trade secret is information that is not generally known to the public and is maintained as a secret, and it provides a competitive advantage or economic benefit to the trade secret holder. Trade secrets can be worth tens or hundreds of millions of dollars, and damage awards in trade secret litigation have been high; often, there is a lot at stake. Obtaining a trade secret through "improper means" is misappropriation. If the alleged trade secret, however, was developed independently, known publicly, or not maintained as a secret, then those defenses may successfully overcome a claim for trade secret misappropriation. With today's interconnectedness in the biotechnology and pharmaceutical fields, more collaborations, joint ventures, and outsourcing arrangements among firms, and increased mobility of employees' careers, life science companies need to not only understand how to protect their trade secrets, but also know how to defend against a claim for trade secret theft. PMID:25414378

  6. Considerations for Life Science experimentation on the Space Shuttle.

    PubMed

    Souza, K A; Davies, P; Rossberg Walker, K

    1992-10-01

    The conduct of Life Science experiments aboard the Shuttle Spacelab presents unaccustomed challenges to scientists. Not only is one confronted with the challenge of conducting an experiment in the unique microgravity environment of a orbiting spacecraft, but there are also the challenges of conducing experiments remotely, using equipment, techniques, chemicals, and materials that may differ from those standardly used in ones own laboratory. Then there is the question of "controls." How does one study the effects of altered gravitational fields on biological systems and control for other variables like vibration, acceleration, noise, temperature, humidity, and the logistics of specimen transport? Typically, the scientist new to space research has neither considered all of these potential problems nor has the data at hand with which to tackle the problems. This paper will explore some of these issues and provide pertinent data from recent Space Shuttle flights that will assist the new as well as the experienced scientist in dealing with the challenges of conducting research under spaceflight conditions.

  7. Considerations for Life Science experimentation on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Souza, K. A.; Davies, P.; Rossberg Walker, K.

    1992-01-01

    The conduct of Life Science experiments aboard the Shuttle Spacelab presents unaccustomed challenges to scientists. Not only is one confronted with the challenge of conducting an experiment in the unique microgravity environment of a orbiting spacecraft, but there are also the challenges of conducing experiments remotely, using equipment, techniques, chemicals, and materials that may differ from those standardly used in ones own laboratory. Then there is the question of "controls." How does one study the effects of altered gravitational fields on biological systems and control for other variables like vibration, acceleration, noise, temperature, humidity, and the logistics of specimen transport? Typically, the scientist new to space research has neither considered all of these potential problems nor has the data at hand with which to tackle the problems. This paper will explore some of these issues and provide pertinent data from recent Space Shuttle flights that will assist the new as well as the experienced scientist in dealing with the challenges of conducting research under spaceflight conditions.

  8. Advanced Biotelemetry Systems for Space Life Sciences: PH Telemetry

    NASA Technical Reports Server (NTRS)

    Hines, John W.; Somps, Chris; Ricks, Robert; Kim, Lynn; Connolly, John P. (Technical Monitor)

    1995-01-01

    The SENSORS 2000! (S2K!) program at NASA's Ames Research Center is currently developing a biotelemetry system for monitoring pH and temperature in unrestrained subjects. This activity is part of a broader scope effort to provide an Advanced Biotelemetry System (ABTS) for use in future space life sciences research. Many anticipated research endeavors will require biomedical and biochemical sensors and related instrumentation to make continuous inflight measurements in a variable-gravity environment. Since crew time is limited, automated data acquisition, data processing, data storage, and subject health monitoring are required. An automated biochemical and physiological data acquisition system based on non invasive or implantable biotelemetry technology will meet these requirements. The ABTS will ultimately acquire a variety of physiological measurands including temperature, biopotentials (e.g. ECG, EEG, EMG, EOG), blood pressure, flow and dimensions, as well as chemical and biological parameters including pH. Development activities are planned in evolutionary, leveraged steps. Near-term activities include 1) development of a dual channel pH/temperature telemetry system, and 2) development of a low bandwidth, 4-channel telemetry system, that measures temperature, heart rate, pressure, and pH. This abstract describes the pH/temperature telemeter.

  9. The first dedicated life sciences mission - Spacelab 4

    NASA Astrophysics Data System (ADS)

    Cramer, D. R.; Reid, D. H.; Klein, H. P.

    Spacelab is a large versatile laboratory carried in the bay of the Shuttle Orbiter. The first Spacelab mission dedicated entirely to Life Sciences is known as Spacelab 4. It is scheduled for launch in late 1985 and will remain aloft for seven days. This payload consists of 25 tentatively selected investigations combined into a comprehensive integrated exploration of the effects of acute weightlessness on living systems. An emphasis is placed on studying physiological changes that have been previously observed in manned space flight. This payload has complementary designs in the human and animal investigations in order to validate animal models of human physiology in weightlessness. The experimental subjects include humans, squirrel monkeys, laboratory rats, several species of plants, and frog eggs. The primary scientific objectives include study of the acute cephalic fluid shift, cardiovascular adaptation to weightlessness, including postflight reductions in orthostatic tolerance and exercise capacity, and changes in vestibular function, including space motion sickness, associated with weightlessness. Secondary scientific objectives include the study of red cell mass reduction, negative nitrogen balance, altered calcium metabolism, suppressed in vitro lymphocyte reactivity, gravitropism and photropism in plants, and fertilization and early development in frog eggs. The rationale behind this payload, the selection process, and details of the individual investigations are presented in this paper.

  10. Trade secrets in life science and pharmaceutical companies.

    PubMed

    Nealey, Tara; Daignault, Ronald M; Cai, Yu

    2014-11-20

    Trade secret protection arises under state common law and state statutes. In general, a trade secret is information that is not generally known to the public and is maintained as a secret, and it provides a competitive advantage or economic benefit to the trade secret holder. Trade secrets can be worth tens or hundreds of millions of dollars, and damage awards in trade secret litigation have been high; often, there is a lot at stake. Obtaining a trade secret through "improper means" is misappropriation. If the alleged trade secret, however, was developed independently, known publicly, or not maintained as a secret, then those defenses may successfully overcome a claim for trade secret misappropriation. With today's interconnectedness in the biotechnology and pharmaceutical fields, more collaborations, joint ventures, and outsourcing arrangements among firms, and increased mobility of employees' careers, life science companies need to not only understand how to protect their trade secrets, but also know how to defend against a claim for trade secret theft.

  11. Life sciences passive GN2 freezer thermal performance test

    NASA Technical Reports Server (NTRS)

    Belshaw, G. W.

    1981-01-01

    Thermal performance tests that were conducted on the life sciences passive GN2 freezer project are summarized as well as the improvements to the freezers to improve the thermal performance of the containers. Procedures were developed, based upon these tests, to initially charge the freezers with LN2 and verify that the freezer performance is adequate for the mission duration. Improvements were made to the corvac sample tube to limit the amount of breakage due to thermal expansion of the liquid during freezing. A method of verifying the freezer vacuum insulative integrity was defined as well as a procedure for refurbishment of the internal vacuum level. Freezer modifications were made to ease the reevacuation of the containers. The orientation of the freezer in a 1-G environment, after being charged, had to remain in a vertical position. The LN2 boiloff rate increased significantly in a horizontal position. This resulted in a stowage definition in the spacecraft prior to launch. Functional testing, using the SL-1 mission timeline showed that the freezer will maintain samples in the frozen state for the duration of the mission.

  12. Translating complex science into life-course health promoting strategies.

    PubMed

    Buttriss, Judith L

    2011-02-01

    These days, we are bombarded with nutrition information from diverse sources and of varying quality. There has been a dramatic increase in communication channels, including more television channels with airtime to fill, and the emergence of the Internet and 'new media' such as social networking sites. Part of this culture is to deliver ever changing and novel angles. The background 'noise' that this creates can make delivery of evidence-based advice about healthy eating that generally carries less novelty value, a huge challenge. This paper illustrates ways in which complex scientific information can be translated into meaningful health promoting strategies that can be applied across the life course. The examples used are nutrition in the context of healthy ageing, communicating the concept of energy density in the context of satiety, healthy hydration, health effects of probiotics and resources for use by teachers in the classroom. This selection of examples demonstrates the processes adopted at the British Nutrition Foundation to identify the evidence base for a particular topic and then to communicate this information to various target audiences. The British Nutrition Foundation's approach typically starts with preparation of a detailed review of the evidence, often with the involvement of external expertise, followed by peer review. For much of this work conventional science communication routes are used, but use is also made of the Internet and various forms of new media.

  13. The first dedicated life sciences mission - Spacelab 4

    NASA Technical Reports Server (NTRS)

    Cramer, D. R.; Reid, D. H.; Klein, H. P.

    1983-01-01

    The details of the payload and the experiments in Spacelab 4, the first Spacelab mission dedicated entirely to the life sciences, are discussed. The payload of Spacelab 4, carried in the bay of the Shuttle Orbiter, consists of 25 tentatively selected investigations combined into a comprehensive integrated exploration of the effects of acute weightlessness on living systems. The payload contains complementary designs in the human and animal investigations in order to validate animal models of human physiology in weightlessness. Animals used as experimental subjects will include squirrel monkeys, laboratory rats, several species of plants, and frog eggs. The main scientific objectives of the investigations include the study of the acute cephalic fluid shift, cardiovascular adaptation to weightlessness, including postflight reductions in orthostatic tolerance and exercise capacity, and changes in vestibular function, including space motion sickness, associated with weightlessness. Other scientific objective include the study of red cell mass reduction, negative nitrogen balance, altered calcium metabolism, suppressed in vitro lymphocyte reactivity, gravitropism and photropism in plants, and fertilization and early development in frog eggs.

  14. Analogical reflection as a source for the science of life: Kant and the possibility of the biological sciences.

    PubMed

    Nassar, Dalia

    2016-08-01

    In contrast to the previously widespread view that Kant's work was largely in dialogue with the physical sciences, recent scholarship has highlighted Kant's interest in and contributions to the life sciences. Scholars are now investigating the extent to which Kant appealed to and incorporated insights from the life sciences and considering the ways he may have contributed to a new conception of living beings. The scholarship remains, however, divided in its interest: historians of science are concerned with the content of Kant's claims, and the ways in which they may or may not have contributed to the emerging science of life, while historians of philosophy focus on the systematic justifications for Kant's claims, e.g., the methodological and theoretical underpinnings of Kant's statement that living beings are mechanically inexplicable. My aim in this paper is to bring together these two strands of scholarship into dialogue by showing how Kant's methodological concerns (specifically, his notion of reflective judgment) contributed to his conception of living beings and to the ontological concern with life as a distinctive object of study. I argue that although Kant's explicit statement was that biology could not be a science, his implicit and more fundamental claim was that the study of living beings necessitates a distinctive mode of thought, a mode that is essentially analogical. I consider the implications of this view, and argue that it is by developing a new methodology for grasping organized beings that Kant makes his most important contribution to the new science of life.

  15. Analogical reflection as a source for the science of life: Kant and the possibility of the biological sciences.

    PubMed

    Nassar, Dalia

    2016-08-01

    In contrast to the previously widespread view that Kant's work was largely in dialogue with the physical sciences, recent scholarship has highlighted Kant's interest in and contributions to the life sciences. Scholars are now investigating the extent to which Kant appealed to and incorporated insights from the life sciences and considering the ways he may have contributed to a new conception of living beings. The scholarship remains, however, divided in its interest: historians of science are concerned with the content of Kant's claims, and the ways in which they may or may not have contributed to the emerging science of life, while historians of philosophy focus on the systematic justifications for Kant's claims, e.g., the methodological and theoretical underpinnings of Kant's statement that living beings are mechanically inexplicable. My aim in this paper is to bring together these two strands of scholarship into dialogue by showing how Kant's methodological concerns (specifically, his notion of reflective judgment) contributed to his conception of living beings and to the ontological concern with life as a distinctive object of study. I argue that although Kant's explicit statement was that biology could not be a science, his implicit and more fundamental claim was that the study of living beings necessitates a distinctive mode of thought, a mode that is essentially analogical. I consider the implications of this view, and argue that it is by developing a new methodology for grasping organized beings that Kant makes his most important contribution to the new science of life. PMID:27474186

  16. Effect of nursing home characteristics on residents' quality of life: a systematic review.

    PubMed

    Xu, Dongjuan; Kane, Robert L; Shamliyan, Tatyana A

    2013-01-01

    The association between nursing home (NH) characteristics and residents' quality of life (QOL) has not been systematically reviewed. This study synthesizes published evidence about the association between NH ownership, affiliation, location, chain membership, percentage of private rooms, facility size, and staffing with residents' QOL. We searched Medline, Web of Science, CINAHL, and Scirus for primary studies published between 1960 and March 31, 2012. We critically appraised risk of bias according to study design, QOL measurements, and adjustment for residents' characteristics. We analyzed the statistical and clinical significance, direction and magnitude of the association. From 1117 citations retrieved, we found one longitudinal quasi-experimental and 10 cross-sectional eligible studies. Variability in the NH characteristics reported and QOL measurements precluded meta-analysis. Studies with low and medium risk of bias (ROB) suggested that nonprofit NHs resulted in better QOL for residents. The low ROB study indicated that in certain QOL domains, rural facilities and facilities with a higher percentage of private rooms were associated with better self-reported resident QOL. All low and medium ROB studies found that RN, LVN/LPN and total nursing staff had no significant relationship with QOL. One longitudinal quasi-experimental study indicated that the Green House with individualized care had better QOL than conventional NHs. The available evidence does not permit strong conclusions about the association between NH characteristics and residents' QOL. The evidence does, however, raise questions about whether NH structure alone can improve residents' QOL and how residents' QOL should be measured and improved.

