Science.gov

Sample records for life-cycle assessment lca

  1. Life-cycle assessment (LCA) methodology applied to energetic materials

    SciTech Connect

    Reardon, P.T.

    1995-03-01

    The objective of the Clean Agile Manufacturing of Propellants, Explosives, and pyrotechnics (CAMPEP) program is to develop and demonstrate the feasibility of using modeling, alternate materials and processing technology to reduce PEO life-cycle pollution by up to 90%. Traditional analyses of factory pollution treat the manufacturing facility as the singular pollution source. The life cycle of a product really begins with raw material acquisition and includes all activities through ultimate disposal. The life cycle thus includes other facilities besides the principal manufacturing facility. The pollution generated during the product life cycle is then integrated over the total product lifetime, or represents a ``cradle to grave`` accounting philosophy. This paper addresses a methodology for producing a life-cycle inventory assessment.

  2. Emerging role of Geographical Information System (GIS), Life Cycle Assessment (LCA) and spatial LCA (GIS-LCA) in sustainable bioenergy planning.

    PubMed

    Hiloidhari, Moonmoon; Baruah, D C; Singh, Anoop; Kataki, Sampriti; Medhi, Kristina; Kumari, Shilpi; Ramachandra, T V; Jenkins, B M; Thakur, Indu Shekhar

    2017-03-15

    Sustainability of a bioenergy project depends on precise assessment of biomass resource, planning of cost-effective logistics and evaluation of possible environmental implications. In this context, this paper reviews the role and applications of geo-spatial tool such as Geographical Information System (GIS) for precise agro-residue resource assessment, biomass logistic and power plant design. Further, application of Life Cycle Assessment (LCA) in understanding the potential impact of agro-residue bioenergy generation on different ecosystem services has also been reviewed and limitations associated with LCA variability and uncertainty were discussed. Usefulness of integration of GIS into LCA (i.e. spatial LCA) to overcome the limitations of conventional LCA and to produce a holistic evaluation of the environmental benefits and concerns of bioenergy is also reviewed. Application of GIS, LCA and spatial LCA can help alleviate the challenges faced by ambitious bioenergy projects by addressing both economics and environmental goals.

  3. Towards a meaningful assessment of marine ecological impacts in life cycle assessment (LCA).

    PubMed

    Woods, John S; Veltman, Karin; Huijbregts, Mark A J; Verones, Francesca; Hertwich, Edgar G

    2016-01-01

    Human demands on marine resources and space are currently unprecedented and concerns are rising over observed declines in marine biodiversity. A quantitative understanding of the impact of industrial activities on the marine environment is thus essential. Life cycle assessment (LCA) is a widely applied method for quantifying the environmental impact of products and processes. LCA was originally developed to assess the impacts of land-based industries on mainly terrestrial and freshwater ecosystems. As such, impact indicators for major drivers of marine biodiversity loss are currently lacking. We review quantitative approaches for cause-effect assessment of seven major drivers of marine biodiversity loss: climate change, ocean acidification, eutrophication-induced hypoxia, seabed damage, overexploitation of biotic resources, invasive species and marine plastic debris. Our review shows that impact indicators can be developed for all identified drivers, albeit at different levels of coverage of cause-effect pathways and variable levels of uncertainty and spatial coverage. Modeling approaches to predict the spatial distribution and intensity of human-driven interventions in the marine environment are relatively well-established and can be employed to develop spatially-explicit LCA fate factors. Modeling approaches to quantify the effects of these interventions on marine biodiversity are less well-developed. We highlight specific research challenges to facilitate a coherent incorporation of marine biodiversity loss in LCA, thereby making LCA a more comprehensive and robust environmental impact assessment tool. Research challenges of particular importance include i) incorporation of the non-linear behavior of global circulation models (GCMs) within an LCA framework and ii) improving spatial differentiation, especially the representation of coastal regions in GCMs and ocean-carbon cycle models.

  4. A comprehensive life cycle assessment (LCA) of Jatropha biodiesel production in India.

    PubMed

    Kumar, Sunil; Singh, Jasvinder; Nanoti, S M; Garg, M O

    2012-04-01

    A life cycle approach was adopted for energy, green house gas (GHG) emissions and renewability assessment for production of 1ton of Jatropha biodiesel. Allocation and displacement approaches were applied for life cycle inventory, process energy and process GHG emission attribution to co-products. The results of process energy and GHG emission analyses revealed that the amount of process energy consumption and GHG emission in the individual stages of the life cycle assessment (LCA) were a strong function of co-product handling and irrigation. The GHG emission reduction with respect to petroleum diesel for generating 1GJ energy varied from 40% to 107% and NER values from 1.4 to 8.0 depending upon the methodology used for energy and emission distribution between product and co-products as well as irrigation applied. However, GHG emission reduction values of 54 and 40 and NER (net energy ratio) values of 1.7 and 1.4 for irrigated and rain-fed scenarios, respectively indicate the eco-friendly nature and renewability of biodiesel even in the worst scenario where total life cycle inventory (LCI), process energy and GHG emission were allocated to biodiesel only.

  5. Accounting for ecosystem services in Life Cycle Assessment, Part II: toward an ecologically based LCA.

    PubMed

    Zhang, Yi; Baral, Anil; Bakshi, Bhavik R

    2010-04-01

    Despite the essential role of ecosystem goods and services in sustaining all human activities, they are often ignored in engineering decision making, even in methods that are meant to encourage sustainability. For example, conventional Life Cycle Assessment focuses on the impact of emissions and consumption of some resources. While aggregation and interpretation methods are quite advanced for emissions, similar methods for resources have been lagging, and most ignore the role of nature. Such oversight may even result in perverse decisions that encourage reliance on deteriorating ecosystem services. This article presents a step toward including the direct and indirect role of ecosystems in LCA, and a hierarchical scheme to interpret their contribution. The resulting Ecologically Based LCA (Eco-LCA) includes a large number of provisioning, regulating, and supporting ecosystem services as inputs to a life cycle model at the process or economy scale. These resources are represented in diverse physical units and may be compared via their mass, fuel value, industrial cumulative exergy consumption, or ecological cumulative exergy consumption or by normalization with total consumption of each resource or their availability. Such results at a fine scale provide insight about relative resource use and the risk and vulnerability to the loss of specific resources. Aggregate indicators are also defined to obtain indices such as renewability, efficiency, and return on investment. An Eco-LCA model of the 1997 economy is developed and made available via the web (www.resilience.osu.edu/ecolca). An illustrative example comparing paper and plastic cups provides insight into the features of the proposed approach. The need for further work in bridging the gap between knowledge about ecosystem services and their direct and indirect role in supporting human activities is discussed as an important area for future work.

  6. Life cycle assessment of waste incineration in Denmark and Italy using two LCA models.

    PubMed

    Turconi, Roberto; Butera, Stefania; Boldrin, Alessio; Grosso, Mario; Rigamonti, Lucia; Astrup, Thomas

    2011-10-01

    In Europe, about 20% of municipal solid waste is incinerated. Large differences can be found between northern and southern Europe regarding energy recovery efficiencies, flue gas cleaning technologies and residue management. Life-cycle assessment (LCA) of waste incineration often provides contradictory results if these local conditions are not properly accounted for. The importance of regional differences and site-specific data, and choice of LCA model itself, was evaluated by assessment of two waste incinerators representing northern and southern Europe (Denmark and Italy) based on two different LCA models (SimaPro and EASEWASTE). The results showed that assumptions and modelling approaches regarding energy recovery/substitution and direct air emissions were most critical. Differences in model design and model databases mainly had consequences for the toxicity-related impact categories. The overall environmental performance of the Danish system was better than the Italian, mainly because of higher heat recovery at the Danish plant. Flue gas cleaning at the Italian plant was, however, preferable to the Danish, indicating that efficient flue gas cleaning may provide significant benefits. Differences in waste composition between the two countries mainly affected global warming and human toxicity via water. Overall, SimaPro and EASEWASTE provided consistent ranking of the individual scenarios. However, important differences in results from the two models were related to differences in the databases and modelling approaches, in particular the possibility for modelling of waste-specific emissions affected the toxicity-related impact categories. The results clearly showed that the use of site-specific data was essential for the results.

  7. Personal Metabolism (PM) coupled with Life Cycle Assessment (LCA) model: Danish Case Study.

    PubMed

    Kalbar, Pradip P; Birkved, Morten; Kabins, Simon; Nygaard, Simon Elsborg

    2016-05-01

    Sustainable and informed resource consumption is the key to make everyday living sustainable for entire populations. An intelligent and strategic way of addressing the challenges related with sustainable development of the everyday living of consumers is to identify consumption-determined hotspots in terms of environmental and health burdens, as well as resource consumptions. Analyzing consumer life styles in terms of consumption patterns in order to identify hotspots is hence the focus of this study. This is achieved by taking into account the entire value chain of the commodities consumed in the context of environmental and human health burdens, as well as resource consumptions. A systematic commodity consumption, commodity disposal, and life style survey of 1281 persons living in urbanized Danish areas was conducted. The findings of the survey showed new impact dimensions in terms of Personal Metabolism (PM) patterns of residents living in urbanized areas of Denmark. Extending the PM analysis with Life Cycle Assessment (LCA) provided a clear picture of the per capita environmental and human health burdens, as well as resource consumptions, and the exact origin hereof. A generic PM-LCA Model for all the 1281 persons was set-up in Gabi 6. The assessment results obtained applying the model on all 1281 personal consumption scenarios yielded the 1281 Personal Impact Profiles (PIPs). Consumption of food and energy (electricity and thermal energy) proved to be the primary impact sources of PM, followed by transport. The PIPs further revealed that behavioral factors (e.g. different diets, use of cars, household size) affect the profiles. Hence, behavioral changes are one means out of many that humanity will most likely have to rely on during the sustainable development process. The results of this study will help the Danish and other comparable populations to identify and prioritize the steps towards reducing their environmental, human health, and resource consumption

  8. LIFE-CYCLE ASSESSMENT

    EPA Science Inventory

    Life Cycle Assessment, or LCA, is an environmental accounting and mangement approach that consider all the aspects of resource use and environmental releases associated with an industrial system from cradle-to-grave. Specifically, it is a holistic view of environmental interacti...

  9. Comparison of the organic waste management systems in the Danish-German border region using life cycle assessment (LCA).

    PubMed

    Jensen, Morten Bang; Møller, Jacob; Scheutz, Charlotte

    2016-03-01

    This study assessed the management of the organic household waste in the Danish-German border region and points out major differences between the systems and their potential effects on the environment using life cycle assessment (LCA). The treatment of organic waste from households in the Danish-German border region is very different on each side of the border; the Danish region only uses incineration for the treatment of organic household waste while the German region includes combined biogas production and composting, mechanical and biological treatment (MBT) and incineration. Data on all parts of the organic waste treatment was collected including waste composition data and data from treatment facilities and their respective energy systems. Based on that the organic waste management systems in the border region were modelled using the EASETECH waste management LCA-model. The main output is a life cycle assessment showing large differences in the environmental performance of the two different regions with the Danish region performing better in 10 out of 14 impact categories. Furthermore, the importance of the substituted district heating systems was investigated showing an impact up to 34% of the entire system for one impact category and showing large difference between each heating system substituted, e.g. in "Global Warming" the impact was from -16 to -1.1 milli person equivalent/tonne treated waste from substitution of centralised hard coal and decentralised natural gas, respectively.

  10. Life Cycle Assessment for Biofuels

    EPA Science Inventory

    A presentation based on life cycle assessment (LCA) for biofuels is given. The presentation focuses on energy and biofuels, interesting environmental aspects of biofuels, and how to do a life cycle assessment with some examples related to biofuel systems. The stages of a (biofuel...

  11. STREAMLINED LIFE CYCLE ASSESSMENT: A FINAL REPORT FROM THE SETAC-NORTH AMERICA STREAMLINED LCA WORKGROUP

    EPA Science Inventory

    The original goal of the Streamlined LCA workgroup was to define and document a process for a shortened form of LCA. At the time, because of the large amount of data needed to do a cradle-to-grave evaluation, it was believed that in addition to such a "full" LCA approach there w...

  12. LIFE CYCLE ASSESSMENT: PRINCIPLES AND PRACTICE

    EPA Science Inventory

    The following document provides an introductory overview of Life Cycle Assessment (LCA) and describes the general uses and major components of LCA. This document is an update and merger of two previous EPA documents on LCA ("Life Cycle Assessment: Inventory Guidelines and Princip...

  13. IN LCA INTERNATIONAL CONFERENCE & EXHIBITION ON LIFE-CYCLE ASSESSMENT: TOOLS FOR SUSTAINABILITY

    EPA Science Inventory

    LCA is being developed and applied internationally by corporations, governments, and environmental groups to incorporate environmental concerns into the decision-making process. It is being widely adopted as a means to evaluate commercial systems and develop sustainable solution...

  14. Techno-Economics & Life Cycle Assessment (Presentation)

    SciTech Connect

    Dutta, A.; Davis, R.

    2011-12-01

    This presentation provides an overview of the techno-economic analysis (TEA) and life cycle assessment (LCA) capabilities at the National Renewable Energy Laboratory (NREL) and describes the value of working with NREL on TEA and LCA.

  15. Hybrid life-cycle assessment (LCA) of CO2 emission with management alternatives for household food wastes in Japan.

    PubMed

    Inaba, Rokuta; Nansai, Keisuke; Fujii, Minoru; Hashimoto, Seiji

    2010-06-01

    In this study, we conducted a hybrid life-cycle assessment (LCA) to evaluate reductions in CO(2) emissions by food waste biogasification of household food wastes in Japan. Two alternative scenarios were examined. In one alternative (Ref), all combustible municipal solid wastes (MSWs), including food waste, are incinerated. In the other (Bio), food waste is biogasified, while the other combustible wastes are incinerated. An inventory analysis of energy and material flow in the MSW management system was conducted. Subsequently, the inventory data were summarized into an input-output format, and a make-use input-output framework was applied. Furthermore, a production equilibrium model was established using a matrix representing the input- output relationship of energy and materials among the processes and sectors. Several levels of power generation efficiency from incineration were applied as a sensitivity analysis. The hybrid LCA indicated that the difference between the Bio and Ref scenarios, from the perspective of CO( 2) emissions, is relatively small. However, a 13-14% reduction of CO(2) emissions of the total waste management sector in Japan may be achieved by improving the efficiency of power generation from incineration from 10% to 25%.

  16. Evaluation of new alternatives in wastewater treatment plants based on dynamic modelling and life cycle assessment (DM-LCA).

    PubMed

    Bisinella de Faria, A B; Spérandio, M; Ahmadi, A; Tiruta-Barna, L

    2015-11-01

    With a view to quantifying the energy and environmental advantages of Urine Source-Separation (USS) combined with different treatment processes, five wastewater treatment plant (WWTP) scenarios were compared to a reference scenario using Dynamic Modelling (DM) and Life Cycle Assessment (LCA), and an integrated DM-LCA framework was thus developed. Dynamic simulations were carried out in BioWin(®) in order to obtain a realistic evaluation of the dynamic behaviour and performance of plants under perturbation. LCA calculations were performed within Umberto(®) using the Ecoinvent database. A Python™ interface was used to integrate and convert simulation data and to introduce them into Umberto(®) to achieve a complete LCA evaluation comprising foreground and background processes. Comparisons between steady-state and dynamic simulations revealed the importance of considering dynamic aspects such as nutrient and flow peaks. The results of the evaluation highlighted the potential of the USS scenario for nutrient recovery whereas the Enhanced Primary Clarification (EPC) scenario gave increased biogas production and also notably decreased aeration consumption, leading to a positive energy balance. Both USS and EPC scenarios also showed increased stability of plant operation, with smaller daily averages of total nitrogen and phosphorus. In this context, USS and EPC results demonstrated that the coupled USS + EPC scenario and its combinations with agricultural spreading of N-rich effluent and nitritation/anaerobic deammonification could present an energy-positive balance with respectively 27% and 33% lower energy requirements and an increase in biogas production of 23%, compared to the reference scenario. The coupled scenarios also presented lesser environmental impacts (reduction of 31% and 39% in total endpoint impacts) along with effluent quality well within the specified limits. The marked environmental performance (reduction of global warming) when nitrogen is used

  17. The study of potable water treatment process in Algeria (boudouaou station) -by the application of life cycle assessment (LCA)

    PubMed Central

    2013-01-01

    Environmental impact assessment will soon become a compulsory phase in future potable water production projects, in algeria, especially, when alternative treatment processes such sedimentation ,coagulation sand filtration and Desinfection are considered. An impact assessment tool is therefore developed for the environmental evaluation of potable water production. in our study The evaluation method used is the life cycle assessment (LCA) for the determination and evaluation of potential impact of a drink water station ,near algiers (SEAL-Boudouaoua). LCA requires both the identification and quantification of materials and energy used in all stages of the product’s life, when the inventory information is acquired, it will then be interpreted into the form of potential impact “ eco-indicators 99” towards study areas covered by LCA, using the simapro6 soft ware for water treatment process is necessary to discover the weaknesses in the water treatment process in order for it to be further improved ensuring quality life. The main source shown that for the studied water treatment process, the highest environmental burdens are coagulant preparation (30% for all impacts), mineral resource and ozone layer depletion the repartition of the impacts among the different processes varies in comparison with the other impacts. Mineral resources are mainly consumed during alumine sulfate solution preparation; Ozone layer depletion originates mostly from tetrachloromethane emissions during alumine sulfate production. It should also be noted that, despite the small doses needed, ozone and active Carbone treatment generate significant impacts with a contribution of 10% for most of the impacts. Moreover impacts of energy are used in producing pumps (20-25 GHC) for plant operation and the unitary processes (coagulation, sand filtration decantation) and the most important impacts are localized in the same equipment (40-75 GHC) and we can conclude that: – Pre-treatment, pumping and

  18. The study of potable water treatment process in Algeria (boudouaou station) -by the application of life cycle assessment (LCA).

    PubMed

    Mohamed-Zine, Messaoud-Boureghda; Hamouche, Aksas; Krim, Louhab

    2013-12-19

    Environmental impact assessment will soon become a compulsory phase in future potable water production projects, in algeria, especially, when alternative treatment processes such sedimentation ,coagulation sand filtration and Desinfection are considered. An impact assessment tool is therefore developed for the environmental evaluation of potable water production. in our study The evaluation method used is the life cycle assessment (LCA) for the determination and evaluation of potential impact of a drink water station ,near algiers (SEAL-Boudouaoua).LCA requires both the identification and quantification of materials and energy used in all stages of the product's life, when the inventory information is acquired, it will then be interpreted into the form of potential impact " eco-indicators 99" towards study areas covered by LCA, using the simapro6 soft ware for water treatment process is necessary to discover the weaknesses in the water treatment process in order for it to be further improved ensuring quality life. The main source shown that for the studied water treatment process, the highest environmental burdens are coagulant preparation (30% for all impacts), mineral resource and ozone layer depletion the repartition of the impacts among the different processes varies in comparison with the other impacts. Mineral resources are mainly consumed during alumine sulfate solution preparation; Ozone layer depletion originates mostly from tetrachloromethane emissions during alumine sulfate production. It should also be noted that, despite the small doses needed, ozone and active Carbone treatment generate significant impacts with a contribution of 10% for most of the impacts.Moreover impacts of energy are used in producing pumps (20-25 GHC) for plant operation and the unitary processes (coagulation, sand filtration decantation) and the most important impacts are localized in the same equipment (40-75 GHC) and we can conclude that:- Pre-treatment, pumping and EDR (EDR: 0

  19. Proposal of Environmental Impact Assessment Method for Concrete in South Korea: An Application in LCA (Life Cycle Assessment)

    PubMed Central

    Kim, Tae Hyoung; Tae, Sung Ho

    2016-01-01

    This study aims to develop a system for assessing the impact of the substances discharged from concrete production process on six environmental impact categories, i.e., global warming (GWP), acidification (AP), eutrophication (EP), abiotic depletion (ADP), ozone depletion (ODP), and photochemical oxidant creation (POCP), using the life a cycle assessment (LCA) method. To achieve this, this study proposed an LCA method specifically applicable to the Korean concrete industry by adapting the ISO standards to suit the Korean situations. The proposed LCA method involves a system that performs environmental impact assessment on the basis of input information on concrete mix design, transport distance, and energy consumption in a batch plant. The Concrete Lifecycle Assessment System (CLAS) thus developed provides user-friendly support for environmental impact assessment with specialized database for concrete mix materials and energy sources. In the case analysis using the CLAS, among the substances discharged from the production of 24 MPa concrete, those contributing to GWP, AP, EP, ADP, ODP, and POCP were assessed to amount to 309 kg-CO2 eq/m3, 28.7 kg-SO2 eq/m3, 5.21 kg-PO43− eq/m3, 0.000049 kg-CFC11 eq/m3, 34 kg/m3, and 21 kg-Ethylene eq/m3, respectively. Of these six environmental impact categories selected for the LCA in this study, ordinary Portland cement (OPC) was found to contribute most intensely to GWP and POCP, and aggregates, to AP, EP, ODP, and ADP. It was also found that the mix design with increased prop proportion of recycled aggregate was found to contribute to reducing the impact in all other categories. PMID:27827843

  20. Proposal of Environmental Impact Assessment Method for Concrete in South Korea: An Application in LCA (Life Cycle Assessment).

    PubMed

    Kim, Tae Hyoung; Tae, Sung Ho

    2016-11-02

    This study aims to develop a system for assessing the impact of the substances discharged from concrete production process on six environmental impact categories, i.e., global warming (GWP), acidification (AP), eutrophication (EP), abiotic depletion (ADP), ozone depletion (ODP), and photochemical oxidant creation (POCP), using the life a cycle assessment (LCA) method. To achieve this, this study proposed an LCA method specifically applicable to the Korean concrete industry by adapting the ISO standards to suit the Korean situations. The proposed LCA method involves a system that performs environmental impact assessment on the basis of input information on concrete mix design, transport distance, and energy consumption in a batch plant. The Concrete Lifecycle Assessment System (CLAS) thus developed provides user-friendly support for environmental impact assessment with specialized database for concrete mix materials and energy sources. In the case analysis using the CLAS, among the substances discharged from the production of 24 MPa concrete, those contributing to GWP, AP, EP, ADP, ODP, and POCP were assessed to amount to 309 kg-CO₂ eq/m³, 28.7 kg-SO₂ eq/m³, 5.21 kg-PO₄(3-) eq/m³, 0.000049 kg-CFC11 eq/m³, 34 kg/m³, and 21 kg-Ethylene eq/m³, respectively. Of these six environmental impact categories selected for the LCA in this study, ordinary Portland cement (OPC) was found to contribute most intensely to GWP and POCP, and aggregates, to AP, EP, ODP, and ADP. It was also found that the mix design with increased prop proportion of recycled aggregate was found to contribute to reducing the impact in all other categories.

  1. LIFE CYCLE ASSESSMENT: AN INTERNATIONAL EXPERIENCE

    EPA Science Inventory

    Life Cycle Assessment (LCA) is used to evaluate environmental burdens associated with a product, process or activity by identifying and quantifying relevant inputs and outputs of the defined system and evaluating their potential impacts. This article outlines the four components ...

  2. How to conduct a proper sensitivity analysis in life cycle assessment: taking into account correlations within LCI data and interactions within the LCA calculation model.

    PubMed

    Wei, Wei; Larrey-Lassalle, Pyrene; Faure, Thierry; Dumoulin, Nicolas; Roux, Philippe; Mathias, Jean-Denis

    2015-01-06

    Sensitivity analysis (SA) is a significant tool for studying the robustness of results and their sensitivity to uncertainty factors in life cycle assessment (LCA). It highlights the most important set of model parameters to determine whether data quality needs to be improved, and to enhance interpretation of results. Interactions within the LCA calculation model and correlations within Life Cycle Inventory (LCI) input parameters are two main issues among the LCA calculation process. Here we propose a methodology for conducting a proper SA which takes into account the effects of these two issues. This study first presents the SA in an uncorrelated case, comparing local and independent global sensitivity analysis. Independent global sensitivity analysis aims to analyze the variability of results because of the variation of input parameters over the whole domain of uncertainty, together with interactions among input parameters. We then apply a dependent global sensitivity approach that makes minor modifications to traditional Sobol indices to address the correlation issue. Finally, we propose some guidelines for choosing the appropriate SA method depending on the characteristics of the model and the goals of the study. Our results clearly show that the choice of sensitivity methods should be made according to the magnitude of uncertainty and the degree of correlation.

  3. BROAD-BASED ENVIRONMENTAL LIFE CYCLE ASSESSMENT

    EPA Science Inventory

    Pollution prevention through Life Cycle Assessment (LCA) is a departure from evaluating waste management options that look mainly at single issues such as recyclability or reduced toxicity. An LCA is a snapshot in time of inputs and outputs. It can be used as an objective technic...

  4. Enhancement of life cycle assessment (LCA) methodology to include the effect of surface albedo on climate change: Comparing black and white roofs.

    PubMed

    Susca, Tiziana

    2012-04-01

    Traditionally, life cycle assessment (LCA) does not estimate a key property: surface albedo. Here an enhancement of the LCA methodology has been proposed through the development and employment of a time-dependent climatological model for including the effect of surface albedo on climate. The theoretical findings derived by the time-dependent model have been applied to the case study of a black and a white roof evaluated in the time-frames of 50 and 100 years focusing on the impact on global warming potential. The comparative life cycle impact assessment of the two roofs shows that the high surface albedo plays a crucial role in offsetting radiative forcings. In the 50-year time horizon, surface albedo is responsible for a decrease in CO(2)eq of 110-184 kg and 131-217 kg in 100 years. Furthermore, the white roof compared to the black roof, due to the high albedo, decreases the annual energy use of about 3.6-4.5 kWh/m(2).

  5. Possibilities and limitations of life cycle assessment (LCA) in the development of waste utilization systems - Applied examples for a region in Northern Germany.

    PubMed

    Wittmaier, M; Langer, S; Sawilla, B

    2009-05-01

    Against the background of increasing concerns about climate change, the reduction of greenhouse gas emissions has become an integral part of processes in both the waste management and the energy industries. This is reflected in the development of new waste treatment concepts, in which domestic and commercial waste is treated with the aim of utilizing its energy content, while at the same time recycling as much of its material content as possible. Life cycle assessment (LCA) represents a method of assessing the environmental relevance of a waste management system, the basis of which is a material flow analysis of the system in question. GHG emissions from different options for thermal treatment and energy recovery from waste as applied to a region in Northern Germany have been analyzed by the LCA approach and an indicative LCA, which only considers those emissions resulting from operating stages of the system. Operating stages have the main share of emissions compared to pre-processing stages. Results show that through specific separation of waste material flows and highly efficient energy recovery, thermal treatment and energy generation from waste can be optimized resulting in reduction of emissions of greenhouse gases. There are also other areas of waste utilization, currently given little attention, such as the solar drying of sewage sludge, which can considerably contribute to the reduction of greenhouse gas emissions.

  6. Possibilities and limitations of life cycle assessment (LCA) in the development of waste utilization systems - Applied examples for a region in Northern Germany

    SciTech Connect

    Wittmaier, M. Langer, S.; Sawilla, B.

    2009-05-15

    Against the background of increasing concerns about climate change, the reduction of greenhouse gas emissions has become an integral part of processes in both the waste management and the energy industries. This is reflected in the development of new waste treatment concepts, in which domestic and commercial waste is treated with the aim of utilizing its energy content, while at the same time recycling as much of its material content as possible. Life cycle assessment (LCA) represents a method of assessing the environmental relevance of a waste management system, the basis of which is a material flow analysis of the system in question. GHG emissions from different options for thermal treatment and energy recovery from waste as applied to a region in Northern Germany have been analyzed by the LCA approach and an indicative LCA, which only considers those emissions resulting from operating stages of the system. Operating stages have the main share of emissions compared to pre-processing stages. Results show that through specific separation of waste material flows and highly efficient energy recovery, thermal treatment and energy generation from waste can be optimized resulting in reduction of emissions of greenhouse gases. There are also other areas of waste utilization, currently given little attention, such as the solar drying of sewage sludge, which can considerably contribute to the reduction of greenhouse gas emissions.

  7. LCA (Life Cycle Assessment) of Parabolic Trough CSP: Materials Inventory and Embodied GHG Emissions from Two-Tank Indirect and Thermocline Thermal Storage (Presentation)

    SciTech Connect

    Heath, G.; Burkhardt, J.; Turchi, C.; Decker, T.; Kutscher, C.

    2009-07-20

    In the United States, concentrating solar power (CSP) is one of the most promising renewable energy (RE) technologies for reduction of electric sector greenhouse gas (GHG) emissions and for rapid capacity expansion. It is also one of the most price-competitive RE technologies, thanks in large measure to decades of field experience and consistent improvements in design. One of the key design features that makes CSP more attractive than many other RE technologies, like solar photovoltaics and wind, is the potential for including relatively low-cost and efficient thermal energy storage (TES), which can smooth the daily fluctuation of electricity production and extend its duration into the evening peak hours or longer. Because operational environmental burdens are typically small for RE technologies, life cycle assessment (LCA) is recognized as the most appropriate analytical approach for determining their environmental impacts of these technologies, including CSP. An LCA accounts for impacts from all stages in the development, operation, and decommissioning of a CSP plant, including such upstream stages as the extraction of raw materials used in system components, manufacturing of those components, and construction of the plant. The National Renewable Energy Laboratory (NREL) is undertaking an LCA of modern CSP plants, starting with those of parabolic trough design.

  8. A Life Cycle Assessment (LCA) comparison of three management options for waste papers: bioethanol production, recycling and incineration with energy recovery.

    PubMed

    Wang, Lei; Templer, Richard; Murphy, Richard J

    2012-09-01

    This study uses Life Cycle Assessment (LCA) to assess the environmental profiles and greenhouse gas (GHG) emissions for bioethanol production from waste papers and to compare them with the alternative waste management options of recycling or incineration with energy recovery. Bioethanol production scenarios both with and without pre-treatments were conducted. It was found that an oxidative lime pre-treatment reduced GHG emissions and overall environmental burdens for a newspaper-to-bioethanol process whereas a dilute acid pre-treatment raised GHG emissions and overall environmental impacts for an office paper-to-bioethanol process. In the comparison of bioethanol production systems with alternative management of waste papers by different technologies, it was found that the environmental profiles of each system vary significantly and this variation affects the outcomes of the specific comparisons made. Overall, a number of configurations of bioethanol production from waste papers offer environmentally favourable or neutral profiles when compared with recycling or incineration.

  9. Conceptual Framework To Extend Life Cycle Assessment ...

    EPA Pesticide Factsheets

    Life Cycle Assessment (LCA) is a decision-making tool that accounts for multiple impacts across the life cycle of a product or service. This paper presents a conceptual framework to integrate human health impact assessment with risk screening approaches to extend LCA to include near-field chemical sources (e.g., those originating from consumer products and building materials) that have traditionally been excluded from LCA. A new generation of rapid human exposure modeling and high-throughput toxicity testing is transforming chemical risk prioritization and provides an opportunity for integration of screening-level risk assessment (RA) with LCA. The combined LCA and RA approach considers environmental impacts of products alongside risks to human health, which is consistent with regulatory frameworks addressing RA within a sustainability mindset. A case study is presented to juxtapose LCA and risk screening approaches for a chemical used in a consumer product. The case study demonstrates how these new risk screening tools can be used to inform toxicity impact estimates in LCA and highlights needs for future research. The framework provides a basis for developing tools and methods to support decision making on the use of chemicals in products. This paper presents a conceptual framework for including near-field exposures into Life Cycle Assessment using advanced human exposure modeling and high-throughput tools

  10. PRODUCT LIFE-CYCLE ASSESSMENT: INVENTORY GUIDELINES AND PRINCIPLES

    EPA Science Inventory

    The Life Cycle Assessment (LCA) can be used as an objective technical tool to evaluate the environmental consequences of a product, process, or activity holistically, across its entire life cycle. omplete LCA can be viewed as consisting of three complementary components (1) the i...

  11. The influence of catalysts on biofuel life cycle analysis (LCA)

    DOE PAGES

    Benavides, Pahola Thathiana; Cronauer, Donald C.; Adom, Felix K.; ...

    2017-01-21

    Catalysts play an important role in biofuel production but are rarely included in biofuel life cycle analysis (LCA). In this work, we estimate the cradle-to-gate energy consumption and greenhouse gas (GHG) emissions of Pt/γ-Al2O3, CoMo/γ-Al2O3, and ZSM-5, catalysts that could be used in processes to convert biomass to biofuels. We also consider the potential impacts of catalyst recovery and recycling. Integrating the energy and environmental impacts of CoMo/γ-Al2O3 and ZSM-5 into an LCA of renewable gasoline produced via in-situ and ex-situ fast pyrolysis of a blended woody feedstock revealed that the ZSM-5, with cradle-to-gate GHG emissions of 7.7 kg CO2e/kg,more » could influence net life-cycle GHG emissions of the renewable gasoline (1.7 gCO2e/MJ for the in-situ process, 1.2 gCO2e/MJ for the ex-situ process) by up to 14% depending on the loading rate. CoMo/γ-Al2O3 had a greater GHG intensity (9.6 kg CO2e/kg) than ZSM-5, however, it contributed approximately only 1% to the life-cycle GHG emissions of the renewable gasoline because of the small amount of this catalyst needed per kg of biofuel produced. As a result, given that catalysts can contribute significantly to biofuel life-cycle GHG emissions depending on the GHG intensity of their production and their consumption rates, biofuel LCAs should consider the potential influence of catalysts on LCA results.« less

  12. Life cycle thinking in impact assessment—Current practice and LCA gains

    SciTech Connect

    Bidstrup, Morten

    2015-09-15

    It has been advocated that life cycle thinking (LCT) should be applied in impact assessment (IA) to a greater extent, since some development proposals pose a risk of significant impacts throughout the interconnected activities of product systems. Multiple authors have proposed the usage of life cycle assessment (LCA) for such analytical advancement, but little to no research on this tool application has been founded in IA practice so far. The aim of this article is to elaborate further on the gains assigned to application of LCA. The research builds on a review of 85 Danish IA reports, which were analysed for analytical appropriateness and application of LCT. Through a focus on the non-technical summary, the conclusion and the use of specific search words, passages containing LCT were searched for in each IA report. These passages were then analysed with a generic framework. The results reveal that LCT is appropriate for most of the IAs, but that LCA is rarely applied to provide such a perspective. Without LCA, the IAs show mixed performance in regard to LCT. Most IAs do consider the product provision of development proposals, but they rarely relate impacts to this function explicitly. Many IAs do consider downstream impacts, but assessments of upstream, distant impacts are generally absent. It is concluded that multiple analytical gains can be attributed to greater application of LCA in IA practice, though some level of LCT already exists. - Highlights: • Life cycle thinking is appropriate across the types and topics of impact assessment. • Yet, life cycle assessment is rarely used for adding such perspective. • Impact assessment practice does apply some degree of life cycle thinking. • However, application of life cycle assessment could bring analytical gains.

  13. Uncertainty in Life Cycle Assessment of Nanomaterials

    NASA Astrophysics Data System (ADS)

    Seager, T. P.; Linkov, I.

    Despite concerns regarding environmental fate and toxicology, engineered nanostructured material manufacturing is expanding at an increasingly rapid pace. In particular, the unique properties of single walled carbon nanotubes (SWCNT) have made them attractive in many areas, including high-tech power applications such as experimental batteries, fuel cells or electrical wiring. The intensity of research interest in SWCNT has raised questions regarding the life cycle environmental impact of nanotechnologies, including assessment of: worker and consumer safety, greenhouse gas emissions, toxicological risks associated with production or product emissions and the disposition of nanoproducts at end of life. However, development of appropriate nanotechnology assessment tools has lagged progress in the nanotechnologies themselves. In particular, current approaches to life cycle assessment (LCA) — originally developed for application in mature manufacturing industries such as automobiles and chemicals — suffer from several shortcomings that make applicability to nanotechnologies problematic. Among these are uncertainties related to the variability of material properties, toxicity and risk, technology performance in the use phase, nanomaterial degradation and change during the product life cycle and the impact assessment stage of LCA. This chapter expounds upon the unique challenges presented by nanomaterials in general, specifies sources of uncertainty and variability in LCA of SWCNT for use in electric and hybrid vehicle batteries and makes recommendations for modeling and decision-making using LCA in a multi-criteria decision analysis framework under conditions of high uncertainty.1

  14. Life cycle assessment of a rock crusher

    SciTech Connect

    Landfield, A.H.; Karra, V.

    1999-07-01

    Nordberg, Inc., a capital equipment manufacturer, performed a Life Cycle Assessment study on its rock crusher to aid in making decisions on product design and energy improvements. Life Cycle Assessment (LCA) is a relatively new cutting edge environmental tool recently standardized by ISO that provides quantitative environmental and energy data on products or processes. This paper commences with a brief introduction to LCA and presents the system boundaries, modeling and assumptions for the rock crusher study. System boundaries include all life major cycle stages except manufacturing and assembly of the crusher. Results of the LCA show that over 99% of most of the flows into and out of the system may be attributed to the use phase of the rock crusher. Within the use phase itself, over 95% of each environmental inflow and outflow (with some exceptions) are attributed to electricity consumption, and not the replacement of spares/wears or lubricating oil over the lifetime of the crusher. Results tables and charts present selected environmental flows, including CO{sub 2} NOx, SOx, particulate matter, and energy consumption, for each of the rock crusher life cycle stages and the use phase. This paper aims to demonstrate the benefits of adopting a rigorous scientific approach to assess energy and environmental impacts over the life cycle of capital equipment. Nordberg has used these results to enhance its engineering efforts toward developing an even more energy efficient machine to further progress its vision of providing economic solutions to its customers by reducing the crusher operating (mainly electricity) costs.

  15. A new data architecture for advancing life cycle assessment

    EPA Science Inventory

    IntroductionLife cycle assessment (LCA) has a technical architecture that limits data interoperability, transparency, and automated integration of external data. More advanced information technologies offer promise for increasing the ease with which information can be synthesized...

  16. Life Cycle Assessment Software for Product and Process Sustainability Analysis

    ERIC Educational Resources Information Center

    Vervaeke, Marina

    2012-01-01

    In recent years, life cycle assessment (LCA), a methodology for assessment of environmental impacts of products and services, has become increasingly important. This methodology is applied by decision makers in industry and policy, product developers, environmental managers, and other non-LCA specialists working on environmental issues in a wide…

  17. [Life cycle assessment on oxygen biofuels].

    PubMed

    Yi, Hong-hong; Zhu, Yong-qing; Wang, Jian-xin; Hao, Ji-ming

    2005-11-01

    Life Cycle Assessment (LCA) was used to compare energy consumption and pollutant emissions of two oxygen biofuels, ethanol and methyl ester, which were mixed with gasoline and diesel oil at levels of 10% and 30% of the biofuel. The future of oxygen-containing biofuels was analyzed and forecasted. The results show that the mixture of biofuels and petroleum products can reduce crude oil consumption, but only methyl ester alternative fuel can reduce fossil fuel consumption. Use of methyl ester mixtures would reduce NOx by 50% compared to gasoline or diesel on a life cycle basis; however, NOx would increase using ethanol. Each alternative fuel mixture reduced PM10 emissions from the vehicle and methyl ester decreased VOCs. The SO2 emissions from the fuel production processes, which account for about 80% of SO2 life cycle emissions, must be strictly controlled.

  18. LCACCESS: A GLOBAL DIRECTORY OF LIFE CYCLE ASSESSMENT RESOURCES

    EPA Science Inventory

    LCAccess is an EPA-sponsored website intended to promote the use of Life Cycle Assessment (LCA) in business decision-making by faciliatating access to data sources that are useful in developing a life cycle inventory (LCI). While LCAccess does not itself contain data, it is a sea...

  19. Dealing with Emergy Algebra in the Life Cycle Assessment Framework

    EPA Science Inventory

    The Life Cycle Inventory (LCI) represents one of the four steps of the Life Cycle Assessment (LCA) methodology, which is a standardized procedure (ISO 14040:2006) to estimate the environmental impacts generated by the production, use and disposal of goods and services. In this co...

  20. EVALUATING THE GREENNESS OF IONIC LIQUIDS VIA LIFE CYCLE ASSESSMENT

    EPA Science Inventory

    Ionic Liquids have been suggested as "greener" replacements to traditional solvents. However, the environmental impacts of the life cycle phases have not been studied. Such a "cradle to gate" Life Cycle Assessment (LCA) for comparing the environmental impact of various solvents...

  1. The changing nature of life cycle assessment

    PubMed Central

    McManus, Marcelle C.; Taylor, Caroline M.

    2015-01-01

    LCA has evolved from its origins in energy analysis in the 1960s and 70s into a wide ranging tool used to determine impacts of products or systems over several environmental and resource issues. The approach has become more prevalent in research, industry and policy. Its use continues to expand as it seeks to encompass impacts as diverse as resource accounting and social well being. Carbon policy for bioenergy has driven many of these changes. Enabling assessment of complex issues over a life cycle basis is beneficial, but the process is sometimes difficult. LCA's use in framing is increasingly complex and more uncertain, and in some cases, irreconcilable. The charged environment surrounding biofuels and bioenergy exacerbates all of these. Reaching its full potential to help guide difficult policy discussions and emerging research involves successfully managing LCA's transition from attributional to consequential and from retrospective to prospective. This paper examines LCA's on-going evolution and its use within bioenergy deployment. The management of methodological growth in the context of the unique challenges associated with bioenergy and biofuels is explored. Changes seen in bioenergy LCA will bleed into other LCA arenas, especially where it is important that a sustainable solution is chosen. PMID:26664146

  2. Guidance on Data Quality Assessment for Life Cycle Inventory Data

    EPA Science Inventory

    Data quality within Life Cycle Assessment (LCA) is a significant issue for the future support and development of LCA as a decision support tool and its wider adoption within industry. In response to current data quality standards such as the ISO 14000 series, various entities wit...

  3. Incorporating exposure science into life-cycle assessment

    EPA Science Inventory

    Life-cycle assessment (LCA) is used to estimate the potential for environmental damage that may be caused by a product or process, ideally before the product or process begins. LCA includes all of the steps from extracting natural resources through manufacturing through product u...

  4. LIFE CYCLE IMPACT ASSESSMENT SOPHISTICATION

    EPA Science Inventory

    An international workshop was held in Brussels on 11/29-30/1998, to discuss LCIA Sophistication. LCA experts from North America, Europs, and Asia attended. Critical reviews of associated factors, including current limitations of available assessment methodologies, and comparison...

  5. Life Cycle Impact Assessment (videotape)

    EPA Science Inventory

    Originally developed for the US EPA Regions, this presentation is available to the general public via the internet. The presentation focuses on the basics of Life Cycle Impact Assessment (LCIA) including the ISO 14040 series framework and a quick overview of each of the steps wi...

  6. LIFE CYCLE ASSESSMENT IN MANAGEMENT, PRODUCT AND PROCESS DESIGN, AND POLICY DECISION MAKING: A CONFERENCE REPORT

    EPA Science Inventory

    On 24 September 2003, life cycle assessment (LCA) practitioners and decision makers gathered at the InLCA/LCM Conference in Seattle, Washington, USA (see http://www.lcacenter.org/InLCA-LCM03/index.html) to discuss the role of LCA in management, product design, process development...

  7. Illustrating anticipatory life cycle assessment for emerging photovoltaic technologies.

    PubMed

    Wender, Ben A; Foley, Rider W; Prado-Lopez, Valentina; Ravikumar, Dwarakanath; Eisenberg, Daniel A; Hottle, Troy A; Sadowski, Jathan; Flanagan, William P; Fisher, Angela; Laurin, Lise; Bates, Matthew E; Linkov, Igor; Seager, Thomas P; Fraser, Matthew P; Guston, David H

    2014-09-16

    Current research policy and strategy documents recommend applying life cycle assessment (LCA) early in research and development (R&D) to guide emerging technologies toward decreased environmental burden. However, existing LCA practices are ill-suited to support these recommendations. Barriers related to data availability, rapid technology change, and isolation of environmental from technical research inhibit application of LCA to developing technologies. Overcoming these challenges requires methodological advances that help identify environmental opportunities prior to large R&D investments. Such an anticipatory approach to LCA requires synthesis of social, environmental, and technical knowledge beyond the capabilities of current practices. This paper introduces a novel framework for anticipatory LCA that incorporates technology forecasting, risk research, social engagement, and comparative impact assessment, then applies this framework to photovoltaic (PV) technologies. These examples illustrate the potential for anticipatory LCA to prioritize research questions and help guide environmentally responsible innovation of emerging technologies.

  8. Life cycle assessment analysis of supercritical coal power units

    NASA Astrophysics Data System (ADS)

    Ziębik, Andrzej; Hoinka, Krzysztof; Liszka, Marcin

    2010-09-01

    This paper presents the Life Cycle Assessment (LCA) analysis concerning the selected options of supercritical coal power units. The investigation covers a pulverized power unit without a CCS (Carbon Capture and Storage) installation, a pulverized unit with a "post-combustion" installation (MEA type) and a pulverized power unit working in the "oxy-combustion" mode. For each variant the net electric power amounts to 600 MW. The energy component of the LCA analysis has been determined. It describes the depletion of non-renewable natural resources. The energy component is determined by the coefficient of cumulative energy consumption in the life cycle. For the calculation of the ecological component of the LCA analysis the cumulative CO2 emission has been applied. At present it is the basic emission factor for the LCA analysis of power plants. The work also presents the sensitivity analysis of calculated energy and ecological factors.

  9. Life Cycle Assessment of Wall Systems

    NASA Astrophysics Data System (ADS)

    Ramachandran, Sriranjani

    Natural resource depletion and environmental degradation are the stark realities of the times we live in. As awareness about these issues increases globally, industries and businesses are becoming interested in understanding and minimizing the ecological footprints of their activities. Evaluating the environmental impacts of products and processes has become a key issue, and the first step towards addressing and eventually curbing climate change. Additionally, companies are finding it beneficial and are interested in going beyond compliance using pollution prevention strategies and environmental management systems to improve their environmental performance. Life-cycle Assessment (LCA) is an evaluative method to assess the environmental impacts associated with a products' life-cycle from cradle-to-grave (i.e. from raw material extraction through to material processing, manufacturing, distribution, use, repair and maintenance, and finally, disposal or recycling). This study focuses on evaluating building envelopes on the basis of their life-cycle analysis. In order to facilitate this analysis, a small-scale office building, the University Services Building (USB), with a built-up area of 148,101 ft2 situated on ASU campus in Tempe, Arizona was studied. The building's exterior envelope is the highlight of this study. The current exterior envelope is made of tilt-up concrete construction, a type of construction in which the concrete elements are constructed horizontally and tilted up, after they are cured, using cranes and are braced until other structural elements are secured. This building envelope is compared to five other building envelope systems (i.e. concrete block, insulated concrete form, cast-in-place concrete, steel studs and curtain wall constructions) evaluating them on the basis of least environmental impact. The research methodology involved developing energy models, simulating them and generating changes in energy consumption due to the above mentioned

  10. Life Cycle Assessment Framework for Indoor Emissions of Synthetic Nanoparticles

    EPA Science Inventory

    Life-Cycle Assessment (LCA) is a well-established method to evaluate impacts of chemicals on the environment and human health along the lifespan of products. However, the increasingly produced and applied nanomaterials (defined as one dimension <100 nm) show particular characteri...

  11. AN INTERNATIONAL WORKSHOP ON LIFE CYCLE IMPACT ASSESSMENT SOPHISTICATION

    EPA Science Inventory

    On November 29-30,1998 in Brussels, an international workshop was held to discuss Life Cycle Impact Assessment (LCIA) Sophistication. Approximately 50 LCA experts attended the workshop from North America, Europe, and Asia. Prominant practicioners and researchers were invited to ...

  12. Life Cycle Assessment as an Environmental Management Tool

    EPA Science Inventory

    Listed by Time Magazine as the method behind calculating “Ecological Intelligence,” one of “10 Ideas Changing the World Right Now” (March 23, 2009), Life Cycle Assessment (LCA) is the tool that is used to understand the environmental impacts of the products we make and sell. Jo...

  13. Sustainability metrics: life cycle assessment and green design in polymers.

    PubMed

    Tabone, Michaelangelo D; Cregg, James J; Beckman, Eric J; Landis, Amy E

    2010-11-01

    This study evaluates the efficacy of green design principles such as the "12 Principles of Green Chemistry," and the "12 Principles of Green Engineering" with respect to environmental impacts found using life cycle assessment (LCA) methodology. A case study of 12 polymers is presented, seven derived from petroleum, four derived from biological sources, and one derived from both. The environmental impacts of each polymer's production are assessed using LCA methodology standardized by the International Organization for Standardization (ISO). Each polymer is also assessed for its adherence to green design principles using metrics generated specifically for this paper. Metrics include atom economy, mass from renewable sources, biodegradability, percent recycled, distance of furthest feedstock, price, life cycle health hazards and life cycle energy use. A decision matrix is used to generate single value metrics for each polymer evaluating either adherence to green design principles or life-cycle environmental impacts. Results from this study show a qualified positive correlation between adherence to green design principles and a reduction of the environmental impacts of production. The qualification results from a disparity between biopolymers and petroleum polymers. While biopolymers rank highly in terms of green design, they exhibit relatively large environmental impacts from production. Biopolymers rank 1, 2, 3, and 4 based on green design metrics; however they rank in the middle of the LCA rankings. Polyolefins rank 1, 2, and 3 in the LCA rankings, whereas complex polymers, such as PET, PVC, and PC place at the bottom of both ranking systems.

  14. Emerging approaches, challenges and opportunities in life cycle assessment.

    PubMed

    Hellweg, Stefanie; Milà i Canals, Llorenç

    2014-06-06

    In the modern economy, international value chains--production, use, and disposal of goods--have global environmental impacts. Life Cycle Assessment (LCA) aims to track these impacts and assess them from a systems perspective, identifying strategies for improvement without burden shifting. We review recent developments in LCA, including existing and emerging applications aimed at supporting environmentally informed decisions in policy-making, product development and procurement, and consumer choices. LCA constitutes a viable screening tool that can pinpoint environmental hotspots in complex value chains, but we also caution that completeness in scope comes at the price of simplifications and uncertainties. Future advances of LCA in enhancing regional detail and accuracy as well as broadening the assessment to economic and social aspects will make it more relevant for producers and consumers alike.

  15. Ecodesign — Carbon Footprint — Life Cycle AssessmentLife Cycle Sustainability Analysis. A Flexible Framework for a Continuum of Tools

    NASA Astrophysics Data System (ADS)

    Heijungs, Reinout

    2010-01-01

    Life cycle assessment (LCA) is a tool for answering questions related to environmental impacts of products. It is a comprehensive tool, addressing the entire life cycle, and addressing the full spectrum of environmental impacts. There are two opposite movements occurring: LCA is getting smaller, and it is getting broader. This presentation presents the general framework for a broader life cycle sustainability analysis (LCSA), and shows how the practical work related to doing an LCA, a carbon footprint, or an analysis for ecodesign, can be seen as special cases.

