The Technology in the Programs of Life Sciences in Turkey and Sachunterricht in Germany
ERIC Educational Resources Information Center
Keskin, Tuba
2017-01-01
The purpose of this study is to compare the gains of the Life Sciences program in Turkey and the Life sciences program (Sachunterricht) used in the state of Niedersachsen in Germany. The study aiming to compare the technology-related acquisitions in Life sciences program in Turkey and Germany is a comparative education research that used…
Life sciences flight experiments program - Overview
NASA Technical Reports Server (NTRS)
Berry, W. E.; Dant, C. C.
1981-01-01
The considered LSFE program focuses on Spacelab life sciences missions planned for the 1984-1985 time frame. Life Sciences Spacelab payloads, launched at approximately 18-months intervals, will enable scientists to test hypotheses from such disciplines as vestibular physiology, developmental biology, biochemistry, cell biology, plant physiology, and a variety of other life sciences. An overview is presented of the LSFE program that will take advantage of the unique opportunities for biological experimentation possible on Spacelab. Program structure, schedules, and status are considered along with questions of program selection, and the science investigator working groups. A description is presented of the life sciences laboratory equipment program, taking into account the general purpose work station, the research animal holding facility, and the plant growth unit.
Definition of Life Sciences laboratories for shuttle/Spacelab. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1975-01-01
Research requirements and the laboratories needed to support a Life Sciences research program during the shuttle/Spacelab era were investigated. A common operational research equipment inventory was developed to support a comprehensive but flexible Life Sciences program. Candidate laboratories and operational schedules were defined and evaluated in terms of accomodation with the Spacelab and overall program planning. Results provide a firm foundation for the initiation of a life science program for the shuttle era.
Space shuttle and life sciences
NASA Technical Reports Server (NTRS)
Mason, J. A.
1977-01-01
During the 1980's, some 200 Spacelab missions will be flown on space shuttle in earth-orbit. Within these 200 missions, it is planned that at least 20 will be dedicated to life sciences research, projects which are yet to be outlined by the life sciences community. Objectives of the Life Sciences Shuttle/Spacelab Payloads Program are presented. Also discussed are major space life sciences programs including space medicine and physiology, clinical medicine, life support technology, and a variety of space biology topics. The shuttle, spacelab, and other life sciences payload carriers are described. Concepts for carry-on experiment packages, mini-labs, shared and dedicated spacelabs, as well as common operational research equipment (CORE) are reviewed. Current NASA planning and development includes Spacelab Mission Simulations, an Announcement of Planning Opportunity for Life Sciences, and a forthcoming Announcement of Opportunity for Flight Experiments which will together assist in forging a Life Science Program in space.
Future prospects for space life sciences from a NASA perspective
NASA Technical Reports Server (NTRS)
White, Ronald J.; Lujan, Barbara F.
1989-01-01
Plans for future NASA research programs in the life sciences are reviewed. Consideration is given to international cooperation in space life science research, the NASA approach to funding life science research, and research opportunities using the Space Shuttle, the Space Station, and Biological Satellites. Several specific programs are described, including the Centrifuge Project to provide a controlled acceleration environment for microgravity studies, the Rhesus Project to conduct biomedical research using rhesus monkeys, and the LifeSat international biosatellite project. Also, the Space Biology Initiative to design and develop life sciences laboratory facilities for the Space Shuttle and the Space Station and the Extended Duration Crew Operations program to study crew adaptation needs are discussed.
NASA Technical Reports Server (NTRS)
1989-01-01
The Life Science Division of the NASA Office of Space Science and Applications (OSSA) describes its plans for assuring the health, safety, and productivity of astronauts in space, and its plans for acquiring further fundamental scientific knowledge concerning space life sciences. This strategic implementation plan details OSSA's goals, objectives, and planned initiatives. The following areas of interest are identified: operational medicine; biomedical research; space biology; exobiology; biospheric research; controlled ecological life support; flight programs and advance technology development; the life sciences educational program; and earth benefits from space life sciences.
Space Life Sciences Research and Education Program
NASA Technical Reports Server (NTRS)
Coats, Alfred C.
2001-01-01
Since 1969, the Universities Space Research Association (USRA), a private, nonprofit corporation, has worked closely with the National Aeronautics and Space Administration (NASA) to advance space science and technology and to promote education in those areas. USRA's Division of Space Life Sciences (DSLS) has been NASA's life sciences research partner for the past 18 years. For the last six years, our Cooperative Agreement NCC9-41 for the 'Space Life Sciences Research and Education Program' has stimulated and assisted life sciences research and education at NASA's Johnson Space Center (JSC) - both at the Center and in collaboration with outside academic institutions. To accomplish our objectives, the DSLS has facilitated extramural research, developed and managed educational programs, recruited and employed visiting and staff scientists, and managed scientific meetings.
Life Sciences Program Tasks and Bibliography
NASA Technical Reports Server (NTRS)
1996-01-01
This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1995. Additionally, this inaugural edition of the Task Book includes information for FY 1994 programs. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive Internet web page
Life sciences - On the critical path for missions of exploration
NASA Technical Reports Server (NTRS)
Sulzman, Frank M.; Connors, Mary M.; Gaiser, Karen
1988-01-01
Life sciences are important and critical to the safety and success of manned and long-duration space missions. The life science issues covered include gravitational physiology, space radiation, medical care delivery, environmental maintenance, bioregenerative systems, crew and human factors within and outside the spacecraft. The history of the role of life sciences in the space program is traced from the Apollo era, through the Skylab era to the Space Shuttle era. The life science issues of the space station program and manned missions to the moon and Mars are covered.
Life sciences interests in Mars missions
NASA Technical Reports Server (NTRS)
Rummel, John D.; Griffiths, Lynn D.
1989-01-01
NASA's Space Life Sciences research permeates plans for Mars missions and the rationale for the exploration of the planet. The Space Life Sciences program has three major roles in Mars mission studies: providing enabling technology for piloted missions, conducting scientific exploration related to the origin and evolution of life, and protecting space crews from the adverse physiological effects of space flight. This paper presents a rationale for exploration and some of the issues, tradeoffs, and visions being addressed in the Space Life Sciences program in preparation for Mars missions.
USSR Space Life Sciences Digest, volume 2, no.1
NASA Technical Reports Server (NTRS)
Paulson, L. D.
1981-01-01
An overview of the developments and direction of the USSR Space Life Sciences Program is given. Highlights of launches, program development, and mission planning are given. Results of ground-based research and space flight studies are summarized. Topics covered include: space medicine and physiology; space biology; and life sciences technology.
USSR Space Life Sciences Digest, volume 1, no. 3
NASA Technical Reports Server (NTRS)
Wallace, P. M.
1980-01-01
An overview of the developments and direction of the USSR Space Life Sciences Program is given. Highlights of launches, program development, and mission planning are given. Results of ground-based research and space flight studies are summarized. Topics covered include: space medicine and physiology; space biology; and life sciences technology.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-26
... collection of Life Sciences Subject Matter Experts (SMEs) information with the Office of the Director of... review of life science programs. In addition, the directory makes it easier to identify scientific... life science programs. The directory makes it easier to identify scientific specialty areas for which...
NASA's Plans for Materials Science on ISS: Cooperative Utilization of the MSRR-MSL
NASA Technical Reports Server (NTRS)
Chiaramonte, Francis; Szofran, Frank
2008-01-01
The ISS Research Project draws Life (non-human) and Physical Sciences investigations on the ISS, free flyer and ground-based into one coordinated project. The project has two categories: I. Exploration Research Program: a) Utilizes the ISS as a low Technology Readiness Level (TRL) test bed for technology development, demonstration and problem resolution in the areas of life support, fire safety, power, propulsion, thermal management, materials technology, habitat design, etc.; b) Will include endorsement letters from other ETDP projects to show relevancy. II. Non-Exploration Research Program; a) Not directly related to supporting the human exploration program. Research conducted in the life (non-human) and physical sciences; b) The program will sustain, to the maximum extent practicable, the United States scientific expertise and research capability in fundamental microgravity research. Physical Sciences has about 44 grants, and Life Sciences has approximately 32 grants, mostly with universities, to conduct low TRL research; this includes grants to be awarded from the 2008 Fluid Physics and Life Science NRA's.
USSR Space Life Sciences Digest, volume 1, no. 4
NASA Technical Reports Server (NTRS)
Paulson, L. D.
1980-01-01
An overview of the developments and direction of the USSR Space Life Sciences Program is given. Highlights of launches, program development, and mission planning are given. Results of ground-based research and space flight studies are summarized. Topics covered include: space medicine and physiology; space biology, and life sciences and technology.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-22
... collection of Life Sciences Subject Matter Experts (SMEs) information with the Office of the Director of... review of life science programs. In addition, the directory makes it easier to identify scientific... provide scientific expertise for peer review of life science programs. The directory makes it easier to...
USSR Space Life Sciences Digest, volume 2, no. 2
NASA Technical Reports Server (NTRS)
Paulson, L. D.
1981-01-01
An overview of the developments and direction of the USSR Space Life Sciences Program is given. Highlights of launches, program development, and mission planning are given. Results of ground-based research and space flight studies are summarized. Topics covered include: space medicine and physiology; space biology; and life sciences and technology.
Space life sciences strategic plan
NASA Astrophysics Data System (ADS)
Nicogossian, Arnauld E.
1992-05-01
Over the last three decades the Life Sciences Program has significantly contributed to NASA's manned and unmanned exploration of space, while acquiring new knowledge in the fields of space biology and medicine. The national and international events which have led to the development and revision of NASA strategy will significantly affect the future of life sciences programs both in scope and pace. This document serves as the basis for synthesizing the options to be pursued during the next decade, based on the decisions, evolution, and guiding principles of the National Space Policy. The strategies detailed in this document are fully supportive of the Life Sciences Advisory Subcommittee's 'A Rationale for the Life Sciences,' and the recent Aerospace Medicine Advisory Committee report entitled 'Strategic Considerations for Support of Humans in Space and Moon/Mars Exploration Missions.' Information contained within this document is intended for internal NASA planning and is subject to policy decisions and direction, and to budgets allocated to NASA's Life Sciences Program.
Space life sciences strategic plan
NASA Technical Reports Server (NTRS)
Nicogossian, Arnauld E.
1992-01-01
Over the last three decades the Life Sciences Program has significantly contributed to NASA's manned and unmanned exploration of space, while acquiring new knowledge in the fields of space biology and medicine. The national and international events which have led to the development and revision of NASA strategy will significantly affect the future of life sciences programs both in scope and pace. This document serves as the basis for synthesizing the options to be pursued during the next decade, based on the decisions, evolution, and guiding principles of the National Space Policy. The strategies detailed in this document are fully supportive of the Life Sciences Advisory Subcommittee's 'A Rationale for the Life Sciences,' and the recent Aerospace Medicine Advisory Committee report entitled 'Strategic Considerations for Support of Humans in Space and Moon/Mars Exploration Missions.' Information contained within this document is intended for internal NASA planning and is subject to policy decisions and direction, and to budgets allocated to NASA's Life Sciences Program.
Life sciences payloads for Shuttle
NASA Technical Reports Server (NTRS)
Dunning, R. W.
1974-01-01
The Life Sciences Program for utilization of the Shuttle in the 1980's is presented. Requirements for life sciences research experiments in space flight are discussed along with study results of designs to meet these requirements. The span of life sciences interests in biomedicine, biology, man system integration, bioinstrumentation and life support/protective systems is described with a listing of the research areas encompassed in these descriptions. This is followed by a description of the approach used to derive from the life sciences disciplines, the research functions and instrumentation required for an orbital research program. Space Shuttle design options for life sciences experiments are identified and described. Details are presented for Spacelab laboratories for dedicated missions, mini-labs with carry on characteristics and carry on experiments for shared payload missions and free flying satellites to be deployed and retrieved by the Shuttle.
Fermilab Science Education Office - Field Trips, Study Units and Workshops
World - Life Sciences (K-5) Phriendly Physics Program - Blog - Physical Sciences (3-5) The Prairie - Our Heartland - Life Sciences 6-9 (6-8) Energy and Ecosystems - Life Sciences (6-9) Beauty and Charm - Physical
The NASA Space Life Sciences Training Program: Accomplishments Since 2013
NASA Technical Reports Server (NTRS)
Rask, Jon; Gibbs, Kristina; Ray, Hami; Bridges, Desireemoi; Bailey, Brad; Smith, Jeff; Sato, Kevin; Taylor, Elizabeth
2017-01-01
The NASA Space Life Sciences Training Program (SLSTP) provides undergraduate students entering their junior or senior years with professional experience in space life science disciplines. This challenging ten-week summer program is held at NASA Ames Research Center. The primary goal of the program is to train the next generation of scientists and engineers, enabling NASA to meet future research and development challenges in the space life sciences. Students work closely with NASA scientists and engineers on cutting-edge research and technology development. In addition to conducting hands-on research and presenting their findings, SLSTP students attend technical lectures given by experts on a wide range of topics, tour NASA research facilities, participate in leadership and team building exercises, and complete a group project. For this presentation, we will highlight program processes, accomplishments, goals, and feedback from alumni and mentors since 2013. To date, 49 students from 41 different academic institutions, 9 staffers, and 21 mentors have participated in the program. The SLSTP is funded by Space Biology, which is part of the Space Life and Physical Sciences Research and Application division of NASA's Human Exploration and Operations Mission Directorate. The SLSTP is managed by the Space Biology Project within the Science Directorate at Ames Research Center.
NASA Technical Reports Server (NTRS)
House, G.
1980-01-01
Methods are defined for implementing quality assurance policy and requirements for life sciences laboratory equipment, experimental hardware, integration and test support equipment, and integrated payloads.
NASA/NSF Antarctic Science Working Group
NASA Technical Reports Server (NTRS)
Stoklosa, Janis H.
1990-01-01
A collection of viewgraphs on NASA's Life Sciences Biomedical Programs is presented. They show the structure of the Life Sciences Division; the tentative space exploration schedule from the present to 2018; the biomedical programs with their objectives, research elements, and methodological approaches; validation models; proposed Antarctic research as an analog for space exploration; and the Science Working Group's schedule of events.
NASA Technical Reports Server (NTRS)
1987-01-01
Highlighted here are the major research efforts of the NASA Life Sciences Division during the past year. Topics covered include remote health care delivery in space, space biomedical research, gravitational biology, biospherics (studying planet Earth), the NASA Closed Ecological Life Support System (CELSS), exobiology, flight programs, international cooperation, and education programs.
Exploring the living universe: A strategy for space life sciences
NASA Technical Reports Server (NTRS)
1988-01-01
The status and goals of NASA's life sciences programs are examined. Ways and mean for attaining these goals are suggested. The report emphasizes that a stronger life sciences program is imperative if the U.S. space policy is to construct a permanently manned space station and achieve its stated goal of expanding the human presence beyond earth orbit into the solar system. The same considerations apply in regard to the other major goal of life sciences: to study the biological processes and life in the universe. A principal recommendation of the report is for NASA to expand its program of ground- and space-based research contributing to resolving questions about physiological deconditioning, radiation exposure, potential psychological difficulties, and life support requirements that may limit stay times for personnel on the Space Station and complicate missions of more extended duration. Other key recommendations call for strengthening programs of biological systems research in: controlled ecological life support systems for humans in space, earth systems central to understanding the effects on the earth's environment of both natural and human activities, and exobiology.
Life Science Curriculum Guide. Bulletin 1614.
ERIC Educational Resources Information Center
Louisiana State Dept. of Education, Baton Rouge. Div. of Academic Programs.
This curriculum guide, developed to establish statewide curriculum standards for the Louisiana Competency-based Education Program, contains the minimum competencies and process skills that should be included in a life science course. It consists of: (1) a rationale for an effective science program; (2) a list and description of four major goals of…
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
This instructional package contains two biological units developed for the Dade County Florida Quinmester Program. "Introduction to Life Sciences" develops student understandings of cell structure and function, and compares different levels of cellular organization. "Cell Biology" investigates the origin of modern cellular…
Space life sciences: A status report
NASA Technical Reports Server (NTRS)
1990-01-01
The scientific research and supporting technology development conducted in the Space Life Sciences Program is described. Accomplishments of the past year are highlighted. Plans for future activities are outlined. Some specific areas of study include the following: Crew health and safety; What happens to humans in space; Gravity, life, and space; Sustenance in space; Life and planet Earth; Life in the Universe; Promoting good science and good will; Building a future for the space life sciences; and Benefits of space life sciences research.
Life and Biomedical Sciences and Applications Advisory Subcommittee Meeting
NASA Technical Reports Server (NTRS)
1996-01-01
The proceedings of the August 1995 meeting of the Life and Biomedical Sciences and Applications Advisory Subcommittee (LBSAAS) are summarized. The following topics were addressed by the Subcommittee members: the activities and status of the LBSA Division; program activities of the Office of Life and Microgravity Sciences and Applications (OLMSA); the medical Countermeasures Program; and the Fettman Report on animal research activities at ARC. Also presented were a history and overview of the activities of the Space Station Utilization Advisory Committee and the Advanced Life Support Program (ALSP). The meeting agenda and a list of the Subcommittee members and meeting attendees are included as appendices.
NASA's Space Life Sciences Training Program.
Coulter, G; Lewis, L; Atchison, D
1994-01-01
The Space Life Sciences Training Program (SLSTP) is an intensive, six-week training program held every summer since 1985 at the Kennedy Space Center (KSC). A major goal of the SLSTP is to develop a cadre of qualified scientists and engineers to support future space life sciences and engineering challenges. Hand-picked, undergraduate college students participate in lectures, laboratory sessions, facility tours, and special projects: including work on actual Space Shuttle flight experiments and baseline data collection. At NASA Headquarters (HQ), the SLSTP is jointly sponsored by the Life Sciences Division and the Office of Equal Opportunity Programs: it has been very successful in attracting minority students and women to the fields of space science and engineering. In honor of the International Space Year (ISY), 17 international students participated in this summer's program. An SLSTP Symposium was held in Washington D.C., just prior to the World Space Congress. The Symposium attracted over 150 SLSTP graduates for a day of scientific discussions and briefings concerning educational and employment opportunities within NASA and the aerospace community. Future plans for the SLSTP include expansion to the Johnson Space Center in 1995.
NASA's Space Life Sciences Training Program
NASA Technical Reports Server (NTRS)
Coulter, G.; Lewis, L.; Atchison, D.
1994-01-01
The Space Life Sciences Training Program (SLSTP) is an intensive, six-week training program held every summer since 1985 at the Kennedy Space Center (KSC). A major goal of the SLSTP is to develop a cadre of qualified scientists and engineers to support future space life sciences and engineering challenges. Hand-picked, undergraduate college students participate in lectures, laboratory sessions, facility tours, and special projects: including work on actual Space Shuttle flight experiments and baseline data collection. At NASA Headquarters (HQ), the SLSTP is jointly sponsored by the Life Sciences Division and the Office of Equal Opportunity Programs: it has been very successful in attracting minority students and women to the fields of space science and engineering. In honor of the International Space Year (ISY), 17 international students participated in this summer's program. An SLSTP Symposium was held in Washington D. C., just prior to the World Space Congress. The Symposium attracted over 150 SLSTP graduates for a day of scientific discussions and briefings concerning educational and employment opportunities within NASA and the aerospace community. Future plans for the SLSTP include expansion to the Johnson Space Center in 1995.
Life Sciences Program Tasks and Bibliography for FY 1996
NASA Technical Reports Server (NTRS)
Nelson, John C. (Editor)
1997-01-01
This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1996. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive Internet web page.
Life Sciences Program Tasks and Bibliography for FY 1997
NASA Technical Reports Server (NTRS)
Nelson, John C. (Editor)
1998-01-01
This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1997. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive internet web page.
The Life Sciences program at the NASA Ames Research Center - An overview
NASA Technical Reports Server (NTRS)
Vernikos-Danellis, Joan; Sharp, Joseph C.
1989-01-01
The research projects planned for the Life Sciences program have a goal of answering basic questions concerning the nature of life itself and its evolution in the universe from basic elements, as well as the search for extraterrestrial intelligence. The program also includes studies of the evolution and development of life on the planet earth, and the global changes occurring today that affect life on the earth. The paper describes the simulation models developed to study the effects of space, the flight projects of the program, and the biomedical program, which currently focuses on the physiological changes in the human body that are associated with space flights and the interactions among these changes.
NASA-Ames Life Sciences Flight Experiments program - 1980 status report
NASA Technical Reports Server (NTRS)
Berry, W. E.; Dant, C. C.; Macleod, G.; Williams, B. A.
1980-01-01
The paper deals with the ESA's Spacelab LSFE (Life Sciences Flight Experiments) program which, once operational, will provide new and unique opportunities to conduct research into the effects of spaceflight and weightlessness on living organisms under conditions approximating ground-based laboratories. Spacelab missions, launched at 18-month intervals, will enable scientists to test hypotheses from such disciplines as vestibular physiology, developmental biology, biochemistry, cell biology, plant physiology, and similar life sciences.
JSC director's discretionary fund program
NASA Technical Reports Server (NTRS)
1991-01-01
The Johnson Space Center Director's Discretionary Fund Program Annual Report provides a brief review of the status of projects undertaken during the 1990 fiscal year. Three space exploration initiative related issues were focused on: regenerative life support, human spacecraft design, and lunar surface habitat. A viable program of life sciences, space sciences, and engineering research has been maintained.
Energy--Structure--Life, A Learning System for Understanding Science.
ERIC Educational Resources Information Center
Bixby, Louis W.; And Others
Material for the first year of Energy/Structure/Life, a two-year high school program in integrated science, is contained in this learning guide. The program, a sequence of physics, chemistry, and biology, presents the physical science phase during the first year with these 13 chapters: (1) distance/time/velocity; (2) velocity/change/acceleration;…
Organisms, Grade One. Teacher's Guide. Life Science for Guam.
ERIC Educational Resources Information Center
Shafer, Jeffrey E.
This guide is a result of two years' piloting and revising the Science Curriculum Improvement Study (SCIS) program for the students of Guam. The life science portions of SCIS were chosen and adapted for the ecology of the area. Program flexibility is stressed and outdoor activities are encouraged. Used in grade one, the topic of organisms is…
United States Air Force Summer Faculty Research Program. 1980 Program Management Report.
1980-10-01
conducted by SCEEE. The program provides opportunities for research In the physical sciences, engineering, life sciences, business, and administrative...How could it be improved? 5. Did you have any difficulty In any domestic aspects (i.e., locating suitable housing, acceptance in community, social life ...provided, trouble with family housing, not much social life . b. Stipend level? Meager - 18 Adequate- 62 Generous - b 7. Preprogram visit? Not worth expense
Space life sciences: Programs and projects
NASA Technical Reports Server (NTRS)
1989-01-01
NASA space life science activities are outlined. Brief, general descriptions are given of research in the areas of biomedical research, space biology, closed loop life support systems, exobiology, and biospherics.
NASA Technical Reports Server (NTRS)
Rummel, J. A.
1982-01-01
The Mission Science Requirements Document (MSRD) for the First Dedicated Life Sciences Mission (LS-1) represents the culmination of thousands of hours of experiment selection, and science requirement definition activities. NASA life sciences has never before attempted to integrate, both scientifically and operationally, a single mission dedicated to life sciences research, and the complexity of the planning required for such an endeavor should be apparent. This set of requirements completes the first phase of a continual process which will attempt to optimize (within available programmatic and mission resources) the science accomplished on this mission.
Annual program analysis of the NASA Space Life Sciences Research and Education Support Program
NASA Technical Reports Server (NTRS)
1994-01-01
The basic objectives of this contract are to stimulate, encourage, and assist research and education in NASA life sciences. Scientists and experts from a number of academic and research institutions in this country and abroad are recruited to support NASA's need to find a solution to human physiological problems associated with living and working in space and on extraterrestrial bodies in the solar system. To fulfill the contract objectives, a cadre of staff and visiting scientists, consultants, experts, and subcontractors has been assembled into a unique organization dedicated to the space life sciences. This organization, USRA's Division of Space Life Sciences, provides an academic atmosphere, provides an organizational focal point for science and educational activities, and serves as a forum for the participation of eminent scientists in the biomedical programs of NASA. The purpose of this report is to demonstrate adherence to the requirement of Contract NAS9-18440 for a written review and analysis of the productivity and success of the program. In addition, this report makes recommendations for future activities and conditions to further enhance the objectives of the program and provides a self-assessment of the cost performance of the contract.
Computational thinking in life science education.
Rubinstein, Amir; Chor, Benny
2014-11-01
We join the increasing call to take computational education of life science students a step further, beyond teaching mere programming and employing existing software tools. We describe a new course, focusing on enriching the curriculum of life science students with abstract, algorithmic, and logical thinking, and exposing them to the computational "culture." The design, structure, and content of our course are influenced by recent efforts in this area, collaborations with life scientists, and our own instructional experience. Specifically, we suggest that an effective course of this nature should: (1) devote time to explicitly reflect upon computational thinking processes, resisting the temptation to drift to purely practical instruction, (2) focus on discrete notions, rather than on continuous ones, and (3) have basic programming as a prerequisite, so students need not be preoccupied with elementary programming issues. We strongly recommend that the mere use of existing bioinformatics tools and packages should not replace hands-on programming. Yet, we suggest that programming will mostly serve as a means to practice computational thinking processes. This paper deals with the challenges and considerations of such computational education for life science students. It also describes a concrete implementation of the course and encourages its use by others.
Publications of the biospheric research program: 1981-1987
NASA Technical Reports Server (NTRS)
Wallace, Janice S. (Editor)
1988-01-01
Presented is a list of publications of investigators supported by the Biospheric Research Program of the Biological Systems Research Branch, Life Sciences Division, and the Office of Space Science and Applications. It includes publications dated as of December 31, 1987 and entered into the Life Sciences Bibliographic Database at the George Washington University. Publications are organized by the year published.
Transfer of training through a science education professional development program
NASA Astrophysics Data System (ADS)
Sowards, Alan Bosworth
Educational research substantiates that effective professional development models must be developed in order for reform-based teaching strategies to be implemented in classrooms. This study examined the effectiveness of an established reform-based science education professional development program, Project LIFE. The study investigated what impact Project LIFE had on participants implementation of reform-based instruction in their classroom three years after participation in the science inservice program. Participants in the case studies described use of reform-based instruction and program factors that influenced transfer of training to their classrooms. Subjects of the study were 5th--10th grade teachers who participated in the 1997--98 Project LIFE professional development program. The study employed a mixed design including both qualitative and quantitative methodology. The qualitative data was collected from multiple sources which included: an open-ended survey, classroom observations, structured interviews, and artifacts. Three purposeful selection of teachers for case studies were made with teacher approval and authorization from building principals. Interview responses from the three case studies were further analyzed qualitatively using the microcomputer software NUD*IST. Tables and figures generated from NUD*IST graphically represented the case study teachers response and case comparison to six established categories: (1) continued implementation of reform-based instruction, (2) use of reform-based instruction, (3) program factors supporting transfer of training, (4) professional development, (5) goals of Project LIFE, and (6) critical issues in science education. Paired t-tests were used to analysis the quantitative data collected from the Survey of Attitudes Toward Science and Science Teaching. The study concluded the 1997--98 Project LIFE participants continued to implement reform-based instruction in their classrooms three years later. According to the teachers the program factors having the most influence on transferring training to their classroom were the positive responses from students; reflections with other teachers regarding instructional activities and strategies; modeling of activities and strategies they received from Project LIFE staff while participating in the program; and teachers commitment to reform-based instruction. These findings are important in enhancing national science reform goals. In order for teachers to be able to implement science-reform-based instruction in their classrooms they must experience effective professional development models. Designers of professional development programs must understand which factors in staff development programs most contribute to transfer of training.
USSR Space Life Sciences Digest, volume 2, no. 3
NASA Technical Reports Server (NTRS)
Lewis, C. S.
1981-01-01
Soviet scientists are making significant contributions to the field of space medicine and biology through their active manned space program, frequent biosatellites, and extensive ground-based research. An overview of the developments and direction of the USSR Space Life Sciences Program is provided.
USSR Space Life Sciences Digest, volume 2, no. 4
NASA Technical Reports Server (NTRS)
Lewis, C. S.; Donnelly, K.
1981-01-01
Soviet scientists are making significant contributions to the field of space medicine and biology through their active manned space program, frequent biosatellites, and extensive ground-based research. An overview of the developments and direction of the USSR Space Life Sciences Program is provided.
Space Station accommodation of life sciences in support of a manned Mars mission
NASA Technical Reports Server (NTRS)
Meredith, Barry D.; Willshire, Kelli F.; Hagaman, Jane A.; Seddon, Rhea M.
1989-01-01
Results of a life science impact analysis for accommodation to the Space Station of a manned Mars mission are discussed. In addition to addressing such issues as on-orbit vehicle assembly and checkout, the study also assessed the impact of a life science research program on the station. A better understanding of the effects on the crew of long duration exposure to the hostile space environment and to develop controls for adverse effects was the objective. Elements and products of the life science accommodation include: the identification of critical research areas; the outline of a research program consistent with the mission timeframe; the quantification of resource requirements; the allocation of functions to station facilities; and a determination of the impact on the Space Station program and of the baseline configuration. Results indicate the need at the Space Station for two dedicated life science lab modules; a pocket lab to support a 4-meter centrifuge; a quarantine module for the Mars Sample Return Mission; 3.9 man-years of average crew time; and 20 kilowatts of electrical power.
The ASM-NSF Biology Scholars Program: An Evidence-Based Model for Faculty Development.
Chang, Amy L; Pribbenow, Christine M
2016-05-01
The American Society for Microbiology (ASM) established its ASM-NSF (National Science Foundation) Biology Scholars Program (BSP) to promote undergraduate education reform by 1) supporting biologists to implement evidence-based teaching practices, 2) engaging life science professional societies to facilitate biologists' leadership in scholarly teaching within the discipline, and 3) participating in a teaching community that fosters disciplinary-level science, technology, engineering, and mathematics (STEM) reform. Since 2005, the program has utilized year-long residency training to provide a continuum of learning and practice centered on principles from the scholarship of teaching and learning (SoTL) to more than 270 participants ("scholars") from biology and multiple other disciplines. Additionally, the program has recruited 11 life science professional societies to support faculty development in SoTL and discipline-based education research (DBER). To identify the BSP's long-term outcomes and impacts, ASM engaged an external evaluator to conduct a study of the program's 2010-2014 scholars (n = 127) and society partners. The study methods included online surveys, focus groups, participant observation, and analysis of various documents. Study participants indicate that the program achieved its proposed goals relative to scholarship, professional society impact, leadership, community, and faculty professional development. Although participants also identified barriers that hindered elements of their BSP participation, findings suggest that the program was essential to their development as faculty and provides evidence of the BSP as a model for other societies seeking to advance undergraduate science education reform. The BSP is the longest-standing faculty development program sponsored by a collective group of life science societies. This collaboration promotes success across a fragmented system of more than 80 societies representing the life sciences and helps catalyze biology education reform efforts.
Defining a Mechanism of Educational Interface Between NASA Life Sciences the Nation's Students
NASA Technical Reports Server (NTRS)
Chamberland, D.; Dreschel, T.; Coulter, G.
1995-01-01
Harnessing our greatest national resource, as represented by the nation's students, will require a thoughtful, well developed and administered program that includes precise, executable strategies and valid evaluation tools. Responding to a national education outreach priority, the National Aeronautics and Space Administration's Life and Biomedical Sciences and Applications Division has initiated a process or organizing and implementing various strategies through a steering committee that includes representatives from Headquarters and three field centers with major Life Sciences programs. The mandate of the Life Sciences Education Outreach Steering Committee is to develop ways of communicating space life science issues to America's students through the nation's teachers by curriculum enhancement and direct participation in the education process with an emphasis in the primary and secondary schools. Metrics are also developed for each individually defined process so that the mechanis can be continuously refined and improved.
Life Sciences Data Archive (LSDA)
NASA Technical Reports Server (NTRS)
Fitts, M.; Johnson-Throop, Kathy; Thomas, D.; Shackelford, K.
2008-01-01
In the early days of spaceflight, space life sciences data were been collected and stored in numerous databases, formats, media-types and geographical locations. While serving the needs of individual research teams, these data were largely unknown/unavailable to the scientific community at large. As a result, the Space Act of 1958 and the Science Data Management Policy mandated that research data collected by the National Aeronautics and Space Administration be made available to the science community at large. The Biomedical Informatics and Health Care Systems Branch of the Space Life Sciences Directorate at JSC and the Data Archive Project at ARC, with funding from the Human Research Program through the Exploration Medical Capability Element, are fulfilling these requirements through the systematic population of the Life Sciences Data Archive. This program constitutes a formal system for the acquisition, archival and distribution of data for Life Sciences-sponsored experiments and investigations. The general goal of the archive is to acquire, preserve, and distribute these data using a variety of media which are accessible and responsive to inquiries from the science communities.
Pörzse, Gábor
2009-08-09
Research and development (R&D) has been playing a leading role in the European Community's history since the very beginning of European integration. Its importance has grown in recent years, after the launch of the Lisbon strategy. Framework programs have always played a considerable part in community research. The aim of their introduction was to fine tune national R&D activities, and to successfully divide research tasks between the Community and the member states. The Community, from the very outset, has acknowledged the importance of life sciences. It is no coincidence that life sciences have become the second biggest priority in the last two framework programs. This study provides a historical, and at the same time analytical and evaluative review of community R&D policy and activity from the starting point of its development until the present day. It examines in detail how the changes in structure, conditional system, regulations and priorities of the framework programs have followed the formation of social and economic needs. The paper puts special emphasis on the analysis of the development of life science research, presenting how they have met the challenges of the age, and how they have been built into the framework programs. Another research area of the present study is to elaborate how successfully Hungarian researchers have been joining the community research, especially the framework programs in the field of life sciences. To answer these questions, it was essential to survey, process and analyze the data available in the national and European public and closed databases. Contrary to the previous documents, this analysis doesn't concentrate on the political and scientific background. It outlines which role community research has played in sustainable social and economic development and competitiveness, how it has supported common policies and how the processes of integration have been deepening. Besides, the present paper offers a complete review of the given field, from its foundation up until the present day, by elaborating the newest initiatives and ideas for the future. This work is also novel from the point of view of the given professional field, the life sciences in the framework programs, and processing and evaluating of data of Hungarian participation in the 5th and 6th framework programs in the field of life sciences.
Space life sciences strategic plan, 1991
NASA Technical Reports Server (NTRS)
1992-01-01
Over the last three decades the life sciences program has significantly contributed to NASA's manned and unmanned exploration of space, while acquiring new knowledge in the fields of space biology and medicine. The national and international events which have led to the development and revision of NASA strategy will significantly affect the future of life sciences programs both in scope and pace. This document serves as the basis for synthesizing the option to be pursued during the next decade, based on the decisions, evolution, and guiding principles of the National Space Policy.
The ASM-NSF Biology Scholars Program: An Evidence-Based Model for Faculty Development
Chang, Amy L.; Pribbenow, Christine M.
2016-01-01
The American Society for Microbiology (ASM) established its ASM-NSF (National Science Foundation) Biology Scholars Program (BSP) to promote undergraduate education reform by 1) supporting biologists to implement evidence-based teaching practices, 2) engaging life science professional societies to facilitate biologists’ leadership in scholarly teaching within the discipline, and 3) participating in a teaching community that fosters disciplinary-level science, technology, engineering, and mathematics (STEM) reform. Since 2005, the program has utilized year-long residency training to provide a continuum of learning and practice centered on principles from the scholarship of teaching and learning (SoTL) to more than 270 participants (“scholars”) from biology and multiple other disciplines. Additionally, the program has recruited 11 life science professional societies to support faculty development in SoTL and discipline-based education research (DBER). To identify the BSP’s long-term outcomes and impacts, ASM engaged an external evaluator to conduct a study of the program’s 2010–2014 scholars (n = 127) and society partners. The study methods included online surveys, focus groups, participant observation, and analysis of various documents. Study participants indicate that the program achieved its proposed goals relative to scholarship, professional society impact, leadership, community, and faculty professional development. Although participants also identified barriers that hindered elements of their BSP participation, findings suggest that the program was essential to their development as faculty and provides evidence of the BSP as a model for other societies seeking to advance undergraduate science education reform. The BSP is the longest-standing faculty development program sponsored by a collective group of life science societies. This collaboration promotes success across a fragmented system of more than 80 societies representing the life sciences and helps catalyze biology education reform efforts. PMID:27158300
Improving science literacy and education through space life sciences
NASA Astrophysics Data System (ADS)
MacLeish, Marlene Y.; Moreno, Nancy P.; Tharp, Barbara Z.; Denton, Jon J.; Jessup, George; Clipper, Milton C.
2001-08-01
The National Space Biomedical Research Institute (NSBRI) encourages open involvement by scientists and the public at large in the Institute's activities. Through its Education and Public Outreach Program, the Institute is supporting national efforts to improve Kindergarten through grade twelve (K-12) and undergraduate education and to communicate knowledge generated by space life science research to lay audiences. Three academic institutions—Baylor College of Medicine, Morehouse School of Medicine and Texas A&M University—are designing, producing, field-testing, and disseminating a comprehensive array of programs and products to achieve this goal. The objectives of the NSBRI Education and Public Outreach program are to: promote systemic change in elementary and secondary science education; attract undergraduate students—especially those from underrepresented groups—to careers in space life sciences, engineering and technology-based fields; increase scientific literacy; and to develop public and private sector partnerships that enhance and expand NSBRI efforts to reach students and families.
Improving science literacy and education through space life sciences.
MacLeish, M Y; Moreno, N P; Tharp, B Z; Denton, J J; Jessup, G; Clipper, M C
2001-01-01
The National Space Biomedical Research Institute (NSBRI) encourages open involvement by scientists and the public at large in the Institute's activities. Through its Education and Public Outreach Program, the Institute is supporting national efforts to improve Kindergarten through grade twelve (K-12) and undergraduate education and to communicate knowledge generated by space life science research to lay audiences. Three academic institution Baylor College of Medicine, Morehouse School of Medicine and Texas A&M University are designing, producing, field-testing, and disseminating a comprehensive array of programs and products to achieve this goal. The objectives of the NSBRI Education and Public Outreach program are to: promote systemic change in elementary and secondary science education; attract undergraduate students--especially those from underrepresented groups--to careers in space life sciences, engineering and technology-based fields; increase scientific literacy; and to develop public and private sector partnerships that enhance and expand NSBRI efforts to reach students and families. c 2001. Elsevier Science Ltd. All rights reserved.
Improving science literacy and education through space life sciences
NASA Technical Reports Server (NTRS)
MacLeish, M. Y.; Moreno, N. P.; Tharp, B. Z.; Denton, J. J.; Jessup, G.; Clipper, M. C.
2001-01-01
The National Space Biomedical Research Institute (NSBRI) encourages open involvement by scientists and the public at large in the Institute's activities. Through its Education and Public Outreach Program, the Institute is supporting national efforts to improve Kindergarten through grade twelve (K-12) and undergraduate education and to communicate knowledge generated by space life science research to lay audiences. Three academic institution Baylor College of Medicine, Morehouse School of Medicine and Texas A&M University are designing, producing, field-testing, and disseminating a comprehensive array of programs and products to achieve this goal. The objectives of the NSBRI Education and Public Outreach program are to: promote systemic change in elementary and secondary science education; attract undergraduate students--especially those from underrepresented groups--to careers in space life sciences, engineering and technology-based fields; increase scientific literacy; and to develop public and private sector partnerships that enhance and expand NSBRI efforts to reach students and families. c 2001. Elsevier Science Ltd. All rights reserved.