  17. Motivation in High School Science Students: A Comparison of Gender Differences in Life, Physical, and Earth Science Classes

    ERIC Educational Resources Information Center

    Britner, Shari L.

    2008-01-01

    The aims of this study were to examine self-efficacy and other motivation variables among high school science students (n = 502); to determine the degree to which each of the four hypothesized sources of self-efficacy makes an independent contribution to students' science self-efficacy beliefs; to examine possible differences between life,…

  18. Assessing the Life Science Knowledge of Students and Teachers Represented by the K-8 National Science Standards

    ERIC Educational Resources Information Center

    Sadler, Philip M.; Coyle, Harold; Cook Smith, Nancy; Miller, Jaimie; Mintzes, Joel; Tanner, Kimberly; Murray, John

    2013-01-01

    We report on the development of an item test bank and associated instruments based on the National Research Council (NRC) K-8 life sciences content standards. Utilizing hundreds of studies in the science education research literature on student misconceptions, we constructed 476 unique multiple-choice items that measure the degree to which test…

  19. Influence of an Intensive, Field-Based Life Science Course on Preservice Teachers' Self-Efficacy for Environmental Science Teaching

    ERIC Educational Resources Information Center

    Trauth-Nare, Amy

    2015-01-01

    Personal and professional experiences influence teachers' perceptions of their ability to implement environmental science curricula and to positively impact students' learning. The purpose of this study was twofold: to determine what influence, if any, an intensive field-based life science course and service learning had on preservice teachers'…

  20. The Five Senses. Life Science in Action. Teacher's Manual and Workbook.

    ERIC Educational Resources Information Center

    Lobb, Nancy; Roderman, Winifred Ho

    The Science in Action series is designed to teach practical science concepts to special-needs students. It is intended to develop students' problem-solving skills by teaching them to observe, record, analyze, conclude, and predict. This document contains a student workbook which deals with basic principles of life science. Six separate units…

  1. APPENDIX AND BIBLIOGRAPHY TO BE USED WITH LIFE AND EARTH SCIENCE GUIDES.

    ERIC Educational Resources Information Center

    MAHLER, FRED

    CONTAINED IN THIS TEACHER'S GUIDE FOR LIFE AND EARTH SCIENCES ARE BIBLIOGRAPHIES, DEMONSTRATIONS, AND EXPERIMENTS. BOOKS ARE LISTED FOR JUNIOR HIGH SCHOOL SCIENCE WHICH COVER A WIDE RANGE OF SUBJECTS, INCLUDING NATURE STUDY, BIOLOGY, CHEMISTRY, AND PHYSICS AS WELL AS MORE HIGHLY SPECIALIZED FIELDS OF THE PHYSICAL SCIENCES. TEXTBOOKS LISTED INCLUDE…

  2. Ethical Issues and the Life Sciences. Test Edition. AAAS Study Guides on Contemporary Problems.

    ERIC Educational Resources Information Center

    Kieffer, George H.

    This is one of several study guides on contemporary problems produced by the American Association for the Advancement of Science with support of the National Science Foundation. This study guide on Ethical Issues and the Life Sciences includes the following sections: (1) Introduction; (2) The Search for an Ethic; (3) Biomedical Issues including…

  3. The Development and Analysis of a Test in Life Science for Middle School Students.

    ERIC Educational Resources Information Center

    Singh, Balwant; And Others

    It is suggested that most standardized science tests do not adequately assess the majority of concepts taught as part of the very diversified middle school science curriculum. The 50-item Life Science Test constructed by Portland Public Schools, Maine, herein presented, aims to resolve this inadequacy. The 40-minute multiple choice test…

  4. 1978-1979 Report: Assembly of Life Sciences, National Research Council.

    ERIC Educational Resources Information Center

    National Academy of Sciences, Washington, DC.

    This annual report of the Assembly of Life Sciences (ALS) covers the fiscal year from July 1, 1978 to June 30, 1979. The report has four major sections: (1) Special Programs of the Executive Office; (2) Division of Biological Sciences; (3) Division of Medical Sciences; and (4) Board on Toxicology and Environmental Health Hazards. The activities…

  5. Report, 1979-1980: Assembly of Life Sciences, National Research Council.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Life Sciences.

    This annual report of the Assembly of Life Sciences (ALS) covers the fiscal year beginning July 1, 1979, and ending June 30, 1980. The report has four major sections: (1) Special Programs of the Executive Office; (2) Division of Biological Sciences; (3) Division of Medical Sciences; and (4) Board on Toxicology and Environmental Health Hazards.…

  6. 1977-1978 Report: Assembly of Life Sciences, National Research Council.

    ERIC Educational Resources Information Center

    National Academy of Sciences, Washington, DC.

    This annual report of the Assembly of Life Sciences (ALS) covers the fiscal year beginning July 1, 1977, and ending June 30, 1978. This report has four major sections on the Executive Office, the Division of Biological Sciences, the Division of Medical Sciences, and the Board on Toxicology and Environmental Health Hazards. The activities in each…

  7. Annual Report, July 1980-June 1981. Assembly of Life Sciences, National Research Council.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Life Sciences.

    Covering the fiscal year beginning July 1, 1980, and ending June 30, 1981, this annual report of the Assembly of Life Sciences (ALS) summarizes the major activities of this group. Information is organized into four sections: (1) The Executive Office; (2) The Division of Biological Sciences; (3) The Division of Medical Sciences; and (4) The Board…

  8. Reference earth orbital research and applications investigations (blue book). Volume 8: Life sciences

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The functional program element for the life sciences facilities to operate aboard manned space stations is presented. The life sciences investigations will consist of the following subjects: (1) medical research, (2) vertebrate research, (3) plant research, (4) cells and tissue research, (5) invertebrate research, (6) life support and protection, and (7) man-system integration. The equipment required to provide the desired functional capability for the research facilities is defined. The goals and objectives of each research facility are described.

  9. Longitudinal effects of college type and selectivity on degrees conferred upon undergraduate females in physical science, life science, math and computer science, and social science

    NASA Astrophysics Data System (ADS)

    Stevens, Stacy Mckimm

    There has been much research to suggest that a single-sex college experience for female undergraduate students can increase self-confidence and leadership ability during the college years and beyond. The results of previous studies also suggest that these students achieve in the workforce and enter graduate school at higher rates than their female peers graduating from coeducational institutions. However, some researchers have questioned these findings, suggesting that it is the selectivity level of the colleges rather than the comprised gender of the students that causes these differences. The purpose of this study was to justify the continuation of single-sex educational opportunities for females at the post-secondary level by examining the effects that college selectivity, college type, and time have on the rate of undergraduate females pursuing majors in non-traditional fields. The study examined the percentage of physical science, life science, math and computer science, and social science degrees conferred upon females graduating from women's colleges from 1985-2001, as compared to those at comparable coeducational colleges. Sampling for this study consisted of 42 liberal arts women's (n = 21) and coeducational (n = 21) colleges. Variables included the type of college, the selectivity level of the college, and the effect of time on the percentage of female graduates. Doubly multivariate repeated measures analysis of variance testing revealed significant main effects for college selectivity on social science graduates, and time on both life science and math and computer science graduates. Significant interaction was also found between the college type and time on social science graduates, as well as the college type, selectivity level, and time on math and computer science graduates. Implications of the results and suggestions for further research are discussed.

  10. Life sciences flight hardware development for the International Space Station

    NASA Astrophysics Data System (ADS)

    Kern, V. D.; Bhattacharya, S.; Bowman, R. N.; Donovan, F. M.; Elland, C.; Fahlen, T. F.; Girten, B.; Kirven-Brooks, M.; Lagel, K.; Meeker, G. B.; Santos, O.

    During the construction phase of the International Space Station (ISS), early flight opportunities have been identified (including designated Utilization Flights, UF) on which early science experiments may be performed. The focus of NASA's and other agencies' biological studies on the early flight opportunities is cell and molecular biology; with UF-1 scheduled to fly in fall 2001, followed by flights 8A and UF-3. Specific hardware is being developed to verify design concepts, e.g., the Avian Development Facility for incubation of small eggs and the Biomass Production System for plant cultivation. Other hardware concepts will utilize those early research opportunities onboard the ISS, e.g., an Incubator for sample cultivation, the European Modular Cultivation System for research with small plant systems, an Insect Habitat for support of insect species. Following the first Utilization Flights, additional equipment will be transported to the ISS to expand research opportunities and capabilities, e.g., a Cell Culture Unit, the Advanced Animal Habitat for rodents, an Aquatic Facility to support small fish and aquatic specimens, a Plant Research Unit for plant cultivation, and a specialized Egg Incubator for developmental biology studies. Host systems (Figure 1A, B), e.g., a 2.5 m Centrifuge Rotor (g-levels from 0.01-g to 2-g) for direct comparisons between μg and selectable g levels, the Life Sciences Glove☐ for contained manipulations, and Habitat Holding Racks (Figure 1B) will provide electrical power, communication links, and cooling to the habitats. Habitats will provide food, water, light, air and waste management as well as humidity and temperature control for a variety of research organisms. Operators on Earth and the crew on the ISS will be able to send commands to the laboratory equipment to monitor and control the environmental and experimental parameters inside specific habitats. Common laboratory equipment such as microscopes, cryo freezers, radiation

  11. Life sciences flight hardware development for the International Space Station.

    PubMed

    Kern, V D; Bhattacharya, S; Bowman, R N; Donovan, F M; Elland, C; Fahlen, T F; Girten, B; Kirven-Brooks, M; Lagel, K; Meeker, G B; Santos, O

    2001-01-01

    During the construction phase of the International Space Station (ISS), early flight opportunities have been identified (including designated Utilization Flights, UF) on which early science experiments may be performed. The focus of NASA's and other agencies' biological studies on the early flight opportunities is cell and molecular biology; with UF-1 scheduled to fly in fall 2001, followed by flights 8A and UF-3. Specific hardware is being developed to verify design concepts, e.g., the Avian Development Facility for incubation of small eggs and the Biomass Production System for plant cultivation. Other hardware concepts will utilize those early research opportunities onboard the ISS, e.g., an Incubator for sample cultivation, the European Modular Cultivation System for research with small plant systems, an Insect Habitat for support of insect species. Following the first Utilization Flights, additional equipment will be transported to the ISS to expand research opportunities and capabilities, e.g., a Cell Culture Unit, the Advanced Animal Habitat for rodents, an Aquatic Facility to support small fish and aquatic specimens, a Plant Research Unit for plant cultivation, and a specialized Egg Incubator for developmental biology studies. Host systems (Figure 1A, B: see text), e.g., a 2.5 m Centrifuge Rotor (g-levels from 0.01-g to 2-g) for direct comparisons between g and selectable g levels, the Life Sciences Glovebox for contained manipulations, and Habitat Holding Racks (Figure 1B: see text) will provide electrical power, communication links, and cooling to the habitats. Habitats will provide food, water, light, air and waste management as well as humidity and temperature control for a variety of research organisms. Operators on Earth and the crew on the ISS will be able to send commands to the laboratory equipment to monitor and control the environmental and experimental parameters inside specific habitats. Common laboratory equipment such as microscopes, cryo

  12. The space shuttle payload planning working groups. Volume 4: Life sciences

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The findings of the Life Sciences working group of the space shuttle payload planning activity are presented. The objectives of the Life Sciences investigations are: (1) to continue the research directed at understanding the origin of life and the search for extraterrestrial evidence of life, (2) biomedical research to understand mechanisms and provide criteria for support of manned flight, (3) technology development for life support, protective systems, and work aids for providing environmental control, and (4) to study basic biological functions at all levels or organization influenced by gravity, radiation, and circadian rhythms. Examples of candidate experimental schedules and the experimental package functional requirements are included.

  13. Stimulating translational research: several European life science institutions put their heads together.

    PubMed

    Bentires-Alj, Mohamed; Rajan, Abinaya; van Harten, Wim; van Luenen, Henri G A M; Kubicek, Stefan; Andersen, Jesper B; Saarela, Janna; Cook, Simon J; Van Minnebruggen, Geert; Roman-Roman, Sergio; Maurer, Cornelia; Erler, Janine T; Bertero, Michela G

    2015-09-01

    Translational research leaves no-one indifferent and everyone expects a particular benefit. We as EU-LIFE (www.eu-life.eu), an alliance of 13 research institutes in European life sciences, would like to share our experience in an attempt to identify measures to promote translational research without undermining basic exploratory research and academic freedom.

  14. Moving Liquids with Sound: The Physics of Acoustic Droplet Ejection for Robust Laboratory Automation in Life Sciences.

    PubMed

    Hadimioglu, Babur; Stearns, Richard; Ellson, Richard

    2016-02-01

    Liquid handling instruments for life science applications based on droplet formation with focused acoustic energy or acoustic droplet ejection (ADE) were introduced commercially more than a decade ago. While the idea of "moving liquids with sound" was known in the 20th century, the development of precise methods for acoustic dispensing to aliquot life science materials in the laboratory began in earnest in the 21st century with the adaptation of the controlled "drop on demand" acoustic transfer of droplets from high-density microplates for high-throughput screening (HTS) applications. Robust ADE implementations for life science applications achieve excellent accuracy and precision by using acoustics first to sense the liquid characteristics relevant for its transfer, and then to actuate transfer of the liquid with customized application of sound energy to the given well and well fluid in the microplate. This article provides an overview of the physics behind ADE and its central role in both acoustical and rheological aspects of robust implementation of ADE in the life science laboratory and its broad range of ejectable materials.