  16. Life cycle assessment part 2: current impact assessment practice.

    PubMed

    Pennington, D W; Potting, J; Finnveden, G; Lindeijer, E; Jolliet, O; Rydberg, T; Rebitzer, G

    2004-07-01

    Providing our society with goods and services contributes to a wide range of environmental impacts. Waste generation, emissions and the consumption of resources occur at many stages in a product's life cycle-from raw material extraction, energy acquisition, production and manufacturing, use, reuse, recycling, through to ultimate disposal. These all contribute to impacts such as climate change, stratospheric ozone depletion, photooxidant formation (smog), eutrophication, acidification, toxicological stress on human health and ecosystems, the depletion of resources and noise-among others. The need exists to address these product-related contributions more holistically and in an integrated manner, providing complimentary insights to those of regulatory/process-oriented methodologies. A previous article (Part 1, Rebitzer et al., 2004) outlined how to define and model a product's life cycle in current practice, as well as the methods and tools that are available for compiling the associated waste, emissions and resource consumption data into a life cycle inventory. This article highlights how practitioners and researchers from many domains have come together to provide indicators for the different impacts attributable to products in the life cycle impact assessment (LCIA) phase of life cycle assessment (LCA).

  17. Life cycle assessment in market, research, and policy: Harmonization beyond standardization.

    PubMed

    Zamagni, Alessandra; Cutaia, Laura

    2015-07-01

    This article introduces the special series "LCA in Market Research and Policy: Harmonization beyond standardization," which was generated from the 19th SETAC Life Cycle Assessment (LCA) Case Study Symposium held November 2013, in Rome, Italy. This collection of invited articles reflects the purpose of symposium and focuses on how LCA can support the decision-making process at all levels (i.e., in industry and policy contexts) and how LCA results can be efficiently communicated and used to support market strategies.

  18. EVALUATION OF PUBLIC DATABASES AS SOURCES OF DATA FOR LIFE CYCLE ASSESSMENTS

    EPA Science Inventory

    Methods to determine the environmental effects of production systems must encourage a comprehensive evaluation of all "upstream" and "downstream" effects and their interrelationships. This cradle-to-grave approach, called Life Cycle Assessment (LCA), has led to the development...

  19. ENVIRONMENTAL COMPARISON METRICS FOR LIFE CYCLE IMPACT ASSESSMENT AND PROCESS DESIGN

    EPA Science Inventory

    Metrics (potentials, potency factors, equivalency factors or characterization factors) are available to support the environmental comparison of alternatives in application domains like proces design and product life-cycle assessment (LCA). These metrics typically provide relative...

  20. Area of Concern: a new paradigm in life cycle assessment for the development of footprint metrics

    EPA Science Inventory

    Purpose: As a class of environmental metrics, footprints have been poorly defined, have shared an unclear relationship to life cycle assessment (LCA), and the variety of approaches to quantification have sometimes resulted in confusing and contradictory messages in the marketplac...

  1. Life Cycle Assessment for the Production of Oil Palm Seeds.

    PubMed

    Muhamad, Halimah; Ai, Tan Yew; Khairuddin, Nik Sasha Khatrina; Amiruddin, Mohd Din; May, Choo Yuen

    2014-12-01

    The oil palm seed production unit that generates germinated oil palm seeds is the first link in the palm oil supply chain, followed by the nursery to produce seedling, the plantation to produce fresh fruit bunches (FFB), the mill to produce crude palm oil (CPO) and palm kernel, the kernel crushers to produce crude palm kernel oil (CPKO), the refinery to produce refined palm oil (RPO) and finally the palm biodiesel plant to produce palm biodiesel. This assessment aims to investigate the life cycle assessment (LCA) of germinated oil palm seeds and the use of LCA to identify the stage/s in the production of germinated oil palm seeds that could contribute to the environmental load. The method for the life cycle impact assessment (LCIA) is modelled using SimaPro version 7, (System for Integrated environMental Assessment of PROducts), an internationally established tool used by LCA practitioners. This software contains European and US databases on a number of materials in addition to a variety of European- and US-developed impact assessment methodologies. LCA was successfully conducted for five seed production units and it was found that the environmental impact for the production of germinated oil palm was not significant. The characterised results of the LCIA for the production of 1000 germinated oil palm seeds showed that fossil fuel was the major impact category followed by respiratory inorganics and climate change.

  2. Life Cycle Assessment for the Production of Oil Palm Seeds

    PubMed Central

    Muhamad, Halimah; Ai, Tan Yew; Khairuddin, Nik Sasha Khatrina; Amiruddin, Mohd Din; May, Choo Yuen

    2014-01-01

    The oil palm seed production unit that generates germinated oil palm seeds is the first link in the palm oil supply chain, followed by the nursery to produce seedling, the plantation to produce fresh fruit bunches (FFB), the mill to produce crude palm oil (CPO) and palm kernel, the kernel crushers to produce crude palm kernel oil (CPKO), the refinery to produce refined palm oil (RPO) and finally the palm biodiesel plant to produce palm biodiesel. This assessment aims to investigate the life cycle assessment (LCA) of germinated oil palm seeds and the use of LCA to identify the stage/s in the production of germinated oil palm seeds that could contribute to the environmental load. The method for the life cycle impact assessment (LCIA) is modelled using SimaPro version 7, (System for Integrated environMental Assessment of PROducts), an internationally established tool used by LCA practitioners. This software contains European and US databases on a number of materials in addition to a variety of European- and US-developed impact assessment methodologies. LCA was successfully conducted for five seed production units and it was found that the environmental impact for the production of germinated oil palm was not significant. The characterised results of the LCIA for the production of 1000 germinated oil palm seeds showed that fossil fuel was the major impact category followed by respiratory inorganics and climate change. PMID:27073598

  3. Life cycle assessment study of a Chinese desktop personal computer.

    PubMed

    Duan, Huabo; Eugster, Martin; Hischier, Roland; Streicher-Porte, Martin; Li, Jinhui

    2009-02-15

    Associated with the tremendous prosperity in world electronic information and telecommunication industry, there continues to be an increasing awareness of the environmental impacts related to the accelerating mass production, electricity use, and waste management of electronic and electric products (e-products). China's importance as both a consumer and supplier of e-products has grown at an unprecedented pace in recent decade. Hence, this paper aims to describe the application of life cycle assessment (LCA) to investigate the environmental performance of Chinese e-products from a global level. A desktop personal computer system has been selected to carry out a detailed and modular LCA which follows the ISO 14040 series. The LCA is constructed by SimaPro software version 7.0 and expressed with the Eco-indicator'99 life cycle impact assessment method. For a sensitivity analysis of the overall LCA results, the so-called CML method is used in order to estimate the influence of the choice of the assessment method on the result. Life cycle inventory information is complied by ecoinvent 1.3 databases, combined with literature and field investigations on the present Chinese situation. The established LCA study shows that that the manufacturing and the use of such devices are of the highest environmental importance. In the manufacturing of such devices, the integrated circuits (ICs) and the Liquid Crystal Display (LCD) are those parts contributing most to the impact. As no other aspects are taken into account during the use phase, the impact is due to the way how the electricity is produced. The final process steps--i.e. the end of life phase--lead to a clear environmental benefit if a formal and modern, up-to-date technical system is assumed, like here in this study.

  4. A Life-Cycle Assessment of Biofuels: Tracing Energy and Carbon through a Fuel-Production System

    ERIC Educational Resources Information Center

    Krauskopf, Sara

    2010-01-01

    A life-cycle assessment (LCA) is a tool used by engineers to make measurements of net energy, greenhouse gas production, water consumption, and other items of concern. This article describes an activity designed to walk students through the qualitative part of an LCA. It asks them to consider the life-cycle costs of ethanol production, in terms of…

  5. Integrated Metrics for Improving the Life Cycle Approach to Assessing Product System Sustainability

    EPA Science Inventory

    Life cycle approaches are critical for identifying and managing to reduce burdens in the sustainability of product systems. While these methods can indicate potential environmental impacts of a product, current Life Cycle Assessment (LCA) methods fail to integrate the multiple im...

  6. Comparison of energy-based indicators used in life cycle assessment tools for buildings

    EPA Science Inventory

    Traditionally, building rating systems focused on, among others, energy used during operational stage. Recently, there is a strong push by these rating systems to include the life cycle energy use of buildings, particularly using Life Cycle Assessment (LCA), by offering credits t...

  7. Life-cycle assessment of municipal solid waste landfill

    SciTech Connect

    Coulon, R.; Barlaz, M.A.; Ham, R.T.

    1995-12-31

    The Environmental Industries Association Research Foundation (EIA), in conjunction with Ecobalance and researchers from the Universities of Wisconsin and North Carolina State, are carrying out a comprehensive Life Cycle Assessment (LCA) of landfills. LCA is increasingly used in shaping national and international waste management policies. Little work has been done on sanitary landfills and thus their comparison with other waste management alternatives has not been properly evaluated. The main reasons are that: (1) the internal biological, physical and chemical decomposition processes are not fully understood, (2) these processes occur over a long period of time, (3) the need for modeling landfills has only recently become appreciated, and (4) existing models often deal with partial aspects of a landfill`s environmental impacts (e.g., greenhouse gases) and therefore can not be used in a comprehensive evaluation like LCA.

  8. Comparative life cycle assessment (LCA) of construction and demolition (C&D) derived biomass and U.S. northeast forest residuals gasification for electricity production.

    PubMed

    Nuss, Philip; Gardner, Kevin H; Jambeck, Jenna R

    2013-04-02

    With the goal to move society toward less reliance on fossil fuels and the mitigation of climate change, there is increasing interest and investment in the bioenergy sector. However, current bioenergy growth patterns may, in the long term, only be met through an expansion of global arable land at the expense of natural ecosystems and in competition with the food sector. Increasing thermal energy recovery from solid waste reduces dependence on fossil- and biobased energy production while enhancing landfill diversion. Using inventory data from pilot processes, this work assesses the cradle-to-gate environmental burdens of plasma gasification as a route capable of transforming construction and demolition (C&D) derived biomass (CDDB) and forest residues into electricity. Results indicate that the environmental burdens associated with CDDB and forest residue gasification may be similar to conventional electricity generation. Land occupation is lowest when CDDB is used. Environmental impacts are to a large extent due to coal cogasified, coke used as gasifier bed material, and fuel oil cocombusted in the steam boiler. However, uncertainties associated with preliminary system designs may be large, particularly the heat loss associated with pilot scale data resulting in overall low efficiencies of energy conversion to electricity; a sensitivity analysis assesses these uncertainties in further detail.

  9. LIFE CYCLE IMPACT ASSESSMENT - A GLOBAL PERSPECTIVE

    EPA Science Inventory

    Research within the field of life cycle impact assessment has greatly improved since the work of Heijungs and Guinee in 1992. Methodologies are currently available to address specific locations within North America, Europe and Asia. Internationally researchers are working togethe...

  10. LIFE CYCLE ASSESSMENT OF GASOLINE BLENDING OPTIONS

    EPA Science Inventory

    A life cycle assessment has been done to compare the potential environmental impacts of various gasoline blends that meet octane and vapour pressure specifications. The main blending components of alkylate, cracked gasoline and reformate have different octane and vapour pressure...

  11. Waste management through life cycle assessment of products

    NASA Astrophysics Data System (ADS)

    Borodin, Yu V.; Aliferova, T. E.; Ncube, A.

    2015-04-01

    The rapid growth of a population in a country can contribute to high production of waste. Municipal waste and industrial waste can bring unhealthy and unpleasant environment or even diseases to human beings if the wastes are not managed properly.With increasing concerns over waste and the need for ‘greener’ products, it is necessary to carry out Life Cycle Assessments of products and this will help manufacturers take the first steps towards greener designs by assessing their product's carbon output. Life Cycle Assessment (LCA) is a process to evaluate the environmental burdens associated with a product, process or activity by identifying and quantifying energy and materials used and wastes released to the environment, and to assess the impact of those energy and material used and released to the environment. The aim of the study was to use a life cycle assessment approach to determine which waste disposal options that will substantially reduce the environmental burdens posed by the Polyethylene Terephthalate (PET) bottle. Several important observations can be made. 1) Recycling of the PET bottle waste can significantly reduce the energy required across the life cycle because the high energy inputs needed to process the requisite virgin materials greatly exceeds the energy needs of the recycling process steps. 2) Greenhouse gases can be reduced by opting for recycling instead of landfilling and incineration. 3) Quantity of waste emissions released from different disposal options was identified. 4) Recycling is the environmentally preferable disposal method for the PET bottle. Industry can use the tools and data in this study to evaluate the health, environmental, and energy implications of the PET bottle. LCA intends to aid decision-makers in this respect, provided that the scientific underpinning is available. Strategic incentives for product development and life cycle management can then be developed.

  12. Life cycle impact assessment: a challenge for risk analysts.

    PubMed

    Matthews, H Scott; Lave, Lester; MacLean, Heather

    2002-10-01

    Modern technology, together with an advanced economy, can provide a good or service in myriad ways, giving us choices on what to produce and how to produce it. To make those choices more intelligently, society needs to know not only the market price of each alternative, but the associated health and environmental consequences. A fair comparison requires evaluating the consequences across the whole "life cycle"--from the extraction of raw materials and processing to manufacture/construction, use, and end-of-life--of each alternative. Focusing on only one stage (e.g., manufacture) of the life cycle is often misleading. Unfortunately, analysts and researchers still have only rudimentary tools to quantify the materials and energy inputs and the resulting damage to health and the environment. Life cycle assessment (LCA) provides an overall framework for identifying and evaluating these implications. Since the 1960s, considerable progress has been made in developing methods for LCA, especially in characterizing, qualitatively and quantitatively, environmental discharges. However, few of these analyses have attempted to assess the quantitative impact on the environment and health of material inputs and environmental discharges Risk analysis and LCA are connected closely. While risk analysis has characterized and quantified the health risks of exposure to a toxicant, the policy implications have not been clear. Inferring that an occupational or public health exposure carries a nontrivial risk is only the first step in formulating a policy response. A broader framework, including LCA, is needed to see which response is likely to lower the risk without creating high risks elsewhere. Even more important, LCA has floundered at the stage of translating an inventory of environmental discharges into estimates of impact on health and the environment. Without the impact analysis, policymakers must revert to some simple rule, such as that all discharges, regardless of which chemical

  13. Systematic Review Checklist: A Standardized Technique for Assessing and Reporting Reviews of Life Cycle Assessment Data

    PubMed Central

    Zumsteg, Jennifer M.; Cooper, Joyce S.; Noon, Michael S.

    2015-01-01

    Summary Systematic review, including meta-analysis, is increasingly utilized in life cycle assessment (LCA). There are currently no widely recognized guidelines for designing, conducting, or reporting systematic reviews in LCA. Other disciplines such as medicine, ecology, and software engineering have both recognized the utility of systematic reviews and created standardized protocols for conducting and reporting systematic reviews. Based largely on the 2009 Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement, which updated the preferred format for reporting of such reviews in biomedical research, we provide an introduction to the topic and a checklist to guide the reporting of future LCA reviews in a standardized format. The standardized technique for assessing and reporting reviews of LCA (STARR-LCA) checklist is a starting point for improving the utility of systematic reviews in LCA. PMID:26069437

  14. Temporal discounting in life cycle assessment: A critical review and theoretical framework

    SciTech Connect

    Yuan, Chris; Wang, Endong; Zhai, Qiang; Yang, Fan

    2015-02-15

    Temporal homogeneity of inventory data is one of the major problems in life cycle assessment (LCA). Addressing temporal homogeneity of life cycle inventory data is important in reducing the uncertainties and improving the reliability of LCA results. This paper attempts to present a critical review and discussion on the fundamental issues of temporal homogeneity in conventional LCA and propose a theoretical framework for temporal discounting in LCA. Theoretical perspectives for temporal discounting in life cycle inventory analysis are discussed first based on the key elements of a scientific mechanism for temporal discounting. Then generic procedures for performing temporal discounting in LCA is derived and proposed based on the nature of the LCA method and the identified key elements of a scientific temporal discounting method. A five-step framework is proposed and reported in details based on the technical methods and procedures needed to perform a temporal discounting in life cycle inventory analysis. Challenges and possible solutions are also identified and discussed for the technical procedure and scientific accomplishment of each step within the framework. - Highlights: • A critical review for temporal homogeneity problem of life cycle inventory data • A theoretical framework for performing temporal discounting on inventory data • Methods provided to accomplish each step of the temporal discounting framework.

  15. Life Cycle Assessment for desalination: a review on methodology feasibility and reliability.

    PubMed

    Zhou, Jin; Chang, Victor W-C; Fane, Anthony G

    2014-09-15

    As concerns of natural resource depletion and environmental degradation caused by desalination increase, research studies of the environmental sustainability of desalination are growing in importance. Life Cycle Assessment (LCA) is an ISO standardized method and is widely applied to evaluate the environmental performance of desalination. This study reviews more than 30 desalination LCA studies since 2000s and identifies two major issues in need of improvement. The first is feasibility, covering three elements that support the implementation of the LCA to desalination, including accounting methods, supporting databases, and life cycle impact assessment approaches. The second is reliability, addressing three essential aspects that drive uncertainty in results, including the incompleteness of the system boundary, the unrepresentativeness of the database, and the omission of uncertainty analysis. This work can serve as a preliminary LCA reference for desalination specialists, but will also strengthen LCA as an effective method to evaluate the environment footprint of desalination alternatives.

  16. Life cycle assessment of three water systems in Copenhagen--a management tool of the future.

    PubMed

    Godskesen, B; Zambrano, K C; Trautner, A; Johansen, N-B; Thiesson, L; Andersen, L; Clauson-Kaas, J; Neidel, T L; Rygaard, M; Kløverpris, N H; Albrechtsen, H-J

    2011-01-01

    Environmental life-cycle assessment (LCA) was applied to evaluate three different water systems of the water sector in Copenhagen, Denmark, including technologies within water supply, facilities recycling water and treatment of sewer overflow. In these three water systems LCA was used to evaluate the environmental impacts of each of the processes involved. The overall conclusion was that LCA is suitable as a decision support tool in the water sector as it provides a holistic evaluation platform of the considered alternatives categorised in environmental impact categories. The use of LCA in the water sector of this region has limitations since it does not yet consider impact categories assessing freshwater scarcity and ecological sustainability.

  17. THE EPA'S EMERGING FOCUS ON LIFE CYCLE ASSESSMENT

    EPA Science Inventory

    EPA has been actively engaged in LCA research since 1990 to help advance the methodology and application of life cycle thinking in decision making. Across the Agency consideration of the life cycle concept is increasing in the development of policies and programs. A major force i...

  18. Comparing life cycle assessments of different biofuel options.

    PubMed

    Kendall, Alissa; Yuan, Juhong

    2013-06-01

    Life cycle assessment (LCA) has shown that first generation biofuels provide a little to no benefit for greenhouse gas (GHG) reductions compared to petroleum fuels, particularly when indirect effects are considered. Second generation fuels are intended to achieve greater GHG reductions and avoid other sustainability issues. LCAs of second generation biofuels exhibit great variability and uncertainty, leading to inconclusive results for the performance of particular pathways (combinations of feedstocks and fuels). Variability arises in part because of the prospective nature of LCAs for future fuels; however, a review of recent articles on biofuel LCA methodology indicates two additional sources of variability: real sources such as spatiotemporal heterogeneity, and methodological sources such as choices for co-product allocation methods and system boundary definition.

  19. Detailed Life Cycle Assessment of Bounty Paper Towel ...

    EPA Pesticide Factsheets

    Life Cycle Assessment (LCA) is a well-established and informative method of understanding the environmental impacts of consumer products across the entire value chain. However, companies committed to sustainability are interested in more methods that examine their products and activities' impacts. Methods that build on LCA strengths and illuminate other connected but less understood facets, related to social and economic impacts, would provide greater value to decision-makers. This study is a LCA that calculates the potential impacts associated with Bounty® paper towels from two facilities with different production lines, an older one (Albany, Georgia) representing established technology and the other (Box Elder, Utah), a newer state-of-the-art platform. This is unique in that it includes use of Industrial Process Systems Assessment (IPSA), new electricity and pulp data, modeled in open source software, and is the basis for the development of new integrated sustainability metrics (published separately). The new metrics can guide supply chain and manufacturing enhancements, and product design related to environmental protection and resource sustainability. Results of the LCA indicate Box Elder had improvements on environmental impact scores related to air emission indicators, except for particulate matter. Albany had lower water use impacts. After normalization of the results, fossil fuel depletion is the most critical environmental indicator. Pulp production, e

  20. Background and Reflections on the Life Cycle Assessment Harmonization Project

    SciTech Connect

    Heath, G. A.; Mann, M. K.

    2012-04-01

    Despite the ever-growing body of life cycle assessment (LCA) literature on electricity generation technologies, inconsistent methods and assumptions hamper comparison across studies and pooling of published results. Synthesis of the body of previous research is necessary to generate robust results to assess and compare environmental performance of different energy technologies for the benefit of policy makers, managers, investors, and citizens. With funding from the U.S. Department of Energy, the National Renewable Energy Laboratory initiated the LCA Harmonization Project in an effort to rigorously leverage the numerous individual studies to develop collective insights. The goals of this project were to: (1) understand the range of published results of LCAs of electricity generation technologies, (2) reduce the variability in published results that stem from inconsistent methods and assumptions, and (3) clarify the central tendency of published estimates to make the collective results of LCAs available to decision makers in the near term. The LCA Harmonization Project's initial focus was evaluating life cycle greenhouse gas (GHG) emissions from electricity generation technologies. Six articles from this first phase of the project are presented in a special supplemental issue of the Journal of Industrial Ecology on Meta-Analysis of LCA: coal (Whitaker et al. 2012), concentrating solar power (Burkhardt et al. 2012), crystalline silicon photovoltaics (PVs) (Hsu et al. 2012), thin-film PVs (Kim et al. 2012), nuclear (Warner and Heath 2012), and wind (Dolan and Heath 2012). Harmonization is a meta-analytical approach that addresses inconsistency in methods and assumptions of previously published life cycle impact estimates. It has been applied in a rigorous manner to estimates of life cycle GHG emissions from many categories of electricity generation technologies in articles that appear in this special supplemental supplemental issue, reducing the variability and

  1. Life cycle analyses and resource assessments.

    PubMed

    Fredga, Karl; Mäler, Karl-Göran

    2010-01-01

    Prof. Ulgiati stresses that we should always use an ecosystem view when transforming energy from one form to another. Sustainable growth and development of both environmental and human-dominated systems require optimum use of available resources for maximum power output. We have to adapt to the laws of nature because nature has to take care of all the waste products we produce. The presentation addresses a much needed shift away from linear production and consumption pattern, toward reorganization of economies and lifestyle that takes complexity--of resources, of the environment and of the economy--into proper account. The best way to reach maximum yield from the different kinds of biomass is to use biorefineries. Biorefinery is defined as the sustainable processing of biomass into a spectrum of marketable products like heat, power, fuels, chemicals, food, feed, and materials. However, biomass from agricultural land must be used for the production of food and not fuel. Prof. Voss focuses on the sustainability of energy supply chains and energy systems. Life cycle analyses (LCA) provides the conceptual framework for a comprehensive comparative evaluation of energy supply options with regard to their resource requirements as well as the health and environmental impact. Full scope LCA considers not only the emissions from plant operation, construction, and decommissioning but also the environmental burdens and resource requirements associated with the entire lifetime of all relevant upstream and downstream processes within the energy chain. This article describes the results of LCA analyses for state-of-the-art heating and electricity systems as well as of advanced future systems. Total costs are used as a measure for the overall resource consumption.

  2. A Life Cycle Assessment of a Magnesium Automotive Front End

    SciTech Connect

    Das, Sujit; Dubreuil, Alain; Bushi, Lindita; Tharumarajah, Ambalavanar

    2009-01-01

    The Magnesium Front End Research and Development (MFERD) project under the sponsorship of Canada, China and USA aims to develop key technologies and a knowledge base for increased use of magnesium in automobile. The goal of this life cycle assessment (LCA) study is to compare the energy and potential environmental impacts of advanced magnesium based front end parts of a North America built 2007 GM-Cadillac CTS with the standard carbon steel based design. This LCA uses the 'cradle-to-grave' approach by including primary material production, semi-fabrication production, autoparts manufacturing and assembly, transportation, use phase and end-of-life processing of autoparts. This LCA study was done in compliance with international standards ISO 14040:2006 and ISO 14044:2006. Furthermore, the LCA results for aluminum based front end autopart are presented. While weight savings result in reductions in energy use and carbon dioxide emissions during the use of the car, the impacts of fabrication and recycling of lightweight materials are substantial in regard to steel. Pathways for improving sustainability of magnesium use in automobiles through material management and technology improvements including recycling are also discussed.

  3. Life-Cycle inventory/impact Assessment in the context of Chemical Risk Assessment: An Informatics-driven Scoping Review

    EPA Science Inventory

    One of the goals of Life-Cycle Assessment (LCA) is to compare the full range of environmental effects assignable to products and services in order to improve processes, support policy and provide a sound “systems-thinking” basis for decision support. How in fact LCA can be incorp...

  4. Considering time in LCA: dynamic LCA and its application to global warming impact assessments.

    PubMed

    Levasseur, Annie; Lesage, Pascal; Margni, Manuele; Deschênes, Louise; Samson, Réjean

    2010-04-15

    The lack of temporal information is an important limitation of life cycle assessment (LCA). A dynamic LCA approach is proposed to improve the accuracy of LCA by addressing the inconsistency of temporal assessment. This approach consists of first computing a dynamic life cycle inventory (LCI), considering the temporal profile of emissions. Then, time-dependent characterization factors are calculated to assess the dynamic LCI in real-time impact scores for any given time horizon. Although generally applicable to any impact category, this approach is developed here for global warming, based on the radiative forcing concept. This case study demonstrates that the use of global warming potentials for a given time horizon to characterize greenhouse gas emissions leads to an inconsistency between the time frame chosen for the analysis and the time period covered by the LCA results. Dynamic LCA is applied to the US EPA LCA on renewable fuels, which compares the life cycle greenhouse gas emissions of different biofuels with fossil fuels including land-use change emissions. The comparison of the results obtained with both traditional and dynamic LCA approaches shows that the difference can be important enough to change the conclusions on whether or not a biofuel meets some given global warming reduction targets.

  5. Life cycle assessment of mobile phone housing.

    PubMed

    Yang, Jian-xin; Wang, Ru-song; Fu, Hao; Liu, Jing-ru

    2004-01-01

    The life cycle assessment of the mobile phone housing in Motorola(China) Electronics Ltd. was carried out, in which materials flows and environmental emissions based on a basic production scheme were analyzed and assessed. In the manufacturing stage, such primary processes as polycarbonate molding and surface painting are included, whereas different surface finishing technologies like normal painting, electroplate, IMD and VDM etc. were assessed. The results showed that housing decoration plays a significant role within the housing life cycle. The most significant environmental impact from housing production is the photochemical ozone formation potential. Environmental impacts of different decoration techniques varied widely, for example, the electroplating technique is more environmentally friendly than VDM. VDM consumes much more energy and raw material. In addition, the results of two alternative scenarios of dematerialization showed that material flow analysis and assessment is very important and valuable in selecting an environmentally friendly process.

  6. Life cycle assessment of bagasse waste management options.

    PubMed

    Kiatkittipong, Worapon; Wongsuchoto, Porntip; Pavasant, Prasert

    2009-05-01

    Bagasse is mostly utilized for steam and power production for domestic sugar mills. There have been a number of alternatives that could well be applied to manage bagasse, such as pulp production, conversion to biogas and electricity production. The selection of proper alternatives depends significantly on the appropriateness of the technology both from the technical and the environmental points of view. This work proposes a simple model based on the application of life cycle assessment (LCA) to evaluate the environmental impacts of various alternatives for dealing with bagasse waste. The environmental aspects of concern included global warming potential, acidification potential, eutrophication potential and photochemical oxidant creation. Four waste management scenarios for bagasse were evaluated: landfilling with utilization of landfill gas, anaerobic digestion with biogas production, incineration for power generation, and pulp production. In landfills, environmental impacts depended significantly on the biogas collection efficiency, whereas incineration of bagasse to electricity in the power plant showed better environmental performance than that of conventional low biogas collection efficiency landfills. Anaerobic digestion of bagasse in a control biogas reactor was superior to the other two energy generation options in all environmental aspects. Although the use of bagasse in pulp mills created relatively high environmental burdens, the results from the LCA revealed that other stages of the life cycle produced relatively small impacts and that this option might be the most environmentally benign alternative.

  7. Life cycle assessment of bagasse waste management options

    SciTech Connect

    Kiatkittipong, Worapon; Wongsuchoto, Porntip; Pavasant, Prasert

    2009-05-15

    Bagasse is mostly utilized for steam and power production for domestic sugar mills. There have been a number of alternatives that could well be applied to manage bagasse, such as pulp production, conversion to biogas and electricity production. The selection of proper alternatives depends significantly on the appropriateness of the technology both from the technical and the environmental points of view. This work proposes a simple model based on the application of life cycle assessment (LCA) to evaluate the environmental impacts of various alternatives for dealing with bagasse waste. The environmental aspects of concern included global warming potential, acidification potential, eutrophication potential and photochemical oxidant creation. Four waste management scenarios for bagasse were evaluated: landfilling with utilization of landfill gas, anaerobic digestion with biogas production, incineration for power generation, and pulp production. In landfills, environmental impacts depended significantly on the biogas collection efficiency, whereas incineration of bagasse to electricity in the power plant showed better environmental performance than that of conventional low biogas collection efficiency landfills. Anaerobic digestion of bagasse in a control biogas reactor was superior to the other two energy generation options in all environmental aspects. Although the use of bagasse in pulp mills created relatively high environmental burdens, the results from the LCA revealed that other stages of the life cycle produced relatively small impacts and that this option might be the most environmentally benign alternative.

  8. Conceptual Framework To Extend Life Cycle Assessment Using Near-Field Human Exposure Modeling and High-Throughput Tools for Chemicals

    EPA Science Inventory

    Life Cycle Assessment (LCA) is a decision-making tool that accounts for multiple impacts across the life cycle of a product or service. This paper presents a conceptual framework to integrate human health impact assessment with risk screening approaches to extend LCA to include n...

  9. Life cycle assessment-driven selection of industrial ecology strategies.

    PubMed

    Ardente, Fulvio; Cellura, Maurizio; Lo Brano, Valerio; Mistretta, Marina

    2010-01-01

    The paper presents an application of the Life-Cycle Assessment (LCA) to the planning and environmental management of an “eco-industrial cluster.” A feasibility study of industrial symbiosis in southern Italy is carried out, where interlinked companies share subproducts and scraps, services, structures, and plants to reduce the related environmental impact. In particular, the research focuses on new recycling solutions to create open recycling loops in which plastic subproducts and scraps are transferred to external production systems. The main environmental benefits are the reduction of resource depletion, air emissions, and landfilled wastes. The proposed strategies are also economically viable and they suggest cost abatement for the involved companies. This research shows the need for a multidisciplinary approach to data processing and to complexity managing of the investigated systems. In this context, life-cycle thinking is required to be promoted throughout the economy, as well to be as a part of all decisions on products and other criteria such as functionality, health, and safety. The Life-Cycle Assessment approach can be assumed as a methodology for influencing decision makers to make sustainable choices.

  10. Life Cycle Assessment of Biochar - EuroChar Project

    NASA Astrophysics Data System (ADS)

    Rack, M.; Woods, J.

    2012-04-01

    One of the most significant challenges faced by modern-day society is that of global warming. An exclusive focus on reducing the greenhouse gas (GHG) emissions will not suffice and therefore technologies capable of removing CO2 directly from the atmosphere at low or minimal cost are gaining increased attention. The production and use of biochar is an example of such an emerging mitigation strategy. However, as with any novel product, process and technology it is vital to conduct an assessment of the entire life cycle in order to determine the environmental impacts of the new concept in addition to analysing the other sustainability criteria. Life Cycle Assessment (LCA), standardized by ISO (2006a), is an example of a tool used to calculate the environmental impacts of a product or process. Imperial College London will follow the guidelines and recommendations of the ISO 14040 series (ISO 2002, ISO 2006a-b) and the International Life Cycle Data System (ILCD) Handbook (EC JRC IES, 2010a-e), and will use the SimaPro software to conduct a LCA of the biochar supply chains for the EuroChar project. EuroChar ('biochar for Carbon sequestration and large-scale removal of GHG from the atmosphere') is a project funded by the European Commission under its Seventh Framework Programme (FP7). EuroChar aims to investigate and reduce uncertainties around the impacts of, and opportunities for, biochar and, in particular, explore a possible introduction into modern agricultural systems in Europe, thereby moving closer to the determination of the true potential of biochar. EuroChar will use various feedstocks, ranging from wheat straw to olive residues and poplar, as feedstocks for biochar production and will focus on two conversion technologies, Hydrothermal Carbonization (HTC) and Thermochemical Carbonization (TC), followed by the application of the biochar in crop-growth field trials in England, France and Italy. In April 2012, the EuroChar project will be at its halfway mark and

  11. Developing Anticipatory Life Cycle Assessment Tools to Support Responsible Innovation

    NASA Astrophysics Data System (ADS)

    Wender, Benjamin

    Several prominent research strategy organizations recommend applying life cycle assessment (LCA) early in the development of emerging technologies. For example, the US Environmental Protection Agency, the National Research Council, the Department of Energy, and the National Nanotechnology Initiative identify the potential for LCA to inform research and development (R&D) of photovoltaics and products containing engineered nanomaterials (ENMs). In this capacity, application of LCA to emerging technologies may contribute to the growing movement for responsible research and innovation (RRI). However, existing LCA practices are largely retrospective and ill-suited to support the objectives of RRI. For example, barriers related to data availability, rapid technology change, and isolation of environmental from technical research inhibit application of LCA to developing technologies. This dissertation focuses on development of anticipatory LCA tools that incorporate elements of technology forecasting, provide robust explorations of uncertainty, and engage diverse innovation actors in overcoming retrospective approaches to environmental assessment and improvement of emerging technologies. Chapter one contextualizes current LCA practices within the growing literature articulating RRI and identifies the optimal place in the stage gate innovation model to apply LCA. Chapter one concludes with a call to develop anticipatory LCA---building on the theory of anticipatory governance---as a series of methodological improvements that seek to align LCA practices with the objectives of RRI. Chapter two provides a framework for anticipatory LCA, identifies where research from multiple disciplines informs LCA practice, and builds off the recommendations presented in the preceding chapter. Chapter two focuses on crystalline and thin film photovoltaics (PV) to illustrate the novel framework, in part because PV is an environmentally motivated technology undergoing extensive R&D efforts and

  12. Model of environmental life cycle assessment for coal mining operations.

    PubMed

    Burchart-Korol, Dorota; Fugiel, Agata; Czaplicka-Kolarz, Krystyna; Turek, Marian

    2016-08-15

    This paper presents a novel approach to environmental assessment of coal mining operations, which enables assessment of the factors that are both directly and indirectly affecting the environment and are associated with the production of raw materials and energy used in processes. The primary novelty of the paper is the development of a computational environmental life cycle assessment (LCA) model for coal mining operations and the application of the model for coal mining operations in Poland. The LCA model enables the assessment of environmental indicators for all identified unit processes in hard coal mines with the life cycle approach. The proposed model enables the assessment of greenhouse gas emissions (GHGs) based on the IPCC method and the assessment of damage categories, such as human health, ecosystems and resources based on the ReCiPe method. The model enables the assessment of GHGs for hard coal mining operations in three time frames: 20, 100 and 500years. The model was used to evaluate the coal mines in Poland. It was demonstrated that the largest environmental impacts in damage categories were associated with the use of fossil fuels, methane emissions and the use of electricity, processing of wastes, heat, and steel supports. It was concluded that an environmental assessment of coal mining operations, apart from direct influence from processing waste, methane emissions and drainage water, should include the use of electricity, heat and steel, particularly for steel supports. Because the model allows the comparison of environmental impact assessment for various unit processes, it can be used for all hard coal mines, not only in Poland but also in the world. This development is an important step forward in the study of the impacts of fossil fuels on the environment with the potential to mitigate the impact of the coal industry on the environment.

  13. Review of Environmental Assessment Case Studies Blending Elements of Risk Assessment and Life Cycle Assessment.

    PubMed

    Harder, Robin; Holmquist, Hanna; Molander, Sverker; Svanström, Magdalena; Peters, Gregory M

    2015-11-17

    Risk assessment (RA) and life cycle assessment (LCA) are two analytical tools used to support decision making in environmental management. This study reviewed 30 environmental assessment case studies that claimed an integration, combination, hybridization, or complementary use of RA and LCA. The focus of the analysis was on how the respective case studies evaluated emissions of chemical pollutants and pathogens. The analysis revealed three clusters of similar case studies. Yet, there seemed to be little consensus as to what should be referred to as RA and LCA, and when to speak of combination, integration, hybridization, or complementary use of RA and LCA. This paper provides clear recommendations toward a more stringent and consistent use of terminology. Blending elements of RA and LCA offers multifaceted opportunities to adapt a given environmental assessment case study to a specific decision making context, but also requires awareness of several implications and potential pitfalls, of which six are discussed in this paper. To facilitate a better understanding and more transparent communication of the nature of a given case study, this paper proposes a "design space" (i.e., identification framework) for environmental assessment case studies blending elements of RA and LCA. Thinking in terms of a common design space, we postulate, can increase clarity and transparency when communicating the design and results of a given assessment together with its potential strengths and weaknesses.

  14. Life cycle greenhouse gas and energy assessment of winegrape production in California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose: This study applies life cycle assessment (LCA) to assess greenhouse gas (GHG) emissions, energy use, and direct water use in winegrape production across common vineyard management scenarios in two representative growing regions of California, USA (Napa and Lodi). California hosts 90 percent...

  15. CRITICAL ANALYSIS OF THE MATHEMATICAL RELATIONSHIPS AND COMPREHENSIVENESS OF LIFE CYCLE IMPACT ASSESSMENT APPROACHES

    EPA Science Inventory

    The impact assessment phase of Life Cycle Assessment (LCA) has received much criticism due to lack of consistency. ISO 14042 requires selection of impact categories that “reflect a comprehensive set of environmental issues” related to the system being studied, especi...

  16. Environmental life cycle assessment of railway bridge materials using UHPFRC

    NASA Astrophysics Data System (ADS)

    Bizjak, Karmen Fifer; Šajna, Aljoša; Slanc, Katja; Knez, Friderik

    2016-10-01

    The railway infrastructure is a very important component of the world's total transportation network. Investment in its construction and maintenance is significant on a global scale. Previously published life cycle assessment (LCA) studies performed on road and rail systems very seldom included infrastructures in detail, mainly choosing to focus on vehicle manufacturing and fuel consumption. This article presents results from an environmental study for railway steel bridge materials for the demonstration case of the Buna Bridge in Croatia. The goal of these analyses was to compare two different types of remediation works for railway bridges with different materials and construction types. In the first part, the environmental impact of the classical concrete bridge construction was calculated, whereas in the second one, an alternative new solution, namely, the strengthening of the old steel bridge with ultra-high-performance fibre-reinforced concrete (UHPFRC) deck, was studied. The results of the LCA show that the new solution with UHPFRC deck gives much better environmental performance. Up to now, results of LCA of railway open lines, railway bridges and tunnels have been published, but detailed analyses of the new solution with UHPFRC deck above the old bridge have not previously been performed.

  17. Conducting an Agricultural Life Cycle Assessment: Challenges and Perspectives

    PubMed Central

    Caffrey, Kevin R.; Veal, Matthew W.

    2013-01-01

    Agriculture is a diverse field that produces a wide array of products vital to society. As global populations continue to grow the competition for natural resources will increase pressure on agricultural production of food, fiber, energy, and various high value by-products. With elevated concerns related to environmental impacts associated with the needs of a growing population, a life cycle assessment (LCA) framework can be used to determine areas of greatest impact and compare reduction strategies for agricultural production systems. The LCA methodology was originally developed for industrial operations but has been expanded to a wider range of fields including agriculture. There are various factors that increase the complexity of determining impacts associated with agricultural production including multiple products from a single system, regional and crop specific management techniques, temporal variations (seasonally and annually), spatial variations (multilocation production of end products), and the large quantity of nonpoint emission sources. The lack of consistent methodology of some impacts that are of major concern to agriculture (e.g., land use and water usage) increases the complexity of this analysis. This paper strives to review some of these issues and give perspective to the LCA practitioner in the field of agriculture. PMID:24391463

  18. Hybrid life cycle assessment comparison of colloidal silica and cement grouted soil barrier remediation technologies.

    PubMed

    Gallagher, Patricia M; Spatari, Sabrina; Cucura, Jeffrey

    2013-04-15

    Site remediation involves balancing numerous costs and benefits but often neglects the environmental impacts over the entire project life cycle. Life cycle assessment (LCA) offers a framework for inclusion of global environmental "systems-level" decision metrics in combination with technological and cost analysis. We compare colloidal silica (CS) and cement grouted soil barrier remediation technologies for soils affected by low level radionuclides at a U.S. Superfund site using hybrid LCA methods. CS is a new, high performance grouting material installed using permeation grouting techniques. Cement, a more traditional grouting material, is typically installed using jet grouting techniques. Life cycle impacts were evaluated using the US EPA TRACI 2 model. Results show the highest life cycle environmental impacts for the CS barrier occur during materials production and transportation to the site. In general, the life cycle impacts for the cement barrier were dominated by materials production; however, in the extreme scenario the life cycle impacts were dominated by truck transportation of spoils to a distant, off-site radioactive waste facility. It is only in the extreme scenario tested in which soils are transported by truck (Option 2) that spoils waste transport dominates LCIA results. Life cycle environmental impacts for both grout barriers were most sensitive to resource input requirements for manufacturing volumes and transportation. Uncertainty associated with the efficacy of new technology such as CS over its required design life indicates that barrier replacement could increase its life cycle environmental impact above that of the cement barrier.

  19. Area of Concern: a new paradigm in life cycle assessment for ...

    EPA Pesticide Factsheets

    Purpose: As a class of environmental metrics, footprints have been poorly defined, have shared an unclear relationship to life cycle assessment (LCA), and the variety of approaches to quantification have sometimes resulted in confusing and contradictory messages in the marketplace. In response, a task force operating under the auspices of the UNEP/SETAC Life Cycle Initiative project on environmental life cycle impact assessment (LCIA) has been working to develop generic guidance for developers of footprint metrics. The purpose of this paper is to introduce a universal footprint definition and related terminology as well as to discuss modelling implications.MethodsThe task force has worked from the perspective that footprints should be based on LCA methodology, underpinned by the same data systems and models as used in LCA. However, there are important differences in purpose and orientation relative to LCA impact category indicators. Footprints have a primary orientation toward society and nontechnical stakeholders. They are also typically of narrow scope, having the purpose of reporting only in relation to specific topics. In comparison, LCA has a primary orientation toward stakeholders interested in comprehensive evaluation of overall environmental performance and trade-offs among impact categories. These differences create tension between footprints, the existing LCIA framework based on the area of protection paradigm and the core LCA standards ISO14040/44.Res

  20. Environmental impact assessment as a complement of life cycle assessment. Case study: Upgrading of biogas.

    PubMed

    Morero, Betzabet; Rodriguez, María B; Campanella, Enrique A

    2015-08-01

    This work presents a comparison between an environmental impact assessment (EIA) and a life cycle assessment (LCA) using a case study: upgrading of biogas. The upgrading of biogas is studied using three solvents: water, physical solvent and amine. The EIA follows the requirements of the legislation of Santa Fe Province (Argentina), and the LCA follows ISO 14040. The LCA results showed that water produces a minor impact in most of the considered categories whereas the high impact in the process with amines is the result of its high energy consumptions. The positive results obtained in the EIA (mainly associated with the cultural and socioeconomic components) make the project feasible and all the negative impacts can be mitigated by preventive and remedial measures. From the strengths and weaknesses of each tool, it is inferred that the EIA is a procedure that can complement the LCA.

  1. Can life-cycle assessment produce reliable policy guidelines in the building sector?

    NASA Astrophysics Data System (ADS)

    Säynäjoki, Antti; Heinonen, Jukka; Junnila, Seppo; Horvath, Arpad

    2017-01-01

    Life-cycle assessment (LCA) is an established methodology that can provide decision-makers with comprehensive data on the environmental impacts of products and processes during the entire life cycle. However, the literature on building LCAs consists of highly varying results between the studies, even when the assessed buildings are very similar. This makes it doubtful if LCA can actually produce reliable data for supporting policy-making in the building sector. However, no prior reviews looking into this issue in the building sector exist. This study includes an extensive literature review of LCA studies on the pre-use phase of buildings. The purpose of this study is to analyze the variation between the results of different studies and find out whether the differences can be explained by the contextual differences or if it is actually the methodological choices that cause the extremely high variation. We present 116 cases from 47 scientific articles and reports that used process LCA, input-output (IO) LCA or hybrid LCA to study the construction-phase GHG emissions of buildings. The results of the reviewed studies vary between 0.03 and 2.00 tons of GHG emissions per gross area. The lowest was assessed with process LCA and highest with IO LCA, and in general the lower end was found to be dominated by process LCA studies and the higher end by IO LCA studies, hybrid LCAs being placed in between. In general, it is the methodological issues and subjective choices of the LCA practitioner that cause the vast majority of the huge variance in the results. It thus seems that currently the published building LCAs do not offer solid background information for policy-making without deep understanding of the premises of a certain study and good methodological knowledge.

  2. Comparative assessment of life cycle assessment methods used for personal computers.

    PubMed

    Yao, Marissa A; Higgs, Tim G; Cullen, Michael J; Stewart, Scott; Brady, Todd A

    2010-10-01

    This article begins with a summary of findings from commonly cited life cycle assessments (LCA) of Information and Communication Technology (ICT) products. While differing conclusions regarding environmental impact are expected across product segments (mobile phones, personal computers, servers, etc.) significant variation and conflicting conclusions are observed even within product segments such as the desktop Personal Computer (PC). This lack of consistent conclusions and accurate data limits the effectiveness of LCA to influence policy and product design decisions. From 1997 to 2010, the majority of published studies focused on the PC concluded that the use phase contributes most to the life cycle energy demand of PC products with a handful of studies suggesting that manufacturing phase of the PC has the largest impact. The purpose of this article is to critically review these studies in order to analyze sources of uncertainty, including factors that extend beyond data quality to the models and assumptions used. These findings suggest existing methods to combine process-based LCA data with product price data and remaining value adjustments are not reliable in conducting life cycle assessments for PC products. Recommendations are provided to assist future LCA work.

  3. Economic Input-Output Life Cycle Assessment of Water Reuse Strategies in Residential Buildings

    EPA Science Inventory

    This paper evaluates the environmental sustainability and economic feasibility of four water reuse designs through economic input-output life cycle assessments (EIO-LCA) and benefit/cost analyses. The water reuse designs include: 1. Simple Greywater Reuse System for Landscape Ir...

  4. ENVIRONMENTAL LIFE CYCLE ASSESSMENT OF GASOLINE ALTERNATIVES: MTBE AND ETHANOL ADDITIVES

    EPA Science Inventory

    Currently, the U.S. is considering options for additives to reformulated gasoline. To inform this debate the U.S. EPA's Office of Research and Development is conducting a screening life cycle assessment (LCA) of three gasoline alternatives. These alternatives include gasoline w...

  5. Is the Critical Review Process Keeping Pace with the Growing Number of Life Cycle Assessments?

    EPA Science Inventory

    Environmental managers and government policy makers are becoming increasingly aware of the need to follow the holistic approach of Life Cycle Assessment (LCA) to move us in the right strategic direction to best achieve environmental sustainability. Along with this increasing real...

  6. Maintaining quality critical peer review (CPR) as the demand for life cycle assessments increases

    EPA Science Inventory

    Environmental managers and government policy makers are becoming increasingly aware of the need to follow the holistic approach of Life Cycle Assessment (LCA) to move us in the right strategic direction to best achieve environmental sustainability. Along with this realization ha...

  7. Life-Cycle Assessment of Cookstove Fuels in India and China

    EPA Science Inventory

    A life cycle assessment (LCA) was conducted to compare the environmental footprint of current and possible fuels used for cooking within China and India. Current fuel mix profiles are compared to scenarios of projected differences in and/or cleaner cooking fuels. Results are repo...

  8. Detailed Life Cycle Assessment of Bounty Paper Towel Operations in the United States

    EPA Science Inventory

    Life Cycle Assessment (LCA) is a well-established and informative method of understanding the environmental impacts of consumer products across the entire value chain. However, companies committed to sustainability are interested in more methods that examine their products and ac...

  9. [Life cycle assessment of energy consumption and greenhouse gas emissions of cellulosic ethanol from corn stover].

    PubMed

    Tian, Wang; Liao, Cuiping; Li, Li; Zhao, Daiqing

    2011-03-01

    Life Cycle Assessment (LCA) is the only standardized tool currently used to assess environmental loads of products and processes. The life cycle analysis, as a part of LCA, is a useful and powerful methodology for studying life cycle energy efficiency and life cycle GHG emission. To quantitatively explain the potential of energy saving and greenhouse gas (GHG) emissions reduction of corn stover-based ethanol, we analyzed life cycle energy consumption and GHG emissions of corn stover-based ethanol by the method of life cycle analysis. The processes are dilute acid prehydrolysis and enzymatic hydrolysis. The functional unit was defined as 1 km distance driven by the vehicle. Results indicated: compared with gasoline, the corn stover-based E100 (100% ethanol) and E10 (a blend of 10% ethanol and 90% gasoline by volume) could reduce life cycle fossil energy consumption by 79.63% and 6.25% respectively, as well as GHG emissions by 53.98% and 6.69%; the fossil energy consumed by biomass stage was 68.3% of total fossil energy input, N-fertilizer and diesel were the main factors which contributed 45.78% and 33.26% to biomass stage; electricity production process contributed 42.06% to the net GHG emissions, the improvement of technology might reduce emissions markedly.

  10. Life cycle assessment of lithium sulfur battery for electric vehicles

    NASA Astrophysics Data System (ADS)

    Deng, Yelin; Li, Jianyang; Li, Tonghui; Gao, Xianfeng; Yuan, Chris

    2017-03-01

    Lithium-sulfur (Li-S) battery is widely recognized as the most promising battery technology for future electric vehicles (EV). To understand the environmental sustainability performance of Li-S battery on future EVs, here a novel life cycle assessment (LCA) model is developed for comprehensive environmental impact assessment of a Li-S battery pack using a graphene sulfur composite cathode and a lithium metal anode protected by a lithium-ion conductive layer, for actual EV applications. The Li-S battery pack is configured with a 61.3 kWh capacity to power a mid-size EV for 320 km range. The life cycle inventory model is developed with a hybrid approach, based on our lab-scale synthesis of the graphene sulfur composite, our lab fabrication of Li-S battery cell, and our industrial partner's battery production processes. The impacts of the Li-S battery are assessed using the ReCiPe method and benchmarked with those of a conventional Nickle-Cobalt-Manganese (NCM)-Graphite battery pack under the same driving distance per charge. The environmental impact assessment results illustrate that Li-S battery is more environmentally friendly than conventional NCM-Graphite battery, with 9%-90% lower impact. Finally, the improvement pathways for the Li-S battery to meet the USABC (U.S. Advanced Battery Consortium) targets are presented with the corresponding environmental impact changes.