Accommodating life sciences on the Space Station
NASA Technical Reports Server (NTRS)
Arno, Roger D.
1987-01-01
The NASA Ames Research Center Biological Research Project (BRP) is responsible for identifying and accommodating high priority life science activities, utilizing nonhuman specimens, on the Space Station and is charged to bridge the gap between the science community and the Space Station Program. This paper discusses the approaches taken by the BRP in accomodating these research objectives to constraints imposed by the Space Station System, while maintaining a user-friendly environment. Consideration is given to the particular research disciplines which are given priority, the science objectives in each of these disciplines, the functions and activities required by these objectives, the research equipment, and the equipment suits. Life sciences programs planned by the Space Station participating partners (USA, Europe, Japan, and Canada) are compared.
Life Cycle. K-6 Science Curriculum.
ERIC Educational Resources Information Center
Blueford, J. R.; And Others
Life Cycle is one of the units of a K-6 unified science curriculum program. The unit consists of four organizing sub-themes: (1) past life (focusing on dinosaurs and fossil formation, types, and importance); (2) animal life (examining groups of invertebrates and vertebrates, cells, reproduction, and classification systems); (3) plant life…
ERIC Educational Resources Information Center
Conner, Nathan William
2013-01-01
The purpose of this study was to explore how undergraduate students in a college of agricultural and life sciences experienced cultural adaptation during short-term study abroad programs. The specific objectives of this study were to describe how undergraduate students in the college of agricultural and life sciences experienced culture throughout…
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Medical Applications and Biophysical Research Division of the Office of Biological and Environmental Research supports and manages research in several distinct areas of science and technology. The projects described in this book are grouped by the main budgetary areas: General Life Sciences (structural molecular biology), Medical Applications (primarily nuclear medicine) and Measurement Science (analytical chemistry instrumentation), Environmental Management Science Program, and the Small Business Innovation Research Program. The research funded by this division complements that of the other two divisions in the Office of Biological and Environmental Research (OBER): Health Effects and Life Sciences Research, and Environmental Sciences. Mostmore » of the OBER programs are planned and administered jointly by the staff of two or all three of the divisions. This summary book provides information on research supported in these program areas during Fiscal Years 1996 and 1997.« less
NASA Technical Reports Server (NTRS)
1995-01-01
This Life Science Program video examines the variety of projects that study both the physiological and psychological impacts on astronauts due to extended space missions. The hazards of space radiation and microgravity effects on the human body are described, along with these effects on plant growth, and the performance of medical procedures in space. One research technique, which is hoped to provide help for future space travel, is the study of aquanauts and their life habits underwater.
Operational plans for life science payloads - From experiment selection through postflight reporting
NASA Technical Reports Server (NTRS)
Mccollum, G. W.; Nelson, W. G.; Wells, G. W.
1976-01-01
Key features of operational plans developed in a study of the Space Shuttle era life science payloads program are presented. The data describes the overall acquisition, staging, and integration of payload elements, as well as program implementation methods and mission support requirements. Five configurations were selected as representative payloads: (a) carry-on laboratories - medical emphasis experiments, (b) mini-laboratories - medical/biology experiments, (c) seven-day dedicated laboratories - medical/biology experiments, (d) 30-day dedicated laboratories - Regenerative Life Support Evaluation (RLSE) with selected life science experiments, and (e) Biomedical Experiments Scientific Satellite (BESS) - extended duration primate (Type I) and small vertebrate (Type II) missions. The recommended operational methods described in the paper are compared to the fundamental data which has been developed in the life science Spacelab Mission Simulation (SMS) test series. Areas assessed include crew training, experiment development and integration, testing, data-dissemination, organization interfaces, and principal investigator working relationships.
Exploring the living universe: A strategy for space life sciences
NASA Technical Reports Server (NTRS)
1988-01-01
The knowledge obtained by space life sciences will play a pivotal role as humankind reaches out to explore the solar system. Information is needed concerning the existence of life beyond the Earth, the potential interactions between planets and living organisms, and the possibilities for humans to inhabit space safely and productively. Programs in the involved disciplines are an integral part of NASA's current and future missions. To realize their objectives, the development and operation of diverse ground and flight facilities and clost coordination with numerous scientific and governmental organizations in the U.S. and abroad are required. The status and goals of the life sciences programs are examined. Ways and means for attaining these goals are suggested.
Current status and future direction of NASA's Space Life Sciences Program
NASA Technical Reports Server (NTRS)
White, Ronald J.; Lujan, Barbara F.
1989-01-01
The elements of the NASA Life Sciences Program that are related to manned space flight and biological scientific studies in space are reviewed. Projects included in the current program are outlined and the future direction of the program is discussed. Consideration is given to issues such as long-duration spaceflight, medical support in space, readaptation to the gravity field of earth, considerations for the Space Station, radiation hazards, environmental standards for space habitation, and human operator interaction with computers, robots, and telepresence systems.
The NASA Space Life Sciences Training Program - Preparing the way
NASA Technical Reports Server (NTRS)
Biro, Ronald; Munsey, Bill; Long, Irene
1990-01-01
Attention is given to the goals and methods adopted in the NASA Space Life Sciences Training Program (SLSTP) for preparing scientists and engineers for space-related life-sciences research and operations. The SLSTP is based on six weeks of projects and lectures which give an overview of payload processing and experiment flow in the space environment. The topics addressed in the course of the program include descriptions of space vehicles, support hardware, equipment, and research directions. Specific lecture topics include the gravity responses of plants, mission integration of a flight experiment, and the cardiovascular deconditioning. The SLSTP is shown to be an important part of the process of recruiting and training qualified scientists and engineers to support space activities.
Space radiation health program plan
NASA Technical Reports Server (NTRS)
1991-01-01
The Space Radiation Health Program intends to establish the scientific basis for the radiation protection of humans engaged in the exploration of space, with particular emphasis on the establishment of a firm knowledge base to support cancer risk assessment for future planetary exploration. This document sets forth the technical and management components involved in the implementation of the Space Radiation Health Program, which is a major part of the Life Sciences Division (LSD) effort in the Office of Space Science and Applications (OSSA) at the National Aeronautics and Space Administration (NASA). For the purpose of implementing this program, the Life Sciences Division supports scientific research into the fundamental mechanisms of radiation effects on living systems and the interaction of radiation with cells, tissues, and organs, and the development of instruments and processes for measuring radiation and its effects. The Life Sciences Division supports researchers at universities, NASA field centers, non-profit research institutes and national laboratories; establishes interagency agreements for cooperative use and development of facilities; and conducts a space-based research program using available and future spaceflight vehicles.
ERIC Educational Resources Information Center
Mitman, Alexis L.; And Others
This 10-chapter report provides detailed information on a study which examined what combinations of teacher, student, and curricular variables were associated with more effective life science instruction at the intermediate level. The conception of effectiveness was guided by the normative framework of scientific literacy and by student growth on…
The first dedicated life sciences Spacelab mission
NASA Technical Reports Server (NTRS)
Perry, T. W.; Rummel, J. A.; Griffiths, L. D.; White, R. J.; Leonard, J. I.
1984-01-01
JIt is pointed out that the Shuttle-borne Spacelab provides the capability to fly large numbers of life sciences experiments, to retrieve and rescue experimental equipment, and to undertake multiple-flight studies. A NASA Life Sciences Flight Experiments Program has been organized with the aim to take full advantages of this capability. A description is provided of the scientific aspects of the most ambitious Spacelab mission currently being conducted in connection with this program, taking into account the First Dedicated Life Sciences Spacelab Mission. The payload of this mission will contain the equipment for 24 separate investigations. It is planned to perform the mission on two separate seven-day Spacelab flights, the first of which is currently scheduled for early 1986. Some of the mission objectives are related to the study of human and animal responses which occur promptly upon achieving weightlessness.
Website for the Space Science Division
NASA Technical Reports Server (NTRS)
Schilling, James; DeVincenzi, Donald (Technical Monitor)
2002-01-01
The Space Science Division at NASA Ames Research Center is dedicated to research in astrophysics, exobiology, advanced life support technologies, and planetary science. These research programs are structured around Astrobiology (the study of life in the universe and the chemical and physical forces and adaptions that influence life's origin, evolution, and destiny), and address some of the most fundamental questions pursued by science. These questions examine the origin of life and our place in the universe. Ames is recognized as a world leader in Astrobiology. In pursuing our mission in Astrobiology, Space Science Division scientists perform pioneering basic research and technology development.
ERIC Educational Resources Information Center
Martin, Andrew J.; Durksen, Tracy L.; Williamson, Derek; Kiss, Julia; Ginns, Paul
2016-01-01
Informal learning settings such as museums have been identified as opportunities to enhance students' knowledge and motivation in science and to optimize the connection between science and everyday life. The present study assessed the role of a self-paced science education program (situated in a medical science museum) in enhancing students'…
tish carr; Laura S. Kenefic; Darren J. Ranco
2017-01-01
The Wabanaki Youth in Science (WaYS) program provides mentoring and training opportunities in the life sciences for Native American youth in Maine. This program, which was motivated by a shortage of young natural resource professionals to manage tribal lands, uses a multifaceted approach (i.e., camps, community outreach, and internships with cultural resource and...
ERIC Educational Resources Information Center
Madfes, Tania J.
In 1986, responding to the nation's teacher shortage, especially in the fields of mathematics and science, Chevron USA funded the ENCORE Program to facilitate the entrance of nontraditional recruits into the profession with alternative credentialing. Chevron also funded this study of mid-life career change to teaching in order to enable…
Energy--Structure--Life. A Learning System for Understanding Science, Book Two.
ERIC Educational Resources Information Center
Bixby, Louis W.; And Others
This learning guide contains materials for the second year of Energy/Structure/ Life, a two year high school program in integrated science. The guide is programed to permit the student to proceed on his own at a self-determined pace. The two year course is a sequence of physics, chemistry, and biology with the chemical (continued from the first…
Participation in Research Program: A Novel Course in Undergraduate Education of Life Science
ERIC Educational Resources Information Center
Zhou, Xuanwei; Lin, Juan; Yin, Yizhou; Sun, Xiaofen; Tang, Kexuan
2007-01-01
A novel course, "Participation in Research Program (PRP)" in life sciences is open for 1st to 3rd year undergraduates. PRP introduces the principles of a variety of biological methods and techniques and also offers an opportunity to explore some specific knowledge in more detail prior to thesis research. In addition, the PRP introduces some…
NASA space life sciences research and education support program
NASA Technical Reports Server (NTRS)
Jones, Terri K.
1995-01-01
USRA's Division of Space Life Sciences (DSLS) was established in 1983 as the Division of Space Biomedicine to facilitate participation of the university community in biomedical research programs at the NASA Johnson Space Center (JSC). The DSLS is currently housed in the Center for Advanced Space Studies (CASS), sharing quarters with the Division of Educational Programs and the Lunar and Planetary Institute. The DSLS provides visiting scientists for the Johnson Space Center; organizes conferences, workshops, meetings, and seminars; and, through subcontracts with outside institutions, supports NASA-related research at more than 25 such entities. The DSLS has considerable experience providing visiting scientists, experts, and consultants to work in concert with NASA Life Sciences researchers to define research missions and goals and to perform a wide variety of research administration and program management tasks. The basic objectives of this contract have been to stimulate, encourage, and assist research and education in the NASA life sciences. Scientists and experts from a number of academic and research institutions in this country and abroad have been recruited to support NASA's need to find a solution to human physiological problems associated with living and working in space and on extraterrestrial bodies in the solar system.
Report, 1979-1980: Assembly of Life Sciences, National Research Council.
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC. Assembly of Life Sciences.
This annual report of the Assembly of Life Sciences (ALS) covers the fiscal year beginning July 1, 1979, and ending June 30, 1980. The report has four major sections: (1) Special Programs of the Executive Office; (2) Division of Biological Sciences; (3) Division of Medical Sciences; and (4) Board on Toxicology and Environmental Health Hazards.…
1978-1979 Report: Assembly of Life Sciences, National Research Council.
ERIC Educational Resources Information Center
National Academy of Sciences, Washington, DC.
This annual report of the Assembly of Life Sciences (ALS) covers the fiscal year from July 1, 1978 to June 30, 1979. The report has four major sections: (1) Special Programs of the Executive Office; (2) Division of Biological Sciences; (3) Division of Medical Sciences; and (4) Board on Toxicology and Environmental Health Hazards. The activities…
JSC Director's Discretionary Fund Program
NASA Technical Reports Server (NTRS)
Jenkins, Lyle M. (Editor)
1991-01-01
The JSC Center Director's Discretionary Fund Program 1991 Annual Report provides a brief status of the projects undertaken during the 1991 fiscal year. For this year, four space exploration initiative related issues were focused on: regenerative life support, human spacecraft design, lunar surface habitat, and in situ resource utilization. In this way, a viable program of life sciences, space sciences, and engineering research has been maintained. For additional information on any single project, the individual investigator should be contacted.
NASA Tech Briefs, December 2002
NASA Technical Reports Server (NTRS)
2002-01-01
Topics covered include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; and Life Sciences.
NASA Astrophysics Data System (ADS)
Hellweg, C. E.; Spitta, L. F.; Kopp, K.; Schmitz, C.; Reitz, G.; Gerzer, R.
2016-01-01
Training young researchers in the field of space life sciences is essential to vitalize the future of spaceflight. In 2009, the DLR Institute of Aerospace Medicine established the Helmholtz Space Life Sciences Research School (SpaceLife) in cooperation with several universities, starting with 22 doctoral candidates. SpaceLife offered an intensive three-year training program for early-stage researchers from different fields (biology, biomedicine, biomedical engineering, physics, sports, nutrition, plant and space sciences). The candidates passed a multistep selection procedure with a written application, a self-presentation to a selection committee, and an interview with the prospective supervisors. The selected candidates from Germany as well as from abroad attended a curriculum taught in English. An overview of space life sciences was given in a workshop with introductory lectures on space radiation biology and dosimetry, space physiology, gravitational biology and astrobiology. The yearly Doctoral Students' Workshops were also interdisciplinary. During the first Doctoral Students' Workshop, every candidate presented his/her research topic including hypothesis and methods to be applied. The progress report was due after ∼1.5 years and a final report after ∼3 years. The candidates specialized in their subfield in advanced lectures, Journal Clubs, practical trainings, lab exchanges and elective courses. The students attended at least one transferable skills course per year, starting with a Research Skills Development course in the first year, a presentation and writing skills course in the second year, and a career and leadership course in the third year. The whole program encompassed 303 h and was complemented by active conference participation. In this paper, the six years' experience with this program is summarized in order to guide other institutions in establishment of structured Ph.D. programs in this field. The curriculum including elective courses is documented. The applicants' statistics revealed that personal contacts and the DLR website were most important the recruitment of doctoral candidates. The evaluation of the application and selection procedure revealed that prediction of thesis success based on master thesis mark or evaluation by the selection committee is difficult. SpaceLife Doctoral Students greatly contributed to the scientific output in terms of peer-reviewed publications of the Institute of Aerospace Medicine with a peak in the fourth year after start of the thesis and they continuously received awards for their scientific work.
Katz, Laura A; Aloisio, Kathryn M; Horton, Nicholas J; Ly, Minh; Pruss, Sara; Queeney, Kate; Rowen, Cate; DiBartolo, Patricia Marten
2017-01-01
Created to foster inclusive excellence, Smith College's Achieving Excellence in Mathematics, Engineering, and Science (AEMES) Scholars program provides early faculty-mentored research opportunities and other programming as a way to foster success in academic outcomes for underrepresented women in science. Using academic record data, we compared Scholars' outcomes over time with those of underrepresented students before program launch and to relevant peer comparison groups. Since its launch, AEMES Scholars have achieved significantly higher gateway life sciences course grade point averages (GPAs), rates of persistence in life and natural sciences, and participation in natural sciences advanced research relative to baseline. Gains for Scholars in gateway course GPA eliminated the significant gap that previously existed between science, technology, engineering, and mathematics (STEM)-underrepresented and other students, whereas gains in natural sciences persistence now has Scholars continuing in STEM at significantly higher rates than all other students. Many of the gains for AEMES Scholars were echoed in findings of improved outcomes for our STEM students overall since AEMES' launch. Underrepresented students who were not part of the Scholars program also evidenced increased gateway course GPA over this same period. We discuss potential explanations for these outcomes and ongoing work aimed at achieving further inclusive excellence for women in the sciences. © 2017 L. A. Katz et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
NASA Technical Reports Server (NTRS)
1971-01-01
The functional program element for the life sciences facilities to operate aboard manned space stations is presented. The life sciences investigations will consist of the following subjects: (1) medical research, (2) vertebrate research, (3) plant research, (4) cells and tissue research, (5) invertebrate research, (6) life support and protection, and (7) man-system integration. The equipment required to provide the desired functional capability for the research facilities is defined. The goals and objectives of each research facility are described.
Marshall, Thomas; Champagne-Langabeer, Tiffiany; Castelli, Darla; Hoelscher, Deanna
2017-12-01
To present research models based on artificial intelligence and discuss the concept of cognitive computing and eScience as disruptive factors in health and life science research methodologies. The paper identifies big data as a catalyst to innovation and the development of artificial intelligence, presents a framework for computer-supported human problem solving and describes a transformation of research support models. This framework includes traditional computer support; federated cognition using machine learning and cognitive agents to augment human intelligence; and a semi-autonomous/autonomous cognitive model, based on deep machine learning, which supports eScience. The paper provides a forward view of the impact of artificial intelligence on our human-computer support and research methods in health and life science research. By augmenting or amplifying human task performance with artificial intelligence, cognitive computing and eScience research models are discussed as novel and innovative systems for developing more effective adaptive obesity intervention programs.
NASA Astrophysics Data System (ADS)
Terzian, Yervant; Bilson, Elizabeth
1997-10-01
Preface; Carl Sagan at sixty; Part I. Planetary Exploration: 1. On the occasion of Carl Sagan's sixtieth birthday Wesley T. Huntress, Jr.; 2. The search for the origins of life: U.S. Solar system exploration, 1962-1994 Edward C. Stone; 3. Highlights of the Russian planetary program Roald Sageev; 4. From the eyepiece to the footpad: The search for life on Mars Bruce Murray; Part II. Life in the Cosmos: 5. Environments of Earth and other worlds Owen B. Toon; 6. The origin of life in a cosmic context Christopher F. Chyba; 7. Impacts and life: Living in a risky planetary system David Morrison; 8. Extraterrestrial intelligence: The significance of the search Frank D. Drake; 9. Extraterrestrial intelligence: The search programs Paul Horowitz; 10. Do the laws of physics permit wormholes for interstellar travel and machines for time travel? Kip S. Thorne; Public Address: 11. The age of exploration Carl Sagan; Part III. Science Education: 12. Does science need to be popularized? Ann Druyen; 13. Science and pseudo-science James Randi; 14. Science education in a democracy Philip Morrison; 15. The visual presentation of science Jon Lomberg; 16. Science and the press Walter Anderson; 17. Science and teaching Bill G. Aldridge; Part IV. Science, Environment and Public Policy: 18. The relationship of science and power Richard L. Garwin; 19. Nuclear-free world? Georgi Arbatov; 20. Carl Sagan and nuclear winter Richard P. Turco; 21. Public understanding of global climate change James Hansen; 22. Science and religion Joan B. Campbell; 23. Speech in honor of Carl Sagan Frank Press.
A Program Aimed toward Inclusive Excellence for Underrepresented Undergraduate Women in the Sciences
Katz, Laura A.; Aloisio, Kathryn M.; Horton, Nicholas J.; Ly, Minh; Pruss, Sara; Queeney, Kate; Rowen, Cate; DiBartolo, Patricia Marten
2017-01-01
Created to foster inclusive excellence, Smith College’s Achieving Excellence in Mathematics, Engineering, and Science (AEMES) Scholars program provides early faculty-mentored research opportunities and other programming as a way to foster success in academic outcomes for underrepresented women in science. Using academic record data, we compared Scholars’ outcomes over time with those of underrepresented students before program launch and to relevant peer comparison groups. Since its launch, AEMES Scholars have achieved significantly higher gateway life sciences course grade point averages (GPAs), rates of persistence in life and natural sciences, and participation in natural sciences advanced research relative to baseline. Gains for Scholars in gateway course GPA eliminated the significant gap that previously existed between science, technology, engineering, and mathematics (STEM)-underrepresented and other students, whereas gains in natural sciences persistence now has Scholars continuing in STEM at significantly higher rates than all other students. Many of the gains for AEMES Scholars were echoed in findings of improved outcomes for our STEM students overall since AEMES’ launch. Underrepresented students who were not part of the Scholars program also evidenced increased gateway course GPA over this same period. We discuss potential explanations for these outcomes and ongoing work aimed at achieving further inclusive excellence for women in the sciences. PMID:28213581
Biomedical programs operations plans
NASA Technical Reports Server (NTRS)
Walbrecher, H. F.
1974-01-01
Operational guidelines for the space shuttle life sciences payloads are presented. An operational assessment of the medical experimental altitude test for Skylab, and Skylab life sciences documentation are discussed along with the operations posture and collection of space shuttle operational planning data.
NASA Tech Briefs, August 1992. Volume 16, No. 8
NASA Technical Reports Server (NTRS)
1992-01-01
Topics include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, September 1992. Volume 16, No.9
NASA Technical Reports Server (NTRS)
1992-01-01
Topics include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, January 1993. Volume 17, No. 1
NASA Technical Reports Server (NTRS)
1993-01-01
Topics include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences;
NASA Tech Briefs, November 1992. Volume 16, No. 11
NASA Technical Reports Server (NTRS)
1992-01-01
Topics include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences;
NASA Tech Briefs, December 1992. Volume 16, No. 12
NASA Technical Reports Server (NTRS)
1992-01-01
Topics include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences;
NASA Technical Reports Server (NTRS)
Clinton, R. G., Jr.; Szofran, Frank; Bassler, Julie A.; Schlagheck, Ronald A.; Cook, Mary Beth
2005-01-01
The Microgravity Materials Science Program established a strong research capability through partnerships between NASA and the scientific research community. With the announcement of the vision for space exploration, additional emphasis in strategic materials science areas was necessary. The President's Commission recognized that achieving its exploration objectives would require significant technical innovation, research, and development in focal areas defined as "enabling technologies." Among the 17 enabling technologies identified for initial focus were: advanced structures, advanced power and propulsion; closed-loop life support and habitability; extravehicular activity systems; autonomous systems and robotics; scientific data collection and analysis, biomedical risk mitigation; and planetary in situ resource utilization. Mission success may depend upon use of local resources to fabricate a replacement part to repair a critical system. Future propulsion systems will require materials with a wide range of mechanical, thermophysical, and thermochemical properties, many of them well beyond capabilities of today's materials systems. Materials challenges have also been identified by experts working to develop advanced life support systems. In responding to the vision for space exploration, the Microgravity Materials Science Program aggressively transformed its research portfolio and focused materials science areas of emphasis to include space radiation shielding; in situ fabrication and repair for life support systems; in situ resource utilization for life support consumables; and advanced materials for exploration, including materials science for space propulsion systems and for life support systems. The purpose of this paper is to inform the scientific community of these new research directions and opportunities to utilize their materials science expertise and capabilities to support the vision for space exploration.
Space life sciences pilot user development program for the midwest region
NASA Technical Reports Server (NTRS)
1978-01-01
The use of space for research by the life science community was promoted through a series of informal one-day seminars with personal follow-up as circumstances dictated. The programs were planned to: (1) describe the space shuttle vehicle and some of its intended uses; (2) discuss problems of manned space flight; (3) stimulate ideas for biological research in space; (4) discuss costs and potential for industrial and; government sponsorship; and (5) show the researcher or corporate planner how to become an active participant in life sciences research in space. An outline of seminar topics is included along with a description of the seminar organization and lists of participants and materials used.
Life Sciences Accomplishments 1994
NASA Technical Reports Server (NTRS)
Burnell, Mary Lou (Editor)
1993-01-01
The NASA Life and Biomedical Sciences and Applications Division (LBSAD) serves the Nation's life sciences community by managing all aspects of U.S. space-related life sciences research and technology development. The activities of the Division are integral components of the Nation's overall biological sciences and biomedical research efforts. However, NASA's life sciences activities are unique, in that space flight affords the opportunity to study and characterize basic biological mechanisms in ways not possible on Earth. By utilizing access to space as a research tool, NASA advances fundamental knowledge of the way in which weightlessness, radiation, and other aspects of the space-flight environment interact with biological processes. This knowledge is applied to procedures and technologies that enable humans to live and work in and explore space and contributes to the health and well-being of people on Earth. The activities of the Division are guided by the following three goals: Goal 1) Use microgravity and other unique aspects of the space environment to enhance our understanding of fundamental biological processes. Goal 2) Develop the scientific and technological foundations for supporting exploration by enabling productive human presence in space for extended periods. Goal 3) Apply our unique mission personnel, facilities, and technology to improve education, the quality of life on Earth, and U.S. competitiveness. The Division pursues these goals with integrated ground and flight programs involving the participation of NASA field centers, industry, and universities, as well as interactions with other national agencies and NASA's international partners. The published work of Division-sponsored researchers is a record of completed research in pursuit of these goals. During 1993, the LBSAD instituted significant changes in its experiment solicitation and peer review processes. For the first time, a NASA Research Announcement (NRA) was released requesting proposals for ground-based and flight research for all programs. Areas of particular interest to NASA were defined Proposals due April 29, 1994, will be peer reviewed - externally for scientific merit. This annual NRA process is now the mechanism for recruiting both extramural and intramural investigations. As an overview of LBSAD activities in 1993, this accomplishments document covers each of the major organizational components of the Division and the accomplishments of each. The second section is a review of the Space Life Sciences Research programs Space Biology, Space Physiology and Countermeasures, Radiation Health, Environmental Health, Space Human Factors, Advanced Life Support, and Global Monitoring and Disease Prediction, The third section, Research in Space Flight, describes the substantial contributions of the Spacelab Life Sciences 2 (SLS-2) mission to life sciences research and the significant contributions of the other missions flown in 1993, along with plans for future missions. The Division has greatly expanded and given high priority to its Education and Outreach Programs, which are presented in the fourth section. The fifth and final section, Partners for Space, shows the Divisions Cooperative efforts with other national and international agencies to achieve common goals, along with the accomplishments of joint research and analysis programs.
ERIC Educational Resources Information Center
Odom, H. Clyde; Myer, Donna Foster
This instructor's resource guide, one in a series of products from a project to develop an associate degree program for paraprofessional rural family health promoters, deals with teaching chemistry for the life sciences. Covered in the first section of the volume are the role of chemistry in rural health promotional training, general objectives…
NASA Tech Briefs, October 1989. Volume 13, No. 10
NASA Technical Reports Server (NTRS)
1989-01-01
Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences
NASA Tech Briefs, February 1990. Volume 14, No. 2
NASA Technical Reports Server (NTRS)
1990-01-01
Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences
NASA Tech Briefs, January 1990. Volume 14, No. 1
NASA Technical Reports Server (NTRS)
1990-01-01
Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences
NASA Tech Briefs, November 1989. Volume 13, No. 11
NASA Technical Reports Server (NTRS)
1989-01-01
Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences
NASA Tech Briefs, September 1989. Volume 13, No. 9
NASA Technical Reports Server (NTRS)
1989-01-01
Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences.
NASA Tech Briefs, October 1992. Volume 16, No. 10
NASA Technical Reports Server (NTRS)
1992-01-01
Topics covered include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, December 1989. Volume 13, No. 12
NASA Technical Reports Server (NTRS)
1989-01-01
Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences.
NASA Tech Briefs, April 1993. Volume 17, No. 4
NASA Technical Reports Server (NTRS)
1993-01-01
Topics include: Optoelectronics; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences;
NASA Tech Briefs, March 1990. Volume 14, No. 3
NASA Technical Reports Server (NTRS)
1990-01-01
Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences
Life sciences payload definition and integration study, task C and D. Volume 1: Management summary
NASA Technical Reports Server (NTRS)
1973-01-01
The findings of a study to define the required payloads for conducting life science experiments in space are presented. The primary objectives of the study are: (1) identify research functions to be performed aboard life sciences spacecraft laboratories and necessary equipment, (2) develop conceptual designs of potential payloads, (3) integrate selected laboratory designs with space shuttle configurations, and (4) establish cost analysis of preliminary program planning.
NASA Tech Briefs, January 1989. Volume 13, No. 1
NASA Technical Reports Server (NTRS)
1989-01-01
Topics include: Electronic Components & and Circuits. Electronic Systems, A Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences.
NASA Tech Briefs, June 1993. Volume 17, No. 6
NASA Technical Reports Server (NTRS)
1993-01-01
Topics include: Imaging Technology: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, November 1993. Volume 17, No. 11
NASA Technical Reports Server (NTRS)
1993-01-01
Topics covered: Advanced Manufacturing; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, February 1993. Volume 17, No. 2
NASA Technical Reports Server (NTRS)
1993-01-01
Topics include: Communication Technology; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
Earth-Like Exoplanets: The Science of NASA's Navigator Program
NASA Technical Reports Server (NTRS)
Lawson, Peter R. (Editor); Traub, Wesley A. (Editor)
2006-01-01
This book outlines the exoplanet science content of NASA's Navigator Program, and it identifies the exoplanet research priorities. The goal of Navigator Program missions is to detect and characterize Earth-like planets in the habitable zone of nearby stars and to search for signs of life on those planets.
Microgravity science and applications. Program tasks and bibliography for FY 1994
NASA Technical Reports Server (NTRS)
1995-01-01
This annual report includes research projects funded by the Office of Life and Microgravity Sciences and Applications, Microgravity Science and Applications Division, during FY 1994. It is a compilation of program tasks (objective, description, significance, progress, students funded under research, and bibliographic citations) for flight research and ground-based research in five major scientific disciplines: benchmark science, biotechnology, combustion science, fluid physics, and materials science. ATD (Advanced Technology Development) program task descriptions are also included. The bibliography cites the related PI (Principal Investigator) publications and presentations for these program tasks in FY 1994. Three appendices include Table of Acronyms, Guest Investigator Index, and Principal Investigator Index.
Microgravity science & applications. Program tasks and bibliography for FY 1995
NASA Technical Reports Server (NTRS)
1996-01-01
This annual report includes research projects funded by the Office of Life and Microgravity Sciences and Applications, Microgravity Science and Applications Division, during FY 1994. It is a compilation of program tasks (objective, description, significance, progress, students funded under research, and bibliographic citations) for flight research and ground based research in five major scientific disciplines: benchmark science, biotechnology, combustion science, fluid physics, and materials science. Advanced technology development (ATD) program task descriptions are also included. The bibliography cites the related principle investigator (PI) publications and presentations for these program tasks in FY 1994. Three appendices include a Table of Acronyms, a Guest Investigator index and a Principle Investigator index.
NASA Tech Briefs, January 1992. Volume 16, No. 1
NASA Technical Reports Server (NTRS)
1992-01-01
Topics include: New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Fabrication; Mathematics and Information Sciences; Life Sciences;
NASA Tech Briefs, May 1992. Volume 16, No. 5
NASA Technical Reports Server (NTRS)
1992-01-01
Topics include: New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, July 1992. Volume 16, No. 7
NASA Technical Reports Server (NTRS)
1992-01-01
Topics include: New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, March 1992. Volume 16, No. 3
NASA Technical Reports Server (NTRS)
1992-01-01
Topics include: New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, September 1994. Volume 18, No. 9
NASA Technical Reports Server (NTRS)
1994-01-01
Topics: Sensors; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences; Books and Reports.
Analogical Processes in Learning
1980-09-15
Stilluater, MN 55082 1200 19th Street NW 1 r. Genevieve Haddad Washington, DC 20208 1 Mr Avron Barr Program Manager Department of Computer Science Life ...Jack A. Thorp. Maj., USAF I Dr. Kenneth Bowles Life Sciences Directorate I Dr. Andrew R. Molnar Institute for Information Sciences AFOSR Science... Uiversity OGTI 31 1 Dr. Frank Withrow Stanford Univrsit Arlington Annex U. S. Office of Education Stanford. CA 91305 Columbia Pike at Arlington Ridge Rd
Animal experimentation in Spacelab - Present and future U.S. plans
NASA Technical Reports Server (NTRS)
Berry, W. E.; Dant, C. C.
1983-01-01
Current development of life-sciences hardware and experiments for the fourth Spacelab mission in the Life Sciences Flight Experiments Program at NASA Ames is reviewed. The research-animal holding facility, the general-purpose work station, and the life sciences laboratory equipment are characterized, and the 14 Ames projects accepted for the mission are listed and discussed. Several hardware systems and experimental procedures will be verified on the Spacelab-3 mission scheduled for late 1984.
LASER Tech Briefs, Winter 1994. Volume 2, No. 1
NASA Technical Reports Server (NTRS)
Schnirring, Bill (Editor)
1994-01-01
Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, Life Sciences, and Books and reports
NASA Tech Briefs, May 1993. Volume 17, No. 5
NASA Technical Reports Server (NTRS)
1993-01-01
Topics include: Advanced Composites and Plastics; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, February 1992. Volume 16, No. 2
NASA Technical Reports Server (NTRS)
1992-01-01
Topics covered include: New Product Development; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, July 1993. Volume 17, No. 7
NASA Technical Reports Server (NTRS)
1993-01-01
Topics include: Data Acquisition and Analysis: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, June 1992. Volume 16, No. 6
NASA Technical Reports Server (NTRS)
1992-01-01
Topics covered include: New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, December 1994. Volume 18, No. 12
NASA Technical Reports Server (NTRS)
1994-01-01
Topics: Test and Measurement; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports
NASA Tech Briefs, January 1995. Volume 19, No. 1
NASA Technical Reports Server (NTRS)
1995-01-01
Topics include: Sensors; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences; Books and Reports
Advanced Technologies for Space Life Science Payloads on the International Space Station
NASA Technical Reports Server (NTRS)
Hines, John W.; Connolly, John P. (Technical Monitor)
1997-01-01
SENSORS 2000! (S2K!) is a specialized, high-performance work group organized to provide advanced engineering and technology support for NASA's Life Sciences spaceflight and ground-based research and development programs. In support of these objectives, S2K! manages NASA's Advanced Technology Development Program for Biosensor and Biotelemetry Systems (ATD-B), with particular emphasis on technologies suitable for Gravitational Biology, Human Health and Performance, and Information Technology and Systems Management. A concurrent objective is to apply and transition ATD-B developed technologies to external, non-NASA humanitarian (medical, clinical, surgical, and emergency) situations and to stimulate partnering and leveraging with other government agencies, academia, and the commercial/industrial sectors. A phased long-term program has been implemented to support science disciplines and programs requiring specific biosensor (i.e., biopotential, biophysical, biochemical, and biological) measurements from humans, animals (mainly primates and rodents), and cells under controlled laboratory and simulated microgravity situations. In addition to the technology programs described above, NASA's Life and Microgravity Sciences and Applications Office has initiated a Technology Infusion process to identify and coordinate the utilization and integration of advanced technologies into its International Space Station Facilities. This project has recently identified a series of technologies, tasks, and products which, if implemented, would significantly increase the science return, decrease costs, and provide improved technological capability. This presentation will review the programs described above and discuss opportunities for collaboration, leveraging, and partnering with NASA.
NASA Tech Briefs, May 1991. Volume 15, No. 5
NASA Technical Reports Server (NTRS)
1991-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, January 1991. Volume 15, No. 1
NASA Technical Reports Server (NTRS)
1991-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences;Life Sciences.
NASA Tech Briefs, September 1991. Volume 15, No. 9
NASA Technical Reports Server (NTRS)
1991-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, June 1990. Volume 14, No. 6
NASA Technical Reports Server (NTRS)
1990-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, August 1991. Volume 15, No. 8
NASA Technical Reports Server (NTRS)
1991-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, February 1991. Volume 15, No. 2
NASA Technical Reports Server (NTRS)
1991-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, March 1991. Volume 15, No. 3
NASA Technical Reports Server (NTRS)
1991-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, December 1990. Volume 14, No. 12
NASA Technical Reports Server (NTRS)
1990-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, June 1991. Volume 15, No. 6
NASA Technical Reports Server (NTRS)
1991-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, August 1993. Volume 17, No. 8
NASA Technical Reports Server (NTRS)
1993-01-01
Topics include: Computer Graphics; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences; Books and Reports.
NASA Tech Briefs, September 1993. Volume 17, No. 9
NASA Technical Reports Server (NTRS)
1993-01-01
Topics include: Microelectronics; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports.
NASA Tech Briefs, May 1990. Volume 14, No. 5
NASA Technical Reports Server (NTRS)
1990-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, March 1993. Volume 17, No. 3
NASA Technical Reports Server (NTRS)
1993-01-01
Topics include: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences;
NASA Tech Briefs, January 1994. Volume 18, No. 1
NASA Technical Reports Server (NTRS)
1994-01-01
Topics include: Communications Technology; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences; Books and Reports.
NASA Tech Briefs, November 1994. Volume 18, No. 11
NASA Technical Reports Server (NTRS)
1994-01-01
Topics: Advanced Manufacturing; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports.
NASA Tech Briefs, April 1991. Volume 15, No. 4
NASA Technical Reports Server (NTRS)
1991-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, October 1990. Volume 14, No. 10
NASA Technical Reports Server (NTRS)
1990-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical' Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, October 1991. Volume 15, No. 10
NASA Technical Reports Server (NTRS)
1991-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Astrophysics Data System (ADS)
Ortega, Robbie Ray
Minorities continue to be underrepresented in professional science careers. In order to make Science, Technology, Engineering, and Mathematics (STEM) careers more accessible for underrepresented minorities, informal science programs must be utilized to assist in developing interest in STEM for minority youth. In addition to developing interest in science, informal programs must help develop interpersonal skills and leadership skills of youth, which allow youth to develop discrete social behaviors while creating positive and supportive communities thus making science more practical in their lives. This study was based on the premise that introducing underrepresented youth to the agricultural and life sciences through an integrated precollege experience of leadership development with university faculty, scientist, and staff would help increase youths' interest in science, while also increasing their interest to pursue a STEM-related career. Utilizing a precollege life science experience for underrepresented minorities, known as the Ag Discovery Camp, 33 middle school aged youth were brought to the Purdue University campus to participate in an experience that integrated a leadership development program with an informal science education program in the context of agriculture. The week-long program introduced youth to fields of agriculture in engineering, plant sciences, food sciences, and entomology. The purpose of the study was to describe short-term and intermediate student outcomes in regards to participants' interests in career activities, science self-efficacy, and career intentions. Youth were not interested in agricultural activities immediately following the precollege experience. However, one year after the precollege experience, youth expressed they were more aware of agriculture and would consider agricultural careers if their first career choice did not work out for them. Results also showed that the youth who participated in the precollege experience were self-efficacious to learn science, and they were self-efficacious to learn science one year after the precollege experience. Youth reported they did not develop interpersonal and leadership skills during the precollege experience, yet they said the interpersonal and leadership skills were useful throughout the following year after the precollege experience. Participants were interested in science careers, and their career plans did not change after the precollege experience.
ERIC Educational Resources Information Center
Blueford, Joyce R.