  15. Silkworm expression system as a platform technology in life science.

    PubMed

    Kato, Tatsuya; Kajikawa, Mizuho; Maenaka, Katsumi; Park, Enoch Y

    2010-01-01

    Many recombinant proteins have been successfully produced in silkworm larvae or pupae and used for academic and industrial purposes. Several recombinant proteins produced by silkworms have already been commercialized. However, construction of a recombinant baculovirus containing a gene of interest requires tedious and troublesome steps and takes a long time (3-6 months). The recent development of a bacmid, Escherichia coli and Bombyx mori shuttle vector, has eliminated the conventional tedious procedures required to identify and isolate recombinant viruses. Several technical improvements, including a cysteine protease or chitinase deletion bacmid and chaperone-assisted expression and coexpression, have led to significantly increased protein yields and reduced costs for large-scale production. Terminal N-acetyl glucosamine and galactose residues were found in the N-glycan structures produced by silkworms, which are different from those generated by insect cells. Genomic elucidation of silkworm has opened a new chapter in utilization of silkworm. Transgenic silkworm technology provides a stable production of recombinant protein. Baculovirus surface display expression is one of the low-cost approaches toward silkworm larvae-derived recombinant subunit vaccines. The expression of pharmaceutically relevant proteins, including cell/viral surface proteins, membrane proteins, and guanine nucleotide-binding protein (G protein) coupled receptors, using silkworm larvae or cocoons has become very attractive. Silkworm biotechnology is an innovative and easy approach to achieve high protein expression levels and is a very promising platform technology in the field of life science. Like the "Silkroad," we expect that the "Bioroad" from Asia to Europe will be established by the silkworm expression system. PMID:19830419

  16. Origins of life science teachers' beliefs underlying curriculum reform in Texas

    NASA Astrophysics Data System (ADS)

    Crawley, Frank E.; Salyer, Barbara A.

    This study explores the beliefs about reform of life science teachers in central Texas who were retained to teach Coordinated Thematic Science I. In particular, we were interested in identifying the beliefs that serve as the foundation for the grade 7 life science teachers' intentions to introduce physical science activities in the life science classes they teach. To accomplish this purpose, we selected four teachers, using purposeful sampling procedures. We also adapted an empirical model for investigating rational decisionmaking, the Theory of Planned Behavior, for use in an interview format. Two additional data sources were used to triangulate our findings set out in seven assertions developed from the 52 pages of transcribed interviews. Our results call attention to the need for all three levels of education - state, district, and school - to cooperate in implementing science curriculum reform in Texas.

  17. Early-Life State-of-Residence Characteristics and Later Life Hypertension, Diabetes, and Ischemic Heart Disease

    PubMed Central

    Eisen, Ellen A.; Modrek, Sepideh; Mokyr Horner, Elizabeth; Goldstein, Benjamin; Costello, Sadie; Cantley, Linda F.; Slade, Martin D.; Cullen, Mark R.

    2015-01-01

    Objectives. We examined how state characteristics in early life are associated with individual chronic disease later in life. Methods. We assessed early-life state of residence using the first 3 digits of social security numbers from blue- and white-collar workers from a US manufacturing company. Longitudinal data were available from 1997 to 2012, with 305 936 person-years of observation. Disease was assessed using medical claims. We modeled associations using pooled logistic regression with inverse probability of censoring weights. Results. We found small but statistically significant associations between early-state-of-residence characteristics and later life hypertension, diabetes, and ischemic heart disease. The most consistent associations were with income inequality, percentage non-White, and education. These associations were similar after statistically controlling for individual socioeconomic and demographic characteristics and current state characteristics. Conclusions. Characteristics of the state in which an individual lives early in life are associated with prevalence of chronic disease later in life, with a strength of association equivalent to genetic associations found for these same health outcomes. PMID:26066927

  18. Medicine and science in the life of Luigi Galvani (1737-1798).

    PubMed

    Bresadola, M

    1998-07-15

    Together with its companion paper, dealing with the contribution of Luigi Galvani to the history of electrophysiology, this article provides a biographical sketch of the scientist of Bologna in the occasion of the bicentenary of his death. Studies on Galvani have focused mainly on his "discovery" of animal electricity, and on the controversy with Alessandro Volta. Much less is known about Galvani's life and activity as a teacher, physician, and researcher in the fields of comparative anatomy, physiology, and chemistry of life. Yet, a balanced assessment of the significance and the role of Galvani's research in the history of science will be possible only after a historical reconstruction of his entire activity. This should take into account aspects of Galvani's life that have been little studied up to now: Galvani's scientific background, the scientific context in which his interest for muscular physiology arose, the interplay between his activity as a researcher and as a physician, the origin and characteristics of his experimental approach to biological studies, and the development of his experimental research in the crucial period culminating in his electrophysiological explanation of muscular motion. The present article aims at offering a contribution in this direction.

  19. Medicine and science in the life of Luigi Galvani (1737-1798).

    PubMed

    Bresadola, M

    1998-07-15

    Together with its companion paper, dealing with the contribution of Luigi Galvani to the history of electrophysiology, this article provides a biographical sketch of the scientist of Bologna in the occasion of the bicentenary of his death. Studies on Galvani have focused mainly on his "discovery" of animal electricity, and on the controversy with Alessandro Volta. Much less is known about Galvani's life and activity as a teacher, physician, and researcher in the fields of comparative anatomy, physiology, and chemistry of life. Yet, a balanced assessment of the significance and the role of Galvani's research in the history of science will be possible only after a historical reconstruction of his entire activity. This should take into account aspects of Galvani's life that have been little studied up to now: Galvani's scientific background, the scientific context in which his interest for muscular physiology arose, the interplay between his activity as a researcher and as a physician, the origin and characteristics of his experimental approach to biological studies, and the development of his experimental research in the crucial period culminating in his electrophysiological explanation of muscular motion. The present article aims at offering a contribution in this direction. PMID:9739000

  20. [Internationalization of the English-language journals in Japan in life sciences].

    PubMed

    Yamazaki, S; Zhang, H

    1997-01-01

    The purpose of this study is to analyze the characteristics of the internationalization of four English-language journals in Japan in life sciences based on the papers published in each of journals during the period of 1992-1994. The journals were identified by impact factors (IFs) according to the Journal Citation Reports (JCR) for the 1994 volume. The mean IFs to the top 25 citing and cited journals were compared in order to evaluate their international contribution. The journals (Journal of Biochemistry, Japanese Journal of Cancer Research, Japanese Journal of Physiology) published in Japan did not have an international reputation except for international immunology in terms of IFs and geographic distribution of authors. The editorial policy and strategy have to be established in order to receive a large international readership.

  1. A Preliminary Report on My Life in Science

    PubMed Central

    2010-01-01

    I describe my wanderings from the United States to East Germany and back. I hope this gives a glimpse of science in East Germany and encourages people who do science under less than favorable conditions. Although elements of my story are unique, the main points are general: don't be afraid to start something new; it pays to be persistent; and science is a passion—if it feels like fun, you've probably got it right. PMID:21079005

  2. Scientists popularizing science: characteristics and impact of TED talk presenters.

    PubMed

    Sugimoto, Cassidy R; Thelwall, Mike; Larivière, Vincent; Tsou, Andrew; Mongeon, Philippe; Macaluso, Benoit

    2013-01-01

    The TED (Technology, Entertainment, Design) conference and associated website of recorded conference presentations (TED Talks) is a highly successful disseminator of science-related videos, claiming over a billion online views. Although hundreds of scientists have presented at TED, little information is available regarding the presenters, their academic credentials, and the impact of TED Talks on the general population. This article uses bibliometric and webometric techniques to gather data on the characteristics of TED presenters and videos and analyze the relationship between these characteristics and the subsequent impact of the videos. The results show that the presenters were predominately male and non-academics. Male-authored videos were more popular and more liked when viewed on YouTube. Videos by academic presenters were more commented on than videos by others and were more liked on YouTube, although there was little difference in how frequently they were viewed. The majority of academic presenters were senior faculty, males, from United States-based institutions, were visible online, and were cited more frequently than average for their field. However, giving a TED presentation appeared to have no impact on the number of citations subsequently received by an academic, suggesting that although TED popularizes research, it may not promote the work of scientists within the academic community. PMID:23638069

  3. Scientists Popularizing Science: Characteristics and Impact of TED Talk Presenters

    PubMed Central

    Sugimoto, Cassidy R.; Thelwall, Mike; Larivière, Vincent; Tsou, Andrew; Mongeon, Philippe; Macaluso, Benoit

    2013-01-01

    The TED (Technology, Entertainment, Design) conference and associated website of recorded conference presentations (TED Talks) is a highly successful disseminator of science-related videos, claiming over a billion online views. Although hundreds of scientists have presented at TED, little information is available regarding the presenters, their academic credentials, and the impact of TED Talks on the general population. This article uses bibliometric and webometric techniques to gather data on the characteristics of TED presenters and videos and analyze the relationship between these characteristics and the subsequent impact of the videos. The results show that the presenters were predominately male and non-academics. Male-authored videos were more popular and more liked when viewed on YouTube. Videos by academic presenters were more commented on than videos by others and were more liked on YouTube, although there was little difference in how frequently they were viewed. The majority of academic presenters were senior faculty, males, from United States-based institutions, were visible online, and were cited more frequently than average for their field. However, giving a TED presentation appeared to have no impact on the number of citations subsequently received by an academic, suggesting that although TED popularizes research, it may not promote the work of scientists within the academic community. PMID:23638069

  4. Alien To Me? Science in Search for Life Beyond Earth and Perceptions of Alien Life in Popular Culture

    NASA Astrophysics Data System (ADS)

    Capova, K. A.

    2013-09-01

    The paper will introduce an original piece of research that is devoted to the socio-cultural aspects of scientifi c search for life in outer space and it draws from doctoral research in anthropology of science. In this piece of research the extraterrestrial life hypothesis is conceptualized as a significant part of the general world-view, constantly shaped by the work and discoveries of science. The paper presents data from qualitative ethnographic fieldwork conducted in the UK as well as uses quantitative data from public from the USA, UK and other countries.

  5. System analysis study of space platform and station accommodations for life sciences research facilities. Volume 2: Study results. Appendix D: Life sciences research facility requirements

    NASA Technical Reports Server (NTRS)

    Wiley, Lowell F.

    1985-01-01

    The purpose of this requirements document is to develop the foundation for concept development for the Life Sciences Research Facility (LSRF) on the Space Station. These requirements are developed from the perspective of a Space Station laboratory module outfitter. Science and mission requirements including those related to specimens are set forth. System requirements, including those for support, are detailed. Functional and design requirements are covered in the areas of structures, mechanisms, electrical power, thermal systems, data management system, life support, and habitability. Finally, interface requirements for the Command Module and Logistics Module are described.

  6. Sustainable Equity: Avoiding the Pendulum Effect in the Life Sciences

    ERIC Educational Resources Information Center

    Parker, Tatiana C. Tatum; Rosenthal, Rebecca

    2011-01-01

    In order to understand and resolve the disproportionate number of women in the sciences it is necessary to look at historical educational trends. Through the ages there is evidence of a "pendulum effect" where there have been major shifts focusing science education either on male or females. To be able to realistically establish sustainable equity…

  7. Nuffield Secondary Science, Theme 2, Continuity of Life.

    ERIC Educational Resources Information Center

    Wigglesworth, George

    Nuffield Secondary Science is a set of tested materials from which teachers can prepare courses for students in grades 9-11 (approximately) who do not intend to major in science. The materials are designed for British secondary schools but are adaptable to other countries. The Teachers' Guide to the entire set of Themes is described in SE 015 440…

  8. Stopping to Squell the "Rhosus": Bringing Science Vocabulary to Life

    ERIC Educational Resources Information Center

    Shore, Rebecca

    2015-01-01

    A research study conducted in an urban district middle school setting applies cognitive science principles to science vocabulary. Within the context of a personal story told by the lead investigator, the results of the study are shared and suggest that more active, engaging strategies with complex core curriculum may improve retention and…

  9. Critters: K-6 Life Science Activities. Project AIMS.

    ERIC Educational Resources Information Center

    Allen, Maureen Murphy; And Others

    Project AIMS (Activities to Integrate Mathematics and Science) has as its purpose the integration of subject matter in grades K-9. Field testing of the curriculum materials produced by AIMS indicates that this integration produces the following beneficial results: (1) mathematics becomes more meaningful, hence more useful; (2) science is…

  10. From darwin to the census of marine life: marine biology as big science.

    PubMed

    Vermeulen, Niki

    2013-01-01

    With the development of the Human Genome Project, a heated debate emerged on biology becoming 'big science'. However, biology already has a long tradition of collaboration, as natural historians were part of the first collective scientific efforts: exploring the variety of life on earth. Such mappings of life still continue today, and if field biology is gradually becoming an important subject of studies into big science, research into life in the world's oceans is not taken into account yet. This paper therefore explores marine biology as big science, presenting the historical development of marine research towards the international 'Census of Marine Life' (CoML) making an inventory of life in the world's oceans. Discussing various aspects of collaboration--including size, internationalisation, research practice, technological developments, application, and public communication--I will ask if CoML still resembles traditional collaborations to collect life. While showing both continuity and change, I will argue that marine biology is a form of natural history: a specific way of working together in biology that has transformed substantially in interaction with recent developments in the life sciences and society. As a result, the paper does not only give an overview of transformations towards large scale research in marine biology, but also shines a new light on big biology, suggesting new ways to deepen the understanding of collaboration in the life sciences by distinguishing between different 'collective ways of knowing'.