  11. Life cycle assessment comparison of photocatalytic coating and air purifier.

    PubMed

    Tichá, Marie; Žilka, Miroslav; Stieberová, Barbora; Freiberg, František

    2016-07-01

    This article presents a comparison of 2 very different options for removal of undesirable microorganisms and airborne pollutants from the indoor environment of hospitals, schools, homes, and other enclosed spaces using air purifiers and photocatalytic coatings based on nano titanium dioxide (TiO2 ). Both products were assessed by life cycle assessment (LCA) methodology from cradle-to-grave. The assessment also includes comparison of 2 different nano TiO2 production technologies, one by continuous hydrothermal synthesis and the other by a sulfate process. Results of the study showed a relatively large contribution of photocatalytic coatings to reducing the effects of selected indices in comparison with an air purifier, regardless of which nano TiO2 production method is used. Although the impacts of the sulfate process are significantly lower compared to those of hydrothermal synthesis when viewed in terms of production alone, taken in the context of the entire product life cycle, the net difference becomes less significant. The study has been elaborated within the Sustainable Hydrothermal Manufacturing of Nanomaterials (SHYMAN) project, which aims to develop competitive and sustainable continuous nanoparticle (NP) production technology based on supercritical hydrothermal synthesis. Integr Environ Assess Manag 2016;12:478-485. © 2016 SETAC.

  12. Life cycle assessments of urban water systems: a comparative analysis of selected peer-reviewed literature.

    PubMed

    Loubet, Philippe; Roux, Philippe; Loiseau, Eleonore; Bellon-Maurel, Veronique

    2014-12-15

    Water is a growing concern in cities, and its sustainable management is very complex. Life cycle assessment (LCA) has been increasingly used to assess the environmental impacts of water technologies during the last 20 years. This review aims at compiling all LCA papers related to water technologies, out of which 18 LCA studies deals with whole urban water systems (UWS). A focus is carried out on these 18 case studies which are analyzed according to criteria derived from the four phases of LCA international standards. The results show that whereas the case studies share a common goal, i.e., providing quantitative information to policy makers on the environmental impacts of urban water systems and their forecasting scenarios, they are based on different scopes, resulting in the selection of different functional units and system boundaries. A quantitative comparison of life cycle inventory and life cycle impact assessment data is provided, and the results are discussed. It shows the superiority of information offered by multi-criteria approaches for decision making compared to that derived from mono-criterion. From this review, recommendations on the way to conduct the environmental assessment of urban water systems are given, e.g., the need to provide consistent mass balances in terms of emissions and water flows. Remaining challenges for urban water system LCAs are identified, such as a better consideration of water users and resources and the inclusion of recent LCA developments (territorial approaches and water-related impacts).

  13. Life cycle assessment of overhead and underground primary power distribution.

    PubMed

    Bumby, Sarah; Druzhinina, Ekaterina; Feraldi, Rebe; Werthmann, Danae; Geyer, Roland; Sahl, Jack

    2010-07-15

    Electrical power can be distributed in overhead or underground systems, both of which generate a variety of environmental impacts at all stages of their life cycles. While there is considerable literature discussing the trade-offs between both systems in terms of aesthetics, safety, cost, and reliability, environmental assessments are relatively rare and limited to power cable production and end-of-life management. This paper assesses environmental impacts from overhead and underground medium voltage power distribution systems as they are currently built and managed by Southern California Edison (SCE). It uses process-based life cycle assessment (LCA) according to ISO 14044 (2006) and SCE-specific primary data to the extent possible. Potential environmental impacts have been calculated using a wide range of midpoint indicators, and robustness of the results has been investigated through sensitivity analysis of the most uncertain and potentially significant parameters. The studied underground system has higher environmental impacts in all indicators and for all parameter values, mostly due to its higher material intensity. For both systems and all indicators the majority of impact occurs during cable production. Promising strategies for impact reduction are thus cable failure rate reduction for overhead and cable lifetime extension for underground systems.

  14. Life Cycle Assessment of Coal-fired Power Production

    SciTech Connect

    Spath, P. L.; Mann, M. K.; Kerr, D. R.

    1999-09-01

    Coal has the largest share of utility power generation in the US, accounting for approximately 56% of all utility-produced electricity (US DOE, 1998). Therefore, understanding the environmental implications of producing electricity from coal is an important component of any plan to reduce total emissions and resource consumption. A life cycle assessment (LCA) on the production of electricity from coal was performed in order to examine the environmental aspects of current and future pulverized coal boiler systems. Three systems were examined: (1) a plant that represents the average emissions and efficiency of currently operating coal-fired power plants in the US (this tells us about the status quo), (2) a new coal-fired power plant that meets the New Source Performance Standards (NSPS), and (3) a highly advanced coal-fired power plant utilizing a low emission boiler system (LEBS).

  15. Life cycle assessment of rice straw utilization practices in India.

    PubMed

    Soam, Shveta; Borjesson, Pal; Sharma, Pankaj K; Gupta, Ravi P; Tuli, Deepak K; Kumar, Ravindra

    2017-03-01

    The aim of this study is to find potential utilization practice of rice straw in India from an environmental perspective. Life cycle assessment (LCA) is conducted for four most realistic utilization practices of straw including: (1) incorporation into the field as fertilizer (2) animal fodder (3) electricity (4) biogas. The results show that processing of 1 ton straw to electricity and biogas resulted in net reduction of 1471 and 1023kg CO2 eq., 15.0 and 3.4kg SO2 eq. and 6.7 and 7.1kg C2H6 eq. emissions in global warming, acidification and photochemical oxidation creation potential respectively. Electricity production from straw replaces the coal based electricity and resulted in benefits in most of the environmental impacts whereas use as an animal fodder resulted in eutrophication benefits. The burning of straw is a harmful practice of managing straw in India which can be avoided by utilizing straw for bioenergy.

  16. Life cycle assessment of biodiesel production from microalgae in ponds.

    PubMed

    Campbell, Peter K; Beer, Tom; Batten, David

    2011-01-01

    This paper analyses the potential environmental impacts and economic viability of producing biodiesel from microalgae grown in ponds. A comparative Life Cycle Assessment (LCA) study of a notional production system designed for Australian conditions was conducted to compare biodiesel production from algae (with three different scenarios for carbon dioxide supplementation and two different production rates) with canola and ULS (ultra-low sulfur) diesel. Comparisons of GHG (greenhouse gas) emissions (g CO(2)-e/tkm) and costs (¢/tkm) are given. Algae GHG emissions (-27.6 to 18.2) compare very favourably with canola (35.9) and ULS diesel (81.2). Costs are not so favourable, with algae ranging from 2.2 to 4.8, compared with canola (4.2) and ULS diesel (3.8). This highlights the need for a high production rate to make algal biodiesel economically attractive.

  17. Toward meaningful end points of biodiversity in life cycle assessment.

    PubMed

    Curran, Michael; de Baan, Laura; De Schryver, An M; Van Zelm, Rosalie; Hellweg, Stefanie; Koellner, Thomas; Sonnemann, Guido; Huijbregts, Mark A J

    2011-01-01

    Halting current rates of biodiversity loss will be a defining challenge of the 21st century. To assess the effectiveness of strategies to achieve this goal, indicators and tools are required that monitor the driving forces of biodiversity loss, the changing state of biodiversity, and evaluate the effectiveness of policy responses. Here, we review the use of indicators and approaches to model biodiversity loss in Life Cycle Assessment (LCA), a methodology used to evaluate the cradle-to-grave environmental impacts of products. We find serious conceptual shortcomings in the way models are constructed, with scale considerations largely absent. Further, there is a disproportionate focus on indicators that reflect changes in compositional aspects of biodiversity, mainly changes in species richness. Functional and structural attributes of biodiversity are largely neglected. Taxonomic and geographic coverage remains problematic, with the majority of models restricted to one or a few taxonomic groups and geographic regions. On a more general level, three of the five drivers of biodiversity loss as identified by the Millennium Ecosystem Assessment are represented in current impact categories (habitat change, climate change and pollution), while two are missing (invasive species and overexploitation). However, methods across all drivers can be greatly improved. We discuss these issues and make recommendations for future research to better reflect biodiversity loss in LCA.

  18. Life cycle assessment of electronic waste treatment

    SciTech Connect

    Hong, Jinglan; Shi, Wenxiao; Wang, Yutao; Chen, Wei; Li, Xiangzhi

    2015-04-15

    Highlights: • Life cycle assessment of electronic waste recycling is quantified. • Key factors for reducing the overall environmental impact are indentified. • End-life disposal processes provide significant environmental benefits. • Efficiently reduce the improper disposal amount of e-waste is highly needed. • E-waste incineration can generate significant environmental burden. - Abstract: Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers)

  19. Biogas from Marine Macroalgae: a New Environmental Technology — Life Cycle Inventory for a Further LCA

    NASA Astrophysics Data System (ADS)

    Romagnoli, Francesco; Blumberga, Dagnija; Gigli, Emanuele

    2010-01-01

    The main goal of this paper is to analyze the innovative process of production of biogas (via fermentation processes) using marine macroalgae as feedstock in a pilot project plant in Augusta (Sicily, Italy). Algae, during their growth, have the capacity to assimilate nutrients and thus subsequent harvesting of the algal biomass recovers the nutrients from biowaste sources giving the possibility to transform negative environmental externalities in positive mainly in terms of eutrophication and climate change impact categories. The paper presents a novel environmental technology for the production of biogas and 2nd generation biofuel (liquid biomethane) after an upgrading process through the use of a cryogenic technology. The paper would also like to make the first attempt at understanding the possibility to implement this innovative technology in the Latvian context. The first calculations and assumptions for the Life Cycle Inventory for a further Life Cycle Assessment are presented.

  20. Life Cycle Impact Assessment Research Developments and Needs

    EPA Science Inventory

    Life Cycle Impact Assessment (LCIA) developments are explained along with key publications which record discussions which comprised ISO 14042 and SETAC document development, UNEP SETAC Life Cycle Initiative research, and research from public and private research institutions. It ...

  1. Comparative evaluation of life cycle assessment models for solid waste management

    SciTech Connect

    Winkler, Joerg; Bilitewski, Bernd

    2007-07-01

    This publication compares a selection of six different models developed in Europe and America by research organisations, industry associations and governmental institutions. The comparison of the models reveals the variations in the results and the differences in the conclusions of an LCA study done with these models. The models are compared by modelling a specific case - the waste management system of Dresden, Germany - with each model and an in-detail comparison of the life cycle inventory results. Moreover, a life cycle impact assessment shows if the LCA results of each model allows for comparable and consecutive conclusions, which do not contradict the conclusions derived from the other models' results. Furthermore, the influence of different level of detail in the life cycle inventory of the life cycle assessment is demonstrated. The model comparison revealed that the variations in the LCA results calculated by the models for the case show high variations and are not negligible. In some cases the high variations in results lead to contradictory conclusions concerning the environmental performance of the waste management processes. The static, linear modelling approach chosen by all models analysed is inappropriate for reflecting actual conditions. Moreover, it was found that although the models' approach to LCA is comparable on a general level, the level of detail implemented in the software tools is very different.

  2. Life cycle assessment of Japanese high-temperature conductive adhesives.

    PubMed

    Andrae, Anders S G; Itsubo, Norihiro; Yamaguchi, Hiroshi; Inaba, Atsushi

    2008-04-15

    The electrically conductive adhesives (ECA) are on the verge of a breakthrough as reliable interconnection materials for electronic components. As the ban of lead (Pb) in the electronics industry becomes a reality, the ECA's could be attractive overall alternatives to high melting point (HMP) Pb-based solder pastes. Environmental life cycle assessment (LCA) was used to estimate trade-offs between the energy use and the potential toxicity of two future types of ECA's and one HMP Pb-based. The probability is around 90% that the overall CO2 emissions from an ECA based on a tin-bismuth alloy are lower than for a silver-epoxy based ECA, whereas the probability is about 80% that the cumulative energy demand would be lower. It is more uncertain whether the tin-bismuth ECA would contribute to less CO2, or consume less energy, than a HMP Pb-based solder paste. Moreover, for the impact categories contributing to the life-cycle impact assessment method based on end point modeling (LIME) damage category of human health, the tin-bismuth ECA shows a 25 times lower score, and a silver-epoxy based ECA shows an 11 times lower score than the HMP Pb-based solder paste. In order to save resources and decrease CO2 emissions it is recommended to increase the collection and recycling of printed board assemblies using silver-epoxy based ECA.

  3. Comparative Human Health Impact Assessment of Engineered Nanomaterials in the Framework of Life Cycle Assessment.

    PubMed

    Fransman, Wouter; Buist, Harrie; Kuijpers, Eelco; Walser, Tobias; Meyer, David; Zondervan-van den Beuken, Esther; Westerhout, Joost; Klein Entink, Rinke H; Brouwer, Derk H

    2016-09-24

    For safe innovation, knowledge on potential human health impacts is essential. Ideally, these impacts are considered within a larger life-cycle-based context to support sustainable development of new applications and products. A methodological framework that accounts for human health impacts caused by inhalation of engineered nanomaterials (ENMs) in an indoor air environment has been previously developed. The objectives of this study are as follows: (i) evaluate the feasibility of applying the CF framework for NP exposure in the workplace based on currently available data; and (ii) supplement any resulting knowledge gaps with methods and data from the life cycle approach and human risk assessment (LICARA) project to develop a modified case-specific version of the framework that will enable near-term inclusion of NP human health impacts in life cycle assessment (LCA) using a case study involving nanoscale titanium dioxide (nanoTiO2 ). The intent is to enhance typical LCA with elements of regulatory risk assessment, including its more detailed measure of uncertainty. The proof-of-principle demonstration of the framework highlighted the lack of available data for both the workplace emissions and human health effects of ENMs that is needed to calculate generalizable characterization factors using common human health impact assessment practices in LCA. The alternative approach of using intake fractions derived from workplace air concentration measurements and effect factors based on best-available toxicity data supported the current case-by-case approach for assessing the human health life cycle impacts of ENMs. Ultimately, the proposed framework and calculations demonstrate the potential utility of integrating elements of risk assessment with LCA for ENMs once the data are available.

  4. What life-cycle assessment does and does not do in assessments of waste management.

    PubMed

    Ekvall, Tomas; Assefa, Getachew; Björklund, Anna; Eriksson, Ola; Finnveden, Göran

    2007-01-01

    In assessments of the environmental impacts of waste management, life-cycle assessment (LCA) helps expanding the perspective beyond the waste management system. This is important, since the indirect environmental impacts caused by surrounding systems, such as energy and material production, often override the direct impacts of the waste management system itself. However, the applicability of LCA for waste management planning and policy-making is restricted by certain limitations, some of which are characteristics inherent to LCA methodology as such, and some of which are relevant specifically in the context of waste management. Several of them are relevant also for other types of systems analysis. We have identified and discussed such characteristics with regard to how they may restrict the applicability of LCA in the context of waste management. Efforts to improve LCA with regard to these aspects are also described. We also identify what other tools are available for investigating issues that cannot be adequately dealt with by traditional LCA models, and discuss whether LCA methodology should be expanded rather than complemented by other tools to increase its scope and applicability.

  5. What life-cycle assessment does and does not do in assessments of waste management

    SciTech Connect

    Ekvall, Tomas Assefa, Getachew; Bjoerklund, Anna; Eriksson, Ola; Finnveden, Goeran

    2007-07-01

    In assessments of the environmental impacts of waste management, life-cycle assessment (LCA) helps expanding the perspective beyond the waste management system. This is important, since the indirect environmental impacts caused by surrounding systems, such as energy and material production, often override the direct impacts of the waste management system itself. However, the applicability of LCA for waste management planning and policy-making is restricted by certain limitations, some of which are characteristics inherent to LCA methodology as such, and some of which are relevant specifically in the context of waste management. Several of them are relevant also for other types of systems analysis. We have identified and discussed such characteristics with regard to how they may restrict the applicability of LCA in the context of waste management. Efforts to improve LCA with regard to these aspects are also described. We also identify what other tools are available for investigating issues that cannot be adequately dealt with by traditional LCA models, and discuss whether LCA methodology should be expanded rather than complemented by other tools to increase its scope and applicability.

  6. FUNDAMENTALS OF LIFE CYCLE ASSESSMENT AND OFF-THE-SHELF SOFTWARE DEMONSTRATION

    EPA Science Inventory

    As the name implies, Life Cycle Assesssment (LCA) evaluates the entire life cycle of a product, process, activity, or service, not just simple economics at the time of delivery. This course on LCA covers the following issues:
    Basic principles of LCA for use in producing, des...

  7. Life cycle assessment of CO2 capture and utilization: a tutorial review.

    PubMed

    von der Assen, Niklas; Voll, Philip; Peters, Martina; Bardow, André

    2014-12-07

    Capturing CO2 and using it as an alternative carbon feedstock for chemicals, fuels and materials has the potential to reduce both CO2 emissions and fossil resource depletion. To assess the actual environmental benefits of CO2 capture and utilization (CCU), life cycle assessment (LCA) is considered as suitable metric. To enhance the use of LCA of CCU, this tutorial review gives a jargon-free introduction of LCA of CCU directed at LCA novices. Nine particularly important aspects for conducting an LCA of CCU are identified and illustrated with CCU examples. These aspects, phrased as action items, can serve LCA novices as a checklist through all steps in LCA of CCU: from defining the LCA purpose and the system boundaries, over data collection and environmental impact computation, to interpretation and sensitivity analysis of the results. Finally, in the context of CCU, an outlook is given on recent developments in LCA that aim to cover all pillars of sustainability (people, planet, and profit).

  8. Life cycle assessment for sustainable metropolitan water systems planning.

    PubMed

    Lundie, Sven; Peters, Gregory M; Beavis, Paul C

    2004-07-01

    Life Cycle Assessment (LCA) is useful as an information tool for the examination of alternative future scenarios for strategic planning. Developing a life cycle assessment for a large water and wastewater system involves making methodological decisions about the level of detail which is retained through different stages of the process. In this article we discuss a methodology tailored to strategic planning needs which retains a high degree of model segmentation in order to enhance modeling of a large, complex system. This is illustrated by a case study of Sydney Water, which is Australia's largest water service provider. A prospective LCA was carried out to examine the potential environmental impacts of Sydney Water's total operations in the year 2021. To our knowledge this is the first study to create an LCA model of an integrated water and wastewater system with this degree of complexity. A "base case" system model was constructed to represent current operating assets as augmented and upgraded to 2021. The base case results provided a basis for the comparison of alternative future scenarios and for conclusions to be drawn regarding potential environmental improvements. The scenarios can be roughly classified in two categories: (1) options which improve the environmental performance across all impact categories and (2) options which improve one indicator and worsen others. Overall environmental improvements are achieved in all categories by the scenarios examining increased demand management, energy efficiency, energy generation, and additional energy recovery from biosolids. The scenarios which examined desalination of seawater and the upgrades of major coastal sewage treatment plants to secondary and tertiary treatment produced an improvement in one environmental indicator but deteriorations in all the other impact categories, indicating the environmental tradeoffs within the system. The desalination scenario produced a significant increase in greenhouse gas

  9. Comparative life cycle assessment and life cycle costing of four disposal scenarios for used polyethylene terephthalate bottles in Mauritius.

    PubMed

    Foolmaun, Rajendra Kumar; Ramjeeawon, Toolseeram

    2012-09-01

    The annual rise in population growth coupled with the flourishing tourism industry in Mauritius has lead to a considerable increase in the amount of solid waste generated. In parallel, the disposal of non-biodegradable wastes, especially plastic packaging and plastic bottles, has also shown a steady rise. Improper disposal of used polyethylene terephthalate (PET) bottles constitutes an eyesore to the environmental landscape and is a threat to the flourishing tourism industry. It is of utmost importance, therefore, to determine a suitable disposal method for used PET bottles which is not only environmentally efficient but is also cost effective. This study investigated the environmental impacts and the cost effectiveness of four selected disposal alternatives for used PET bottles in Mauritius. The four disposal routes investigated were: 100% landfilling; 75% incineration with energy recovery and 25% landfilling; 40% flake production (partial recycling) and 60% landfilling; and 75% flake production and 25% landfilling. Environmental impacts of the disposal alternatives were determined using ISO standardized life cycle assessment (LCA) and with the support of SimaPro 7.1 software. Cost effectiveness was determined using life cycle costing (LCC). Collected data were entered into a constructed Excel-based model to calculate the different cost categories, Net present values, damage costs and payback periods. LCA and LCC results indicated that 75% flake production and 25% landfilling was the most environmentally efficient and cost-effective disposal route for used PET bottles in Mauritius.

  10. Prospective environmental life cycle assessment of nanosilver T-shirts.

    PubMed

    Walser, Tobias; Demou, Evangelia; Lang, Daniel J; Hellweg, Stefanie

    2011-05-15

    A cradle-to-grave life cycle assessment (LCA) is performed to compare nanosilver T-shirts with conventional T-shirts with and without biocidal treatment. For nanosilver production and textile incorporation, we investigate two processes: flame spray pyrolysis (FSP) and plasma polymerization with silver co-sputtering (PlaSpu). Prospective environmental impacts due to increased nanosilver T-shirt commercialization are estimated with six scenarios. Results show significant differences in environmental burdens between nanoparticle production technologies: The "cradle-to-gate" climate footprint of the production of a nanosilver T-shirt is 2.70 kg of CO(2)-equiv (FSP) and 7.67-166 kg of CO(2)-equiv (PlaSpu, varying maturity stages). Production of conventional T-shirts with and without the biocide triclosan has emissions of 2.55 kg of CO(2)-equiv (contribution from triclosan insignificant). Consumer behavior considerably affects the environmental impacts during the use phase. Lower washing frequencies can compensate for the increased climate footprint of FSP nanosilver T-shirt production. The toxic releases from washing and disposal in the life cycle of T-shirts appear to be of minor relevance. By contrast, the production phase may be rather significant due to toxic silver emissions at the mining site if high silver quantities are required.

  11. Life Cycle Assessment modelling of stormwater treatment systems.

    PubMed

    O'Sullivan, Aisling D; Wicke, Daniel; Hengen, Tyler J; Sieverding, Heidi L; Stone, James J

    2015-02-01

    Stormwater treatment technologies to manage runoff during rain events are primarily designed to reduce flood risks, settle suspended solids and concurrently immobilise metals and nutrients. Life Cycle Assessment (LCA) is scarcely documented for stormwater systems despite their ubiquitous implementation. LCA modelling quantified the environmental impacts associated with the materials, construction, transport, operation and maintenance of different stormwater treatment systems. A pre-fabricated concrete vortex unit, a sub-surface sandfilter and a raingarden, all sized to treat a functional unit of 35 m(3) of stormwater runoff per event, were evaluated. Eighteen environmental mid-point metrics and three end-point 'damage assessment' metrics were quantified for each system's lifecycle. Climate change (kg CO2 eq.) dominated net environmental impacts, with smaller contributions from human toxicity (kg 1,4-DB eq.), particulate matter formation (kg PM10 eq.) and fossil depletion (kg oil eq.). The concrete unit had the highest environmental impact of which 45% was attributed to its maintenance while impacts from the sandfilters and raingardens were dominated by their bulky materials (57%) and transport (57%), respectively. On-site infiltrative raingardens, a component of green infrastructure (GI), had the lowest environmental impacts because they incurred lower maintenance and did not have any concrete which is high in embodied CO2. Smaller sized raingardens affording the same level of stormwater treatment had the lowest overall impacts reinforcing the principle that using fewer resources reduces environmental impacts. LCA modelling can serve as a guiding tool for practitioners making environmentally sustainable solutions for stormwater treatment.

  12. Comparative life cycle assessment of standard and green roofs.

    PubMed

    Saiz, Susana; Kennedy, Christopher; Bass, Brad; Pressnail, Kim

    2006-07-01

    Life cycle assessment (LCA) is used to evaluate the benefits, primarily from reduced energy consumption, resulting from the addition of a green roof to an eight story residential building in Madrid. Building energy use is simulated and a bottom-up LCA is conducted assuming a 50 year building life. The key property of a green roof is its low solar absorptance, which causes lower surface temperature, thereby reducing the heat flux through the roof. Savings in annual energy use are just over 1%, but summer cooling load is reduced by over 6% and reductions in peak hour cooling load in the upper floors reach 25%. By replacing the common flat roof with a green roof, environmental impacts are reduced by between 1.0 and 5.3%. Similar reductions might be achieved by using a white roof with additional insulation for winter, but more substantial reductions are achieved if common use of green roofs leads to reductions in the urban heat island.

  13. Life cycle assessment of electronic waste treatment.

    PubMed

    Hong, Jinglan; Shi, Wenxiao; Wang, Yutao; Chen, Wei; Li, Xiangzhi

    2015-04-01

    Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers).

  14. Integrating Human Indoor Air Pollutant Exposure within Life Cycle Impact Assessment

    SciTech Connect

    Hellweg, Stefanie; Demou, Evangelia; Bruzzi, Raffaella; Meijer, Arjen; Rosenbaum, Ralph K.; Huijbregts, Mark A.J.; McKone, Thomas E.

    2008-12-21

    Neglecting health effects from indoor pollutant emissions and exposure, as currently done in Life Cycle Assessment (LCA), may result in product or process optimizations at the expense of workers? or consumers? health. To close this gap, methods for considering indoor exposure to chemicals are needed to complement the methods for outdoor human exposure assessment already in use. This paper summarizes the work of an international expert group on the integration of human indoor and outdoor exposure in LCA, within the UNEP/SETAC Life Cycle Initiative. A new methodological framework is proposed for a general procedure to include human-health effects from indoor exposure in LCA. Exposure models from occupational hygiene and household indoor air quality studies and practices are critically reviewed and recommendations are provided on the appropriateness of various model alternatives in the context of LCA. A single-compartment box model is recommended for use as a default in LCA, enabling one to screen occupational and household exposures consistent with the existing models to assess outdoor emission in a multimedia environment. An initial set of model parameter values was collected. The comparison between indoor and outdoor human exposure per unit of emission shows that for many pollutants, intake per unit of indoor emission may be several orders of magnitude higher than for outdoor emissions. It is concluded that indoor exposure should be routinely addressed within LCA.

  15. The role of Life Cycle Assessment in identifying and reducing environmental impacts of CCS

    SciTech Connect

    Sathre, Roger; Masanet, Eric; Cain, Jennifer; Chester, Mikhail

    2011-04-20

    Life Cycle Assessment (LCA) should be used to assist carbon capture and sequestration (CCS) planners to reduce greenhouse gas (GHG) emissions and avoid unintended environmental trade-offs. LCA is an analytical framework for determining environmental impacts resulting from processes, products, and services. All life cycle stages are evaluated including raw material sourcing, processing, operation, maintenance, and component end-of-life, as well as intermediate stages such as transportation. In recent years a growing number of LCA studies have analyzed CCS systems. We reviewed 50+ LCA studies, and selected 11 studies that compared the environmental performance of 23 electric power plants with and without CCS. Here we summarize and interpret the findings of these studies. Regarding overall climatemitigation effectiveness of CCS, we distinguish between the capture percentage of carbon in the fuels, the net carbon dioxide (CO2) emission reduction, and the net GHG emission reduction. We also identify trade-offs between the climate benefits and the potential increased non-climate impacts of CCS. Emissions of non-CO2 flue gases such as NOx may increase due to the greater throughput of fuel, and toxicity issues may arise due to the use of monoethanolamine (MEA) capture solvent, resulting in ecological and human health impacts. We discuss areas where improvements in LCA data or methods are needed. The decision to implement CCS should be based on knowledge of the overall environmental impacts of the technologies, not just their carbon capture effectiveness. LCA will be an important tool in providing that knowledge.

  16. Life cycle assessment in support of sustainable transportation

    NASA Astrophysics Data System (ADS)

    Eckelman, Matthew J.

    2013-06-01

    In our rapidly urbanizing world, sustainable transportation presents a major challenge. Transportation decisions have considerable direct impacts on urban society, both positive and negative, for example through changes in transit times and economic productivity, urban connectivity, tailpipe emissions and attendant air quality concerns, traffic accidents, and noise pollution. Much research has been dedicated to quantifying these direct impacts for various transportation modes. Transportation planning decisions also result in a variety of indirect environmental and human health impacts, a portion of which can accrue outside of the transit service area and so outside of the local decision-making process. Integrated modeling of direct and indirect impacts over the life cycle of different transportation modes provides decision support that is more comprehensive and less prone to triggering unintended consequences than a sole focus on direct tailpipe emissions. The recent work of Chester et al (2013) in this journal makes important contributions to this research by examining the environmental implications of introducing bus rapid transit and light rail in Los Angeles using life cycle assessment (LCA). Transport in the LA region is dominated by automobile trips, and the authors show that potential shifts to either bus or train modes would reduce energy use and emissions of criteria air pollutants, on an average passenger mile travelled basis. This work compares not just the use of each vehicle, but also upstream impacts from its manufacturing and maintenance, as well as the construction and maintenance of the entire infrastructure required for each mode. Previous work by the lead author (Chester and Horvath 2009), has shown that these non-operational sources and largely non-local can dominate life cycle impacts from transportation, again on an average (or attributional) basis, for example increasing rail-related GHG emissions by >150% over just operational emissions

  17. Life Cycle Sustainability Assessment of Sediment Remediation at the London Olympic Park

    NASA Astrophysics Data System (ADS)

    Hou, D.; Al-Tabbaa, A.

    2013-12-01

    In recent years, there is an emerging 'green and sustainable remediation' (GSR) movement. It is drawing increasing attention from both the government and the industry, because this GSR movement is promising in accelerating process in addressing the contaminated land issue, by overcoming regulatory barriers, encouraging technological innovation, and balancing life cycle environmental stewardship with economic vitality and social well-being. Life cycle assessment (LCA) has been increasingly used by both researchers and industrial practitioners in an initiative to make environmental remediation greener and more sustainable. Life cycle sustainability assessment (LCSA), aiming at expanding the traditional LCA model in both breadth and depth (e.g. to incorporate both environmental and social-economic sustainability), is an important research direction in the existing LCA research field. The present study intends to develop a LCSA method based on a hybrid LCA model and economic input-output (EIO) data. The LCSA method is applied to a contaminated sediment remediation project conducted at the London Olympic Park site.

  18. Life cycle assessment of construction and demolition waste management

    SciTech Connect

    Butera, Stefania Christensen, Thomas H.; Astrup, Thomas F.

    2015-10-15

    Highlights: • LCA of C&DW utilisation in road vs. C&DW landfilling. • C&DW utilisation in road better than landfilling for most categories. • Transportation is the most important process in non-toxic impact categories. • Leaching of oxyanions is the critical process in toxic impact categories. • Modelling of Cr fate in the subsoil is highly influential to the results. - Abstract: Life cycle assessment (LCA) modelling of construction and demolition waste (C&DW) management was carried out. The functional unit was management of 1 Mg mineral, source separated C&DW, which is either utilised in road construction as a substitute for natural aggregates, or landfilled. The assessed environmental impacts included both non-toxic and toxic impact categories. The scenarios comprised all stages of the end-of-life management of C&DW, until final disposal of all residues. Leaching of inorganic contaminants was included, as was the production of natural aggregates, which was avoided because of the use of C&DW. Typical uncertainties related to contaminant leaching were addressed. For most impact categories, utilisation of C&DW in road construction was preferable to landfilling; however, for most categories, utilisation resulted in net environmental burdens. Transportation represented the most important contribution for most nontoxic impacts, accounting for 60–95 per cent of these impacts. Capital goods contributed with negligible impacts. Leaching played a critical role for the toxic categories, where landfilling had lower impacts than utilisation because of the lower levels of leachate per ton of C&DW reaching the groundwater over a 100-year perspective. Leaching of oxyanions (As, V and Sb) was critical with respect to leaching. Typical experimental uncertainties in leaching data did not have a pivotal influence on the results; however, accounting for Cr immobilisation in soils as part of the impact assessment was critical for modelling the leaching impacts. Compared

  19. Developments in life cycle assessment applied to evaluate the environmental performance of construction and demolition wastes.

    PubMed

    Bovea, M D; Powell, J C

    2016-04-01

    This paper provides a review of the literature that applies the life cycle assessment (LCA) methodology to the assessment of the environmental performance of the life cycle of construction and demolition waste (CDW) management systems. This article is focused on generating a general mapping of the literature and on identifying the best practices in compliance with LCA framework and proposing directions for future LCA studies in this field. The temporal evolution of the research in this field and the aim of the studies have grown in parallel with the legal framework related to waste and energy efficiency of buildings. Most studies have been published in Europe, followed by USA. Asia and Australia, being at an incipient application stage to the rest of the world. Topics related to "LCA of buildings, including their EoL" and "LCA of general CDW management strategies" are the most frequently analysed, followed by "LCA of EoL of construction elements" and "LCA of natural material vs recycled material". Regarding the strategies, recycling off-site and incineration, both combined with landfill for the rejected fractions, are the most commonly applied. Re-use or recycling on-site is the strategy least applied. The key aspect when LCA is applied to evaluate CDW management systems is the need to normalise which processes to include in the system boundary and the functional unit, the use of inventory data adapted to the context of the case study and the definition of a common set of appropriate impact assessment categories. Also, it is important to obtain results disaggregated by unit processes. This will allow the comparison between case studies.

  20. Life-cycle assessment of typical Portuguese cork oak woodlands.

    PubMed

    González-García, Sara; Dias, Ana Cláudia; Arroja, Luis

    2013-05-01

    Cork forest systems are responsible for making an important economic contribution to the Mediterranean region, especially Portugal where the cork oak woodlands or montados contain about 32% of the world's area. The environmental profile derived from reproduction cork production and extraction in two Portuguese regions (Tagus valley and Alentejo) representative of the Portuguese sector were assessed in detail using the Life-Cycle Assessment (LCA) methodology from a cradle-to-gate perspective. The production line was divided into four stages considering all the processes involved: stand establishment, stand management, cork stripping and field recovery. According to the environmental results, there were remarkable differences between the two production scenarios mainly due to the intensity and repetition of forest activities even though the cork yield was reported to be the same. The management system in the Alentejo region presented the worse environmental profile in almost all the impact categories under assessment, mainly due to the shorter cycle duration of the mechanical cleaning and pruning processes. Cork stripping was identified in both scenarios as the production stage with the highest contribution to the environmental profile due to the cleaning and pruning processes. A sensitivity assessment concerning the cork yield was performed since the average production yields in the Portuguese montados are lower than the ones used in this study. Thus, if the cork yield is reduced, the environmental profile in both scenarios gets worse since almost all the forest activities involved are the same.

  1. Comparative life cycle assessments: The case of paper and digital media

    SciTech Connect

    Bull, Justin G. Kozak, Robert A.

    2014-02-15

    The consumption of the written word is changing, as media transitions from paper products to digital alternatives. We reviewed the life cycle assessment (LCA) research literature that compared the environmental footprint of digital and paper media. To validate the role of context in influencing LCA results, we assessed LCAs that did not compare paper and print, but focused on a product or component that is part of the Information and Communication Technology (ICT) sector. Using a framework that identifies problems in LCA conduct, we assessed whether the comparative LCAs were accurate expressions of the environmental footprints of paper and print. We hypothesized that the differences between the product systems that produce paper and digital media weaken LCA's ability to compare environmental footprints. We also hypothesized that the characteristics of ICT as an industrial sector weaken LCA as an environmental assessment methodology. We found that existing comparative LCAs offered problematic comparisons of paper and digital media for two reasons — the stark material differences between ICT products and paper products, and the unique characteristics of the ICT sector. We suggested that the context of the ICT sector, best captured by the concept of “Moore's Law”, will continuously impede the ability of the LCA methodology to measure ICT products. -- Highlights: • We review the LCA research that compares paper and digital media. • We contrast the comparative LCAs with LCAs that examine only digital products. • Stark differences between paper and digital media weakens LCA findings. • Digital products in general challenge the LCA method's reliability. • Continuous innovation and global nature of digital products impedes LCA methodology.

  2. Life cycle assessment and residue leaching: The importance of parameter, scenario and leaching data selection

    SciTech Connect

    Allegrini, E.; Butera, S.; Kosson, D.S.; Van Zomeren, A.; Van der Sloot, H.A.; Astrup, T.F.

    2015-04-15

    Highlights: • Relevance of metal leaching in waste management system LCAs was assessed. • Toxic impacts from leaching could not be disregarded. • Uncertainty of toxicity, due to background activities, determines LCA outcomes. • Parameters such as pH and L/S affect LCA results. • Data modelling consistency and coverage within an LCA are crucial. - Abstract: Residues from industrial processes and waste management systems (WMSs) have been increasingly reutilised, leading to landfilling rate reductions and the optimisation of mineral resource utilisation in society. Life cycle assessment (LCA) is a holistic methodology allowing for the analysis of systems and products and can be applied to waste management systems to identify environmental benefits and critical aspects thereof. From an LCA perspective, residue utilisation provides benefits such as avoiding the production and depletion of primary materials, but it can lead to environmental burdens, due to the potential leaching of toxic substances. In waste LCA studies where residue utilisation is included, leaching has generally been neglected. In this study, municipal solid waste incineration bottom ash (MSWI BA) was used as a case study into three LCA scenarios having different system boundaries. The importance of data quality and parameter selection in the overall LCA results was evaluated, and an innovative method to assess metal transport into the environment was applied, in order to determine emissions to the soil and water compartments for use in an LCA. It was found that toxic impacts as a result of leaching were dominant in systems including only MSWI BA utilisation, while leaching appeared negligible in larger scenarios including the entire waste system. However, leaching could not be disregarded a priori, due to large uncertainties characterising other activities in the scenario (e.g. electricity production). Based on the analysis of relevant parameters relative to leaching, and on general results

  3. Life cycle assessment applied to wastewater treatment: state of the art.

    PubMed

    Corominas, Ll; Foley, J; Guest, J S; Hospido, A; Larsen, H F; Morera, S; Shaw, A

    2013-10-01

    Life cycle assessment (LCA) is a technique to quantify the impacts associated with a product, service or process from cradle-to-grave perspective. Within the field of wastewater treatment (WWT) LCA was first applied in the 1990s. In the pursuit of more environmentally sustainable WWT, it is clear that LCA is a valuable tool to elucidate the broader environmental impacts of design and operation decisions. With growing interest from utilities, practitioners, and researchers in the use of LCA in WWT systems, it is important to make a review of what has been achieved and describe the challenges for the forthcoming years. This work presents a comprehensive review of 45 papers dealing with WWT and LCA. The analysis of the papers showed that within the constraints of the ISO standards, there is variability in the definition of the functional unit and the system boundaries, the selection of the impact assessment methodology and the procedure followed for interpreting the results. The need for stricter adherence to ISO methodological standards to ensure quality and transparency is made clear and emerging challenges for LCA applications in WWT are discussed, including: a paradigm shift from pollutant removal to resource recovery, the adaptation of LCA methodologies to new target compounds, the development of regional factors, the improvement of the data quality and the reduction of uncertainty. Finally, the need for better integration and communication with decision-makers is highlighted.

  4. An examination of silver nanoparticles in socks using screening-level life cycle assessment

    NASA Astrophysics Data System (ADS)

    Meyer, David E.; Curran, Mary Ann; Gonzalez, Michael A.

    2011-01-01

    Screening-level life cycle assessment (LCA) can provide a quick tool to identify the life cycle hot spots and focus research efforts to help to minimize the burdens of a technology while maximizing its benefits. The use of nanoscale silver in consumer products has exploded in popularity. Although its use is considered beneficial because of antimicrobial effects, some attention must be given to the potential environmental impacts it could impart on the life cycle of these nanoproducts as production demands escalate. This work examines the environmental impact of including silver nanoparticles in commercially available socks using screening-level LCA. Initial results suggest washing during the use phase contributes substantially more than the manufacturing phase to the product life cycle impacts. Comparison of nanoparticles prepared by either chemical reduction, liquid flame spray (LFS), or plasma arc demonstrate how the type of manufacturing process used for the nanoscale silver can change the resulting life cycle impact of the sock product. The magnitude of this impact will depend on the type of process used to manufacture the nanoscale silver, with LFS having the most impact because of the need for large quantities of hydrogen and oxygen. Although the increased impacts for a single nanoproduct may be relatively small, the added environmental load can actually be a significant quantity when considered at the regional or global production level.

  5. Life cycle assessment of gasoline blending options.

    PubMed

    Mata, Teresa M; Smith, Raymond L; Young, Douglas M; Costa, Carlos A V

    2003-08-15

    A life cycle assessment has been done to compare the potential environmental impacts of various gasoline blends that meet octane and vapor pressure specifications. The main blending components of alkylate, cracked gasoline, and reformate have different octane and vapor pressure values as well as different potential environmental impacts. Because the octane and vapor pressure values are nonlinearly related to impacts, the results of this study show that some blends are better for the environment than others. To determine blending component compositions, simulations of a reformer were done at various operating conditions. The reformate products of these simulations had a wide range of octane values and potential environmental impacts. Results of the study indicate that for low-octane gasoline (95 Research Octane Number), lower reformer temperatures and pressures generally decrease the potential environmental impacts. However, different results are obtained for high-octane gasoline (98 RON), where increasing reformer temperatures and pressures increase the reformate octane values faster than the potential environmental impacts. The higher octane values for reformate allow blends to have less reformate, and therefore high-octane gasoline can have lower potential environmental impacts when the reformer is operated at higher temperatures and pressures. In the blends studied, reformate and cracked gasoline have the highest total impacts, of which photochemical ozone creation is the largest contributor (assuming all impact categories are equally weighted). Alkylate has a much lower total potential environmental impact but does have higher impact values for human toxicity by ingestion, aquatic toxicity, terrestrial toxicity, and acidification. Therefore, depending on environmental priorities, different gasoline blends and operating conditions should be chosen to meet octane and vapor pressure specifications.

  6. Integrating life cycle assessment into managing potential EHS risks of engineered nanomaterials: reviewing progress to date

    NASA Astrophysics Data System (ADS)

    Walker, William C.; Bosso, Christopher J.; Eckelman, Matthew; Isaacs, Jacqueline A.; Pourzahedi, Leila

    2015-08-01

    The 2011 National Nanotechnology Initiative's Environmental Health and Safety Research Strategy stressed the need for research to integrate life cycle considerations into risk management and, then, to better integrate risk assessment into decisionmaking on environmental, health, and safety (EHS) dimensions of nanomanufacturing. This paper reviews scholarly articles published 2010-2015 that in some way apply life cycle analysis to nanotechnology to assess the extent to which current research reflects the priorities lain out in the NNI report. As the NNI's focus was primarily on the "responsible development of nanotechnology" we also focus our examination on the ways in which LCA, in concert with other methodologies, can provide utility to decision makers facing the challenge of implementing that broad goal. We explore some of the challenges and opportunities inherent in using LCA, a tool built to optimize manufacturing decisions, as a guide for policy formulation or tool for policy implementation.

  7. Life cycle assessment of the production of ethanol from eastern redcedar.

    PubMed

    Olukoya, Ife A; Ramachandriya, Karthikeyan D; Wilkins, Mark R; Aichele, Clint P

    2014-12-01

    This life cycle assessment (LCA) evaluates the environmental impacts of an ethanol production system using eastern redcedar (Juniperus virginiana L.) as the feedstock. Aspen Plus® was used to model the acid bisulfite pretreatment, enzymatic hydrolysis, fermentation, and distillation steps. A cradle-to-gate LCA was conducted to evaluate the environmental impacts from cutting the trees to the production of anhydrous ethanol. The environmental impacts of the redcedar ethanol process were compared to those from the production of corn ethanol. Inventory data for the system were collected and used to calculate a life cycle impact assessment (LCIA) using the IMPACT 2002+ and BEES+ framework in SimaPro 8.0.0. Four impact categories were evaluated: land occupation, water use, greenhouse gas (GHG) emissions, and non-renewable energy use. Results indicate that acid bisulfite pretreatment contributed to 65% of GHG emissions, 81% of non-renewable energy use, and 77% of water use of the overall process.

  8. Environmental life cycle assessment of Ethiopian rose cultivation.

    PubMed

    Sahle, Abiy; Potting, José

    2013-01-15

    A life cycle assessment (LCA) was conducted for Ethiopian rose cultivation. The LCA covered the cradle-to-gate production of all inputs to Ethiopian rose cultivation up to, and including transport to the Ethiopian airport. Primary data were collected about materials and resources used as inputs to, and about the product outputs from 21 farms in 4 geographical regions (i.e. Holleta, Sebeta, Debre Ziet, and Ziway). The primary data were imported in, and analyzed with the SimaPro7.3 software. Data for the production of used inputs were taken from the EcoInvent®2.0 database. Emissions from input use on the farms were quantified based on estimates and emission factors from various studies and guidelines. The resulting life cycle inventory (LCI) table was next evaluated with the CML 2 baseline 2000 V2/world, 1990/characterization method to quantify the contribution of the rose cultivation chain to 10 environmental impact categories. The set of collected primary data was comprehensive and of high quality. The data point to an intensive use of fertilizers, pesticides, and greenhouse plastic. Production and use of these inputs also represent the major contributors in all environmental impact categories. The largest contribution comes from the production of the used fertilizers, specifically nitrogen-based fertilizers. The use of calcium nitrate dominates Abiotic Depletion (AD), Global Warming (GW), Human Toxicity (HT) and Marine Aquatic Ecotoxicity (MAET). It also makes a large contribution to Ozone Depletion (OD), Acidification (AD) and Fresh water Aquatic Ecotoxicity (FAET). Acidification (AC) and Eutrophication (EU) are dominated by the emission of fertilizers. The emissions from the use of pesticides, especially insecticides dominate Terrestrial Ecotoxicity (TE) and make a considerable contribution to Freshwater Aquatic Ecotoxicity (FAET) and Photochemical Oxidation (PhO). There is no visible contribution from the use of pesticides to the other toxicity categories

  9. LIFE CYCLE ASSESSMENT FOR PC BLEND 2 AIRCRAFT RADOME DEPAINTER

    EPA Science Inventory

    This report describes the life cycle assessment on a potential replacement solvent blend for aircraft radome depainting at the Oklahoma City Air Logistics Center at Tinker Air Force Base. The life cycle assessment is composed of three separate but interrelated components: life cy...

  10. Life-Cycle Assessment of Cookstove Fuels in India and China ...

    EPA Pesticide Factsheets

    A life cycle assessment (LCA) was conducted to compare the environmental footprint of current and possible fuels used for cooking within China and India. Current fuel mix profiles are compared to scenarios of projected differences in and/or cleaner cooking fuels. Results are reported for a suite of relevant life cycle impact assessment indicators: global climate change, energy demand, fossil depletion, water consumption, particulate matter formation, acidification, eutrophication and photochemical smog formation. Traditional fuels demonstrate notably poor relative performance in particulate matter formation, photochemical oxidant formation, freshwater eutrophication, and black carbon emissions. Most fuels demonstrate trade-offs between impact categories. Stove efficiency is found to be a crucial variable determining environmental performance across all impact categories. The study shows that electricity and many of the processed fuels, while yielding emission reductions in homes at the point of use, transfer many of those emissions upstream into the processing and distribution life cycle stage. To conduct LCA study of the cookstove fuels being used in India and China to determine how fuels and stoves compare based on a holistic assessment considering the LCA environmental tradeoffs

  11. The Chicago Center for Green Technology: life-cycle assessment of a brownfield redevelopment project

    NASA Astrophysics Data System (ADS)

    Brecheisen, Thomas; Theis, Thomas

    2013-03-01

    The sustainable development of brownfields reflects a fundamental, yet logical, shift in thinking and policymaking regarding pollution prevention. Life-cycle assessment (LCA) is a tool that can be used to assist in determining the conformity of brownfield development projects to the sustainability paradigm. LCA was applied to the process of a real brownfield redevelopment project, now known as the Chicago Center for Green Technology, to determine the cumulative energy required to complete the following redevelopment stages: (1) brownfield assessment and remediation, (2) building rehabilitation and site development and (3) ten years of operation. The results of the LCA have shown that operational energy is the dominant life-cycle stage after ten years of operation. The preservation and rehabilitation of the existing building, the installation of renewable energy systems (geothermal and photovoltaic) on-site and the use of more sustainable building products resulted in 72 terajoules (TJ) of avoided energy impacts, which would provide 14 years of operational energy for the site. Methodological note: data for this life-cycle assessment were obtained from project reports, construction blueprints and utility bills.

  12. Environmental impact of biomass based polygeneration - A case study through life cycle assessment.

    PubMed

    Jana, Kuntal; De, Sudipta

    2017-03-01

    Multi-generation or polygeneration is considered to be a potential sustainable energy solution. To assess environmental sustainability of multi-generation, life cycle assessment (LCA) is a useful tool. In this paper, environmental impact of polygeneration using an agro waste (rice straw) is assessed by LCA. Then it is compared with stand alone conventional plants with same utility outputs. Power, ethanol, heating and cooling are utility outputs of the polygeneration plant. System boundary for this polygeneration is defined for surplus biomass only. Exergy based allocation method is used for this analysis. Results of LCA are shown through both mid-point and end-point indicators. Results indicate that polygeneration with surplus rice straw is more environment-friendly than conventional stand-alone generation of same utilities.

  13. Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: Challenges and perspectives.

    PubMed

    Singh, Anoop; Pant, Deepak; Korres, Nicholas E; Nizami, Abdul-Sattar; Prasad, Shiv; Murphy, Jerry D

    2010-07-01

    Progressive depletion of conventional fossil fuels with increasing energy consumption and greenhouse gas (GHG) emissions have led to a move towards renewable and sustainable energy sources. Lignocellulosic biomass is available in massive quantities and provides enormous potential for bioethanol production. However, to ascertain optimal biofuel strategies, it is necessary to take into account environmental impacts from cradle to grave. Life cycle assessment (LCA) techniques allow detailed analysis of material and energy fluxes on regional and global scales. This includes indirect inputs to the production process and associated wastes and emissions, and the downstream fate of products in the future. At the same time if not used properly, LCA can lead to incorrect and inappropriate actions on the part of industry and/or policy makers. This paper aims to list key issues for quantifying the use of resources and releases to the environment associated with the entire life cycle of lignocellulosic bioethanol production.

  14. Methodological issues in life cycle assessment of mixed-culture polyhydroxyalkanoate production utilising waste as feedstock.

    PubMed

    Heimersson, Sara; Morgan-Sagastume, Fernando; Peters, Gregory M; Werker, Alan; Svanström, Magdalena

    2014-06-25

    Assessing the environmental performance of emerging technologies using life cycle assessment (LCA) can be challenging due to a lack of data in relation to technologies, application areas or other life cycle considerations, or a lack of LCA methodology that address the specific concerns. Nevertheless, LCA can be a valuable tool in the environmental optimisation in the technology development phase. One emerging technology is the mixed-culture production of polyhydroxyalkanoates (PHAs). PHA production by pure microbial cultures has been developed and assessed in several LCAs during the previous decade. Recent developments within mixed-culture PHA production call for environmental assessment to guide in technology development. Mixed-culture PHA production can use the organic content in wastewater as a feedstock; the production may then be integrated with wastewater treatment (WWT) processes. This means that mixed-culture PHA is produced as a by-product from services in the WWT. This article explores different methodological challenges for LCA of mixed-culture PHA production using organic material in wastewater as feedstock. LCAs of both pure- and mixed-culture PHA production were reviewed. Challenges, similarities and differences when assessing PHA production by mixed- or pure-cultures were identified and the resulting implications for methodological choices in LCA were evaluated and illustrated, using a case study with mixed- and pure-culture PHA model production systems, based on literature data. Environmental impacts of processes producing multiple products or services need to be allocated between the different products or services. Such situations occur both in feedstock production and when the studied system is providing multiple functions. The selection of allocation method is shown to determine the LCA results. The type of data used, for electricity in the energy system, is shown to be important for the results, which indicates, a strong regional dependency of

  15. A method for improving reliability and relevance of LCA reviews: the case of life-cycle greenhouse gas emissions of tap and bottled water.