1989-01-01
Provides guidelines for a custom-made science program that integrates science, math, and technology. Describes the curriculum which is divided into themes including the applied sciences, cycles of the universe, plate tectonics, rock, water, and life. (Author/RT)
NASA Tech Briefs, September 1988. Volume 12, No. 8
NASA Technical Reports Server (NTRS)
1988-01-01
Topics include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, July/August 1988. Volume 12, No. 7
NASA Technical Reports Server (NTRS)
1988-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
LASER Tech Briefs, Fall 1994. Volume 2, No. 4
NASA Technical Reports Server (NTRS)
1994-01-01
Topics in this issue of LASER Tech briefs include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences
NASA Tech Briefs, October 1988. Volume 12, No. 9
NASA Technical Reports Server (NTRS)
1988-01-01
Topics include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, July 1991. Volume 15, No. 7
NASA Technical Reports Server (NTRS)
1991-01-01
Topics include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, March 1987. Volume 11, No. 3
NASA Technical Reports Server (NTRS)
1987-01-01
Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, May 1987. Volume 11, No. 5
NASA Technical Reports Server (NTRS)
1987-01-01
Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, October 1987. Volume 11, No. 9
NASA Technical Reports Server (NTRS)
1987-01-01
Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, June 1989. Volume 13, No. 6
NASA Technical Reports Server (NTRS)
1989-01-01
Topics include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, February 1987. Volume 11, No. 2
NASA Technical Reports Server (NTRS)
1987-01-01
Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, January 1987. Volume 11, No. 2
NASA Technical Reports Server (NTRS)
1987-01-01
Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, July 1990. Volume 14, No. 7
NASA Technical Reports Server (NTRS)
1990-01-01
Topics include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, August 1990. Volume 14, No. 8
NASA Technical Reports Server (NTRS)
1990-01-01
Topics covered: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, April 1987. Volume 11, No. 4
NASA Technical Reports Server (NTRS)
1987-01-01
Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, September 1987. Volume 11, No. 8
NASA Technical Reports Server (NTRS)
1987-01-01
Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, June 1994. Volume 18, No. 6
NASA Technical Reports Server (NTRS)
1994-01-01
Topics covered include: Microelectronics; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports
NASA Tech Briefs, August 1994. Volume 18, No. 8
NASA Technical Reports Server (NTRS)
1994-01-01
Topics covered include: Computer Hardware; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences; Books and Reports.
NASA Tech Briefs, October 1996. Volume 20, No. 10
NASA Technical Reports Server (NTRS)
1996-01-01
Topics covered include: Sensors; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports.
NASA Tech Briefs, June 1987. Volume 11, No. 6
NASA Technical Reports Server (NTRS)
1987-01-01
Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, August 1989. Volume 13, No. 8
NASA Technical Reports Server (NTRS)
1989-01-01
Topics covered: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
Visual monitoring of autonomous life sciences experimentation
NASA Technical Reports Server (NTRS)
Blank, G. E.; Martin, W. N.
1987-01-01
The design and implementation of a computerized visual monitoring system to aid in the monitoring and control of life sciences experiments on board a space station was investigated. A likely multiprocessor design was chosen, a plausible life science experiment with which to work was defined, the theoretical issues involved in the programming of a visual monitoring system for the experiment was considered on the multiprocessor, a system for monitoring the experiment was designed, and simulations of such a system was implemented on a network of Apollo workstations.
1994-07-20
KENNEDY SPACE CENTER, FLA. -- Dr. Irene Duhart Long is the director, Biomedical Operations and Research Office, at the Kennedy Space Center effective July 24, 1994. She is responsible for the program management of the center's aerospace and occupational medicine, life sciences research, environmental health programs and the operations management of the life sciences support facilities. Dr. Long also is responsible for providing the coordinating medical, environmental monitoring and environmental health support to launch and landing activities and day-to-day institutional functions.
ERIC Educational Resources Information Center
Williams, Wendy, M.; Papierno, Paul, B.; Makel, Matthew, C.; Ceci, Stephen, J.
2004-01-01
We describe a new educational program developed by the Cornell Institute for Research on Children (CIRC), a research and outreach center funded by the National Science Foundation. Thinking Life A Scientist targets students from groups historically underrepresented in science (i.e., girls, people of color, and people from disadvantaged…
NASA Tech Briefs, February 1997. Volume 2, No. 2
NASA Technical Reports Server (NTRS)
1997-01-01
Topics include: Test and Measurement; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports
NASA Tech Briefs, November 1988. Volume 12, No. 10
NASA Technical Reports Server (NTRS)
1988-01-01
Topics covered include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, September/October 1986. Volume 10, No. 5
NASA Technical Reports Server (NTRS)
1986-01-01
Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, November 1996. Volume 20, No. 11
NASA Technical Reports Server (NTRS)
1996-01-01
Topics covered: Video and Imaging; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports
NASA Tech Briefs, December 1996. Volume 20, No. 12
NASA Technical Reports Server (NTRS)
1996-01-01
Topics: Design and Analysis Software; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports
NASA Tech Briefs, May 1996. Volume 20, No. 5
NASA Technical Reports Server (NTRS)
1996-01-01
Topics include: Video and Imaging;Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports
NASA Tech Briefs, November/December 1986. Volume 10, No. 6
NASA Technical Reports Server (NTRS)
1986-01-01
Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, October 1993. Volume 17, No. 10
NASA Technical Reports Server (NTRS)
1993-01-01
Topics include: Sensors; esign and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication technology; Mathematics and Information Sciences; Life Sciences; Books and Reports.
NASA Tech Briefs, May 1994. Volume 18, No. 5
NASA Technical Reports Server (NTRS)
1994-01-01
Topics covered include: Robotics/Automation; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports.
NASA Tech Briefs, May/June 1986. Volume 10, No. 3
NASA Technical Reports Server (NTRS)
1986-01-01
Topics discussed include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, September 1990. Volume 14, No. 9
NASA Technical Reports Server (NTRS)
1990-01-01
Topics covered include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, November/December 1987. Volume 11, No. 10
NASA Technical Reports Server (NTRS)
1987-01-01
Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, February 1994. Volume 18, No. 2
NASA Technical Reports Server (NTRS)
1994-01-01
Topics covered include: Test and Measurement; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences; Books and Reports
NASA Tech Briefs, March 1988. Volume 12, No. 3
NASA Technical Reports Server (NTRS)
1988-01-01
Topics include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; and Life Sciences.
NASA Tech Briefs, July 1996. Volume 20, No. 7
NASA Technical Reports Server (NTRS)
1996-01-01
Topics covered include: Mechanical Components; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports
NASA Tech Briefs, July/August 1987. Volume 11, No. 7
NASA Technical Reports Server (NTRS)
1987-01-01
Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.
Effects of a Meditation Program on Nurses' Power and Quality of Life.
Chang, Sun Ju; Kwak, Eun Young; Hahm, Bong-Jin; Seo, Se Hee; Lee, Da Woon; Jang, Sun Joo
2016-07-01
This study evaluated the effects of meditation programs on nurses' power and quality of life. In this study, Barrett's power theory derived from Rogers' unitary human being science was used as a theoretical framework. A randomized controlled design with 50 recruited and randomly allocated participants was used. The results demonstrated that the eight-week meditation program significantly improved nurses' power and quality of life. These results suggest that meditation has positive effects on power and quality of life. © The Author(s) 2016.
NASA Technical Reports Server (NTRS)
West, John B.
1992-01-01
The scope of space life sciences and current research on the physiology of man in space are reviewed by examining Spacelab SLS-1. Milestones of space life sciences are discussed, with emphasis on the Skylab facility, the Space Shuttle program, and the Soviet Mir space station. Attention is given to the topic of the origins of life as it relates to space life sciences. The discovery of amino acids in meteorites and the question of whether the earth was seeded with life from space are discussed. A brief overview of efforts in the search for extraterrestrial intelligence is presented. Consideration is also given to the effects of gravity on cells, the effects of radiation, plant biology, CELSS, and the effects of gravity on humans.
History of nutrition in space flight: overview
NASA Technical Reports Server (NTRS)
Lane, Helen W.; Feeback, Daniel L.
2002-01-01
Major accomplishments in nutritional sciences for support of human space travel have occurred over the past 40 y. This article reviews these accomplishments, beginning with the early Gemini program and continuing through the impressive results from the first space station Skylab program that focused on life sciences research, the Russian contributions through the Mir space station, the US Shuttle life sciences research, and the emerging International Space Station missions. Nutrition is affected by environmental conditions such as radiation, temperature, and atmospheric pressures, and these are reviewed. Nutrition with respect to space flight is closely interconnected with other life sciences research disciplines including the study of hematology, immunology, as well as neurosensory, cardiovascular, gastrointestinal, circadian rhythms, and musculoskeletal physiology. These relationships are reviewed in reference to the overall history of nutritional science in human space flight. Cumulative nutritional research over the past four decades has resulted in the current nutritional requirements for astronauts. Space-flight nutritional recommendations are presented along with the critical path road map that outlines the research needed for future development of nutritional requirements.
History of nutrition in space flight: overview.
Lane, Helen W; Feeback, Daniel L
2002-10-01
Major accomplishments in nutritional sciences for support of human space travel have occurred over the past 40 y. This article reviews these accomplishments, beginning with the early Gemini program and continuing through the impressive results from the first space station Skylab program that focused on life sciences research, the Russian contributions through the Mir space station, the US Shuttle life sciences research, and the emerging International Space Station missions. Nutrition is affected by environmental conditions such as radiation, temperature, and atmospheric pressures, and these are reviewed. Nutrition with respect to space flight is closely interconnected with other life sciences research disciplines including the study of hematology, immunology, as well as neurosensory, cardiovascular, gastrointestinal, circadian rhythms, and musculoskeletal physiology. These relationships are reviewed in reference to the overall history of nutritional science in human space flight. Cumulative nutritional research over the past four decades has resulted in the current nutritional requirements for astronauts. Space-flight nutritional recommendations are presented along with the critical path road map that outlines the research needed for future development of nutritional requirements.
NASA Tech Briefs, April 1997. Volume 21, No. 4
NASA Technical Reports Server (NTRS)
1997-01-01
Topics covered include: Video and Imaging; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports.
NASA Tech Briefs, March/April 1986. Volume 10, No. 2
NASA Technical Reports Server (NTRS)
1986-01-01
Topics covered include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, December 1993. Volume 17, No. 12
NASA Technical Reports Server (NTRS)
1993-01-01
Topics covered include: High-Performance Computing; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports.
NASA Tech Briefs, January 1988. Volume 12, No. 1
NASA Technical Reports Server (NTRS)
1988-01-01
Topics covered include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; and Life Sciences.
NASA Tech Briefs, April 1994. Volume 18, No. 4
NASA Technical Reports Server (NTRS)
1994-01-01
Topics covered: Advanced Composites and Plastics; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports.
NASA Tech Briefs, March 1994. Volume 18, No. 3
NASA Technical Reports Server (NTRS)
1994-01-01
Topics include: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports
NASA Tech Briefs, August 1996. Volume 20, No. 8
NASA Technical Reports Server (NTRS)
1996-01-01
Topics covered include: Graphics and Simulation; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports
NASA Tech Briefs, March 2000. Volume 24, No. 3
NASA Technical Reports Server (NTRS)
2000-01-01
Topics include: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports.
NASA Tech Briefs, March 1997. Volume 21, No. 3
NASA Technical Reports Server (NTRS)
1997-01-01
Topics: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports.
Assessment of a Bioinformatics across Life Science Curricula Initiative
ERIC Educational Resources Information Center
Howard, David R.; Miskowski, Jennifer A.; Grunwald, Sandra K.; Abler, Michael L.
2007-01-01
At the University of Wisconsin-La Crosse, we have undertaken a program to integrate the study of bioinformatics across the undergraduate life science curricula. Our efforts have included incorporating bioinformatics exercises into courses in the biology, microbiology, and chemistry departments, as well as coordinating the efforts of faculty within…
ERIC Educational Resources Information Center
Appel, Gary; And Others
This guide for teaching science is Book Two in Project Life Lab's (Santa Cruz, California) three-part curriculum for a garden-based science and nutrition program for grades 2-6. The curriculum is designed for use as an integrated program, but the books can be used independently. It is suggested that the use of student journals can greatly enhance…
Life sciences payload definition and integration study. Volume 1: Management summary
NASA Technical Reports Server (NTRS)
1972-01-01
The objectives of a study program to determine the life sciences payloads required for conducting biomedical experiments during space missions are presented. The objectives are defined as: (1) to identify the research functions which must be performed aboard life sciences spacecraft laboratories and the equipment needed to support these functions and (2) to develop layouts and preliminary conceptual designs of several potential baseline payloads for the accomplishment of life research in space. Payload configurations and subsystems are described and illustrated. Tables of data are included to identify the material requirements for the space missions.
ERIC Educational Resources Information Center
Hammerman, Elizabeth
2008-01-01
State and national standards identify what students should know and be able to do, including what it means to "do" science, the historical significance of science achievement and its ethical underpinnings, and science from the human perspective. Middle level science programs that address the full range of science standards and connect learning to…
Basalt: Biologic Analog Science Associated with Lava Terrains
NASA Astrophysics Data System (ADS)
Lim, D. S. S.; Abercromby, A.; Kobs-Nawotniak, S. E.; Kobayashi, L.; Hughes, S. S.; Chappell, S.; Bramall, N. E.; Deans, M. C.; Heldmann, J. L.; Downs, M.; Cockell, C. S.; Stevens, A. H.; Caldwell, B.; Hoffman, J.; Vadhavk, N.; Marquez, J.; Miller, M.; Squyres, S. W.; Lees, D. S.; Fong, T.; Cohen, T.; Smith, T.; Lee, G.; Frank, J.; Colaprete, A.
2015-12-01
This presentation will provide an overview of the BASALT (Biologic Analog Science Associated with Lava Terrains) program. BASALT research addresses Science, Science Operations, and Technology. Specifically, BASALT is focused on the investigation of terrestrial volcanic terrains and their habitability as analog environments for early and present-day Mars. Our scientific fieldwork is conducted under simulated Mars mission constraints to evaluate strategically selected concepts of operations (ConOps) and capabilities with respect to their anticipated value for the joint human and robotic exploration of Mars. a) Science: The BASALT science program is focused on understanding habitability conditions of early and present-day Mars in two relevant Mars-analog locations (the Southwest Rift Zone (SWRZ) and the East Rift Zone (ERZ) flows on the Big Island of Hawai'i and the eastern Snake River Plain (ESRP) in Idaho) to characterize and compare the physical and geochemical conditions of life in these environments and to learn how to seek, identify, and characterize life and life-related chemistry in basaltic environments representing these two epochs of martian history. b) Science Operations: The BASALT team will conduct real (non-simulated) biological and geological science at two high-fidelity Mars analogs, all within simulated Mars mission conditions (including communication latencies and bandwidth constraints) that are based on current architectural assumptions for Mars exploration missions. We will identify which human-robotic ConOps and supporting capabilities enable science return and discovery. c) Technology: BASALT will incorporate and evaluate technologies in to our field operations that are directly relevant to conducting the scientific investigations regarding life and life-related chemistry in Mars-analogous terrestrial environments. BASALT technologies include the use of mobile science platforms, extravehicular informatics, display technologies, communication & navigation packages, remote sensing, advanced science mission planning tools, and scientifically-relevant instrument packages to achieve the project goals.
ERIC Educational Resources Information Center
Karplus, Robert, Comp.; Lawson, Chester A., Comp.
This teacher's handbook provides information about the philosophy, rationale, and teaching strategies of the Science Curriculum Improvement Study (SCIS) program, as well as information about the SCIS physical and life science sequences to provide teachers with an understanding of the program's overall content and structure. Much of the material in…
NASA Technical Reports Server (NTRS)
Hess, Elizabeth L.; Wallace-Robinson, Janice; Dickson, Katherine J.; Powers, Janet V.
1992-01-01
A 10-year cumulative bibliography of publications resulting from research supported by the musculoskeletal discipline of the space physiology and countermeasures program of NASA's Life Sciences Division is provided. Primary subjects are bone, mineral, and connective tissue, and muscle. General physiology references are also included. Principal investigators whose research tasks resulted in publication are identified by asterisk. Publications are identified by a record number corresponding with their entry in the life sciences bibliographic database, maintained by the George Washington University.
NASA science utilization plans for the Space Station.
Reeves, E M; Cressy, P J
1995-10-01
The Mir-1 and International Space Station Alpha capabilities present the science community with unique long duration platforms to conduct a wide range of scientific research in the microgravity and life sciences as well as in the observational sciences, NASA is developing plans to use the capabilities of Mir and Space Station as they emerge during the development of the orbital program. In both cases the planned science utilization programs take advantage of the volume, crew, power, microgravity and logistics resupply unique to each phase. The paper will present these utilization plans in the context of an evolving scientific program.
NASA Tech Briefs, July 1994. Volume 18, No. 7
NASA Technical Reports Server (NTRS)
1994-01-01
Topics covered include: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports
NASA Tech Briefs, July/August 1986. Volume 10, No. 4
NASA Technical Reports Server (NTRS)
1986-01-01
Topic include: NASA TU Serv1ces; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Materials; Computer Programs; Mechanics; Physical Sciences; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences. 3
NASA Tech Briefs, May 1997. Volume 21, No. 5
NASA Technical Reports Server (NTRS)
1997-01-01
Topics covered include: Advanced Composites, Plastics and Metals; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports.
NASA Tech Briefs, October 1994. Volume 18, No. 10
NASA Technical Reports Server (NTRS)
1994-01-01
Topics: Data Acquisition and Analysis; Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences; Books and Reports
Need Assessment of Computer Science and Engineering Graduates
ERIC Educational Resources Information Center
Surakka, Sami; Malmi, Lauri
2005-01-01
This case study considered the syllabus of the first and second year studies in computer science. The aim of the study was to reveal which topics covered in the syllabi were really needed during the following years of study or in working life. The program that was assessed in the study was a Masters program in computer science and engineering at a…
Food, Environment, Engineering and Life Sciences Program (Invited)
NASA Astrophysics Data System (ADS)
Mohtar, R. H.; Whittaker, A.; Amar, N.; Burgess, W.
2009-12-01
Food, Environment, Engineering and Life Sciences Program Nadia Amar, Wiella Burgess, Rabi H. Mohtar, and Dale Whitaker Purdue University Correspondence: mohtar@purdue.edu FEELS, the Food, Environment, Engineering and Life Sciences Program is a grant of the National Science Foundation for the College of Agriculture at Purdue University. FEELS’ mission is to recruit, retain, and prepare high-achieving students with financial difficulties to pursue STEM (Science, Technology, Engineering, and Mathematics) careers. FEELS achieves its goals offering a scholarship of up to 10,000 per student each year, academic, research and industrial mentors, seminars, study tables, social and cultural activities, study abroad and community service projects. In year one, nine low-income, first generation and/or ethnic minority students joined the FEELS program. All 9 FEELS fellows were retained in Purdue’s College of Agriculture (100%) with 7 of 9 (77.7%) continuing to pursue STEM majors. FEELS fellows achieved an average GPA in their first year of 3.05, compared to the average GPA of 2.54 for low-income non- FEELS students in the College of Agriculture. A new cohort of 10 students joined the program in August 2009. FEELS fellows received total scholarships of nearly 50,000 for the 2008-2009 academic year. These scholarships were combined with a holistic program that included the following key elements: FEELS Freshman Seminars I and II, 2 study tables per week, integration activities and frequent meetings with FEELS academic mentors and directors. Formative assessments of all FEELS activities were used to enhance the first year curriculum for the second cohort. Cohort 1 will continue into their second year where the focus will be on undergraduate research. More on FEELS programs and activities: www.purdue.edu/feels.
Recognizing and optimizing flight opportunities with hardware and life sciences limitations.
Luttges, M W
1992-01-01
The availability of orbital space flight opportunities to conduct life sciences research has been limited. It is possible to use parabolic flight and sounding rocket programs to conduct some kinds of experiments during short episodes (seconds to minutes) of reduced gravity, but there are constraints and limitations to these programs. Orbital flight opportunities are major undertakings, and the potential science achievable is often a function of the flight hardware available. A variety of generic types of flight hardware have been developed and tested, and show great promise for use during NSTS flights. One such payload configuration is described which has already flown.
Working Group Reports and Presentations: Earth 3.0.
NASA Technical Reports Server (NTRS)
Dator, James
2006-01-01
We affirm the principle that a viable human space exploration program must be conducted hand-in-hand with a comprehensive scientific research program that incorporates both the physical and life sciences and that continues to protect and extend understanding of our home planet. Without advances in life science, we will be incapable of devising self-sustaining extraterrestrial habitats, and we will struggle to survive on the only living planet we know. Without advances in the physical sciences, we limit our ability to imagine new technologies for space travel and to understand the nature of the universe we explore. Scientific advances expand the boundaries of humanity s dreams.
1986-12-01
Oxidant Damage Mediates Variant Red Cell Resistance to Malaria. Nature. 280 (1979) p. 245-47. 14. Geary, Timothy G. and James B. Jensen. Effects of...for research in the physical sciences, engineering, life sciences, business, and administrative sciences. The program has been effective in providing...Researcher Volume I 1 The Effects of Fourier Limited Targets Susan M. Abrams Upon Peripheral Perception 2 Studies of the Dimenslonality of William H
How Do Young Adults Read Directions with and without Pictures?
1980-09-01
AD-ABG9 223 NEW YORK STATE COLL OF AGRICULTURE AND LIFE SCIENCES --ETC F/S 5/10 NOW DO YOUNG ADULTS READ DIRECTIONS WITH AND WITHOUT PICTURESflU) SEP...College of Agriculture and Life Sciences, a Statutory College of the State University, Cornell Unversity, .7. Ithaca. N.Y. 14.853. It is supported in part...ADDRESS.. 10. PROGRAM ELEMENT. PROJECT, TASK Cornell University. Dept. of Educ., N..Stt9Q13(2) RO College of Agriculture 9 Life Sciences: A 613(2 R4-0
ERIC Educational Resources Information Center
Miskowski, Jennifer A.; Howard, David R.; Abler, Michael L.; Grunwald, Sandra K.
2007-01-01
Over the past 10 years, there has been a technical revolution in the life sciences leading to the emergence of a new discipline called bioinformatics. In response, bioinformatics-related topics have been incorporated into various undergraduate courses along with the development of new courses solely focused on bioinformatics. This report describes…
Oser, H
1989-08-01
International cooperation in life sciences, as in any other of the space research fields, takes place at two distinct levels: scientist to scientist, or agency to agency. This article is more concerned with the agency to agency level, which involves the arrangements made between two partners for the flying of experiments and/or hardware on space missions. International cooperation is inherent to the European Space Agency (ESA), since it consists of 13 member states (Austria, Belgium, Denmark, France, Ireland, Italy, the Netherlands, Norway, Spain, Sweden, Switzerland, United Kingdom, and West Germany) and one associated member, Finland. ESA also has special cooperative arrangements with Canada. Life sciences research in ESA is carried out within the Microgravity Research Program, an optional program to which member states (in this case all but Austria and Ireland) contribute "a la carte," and receive their "share" accordingly. Therefore, many of the activities are naturally linked to international arrangements within the member states, and also to arrangements between the agencies, with life sciences being the dominant activity between NASA and ESA.
Black smokers and the Tree of Life
NASA Astrophysics Data System (ADS)
Linich, Michael
The molecular biology revolution has turned the classification of life on its head. Is Whittaker's five-kingdom scheme for the classification of living things no longer relevant to life science education? Coupled with this is the discovery that most microscopic life cannot yet be brought into culture. One of the key organisms making this knowledge possible is Methanococcus jannishi a microorganism found in black smokers. This workshop presents the development of the Universal Tree of Life in a historical context and then links together major concepts in the New South Wales senior science programs of Earth and Environmental Science and Biology by examining the biological and geological aspects of changes to black smokers over geological time.
NASA Tech Briefs, June 1995. Volume 19, No. 6
NASA Technical Reports Server (NTRS)
1995-01-01
Topics include: communications technology, electronic components and circuits, electronic systems, physical sciences, materials, computer programs, mechanics, machinery, manufacturing/fabrication, mathematics and information sciences, life sciences, books and reports, a special section of laser Tech Briefs.
United States Air Force Summer Faculty Research Program for 1990. Program Management Report
1991-06-05
propagation characteristics were extensively studied using pencil lead breaks in a center notch. For the fatigue studies center crack samples of 2024 - T351 ... aluminum specimens during fatigue cycling. The experimental procedure involved excitation of Rayleigh waves on the surface of each specimen and...Research Program (SFRP) provides opportunities for research in the physical sciences, engineering, and life sciences. The program has been effective
Life sciences utilization of Space Station Freedom
NASA Technical Reports Server (NTRS)
Chambers, Lawrence P.
1992-01-01
Space Station Freedom will provide the United States' first permanently manned laboratory in space. It will allow, for the first time, long term systematic life sciences investigations in microgravity. This presentation provides a top-level overview of the planned utilization of Space Station Freedom by NASA's Life Sciences Division. The historical drivers for conducting life sciences research on a permanently manned laboratory in space as well as the advantages that a space station platform provides for life sciences research are discussed. This background information leads into a description of NASA's strategy for having a fully operational International Life Sciences Research Facility by the year 2000. Achieving this capability requires the development of the five discipline focused 'common core' facilities. Once developed, these facilities will be brought to the space station during the Man-Tended Capability phase, checked out and brought into operation. Their delivery must be integrated with the Space Station Freedom manifest. At the beginning of Permanent Manned Capability, the infrastructure is expected to be completed and the Life Sciences Division's SSF Program will become fully operational. A brief facility description, anticipated launch date and a focused objective is provided for each of the life sciences facilities, including the Biomedical Monitoring and Countermeasures (BMAC) Facility, Gravitational Biology Facility (GBF), Gas Grain Simulation Facility (GGSF), Centrifuge Facility (CF), and Controlled Ecological Life Support System (CELSS) Test Facility. In addition, hardware developed by other NASA organizations and the SSF International Partners for an International Life Sciences Research Facility is also discussed.
ERIC Educational Resources Information Center
Burk, Sandy
2006-01-01
Science trade books can spark real-life involvement in saving a threatened fish. A successful science program at the Westbrook Elementary School, in Bethesda, Maryland, does just that. The program--in which students participate in watershed restoration projects as part of a yearlong study of the local Chesapeake Bay and the Potomac River…
NASA Technical Reports Server (NTRS)
Wiley, Lowell F.
1985-01-01
The study results from the conceptual design and programmatics segment of the Space Platform and Station Accommodation for Life Sciences Research Facilities. The results and significant findings of the conceptual design and programmatics were generated by these tasks: (1) the review and update engineering and science requirements; (2) analysis of life sciences mission transition scenario; (3) the review and update of key trade issues; (4) the development of conceptual definition and designs; and (5) the development of the work breakdown schedule and its dictionary, program schedule, and estimated costs.
The 1984 NASA/ASEE summer faculty fellowship program
NASA Technical Reports Server (NTRS)
Mcinnis, B. C.; Duke, M. B.; Crow, B.
1984-01-01
An overview is given of the program management and activities. Participants and research advisors are listed. Abstracts give describe and present results of research assignments performed by 31 fellows either at the Johnson Space Center, at the White Sands test Facility, or at the California Space Institute in La Jolla. Disciplines studied include engineering; biology/life sciences; Earth sciences; chemistry; mathematics/statistics/computer sciences; and physics/astronomy.
Science at the ends of the Earth: astrobiology field expeditions as outreach tools
NASA Astrophysics Data System (ADS)
Billings, Linda
INTRODUCTION This paper will report on and evaluate communication, education, and outreach initiatives conducted in conjunction with NASA Astrobiology Science and Technology for Exploring Planets (ASTEP) field campaigns, addressing the costs and benefits of linking students, teachers, and other interested citizens with researchers in the field. This paper will highlight success stories, lessons learned, and promising practices regarding educational programs in scientific research environments. The Astrobiology Program in the U.S. National Aeronautics and Space Administration's (NASA's) Science Mission Directorate studies the origin, evolution, distribution, and future of life in the universe. Public interest in astrobiology is great, and advances in the field are rapid. Hence, the Astrobiology Program supports the widest possible dissemination of timely and useful information about scientific discoveries, technology development, new knowledge, and greater understanding produced by its investigators, employing an approach described as strategic communication planning. That is, the Astrobiology Program aims to integrate communication, education, and outreach into all aspects of program planning and execution. The Program encourages all of its investigators to contribute to the ongoing endeavor of informing public audiences about Astrobiology. The ASTEP element of the Astrobiology Program sponsors terrestrial field campaigns to further scientific research and technology development relevant to future solar system exploration missions. ASTEP science investigations are designed to further biological research in terrestrial environments analogous to those found on other planets, past or present. ASTEP sponsors the development of technologies to enable remote searches for, and identification of, life in extreme environments. ASTEP supports systems-level field campaigns designed to demonstrate and validate the science and technology in extreme environments on Earth. This paper will report on and evaluate communication, education, and outreach initiatives conducted in conjunction with ASTEP field campaigns, addressing the costs and benefits of linking students, teachers, and other interested citizens with researchers in the field. This paper will highlight success stories, lessons learned, and promising practices regarding educational programs in scientific research environments. SUMMARY The Astrobiology Program in NASA's Science Mission Directorate studies the origin, evolution, distribution, and future of life in the universe. Astrobiology research addresses three fundamental questions: How does life begin and evolve? Is there life beyond Earth and how can we detect it? What is the future of life on Earth and in the universe? Goals of the Astrobiology Program range from determining the nature and distribution of habitable environments in the Solar System and beyond to understanding the emergence of life from cosmic and planetary precursors, the interaction of past life on Earth with its changing environment, the formation and evolution of planets, links between planetary and biological evolution, the effects of climate and geology on habitability, and life's precursors and habitats in the outer solar system. Research dedicated to fulfilling these goals is conducted on Earth and in space, with a growing number of astrobiology investigations flying on planetary exploration missions. The field of astrobiology is an endeavor that brings together researchers in a broad range of disciplines including Earth and planetary science, astrophysics, heliophysics, microbiology and evolutionary biology, and cosmochemistry. Since 1995, the field of astrobiology has grown rapidly, and the pace of discovery has been brisk. The possibility of extraterrestrial life is now a serious scientific question. Research findings over the past decade that are relevant to this question include the controversial 1996 claim of fossil evidence for microbial life in a martian meteorite, evidence of past and perhaps even present liquid water on Mars, the likelihood of a liquid water ocean on Europa, the possibility of liquid water beneath the surface of Titan, observations of a growing number of extrasolar planets, and identification of new forms of microbial life in an ever-widening range of extreme Earth environments. Consequently, in the 21st century the pace of robotic planetary exploration is speeding up and scientific and public attention is increasingly focusing on astrobiology research, especially the search for signs of life on Mars and in other environments in our solar system. NASA's ASTEP program is sponsoring field campaigns to test science strategies and robotic technologies that could be useful in conducting astrobiological investigations in planetary environments, focusing on Mars and Europa. Public interest in astrobiology research is substantial, and advances in the field are rapid. Thus the NASA Astrobiology Program encourages Principal Investigators to incorporate communication, education, and public outreach initiatives in their research plans. NASA ASTEP projects provide especially good opportunities for communication, education, and outreach. The work of ASTEP projects takes place in remote terrestrial environments, places typically inaccessible to "civilians": the Norwegian protectorate of Svalbard, above the Arctic Circle; the far-northern reaches of the Arctic Ocean; the dry valleys of Antarctica; deep-sea hydrothermal vent systems and other unmapped underwater environments. ASTEP projects involve human researchers working with robotic adjuncts. ASTEP teams often combine include senior and student researchers. Some have even included "embedded" journalists and public affairs officers. ASTEP expeditions typically unfold in visually interesting, sometimes stunning, physical environments. ASTEP expeditions are virtually always intensive learning experiences for their researchers, and thus they provide good opportunities to demonstrate how science is actually done. Science means different things to different people in different situations, and thus public understanding of science, and science communication, are not simple things. Science can be a set of practices, a body of knowledge, a process of investigation, or a world view. In attempting to improve public understanding of science, it is useful to provide non-scientists with a window into the working world of science. ASTEP expeditions provide such windows. With the proliferation of miniaturized and increasingly affordable digital communication technology - still and video cameras, recorders, laptop computers - connections between the remote locations of ASTEP expeditions and students, teachers, and other interested citizens around the world are easier to make. Thanks to these technologies, interactive communications are also becoming easier. This paper will report on communication, education, and outreach activities for recent ASTEP field expeditions in the Arctic and Pacific oceans, Svalbard, and Mexico, highlighting success stories, lessons learned, and promising practices.
NASA Astrophysics Data System (ADS)
Hellweg, C. E.; Gerzer, R.; Reitz, G.
2011-05-01
In the field of space life sciences, the demand of an interdisciplinary and specific training of young researchers is high due to the complex interaction of medical, biological, physical, technical and other questions. The Helmholtz Space Life Sciences Research School (SpaceLife) offers an excellent interdisciplinary training for doctoral students from different fields (biology, biochemistry, biotechnology, physics, psychology, nutrition or sports sciences and related fields) and any country. SpaceLife is coordinated by the Institute of Aerospace Medicine at the German Aerospace Center (DLR) in Cologne. The German Universities in Kiel, Bonn, Aachen, Regensburg, Magdeburg and Berlin, and the German Sports University (DSHS) in Cologne are members of SpaceLife. The Universities of Erlangen-Nürnberg, Frankfurt, Hohenheim, and the Beihang University in Beijing are associated partners. In each generation, up to 25 students can participate in the three-year program. Students learn to develop integrated concepts to solve health issues in human spaceflight and in related disease patterns on Earth, and to further explore the requirements for life in extreme environments, enabling a better understanding of the ecosystem Earth and the search for life on other planets in unmanned and manned missions. The doctoral candidates are coached by two specialist supervisors from DLR and the partner university, and a mentor. All students attend lectures in different subfields of space life sciences to attain an overview of the field: radiation and gravitational biology, astrobiology and space physiology, including psychological aspects of short and long term space missions. Seminars, advanced lectures, laboratory courses and stays at labs at the partner institutions or abroad are offered as elective course and will provide in-depth knowledge of the chosen subfield or allow to appropriate innovative methods. In Journal Clubs of the participating working groups, doctoral students learn critical reading of scientific literature, first steps in peer review, scientific writing during preparation of their own publication, and writing of the thesis. The training of soft skills is offered as block course in cooperation with other Helmholtz Research Schools. The whole program encompasses 303 h and is organized in semester terms. The first doctoral candidates started the program in spring 2009.
Programs to Aid Unemployed Aerospace Professionals: Implications for Mid-Life Career Redirection.
ERIC Educational Resources Information Center
Thompson, Velma Montoya
The Rand paper on programs facilitating the mid-life career redirection of unemployed aerospace professionals is 1 of 20 policy-related research reports commissioned by the Division of Social Systems and Human Resources in the Research Applied to National Needs Program of the National Science Foundation. It is based on the evaluation of some 300…
NASA Tech Briefs, February 1989. Volume 13, No. 2
NASA Technical Reports Server (NTRS)
1989-01-01
This issue contains a special feature on shaping the future with Ceramics. Other topics include: Electronic Components & and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences,
NASA Tech Briefs, July 2000. Volume 24, No. 7
NASA Technical Reports Server (NTRS)
2000-01-01
Topics covered include: Data Acquisition; Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Test and Measurement; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports.
Space medicine research publications: 1984-1986
NASA Technical Reports Server (NTRS)
Wallace, Janice S.
1988-01-01
A list is given of the publications of investigators supported by the Biomedical Research and Clinical Medicine Programs of the Space Medicine and Biology Branch, Life Sciences Division, Office of Space Science and Applications. It includes publications entered into the Life Sciences Bibliographic Database by the George Washington University as of December 31, 1986. Publications are organized into the following subject areas: Clinical Medicine, Space Human Factors, Musculoskeletal, Radiation and Environmental Health, Regulatory Physiology, Neuroscience, and Cardiopulmonary.
Worms to astronauts: Canadian Space Agency approach to life sciences in support of exploration
NASA Astrophysics Data System (ADS)
Buckley, Nicole; Johnson-Green, Perry; Lefebvre, Luc
As the pace of human exploration of space is accelerated, the need to address the challenges of long-duration human missions becomes imperative. Working with limited resources, we must determine the most effective way to meet this challenge. A great deal of science management centres on "applied" versus "basic" research as the cornerstone of a program. We have chosen to largely ignore such a labeling of science and concentrate on quality, as determined by peer review, as the primary criterion for science selection. Space Life Sciences is a very young science and access to space continues to be difficult. Because we have few opportunities for conducting science, and space life science is very challenging, we are comfortable maintaining a very high bar for selection. In order to ensure adequate depth to our community we have elected to concentrate our efforts. Working in concert with members of the community, we have identified specific areas of focus that are chosen by their importance in space, but also according to Canada's strength in the terrestrial counterpart of the research. It is hoped that through a balanced but highly competitive program with the emphasis on quality, Canadian scientists can contribute to making space a safer, more welcoming place for our astronauts.
Life in the Universe: A Multidisciplinary Science Curriculum for Undergraduate Honors Students
NASA Astrophysics Data System (ADS)
Danly, L.
2004-05-01
Astrobiology provides an excellent framework for an interdisciplinary study of the sciences, especially for non-majors. To be conversant in astrobiology, one must have a basic understanding of astronomy, planetary science, geology, chemistry, biology, and environmental science. To explore the possible futures for life on Earth one must also consider political, economic, and other societal issues. And, as the questions addressed in astrobiology are also profoundly philosophical topics that have been considered by artists and writers of all cultures, the humanities also play an important role. The study of the past, present, and future possibilities for life in the universe, therefore, can offer curricular opportunities for students of all disciplines to have something to share with and something to learn from their peers. This paper describes a three-term curriculum for Honors Program students at the University of Denver that includes, among other innovations, peer learning, student goal/syllabus setting, integration of University of Denver faculty research programs, and community service.
Blight! An Event-Based Science Module. Teacher's Guide. Plants and Plant Diseases Module.
ERIC Educational Resources Information Center
Wright, Russell G.
This book is designed for middle school life science or physical science teachers to help their students learn scientific literacy through event-based science. Unlike traditional curricula, the event- based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork,…
2003-07-18
KENNEDY SPACE CENTER, FLA. - (From left) Brian Duffy, Lockheed Martin vice president/associate program manager, Mildred Carter and Col. (Ret.) Herbert E. Carter, one of the Tuskegee Airmen, attend a dinner sponsored by the KSC Spaceflight and Life Sciences Office. Col. Carter was a guest speaker at the dinner.
NASA Technical Reports Server (NTRS)
Powers, Janet V.; Wallace-Robinson, Janice; Dickson, Katherine J.; Hess, Elizabeth
1992-01-01
A 10-year cumulative bibliography of publications resulting from research supported by the Cardiopulmonary Discipline of the Space Physiology and Countermeasures Program of NASA's Life Sciences Division is provided. Primary subjects included in this bibliography are Fluid Shifts, Cardiovascular Fitness, Cardiovascular Physiology, and Pulmonary Physiology. General physiology references are also included. Principal investigators whose research tasks resulted in publication are identified. Publications are identified by a record number corresponding with their entry in the Life Sciences Bibliographic Database, maintained at the George Washington University.
Cost analysis of life sciences experiments and subsystems. [to be carried in the Spacelab
NASA Technical Reports Server (NTRS)
Yakut, M. M.
1975-01-01
Cost estimates for experiments and subsystems flown in the Spacelab were established. Ten experiments were cost analyzed. Estimated cost varied from $650,000 for the hardware development of the SPE water electrolysis experiment to $78,500,000 for the development and operation of a representative life sciences laboratory program. The cost of subsystems for thermal, atmospheric and trace contaminants control of the Spacelab internal atmosphere was also estimated. Subsystem cost estimates were based on the utilization of existing components developed in previous space programs whenever necessary.
ERIC Educational Resources Information Center
Committee on the Undergraduate Program in Mathematics, Berkeley, CA.