  11. Gravitational biology and space life sciences: current status and implications for the Indian space programme.

    PubMed

    Dayanandan, P

    2011-12-01

    This paper is an introduction to gravitational and space life sciences and a summary of key achievements in the field. Current global research is focused on understanding the effects of gravity/microgravity onmicrobes, cells, plants, animals and humans. It is now established that many plants and animals can progress through several generations in microgravity. Astrobiology is emerging as an exciting field promoting research in biospherics and fabrication of controlled environmental life support systems. India is one of the 14-nation International Space Exploration Coordination Group (2007) that hopes that someday humans may live and work on other planets within the Solar System. The vision statement of the Indian Space Research Organization (ISRO) includes planetary exploration and human spaceflight. While a leader in several fields of space science, India is yet to initiate serious research in gravitational and life sciences. Suggestions are made here for establishing a full-fledged Indian space life sciences programme.

  12. Semantic Web applications and tools for the life sciences: SWAT4LS 2010.

    PubMed

    Burger, Albert; Paschke, Adrian; Romano, Paolo; Marshall, M Scott; Splendiani, Andrea

    2012-01-25

    As Semantic Web technologies mature and new releases of key elements, such as SPARQL 1.1 and OWL 2.0, become available, the Life Sciences continue to push the boundaries of these technologies with ever more sophisticated tools and applications. Unsurprisingly, therefore, interest in the SWAT4LS (Semantic Web Applications and Tools for the Life Sciences) activities have remained high, as was evident during the third international SWAT4LS workshop held in Berlin in December 2010. Contributors to this workshop were invited to submit extended versions of their papers, the best of which are now made available in the special supplement of BMC Bioinformatics. The papers reflect the wide range of work in this area, covering the storage and querying of Life Sciences data in RDF triple stores, tools for the development of biomedical ontologies and the semantics-based integration of Life Sciences as well as clinicial data.

  13. Defining a Mechanism of Educational Interface Between NASA Life Sciences the Nation's Students

    NASA Technical Reports Server (NTRS)

    Chamberland, D.; Dreschel, T.; Coulter, G.

    1995-01-01

    Harnessing our greatest national resource, as represented by the nation's students, will require a thoughtful, well developed and administered program that includes precise, executable strategies and valid evaluation tools. Responding to a national education outreach priority, the National Aeronautics and Space Administration's Life and Biomedical Sciences and Applications Division has initiated a process or organizing and implementing various strategies through a steering committee that includes representatives from Headquarters and three field centers with major Life Sciences programs. The mandate of the Life Sciences Education Outreach Steering Committee is to develop ways of communicating space life science issues to America's students through the nation's teachers by curriculum enhancement and direct participation in the education process with an emphasis in the primary and secondary schools. Metrics are also developed for each individually defined process so that the mechanis can be continuously refined and improved.

  14. Gravitational biology and space life sciences: current status and implications for the Indian space programme.

    PubMed

    Dayanandan, P

    2011-12-01

    This paper is an introduction to gravitational and space life sciences and a summary of key achievements in the field. Current global research is focused on understanding the effects of gravity/microgravity onmicrobes, cells, plants, animals and humans. It is now established that many plants and animals can progress through several generations in microgravity. Astrobiology is emerging as an exciting field promoting research in biospherics and fabrication of controlled environmental life support systems. India is one of the 14-nation International Space Exploration Coordination Group (2007) that hopes that someday humans may live and work on other planets within the Solar System. The vision statement of the Indian Space Research Organization (ISRO) includes planetary exploration and human spaceflight. While a leader in several fields of space science, India is yet to initiate serious research in gravitational and life sciences. Suggestions are made here for establishing a full-fledged Indian space life sciences programme. PMID:22116289

  15. Gold Medal Award for Life Achievement in the Science of Psychology

    ERIC Educational Resources Information Center

    American Psychologist, 2007

    2007-01-01

    This article announces the 2007 recipient of the Gold Medal Award for Life Achievement in the Science of Psychology: Irving I. Gottesman. A brief biography, highlighting areas of special focus in Gottesman's work, is provided.

  16. Teach Life Science Concepts--with Picture Books.

    ERIC Educational Resources Information Center

    Texas Child Care, 2001

    2001-01-01

    Asserts that young children need help translating scientific theory into experiences that involve their senses. Provides age-appropriate, literature-based activities for exploring concepts and vocabulary in the areas of plant life cycles, animal life cycles, ocean ecology, and human growth development. Suggests specific works of children's…

  17. A Rationale and Outline for an Undergraduate Course on the Philosophy and History of Science for Life Science Students.

    PubMed

    Hockberger, Philip E; Miller, Richard J

    2005-09-01

    There are compelling reasons for teaching a philosophy of science course to undergraduate life science students. The main reason is to help them understand that modern science is not based upon a single, consistent philosophical system; nor is it based upon common sense, or a method, set of rules or formulas that can be used to make unerring predictions. Rather, science is a dynamic process that is constantly being modified and refined to reflect and encompass an ever-expanding set of hypotheses, observations, and theories. To illustrate these points, we developed a course that examined the history and philosophical underpinnings of modern science, and we discussed famous experiments that challenged the prevailing norm and led to Kuhnian revolutions in scientific thought. Building upon this knowledge, students investigated how different philosophical systems address controversial social issues in the biological sciences. They examined the teaching of intelligent design and creationism in public schools, the implications of legalized abortion and physician-assisted suicide, the potential impact of DNA fingerprinting on human rights and racism, the promise and pitfalls of stem cell research, and the neurobiological basis of consciousness and its relevance to mental health therapies and the animal rights movement. We believe undergraduate life science students should be exposed to these issues and have an opportunity to develop informed opinions about them before they graduate from college. Exploration of such topics will help them become better prepared for the inevitable public debates that they will face as science educators, researchers, and leaders of society. PMID:21289866

  18. A Rationale and Outline for an Undergraduate Course on the Philosophy and History of Science for Life Science Students.

    PubMed

    Hockberger, Philip E; Miller, Richard J

    2005-09-01

    There are compelling reasons for teaching a philosophy of science course to undergraduate life science students. The main reason is to help them understand that modern science is not based upon a single, consistent philosophical system; nor is it based upon common sense, or a method, set of rules or formulas that can be used to make unerring predictions. Rather, science is a dynamic process that is constantly being modified and refined to reflect and encompass an ever-expanding set of hypotheses, observations, and theories. To illustrate these points, we developed a course that examined the history and philosophical underpinnings of modern science, and we discussed famous experiments that challenged the prevailing norm and led to Kuhnian revolutions in scientific thought. Building upon this knowledge, students investigated how different philosophical systems address controversial social issues in the biological sciences. They examined the teaching of intelligent design and creationism in public schools, the implications of legalized abortion and physician-assisted suicide, the potential impact of DNA fingerprinting on human rights and racism, the promise and pitfalls of stem cell research, and the neurobiological basis of consciousness and its relevance to mental health therapies and the animal rights movement. We believe undergraduate life science students should be exposed to these issues and have an opportunity to develop informed opinions about them before they graduate from college. Exploration of such topics will help them become better prepared for the inevitable public debates that they will face as science educators, researchers, and leaders of society.

  19. A Rationale and Outline for an Undergraduate Course on the Philosophy and History of Science for Life Science Students

    PubMed Central

    Hockberger, Philip E.; Miller, Richard J.

    2005-01-01

    There are compelling reasons for teaching a philosophy of science course to undergraduate life science students. The main reason is to help them understand that modern science is not based upon a single, consistent philosophical system; nor is it based upon common sense, or a method, set of rules or formulas that can be used to make unerring predictions. Rather, science is a dynamic process that is constantly being modified and refined to reflect and encompass an ever-expanding set of hypotheses, observations, and theories. To illustrate these points, we developed a course that examined the history and philosophical underpinnings of modern science, and we discussed famous experiments that challenged the prevailing norm and led to Kuhnian revolutions in scientific thought. Building upon this knowledge, students investigated how different philosophical systems address controversial social issues in the biological sciences. They examined the teaching of intelligent design and creationism in public schools, the implications of legalized abortion and physician-assisted suicide, the potential impact of DNA fingerprinting on human rights and racism, the promise and pitfalls of stem cell research, and the neurobiological basis of consciousness and its relevance to mental health therapies and the animal rights movement. We believe undergraduate life science students should be exposed to these issues and have an opportunity to develop informed opinions about them before they graduate from college. Exploration of such topics will help them become better prepared for the inevitable public debates that they will face as science educators, researchers, and leaders of society. PMID:21289866

  20. Life sciences payload definition and integration study, task C and D. Volume 1: Management summary

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The findings of a study to define the required payloads for conducting life science experiments in space are presented. The primary objectives of the study are: (1) identify research functions to be performed aboard life sciences spacecraft laboratories and necessary equipment, (2) develop conceptual designs of potential payloads, (3) integrate selected laboratory designs with space shuttle configurations, and (4) establish cost analysis of preliminary program planning.

  1. Speaking of Science: Invite Speakers from Your Community to Bring the Science Curriculum to Life

    ERIC Educational Resources Information Center

    Stephens, Karol

    2012-01-01

    Establishing relevant applications for the science curriculum can be a challenge. However, the key that opens science for students is within a teacher's grasp: It is as simple as bringing science connections into his or her classroom through community resources and taking the students to the science that is available. The author encourages…

  2. The web of life: Natural science information on the Internet

    USGS Publications Warehouse

    Clement, Gail

    2000-01-01

    As society has come to equate economic prosperity with the health of our living resources, national science policy has called for the development of a comprehensive digital knowledge base to support informed decision making and wise resource management. The Internet and World Wide Web demonstrate the earliest stages of this evolving virtual library of the natural world, offering an increasing array of high-quality, innovative resources and services in the natural science arena. This article discusses the leading providers of natural science information on the Internet and highlights some of the exemplary resources they are delivering online. The discussion concludes with a brief discussion of the role of the librarian in developing the Web of natural science knowledge online and provides a short Webliography of starting points for further exploration of this subject area. PDF

  3. Gentlemanly men of science: Sir Francis Galton and the professionalization of the British life-sciences.

    PubMed

    Waller, J C

    2001-01-01

    Because Francis Galton (1822-1911) was a well-connected gentleman scientist with substantial private means, the importance of the role he played in the professionalization of the Victorian life-sciences has been considered anomalous. In contrast to the X-clubbers, he did not seem to have any personal need for the reforms his Darwinist colleagues were advocating. Nor for making common cause with individuals haling from social strata clearly inferior to his own. However, in ths paper I argue that Galton quite realistically discerned in the reforming endeavors of the 1860s, and beyond, the potential for considerably enhancing his own reputation and standing within both the scientific community and the broader Victorian culture. In addition, his professionalizing aspirations, and those of his reformist allies, were fully concordant with the interests, ambitions and perceived opportunities of his elite social group during the Victorian period. Professionalization appealed to gentlemen of Galton's status and financial security as much as it did to the likes of Thomas Huxley and John Tyndall, primarily because it promised to confer on the whole scientific enterprise an unprecedented level of social prestige. PMID:14513851

  4. Gentlemanly men of science: Sir Francis Galton and the professionalization of the British life-sciences.

    PubMed

    Waller, J C

    2001-01-01

    Because Francis Galton (1822-1911) was a well-connected gentleman scientist with substantial private means, the importance of the role he played in the professionalization of the Victorian life-sciences has been considered anomalous. In contrast to the X-clubbers, he did not seem to have any personal need for the reforms his Darwinist colleagues were advocating. Nor for making common cause with individuals haling from social strata clearly inferior to his own. However, in ths paper I argue that Galton quite realistically discerned in the reforming endeavors of the 1860s, and beyond, the potential for considerably enhancing his own reputation and standing within both the scientific community and the broader Victorian culture. In addition, his professionalizing aspirations, and those of his reformist allies, were fully concordant with the interests, ambitions and perceived opportunities of his elite social group during the Victorian period. Professionalization appealed to gentlemen of Galton's status and financial security as much as it did to the likes of Thomas Huxley and John Tyndall, primarily because it promised to confer on the whole scientific enterprise an unprecedented level of social prestige.

  5. Career-Life Balance for Women of Color: Experiences in Science and Engineering Academia

    ERIC Educational Resources Information Center

    Kachchaf, Rachel; Ko, Lily; Hodari, Apriel; Ong, Maria

    2015-01-01

    The National Science Foundation recently recognized that career-life balance in science, technology, engineering, and mathematics (STEM) may present some unique challenges for women of color compared with their White and/or male counterparts, thus negatively impacting retention and advancement for a minority demographic that has long been…

  6. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1980

    SciTech Connect

    Holland, L.M.; Stafford, C.G.; Bolen, S.K.

    1981-09-01

    Highlights of research progress accomplished in the Life Sciences Division during the year ending December 1980 are summarized. Reports from the following groups are included: Toxicology, Biophysics, Genetics; Environmental Pathology, Organic Chemistry, and Environmental Sciences. Individual abstracts have been prepared for 46 items for inclusion in the Energy Data Base. (RJC)

  7. Demonstrating Inquiry-Based Teaching Competencies in the Life Sciences--Part 2

    ERIC Educational Resources Information Center

    Thompson, Stephen

    2007-01-01

    This set of botany demonstrations is a continuation of the inquiry-based lecture activities that provide realistic connections to the history and nature of science and employ technology in data collection. The demonstrations also provide examples of inquiry-based teaching practices in the life sciences. (Contains 5 figures.) [For Part 1, see…

  8. Life Works: Explore Health and Medical Science Careers | NIH MedlinePlus the Magazine

    MedlinePlus

    ... and counselors to technicians and therapists. The NIH Office of Science Education has a Web site that lists and describes ... gov/LifeWorks Darryl Lowery Photo courtesy of NIH Office of Science Education Darryl Lowery Emergency Medical Technician “I chose to ...