    PubMed

    Fantin, Valentina; Scalbi, Simona; Ottaviano, Giuseppe; Masoni, Paolo

    2014-04-01

    The purpose of this study is to propose a method for harmonising Life Cycle Assessment (LCA) literature studies on the same product or on different products fulfilling the same function for a reliable and meaningful comparison of their life-cycle environmental impacts. The method is divided in six main steps which aim to rationalize and quicken the efforts needed to carry out the comparison. The steps include: 1) a clear definition of the goal and scope of the review; 2) critical review of the references; 3) identification of significant parameters that have to be harmonised; 4) harmonisation of the parameters; 5) statistical analysis to support the comparison; 6) results and discussion. This approach was then applied to the comparative analysis of the published LCA studies on tap and bottled water production, focussing on Global Warming Potential (GWP) results, with the aim to identify the environmental preferable alternative. A statistical analysis with Wilcoxon's test confirmed that the difference between harmonised GWP values of tap and bottled water was significant. The results obtained from the comparison of the harmonised mean GWP results showed that tap water always has the best environmental performance, even in case of high energy-consuming technologies for drinking water treatments. The strength of the method is that it enables both performing a deep analysis of the LCA literature and obtaining more consistent comparisons across the published LCAs. For these reasons, it can be a valuable tool which provides useful information for both practitioners and decision makers. Finally, its application to the case study allowed both to supply a description of systems variability and to evaluate the importance of several key parameters for tap and bottled water production. The comparative review of LCA studies, with the inclusion of a statistical decision test, can validate and strengthen the final statements of the comparison.

  16. Life cycle assessment part 1: framework, goal and scope definition, inventory analysis, and applications.

    PubMed

    Rebitzer, G; Ekvall, T; Frischknecht, R; Hunkeler, D; Norris, G; Rydberg, T; Schmidt, W-P; Suh, S; Weidema, B P; Pennington, D W

    2004-07-01

    Sustainable development requires methods and tools to measure and compare the environmental impacts of human activities for the provision of goods and services (both of which are summarized under the term "products"). Environmental impacts include those from emissions into the environment and through the consumption of resources, as well as other interventions (e.g., land use) associated with providing products that occur when extracting resources, producing materials, manufacturing the products, during consumption/use, and at the products' end-of-life (collection/sorting, reuse, recycling, waste disposal). These emissions and consumptions contribute to a wide range of impacts, such as climate change, stratospheric ozone depletion, tropospheric ozone (smog) creation, eutrophication, acidification, toxicological stress on human health and ecosystems, the depletion of resources, water use, land use, and noise-among others. A clear need, therefore, exists to be proactive and to provide complimentary insights, apart from current regulatory practices, to help reduce such impacts. Practitioners and researchers from many domains come together in life cycle assessment (LCA) to calculate indicators of the aforementioned potential environmental impacts that are linked to products-supporting the identification of opportunities for pollution prevention and reductions in resource consumption while taking the entire product life cycle into consideration. This paper, part 1 in a series of two, introduces the LCA framework and procedure, outlines how to define and model a product's life cycle, and provides an overview of available methods and tools for tabulating and compiling associated emissions and resource consumption data in a life cycle inventory (LCI). It also discusses the application of LCA in industry and policy making. The second paper, by Pennington et al. (Environ. Int. 2003, in press), highlights the key features, summarises available approaches, and outlines the key

  17. Comparative analysis of the life cycle impact assessment of available cement inventories in the EU

    SciTech Connect

    Josa, Alejandro; Byars, Ewan

    2007-05-15

    Life cycle impact assessment (LCIA) is one of basic steps in life cycle assessment methodology (LCA). This paper presents a comparative study of the LCIA of different life cycle inventories (LCI) for EU cements. The analysis unit used is the manufacture of 1 kg of cement, from 'cradle to gate'. The impact categories considered are those resulting from the manufacture of cement and include greenhouse effects, acidification, eutrophication and summer and winter smog, amongst others. The results of the study highlighted some inconsistencies in existing inventories. As for the LCIA, the main environmental interventions related to cement manufacture were classified and characterised and their effect on different impact categories analysed. Differences observed in evaluation of the impact of cement type were essentially related to their clinker content.

  18. LIFE-CYCLE IMPACT ASSESSMENT DEMONSTRATION FOR THE BGU-24

    EPA Science Inventory

    The primary goal of this project was to develop and demonstrate a life-cycle impact assessment (LCIA) approach using existing life-cycle inventory (LCI) data on one of the propellants, energetics, and pyrotechnic (PEP) materials of interest to the U.S. Department of Defense (DoD)...

  19. LIFE CYCLE IMPACT ASSESSMENT AN INTRODUCTION AND INTERNATIONAL UPDATE

    EPA Science Inventory

    Research within the field of Life Cycle Impact Assessment (LCIA) has greatly improved since the work of Heijungs and Guinee in 1992. Within the UNEP / SETAC Life Cycle Initiative an effort is underway to provide recommendations about the direction of research and selection of LC...

  20. LIFE-CYCLE IMPACT ASSESSMENT DEMONSTRATION FOR THE GBU-24

    EPA Science Inventory

    The primary goal of this project was to develop and demonstrate a life-cycle impact assessment (LCIA) approach using existing life-cycle inventory (LCI) data on one of the propellants, energetics, and pyro-technic (PEP) materials of interest to the U.S. Department of Defense (DoD...

  1. Life Cycle Energy and Environmental Assessment of Aluminum-Intensive Vehicle Design

    SciTech Connect

    Das, Sujit

    2014-01-01

    Advanced lightweight materials are increasingly being incorporated into new vehicle designs by automakers to enhance performance and assist in complying with increasing requirements of corporate average fuel economy standards. To assess the primary energy and carbon dioxide equivalent (CO2e) implications of vehicle designs utilizing these materials, this study examines the potential life cycle impacts of two lightweight material alternative vehicle designs, i.e., steel and aluminum of a typical passenger vehicle operated today in North America. LCA for three common alternative lightweight vehicle designs are evaluated: current production ( Baseline ), an advanced high strength steel and aluminum design ( LWSV ), and an aluminum-intensive design (AIV). This study focuses on body-in-white and closures since these are the largest automotive systems by weight accounting for approximately 40% of total curb weight of a typical passenger vehicle. Secondary mass savings resulting from body lightweighting are considered for the vehicles engine, driveline and suspension. A cradle-to-cradle life cycle assessment (LCA) was conducted for these three vehicle material alternatives. LCA methodology for this study included material production, mill semi-fabrication, vehicle use phase operation, and end-of-life recycling. This study followed international standards ISO 14040:2006 [1] and ISO 14044:2006 [2], consistent with the automotive LCA guidance document currently being developed [3]. Vehicle use phase mass reduction was found to account for over 90% of total vehicle life cycle energy and CO2e emissions. The AIV design achieved mass reduction of 25% (versus baseline) resulting in reductions in total life cycle primary energy consumption by 20% and CO2e emissions by 17%. Overall, the AIV design showed the best breakeven vehicle mileage from both primary energy consumption and climate change perspectives.

  2. Accounting for ecosystem services in life cycle assessment, Part I: a critical review.

    PubMed

    Zhang, Yi; Singh, Shweta; Bakshi, Bhavik R

    2010-04-01

    If life cycle oriented methods are to encourage sustainable development, they must account for the role of ecosystem goods and services, since these form the basis of planetary activities and human well-being. This article reviews methods that are relevant to accounting for the role of nature and that could be integrated into life cycle oriented approaches. These include methods developed by ecologists for quantifying ecosystem services, by ecological economists for monetary valuation, and life cycle methods such as conventional life cycle assessment, thermodynamic methods for resource accounting such as exergy and emergy analysis, variations of the ecological footprint approach, and human appropriation of net primary productivity. Each approach has its strengths: economic methods are able to quantify the value of cultural services; LCA considers emissions and assesses their impact; emergy accounts for supporting services in terms of cumulative exergy; and ecological footprint is intuitively appealing and considers biocapacity. However, no method is able to consider all the ecosystem services, often due to the desire to aggregate all resources in terms of a single unit. This review shows that comprehensive accounting for ecosystem services in LCA requires greater integration among existing methods, hierarchical schemes for interpreting results via multiple levels of aggregation, and greater understanding of the role of ecosystems in supporting human activities. These present many research opportunities that must be addressed to meet the challenges of sustainability.

  3. Life cycle assessment of construction and demolition waste management.

    PubMed

    Butera, Stefania; Christensen, Thomas H; Astrup, Thomas F

    2015-10-01

    Life cycle assessment (LCA) modelling of construction and demolition waste (C&DW) management was carried out. The functional unit was management of 1 Mg mineral, source separated C&DW, which is either utilised in road construction as a substitute for natural aggregates, or landfilled. The assessed environmental impacts included both non-toxic and toxic impact categories. The scenarios comprised all stages of the end-of-life management of C&DW, until final disposal of all residues. Leaching of inorganic contaminants was included, as was the production of natural aggregates, which was avoided because of the use of C&DW. Typical uncertainties related to contaminant leaching were addressed. For most impact categories, utilisation of C&DW in road construction was preferable to landfilling; however, for most categories, utilisation resulted in net environmental burdens. Transportation represented the most important contribution for most nontoxic impacts, accounting for 60-95 per cent of these impacts. Capital goods contributed with negligible impacts. Leaching played a critical role for the toxic categories, where landfilling had lower impacts than utilisation because of the lower levels of leachate per ton of C&DW reaching the groundwater over a 100-year perspective. Leaching of oxyanions (As, V and Sb) was critical with respect to leaching. Typical experimental uncertainties in leaching data did not have a pivotal influence on the results; however, accounting for Cr immobilisation in soils as part of the impact assessment was critical for modelling the leaching impacts. Compared with the overall life cycle of building and construction materials, leaching emissions were shown to be potentially significant for toxicity impacts, compared with contributions from production of the same materials, showing that end-of-life impacts and leaching should not be disregarded when assessing environmental impacts from construction products and materials. CO2 uptake in the C

  4. Assessing Resource Intensity and Renewability of Cellulosic Ethanol Technologies using Eco-LCA

    EPA Science Inventory

    Recognizing the contributions of natural resources and the lack of their comprehensive accounting in life cycle assessment (LCA) of cellulosic ethanol, an in-depth analysis of the contribution of natural resources in the life cycle of cellulosic ethanol derived from five differen...

  5. Dynamic hybrid life cycle assessment of energy and carbon of multicrystalline silicon photovoltaic systems.

    PubMed

    Zhai, Pei; Williams, Eric D

    2010-10-15

    This paper advances the life cycle assessment (LCA) of photovoltaic systems by expanding the boundary of the included processes using hybrid LCA and accounting for the technology-driven dynamics of embodied energy and carbon emissions. Hybrid LCA is an extended method that combines bottom-up process-sum and top-down economic input-output (EIO) methods. In 2007, the embodied energy was 4354 MJ/m(2) and the energy payback time (EPBT) was 2.2 years for a multicrystalline silicon PV system under 1700 kWh/m(2)/yr of solar radiation. These results are higher than those of process-sum LCA by approximately 60%, indicating that processes excluded in process-sum LCA, such as transportation, are significant. Even though PV is a low-carbon technology, the difference between hybrid and process-sum results for 10% penetration of PV in the U.S. electrical grid is 0.13% of total current grid emissions. Extending LCA from the process-sum to hybrid analysis makes a significant difference. Dynamics are characterized through a retrospective analysis and future outlook for PV manufacturing from 2001 to 2011. During this decade, the embodied carbon fell substantially, from 60 g CO(2)/kWh in 2001 to 21 g/kWh in 2011, indicating that technological progress is realizing reductions in embodied environmental impacts as well as lower module price.

  6. Sourcing Life Cycle Inventory Data

    EPA Science Inventory

    The collection and validation of quality lifecycle inventory (LCI) data can be the most difficult and time-consuming aspect of developing a life cycle assessment (LCA). Large amounts of process and production data are needed to complete the LCI. For many studies, the LCA analyst ...

  7. Integrating Hybrid Life Cycle Assessment with Multiobjective Optimization: A Modeling Framework.

    PubMed

    Yue, Dajun; Pandya, Shyama; You, Fengqi

    2016-02-02

    By combining life cycle assessment (LCA) with multiobjective optimization (MOO), the life cycle optimization (LCO) framework holds the promise not only to evaluate the environmental impacts for a given product but also to compare different alternatives and identify both ecologically and economically better decisions. Despite the recent methodological developments in LCA, most LCO applications are developed upon process-based LCA, which results in system boundary truncation and underestimation of the true impact. In this study, we propose a comprehensive LCO framework that seamlessly integrates MOO with integrated hybrid LCA. It quantifies both direct and indirect environmental impacts and incorporates them into the decision making process in addition to the more traditional economic criteria. The proposed LCO framework is demonstrated through an application on sustainable design of a potential bioethanol supply chain in the UK. Results indicate that the proposed hybrid LCO framework identifies a considerable amount of indirect greenhouse gas emissions (up to 58.4%) that are essentially ignored in process-based LCO. Among the biomass feedstock options considered, using woody biomass for bioethanol production would be the most preferable choice from a climate perspective, while the mixed use of wheat and wheat straw as feedstocks would be the most cost-effective one.

  8. Greenhouse gas emissions from forestry operations: a life cycle assessment.

    PubMed

    Sonne, Edie

    2006-01-01

    Most forest carbon assessments focus only on biomass carbon and assume that greenhouse gas (GHG) emissions from forestry activities are minimal. This study took an in-depth look at the direct and indirect emissions from Pacific Northwest (PNW) Douglas-fir [Pseudotsuga menziesii (Mirbel) Franco] forestry activities to support or deny this claim. Greenhouse gas budgets for 408 "management regimes" were calculated using Life Cycle Assessment (LCA) methodology. These management regimes were comprised of different combinations of three types of seedlings (P + 1, 1 + 1, and large plug), two types of site preparation (pile and burn, and chemical), 17 combinations of management intensity including fertilization, herbicide treatment, pre-commercial thinning (PCT), commercial thinning (CT), and nothing, and four different rotation ages (30, 40, 50, and 60 yr). Normalized to 50 yr, average direct GHG emissions were 8.6 megagrams (Mg) carbon dioxide equivalents (CO2e) ha(-1), which accounted for 84% of total GHG emissions from the average of 408 management regimes. Harvesting (PCT, CT, and clear cutting) contributed the most to total GHG emissions (5.9 Mg CO2e per 700 m3 harvested timber), followed by pile and burn site preparation (4.0 Mg CO2e ha(-1) or 32% of total GHG emissions) and then fertilization (1.9 Mg CO2e ha(-1) or 15% of total GHG emissions). Seedling production, seedling transportation, chemical site preparation, and herbicide treatment each contributed less than 1% of total GHG emissions when assessed per hectare of planted timberland. Total emissions per 100 m3 averaged 1.6 Mg CO2e ha(-1) over all 408 management regimes. An uncertainty analysis using Monte Carlo simulations revealed that there are significant differences between most alternative management regimes.

  9. Life Cycle Assessment of Domestic and Agricultural Rainwater Harvesting Systems

    EPA Science Inventory

    To further understanding of the environmental implications of rainwater harvesting and its water savings potential relative to conventional U.S. water delivery infrastructure, we present a method to perform life cycle assessment of domestic rainwater harvesting (DRWH) and agricul...

  10. LIFE CYCLE IMPACT ASSESSMENT: A GLOBAL PERSPECTIVE, II

    EPA Science Inventory

    Research within the field of Life Cycle Impact Assessment (LCIA) has greatly improved since the work of Heijungs and Guinee in 1992. Methodologies are currently available to address specific locations within North America, Europe, and Asia. Internationally, researchers are work...

  11. Further potentials in the joint implementation of life cycle assessment and data envelopment analysis.

    PubMed

    Iribarren, Diego; Vázquez-Rowe, Ian; Moreira, María Teresa; Feijoo, Gumersindo

    2010-10-15

    The combined application of Life Cycle Assessment and Data Envelopment Analysis has been recently proposed to provide a tool for the comprehensive assessment of the environmental and operational performance of multiple similar entities. Among the acknowledged advantages of LCA+DEA methodology, eco-efficiency verification and avoidance of average inventories are usually highlighted. However, given the novelty of LCA+DEA methods, a high number of additional potentials remain unexplored. In this sense, there are some features that are worth detailing given their wide interest to enhance LCA performance. Emphasis is laid on the improved interpretation of LCA results through the complementary use of DEA with respect to: (i) super-efficiency analysis to facilitate the selection of reference performers, (ii) inter- and intra-assessments of multiple data sets within any specific sector with benchmarking and trend analysis purposes, (iii) integration of an economic dimension in order to enrich sustainability assessments, and (iv) window analysis to evaluate environmental impact efficiency over a certain period of time. Furthermore, the capability of LCA+DEA methodology to be generally implemented in a wide range of scenarios is discussed. These further potentials are explained and demonstrated via the presentation of brief case studies based on real data sets.

  12. Indoor exposure to toluene from printed matter matters: complementary views from life cycle assessment and risk assessment.

    PubMed

    Walser, Tobias; Juraske, Ronnie; Demou, Evangelia; Hellweg, Stefanie

    2014-01-01

    A pronounced presence of toluene from rotogravure printed matter has been frequently observed indoors. However, its consequences to human health in the life cycle of magazines are poorly known. Therefore, we quantified human-health risks in indoor environments with Risk Assessment (RA) and impacts relative to the total impact of toxic releases occurring in the life cycle of a magazine with Life Cycle Assessment (LCA). We used a one-box indoor model to estimate toluene concentrations in printing facilities, newsstands, and residences in a best, average, and worst-case scenario. The modeled concentrations are in the range of the values measured in on-site campaigns. Toluene concentrations can be close or even surpass the occupational legal thresholds in printing facilities in realistic worst-case scenarios. The concentrations in homes can surpass the US EPA reference dose (69 μg/kg/day) in worst-case scenarios, but are still at least 1 order of magnitude lower than in press rooms or newsstands. However, toluene inhaled at home becomes the dominant contribution to the total potential human toxicity impacts of toluene from printed matter when assessed with LCA, using the USEtox method complemented with indoor characterization factors for toluene. The significant contribution (44%) of toluene exposure in production, retail, and use in households, to the total life cycle impact of a magazine in the category of human toxicity, demonstrates that the indoor compartment requires particular attention in LCA. While RA works with threshold levels, LCA assumes that every toxic emission causes an incremental change to the total impact. Here, the combination of the two paradigms provides valuable information on the life cycle stages of printed matter.

  13. Use of life cycle assessments to evaluate the environmental footprint of contaminated sediment remediation.

    PubMed

    Sparrevik, Magnus; Saloranta, Tuomo; Cornelissen, Gerard; Eek, Espen; Fet, Annik Magerholm; Breedveld, Gijs D; Linkov, Igor

    2011-05-15

    Ecological and human risks often drive the selection of remedial alternatives for contaminated sediments. Traditional human and ecological risk assessment (HERA) includes assessing risk for benthic organisms and aquatic fauna associated with exposure to contaminated sediments before and after remediation as well as risk for human exposure but does not consider the environmental footprint associated with implementing remedial alternatives. Assessment of environmental effects over the whole life cycle (i.e., Life Cycle Assessment, LCA) could complement HERA and help in selecting the most appropriate sediment management alternative. Even though LCA has been developed and applied in multiple environmental management cases, applications to contaminated sediments and marine ecosystems are in general less frequent. This paper implements LCA methodology for the case of the polychlorinated dibenzo-p-dioxins and -furans (PCDD/F)-contaminated Grenland fjord in Norway. LCA was applied to investigate the environmental footprint of different active and passive thin-layer capping alternatives as compared to natural recovery. The results showed that capping was preferable to natural recovery when analysis is limited to effects related to the site contamination. Incorporation of impacts related to the use of resources and energy during the implementation of a thin layer cap increase the environmental footprint by over 1 order of magnitude, making capping inferior to the natural recovery alternative. Use of biomass-derived activated carbon, where carbon dioxide is sequestered during the production process, reduces the overall environmental impact to that of natural recovery. The results from this study show that LCA may be a valuable tool for assessing the environmental footprint of sediment remediation projects and for sustainable sediment management.

  14. Algae biodiesel life cycle assessment using current commercial data.

    PubMed

    Passell, Howard; Dhaliwal, Harnoor; Reno, Marissa; Wu, Ben; Ben Amotz, Ami; Ivry, Etai; Gay, Marcus; Czartoski, Tom; Laurin, Lise; Ayer, Nathan

    2013-11-15

    Autotrophic microalgae represent a potential feedstock for transportation fuels, but life cycle assessment (LCA) studies based on laboratory-scale or theoretical data have shown mixed results. We attempt to bridge the gap between laboratory-scale and larger scale biodiesel production by using cultivation and harvesting data from a commercial algae producer with ∼1000 m(2) production area (the base case), and compare that with a hypothetical scaled up facility of 101,000 m(2) (the future case). Extraction and separation data are from Solution Recovery Services, Inc. Conversion and combustion data are from the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model (GREET). The LCA boundaries are defined as "pond-to-wheels". Environmental impacts are quantified as NER (energy in/energy out), global warming potential, photochemical oxidation potential, water depletion, particulate matter, and total NOx and SOx. The functional unit is 1 MJ of energy produced in a passenger car. Results for the base case and the future case show an NER of 33.4 and 1.37, respectively and GWP of 2.9 and 0.18 kg CO2-equivalent, respectively. In comparison, petroleum diesel and soy diesel show an NER of 0.18 and 0.80, respectively and GWP of 0.12 and 0.025, respectively. A critical feature in this work is the low algal productivity (3 g/m(2)/day) reported by the commercial producer, relative to the much higher productivities (20-30 g/m(2)/day) reported by other sources. Notable results include a sensitivity analysis showing that algae with an oil yield of 0.75 kg oil/kg dry biomass in the future case can bring the NER down to 0.64, more comparable with petroleum diesel and soy biodiesel. An important assumption in this work is that all processes are fully co-located and that no transport of intermediate or final products from processing stage to stage is required.

  15. Interest of the Theory of Uncertain in the Dynamic LCA- Fire Methodology to Assess Fire Effects

    NASA Astrophysics Data System (ADS)

    Chettouh, Samia; Hamzi, Rachida; Innal, Fares; Haddad, Djamel

    Life Cycle Impact Assessment (LCIA) is the third phase of Life Cycle Assessment (LCA) described in ISO 14042. The purpose of LCIA is to assess a product system's life cycle inventory analysis (LCI) in order to better understand its environmental significance. However, LCIA typically excludes spatial, temporal, threshold and dose-response information, and combines emissions or activities over space and/or time. This may diminish the environmental relevance of the indicator result. The methodology, Dynamic LCA -Fire proposed in this paper to complete the International Standard ISO 14042 in the fire field, combines the LCA - Fire method with the Dispersion Numerical Model. It is based on the use of the plume model used to assess pollutant concentrations and thermal effects from fire accident scenarios. In this study, The Dynamic LCA - Fire methodology is applied to a case study for petroleum production process management.

  16. Rethinking the area of protection "natural resources" in life cycle assessment.

    PubMed

    Dewulf, Jo; Benini, Lorenzo; Mancini, Lucia; Sala, Serenella; Blengini, Gian Andrea; Ardente, Fulvio; Recchioni, Marco; Maes, Joachim; Pant, Rana; Pennington, David

    2015-05-05

    Life cycle impact assessment (LCIA) in classical life cycle assessment (LCA) aims at analyzing potential impacts of products and services typically on three so-called areas of protection (AoPs): Natural Environment, Human Health, and Natural Resources. This paper proposes an elaboration of the AoP Natural Resources. It starts with analyzing different perspectives on Natural Resources as they are somehow sandwiched in between the Natural Environment (their cradle) and the human-industrial environment (their application). Reflecting different viewpoints, five perspectives are developed with the suggestion to select three in function of classical LCA. They result in three safeguard subjects: the Asset of Natural Resources, their Provisioning Capacity, and their role in Global Functions. Whereas the Provisioning Capacity is fully in function of humans, the global functions go beyond provisioning as they include nonprovisioning functions for humans and regulating and maintenance services for the globe as a whole, following the ecosystem services framework. A fourth and fifth safeguard subject has been identified: recognizing the role Natural Resources for human welfare, either specifically as building block in supply chains of products and services as such, either with or without their functions beyond provisioning. But as these are far broader as they in principle should include characterization of mechanisms within the human industrial society, they are considered as subjects for an integrated sustainability assessment (LCSA: life cycle sustainability assessment), that is, incorporating social, economic and environmental issues.

  17. Life-cycle assessment framework for indoor emissions of synthetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Walser, Tobias; Meyer, David; Fransman, Wouter; Buist, Harrie; Kuijpers, Eelco; Brouwer, Derk

    2015-06-01

    Life-Cycle Assessment (LCA) is a well-established method to evaluate impacts of chemicals on the environment and human health along the lifespan of products. However, the increasingly produced and applied nanomaterials (defined as one dimension <100 nm) show particular characteristics which are different from conventional chemicals or larger particles. As a consequence, LCA does not provide sufficient guidance on how to deal with synthetic nanomaterials, neither in the exposure, nor in the effect assessment. This is particularly true for the workplace, where significant exposure can be expected via the lung, the route of major concern. Therefore, we developed a concise method which allows the inclusion of indoor nanoparticle exposure into LCA. New nanospecific properties are included along the LCA stages with a particular focus on the workplace environment. We built upon existing LCA methods and nanoparticle fate and exposure studies. The impact assessment requires new approaches for nanoparticles, such as guidance on relevant endpoints, nanospecific properties that are relevant for the toxicity, and guidance on the chemical identity of nanomaterials, i.e., categorization and distinction of different forms of nanomaterials. We present a framework which goes beyond traditional approaches of LCA and includes nanospecific fate parameters in the indoor exposure assessment as well as guidance on the development of effect and characterization factors for inhaled nanoparticles. Specifically, the indoor one-box model is amended with new particle-specific parameters developed in the exposure literature. A concentration conversion and parameter estimation tool are presented. Finally, the modification of the traditional intake fraction to capture size-specific deposition and retention rate are discussed along with a strategy for a more robust effect assessment. The paper is a further step toward a fair comparison between conventional and nano-enabled products by integrating

  18. Towards Robust Energy Systems Modeling: Examinging Uncertainty in Fossil Fuel-Based Life Cycle Assessment Approaches

    NASA Astrophysics Data System (ADS)

    Venkatesh, Aranya

    Increasing concerns about the environmental impacts of fossil fuels used in the U.S. transportation and electricity sectors have spurred interest in alternate energy sources, such as natural gas and biofuels. Life cycle assessment (LCA) methods can be used to estimate the environmental impacts of incumbent energy sources and potential impact reductions achievable through the use of alternate energy sources. Some recent U.S. climate policies have used the results of LCAs to encourage the use of low carbon fuels to meet future energy demands in the U.S. However, the LCA methods used to estimate potential reductions in environmental impact have some drawbacks. First, the LCAs are predominantly based on deterministic approaches that do not account for any uncertainty inherent in life cycle data and methods. Such methods overstate the accuracy of the point estimate results, which could in turn lead to incorrect and (consequent) expensive decision-making. Second, system boundaries considered by most LCA studies tend to be limited (considered a manifestation of uncertainty in LCA). Although LCAs can estimate the benefits of transitioning to energy systems of lower environmental impact, they may not be able to characterize real world systems perfectly. Improved modeling of energy systems mechanisms can provide more accurate representations of reality and define more likely limits on potential environmental impact reductions. This dissertation quantitatively and qualitatively examines the limitations in LCA studies outlined previously. The first three research chapters address the uncertainty in life cycle greenhouse gas (GHG) emissions associated with petroleum-based fuels, natural gas and coal consumed in the U.S. The uncertainty in life cycle GHG emissions from fossil fuels was found to range between 13 and 18% of their respective mean values. For instance, the 90% confidence interval of the life cycle GHG emissions of average natural gas consumed in the U.S was found to

  19. Potential for Integrating Diffusion of Innovation Principles into Life Cycle Assessment of Emerging Technologies.

    PubMed

    Sharp, Benjamin E; Miller, Shelie A

    2016-03-15

    Life cycle assessment (LCA) measures cradle-to-grave environmental impacts of a product. To assess impacts of an emerging technology, LCA should be coupled with additional methods that estimate how that technology might be deployed. The extent and manner that an emerging technology diffuses throughout a region shapes the magnitude and type of environmental impacts. Diffusion of innovation is an established field of research that analyzes the adoption of new innovations, and its principles can be used to construct scenario models that enhance LCA of emerging technologies. Integrating diffusion modeling techniques with an LCA of emerging technology can provide estimates for the extent of market penetration, the displacement of existing systems, and the rate of adoption. Two general perspectives of application are macro-level diffusion models that use a function of time to represent adoption, and microlevel diffusion models that simulate adoption through interactions of individuals. Incorporating diffusion of innovation concepts complement existing methods within LCA to inform proactive environmental management of emerging technologies.

  20. Improved Environmental Life Cycle Assessment of Crop Production at the Catchment Scale via a Process-Based Nitrogen Simulation Model.

    PubMed

    Liao, Wenjie; van der Werf, Hayo M G; Salmon-Monviola, Jordy

    2015-09-15

    One of the major challenges in environmental life cycle assessment (LCA) of crop production is the nonlinearity between nitrogen (N) fertilizer inputs and on-site N emissions resulting from complex biogeochemical processes. A few studies have addressed this nonlinearity by combining process-based N simulation models with LCA, but none accounted for nitrate (NO3(-)) flows across fields. In this study, we present a new method, TNT2-LCA, that couples the topography-based simulation of nitrogen transfer and transformation (TNT2) model with LCA, and compare the new method with a current LCA method based on a French life cycle inventory database. Application of the two methods to a case study of crop production in a catchment in France showed that, compared to the current method, TNT2-LCA allows delineation of more appropriate temporal limits when developing data for on-site N emissions associated with specific crops in this catchment. It also improves estimates of NO3(-) emissions by better consideration of agricultural practices, soil-climatic conditions, and spatial interactions of NO3(-) flows across fields, and by providing predicted crop yield. The new method presented in this study provides improved LCA of crop production at the catchment scale.

  1. A Review of Environmental Life Cycle Assessments of Liquid Transportation Biofuels in the Pan American Region

    NASA Astrophysics Data System (ADS)

    Shonnard, David R.; Klemetsrud, Bethany; Sacramento-Rivero, Julio; Navarro-Pineda, Freddy; Hilbert, Jorge; Handler, Robert; Suppen, Nydia; Donovan, Richard P.

    2015-12-01

    Life-cycle assessment (LCA) has been applied to many biofuel and bioenergy systems to determine potential environmental impacts, but the conclusions have varied. Different methodologies and processes for conducting LCA of biofuels make the results difficult to compare, in-turn making it difficult to make the best possible and informed decision. Of particular importance are the wide variability in country-specific conditions, modeling assumptions, data quality, chosen impact categories and indicators, scale of production, system boundaries, and co-product allocation. This study has a double purpose: conducting a critical evaluation comparing environmental LCA of biofuels from several conversion pathways and in several countries in the Pan American region using both qualitative and quantitative analyses, and making recommendations for harmonization with respect to biofuel LCA study features, such as study assumptions, inventory data, impact indicators, and reporting practices. The environmental management implications are discussed within the context of different national and international regulatory environments using a case study. The results from this study highlight LCA methodology choices that cause high variability in results and limit comparability among different studies, even among the same biofuel pathway, and recommendations are provided for improvement.

  2. A Review of Environmental Life Cycle Assessments of Liquid Transportation Biofuels in the Pan American Region.

    PubMed

    Shonnard, David R; Klemetsrud, Bethany; Sacramento-Rivero, Julio; Navarro-Pineda, Freddy; Hilbert, Jorge; Handler, Robert; Suppen, Nydia; Donovan, Richard P

    2015-12-01

    Life-cycle assessment (LCA) has been applied to many biofuel and bioenergy systems to determine potential environmental impacts, but the conclusions have varied. Different methodologies and processes for conducting LCA of biofuels make the results difficult to compare, in-turn making it difficult to make the best possible and informed decision. Of particular importance are the wide variability in country-specific conditions, modeling assumptions, data quality, chosen impact categories and indicators, scale of production, system boundaries, and co-product allocation. This study has a double purpose: conducting a critical evaluation comparing environmental LCA of biofuels from several conversion pathways and in several countries in the Pan American region using both qualitative and quantitative analyses, and making recommendations for harmonization with respect to biofuel LCA study features, such as study assumptions, inventory data, impact indicators, and reporting practices. The environmental management implications are discussed within the context of different national and international regulatory environments using a case study. The results from this study highlight LCA methodology choices that cause high variability in results and limit comparability among different studies, even among the same biofuel pathway, and recommendations are provided for improvement.

  3. Analysis of the Global Warming Potential of Biogenic CO2 Emission in Life Cycle Assessments.

    PubMed

    Liu, Weiguo; Zhang, Zhonghui; Xie, Xinfeng; Yu, Zhen; von Gadow, Klaus; Xu, Junming; Zhao, Shanshan; Yang, Yuchun

    2017-01-03

    Biomass is generally believed to be carbon neutral. However, recent studies have challenged the carbon neutrality hypothesis by introducing metric indicators to assess the global warming potential of biogenic CO2 (GWPbio). In this study we calculated the GWPbio factors using a forest growth model and radiative forcing effects with a time horizon of 100 years and applied the factors to five life cycle assessment (LCA) case studies of bioproducts. The forest carbon change was also accounted for in the LCA studies. GWPbio factors ranged from 0.13-0.32, indicating that biomass could be an attractive energy resource when compared with fossil fuels. As expected, short rotation and fast-growing biomass plantations produced low GWPbio. Long-lived wood products also allowed more regrowth of biomass to be accounted as absorption of the CO2 emission from biomass combustion. The LCA case studies showed that the total life cycle GHG emissions were closely related to GWPbio and energy conversion efficiency. By considering the GWPbio factors and the forest carbon change, the production of ethanol and bio-power appeared to have higher GHG emissions than petroleum-derived diesel at the highest GWPbio.

  4. Ranking potential impacts of priority and emerging pollutants in urban wastewater through life cycle impact assessment.

    PubMed

    Muñoz, Ivan; José Gómez, M; Molina-Díaz, Antonio; Huijbregts, Mark A J; Fernández-Alba, Amadeo R; García-Calvo, Eloy

    2008-12-01

    Life cycle impact assessment (LCIA), a feature of the Life cycle assessment (LCA) methodology, is used in this work outside the LCA framework, as a means to quantify the potential environmental impacts on ecotoxicity and human toxicity of wastewater containing priority and emerging pollutants. In order to do this, so-called characterisation factors are obtained for 98 frequently detected pollutants, using two characterisation models, EDIP97 and USES-LCA. The applicability of this methodology is shown in a case study in which wastewater influent and effluent samples from a Spanish wastewater treatment plant located in the Mediterranean coast were analysed. Characterisation factors were applied to the average concentration of each pollutant, obtaining impact scores for different scenarios: discharging wastewater to aquatic recipient, and using it for crop irrigation. The results show that treated wastewater involves a substantially lower environmental impact when compared to the influent, and pharmaceuticals and personal care products (PPCPs) are very important contributors to toxicity in this wastewater. Ciprofloxacin, fluoxetine, and nicotine constitute the main PPCPs of concern in this case study, while 2,3,7,8-TCDD, Nickel, and hexachlorobenzene are the priority pollutants with highest contribution. Nevertheless, it must be stressed that the new characterisation factors are based on very limited data, especially with regard to toxicology, and therefore they must be seen as a first screening to be improved in the future when more and higher quality data is available.

  5. Analysis of the Global Warming Potential of Biogenic CO2 Emission in Life Cycle Assessments

    NASA Astrophysics Data System (ADS)

    Liu, Weiguo; Zhang, Zhonghui; Xie, Xinfeng; Yu, Zhen; von Gadow, Klaus; Xu, Junming; Zhao, Shanshan; Yang, Yuchun

    2017-01-01

    Biomass is generally believed to be carbon neutral. However, recent studies have challenged the carbon neutrality hypothesis by introducing metric indicators to assess the global warming potential of biogenic CO2 (GWPbio). In this study we calculated the GWPbio factors using a forest growth model and radiative forcing effects with a time horizon of 100 years and applied the factors to five life cycle assessment (LCA) case studies of bioproducts. The forest carbon change was also accounted for in the LCA studies. GWPbio factors ranged from 0.13–0.32, indicating that biomass could be an attractive energy resource when compared with fossil fuels. As expected, short rotation and fast-growing biomass plantations produced low GWPbio. Long-lived wood products also allowed more regrowth of biomass to be accounted as absorption of the CO2 emission from biomass combustion. The LCA case studies showed that the total life cycle GHG emissions were closely related to GWPbio and energy conversion efficiency. By considering the GWPbio factors and the forest carbon change, the production of ethanol and bio-power appeared to have higher GHG emissions than petroleum-derived diesel at the highest GWPbio.

  6. Assessment of life cycle environmental benefits of an industrial symbiosis cluster in China.

    PubMed

    Yu, Fei; Han, Feng; Cui, Zhaojie

    2015-04-01

    Reusing industrial waste may have impressive potential environmental benefits, especially in terms of the total life cycle, and life cycle assessment (LCA) has been proved to be an effective method to evaluate industrial symbiosis (IS). Circular economy and IS have been developed for decades and have been successful in China. However, very few studies about the environmental benefit assessment of IS applied by LCA in China have been conducted. In the current article, LCA was used to evaluate the environmental benefits and costs of IS, compared with a no-IS scenario for four environmental impact categories. The results showed that four environmental benefits were avoided by the 11 symbiosis performances, namely, 41.6 thousand TJ of primary energy, 4.47 million t CO2e of greenhouse gasses, 19.7 thousand t SO2e of acidification, and 81.1 t PO4(3+)e of eutrophication. Among these IS performances, the comprehensive utilization of red mud produced the most visible benefit. The results also present that energy conservation was the distinctive feature of IS in China.

  7. Analysis of the Global Warming Potential of Biogenic CO2 Emission in Life Cycle Assessments

    PubMed Central

    Liu, Weiguo; Zhang, Zhonghui; Xie, Xinfeng; Yu, Zhen; von Gadow, Klaus; Xu, Junming; Zhao, Shanshan; Yang, Yuchun

    2017-01-01

    Biomass is generally believed to be carbon neutral. However, recent studies have challenged the carbon neutrality hypothesis by introducing metric indicators to assess the global warming potential of biogenic CO2 (GWPbio). In this study we calculated the GWPbio factors using a forest growth model and radiative forcing effects with a time horizon of 100 years and applied the factors to five life cycle assessment (LCA) case studies of bioproducts. The forest carbon change was also accounted for in the LCA studies. GWPbio factors ranged from 0.13–0.32, indicating that biomass could be an attractive energy resource when compared with fossil fuels. As expected, short rotation and fast-growing biomass plantations produced low GWPbio. Long-lived wood products also allowed more regrowth of biomass to be accounted as absorption of the CO2 emission from biomass combustion. The LCA case studies showed that the total life cycle GHG emissions were closely related to GWPbio and energy conversion efficiency. By considering the GWPbio factors and the forest carbon change, the production of ethanol and bio-power appeared to have higher GHG emissions than petroleum-derived diesel at the highest GWPbio. PMID:28045111

  8. Life Cycle Assessment of Biogas Production from Marine Macroalgae: a Latvian Scenario

    NASA Astrophysics Data System (ADS)

    Pilicka, Iluta; Blumberga, Dagnija; Romagnoli, Francesco

    2011-01-01

    There is potential environmental benefit to be gained from the use of algae because of their ability to fix CO2, no need for direct land use and utilization of bio-waste (rich in potassium, phosphate and nitrogen based compounds) as a nutrients. The aim of the research is to assess the impact of biogas production and the final use in a cogeneration unit system from a Life Cycle Assessment (LCA) in comparison with a similar reference system using a non-renewable source (e.g. natural gas). The paper is intended to be a preliminary study for understanding the implementation of this novel technology in a Latvian context.

  9. Bridging the gap between life cycle inventory and impact assessment for toxicological assessments of pesticides used in crop production.

    PubMed

    van Zelm, Rosalie; Larrey-Lassalle, Pyrène; Roux, Philippe

    2014-04-01

    In Life Cycle Assessment (LCA), the Life Cycle Inventory (LCI) provides emission data to the various environmental compartments and Life Cycle Impact Assessment (LCIA) determines the final distribution, fate and effects. Due to the overlap between the Technosphere (anthropogenic system) and Ecosphere (environment) in agricultural case studies, it is, however, complicated to establish what LCI needs to capture and where LCIA takes over. This paper aims to provide guidance and improvements of LCI/LCIA boundary definitions, in the dimensions of space and time. For this, a literature review was conducted to provide a clear overview of available methods and models for both LCI and LCIA regarding toxicological assessments of pesticides used in crop production. Guidelines are provided to overcome the gaps between LCI and LCIA modeling, and prevent the overlaps in their respective operational spheres. The proposed framework provides a starting point for LCA practitioners to gather the right data and use the proper models to include all relevant emission and exposure routes where possible. It is also able to predict a clear distinction between efficient and inefficient management practices (e.g. using different application rates, washing and rinsing management, etc.). By applying this framework for toxicological assessments of pesticides, LCI and LCIA can be directly linked, removing any overlaps or gaps in between the two distinct LCA steps.

  10. Assessing biodiversity loss due to land use with Life Cycle Assessment: are we there yet?

    PubMed

    Souza, Danielle M; Teixeira, Ricardo F M; Ostermann, Ole P

    2015-01-01

    Ecosystems are under increasing pressure from human activities, with land use and land-use change at the forefront of the drivers that provoke global and regional biodiversity loss. The first step in addressing the challenge of how to reverse the negative outlook for the coming years starts with measuring environmental loss rates and assigning responsibilities. Pinpointing the global pressures on biodiversity is a task best addressed using holistic models such as Life Cycle Assessment (LCA). LCA is the leading method for calculating cradle-to-grave environmental impacts of products and services; it is actively promoted by many public policies, and integrated as part of environmental information systems within private companies. LCA already deals with the potential biodiversity impacts of land use, but there are significant obstacles to overcome before its models grasp the full reach of the phenomena involved. In this review, we discuss some pressing issues that need to be addressed. LCA mainly introduces biodiversity as an endpoint category modeled as a loss in species richness due to the conversion and use of land over time and space. The functional and population effects on biodiversity are mostly absent due to the emphasis on species accumulation with limited geographic and taxonomical reach. Current land-use modeling activities that use biodiversity indicators tend to oversimplify the real dynamics and complexity of the interactions of species among each other and with their habitats. To identify the main areas for improvement, we systematically reviewed LCA studies on land use that had findings related to global change and conservation ecology. We provide suggestion as to how to address some of the issues raised. Our overall objective was to encourage companies to monitor and take concrete steps to address the impacts of land use on biodiversity on a broader geographical scale and along increasingly globalized supply chains.

  11. Assessing biodiversity loss due to land use with Life Cycle Assessment: are we there yet?

    PubMed Central

    Souza, Danielle M; Teixeira, Ricardo FM; Ostermann, Ole P

    2015-01-01

    Ecosystems are under increasing pressure from human activities, with land use and land-use change at the forefront of the drivers that provoke global and regional biodiversity loss. The first step in addressing the challenge of how to reverse the negative outlook for the coming years starts with measuring environmental loss rates and assigning responsibilities. Pinpointing the global pressures on biodiversity is a task best addressed using holistic models such as Life Cycle Assessment (LCA). LCA is the leading method for calculating cradle-to-grave environmental impacts of products and services; it is actively promoted by many public policies, and integrated as part of environmental information systems within private companies. LCA already deals with the potential biodiversity impacts of land use, but there are significant obstacles to overcome before its models grasp the full reach of the phenomena involved. In this review, we discuss some pressing issues that need to be addressed. LCA mainly introduces biodiversity as an endpoint category modeled as a loss in species richness due to the conversion and use of land over time and space. The functional and population effects on biodiversity are mostly absent due to the emphasis on species accumulation with limited geographic and taxonomical reach. Current land-use modeling activities that use biodiversity indicators tend to oversimplify the real dynamics and complexity of the interactions of species among each other and with their habitats. To identify the main areas for improvement, we systematically reviewed LCA studies on land use that had findings related to global change and conservation ecology. We provide suggestion as to how to address some of the issues raised. Our overall objective was to encourage companies to monitor and take concrete steps to address the impacts of land use on biodiversity on a broader geographical scale and along increasingly globalized supply chains. PMID:25143302

  12. Combining agent-based modeling and life cycle assessment for the evaluation of mobility policies.

    PubMed

    Florent, Querini; Enrico, Benetto

    2015-02-03

    This article presents agent-based modeling (ABM) as a novel approach for consequential life cycle assessment (C-LCA) of large scale policies, more specifically mobility-related policies. The approach is validated at the Luxembourgish level (as a first case study). The agent-based model simulates the car market (sales, use, and dismantling) of the population of users in the period 2013-2020, following the implementation of different mobility policies and available electric vehicles. The resulting changes in the car fleet composition as well as the hourly uses of the vehicles are then used to derive consistent LCA results, representing the consequences of the policies. Policies will have significant environmental consequences: when using ReCiPe2008, we observe a decrease of global warming, fossil depletion, acidification, ozone depletion, and photochemical ozone formation and an increase of metal depletion, ionizing radiations, marine eutrophication, and particulate matter formation. The study clearly shows that the extrapolation of LCA results for the circulating fleet at national scale following the introduction of the policies from the LCAs of single vehicles by simple up-scaling (using hypothetical deployment scenarios) would be flawed. The inventory has to be directly conducted at full scale and to this aim, ABM is indeed a promising approach, as it allows identifying and quantifying emerging effects while modeling the Life Cycle Inventory of vehicles at microscale through the concept of agents.

  13. Life cycle assessment of EPS and CPB inserts: design considerations and end of life scenarios.

    PubMed

    Tan, Reginald B H; Khoo, Hsien H

    2005-02-01

    Expanded polystyrene (EPS) and corrugated paperboard (CPB) are used in many industrial applications, such as containers, shock absorbers or simply as inserts. Both materials pose two different types of environmental problems. The first is the pollution and resource consumption that occur during the production of these materials; the second is the growing landfills that arise out of the excessive disposal of these packaging materials. Life cycle assessment or LCA will be introduced in this paper as a useful tool to compare the environmental performance of both EPS and CPB throughout their life cycle stages. This paper is divided into two main parts. The first part investigates the environmental impacts of the production of EPS and CPB from 'cradle-to-gate', comparing two inserts--both the original and proposed new designs. In the second part, LCA is applied to investigate various end-of-life cases for the same materials. The study will evaluate the environmental impacts of the present waste management practices in Singapore. Several 'what-if' cases are also discussed, including various percentages of landfilling and incineration. The SimaPro LCA Version 5.0 software's Eco-indicator 99 method is used to investigate the following five environmental impact categories: climate change, acidification/eutrophication, ecotoxicity, fossil fuels and respiratory inorganics.

  14. Evaluation of Life-Cycle Assessment Studies of Chinese Cement Production: Challenges and Opportunities

    SciTech Connect

    Lu, Hongyou; Masanet, Eric; Price, Lynn

    2009-05-29

    The use of life-cycle assessment (LCA) to understand the embodied energy, environmental impacts, and potential energy-savings of manufactured products has become more widespread among researchers in recent years. This paper reviews recent LCA studies in the cement industry in China and in other countries and provides an assessment of the methodology used by the researchers compared to ISO LCA standards (ISO 14040:2006, ISO 14044:2006, and ISO/TR 14048:2002). We evaluate whether the authors provide information on the intended application, targeted audience, functional unit, system boundary, data sources, data quality assessment, data disaggregation and other elements, and draw conclusions regarding the level of adherence to ISO standards for the papers reviewed. We found that China researchers have gained much experience during last decade, but still have room for improvement in establishing boundaries, assessing data quality, identifying data sources, and explaining limitations. The paper concludes with a discussion of directions for future LCA research in China.

  15. Life cycle assessment of urban wastewater systems: Quantifying the relative contribution of sewer systems.

    PubMed

    Risch, Eva; Gutierrez, Oriol; Roux, Philippe; Boutin, Catherine; Corominas, Lluís

    2015-06-15

    This study aims to propose a holistic, life cycle assessment (LCA) of urban wastewater systems (UWS) based on a comprehensive inventory including detailed construction and operation of sewer systems and wastewater treatment plants (WWTPs). For the first time, the inventory of sewers infrastructure construction includes piping materials and aggregates, manholes, connections, civil works and road rehabilitation. The operation stage comprises energy consumption in pumping stations together with air emissions of methane and hydrogen sulphide, and water emissions from sewer leaks. Using a real case study, this LCA aims to quantify the contributions of sewer systems to the total environmental impacts of the UWS. The results show that the construction of sewer infrastructures has an environmental impact (on half of the 18 studied impact categories) larger than both the construction and operation of the WWTP. This study highlights the importance of including the construction and operation of sewer systems in the environmental assessment of centralised versus decentralised options for UWS.

  16. Life cycle risk assessment of bottom ash reuse.

    PubMed

    Shih, Hsiu-ching; Ma, Hwong-wen

    2011-06-15

    The life cycle thinking was integrated with risk assessment to develop the life cycle risk assessment (LCRA) methodology in this study. Because LCRA assessed risks from a life cycle perspective of the concerned policies, it was helpful to identify important sources, contaminants, receptors and exposure pathways along the life cycle of reuse activities. The case study showed that different reuse scenarios resulted in risk shift between different life stages and receptors, and using duration of pavement was an essential factor for risk management. When ash reuse strategies were made based on a focus on the stage of reuse, the rank of strategies were shown to be different from the one based on the total population risks over the entire life cycle. This demonstrated the importance of decision criteria used in selecting reuse strategies. The results also showed that when bottom ash was reused, the health risk was shifted to the laborers; the individual risks of laborers were higher than residents through exposure to Cr and Cd via inhalation and dermal contact. Although the population risk at the treatment stage was the highest, the smaller size of exposed population would make it quite effective to reduce the risk of the laborers.

  17. Exploring the viability of probabilistic under-specification to streamline life cycle assessment.

    PubMed

    Olivetti, Elsa; Patanavanich, Siamrut; Kirchain, Randolph

    2013-05-21

    Life cycle assessment (LCA) is a technique used to assess the environmental impact of products, processes, or materials. Recently, its importance as a decision-making tool to help evaluate current inventories and innovation of environmentally responsible products has grown; however, the amount of information needed to completely assess even the simplest product's environmental impact may require significant time and resources. Myriad quantitative and qualitative effort-reducing strategies have been considered to accelerate the pace and reduce the cost of LCA. Although these streamlining methodologies reduce the time and effort of conducting LCA, they introduce variability and uncertainty into the results, creating a challenge for stakeholders who may need to make decisions based on the information. This Article explores the impact of streamlining on the credibility of LCA results given the uncertainty in the context of several case studies related to materials production in common consumer products. A technique for the structured analysis of the bill of materials is proposed, which leverages statistical analysis in the context of uncertainty.

  18. Life Cycle Impact Assessment for Land Use

    EPA Science Inventory

    According to the Millennium Assessment: “Over the past 50 years, humans have changed ecosystems more rapidly and extensively than in any comparable period of time in human history, largely to meet rapidly growing demands for food, fresh water, timber, fiber, and fuel. This has ...

  19. THE EMERGING FOCUS ON LIFE-CYCLE ASSESSMENT IN THE U. S. ENVIRONMENTAL PROTECTION AGENCY

    EPA Science Inventory

    EPA has been actively engaged in LCA research since 1990 to help advance the methodology and application of life cycle thinking in decision-making. Across the Agency consideration of the life cycle concept is increasing in the development of policies and programs. A major force i...