This report considers the mathematics required by life science students (those with majors in agriculture and renewable resources, all branches of biology, and medicine) who have successfully completed the usual pre-calculus courses. A core is proposed, to include one year of calculus, some linear algebra, and some probability and statistics.…
United States Air Force Graduate Student Research Program for 1990. Program Management Report
1992-06-05
were extensively studied using pencil lead breaks in a center notch. For the fatigue studies center crack samples of 2024 - T351 aluminum were used...Research Program (SFRP) provides opportunities for research in the physical sciences, engineering, and life sciences. The program has been effective ...positive effect on teaching. (WRDC/FDL) Several mentioned the opportunity for introduction to research interests of the Air Force and the opportunity to work
LASER Tech Briefs, September 1993. Volume 1, No. 1
NASA Technical Reports Server (NTRS)
Schnirring, Bill (Editor)
1993-01-01
This edition of LASER Tech briefs contains a feature on photonics. The other topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, Life Sciences and books and reports.
NASA Johnson Space Center Life Sciences Data System
NASA Technical Reports Server (NTRS)
Rahman, Hasan; Cardenas, Jeffery
1994-01-01
The Life Sciences Project Division (LSPD) at JSC, which manages human life sciences flight experiments for the NASA Life Sciences Division, augmented its Life Sciences Data System (LSDS) in support of the Spacelab Life Sciences-2 (SLS-2) mission, October 1993. The LSDS is a portable ground system supporting Shuttle, Spacelab, and Mir based life sciences experiments. The LSDS supports acquisition, processing, display, and storage of real-time experiment telemetry in a workstation environment. The system may acquire digital or analog data, storing the data in experiment packet format. Data packets from any acquisition source are archived and meta-parameters are derived through the application of mathematical and logical operators. Parameters may be displayed in text and/or graphical form, or output to analog devices. Experiment data packets may be retransmitted through the network interface and database applications may be developed to support virtually any data packet format. The user interface provides menu- and icon-driven program control and the LSDS system can be integrated with other workstations to perform a variety of functions. The generic capabilities, adaptability, and ease of use make the LSDS a cost-effective solution to many experiment data processing requirements. The same system is used for experiment systems functional and integration tests, flight crew training sessions and mission simulations. In addition, the system has provided the infrastructure for the development of the JSC Life Sciences Data Archive System scheduled for completion in December 1994.
Fermilab Education Life Science Instructional Resources
using SIMply Prairie and student plant population data (6-9) Databases: Birds - Butterflies - Frogs Fermilab's Nature and Ecology Search Programs - Search Science Adventures - Calendar - About - FAQ - Fermilab
NASA Technical Reports Server (NTRS)
Hasha, Martin D.
1990-01-01
NASA is developing a Life Sciences Centrifuge Facility for Space Station Freedom. In includes a 2.5-meter artificial gravity Bioresearch Centrifuge (BC), which is perhaps the most critical single element in the life sciences space research program. It rotates continuously at precise selectable rates, and utilizes advanced reliable technologies to reduce vibrations. Three disturbance types are analyzed using a current Space Station Freedom dynamic model in the 0.0 to 5.0 Hz range: sinusoidal, random, and transient. Results show that with proper selection of proven design techniques, BC vibrations are compatible with requirements.
NASA Tech Briefs, April 1989. Volume 13, No. 4
NASA Technical Reports Server (NTRS)
1989-01-01
A special feature of this issue is an article about the evolution of high technology in Texas. Topics include: Electronic Components & and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences.
Bringing Science to Life for Students, Teachers and the Community
NASA Astrophysics Data System (ADS)
Pratt, Kimberly
2010-05-01
Prior to 2008, 5th grade students at two schools of the New Haven Unified School District consistently scored in the bottom 20% of the California State Standards Test for science. Teachers in the upper grades reported not spending enough time teaching science, which is attributed to lack of time, resources or knowledge of science. A proposal was written to the National Oceanic and Atmospheric Administration's Bay Watershed Education Grant program and funding was received for Bringing Science to Life for Students, Teachers and the Community to address these concerns and instill a sense of stewardship in our students. This program engages and energizes students in learning science and the protection of the SF Bay Watershed, provides staff development for teachers, and educates the community about conservation of our local watershed. The project includes a preparation phase, outdoor phase, an analysis and reporting phase, and teacher training and consists of two complete units: 1) The San Francisco Bay Watershed Unit and 2) the Marine Environment Unit. At the end of the three-year program, teachers were teaching more science, the community was engaged in conservation of the San Francisco Bay Watershed and most importantly, student scores increased on the California Science Test at one site by over 70% and another site by 120%.
Bringing Science to Life for Students, Teachers and the Community
NASA Astrophysics Data System (ADS)
Pratt, K.
2012-04-01
Bringing Science to Life for Students, Teachers and the Community Prior to 2008, 5th grade students at two schools of the New Haven Unified School District consistently scored in the bottom 20% of the California State Standards Test for science. Teachers in the upper grades reported not spending enough time teaching science, which is attributed to lack of time, resources or knowledge of science. A proposal was written to the National Oceanic and Atmospheric Administration's Bay Watershed Education Grant program and funding was received for Bringing Science to Life for Students, Teachers and the Community to address these concerns and instill a sense of stewardship in our students. This program engages and energizes students in learning science and the protection of the SF Bay Watershed, provides staff development for teachers, and educates the community about conservation of our local watershed. The project includes a preparation phase, outdoor phase, an analysis and reporting phase, and teacher training and consists of two complete units: 1) The San Francisco Bay Watershed Unit and 2) the Marine Environment Unit. At the end of year 5, our teachers were teaching more science, the community was engaged in conservation of the San Francisco Bay Watershed and most importantly, student scores increased on the California Science Test at one site by over 121% and another site by 152%.
Martin-Brennan, Cindy; Joshi, Jitendra
2003-12-01
Space life sciences research activities are reviewed for 2003. Many life sciences experiments were lost with the tragic loss of STS-107. Life sciences experiments continue to fly as small payloads to the International Space Station (ISS) via the Russian Progress vehicle. Health-related studies continue with the Martian Radiation Environment Experiment (MARIE) aboard the Odyssey spacecraft, collecting data on the radiation environment in Mars orbit. NASA Ames increased nanotechnology research in all areas, including fundamental biology, bioastronautics, life support systems, and homeland security. Plant research efforts continued at NASA Kennedy, testing candidate crops for ISS. Research included plant growth studies at different light intensities, varying carbon dioxide concentrations, and different growth media. Education and outreach efforts included development of a NASA/USDA program called Space Agriculture in the Classroom. Canada sponsored a project called Tomatosphere, with classrooms across North America exposing seeds to simulated Mars environment for growth studies. NASA's Office of Biological and Physical Research released an updated strategic research plan.
Come Fly with Me! Exploring Science 7-9 through Aviation/Aerospace Concepts.
ERIC Educational Resources Information Center
Housel, David C.; Housel, Doreen K. M.
This guide contains 67 activities dealing with various aerospace/aviation education concepts. The activities are presented in units related to physical science, earth science, and life science. In addition, there is a section related to student involvement in the space shuttle programs. The physical science unit (activities 1-23) focuses on the…
Ernst Mach, George Sarton and the Empiry of Teaching Science Part I
ERIC Educational Resources Information Center
Siemsen, Hayo
2012-01-01
George Sarton had a strong influence on modern history of science. The method he pursued throughout his life was the method he had discovered in Ernst Mach's "Mechanics" when he was a student in Ghent. Sarton was in fact throughout his life implementing a research program inspired by the epistemology of Mach. Sarton in turn inspired many…
ERIC Educational Resources Information Center
Brand, Brenda R.; Glasson, George E.
2004-01-01
The purpose of this ethnographic study was to explore the development of belief systems as related to racial and ethnic identities of preservice teachers as they crossed cultural borders into science teaching. Data were collected throughout a yearlong teacher preparation program to learn how early life experiences and racial and ethnic identities…
NASA Astrophysics Data System (ADS)
Peart, L.; Niemitz, M.; Boa, S.; Corsiglia, J.; Klaus, A.; Petronotis, K.; Iturrino, G.
2005-12-01
For 37 years, scientific ocean drilling programs have sponsored hundreds of expeditions, drilled at over 1,800 sites and recovered over 200 miles of core. The discoveries of these programs have led to important realizations of how our earth works. Past expeditions have validated the theory of plate tectonics, provided unparalleled ancient climate records and recovered evidence of the asteroid impact that wiped out the dinosaurs 65 million years ago - and new discoveries occur with every expedition. By producing education materials and programs and encouraging mass media journalists' interest in our news, we strive to fulfill our commitment to communicate our programs' scientific discoveries to the public, in a way that people - not just other scientists - understand. With the advent of the Integrated Ocean Drilling Program (IODP), education and outreach efforts have expanded to pursue new opportunities and engage wider audiences. Through our strategy of Teaching for Science, Learning for LifeTM, our education efforts seek to utilize the interdisciplinary nature of scientific ocean drilling to teach career awareness, scientific methods, teamwork, and problem solving techniques for a lifetime of learning, decision making and good citizenship. In pursuit of this goal, we have implemented professional and resource development programs and expanded our outreach at education-focused conferences to help teachers use IODP science to satiate the student's need to learn the methods of science that apply to everyday life. We believe that this message also applies to life-long learners and thus we have focused our efforts on news media outreach and education opportunities surrounding ports of call of the JOIDES Resolution, permanent and traveling museum exhibits. In addition, our outreach to undergraduate and graduate audiences, through a lecture series, research fellowships and internships, helps to create future generations of science leaders.
Spacelab program's scientific benefits to mankind
NASA Technical Reports Server (NTRS)
Graft, Harry G., Jr.; Marmann, Richard A.
1993-01-01
The paper describes the important scientific discoveries and accomplishments achieved by the Spacelab program during the ten years of its operation starting with the first flight in 1983, with emphasis on the discoveries and accomplishments in the fields of astronomy and astrophysics, atmospheric science, life sciences, microgravity science, plasma physics, and earth observations. The Spacelab systems performance and operations are discussed with particular attention given to the operations applicable to the Space Station era.
ANNUAL REPORT ON PHYSICAL SCIENCES, ENGINEERING AND LIFE SCIENCES , JULY 1, 1961
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1962-10-31
The research program at Brooknaven is described. Current activities in physics, high-energy accelerators, instrumentation, chemistry, nuclear engineering, applied mathematics, biology, and medical research are outlined. (D.L.C.)
NASA Tech Briefs, February 1988. Volume 12, No. 2
NASA Technical Reports Server (NTRS)
1988-01-01
Topics covered include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Systems; and Life Sciences.
NASA Tech Briefs, March 1989. Volume 13, No. 3
NASA Technical Reports Server (NTRS)
1989-01-01
This issue's special features cover the NASA inventor of the year, and the other nominees for the year. Other Topics include: Electronic Components & and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences
NASA Technical Reports Server (NTRS)
1992-01-01
Summary charts of the following topics are presented: the Percentage of Critical Questions in Constrained and Robust Programs; the Executive Committee and AMAC Disposition of Critical Questions for Constrained and Robust Programs; and the Requirements for Ground-based Research and Flight Platforms for Constrained and Robust Programs. Data Tables are also presented and cover the following: critical questions from all Life Sciences Division Discipline Science Plans; critical questions listed by category and criticality; all critical questions which require ground-based research; critical questions that would utilize spacelabs listed by category and criticality; critical questions that would utilize Space Station Freedom (SSF) listed by category and criticality; critical questions that would utilize the SSF Centrifuge; facility listed by category and criticality; critical questions that would utilize a Moon base listed by category and criticality; critical questions that would utilize robotic missions listed by category and criticality; critical questions that would utilize free flyers listed by category and criticality; and critical questions by deliverables.
ERIC Educational Resources Information Center
Esters, Levon T.; Retallick, Michael S.
2013-01-01
This exploratory study examined the effect of an agriculturally-based experiential and work-based learning program, Science With Practice (SWP), on the vocational identity, career decision self-efficacy, and career maturity of undergraduate agriculture and life sciences students. The SWP experience helped clarify students' career interests and…
Pursell, David P
2009-01-01
BIO2010 advocates enhancing the interdisciplinary, mathematics, and physical science components of the undergraduate biology curriculum. The Department of Chemistry and Life Science at West Point responded by developing a required physical chemistry course tailored to the interests of life science majors. To overcome student resistance to physical chemistry, students were enabled as long-term stakeholders who would shape the syllabus by selecting life science topics of interest to them. The initial 2 yr of assessment indicates that students have a positive view of the course, feel they have succeeded in achieving course outcome goals, and that the course is relevant to their professional future. Instructor assessment of student outcome goal achievement via performance on exams and labs is comparable to that of students in traditional physical chemistry courses. Perhaps more noteworthy, both student and instructor assessment indicate positive trends from year 1 to year 2, presumably due to the student stakeholder effect.
2009-01-01
BIO2010 advocates enhancing the interdisciplinary, mathematics, and physical science components of the undergraduate biology curriculum. The Department of Chemistry and Life Science at West Point responded by developing a required physical chemistry course tailored to the interests of life science majors. To overcome student resistance to physical chemistry, students were enabled as long-term stakeholders who would shape the syllabus by selecting life science topics of interest to them. The initial 2 yr of assessment indicates that students have a positive view of the course, feel they have succeeded in achieving course outcome goals, and that the course is relevant to their professional future. Instructor assessment of student outcome goal achievement via performance on exams and labs is comparable to that of students in traditional physical chemistry courses. Perhaps more noteworthy, both student and instructor assessment indicate positive trends from year 1 to year 2, presumably due to the student stakeholder effect. PMID:19255133
ATLAS 1: Encountering Planet Earth
NASA Technical Reports Server (NTRS)
Shea, Charlotte; Mcmahan, Tracy; Accardi, Denise; Tygielski, Michele; Mikatarian, Jeff; Wiginton, Margaret (Editor)
1984-01-01
Several NASA science programs examine the dynamic balance of sunlight, atmosphere, water, land, and life that governs Earth's environment. Among these is a series of Space Shuttle-Spacelab missions, named the Atmospheric Laboratory for Applications and Science (ATLAS). During the ATLAS missions, international teams of scientists representing many disciplines combine their expertise to seek answers to complex questions about the atmospheric and solar conditions that sustain life on Earth. The ATLAS program specifically investigates how Earth's middle atmosphere and upper atmospheres and climate are affected by both the Sun and by products of industrial and agricultural activities on Earth.
NASA Technical Reports Server (NTRS)
Wallace-Robinson, Janice; Dickson, Katherine J.; Hess, Elizabeth; Powers, Janet V.
1992-01-01
A 10-year cumulative bibliography of publications resulting from research supported by the Regulatory Physiology discipline of the Space Physiology and Countermeasures Program of NASA's Life Sciences Division is provided. Primary subjects included in this bibliography are circadian rhythms, endocrinology, fluid and electrolyte regulation, hematology, immunology, metabolism and nutrition, temperature regulation, and general regulatory physiology. General physiology references are also included. Principal investigators whose research tasks resulted in publication are identified by asterisk. Publications are identified by a record number corresponding with their entry in the Life Sciences Bibliographic Database, maintained at the George Washington University.
The narrative power of astrobiology
NASA Astrophysics Data System (ADS)
Billings, Linda
The narrative power of astrobiology: Telling the story of the quest to understand life's origins and the search for evidence of extraterrestrial life INTRODUCTION The story of the origins and evolution of life is a narrative with nearuniversal appeal. The story of life on Earth is meaningful to all people, and the search for life elsewhere is appealing across cultural boundaries. The U.S. National Aeronautics and Space Administration (NASA) funds an Astrobiology Program in NASA's Science Mission Directorate that is dedicated to the study of the origin, evolution, distribution, and future of life in the universe. Because public interest in astrobiology is great and advances in the field are rapid, the NASA Astrobiology Program aims to integrate communication, education, and outreach into all aspects of program planning and execution. This strategic approach to communication is intended to promote the widest possible dissemination of timely and useful information about scientific discoveries, technology development, new knowledge, and greater understanding produced by the Astrobiology Program. This paper will address how scientists in the field of astrobiology can participate in the telling of an ongoing story of interest to multicultural audiences and why it is important to tell this story. SUMMARY Astrobiology research addresses three fundamental questions: How does life begin and evolve? Is there life beyond Earth and how can we detect it? What is the future of life on Earth and in the universe? The field of astrobiology is an endeavor that brings together researchers in a broad range of disciplines including Earth and planetary science, astrophysics, heliophysics, microbiology and evolutionary biology, and cosmochemistry. Goals of the NASA Astrobiology Program range from determining the nature and distribution of habitable environments in the Solar System and beyond to understanding the emergence of life from cosmic and planetary precursors, the interaction of past life on Earth with its changing environment, the formation and evolution of planets, links between planetary and biological evolution, the effects of climate and geology on habitability, and life's precursors and habitats in the outer solar system. Research dedicated to fulfilling these goals is conducted on Earth and in space, with a growing number of astrobiology investigations flying on planetary exploration missions. Since 1995, the field of astrobiology has grown rapidly, and the pace of discovery has been brisk. The possibility of extraterrestrial life is now a serious scientific question. Research findings over the past decade that are relevant to this question include the controversial 1996 claim of fossil evidence for microbial life in a martian meteorite, evidence of past and perhaps even present liquid water on Mars, the likelihood of a liquid water ocean on Europa, the possibility of liquid water beneath the surface of Titan, observations of a growing number of extrasolar planets, and identification of new forms of microbial life in an ever-widening range of extreme Earth environments. In the 21st century, the tempo of robotic planetary exploration is speeding up, and scientific and public attention is increasingly focusing on astrobiology research, especially the search for signs of life on Mars and other planetary bodies in our solar system. Mars is currently considered the best site in the solar system to search for evidence of past or present extraterrestrial life. And as Mars exploration proceeds, astrobiological interest in Enceladus, Europa, and Titan - outer solar system bodies that might have liquid water, prebiotic chemistry, or even life - is growing as new data are collected and analyzed. With an expanding array of solar system exploration endeavors involving and advancing astrobiology research, the NASA Astrobiology Program employs a communication strategy designed to establish that communication is an integral element of program planning and activities and an activity of fundamental importance to this scientific enterprise. This strategy can aid astrobiologists in explaining why their research is useful, relevant, and worthy of public funding. It can also help scientists determine how their research fits into broader cultural narratives that resonate with a wide variety of expert and non-expert audiences. Science means different things to different people in different situations, and thus public understanding of science, and science communication, are not simple things. Science can be a set of practices, a body of knowledge, a process of investigation, or a world view, for example. The story of astrobiology is a story about science, but more than a science story. The story of the search for life elsewhere is unfolding in the context of a broader cultural narrative, a story about who we are and where we are going (and why). Every researcher in the field of astrobiology has a unique and valuable contribution to make to this ongoing story of our quest to understand our place in the universe. This paper will explore whether and how the story of the study of the origins of life on Earth and the search for evidence of extraterrestrial life may transcend cultural boundaries and address ecumenical concerns.
NASA Astrophysics Data System (ADS)
Amous, Haytham
This research study evaluated the use of Second Life and its virtual museums as a means of providing effective informal science education for both junior high and high school students. This study investigated whether the attitudes of students toward science change as a result of scholastic exposure to the science museums in Second Life. The dependence between attitudes and learning styles was also investigated. The data gathered from the experiences and the perceptions of students using Second Life in informal science education were analyzed to address the questions of the study. The researcher used qualitative and quantitative research methodologies to investigate the research questions. The first and second research questions were quantitative and used TOSRA2 research instrument to assess attitude and perceptions and learning style questionnaire scores. The attitudes toward science before and after visiting the Second Life museums showed no significant change. A weak relationship between the attitudes toward science and the participants learning styles was found. The researcher therefore concluded that no relationship existed between the average of the TOSRA scores and the learning styles questionnaire scores. To address questions research three and four, a collective qualitative case study approach (Creswell, 2007), as well as a structured interviews focusing on the students' perspectives about using Second Life for informal science education was used. The students did not prefer informal science education using second life over formal education. This was in part attributed to the poor usability and/or familiarity with the program. Despite the students' technical difficulties confronted in visiting Second Life the perception of student about their learning experiences and the use of Second Life on informal science environment were positive.
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. Senate Committee on Commerce, Science, and Transportation.
This report, the second of a three-part study of Soviet space programs, examines their manned space programs and reviews their quest for a permanently manned presence in space. Also included is information concerning the physiological and psychological findings related to the extended duration of Soviet manned flights and an executive summary.…
The NASA Space Radiation Health Program
NASA Technical Reports Server (NTRS)
Schimmerling, W.; Sulzman, F. M.
1994-01-01
The NASA Space Radiation Health Program is a part of the Life Sciences Division in the Office of Space Science and Applications (OSSA). The goal of the Space Radiation Health Program is development of scientific bases for assuring adequate radiation protection in space. A proposed research program will determine long-term health risks from exposure to cosmic rays and other radiation. Ground-based animal models will be used to predict risk of exposures at varying levels from various sources and the safe levels for manned space flight.
Space Science Division cumulative bibliography: 1989-1994
NASA Technical Reports Server (NTRS)
Morrison, D.
1995-01-01
The Space Science Division at NASA's Ames Research Center is dedicated to research in astrophysics, exobiology, and planetary science. These research programs are structured around the study of origins and evolution of stars, planets, planetary atmospheres, and life, and address some of the most fundamental questions pursued by science; questions that examine the origin of life and of our place in the universe. This bibliography is the accumulation of peer-reviewed publications authored by Division scientists for the years 1989 through 1994. The list includes 777 papers published in over 5 dozen scientific journals representing the high productivity and interdisciplinary nature of the Space Science Division.
NASA Astrophysics Data System (ADS)
Silva Fernandez, Marta A.
The purpose of this cross-national study was to gain a more comprehensive understanding about doctoral students in the United States and Chile and how their decisions to pursue a career in the life sciences field occurred throughout their lives. . I interviewed 15 doctoral students from the Seven Lakes University (Chile) and 15 students from the West Coast University (US), using a life history approach. Analyses revealed that the degree of flexibility in the schooling system and the degree of individualism and collectivism of the social groups in which the students were learning science seemed to influence the informants' vocational decisions in three interrelated processes: (1) Deciding the informants' degree of interest and ability in science by the opportunity of choosing science classes and activities. The highly tracked Chilean system socializes students to science at an early age. The more flexible school system in the US enabled the interviewees to gradually decide about pursuing their interest in science; (2) Experiencing science as a collective learning process for the Chilean informants and an individualistic learning process for the US students; (3) Perceiving science differently at each life stage for both groups of interviewees including: Playing science, Studying science, Doing science, Working in science, Practicing Science in their doctoral programs.
NASA Astrophysics Data System (ADS)
Chin, Chi-Chin
2005-10-01
Scientific literacy and attitudes toward science play an important role in human daily lives. The purpose of this study was to investigate whether first-year pre-service teachers in colleges in Taiwan have a satisfactory level of scientific literacy. The domains of scientific literacy selected in this study include: (1) science content; (2) the interaction between science, technology and society (STS); (3) the nature of science; and (4) attitudes toward science. In this study, the instruments used were Chinese translations of the Test of Basic Scientific Literacy (TBSL) and the Test of Science-related Attitudes. Elementary education majors (n = 141) and science education majors (n = 138) from four teachers’ colleges responded to these instruments. The statistical results from the tests revealed that, in general, the basic scientific literacy of first-year pre-service teachers was at a satisfactory level. Of the six scales covered in this study, the pre-service teachers displayed the highest literacy in health science, STS, and life science. Literacy in the areas of the nature of science and earth science was rated lowest. The results also showed that science education majors scored significantly higher in physical science, life science, nature of science, science content, and the TBSL than elementary science majors. Males performed better than females in earth science, life science, science content, and the TBSL. Next, elementary education majors responded with more “don’t know” responses than science education majors. In general, the pre-service teachers were moderately positive in terms of attitudes toward science while science education majors had more positive attitudes toward science. There was no significant difference in attitudes between genders. Previous experience in science indicated more positive attitudes toward science. The results from stepwise regression revealed that STS, the nature of science, and attitudes toward science could explain 50.6% and 60.2% variance in science content in elementary education and science education majors, respectively. For science education majors, the first three scales—the nature of science, health science and physical science—determined basic scientific literacy. However, for elementary education majors, the top three factors were physical science, life science and the nature of science. Based on these results, several strategies for developing the professional abilities of science teachers have been recommended for inclusion in pre-service programs.
NASA Technical Reports Server (NTRS)
1985-01-01
From its inception, the main charter of Life Sciences has been to define biomedical requirements for the design and development of spacecraft systems and to participate in NASA's scientific exploration of the universe. The role of the Life Sciences Division is to: (1) assure the health, well being and productivity of all individuals who fly in space; (2) study the origin, evolution, and distribution of life in the universe; and (3) to utilize the space environment as a tool for research in biology and medicine. The activities, programs, and accomplishments to date in the efforts to achieve these goals are detailed and the future challenges that face the division as it moves forward from the shuttle era to a permanent manned presence in space space station's are examined.
NASA Astrophysics Data System (ADS)
Akura, Okong'o. Gabriel
This study examined both the changes that elementary school teachers experienced when they implemented a reform-based science curriculum and the impact of professional development on this transformation. The research involved a case study of three purposefully selected teachers implementing the Linking Food and the Environment (LIFE) program during the 2002--2003 school year. The LIFE program is a curriculum designed to enhance science literacy among learners from high poverty urban environments. While the study was grounded in the tradition of critical theory (Carspecken, 1996), the theoretical perspective of hermeneutic phenomenology (van Manen, 1990) guided data collection and analysis. Extensive observations of the teachers were made in order to capture and record the teacher change phenomenon. Data were recorded by means of field notes, audio and videotapes, semi-structured interviews, classroom observations, and video Stimulated Recall (SR) interviews. Emerging themes relating to teacher change, knowledge interests, constructivist pedagogy, and professional development illustrated how teachers grapple with various aspects of implementing a reform-based science curriculum. The teachers in this study were similar to those in earlier investigations, which found that sustained professional development programs involving mentoring and constant reflection enable elementary science teachers to change their instructional strategies from the technical-realist orientation towards the practical-hermeneutic and emancipatory-liberatory orientations. The study has implications for science curriculum developers and designers of professional development programs.
NASA Astrophysics Data System (ADS)
Wendel, JoAnna
2014-04-01
The L'Oréal For Women in Science program is calling for women postdoctoral scientists to submit applications for the L'Oréal USA Women in Science Fellowship. Five women scientists in a variety of fields, including life and physical/material sciences, technology, engineering, and mathematics, will receive grants of up to $60,000 each. Since the program began in 1998, more than 2000 women scientists worldwide have been awarded fellowships. Application materials are available at https://lorealfwis.aaas.org/login/indexA.cfm; the deadline to apply is 19 May 2014.
Office of Educational Programs 2009 Summer Internship Symposium and Poster Session
DOE Office of Scientific and Technical Information (OSTI.GOV)
White,K.; Morris, M.; Osiecki, C.
2009-08-06
Brookhaven National Laboratory offers college and pre-college faculty and students many opportunities to participate in Laboratory educational programs. The programs administered by the Office of Educational Programs are primarily funded by the U.S. Department of Energy, Brookhaven Science Associates, and other federal and non-federal agencies. Faculty and student research participation is welcomed in physical and life sciences, computer science and engineering, as well as in a variety of applied research areas relating to alternative energy, conservation, environmental technology, and national security. Visit our website at http://www.bnl.gov/education for application deadlines and more details. Following is a description of the programs managedmore » by the Office of Educational Programs.« less
Engaging a Rural Community with Science through a Science Café
NASA Astrophysics Data System (ADS)
Adams, P. E.
2012-12-01
Public awareness about science and science issues is often lacking in the general community; in a rural community there are even fewer options for an interested person to engage with others on science topics. One approach to address this issue is through the use of the Science Café model of citizen science at the local level. The Science Café concept, for the United States, originated in Boston (http://www.sciencecafes.org/). Science Café events are held in informal settings, such as restaurants, pubs, or coffee houses with presentations being provided by experts on the subject. The format is designed to promote discussion and questions. Fort Hays State University Science and Mathematics Institute (SMEI), located in Hays, KS, is now in its fifth year of hosting a science café in a community of 20,000 people. The program in Hays started as a grassroots effort from an area high school teacher asking SMEI to organize and support the program. Attendance at the Science Café has range from 14 to 75 people (fire code capacity!), with an average attendance of 30 people. The audience for our Science Café has been citizens, college students, high school students, and university faculty. The presenters at the Hays Science Café have ranged from scientists to engineers, high school students to hobbyists. Our topics have ranged from searching for life in the universe, wind energy, paleo-life in Kansas, climate change, honey bees, and planetary science. The program has developed a strong following in the community and has led to the formation of additional Science Café programs in Kansas. Selection of topics is based on community interest and timeliness. Publicity occurs through posters, e-mail, and social media outlets. Participants have found the sessions to be of interest and a place to learn more about the world and become informed about issues in the news. The Science Café in Hays has had a positive impact on the community.
ERIC Educational Resources Information Center
Meyer, Helen; Tabachnick, B. Robert; Hewson, Peter W.; Lemberger, John; Park, Hyun-Ju
1999-01-01
Discusses three prospective elementary teachers' conceptions of teaching science and selected portions of their knowledge base in life science. Explores how these teachers' conceptions, along with their teaching actions, developed during the course of a teacher-education program. Contains 21 references. (Author/WRM)
NASA Technical Reports Server (NTRS)
1995-01-01
This issue contains articles with a special focus on Computer-Aided design and engineering amd a research report on the Ames Research Center. Other subjects in this issue are: Electronic Components and Circuits, Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Manufacturing/Fabrication, Mathematics and Information Sciences and Life Sciences
NASA Astrophysics Data System (ADS)
Hariharan, Joya Reena
The General Educational Development (GED) tests enable people to earn a high school equivalency diploma and help them to qualify for more jobs and opportunities. Apart from this main goal, GED courses aim at enabling adults to improve the condition of their lives and to cope with a changing society. In today's world, science and technology play an exceedingly important role in helping people better their lives and in promoting the national goals of informed citizenship. Despite the current efforts in the field of secondary science education directed towards scientific literacy and the concept of "Science for all Americans", the literature does not reflect any corresponding efforts in the field of adult education. Science education research appears to have neglected a population that could possibly benefit from it. The purpose of this study is to explore: the science component of GED programs, significant features of the science portion of GED curricula and GED science materials, and adult learners' attitudes toward various aspects of science. Data collection methods included interviews with GED students and instructors, content analysis of relevant materials, and classroom observations. Data indicate that the students in general feel that the science they learn should be relevant to their lives and have direct applications in everyday life. Student understanding of science and interest in it appears to be contingent to their perceiving it as relevant to their lives and to society. Findings indicate that the instructional approaches used in GED programs influence students' perceptions about the relevance of science. Students in sites that use strategies such as group discussions and field trips appear to be more aware of science in the world around them and more enthusiastic about increasing this awareness. However, the dominant strategy in most GED programs is individual reading. The educational strategies used in GED programs generally focus on developing reading skills rather than the internalization of knowledge or influencing attitudes. An interesting finding is that GED science materials do attend to the relevance of science in everyday life but students' appreciation of this depends on the strategies employed.
6 CFR Appendix A to Part 5 - FOIA/Privacy Act Offices of the Department of Homeland Security
Code of Federal Regulations, 2010 CFR
2010-01-01
... development program. 5. The life sciences activities related to microbial pathogens of Biological and... and Infrastructure Protection Directorate of Science and Technology II. Requests made to components...
Space medicine research publications: 1983-1984
NASA Technical Reports Server (NTRS)
Solberg, J. L.; Pleasant, L. G.
1984-01-01
A list of publications supported by the Space Medicine Program, Office of Space Science and Applications is given. Included are publications entered into the Life Sciences Bibliographic Database by The George Washington University as of October 1, 1984.
6 CFR Appendix A to Part 5 - FOIA/Privacy Act Offices of the Department of Homeland Security
Code of Federal Regulations, 2013 CFR
2013-01-01
... development program. 5. The life sciences activities related to microbial pathogens of Biological and... and Infrastructure Protection Directorate of Science and Technology II. Requests made to components...
6 CFR Appendix A to Part 5 - FOIA/Privacy Act Offices of the Department of Homeland Security
Code of Federal Regulations, 2012 CFR
2012-01-01
... development program. 5. The life sciences activities related to microbial pathogens of Biological and... and Infrastructure Protection Directorate of Science and Technology II. Requests made to components...
6 CFR Appendix A to Part 5 - FOIA/Privacy Act Offices of the Department of Homeland Security
Code of Federal Regulations, 2014 CFR
2014-01-01
... development program. 5. The life sciences activities related to microbial pathogens of Biological and... and Infrastructure Protection Directorate of Science and Technology II. Requests made to components...
6 CFR Appendix A to Part 5 - FOIA/Privacy Act Offices of the Department of Homeland Security
Code of Federal Regulations, 2011 CFR
2011-01-01
... development program. 5. The life sciences activities related to microbial pathogens of Biological and... and Infrastructure Protection Directorate of Science and Technology II. Requests made to components...
Guidelines for NASA Missions to Engage the User Community as a Part of the Mission Life Cycle
NASA Astrophysics Data System (ADS)
Escobar, V. M.; Friedl, L.; Bonniksen, C. K.
2017-12-01
NASA continues to improve the Earth Science Directorate in the areas of thematic integration, stakeholder feedback and Project Applications Program tailoring for missions to transfer knowledge between scientists and projects. The integration of application themes and the implementation of application science activities in flight projects have evolved to formally include user feedback and stakeholder integration. NASA's new Flight Applied Science Program Guidelines are designed to bridge NASA Earth Science Directorates in Flight, Applied Sciences and Research and Development by agreeing to integrate the user community into mission life cycles. Thus science development and science applications will guide all new instruments launched by NASAs ESD. The continued integration with the user community has enabled socio-economic considerations into NASA Earth Science projects to advance significantly. Making users a natural part of mission science leverages future socio-economic impact research and provides a platform for innovative and more actionable product to be used in decision support systems by society. This presentation will give an overview of the new NASA Guidelines and provide samples that demonstrate how the user community can be a part of NASA mission designs.
Scientists want more children.
Ecklund, Elaine Howard; Lincoln, Anne E
2011-01-01
Scholars partly attribute the low number of women in academic science to the impact of the science career on family life. Yet, the picture of how men and women in science--at different points in the career trajectory--compare in their perceptions of this impact is incomplete. In particular, we know little about the perceptions and experiences of junior and senior scientists at top universities, institutions that have a disproportionate influence on science, science policy, and the next generation of scientists. Here we show that having fewer children than wished as a result of the science career affects the life satisfaction of science faculty and indirectly affects career satisfaction, and that young scientists (graduate students and postdoctoral fellows) who have had fewer children than wished are more likely to plan to exit science entirely. We also show that the impact of science on family life is not just a woman's problem; the effect on life satisfaction of having fewer children than desired is more pronounced for male than female faculty, with life satisfaction strongly related to career satisfaction. And, in contrast to other research, gender differences among graduate students and postdoctoral fellows disappear. Family factors impede talented young scientists of both sexes from persisting to research positions in academic science. In an era when the global competitiveness of US science is at risk, it is concerning that a significant proportion of men and women trained in the select few spots available at top US research universities are considering leaving science and that such desires to leave are related to the impact of the science career on family life. Results from our study may inform university family leave policies for science departments as well as mentoring programs in the sciences.
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
This instructional package contains three animal life units developed for the Dade County Florida Quinmester Program. "The World of Animals" is a survey course of the animal kingdom (excluding man) and involves the students in many laboratory investigations and group activities. Typical animals of South Florida and unusual animals of the…
Need Assessment of Computer Science and Engineering Graduates
NASA Astrophysics Data System (ADS)
Surakka, Sami; Malmi, Lauri
2005-06-01
This case study considered the syllabus of the first and second year studies in computer science. The aim of the study was to reveal which topics covered in the syllabi were really needed during the following years of study or in working life. The program that was assessed in the study was a Masters program in computer science and engineering at a university of technology in Finland. The necessity of different subjects for the advanced studies (years 3? ?5) and for working life was assessed using four content analyses: (a) the course catalog of the institution where this study was carried out, (b) employment reports that were attached to the applications for internship credits, (c) masters theses, and (d) job advertisements in a newspaper. The results of the study imply that the necessity of physics for the advanced study and work was very low compared to the extent to which it was studied. On the other hand, the necessity for mathematics was moderate, and it had remained quite steady during the period 1989? ?2002. The most necessary computer science topic was programming. Also telecommunications and networking was needed often, whereas theoretical computer science was needed quite rarely.
An information technology emphasis in biomedical informatics education.
Kane, Michael D; Brewer, Jeffrey L
2007-02-01
Unprecedented growth in the interdisciplinary domain of biomedical informatics reflects the recent advancements in genomic sequence availability, high-content biotechnology screening systems, as well as the expectations of computational biology to command a leading role in drug discovery and disease characterization. These forces have moved much of life sciences research almost completely into the computational domain. Importantly, educational training in biomedical informatics has been limited to students enrolled in the life sciences curricula, yet much of the skills needed to succeed in biomedical informatics involve or augment training in information technology curricula. This manuscript describes the methods and rationale for training students enrolled in information technology curricula in the field of biomedical informatics, which augments the existing information technology curriculum and provides training on specific subjects in Biomedical Informatics not emphasized in bioinformatics courses offered in life science programs, and does not require prerequisite courses in the life sciences.
Commercial Generic Bioprocessing Apparatus Science Insert - 03
NASA Technical Reports Server (NTRS)
Moreno, Nancy; Stodieck, Louis; Cushing, Paula; Stowe, Mark; Hamilton, Mary Ann; Werner, Ken
2008-01-01
Commercial Generic Bioprocessing Apparatus Science Insert - 03 (CSI-03) is the third set of investigations in the CSI program series. The CSI program provides the K-12 community opportunities to utilize the unique microgravity environment of the International Space Station as part of the regular classroom to encourage learning and interest in science, technology, engineering and math. CSI-03 will examine the complete life cycle of the painted lady butterfly and the ability of an orb weaving spider to spin a web, eat and remain healthy in space.
ERIC Educational Resources Information Center
Siemsen, Hayo
2013-01-01
George Sarton had a strong influence on modern history of science. The method he pursued throughout his life was the method he had discovered in Ernst Mach's "Mechanics" when he was a student in Ghent. Sarton was in fact throughout his life implementing a research program inspired by the epistemology of Mach. Sarton in turn inspired many…
Neurophysiological Bases of Event-Related Potentials.
1983-06-01
University Prepared for: AIR FORCE OFFICE OF SCIENTIFIC RESEARCH Life Sciences Directorate Boiling AFB, D.C. 20332 Attention: Dr. Alfred R. Fregly Program...Karl H. Pribram and Jeffrey E. Evans Stanford University Prepared for: AIR FORCE OFFICE OF SCIENTIFIC RESEARCH Life Sciences Directorate Bollinq AFB...CONTROLLING OFFICE NAME AND ADDRESS June 1983 I W Air Force Office of Scientific Research /Nt 15. SECURITY CLASS. (01 this report) Bolling AFB, D.C
Liquid-handling Lego robots and experiments for STEM education and research
Gerber, Lukas C.; Calasanz-Kaiser, Agnes; Hyman, Luke; Voitiuk, Kateryna; Patil, Uday
2017-01-01
Liquid-handling robots have many applications for biotechnology and the life sciences, with increasing impact on everyday life. While playful robotics such as Lego Mindstorms significantly support education initiatives in mechatronics and programming, equivalent connections to the life sciences do not currently exist. To close this gap, we developed Lego-based pipetting robots that reliably handle liquid volumes from 1 ml down to the sub-μl range and that operate on standard laboratory plasticware, such as cuvettes and multiwell plates. These robots can support a range of science and chemistry experiments for education and even research. Using standard, low-cost household consumables, programming pipetting routines, and modifying robot designs, we enabled a rich activity space. We successfully tested these activities in afterschool settings with elementary, middle, and high school students. The simplest robot can be directly built from the widely used Lego Education EV3 core set alone, and this publication includes building and experiment instructions to set the stage for dissemination and further development in education and research. PMID:28323828
Liquid-handling Lego robots and experiments for STEM education and research.