  9. Gold Medal Award for Life Achievement in the Science of Psychology.

    PubMed

    2014-01-01

    The American Psychological Foundation (APF) Gold Medal Awards recognize distinguished and enduring records of accomplishment in four areas of psychology: the application of psychology, the practice of psychology, psychology in the public interest, and the science of psychology. The 2014 recipient of the Gold Medal Award for Life Achievement in the Science of Psychology is Thomas J. Bouchard Jr.

  10. Accelerated life testing effects on CMOS microcircuit characteristics

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Accelerated life tests were performed on CMOS microcircuits to predict their long term reliability. The consistency of the CMOS microcircuit activation energy between the range of 125 C to 200 C and the range 200 C to 250 C was determined. Results indicate CMOS complexity and the amount of moisture detected inside the devices after testing influences time to failure of tested CMOS devices.

  11. NARRATIVE: A short history of my life in science A short history of my life in science

    NASA Astrophysics Data System (ADS)

    Manson, Joseph R.

    2010-08-01

    I was certainly surprised, and felt extremely honored, when Salvador Miret-Artés suggested that he would like to organize this festschrift. Before that day I never anticipated that such an honor would come to me. I would like to thank Salvador for the large amount of time and work he has expended in organizing this special issue, the Editors of Journal of Physics: Condensed Matter for making it possible, and also the contributing authors for their efforts. My family home was outside of Petersburg, Virginia in Dinwiddie County in an area that was, during my youth, largely occupied by small farms. This is a region rich in American history and our earliest ancestors on both sides of the family settled in this area, beginning in the decade after the first Virginia settlement in Jamestown. My father was an engineer and my mother was a former school teacher, and their parents were small business owners. From earliest memories I recall being interested in finding out how things worked and especially learning about the wonders of nature. These interests were fostered by my parents who encouraged such investigations during long walks, visits to friends and relatives, and trips to museums. However, my earliest memory of wanting to become a scientist is associated with a Christmas gift of a chemistry set when I was about ten years old. I was absolutely fascinated by the amazing results that could be achieved with simple chemical reactions and realized then that I wanted to do something in life that would be associated with science. The gift of that small chemistry set developed over the next few years into a serious interest in chemistry, and throughout my junior high-school years I spent nearly all the money I earned doing odd jobs for neighbors on small laboratory equipment and chemical supplies, eventually taking over our old abandoned chicken house and turning it into a small chemistry lab. I remember being somewhat frustrated at the limits, mainly financial, that kept

  12. Why, from a Life Sciences Perspective, This Mission to Mars?

    NASA Technical Reports Server (NTRS)

    McKay, Christopher P.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    Mars may have had water and life early in its history and this make it a key target for robotic and human exploration. Extensive human exploration of Mars will of necessity depend on life support systems that rely on agricultural plants. If current concept for recreating, a biosphere on Mars are implemented this would involve widespread use of plants, particularly species from Arctic and alpine environments.

  13. Animal Life Cycles. Animal Life in Action[TM]. Schlessinger Science Library. [Videotape].

    ERIC Educational Resources Information Center

    2000

    This 23-minute videotape for grades 5-8, presents the myriad of animal life that exists on the planet. Students can view and perform experiments and investigations that help explain animal traits and habits. The stages of life that animals pass through--birth, growth, maturation, reproduction, and death--make up the life cycle. Students learn…

  14. A "Second Life" for Gross Anatomy: Applications for Multiuser Virtual Environments in Teaching the Anatomical Sciences

    ERIC Educational Resources Information Center

    Richardson, April; Hazzard, Matthew; Challman, Sandra D.; Morgenstein, Aaron M.; Brueckner, Jennifer K.

    2011-01-01

    This article describes the emerging role of educational multiuser virtual environments, specifically Second Life[TM], in anatomical sciences education. Virtual worlds promote inquiry-based learning and conceptual understanding, potentially making them applicable for teaching and learning gross anatomy. A short introduction to Second Life as an…

  15. Are Multimedia Resources Effective in Life Science Education? A Meta-Analysis

    ERIC Educational Resources Information Center

    Rolfe, Vivien E.; Gray, Douglas

    2011-01-01

    Multimedia learning is widely used in life science education where the use of pictures and text can bring complex structures and processes to life. However the impact on academic performance and deeper understanding is not well documented. We therefore carried out a systematic review to evaluate the effectiveness of multimedia resources in…

  16. Computers in Life Science Education. Volumes 1 through 4, 1984-1987.

    ERIC Educational Resources Information Center

    Modell, Harold, Ed.

    1987-01-01

    Designed to serve as a means of communication among life science educators who anticipate or are currently using microcomputers as an educational tool, these four volumes of newsletters provide background information and practical suggestions on computer use in over 80 articles. Topic areas include: (1) teaching physiology and other life sciences…

  17. Learning, Unlearning and Relearning--Knowledge Life Cycles in Library and Information Science Education

    ERIC Educational Resources Information Center

    Bedford, Denise A. D.

    2015-01-01

    The knowledge life cycle is applied to two core capabilities of library and information science (LIS) education--teaching, and research and development. The knowledge claim validation, invalidation and integration steps of the knowledge life cycle are translated to learning, unlearning and relearning processes. Mixed methods are used to determine…

  18. Life Science. Nevada Competency-Based Adult High School Diploma Project.

    ERIC Educational Resources Information Center

    Nevada Univ., Las Vegas. Coll. of Education.

    This document is one of ten curriculum guides developed by the Nevada Competency-Based Adult High School Diploma (CBAHSD) Project. This curriculum guide on life science is divided into twelve topics. The topics included are Life Process, Cells, Levels of Organization, Organ Systems, Food and Oxygen-Photosynthesis, Cycles, Energy, Resources, Cell…

  19. Non-Stop Lab Week: A Real Laboratory Experience for Life Sciences Postgraduate Courses

    ERIC Educational Resources Information Center

    Freitas, Maria João; Silva, Joana Vieira; Korrodi-Gregório, Luís; Fardilha, Margarida

    2016-01-01

    At the Portuguese universities, practical classes of life sciences are usually professor-centered 2-hour classes. This approach results in students underprepared for a real work environment in a research/clinical laboratory. To provide students with a real-life laboratory environment, the Non-Stop Lab Week (NSLW) was created in the Molecular…

  20. The influence of an advanced agriculture & life science course on students' views of the nature of science

    NASA Astrophysics Data System (ADS)

    Anderson, Megan N.

    One of the goals in today's society is to ensure that students exiting school have the ability to understand, develop, and comprehend scientific information. For students to be able to meet these goals, it is imperative that they become scientifically literate and understand the concept of the Nature of Science (NOS). The discipline of Agricultural Education has strong connections with science and today many students are earning science credit and developing science understanding through Agricultural Education courses. If students are continuing to gain science mastery through their Agricultural Education courses, they should also be gaining adequate conceptions of science and the NOS. Overall, many studies have indicated that students exiting the K-12 education system lack these vital skills and understanding. The purpose of this study was to explore the conceptions of the NOS of advanced agriculture students in Indiana. This study explored the conceptions of agricultural science students before and after taking a semester of an advanced life science course (N=48). Conceptions were explored through a qualitative case study utilizing the VNOS-C questionnaire. Responses were coded into one of three categories: Naive, Emerging, or Informed. Demographic data were also collected and analyzed. Overall, results of this study indicate that students in advanced agricultural science courses lack NOS understanding. The study's conclusions are discussed along with implications for theory, research and practice in addition to future directions for research.

  1. Munazza's story: Understanding science teaching and conceptions of the nature of science in Pakistan through a life history study

    NASA Astrophysics Data System (ADS)

    Halai, Nelofer

    In this study I have described and tried to comprehend how a female science teacher understands her practice. Additionally, I have developed some understanding of her understanding of the nature of science. While teaching science, a teacher projects messages about the nature of science that can be captured by observations and interviews. Furthermore, the manner is which a teacher conceptualizes science for teaching, at least in part, depends on personal life experiences. Hence, I have used the life history method to understand Munazza's practice. Munazza is a young female science teacher working in a private, co-educational school for children from middle income families in Karachi, Pakistan. Her stories are central to the study, and I have represented them using a number of narrative devices. I have woven in my own stories too, to illustrate my perspective as a researcher. The data includes 13 life history interviews and many informal conversations with Munazza, observations of science teaching in classes seven and eight, and interviews with other science teachers and administrative staff of the school. Munazza's personal biography and experiences of school and undergraduate courses has influenced the way she teaches. It has also influenced the way she does not teach. She was not inspired by her science teachers, so she has tried not to teach the way she was taught science. Contextual factors, her conception of preparation for teaching as preparation for subject content and the tension that she faces in balancing care and control in her classroom are some factors that influence her teaching. Munazza believes that science is a stable, superior and value-free way of knowing. In trying to understand the natural world, observations come first, which give reliable information about the world leading inductively to a "theory". Hence, she relies a great deal on demonstrations in the class where students "see" for themselves and abstract the scientific concept from the

  2. The LIFE Cognition Study: design and baseline characteristics

    PubMed Central

    Sink, Kaycee M; Espeland, Mark A; Rushing, Julia; Castro, Cynthia M; Church, Timothy S; Cohen, Ronald; Gill, Thomas M; Henkin, Leora; Jennings, Janine M; Kerwin, Diana R; Manini, Todd M; Myers, Valerie; Pahor, Marco; Reid, Kieran F; Woolard, Nancy; Rapp, Stephen R; Williamson, Jeff D

    2014-01-01

    Observational studies have shown beneficial relationships between exercise and cognitive function. Some clinical trials have also demonstrated improvements in cognitive function in response to moderate–high intensity aerobic exercise; however, these have been limited by relatively small sample sizes and short durations. The Lifestyle Interventions and Independence for Elders (LIFE) Study is the largest and longest randomized controlled clinical trial of physical activity with cognitive outcomes, in older sedentary adults at increased risk for incident mobility disability. One LIFE Study objective is to evaluate the effects of a structured physical activity program on changes in cognitive function and incident all-cause mild cognitive impairment or dementia. Here, we present the design and baseline cognitive data. At baseline, participants completed the modified Mini Mental Status Examination, Hopkins Verbal Learning Test, Digit Symbol Coding, Modified Rey–Osterrieth Complex Figure, and a computerized battery, selected to be sensitive to changes in speed of processing and executive functioning. During follow up, participants completed the same battery, along with the Category Fluency for Animals, Boston Naming, and Trail Making tests. The description of the mild cognitive impairment/dementia adjudication process is presented here. Participants with worse baseline Short Physical Performance Battery scores (prespecified at ≤7) had significantly lower median cognitive test scores compared with those having scores of 8 or 9 with modified Mini Mental Status Examination score of 91 versus (vs) 93, Hopkins Verbal Learning Test delayed recall score of 7.4 vs 7.9, and Digit Symbol Coding score of 45 vs 48, respectively (all P<0.001). The LIFE Study will contribute important information on the effects of a structured physical activity program on cognitive outcomes in sedentary older adults at particular risk for mobility impairment. In addition to its importance in the

  3. The LIFE Cognition Study: design and baseline characteristics.

    PubMed

    Sink, Kaycee M; Espeland, Mark A; Rushing, Julia; Castro, Cynthia M; Church, Timothy S; Cohen, Ronald; Gill, Thomas M; Henkin, Leora; Jennings, Janine M; Kerwin, Diana R; Manini, Todd M; Myers, Valerie; Pahor, Marco; Reid, Kieran F; Woolard, Nancy; Rapp, Stephen R; Williamson, Jeff D

    2014-01-01

    Observational studies have shown beneficial relationships between exercise and cognitive function. Some clinical trials have also demonstrated improvements in cognitive function in response to moderate-high intensity aerobic exercise; however, these have been limited by relatively small sample sizes and short durations. The Lifestyle Interventions and Independence for Elders (LIFE) Study is the largest and longest randomized controlled clinical trial of physical activity with cognitive outcomes, in older sedentary adults at increased risk for incident mobility disability. One LIFE Study objective is to evaluate the effects of a structured physical activity program on changes in cognitive function and incident all-cause mild cognitive impairment or dementia. Here, we present the design and baseline cognitive data. At baseline, participants completed the modified Mini Mental Status Examination, Hopkins Verbal Learning Test, Digit Symbol Coding, Modified Rey-Osterrieth Complex Figure, and a computerized battery, selected to be sensitive to changes in speed of processing and executive functioning. During follow up, participants completed the same battery, along with the Category Fluency for Animals, Boston Naming, and Trail Making tests. The description of the mild cognitive impairment/dementia adjudication process is presented here. Participants with worse baseline Short Physical Performance Battery scores (prespecified at ≤ 7) had significantly lower median cognitive test scores compared with those having scores of 8 or 9 with modified Mini Mental Status Examination score of 91 versus (vs) 93, Hopkins Verbal Learning Test delayed recall score of 7.4 vs 7.9, and Digit Symbol Coding score of 45 vs 48, respectively (all P<0.001). The LIFE Study will contribute important information on the effects of a structured physical activity program on cognitive outcomes in sedentary older adults at particular risk for mobility impairment. In addition to its importance in the

  4. Accelerated life testing effects on CMOS microcircuit characteristics, phase 1

    NASA Technical Reports Server (NTRS)

    Maximow, B.

    1976-01-01

    An accelerated life test of sufficient duration to generate a minimum of 50% cumulative failures in lots of CMOS devices was conducted to provide a basis for determining the consistency of activation energy at 250 C. An investigation was made to determine whether any thresholds were exceeded during the high temperature testing, which could trigger failure mechanisms unique to that temperature. The usefulness of the 250 C temperature test as a predictor of long term reliability was evaluated.