  20. A closed-loop life cycle assessment of recycled aggregate concrete utilization in China.

    PubMed

    Ding, Tao; Xiao, Jianzhuang; Tam, Vivian W Y

    2016-10-01

    This paper studies the potential environmental impact of recycled coarse aggregate (RCA) for concrete production in China. According to the cradle-to-cradle theory, a closed-loop life cycle assessment (LCA) on recycled aggregate concrete (RAC) utilization in China with entire local life cycle inventory (LCI) is performed, regarding the environmental influence of cement content, aggregate production, transportation and waste landfilling. Special attention is paid on the primary resource and energy conservation, as well as climate protection induced by RAC applications. Environmental impact between natural aggregate concrete (NAC) and RAC are also compared. It is shown that cement proportion and transportation are the top two contributors for carbon dioxide (CO2) emissions and energy consumption for both NAC and RAC. Sensitivity analysis also proves that long delivery distances for natural coarse aggregate (NCA) leave a possible opportunity for lowering environmental impact of RAC in China.

  1. Life cycle assessment on microalgal biodiesel production using a hybrid cultivation system.

    PubMed

    Adesanya, Victoria O; Cadena, Erasmo; Scott, Stuart A; Smith, Alison G

    2014-07-01

    A life cycle assessment (LCA) was performed on a putative biodiesel production plant in which the freshwater alga Chlorella vulgaris, was grown using an existing system similar to a published commercial-scale hybrid cultivation. The hybrid system couples airlift tubular photobioreactors with raceway ponds in a two-stage process for high biomass growth and lipid accumulation. The results show that microalgal biodiesel production would have a significantly lower environmental impact than fossil-derived diesel. Based on the functional unit of 1 ton of biodiesel produced, the hybrid cultivation system and hypothetical downstream process (base case) would have 42% and 38% savings in global warming potential (GWP) and fossil-energy requirements (FER) when compared to fossil-derived diesel, respectively. Sensitivity analysis was performed to identify the most influential process parameters on the LCA results. The maximum reduction in GWP and FER was observed under mixotrophic growth conditions with savings of 76% and 75% when compared to conventional diesel, respectively.

  2. Incorporating denitrification-decomposition method to estimate field emissions for Life Cycle Assessment.

    PubMed

    Deng, Yelin; Paraskevas, Dimos; Cao, Shi-Jie

    2017-03-22

    This study focuses on a detailed Life Cycle Assessment (LCA) for flax cultivation in Northern France. Nitrogen related field emissions are derived both from a process-oriented DeNitrification-DeComposition (DNDC) method and the generic Intergovernmental Panel on Climate Change (IPCC) method. Since the IPCC method is synthesised from field measurements at sites with various soil types, climate conditions, and crops, it contains significant uncertainties. In contrast, the outputs from the DNDC method are considered as more site specific as it is built according to complex models of soil science. As it is demonstrated in this paper the emission factors from the DNDC method and the recommended values from the IPCC method exhibit significant variations for the case of flax cultivation. The DNDC based emission factor for direct N2O emission, which is a strong greenhouse gas, is 0.25-0.5%, significantly lower than the recommend 1% level derived from the IPCC method. The DNDC method leads to a reduction of 17% in the impact category of climate change per kg retted flax straw production from the level obtained from the IPCC method. Much higher reductions are recorded for particulate matter formation, terrestrial acidification, and marine eutrophication impact categories. Meanwhile, based on the DNDC and IPCC methods, a comparative LCA per kg flax straw is presented. For both methods sensitivity analysis as well as comparison of uncertainties parameterisation of the N2O estimates via Monte-Carlo analysis are performed. The DNDC method incorporates more relevant field emissions from the agricultural life cycle phase, which can also improve the quality of the Life Cycle Inventory as well as allow more precise uncertainty calibration in the LCA inventory.

  3. A global prospective of income distribution and its effect on life cycle assessment of municipal solid waste management: a review.

    PubMed

    Yadav, Pooja; Samadder, S R

    2017-01-29

    This study reviewed the municipal solid waste (MSW) composition, the management practices, and the use of life cycle assessment (LCA) tool for MSW management (MSWM) options in the various income group countries. LCA studies require inventory data, which is difficult to procure for any country including higher income group countries, and this issue gets compounded in low-income and lower middle-income group countries, which limits the implementation of LCA. This paper compared the use of LCA for MSWM between high-income and low-income group countries and also highlights the gap in using LCA for MSWM. A very limited number of LCA studies on MSWM were found for low-income group countries in comparison to high-income group countries. The study also provided a critical discussion on the challenges in applications of LCA in MSWM for better solid waste management in low-income and lower middle-income group countries. The study will help in taking up LCA studies in low-income countries to improve the overall MSWM efficiency.

  4. LIFE CYCLE IMPACT ASSESSMENT FOR INCREASING INDUSTRIAL SUSTAINABILITY

    EPA Science Inventory

    Life Cycle Impact Assessment (LCIA) can be a very useful decision support tool for assisting in environmental decision making to allow the pursuit of increasing sustainability. Increasing sustainability will be defined and presented as a more concrete and quantifiable goal when c...

  5. ENVIRONMENTAL COMPARISON OF GASOLINE BLENDING OPTIONS USING LIFE CYCLE ASSESSMENT

    EPA Science Inventory

    A life cycle assessment has been done on various gasoline blends, The purpose of this study is to compare several gasoline blends of 95 and 98 octaine, that meet the vapour pressure upper limit requirement of 60 kPa. This study accounts for the gasoline losses due to evaporation ...

  6. Quantitative uncertainty analysis of Life Cycle Assessment for algal biofuel production.

    PubMed

    Sills, Deborah L; Paramita, Vidia; Franke, Michael J; Johnson, Michael C; Akabas, Tal M; Greene, Charles H; Tester, Jefferson W

    2013-01-15

    As a result of algae's promise as a renewable energy feedstock, numerous studies have used Life Cycle Assessment (LCA) to quantify the environmental performance of algal biofuels, yet there is no consensus of results among them. Our work, motivated by the lack of comprehensive uncertainty analysis in previous studies, uses a Monte Carlo approach to estimate ranges of expected values of LCA metrics by incorporating parameter variability with empirically specified distribution functions. Results show that large uncertainties exist at virtually all steps of the biofuel production process. Although our findings agree with a number of earlier studies on matters such as the need for wet lipid extraction, nutrients recovered from waste streams, and high energy coproducts, the ranges of reported LCA metrics show that uncertainty analysis is crucial for developing technologies, such as algal biofuels. In addition, the ranges of energy return on (energy) invested (EROI) values resulting from our analysis help explain the high variability in EROI values from earlier studies. Reporting results from LCA models as ranges, and not single values, will more reliably inform industry and policy makers on expected energetic and environmental performance of biofuels produced from microalgae.

  7. Paper waste - Recycling, incineration or landfilling? A review of existing life cycle assessments

    SciTech Connect

    Villanueva, A. Wenzel, H.

    2007-07-01

    A review of existing life cycle assessments (LCAs) on paper and cardboard waste has been undertaken. The objectives of the review were threefold. Firstly, to see whether a consistent message comes out of published LCA literature on optimum disposal or recycling solutions for this waste type. Such message has implications for current policy formulation on material recycling and disposal in the EU. Secondly, to identify key methodological issues of paper waste management LCAs, and enlighten the influence of such issues on the conclusions of the LCA studies. Thirdly, in light of the analysis made, to discuss whether it is at all valid to use the LCA methodology in its current development state to guide policy decisions on paper waste. A total of nine LCA studies containing altogether 73 scenarios were selected from a thorough, international literature search. The selected studies are LCAs including comparisons of different management options for waste paper. Despite claims of inconsistency, the LCAs reviewed illustrate the environmental benefits in recycling over incineration or landfill options, for paper and cardboard waste. This broad consensus was found despite differences in geographic location and definitions of the paper recycling/disposal systems studied. A systematic exploration of the LCA studies showed, however, important methodological pitfalls and sources of error, mainly concerning differences in the definition of the system boundaries. Fifteen key assumptions were identified that cover the three paper cycle system areas: raw materials and forestry, paper production, and disposal/recovery. It was found that the outcome of the individual LCA studies largely depended on the choices made in some of these assumptions, most specifically the ones concerning energy use and generation, and forestry.

  8. Integrating life-cycle environmental and economic assessment with transportation and land use planning.

    PubMed

    Chester, Mikhail V; Nahlik, Matthew J; Fraser, Andrew M; Kimball, Mindy A; Garikapati, Venu M

    2013-01-01

    The environmental outcomes of urban form changes should couple life-cycle and behavioral assessment methods to better understand urban sustainability policy outcomes. Using Phoenix, Arizona light rail as a case study, an integrated transportation and land use life-cycle assessment (ITLU-LCA) framework is developed to assess the changes to energy consumption and air emissions from transit-oriented neighborhood designs. Residential travel, commercial travel, and building energy use are included and the framework integrates household behavior change assessment to explore the environmental and economic outcomes of policies that affect infrastructure. The results show that upfront environmental and economic investments are needed (through more energy-intense building materials for high-density structures) to produce long run benefits in reduced building energy use and automobile travel. The annualized life-cycle benefits of transit-oriented developments in Phoenix can range from 1.7 to 230 Gg CO2e depending on the aggressiveness of residential density. Midpoint impact stressors for respiratory effects and photochemical smog formation are also assessed and can be reduced by 1.2-170 Mg PM10e and 41-5200 Mg O3e annually. These benefits will come at an additional construction cost of up to $410 million resulting in a cost of avoided CO2e at $16-29 and household cost savings.

  9. Climate impacts of bioenergy: Inclusion of carbon cycle and albedo dynamics in life cycle impact assessment

    SciTech Connect

    Bright, Ryan M. Cherubini, Francesco; Stromman, Anders H.

    2012-11-15

    Life cycle assessment (LCA) can be an invaluable tool for the structured environmental impact assessment of bioenergy product systems. However, the methodology's static temporal and spatial scope combined with its restriction to emission-based metrics in life cycle impact assessment (LCIA) inhibits its effectiveness at assessing climate change impacts that stem from dynamic land surface-atmosphere interactions inherent to all biomass-based product systems. In this paper, we focus on two dynamic issues related to anthropogenic land use that can significantly influence the climate impacts of bioenergy systems: i) temporary changes to the terrestrial carbon cycle; and ii) temporary changes in land surface albedo-and illustrate how they can be integrated within the LCA framework. In the context of active land use management for bioenergy, we discuss these dynamics and their relevancy and outline the methodological steps that would be required to derive case-specific biogenic CO{sub 2} and albedo change characterization factors for inclusion in LCIA. We demonstrate our concepts and metrics with application to a case study of transportation biofuel sourced from managed boreal forest biomass in northern Europe. We derive GWP indices for three land management cases of varying site productivities to illustrate the importance and need to consider case- or region-specific characterization factors for bioenergy product systems. Uncertainties and limitations of the proposed metrics are discussed. - Highlights: Black-Right-Pointing-Pointer A method for including temporary surface albedo and carbon cycle changes in Life Cycle Impact Assessment (LCIA) is elaborated. Black-Right-Pointing-Pointer Concepts are applied to a single bioenergy case whereby a range of feedstock productivities are shown to influence results. Black-Right-Pointing-Pointer Results imply that case- and site-specific characterization factors can be essential for a more informed impact assessment. Black

  10. A framework for energy use indicators and their reporting in life cycle assessment.

    PubMed

    Arvidsson, Rickard; Svanström, Magdalena

    2016-07-01

    Energy use is a common impact category in life cycle assessment (LCA). Many different energy use indicators are used in LCA studies, accounting for energy use in different ways. Often, however, the choice behind which energy use indicator is applied is poorly described and motivated. To contribute to a more purposeful selection of energy use indicators and to ensure consistent and transparent reporting of energy use in LCA, a general framework for energy use indicator construction and reporting in LCA studies will be presented in this article. The framework differentiates between 1) renewable and nonrenewable energies, 2) primary and secondary energies, and 3) energy intended for energy purposes versus energy intended for material purposes. This framework is described both graphically and mathematically. Furthermore, the framework is illustrated through application to a number of energy use indicators that are frequently used in LCA studies: cumulative energy demand (CED), nonrenewable cumulative energy demand (NRCED), fossil energy use (FEU), primary fossil energy use (PFEU), and secondary energy use (SEU). To illustrate how the application of different energy use indicators may lead to different results, cradle-to-gate energy use of the bionanomaterial cellulose nanofibrils (CNF) is assessed using 5 different indicators and showing a factor of 3 differences between the highest and lowest results. The relevance of different energy use indicators to different actors and contexts will be discussed, and further developments of the framework are then suggested. Integr Environ Assess Manag 2016;12:429-436. © 2015 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of SETAC.

  11. Environmental life cycle assessment of nanosilver-enabled bandages.

    PubMed

    Pourzahedi, Leila; Eckelman, Matthew J

    2015-01-06

    Over 400 tons of silver nanoparticles (AgNPs) are produced annually, 30% of which are used in medical applications due to their antibacterial properties. The widespread use of AgNPs has implications over the entire life cycle of medical products, from production to disposal, including but not limited to environmental releases of nanomaterials themselves. Here a cradle-to-grave life cycle assessment from nanoparticle synthesis to end-of-life incineration was performed for a commercially available nanosilver-enabled medical bandage. Emissions were linked to multiple categories of environmental impacts, making primary use of the TRACI 2.1 impact assessment method, with specific consideration of nanosilver releases relative to all other (non-nanosilver) emissions. Modeling results suggest that (1) environmental impacts of AgNP synthesis are dominated by upstream electricity production, with the exception of life cycle ecotoxicity where the largest contributor is mining wastes, (2) AgNPs are the largest contributor to impacts of the bandage for all impact categories considered despite low AgNP loading, and (3) impacts of bandage production are several times those bandage incineration, including nanosilver releases to the environment. These results can be used to prioritize research and policy measures in order to improve the overall ecotoxicity burdens of nanoenabled products under a life cycle framework.

  12. Environmental life cycle assessment of methanol and electricity co-production system based on coal gasification technology.

    PubMed

    Śliwińska, Anna; Burchart-Korol, Dorota; Smoliński, Adam

    2017-01-01

    This paper presents a life cycle assessment (LCA) of greenhouse gas emissions generated through methanol and electricity co-production system based on coal gasification technology. The analysis focuses on polygeneration technologies from which two products are produced, and thus, issues related to an allocation procedure for LCA are addressed in this paper. In the LCA, two methods were used: a 'system expansion' method based on two approaches, the 'avoided burdens approach' and 'direct system enlargement' methods and an 'allocation' method involving proportional partitioning based on physical relationships in a technological process. Cause-effect relationships in the analysed production process were identified, allowing for the identification of allocation factors. The 'system expansion' method involved expanding the analysis to include five additional variants of electricity production technologies in Poland (alternative technologies). This method revealed environmental consequences of implementation for the analysed technologies. It was found that the LCA of polygeneration technologies based on the 'system expansion' method generated a more complete source of information on environmental consequences than the 'allocation' method. The analysis shows that alternative technologies chosen for generating LCA results are crucial. Life cycle assessment was performed for the analysed, reference and variant alternative technologies. Comparative analysis was performed between the analysed technologies of methanol and electricity co-production from coal gasification as well as a reference technology of methanol production from the natural gas reforming process.

  13. Life cycle assessment of a packaging waste recycling system in Portugal

    SciTech Connect

    Ferreira, S.; Cabral, M.; Cruz, N.F. da; Simões, P.; Marques, R.C.

    2014-09-15

    Highlights: • We modeled a real packaging waste recycling system. • The analysis was performed using the life cycle assessment methodology. • The 2010 situation was compared with scenarios where the materials were not recycled. • The “Baseline” scenario seems to be more beneficial to the environment. - Abstract: Life Cycle Assessment (LCA) has been used to assess the environmental impacts associated with an activity or product life cycle. It has also been applied to assess the environmental performance related to waste management activities. This study analyses the packaging waste management system of a local public authority in Portugal. The operations of selective and refuse collection, sorting, recycling, landfilling and incineration of packaging waste were considered. The packaging waste management system in operation in 2010, which we called “Baseline” scenario, was compared with two hypothetical scenarios where all the packaging waste that was selectively collected in 2010 would undergo the refuse collection system and would be sent directly to incineration (called “Incineration” scenario) or to landfill (“Landfill” scenario). Overall, the results show that the “Baseline” scenario is more environmentally sound than the hypothetical scenarios.

  14. Towards the integration of orbital space use in Life Cycle Impact Assessment.

    PubMed

    Maury, Thibaut; Loubet, Philippe; Ouziel, Jonathan; Saint-Amand, Maud; Dariol, Ludovic; Sonnemann, Guido

    2017-04-09

    A rising sustainability concern is occurring in the space sector: 29,000 human-made objects, larger than 10cm are orbiting the Earth but only 6% are operational spacecrafts. Today, space debris is today a significant and constant danger to all space missions. Consequently, it becomes compelled to design new space missions considering End-of-Life requirements in order to ensure the sustainable use of space orbits. Furthermore, Life Cycle Assessment (LCA) has been identified by the European Space Agency as an adequate tool to measure the environmental impact of spacecraft missions. Hence, our challenge is to integrate orbital space use into Life Cycle Impact Assessment (LCIA) to broaden the scope of LCA for space systems. The generation of debris in the near-Earth's orbital regions leads to a decrease in volume availability. The Area-of-Protection (AoP) 'resources' seems to be the most relevant reflection of this depletion. To address orbital space use in a comprehensive way, we propose a first attempt at establishing an impact pathway linking outer space use to resources. This framework will be the basis for defining new indicator(s) related to orbital space use.

  15. Nanotoxicity and Life Cycle Assessment: First attempt towards the determination of characterization factors for carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Rodriguez-Garcia, Gonzalo; Zimmermann, Benedikt; Weil, Marcel

    2014-08-01

    Carbon materials, whether at macro, micro or at nanoscale, play an important role in the battery industry, as they can be used as electrodes, electrode enhancers, bipolar separators, or current collectors. When conducting a Life Cycle Assessment (LCA) of novel batteries manufacturing processes, we also need to consider the fate of potentially emitted carbon based nanomaterials. However, the knowledge generated in the last decade regarding the behavior of such materials in the environment and its toxicological effects has yet to be included in the Life Cycle Impact Assessment (LCIA) methodologies. Conventional databases of chemical products (e.g. ECHA, ECOTOX) offer little information regarding engineered nanomaterials (ENM). It is thus necessary to go one step further and compile physicochemical and toxicological data directly from scientific literature. Such studies do not only differ in their results, but also in their methodologies, and several calls have been made towards a more consistent approach that would allow us model the fate of ENM in the environment as well as their potentially harmful effects. Trying to overcome these limitations we have developed a tool based on Microsoft Excel® combining several methods for the estimation of physicochemical properties of carbon nanotubes (CNT). The information generated with this tool is combined with degradation rates and toxicological data consistent with the methods followed by the USEtox methodology. Thus, it is possible to calculate the characterization factors of CNTs and integrate them as a first proxy in future LCA of products including these ENM.

  16. Comparison of algae cultivation methods for bioenergy production using a combined life cycle assessment and life cycle costing approach.

    PubMed

    Resurreccion, Eleazer P; Colosi, Lisa M; White, Mark A; Clarens, Andres F

    2012-12-01

    Algae are an attractive energy source, but important questions still exist about the sustainability of this technology on a large scale. Two particularly important questions concern the method of cultivation and the type of algae to be used. This present study combines elements of life cycle analysis (LCA) and life cycle costing (LCC) to evaluate open pond (OP) systems and horizontal tubular photobioreactors (PBRs) for the cultivation of freshwater (FW) or brackish-to-saline water (BSW) algae. Based on the LCA, OPs have lower energy consumption and greenhouse gas emissions than PBRs; e.g., 32% less energy use for construction and operation. According to the LCC, all four systems are currently financially unattractive investments, though OPs are less so than PBRs. BSW species deliver better energy and GHG performance and higher profitability than FW species in both OPs and PBRs. Sensitivity analyses suggest that improvements in critical cultivation parameters (e.g., CO(2) utilization efficiency or algae lipid content), conversion parameters (e.g., anaerobic digestion efficiency), and market factors (e.g., costs of CO(2) and electricity, or sale prices for algae biodiesel) could alter these results.

  17. Life cycle assessment of first-generation biofuels using a nitrogen crop model.

    PubMed

    Gallejones, P; Pardo, G; Aizpurua, A; del Prado, A

    2015-02-01

    This paper presents an alternative approach to assess the impacts of biofuel production using a method integrating the simulated values of a new semi-empirical model at the crop production stage within a life cycle assessment (LCA). This new approach enabled us to capture some of the effects that climatic conditions and crop management have on soil nitrous oxide (N₂O) emissions, crop yields and other nitrogen (N) losses. This analysis considered the whole system to produce 1 MJ of biofuel (bioethanol from wheat and biodiesel from rapeseed). Non-renewable energy use, global warming potential (GWP), acidification, eutrophication and land competition are considered as potential environmental impacts. Different co-products were handled by system expansion. The aim of this study was (i) to evaluate the variability due to site-specific conditions of climate and fertiliser management of the LCA of two different products: biodiesel from rapeseed and bioethanol from wheat produced in the Basque Country (Northern Spain), and (ii) to improve the estimations of the LCA impacts due to N losses (N₂O, NO₃, NH₃), normally estimated with unspecific emission factors (EFs), that contribute to the impact categories analysed in the LCA of biofuels at local scale. Using biodiesel and bioethanol derived from rapeseed and wheat instead of conventional diesel and gasoline, respectively, would reduce non-renewable energy dependence (-55%) and GWP (-40%), on average, but would increase eutrophication (42 times more potential). An uncertainty analysis for GWP impact showed that the variability associated with the prediction of the major contributor to global warming potential (soil N₂O) can significantly affect the results from the LCA. Therefore the use of a model to account for local factors will improve the precision of the assessment and reduce the uncertainty associated with the convenience of the use of biofuels.

  18. Life-cycle assessment of engineered nanomaterials: a literature review of assessment status

    NASA Astrophysics Data System (ADS)

    Miseljic, Mirko; Olsen, Stig I.

    2014-06-01

    The potential environmental impacts of engineered nanomaterials (ENMs), and their engineered nanoparticles (ENPs), have, in recent years, been a cause of concern. Life-cycle assessment (LCA) is a highly qualified tool to assess products and systems and has an increasing extent been applied to ENMs. However, still only 29 case studies on LCA of ENMs have been published in journals and this article investigates these studies. Generally, data on production of ENMs as well as the coverage of the life cycle are limited. In particular, within use and disposal stages data are scarce due to many unknowns regarding the potential release and fate of ENMs/ENPs to and in the environment. This study investigates the sensitivity of case studies with respect to ecotoxicity impacts through a quantification of the potential ecotoxicity impacts to algae, daphnia and fish as a result of direct release of Ag and TiO2 ENPs (mainly <200 nm in nominal diameter size) from various ENM products to the freshwater compartment. It was found that Ag and TiO2 release, from 1 g Ag or TiO2 ENM product, poses up to ca. 3.5 orders of magnitude higher ecotoxicity impact than the production of 1 g polymer (PP, PE and PET average) or 1 Wh of grid mix electricity from Scandinavia. ENMs from Ag had higher ecotoxic impact than those from TiO2 and there was a linear regression between Ag ENM content in the considered products and the potential ecotoxicity impacts to the freshwater species, according to release of total Ag during use (mainly washing).

  19. Environmental impact of an agro-waste based polygeneration without and with CO2 storage: Life cycle assessment approach.

    PubMed

    Jana, Kuntal; De, Sudipta

    2016-09-01

    Life cycle assessment (LCA) is the most scientific tool to measure environmental sustainability. Poly-generation is a better option than single-utility generation due to its higher resource utilization efficiency and more flexibility. Also biomass based polygeneration with CO2 capture and storage may be useful being 'net negative' greenhouse gas emission option. But this 'negativity' should be studied and confirmed through LCA. In this paper, cradle-to-gate life cycle assessment of a straw based polygeneration without and with CO2 storage is studied. Results show that captured CO2 of this polygeneration should be stored to get a net negative energy system. However, biomass distribution density, ethanol production rate and CO2 transportation distance affect the net GHG emission. For this polygeneration system, exergy based allocation should be preferred.

  20. The life cycle assessment of alternative fuel chains for urban buses and trolleybuses.

    PubMed

    Kliucininkas, L; Matulevicius, J; Martuzevicius, D

    2012-05-30

    This paper describes a comparative analysis of public transport alternatives in the city of Kaunas, Lithuania. An LCA (Life Cycle Assessment) inventory analysis of fuel chains was undertaken using the midi urban bus and a similar type of trolleybus. The inventory analysis of fuel chains followed the guidelines provided by the ISO 14040 and ISO 14044 standards. The ReCiPe Life Cycle Impact Assessment (LCIA) methodology was used to quantify weighted damage originating from five alternative fuel chains. The compressed biogas fuel chain had the lowest weighted damage value, namely 45.7 mPt/km, whereas weighted damage values of the fuel chains based on electricity generation for trolleybuses were 60.6 mPt/km (for natural gas) and 78.9 mPt/km (for heavy fuel oil). The diesel and compressed natural gas fuel chains exhibited considerably higher damage values of 114.2 mPt/km and 132.6 mPt/km, respectively. The comparative life cycle assessment of fuel chains suggested that biogas-powered buses and electric trolleybuses can be considered as the best alternatives to use when modernizing the public transport fleet in Kaunas.

  1. Life Cycle Assessment (ISO 14040) implementation in foods of animal and plant origin: review.

    PubMed

    Arvanitoyannis, Ioannis S; Kotsanopoulos, Konstantinos V; Veikou, Agapi

    2014-01-01

    The importance of environmental protection has been recently upgraded due to the continuously increasing environmental pollution load. Life Cycle Assessment (LCA), wellknown as ISO 14040, has been repeatedly shown to be a useful and powerful tool for assessing the environmental performance of industrial processes, both in the European and American continents as well as in many Asian countries (such as Japan and China). To the best of our knowledge, almost no information is provided in relation to LCA implementation in Africa apart from an article related to Egypt. Although food industries are not considered to be among the most heavily polluting ones, for some like olive oil, wine, dairy, and meat processing, their impact on the environment is a heavy burden. The introduction of LCA aimed at identifying both inputs and outputs to find out which are the most detrimental to the environment in terms of water/energy consumption and solid/liquid and gas releases. In this review, a thorough coverage of literature was made in an attempt to compare the implementation of LCA to a variety of products of both plant and animal origin. It was concluded that there is a high number of subsystems suggested for the same product, thereby, occasionally leading to confusion. An idea toward solving the problem is to proceed to some sort of standardization by means of several generic case studies of LCA implementation, similarly to what had happened in the case of Hazard Analysis and Critical Control Points (HACCP) implementation in the United States, Canada, Australia, United Kingdom, and other countries.

  2. Life-cycle assessment of selected management options for air pollution control residues from waste incineration.

    PubMed

    Fruergaard, Thilde; Hyks, Jiri; Astrup, Thomas

    2010-09-15

    Based on available technology and emission data seven selected management options for air-pollution-control (APC) residues from waste incineration were evaluated by life-cycle assessment (LCA) using the EASEWASTE model. Scenarios were evaluated with respect to both non-toxicity impact categories (e.g. global warming) and toxicity related impact categories (e.g. ecotoxicity and human toxicity). The assessment addressed treatment and final placement of 1 tonne of APC residue in seven scenarios: 1) direct landfilling without treatment (baseline), 2) backfilling in salt mines, 3) neutralization of waste acid, 4) filler material in asphalt, 5) Ferrox stabilization, 6) vitrification, and 7) melting with automobile shredder residues (ASR). The management scenarios were selected as examples of the wide range of different technologies available worldwide while at the same time using realistic technology data. Results from the LCA were discussed with respect to importance of: energy consumption/substitution, material substitution, leaching, air emissions, time horizon aspects for the assessment, and transportation distances. The LCA modeling showed that thermal processes were associated with the highest loads in the non-toxicity categories (energy consumption), while differences between the remaining alternatives were small and generally considered insignificant. In the toxicity categories, all treatment/utilization options were significantly better than direct landfilling without treatment (lower leaching), although the thermal processes had somewhat higher impacts than the others options (air emissions). Transportation distances did not affect the overall ranking of the management alternatives.

  3. Life-Cycle Assessment of Biodiesel Produced from Grease Trap Waste.

    PubMed

    Hums, Megan E; Cairncross, Richard A; Spatari, Sabrina

    2016-03-01

    Grease trap waste (GTW) is a low-quality waste material with variable lipid content that is an untapped resource for producing biodiesel. Compared to conventional biodiesel feedstocks, GTW requires different and additional processing steps for biodiesel production due to its heterogeneous composition, high acidity, and high sulfur content. Life-cycle assessment (LCA) is used to quantify greenhouse gas emissions, fossil energy demand, and criteria air pollutant emissions for the GTW-biodiesel process, in which the sensitivity to lipid concentration in GTW is analyzed using Monte Carlo simulation. The life-cycle environmental performance of GTW-biodiesel is compared to that of current GTW disposal, the soybean-biodiesel process, and low-sulfur diesel (LSD). The disposal of the water and solid wastes produced from separating lipids from GTW has a high contribution to the environmental impacts; however, the impacts of these processed wastes are part of the current disposal practice for GTW and could be excluded with consequential LCA system boundaries. At lipid concentrations greater than 10%, most of the environmental metrics studied are lower than those of LSD and comparable to soybean biodiesel.

  4. Life cycle assessment of TV sets in China: A case study of the impacts of CRT monitors

    SciTech Connect

    Song Qingbin; Wang Zhishi; Li Jinhui; Zeng Xianlai

    2012-10-15

    Along with the rapid increase in both production and use of TV sets in China, there is an increasing awareness of the environmental impacts related to the accelerating mass production, electricity use, and waste management of these sets. This paper aims to describe the application of life cycle assessment (LCA) to investigate the environmental performance of Chinese TV sets. An assessment of the TV set device (focusing on the Cathode Ray Tube (CRT) monitor) was carried out using a detailed modular LCA based on the international standards of the ISO 14040 series. The LCA was constructed using SimaPro software version 7.2 and expressed with the Eco-indicator' 99 life cycle impact assessment method. For a sensitivity analysis of the overall LCA results, the CML method was used in order to estimate the influence of the choice of the assessment method on the results. Life cycle inventory information was compiled by Ecoinvent 2.2 databases, combined with literature and field investigations on the current Chinese situation. The established LCA study shows that the use stage of such devices has the highest environmental impact, followed by the manufacturing stage. In the manufacturing stage, the CRT and the Printed Circuit Board (PCB) are those components contributing the most environmental impacts. During the use phase, the environmental impacts are due entirely to the methods of electricity generation used to run them, since no other aspects were taken into account for this phase. The final processing step-the end-of-life stage-can lead to a clear environmental benefit when the TV sets are processed through the formal dismantling enterprises in China.

  5. Improvement actions in waste management systems at the provincial scale based on a life cycle assessment evaluation

    SciTech Connect

    Rigamonti, L. Falbo, A.; Grosso, M.

    2013-11-15

    Highlights: • LCA was used for evaluating the performance of four provincial waste management systems. • Milano, Bergamo, Pavia and Mantova (Italy) are the provinces selected for the analysis. • Most of the data used to model the systems are primary. • Significant differences were found among the provinces located in the same Region. • LCA was used as a decision-supporting tool by Regione Lombardia. - Abstract: This paper reports some of the findings of the ‘GERLA’ project: GEstione Rifiuti in Lombardia – Analisi del ciclo di vita (Waste management in Lombardia – Life cycle assessment). The project was devoted to support Lombardia Region in the drafting of the new waste management plan by applying a life cycle thinking perspective. The present paper mainly focuses on four Provinces in the Region, which were selected based on their peculiarities. Life cycle assessment (LCA) was adopted as the methodology to assess the current performance of the integrated waste management systems, to discuss strengths and weaknesses of each of them and to design their perspective evolution as of year 2020. Results show that despite a usual business approach that is beneficial to all the provinces, the introduction of technological and management improvements to the system provides in general additional energy and environmental benefits for all four provinces. The same improvements can be easily extended to the whole Region, leading to increased environmental benefits from the waste management sector, in line with the targets set by the European Union for 2020.

  6. Environmental and human health assessment of life cycle of nanoTiO2 functionalized porcelain stoneware tile.

    PubMed

    Pini, Martina; Bondioli, Federica; Montecchi, Rita; Neri, Paolo; Ferrari, Anna Maria

    2017-01-15

    Recently, there has been a rise in the interest in nanotechnology due to its enormous potential for the development of new products and applications with higher performance and new functionalities. However, while nanotechnology might revolutionize a number of industrial and consumer sectors, there are uncertainties and knowledge gaps regarding toxicological effects of this emerging science. The goal of this research concerns the implementation into Life Cycle Assessment (LCA) of preliminary frameworks developed to evaluate human toxicity and exposure factors related to the potential nanoparticle releases that could occur during the life cycle steps of a functionalized building material. The present LCA case study examines the ecodesign of nanoTiO2 functionalized porcelain stoneware tile production. The aim of this investigation is to manufacture new eco-friendly products in order to protect human health and ecosystem quality and to offer the market, materials with higher technological properties obtained by the addition of specific nanomaterials.

  7. Life cycle assessment as an analytical tool in strategic environmental assessment. Lessons learned from a case study on municipal energy planning in Sweden

    SciTech Connect

    Bjoerklund, Anna

    2012-01-15

    Life cycle assessment (LCA) is explored as an analytical tool in strategic environmental assessment (SEA), illustrated by case where a previously developed SEA process was applied to municipal energy planning in Sweden. The process integrated decision-making tools for scenario planning, public participation and environmental assessment. This article describes the use of LCA for environmental assessment in this context, with focus on methodology and practical experiences. While LCA provides a systematic framework for the environmental assessment and a wider systems perspective than what is required in SEA, LCA cannot address all aspects of environmental impact required, and therefore needs to be complemented by other tools. The integration of LCA with tools for public participation and scenario planning posed certain methodological challenges, but provided an innovative approach to designing the scope of the environmental assessment and defining and assessing alternatives. - Research highlights: Black-Right-Pointing-Pointer LCA was explored as analytical tool in an SEA process of municipal energy planning. Black-Right-Pointing-Pointer The process also integrated LCA with scenario planning and public participation. Black-Right-Pointing-Pointer Benefits of using LCA were a systematic framework and wider systems perspective. Black-Right-Pointing-Pointer Integration of tools required some methodological challenges to be solved. Black-Right-Pointing-Pointer This proved an innovative approach to define alternatives and scope of assessment.

  8. Life Cycle Assessment of Pavements: A Critical Review of Existing Literature and Research

    SciTech Connect

    Santero, Nicholas; Masanet, Eric; Horvath, Arpad

    2010-04-20

    This report provides a critical review of existing literature and modeling tools related to life-cycle assessment (LCA) applied to pavements. The review finds that pavement LCA is an expanding but still limited research topic in the literature, and that the existing body of work exhibits methodological deficiencies and incompatibilities that serve as barriers to the widespread utilization of LCA by pavement engineers and policy makers. This review identifies five key issues in the current body of work: inconsistent functional units, improper system boundaries, imbalanced data for asphalt and cement, use of limited inventory and impact assessment categories, and poor overall utility. This review also identifies common data and modeling gaps in pavement LCAs that should be addressed in future work. These gaps include: the use phase (rolling resistance, albedo, carbonation, lighting, leachate, and tire wear and emissions), asphalt fumes, feedstock energy of bitumen, traffic delay, the maintenance phase, and the end-of-life phase. This review concludes with a comprehensive list of recommendations for future research, which shed light on where improvements in knowledge can be made that will benefit the accuracy and comprehensiveness of pavement LCAs moving forward.

  9. Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics (Fact Sheet)

    SciTech Connect

    Not Available

    2012-11-01

    The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that helps to clarify inconsistent and conflicting life cycle GHG emission estimates in the published literature and provide more precise estimates of life cycle GHG emissions from PV systems.

  10. Dose-Response Modeling for Life Cycle Impact Assessment: Findingsof the Portland Review Workshop

    SciTech Connect

    McKone, Thomas E.; Kyle, Amy D.; Jolliet, Olivier; Olsen, StigIrving; Hauschild, Michael

    2006-06-01

    The United Nations Environment Program (UNEP)/SETAC Life Cycle Initiative aims at putting life cycle thinking into practice and at improving the supporting tools for this process through better data and indicators. The initiative has thus launched three programs with associated working groups (see http://www.uneptie.org/pc/sustain/lcinitiative/). The Task Force on Toxic Impacts was established under the Life Cycle Impact Assessment (LCIA) program to establish recommended practice and guidance for use in human toxicity, ecosystem toxicity, and related categories with direct effects on human health and ecosystem health. The workshop consisted of three elements. (A) presentations summarizing (1) the goals of the LCIA Task Force (2) historical approaches to exposure and toxic impacts in LCIA (3) current alternative proposals for addressing human health impacts. Viewgraphs from two of these presentations are provided in Appendix B to this report. (B) Discussion among a panel of experts about the scientific defensibility of these historical and proposed approaches in the context of the goals of the LCIA Task Force 3 on toxicity impacts. (C) Development of the recommendations to the LCIA program and working group for optimum short- and long-term strategies for addressing human health impacts in LCA.

  11. Life cycle assessment of biodiesel production in China.

    PubMed

    Liang, Sai; Xu, Ming; Zhang, Tianzhu

    2013-02-01

    This study aims to evaluate energy, economic, and environmental performances of seven categories of biodiesel feedstocks by using the mixed-unit input-output life cycle assessment method. Various feedstocks have different environmental performances, indicating potential environmental problem-shift. Jatropha seed, castor seed, waste cooking oil, and waste extraction oil are preferred feedstocks for biodiesel production in the short term. Positive net energy yields and positive net economic benefits of biodiesel from these four feedstocks are 2.3-52.0% of their life cycle energy demands and 74.1-448.4% of their economic costs, respectively. Algae are preferred in the long term mainly due to their less arable land demands. Special attention should be paid to potential environmental problems accompanying feedstock choice: freshwater use, ecotoxicity potentials, photochemical oxidation potential, acidification potential and eutrophication potential. Moreover, key processes are identified by sensitivity analysis to direct future technology improvements. Finally, supporting measures are proposed to optimize China's biodiesel development.

  12. Life cycle assessment of the application of nanoclays in wire coating

    NASA Astrophysics Data System (ADS)

    Tellaetxe, A.; Blázquez, M.; Arteche, A.; Egizabal, A.; Ermini, V.; Rose, J.; Chaurand, P.; Unzueta, I.

    2012-09-01

    A life cycle assessment (LCA) is carried out to compare nanoclay-reinforced polymer wire coatings with conventional ones. While the conventional wire coatings contain standard halogen free retardants, in reinforced coatings, montmorillonite (nanoclay) is incorporated into electric cable linings as a rheological agent for an increased resistance to fire. In addition, a reduced load of standard halogen free retardants is obtained. The synergistic effect of the montmorillonite on traditional flame retardant additives (by the formation of a three-dimensional char network) can lead to a revolution in wire production. The application of nanoclays contributes also to anti-dripping effect and flexibility increase [1]. Some producers have already started commercializing wire with nanotechnology-based coating; in the short term the use of nanoclay in wire coating production will probably reach a significant market share replacing traditional formulations. The main aim of this study is to compare the environmental impacts along the life cycle of a traditional wire coating (mineral flame retardants like ATH or MDH in a polymer matrix) with the nanoclay-reinforced wire coating, where the montmorillonite replaces a low percentage of the mineral flame retardant. The system boundaries of the study include the following unit processes: nanoclay production, thermoplastic material and mineral flame retardants production, cable coating manufacturing by extrusion and different end of life scenarios (recycling, incineration and landfill disposal). Whereas nanoreinforced composites have shown and increased fire retardance, the addition of nanomaterials seems to have no significant relevance in the environmental assessment. However, the lack of nano-specific characterization factors for nanomaterials and emission rates associated to the different life cycle stages -mainly in the extrusion and use phase, where accidental combustions can take place- still remains a challenge for realistic

  13. Life Cycle Assessment of Thermal Energy Storage: Two-Tank Indirect and Thermocline

    SciTech Connect

    Heath, G.; Turchi, C.; Burkhardt, J.; Kutscher, C.; Decker, T.

    2009-07-01

    In the United States, concentrating solar power (CSP) is one of the most promising renewable energy (RE) technologies for reduction of electric sector greenhouse gas (GHG) emissions and for rapid capacity expansion. It is also one of the most price-competitive RE technologies, thanks in large measure to decades of field experience and consistent improvements in design. One of the key design features that makes CSP more attractive than many other RE technologies, like solar photovoltaics and wind, is the potential for including relatively low-cost and efficient thermal energy storage (TES), which can smooth the daily fluctuation of electricity production and extend its duration into the evening peak hours or longer. Because operational environmental burdens are typically small for RE technologies, life cycle assessment (LCA) is recognized as the most appropriate analytical approach for determining their environmental impacts of these technologies, including CSP. An LCA accounts for impacts from all stages in the development, operation, and decommissioning of a CSP plant, including such upstream stages as the extraction of raw materials used in system components, manufacturing of those components, and construction of the plant. The National Renewable Energy Laboratory (NREL) is undertaking an LCA of modern CSP plants, starting with those of parabolic trough design.

  14. Life cycle assessment of thermal waste-to-energy technologies: review and recommendations.

    PubMed

    Astrup, Thomas Fruergaard; Tonini, Davide; Turconi, Roberto; Boldrin, Alessio

    2015-03-01

    Life cycle assessment (LCA) has been used extensively within the recent decade to evaluate the environmental performance of thermal Waste-to-Energy (WtE) technologies: incineration, co-combustion, pyrolysis and gasification. A critical review was carried out involving 250 individual case-studies published in 136 peer-reviewed journal articles within 1995 and 2013. The studies were evaluated with respect to critical aspects such as: (i) goal and scope definitions (e.g. functional units, system boundaries, temporal and geographic scopes), (ii) detailed technology parameters (e.g. related to waste composition, technology, gas cleaning, energy recovery, residue management, and inventory data), and (iii) modeling principles (e.g. energy/mass calculation principles, energy substitution, inclusion of capital goods and uncertainty evaluation). Very few of the published studies provided full and transparent descriptions of all these aspects, in many cases preventing an evaluation of the validity of results, and limiting applicability of data and results in other contexts. The review clearly suggests that the quality of LCA studies of WtE technologies and systems including energy recovery can be significantly improved. Based on the review, a detailed overview of assumptions and modeling choices in existing literature is provided in conjunction with practical recommendations for state-of-the-art LCA of Waste-to-Energy.

  15. Including the introduction of exotic species in life cycle impact assessment: the case of inland shipping.

    PubMed

    Hanafiah, Marlia M; Leuven, Rob S E W; Sommerwerk, Nike; Tockner, Klement; Huijbregts, Mark A J

    2013-12-17

    While the ecological impact of anthropogenically introduced exotic species is considered a major threat for biodiversity and ecosystems functioning, it is generally not accounted for in the environmental life cycle assessment (LCA) of products. In this article, we propose a framework that includes exotic species introduction in an LCA context. We derived characterization factors for exotic fish species introduction related to the transport of goods across the Rhine-Main-Danube canal. These characterization factors are expressed as the potentially disappeared fraction (PDF) of native freshwater fish species in the rivers Rhine and Danube integrated over space and time per amount of goods transported (PDF·m(3)·yr·kg(-1)). Furthermore, we quantified the relative importance of exotic fish species introduction compared to other anthropogenic stressors in the freshwater environment (i.e., eutrophication, ecotoxicity, greenhouse gases, and water consumption) for transport of goods through the Rhine-Main-Danube waterway. We found that the introduction of exotic fish species contributed to 70-85% of the total freshwater ecosystem impact, depending on the distance that goods were transported. Our analysis showed that it is relevant and feasible to include the introduction of exotic species in an LCA framework. The proposed framework can be further extended by including the impacts of other exotic species groups, types of water bodies and pathways for introduction.

  16. Life cycle assessment of the waste hierarchy--a Danish case study on waste paper.

    PubMed

    Schmidt, Jannick H; Holm, Peter; Merrild, Anne; Christensen, Per

    2007-01-01

    The waste hierarchy is being widely discussed these days, not only by cost-benefit analysts, but a growing number of life cycle assessments (LCA) have also begun to question it. In this article, we investigate the handling of waste paper in Denmark and compare the present situation with scenarios of more waste being recycled, incinerated or consigned to landfill. The investigations are made in accordance with ISO 14040-43 and based on the newly launched methodology of consequential LCA and following the recent guidelines of the European Centre on Waste and Material Flows. The LCA concerns the Danish consumption of paper in 1999, totalling 1.2 million tons. The results of the investigation indicate that the waste hierarchy is reliable; from an environmental point of view recycling of paper is better than incineration and landfilling. For incineration, the reason for the advantage of landfilling mainly comes from the substitution of fossil fuels, when incinerators provide heat and electricity. For recycling, the advantage is related to the saved wood resources, which can be used for generating energy from wood, i.e., from renewable fuel which does not contribute to global warming.

  17. Life Cycle Assessment of Switchgrass Cellulosic Ethanol Production in the Wisconsin and Michigan Agricultural Contexts

    SciTech Connect

    Sinistore, Julie C.; Reinemann, D. J.; Izaurralde, Roberto C.; Cronin, Keith R.; Meier, Paul J.; Runge, Troy M.; Zhang, Xuesong

    2015-04-25

    Spatial variability in yields and greenhouse gas emissions from soils has been identified as a key source of variability in life cycle assessments (LCAs) of agricultural products such as cellulosic ethanol. This study aims to conduct an LCA of cellulosic ethanol production from switchgrass in a way that captures this spatial variability and tests results for sensitivity to using spatially averaged results. The Environment Policy Integrated Climate (EPIC) model was used to calculate switchgrass yields, greenhouse gas (GHG) emissions, and nitrogen and phosphorus emissions from crop production in southern Wisconsin and Michigan at the watershed scale. These data were combined with cellulosic ethanol production data via ammonia fiber expansion and dilute acid pretreatment methods and region-specific electricity production data into an LCA model of eight ethanol production scenarios. Standard deviations from the spatial mean yields and soil emissions were used to test the sensitivity of net energy ratio, global warming potential intensity, and eutrophication and acidification potential metrics to spatial variability. Substantial variation in the eutrophication potential was also observed when nitrogen and phosphorus emissions from soils were varied. This work illustrates the need for spatially explicit agricultural production data in the LCA of biofuels and other agricultural products.

  18. Monodisperse hollow silica nanospheres for nano insulation materials: synthesis, characterization, and life cycle assessment.

    PubMed

    Gao, Tao; Jelle, Bjørn Petter; Sandberg, Linn Ingunn C; Gustavsen, Arild

    2013-02-01

    The application of manufactured nanomaterials provides not only advantages resulting from their unique properties but also disadvantages derived from the high energy use and CO(2) burden related to their manufacture, operation, and disposal. It is therefore important to understand the trade-offs of process economics of nanomaterial production and their associated environmental footprints in order to strengthen the existing advantages while counteracting disadvantages. This work reports the synthesis, characterization, and life cycle assessment (LCA) of a new type of superinsulating materials, nano insulation materials (NIMs), which are made of hollow silica nanospheres (HSNSs) and have great flexibility in modifying their properties by tuning the corresponding structural parameters. The as-prepared HSNSs in this work have a typical inner pore diameter of about 150 nm and a shell thickness of about 10-15 nm and exhibit a reduced thermal conductivity of about 0.02 W/(m K) because of their size-dependent thermal conduction at the nanometer scale. The energy and raw material consumption related to the synthesis of HSNSs have been analyzed by the LCA method. The results indicate that the recycle of chemicals, up-scaling production, and use of environmentally friendly materials can greatly affect the process of environmental footprints. New synthesis routes for NIMs with improved thermal performance and energy and environmental features are also recommended on the basis of the LCA study.

  19. Life Cycle Assessment Projection of Photovoltaic Cells: A Case Study on Energy Demand of Quantum Wire Based Photovoltaic Technology Research

    NASA Astrophysics Data System (ADS)

    Mukherjee, Shilpi

    With increasing clean-energy demand, photovoltaic (PV) technologies have gained attention as potential long-term alternative to fossil fuel energy. However, PV research and manufacture still utilize fossil fuel-powered grid electricity. With continuous enhancement of solar conversion efficiency, it is imperative to assess whether overall life cycle efficiency is also being enhanced. Many new-material PV technologies are still in their research phase, and life cycle analyses of these technologies have not yet been performed. For best results, grid dependency must be minimized for PV research, and this can be accomplished by an analytical instrument called Life Cycle Assessment (LCA). LCA is the study of environmental impacts of a product throughout its life cycle. While there are some non-recoverable costs of research, energy is precious, and the PV research community should be aware of its energy consumption. LCA can help identify options for energy conservation through process optimization. A case study was conducted on the energy demand of a test-bed emerging PV technology using life cycle assessment methodology. The test-bed system chosen for this study was a new-material PV cell. The objective was to quantify the total energy demand for the research phase of the test-bed solar cell's life cycle. The objective was accomplished by collecting primary data on energy consumption for each process in the development of this solar cell. It was found that 937 kWh of energy was consumed for performing research on a single sample of the solar cell. For comparison, this energy consumption is 83% of Arkansas's average monthly residential electricity consumption. Life cycle inventory analysis showed that heating, ventilation, and air conditioning consumed the bulk of the energy of research. It is to be noted that the processes studied as part of the solar cell test-bed system are representative of a research process only. Life cycle thinking can identify energy hot-spots and

  20. Life cycle assessment of lignocellulosic ethanol: a review of key factors and methods affecting calculated GHG emissions and energy use.

    PubMed

    Gerbrandt, Kelsey; Chu, Pei Lin; Simmonds, Allison; Mullins, Kimberley A; MacLean, Heather L; Griffin, W Michael; Saville, Bradley A

    2016-04-01

    Lignocellulosic ethanol has potential for lower life cycle greenhouse gas emissions compared to gasoline and conventional grain-based ethanol. Ethanol production 'pathways' need to meet economic and environmental goals. Numerous life cycle assessments of lignocellulosic ethanol have been published over the last 15 years, but gaps remain in understanding life cycle performance due to insufficient data, and model and methodological issues. We highlight key aspects of these issues, drawing on literature and a case study of corn stover ethanol. Challenges include the complexity of feedstock/ecosystems and market-mediated aspects and the short history of commercial lignocellulosic ethanol facilities, which collectively have led to uncertainty in GHG emissions estimates, and to debates on LCA methods and the role of uncertainty in decision making.