Gerber, Lukas C; Calasanz-Kaiser, Agnes; Hyman, Luke; Voitiuk, Kateryna; Patil, Uday; Riedel-Kruse, Ingmar H
2017-03-01
Liquid-handling robots have many applications for biotechnology and the life sciences, with increasing impact on everyday life. While playful robotics such as Lego Mindstorms significantly support education initiatives in mechatronics and programming, equivalent connections to the life sciences do not currently exist. To close this gap, we developed Lego-based pipetting robots that reliably handle liquid volumes from 1 ml down to the sub-μl range and that operate on standard laboratory plasticware, such as cuvettes and multiwell plates. These robots can support a range of science and chemistry experiments for education and even research. Using standard, low-cost household consumables, programming pipetting routines, and modifying robot designs, we enabled a rich activity space. We successfully tested these activities in afterschool settings with elementary, middle, and high school students. The simplest robot can be directly built from the widely used Lego Education EV3 core set alone, and this publication includes building and experiment instructions to set the stage for dissemination and further development in education and research.
Space medicine research publications: 1987-1988
NASA Technical Reports Server (NTRS)
1991-01-01
A list of publications of investigators supported by the Biomedical Research and Clinical Programs of the Life Sciences Division, Office of Space Science and Applications is given. Included are publications entered into the Life Sciences Bibliographic Database by the George Washington University as of 31 December 1988. Principal Investigators whose research tasks resulted in publication are identified by asterisk. Publications are organized into the following subject areas: space physiology and countermeasures (cardiopulmonary, musculoskeletal, neuroscience, and regulatory physiology), space human factors, environmental health, radiation health, clinical medicine, and general space medicine.
Engineering and simulation of life science Spacelab experiments
NASA Technical Reports Server (NTRS)
Bush, B.; Rummel, J.; Johnston, R. S.
1977-01-01
Approaches to the planning and realization of Spacelab life sciences experiments, which may involve as many as 16 Space Shuttle missions and 100 tests, are discussed. In particular, a Spacelab simulation program, designed to evaluate problems associated with the use of live animal specimens, the constraints imposed by zero gravity on equipment operation, training of investigators and data management, is described. The simulated facility approximates the hardware and support systems of a current European Space Agency Spacelab model. Preparations necessary for the experimental program, such as crew activity plans, payload documentation and inflight experimental procedures are developed; health problems of the crew, including human/animal microbial contamination, are also assessed.
Life Sciences Data Archive Scientific Development
NASA Technical Reports Server (NTRS)
Buckey, Jay C., Jr.
1995-01-01
The Life Sciences Data Archive will provide scientists, managers and the general public with access to biomedical data collected before, during and after spaceflight. These data are often irreplaceable and represent a major resource from the space program. For these data to be useful, however, they must be presented with enough supporting information, description and detail so that an interested scientist can understand how, when and why the data were collected. The goal of this contract was to provide a scientific consultant to the archival effort at the NASA-Johnson Space Center. This consultant (Jay C. Buckey, Jr., M.D.) is a scientist, who was a co-investigator on both the Spacelab Life Sciences-1 and Spacelab Life Sciences-2 flights. In addition he was an alternate payload specialist for the Spacelab Life Sciences-2 flight. In this role he trained on all the experiments on the flight and so was familiar with the protocols, hardware and goals of all the experiments on the flight. Many of these experiments were flown on both SLS-1 and SLS-2. This background was useful for the archive, since the first mission to be archived was Spacelab Life Sciences-1. Dr. Buckey worked directly with the archive effort to ensure that the parameters, scientific descriptions, protocols and data sets were accurate and useful.
Navy Manpower Planning and Programming: Basis for Systems Examination
1974-10-01
IRE5EARCH AND DEVEl. INAVAL RESEARCH] CHIEF OF NAVAL OPERATIONS OFFICE CHIIf OF NAVAL OPERATIONS NAVAL MATERIAL COMMAND •LitMARTERS NAVAL MATERIAL...DIVISION COMPENSATION BRANCH MANPOWER PROGRAMMING ■RANCH JOURNAL/TRADE TALK BRANCH 06A ASSISTANT FOR COMPUTER SCIENCES SYSTEMS DEVELOPMENT BRANCH...Assistant Director, Life Sciences , Air Force Office of Scientific Research Technical Library, Air Force Human Resources Laboratory, Lackland Air Force Base
NASA Astrophysics Data System (ADS)
Dalbotten, D. M.; Pellerin, H.; Steiner, M.
2004-12-01
The National Center for Earth-surface Dynamics, an NSF-sponsored Science and Technology Center, through a partnership between the University of Minnesota, the Science Museum of Minnesota, and the Fond du Lac Tribal and Community College, has created gidakiimanaaniwigamig (Seek to Know), where students in middle and high school participate in hands-on research projects on topics in environmental science through a series of four yearly seasonal camps combined with field trips and after school programming. Through meetings with Native elders, community leaders and educators, we know that the major issues that must be addressed are student retention, gaps in programming that allow students who have been performing successfully in math and science to drift away from their interest in pursuing STEM careers, and concern about moving away from the community to pursue higher education. After-school and summer programs are an effective means of creating interest in STEM careers, but single-contact programs don't have the long-term impact that will create a bridge from grade school to college and beyond. Often children who have learned to love science in grade school gradually move away from this interest as they enter middle and high school. While a single intervention offered by a science camp or visit to a laboratory can be life-altering, once the student is back in their everyday life they may forget that excitement and get sidetracked from the educational goals they formed based on this single experience. We want to build on the epiphany (science is fun!) with continued interaction that allows the students to grow in their ability to understand and enjoy science. In order to foster STEM careers for underrepresented youths we need to create a sustained, long-term, program that takes youths through programs that stimulate that initial excitement and gradually become more intensive and research-oriented as the youths get older. NCED's approach to these challenges is to bring youths into a long-lasting program with repeat contacts; to involve community leaders they trust, such as elders, parents, and teachers; to make connections to traditional Native culture; to provide high-quality hands-on science and involve scientists working on NCED research; and to keep it fun!
Science 25. Curriculum Guide. Revised.
ERIC Educational Resources Information Center
Northwest Territories Dept. of Education, Yellowknife.
This science curriculum is an activity-oriented program in which an attempt has been made to provide sufficient information for non-science specialists to enable them to offer an effective course at the grades 10 and 11 levels. This curriculum offers a solution to the unique needs of life in the Canadian Northwest Territories. The role of…
Integrating Science and Language Arts: A Sourcebook for K-6 Teachers.
ERIC Educational Resources Information Center
Shaw, Donna Gail; Dybdahl, Claudia S.
The purpose of this sourcebook is to provide elementary classroom teachers with meaningful ideas and activities for supplementing their science and language arts programs. Five general topics encompassing the earth, life, and physical science have been selected as units and further subdivided into chapters. Each chapter contains a multitude of…
ERIC Educational Resources Information Center
Blueford, J. R.; And Others
A unified science approach is incorporated in this K-6 curriculum mode. The program is organized into six major cycles. These include: (1) science, math, and technology cycle; (2) universe cycle; (3) life cycle; (4) water cycle; (5) plate tectonics cycle; and (6) rock cycle. An overview is provided of each cycle's major concepts. The topic…
Laursen, Sandra; Liston, Carrie; Thiry, Heather; Graf, Julie
2007-01-01
Many short-duration science outreach interventions have important societal goals of raising science literacy and increasing the size and diversity of the science workforce. Yet, these long-term outcomes are inherently challenging to evaluate. We present findings from a qualitative research study of an inquiry-based, life science outreach program to K-12 classrooms that is typical in design and excellent in execution. By considering this program as a best case of a common outreach model, the "scientist in the classroom," the study examines what benefits may be realized for each participant group and how they are achieved. We find that K-12 students are engaged in authentic, hands-on activities that generate interest in science and new views of science and scientists. Teachers learn new science content and new ways to teach it, and value collegial support of their professional work. Graduate student scientists, who are the program presenters, gain teaching and other skills, greater understanding of education and diversity issues, confidence and intrinsic satisfaction, and career benefits. A few negative outcomes also are described. Program elements that lead to these benefits are identified both from the research findings and from insights of the program developer on program design and implementation choices.
NASA Technical Reports Server (NTRS)
Grave, C.; Margold, D. W.
1973-01-01
Site selection, program planning, cost and design studies for support of the IMBLMS program were investigated. Accomplishments are reported for the following areas: analysis of responses to site selection criteria, space-oriented biotechnology, life sciences payload definition, and program information transfer.
Using insects for STEM outreach: Development and evaluation of the UA Insect Discovery Program
NASA Astrophysics Data System (ADS)
Beal, Benjamin D.
Science and technology impact most aspects of modern daily life. It is therefore important to create a scientifically literate society. Since the majority of Americans do not take college-level science courses, strong K-12 science education is essential. At the K-5 level, however, many teachers lack the time, resources and background for effective science teaching. Elementary teachers and students may benefit from scientist-led outreach programs created by Cooperative Extension or other institutions. One example is the University of Arizona Insect Discovery Program, which provides short-duration programing that uses insects to support science content learning, teach critical thinking and spark interest in science. We conducted evaluations of the Insect Discovery programming to determine whether the activities offered were accomplishing program goals. Pre-post tests, post program questionnaires for teachers, and novel assessments of children's drawings were used as assessment tools. Assessments were complicated by the short duration of the program interactions with the children as well as their limited literacy. In spite of these difficulties, results of the pre-post tests indicated a significant impact on content knowledge and critical thinking skills. Based on post-program teacher questionnaires, positive impacts on interest in science learning were noted as much as a month after the children participated in the program. New programming and resources developed to widen the potential for impact are also described.
Cardiopulmonary discipline science plan
NASA Technical Reports Server (NTRS)
1991-01-01
Life sciences research in the cardiopulmonary discipline must identify possible consequences of space flight on the cardiopulmonary system, understand the mechanisms of these effects, and develop effective and operationally practical countermeasures to protect crewmembers inflight and upon return to a gravitational environment. The long-range goal of the NASA Cardiopulmonary Discipline Research Program is to foster research to better understand the acute and long-term cardiovascular and pulmonary adaptation to space and to develop physiological countermeasures to ensure crew health in space and on return to Earth. The purpose of this Discipline Plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in the comprehensive area of cardiopulmonary sciences. It covers the significant research areas critical to NASA's programmatic requirements for the Extended-Duration Orbiter, Space Station Freedom, and exploration mission science activities. These science activities include ground-based and flight; basic, applied, and operational; and animal and human research and development. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, identifies science priorities, and defines critical questions in the subdiscipline areas of both cardiovascular and pulmonary function. It contains a general plan that will be used by both NASA Headquarters Program Offices and the field centers to review and plan basic, applied, and operational (intramural and extramural) research and development activities in this area.
Bernard, H. Russell
2012-01-01
A recent poll showed that most people think of science as technology and engineering—life-saving drugs, computers, space exploration, and so on. This was, in fact, the promise of the founders of modern science in the 17th century. It is less commonly understood that social and behavioral sciences have also produced technologies and engineering that dominate our everyday lives. These include polling, marketing, management, insurance, and public health programs. PMID:23213222
NASA Technical Reports Server (NTRS)
Guikema, James A.; Spooner, Brian S.
1994-01-01
The NASA Specialized Center of Research and Training (NSCORT) in Gravitational Biology was established at Kansas State University, supported through NASA's Life Science Division, Office of Space Science and Applications. Educational opportunities, associated with each of the research projects which form the nucleus of the Center, are complemented by program enrichments such as scholar exchanges and linkages to other NASA and commercial programs. The focus of this training program, and a preliminary assessment of its successes, are described.
LIVIVO - the Vertical Search Engine for Life Sciences.
Müller, Bernd; Poley, Christoph; Pössel, Jana; Hagelstein, Alexandra; Gübitz, Thomas
2017-01-01
The explosive growth of literature and data in the life sciences challenges researchers to keep track of current advancements in their disciplines. Novel approaches in the life science like the One Health paradigm require integrated methodologies in order to link and connect heterogeneous information from databases and literature resources. Current publications in the life sciences are increasingly characterized by the employment of trans-disciplinary methodologies comprising molecular and cell biology, genetics, genomic, epigenomic, transcriptional and proteomic high throughput technologies with data from humans, plants, and animals. The literature search engine LIVIVO empowers retrieval functionality by incorporating various literature resources from medicine, health, environment, agriculture and nutrition. LIVIVO is developed in-house by ZB MED - Information Centre for Life Sciences. It provides a user-friendly and usability-tested search interface with a corpus of 55 Million citations derived from 50 databases. Standardized application programming interfaces are available for data export and high throughput retrieval. The search functions allow for semantic retrieval with filtering options based on life science entities. The service oriented architecture of LIVIVO uses four different implementation layers to deliver search services. A Knowledge Environment is developed by ZB MED to deal with the heterogeneity of data as an integrative approach to model, store, and link semantic concepts within literature resources and databases. Future work will focus on the exploitation of life science ontologies and on the employment of NLP technologies in order to improve query expansion, filters in faceted search, and concept based relevancy rankings in LIVIVO.
UC Merced Center for Computational Biology Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colvin, Michael; Watanabe, Masakatsu
Final report for the UC Merced Center for Computational Biology. The Center for Computational Biology (CCB) was established to support multidisciplinary scientific research and academic programs in computational biology at the new University of California campus in Merced. In 2003, the growing gap between biology research and education was documented in a report from the National Academy of Sciences, Bio2010 Transforming Undergraduate Education for Future Research Biologists. We believed that a new type of biological sciences undergraduate and graduate programs that emphasized biological concepts and considered biology as an information science would have a dramatic impact in enabling the transformationmore » of biology. UC Merced as newest UC campus and the first new U.S. research university of the 21st century was ideally suited to adopt an alternate strategy - to create a new Biological Sciences majors and graduate group that incorporated the strong computational and mathematical vision articulated in the Bio2010 report. CCB aimed to leverage this strong commitment at UC Merced to develop a new educational program based on the principle of biology as a quantitative, model-driven science. Also we expected that the center would be enable the dissemination of computational biology course materials to other university and feeder institutions, and foster research projects that exemplify a mathematical and computations-based approach to the life sciences. As this report describes, the CCB has been successful in achieving these goals, and multidisciplinary computational biology is now an integral part of UC Merced undergraduate, graduate and research programs in the life sciences. The CCB began in fall 2004 with the aid of an award from U.S. Department of Energy (DOE), under its Genomes to Life program of support for the development of research and educational infrastructure in the modern biological sciences. This report to DOE describes the research and academic programs made possible by the CCB from its inception until August, 2010, at the end of the final extension. Although DOE support for the center ended in August 2010, the CCB will continue to exist and support its original objectives. The research and academic programs fostered by the CCB have led to additional extramural funding from other agencies, and we anticipate that CCB will continue to provide support for quantitative and computational biology program at UC Merced for many years to come. Since its inception in fall 2004, CCB research projects have continuously had a multi-institutional collaboration with Lawrence Livermore National Laboratory (LLNL), and the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, as well as individual collaborators at other sites. CCB affiliated faculty cover a broad range of computational and mathematical research including molecular modeling, cell biology, applied math, evolutional biology, bioinformatics, etc. The CCB sponsored the first distinguished speaker series at UC Merced, which had an important role is spreading the word about the computational biology emphasis at this new campus. One of CCB's original goals is to help train a new generation of biologists who bridge the gap between the computational and life sciences. To archive this goal, by summer 2006, a new program - summer undergraduate internship program, have been established under CCB to train the highly mathematical and computationally intensive Biological Science researchers. By the end of summer 2010, 44 undergraduate students had gone through this program. Out of those participants, 11 students have been admitted to graduate schools and 10 more students are interested in pursuing graduate studies in the sciences. The center is also continuing to facilitate the development and dissemination of undergraduate and graduate course materials based on the latest research in computational biology.« less
Valid and Reliable Science Content Assessments for Science Teachers
NASA Astrophysics Data System (ADS)
Tretter, Thomas R.; Brown, Sherri L.; Bush, William S.; Saderholm, Jon C.; Holmes, Vicki-Lynn
2013-03-01
Science teachers' content knowledge is an important influence on student learning, highlighting an ongoing need for programs, and assessments of those programs, designed to support teacher learning of science. Valid and reliable assessments of teacher science knowledge are needed for direct measurement of this crucial variable. This paper describes multiple sources of validity and reliability (Cronbach's alpha greater than 0.8) evidence for physical, life, and earth/space science assessments—part of the Diagnostic Teacher Assessments of Mathematics and Science (DTAMS) project. Validity was strengthened by systematic synthesis of relevant documents, extensive use of external reviewers, and field tests with 900 teachers during assessment development process. Subsequent results from 4,400 teachers, analyzed with Rasch IRT modeling techniques, offer construct and concurrent validity evidence.
NASA Technical Reports Server (NTRS)
Rask, Jon C.; Chakravarty, Kaushik; French, Alison; Choi, Sungshin; Stewart, Helen
2017-01-01
The NASA Ames Life Sciences Institutional Scientific Collection (ISC), which is composed of the Ames Life Sciences Data Archive (ALSDA) and the Biospecimen Storage Facility (BSF), is managed by the Space Biosciences Division and has been operational since 1993. The ALSDA is responsible for archiving information and animal biospecimens collected from life science spaceflight experiments and matching ground control experiments. Both fixed and frozen spaceflight and ground tissues are stored in the BSF within the ISC. The ALSDA also manages a Biospecimen Sharing Program, performs curation and long-term storage operations, and makes biospecimens available to the scientific community for research purposes via the Life Science Data Archive public website (https:lsda.jsc.nasa.gov). As part of our best practices, a viability testing plan has been developed for the ISC, which will assess the quality of archived samples. We expect that results from the viability testing will catalyze sample use, enable broader science community interest, and improve operational efficiency of the ISC. The current viability test plan focuses on generating disposition recommendations and is based on using ribonucleic acid (RNA) integrity number (RIN) scores as a criteria for measurement of biospecimen viablity for downstream functional analysis. The plan includes (1) sorting and identification of candidate samples, (2) conducting a statiscally-based power analysis to generate representaive cohorts from the population of stored biospecimens, (3) completion of RIN analysis on select samples, and (4) development of disposition recommendations based on the RIN scores. Results of this work will also support NASA open science initiatives and guides development of the NASA Scientific Collections Directive (a policy on best practices for curation of biological collections). Our RIN-based methodology for characterizing the quality of tissues stored in the ISC since the 1980s also creates unique scientific opportunities for temporal assessment across historical missions. Support from the NASA Space Biology Program and the NASA Human Research Program is gratefully acknowledged.
NASA Technical Reports Server (NTRS)
Cogoli, A. (Editor); Cogoli-Greuter, M. (Editor); Gruener, R. (Editor); Sievers, A. (Editor); Ubbels, G. A. (Editor); Halstead, T. W. (Editor); Ross, M. D. (Editor); Roux, S. J. (Editor); Oser, H. (Editor); Lujan, B. F. (Editor)
1994-01-01
The conference includes papers describing theories and models of cell biology in microgravity and weightlessness; experimental research on cellular responses to altered gravity in plants and animals, natural and simulated; graviresponses in plants; gravitational effects in developmental biology; mechanisms of gravisensing; effects on animals and humans; and educational programs in Space Life Sciences.
Applications Integration Strategy in the Mission Development Process
NASA Astrophysics Data System (ADS)
Cox, E. L., Jr.
2016-12-01
NASA's Earth Science Applied Science Program has worked for the past four to five years with the Earth Science Division's Flight Program to cultivate an understanding of the importance of satellite remote sensing impacts on decision-making policy and decision support tools utilized by academia, state and local governments, other government agencies, private sector companies, and non-profit organizations. It has long been recognized that applications projects and studies in areas such as Health and Air Quality, Water Resources, Disasters, and Ecological Forecasting, have benefited and been enhanced through the use of satellite remote sensing. Applications researchers often use remote sensing data once it becomes available after the post-launch evaluation phase in the format and level of fidelity that is available. The results from the many applications projects, over the years, have been significant and there are countless examples of improvements and enhancements to operational systems and decision-making policies in the Applied Sciences community. However, feedback received from the applications community regarding the need for improved data availability and latency; processing and formatting, to name a few, prompted the idea of applied science involvement early in the life cycle of mission development. Over time, the Applied Science Program personnel have learned a great deal from the flight mission development life cycle process and recognized key areas of alignment. This presentation will discuss specific aspects of applied science that investigators should consider when proposing to future announcements involving an applications dimension. The Program's experience with user community needs, decision-making requirements, and stakeholder operations requirements will be highlighted.
Perceptions of Agricultural Leadership Academic Programs of 1862 Land-Grant Universities
ERIC Educational Resources Information Center
Alexander, Jackson C.; Rucker, K. Jill; Graham, Donna L.; Miller, Jefferson D.; Apple, Jason K.
2017-01-01
This study characterized perceptions of agricultural leadership programs in colleges of agriculture, food, life, human, or environmental sciences at 1,862 land-grant institutions. Objectives included describing the need for programs, studying evolution within the discipline, discussing faculty recommendations for future development, and examining…
The REVEL Project: Long-Term Investment in K-12 Education at a RIDGE 2000 Integrated Study Site
NASA Astrophysics Data System (ADS)
Robigou, V.
2005-12-01
The REVEL Project has provided dozens of science teachers from throughout the U.S. an opportunity to explore the links between mid-ocean ridge processes and life along the RIDGE 2000 Juan de Fuca Ridge Integrated Study Site. In turn, these educators have facilitated deep-sea, research-based teaching and learning in hundreds of classrooms, contributed to mid-ocean ridge curriculum and programs development ranging from IMAX movies and museum exhibits to the R2K-SEAS (Student Experiment At Sea) program. In addition, the REVEL educators take on the mission to champion the importance of science in education and to bring ocean sciences into their local and regional communities. For the scientific community, research in an environment as large, dynamic and remote as the ocean intrinsically requires long-term investment to advance the understanding of the interactions between the processes shaping our planet. Similarly, research-based education requires long-term investment to incrementally change the way science is taught in schools, informal settings or even at home. It takes even longer to perceptibly measure the result of new teaching methods on students' learning and the impact of these methods on citizens' scientific literacy. Research-based education involving teachers practicing research in the field, and collaborating with scientists to experience and understand the process of science is still in its infancy - despite 20 years of NSF's efforts in teachers' professional development. This poster reports on strategies that the REVEL Project has designed over 9 years to help teachers that adopt research-based education transform their way of teaching in the classroom and bring cutting-edge, exciting science into schools through rigorous science learning. Their teaching approaches encourage students' interest in science, and engage students in the life-long skills of reasoning and decision making through the practice of science. Evaluation results of how the research-based teacher development program REVEL contributes to changing the way teachers view the scientific process once they have 'done' science and how the program supports teachers to change their teaching methods will be presented. The REVEL Project is funded by the National Science Foundation and receives additional support from the University of Washington and private donors. REVEL - Research and Education: Volcanoes-Exploration-Life.
NASA Astrophysics Data System (ADS)
Beckford-Smart, Meredith
This study discusses the social interactions involved in teachers' enactment and use of new science curricula. The teachers studied participated in the LiFE program, a university-school partnership, which is an inquiry based science and nutrition education program. In this program fifth and sixth grade students learned science through the study of food. The program used the study of food and food systems to teach life sciences and nutrition through inquiry based studies. Through the partnership teachers received professional development which aimed to deepen their conceptual understandings of life science and develop skills in implementing inquiry-base teaching. Using qualitative research methods of ethnography and narrative inquiry to study teachers' sense-making of messages from curriculum structures, the intention was to explore how teachers' sense-making of these structures guided their classroom practices. Two research questions were addressed: (a) How do teachers make sense of curriculum given their perceptions, their school context and their curricular context; (b) What influence do their identities as science teachers/learners have on their enactment of an innovative science curriculum. I used comparative analysis to examine teacher's beliefs and identities as teachers/learners. In the process of studying these teachers an understanding of how teachers' stories and identities shape their use and enactment of science curriculum came to light. The initial analysis revealed four distinct teacher identities: (a) social responsibility teacher/learner; (b) experiential teacher/learner; (c) supportive institution teacher/learner; and (d) turning point teacher. Besides these distinct teacher identities three cross cutting themes emerged: (a) creating environments conducive to their teaching visions; (b) empowering student through science teaching; and (c) dealing with the uncertainty of teaching. The information gathered from this study will illuminate how these different teacher stories shaped their teaching practices and enactment of science curriculum. Curriculum developers and policy makers struggle to understand how their messages can be communicated clearly to their readers and users. Many argue that curriculum materials are not used the way they are intended. Others argue the messages read from policy and curriculum materials and artifacts are ambiguous and unclear. This study did not argue that teachers do not use the curriculum materials correctly. This study focused on teachers' sense-making of curriculum materials so we can get a better understanding of the role curriculum resources can play in reform.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitlow, B.
Family science is an informal science education program designed to teach science skills by having children and parents learn and enjoy science together. Aimed at addressing the underrepresentation of women and ethnic and racial minorities in science-based careers, FAMILY SCIENCE involves parents and children in kindergarten through eighth grade in science activities that demonstrate the role science plays in their daily life and future. Family involvement is the key to the program`s effectiveness. Family classes are usually offered in a series of one- to two-hour class meetings for parents and their children after school, evenings, and weekends. During classes, parentsmore » and children work in pairs and small groups to solve problems, work cooperatively, and talk science. The activities provide experiences for the entire family that build skills, confidence, and interest in science. In addition, guest speakers and career activities illustrate for parents in the workforce the significance of math and science in their own jobs, and for kids, it highlights the diversity of jobs and the relevance of math and science.« less
Ground based simulation of life sciences Spacelab experiments
NASA Technical Reports Server (NTRS)
Rummel, J. A.; Alexander, W. C.; Bush, W. H.; Johnston, R. S.
1978-01-01
The third in a series of Spacelab Mission Development tests was a joint effort of the Ames Research and Johnson Space Centers to evaluate planned operational concepts of the Space Shuttle life sciences program. A three-man crew conducted 26 experiments and 12 operational tests, utilizing both human and animal subjects. The crew lived aboard an Orbiter/Spacelab mockup for the seven-day simulation. The Spacelab was identical in geometry to the European Space Agency design, complete with removable rack sections and stowage provisions. Communications were controlled as currently planned for operational Shuttle flights. A Science Operations Remote Center at the Ames Research Center was managed by simulated Mission Control and Payload Operation Control Centers at the Johnson Space Center. This paper presents the test objectives, describes the facilities and test program, and outlines the results of this test.
ERIC Educational Resources Information Center
American Biology Teacher, 2004
2004-01-01
A landmark group of Cornell University is dedicated to diffusing every possible information available on ornithology, the website is divided into several different sections. There is enough material in this website to cover various units in any life science or integrated science course (www.birds.cornell.edu/programs.allaboutbirds).
45 CFR 1706.103 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... INFORMATION SCIENCE ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY NATIONAL COMMISSION ON LIBRARIES AND INFORMATION SCIENCE § 1706.103 Definitions. For purposes... has a physical or mental impairment that substantially limits one or more major life activities, has a...
7 CFR 3430.304 - Project Types and priorities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... sciences and other related educational matters. Projects may include faculty development, student... and activities that deliver science-based knowledge and informal educational programs to people... interwoven throughout the life of the project and act to complement and reinforce one another. The proposed...
45 CFR 1706.103 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... INFORMATION SCIENCE ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY NATIONAL COMMISSION ON LIBRARIES AND INFORMATION SCIENCE § 1706.103 Definitions. For purposes... has a physical or mental impairment that substantially limits one or more major life activities, has a...
7 CFR 3430.304 - Project Types and priorities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... sciences and other related educational matters. Projects may include faculty development, student... and activities that deliver science-based knowledge and informal educational programs to people... interwoven throughout the life of the project and act to complement and reinforce one another. The proposed...
7 CFR 3430.304 - Project Types and priorities.
Code of Federal Regulations, 2013 CFR
2013-01-01
... sciences and other related educational matters. Projects may include faculty development, student... and activities that deliver science-based knowledge and informal educational programs to people... interwoven throughout the life of the project and act to complement and reinforce one another. The proposed...
45 CFR 1706.103 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... INFORMATION SCIENCE ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY NATIONAL COMMISSION ON LIBRARIES AND INFORMATION SCIENCE § 1706.103 Definitions. For purposes... has a physical or mental impairment that substantially limits one or more major life activities, has a...
7 CFR 3430.304 - Project Types and priorities.
Code of Federal Regulations, 2012 CFR
2012-01-01
... sciences and other related educational matters. Projects may include faculty development, student... and activities that deliver science-based knowledge and informal educational programs to people... interwoven throughout the life of the project and act to complement and reinforce one another. The proposed...
45 CFR 1706.103 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... INFORMATION SCIENCE ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY NATIONAL COMMISSION ON LIBRARIES AND INFORMATION SCIENCE § 1706.103 Definitions. For purposes... has a physical or mental impairment that substantially limits one or more major life activities, has a...
Laboratory directed research and development program FY 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-03-01
This report compiles the annual reports of Laboratory Directed Research and Development projects supported by the Berkeley Lab. Projects are arranged under the following topical sections: (1) Accelerator and fusion research division; (2) Chemical sciences division; (3) Computing Sciences; (4) Earth sciences division; (5) Environmental energy technologies division; (6) life sciences division; (7) Materials sciences division; (8) Nuclear science division; (9) Physics division; (10) Structural biology division; and (11) Cross-divisional. A total of 66 projects are summarized.
Integrating emerging areas of nursing science into PhD programs.
Henly, Susan J; McCarthy, Donna O; Wyman, Jean F; Stone, Patricia W; Redeker, Nancy S; McCarthy, Ann Marie; Alt-White, Anna C; Dunbar-Jacob, Jacqueline; Titler, Marita G; Moore, Shirley M; Heitkemper, Margaret M; Conley, Yvette P
2015-01-01
The Council for the Advancement of Nursing Science aims to "facilitate and recognize life-long nursing science career development" as an important part of its mission. In light of fast-paced advances in science and technology that are inspiring new questions and methods of investigation in the health sciences, the Council for the Advancement of Nursing Science convened the Idea Festival for Nursing Science Education and appointed the Idea Festival Advisory Committee to stimulate dialogue about linking PhD education with a renewed vision for preparation of the next generation of nursing scientists. Building on the 2010 American Association of Colleges of Nursing Position Statement "The Research-Focused Doctoral Program in Nursing: Pathways to Excellence," Idea Festival Advisory Committee members focused on emerging areas of science and technology that impact the ability of research-focused doctoral programs to prepare graduates for competitive and sustained programs of nursing research using scientific advances in emerging areas of science and technology. The purpose of this article is to describe the educational and scientific contexts for the Idea Festival, which will serve as the foundation for recommendations for incorporating emerging areas of science and technology into research-focused doctoral programs in nursing. Copyright © 2015 Elsevier Inc. All rights reserved.
Global Science and Social Systems: The Essentials of Montessori Education and Peace Frameworks
ERIC Educational Resources Information Center
Kahn, David
2016-01-01
Inspired by Baiba Krumins-Grazzini's interdependencies lecture at NAMTA's Portland conference, David Kahn shows the unifying structures of the program that are rooted in the natural and social sciences. Through a connective web, these sciences explore the integration of all knowledge and lead to a philosophical view of life on earth, including…
ERIC Educational Resources Information Center
Brooks, Roger C.
This report describes a program designed to improve science achievement among students in grades 4-6 in a New Hampshire school. The areas of improvement included physical, earth, and life sciences. Analysis of the problem indicated a need for improved teaching techniques and for additional materials related to the instructional strategies. The…
NASA Technical Reports Server (NTRS)
Russell, Yvonne; Falsetti, Christine M.
1991-01-01
Customer requirements are presented through three viewgraphs. One graph presents the range of services, which include requirements management, network engineering, operations, and applications support. Another viewgraph presents the project planning process. The third viewgraph presents the programs and/or projects actively supported including life sciences, earth science and applications, solar system exploration, shuttle flight engineering, microgravity science, space physics, and astrophysics.
Elementary Science Curriculum, Grade 5.
ERIC Educational Resources Information Center
Stoneham Public Schools, MA.
This is one of a set of curriculum guides for the Stoneham Elementary School Science Program (see SE 012 153 - SE 012 158). Each guide contains a chart illustrating the scope and sequence of the physical, life, and earth sciences introduced at each grade level. For each of the topics introduced at this grade level an overview of the topic, a list…
Scientizing and Cooking: Helping Middle-School Learners Develop Scientific Dispositions
ERIC Educational Resources Information Center
Clegg, Tamara; Kolodner, Janet
2014-01-01
We aim to understand how to help young people recognize the value of science in their lives and take initiative to see the world in scientific ways. Our approach has been to design "life-relevant" science-learning programs that engage middle-school learners in science through pursuit of personally meaningful goals. In this paper, we…
NASA Tech Briefs, May 1995. Volume 19, No. 5
NASA Technical Reports Server (NTRS)
1995-01-01
This issue features an resource report on Jet Propulsion Laboratory and a special focus on advanced composites and plastics. It also contains articles on electronic components and circuits, electronic systems, physical sciences, computer programs, mechanics, machinery, manufacturing and fabrication, mathematics and information sciences, and life sciences. This issue also contains a supplement on federal laboratory test and measurements.
Elementary Science Curriculum, Grade 6.
ERIC Educational Resources Information Center
Stoneham Public Schools, MA.
This is one of a set of curriculum guides for the Stoneham Elementary School Science Program (see SE 012 153 - SE 012 158). Each guide contains a chart illustrating the scope and sequence of the physical, life, and earth sciences introduced at each grade level. For each of the topics introduced at this grade level an overview of the topic, a list…
Röthlisberger, Michael
2012-01-01
The foundation Science et Cité was founded 1998 with the aim to inform the wider Swiss public about current scientific topics and to generate a dialogue between science and society. Initiated as an independent foundation by the former State Secretary for Science and Research, Dr. Charles Kleiber, Science et Cité is now attached to the Swiss Academies of Arts and Sciences as a competence center for dialogue with the public. Due to its branches in all language regions of the country, the foundation is ideally suited to initiate and implement communication projects on a nationwide scale. These projects are subdivided into three categories: i) science communication for children/adolescents, ii) establishing a dialogue between science and the wider public, and iii) conducting the role of a national center of competence and networking in science communication. Swiss Life Sciences is a project that fits into all of these categories: a year-round program for schools is complemented with an annual event for the wider public. With the involvement of most of the major Swiss universities, the Swiss National Science Foundation, the foundation Gen Suisse and many other partners, Swiss Life Sciences also sets an example of national networking within the science communication community.
Jump for the Sun II: can a Monthly Program Change Girls' and Women's Attitudes about Stem?
NASA Astrophysics Data System (ADS)
Crowe, Mary
The Environmental Institute of the Jump for the Sun II program was designed to change middle school girls' and teachers' attitudes about doing science and who does science and to increase interest in science, technology, engineering, and mathematics. The institute consisted of an intensive, 2-week summer congress followed by monthly sessions during the academic year. Female-friendly learning environments were created for middle school students and in-service educators, focusing on topics such as life expectancies, solid waste production, transportation gridlock, beach erosion, and biodiversity. In both 1998 and 1999, one group of participants completed the program, which was quantitatively and qualitatively evaluated. The quantitative results showed that the program did not improve girls' attitudes in any of the major categories under study; however, the posttest results indicated that in-service educators' attitudes improved significantly in three of the four categories (science experiences, perceptions of science and scientists, and science attitudes). The qualitative results indicated that the program positively affected some of the girls and in-service educators.
A Health Education Program School Systems Can Afford
ERIC Educational Resources Information Center
Henke, Lorraine J.
1977-01-01
The Prince George's County Public School System has found that implementing the health education curriculum in conjunction with the life science program at the seventh-grade level is a satisfactory solution to the problem of budgetary constraints. (MB)
Physics 200, 300 Interim Guide.
ERIC Educational Resources Information Center
Manitoba Dept. of Education, Winnipeg.
This guide, developed for the physics 200, 300 program in Manitoba, is designed to articulate with previous science courses; provide concepts, processes, and skills which will enable students to continue in physics-related areas; and relate physics to practical applications in everyday life. It includes a program overview (with program goals and…
Chemistry 200, 300 Interim Guide.
ERIC Educational Resources Information Center
Manitoba Dept. of Education, Winnipeg.
This guide, developed for the chemistry 200, 300 program in Manitoba, is designed to articulate with previous science courses, provide concepts, processes, and skills which will enable students to continue in chemistry-related areas, and relate chemistry to practical applications in everyday life. It includes a program overview (with program goals…
Use of shuttle for life sciences
NASA Technical Reports Server (NTRS)
Mcgaughy, R. E.
1972-01-01
The use of the space shuttle in carrying out biological and medical research programs, with emphasis on the sortie module, is examined. Detailed descriptions are given of the goals of space life science disciplines, how the sortie can meet these goals, and what shuttle design features are necessary for a viable biological and medical experiment program. Conclusions show that the space shuttle sortie module is capable of accommodating all biological experiments contemplated at this time except for those involving large specimens or large populations of small animals; however, these experiments can be done with a specially designed module. It was also found that at least two weeks is required to do a meaningful survey of biological effects.
Results of the life sciences DSOs conducted aboard the space shuttle 1981-1986
NASA Technical Reports Server (NTRS)
Bungo, Michael W.; Bagian, Tandi M.; Bowman, Mark A.; Levitan, Barry M.
1987-01-01
Results are presented for a number of life sciences investigations sponsored by the Space Biomedical Research Institute at the NASA Lyndon B. Johnson Space Center and conducted as Detailed Supplementary Objectives (DSOs) on Space Shuttle flights between 1981 and 1986. An introduction and a description of the DSO program are followed by summary reports on the investigations. Reports are grouped into the following disciplines: Biochemistry and Pharmacology, Cardiovascular Effects and Fluid Shifts, Equipment Testing and Experiment Verification, Microbiology, Space Motion Sickness, and Vision. In the appendix, the status of every medical/life science DSO is presented in graphical form, which enables the flight history, the number of subjects tested, and the experiment results to be reviewed at a glance.
Life sciences laboratory breadboard simulations for shuttle
NASA Technical Reports Server (NTRS)
Taketa, S. T.; Simmonds, R. C.; Callahan, P. X.
1975-01-01
Breadboard simulations of life sciences laboratory concepts for conducting bioresearch in space were undertaken as part of the concept verification testing program. Breadboard simulations were conducted to test concepts of and scope problems associated with bioresearch support equipment and facility requirements and their operational integration for conducting manned research in earth orbital missions. It emphasized requirements, functions, and procedures for candidate research on crew members (simulated) and subhuman primates and on typical radioisotope studies in rats, a rooster, and plants.
NASA Technical Reports Server (NTRS)
Anderson, M.; Rummel, J. A. (Editor); Deutsch, S. (Editor)
1979-01-01
United States space life science experiments, encompassing 27 years of experience beginning with sounding rocket flights carrying primates (1948) to the last U.S. spaceflight, the joint US/USSR Apollo Test Project (1975), are presented. The information for each experiment includes Principal Investigators, the program and mission on which it was flown, the specimens used, the objectives, protocol, equipment, results, conclusions, and bibliographic reference citations for publications derived from each experiment.