  5. NARRATIVE: A short history of my life in science A short history of my life in science

    NASA Astrophysics Data System (ADS)

    Manson, Joseph R.

    2010-08-01

    I was certainly surprised, and felt extremely honored, when Salvador Miret-Artés suggested that he would like to organize this festschrift. Before that day I never anticipated that such an honor would come to me. I would like to thank Salvador for the large amount of time and work he has expended in organizing this special issue, the Editors of Journal of Physics: Condensed Matter for making it possible, and also the contributing authors for their efforts. My family home was outside of Petersburg, Virginia in Dinwiddie County in an area that was, during my youth, largely occupied by small farms. This is a region rich in American history and our earliest ancestors on both sides of the family settled in this area, beginning in the decade after the first Virginia settlement in Jamestown. My father was an engineer and my mother was a former school teacher, and their parents were small business owners. From earliest memories I recall being interested in finding out how things worked and especially learning about the wonders of nature. These interests were fostered by my parents who encouraged such investigations during long walks, visits to friends and relatives, and trips to museums. However, my earliest memory of wanting to become a scientist is associated with a Christmas gift of a chemistry set when I was about ten years old. I was absolutely fascinated by the amazing results that could be achieved with simple chemical reactions and realized then that I wanted to do something in life that would be associated with science. The gift of that small chemistry set developed over the next few years into a serious interest in chemistry, and throughout my junior high-school years I spent nearly all the money I earned doing odd jobs for neighbors on small laboratory equipment and chemical supplies, eventually taking over our old abandoned chicken house and turning it into a small chemistry lab. I remember being somewhat frustrated at the limits, mainly financial, that kept

  6. Life sciences payload definition and integration study. Volume 1: Management summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The objectives of a study program to determine the life sciences payloads required for conducting biomedical experiments during space missions are presented. The objectives are defined as: (1) to identify the research functions which must be performed aboard life sciences spacecraft laboratories and the equipment needed to support these functions and (2) to develop layouts and preliminary conceptual designs of several potential baseline payloads for the accomplishment of life research in space. Payload configurations and subsystems are described and illustrated. Tables of data are included to identify the material requirements for the space missions.

  7. Perspectives on the Origins of Life in Science Textbooks from a Christian Publisher: Implications for Teaching Science

    ERIC Educational Resources Information Center

    Santos Baptista, Geilsa Costa; da Silva Santos, Rodrigo; Cobern, William W.

    2016-01-01

    This paper presents the results of research regarding approaches to the origin of life featured in science textbooks produced by an Evangelical publisher. The research nature was qualitative with document analysis and an interpretive framework based on Epistemological Pluralism. Overall, the results indicate that there are four perspectives on the…

  8. Characteristics of Abductive Inquiry in Earth Science: An Undergraduate Case Study

    ERIC Educational Resources Information Center

    Oh, Phil Seok

    2011-01-01

    The goal of this case study was to describe characteristic features of abductive inquiry learning activities in the domain of earth science. Participants were undergraduate junior and senior students who were enrolled in an earth science education course offered for preservice secondary science teachers at a university in Korea. The undergraduate…

  9. Relationships among Learner Characteristics and Preservice Elementary Teachers' Views of Nature of Science

    ERIC Educational Resources Information Center

    Akerson, Valarie L.; Donnelly, Lisa A.

    2008-01-01

    The purpose of this study was to explore the relationship of learner characteristics and preservice teachers' views of nature of science (NOS) prior to formal instruction. Learner characteristics investigated included metacognitive awareness, self-efficacy, attitudes toward science teaching, Perry's intellectual and ethical developmental levels,…

  10. Interactive Processing and Visualization of Image Data forBiomedical and Life Science Applications

    SciTech Connect

    Staadt, Oliver G.; Natarjan, Vijay; Weber, Gunther H.; Wiley,David F.; Hamann, Bernd

    2007-02-01

    Background: Applications in biomedical science and life science produce large data sets using increasingly powerful imaging devices and computer simulations. It is becoming increasingly difficult for scientists to explore and analyze these data using traditional tools. Interactive data processing and visualization tools can support scientists to overcome these limitations. Results: We show that new data processing tools and visualization systems can be used successfully in biomedical and life science applications. We present an adaptive high-resolution display system suitable for biomedical image data, algorithms for analyzing and visualization protein surfaces and retinal optical coherence tomography data, and visualization tools for 3D gene expression data. Conclusion: We demonstrated that interactive processing and visualization methods and systems can support scientists in a variety of biomedical and life science application areas concerned with massive data analysis.

  11. Optics for Biophysics: An Interdisciplinary course in Optics for Physicists and Life Science Students

    NASA Astrophysics Data System (ADS)

    Ross, Jennifer

    2013-03-01

    Optics is an applied sub-field of physics that life science researchers utilize daily. Indeed, one cannot open a biological science research journal without seeing five beautiful images of cells. To bridge the gap and educate more life science students in the field of physics, I have developed a new course called ``Optics for Biophysics,'' an interdisciplinary course engaging students from physics, chemistry, life science, and engineering. The course is a team-based learning or studio physics approach combined with a semester-long project. Mini-lectures of 20 minutes are given before students do hands-on group work to understand the concepts. In the project, the students design and build a modern transmitted light microscope. The final aspect of the project is to build a unique module onto the microscope to address a specific biological question.

  12. Students As Environmental Consultants Simulating Life Science Problems

    ERIC Educational Resources Information Center

    Roberts, Megan; Zydney, Janet Mannheimer

    2004-01-01

    This article describes a project in which eighth graders at East Side Middle School in New York City used an interactive multimedia program called "Pollution Solution" in a science unit on environmental pollution. Students assumed the role of environmental consultants working at fictional corporations which were being investigated for violation…

  13. Impact of an Ethics Programme in a Life Sciences Curriculum

    ERIC Educational Resources Information Center

    Clarkeburn, Henriikka; Downie, J. Roger; Matthew, Bob

    2002-01-01

    Choices in science--allocation of research funds, selection of research topics, interaction with research subjects (animals, environment, other humans), etc.--often, if not always, include some ethical considerations. Future scientists need skills to deal with and discuss ethical problems, and for that reason we have developed and evaluated one…

  14. Conditions Affecting Life: MINNEMAST Coordinated Mathematics - Science Series, Unit 23.

    ERIC Educational Resources Information Center

    Vogt, Elaine E., Ed.

    This volume is the twenty-third in a series of 29 coordinated MINNEMAST units in mathematics and science for kindergarten and the primary grades. Intended for use by third-grade teachers, this unit guide provides a summary and overview of the unit, a list of materials needed, and descriptions of six groups of lessons. The purposes and procedures…

  15. 77 FR 35353 - Biotech Life Sciences Trade Mission to Australia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-13

    ... prominent biotech organizations, government meetings, and briefings and receptions during the AusBiotech... science industry organizations and multipliers. During the mission, U.S. participants will benefit from... using the biopartnering.com platform, an efficient and easy to use personalized intelligent...

  16. Seven Risks Emerging from Life Patents and Corporate Science

    ERIC Educational Resources Information Center

    Ekberg, Merryn

    2005-01-01

    This article examines some of the controversial issues emerging from the privatization of biomedical research and commercialization of biotechnology. The aim is to identify the dominant social, political, and ethical risks associated with the recent shift from academic to corporate science and from the increasing emphasis on investing in research…

  17. Life Science Teachers' Decision Making on Sex Education

    ERIC Educational Resources Information Center

    Gill, Puneet Singh

    2013-01-01

    The desires of young people and especially young bodies are constructed at the intersections of policies that set the parameters of sex education policies, the embodied experiences of students in classrooms, and the way bodies are discussed in the complex language of science. Moreover, more research points to the lack of scientifically and…

  18. The critical role of peptide chemistry in the life sciences.

    PubMed

    Kent, Stephen B H

    2015-03-01

    Peptide chemistry plays a key role in the synthesis and study of protein molecules and their functions. Modern ligation methods enable the total synthesis of enzymes and the systematic dissection of the chemical basis of enzyme catalysis. Predicted developments in peptide science are described.

  19. The Science of Survival: Desert Island Life Explored

    ERIC Educational Resources Information Center

    Chaniotis, Peter; Delaney, Jane

    2010-01-01

    It has long been understood that children's interest in science generally declines during the transition from primary to secondary school. The English government's "Every Child Matters" agenda states that pupils should "make a positive contribution" and "achieve economic wellbeing", and so there is a need to develop a workforce that is well…

  20. Vocabulary Learning Strategies of Japanese Life Science Students

    ERIC Educational Resources Information Center

    Little, Andrea; Kobayashi, Kaoru

    2015-01-01

    This study investigates vocabulary learning strategy (VLS) preferences of lower and higher proficiency Japanese university science students studying English as a foreign language. The study was conducted over a 9-week period as the participants received supplemental explicit VLS instruction on six strategies. The 38 participants (14 males and 24…

  1. Medical operations and life sciences activities on space station

    NASA Technical Reports Server (NTRS)

    Johnson, P. C. (Editor); Mason, J. A. (Editor)

    1982-01-01

    Space station health maintenance facilities, habitability, personnel, and research in the medical sciences and in biology are discussed. It is assumed that the space station structure will consist of several modules, each being consistent with Orbiter payload bay limits in size, weight, and center of gravity.

  2. Centre of the Cell: Science Comes to Life.

    PubMed

    Balkwill, Frances; Chambers, Katie

    2015-01-01

    Centre of the Cell is a unique biomedical science education centre, a widening participation and outreach project in London's East End. This article describes Centre of the Cell's first five years of operation, the evolution of the project in response to audience demand, and the impact of siting a major public engagement project within a research laboratory.

  3. Life and Physical Science Misconceptions of Preservice Elementary Teachers.

    ERIC Educational Resources Information Center

    Crawley, Frank E.; Arditzoglou, Sophia Yani

    Misconceptions are systematic, intelligently conceived, and quite reasonable theories that have been constructed on the basis of experience. Research studies on misconceptions have indicated that students develop intelligently conceived and sophisticated concepts of science. Although some of these are compatible with the principles of modern…

  4. Centre of the Cell: Science Comes to Life

    PubMed Central

    Balkwill, Frances; Chambers, Katie

    2015-01-01

    Centre of the Cell is a unique biomedical science education centre, a widening participation and outreach project in London’s East End. This article describes Centre of the Cell’s first five years of operation, the evolution of the project in response to audience demand, and the impact of siting a major public engagement project within a research laboratory. PMID:26340279

  5. Operational plans for life science payloads - From experiment selection through postflight reporting

    NASA Technical Reports Server (NTRS)

    Mccollum, G. W.; Nelson, W. G.; Wells, G. W.

    1976-01-01

    Key features of operational plans developed in a study of the Space Shuttle era life science payloads program are presented. The data describes the overall acquisition, staging, and integration of payload elements, as well as program implementation methods and mission support requirements. Five configurations were selected as representative payloads: (a) carry-on laboratories - medical emphasis experiments, (b) mini-laboratories - medical/biology experiments, (c) seven-day dedicated laboratories - medical/biology experiments, (d) 30-day dedicated laboratories - Regenerative Life Support Evaluation (RLSE) with selected life science experiments, and (e) Biomedical Experiments Scientific Satellite (BESS) - extended duration primate (Type I) and small vertebrate (Type II) missions. The recommended operational methods described in the paper are compared to the fundamental data which has been developed in the life science Spacelab Mission Simulation (SMS) test series. Areas assessed include crew training, experiment development and integration, testing, data-dissemination, organization interfaces, and principal investigator working relationships.

  6. Life in the Universe: Foundation for exciting multidisciplinary science activities for middle and elementary school classes

    NASA Technical Reports Server (NTRS)

    Milne, D.; O'Sullivan, K.

    1994-01-01

    Young students find extra-terrestrial life one of the most intriguing of all topics. A project funded by the National Science Foundation and NASA, and administered by the SETI Institute, is underway to devise science lessons for grades 3-9 that draw upon this fascination. The lessons are designed by teachers and persons with long experience at curriculum design, tested in classrooms, revised and retested. Six guides, each containing some 6-10 science lessons, will be finished by summer, 1994.The theme Life in the Universe lends itself naturally to integrated treatment of facts and concepts from many scientific disciplines. The lessons for two completed guides span the origin of planet systems, evolution of complex life, chemical makeup of life, astronomy, spectroscopy, continental drift, mathematics and SETI (Search for Extra-Terrestrial Intelligence). All lessons are hands-on, interesting, and successful.

  7. Life in the universe: foundation for exciting multidisciplinary science activities for middle and elementary school classes.

    PubMed

    Milne, D; O'Sullivan, K

    1994-01-01

    Young students find extra-terrestrial life one of the most intriguing of all topics. A project funded by the National Science Foundation and NASA, and administered by the SETI Institute, is underway to devise science lessons for grades 3-9 that draw upon this fascination. The lessons are designed by teachers and persons with long experience at curriculum design, tested in classrooms, revised and retested. Six guides, each containing some 6-10 science lessons, will be finished by summer, 1994. The theme Life in the Universe lends itself naturally to integrated treatment of facts and concepts from many scientific disciplines. The lessons for two completed guides span the origin of planet systems, evolution of complex life, chemical makeup of life, astronomy, spectroscopy, continental drift, mathematics and SETI (Search for Extra-Terrestrial Intelligence). All lessons are hands-on, interesting, and successful.

  8. Life in the universe: Foundation for exciting multidisciplinary science activities for middle and elementary school classes

    NASA Astrophysics Data System (ADS)

    Milne, D.; O'Sullivan, K.