  1. Supporting Sustainable Markets Through Life Cycle Assessment: Evaluating emerging technologies, incorporating uncertainty and the consumer perspective

    NASA Astrophysics Data System (ADS)

    Merugula, Laura

    As civilization's collective knowledge grows, we are met with the realization that human-induced physical and biological transformations influenced by exogenous psychosocial and economic factors affect virtually every ecosystem on the planet. Despite improvements in energy generation and efficiencies, demand of material goods and energy services increases with no sign of a slowing pace. Sustainable development requires a multi-prong approach that involves reshaping demand, consumer education, sustainability-oriented policy, and supply chain management that does not serve the expansionist mentality. Thus, decision support tools are needed that inform developers, consumers, and policy-makers for short-term and long-term planning. These tools should incorporate uncertainty through quantitative methods as well as qualitatively informing the nature of the model as imperfect but necessary and adequate. A case study is presented of the manufacture and deployment of utility-scale wind turbines evaluated for a proposed change in blade manufacturing. It provides the first life cycle assessment (LCA) evaluating impact of carbon nanofibers, an emerging material, proposed for integration to wind power generation systems as blade reinforcement. Few LCAs of nanoproducts are available in scientific literature due to research and development (R&D) for applications that continues to outpace R&D for environmental, health, and safety (EHS) and life cycle impacts. LCAs of emerging technologies are crucial for informing developers of potential impacts, especially where market growth is swift and dissipative. A second case study is presented that evaluates consumer choice between disposable and reusable beverage cups. While there are a few studies that attempt to make the comparison using LCA, none adequately address uncertainty, nor are they representative for the typical American consumer. By disaggregating U.S. power generation into 26 subregional grid production mixes and evaluating

  2. Life cycle assessment of a coupled solar photocatalytic-biological process for wastewater treatment.

    PubMed

    Muñoz, Ivan; Peral, José; Ayllón, José Antonio; Malato, Sixto; Passarinho, Paula; Domènech, Xavier

    2006-11-01

    A comparative life cycle assessment (LCA) of two solar-driven advanced oxidation processes, namely heterogeneous semiconductor photocatalysis and homogeneous photo-Fenton, both coupled to biological treatment, is carried out in order to identify the environmentally preferable alternative to treat industrial wastewaters containing non-biodegradable priority hazardous substances. The study is based on solar pilot plant tests using alpha-methyl-phenylglycine as a target substance. The LCA study is based on the experimental results obtained, along with data from an industrial-scale plant. The system under study includes production of the plant infrastructure, chemicals, electricity, transport of all these materials to the plant site, management of the spent catalyst by transport and landfilling, as well as treatment of the biodegradable effluent obtained in a conventional municipal wastewater treatment plant, and excess sludge treatment by incineration. Nine environmental impact categories are included in the LCA: global warming, ozone depletion, human toxicity, freshwater aquatic toxicity, photochemical ozone formation, acidification, eutrophication, energy consumption, and land use. The experimental results obtained in the pilot plant show that solar photo-Fenton is able to obtain a biodegradable effluent much faster than solar heterogeneous photocatalysis, implying that the latter would require a much larger solar collector area in an industrial application. The results of the LCA show that, an industrial wastewater treatment plant based on heterogeneous photocatalysis involves a higher environmental impact than the photo-Fenton alternative, which displays impact scores 80-90% lower in most impact categories assessed. These results are mainly due to the larger size of the solar collector field needed by the plant.

  3. Including Life Cycle Assessment for decision-making in controlling wastewater nutrient removal systems.

    PubMed

    Corominas, Lluís; Larsen, Henrik F; Flores-Alsina, Xavier; Vanrolleghem, Peter A

    2013-10-15

    This paper focuses on the use of Life Cycle Assessment (LCA) to evaluate the performance of seventeen control strategies in wastewater treatment plants (WWTPs). It tackles the importance of using site-specific factors for nutrient enrichment when decision-makers have to select best operating strategies. Therefore, the LCA evaluation is repeated for three different scenarios depending on the limitation of nitrogen (N), phosphorus (P), or both, when evaluating the nutrient enrichment impact in water bodies. The LCA results indicate that for treated effluent discharged into N-deficient aquatic systems (e.g. open coastal areas) the most eco-friendly strategies differ from the ones dealing with discharging into P-deficient (e.g. lakes and rivers) and N&P-deficient systems (e.g. coastal zones). More particularly, the results suggest that strategies that promote increased nutrient removal and/or energy savings present an environmental benefit for N&P and P-deficient systems. This is not the case when addressing N-deficient systems for which the use of chemicals (even for improving N removal efficiencies) is not always beneficial for the environment. A sensitivity analysis on using weighting of the impact categories is conducted to assess how value choices (policy decisions) may affect the management of WWTPs. For the scenarios with only N-limitation, the LCA-based ranking of the control strategies is sensitive to the choice of weighting factors, whereas this is not the case for N&P or P-deficient aquatic systems.

  4. Green Net Value Added as a Sustainability Metric Based on Life Cycle Assessment: An Application to Bounty® Paper Towel

    EPA Science Inventory

    Sustainability measurement in economics involves evaluation of environmental and economic impact in an integrated manner. In this study, system level economic data are combined with environmental impact from a life cycle assessment (LCA) of a common product. We are exploring a co...

  5. A Comparative Analysis of Life-Cycle Assessment Tools for ...

    EPA Pesticide Factsheets

    We identified and evaluated five life-cycle assessment tools that community decision makers can use to assess the environmental and economic impacts of end-of-life (EOL) materials management options. The tools evaluated in this report are waste reduction mode (WARM), municipal solid waste-decision support tool (MSW-DST), solid waste optimization life-cycle framework (SWOLF), environmental assessment system for environmental technologies (EASETECH), and waste and resources assessment for the environment (WRATE). WARM, MSW-DST, and SWOLF were developed for US-specific materials management strategies, while WRATE and EASETECH were developed for European-specific conditions. All of the tools (with the exception of WARM) allow specification of a wide variety of parameters (e.g., materials composition and energy mix) to a varying degree, thus allowing users to model specific EOL materials management methods even outside the geographical domain they are originally intended for. The flexibility to accept user-specified input for a large number of parameters increases the level of complexity and the skill set needed for using these tools. The tools were evaluated and compared based on a series of criteria, including general tool features, the scope of the analysis (e.g., materials and processes included), and the impact categories analyzed (e.g., climate change, acidification). A series of scenarios representing materials management problems currently relevant to c

  6. Life cycle assessment of a national policy proposal - The case of a Swedish waste incineration tax

    SciTech Connect

    Bjoerklund, Anna E. Finnveden, Goeran

    2007-07-01

    At the core of EU and Swedish waste policy is the so-called waste hierarchy, according to which waste should first be prevented, but should otherwise be treated in the following order of prioritisation: reuse, recycling when environmentally motivated, energy recovery, and last landfilling. Some recent policy decisions in Sweden aim to influence waste management in the direction of the waste hierarchy. In 2001 a governmental commission assessed the economic and environmental impacts of introducing a weight-based tax on waste incineration, the purpose of which would be to encourage waste reduction and increase materials recycling and biological treatment. This paper presents the results of a life cycle assessment (LCA) of the waste incineration tax proposal. It was done in the context of a larger research project concerning the development and testing of a framework for Strategic Environmental Assessment (SEA). The aim of this paper is to assess the life cycle environmental impacts of the waste incineration tax proposal, and to investigate whether there are any possibilities of more optimal design of such a tax. The proposed design of the waste incineration tax results in increased recycling, but only in small environmental improvements. A more elaborate tax design is suggested, in which the tax level would partly be related to the fossil carbon content of the waste.

  7. Life cycle assessment of a national policy proposal - the case of a Swedish waste incineration tax.

    PubMed

    Björklund, Anna E; Finnveden, Göran

    2007-01-01

    At the core of EU and Swedish waste policy is the so-called waste hierarchy, according to which waste should first be prevented, but should otherwise be treated in the following order of prioritisation: reuse, recycling when environmentally motivated, energy recovery, and last landfilling. Some recent policy decisions in Sweden aim to influence waste management in the direction of the waste hierarchy. In 2001 a governmental commission assessed the economic and environmental impacts of introducing a weight-based tax on waste incineration, the purpose of which would be to encourage waste reduction and increase materials recycling and biological treatment. This paper presents the results of a life cycle assessment (LCA) of the waste incineration tax proposal. It was done in the context of a larger research project concerning the development and testing of a framework for Strategic Environmental Assessment (SEA). The aim of this paper is to assess the life cycle environmental impacts of the waste incineration tax proposal, and to investigate whether there are any possibilities of more optimal design of such a tax. The proposed design of the waste incineration tax results in increased recycling, but only in small environmental improvements. A more elaborate tax design is suggested, in which the tax level would partly be related to the fossil carbon content of the waste.

  8. Conceptual Framework To Extend Life Cycle Assessment Using Near-Field Human Exposure Modeling and High-Throughput Tools for Chemicals.

    PubMed

    Csiszar, Susan A; Meyer, David E; Dionisio, Kathie L; Egeghy, Peter; Isaacs, Kristin K; Price, Paul S; Scanlon, Kelly A; Tan, Yu-Mei; Thomas, Kent; Vallero, Daniel; Bare, Jane C

    2016-11-01

    Life Cycle Assessment (LCA) is a decision-making tool that accounts for multiple impacts across the life cycle of a product or service. This paper presents a conceptual framework to integrate human health impact assessment with risk screening approaches to extend LCA to include near-field chemical sources (e.g., those originating from consumer products and building materials) that have traditionally been excluded from LCA. A new generation of rapid human exposure modeling and high-throughput toxicity testing is transforming chemical risk prioritization and provides an opportunity for integration of screening-level risk assessment (RA) with LCA. The combined LCA and RA approach considers environmental impacts of products alongside risks to human health, which is consistent with regulatory frameworks addressing RA within a sustainability mindset. A case study is presented to juxtapose LCA and risk screening approaches for a chemical used in a consumer product. The case study demonstrates how these new risk screening tools can be used to inform toxicity impact estimates in LCA and highlights needs for future research. The framework provides a basis for developing tools and methods to support decision making on the use of chemicals in products.

  9. An Integrated Approach to Life Cycle Analysis

    NASA Technical Reports Server (NTRS)

    Chytka, T. M.; Brown, R. W.; Shih, A. T.; Reeves, J. D.; Dempsey, J. A.

    2006-01-01

    Life Cycle Analysis (LCA) is the evaluation of the impacts that design decisions have on a system and provides a framework for identifying and evaluating design benefits and burdens associated with the life cycles of space transportation systems from a "cradle-to-grave" approach. Sometimes called life cycle assessment, life cycle approach, or "cradle to grave analysis", it represents a rapidly emerging family of tools and techniques designed to be a decision support methodology and aid in the development of sustainable systems. The implementation of a Life Cycle Analysis can vary and may take many forms; from global system-level uncertainty-centered analysis to the assessment of individualized discriminatory metrics. This paper will focus on a proven LCA methodology developed by the Systems Analysis and Concepts Directorate (SACD) at NASA Langley Research Center to quantify and assess key LCA discriminatory metrics, in particular affordability, reliability, maintainability, and operability. This paper will address issues inherent in Life Cycle Analysis including direct impacts, such as system development cost and crew safety, as well as indirect impacts, which often take the form of coupled metrics (i.e., the cost of system unreliability). Since LCA deals with the analysis of space vehicle system conceptual designs, it is imperative to stress that the goal of LCA is not to arrive at the answer but, rather, to provide important inputs to a broader strategic planning process, allowing the managers to make risk-informed decisions, and increase the likelihood of meeting mission success criteria.

  10. Environmental Life Cycle Assessment Model for Soil Bioengineering Measures on Infrastructure Slopes

    NASA Astrophysics Data System (ADS)

    Hoerbinger, Stephan; Obriejetan, Michael

    2015-04-01

    Soil bioengineering techniques can be a helpful instrument for civil engineers taking into account not only technical but also ecological, socio-economic and sustainability aspects. Environmental Life Cycle Assessment (LCA) models can serve as supplementary evaluation methods to economic analyses, taking into account the resource demand and environmental burdens of engineering structures. The presented LCA model includes the functional grade of structures in addition to environmental aspects. When using vegetation as living construction material, several factors have to be considered. There is the provision of ecosystem services of plants, such as the stabilization of the slope through its root-system, CO2 sequestration through biomass production et cetera. However, it must be noted that vegetation can cause security issues on infrastructure facilities and entail costs through the necessity of maintenance works. For this reason, it is necessary to already define the target systems during the planning phase of a soil bioengineering structure. In this way, necessary measures can be adapted in all life cycles of a structure. The objective of the presented LCA model is to serve as a basis for the definition of target systems. In the designed LCA model the soil bioengineering structures are divided into four life phases; construction phase, operational phase, end of life phase and subsequent use phase. A main objective of the LCA model is the understanding of the "Cumulative Energy Demand" (CED) and "Global Warming Potential" (GWP) of soil bioengineering structures during all life cycle phases. Additionally, the biomass production and the CO2 sequestration potential of the used plants are regarded as well as the functional integrity of the soil bioengineering system. In the life phase of soil bioengineering structures, a major part of the energy input is required during the construction phase. This is mainly due to the cumulative energy demand of the inert materials

  11. Life cycle assessment on biogas production from straw and its sensitivity analysis.

    PubMed

    Wang, Qiao-Li; Li, Wei; Gao, Xiang; Li, Su-Jing

    2016-02-01

    This study aims to investigate the synthetically environmental impacts and Global Warming Potentials (GWPs) of straw-based biogas production process via cradle-to-gate life cycle assessment (LCA) technique. Eco-indicator 99 (H) and IPCC 2007 GWP with three time horizons are utilized. The results indicate that the biogas production process shows beneficial effect on synthetic environment and is harmful to GWPs. Its harmful effects on GWPs are strengthened with time. Usage of gas-fired power which burns the self-produced natural gas (NG) can create a more sustainable process. Moreover, sensitivity analysis indicated that total electricity consumption and CO2 absorbents in purification unit have the largest sensitivity to the environment. Hence, more efforts should be made on more efficient use of electricity and wiser selection of CO2 absorbent.

  12. Life cycle assessment modelling of waste-to-energy incineration in Spain and Portugal.

    PubMed

    Margallo, M; Aldaco, R; Irabien, A; Carrillo, V; Fischer, M; Bala, A; Fullana, P

    2014-06-01

    In recent years, waste management systems have been evaluated using a life cycle assessment (LCA) approach. A main shortcoming of prior studies was the focus on a mixture of waste with different characteristics. The estimation of emissions and consumptions associated with each waste fraction in these studies presented allocation problems. Waste-to-energy (WTE) incineration is a clear example in which municipal solid waste (MSW), comprising many types of materials, is processed to produce several outputs. This paper investigates an approach to better understand incineration processes in Spain and Portugal by applying a multi-input/output allocation model. The application of this model enabled predictions of WTE inputs and outputs, including the consumption of ancillary materials and combustibles, air emissions, solid wastes, and the energy produced during the combustion of each waste fraction.

  13. A Life Cycle Assessment of integrated dairy farm-greenhouse systems in British Columbia.

    PubMed

    Zhang, Siduo; Bi, Xiaotao Tony; Clift, Roland

    2013-12-01

    The purpose of this study was to evaluate the anticipated environmental benefits from integrating a dairy farm and a greenhouse; the integration is based on anaerobic digestion of manures to produce biogas energy, biogenic CO2, and digested slurry. A full Life Cycle Assessment (LCA) has been conducted on six modeled cases applicable in British Columbia, to evaluate non-renewable energy consumption, climate change, acidification, eutrophication, respiratory effects and human toxicity. Compared to conventional practice, an integrated system has the potential to nearly halve eutrophication and respiratory effects caused by inorganic emissions and to reduce non-renewable energy consumption, climate change, and acidification by 65-90%, while respiratory effects caused by organic emissions become negative as co-products substitute for other materials. Co-digestion of other livestock manures, greenhouse plant waste, or food and food processing waste with dairy manure can further improve the performance of the integrated system.

  14. Life cycle assessment of flexibly fed biogas processes for an improved demand-oriented biogas supply.

    PubMed

    Ertem, Funda Cansu; Martínez-Blanco, Julia; Finkbeiner, Matthias; Neubauer, Peter; Junne, Stefan

    2016-11-01

    This paper analyses concepts to facilitate a demand oriented biogas supply at an agricultural biogas plant of a capacity of 500kWhel, operated with the co-digestion of maize, grass, rye silage and chicken manure. In contrast to previous studies, environmental impacts of flexible and the traditional baseload operation are compared. Life Cycle Assessment (LCA) was performed to detect the environmental impacts of: (i) variety of feedstock co-digestion scenarios by substitution of maize and (ii) loading rate scenarios with a focus on flexible feedstock utilization. Demand-driven biogas production is critical for an overall balanced power supply to the electrical grid. It results in lower amounts of emissions; feedstock loading rate scenarios resulted in 48%, 20%, 11% lower global warming (GWP), acidification (AP) and eutrophication potentials, and a 16% higher cumulative energy demand. Substitution of maize with biogenic-waste regarding to feedstock substitution scenarios could create 10% lower GWP and AP.

  15. Life cycle assessment of swine and dairy manure: pyrolysis and combustion processes.

    PubMed

    Fernandez-Lopez, M; Puig-Gamero, M; Lopez-Gonzalez, D; Avalos-Ramirez, Antonio; Valverde, J; Sanchez-Silva, L

    2015-04-01

    The valorization of three different manure samples via pyrolysis and combustion processes was evaluated. Dairy manure (sample Pre) was biologically pretreated by anaerobic digestion (sample Dig R) whereas swine manure (sample SW) was pretreated by a biodrying process. Thermal behavior of manure samples were studied by means of thermogravimetric analysis coupled with mass spectrometry (TGA-MS). These processes could be divided into four general stages: dehydration, devolatilization, char transformation (oxidation for combustion) and inorganic matter decomposition. The main differences observed among the samples were attributed to their different composition and pretreatment. The economic feasibility, energetic and environmental impacts of pyrolysis and combustion technologies for dairy samples were carried out by means of life cycle assessment (LCA) methodology. Four different scenarios were analyzed. The economic feasibility of the pyrolysis process was demonstrated, being sample Dig R the best environmental option. However, the combustion of sample Pre was the best energetic option.

  16. Life cycle assessment of a road safety product made with virgin and recycled HDPE.

    PubMed

    Simões, Carla L; Xará, Susana M; Bernardo, C A

    2011-04-01

    The present study aims at evaluating the potential environmental impact of using recycled high-density polyethylene (HDPE) in the production of an anti-glare lamella (AGL), a road safety device currently manufactured from virgin (not recycled) polymer. The impact was evaluated using the life cycle assessment (LCA) technique and comparing two alternative systems: current AGL, manufactured from virgin HDPE, and optional AGL, made with recycled HDPE obtained from post-consumer packages. The AGL manufacturing phase was found to be responsible for most of the impacts in both systems, with the production of the raw material being the largest contributor for that phase. The present study makes a contribution to the problem of developing value-added products made from post-consumer polymeric recyclates.

  17. Life cycle assessment of biofuel production from brown seaweed in Nordic conditions.

    PubMed

    Alvarado-Morales, Merlin; Boldrin, Alessio; Karakashev, Dimitar B; Holdt, Susan L; Angelidaki, Irini; Astrup, Thomas

    2013-02-01

    The use of algae for biofuel production is expected to play an important role in securing energy supply in the next decades. A consequential life cycle assessment (LCA) and an energy analysis of seaweed-based biofuel production were carried out in Nordic conditions to document and improve the sustainability of the process. Two scenarios were analyzed for the brown seaweed (Laminaria digitata), namely, biogas production (scenario 1) and bioethanol+biogas production (scenario 2). Potential environmental impact categories under investigation were Global Warming, Acidification and Terrestrial Eutrophication. The production of seaweed was identified to be the most energy intensive step. Scenario 1 showed better performance compared to scenario 2 for all impact categories, partly because of the energy intensive bioethanol separation process and the consequently lower overall efficiency of the system. For improved environmental performance, focus should be on optimization of seaweed production, bioethanol distillation, and management of digestate on land.

  18. Comparison of Overall Resource Consumption of Biosolids Management System Processes Using Exergetic Life Cycle Assessment.

    PubMed

    Alanya, Sevda; Dewulf, Jo; Duran, Metin

    2015-08-18

    This study focused on the evaluation of biosolids management systems (BMS) from a natural resource consumption point of view. Additionally, the environmental impact of the facilities was benchmarked using Life Cycle Assessment (LCA) to provide a comprehensive assessment. This is the first study to apply a Cumulative Exergy Extraction from the Natural Environment (CEENE) method for an in-depth resource use assessment of BMS where two full-scale BMS and seven system variations were analyzed. CEENE allows better system evaluation and understanding of how much benefit is achievable from the products generated by BMS, which have valorization potential. LCA results showed that environmental burden is mostly from the intense electricity consumption. The CEENE analysis further revealed that the environmental burden is due to the high consumption of fossil and nuclear-based natural resources. Using Cumulative Degree of Perfection, higher resource-use efficiency, 53%, was observed in the PTA-2 where alkaline stabilization rather than anaerobic digestion is employed. However, an anaerobic digestion process is favorable over alkaline stabilization, with 35% lower overall natural resource use. The most significant reduction of the resource footprint occurred when the output biogas was valorized in a combined heat and power system.

  19. Life cycle assessment and carbon footprint in the wine supply-chain.

    PubMed

    Pattara, Claudio; Raggi, Andrea; Cichelli, Angelo

    2012-06-01

    Global warming represents one of the most critical internationally perceived environmental issues. The growing, and increasingly global, wine sector is one of the industries which is under increasing pressure to adopt approaches for environmental assessment and reporting of product-related greenhouse gas emissions. The International Organization for Vine and Wine has recently recognized the need to develop a standard and objective methodology and a related tool for calculating carbon footprint (CF). This study applied this tool to a wine previously analyzed using the life cycle assessment (LCA) methodology. The objective was to test the tool as regards both its potential and possible limitations, and thus to assess its suitability as a standard tool. Despite the tool's user-friendliness, a number of limitations were noted including the lack of accurate baseline data, a partial system boundary and the impossibility of dealing with the multi-functionality issue. When the CF and LCA results are compared in absolute terms, large discrepancies become obvious due to a number of different assumptions, as well as the modeling framework adopted. Nonetheless, in relative terms the results seem to be quite consistent. However, a critical limitation of the CF methodology was its focus on a single issue, which can lead to burden shifting. In conclusion, the study confirmed the need for both further improvement and adaptation to additional contexts and further studies to validate the use of this tool in different companies.

  20. The recycling of oyster shells: an environmental analysis using Life Cycle Assessment.

    PubMed

    de Alvarenga, Rodrigo Augusto Freitas; Galindro, Bruno Menezes; Helpa, Camile de Fátima; Soares, Sebastião Roberto

    2012-09-15

    Oysters represent a substantial fraction of the world's overall intensive aquaculture production. In Brazil, oyster aquaculture is still in the deployment phase but has the potential for growth and, likewise other aquaculture products, generate environmental impacts over their life cycle. Special attention should be devoted to the disposal or processing of the oyster shells, whose high calcium carbonate content (80-95%) gives them the potential for use as raw material for several other products. The objective of this study was to conduct a cradle-to-grave Life Cycle Assessment (LCA) of 1 kg of oysters produced in southern Brazil, incorporating the recycling of the oyster shells on the LCA. Two scenarios were considered. The first scenario (termed scenario A) assumed that the oyster shells were deposited in a landfill, whereas the second scenario (scenario B) assumed that the shells were processed to make them available as raw material as a source of CaCO(3). We used Eco-indicator 99 H/A to perform the impact assessment. Scenario A had an overall impact of 93.71 mPt, whereas scenario B had an overall impact of 58.97 mPt. The latter scenario had lower environmental impacts, however they were depended strongly on the distance between the source of the shells (restaurant) and the shell-processing facility. This distance must not be greater than 323 km to yield overall environmental benefits. Moreover, it is hypothesized that the environmental benefits would be even higher than predicted because there is no evidence that all post-consumer shell residues would receive proper waste management, as assumed for scenario A (landfill).

  1. Life cycle assessment of innovative technology for energy production from automotive shredder residue.

    PubMed

    Rinaldi, Caterina; Masoni, Paolo; Salvati, Fabio; Tolve, Pietro

    2015-07-01

    Automotive Shredder Residue (ASR) is a problematic waste material remaining after shredding and recovery processes of end-of-life vehicles (ELVs). Its heterogeneous grain size and composition make difficult its recovery or disposal. Although ASR accounts for approximately 20% to 25% of the weight of an ELV, the European Union (EU)'s ELV Directive (2000/53/EC) requires that by 2015 a minimum 95% of the weight of an ELV must be reused or recovered, including a 10% weight energy recovery. The quantity of ASR is relevant: Approximately 2.4 million tons are generated in the EU each year and most of it is sent to landfills. This article describes a life cycle model of the "TEKNE-Fluff" process designed to make beneficial use of ASR that is based on the results of an experimental pilot plant for pyro-gasification, combustion, cogeneration, and emissions treatment of ASR. The goal of the research was the application of life cycle assessment (LCA) methodology to identify the environmental hot spots of the "TEKNE system" and use scenario analysis to check solutions to improve its environmental profile, supporting the design and industrialization process. The LCA was conducted based on data modeled from the experimental campaign. Moreover, different scenarios on shares of electricity and thermal energy produced by the cogeneration system and alternative treatment processes for the waste produced by the technology were compared. Despite the limitation of the research (results based on scaling up experimental data by modeling), impact assessment results are promising and sufficiently robust, as shown by Monte Carlo analysis. The TEKNE technology may become an interesting solution for the problem of ASR management: Besides representing an alternative to landfill disposal, the energy produced could avoid significant impacts on fossil resources depletion (a plant of 40,000 tons/y capacity could produce ∼ 147,000 GJ/yr, covering the annual need of ∼ 13,500 households).

  2. Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel.

    PubMed

    Brentner, Laura B; Eckelman, Matthew J; Zimmerman, Julie B

    2011-08-15

    The use of algae as a feedstock for biodiesel production is a rapidly growing industry, in the United States and globally. A life cycle assessment (LCA) is presented that compares various methods, either proposed or under development, for algal biodiesel to inform the most promising pathways for sustainable full-scale production. For this analysis, the system is divided into five distinct process steps: (1) microalgae cultivation, (2) harvesting and/or dewatering, (3) lipid extraction, (4) conversion (transesterification) into biodiesel, and (5) byproduct management. A number of technology options are considered for each process step and various technology combinations are assessed for their life cycle environmental impacts. The optimal option for each process step is selected yielding a best case scenario, comprised of a flat panel enclosed photobioreactor and direct transesterification of algal cells with supercritical methanol. For a functional unit of 10 GJ biodiesel, the best case production system yields a cumulative energy demand savings of more than 65 GJ, reduces water consumption by 585 m(3) and decreases greenhouse gas emissions by 86% compared to a base case scenario typical of early industrial practices, highlighting the importance of technological innovation in algae processing and providing guidance on promising production pathways.

  3. Life cycle assessment and grid electricity: what do we know and what can we know?

    PubMed

    Weber, Christopher L; Jiaramillo, Paulina; Marriott, Joe; Samaras, Constantine

    2010-03-15

    The generation and distribution of electricity comprises nearly 40% of U.S. CO(2), emissions, as well as large shares of SO(2), NO(x), small particulates, and other toxins. Thus, correctly accounting for these electricity-related environmental releases is of great importance in life cycle assessment of products and processes. Unfortunately, there is no agreed-upon protocol for accounting for the environmental emissions associated with electricity, as well as significant uncertainty in the estimates. Here, we explore the limits of current knowledge about grid electricity in LCA and carbon footprinting for the U.S. electrical grid, and show that differences in standards, protocols, and reporting organizations can lead to important differences in estimates of CO(2) SO(2), and NO(x) emissions factors. We find a considerable divergence in published values for grid emissions factor in the U.S. We discuss the implications of this divergence and list recommendations for a standardized approach to accounting for air pollution emissions in life cycle assessment and policy analyses in a world with incomplete and uncertain information.

  4. Environmental impacts of remediation of a trichloroethene-contaminated site: life cycle assessment of remediation alternatives.

    PubMed

    Lemming, Gitte; Hauschild, Michael Z; Chambon, Julie; Binning, Philip J; Bulle, Cécile; Margni, Manuele; Bjerg, Poul L

    2010-12-01

    The environmental impacts of remediation of a chloroethene-contaminated site were evaluated using life cycle assessment (LCA). The compared remediation options are (i) in situ bioremediation by enhanced reductive dechlorination (ERD), (ii) in situ thermal desorption (ISTD), and (iii) excavation of the contaminated soil followed by off-site treatment and disposal. The results showed that choosing the ERD option will reduce the life-cycle impacts of remediation remarkably compared to choosing either ISTD or excavation, which are more energy-demanding. In addition to the secondary impacts of remediation, this study includes assessment of local toxic impacts (the primary impact) related to the on-site contaminant leaching to groundwater and subsequent human exposure via drinking water. The primary human toxic impacts were high for ERD due to the formation and leaching of chlorinated degradation products, especially vinyl chloride during remediation. However, the secondary human toxic impacts of ISTD and excavation are likely to be even higher, particularly due to upstream impacts from steel production. The newly launched model, USEtox, was applied for characterization of primary and secondary toxic impacts and combined with a site-dependent fate model of the leaching of chlorinated ethenes from the fractured clay till site.

  5. Life cycle assessment of water reuse systems in an industrial park.

    PubMed

    Tong, Le; Liu, Xin; Liu, Xuewei; Yuan, Zengwei; Zhang, Qiong

    2013-11-15

    The rapid development of industrial parks in China has resulted in large resource consumption and pollutant emissions, especially freshwater use and wastewater discharge. Water reuse has attracted much attention from governments because of its potential to conserve freshwater and reduce pollutant emissions. However, water reuse usually means adding advanced treatment which consumes chemicals, materials and energy. Is the water reuse beneficial for the environment from a life cycle perspective? To answer this question, we quantified the environmental impacts of reusing treated wastewater at industrial parks under different scenarios through a comparative life-cycle assessment (LCA). Four scenarios are assessed: wastewater is treated and discharged, 20% and 99% of wastewater is treated and reused as industrial process water, and treated wastewater is used for horticulture. Inventory data were mainly obtained from a facility which manages the wastewater treatment and reuse system of an industrial park in Jiangsu Province. Environmental impacts were evaluated using the CML2001 method built into the GaBi version 4.3 database. The results show the water reuse is beneficial and the reuse rate significantly affects environmental performance of the system. It is also found that using the reclaimed water for higher value applications results in larger environmental credit. Decision makers in water management should consider both water quantity and quality and associated environmental impacts for different water reuse applications.

  6. Overall life cycle comprehensive assessment of pneumatic and electric actuator

    NASA Astrophysics Data System (ADS)

    Zhang, Yeming; Cai, Maolin

    2014-05-01

    Pneumatic actuators and electric actuators have almost been applied to all manufacturing industries. The two kinds of actuators can replace each other in most fields, such as the point to point transmission occasion and some rotating occasions. However, there are very few research results about the advantages and disadvantages of two kinds of actuators under the same working conditions so far. In this paper, a novel comprehensive assessment method, named as overall life cycle comprehensive assessment (OLCCA), is proposed for comparison and assessment of pneumatic and electric actuators. OLCCA contains mechanical properties evaluation (MPE), life cycle cost analysis based on users (LCCABOU) and life cycle environmental impact analysis (LCEIA) algorithm in order to solve three difficult problems: mechanical properties assessment, cost analysis and environmental impact assessment about actuators. The mechanical properties evaluation of actuators is a multi-objective optimization problem. The fuzzy data quantification and information entropy methods are combined to establish MPE algorithm of actuators. Two kinds of pneumatic actuators and electric actuators with similar bearing capacity and similar work stroke were taken for example to verify the correctness of MPE algorithm. The case study of MPE algorithm for actuators verified its correctness. LCCABOU for actuators is also set up. Considering cost complex structure of pneumatic actuators, public device cost even method (PDCEM) is firstly presented to solve cost division of public devices such as compressors, aftercooler, receivers, etc. LCCABOU method is also effective and verified by the three groups of pneumatic actuators and electric actuators. Finally, LCEIA model of actuators is established for the environmental impact assessment of actuators. LCEIA data collection method and model establishment procedure for actuators are also put forward. With Simapro 7, LCEIA comparison results of six actuators can be

  7. Indirect water management through Life Cycle Assessment: Fostering sustainable production in developing countries

    NASA Astrophysics Data System (ADS)

    Pfister, S.; Bayer, P.; Koehler, A.; Hellweg, S.

    2009-04-01

    Life Cycle Assessment (LCA) represents a methodological framework for analyzing the total environmental impact of any product or service of our daily life. After tracking all associated emissions and the consumption of resources, this impact is expressed with respect to a few common impact categories. These are supposed to reflect major societal and environmental priorities. However, despite their central role in environmental processes, to date hydrological as well as hydrogeological aspects are only rarely considered in LCA. Compared with standard impact categories within LCA, water is special. In contrast to other abiotic resources such as crude oil, it can be replenished. Total freshwater resources are immense, but not evenly distributed and often scarce in regions of high demand. Consequently, threads to natural water bodies have immense spatial dependency. Setting up functional relationships in order to derive a generally valid and practicable evaluation is tedious due to the complex, insufficiently understood, and uncertain natural processes involved. LCA that includes the environmental effects of water consumption means global indirect water resource management. It supports goal-directed consumer behaviour that aims to reduce pressure on natural water systems. By developing a hydrologically-based assessment of potential impacts from human interaction with natural water bodies, "greener" products can be prioritised. More sustainable and environmentally friendly water management is the result. The proposed contribution presents an operational assessment method of global surface water consumption for impacts on human health and ecosystem quality within a LCA framework. A major focus is the issue of how such global assessment helps to quantify potential impacts from water-intensive production in developing countries, where the means for proper water management are often limited. We depict a compensation scheme for impacts related to water consumption that

  8. Using Life Cycle Assessment methodology to assess UHT milk production in Portugal.

    PubMed

    González-García, Sara; Castanheira, Erica G; Dias, Ana Cláudia; Arroja, Luis

    2013-01-01

    Milk and dairy products constitute an important ingredient in the human diet. Ultra-high temperature (UHT) milk is the main dairy product consumed in Portugal and its production entails large inputs of resources which derive on negative environmental effects such as nutrient enrichment of the ecosystem and climate change. In this study, Life Cycle Assessment (LCA) methodology was considered for the environmental assessment of packaged UHT milk produced in Portugal, including simple (whole, semi-skimmed and skimmed) and cocoa milk from a cradle-to-gate perspective and to identify the environmental hot spots. Results showed that the production of the raw milk in the dairy farm is the main hot spot in almost all the categories under assessment mainly due to the emissions from enteric fermentation, manure management and fertilisers production and application. Furthermore, on-site emissions derived from dairy factory are remarkable together with the packages and energy requirements production. The values reported in this study are in the range of other related papers. However, differences were also identified due to several reasons such as allocation approach, data sources, characterisation factors, farm management regimes and assumptions considered. Therefore, these aspects should be carefully addressed and sensitivity to the assumptions and uncertainty of the results should be evaluated.

  9. Life cycle impact assessment of various waste conversion technologies.

    PubMed

    Khoo, Hsien H

    2009-06-01

    Advanced thermal treatment technologies utilizing pyrolysis or gasification, as well as a combined approach, are introduced as sustainable methods to treat wastes in Singapore. Eight different technologies are evaluated: pyrolysis-gasification of MSW; pyrolysis of MSW; thermal cracking gasification of granulated MSW; combined pyrolysis, gasification and oxidation of MSW; steam gasification of wood; circulating fluidized bed (CFB) gasification of organic wastes; gasification of RDF; and the gasification of tyres. Life cycle assessment is carried out to determine the environmental impacts of the various waste conversion systems including global warming potential, acidification potential, terrestrial eutrophication and ozone photochemical formation. The normalization and weighting results, calculated according to Singapore national emission inventories, showed that the two highest impacts are from thermal cracking gasification of granulated MSW and the gasification of RDF; and the least are from the steam gasification of wood and the pyrolysis-gasification of MSW. A simplified life cycle cost comparison showed that the two most costs-effective waste conversion systems are the CFB gasification of organic waste and the combined pyrolysis, gasification and oxidation of MSW. The least favorable - highest environmental impact as well as highest costs - are the thermal cracking gasification of granulated MSW and the gasification of tyres.

  10. Life-Cycle Assessment of Pyrolysis Bio-Oil Production*

    SciTech Connect

    Steele, Philip; Puettmann, Maureen E.; Penmetsa, Venkata Kanthi; Cooper, Jerome E.

    2012-07-01

    As part ofthe Consortium for Research on Renewable Industrial Materials' Phase I life-cycle assessments ofbiofuels, lifecycle inventory burdens from the production of bio-oil were developed and compared with measures for residual fuel oil. Bio-oil feedstock was produced using whole southern pine (Pinus taeda) trees, chipped, and converted into bio-oil by fast pyrolysis. Input parameters and mass and energy balances were derived with Aspen. Mass and energy balances were input to SimaPro to determine the environmental performance of bio-oil compared with residual fuel oil as a heating fuel. Equivalent functional units of 1 MJ were used for demonstrating environmental preference in impact categories, such as fossil fuel use and global warming potential. Results showed near carbon neutrality of the bio-oil. Substituting bio-oil for residual fuel oil, based on the relative carbon emissions of the two fuels, estimated a reduction in CO2 emissions by 0.075 kg CO2 per MJ of fuel combustion or a 70 percent reduction in emission over residual fuel oil. The bio-oil production life-cycle stage consumed 92 percent of the total cradle-to-grave energy requirements, while feedstock collection, preparation, and transportation consumed 4 percent each. This model provides a framework to better understand the major factors affecting greenhouse gas emissions related to bio-oil production and conversion to boiler fuel during fast pyrolysis.

  11. Life cycle assessment of domestic and agricultural rainwater harvesting systems.

    PubMed

    Ghimire, Santosh R; Johnston, John M; Ingwersen, Wesley W; Hawkins, Troy R

    2014-04-01

    To further understanding of the environmental implications of rainwater harvesting and its water savings potential relative to conventional U.S. water delivery infrastructure, we present a method to perform life cycle assessment of domestic rainwater harvesting (DRWH) and agricultural rainwater harvesting (ARWH) systems. We also summarize the design aspects of DRWH and ARWH systems adapted to the Back Creek watershed, Virginia. The baseline design reveals that the pump and pumping electricity are the main components of DRWH and ARWH impacts. For nonpotable uses, the minimal design of DRWH (with shortened distribution distance and no pump) outperforms municipal drinking water in all environmental impact categories except ecotoxicity. The minimal design of ARWH outperforms well water in all impact categories. In terms of watershed sustainability, the two minimal designs reduced environmental impacts, from 58% to 78% energy use and 67% to 88% human health criteria pollutants, as well as avoiding up to 20% blue water (surface/groundwater) losses, compared to municipal drinking water and well water. We address potential environmental and human health impacts of urban and rural RWH systems in the region. The Building for Environmental and Economic Sustainability (BEES) model-based life cycle inventory data were used for this study.

  12. Development of Comparative Toxicity Potentials of TiO2 Nanoparticles for Use in Life Cycle Assessment.

    PubMed

    Ettrup, Kim; Kounina, Anna; Hansen, Steffen Foss; Meesters, Johannes A J; Vea, Eldbjørg B; Laurent, Alexis

    2017-03-20

    Studies have shown that releases of nanoparticles may take place through the life cycle of products embedding nanomaterials, thus resulting in potential impacts on ecosystems and human health. While several life cycle assessment (LCA) studies have assessed such products, only a few of them have quantitatively addressed the toxic impacts caused by released nanoparticles, thus leading to potential biases in their conclusions. Here, we address this gap and aim to provide a framework for calculating characterization factors or comparative toxicity potentials (CTP) for nanoparticles and derive CTP values for TiO2 nanoparticles (TiO2-NP) for use in LCA. We adapted the USEtox 2.0 consensus model to integrate the SimpleBox4Nano fate model, and we populated the resulting model with TiO2-NP specific data. We thus calculated CTP values for TiO2 nanoparticles for air, water, and soil emission compartments for freshwater ecotoxicity and human toxicity, both cancer effects and noncancer effects. Our results appeared plausible after benchmarking with CTPs for other nanoparticles and substances present in the USEtox database, while large differences were observed with CTP values for TiO2 nanoparticles published in earlier studies. Assumptions, which were performed in those previous studies because of lack of data and knowledge at the time they were made, primarily explain such discrepancies. For future assessment of potential toxic impacts of TiO2 nanoparticles in LCA studies, we therefore recommend the use of our calculated CTP.

  13. Life Cycle Assessment of Biogas Production in Small-scale Household Digesters in Vietnam

    PubMed Central

    Vu, T. K. V.; Vu, D. Q.; Jensen, L. S.; Sommer, S. G.; Bruun, S.

    2015-01-01

    Small-scale household digesters have been promoted across Asia as a sustainable way of handling manure. The major advantages are that they produce biogas and reduce odor. However their disadvantages include the low recycling of nutrients, because digestate is dilute and therefore difficult to transport, and the loss of biogas as a result of cracks and the intentional release of excess biogas. In this study, life cycle assessment (LCA) methodology was used to assess the environmental impacts associated with biogas digesters in Vietnam. Handling 1,000 kg of liquid manure and 100 kg of solid manure in a system with a biogas digester reduced the impact potential from 4.4 kg carbon dioxide (CO2) equivalents to 3.2 kg CO2 equivalents compared with traditional manure management. However, this advantage could easily be compromised if digester construction is considered in the LCA or in situations where there is an excess of biogas which is intentionally released. A sensitivity analysis showed that biogas digesters could be a means of reducing global warming if methane emissions can be kept low. In terms of eutrophication, farms with biogas digesters had 3 to 4 times greater impacts. In order to make biogas digesters sustainable, methods for recycling digestates are urgently required. PMID:25715690

  14. Life cycle assessment of the production and use of polypropylene tree shelters.

    PubMed

    Arnold, J C; Alston, S M

    2012-02-01

    A detailed Life Cycle Assessment (LCA) has been conducted for the manufacture, use and disposal of polypropylene tree shelters, which are used to protect young seedlings in the first few years of growth. The LCA was conducted using Simapro software, the Ecoinvent database and ReCiPe assessment methodology. Detailed information on materials, manufacturing, packaging and distribution of shelters was obtained from Tubex Ltd. in South Wales, UK. Various scenarios based on different forest establishment methods, with or without tree shelters were derived and analysed using data from published literature and independent sources. The scenarios included commercial forestry in northern temperate conditions, amenity forest establishment in temperate conditions, and forest establishment in semi-arid conditions. For commercial forestry, a reduction in required seedling production and planting as well as additional time-averaged wood production led to significant benefits with tree shelters, both compared to unprotected and fenced cases. For the amenity forest scenarios, tree shelter use had a net environmental impact, while for semi-arid forestry, the benefits of reduction in water use outweighed shelter production impacts. The current practice of in-situ degradation was compared to collection and disposal and it was found that in-situ degradation was slightly preferable in terms of overall environmental impact. Use of biopolymer-based shelters would improve the environmental performance slightly.

  15. Two-step sensitivity testing of parametrized and regionalized life cycle assessments: methodology and case study.

    PubMed

    Mutel, Christopher L; de Baan, Laura; Hellweg, Stefanie

    2013-06-04

    Comprehensive sensitivity analysis is a significant tool to interpret and improve life cycle assessment (LCA) models, but is rarely performed. Sensitivity analysis will increase in importance as inventory databases become regionalized, increasing the number of system parameters, and parametrized, adding complexity through variables and nonlinear formulas. We propose and implement a new two-step approach to sensitivity analysis. First, we identify parameters with high global sensitivities for further examination and analysis with a screening step, the method of elementary effects. Second, the more computationally intensive contribution to variance test is used to quantify the relative importance of these parameters. The two-step sensitivity test is illustrated on a regionalized, nonlinear case study of the biodiversity impacts from land use of cocoa production, including a worldwide cocoa products trade model. Our simplified trade model can be used for transformable commodities where one is assessing market shares that vary over time. In the case study, the highly uncertain characterization factors for the Ivory Coast and Ghana contributed more than 50% of variance for almost all countries and years examined. The two-step sensitivity test allows for the interpretation, understanding, and improvement of large, complex, and nonlinear LCA systems.

  16. Life cycle assessment and economic analysis of a low concentrating photovoltaic system.

    PubMed

    De Feo, G; Forni, M; Petito, F; Renno, C

    2016-10-01

    Many new photovoltaic (PV) applications, such as the concentrating PV (CPV) systems, are appearing on the market. The main characteristic of CPV systems is to concentrate sunlight on a receiver by means of optical devices and to decrease the solar cells area required. A low CPV (LCPV) system allows optimizing the PV effect with high increase of generated electric power as well as decrease of active surface area. In this paper, an economic analysis and a life cycle assessment (LCA) study of a particular LCPV scheme is presented and its environmental impacts are compared with those of a PV traditional system. The LCA study was performed with the software tool SimaPro 8.0.2, using the Econinvent 3.1 database. A functional unit of 1 kWh of electricity produced was chosen. Carbon Footprint, Ecological Footprint and ReCiPe 2008 were the methods used to assess the environmental impacts of the LCPV plant compared with a corresponding traditional system. All the methods demonstrated the environmental convenience of the LCPV system. The innovative system allowed saving 16.9% of CO2 equivalent in comparison with the traditional PV plant. The environmental impacts saving was 17% in terms of Ecological Footprint, and, finally, 15.8% with the ReCiPe method.

  17. Identifying energy and carbon footprint optimization potentials of a sludge treatment line with Life Cycle Assessment.

    PubMed

    Remy, C; Lesjean, B; Waschnewski, J

    2013-01-01

    This study exemplifies the use of Life Cycle Assessment (LCA) as a tool to quantify the environmental impacts of processes for wastewater treatment. In a case study, the sludge treatment line of a large wastewater treatment plant (WWTP) is analysed in terms of cumulative energy demand and the emission of greenhouse gases (carbon footprint). Sludge treatment consists of anaerobic digestion, dewatering, drying, and disposal of stabilized sludge in mono- or co-incineration in power plants or cement kilns. All relevant forms of energy demand (electricity, heat, chemicals, fossil fuels, transport) and greenhouse gas emissions (fossil CO(2), CH(4), N(2)O) are accounted in the assessment, including the treatment of return liquor from dewatering in the WWTP. Results show that the existing process is positive in energy balance (-162 MJ/PE(COD) * a) and carbon footprint (-11.6 kg CO(2)-eq/PE(COD) * a) by supplying secondary products such as electricity from biogas production or mono-incineration and substituting fossil fuels in co-incineration. However, disposal routes for stabilized sludge differ considerably in their energy and greenhouse gas profiles. In total, LCA proves to be a suitable tool to support future investment decisions with information of environmental relevance on the impact of wastewater treatment, but also urban water systems in general.

  18. Environmental life cycle assessment of grain maize production: An analysis of factors causing variability.

    PubMed

    Boone, Lieselot; Van Linden, Veerle; De Meester, Steven; Vandecasteele, Bart; Muylle, Hilde; Roldán-Ruiz, Isabel; Nemecek, Thomas; Dewulf, Jo

    2016-05-15

    To meet the growing demand, high yielding, but environmentally sustainable agricultural plant production systems are desired. Today, life cycle assessment (LCA) is increasingly used to assess the environmental impact of these agricultural systems. However, the impact results are very diverse due to management decisions or local natural conditions. The impact of grain maize is often generalized and an average is taken. Therefore, we studied variation in production systems. Four types of drivers for variability are distinguished: policy, farm management, year-to-year weather variation and innovation. For each driver, scenarios are elaborated using ReCiPe and CEENE (Cumulative Exergy Extraction from the Natural Environment) to assess the environmental footprint. Policy limits fertilisation levels in a soil-specific way. The resource consumption is lower for non-sandy soils than for sandy soils, but entails however more eutrophication. Farm management seems to have less influence on the environmental impact when considering the CEENE only. But farm management choices such as fertiliser type have a large effect on emission-related problems (e.g. eutrophication and acidification). In contrast, year-to-year weather variation results in large differences in the environmental footprint. The difference in impact results between favourable and poor environmental conditions amounts to 19% and 17% in terms of resources and emissions respectively, and irrigation clearly is an unfavourable environmental process. The best environmental performance is obtained by innovation as plant breeding results in a steadily increasing yield over 25 years. Finally, a comparison is made between grain maize production in Flanders and a generically applied dataset, based on Swiss practices. These very different results endorse the importance of using local data to conduct LCA of plant production systems. The results of this study show decision makers and farmers how they can improve the

  19. Life-Cycle Assessments of Selected NASA Ground-Based Test Facilities

    NASA Technical Reports Server (NTRS)

    Sydnor, George Honeycutt

    2012-01-01

    In the past two years, two separate facility-specific life cycle assessments (LCAs) have been performed as summer student projects. The first project focused on 13 facilities managed by NASA s Aeronautics Test Program (ATP), an organization responsible for large, high-energy ground test facilities that accomplish the nation s most advanced aerospace research. A facility inventory was created for each facility, and the operational-phase carbon footprint and environmental impact were calculated. The largest impacts stemmed from electricity and natural gas used directly at the facility and to generate support processes such as compressed air and steam. However, in specialized facilities that use unique inputs like R-134a, R-14, jet fuels, or nitrogen gas, these sometimes had a considerable effect on the facility s overall environmental impact. The second LCA project was conducted on the NASA Ames Arc Jet Complex and also involved creating a facility inventory and calculating the carbon footprint and environmental impact. In addition, operational alternatives were analyzed for their effectiveness at reducing impact. Overall, the Arc Jet Complex impact is dominated by the natural-gas fired boiler producing steam on-site, but alternatives were provided that could reduce the impact of the boiler operation, some of which are already being implemented. The data and results provided by these LCA projects are beneficial to both the individual facilities and NASA as a whole; the results have already been used in a proposal to reduce carbon footprint at Ames Research Center. To help future life cycle projects, several lessons learned have been recommended as simple and effective infrastructure improvements to NASA, including better utility metering and data recording and standardization of modeling choices and methods. These studies also increased sensitivity to and appreciation for quantifying the impact of NASA s activities.

  20. Life cycle assessment of medium-density fiberboard (MDF) manufacturing process in Brazil.

    PubMed

    Piekarski, Cassiano Moro; de Francisco, Antonio Carlos; da Luz, Leila Mendes; Kovaleski, João Luiz; Silva, Diogo Aparecido Lopes

    2017-01-01

    Brazil is one of the largest producers of medium-density fibreboard (MDF) in the world, and also the MDF has the highest domestic consumption and production rate in the country. MDF applications are highlighted into residential and commercial furniture design and also a wide participation in the building sector. This study aimed to propose ways of improving the environmental cradle-to-gate life-cycle of one cubic meter MDF panel by means of a life-cycle assessment (LCA) study. Complying with requirements of ISO 14040 and 14,044 standards, different MDF manufacturing scenarios were modelled using Umberto® v.5.6 software and the Ecoinvent v.2.2 life-cycle inventory (LCI) database for the Brazilian context. Environmental and human health impacts were assessed by using the CML (2001) and USEtox (2008) methods. The evaluated impact categories were: acidification, global warming, ozone layer depletion, abiotic resource depletion, photochemical formation of tropospheric ozone, ecotoxicity, eutrophication and human toxicity. Results identified the following hotspots: gas consumption at the thermal plant, urea-formaldehyde resin, power consumption, wood chip consumption and wood chip transportation to the plant. The improvement scenario proposals comprised the following actions: eliminate natural gas consumption at the thermal plant, reduce electrical power consumption, reduce or replace urea-formaldehyde resin consumption, reduce wood consumption and minimize the distance to wood chip suppliers. The proposed actions were analysed to verify the influence of each action on the set of impact categories. Among the results, it can be noted that a joint action of the proposed improvements can result in a total reduction of up to 38.5% of impacts to OD, 34.4% to AD, 31.2% to ET, and 30.4% to HT. Finally, MDF was compared with particleboard production in Brazil, and additional opportunities to improve the MDF environmental profile were identified.