NASA Technical Reports Server (NTRS)
Irwin, Daniel
2010-01-01
Goal 1: Enhance Applications Research Advance the use of NASA Earth science in policy making, resource management and planning, and disaster response. Key Actions: Identify priority needs, conduct applied research to generate innovative applications, and support projects that demonstrate uses of NASA Earth science. Goal 2: Increase Collaboration Establish a flexible program structure to meet diverse partner needs and applications objectives. Key Actions: Pursue partnerships to leverage resources and risks and extend the program s reach and impact. Goal 3:Accelerate Applications Ensure that NASA s flight missions plan for and support applications goals in conjunction with their science goals, starting with mission planning and extending through the mission life cycle. Key Actions: Enable identification of applications early in satellite mission lifecycle and facilitate effective ways to integrate end-user needs into satellite mission planning
Teachers' voices: A comparison of two secondary science teacher preparation programs
NASA Astrophysics Data System (ADS)
Kohlhaas Labuda, Kathryn
This dissertation, using cross-case qualitative methodology, investigates the salient and latent features of two philosophically different university-based secondary science teacher preparation programs. Written documents from the two programs and from the Salish I Research project provided the salient data. New teachers' interview transcripts provided the latent data. This study provides the opportunity to hear teachers voice their perceptions of preparation programs. Three questions were investigated in this research study. First, What are the salient features of two different secondary science teacher preparation programs? Second, What are the latent features of two different secondary science teacher programs as perceived by new teachers? Third, How do new secondary science teachers from different programs perceive their preservice programs? The last question incorporates teachers' perceptions of gaps and coherence in the programs and teachers' recommendations to improve their preservice programs. Salient features of the programs revealed differences in the types of certification, and the amounts and types of required course work. Both programs certified teachers at the secondary science level, but only M program certified their teachers as elementary science specialists. Program M required more semester hours of education and science course work than Program S. Although teachers from both programs perceived little coherence between their science and education courses, S-teachers presented a more fragmented picture of their education program and perceived fewer benefits from the program. Lack of relevance and courses that focused on elementary teaching were perceived as part of the problem. M-teachers perceived some cohesion through the use of cohorts in three consecutive semesters of science methods courses that provided multiple field experiences prior to student teaching. S-teachers did not perceive an organized philosophy of their program. M-teachers' perceptions of the philosophy of their program revolved about research based teaching. S-teachers reported more research experiences. S-teachers perceived better student-science faculty relationship, while M-teachers reported stronger student-education faculty relationships. Teachers from both programs recommended more field experiences that resembled more closely the real life situations of teachers. They recommended smaller classes in both science and education courses. They suggested eliminating or altering courses that were not beneficial.
The 2017 Total Solar Eclipse: Through the Eyes of NASA
NASA Astrophysics Data System (ADS)
Mayo, Louis; NASA Goddard Heliophysics Education Consortium
2017-10-01
The August 21st, 2017 Total Solar Eclipse Across America provided a unique opportunity to teach event-based science to nationwide audiences. NASA spent over three years planning space and Earth science education programs for informal audiences, undergraduate institutions, and life long learners to bring this celestial event to the public through the eyes of NASA. This talk outlines how NASA used its unique assets including mission scientists and engineers, space based assets, citizen science, educational technology, science visualization, and its wealth of science and technology partners to bring the eclipse to the country through multimedia, cross-discipline science activities, curricula, and media programing. Audience reach, impact, and lessons learned are detailed. Plans for similar events in 2018 and beyond are outlined.
ERIC Educational Resources Information Center
Science Teacher, 1977
1977-01-01
Short articles cover subjects including the rising school age population in the 1980's, a planetarium show on life in the cosmos, a student lead poisoning detection program, a report on a religiously-based science text, a health survey by Current Science magazine, and a student weather station. (AJ)
USSR Report, Life Sciences Biomedical and Behavioral Sciences
1985-01-07
Institute of General and Forensic Psychiatry imeni V. P. Serskiy; Psychosomatic Department, No 1 Municipalr Clinic imeni N. I. Pirogov [Abstract] A brief...and includes hypnosis and supportive measures. The personal, social and economic impact of this program is discussed. More than 1000 persons have
NASA Astrophysics Data System (ADS)
Dodson, Maria
The underrepresentation of women enrolled in the physical sciences continues to challenge academic leaders despite over 40 years of programming to promote gender equity within these curricula. This study employed a quantitative, causal comparative method to explore if and to what extent career concerns differed among female and male undergraduate physical and biological science students. The theory of planned behavior and life-span, life-space theory served as the theoretical framework for the study. Quantitative survey data were collected from 43 students at four institutions across the United States. The findings indicated that undergraduate women in physical science programs of study had a significantly different level of concern about the Innovating sub-category of the third stage of career development, Maintenance, as compared to undergraduate women in biological science curricula [F(1,33) = 6.244, p = 0.018]. Additionally, there was a statistically significant difference between female undergraduate physical science students and undergraduate male science students in the sub-categories of Implementation [F(1,19) = 7.228, p = 0.015], Advancing [F(1,19) = 11.877, p = 0.003], and Innovating [F(1,19) = 11.782, p = 0.003] within the first three stages of career development (Exploration, Establishment, and Maintenance). The comparative differences among the study groups offers new information about undergraduate career concerns that may contribute to the underrepresentation of women enrolled in the physical sciences. Suggestions for future research and programs within higher education targeted at reducing the career concerns of current and prospective female students in physical science curricula are discussed.
The Case for Biocalculus: Design, Retention, and Student Performance
Eaton, Carrie Diaz; Highlander, Hannah Callender
2017-01-01
Calculus is one of the primary avenues for initial quantitative training of students in all science, technology, engineering, and mathematics fields, but life science students have been found to underperform in the traditional calculus setting. As a result, and because of perceived lack of its contribution to the understanding of biology, calculus is being actively cut from biology program requirements at many institutions. Here, we present an alternative: a model for learning mathematics that sees the partner disciplines as crucial to student success. We equip faculty with information to engage in dialogue within and between disciplinary departments involved in quantitative education. This includes presenting a process for interdisciplinary development and implementation of biology-oriented Calculus I courses at two institutions with different constituents, goals, and curricular constraints. When life science students enrolled in these redesigned calculus courses are compared with life science students enrolled in traditional calculus courses, students in the redesigned calculus courses learn calculus concepts and skills as well as their traditional course peers; however, the students in the redesigned courses experience more authentic life science applications and are more likely to stay and succeed in the course than their peers who are enrolled in traditional courses. Therefore, these redesigned calculus courses hold promise in helping life science undergraduate students attain Vision and Change recommended competencies. PMID:28450445
Budget estimates: Fiscal year 1994. Volume 3: Research and program management
NASA Technical Reports Server (NTRS)
1994-01-01
The research and program management (R&PM) appropriation provides the salaries, other personnel and related costs, and travel support for NASA's civil service workforce. This FY 1994 budget funds costs associated with 23,623 full-time equivalent (FTE) work years. Budget estimates are provided for all NASA centers by categories such as space station and new technology investments, space flight programs, space science, life and microgravity sciences, advanced concepts and technology, center management and operations support, launch services, mission to planet earth, tracking and data programs, aeronautical research and technology, and safety, reliability, and quality assurance.
Investigating How Nontraditional Elementary Pre-service Teachers Negotiate the Teaching of Science
NASA Astrophysics Data System (ADS)
Shelton, Mythianne
This qualitative study was designed to investigate the influences on nontraditional preservice teachers as they negotiated the teaching of science in elementary school. Based upon a sociocultural theoretical framework with an identity-in-practice lens, these influences included beliefs about science teaching, life experiences, and the impact of the teacher preparation program. The study sample consisted of two nontraditional preservice teachers who were student teaching in an elementary classroom. Data, collected over a five-month period, included in-depth individual interviews, classroom observations, audio recordings, and reviews of documentations. Interviews focused on the participants' beliefs relating to the teaching of science, prior experiences, and their teacher preparation program experiences relating to the teaching of science. Classroom observations provided additional insights into the classroom setting, participants' teaching strategies, and participants' interactions with the students and cooperating teacher. A whole-text analysis of the interview transcripts, observational field notes, audio recordings and documents generated eight major categories: beliefs about science teaching, role of family, teaching science in the classroom, teacher identity, non-teacher identity, relationships with others, discourses of classroom teaching, and discourses of teachers. The following significant findings emerged from the data: (a) the identity of nontraditional student teachers as science teachers related to early life experiences in science classes; (b) the identity of nontraditional student teachers as science teachers was influenced by their role as parents; (c) nontraditional student teachers learned strategies that supported their beliefs about inquiry learning; and (d) nontraditional student teachers valued the teacher preparation program support system. The results from this qualitative study suggest that sociocultural theory with an identity-in-practice lens provides a theoretical framework for understanding the influences that affect why nontraditional preservice teachers select strategies to teach science in the elementary classroom.
Liston, Carrie; Thiry, Heather; Graf, Julie
2007-01-01
Many short-duration science outreach interventions have important societal goals of raising science literacy and increasing the size and diversity of the science workforce. Yet, these long-term outcomes are inherently challenging to evaluate. We present findings from a qualitative research study of an inquiry-based, life science outreach program to K–12 classrooms that is typical in design and excellent in execution. By considering this program as a best case of a common outreach model, the “scientist in the classroom,” the study examines what benefits may be realized for each participant group and how they are achieved. We find that K–12 students are engaged in authentic, hands-on activities that generate interest in science and new views of science and scientists. Teachers learn new science content and new ways to teach it, and value collegial support of their professional work. Graduate student scientists, who are the program presenters, gain teaching and other skills, greater understanding of education and diversity issues, confidence and intrinsic satisfaction, and career benefits. A few negative outcomes also are described. Program elements that lead to these benefits are identified both from the research findings and from insights of the program developer on program design and implementation choices. PMID:17339394
Innovations in Ocean Sciences Education at the University of Washington
NASA Astrophysics Data System (ADS)
Robigou, V.
2003-12-01
A new wave of education collaborations began when the national science education reform documents (AAAS Project 2061 and National Science Education Standards) recommended that scientific researchers become engaged stakeholders in science education. Collaborations between research institutions, universities, nonprofits, corporations, parent groups, and school districts can provide scientists original avenues to contribute to education for all. The University of Washington strongly responded to the national call by promoting partnerships between the university research community, the K-12 community and the general public. The College of Ocean and Fishery Sciences and the School of Oceanography spearheaded the creation of several innovative programs in ocean sciences to contribute to the improvement of Earth science education. Two of these programs are the REVEL Project and the Marine Science Student Mobility (MSSM) program that share the philosophy of involving school districts, K-12 science teachers, their students and undergraduate students in current, international, cutting-edge oceanographic research. The REVEL Project (Research and Education: Volcanoes, Exploration and Life) is an NSF-funded, professional development program for middle and high school science teachers that are determined to use deep-sea research and seafloor exploration as tools to implement inquiry-based science in their classrooms, schools, and districts, and to share their experiences with their communities. Initiated in 1996 as a regional program for Northwest science educators, REVEL evolved into a multi-institutional program inviting teachers to practice doing research on sea-going research expeditions. Today, in its 7th year, the project offers teachers throughout the U. S. an opportunity to participate and contribute to international, multidisciplinary, deep-sea research in the Northeast Pacific ocean to study the relationship between geological processes such as earthquakes and volcanism, fluid circulation and life on our planet. http://www.ocean.washington.edu/outreach/revel/ The Marine Science Student Mobility program is a FIPSE-funded program that fosters communication and collaboration across cultural and linguistic boundaries for undergraduate students interested in pursuing careers in marine sciences. A consortium of six universities in Florida, Hawaii, Washington, Belgium, Spain and France offers a unique way to study abroad. During a six month exchange, students acquire foreign language skills, cultural awareness and ocean sciences field study in one of the four major oceanographic areas: the Atlantic, the Pacific, the Gulf of Mexico and the Mediterranean. The program not only promotes cultural understanding among the participant students but among faculty members from different educational systems, and even among language and science faculty members. Understanding how different cultures approach, implement, and interpret scientific research to better study the world's oceans is the cornerstone of this educational approach. http://www.marine-language-exch.org/ Similar collaborative, educational activities could be adapted by other research institutions on many campuses to provide many opportunities for students, teachers and the general public to get involved in Earth and ocean sciences.
Magnificent Mum Education Program Featuring the Mum Kids (Grades 4-5).
ERIC Educational Resources Information Center
Kelleher, Christine, Ed.
Magnificent Mum Education Program is a theme-based program developed around the garden mum. With its bright colors, various flower forms, perennial life cycle, and easy propagation, the garden mum is ideal for classroom use and community planting programs. The mum-theme lessons can be integrated into all subject areas including science, math,…
Magnificent Mum Education Program Featuring the Mum Kids (Grades 2-3).
ERIC Educational Resources Information Center
Kelleher, Christine, Ed.
The Magnificent Mum Education Program is a theme-based program developed around the garden mum. With its bright colors, various flower forms, perennial life cycle, and easy propagation, the garden mum is ideal for classroom use and community planting programs. The mum-theme lessons can be integrated into all subject areas including science, math,…
NASA Technical Reports Server (NTRS)
1979-01-01
Hardware and controls developed for an electrolysis demonstration unit for use with the life sciences payload program and in NASA's regenerative life support evaluation program are described. Components discussed include: the electrolysis module; power conditioner; phase separator-pump and hydrogen differential regulator; pressure regulation of O2, He, and N2; air-cooled heat exchanger; water accumulator; fluid flow sight gage assembly; catalytic O2/H2 sensor; gas flow sensors; low voltage power supply; 100 Amp DC contactor assembly; and the water purifier design.
Neuroscience discipline science plan
NASA Technical Reports Server (NTRS)
1991-01-01
Over the past two decades, NASA's efforts in the neurosciences have developed into a program of research directed at understanding the acute changes that occur in the neurovestibular and sensorimotor systems during short-duration space missions. However, the proposed extended-duration flights of up to 28 days on the Shuttle orbiter and 6 months on Space Station Freedom, a lunar outpost, and Mars missions of perhaps 1-3 years in space, make it imperative that NASA's Life Sciences Division begin to concentrate research in the neurosciences on the chronic effects of exposure to microgravity on the nervous system. Major areas of research will be directed at understanding (1) central processing, (2) motor systems, (3) cognitive/spatial orientation, and (4) sensory receptors. The purpose of the Discipline Science Plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in the comprehensive area of neurosciences. It covers the significant research areas critical to NASA's programmatic requirements for the Extended-Duration Orbiter, Space Station Freedom, and exploration mission science activities. These science activities include ground-based and flight; basic, applied, and operational; and animal and human research and development. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, identifies science priorities, and defines critical questions in the subdiscipline areas of nervous system function. It contains a general plan that will be used by NASA Headquarters Program Offices and the field centers to review and plan basic, applied, and operational intramural and extramural research and development activities in this area.
Briehl, Margaret M; Nelson, Mark A; Krupinski, Elizabeth A; Erps, Kristine A; Holcomb, Michael J; Weinstein, John B; Weinstein, Ronald S
2016-01-01
Faculty members from the Department of Pathology at The University of Arizona College of Medicine-Tucson have offered a 4-credit course on enhanced general pathology for graduate students since 1996. The course is titled, "Mechanisms of Human Disease." Between 1997 and 2016, 270 graduate students completed Mechanisms of Human Disease. The students came from 21 programs of study. Analysis of Variance, using course grade as the dependent and degree, program, gender, and year (1997-2016) as independent variables, indicated that there was no significant difference in final grade (F = 0.112; P = .8856) as a function of degree (doctorate: mean = 89.60, standard deviation = 5.75; master's: mean = 89.34, standard deviation = 6.00; certificate program: mean = 88.64, standard deviation = 8.25), specific type of degree program (F = 2.066, P = .1316; life sciences: mean = 89.95, standard deviation = 6.40; pharmaceutical sciences: mean = 90.71, standard deviation = 4.57; physical sciences: mean = 87.79, standard deviation = 5.17), or as a function of gender (F = 2.96, P = .0865; males: mean = 88.09, standard deviation = 8.36; females: mean = 89.58, standard deviation = 5.82). Students in the physical and life sciences performed equally well. Mechanisms of Human Disease is a popular course that provides students enrolled in a variety of graduate programs with a medical school-based course on mechanisms of diseases. The addition of 2 new medically oriented Master of Science degree programs has nearly tripled enrollment. This graduate level course also potentially expands the interdisciplinary diversity of participants in our interprofessional education and collaborative practice exercises.
Briehl, Margaret M.; Nelson, Mark A.; Krupinski, Elizabeth A.; Erps, Kristine A.; Holcomb, Michael J.; Weinstein, John B.
2016-01-01
Faculty members from the Department of Pathology at The University of Arizona College of Medicine-Tucson have offered a 4-credit course on enhanced general pathology for graduate students since 1996. The course is titled, “Mechanisms of Human Disease.” Between 1997 and 2016, 270 graduate students completed Mechanisms of Human Disease. The students came from 21 programs of study. Analysis of Variance, using course grade as the dependent and degree, program, gender, and year (1997-2016) as independent variables, indicated that there was no significant difference in final grade (F = 0.112; P = .8856) as a function of degree (doctorate: mean = 89.60, standard deviation = 5.75; master’s: mean = 89.34, standard deviation = 6.00; certificate program: mean = 88.64, standard deviation = 8.25), specific type of degree program (F = 2.066, P = .1316; life sciences: mean = 89.95, standard deviation = 6.40; pharmaceutical sciences: mean = 90.71, standard deviation = 4.57; physical sciences: mean = 87.79, standard deviation = 5.17), or as a function of gender (F = 2.96, P = .0865; males: mean = 88.09, standard deviation = 8.36; females: mean = 89.58, standard deviation = 5.82). Students in the physical and life sciences performed equally well. Mechanisms of Human Disease is a popular course that provides students enrolled in a variety of graduate programs with a medical school-based course on mechanisms of diseases. The addition of 2 new medically oriented Master of Science degree programs has nearly tripled enrollment. This graduate level course also potentially expands the interdisciplinary diversity of participants in our interprofessional education and collaborative practice exercises. PMID:28725783
Older Adults and Mental Health
... Join A Study News & Events News & Events Home Science News Meetings and Events Multimedia Social Media Press Resources Newsletters NIMH News Feeds About ... or behaviors that interfere with work, family, or social life Unusual thinking or behaviors that ... 2016 • Science Update An individualized program of follow-up treatment ...
THE CENTER FOR ENVIRONMENTAL IMPLICATIONS OF NANOTECHNOLOGY (CEINT)
In the future CEIN will collaborate with the NC Museum of Life and Science (NCMLS) in an educational effort spanning G8-12 to adults. Our partnership will leverage NCMLS’s activities in the Nanoscale Informal Science Education Network (NISE Net) program and create materials...
ERIC Educational Resources Information Center
Conard, David; Lawson, Chester A.
This Teacher's Guide is designed for use with the Science Curriculum Improvement Study's (SCIS) unit Population. Populations is the third of a six-unit sequence of SCIS's Life Science Program for grades K-6. The Populations guide consists of activity outlines along with suggestions for guiding children's observation and manipulations of living…
ERIC Educational Resources Information Center
Scott, Catherine Marie
2014-01-01
Reform-based science education emphasizes the need for engagement in authentic science, that is, work that resembles real-life scientific practices. However, few studies address the notion of authenticity from the participants' perspectives. As such, this study addresses the following: What events do young participants view as scientific? To what…
Measuring the returns to NASA life sciences research and development
NASA Astrophysics Data System (ADS)
Hertzfeld, Henry R.
1998-01-01
The National Aeronautics and Space Administration has invested in R&D in the life sciences for forty years. The thrust of this investment has been directed toward the support of human beings in space flight and in space activities. There are many documented examples of beneficial services and products now used in everyday life and medical practice that can be traced to origins in the R&D of the space program. However, a framework for quantitatively documenting, characterizing, and analyzing these public benefits has eluded researchers. This paper will present the results of a pilot project that includes the development of a methodology for assessing the economic benefits from NASA life sciences R&D and for realistically evaluating the financial leverage that private companies which are either involved in NASA R&D or which have ``bootstrapped'' NASA R&D into commercial products have realized. The results will show that the NASA life sciences investments are more engineering oriented, and more typically show results in the fields of instrumentation and medical devices. This is substantially different in nature from the focus of the National Institutes of Health, which is organized around the diagnosis and treatment of diseases. The appropriate measures of benefits for engineering-oriented products are economic parameters that focus on capital equipment. NIH benefits are more typically measured by human labor parameters, including the much more difficult to quantify measures of the quality and delivery of medical services. Although there is tremendous overlap in the goals and outputs of NASA life sciences and NIH investments, and NASA R&D is also very concerned with human beings and the quality of life, NIH is the overwhelming large source of life sciences R&D funds in the US. NASA has a special niche in life sciences R&D that supports the NASA mission as well as overall research issues in the life sciences. This paper evaluates the economic benefits of NASA's life sciences from the perspective of its special role, and presents evidence of the types of returns to the economy that have occurred from a sample of successful research efforts.
NASA Technical Reports Server (NTRS)
Barth, Janet L.; LaBel, Kenneth; Brewer, Dana; Withbroe, George; Kauffman, Billy
2001-01-01
NASA has initiated the Living with a Star (LWS) Program to develop the scientific understanding to address the aspects of the Connected Sun-Earth system that affect life and society. A goal of the program is to bridge the gap between science, engineering, and user application communities. This will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. A pre-formulation study determined the optimum combination of science missions, modeling, and technology infusion elements to accomplish this goal. The results of the study are described.
Telemetric Sensors for the Space Life Sciences
NASA Technical Reports Server (NTRS)
Hines, John W.; Somps, Chris J.; Madou, Marc; Jeutter, Dean C.; Singh, Avtar; Connolly, John P. (Technical Monitor)
1996-01-01
Telemetric sensors for monitoring physiological changes in animal models in space are being developed by NASA's Sensors 2000! program. The sensors measure a variety of physiological measurands, including temperature, biopotentials, pressure, flow, acceleration, and chemical levels, and transmit these signals from the animals to a remote receiver via a wireless link. Thus physiologic information can be obtained continuously and automatically without animal handling, tethers, or percutaneous leads. We report here on NASA's development and testing of advanced wireless sensor systems for space life sciences research.
Origins Space Telescope: Science Case and Design Reference Mission for Concept 1
NASA Astrophysics Data System (ADS)
Meixner, Margaret; Cooray, Asantha; Pope, Alexandra; Armus, Lee; Vieira, Joaquin Daniel; Milam, Stefanie N.; Melnick, Gary; Leisawitz, David; Staguhn, Johannes G.; Bergin, Edwin; Origins Space Telescope Science and Technology Definition Team
2018-01-01
The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, one of the four science and technology definition studies of NASA Headquarters for the 2020 Astronomy and Astrophysics Decadal survey. The science case for OST covers four themes: Tracing the Signature of Life and the Ingredients of Habitable Worlds; Charting the Rise of Metals, Dust and the First Galaxies, Unraveling the Co-evolution of Black Holes and Galaxies and Understanding Our Solar System in the Context of Planetary System Formation. Using a set of proposed observing programs from the community, we estimate a design reference mission for OST mission concept 1. The mission will complete significant programs in these four themes and have time for other programs from the community. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. We welcome you to contact the Science and Technology Definition Team (STDT) with your science needs and ideas by emailing us at ost_info@lists.ipac.caltech.edu.
Life sciences recruitment objectives
NASA Technical Reports Server (NTRS)
Keefe, J. Richard
1992-01-01
The goals of the Life Sciences Division of the Office of Space Sciences and Application are to ensure the health, well being and productivity of humans in space and to acquire fundamental scientific knowledge in space life sciences. With these goals in mind Space Station Freedom represents substantial opportunities and significant challenges to the Life Sciences Division. For the first time it will be possible to replicate experimental data from a variety of simultaneously exposed species with appropriate controls and real-time analytical capabilities over extended periods of time. At the same time, a system for monitoring and ameliorating the physiological adaptations that occur in humans subjected to extended space flight must be evolved to provide the continuing operational support to the SSF crew. To meet its goals, and take advantage of the opportunities and overcome the challenges presented by Space Station Freedom, the Life Sciences Division is developing a suite of discipline-focused sequence. The research phase of the Life Sciences Space Station Freedom Program will commence with the utilization flights following the deployment of the U.S. laboratory module and achievement of Man Tended Capability. Investigators that want the Life Sciences Division to sponsor their experiment on SSF can do so in one of three ways: submitting a proposal in response to a NASA Research Announcement (NRA), submitting a proposal in response to an Announcement of Opportunity (AO), or submitting an unsolicited proposal. The scientific merit of all proposals will be evaluated by peer review panels. Proposals will also be evaluated based on relevance to NASA's missions and on the results of an Engineering and Cost Analyses. The Life Sciences Division expects that the majority of its funding opportunities will be announced through NRA's. It is anticipated that the first NRA will be released approximately three years before first element launch (currently scheduled for late 1995). Subsequent NRA's will be released on a rotating two year cycle.
Alien Earths: A Traveling Science Exhibit and Education Program
NASA Astrophysics Data System (ADS)
Dusenbery, P. B.; Morrow, C. A.; Harold, J.
2004-05-01
Where did we come from? Are we alone? These age-old questions form the basis of NASA's Origins Program, a series of missions spanning the next twenty years that will use a host of space- and ground-based observatories to understand the origin and development of galaxies, stars, planets, and the conditions necessary to support life. The Space Science Institute in Boulder, CO, is developing a 3,000 square-foot traveling exhibition, called Alien Earths, which will bring origins-related research and discoveries to students and the American public. Alien Earths will have four interrelated exhibit areas: Our Place in Space, Star Birth, PlanetQuest, and Search for Life. Exhibit visitors will explore the awesome events surrounding the birth of stars and planets; they will join scientists in the hunt for planets outside our solar system including those that may be in "habitable zones" around other stars; and finally they will be able to learn about the wide range of conditions for life on Earth and how scientists are looking for signs of life beyond Earth. Visitors will also learn about the tools scientists use, such as space-based and ground-based telescopes, to improve our understanding of the cosmos. The exhibit's size will permit it to visit medium sized museums in all regions of the country. It will begin its 3-year tour to 9 host museums and science centers in early 2005 at the Lawrence Hall of Science in Berkeley, California. The Association of Science-Technology Centers (ASTC) will manage the exhibit's national tour. In addition to the exhibit, the project includes workshops for educators and docents at host sites, as well as a public website that will use exhibit content to delve deeper into origins research. Current partners in the Alien Earths project include ASTC, Denver Museum of Nature and Science, Lawrence Hall of Science, NASA Astrobiology Institute, NASA missions (Navigator, SIRTF, and Kepler), the SETI Institute, and the Space Telescope Science Institute. (Supported by grants from NSF and NASA)
Latin America: Resource Management Awareness to Action.
ERIC Educational Resources Information Center
Leiberman, Gerald A.
1985-01-01
Discusses development, goals, and phases of the Resources Management Education Program. The program, designed to create a basic awareness of conservation and natural resources management issues for primary schools in Latin America, is taught in conjunction with the life and physical sciences. (DH)
ERIC Educational Resources Information Center
Caballero, Ana Maria; Dashoush, Nermeen
2017-01-01
The Arnold Arboretum Field Study Program provides outdoor experiences for children in order to develop authentic firsthand knowledge of life sciences. The Arboretum welcomes approximately 3,200 children (preK-5) from greater Boston annually. During the program called Explorations with Head Start participants, the children visit three times…
Life science-based neuroscience education at large Western Public Universities.
Coskun, Volkan; Carpenter, Ellen M
2016-12-01
The last 40 years have seen a remarkable increase in the teaching of neuroscience at the undergraduate level. From its origins as a component of anatomy or physiology departments to its current status as an independent interdisciplinary field, neuroscience has become the chosen field of study for many undergraduate students, particularly for those interested in medical school or graduate school in neuroscience or related fields. We examined how life science-based neuroscience education is offered at large public universities in the Western United States. By examining publicly available materials posted online, we found that neuroscience education may be offered as an independent program, or as a component of biological or physiological sciences at many institutions. Neuroscience programs offer a course of study involving a core series of courses and a collection of topical electives. Many programs provide the opportunity for independent research, or for laboratory-based training in neuroscience. Features of neuroscience programs at Western universities closely matched those seen at the top 25 public universities, as identified by U.S. News & World Report. While neuroscience programs were identified in many Western states, there were several states in which public universities appeared not to provide opportunities to major in neuroscience. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Crude Life: The Art-Science Engagement Work of Brandon Ballengee
NASA Astrophysics Data System (ADS)
Ballengee, B.; Kirn, M.
2017-12-01
Crude Life is an interdisciplinary art, science and outreach project focused on raising public awareness of Gulf of Mexico species, ecosystems, and regional environmental challenges through community "citizen science" surveys and a portable art-science museum of Gulf coastal biodiversity. A primary research focus is gathering data on endemic fishes affected by the 2010 Gulf of Mexico Oil Spill and attempting to locate 14 species that have been `missing' following the spill. Programming emphasis has been given to rural coastal communities that due to changing climate and alteration of geophysical systems (mostly from the oil and gas industry) are populations particularly at risk to tidal inundation. In addition these communities generally lack access to science literacy (as Louisiana ranks as among the worst in the nation for science education) and have little access to contemporary art.
NASA Astrophysics Data System (ADS)
O'Malley, Jennifer
There has been a downward trend in both science proficiency and interest in science in the United States, especially among minority students and students of a disadvantaged background. This has led to a downturn in the number of individuals within these groups considering a career in the sciences or a related field. Studies have identified many potential causes for this problem including the current structure of science curriculum, lack of teacher preparedness, and the lack of quality education and support for those students currently underrepresented in the sciences. Among the solutions to this problem include redesigning the science curriculum, offering high-quality professional development opportunities to teachers, and creating programs to give support to individuals currently underrepresented in the sciences, so that they may have a better chance of pursuing and obtaining a science career. The Maps in Medicine program (MiM) has been designed to incorporate all of the aforementioned solutions and apply them to the current science education problem. The Maps in Medicine (MiM) program was established at the University of Missouri -- Columbia, and is funded by the Howard Hughes Medical Institute. Newly developed MiM curricula and student activities are intended to promote positive attitude changes in those students who are currently underrepresented in Science, Technology, Engineering and Mathematics (STEM) fields, with the program also providing professional development to high school science teachers. It was important to determine if the MiM program's solution to the science education problem has been successful, and so the program evaluation piece was integral. A mixed-methods approach was used to evaluate the MiM program. Formative evaluation results indicated a positive response from teachers and students regarding curriculum and professional development, and student activities. These results have also lead to the identification of appropriate improvements for the program, and will assist with the program's overall goal of national dissemination of MiM curriculum.
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Vocational Instructional Materials Lab.
This document contains a guide to implementing the Ohio Work and Family Life ITAC (Integrated Technical and Academic Competencies), which connects to the Ohio Model Competency-Based Program documents in arts, foreign languages, language arts, mathematics, science, and social studies, as well as the Core ITAC document. The Work and Family Life ITAC…
NASA Astrophysics Data System (ADS)
Brand, Brenda R.; Glasson, George E.
2004-02-01
The purpose of this ethnographic study was to explore the development of belief systems as related to racial and ethnic identities of preservice teachers as they crossed cultural borders into science teaching. Data were collected throughout a yearlong teacher preparation program to learn how early life experiences and racial and ethnic identities of preservice teachers influenced both their beliefs about diversity in science classrooms and science teaching pedagogy. Case studies of three preservice teachers from diverse racial and ethnic background are presented: Asian American, African American, and Rural Appalachian. Using Bank's ethnicity typology, findings suggest that racial and ethnic identity, developed in early life experiences of preservice teachers, provided clarity on the rigidity of their beliefs about diversity and how they view science teaching. By learning about the border crossing experiences of preservice teachers in relation to their beliefs about diversity as related to racial and ethnic identities, the researchers hoped to provide insight on preparing preservice teachers for the challenges of working in diverse classrooms.
Does Use of Curriculum Change Teachers' Attitudes Toward Inquiry?
ERIC Educational Resources Information Center
Lazarowitz, Rueven
1976-01-01
A study of 508 secondary teachers of biology, physics, chemistry, earth science, or life science shows that teachers who use new curricula have more favorable attitudes toward inquiry strategies and that years of experience in using new programs is positively related to more favorable attitudes toward inquiry strategies. (MLH)
Students As Environmental Consultants Simulating Life Science Problems
ERIC Educational Resources Information Center
Roberts, Megan; Zydney, Janet Mannheimer
2004-01-01
This article describes a project in which eighth graders at East Side Middle School in New York City used an interactive multimedia program called "Pollution Solution" in a science unit on environmental pollution. Students assumed the role of environmental consultants working at fictional corporations which were being investigated for…
ERIC Educational Resources Information Center
Potenza, Susan Ade
2007-01-01
In this article, the author discusses a five-month interdisciplinary bird study that she designed for her seventh-grade students that combines life science, technology, writing, art, mathematics, social studies and literature. The driving force behind this yearly unit is the BirdSleuth eBird program (formerly the Cornell University Classroom…
Field Studies: Hands-on, Real-Science Research.
ERIC Educational Resources Information Center
Cunniff, Patricia A.; McMillen, Janet L.
1996-01-01
Describes an intensive three-week experience for 10th and 11th graders in a National Science Foundation Young Scholars Program. Two weeks of biology instruction precede one week of field research. The curriculum includes life histories of birds in the Chesapeake Bay area, reproductive ecology, aquatic ecology, entomology, and statistics. (DDR)
Student science enrichment training program. Progress report, June 1, 1991--May 31, 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandhu, S.S.
1992-04-21
Historically Black Colleges and Universities wing of the United States Department of Energy (DOE) provided funds to Claflin College, Orangeburg, S.C. To conduct a student Science Enrichment Training Program for a period of six weeks during 1991 summer. Thirty participants were selected from a pool of applicants, generated by the High School Seniors and Juniors and the Freshmen class of 1990-1991 at Claflin College. The program primarily focused on high ability students, with potential for Science, Mathematics and Engineering Careers. The major objectives of the program were W to increase the pool of well qualified college entering minority students whomore » will elect to go in Physical Sciences and Engineering and (II) to increase the enrollment in Chemistry and Preprofessional-Pre-Med, Pre-Dent, etc.-majors at Claflin College by including the Claflin students to participate in summer academic program. The summer academic program consisted of Chemistry and Computer Science training. The program placed emphasis upon laboratory experience and research. Visits to Scientific and Industrial laboratories were arranged. Guest speakers which were drawn from academia, industry and several federal agencies, addressed the participants on the future role of Science in the industrial growth of United States of America. The guest speakers also acted as role models for the participants. Several videos and films, emphasizing the role of Science in human life, were also screened.« less
[Regulatory science: modern trends in science and education for pharmaceutical products].
Beregovykh, V V; Piatigorskaia, N V; Aladysheva, Zh I
2012-01-01
This article reviews modern trends in development of new instruments, standards and approaches to drugs safety, efficacy and quality assessment in USA and EU that can be called by unique term--"regulatory science" which is a new concept for Russian Federation. New education programs (curricula) developed by USA and EU universities within last 3 years are reviewed. These programs were designed in order to build workforce capable to utilize science approach for drug regulation. The principal mechanisms for financing research in regulatory science used by Food and Drug Administration are analyzed. There are no such science and relevant researches in Russian Federation despite the high demand as well as needs for the system for higher education and life-long learning education of specialists for regulatory affairs (or compliance).
The Unlikely Origins of NASA’s “Search for Origins” Program
NASA Astrophysics Data System (ADS)
Perez, Mario R.; Thronson, Harley A.
2017-01-01
NASA’s Origins Program for many years was by far one of the most important scientific initiatives in NASA’s history, linking together priority research campaigns in planetary science, astrophysics, and the biological sciences. It served also as an overarching description to the agency stakeholders of a new generation of major space missions and technology investments. Moreover, the Program, although no longer formally in existence, significantly influences multiple major science priorities for NASA even today. Remarkably, inception of NASA’s Origins Program — The Search for Our Cosmic Roots — two decades ago was initiated by the country’s political leadership, not by the scientific community, the National Academy of Sciences, or by an advisory panel of experts. Instead, it was an initiative by the White House in response to the stunning announcement of ‘evidence’ for life found on a Martian meteorite not long after the discovery of the first extrasolar planet orbiting a sun-like star. A White House memo dated in September 1996, written by John H. Gibbons, Assistant to the President for Science and Technology to Dan Goldin, NASA Administrator at that time, called for a “Space Summit” that would include experts on three broad topics: the universe, planets, and life.The summit was jointly organized by NASA and the National Research Council, and was chaired by Vice-President Al Gore in late October 1996. Three dozen biologists, planetary scientists, astronomers, and cosmologists participated. The outcome was the Origins Program, which has been a prominent part of NASA’s science program ever since, theme which is captured by the simple and profound questions: How Did We Get Here? and Are We Alone?This particular initiative and its genesis demonstrates that science discoveries, followed by political activism and then executive orders can impact and shape for decades the paths to major science priorities, practices, and implementation. In this presentation, we summarize the inception of the Search for Origins initiative, especially its beginnings outside the scientific community, and its early justification and activities.
Cumulative Index to NASA Tech Briefs
NASA Technical Reports Server (NTRS)
1969-01-01
Tech Briefs are short announcements of new technology derived from the R&D activities of the National Aeronautics and Space Administration. This Index to NASA Tech Briefs lists the technological innovations derived from the U.S. space program and published during the period January through December 1968. A new five year cycle of cumulative indexes begins with this index. The main section is arranged in six categories: Electrical (Electronic); Physical Sciences (Energy Sources); Materials (Chemistry); Life Sciences; Mechanical; and Computer Programs.
NASA Technical Reports Server (NTRS)
Sargent, A. I.
2002-01-01
The Interferometry Science Center (ISC) is operated jointly by Caltech and JPL and is part of NASA's Navigator Program. The ISC has been created to facilitate the timely and successful execution of scientific investigations within the Navigator program, particularly those that rely on observations from NASA's interferometer projects. Currently, ISC is expected to provide full life cycle support for the Keck Interferometer, the Starlight mission, the Space Interferometry Mission, and the Terrestrial Planet Finder Mission. The nature and goals of ISc will be described.
The Legacy of the Space Shuttle Program: Scientific and Engineering Accomplishments
NASA Technical Reports Server (NTRS)
Torrez, Jonathan
2009-01-01
The goal of this project was to assist in the creation of the appendix for the book being written about the Space Shuttle that is titled The Legacy of the Space Shuttle Program: Scientific and Engineering Accomplishments. The specific responsibility of the intern was the creation of the human health and performance (life sciences) and space biology sections of the appendix. This included examining and finalizing the list of flights with life sciences and space biology experiments flown aboard them, researching the experiments performed, synopsizing each experiment into two sentences, and placing the synopses into an appendix template. Overall, approximately 70 flights had their experiments synopsized and a good method for researching and construction of the template was established this summer.
Telescience testbed pilot program, volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Leiner, Barry M.
1989-01-01
Space Station Freedom and its associated labs, coupled with the availability of new computing and communications technologies, have the potential for significantly enhancing scientific research. A Telescience Testbed Pilot Program (TTPP), aimed at developing the experience base to deal with issues in the design of the future information system of the Space Station era. The testbeds represented four scientific disciplines (astronomy and astrophysics, earth sciences, life sciences, and microgravity sciences) and studied issues in payload design, operation, and data analysis. This volume, of a 3 volume set, which all contain the results of the TTPP, is the executive summary.