    1994-08-01

    Young students find extra-terrestrial life one of the most intriguing of all topics. A project funded by the National Science Foundation and NASA, and administered by the SETI Institute, is underway to devise science lessons for grades 3-9 that draw upon this fascination. The lessons are designed by teachers and persons with long experience at curriculum design, tested in classrooms, revised and retested. Six guides, each containing some 6-10 science lessons, will be finished by summer, 1994. The theme Life in the Universe lends itself naturally to integrated treatment of facts and concepts from many scientific disciplines. The lessons for two completed guides span the origin of planet systems, evolution of complex life, chemical makeup of life, astronomy, spectroscopy, continental drift, mathematics and SETI (Search for Extra-Terrestrial Intelligence). All lessons are hands-on, interesting, and successful.

  9. From Darwin to the Census of Marine Life: Marine Biology as Big Science

    PubMed Central

    Vermeulen, Niki

    2013-01-01

    With the development of the Human Genome Project, a heated debate emerged on biology becoming ‘big science’. However, biology already has a long tradition of collaboration, as natural historians were part of the first collective scientific efforts: exploring the variety of life on earth. Such mappings of life still continue today, and if field biology is gradually becoming an important subject of studies into big science, research into life in the world's oceans is not taken into account yet. This paper therefore explores marine biology as big science, presenting the historical development of marine research towards the international ‘Census of Marine Life’ (CoML) making an inventory of life in the world's oceans. Discussing various aspects of collaboration – including size, internationalisation, research practice, technological developments, application, and public communication – I will ask if CoML still resembles traditional collaborations to collect life. While showing both continuity and change, I will argue that marine biology is a form of natural history: a specific way of working together in biology that has transformed substantially in interaction with recent developments in the life sciences and society. As a result, the paper does not only give an overview of transformations towards large scale research in marine biology, but also shines a new light on big biology, suggesting new ways to deepen the understanding of collaboration in the life sciences by distinguishing between different ‘collective ways of knowing’. PMID:23342119

  10. Accelerated life testing and temperature dependence of device characteristics in GaAs CHFET devices

    NASA Technical Reports Server (NTRS)

    Gallegos, M.; Leon, R.; Vu, D. T.; Okuno, J.; Johnson, A. S.

    2002-01-01

    Accelerated life testing of GaAs complementary heterojunction field effect transistors (CHFET) was carried out. Temperature dependence of single and synchronous rectifier CHFET device characteristics were also obtained.

  11. Can Middle-School Science Textbooks Help Students Learn Important Ideas? Findings from Project 2061's Curriculum Evaluation Study: Life Science

    ERIC Educational Resources Information Center

    Stern, Luli; Roseman, Jo Ellen

    2004-01-01

    The transfer of matter and energy from one organism to another and between organisms and their physical setting is a fundamental concept in life science. Not surprisingly, this concept is common to the "Benchmarks for Science Literacy" (American Association for the Advancement of Science, [1993]), the "National Science Education Standards"…

  12. Genome Island: A Virtual Science Environment in Second Life

    ERIC Educational Resources Information Center

    Clark, Mary Anne

    2009-01-01

    Mary Anne CLark describes the organization and uses of Genome Island, a virtual laboratory complex constructed in Second Life. Genome Island was created for teaching genetics to university undergraduates but also provides a public space where anyone interested in genetics can spend a few minutes, or a few hours, interacting with genetic…

  13. Incorporating exposure science into life-cycle assessment

    EPA Science Inventory

    Life-cycle assessment (LCA) is used to estimate the potential for environmental damage that may be caused by a product or process, ideally before the product or process begins. LCA includes all of the steps from extracting natural resources through manufacturing through product u...

  14. Life and Reliability Characteristics of TurboBrayton Coolers

    NASA Technical Reports Server (NTRS)

    Breedlove, Jeff J.; Zagarola, Mark; Nellis, Greg; Dolan, Frank; Swift, Walt; Gibbon, Judith; Obenschain, Arthur F. (Technical Monitor)

    2000-01-01

    Wear and internal contaminants are two of the primary factors that influence reliable, long-life operation of turbo-Brayton cryocoolers. This paper describes tests that have been conducted and methods that have been developed for turbo-Brayton components and systems to assure reliable operation. The turbomachines used in these coolers employ self-acting gas bearings to support the miniature high-speed shafts, thus providing vibration-free operation. Because the bearings are self-acting, rubbing contact occurs during initial start-up and shutdown of the machines. Bearings and shafts are designed to endure multiple stop/start cycles without producing particles or surface features that would impair the proper operation of the machines. Test results are presented for a variety of turbomachines used in these systems. The tests document extended operating life and start/stop cycling behavior for machines over a range of time and temperature scales. Contaminants such as moisture and other residual gas impurities can be a source of degraded operation if they freeze out in sufficient quantities to block flow passages or if they mechanically affect the operation of the machines. A post-fabrication bakeout procedure has been successfully used to reduce residual internal contamination to acceptable levels in a closed cycle system. The process was developed during space qualification tests on the NICMOS cryocooler. Moisture levels were sampled over a six-month time interval confirming the effectiveness of the technique. A description of the bakeout procedure is presented.

  15. A new chapter in doctoral candidate training: The Helmholtz Space Life Sciences Research School (SpaceLife)

    NASA Astrophysics Data System (ADS)

    Hellweg, C. E.; Gerzer, R.; Reitz, G.

    2011-05-01

    In the field of space life sciences, the demand of an interdisciplinary and specific training of young researchers is high due to the complex interaction of medical, biological, physical, technical and other questions. The Helmholtz Space Life Sciences Research School (SpaceLife) offers an excellent interdisciplinary training for doctoral students from different fields (biology, biochemistry, biotechnology, physics, psychology, nutrition or sports sciences and related fields) and any country. SpaceLife is coordinated by the Institute of Aerospace Medicine at the German Aerospace Center (DLR) in Cologne. The German Universities in Kiel, Bonn, Aachen, Regensburg, Magdeburg and Berlin, and the German Sports University (DSHS) in Cologne are members of SpaceLife. The Universities of Erlangen-Nürnberg, Frankfurt, Hohenheim, and the Beihang University in Beijing are associated partners. In each generation, up to 25 students can participate in the three-year program. Students learn to develop integrated concepts to solve health issues in human spaceflight and in related disease patterns on Earth, and to further explore the requirements for life in extreme environments, enabling a better understanding of the ecosystem Earth and the search for life on other planets in unmanned and manned missions. The doctoral candidates are coached by two specialist supervisors from DLR and the partner university, and a mentor. All students attend lectures in different subfields of space life sciences to attain an overview of the field: radiation and gravitational biology, astrobiology and space physiology, including psychological aspects of short and long term space missions. Seminars, advanced lectures, laboratory courses and stays at labs at the partner institutions or abroad are offered as elective course and will provide in-depth knowledge of the chosen subfield or allow to appropriate innovative methods. In Journal Clubs of the participating working groups, doctoral students learn

  16. Real Life Science with Dandelions and Project BudBurst.

    PubMed

    Johnson, Katherine A

    2016-03-01

    Project BudBurst is a national citizen-science project that tracks bloom times and other phenological data for plants across the country. Data from Project BudBurst are being used to measure the effects of climate change. Students can participate in this project by watching any of the plants on the list, including the common dandelion, which makes the program easy and accessible to everyone. Journal of Microbiology & Biology Education. PMID:27047605

  17. Research for the soldier: bringing science fiction medicine to life.

    PubMed

    Lam, David M; Curley, Kenneth C

    2006-08-01

    Through means of a science fiction vignette, this paper presents and discusses many of the current research projects ongoing to enable the U.S. military medical services to provide an outstanding level of care in future conflicts. The research capabilities and programs of the U.S. Army Telemedicine and Advanced Technology Research Center (TATRC) are discussed, as are the partnerships between the TATRC and its collaborating researchers.

  18. Real Life Science with Dandelions and Project BudBurst.

    PubMed

    Johnson, Katherine A

    2016-03-01

    Project BudBurst is a national citizen-science project that tracks bloom times and other phenological data for plants across the country. Data from Project BudBurst are being used to measure the effects of climate change. Students can participate in this project by watching any of the plants on the list, including the common dandelion, which makes the program easy and accessible to everyone. Journal of Microbiology & Biology Education.

  19. Real Life Science with Dandelions and Project BudBurst

    PubMed Central

    Johnson, Katherine A.

    2016-01-01

    Project BudBurst is a national citizen-science project that tracks bloom times and other phenological data for plants across the country. Data from Project BudBurst are being used to measure the effects of climate change. Students can participate in this project by watching any of the plants on the list, including the common dandelion, which makes the program easy and accessible to everyone. Journal of Microbiology & Biology Education PMID:27047605

  20. Do Causal Attributions Mediate the Relationship between Personality Characteristics and Life Satisfaction in Adolescence?

    ERIC Educational Resources Information Center

    Rigby, Ben T.; Huebner, E. Scott

    2005-01-01

    This study examined relationships among personality traits, causal attributions, and global life satisfaction in a sample of 212 high school students. A chief aim of this research was to explore whether causal attributions mediate the relationship between personality characteristics and global life satisfaction as hypothesized by DeNeve and Cooper…

  1. 76 FR 59145 - Submission for OMB Review; Comment Request; NINR End-of-Life and Palliative Care Science Needs...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-23

    ...-Life and Palliative Care Science Needs Assessment: Funding Source (Survey of Authors) Summary: Under... Care Science Needs Assessment: Funding Source (Survey of Authors). Type of Information Collection Request: NEW. Need and Use of Information Collection: The NINR End-of-Life Science Palliative Care (EOL...

  2. Non-Traditional Characteristics of a Successful Science Fair Project

    ERIC Educational Resources Information Center

    Sumrall, William; Schillinger, Don

    2004-01-01

    Science fairs offer students the opportunity to develop skills in inquiry, writing research proposals, working with peers, verifying results, and sharing experimental findings. However, the science fair itself does not necessarily translate into a student's attainment of such skills. Project quality and a student's successful achievement of good…

  3. Characteristics of Science Teachers Who Incorporate Web-Based Teaching.

    ERIC Educational Resources Information Center

    Dori, Yehudit J.; Tal, Revital T.; Peled, Yehuda

    2002-01-01

    Characterizes and classifies the way junior high school science teachers incorporate Web-based learning environments and materials into their teaching. Applies qualitative interpretive methodology and identifies four basic types of science teachers based on professional growth and beliefs about Web-based teaching: (1) the initiator and pathfinder;…

  4. Characteristics of Effective Professional Development for Early Career Science Teachers

    ERIC Educational Resources Information Center

    Simon, Shirley; Campbell, Sandra; Johnson, Sally; Stylianidou, Fani

    2011-01-01

    The research reported here set out to investigate the features in schools and science departments that were seen as effective in contributing to the continuing professional development (CPD) of early career science teachers. Ten schools took part in the study, selected on the basis of their reputation for having effective CPD practices. To gain…

  5. The Life Sciences program at the NASA Ames Research Center - An overview

    NASA Technical Reports Server (NTRS)

    Vernikos-Danellis, Joan; Sharp, Joseph C.

    1989-01-01

    The research projects planned for the Life Sciences program have a goal of answering basic questions concerning the nature of life itself and its evolution in the universe from basic elements, as well as the search for extraterrestrial intelligence. The program also includes studies of the evolution and development of life on the planet earth, and the global changes occurring today that affect life on the earth. The paper describes the simulation models developed to study the effects of space, the flight projects of the program, and the biomedical program, which currently focuses on the physiological changes in the human body that are associated with space flights and the interactions among these changes.

  6. The Story behind the Science: Bringing Science and Scientists to Life in Post-Secondary Science Education

    ERIC Educational Resources Information Center

    Clough, Michael P.

    2011-01-01

    With funding from the United States National Science Foundation, 30 historical short stories designed to teach science content and draw students' attention to the nature of science (NOS) have been created for post-secondary introductory astronomy, biology, chemistry, geology, and physics courses. The project rationale, story development and…

  7. Life Sciences Investigations for ESA's First Lunar Lander

    NASA Astrophysics Data System (ADS)

    Carpenter, J. D.; Angerer, O.; Durante, M.; Linnarson, D.; Pike, W. T.

    2010-12-01

    Preparing for future human exploration of the Moon and beyond is an interdisciplinary exercise, requiring new technologies and the pooling of knowledge and expertise from many scientific areas. The European Space Agency is working to develop a Lunar Lander, as a precursor to future human exploration activities. The mission will demonstrate new technologies and perform important preparatory investigations. In the biological sciences the two major areas requiring investigation in advance of human exploration are radiation and its effects on human physiology and the potential toxicity of lunar dust. This paper summarises the issues associated with these areas and the investigations planned for the Lunar Lander to address them.

  8. Future prospects for space life sciences from a NASA perspective.

    PubMed

    White, R J; Lujan, B F

    1989-08-01

    As the U.S. Space Program lifted off the ground again on September 29, 1988, along with it came the return of scientific possibilities for the U.S. space science community. The end of that mission, STS-26, marked a new beginning for NASA. The success of STS-26 was critical to the dreams and careers of many people. Many of those dreams had been put on hold and, in fact, were fading as the U.S. watched the rest of the world move ahead rapidly with attempts to gain access to the limited and precious laboratory of space.