  1. Life cycle assessment of solid waste management options for Eskisehir, Turkey

    SciTech Connect

    Banar, Mufide Cokaygil, Zerrin; Ozkan, Aysun

    2009-01-15

    Life cycle assessment (LCA) methodology was used to determine the optimum municipal solid waste (MSW) management strategy for Eskisehir city. Eskisehir is one of the developing cities of Turkey where a total of approximately 750 tons/day of waste is generated. An effective MSW management system is needed in this city since the generated MSW is dumped in an unregulated dumping site that has no liner, no biogas capture, etc. Therefore, five different scenarios were developed as alternatives to the current waste management system. Collection and transportation of waste, a material recovery facility (MRF), recycling, composting, incineration and landfilling processes were considered in these scenarios. SimaPro7 libraries were used to obtain background data for the life cycle inventory. One ton of municipal solid waste of Eskisehir was selected as the functional unit. The alternative scenarios were compared through the CML 2000 method and these comparisons were carried out from the abiotic depletion, global warming, human toxicity, acidification, eutrophication and photochemical ozone depletion points of view. According to the comparisons and sensitivity analysis, composting scenario, S3, is the more environmentally preferable alternative. In this study waste management alternatives were investigated only on an environmental point of view. For that reason, it might be supported with other decision-making tools that consider the economic and social effects of solid waste management.

  2. Industry-Cost-Curve Approach for Modeling the Environmental Impact of Introducing New Technologies in Life Cycle Assessment.

    PubMed

    Kätelhön, Arne; von der Assen, Niklas; Suh, Sangwon; Jung, Johannes; Bardow, André

    2015-07-07

    The environmental costs and benefits of introducing a new technology depend not only on the technology itself, but also on the responses of the market where substitution or displacement of competing technologies may occur. An internationally accepted method taking both technological and market-mediated effects into account, however, is still lacking in life cycle assessment (LCA). For the introduction of a new technology, we here present a new approach for modeling the environmental impacts within the framework of LCA. Our approach is motivated by consequential life cycle assessment (CLCA) and aims to contribute to the discussion on how to operationalize consequential thinking in LCA practice. In our approach, we focus on new technologies producing homogeneous products such as chemicals or raw materials. We employ the industry cost-curve (ICC) for modeling market-mediated effects. Thereby, we can determine substitution effects at a level of granularity sufficient to distinguish between competing technologies. In our approach, a new technology alters the ICC potentially replacing the highest-cost producer(s). The technologies that remain competitive after the new technology's introduction determine the new environmental impact profile of the product. We apply our approach in a case study on a new technology for chlor-alkali electrolysis to be introduced in Germany.

  3. When product diversification influences life cycle impact assessment: A case study of canned anchovy.

    PubMed

    Laso, Jara; Margallo, María; Fullana, Pére; Bala, Alba; Gazulla, Cristina; Irabien, Ángel; Aldaco, Rubén

    2017-03-01

    The anchovy canning industry is one of the most important economic resources of the Cantabria region in Spain. However, environmental, economic and social problems over the past years have forced companies to apply marketing strategies, develop product diversification, create new products and introduce them in new "green markets". Launching Cantabrian canned anchovies into more sustainable markets requires measuring the environmental performance using Product Category Rules (PCRs) and Environmental Product Declarations (EPDs). EPDs and PCRS include the environmental profile of a range of similar products, such as all of the available canned anchovy products. The great variety of anchovy canned products depends on three process variables: the origin of the anchovy (Cantabria, Argentina and Chile or Peru), the type of oil (refined olive oil, extra virgin olive oil and sunflower oil) and the packaging (aluminum, tinplate, glass and plastic). This work aims to assess the environmental impact from cradle to grave of canned anchovies in oil using the life cycle assessment methodology (LCA). Moreover, the paper evaluates the influence of the above-mentioned three product variables in the LCA results. The results show that out of all of the alternatives, Chilean and Peruvian anchovies have the highest environmental burdens due to the transportation by ship. The production of anchovies in sunflower oil is a less environmentally friendly oil process due to the low yield per hectare of sunflower cultivation. Finally, the use of aluminum as the packaging material has the largest environmental impact out of almost all of the impact categories. Moreover, because the LCA results can be significantly affected by the allocation procedure, a sensitivity analysis comparing system expansion, mass and economic allocation is performed. In this case, the system expansion approach presents the highest environmental impacts followed by the mass allocation.

  4. Pyrolysis biochar systems for recovering biodegradable materials: A life cycle carbon assessment.

    PubMed

    Ibarrola, Rodrigo; Shackley, Simon; Hammond, James

    2012-05-01

    A life cycle assessment (LCA) focused on biochar and bioenergy generation was performed for three thermal treatment configurations (slow pyrolysis, fast pyrolysis and gasification). Ten UK biodegradable wastes or residues were considered as feedstocks in this study. Carbon (equivalent) abatement (CA) and electricity production indicators were calculated. Slow pyrolysis systems offer the best performance in terms of CA, with net results varying from 0.07 to 1.25tonnes of CO(2)eq.t(-1) of feedstock treated. On the other hand, gasification achieves the best electricity generation outputs, with results varying around 0.9MWhet(-1) of feedstock. Moreover, selection of a common waste treatment practice as the reference scenario in an LCA has to be undertaken carefully as this will have a key influence upon the CA performance of pyrolysis or gasification biochar systems (P/GBS). Results suggest that P/GBS could produce important environmental benefits in terms of CA, but several potential pollution issues arising from contaminants in the biochar have to be addressed before biochar and bioenergy production from biodegradable waste can become common practice.

  5. Environmental impact associated with activated carbon preparation from olive-waste cake via life cycle assessment.

    PubMed

    Hjaila, K; Baccar, R; Sarrà, M; Gasol, C M; Blánquez, P

    2013-11-30

    The life cycle assessment (LCA) environmental tool was implemented to quantify the potential environmental impacts associated with the activated carbon (AC) production process from olive-waste cakes in Tunisia. On the basis of laboratory investigations for AC preparation, a flowchart was developed and the environmental impacts were determined. The LCA functional unit chosen was the production of 1 kg of AC from by-product olive-waste cakes. The results showed that impregnation using H3PO4 presented the highest environmental impacts for the majority of the indicators tested: acidification potential (62%), eutrophication (96%), ozone depletion potential (44%), human toxicity (64%), fresh water aquatic ecotoxicity (90%) and terrestrial ecotoxicity (92%). One of the highest impacts was found to be the global warming potential (11.096 kg CO2 eq/kg AC), which was equally weighted between the steps involving impregnation, pyrolysis, and drying the washed AC. The cumulative energy demand of the AC production process from the by-product olive-waste cakes was 167.63 MJ contributed by impregnation, pyrolysis, and drying the washed AC steps. The use of phosphoric acid and electricity in the AC production were the main factors responsible for the majority of the impacts. If certain modifications are incorporated into the AC production, such as implementing synthesis gas recovery and reusing it as an energy source and recovery of phosphoric acid after AC washing, additional savings could be realized, and environmental impacts could be minimized.

  6. Life Cycle Assessment as a tool for water management optimization in textile finishing industry

    NASA Astrophysics Data System (ADS)

    Tarantini, Mario; Scalbi, Simona; Misceo, Monica; Verità, Simona

    2004-12-01

    In several countries, due to the increasing cost and shortage of water, textile finishing industries are looking for non conventional water resources. The use of reclaimed wastewater appears a technically feasible solution and is gaining a growing consensus. A European Union research project (TOWEF0, Towards effluent zero) with the aim of elaborating a multicriteria integrated and coherent methodology to support the implementation of sustainable water reuse in textile finishing processes has been recently concluded. In order to achieve an optimal compromise between minimization of environmental impacts of the production processes and maximum recovery of resources, Life Cycle Assessment (LCA) methodology has been applied to selected textile products manufactured within Belgian and Italian textile finishing companies. The study identified the key environmental issues within the finishing processes of a variety of natural (cotton, silk) and man-made (polyester, acetate, viscose) fibers and fabrics and analyzed alternative water reuse scenarios. Significant margins exist for impressive reductions in water consumption with almost no additional environmental impact adopting in situ membrane filtration technology. In this paper the methodological approach and the results of the LCA analyses applied to a flax-polyester product are presented and discussed.

  7. Life Cycle Assessment of Gasoline and Diesel Produced via Fast Pyrolysis and Hydroprocessing

    SciTech Connect

    Hsu, D. D.

    2011-03-01

    In this work, a life cycle assessment (LCA) estimating greenhouse gas (GHG) emissions and net energy value (NEV) of the production of gasoline and diesel from forest residues via fast pyrolysis and hydroprocessing, from production of the feedstock to end use of the fuel in a vehicle, is performed. The fast pyrolysis and hydrotreating and hydrocracking processes are based on a Pacific Northwest National Laboratory (PNNL) design report. The LCA results show GHG emissions of 0.142 kg CO2-equiv. per km traveled and NEV of 1.00 MJ per km traveled for a process using grid electricity. Monte Carlo uncertainty analysis shows a range of results, with all values better than those of conventional gasoline in 2005. Results for GHG emissions and NEV of gasoline and diesel from pyrolysis are also reported on a per MJ fuel basis for comparison with ethanol produced via gasification. Although pyrolysis-derived gasoline and diesel have lower GHG emissions and higher NEV than conventional gasoline does in 2005, they underperform ethanol produced via gasification from the same feedstock. GHG emissions for pyrolysis could be lowered further if electricity and hydrogen are produced from biomass instead of from fossil sources.

  8. Life cycle assessment of fuel selection for power generation in Taiwan.

    PubMed

    Yang, Ying-Hsien; Lin, Sue-Jane; Lewis, Charles

    2007-11-01

    Life cycle assessment (LCA) was applied to performance data from 1997-2002 to evaluate the environmental impacts of the energy input, airborne emission, waterborne emission, and solid waste inventories for Taiwan's electric power plants. Eco-indicator 95 was used to compare the differences among the generation processes and fuel purification. To better understand the environmental trends related to Taiwan's electric power industry, three fuel scenarios were selected for LCA system analysis. Results indicate that there are differences in characteristic environmental impact among the 13 power plants. Scenario simulation provided a basis for minimizing environmental impacts from fuel selection targets. Fuel selection priority should be a gas-fired combined cycle substituted for a coal-fired steam turbine to be more environmentally friendly, particularly in the areas of the greenhouse effect, acidification, winter smog, and solid waste. Furthermore, based purely on economic and environmental criteria, it is recommended that the gas-fired combined cycle be substituted for the oil-fired steam turbine.

  9. Consumption-weighted life cycle assessment of a consumer electronic product community.

    PubMed

    Ryen, Erinn G; Babbitt, Callie W; Williams, Eric

    2015-02-17

    A new approach for quantifying the net environmental impact of a "community" of interrelated products is demonstrated for consumer electronics owned by an average U.S. household over a 15-year period (1992-2007). This consumption-weighted life cycle assessment (LCA) methodology accounts for both product consumption (number of products per household) and impact (cumulative energy demand (MJ) and greenhouse gas emissions (MT CO2 eq) per product), analyzed using a hybrid LCA framework. Despite efficiency improvements in individual devices from 1992 to 2007, the net impact of the entire product community increased, due primarily to increasing ownership and usage. The net energy impact for the product community is significant, nearly 30% of the average gasoline use in a U.S. passenger vehicle in 2007. The analysis points to a large contribution by legacy products (cathode ray tube televisions and desktop computers), due to historically high consumption rates, although impacts are beginning to shift to smaller mobile devices. This method is also applied to evaluate prospective intervention strategies, indicating that environmental impact can be reduced by strategies such as lifespan extension or energy efficiency, but only when applied to all products owned, or by transforming consumption trends toward fewer, highly multifunctional products.

  10. Beyond the throwaway society: A life cycle-based assessment of the environmental benefit of reuse.

    PubMed

    Castellani, Valentina; Sala, Serenella; Mirabella, Nadia

    2015-07-01

    In the context of a circular economy, sustainable consumption is often seen as the antithesis of current consumption patterns, which have led to the definition of the so-called throwaway society. Reuse may provide a preferred alternative to other waste management options, because it promotes resource efficiency and may significantly reduce environmental impacts. To appraise the environmental benefits related to reuse of goods, a methodology adopting life cycle assessment (LCA) has been developed. A standardized procedure has been developed, identifying reference products within product category subject to reuse, and collecting reliable inventory data as a basis for calculating environmental impact through LCA. A case study on a second-hand shop is presented, and the avoided impacts are quantified. Inventory data were taken both from the literature and directly from sales and surveys submitted to customers. The results are presented, highlighting: 1) for each product category, the average avoided impacts for 1 unit of reused product considered; and 2) for the overall activities of the second-hand shop, the cumulative avoided impacts in 1 yr. In the case study, the higher contribution to avoided impacts comes from the apparel sector, due to the high amount of items sold, followed by the furniture sector, because of the high amount of environmental impacts avoided by the reuse of each single item.

  11. Operational Phase Life Cycle Assessment of Select NASA Ground Test Facilities

    NASA Technical Reports Server (NTRS)

    Sydnor, George H.; Marshall, Timothy J.; McGinnis, Sean

    2011-01-01

    NASA's Aeronautics Test Program (ATP) is responsible for many large, high-energy ground test facilities that accomplish the nation s most advanced aerospace research. In order to accomplish these national objectives, significant energy and resources are consumed. A select group of facilities was analyzed using life-cycle assessment (LCA) to determine carbon footprint and environmental impacts. Most of these impacts stem from electricity and natural gas consumption, used directly at the facility and to generate support processes such as compressed air and steam. Other activities were analyzed but determined to be smaller in scale and frequency with relatively negligible environmental impacts. More specialized facilities use R-134a, R-14, jet fuels, or nitrogen gas, and these unique inputs can have a considerable effect on a facility s overall environmental impact. The results of this LCA will be useful to ATP and NASA as the nation looks to identify its top energy consumers and NASA looks to maximize research output and minimize environmental impact. Keywords: NASA, Aeronautics, Wind tunnel, Keyword 4, Keyword 5

  12. Life Cycle Assessment of LEED versus Conventionally Built Residential Units

    DTIC Science & Technology

    2011-03-24

    construction documents, a hybrid LCA was used to quantify and compare the environmental impact of energy efficient homes built at Keesler AFB to... construction documents, the hybrid LCA was used to quantify and compare the environmental impact of energy efficient homes built at 12 Keesler AFB to...conventionally built homes, this study employed a hybrid LCA and energy simulation. These energy efficient homes have a 16% less environmental impact

  13. Hybrid life-cycle assessment of algal biofuel production.

    PubMed

    Malik, Arunima; Lenzen, Manfred; Ralph, Peter J; Tamburic, Bojan

    2015-05-01

    The objective of this work is to establish whether algal bio-crude production is environmentally, economically and socially sustainable. To this end, an economic multi-regional input-output model of Australia was complemented with engineering process data on algal bio-crude production. This model was used to undertake hybrid life-cycle assessment for measuring the direct, as well as indirect impacts of producing bio-crude. Overall, the supply chain of bio-crude is more sustainable than that of conventional crude oil. The results indicate that producing 1 million tonnes of bio-crude will generate almost 13,000 new jobs and 4 billion dollars' worth of economic stimulus. Furthermore, bio-crude production will offer carbon sequestration opportunities as the production process is net carbon-negative.

  14. Can comprehensive climate impact assessment of terrestrial ecosystems be included in Life Cycle Assessment to support policy decisions?

    NASA Astrophysics Data System (ADS)

    Bright, R. M.; Cherubini, F.; Strømman, A. H.

    2014-12-01

    Decisions resulting in land use change (LUC) or land management change (LMC) rarely consider the changes to surface biophysical properties that lead to immediate land-atmosphere feedbacks and subsequent local- to regional-scale climate changes. This is likely because the sign and magnitude of the various feedback mechanisms depend largely on a multitude of highly site-specific meteorological, eco-physiological, structural, and topographic factors, making them difficult to quantify in the absence of sophisticated models with high spatial and temporal resolution. In a world increasingly dependent on biomass (and thus land) resources for energy and materials, it is unacceptable to continue ignoring important biogeophysical factors linked to land use activities in climate impact assessment studies. Although a number of useful land-atmosphere impact assessment methodologies and metrics have been proposed in recent years, they are rarely applied in the decision making process. Over the last 10-15 years, Life Cycle Assessment (LCA) has emerged as a prominent decision-support tool that relies on well-established IPCC climate metrics, yet land-atmosphere climate metrics are rarely applied. Here, we present a review of the literature enveloping methods and metrics for quantifying or characterizing climate change impacts in terrestrial ecosystems. We highlight their merits and discuss practical limitations with respect to their integration into the LCA framework. We conclude by proposing some solutions for overcoming the integration barrier and suggest some practical ways forward for both climate modelers/metric developers and LCA practitioners.

  15. USING LIFE CYCLE ASSESSMENT TOOLS FOR INTEGRATED PRODUCT POLICY

    EPA Science Inventory

    The European Union's new Integrated Product Policy directs governments and companies to consider the entire product life cycle, from cradle to grave, in their environmental decision-making process. A life-cycle based approach is intended to lead toward true environmental improvem...

  16. Life cycle assessment of molten carbonate fuel cells: State of the art and strategies for the future

    NASA Astrophysics Data System (ADS)

    Mehmeti, Andi; Santoni, Francesca; Della Pietra, Massimiliano; McPhail, Stephen J.

    2016-03-01

    This study aims to review and provide an up to date international life cycle thinking literature with particular emphasis on life cycle assessment (LCA), applied to Molten Carbonate Fuel Cells (MCFCs), a technology forcefully entering the field of decentralized heat and power generation. Critical environmental issues, comparison of results between studies and improvement strategies are analyzed and highlighted. The findings stress that MCFC environmental performance is heavily influenced by the current use of non-renewable energy and high material demand of rare minerals which generate high environmental burdens in the manufacturing stage, thereby confirming the prominent role of these processes in a comprehensive LCA study. The comparison of operational phases highlights that MCFCs are robust and able to compete with other mature technologies contributing substantially to airborne emissions reduction and promoting a switch to renewable fuels, however, further progress and market competitiveness urges adoption of an eco-efficiency philosophy to forge the link between environmental and economic concerns. Adopting a well-organized systematic research driven by life cycle models and eco-efficiency principles stakeholders will glean valuable information to make well balanced decisions for improving performance towards the concept 'producing more quality with less resources' and accelerate market penetration of the technology.

  17. Including exposure variability in the life cycle impact assessment of indoor chemical emissions: the case of metal degreasing.

    PubMed

    Golsteijn, Laura; Huizer, Daan; Hauck, Mara; van Zelm, Rosalie; Huijbregts, Mark A J

    2014-10-01

    The present paper describes a method that accounts for variation in indoor chemical exposure settings and accompanying human toxicity in life cycle assessment (LCA). Metal degreasing with dichloromethane was used as a case study to show method in practice. We compared the human toxicity related to the degreasing of 1m(2) of metal surface in different exposure scenarios for industrial workers, professional users outside industrial settings, and home consumers. The fraction of the chemical emission that is taken in by exposed individuals (i.e. the intake fraction) was estimated on the basis of operational conditions (e.g. exposure duration), and protective measures (e.g. local exhaust ventilation). The introduction of a time-dependency and a correction for protective measures resulted in reductions in the intake fraction of up to 1.5 orders of magnitude, compared to application of existing, less advanced models. In every exposure scenario, the life cycle impacts for human toxicity were mainly caused by indoor exposure to metal degreaser (>60%). Emissions released outdoors contributed up to 22% of the life cycle impacts for human toxicity, and the production of metal degreaser contributed up to 19%. These findings illustrate that human toxicity from indoor chemical exposure should not be disregarded in LCA case studies. Particularly when protective measures are taken or in the case of a short duration (1h or less), we recommend the use of our exposure scenario-specific approach.

  18. Evaluation of green building rating tools based on existing green building achievement in Indonesia using Life Cycle Assessment Method

    NASA Astrophysics Data System (ADS)

    Basten, Van; Latief, Yusuf; Berawi, Mohammed Ali; Budiman, Rachmat; Riswanto

    2017-03-01

    Total completed building construction value in Indonesia increased 116% during 2009 to 2011. That's followed by increasing 11% energy consumption in Indonesia in the last three years with 70% energy met to the electricity needs of commercial building. In addition, a few application of green building concept in Indonesia made the greenhouse gas emissions or CO2 amount increased by 25%. Construction, operation, and maintain of building cost consider relatively high. The evaluation in this research is used to improve the building performance with some of green concept alternatives. The research methodology is conducted by combination of qualitative and quantitative approaches through interview and case study. Assessing the successful of optimization functions in the existing green building is based on the operational and maintenance phase with the Life Cycle Assessment (LCA) Method. The result of optimization that is the largest efficiency and effective of building life cycle.

  19. Environmental sustainability assessments of pharmaceuticals: an emerging need for simplification in life cycle assessments.

    PubMed

    De Soete, Wouter; Debaveye, Sam; De Meester, Steven; Van der Vorst, Geert; Aelterman, Wim; Heirman, Bert; Cappuyns, Philippe; Dewulf, Jo

    2014-10-21

    The pharmaceutical and fine chemical industries are eager to strive toward innovative products and technologies. This study first derives hotspots in resource consumption of 2839 Basic Operations in 40 Active Pharmaceutical Ingredient synthesis steps through Exergetic Life Cycle Assessment (ELCA). Second, since companies are increasingly obliged to quantify the environmental sustainability of their products, two alternative ways of simplifying (E)LCA are discussed. The usage of averaged product group values (R(2) = 3.40 × 10(-30)) is compared with multiple linear regression models (R(2) = 8.66 × 10(-01)) in order to estimate resource consumption of synthesis steps. An optimal set of predictor variables is postulated to balance model complexity and embedded information with usability and capability of merging models with existing Enterprise Resource Planning (ERP) data systems. The amount of organic solvents used, molar efficiency, and duration of a synthesis step were shown to be the most significant predictor variables. Including additional predictor variables did not contribute to the predictive power and eventually weakens the model interpretation. Ideally, an organization should be able to derive its environmental impact from readily available ERP data, linking supply chains back to the cradle of resource extraction, excluding the need for an approximation with product group averages.

  20. Life cycle based risk assessment of recycled materials in roadway construction.

    PubMed

    Carpenter, A C; Gardner, K H; Fopiano, J; Benson, C H; Edil, T B

    2007-01-01

    This paper uses a life-cycle assessment (LCA) framework to characterize comparative environmental impacts from the use of virgin aggregate and recycled materials in roadway construction. To evaluate site-specific human toxicity potential (HTP) in a more robust manner, metals release data from a demonstration site were combined with an unsaturated contaminant transport model to predict long-term impacts to groundwater. The LCA determined that there were reduced energy and water consumption, air emissions, Pb, Hg and hazardous waste generation and non-cancer HTP when bottom ash was used in lieu of virgin crushed rock. Conversely, using bottom ash instead of virgin crushed rock increased the cancer HTP risk due to potential leachate generation by the bottom ash. At this scale of analysis, the trade-offs are clearly between the cancer HTP (higher for bottom ash) and all of the other impacts listed above (lower for bottom ash). The site-specific analysis predicted that the contaminants (Cd, Cr, Se and Ag for this study) transported from the bottom ash to the groundwater resulted in very low unsaturated zone contaminant concentrations over a 200 year period due to retardation in the vadose zone. The level of contaminants predicted to reach the groundwater after 200 years was significantly less than groundwater maximum contaminant levels (MCL) set by the US Environmental Protection Agency for drinking water. Results of the site-specific contaminant release estimates vary depending on numerous site and material specific factors. However, the combination of the LCA and the site specific analysis can provide an appropriate context for decision making. Trade-offs are inherent in making decisions about recycled versus virgin material use, and regulatory frameworks should recognize and explicitly acknowledge these trade-offs in decision processes.

  1. Life Cycle Assessment of Mixed Municipal Solid Waste: Multi-input versus multi-output perspective.

    PubMed

    Fiorentino, G; Ripa, M; Protano, G; Hornsby, C; Ulgiati, S

    2015-12-01

    This paper analyses four strategies for managing the Mixed Municipal Solid Waste (MMSW) in terms of their environmental impacts and potential advantages by means of Life Cycle Assessment (LCA) methodology. To this aim, both a multi-input and a multi-output approach are applied to evaluate the effect of these perspectives on selected impact categories. The analyzed management options include direct landfilling with energy recovery (S-1), Mechanical-Biological Treatment (MBT) followed by Waste-to-Energy (WtE) conversion (S-2), a combination of an innovative MBT/MARSS (Material Advanced Recovery Sustainable Systems) process and landfill disposal (S-3), and finally a combination of the MBT/MARSS process with WtE conversion (S-4). The MARSS technology, developed within an European LIFE PLUS framework and currently implemented at pilot plant scale, is an innovative MBT plant having the main goal to yield a Renewable Refined Biomass Fuel (RRBF) to be used for combined heat and power production (CHP) under the regulations enforced for biomass-based plants instead of Waste-to-Energy systems, for increased environmental performance. The four scenarios are characterized by different resource investment for plant and infrastructure construction and different quantities of matter, heat and electricity recovery and recycling. Results, calculated per unit mass of waste treated and per unit exergy delivered, under both multi-input and multi-output LCA perspectives, point out improved performance for scenarios characterized by increased matter and energy recovery. Although none of the investigated scenarios is capable to provide the best performance in all the analyzed impact categories, the scenario S-4 shows the best LCA results in the human toxicity and freshwater eutrophication categories, i.e. the ones with highest impacts in all waste management processes.

  2. Life cycle assessment applied to the sector of microelectronic devices

    NASA Astrophysics Data System (ADS)

    Matarazzo, Agata; Ingrao, Carlo; Clasadonte, Maria Teresa

    2016-07-01

    This work is about the application of LCA to the ends of the environmental assessment of pure-silicon wafers production. The input-data quantification is realized studying two microelectronic devices and presenting schematically tables and graphs, to be easily interpreted. This will allow help the reader to individuate, clearly and immediately, the materials flows and the relationships among the different steps of the production process. The material flows, in terms of raw materials use and energy consumption, were studied using the data provided by a firm involved in the microelectronic device production field. The two devices environmental analysis was developed considering potential effects such as Acidification, Eutrophication, Ozone reduction, Global warming, Ozone photochemical formation, Human Toxicity.

  3. Evaluating new processes and concepts for energy and resource recovery from municipal wastewater with life cycle assessment.

    PubMed

    Remy, C; Boulestreau, M; Warneke, J; Jossa, P; Kabbe, C; Lesjean, B

    2016-01-01

    Energy and resource recovery from municipal wastewater is a pre-requisite for an efficient and sustainable water management in cities of the future. However, a sound evaluation of available processes and pathways is required to identify opportunities and short-comings of the different options and reveal synergies and potentials for optimization. For evaluating environmental impacts in a holistic view, the tool of life cycle assessment (LCA, ISO 14040/44) is suitable to characterize and quantify the direct and indirect effects of new processes and concepts. This paper gives an overview of four new processes and concepts for upgrading existing wastewater treatment plants towards energy positive and resource efficient wastewater treatment, based upon an evaluation of their environmental impacts with LCA using data from pilot and full-scale assessments of the considered processes.

  4. Development and weighting of a life cycle assessment screening model

    NASA Astrophysics Data System (ADS)

    Bates, Wayne E.; O'Shaughnessy, James; Johnson, Sharon A.; Sisson, Richard

    2004-02-01

    Nearly all life cycle assessment tools available today are high priced, comprehensive and quantitative models requiring a significant amount of data collection and data input. In addition, most of the available software packages require a great deal of training time to learn how to operate the model software. Even after this time investment, results are not guaranteed because of the number of estimations and assumptions often necessary to run the model. As a result, product development, design teams and environmental specialists need a simplified tool that will allow for the qualitative evaluation and "screening" of various design options. This paper presents the development and design of a generic, qualitative life cycle screening model and demonstrates its applicability and ease of use. The model uses qualitative environmental, health and safety factors, based on site or product-specific issues, to sensitize the overall results for a given set of conditions. The paper also evaluates the impact of different population input ranking values on model output. The final analysis is based on site or product-specific variables. The user can then evaluate various design changes and the apparent impact or improvement on the environment, health and safety, compliance cost and overall corporate liability. Major input parameters can be varied, and factors such as materials use, pollution prevention, waste minimization, worker safety, product life, environmental impacts, return of investment, and recycle are evaluated. The flexibility of the model format will be discussed in order to demonstrate the applicability and usefulness within nearly any industry sector. Finally, an example using audience input value scores will be compared to other population input results.

  5. Influence of data collection schemes on the Life Cycle Assessment of a municipal wastewater treatment plant.

    PubMed

    Yoshida, Hiroko; Clavreul, Julie; Scheutz, Charlotte; Christensen, Thomas H

    2014-06-01

    A Life Cycle Assessment (LCA) of a municipal wastewater treatment plant (WWTP) was conducted to illustrate the effect of an emission inventory data collection scheme on the outcomes of an environmental impact assessment. Due to their burden in respect to data collection, LCAs often rely heavily on existing emission and operational data, which are gathered under either compulsory monitoring or reporting requirements under law. In this study, an LCA was conducted using three input data sources: Information compiled under compulsory disclosure requirements (the European Pollutant Release and Transfer Registry), compliance with national discharge limits, and a state-of-the-art emission data collection scheme conducted at the same WWTP. Parameter uncertainty for each collection scheme was assessed through Monte Carlo simulation. The comparison of the results confirmed that LCA results depend heavily on input data coverage. Due to the threshold on reporting value, the E-PRTR did not capture the impact for particulate matter emission, terrestrial acidification, or terrestrial eutrophication. While the current practice can capture more than 90% of non-carcinogenic human toxicity and marine eutrophication, an LCA based on the data collection scheme underestimates impact potential due to limitations of substance coverage. Besides differences between data collection schemes, the results showed that 3-13,500% of the impacts came from background systems, such as from the provisioning of fuel, electricity, and chemicals, which do not need to be disclosed currently under E-PRTR. The incidental release of pollutants was also assessed by employing a scenario-based approach, the results of which demonstrated that these non-routine emissions could increase overall WWTP greenhouse gas emissions by between 113 and 210%. Overall, current data collection schemes have the potential to provide standardized data collection and form the basis for a sound environmental impact assessment, but

  6. Innovation strategies in a fruit growers association impacts assessment by using combined LCA and s-LCA methodologies.

    PubMed

    Tecco, Nadia; Baudino, Claudio; Girgenti, Vincenzo; Peano, Cristiana

    2016-10-15

    In the challenging world of territorial transformations within the agriculture, there is an increasing need for an integrated methodological framework of assessment that is able to reconcile the demand for solutions that are both economically sustainable and contribute to environmental and social improvement. This study aims to assess the introduction of innovation into agro-food systems by combining an environmental life cycle (LCA) assessment and a social life cycle assessment (s-LCA) to support the decision making process of a fruit growers co-op for the adoption of mulching and covering in raspberry farming. LCA and s-LCA have been applied independently under specific consistency requirements, selecting two scenarios to compare the impact with (1) and without (2) the innovation and then combined within a cause-effect chain. The interactions between the environment and socioeconomic components were considered within a nested frameset of business and territorial features. The total emissions from raspberry production in Scenario 1, according to the Global Warming Potential (GWP) Impact Category amounted to 2.2840kg of CO2 eq. In Scenario 2, the impact of production was associated with a GWP of 0.1682kg of CO2 eq. Social repercussions analysis from Scenario 1 compared to Scenario 2 indicate more satisfaction for working conditions and the management of climate risks. The mulching and covering, implemented within a given framework of farm activity, created conditions for the preservation of a model in which raspberry production contributes to landscape protection, the business sustainability of farms and the creation of employment. The combined use of the two methods contributes to the development of a strategy planning due to its ability to deliver, as well as specific analysis at a functional level, a wider framework for assessing the consistency of the impacts related to innovation in raspberry production.

  7. Application of Life Cycle Assessment on Electronic Waste Management: A Review.

    PubMed

    Xue, Mianqiang; Xu, Zhenming

    2017-04-01

    Electronic waste is a rich source of both valuable materials and toxic substances. Management of electronic waste is one of the biggest challenges of current worldwide concern. As an effective and prevailing environmental management tool, life cycle assessment can evaluate the environmental performance of electronic waste management activities. Quite a few scientific literatures reporting life cycle assessment of electronic waste management with significant outcomes have been recently published. This paper reviewed the trends, characteristics, research gaps, and challenges of these studies providing detailed information for practitioners involved in electronic waste management. The results showed that life cycle assessment studies were most carried out in Europe, followed by Asia and North America. The research subject of the studies mainly includes monitors, waste printed circuit boards, mobile phones, computers, printers, batteries, toys, dishwashers, and light-emitting diodes. CML was the most widely used life cycle impact assessment method in life cycle assessment studies on electronic waste management, followed by EI99. Furthermore, 40% of the reviewed studies combined with other environmental tools, including life cycle cost, material flow analysis, multi-criteria decision analysis, emergy analysis, and hazard assessment which came to more comprehensive conclusions from different aspects. The research gaps and challenges including uneven distribution of life cycle assessment studies, life cycle impact assessment methods selection, comparison of the results, and uncertainty of the life cycle assessment studies were examined. Although life cycle assessment of electronic waste management facing challenges, their results will play more and more important role in electronic waste management practices.

  8. Application of Life Cycle Assessment on Electronic Waste Management: A Review

    NASA Astrophysics Data System (ADS)

    Xue, Mianqiang; Xu, Zhenming

    2017-04-01

    Electronic waste is a rich source of both valuable materials and toxic substances. Management of electronic waste is one of the biggest challenges of current worldwide concern. As an effective and prevailing environmental management tool, life cycle assessment can evaluate the environmental performance of electronic waste management activities. Quite a few scientific literatures reporting life cycle assessment of electronic waste management with significant outcomes have been recently published. This paper reviewed the trends, characteristics, research gaps, and challenges of these studies providing detailed information for practitioners involved in electronic waste management. The results showed that life cycle assessment studies were most carried out in Europe, followed by Asia and North America. The research subject of the studies mainly includes monitors, waste printed circuit boards, mobile phones, computers, printers, batteries, toys, dishwashers, and light-emitting diodes. CML was the most widely used life cycle impact assessment method in life cycle assessment studies on electronic waste management, followed by EI99. Furthermore, 40% of the reviewed studies combined with other environmental tools, including life cycle cost, material flow analysis, multi-criteria decision analysis, emergy analysis, and hazard assessment which came to more comprehensive conclusions from different aspects. The research gaps and challenges including uneven distribution of life cycle assessment studies, life cycle impact assessment methods selection, comparison of the results, and uncertainty of the life cycle assessment studies were examined. Although life cycle assessment of electronic waste management facing challenges, their results will play more and more important role in electronic waste management practices.

  9. LIFE CYCLE ASSESSMENT IN THE U.S. EPA

    EPA Science Inventory

    RECENT DEVELOPMENTS SUCH AS THE FEDERAL GOVERNMENT'S GREEN PURCHASING MEASURE ARE STIMULATING NEW INTEREST IN LCA AT THE USEPA. ACTIVITIES UNDERWAY WILL HELP BUYERS MAKE ENVIRONMENTAL PRODUCT CHOICES EASY ACCESS TO LCA DATA, AND PROVIDE A DATABASE/DECISION TOOL FOR MUNICIPAL WAST...

  10. Global warming implications of facade parameters: A life cycle assessment of residential buildings in Bahrain

    SciTech Connect

    Radhi, Hassan; Sharples, Stephen

    2013-01-15

    On a global scale, the Gulf Corporation Council Countries (GCCC), including Bahrain, are amongst the top countries in terms of carbon dioxide emissions per capita. Building authority in Bahrain has set a target of 40% reduction of electricity consumption and associated CO{sub 2} emissions to be achieved by using facade parameters. This work evaluates how the life cycle CO{sub 2} emissions of buildings are affected by facade parameters. The main focus is placed on direct and indirect CO{sub 2} emissions from three contributors, namely, chemical reactions during production processes (Pco{sub 2}), embodied energy (Eco{sub 2}) and operational energy (OPco{sub 2}). By means of the life cycle assessment (LCA) methodology, it has been possible to show that the greatest environmental impact occurs during the operational phase (80-90%). However, embodied CO{sub 2} emissions are an important factor that needs to be brought into the systems used for appraisal of projects, and hence into the design decisions made in developing projects. The assessment shows that masonry blocks are responsible for 70-90% of the total CO{sub 2} emissions of facade construction, mainly due to their physical characteristics. The highest Pco{sub 2} emissions factors are those of window elements, particularly aluminium frames. However, their contribution of CO{sub 2} emissions depends largely on the number and size of windows. Each square metre of glazing is able to increase the total CO{sub 2} emissions by almost 30% when compared with the same areas of opaque walls. The use of autoclaved aerated concrete (AAC) walls reduces the total life cycle CO{sub 2} emissions by almost 5.2% when compared with ordinary walls, while the use of thermal insulation with concrete wall reduces CO{sub 2} emissions by 1.2%. The outcome of this work offers to the building industry a reliable indicator of the environmental impact of residential facade parameters. - Highlights: Black-Right-Pointing-Pointer Life cycle

  11. Modeling cumulative effects in life cycle assessment: the case of fertilizer in wheat production contributing to the global warming potential.

    PubMed

    Laratte, Bertrand; Guillaume, Bertrand; Kim, Junbeum; Birregah, Babiga

    2014-05-15

    This paper aims at presenting a dynamic indicator for life cycle assessment (LCA) measuring cumulative impacts over time of greenhouse gas (GHG) emissions from fertilizers used for wheat cultivation and production. Our approach offers a dynamic indicator of global warming potential (GWP), one of the most used indicator of environmental impacts (e.g. in the Kyoto Protocol). For a case study, the wheat production in France was selected and considered by using data from official sources about fertilizer consumption and production of wheat. We propose to assess GWP environmental impact based on LCA method. The system boundary is limited to the fertilizer production for 1 ton of wheat produced (functional unit) from 1910 to 2010. As applied to wheat production in France, traditional LCA shows a maximum GWP impact of 500 kg CO2-eq for 1 ton of wheat production, whereas the GWP impact of wheat production over time with our approach to dynamic LCA and its cumulative effects increases to 18,000 kg CO2-eq for 1 ton of wheat production. In this paper, only one substance and one impact assessment indicator are presented. However, the methodology can be generalized and improved by using different substances and indicators.

  12. Life Cycle Assessment of the Energy Independence and Security Act of 2007: Ethanol - Global Warming Potential and Environmental Emissions

    SciTech Connect

    Heath, G. A.; Hsu, D. D.; Inman, D.; Aden, A.; Mann, M. K.

    2009-07-01

    The objective of this study is to use life cycle assessment (LCA) to evaluate the global warming potential (GWP), water use, and net energy value (NEV) associated with the EISA-mandated 16 bgy cellulosic biofuels target, which is assumed in this study to be met by cellulosic-based ethanol, and the EISA-mandated 15 bgy conventional corn ethanol target. Specifically, this study compares, on a per-kilometer-driven basis, the GWP, water use, and NEV for the year 2022 for several biomass feedstocks.

  13. Quantifying the environmental impact of an integrated human/industrial-natural system using life cycle assessment; a case study on a forest and wood processing chain.

    PubMed

    Schaubroeck, Thomas; Alvarenga, Rodrigo A F; Verheyen, Kris; Muys, Bart; Dewulf, Jo

    2013-01-01

    Life Cycle Assessment (LCA) is a tool to assess the environmental sustainability of a product; it quantifies the environmental impact of a product's life cycle. In conventional LCAs, the boundaries of a product's life cycle are limited to the human/industrial system, the technosphere. Ecosystems, which provide resources to and take up emissions from the technosphere, are not included in those boundaries. However, similar to the technosphere, ecosystems also have an impact on their (surrounding) environment through their resource usage (e.g., nutrients) and emissions (e.g., CH4). We therefore propose a LCA framework to assess the impact of integrated Techno-Ecological Systems (TES), comprising relevant ecosystems and the technosphere. In our framework, ecosystems are accounted for in the same manner as technosphere compartments. Also, the remediating effect of uptake of pollutants, an ecosystem service, is considered. A case study was performed on a TES of sawn timber production encompassing wood growth in an intensively managed forest ecosystem and further industrial processing. Results show that the managed forest accounted for almost all resource usage and biodiversity loss through land occupation but also for a remediating effect on human health, mostly via capture of airborne fine particles. These findings illustrate the potential relevance of including ecosystems in the product's life cycle of a LCA, though further research is needed to better quantify the environmental impact of TES.

  14. Life cycle assessment of biochar cofiring with coal.

    PubMed

    Huang, Yu-Fong; Syu, Fu-Siang; Chiueh, Pei-Te; Lo, Shang-Lien

    2013-03-01

    This study used life cycle assessment software SimaPro 7.2 and impact assessment model IMPACT 2002+ to evaluate the environmental impact and benefits of a biochar cofiring supply chain used for electricity generation. The biochar was assumed to be produced by rice straw torrefaction and the case study was located in Taoyuan County, Taiwan. This supply chain may provide impact reduction benefits in five categories (aquatic ecotoxicity, terrestrial ecotoxicity, land occupation, global warming, and non-renewable energy) but cause higher impacts than coal firing systems in other categories. Damage assessment of cofiring systems indicated that damage to human health was higher while the damage categories of ecosystem quality, climate change, and resources were lower. Carbon reduction could be 4.32 and 4.68metric tons CO2eq/ha/yr at 10% and 20% cofiring ratios, respectively. The improvement of electricity generation efficiency of cofiring systems may be the most important factor for reducing its environmental impact.

  15. Life cycle assessment integrated with thermodynamic analysis of bio-fuel options for solid oxide fuel cells.

    PubMed

    Lin, Jiefeng; Babbitt, Callie W; Trabold, Thomas A

    2013-01-01

    A methodology that integrates life cycle assessment (LCA) with thermodynamic analysis is developed and applied to evaluate the environmental impacts of producing biofuels from waste biomass, including biodiesel from waste cooking oil, ethanol from corn stover, and compressed natural gas from municipal solid wastes. Solid oxide fuel cell-based auxiliary power units using bio-fuel as the hydrogen precursor enable generation of auxiliary electricity for idling heavy-duty trucks. Thermodynamic analysis is applied to evaluate the fuel conversion efficiency and determine the amount of fuel feedstock needed to generate a unit of electrical power. These inputs feed into an LCA that compares energy consumption and greenhouse gas emissions of different fuel pathways. Results show that compressed natural gas from municipal solid wastes is an optimal bio-fuel option for SOFC-APU applications in New York State. However, this methodology can be regionalized within the U.S. or internationally to account for different fuel feedstock options.

  16. Life-cycle and freshwater withdrawal impact assessment of water supply technologies.

    PubMed

    Godskesen, B; Hauschild, M; Rygaard, M; Zambrano, K; Albrechtsen, H-J

    2013-05-01

    Four alternative cases for water supply were environmentally evaluated and compared based on the standard environmental impact categories from the life-cycle assessment (LCA) methodology extended with a freshwater withdrawal category (FWI). The cases were designed for Copenhagen, a part of Denmark with high population density and relatively low available water resources. FWI was applied at local groundwater catchments based on data from the national implementation of the EU Water Framework Directive. The base case of the study was the current practice of groundwater abstraction from well fields situated near Copenhagen. The 4 cases studied were: Rain & stormwater harvesting from several blocks in the city; Today's groundwater abstraction with compensating actions applied in the affected freshwater environments to ensure sufficient water flow in water courses; Establishment of well fields further away from the city; And seawater desalination. The standard LCA showed that the Rain & stormwater harvesting case had the lowest overall environmental impact (81.9 μPET/m(3)) followed by the cases relying on groundwater abstraction (123.5-137.8 μPET/m(3)), and that desalination had a relatively small but still important increase in environmental impact (204.8 μPET/m(3)). Rain & stormwater harvesting and desalination had a markedly lower environmental impact compared to the base case, due to the reduced water hardness leading to e.g. a decrease in electricity consumption in households. For a relevant comparison, it is therefore essential to include the effects of water hardness when comparing the environmental impacts of water systems of different hardness. This study also emphasizes the necessity of including freshwater withdrawal respecting the relevant affected geographical scale, i.e. by focusing the assessment on the local groundwater catchments rather than on the regional catchments. Our work shows that freshwater withdrawal methods previously used on a regional

  17. Life cycle assessment as development and decision support tool for wastewater resource recovery technology.

    PubMed

    Fang, Linda L; Valverde-Pérez, Borja; Damgaard, Anders; Plósz, Benedek Gy; Rygaard, Martin

    2016-01-01

    Life cycle assessment (LCA) has been increasingly used in the field of wastewater treatment where the focus has been to identify environmental trade-offs of current technologies. In a novel approach, we use LCA to support early stage research and development of a biochemical system for wastewater resource recovery. The freshwater and nutrient content of wastewater are recognized as potential valuable resources that can be recovered for beneficial reuse. Both recovery and reuse are intended to address existing environmental concerns, for example, water scarcity and use of non-renewable phosphorus. However, the resource recovery may come at the cost of unintended environmental impacts. One promising recovery system, referred to as TRENS, consists of an enhanced biological phosphorus removal and recovery system (EBP2R) connected to a photobioreactor. Based on a simulation of a full-scale nutrient and water recovery system in its potential operating environment, we assess the potential environmental impacts of such a system using the EASETECH model. In the simulation, recovered water and nutrients are used in scenarios of agricultural irrigation-fertilization and aquifer recharge. In these scenarios, TRENS reduces global warming up to 15% and marine eutrophication impacts up to 9% compared to conventional treatment. This is due to the recovery and reuse of nutrient resources, primarily nitrogen. The key environmental concerns obtained through the LCA are linked to increased human toxicity impacts from the chosen end use of wastewater recovery products. The toxicity impacts are from both heavy metals release associated with land application of recovered nutrients and production of AlCl3, which is required for advanced wastewater treatment prior to aquifer recharge. Perturbation analysis of the LCA pinpointed nutrient substitution and heavy metals content of algae biofertilizer as critical areas for further research if the performance of nutrient recovery systems such as

  18. Exergetic life cycle assessment of hydrogen production from renewables

    NASA Astrophysics Data System (ADS)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.

    Life cycle assessment is extended to exergetic life cycle assessment and used to evaluate the exergy efficiency, economic effectiveness and environmental impact of producing hydrogen using wind and solar energy in place of fossil fuels. The product hydrogen is considered a fuel for fuel cell vehicles and a substitute for gasoline. Fossil fuel technologies for producing hydrogen from natural gas and gasoline from crude oil are contrasted with options using renewable energy. Exergy efficiencies and greenhouse gas and air pollution emissions are evaluated for all process steps, including crude oil and natural gas pipeline transportation, crude oil distillation and natural gas reforming, wind and solar electricity generation, hydrogen production through water electrolysis, and gasoline and hydrogen distribution and utilization. The use of wind power to produce hydrogen via electrolysis, and its application in a fuel cell vehicle, exhibits the lowest fossil and mineral resource consumption rate. However, the economic attractiveness, as measured by a "capital investment effectiveness factor," of renewable technologies depends significantly on the ratio of costs for hydrogen and natural gas. At the present cost ratio of about 2 (per unit of lower heating value or exergy), capital investments are about five times lower to produce hydrogen via natural gas rather than wind energy. As a consequence, the cost of wind- and solar-based electricity and hydrogen is substantially higher than that of natural gas. The implementation of a hydrogen fuel cell instead of an internal combustion engine permits, theoretically, an increase in a vehicle's engine efficiency of about of two times. Depending on the ratio in engine efficiencies, the substitution of gasoline with "renewable" hydrogen leads to (a) greenhouse gas (GHG) emissions reductions of 12-23 times for hydrogen from wind and 5-8 times for hydrogen from solar energy, and (b) air pollution (AP) emissions reductions of 38

  19. Comparison of different building shells - life cycle assessment.

    PubMed

    Rixrath, Doris; Wartha, Christian

    2016-07-01

    The Renewable Energy and Efficiency Action (REACT) project is a European Union-funded cross-border cooperative venture featuring the participation of companies and researchers from the Austrian state of Burgenland and western Slovakia that is developing zero-energy concepts for newly built single-family homes. A variety of building structures are defined for family houses, and the different impacts they have on the environment are evaluated over the entire life cycle. This paper aims to compare the environmental impacts of different building shells during both the construction and the demolition phases. However, the operation phase of the building is not evaluated. One of the findings of the project thus far is that the demolition and disposal of building materials should be included in any such evaluation. For some environmental impact assessment categories, both demolition and disposal are important. The environmental impacts of various end-of-life scenarios can differ greatly based on the disposal method (e.g., landfill, incineration, recycling) chosen and on the proportion of recycled content. Furthermore, the results show that manufacturing building materials from renewable resources can have strong environmental impacts, particularly when substantial amounts of fossil fuel are required in their production. Integr Environ Assess Manag 2016;12:437-444. © 2016 SETAC.

  20. Comparative life cycle assessment of three biohydrogen pathways.

    PubMed

    Djomo, Sylvestre Njakou; Blumberga, Dagnija

    2011-02-01

    A life cycle assessment was performed to quantify and compare the energetic and environmental performances of hydrogen from wheat straw (WS-H(2)), sweet sorghum stalk (SSS-H(2)), and steam potato peels (SPP-H(2)). Inventory data were derived from a pilot plant. Impacts were assessed using the impact 2002+ method. When co-product was not considered, the greenhouse gas (GHG) emissions were 5.60 kg CO(2eq) kg(-1) H(2) for WS-H(2), 5.32 kg CO(2eq) kg(-1) H(2) for SSS-H(2), and 5.18 kg CO(2eq) kg(-1) H(2) for SPP-H(2). BioH(2) pathways reduced GHG emissions by 52-56% compared to diesel and by 54-57% compared to steam methane reforming production of H(2). The energy ratios (ER) were also comparable: 1.08 for WS-H(2), 1.14 for SSS-H(2) and 1.17 for SPP-H(2). A shift from SPP-H(2) to WS-H(2) would therefore not affect the ER and GHG emissions of these BioH(2) pathways. When co-product was considered, a shift from SPP-H(2) to WS-H(2) or SSS-H(2) decreased the ER, while increasing the GHG emissions significantly. Co-product yield should be considered when selecting BioH(2) feedstocks.

  1. Biogrouting compared to jet grouting: environmental (LCA) and economical assessment.

    PubMed

    Suer, Pascal; Hallberg, Niklas; Carlsson, Christel; Bendz, David; Holm, Goran

    2009-03-01

    In order to predict consequences of replacing jet grouting with biogrouting, and identify major contributors to the cost of both technologies, a large road project in Stockholm, Sweden, was used as a case study. Jet grouting had been used to seal the contact between sheet piling and bedrock, biogrouting for the same function was computed. A comparative environmental and economical assessment was carried out using life cycle assessment (LCA). The results show that biogrouting was cheaper than jet grouting and would have had lower environmental impact. The major difference was the transport and use of heavier equipment for jet grouting. Biogrouting also used less water and produced less landfilled waste. However, the production of urea and CaCl(2) for biogrouting required much energy.

  2. Applications of life cycle assessment and cost analysis in health care waste management

    SciTech Connect

    Soares, Sebastiao Roberto; Finotti, Alexandra Rodrigues; Prudencio da Silva, Vamilson; Alvarenga, Rodrigo A.F.