Research and technology at the Lyndon B. Johnson Space Center
NASA Technical Reports Server (NTRS)
1983-01-01
Johnson Space Center accomplishments in new and advanced concepts during 1983 are highlighted. Included are research funded by the Office of Aeronautics and Space Technology; Advanced Programs tasks funded by the Office of Space Flight; and Solar System Explorations, Life Sciences, and Earth Sciences and Applications research funded by the Office of Space Sciences and Applications. Summary sections describing the role of the Johnson Space Center in each program are followed by one-page descriptions of significant projects. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.
Drew, Jennifer C.; Oli, Monika W.; Rice, Kelly C.; Ardissone, Alexandria N.; Galindo-Gonzalez, Sebastian; Sacasa, Pablo R.; Belmont, Heather J.; Wysocki, Allen F.; Rieger, Mark; Triplett, Eric W.
2015-01-01
Although initial interest in science, technology, engineering and mathematics (STEM) is high, recruitment and retention remains a challenge, and some populations are disproportionately underrepresented in STEM fields. To address these challenges, the Microbiology and Cell Science Department in the College of Agricultural and Life Sciences at the University of Florida has developed an innovative 2+2 degree program. Typical 2+2 programs begin with a student earning an associate’s degree at a local community college and then transferring to a 4-year institution to complete a bachelor’s degree. However, many universities in the United States, particularly land-grant universities, are located in rural regions that are distantly located from their respective states’ highly populated urban centers. This geographical and cultural distance could be an impediment to recruiting otherwise highly qualified and diverse students. Here, a new model of a 2+2 program is described that uses distance education as the vehicle to bring a research-intensive university’s life sciences curriculum to students rather than the oft-tried model of a university attempting to recruit underrepresented minority students to its location. In this paradigm, community college graduates transfer into the Microbiology and Cell Science program as distance education students to complete their Bachelor of Science degree. The distance education students’ experiences are similar to the on-campus students’ experiences in that both groups of students take the same department courses taught by the same instructors, take required laboratory courses in a face-to-face format, take only proctored exams, and have the same availability to instructors. Data suggests that a hybrid online transfer program may be a viable approach to increasing STEM participation (as defined by enrollment) and diversity. This approach is particularly compelling as the distance education cohort has comparable grade point averages and retention rates compared to the corresponding on-campus transfer cohort. PMID:25875606
Drew, Jennifer C; Oli, Monika W; Rice, Kelly C; Ardissone, Alexandria N; Galindo-Gonzalez, Sebastian; Sacasa, Pablo R; Belmont, Heather J; Wysocki, Allen F; Rieger, Mark; Triplett, Eric W
2015-01-01
Although initial interest in science, technology, engineering and mathematics (STEM) is high, recruitment and retention remains a challenge, and some populations are disproportionately underrepresented in STEM fields. To address these challenges, the Microbiology and Cell Science Department in the College of Agricultural and Life Sciences at the University of Florida has developed an innovative 2+2 degree program. Typical 2+2 programs begin with a student earning an associate's degree at a local community college and then transferring to a 4-year institution to complete a bachelor's degree. However, many universities in the United States, particularly land-grant universities, are located in rural regions that are distantly located from their respective states' highly populated urban centers. This geographical and cultural distance could be an impediment to recruiting otherwise highly qualified and diverse students. Here, a new model of a 2+2 program is described that uses distance education as the vehicle to bring a research-intensive university's life sciences curriculum to students rather than the oft-tried model of a university attempting to recruit underrepresented minority students to its location. In this paradigm, community college graduates transfer into the Microbiology and Cell Science program as distance education students to complete their Bachelor of Science degree. The distance education students' experiences are similar to the on-campus students' experiences in that both groups of students take the same department courses taught by the same instructors, take required laboratory courses in a face-to-face format, take only proctored exams, and have the same availability to instructors. Data suggests that a hybrid online transfer program may be a viable approach to increasing STEM participation (as defined by enrollment) and diversity. This approach is particularly compelling as the distance education cohort has comparable grade point averages and retention rates compared to the corresponding on-campus transfer cohort.
High Five: A Nutrition Program for High School Youth. Teacher Guide.
ERIC Educational Resources Information Center
James, Delores C. S.; Rienzo, Barbara A.
This teacher's guide is part of a multiculturally sensitive teaching package to promote health-enhancing nutrition concepts for Florida public high school students. These nutrition promotion materials are intended to be incorporated into life skills management, home economics, physical education, or life science classes. The guide includes…
NASA Astrophysics Data System (ADS)
Suter, Larry E.
2016-03-01
Elementary and secondary students spend more hours outside of class than in formal school and thus have more time for interaction with everyday science. However, evidence from a large international survey, Program of International Student Assessment (PISA) (OECD 2012), found a negative relationship between number of hours attending after-school science and science assessment scores in many countries, raising questions about why. The secondary analysis of the 2006, 2009, and 2012 PISA surveys found that in most Western countries the longer students attended after-school science programs (in a typical week), the lower their PISA standardized science test score, but the higher their positive attitudes toward future science careers, interest in science, and self-confidence in science. Several potential hypotheses for this relationship are examined and rejected. Further analysis of a causal relationship between frequent attendance in after-school programs and student achievement and attitudes should clearly identify the content of the program so that the analysis could distinguish experiences closely related to regular school curricula from the informal science activities that are not. A new analysis also should include carefully designed longitudinal surveys to test the effectiveness of informal experiences on later life choices in career and study. Revision of a Paper prepared for AERA meetings in Chicago, 19 April 2015.
Astronomy and Astrophysics for the 1980s.
ERIC Educational Resources Information Center
Field, George B.
1982-01-01
Following a discussion of scientific opportunities for astronomy (galaxies and the universe, stars, and planets/life/intelligence), four programs recommended by the National Academy of Sciences' Astronomy Survey Committee are described, indicating areas that must be strengthened before undertaking the programs. Ongoing projects are also…
Integrative Discovery Doing Science.
ERIC Educational Resources Information Center
Harry, Vickie; Belzer, William
1990-01-01
The article details a program in which gifted upper elementary grade students used videomicroscopy in a study of microscopic life in pond water. Each child produced a narrated videotape of a specific species studied. Program evaluation confirmed the motivational benefits of early opportunities with scientific instrumentation and methodology. (DB)
NASA Astrophysics Data System (ADS)
Mahlab, Minna; Grinnell Science Project Team--Grinnell College
2015-01-01
The Grinnell Science Project (GSP) is a program that was developed starting in the early 1990's at Grinnell College -- a selective liberal arts college in Grinnell, Iowa. The GSP program is committed to developing the talents of all students interested in science and mathematics, especially those from groups underrepresented in the sciences -- students of color, first-generation college students, and women in physics, mathematics and computer science. The program developed over several years, drawing on national studies and efforts, and aimed at addressing barriers to success in the sciences. It has involved curricular and mentoring changes, activities and structures that foster acclimation to college life and a community of scientists, and improvement of student achievement. Prior to the full implementation of the Grinnell Science Project, from 1992-1994, an average of 42 science majors graduated annually who were women and eight who were students of color. By 2008, those numbers had jumped to 90 women (a 114% increase) and 21 students of color (a 162.5% increase). In 2009, the GSP was honored with the Presidential Award for Excellence in Science, Engineering, Mathematics, and Engineering Mentoring, administered by the National Science Foundation. Components of the GSP are now mainstream throughout the science curriculum at Grinnell, and almost all science and math faculty have played some role in the program.
Citizen Science as a Tool for Scientific Research and Societal Benefit at NASA
NASA Technical Reports Server (NTRS)
Kaminski, Amy
2018-01-01
NASA's strategic goals include advancing knowledge and opportunity in space and improving life on Earth. We support these goals through extensive programs in space and Earth science research accomplished via space-based missions and research funding. NASA's "system" is configured to conduct science using (1) in-house personnel and (2) grants, contracts, and agreements with external entities (academia, industry, international space agencies.
ERIC Educational Resources Information Center
Conway, Lorraine
Designed to supplement a basic life science or biology program, this document provides teachers with experiential learning activities dealing with the human body. The learning activities vary in the length of time needed for their completion, and require a minimum of equipment and materials. The activities focus on: (1) the human skeleton; (2)…
Diversity of Approaches to Structuring University-Based Earth System Science Education
NASA Astrophysics Data System (ADS)
Aron, J.; Ruzek, M.; Johnson, D. R.
2004-12-01
Over the past quarter century, the "Earth system science" paradigm has emerged among the interdisciplinary science community, emphasizing interactions among components hitherto considered within separate disciplines: atmosphere (air); hydrosphere (water); biosphere (life); lithosphere (land); anthroposphere (human dimension); and exosphere (solar system and beyond). How should the next generation of Earth system scientists learn to contribute to this interdisciplinary endeavor? There is no one simple answer. The Earth System Science Education program, funded by NASA, has addressed this question by supporting faculty at U.S. universities who develop new courses, curricula and degree programs in their institutional contexts. This report demonstrates the diversity of approaches to structuring university-based Earth system science education, focusing on the 18 current grantees of the Earth System Science Education Program for the 21st Century (ESSE21). One of the most fundamental characteristics is the departmental structure for teaching Earth system science. The "home" departments of the Earth system science faculty range from Earth sciences and physics to agronomy and social work. A brand-new institution created an interdisciplinary Institute for Earth Systems Science and Policy without traditional "parent" departments. Some institutions create new degree programs as majors or as minors while others work within existing degree programs to add or revise courses. A university may also offer multiple strands, such as a degree in the Science of the Earth System and a degree in the Human Dimensions of the Earth System. Defining a career path is extremely important to students considering Earth system science programs and a major institutional challenge for all programs in Earth system science education. How will graduate programs assess prospective students? How will universities and government agencies assess prospective faculty and scientists? How will government agencies allocate funds to interdisciplinary Earth system science and technology? Finally, how should the Earth system science education community evolve?
Optical Science Discovery Program: Pre-College Outreach and So Much More
NASA Astrophysics Data System (ADS)
Deutsch, Miriam
2010-03-01
Recruiting and retaining women into the physical sciences is an ongoing struggle for universities, with the gap between men and women in physics remaining strong. Research shows a precipitous drop in female participation in the physical sciences around the 7th grade year of primary education, where girls begin losing interest during middle school, the drain continuing throughout high school with another significant drop at the bachelors level. To combat the loss of women in the physical sciences, the Oregon Center for Optics at the University of Oregon has created the Optical Science Discovery Program (OSDP), a precollege outreach program that targets girls in middle and high school. This program uses optical sciences as the medium through which girls explore experimental science. The program consists of a one-week intensive summer camp, a mentored monthly science club, summer internships and mentoring opportunities for camp alumni. By utilizing media often at the core of teenage life (e.g. Facebook, MySpace) we also aim to interact with program participants in a familiar and informal environment. Mentoring of OSDP activities is carried out by faculty and students of all levels. This in turn allows other education and outreach efforts at the University of Oregon to incorporate OSDP activities into their own, contributing to our broader university goals of surmounting barriers to higher education and creating a more scientifically literate populace. This talk will describe the OSDP program and its incorporation into the broader spectrum of outreach and education efforts.
NASA Astrophysics Data System (ADS)
Smith, William Bradford, Jr.
The National Guard Youth ChalleNGe Program (ChalleNGe) is a 17 month quasi-military training program authorized by Congress in the 1993 Defense Authorization Bill designed to improve life skills, education levels, and employment potential of 16--18 year old youth who drop out of high school. ChalleNGe is currently operational in 27 states/territories with the focus of this study on the Mississippi National Guard Program operated at Camp Shelby, Mississippi. During the five month residential portion of the program students are guided through an eight step process designed to meet the goals of improving life skills, education levels, and employment potential while ultimately leading to completion of high school equivalency credentials followed by a 12 month mentoring phase to encourage and track progress toward goals. The purpose of this study was to investigate the attitude toward science of a group of students enrolled in the ChalleNGe Program at Camp Shelby (ChalleNGe). The GED test is administered approximately two months into the residential phase of the program. While the program boasts an overall GED pass rate of nearly 80%, approximately 30--35% of students successfully complete the initial offering of the GED. As high school graduates, these students are offered college courses through William Carey College in Hattiesburg, Mississippi. Twenty four students elected to take the Introduction to Environmental Science course and formed the experimental group while 24 other students who passed the GED comprised the control group. Each group was administered the Scientific Attitude Inventory II, a 40 statement instrument with Likert Scale responses, as a pretest. Paired samples t-tests indicated no significant difference in attitude toward science between the experimental and control groups on the pretest. Following the two week Introduction to Environmental Science course for the experimental group, both groups were post tested. As predicted, the attitude toward science of the experimental group was significantly higher than that of the control group. Further investigation into correlation between the length of time students were away from the traditional school prior to starting ChalleNGe, the number of science classes previously taken, and reading scores on the Test of Adult Basic Education revealed no significant relationship. Responses provided by students to each of these three factors was significantly different between the experimental and control groups. In summary, attitude toward science can be positively impacted by short term interventions such as the environmental science course described herein. While the positive impact on attitude toward science caused by this course was the desired outcome of this project, appropriate emphasis should be placed on prevention of dropouts and the accompanying social issues.
Using "The Big Bang Theory's" World in Young High-Potentials Education
NASA Astrophysics Data System (ADS)
Leitner, J. J.; Taubner, R.-S.; Firneis, M. G.; Hitzenberger, R.
2014-04-01
One of the corner stones of the Research Platform: ExoLife, University of Vienna, Austria, is public outreach and education with respect to astrobology, exoplanets, and planetary sciences. Since 2009, several initiatives have been started by the Research Platform to concentrate the interest of students inside and outside the University onto natural sciences. Additionally, there are two special programs - one in adult education and one in training/education of young high-potentials. In these programs, astrobiology (and within this context also planetary sciences) as a very interdisciplinary scientific discipline, which fascinates youngsters and junior scientists, is utilized to direct their thirst for knowledge and their curiosity to natural science topics (see [1, 2]).
On learning science and pseudoscience from prime-time television programming
NASA Astrophysics Data System (ADS)
Whittle, Christopher Henry
The purpose of the present dissertation is to determine whether the viewing of two particular prime-time television programs, ER and The X-Files, increases viewer knowledge of science and to identify factors that may influence learning from entertainment television programming. Viewer knowledge of scientific dialogue from two science-based prime-time television programs, ER, a serial drama in a hospital emergency room and The X-Files, a drama about two Federal Bureau of Investigation agents who pursue alleged extraterrestrial life and paranormal activity, is studied. Level of viewing, education level, science education level, experiential factors, level of parasocial interaction, and demographic characteristics are assessed as independent variables affecting learning from entertainment television viewing. The present research involved a nine-month long content analysis of target television program dialogue and data collection from an Internet-based survey questionnaire posted to target program-specific on-line "chat" groups. The present study demonstrated that entertainment television program viewers incidentally learn science from entertainment television program dialogue. The more they watch, the more they learn. Viewing a pseudoscientific fictional television program does necessarily influence viewer beliefs in pseudoscience. Higher levels of formal science study are reflected in more science learning and less learning of pseudoscience from entertainment television program viewing. Pseudoscience learning from entertainment television programming is significantly related to experience with paranormal phenomena, higher levels of viewer parasocial interaction, and specifically, higher levels of cognitive parasocial interaction. In summary, the greater a viewer's understanding of science the more they learn when they watch their favorite science-based prime-time television programs. Viewers of pseudoscience-based prime-time television programming with higher levels of paranormal experiences and parasocial interaction demonstrate cognitive interest in and learning of their favorite television program characters ideas and beliefs. What television viewers learn from television is related to what they bring to the viewing experience. Television viewers are always learning, even when their intentions are to simply relax and watch the tube.
Exemplary Programs Supporting Teacher Professional Development in the U.S.A.
NASA Astrophysics Data System (ADS)
Passow, Michael J.
2015-04-01
By Law, there is no national curriculum in the U.S.A., so each State sets its own regulations for teacher certification and professional development. The Next Generation Science Standards (NGSS, http://www.nextgenscience.org/next-generation-science-standards) provide guidelines for teacher training and curriculum development in Earth Science, Life Science, and the physical sciences (chemistry and biology). Presented here are examples of effective programs designed to support in-service Earth Science teachers, especially at the middle school and high school level (grades 6 - 12, ages 12 - 18). The Earth2Class Workshops for Teachers at the Lamont-Doherty Earth Observatory of Columbia University (E2C) provides monthly gatherings of research scientists and teachers to learn about cutting-edge investigations in a wide variety of fields, and develop lesson plans to share these discoveries. The E2C website, www.earth2class.org/site, also provides a wide variety of educational resources used by teachers and students to learn about the planet. The National Earth Science Teachers Association (www.nestanet.org) is the largest professional society focused on pre-college Earth Science education. Together with its partner, Windows to the Universe (www.windows2universe.org), NESTA offers workshops and other programs at national and regional teacher conferences, a quarterly journal designed for classroom use, monthly E-Newsletters, and one of the largest collection of web resources in education. For more than twenty years, the American Meteorological Society has trained teachers across the country through its online courses: DataStreme Weather, DataStreme Ocean, and DataStreme Earth's Climate System (www.ametsoc.org/amsedu). Informal science education institutions also provide strong in-person and web-based professional development programs. Among these are the American Museum of Natural History's "Seminars on Science" (http://www.amnh.org/learn/) and many programs for educators that utilize the AMNH collections in New York City. Each year at the American Geophysical Union Meeting, teachers find out about "Hot Topics in Science" through the GIFT Workshops (http://education.agu.org/education-activities-at-agu-meetings/gift/). Field experiences aboard the scientific ocean drilling vessel, "JOIDES Resolution," have enhanced the knowledge and skills of teachers from the USA and Europe (http://joidesresolution.org/node/3002). Many teachers also connect with each other through the ESPRIT list-serv and others (http://external.oneonta.edu/mentor/listserv.html). These are just a sample of the many programs offered to provide life-long professional development for Earth Science educators and promote 'Science in Tomorrow's Classroom.'
An Overview of the EOS Data Dissemination Systems
NASA Technical Reports Server (NTRS)
Ramapriyan, H.K.; Pfister, Robin; Weinstein, Beth
2008-01-01
The Earth Observing System Data and Information System (EOSDIS) is the primary data system serving the broad-scope of NASA s Earth Observing System (EOS) program and a significant portion of the "heritage" Earth science data. EOSDIS was designed to support the Earth sciences within NASA s Science Mission Directorate (previously the Earth Science Enterprise (ESE) and Mission to Planet Earth). The EOS Program was NASA s contribution to the United States Global Change Research Program (USGCRP) enacted by Congress in 1990 as part of the Global Change Act. ESE s objective was to launch a series of missions to help answer fundamental global change questions such as "How is Earth changing?" and "What are the consequences for life on Earth?" resulting support of this objective, EOSDIS distributes a wide variety of data to a diverse community.
Catalog of lunar and Mars science payloads
NASA Technical Reports Server (NTRS)
Budden, Nancy Ann (Editor)
1994-01-01
This catalog collects and describes science payloads considered for future robotic and human exploration missions to the Moon and Mars. The science disciplines included are geosciences, meteorology, space physics, astronomy and astrophysics, life sciences, in-situ resource utilization, and robotic science. Science payload data is helpful for mission scientists and engineers developing reference architectures and detailed descriptions of mission organizations. One early step in advanced planning is formulating the science questions for each mission and identifying the instrumentation required to address these questions. The next critical element is to establish and quantify the supporting infrastructure required to deliver, emplace, operate, and maintain the science experiments with human crews or robots. This requires a comprehensive collection of up-to-date science payload information--hence the birth of this catalog. Divided into lunar and Mars sections, the catalog describes the physical characteristics of science instruments in terms of mass, volume, power and data requirements, mode of deployment and operation, maintenance needs, and technological readiness. It includes descriptions of science payloads for specific missions that have been studied in the last two years: the Scout Program, the Artemis Program, the First Lunar Outpost, and the Mars Exploration Program.
Dental Assisting Education in California.
ERIC Educational Resources Information Center
California State Dept. of Education, Sacramento. Bureau of Industrial Education.
A survey of 22 dental assisting programs showed an average of 1,124 hours of instruction in dental assisting for 15 four-semester, 955 for three three-semester, and 1,042 for four two-semester programs. The average instructional hours for the four-semester programs were 48 in introduction to dental assisting, 179 in the life sciences, 221 in the…
Building a Sustainable Life Science Information Literacy Program Using the Train-the-Trainer Model
ERIC Educational Resources Information Center
Hartman, Patricia; Newhouse, Renae; Perry, Valerie
2014-01-01
The train-the-trainer model has great potential for expanding information literacy programs without placing undue burden on already overextended librarians; it is surprisingly underused in academic libraries. At the University of Kentucky, we employed this model to create a new information literacy program in an introductory biology lab. We…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-05
... 510(k) program optimally achieves these goals. In September 2009, CDRH convened an internal 510(k...) program and explore actions CDRH could take to strengthen the program and improve the consistency of its... CDRH uses science to guide its regulatory decision making across the total product life cycle of...
Publications of the Exobiology Program for 1985: A special bibliography
NASA Technical Reports Server (NTRS)
1987-01-01
The Exobiology Program, within the Office of Space Science and Applications of the National Aeronautics and Space Administration, is an integrated program to methodically investigate those processes that are responsible for, or related to, the origin, evolution, and distribution of life in the universe. The list of l985 publications resulting from research pursued is contained.
Searching for Good Science - The Cancellation of NASA's SETI Program
NASA Astrophysics Data System (ADS)
Garber, S. J.
On Columbus Day, 1992, the National Aeronautics and Space Administration (NASA) formally initiated a radio astronomy program called SETI (Search for Extraterrestrial Intelligence). Less than a year later, Congress abruptly canceled the program. Why? While there was and still is a debate over the likelihood of finding intelligent extraterrestrial life, virtually all informed parties agreed that the SETI program constituted worthwhile, valid science. Yet, fervor over the federal budget deficit, lack of support from other scientists and aerospace contractors and a significant history of unfounded associations with nonscientific elements combined with bad timing in fall 1993 to make the program an easy target to eliminate. Thus SETI was a relative anomaly in terms of a small, scientifically valid program that was canceled for political expediency.
Telescience testbed pilot program, volume 2: Program results
NASA Technical Reports Server (NTRS)
Leiner, Barry M.
1989-01-01
Space Station Freedom and its associated labs, coupled with the availability of new computing and communications technologies, have the potential for significantly enhancing scientific research. A Telescience Testbed Pilot Program (TTPP), aimed at developing the experience base to deal with issues in the design of the future information system of the Space Station era. The testbeds represented four scientific disciplines (astronomy and astrophysics, earth sciences, life sciences, and microgravity sciences) and studied issues in payload design, operation, and data analysis. This volume, of a 3 volume set, which all contain the results of the TTPP, contains the integrated results. Background is provided of the program and highlights of the program results. The various testbed experiments and the programmatic approach is summarized. The results are summarized on a discipline by discipline basis, highlighting the lessons learned for each discipline. Then the results are integrated across each discipline, summarizing the lessons learned overall.
Living with a Star (LWS) Space Environment Testbeds (SET), Mission Carrier Overview and Capabilities
NASA Technical Reports Server (NTRS)
Patschke, Robert; Barth, Janet; Label, Ken; Mariano, Carolyn; Pham, Karen; Brewer, Dana; Cuviello, Michael; Kobe, David; Wu, Carl; Jarosz, Donald
2004-01-01
NASA has initiated the Living With a Star (LWS) Program to develop the scientific understanding to address the aspects of the Connected Sun-Earth system that affect life and society. A goal of the program is to bridge the gap between science, engineering, and user application communities. This will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. The three program elements of the LWS Program are Science Missions; Targeted Research and Technology; and Space Environment Testbeds (SETS). SET is an ideal platform for small experiments performing research on space environment effects on technologies and on the mitigation of space weather effects. A short description of the LWS Program will be given, and the SET will be described in detail, giving the mission objectives, available carrier services, and upcoming flight opportunities.
Life Sciences Data Archive (LSDA) in the Post-Shuttle Era
NASA Technical Reports Server (NTRS)
Fitts, Mary A.; Johnson-Throop, Kathy; Havelka, Jacque; Thomas, Diedre
2009-01-01
Now, more than ever before, NASA is realizing the value and importance of their intellectual assets. Principles of knowledge management, the systematic use and reuse of information/experience/expertise to achieve a specific goal, are being applied throughout the agency. LSDA is also applying these solutions, which rely on a combination of content and collaboration technologies, to enable research teams to create, capture, share, and harness knowledge to do the things they do well, even better. In the early days of spaceflight, space life sciences data were been collected and stored in numerous databases, formats, media-types and geographical locations. These data were largely unknown/unavailable to the research community. The Biomedical Informatics and Health Care Systems Branch of the Space Life Sciences Directorate at JSC and the Data Archive Project at ARC, with funding from the Human Research Program through the Exploration Medical Capability Element, are fulfilling these requirements through the systematic population of the Life Sciences Data Archive. This project constitutes a formal system for the acquisition, archival and distribution of data for HRP-related experiments and investigations. The general goal of the archive is to acquire, preserve, and distribute these data and be responsive to inquiries from the science communities.
Student Development in an Experiential Learning Program
ERIC Educational Resources Information Center
Gilbert, Brandi L.; Banks, Julianna; Houser, John H. W.; Rhodes, Simon J.; Lees, N. Douglas
2014-01-01
This study is an outcomes assessment of an experiential learning program for undergraduate students interested in life and health sciences careers enrolled at a public urban research institution. The year-long research and professional experience internships were projected to improve learning outcomes in undergraduates. The study included an…
The Mentoring Experience: Leadership Development Program Perspectives
ERIC Educational Resources Information Center
Lamm, Kevan W.; Sapp, Rochelle; Lamm, Alexa J.
2017-01-01
Using a semi-structured interview approach, ten mentors from a leadership development program focused on building leaders in Colleges of Agriculture and Life Sciences across the nation provided insights regarding their mentoring method, process, and experiences. Mentors interviewed agreed the mentoring process was beneficial for themselves as well…
The Sea Floor: A Living Learning Residential Community
NASA Astrophysics Data System (ADS)
Guentzel, J. L.; Rosch, E.; Stoughton, M. A.; Bowyer, R.; Mortensen, K.; Smith, M.
2016-02-01
Living learning communities are collaborations between university housing and academic departments designed to enhance the overall student experience by integrating classroom/laboratory learning, student life and extracurricular activities. At Coastal Carolina University, the residential community associated with the Marine Science program is known as the Sea Floor. Students selected to become members of the Sea Floor remain "in residence" for two consecutive semesters. These students are first-time freshman that share a common course connection. This course is usually Introduction to Marine Science (MSCI 111) or MSCI 399s, which are one credit field/laboratory centered internships. The common course connection is designed so residents can establish and maintain an educational dialog with their peers. Activities designed to enhance the students' networking skills and educational and social development skills include monthly lunches with marine science faculty and dinner seminars with guest speakers from academia, industry and government. Additionally, each semester several activities outside the classroom are planned so that students can more frequently interact with themselves and their faculty and staff partners. These activities include field trips to regional aquariums, local boat trips that include water sample collection and analysis, and an alternative spring break trip to the Florida Keys to study the marine environment firsthand. The resident advisor that supervises the Sea Floor is usually a sophomore or junior marine science major. This provides the residents with daily communication and mentoring from a marine science major that is familiar with the marine science program and residence life. Assessment activities include: a university housing community living survey, student interest housing focus groups, fall to spring and fall to fall retention, and evaluation of program advisors and program activities.
NExSS/NAI Joint ExoPAG SAG 16 Report on Remote Biosignatures for Exoplanets
NASA Technical Reports Server (NTRS)
Kiang, Nancy Y.; Parenteau, Mary Nicole; Domagal-Goldman, Shawn
2017-01-01
Future exoplanet observations will soon focus on the search for life beyond the Solar System. Exoplanet biosignatures to be sought are those with global, potentially detectable, impacts on a planet. Biosignatures occur in an environmental context in which geological, atmospheric, and stellar processes and interactions may work to enhance, suppress or mimic these biosignatures. Thus biosignature scienceis inherently interdisciplinary. Its advance is necessary to inform the design of the next flagship missions that will obtain spectra of habitable extrasolar planets. The NExSS NAI Joint Exoplanet Biosignatures Workshop Without Walls brought together the astrobiology, exoplanet, and mission concept communities to review, discuss, debate, and advance the science of remote detection of planetary biosignatures. The multi-meeting workshop began in June 2016, and was a process that engaged a broad range of experts across the interdisciplinary reaches of NASA's Nexus for Exoplanet System Science (NExSS) program, the NASA Astrobiology Institute (NAI), NASAs Exoplanet Exploration Program (ExEP), and international partners, such as the European Astrobiology Network Association (EANA) and Japans Earth Life Science Institute (ELSI). These groups spanned expertise in astronomy, planetary science, Earth sciences, heliophysics, biology, instrument mission development, and engineering.
Marine Activity Dynamics (M.A.D.). Unit S.
ERIC Educational Resources Information Center
Rhode Island State Dept. of Education, Providence. Education Information Center.
This curriculum guide describes an activity-oriented marine study program, designed for use with middle school children (grade 5). The content focuses primarily upon the life sciences, with some emphasis on chemistry and geology. Following the development of a rationale for the inclusion of marine sciences in the school curriculum, a middle…
cSELF (Computer Science Education from Life): Broadening Participation through Design Agency
ERIC Educational Resources Information Center
Bennett, Audrey; Eglash, Ron
2013-01-01
The phrase "broadening participation" is often used to describe efforts to decrease the race and gender gap in science and engineering education, and in this paper the authors describe an educational program focused on addressing the lower achievement rates and career interests of underrepresented ethnic groups (African American, Native…
Catalyzing curriculum evolution in graduate science education.
Gutlerner, Johanna L; Van Vactor, David
2013-05-09
Strategies in life science graduate education must evolve in order to train a modern workforce capable of integrative solutions to challenging problems. Our institution has catalyzed such evolution through building a postdoctoral Curriculum Fellows Program that provides a collaborative and scholarly education laboratory for innovation in graduate training. Copyright © 2013 Elsevier Inc. All rights reserved.
Student Action for the Valley Environment (SAVE).
ERIC Educational Resources Information Center
Phoenix Union High School District, AZ.
A multi-disciplinary approach to environmental studies for high school students, combining the areas of earth science, social science, and health education, is developed in this guide. Student Action for the Valley Environment (SAVE) is primarily a simulation program concerned with a serious problem of today--the survival of life in the cities. It…
ERIC Educational Resources Information Center
Morgan, A. Christian; Fuhrman, Nicholas E.; King, Diana L.; Flanders, Frank B.; Rudd, Rick D.
2013-01-01
Agricultural science programs have provided many opportunities for leadership education through classroom, supervised agricultural experience (SAE), and FFA Organization activities. Past studies have focused on leadership developed through activities such as career development events (CDE), SAE activities, FFA Organization conventions, and other…
NASA/Aerospace Education Services Program. Classroom Activities.
ERIC Educational Resources Information Center
Nations, Jim, Comp.
This document consists of a collection of classroom activities as they appeared in the "Aviation and Space Education News" from 1988 to 1991. The 45 activities in the document are organized in the following sections: (1) Aeronautics; (2) Earth Science; (3) Space Science; (4) Life in Space; (5) Rockets; and (6) Models. Each activity is…
Land of the Giants. Science Safari.
ERIC Educational Resources Information Center
Sheldon, Louisa; And Others
This is the fourth program in the Science Safari series produced by the Fairfax Network of the Fairfax County (Virginia) Public Schools. It focuses on large animals, their life, advantages and disadvantages of their size, and the adaptations that allow them to survive in their environments. The large animals highlighted include the Komodo dragon,…
Estimation of Time Requirements during Planning: Interactions between Motivation and Cognition.
1980-11-01
Haddad Program Manager Life Sciences Directorate AFOSR bollinq APB, DC 20332 44 Er. Party Rockway (AFHRL/IT) Lowry AFd Colorado 90230 45 3700 TCHTW/T!GH...10016 125 Dr. Robert Smith oepartment of Computer Science [utqers Uiversity New Brunswick. NJ 09903 126 Dr. Richard Snow School of Education Stanford
What Type of Faculty and Training Are Required for a Successful Basic Sciences Program?
ERIC Educational Resources Information Center
Adams, Anthony
1992-01-01
Science education for optometry must go beyond therapeutic patient management to more preparation for biologically based care. Optometry faculty should be involved in research driven by specific patient problems and should prepare professionals to address patient quality-of-life and daily living needs. Interdisciplinary collaboration is needed.…
NASA Astrophysics Data System (ADS)
Bering, E. A., III; Slagle, E. M.; Carlson, C.; Nieser, K.
2015-12-01
The University of Houston is in the process of developing a flexible program that offers children an in-depth educational experience culminating in the design and construction of their own model Mars rover. The program is called the Mars Rover Model Celebration (MRC). It focuses on students, teachers in grades 3-8. Students design and build a model of a Mars rover to carry out a student selected science mission on Mars. A total of 195 Mars Rover teachers from the 2012-2013, 2013-2014, and 2014-2015 cohorts were invited to complete the Mars Rover Teacher Evaluation Survey. The survey was administered online and could be taken at the convenience of the participant. A total of 1300 students from the 2013-2014 and 2014-2015 cohort wereinvited to submit self-assessments of their participation in the program. Teachers were asked to rate their current level of confidence in their ability to teach specific topics within the Earth and Life Science realms, as well as their confidence in their ability to implement teaching strategies with their students. The majority of teachers (81-90%) felt somewhat to very confident in their ability to effectively teach concepts related to earth and life sciences to their students. In addition, many of the teachers felt that their confidence in teaching these concepts increased somewhat to quite a bit as a result of their participation in the MRC program (54-88%). The most striking increase in this area was the reported 48% of teachers who felt their confidence in teaching "Earth and the solar system and universe" increased "Quite a bit" as a result of their participation in the MRC program. The vast majority of teachers (86-100%) felt somewhat to very confident in their ability to effectively implement all of the listed teaching strategies. The most striking increases were the percentage of teachers who felt their confidence increased "Quite a bit" as a result of their participation in the MRC program in the following areas: "Getting students interested in and curious about science" (63%); "Teaching science as a co-inquirer with students" (56%); and "Continually find better ways to teach science" (59%). A key finding is that 354/365 responding students in the 2014-2015 cohort report substantial increase in science excitement owing to participation in the program.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Educational Opportunity Grant (FSEOG) Program Full-time student HEA National Science and Mathematics Access to... organizations, as designed to improve the quality of life for community residents, particularly low-income...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Educational Opportunity Grant (FSEOG) Program Full-time student HEA National Science and Mathematics Access to... organizations, as designed to improve the quality of life for community residents, particularly low-income...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Educational Opportunity Grant (FSEOG) Program Full-time student HEA National Science and Mathematics Access to... organizations, as designed to improve the quality of life for community residents, particularly low-income...
Publications of the NASA Controlled Ecological Life Support System (CELSS) program 1989-1992
NASA Technical Reports Server (NTRS)
Powers, Janet V.
1994-01-01
Publications of research sponsored by the NASA Controlled Ecological Life Support System (CELSS) program are listed. The CELSS program encompasses research and technology with the goal of developing an autonomous bioregenerative life support system, which is based upon the integration of biological and physical/chemical processes, that will produce nutritious and palatable food, potable and hygienic water, and a breathable atmosphere by recycling metabolic and other wastes. This research and technology development is being performed in the areas of biomass production/food processing, waste management, and systems management and control. The bibliography follows these divisions. Principal investigators whose research tasks resulted in publication are identified by an asterisk. Publications are identified by a record number corresponding with their entry in the Life Sciences Bibliographic Database, maintained at the George Washington University.
Teaching Bioinformatics in Concert
Goodman, Anya L.; Dekhtyar, Alex
2014-01-01
Can biology students without programming skills solve problems that require computational solutions? They can if they learn to cooperate effectively with computer science students. The goal of the in-concert teaching approach is to introduce biology students to computational thinking by engaging them in collaborative projects structured around the software development process. Our approach emphasizes development of interdisciplinary communication and collaboration skills for both life science and computer science students. PMID:25411792
Mars exploration program analysis group goal one: determine if life ever arose on Mars.
Hoehler, Tori M; Westall, Frances
2010-11-01
The Mars Exploration Program Analysis Group (MEPAG) maintains a standing document that articulates scientific community goals, objectives, and priorities for mission-enabled Mars science. Each of the goals articulated within the document is periodically revisited and updated. The astrobiology-related Goal One, "Determine if life ever arose on Mars," has recently undergone such revision. The finalized revision, which appears in the version of the MEPAG Goals Document posted on September 24, 2010, is presented here.
Science and engineering research opportunities at the National Science Foundation.
Demir, Semahat S
2004-01-01
Research at the interface of the physical sciences and life sciences has produced remarkable advances and understanding in biology and medicine over the past fifty years. These bases for many of these healthcare and research advances have been discoveries in the quantitative sciences and engineering approaches to applying them. The National Science Foundation supports research and development in the physical sciences which underpins multi-disciplinary approaches to addressing problems in biology and medicine. This presentation will cover research opportunities offered by the NSF and collaborative programs with the NIH to transfer the resulting advances and technologies.
NASA-HBCU Space Science and Engineering Research Forum Proceedings
NASA Technical Reports Server (NTRS)
Sanders, Yvonne D. (Editor); Freeman, Yvonne B. (Editor); George, M. C. (Editor)
1989-01-01
The proceedings of the Historically Black Colleges and Universities (HBCU) forum are presented. A wide range of research topics from plant science to space science and related academic areas was covered. The sessions were divided into the following subject areas: Life science; Mathematical modeling, image processing, pattern recognition, and algorithms; Microgravity processing, space utilization and application; Physical science and chemistry; Research and training programs; Space science (astronomy, planetary science, asteroids, moon); Space technology (engineering, structures and systems for application in space); Space technology (physics of materials and systems for space applications); and Technology (materials, techniques, measurements).
Space Science Enterprise Strategy
NASA Technical Reports Server (NTRS)
2003-01-01
The 2003 Space Science Enterprise Strategy represents the efforts of hundreds of scientists, staff, and educators, as well as collaboration with the other NASA Enterprises. It reveals the progress we have made, our plans for the near future, and our opportunity to support the Agency's Mission to "explore the universe and search for life." Space science has made spectacular advances in the recent past, from the first baby pictures of the universe to the discovery of water ice on Mars. Each new discovery impels us to ask new questions or regard old ones in new ways. How did the universe begin? How did life arise? Are we alone? These questions continue to inspire all of us to keep exploring and searching. And, as we get closer to answers, we will continue to share our findings with the science community, educators, and the public as broadly and as rapidly as possible. In this Strategy, you will find science objectives that define NASA's quest for discovery. You will also find the framework of programs, such as flight missions and ground-based research, that will enable us to achieve these objectives. This Strategy is founded on recommendations from the community, as well as lessons learned from past programs, and maps the stepping-stones to the future of space science.
DNA Barcoding Investigations Bring Biology to Life
ERIC Educational Resources Information Center
Musante, Susan
2010-01-01
This article describes how DNA barcoding investigations bring biology to life. Biologists recognize the power of DNA barcoding not just to teach biology through connections to the real world but also to immerse students in the exciting process of science. As an investigator in the Program for the Human Environment at Rockefeller University in New…
Life sciences biomedical research planning for Space Station
NASA Technical Reports Server (NTRS)
Primeaux, Gary R.; Michaud, Roger; Miller, Ladonna; Searcy, Jim; Dickey, Bernistine
1987-01-01
The Biomedical Research Project (BmRP), a major component of the NASA Life Sciences Space Station Program, incorporates a laboratory for the study of the effects of microgravity on the human body, and the development of techniques capable of modifying or counteracting these effects. Attention is presently given to a representative scenario of BmRP investigations and associated engineering analyses, together with an account of the evolutionary process by which the scenarios and the Space Station design requirements they entail are identified. Attention is given to a tether-implemented 'variable gravity centrifuge'.