  9. Life-history traits and landscape characteristics predict macro-moth responses to forest fragmentation.

    PubMed

    Slade, Eleanor M; Merckx, Thomas; Riutta, Terhi; Bebber, Daniel P; Redhead, David; Riordan, Philip; Macdonald, David W

    2013-07-01

    How best to manage forest patches, mitigate the consequences of forest fragmentation, and enable landscape permeability are key questions facing conservation scientists and managers. Many temperate forests have become increasingly fragmented, resulting in reduced interior forest habitat, increased edge habitats, and reduced connectivity. Using a citizen science landscape-scale mark-release-recapture study on 87 macro-moth species, we investigated how both life-history traits and landscape characteristics predicted macro-moth responses to forest fragmentation. Wingspan, wing shape, adult feeding, and larval feeding guild predicted macro-moth mobility, although the predictive power of wingspan and wing shape depended on the species' affinity to the forest. Solitary trees and small fragments functioned as "stepping stones," especially when their landscape connectivity was increased, by being positioned within hedgerows or within a favorable matrix. Mobile forest specialists were most affected by forest fragmentation: despite their high intrinsic dispersal capability, these species were confined mostly to the largest of the forest patches due to their strong affinity for the forest habitat, and were also heavily dependent on forest connectivity in order to cross the agricultural matrix. Forest fragments need to be larger than five hectares and to have interior forest more than 100 m from the edge in order to sustain populations of forest specialists. Our study provides new insights into the movement patterns of a functionally important insect group, with implications for the landscape-scale management of forest patches within agricultural landscapes.

  10. Hormonal characteristics of the human menstrual cycle throughout reproductive life.

    PubMed

    Sherman, B M; Korenman, S G

    1975-04-01

    The changes in serum levels of luteinizing hormone (LH), follicle-stimulating hormone (FHS), estradiol, and progesterone that occur both early and late in reproductive life were characterized and compared with findings in young, normal women and in patients with certain menstrual disorders. A total of 50 complete menstrual cycles in 37 were examined. Five distinct patterns of hormonal regulation were found, three of which are reported here: (a) A long follicular phase and delayed follicular maturation in young women with long, unpredictable intermenstrual intervals from menarche; (b) a short follicular phase with increasing age and in short cycles in perimenopausal women; and (c) true anovulatory vaginal bleeding in long cycles in perimenopausal women. The short cycles before and during the menopausal transition were found to have lower E2 levels and high FSH concentrations throughout, while LH remained in the normal range. During long cycles in perimenopausal women, concentrations of LH and FSH were in the menopausal range. However, follicular maturation was observed months after high levels of gonadotropins were attained. These studies permit the characterization of the menstrual history of the normal woman in terms of the hormonal changes that occur and provide a basis for the definition of several disorders of follicular maturation. PMID:1120778

  11. Breathing life into fisheries stock assessments with citizen science.

    PubMed

    Fairclough, D V; Brown, J I; Carlish, B J; Crisafulli, B M; Keay, I S

    2014-01-01

    Citizen science offers a potentially cost-effective way for researchers to obtain large data sets over large spatial scales. However, it is not used widely to support biological data collection for fisheries stock assessments. Overfishing of demersal fishes along 1,000 km of the west Australian coast led to restrictive management to recover stocks. This diminished opportunities for scientists to cost-effectively monitor stock recovery via fishery-dependent sampling, particularly of the recreational fishing sector. As fishery-independent methods would be too expensive and logistically-challenging to implement, a citizen science program, Send us your skeletons (SUYS), was developed. SUYS asks recreational fishers to voluntarily donate fish skeletons of important species from their catch to allow biological data extraction by scientists to produce age structures and conduct stock assessment analyses. During SUYS, recreational fisher involvement, sample sizes and spatial and temporal coverage of samples have dramatically increased, while the collection cost per skeleton has declined substantially. SUYS is ensuring sampling objectives for stock assessments are achieved via fishery-dependent collection and reliable and timely scientific advice can be provided to managers. The program is also encouraging public ownership through involvement in the monitoring process, which can lead to greater acceptance of management decisions. PMID:25431103

  12. Breathing life into fisheries stock assessments with citizen science.

    PubMed

    Fairclough, D V; Brown, J I; Carlish, B J; Crisafulli, B M; Keay, I S

    2014-11-28

    Citizen science offers a potentially cost-effective way for researchers to obtain large data sets over large spatial scales. However, it is not used widely to support biological data collection for fisheries stock assessments. Overfishing of demersal fishes along 1,000 km of the west Australian coast led to restrictive management to recover stocks. This diminished opportunities for scientists to cost-effectively monitor stock recovery via fishery-dependent sampling, particularly of the recreational fishing sector. As fishery-independent methods would be too expensive and logistically-challenging to implement, a citizen science program, Send us your skeletons (SUYS), was developed. SUYS asks recreational fishers to voluntarily donate fish skeletons of important species from their catch to allow biological data extraction by scientists to produce age structures and conduct stock assessment analyses. During SUYS, recreational fisher involvement, sample sizes and spatial and temporal coverage of samples have dramatically increased, while the collection cost per skeleton has declined substantially. SUYS is ensuring sampling objectives for stock assessments are achieved via fishery-dependent collection and reliable and timely scientific advice can be provided to managers. The program is also encouraging public ownership through involvement in the monitoring process, which can lead to greater acceptance of management decisions.

  13. Astrobiology in culture: the search for extraterrestrial life as "science".

    PubMed

    Billings, Linda

    2012-10-01

    This analysis examines the social construction of authority, credibility, and legitimacy for exobiology/astrobiology and, in comparison, the search for extraterrestrial intelligence (SETI), considering English-language conceptions of these endeavors in scientific culture and popular culture primarily in the United States. The questions that define astrobiology as a scientific endeavor are multidisciplinary in nature, and this endeavor is broadly appealing to public audiences as well as to the scientific community. Thus, it is useful to examine astrobiology in culture-in scientific culture, official culture, and popular culture. A researcher may explore science in culture, science as culture, by analyzing its rhetoric, the primary means that people use to construct their social realities-their cultural environment, as it were. This analysis follows this path, considering scientific and public interest in astrobiology and SETI and focusing on scientific and official constructions of the two endeavors. This analysis will also consider whether and how scientific and public conceptions of astrobiology and SETI, which are related but at the same time separate endeavors, converge or diverge and whether and how these convergences or divergences affect the scientific authority, credibility, and legitimacy of these endeavors. PMID:23078644

  14. Astrobiology in culture: the search for extraterrestrial life as "science".

    PubMed

    Billings, Linda

    2012-10-01

    This analysis examines the social construction of authority, credibility, and legitimacy for exobiology/astrobiology and, in comparison, the search for extraterrestrial intelligence (SETI), considering English-language conceptions of these endeavors in scientific culture and popular culture primarily in the United States. The questions that define astrobiology as a scientific endeavor are multidisciplinary in nature, and this endeavor is broadly appealing to public audiences as well as to the scientific community. Thus, it is useful to examine astrobiology in culture-in scientific culture, official culture, and popular culture. A researcher may explore science in culture, science as culture, by analyzing its rhetoric, the primary means that people use to construct their social realities-their cultural environment, as it were. This analysis follows this path, considering scientific and public interest in astrobiology and SETI and focusing on scientific and official constructions of the two endeavors. This analysis will also consider whether and how scientific and public conceptions of astrobiology and SETI, which are related but at the same time separate endeavors, converge or diverge and whether and how these convergences or divergences affect the scientific authority, credibility, and legitimacy of these endeavors.

  15. NASA life sciences. An improvement in vital signs.

    PubMed

    Lawler, A

    2000-08-01

    Last week a hefty Russian module with living and working quarters for astronauts docked with the pieces of the international space station already in orbit, a critical step in creating a full-time orbiting laboratory. Meanwhile, NASA bureaucrats put the finishing touches on a realignment of the agency's struggling biology effort that should bolster fundamental research and allow scientists to make better use of the facility, scheduled to be completed in 2005. The two events raise the hopes of U.S. academic space life scientists that their discipline is at last on the ascent at NASA.

  16. Life at the Common Denominator: Mechanistic and Quantitative Biology for the Earth and Space Sciences

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.

    2010-01-01

    The remarkable challenges and possibilities of the coming few decades will compel the biogeochemical and astrobiological sciences to characterize the interactions between biology and its environment in a fundamental, mechanistic, and quantitative fashion. The clear need for integrative and scalable biology-environment models is exemplified in the Earth sciences by the challenge of effectively addressing anthropogenic global change, and in the space sciences by the challenge of mounting a well-constrained yet sufficiently adaptive and inclusive search for life beyond Earth. Our understanding of the life-planet interaction is still, however, largely empirical. A variety of approaches seek to move from empirical to mechanistic descriptions. One approach focuses on the relationship between biology and energy, which is at once universal (all life requires energy), unique (life manages energy flow in a fashion not seen in abiotic systems), and amenable to characterization and quantification in thermodynamic terms. Simultaneously, a focus on energy flow addresses a critical point of interface between life and its geological, chemical, and physical environment. Characterizing and quantifying this relationship for life on Earth will support the development of integrative and predictive models for biology-environment dynamics. Understanding this relationship at its most fundamental level holds potential for developing concepts of habitability and biosignatures that can optimize astrobiological exploration strategies and are extensible to all life.

  17. Chance, choice and opportunity: Life history study of two exemplary female elementary science teachers

    NASA Astrophysics Data System (ADS)

    Hitt, Kathleen Milligan

    The purpose of this two-year study was to investigate why two female elementary teachers became exemplary science teachers, despite conditions which do not promote such achievement. Each teachers' progress was examined using life history methodology. The study's theoretical grounding included females' academic and attitudinal success in science education. Purposeful sampling of peers, administrators, and college professors produced two research participants. Both teachers participated in interviews, observations, and member checks lasting over one year. Data were analyzed inductively, resulting in two life histories. Comparing the life stories using confluence theory (Feldman, 1986) indicated four major categories for consideration: risk-taking; life-long learning; gender equity; and mentors. Risk-taking is necessary for female elementary teachers because of their often poor educational background. Few female role models support efforts for achievement. Life-long learning, including extensive reading and graduate-level classes, supports female teachers' personal and professional growth. Exposure to new ideas and teacher practices encourages curricular change and refinement in science education. Gender inequity and the male-packaging of science is an issue to be resolved by female elementary teachers. Mentors can provide interaction and feedback to refine science instructional practices. Professors, peers, and mentor teachers support instructional and content knowledge efforts. Recommendations for science education in classroom practices, preservice teacher education and continuing professional development include female-friendly approaches to science instruction. Decreased competitive practices through cooperative learning and gender inclusive language encourages female participation and achievement in classrooms. Hands-on, inquiry-based instruction and verbalization encourages female students' achievement in science education. Preservice teachers must receive

  18. Using and Distributing Spaceflight Data: The Johnson Space Center Life Sciences Data Archive

    NASA Technical Reports Server (NTRS)

    Cardenas, J. A.; Buckey, J. C.; Turner, J. N.; White, T. S.; Havelka,J. A.

    1995-01-01

    Life sciences data collected before, during and after spaceflight are valuable and often irreplaceable. The Johnson Space Center Life is hard to find, and much of the data (e.g. Sciences Data Archive has been designed to provide researchers, engineers, managers and educators interactive access to information about and data from human spaceflight experiments. The archive system consists of a Data Acquisition System, Database Management System, CD-ROM Mastering System and Catalog Information System (CIS). The catalog information system is the heart of the archive. The CIS provides detailed experiment descriptions (both written and as QuickTime movies), hardware descriptions, hardware images, documents, and data. An initial evaluation of the archive at a scientific meeting showed that 88% of those who evaluated the catalog want to use the system when completed. The majority of the evaluators found the archive flexible, satisfying and easy to use. We conclude that the data archive effectively provides key life sciences data to interested users.

  19. Towards virtual knowledge broker services for semantic integration of life science literature and data sources.

    PubMed

    Harrow, Ian; Filsell, Wendy; Woollard, Peter; Dix, Ian; Braxenthaler, Michael; Gedye, Richard; Hoole, David; Kidd, Richard; Wilson, Jabe; Rebholz-Schuhmann, Dietrich

    2013-05-01

    Research in the life sciences requires ready access to primary data, derived information and relevant knowledge from a multitude of sources. Integration and interoperability of such resources are crucial for sharing content across research domains relevant to the life sciences. In this article we present a perspective review of data integration with emphasis on a semantics driven approach to data integration that pushes content into a shared infrastructure, reduces data redundancy and clarifies any inconsistencies. This enables much improved access to life science data from numerous primary sources. The Semantic Enrichment of the Scientific Literature (SESL) pilot project demonstrates feasibility for using already available open semantic web standards and technologies to integrate public and proprietary data resources, which span structured and unstructured content. This has been accomplished through a precompetitive consortium, which provides a cost effective approach for numerous stakeholders to work together to solve common problems.

  20. The biological universe: the twentieth-century extraterrestrial life debate and the limits of science

    NASA Astrophysics Data System (ADS)

    Dick, Steven J.

    Throughout the twentieth century, from the furor over Percival Lowell's claim of canals on Mars to the sophisticated Search for Extraterrestrial Intelligence, otherworldly life has often intrigued and occasionally consumed science and the public. Does `biological law' reign throughout the universe? Are there other histories, religions, and philosophies outside of those on Earth? Do extraterrestrial minds ponder the mysteries of the universe? The attempts toanswer these often asked questions form one of the most interesting chapters in the history of science and culture, and The Biological Universe is the first book to provide a rich and colorful history of those attempts during the twentieth century. Covering a broad range of topics, including the search for life in the solar system, the origins of life, UFOs, and aliens in science fiction, Steven J. Dick shows how the concept of extraterrestrial intelligence is a world view of its own, a `biophysical cosmology' that seeks confirmation no less than physical views of the universe.