Turning the Ship: The Transformation of DESY, 1993-2009
NASA Astrophysics Data System (ADS)
Heinze, Thomas; Hallonsten, Olof; Heinecke, Steffi
2017-12-01
This article chronicles the most recent history of the Deutsches Elektronen-Synchrotron (DESY) located in Hamburg, Germany, with particular emphasis on how this national laboratory founded for accelerator-based particle physics shifted its research program toward multi-disciplinary photon science. Synchrotron radiation became DESY's central experimental research program through a series of changes in its organizational, scientific, and infrastructural setup and the science policy context. Furthermore, the turn toward photon science is part of a broader transformation in the late twentieth century in which nuclear and particle physics, once the dominating fields in national and international science budgets, gave way to increasing investment in the materials sciences and life sciences. Synchrotron radiation research took a lead position on the experimental side of these growing fields and became a new form of big science, generously funded by governments and with user communities expanding across both academia and industry.
Living in Space. A Preschool Aerospace Curriculum Module.
ERIC Educational Resources Information Center
Young Astronaut Council, Washington, DC.
This program is designed to be an extension of the regular curriculum providing preschool children with a firm foundation and life-long appreciation for space and space-related topics. The program delivers both classroom and at-home family activities which emphasize age-appropriate language, math, art, science, nutrition, and health concepts…
Developing a Systematic Patent Search Training Program
ERIC Educational Resources Information Center
Zhang, Li
2009-01-01
This study aims to develop a systematic patent training program using patent analysis and citation analysis techniques applied to patents held by the University of Saskatchewan. The results indicate that the target audience will be researchers in life sciences, and aggregated patent database searching and advanced search techniques should be…
6 CFR 5.2 - Public reading rooms.
Code of Federal Regulations, 2010 CFR
2010-01-01
... the non-proliferation and verification research and development program; (v) The life sciences..., Washington, DC 20472 (for regional offices, consult your phone book); (20) For the Federal Computer Incident...
6 CFR 5.2 - Public reading rooms.
Code of Federal Regulations, 2014 CFR
2014-01-01
... the non-proliferation and verification research and development program; (v) The life sciences..., Washington, DC 20472 (for regional offices, consult your phone book); (20) For the Federal Computer Incident...
6 CFR 5.2 - Public reading rooms.
Code of Federal Regulations, 2011 CFR
2011-01-01
... the non-proliferation and verification research and development program; (v) The life sciences..., Washington, DC 20472 (for regional offices, consult your phone book); (20) For the Federal Computer Incident...
6 CFR 5.2 - Public reading rooms.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the non-proliferation and verification research and development program; (v) The life sciences..., Washington, DC 20472 (for regional offices, consult your phone book); (20) For the Federal Computer Incident...
6 CFR 5.2 - Public reading rooms.
Code of Federal Regulations, 2012 CFR
2012-01-01
... the non-proliferation and verification research and development program; (v) The life sciences..., Washington, DC 20472 (for regional offices, consult your phone book); (20) For the Federal Computer Incident...
Modular biowaste monitoring system conceptual design
NASA Technical Reports Server (NTRS)
Fogal, G. L.
1974-01-01
The objective of the study was to define requirements and generate a conceptual design for a Modular Biowaste Monitoring System for specifically supporting shuttle life science experimental and diagnostic programs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumetta, C.C.; Park, J.F.
1994-03-01
This report summarizes FY 1993 progress in biological and general life sciences research programs conducted for the Department of Energy`s Office of Health and Environmental REsearch (OHER) at Pacific Northwest Laboratory (PNL). This research provides knowledge of fundamental principles necessary to identify, understand, and anticipate the long-term health consequences of exposure to energy-related radiation and chemicals. The Biological Research section contains reports of studies using laboratory animals, in vitro cell systems, and molecular biological systems. This research includes studies of the impact of radiation, radionuclides, and chemicals on biological responses at all levels of biological organization. The General Life Sciencesmore » Research section reports research conducted for the OHER human genome program.« less
Opportunities for research on Space Station Freedom
NASA Technical Reports Server (NTRS)
Phillips, Robert W.
1992-01-01
NASA has allocated research accommodations on Freedom (equipment, utilities, etc.) to the program offices that sponsor space-based research and development as follows: Space Science and Applications (OSSA)--52 percent, Commercial Programs (OCP)--28 percent, Aeronautics and Space Technology (OAST)--12 percent, and Space Flight (OSF)--8 percent. Most of OSSA's allocation will be used for microgravity and life science experiments; although OSSA's space physics, astrophysics, earth science and applications, and solar system exploration divisions also will use some of this allocation. Other Federal agencies have expressed an interest in using Space Station Freedom. They include the National Institutes of Health (NIH), U.S. Geological Survey, National Science Foundation, National Oceanic and Atmospheric Administration, and U.S. Departments of Agriculture and Energy. Payload interfaces with space station lab support equipment must be simple, and experiment packages must be highly contained. Freedom's research facilities will feature International Standard Payload Racks (ISPR's), experiment racks that are about twice the size of a Spacelab rack. ESA's Columbus lab will feature 20 racks, the U.S. lab will have 12 racks, and the Japanese lab will have 10. Thus, Freedom will have a total of 42 racks versus 8 for Space lab. NASA is considering outfitting some rack space to accommodate small, self-contained payloads similar to the Get-Away-Special canisters and middeck-locker experiment packages flown on Space Shuttle missions. Crew time allotted to experiments on Freedom at permanently occupied capability will average 25 minutes per rack per day, compared to six hours per rack per day on Spacelab missions. Hence, telescience--the remote operation of space-based experiments by researchers on the ground--will play a very important role in space station research. Plans for supporting life sciences research on Freedom focus on the two basic goals of NASA 's space life sciences program: to ensure the health, safety, and productivity of humans in space and to acquire fundamental knowledge of biological processes. Space-based research has already shown that people and plants respond the same way to the microgravity environment: they lose structure. However, the mechanisms by which they respond are different, and researchers do not yet know much about these mechanisms. Life science research accommodations on Freedom will include facilities for experiments designed to address this and other questions, in fields such as gravitational biology, space physiology, and biomedical monitoring and countermeasures research.
ERIC Educational Resources Information Center
Weller, Daniel; Robbins, Janette; Elmore, Andrea; Wiedmann, Martin
2015-01-01
The shortage of highly qualified graduates with advanced training in food science is a pressing problem facing government agencies and the food industry. This has created a need to recruit and train food scientists at the graduate level. However, most graduate level programs are research-based and do not meet the needs of many students. The…
[Advancement of the medical doctorate].
Baum, C; Förster, R; Schmidt, R E
2009-08-01
The medical doctorate and the subsequent advanced research qualification in medicine have an exceptional position within the natural sciences. While, in the German system, graduation to the degree of a medical doctor is often an initiation into scientific practice, the in-depth scientific education of medical doctors may be achieved in various configurations. In recent years, structured programs for doctorates in medicine and natural sciences have found increasing acceptance, following recommendations of national scientific councils ("Deutsche Forschungsgemeinschaft" and "Hochschulrat"). Hannover Medical School has been offering such programs for a number of years. The StrucMed program increases the quality of medical doctorate studies, typically performed in the third and fourth years of university studies. The Hannover Biomedical Research School (HBRS) combines several programs for a doctorate in natural sciences, creating a platform for an internationally oriented education of post-graduates in various disciplines of life sciences. Evaluating the achievements and career paths of the trainees will contribute to the successful integration of research work in an efficiency-oriented clinical environment.
Gibau, Gina Sanchez
2015-01-01
Qualitative studies that examine the experiences of underrepresented minority students in science, technology, engineering, and mathematics fields are comparatively few. This study explores the self-reported experiences of underrepresented graduate students in the biomedical sciences of a large, midwestern, urban university. Document analysis of interview transcripts from program evaluations capture firsthand accounts of student experiences and reveal the need for a critical examination of current intervention programs designed to reverse the trend of underrepresentation in the biomedical sciences. Findings point to themes aligned around the benefits and challenges of program components, issues of social adjustment, the utility of supportive relationships, and environmental impacts. © 2015 G. S. Gibau. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blankenship, Robert E.
"PARC - Scientific Exchange Program" was submitted by the Photosynthetic Antenna Research Center (PARC) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. PARC, an EFRC directed by Robert E. Blankenship at Washington University in St. Louis, is a partnership of scientists from ten institutions. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) inmore » 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.« less
A formula for half-life of proton radioactivity
NASA Astrophysics Data System (ADS)
Zhang, Zhi-Xing; Dong, Jian-Min
2018-01-01
We present a formula for proton radioactivity half-lives of spherical proton emitters with the inclusion of the spectroscopic factor. The coefficients in the formula are calibrated with the available experimental data. As an input to calculate the half-life, the spectroscopic factor that characterizes the important information on nuclear structure should be obtained with a nuclear many-body approach. This formula is found to work quite well, and in better agreement with experimental measurements than other theoretical models. Therefore, it can be used as a powerful tool in the investigation of proton emission, in particular for experimentalists. Supported by National Natural Science Foundation of China (11435014, 11405223, 11675265, 11575112), the 973 Program of China (2013CB834401, 2013CB834405), National Key Program for S&T Research and Development (2016YFA0400501), the Knowledge Innovation Project (KJCX2-EW-N01) of Chinese Academy of Sciences, the Funds for Creative Research Groups of China (11321064) and the Youth Innovation Promotion Association of Chinese Academy of Sciences
Blankenship, Robert E. (Director, Photosynthetic Antenna Research Center); PARC Staff
2017-12-09
'PARC - Scientific Exchange Program' was submitted by the Photosynthetic Antenna Research Center (PARC) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. PARC, an EFRC directed by Robert E. Blankenship at Washington University in St. Louis, is a partnership of scientists from ten institutions. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.
The Case for Biocalculus: Design, Retention, and Student Performance.
Eaton, Carrie Diaz; Highlander, Hannah Callender
2017-01-01
Calculus is one of the primary avenues for initial quantitative training of students in all science, technology, engineering, and mathematics fields, but life science students have been found to underperform in the traditional calculus setting. As a result, and because of perceived lack of its contribution to the understanding of biology, calculus is being actively cut from biology program requirements at many institutions. Here, we present an alternative: a model for learning mathematics that sees the partner disciplines as crucial to student success. We equip faculty with information to engage in dialogue within and between disciplinary departments involved in quantitative education. This includes presenting a process for interdisciplinary development and implementation of biology-oriented Calculus I courses at two institutions with different constituents, goals, and curricular constraints. When life science students enrolled in these redesigned calculus courses are compared with life science students enrolled in traditional calculus courses, students in the redesigned calculus courses learn calculus concepts and skills as well as their traditional course peers; however, the students in the redesigned courses experience more authentic life science applications and are more likely to stay and succeed in the course than their peers who are enrolled in traditional courses. Therefore, these redesigned calculus courses hold promise in helping life science undergraduate students attain Vision and Change recommended competencies. © 2017 C. D. Eaton and H. C. Highlander. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Miller, Jason E; Walston, Timothy
2010-01-01
Inspired by BIO2010 and leveraging institutional and external funding, Truman State University built an undergraduate program in mathematical biology with high-quality, faculty-mentored interdisciplinary research experiences at its core. These experiences taught faculty and students to bridge the epistemological gap between the mathematical and life sciences. Together they created the infrastructure that currently supports several interdisciplinary courses, an innovative minor degree, and long-term interdepartmental research collaborations. This article describes how the program was built with support from the National Science Foundation's Interdisciplinary Training for Undergraduates in Biology and Mathematics program, and it shares lessons learned that will help other undergraduate institutions build their own program.
Howard University program for radiotherapeutic technology.
Tabron, M J
1975-01-01
The Howard University program for radiotherapeutic technology provides for a career ladder with steps of two years. After the first two years everyone must take and pass examination in radiotherapeutic technology given by The American Registry of Radiologic Technologists. The candidate then can proceed with two years of university courses to a Bachelor of Science degree. Depending upon his interest, he can emphasize business, education, or science. The latter would qualify him for application medical school. The core of the curriculum for the first two years consists of clinical work in the radiotherapy department every morning and of two integrated multidisciplinary courses in the afternoon, namely, life sciences (anatomy, physiology, pathology and oncology) and natural sciences (mathematics, physics, radiation physics and treatment planning).
Science at the Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
White, Nicholas E.
2012-01-01
The Sciences and Exploration Directorate of the NASA Goddard Space Flight Center (GSFC) is the largest Earth and space science research organization in the world. Its scientists advance understanding of the Earth and its life-sustaining environment, the Sun, the solar system, and the wider universe beyond. Researchers in the Sciences and Exploration Directorate work with engineers, computer programmers, technologists, and other team members to develop the cutting-edge technology needed for space-based research. Instruments are also deployed on aircraft, balloons, and Earth's surface. I will give an overview of the current research activities and programs at GSFC including the James Web Space Telescope (JWST), future Earth Observing programs, experiments that are exploring our solar system and studying the interaction of the Sun with the Earth's magnetosphere.
Space Product Development: Bringing the Benefits of Space Down to Earth
NASA Technical Reports Server (NTRS)
Allen, Rosalie W.; Tygielski, Andrew; Gabris, Edward A.
1997-01-01
The newly developed microgravity Research Program Office was created to consolidate and integrate NASA's microgravity research efforts, comprised of the microgravity Science and Applications Program and Space Product Development Program. This resulted in an integrated agency program serving the science and industrial research communities, providing leadership, management, direction and overview of all agency microgravity research activities. This paper provides an overview of NASA's microgravity Research Program, with particular emphasis on the Space Product Development Program activities, the potential economic impact and quality of life improvements resulting from this research, and future plans for commercial microgravity research in space. The goal of the Space Product Development Program is to facilitate the use of space for commercial products and services. The unique attributes of space are exploited to conduct industry driven research in the areas of crystallography, bio-systems, agriculture, electronic and non-electronic materials. Industry uses the knowledge gained from focused space research to create new products and processes, to gain economic competitive advantages, to create new jobs and improve the quality of life on earth. The objectives of the program are implemented through NASA's Commercial Space Centers, non-profit consortia of industry, academia and government, that provide the mechanism for communication and technical expert exchange between NASA and industry. Over 200 commercial research activities have been conducted by the Commercial Space Centers and their industrial affiliates over the last four and one-half years during Space Shuttle mission, as well as sounding rocket flights. The results of this research will have a significant impact on competitive products, jobs and quality of life improvements.
Engineering and simulation of life sciences Spacelab experiments
NASA Technical Reports Server (NTRS)
Johnston, R. S.; Bush, W. H. Jr; Rummel, J. A.; Alexander, W. C.
1979-01-01
The third in a series of Spacelab Mission Development tests was conducted at the Johnson (correction of Johnston) Space Center as a part of the development of Life Sciences experiments for the Space Shuttle era. The latest test was a joint effort of the Ames Research and Johnson Space Centers and utilized animals and men for study. The basic objective of this test was to evaluate the operational concepts planned for the Space Shuttle life science payloads program. A three-man crew (Mission Specialist and two Payload Specialists) conducted 26 experiments and 12 operational tests, which were selected for this 7-day mission simulation. The crew lived on board a simulated Orbiter/Spacelab mockup 24 hr a day. The Orbiter section contained the mid deck crew quarters area, complete with sleeping, galley and waste management provisions. The Spacelab was identical in geometry to the European Space Agency Spacelab design, complete with removable rack sections and stowage provisions. Communications between the crewmen and support personnel were configured and controlled as currently planned for operational shuttle flights. For this test a Science Operations Remote Center was manned at the Ames Research Center and was managed by simulated Mission Control and Payload Operation Control Centers at the Johnson Space Center. This paper presents the test objectives, description of the facilities and test program, and the results of this test.
NASA Astrophysics Data System (ADS)
1991-08-01
Published stories are presented that sample a year's news coverage of Antarctica. The intent is to provide the U.S. Antarctic Program participants with a digest of current issues as presented by a variety of writers and popular publications. The subject areas covered include the following: earth science; ice studies; stratospheric ozone; astrophysics; life science; operations; education; antarctic treaty issues; and tourism
2016-12-01
ROTC Reserve Officers’ Training Corps S&T Science and Technology S&TM Science and Technology Manager SDO Special Duty Officer SME Subject Matter...engineering, industrial property management, information technology , life cycle logistics, program management, production , quality and manufacturing...16 4. Auditing ........................................................................................16 5. Test and
In a Word...It's a Bird. Science Safari.
ERIC Educational Resources Information Center
Peterson, Donald; And Others
This is the first program in the Science Safari series produced by the Fairfax Network of the Fairfax County Public Schools. The series and the accompanying print materials are designed to show students a broad spectrum of animal life, introduce students to a variety of people who work with animals, and help students become aware of the important…
Hey! Have You Heard about Herds? Science Safari.
ERIC Educational Resources Information Center
Sheldon, Louisa; And Others
This is the second program in the Science Safari series produced by the Fairfax Network of the Fairfax County Public Schools. The series and the accompanying print materials are designed to show students a broad spectrum of animal life, introduce students to a variety of people who work with animals, and help students become aware of the important…
Career and Technology Center Guides Students in Real-Life Careers | Poster
By Carolynne Keenan, Contributing Writer Frederick County Public School students have a unique opportunity—a chance to get a real-world, hands-on experience in biomedical science and biotechnology before they even graduate from high school, thanks to the Frederick County Career and Technology Center (CTC). Several years ago, the CTC established its biomedical sciences program
ERIC Educational Resources Information Center
Laing-Kean, Claudine A. M.
2010-01-01
Programs supported by the Carl D. Perkins Act of 2006 are required to operate under the state or national content standards, and are expected to carry out evaluation procedures that address accountability. The Indiana high school course, "Advanced Life Science: Foods" ("ALS: Foods") operates under the auspices of the Perkins…
Research and Technology at the John F. Kennedy Space Center 1993
NASA Technical Reports Server (NTRS)
1993-01-01
As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1993 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as our technology transfer activities. Major areas of research include material science, advanced software, industrial engineering, nondestructive evaluation, life sciences, atmospheric sciences, environmental technology, robotics, and electronics and instrumentation.
2002-04-29
KENNEDY SPACE CENTER, FLA. -- At the opening ceremony for the new program known as SABRE, Space Agricultural Biotechnology Research and Education, William Knott speaks to attendees. Knott is senior scientist in the NASA biological sciences office. SABRE is a joint effort of the University of Florida and NASA and will focus on the discovery, development and application of the biological aspects of advanced life support strategies. The program will include faculty from UF's Institute of Food and Agricultural Sciences, who will be located at both KSC - in the state-owned Space Experiment Research and Processing Laboratory (SERPL) being built there - and UF in Gainesville. Robert Ferl, professor in the horticultural sciences department and assistant director of the University of Florida Biotechnology Program, will direct and be responsible for coordinating the research and education.
FASAC Technical Assessment Report: Soviet Space Science Research
NASA Technical Reports Server (NTRS)
Lanzerotti, L. J.; Henry, Richard C.; Klein, Harold P.; Masursky, Harold; Paulikas, George A.; Scaf, Frederick L.; Soffen, Gerald A.; Terzian, Yervant
1986-01-01
This report is the work of a panel of eight US scientists who surveyed and assessed Soviet research in the spare sciences. All of the panelists were very familiar with Soviet research through their knowledge of the published scientific literature and personal contacts with Soviet and other foreign colleagues. In addition, all of the panelists reviewed considerable additional open literature--scientific, and popular, including news releases. The specific disciplines of Soviet space science research examined in detail for the report were: solar-terrestrial research, lunar and planetary research, space astronomy and astrophysics, and, life sciences. The Soviet Union has in the past carried out an ambitious program in lunar exploration and, more recently, in studies of the inner planets, Mars and especially Venus. The Soviets have provided scientific data about the latter planet which has been crucial for studies of the planet's evolution. Future programs envision an encounter with Halley's Comet, in March 1986, and missions to Mars and asteroids. The Soviet programs in the life sciences and solar-terrestrial research have been long-lasting and systematically pursued. Much of the ground-based and space-based research in these two disciplines appears to be motivated by the requirement to establish long-term human habitation in near-Earth space. The Soviet contributions to new discoveries and understanding in observational space astronomy and astrophysics have been few. This is in significant contrast to the very excellent theoretical work contributed by Soviet scientists in this discipline.
Niemann, Marilyn A; Miller, Michael L; Davis, Thelma
2004-01-01
This article describes and assesses the effectiveness of a 3-yr, laboratory-based summer science program to improve the academic performance of inner-city high school students. The program was designed to gradually introduce such students to increasingly more rigorous laboratory experiences in an attempt to interest them in and model what "real" science is like. The students are also exposed to scientific seminars and university tours as well as English and mathematics workshops designed to help them analyze their laboratory data and prepare for their closing ceremony presentations. Qualitative and quantitative analysis of student performance in these programs indicates that participants not only learn the vocabulary, facts, and concepts of science, but also develop a better appreciation of what it is like to be a "real" scientist. In addition, the college-bound 3-yr graduates of this program appear to be better prepared to successfully academically compete with graduates of other high schools; they also report learning useful job-related life skills. Finally, the critical conceptual components of this program are discussed so that science educators interested in using this model can modify it to fit the individual resources and strengths of their particular setting.
2004-01-01
This article describes and assesses the effectiveness of a 3-yr, laboratory-based summer science program to improve the academic performance of inner-city high school students. The program was designed to gradually introduce such students to increasingly more rigorous laboratory experiences in an attempt to interest them in and model what “real” science is like. The students are also exposed to scientific seminars and university tours as well as English and mathematics workshops designed to help them analyze their laboratory data and prepare for their closing ceremony presentations. Qualitative and quantitative analysis of student performance in these programs indicates that participants not only learn the vocabulary, facts, and concepts of science, but also develop a better appreciation of what it is like to be a “real” scientist. In addition, the college-bound 3-yr graduates of this program appear to be better prepared to successfully academically compete with graduates of other high schools; they also report learning useful job-related life skills. Finally, the critical conceptual components of this program are discussed so that science educators interested in using this model can modify it to fit the individual resources and strengths of their particular setting. PMID:15526064
NASA Astrophysics Data System (ADS)
Bonev, Boncho; Gibb, E. L.; Brewer, G.; Novak, R.; Mandell, A. M.; Seaton, P.; Price, J.; Long, T.; Bahar, S.; Edwards, S. S.
2010-10-01
Developing a full-year program to support secondary and middle school science education is a key part of the "broader impact” component of NSF Grant AST- 0807939 (PI/Co-PI Bonev/Gibb). This program is realized at two stages: (1) a professional development course for teachers is offered during the summer; (2) during the subsequent academic year we collaborate with educators in lessons planning or curriculum development as demanded in their particular schools. We successfully offered the course “ Comets, Origins, and Life: Interdisciplinary Science in the Secondary Classroom ” (45 contact hours; 3 credits) in the summers of 2009 and 2010 at the Catholic University of America. This class demonstrates how a complex hypothesis - for the delivery of water and prebiotic organic matter to early Earth - is being tested by integrating astronomy, physics, chemistry, biology, and Earth and planetary science. Collaborations with participants from the 2009 class include curriculum development within the Earth Science program in Prince Georges county, MD and strengthening science in Washington DC public schools. Our next step is to offer our class in the Saint Louis, MO area. The main challenge in our work with educators is not to present them with "interesting information", but to fit what we offer within the very particular curriculum expectations of their school districts. These curriculum expectations often vary from district to district and sometimes from year to year. We gratefully acknowledge the support by the NSF, allowing to fully integrate our research area into education. We also gratefully acknowledge our collaborations with the Goddard Center for Astrobiology and the Howard B. Owens Science Center (both in MD) in developing our class curriculum. Educators interested in this program can contact Boncho Bonev (bonev@cua.edu; for the Washington DC and Baltimore, MD areas) and Erika Gibb (gibbe@umsl.edu; for the Saint Louis, MO area).
Preliminary Results of Professional Development Program for School Science Research
ERIC Educational Resources Information Center
Wuttiprom, Sura; Wuttisela, Karntarat; Phonchaiya, Sonthi; Athiwaspong, Wanwalai; Chitaree, Ratchapak; Sharma, Manjula Devi
2016-01-01
Teachers need to design their courses to be as similar to real-life situations as possible as genuine learning emerges in real life as opposed to studying in class. Research-based learning is an innovative approach exploring many critical strategies for success in the twenty-first century. In it, students drive their own learning through inquiry,…
MERCURY IN MARINE LIFE DATABASE | Science Inventory ...
The purpose of the Mercury in Marine Life Project is to organize information on estuarine and marine species so that EPA can better understand both the extent of monitoring for mercury and level of mercury contamination in the biota of coastal environments. This report follows a similar report commissioned by the Gulf of Mexico Program (GMP), entitled
48 CFR 3046.790-4 - Waiver (USCG).
Code of Federal Regulations, 2010 CFR
2010-10-01
... the Senate and the House of Representatives, the Committee on Commerce, Science and Transportation of... number of units delivered and anticipated to be delivered during the life of the program); (2) The...
48 CFR 3046.790-4 - Waiver (USCG).
Code of Federal Regulations, 2011 CFR
2011-10-01
... the Senate and the House of Representatives, the Committee on Commerce, Science and Transportation of... number of units delivered and anticipated to be delivered during the life of the program); (2) The...
48 CFR 3046.790-4 - Waiver (USCG).
Code of Federal Regulations, 2012 CFR
2012-10-01
... the Senate and the House of Representatives, the Committee on Commerce, Science and Transportation of... number of units delivered and anticipated to be delivered during the life of the program); (2) The...
Evaluating a Graduate Professional Development Program for Informal Science Educators
NASA Astrophysics Data System (ADS)
Lake, Jeremy Paul
This study is an examination and evaluation of the outcomes of a series of courses that I helped build to create a graduate certificate. Specifically, I wanted to evaluate whether or not the online iteration of the Informal Science Institutions Environmental Education Graduate Certificate Program truly provided the long term professional development needed to enhance the skills of the formal and informal educators participating so that they could contribute meaningfully to the improvement of science literacy in their respective communities. My role as an internal evaluator provided an extraordinary opportunity to know the intent of the learning opportunities and why they were constructed in a particular fashion. Through the combination of my skills, personal experiences both within the certificate's predecessor and as an educator, I was uniquely qualified to explore the outcomes of this program and evaluate its effectiveness in providing a long-term professional development for participants. After conducting a literature review that emphasized a need for greater scientific literacy in communities across America, it was evident that the formal education enterprise needs the support of informal educators working on the ground in myriad different settings in ways that provide science as both content and process, learning science facts and doing real science. Through a bridging of informal science educators with formal teachers, it was thought each could learn the culture of the other, making each more fluent in accessing community resources to help make these educators more collaborative and able to bridge the classroom with the outside world. This bridge promotes ongoing, lifelong learning, which in turn can help the national goal of greater scientific literacy. This study provided insight into the thinking involved in the learners' growth as they converted theory presented in course materials into practice. Through an iterative process of reviewing the course generated content, I was able to piece through the many layers of this two year long program to examine the growth of these individuals over time. While all participants showed growth completing the certificate program, those who could fully invest themselves in the experiences seemed to have gained the most. These cases indicate the Informal Science Institutions Environmental Education Graduate Certificate Program was effective at enhancing the careers of formal and informal science educators. Additionally, it suggests informal science educators, although busy with their professional obligations and personal lives, can be successful in a formal graduate program designed to meet ISE needs as explicated in Learning Science in Informal Environments: People, Places, and Pursuits (Bell, Lewenstein, Shouse, & Feder, 2009). The emergent model indicating connections among a person's personal life, professional life, and graduate study may also have implications for other professionals desiring to enroll in graduate school. For example, science teachers in university graduate programs may also benefit from applying this model to their lives.
ERIC Educational Resources Information Center
D'Souza, Malcolm J.; Kashmar, Richard J.; Hurst, Kent; Fiedler, Frank; Gross, Catherine E.; Deol, Jasbir K.; Wilson, Alora
2015-01-01
Wesley College is a private, primarily undergraduate minority-serving institution located in the historic district of Dover, Delaware (DE). The College recently revised its baccalaureate biological chemistry program requirements to include a one-semester Physical Chemistry for the Life Sciences course and project-based experiential learning…
Is Virtual Reality a Useful Tool in the Teaching of Physiology?
ERIC Educational Resources Information Center
Richardson, Daniel
2011-01-01
This opinion statement points out some of the considerations and pitfalls in using virtual reality computer programs in the teaching of life sciences. Emphasis is placed on the possibility of such programs leading to reductionist thinking including how reductionist thinking could foster the formation of misconceptions. Negative feedback is used as…
Space human factors discipline science plan
NASA Technical Reports Server (NTRS)
1991-01-01
The purpose of this Discipline Science Plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in the comprehensive areas of behavior, performance, and human factors. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, defines critical questions in the subdiscipline areas, and identifies technological priorities. It covers the significant research areas critical to NASA's programmatic requirements for the Extended Duration Orbiter, Space Station Freedom, and Exploration mission science activities. These science activities include ground-based and flight; basic, applied and operational; and animal and human research and development. This document contains a general plan that will be used by both NASA Headquarters program offices and the field centers to review and plan basic, applied, and operational research and development activities, both intramural and extramural, in this area.
International Space Station Research and Facilities for Life Sciences
NASA Technical Reports Server (NTRS)
Robinson, Julie A.; Ruttley, Tara M.
2009-01-01
Assembly of the International Space Station is nearing completion in fall of 2010. Although assembly has been the primary objective of its first 11 years of operation, early science returns from the ISS have been growing at a steady pace. Laboratory facilities outfitting has increased dramatically 2008-2009 with the European Space Agency s Columbus and Japanese Aerospace Exploration Agency s Kibo scientific laboratories joining NASA s Destiny laboratory in orbit. In May 2009, the ISS Program met a major milestone with an increase in crew size from 3 to 6 crewmembers, thus greatly increasing the time available to perform on-orbit research. NASA will launch its remaining research facilities to occupy all 3 laboratories in fall 2009 and winter 2010. To date, early utilization of the US Operating Segment of the ISS has fielded nearly 200 experiments for hundreds of ground-based investigators supporting international and US partner research. With a specific focus on life sciences research, this paper will summarize the science accomplishments from early research aboard the ISS- both applied human research for exploration, and research on the effects of microgravity on life. We will also look ahead to the full capabilities for life sciences research when assembly of ISS is complete in 2010.
Brancaccio-Taras, Loretta; Pape-Lindstrom, Pamela; Peteroy-Kelly, Marcy; Aguirre, Karen; Awong-Taylor, Judy; Balser, Teri; Cahill, Michael J.; Frey, Regina F.; Jack, Thomas; Kelrick, Michael; Marley, Kate; Miller, Kathryn G.; Osgood, Marcy; Romano, Sandra; Uzman, J. Akif; Zhao, Jiuqing
2016-01-01
The PULSE Vision & Change Rubrics, version 1.0, assess life sciences departments’ progress toward implementation of the principles of the Vision and Change report. This paper reports on the development of the rubrics, their validation, and their reliability in measuring departmental change aligned with the Vision and Change recommendations. The rubrics assess 66 different criteria across five areas: Curriculum Alignment, Assessment, Faculty Practice/Faculty Support, Infrastructure, and Climate for Change. The results from this work demonstrate the rubrics can be used to evaluate departmental transformation equitably across institution types and represent baseline data about the adoption of the Vision and Change recommendations by life sciences programs across the United States. While all institution types have made progress, liberal arts institutions are farther along in implementing these recommendations. Generally, institutions earned the highest scores on the Curriculum Alignment rubric and the lowest scores on the Assessment rubric. The results of this study clearly indicate that the Vision & Change Rubrics, version 1.0, are valid and equitable and can track long-term progress of the transformation of life sciences departments. In addition, four of the five rubrics have broad applicability and can be used to evaluate departmental transformation by other science, technology, engineering, and mathematics disciplines. PMID:27856548
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redmond, B.L.; Saturnelli, A.M.
1994-12-31
Our goal is to ensure that All students have the opportunity to learn science, and it is being accomplished through a unique working model program that: (1) changes the way that teaching and learning take place; (2) incorporates the advanced technology of microscopy directly into the K-12 curriculum; and (3) develops R & D teacher specialists. We conducted three in-service science courses, a Summer Science Microscopy Camp, and a staff development program (the latter funded by a NYS Education Department grant) in which science professors, industrial engineers and scientists interacted with teachers and students to explore the world using highmore » technology. This year, all 5th and 7th graders in the district (200 students) and about 1,000 high school science students are having experiences as active researchers, solving real-life, multi-step problems using all levels of microscopy, including scanning tunneling. Students develop a chronological portfolio, using multimedia formats. Our 1993 Summer Microscopy Camp attendance record was 98%, compared to the typical 75% for other programs.« less
Research and technology, Lyndon B. Johnson Space Center
NASA Technical Reports Server (NTRS)
1984-01-01
Johnson Space Center accomplishments in new and advanced concepts during 1984 are highlighted. Included are research funded by the Office of Aeronautics and Space Technology; Advanced Programs tasks funded by the Office of Space Flight; and Solar System Exploration and Life Sciences research funded by the Office of Space Sciences and Applications. Summary sections describing the role of the Johnson Space Center in each program are followed by one page descriptions of significant projects. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.
Research and technology of the Lyndon B. Johnson Space Center
NASA Technical Reports Server (NTRS)
1988-01-01
Johnson Space Center accomplishments in new and advanced concepts during 1987 are highlighted. Included are research projects funded by the Office of Aeronautics and Space Technology, Solar System Exploration and Life Sciences research funded by the Office of Space Sciences and Applications, and advanced Programs tasks funded by the Office of Space Flight. Summary sections describing the role of the Johnson Space Center in each program are followed by descriptions of significant projects. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.
NASA Technical Reports Server (NTRS)
1980-01-01
Major facts are given for NASA'S planned FY-1981 through FY-1985 programs in aeronautics, space science, space and terrestrial applications, energy technology, space technology, space transportation systems, space tracking and data systems, and construction of facilities. Competition and cooperation, reimbursable launchings, schedules and milestones, supporting research and technology, mission coverage, and required funding are considered. Tables and graphs summarize new initiatives, significant events, estimates of space shuttle flights, and major missions in astrophysics, planetary exploration, life sciences, environmental and resources observation, and solar terrestrial investigations. The growth in tracking and data systems capabilities is also depicted.
Professional choices and teacher identities in the Science Teacher Education Program at EACH/USP
NASA Astrophysics Data System (ADS)
Dominguez, Celi Rodrigues Chaves; Viviani, Luciana Maria; Cazetta, Valéria; Guridi, Verónica Marcela; Faht, Elen Cristina; Pioker, Fabiana Curtopassi; Cubero, Josely
2015-12-01
In this article, we present results from a research project in which the main aim was to understand students' decision-making processes in choosing to become a teacher and to make sense of the relationships between this process and the formation of their identity as a teacher. The study was conducted with 39 students from the Science Teacher Education Program (LCN) at the São Paulo University (USP) School of Arts, Sciences, and Humanities (EACH) in Brazil while the students engaged in a supervised practical internship. The data used in this study was collected from narratives written by the students in which they provided their reasons for selecting the LCN program and for choosing a teaching career. The analysis showed several elements contributing to their decision making and the formation of their identities as teachers, including the nature of the undergraduate program, representational models of teaching/teachers, the possibility of being an agent for social transformation, and an affinity toward natural sciences and/or education. Findings from this research offer implications for improvement of the LCN program and suggestions for designing teacher education programs to include actions for improving the teaching career as a life project for new students.
48 CFR 3046.793 - Waiver and notification procedures (USCG).
Code of Federal Regulations, 2010 CFR
2010-10-01
... Representatives, the Committee on Commerce, Science and Transportation of the Senate, and the Committee on... anticipated to be delivered during the life of the program); (2) The specific waiver requested, the duration...
48 CFR 3046.793 - Waiver and notification procedures (USCG).
Code of Federal Regulations, 2012 CFR
2012-10-01
... Representatives, the Committee on Commerce, Science and Transportation of the Senate, and the Committee on... anticipated to be delivered during the life of the program); (2) The specific waiver requested, the duration...
48 CFR 3046.793 - Waiver and notification procedures (USCG).
Code of Federal Regulations, 2011 CFR
2011-10-01
... Representatives, the Committee on Commerce, Science and Transportation of the Senate, and the Committee on... anticipated to be delivered during the life of the program); (2) The specific waiver requested, the duration...
Life Sciences Implications of Lunar Surface Operations
NASA Technical Reports Server (NTRS)
Chappell, Steven P.; Norcross, Jason R.; Abercromby, Andrew F.; Gernhardt, Michael L.
2010-01-01
The purpose of this report is to document preliminary, predicted, life sciences implications of expected operational concepts for lunar surface extravehicular activity (EVA). Algorithms developed through simulation and testing in lunar analog environments were used to predict crew metabolic rates and ground reaction forces experienced during lunar EVA. Subsequently, the total metabolic energy consumption, the daily bone load stimulus, total oxygen needed, and other variables were calculated and provided to Human Research Program and Exploration Systems Mission Directorate stakeholders. To provide context to the modeling, the report includes an overview of some scenarios that have been considered. Concise descriptions of the analog testing and development of the algorithms are also provided. This document may be updated to remain current with evolving lunar or other planetary surface operations, assumptions and concepts, and to provide additional data and analyses collected during the ongoing analog research program.
Cx-02 Program, workshop on modeling complex systems
Mossotti, Victor G.; Barragan, Jo Ann; Westergard, Todd D.
2003-01-01
This publication contains the abstracts and program for the workshop on complex systems that was held on November 19-21, 2002, in Reno, Nevada. Complex systems are ubiquitous within the realm of the earth sciences. Geological systems consist of a multiplicity of linked components with nested feedback loops; the dynamics of these systems are non-linear, iterative, multi-scale, and operate far from equilibrium. That notwithstanding, It appears that, with the exception of papers on seismic studies, geology and geophysics work has been disproportionally underrepresented at regional and national meetings on complex systems relative to papers in the life sciences. This is somewhat puzzling because geologists and geophysicists are, in many ways, preadapted to thinking of complex system mechanisms. Geologists and geophysicists think about processes involving large volumes of rock below the sunlit surface of Earth, the accumulated consequence of processes extending hundreds of millions of years in the past. Not only do geologists think in the abstract by virtue of the vast time spans, most of the evidence is out-of-sight. A primary goal of this workshop is to begin to bridge the gap between the Earth sciences and life sciences through demonstration of the universality of complex systems science, both philosophically and in model structures.
Conceptual planning for Space Station life sciences human research project
NASA Technical Reports Server (NTRS)
Primeaux, Gary R.; Miller, Ladonna J.; Michaud, Roger B.
1986-01-01
The Life Sciences Research Facility dedicated laboratory is currently undergoing system definition within the NASA Space Station program. Attention is presently given to the Humam Research Project portion of the Facility, in view of representative experimentation requirement scenarios and with the intention of accommodating the Facility within the Initial Operational Capability configuration of the Space Station. Such basic engineering questions as orbital and ground logistics operations and hardware maintenance/servicing requirements are addressed. Biospherics, calcium homeostasis, endocrinology, exercise physiology, hematology, immunology, muscle physiology, neurosciences, radiation effects, and reproduction and development, are among the fields of inquiry encompassed by the Facility.