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Three Health Care Waste (HCW) scenarios were assessed through environmental and cost analysis. Black-Right-Pointing-Pointer HCW treatment using microwave oven had the lowest environmental impacts and costs in comparison with autoclave and lime. Black-Right-Pointing-Pointer Lime had the worst environmental and economic results for HCW treatment, in comparison with autoclave and microwave. - Abstract: The establishment of rules to manage Health Care Waste (HCW) is a challenge for the public sector. Regulatory agencies must ensure the safety of waste management alternatives for two very different profiles of generators: (1) hospitals, which concentrate the production of HCW and (2) small establishments, such as clinics, pharmacies and other sources, that generate dispersed quantities of HCW and are scattered throughout the city. To assist in developing sector regulations for the small generators, we evaluated three management scenarios using decision-making tools. They consisted of a disinfection technique (microwave, autoclave and lime) followed by landfilling, where transportation was also included. The microwave, autoclave and lime techniques were tested at the laboratory to establish the operating parameters to ensure their efficiency in disinfection. Using a life cycle assessment (LCA) and cost analysis, the decision-making tools aimed to determine the technique with the best environmental performance. This consisted of evaluating the eco-efficiency of each scenario. Based on the life cycle assessment, microwaving had the lowest environmental impact (12.64 Pt) followed by autoclaving (48.46 Pt). The cost analyses indicated values of US$ 0.12 kg{sup -1} for the waste treated with microwaves, US$ 1.10 kg{sup -1} for the waste treated by the autoclave and US$ 1.53 kg{sup -1} for the waste treated with lime. The microwave disinfection presented the best eco-efficiency performance among those studied and provided a feasible

  3. LIFE CYCLE DESIGN OF IN-MOLD SURFACING FILM

    EPA Science Inventory

    Since 1990, the NRMRL has been at the forefront in the development of Life Cycle Assessment as a methodology for environmental assessment. In 1994, NRMRL established an LCA Team to organize individual efforts into a comprehensive research program. The LCA Team coordinates work in...

  4. Identifying improvement potentials in cement production with life cycle assessment.

    PubMed

    Boesch, Michael Elias; Hellweg, Stefanie

    2010-12-01

    Cement production is an environmentally relevant process responsible for 5% of total anthropogenic carbon dioxide emissions and 7% of industrial fuel use. In this study, life cycle assessment is used to evaluate improvement potentials in the cement production process in Europe and the USA. With a current fuel substitution rate of 18% in Europe and 11% in the USA, both regions have a substantial potential to reduce greenhouse gas emissions and save virgin resources by further increasing the coprocessing of waste fuels. Upgrading production technology would be particularly effective in the USA where many kiln systems with very low energy efficiency are still in operation. Using best available technology and a thermal substitution rate of 50% for fuels, greenhouse gas emissions could be reduced by 9% for Europe and 18% for the USA per tonne of cement. Since clinker production is the dominant pollution producing step in cement production, the substitution of clinker with mineral components such as ground granulated blast furnace slag or fly ash is an efficient measure to reduce the environmental impact. Blended cements exhibit substantially lower environmental footprints than Portland cement, even if the substitutes feature lower grindability and require additional drying and large transport distances. The highest savings in CO(2) emissions and resource consumption are achieved with a combination of measures in clinker production and cement blending.

  5. Environmental impacts of organic and conventional agricultural products--are the differences captured by life cycle assessment?

    PubMed

    Meier, Matthias S; Stoessel, Franziska; Jungbluth, Niels; Juraske, Ronnie; Schader, Christian; Stolze, Matthias

    2015-02-01

    Comprehensive assessment tools are needed that reliably describe environmental impacts of different agricultural systems in order to develop sustainable high yielding agricultural production systems with minimal impacts on the environment. Today, Life Cycle Assessment (LCA) is increasingly used to assess and compare the environmental sustainability of agricultural products from conventional and organic agriculture. However, LCA studies comparing agricultural products from conventional and organic farming systems report a wide variation in the resource efficiency of products from these systems. The studies show that impacts per area farmed land are usually less in organic systems, but related to the quantity produced impacts are often higher. We reviewed 34 comparative LCA studies of organic and conventional agricultural products to analyze whether this result is solely due to the usually lower yields in organic systems or also due to inaccurate modeling within LCA. Comparative LCAs on agricultural products from organic and conventional farming systems often do not adequately differentiate the specific characteristics of the respective farming system in the goal and scope definition and in the inventory analysis. Further, often only a limited number of impact categories are assessed within the impact assessment not allowing for a comprehensive environmental assessment. The most critical points we identified relate to the nitrogen (N) fluxes influencing acidification, eutrophication, and global warming potential, and biodiversity. Usually, N-emissions in LCA inventories of agricultural products are based on model calculations. Modeled N-emissions often do not correspond with the actual amount of N left in the system that may result in potential emissions. Reasons for this may be that N-models are not well adapted to the mode of action of organic fertilizers and that N-emission models often are built on assumptions from conventional agriculture leading to even greater

  6. [Comparative life cycle environmental assessment between electric taxi and gasoline taxi in Beijing].

    PubMed

    Shi, Xiao-Qing; Sun, Zhao-Xin; Li, Xiao-Nuo; Li, Jin-Xiang; Yang, Jian-Xin

    2015-03-01

    Tailpipe emission of internal combustion engine vehicle (ICEV) is one of the main sources leading to atmospheric environmental problems such as haze. Substituting electric vehicles for conventional gasoline vehicles is an important solution for reducing urban air pollution. In 2011, as a pilot city of electric vehicle, Beijing launched a promotion plan of electric vehicle. In order to compare the environmental impacts between Midi electric vehicle (Midi EV) and Hyundai gasoline taxi (ICEV), this study created an inventory with local data and well-reasoned assumptions, and contributed a life cycle assessment (LCA) model with GaBi4.4 software and comparative life cycle environmental assessment by Life cycle impact analysis models of CML2001(Problem oriented) and EI99 (Damage oriented), which included the environmental impacts of full life cycle, manufacture phase, use phase and end of life. The sensitivity analysis of lifetime mileage and power structure was also provided. The results indicated that the full life cycle environmental impact of Midi EV was smaller than Hyundai ICEV, which was mainly due to the lower fossil fuel consumption. On the contrary, Midi EV exhibited the potential of increasing the environmental impacts of ecosystem quality influence and Human health influence. By CML2001 model, the results indicated that Midi EV might decrease the impact of Abiotic Depletion Potential, Global Warming Potential, Ozone Layer Depletion Potential and so on. However, in the production phase, the impact of Abiotic Depletion Potential, Acidification Potential, Eutrophication Potential, Global Warming Potential, Photochemical Ozone Creation Potential, Ozone Layer Depletion Potential, Marine Aquatic Ecotoxicity Potential, Terrestric Ecotoxicity Potential, Human Toxicity Potential of Midi EV were increased relative to Hyundai ICEV because of emissions impacts from its power system especially the battery production. Besides, in the use phase, electricity production was

  7. Life Cycle Assessment of Carbon Fiber-Reinforced Polymer Composites

    SciTech Connect

    Das, Sujit

    2011-01-01

    Carbon fiber-reinforced polymer matrix composites is gaining momentum with the pressure to lightweight vehicles, however energy-intensity and cost remain some of the major barriers before this material could be used in large-scale automotive applications. A representative automotive part, i.e., a 30.8 kg steel floor pan having a 17% weight reduction potential with stringent cash performance requirements has been considered for the life cycle energy and emissions analysis based on the latest developments occurring in the precursor type (conventional textile-based PAN vs. renewable-based lignin), part manufacturing (conventional SMC vs. P4) and fiber recycling technologies. Carbon fiber production is estimated to be about 14 times more energy-intensive than conventional steel production, however life cycle primary energy use is estimated to be quite similar to the conventional part, i.e., 18,500 MJ/part, especially when considering the uncertainty in LCI data that exists from using numerous sources in the literature. Lignin P4 technology offers the most life cycle energy and CO2 emissions benefits compared to a conventional stamped steel technology. With a 20% reduction in energy use in the lignin conversion to carbon fiber and free availability of lignin as a by-product of ethanol and wood production, a 30% reduction in life cycle energy use could be obtained. A similar level of life cycle energy savings could also be obtained with a higher part weight reduction potential of 43%.

  8. Life cycle assessment of gasoline production and use in Chile.

    PubMed

    Morales, Marjorie; Gonzalez-García, Sara; Aroca, Germán; Moreira, María Teresa

    2015-02-01

    Gasoline is the second most consumed fuel in Chile, accounting for 34% of the total fuel consumption in transportation related activities in 2012. Chilean refineries process more than 97% of the total gasoline commercialized in the national market. When it comes to evaluating the environmental profile of a Chilean process or product, the analysis should consider the characteristics of the Chilean scenario for fuel production and use. Therefore, the identification of the environmental impacts of gasoline production turns to be very relevant for the determination of the associated environmental impacts. For this purpose, Life Cycle Assessment has been selected as a useful methodology to assess the ecological burdens derived from fuel-based systems. In this case study, five subsystems were considered under a "well-to-wheel" analysis: crude oil extraction, gasoline importation, refinery, gasoline storage and distribution/use. The distance of 1 km driven by a middle size passenger car was chosen as functional unit. Moreover, volume, economic and energy-based allocations were also considered in a further sensitivity analysis. According to the results, the main hotspots were the refining activities as well as the tailpipe emissions from car use. When detailing by impact category, climate change was mainly affected by the combustion emissions derived from the gasoline use and refining activities. Refinery was also remarkable in toxicity related categories due to heavy metals emissions. In ozone layer and mineral depletion, transport activities played an important role. Refinery was also predominant in photochemical oxidation and water depletion. In terms of terrestrial acidification and marine eutrophication, the combustion emissions from gasoline use accounted for large contributions. This study provides real inventory data for the Chilean case study and the environmental results give insight into their influence of the assessment of products and processes in the country

  9. Bridging the gap between LCA, LCC and CBA as sustainability assessment tools

    SciTech Connect

    Hoogmartens, Rob; Van Passel, Steven; Van Acker, Karel; Dubois, Maarten

    2014-09-15

    Increasing interest in sustainability has led to the development of sustainability assessment tools such as Life Cycle Analysis (LCA), Life Cycle Costing (LCC) and Cost–Benefit Analysis (CBA). Due to methodological disparity of these three tools, conflicting assessment results generate confusion for many policy and business decisions. In order to interpret and integrate assessment results, the paper provides a framework that clarifies the connections and coherence between the included assessment methodologies. Building on this framework, the paper further focuses on key aspects to adapt any of the methodologies to full sustainability assessments. Aspects dealt with in the review are for example the reported metrics, the scope, data requirements, discounting, product- or project-related and approaches with respect to scarcity and labor requirements. In addition to these key aspects, the review shows that important connections exist: (i) the three tools can cope with social inequality, (ii) processes such as valuation techniques for LCC and CBA are common, (iii) Environmental Impact Assessment (EIA) is used as input in both LCA and CBA and (iv) LCA can be used in parallel with LCC. Furthermore, the most integrated sustainability approach combines elements of LCA and LCC to achieve the Life Cycle Sustainability Assessment (LCSA). The key aspects and the connections referred to in the review are illustrated with a case study on the treatment of end-of-life automotive glass. - Highlights: • Proliferation of assessment tools creates ambiguity and confusion. • The developed assessment framework clarifies connections between assessment tools. • Broadening LCA, key aspects are metric and data requirements. • Broadening LCC, key aspects are scope, time frame and discounting. • Broadening CBA, focus point, timespan, references, labor and scarcity are key.

  10. Applications of life cycle assessment and cost analysis in health care waste management.

    PubMed

    Soares, Sebastião Roberto; Finotti, Alexandra Rodrigues; da Silva, Vamilson Prudêncio; Alvarenga, Rodrigo A F

    2013-01-01

    The establishment of rules to manage Health Care Waste (HCW) is a challenge for the public sector. Regulatory agencies must ensure the safety of waste management alternatives for two very different profiles of generators: (1) hospitals, which concentrate the production of HCW and (2) small establishments, such as clinics, pharmacies and other sources, that generate dispersed quantities of HCW and are scattered throughout the city. To assist in developing sector regulations for the small generators, we evaluated three management scenarios using decision-making tools. They consisted of a disinfection technique (microwave, autoclave and lime) followed by landfilling, where transportation was also included. The microwave, autoclave and lime techniques were tested at the laboratory to establish the operating parameters to ensure their efficiency in disinfection. Using a life cycle assessment (LCA) and cost analysis, the decision-making tools aimed to determine the technique with the best environmental performance. This consisted of evaluating the eco-efficiency of each scenario. Based on the life cycle assessment, microwaving had the lowest environmental impact (12.64 Pt) followed by autoclaving (48.46 Pt). The cost analyses indicated values of US$0.12 kg(-1) for the waste treated with microwaves, US$1.10 kg(-1) for the waste treated by the autoclave and US$1.53 kg(-1) for the waste treated with lime. The microwave disinfection presented the best eco-efficiency performance among those studied and provided a feasible alternative to subsidize the formulation of the policy for small generators of HCW.

  11. Evaluation of particulate matter emissions from manganese alloy production using life-cycle assessment.

    PubMed

    Davourie, Julia; Westfall, Luke; Ali, Mohammed; McGough, Doreen

    2017-01-01

    Life-cycle assessments (LCAs) provide a wealth of industry data to assist in evaluating the environmental impacts of industrial processes and product supply chains. In this investigation, data from a recent LCA covering global manganese alloy production was used to evaluate sources of particulate matter (PM) emissions associated with the manganese alloy supply chain. The analysis is aimed at providing an empirical, industry-averaged breakdown of the contribution that processes and emissions controls have on total emissions, manganese releases and occupational exposure. The assessment shows that 66% of PM emissions associated with manganese production occur beyond manganese facilities. Direct or on-site emissions represent 34% of total PM and occur predominantly as disperse sources during mineral extraction and hauling, and as primary furnace emissions. The largest contribution of manganese-bearing PM at ground-level is associated with fugitive emissions from metal and slag tapping, casting, crushing and screening. The evaluation provides a high-level ranking of emissions by process area, to assist in identifying priority areas for industry-wide initiatives to reduce emissions and occupational exposure of manganese. The range of PM emission levels in industry indicate that further enhancements in PM emissions can be achieved by sharing of best practices in emissions controls, limiting furnace conditions which lead to by-passing of emissions controls and application of secondary emission controls to capture fugitive emissions during tapping and casting. The LCA approach to evaluating PM emissions underscores the important role that process optimization and resource efficiency have on reducing PM emissions throughout the manganese supply chain.

  12. Life cycle assessment of a biomass gasification combined-cycle power system

    SciTech Connect

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a technoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  13. Life Cycle Assessment of the MBT plant in Ano Liossia, Athens, Greece

    SciTech Connect

    Abeliotis, Konstadinos; Kalogeropoulos, Alexandros; Lasaridi, Katia

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer We model the operation of an MBT plant in Greece based on LCA. Black-Right-Pointing-Pointer We compare four different MBT operating scenarios (among them and with landfilling). Black-Right-Pointing-Pointer Even the current operation of the MBT plant is preferable to landfilling. Black-Right-Pointing-Pointer Utilization of the MBT compost and metals generates the most environmental gains. Black-Right-Pointing-Pointer Thermal exploitation of RDF improves further the environmental performance of the plant. - Abstract: The aim of this paper is the application of Life Cycle Assessment to the operation of the MBT facility of Ano Liossia in the region of Attica in Greece. The region of Attica is home to almost half the population of Greece and the management of its waste is a major issue. In order to explicitly analyze the operation of the MBT plant, five scenarios were generated. Actual operation data of the MBT plant for the year 2008 were provided by the region of Attica and the LCA modeling was performed via the SimaPro 5.1 software while impact assessment was performed utilizing the Eco-indicator'99 method. The results of our analysis indicate that even the current operation of the MBT plant is preferable to landfilling. Among the scenarios of MBT operation, the one with complete utilization of the MBT outputs, i.e. compost, RDF, ferrous and non-ferrous metals, is the one that generates the most environmental gains. Our analysis indicates that the exploitation of RDF via incineration is the key factor towards improving the environmental performance of the MBT plant. Our findings provide a quantitative understanding of the MBT plant. Interpretation of results showed that proper operation of the modern waste management systems can lead to substantial reduction of environmental impacts and savings of resources.

  14. Life cycle assessment of resource recovery from municipal solid waste incineration bottom ash.

    PubMed

    Allegrini, Elisa; Vadenbo, Carl; Boldrin, Alessio; Astrup, Thomas Fruergaard

    2015-03-15

    Bottom ash, the main solid output from municipal solid waste incineration (MSWI), has significant potential for the recovery of resources such as scrap metals and aggregates. The utilisation of these resources ideally enables natural resources to be saved. However, the quality of the recovered scrap metals may limit recycling potential, and the utilisation of aggregates may cause the release of toxic substances into the natural environment through leaching. A life cycle assessment (LCA) was applied to a full-scale MSWI bottom ash management and recovery system to identify environmental breakeven points beyond which the burdens of the recovery processes outweigh the environmental benefits from valorising metals and mineral aggregates. Experimental data for the quantity and quality of individual material fractions were used as a basis for LCA modelling. For the aggregates, three disposal routes were compared: landfilling, road sub-base and aggregate in concrete, while specific leaching data were used as the basis for evaluating toxic impacts. The recovery and recycling of aluminium, ferrous, stainless steel and copper scrap were considered, and the importance of aluminium scrap quality, choice of marginal energy technologies and substitution rates between primary and secondary aluminium, stainless steel and ferrous products, were assessed and discussed. The modelling resulted in burdens to toxic impacts associated with metal recycling and leaching from aggregates during utilisation, while large savings were obtained in terms of non-toxic impacts. However, by varying the substitution rate for aluminium recycling between 0.35 and 0.05 (on the basis of aluminium scrap and secondary aluminium alloy market value), it was found that the current recovery system might reach a breakeven point between the benefits of recycling and energy expended on sorting and upgrading the scrap.

  15. Space Transportation Systems Life Cycle Cost Assessment and Control

    NASA Technical Reports Server (NTRS)

    Robinson, John W.; Rhodes, Russell E.; Zapata, Edgar; Levack, Daniel J. H.; Donahue, Benjaamin B.; Knuth, William

    2008-01-01

    Civil and military applications of space transportation have been pursued for just over 50 years and there has been, and still is, a need for safe, dependable, affordable, and sustainable space transportation systems. Fully expendable and partially reusable space transportation systems have been developed and put in operation that have not adequately achieved this need. Access to space is technically achievable, but presently very expensive and will remain so until there is a breakthrough in the way we do business. Since 1991 the national Space Propulsion Synergy Team (SPST) has reviewed and assessed the lessons learned from the major U.S. space programs of the past decades focusing on what has been learned from the assessment and control of Life Cycle Cost (LCC) from these systems. This paper presents the results of a selected number of studies and analyses that have been conducted by the SPST addressing the need, as well as the solutions, for improvement in LCC. The major emphasis of the SPST processes is on developing the space transportation system requirements first (up front). These requirements must include both the usual system flight performance requirements and also the system functional requirements, including the infrastructure on Earth's surface, in-space and on the Moon and Mars surfaces to determine LCC. This paper describes the development of specific innovative engineering and management approaches and processes. This includes a focus on flight hardware maturity for reliability, ground operations approaches, and business processes between contractor and government organizations. A major change in program/project cost control is being proposed by the SPST to achieve a sustainable space transportation system LCC - controlling cost as a program metric in addition to the existing practice of controlling performance and weight. Without a firm requirement and methodically structured cost control, it is unlikely that an affordable and sustainable space

  16. What Can Meta-Analyses Tell Us About the Reliability of Life Cycle Assessment for Decision Support?

    SciTech Connect

    Brandao, M.; Heath, G.; Cooper, J.

    2012-04-01

    The body of life cycle assessment (LCA) literature is vast and has grown over the last decade at a dauntingly rapid rate. Many LCAs have been published on the same or very similar technologies or products, in some cases leading to hundreds of publications. One result is the impression among decision makers that LCAs are inconclusive, owing to perceived and real variability in published estimates of life cycle impacts. Despite the extensive available literature and policy need formore conclusive assessments, only modest attempts have been made to synthesize previous research. A significant challenge to doing so are differences in characteristics of the considered technologies and inconsistencies in methodological choices (e.g., system boundaries, coproduct allocation, and impact assessment methods) among the studies that hamper easy comparisons and related decision support. An emerging trend is meta-analysis of a set of results from LCAs, which has the potential to clarify the impacts of a particular technology, process, product, or material and produce more robust and policy-relevant results. Meta-analysis in this context is defined here as an analysis of a set of published LCA results to estimate a single or multiple impacts for a single technology or a technology category, either in a statistical sense (e.g., following the practice in the biomedical sciences) or by quantitative adjustment of the underlying studies to make them more methodologically consistent. One example of the latter approach was published in Science by Farrell and colleagues (2006) clarifying the net energy and greenhouse gas (GHG) emissions of ethanol, in which adjustments included the addition of coproduct credit, the addition and subtraction of processes within the system boundary, and a reconciliation of differences in the definition of net energy metrics. Such adjustments therefore provide an even playing field on which all studies can be considered and at the same time specify the

  17. Life cycle assessment of cheese production process in a small-sized dairy industry in Brazil.

    PubMed

    Santos, Hudson Carlos Maia; Maranduba, Henrique Leonardo; de Almeida Neto, José Adolfo; Rodrigues, Luciano Brito

    2017-02-01

    Current research identifies, analyzes, and suggests improvements for minimizing environmental impacts in the manufacture of cheese using the life cycle assessment. Data collection and development of the inventory were performed in a small-sized dairy industry in Brazil. A cradle-to-gate approach was conducted based on the primary data from cheese production and secondary data from databases. The ReCiPe method was used for the impact assessment, considering the categories climate change, ozone depletion, terrestrial acidification, freshwater eutrophication, photochemical oxidant formation, particulate matter formation, water depletion, and fossil depletion. A sensitivity analysis was performed including evaluations of different fuels for generating thermal energy, strategies for cleaning of dairy plant and utensils, variations in the way of cheese production based on the fat content, and production percentage changes. The results showed that the skimmed milk and thermal energy productions, electricity usage, and water consumptions were the main elementary flows. The pallet residues showed the best to be used as fuel for thermal energy. Detergent combinations did not influence the impact categories. There was a direct relationship between fat content range (20 to 30%) and the contribution in six impact categories. Changes from 20% in cheese allocation factor influenced the impact assessment results. LCA allowed identifying the main elementary flow of cheese production, providing valuable information with the potential to verify opportunities for on-site improvements.

  18. Selection of odour removal technologies in wastewater treatment plants: a guideline based on Life Cycle Assessment.

    PubMed

    Alfonsín, Carolina; Lebrero, Raquel; Estrada, José M; Muñoz, Raúl; Kraakman, N J R Bart; Feijoo, Gumersindo; Moreira, M Teresa

    2015-02-01

    This paper aims at analysing the environmental benefits and impacts associated with the treatment of malodorous emissions from wastewater treatment plants (WWTPs). The life cycle assessment (LCA) methodology was applied to two biological treatments, namely biofilter (BF) and biotrickling filter (BTF), two physical/chemical alternatives, namely activated carbon tower (AC) and chemical scrubber (CS), and a hybrid combination of BTF + AC. The assessment provided consistent guidelines for technology selection, not only based on removal efficiencies, but also on the environmental impact associated with the treatment of emissions. The results showed that biological alternatives entailed the lowest impacts. On the contrary, the use of chemicals led to the highest impacts for CS. Energy use was the main contributor to the impact related to BF and BTF, whereas the production of glass fibre used as infrastructure material played an important role in BTF impact. Production of NaClO entailed the highest burdens among the chemicals used in CS, representing ∼ 90% of the impact associated to chemicals. The frequent replacement of packing material in AC was responsible for the highest environmental impacts, granular activated carbon (GAC) production and its final disposal representing more than 50% of the impact in most categories. Finally, the assessment of BTF + AC showed that the hybrid technology is less recommendable than BF and BTF, but friendlier to the environment than physical/chemical treatments.

  19. Integrated earth system dynamic modeling for life cycle impact assessment of ecosystem services.

    PubMed

    Arbault, Damien; Rivière, Mylène; Rugani, Benedetto; Benetto, Enrico; Tiruta-Barna, Ligia

    2014-02-15

    Despite the increasing awareness of our dependence on Ecosystem Services (ES), Life Cycle Impact Assessment (LCIA) does not explicitly and fully assess the damages caused by human activities on ES generation. Recent improvements in LCIA focus on specific cause-effect chains, mainly related to land use changes, leading to Characterization Factors (CFs) at the midpoint assessment level. However, despite the complexity and temporal dynamics of ES, current LCIA approaches consider the environmental mechanisms underneath ES to be independent from each other and devoid of dynamic character, leading to constant CFs whose representativeness is debatable. This paper takes a step forward and is aimed at demonstrating the feasibility of using an integrated earth system dynamic modeling perspective to retrieve time- and scenario-dependent CFs that consider the complex interlinkages between natural processes delivering ES. The GUMBO (Global Unified Metamodel of the Biosphere) model is used to quantify changes in ES production in physical terms - leading to midpoint CFs - and changes in human welfare indicators, which are considered here as endpoint CFs. The interpretation of the obtained results highlights the key methodological challenges to be solved to consider this approach as a robust alternative to the mainstream rationale currently adopted in LCIA. Further research should focus on increasing the granularity of environmental interventions in the modeling tools to match current standards in LCA and on adapting the conceptual approach to a spatially-explicit integrated model.

  20. Life cycle assessment of bioethanol production from woodchips with modifications in the pretreatment process.

    PubMed

    Shadbahr, Jalil; Zhang, Yan; Khan, Faisal

    2015-01-01

    Pretreatment as a crucial step in the process of ethanol production has significant influences on the process efficiency and on the environmental performance of the bioethanol production from lignocellulosic biomass. In present life cycle analysis (LCA) study, two cases for pretreatment of woodchips were considered as the focal point of the ethanol plant. One was assumed as base scenario whereas the second is the proposed alternative by implementation of modifications on the base design. In the first stage, LCA results of pretreatment unit showed lower environmental impacts in respiratory inorganics and land use than in new scenario, while the base scenario revealed better performance in fossil fuels. The results of the second stage of LCA study demonstrated improvement in proposed design in most categories of environmental impacts such as 18.5 % in land use as well as 17 % improvement in ecosystem quality.

  1. LCACCESS: PROMOTING THE USE OF LIFE CYCLE ASSESSMENT

    EPA Science Inventory

    Evaluating environmental impacts holistically from raw material acquisition, through manufacture, to use and disposal using a life cycle perspective is gradually being viewed by environmental managers and decision-makers as an important element in the tools that are used to achie...

  2. USING LIFE CYCLE ASSESSMENT TOOLS FOR INTEGRATED PRODUCT POLICY

    EPA Science Inventory

    There is a growing awareness that a single issue approach to an environmental problem may not lead to an effective long-term strategy. Instead, governments and industries around the world are seeing the value and need to look at the entire life cycle of products and processes fro...

  3. Environmental & economic life cycle assessment of current & future sewage sludge to energy technologies.

    PubMed

    Mills, N; Pearce, P; Farrow, J; Thorpe, R B; Kirkby, N F

    2014-01-01

    The UK Water Industry currently generates approximately 800GWh pa of electrical energy from sewage sludge. Traditionally energy recovery from sewage sludge features Anaerobic Digestion (AD) with biogas utilisation in combined heat and power (CHP) systems. However, the industry is evolving and a number of developments that extract more energy from sludge are either being implemented or are nearing full scale demonstration. This study compared five technology configurations: 1 - conventional AD with CHP, 2 - Thermal Hydrolysis Process (THP) AD with CHP, 3 - THP AD with bio-methane grid injection, 4 - THP AD with CHP followed by drying of digested sludge for solid fuel production, 5 - THP AD followed by drying, pyrolysis of the digested sludge and use of the both the biogas and the pyrolysis gas in a CHP. The economic and environmental Life Cycle Assessment (LCA) found that both the post AD drying options performed well but the option used to create a solid fuel to displace coal (configuration 4) was the most sustainable solution economically and environmentally, closely followed by the pyrolysis configuration (5). Application of THP improves the financial and environmental performance compared with conventional AD. Producing bio-methane for grid injection (configuration 3) is attractive financially but has the worst environmental impact of all the scenarios, suggesting that the current UK financial incentive policy for bio-methane is not driving best environmental practice. It is clear that new and improving processes and technologies are enabling significant opportunities for further energy recovery from sludge; LCA provides tools for determining the best overall options for particular situations and allows innovation resources and investment to be focused accordingly.

  4. Environmental balance of the UK biogas sector: An evaluation by consequential life cycle assessment.

    PubMed

    Styles, David; Dominguez, Eduardo Mesa; Chadwick, Dave

    2016-08-01

    Anaerobic digestion (AD) is expanding rapidly in the UK. Previous life cycle assessment (LCA) studies have highlighted the sensitivity of environmental outcomes to feedstock type, fugitive emissions, biomethane use, energy conversion efficiency and digestate management. We combined statistics on current and planned AD deployment with operational data from a survey of biogas plant operators to evaluate the environmental balance of the UK biogas sector for the years 2014 and 2017. Consequential LCA was applied to account for all major environmental credits and burdens incurred, including: (i) substitution of composting, incineration, sewer disposal, field decomposition and animal feeding of wastes; (ii) indirect land use change (ILUC) incurred by the cultivation of crops used for biogas production and to compensate for bakery and brewery wastes diverted from animal feed. In 2014, the UK biogas sector reduced greenhouse gas (GHG) emissions by 551-755Gg CO2e excluding ILUC, or 238-755Gg CO2e including ILUC uncertainty. Fossil energy depletion was reduced by 8.9-10.8PJe, but eutrophication and acidification burdens were increased by 1.8-3.4Gg PO4e and 8.1-14.6Gg SO2e, respectively. Food waste and manure feedstocks dominate GHG abatement, largely through substitution of in-vessel composting and manure storage, whilst food waste and crop feedstocks dominate fossil energy credit, primarily through substitution of natural gas power generation. Biogas expansion is projected to increase environmental credits and loadings by a factor of 2.4 by 2017. If all AD bioelectricity replaced coal generation, or if 90% of biomethane replaced transport diesel or grid natural gas, GHG abatement would increase by 131%, 38% and 20%, respectively. Policies to encourage digestion of food waste and manures could maximize GHG abatement, avoiding the risk of carbon leakage associated with use of crops and wastes otherwise used to feed livestock. Covering digestate stores could largely mitigate

  5. Life cycle assessment of central softening of very hard drinking water.

    PubMed

    Godskesen, B; Hauschild, M; Rygaard, M; Zambrano, K; Albrechtsen, H-J

    2012-08-30

    Many consumers prefer softened water due to convenience issues such as avoidance of removing limescale deposits from household appliances and surfaces, and to reduce consumption of cleaning agents and laundry detergents leading to lower household expenses. Even though central softening of drinking water entailed an increased use of energy, sand and chemicals at the waterworks, the distributed and softened drinking water supported a decrease in consumption of energy and chemical agents in the households along with a prolonged service life of household appliances which heat water. This study used Life Cycle Assessment (LCA) to quantify the environmental impacts of central softening of drinking water considering both the negative effects at the waterworks and the positive effects imposed by the changed water quality in the households. The LCA modeling considered central softening of drinking water from the initial hardness of the region of study (Copenhagen, Denmark) which is 362 mg/L as CaCO(3) to a final hardness as CaCO(3) of 254 (a softening depth of 108) mg/L or 145 (a softening depth of 217) mg/L. Our study showed that the consumer preference can be met together with reducing the impact on the environment and the resource consumption. Environmental impacts decreased by up to 3 mPET (milli Personal Equivalent Targeted) and the break-even point from where central softening becomes environmentally beneficial was reached at a softening depth of only 22 mg/L as CaCO(3). Both energy-related and chemically related environmental impacts were reduced as well as the consumption of resources. Based on scarcity criteria, nickel was identified as the most problematic non-renewable resource in the system, and savings of up to 8 mPR (milli Person Reserve) were found.

  6. Improvement actions in waste management systems at the provincial scale based on a life cycle assessment evaluation.

    PubMed

    Rigamonti, L; Falbo, A; Grosso, M

    2013-11-01

    This paper reports some of the findings of the 'GERLA' project: GEstione Rifiuti in Lombardia - Analisi del ciclo di vita (Waste management in Lombardia - Life cycle assessment). The project was devoted to support Lombardia Region in the drafting of the new waste management plan by applying a life cycle thinking perspective. The present paper mainly focuses on four Provinces in the Region, which were selected based on their peculiarities. Life cycle assessment (LCA) was adopted as the methodology to assess the current performance of the integrated waste management systems, to discuss strengths and weaknesses of each of them and to design their perspective evolution as of year 2020. Results show that despite a usual business approach that is beneficial to all the provinces, the introduction of technological and management improvements to the system provides in general additional energy and environmental benefits for all four provinces. The same improvements can be easily extended to the whole Region, leading to increased environmental benefits from the waste management sector, in line with the targets set by the European Union for 2020.

  7. Environmental life cycle assessment of different domestic wastewater streams: policy effectiveness in a tropical urban environment.

    PubMed

    Ng, Bernard J H; Zhou, Jin; Giannis, Apostolos; Chang, Victor W-C; Wang, Jing-Yuan

    2014-07-01

    To enhance local water security, the Singapore government promotes two water conservation policies: the use of eco-friendly toilets to reduce yellow water (YW) disposal and the installation of water efficient devices to minimize gray water (GW) discharge. The proposed water conservation policies have different impacts on the environmental performance of local wastewater management. The main purpose of this study is to examine and compare the impacts of different domestic wastewater streams and the effectiveness of two water conservation policies by means of life cycle assessment (LCA). LCA is used to compare three scenarios, including a baseline scenario (BL), YW-reduced scenario (YWR) and GW-reduced scenario (GWR). The BL is designed based on the current wastewater management system, whereas the latter two scenarios are constructed according to the two water conservation policies that are proposed by the Singapore government. The software SIMPARO 7.3 with local data and an eco-invent database is used to build up the model, and the functional unit is defined as the daily wastewater disposal of a Singapore resident. Due to local water supply characteristics, the system boundary is extended to include the sewage sludge management and tap water production processes. The characterization results indicate that the GWR has a significant impact reduction (22-25%) while the YWR has only a 2-4% impact reduction compared with the BL. The contribution analysis reveals that the GW dominates many impact categories except eutrophication potential. The tap water production is identified as the most influential process due to its high embodied energy demand in a local context. Life cycle costing analysis shows that both YWR and GWR are financially favorable. It is also revealed that the current water conservation policies could only achieve Singapore's short-term targets. Therefore, two additional strategies are recommended for achieving long-term goals. This study provides a

  8. Global and local health burden trade-off through the hybridisation of quantitative microbial risk assessment and life cycle assessment to aid water management.

    PubMed

    Kobayashi, Yumi; Peters, Greg M; Ashbolt, Nicholas J; Heimersson, Sara; Svanström, Magdalena; Khan, Stuart J

    2015-08-01

    Life cycle assessment (LCA) and quantitative risk assessment (QRA) are commonly used to evaluate potential human health impacts associated with proposed or existing infrastructure and products. Each approach has a distinct objective and, consequently, their conclusions may be inconsistent or contradictory. It is proposed that the integration of elements of QRA and LCA may provide a more holistic approach to health impact assessment. Here we examine the possibility of merging LCA assessed human health impacts with quantitative microbial risk assessment (QMRA) for waterborne pathogen impacts, expressed with the common health metric, disability adjusted life years (DALYs). The example of a recent large-scale water recycling project in Sydney, Australia was used to identify and demonstrate the potential advantages and current limitations of this approach. A comparative analysis of two scenarios - with and without the development of this project - was undertaken for this purpose. LCA and QMRA were carried out independently for the two scenarios to compare human health impacts, as measured by DALYs lost per year. LCA results suggested that construction of the project would lead to an increased number of DALYs lost per year, while estimated disease burden resulting from microbial exposures indicated that it would result in the loss of fewer DALYs per year than the alternative scenario. By merging the results of the LCA and QMRA, we demonstrate the advantages in providing a more comprehensive assessment of human disease burden for the two scenarios, in particular, the importance of considering the results of both LCA and QRA in a comparative assessment of decision alternatives to avoid problem shifting. The application of DALYs as a common measure between the two approaches was found to be useful for this purpose.

  9. Life cycle assessment of wood wastes: A case study of ephemeral architecture.

    PubMed

    Rivela, Beatriz; Moreira, María Teresa; Muñoz, Iván; Rieradevall, Joan; Feijoo, Gumersindo

    2006-03-15

    One of the most commonly used elements in ephemeral architecture is a particleboard panel. These types of wood products are produced from wood wastes and they are used in temporary constructions such as trade fairs. Once the event is over, they are usually disposed into landfills. This paper intends to assess the environmental effects related to the use of these wood wastes in the end-of-life stage. The Life Cycle Assessment (LCA) of two scenarios was performed, considering the recycling of wood waste for particleboard manufacture and energy generation from non-renewable resources (Scenario 1) versus the production of energy from the combustion of wood waste and particleboard manufacture with conventional wooden resources (Scenario 2). A sensitive analysis was carried out taking into account the influence of the percentage of recycled material and the emissions data from wood combustion. According to Ecoindicator 99 methodology, Damage to Human Health and Ecosystem Quality are more significant in Scenario 2 whereas Scenario 1 presents the largest contribution to Damage to Resources. Between the two proposed alternatives, the recycling of wood waste for particleboard manufacture seems to be more favorable under an environmental perspective.

  10. High temperature abatement of acid gases from waste incineration. Part II: Comparative life cycle assessment study

    SciTech Connect

    Biganzoli, Laura; Racanella, Gaia; Marras, Roberto; Rigamonti, Lucia

    2015-01-15

    Highlights: • Two scenarios of acid gases removal in WTE plants were compared in an LCA study. • A detailed inventory based on primary data has been reported for the production of the new dolomitic sorbent. • Results show that the comparison between the two scenarios does not show systematic differences. • The potential impacts are reduced only if there is an increase in the energy efficiency of the WTE plant. - Abstract: The performances of a new dolomitic sorbent, named Depurcal®MG, to be directly injected at high temperature in the combustion chamber of Waste-To-Energy (WTE) plants as a preliminary stage of deacidification, were experimentally tested during full-scale commercial operation. Results of the experimentations were promising, and have been extensively described in Biganzoli et al. (2014). This paper reports the Life Cycle Assessment (LCA) study performed to compare the traditional operation of the plants, based on the sole sodium bicarbonate feeding at low temperature, with the new one, where the dolomitic sorbent is injected at high temperature. In the latter the sodium bicarbonate is still used, but at lower rate because of the decreased load of acid gases entering the flue gas treatment line. The major goal of the LCA was to make sure that a burden shifting was not taking place somewhere in the life cycle stages, as it might be the case when a new material is used in substitution of another one. According to the comparative approach, only the processes which differ between the two operational modes were included in the system boundaries. They are the production of the two reactants and the treatment of the corresponding solid residues arising from the neutralisation of acid gases. The additional CO{sub 2} emission at the stack of the WTE plant due to the activation of the sodium bicarbonate was also included in the calculation. Data used in the modelling of the foreground system are primary, derived from the experimental tests described in

  11. Life cycle assessment of base-load heat sources for district heating system options

    SciTech Connect

    Ghafghazi, Saeed; Sowlati, T.; Sokhansanj, Shahabaddine; Melin, Staffan

    2011-03-01

    Purpose There has been an increased interest in utilizing renewable energy sources in district heating systems. District heating systems are centralized systems that provide heat for residential and commercial buildings in a community. While various renewable and conventional energy sources can be used in such systems, many stakeholders are interested in choosing the feasible option with the least environmental impacts. This paper evaluates and compares environmental burdens of alternative energy source options for the base load of a district heating center in Vancouver, British Columbia (BC) using the life cycle assessment method. The considered energy sources include natural gas, wood pellet, sewer heat, and ground heat. Methods The life cycle stages considered in the LCA model cover all stages from fuel production, fuel transmission/transportation, construction, operation, and finally demolition of the district heating system. The impact categories were analyzed based on the IMPACT 2002+ method. Results and discussion On a life-cycle basis, the global warming effect of renewable energy options were at least 200 kgeqCO2 less than that of the natural gas option per MWh of heat produced by the base load system. It was concluded that less than 25% of the upstream global warming impact associated with the wood pellet energy source option was due to transportation activities and about 50% of that was resulted from wood pellet production processes. In comparison with other energy options, the wood pellets option has higher impacts on respiratory of inorganics, terrestrial ecotoxicity, acidification, and nutrification categories. Among renewable options, the global warming impact of heat pump options in the studied case in Vancouver, BC, were lower than the wood pellet option due to BC's low carbon electricity generation profile. Ozone layer depletion and mineral extraction were the highest for the heat pump options due to extensive construction required for these

  12. Life Cycle Comparison of Waste-to-Energy to Sanitary Landfill

    EPA Science Inventory

    Life cycle assessment (LCA) can be used to evaluate the environmental footprint of products, processes, and services. An LCA allows decision makers to compare products and processes through systematic evaluation of supply chains. Also known as a “cradle-to-grave” approach, LCA ev...

  13. The Opportunities and Pitfalls of Applying Life Cycle Thinking to Nanoproducts and Nanomaterials

    EPA Science Inventory

    Life Cycle Assessment (LCA) is a well-established methodology for evaluating the environmental impact of products, materials, and processes. LCA experts worldwide agree that existing LCA tools are capable of supporting the development of decisions on the use of nanomaterials and ...

  14. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer

    Schroeder, Jenna N.

    2014-06-10

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  15. Benefits and risks of emerging technologies: integrating life cycle assessment and decision analysis to assess lumber treatment alternatives.

    PubMed

    Tsang, Michael P; Bates, Matthew E; Madison, Marcus; Linkov, Igor

    2014-10-07

    Assessing the best options among emerging technologies (e.g., new chemicals, nanotechnologies) is complicated because of trade-offs across benefits and risks that are difficult to quantify given limited and fragmented availability of information. This study demonstrates the integration of multicriteria decision analysis (MCDA) and life cycle assessment (LCA) to address technology alternative selection decisions. As a case study, prioritization of six lumber treatment alternatives [micronized copper quaternary (MCQ); alkaline copper quaternary (ACQ); water-borne copper naphthenate (CN); oil-borne copper naphthenate (CNo); water-borne copper quinolate (CQ); and water-borne zinc naphthenate (ZN)] for military use are considered. Multiattribute value theory (MAVT) is used to derive risk and benefit scores. Risk scores are calculated using a cradle-to-gate LCA. Benefit scores are calculated by scoring of cost, durability, and corrosiveness criteria. Three weighting schemes are used, representing Environmental, Military and Balanced stakeholder perspectives. Aggregated scores from all three perspectives show CQ to be the least favorable alterative. MCQ is identified as the most favorable alternative from the Environmental stakeholder perspective. From the Military stakeholder perspective, ZN is determined to be the most favorable alternative, followed closely by MCQ. This type of scoring and ranking of multiple heterogeneous criteria in a systematic and transparent way facilitates better justification of technology selection and regulation.

  16. Life Cycle Assessment of Metals: A Scientific Synthesis

    PubMed Central

    Nuss, Philip; Eckelman, Matthew J.

    2014-01-01

    We have assembled extensive information on the cradle-to-gate environmental burdens of 63 metals in their major use forms, and illustrated the interconnectedness of metal production systems. Related cumulative energy use, global warming potential, human health implications and ecosystem damage are estimated by metal life cycle stage (i.e., mining, purification, and refining). For some elements, these are the first life cycle estimates of environmental impacts reported in the literature. We show that, if compared on a per kilogram basis, the platinum group metals and gold display the highest environmental burdens, while many of the major industrial metals (e.g., iron, manganese, titanium) are found at the lower end of the environmental impacts scale. If compared on the basis of their global annual production in 2008, iron and aluminum display the largest impacts, and thallium and tellurium the lowest. With the exception of a few metals, environmental impacts of the majority of elements are dominated by the purification and refining stages in which metals are transformed from a concentrate into their metallic form. Out of the 63 metals investigated, 42 metals are obtained as co-products in multi output processes. We test the sensitivity of varying allocation rationales, in which the environmental burden are allocated to the various metal and mineral products, on the overall results. Monte-Carlo simulation is applied to further investigate the stability of our results. This analysis is the most comprehensive life cycle comparison of metals to date and allows for the first time a complete bottom-up estimate of life cycle impacts of the metals and mining sector globally. We estimate global direct and indirect greenhouse gas emissions in 2008 at 3.4 Gt CO2-eq per year and primary energy use at 49 EJ per year (9.5% of global use), and report the shares for all metals to both impact categories. PMID:24999810

  17. Life cycle assessment of metals: a scientific synthesis.

    PubMed

    Nuss, Philip; Eckelman, Matthew J

    2014-01-01

    We have assembled extensive information on the cradle-to-gate environmental burdens of 63 metals in their major use forms, and illustrated the interconnectedness of metal production systems. Related cumulative energy use, global warming potential, human health implications and ecosystem damage are estimated by metal life cycle stage (i.e., mining, purification, and refining). For some elements, these are the first life cycle estimates of environmental impacts reported in the literature. We show that, if compared on a per kilogram basis, the platinum group metals and gold display the highest environmental burdens, while many of the major industrial metals (e.g., iron, manganese, titanium) are found at the lower end of the environmental impacts scale. If compared on the basis of their global annual production in 2008, iron and aluminum display the largest impacts, and thallium and tellurium the lowest. With the exception of a few metals, environmental impacts of the majority of elements are dominated by the purification and refining stages in which metals are transformed from a concentrate into their metallic form. Out of the 63 metals investigated, 42 metals are obtained as co-products in multi output processes. We test the sensitivity of varying allocation rationales, in which the environmental burden are allocated to the various metal and mineral products, on the overall results. Monte-Carlo simulation is applied to further investigate the stability of our results. This analysis is the most comprehensive life cycle comparison of metals to date and allows for the first time a complete bottom-up estimate of life cycle impacts of the metals and mining sector globally. We estimate global direct and indirect greenhouse gas emissions in 2008 at 3.4 Gt CO2-eq per year and primary energy use at 49 EJ per year (9.5% of global use), and report the shares for all metals to both impact categories.

  18. Food losses, shelf life extension and environmental impact of a packaged cheesecake: A life cycle assessment.

    PubMed

    Gutierrez, Michele Mario; Meleddu, Marta; Piga, Antonio

    2017-01-01

    Packaging is associated with a high environmental impact. This is also the case in the food industry despite packaging being necessary for maintaining food quality, safety assurance and preventing food waste. The aim of the present study was to identify improvements in food packaging solutions able to minimize environmental externalities while maximizing the economic sustainability. To this end, the life cycle assessment (LCA) methodology was applied to evaluate the environmental performance of new packaging solutions. The environmental impact of packaging and food losses and the balance between the two were examined in relation to a cheesecake that is normally packaged in low density polyethylene film and has a limited shelf life due to microbial growth. A shelf life extension was sought via application of the well-established modified atmosphere packaging (MAP) technique. Samples for MAP (N2/CO2: 70/30) were placed inside multilayer gas barrier trays, which were then wrapped with a multilayer gas and water barrier film (i.e. AerPack packaging); control batches were packaged in gas barrier recycled polyethylene terephthalate (XrPet) trays and wrapped with a XrPet film. Samples were then stored at 20°C and inspected at regular intervals for chemical-physical, microbiological and sensory parameters. Results show that the new packaging solution could considerably extend the shelf life of cheesecakes, thereby reducing food waste and decreasing the overall environmental impact. Moreover, the new packaging allows one to minimize transport costs and to generate economies of scale in manufacturing.

  19. Life-cycle assessment of microalgae culture coupled to biogas production.

    PubMed

    Collet, Pierre; Hélias, Arnaud; Lardon, Laurent; Ras, Monique; Goy, Romy-Alice; Steyer, Jean-Philippe

    2011-01-01

    Due to resource depletion and climate change, lipid-based algal biofuel has been pointed out as an interesting alternative because of the high productivity of algae per hectare and per year and its ability to recycle CO(2) from flue gas. Another option for taking advantage of the energy content of the microalgae is to directly carry out anaerobic digestion of raw algae in order to produce methane and recycle nutrients (N, P and K). In this study, a life-cycle assessment (LCA) of biogas production from the microalgae Chlorella vulgaris is performed and the results are compared to algal biodiesel and to first generation biodiesels. These results suggest that the impacts generated by the production of methane from microalgae are strongly correlated with the electric consumption. Progresses can be achieved by decreasing the mixing costs and circulation between different production steps, or by improving the efficiency of the anaerobic process under controlled conditions. This new bioenergy generating process strongly competes with others biofuel productions.

  20. Model for cradle-to-gate life cycle assessment of clinker production

    SciTech Connect

    Michael Elias Boesch; Annette Koehler; Stefanie Hellweg

    2009-10-01

    A model for input- and technology-dependent cradle-to-gate life cycle assessments (LCA) was constructed to quantify emissions and resource consumption of various clinker production options. The model was compiled using data of more than 100 clinker production lines and complemented with literature data and best judgment from experts. It can be applied by the cement industry for the selection of alternative fuels and raw materials (AFR) and by authorities for decision-support regarding the permission of waste co-processing in cement kilns. In the field of sustainable construction, the model can be used to compare clinker production options. Two case studies are presented. First, co-processing of four different types of waste is analyzed at a modern precalciner kiln system. Second, clinker production is compared between five kiln systems. Results show that the use of waste (tires, prepared industrial waste, dried sewage sludge, blast furnace slag) led to reduced greenhouse gas emissions, decreased resource consumption, and mostly to reduced aggregated environmental impacts. Regarding the different kiln systems, the environmental impact generally increased with decreasing energy efficiency. 35 refs., 2 figs., 2 tabs.

  1. Cost versus life cycle assessment-based environmental impact optimization of drinking water production plants.

    PubMed

    Capitanescu, F; Rege, S; Marvuglia, A; Benetto, E; Ahmadi, A; Gutiérrez, T Navarrete; Tiruta-Barna, L

    2016-07-15

    Empowering decision makers with cost-effective solutions for reducing industrial processes environmental burden, at both design and operation stages, is nowadays a major worldwide concern. The paper addresses this issue for the sector of drinking water production plants (DWPPs), seeking for optimal solutions trading-off operation cost and life cycle assessment (LCA)-based environmental impact while satisfying outlet water quality criteria. This leads to a challenging bi-objective constrained optimization problem, which relies on a computationally expensive intricate process-modelling simulator of the DWPP and has to be solved with limited computational budget. Since mathematical programming methods are unusable in this case, the paper examines the performances in tackling these challenges of six off-the-shelf state-of-the-art global meta-heuristic optimization algorithms, suitable for such simulation-based optimization, namely Strength Pareto Evolutionary Algorithm (SPEA2), Non-dominated Sorting Genetic Algorithm (NSGA-II), Indicator-based Evolutionary Algorithm (IBEA), Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), Differential Evolution (DE), and Particle Swarm Optimization (PSO). The results of optimization reveal that good reduction in both operating cost and environmental impact of the DWPP can be obtained. Furthermore, NSGA-II outperforms the other competing algorithms while MOEA/D and DE perform unexpectedly poorly.

  2. Life-cycle assessment of the municipal solid waste management system in Hangzhou, China (EASEWASTE).

    PubMed

    Zhao, Yan; Wang, Hong-Tao; Lu, Wen-Jing; Damgaard, Anders; Christensen, Thomas H

    2009-06-01

    With the purpose of assessing the environmental impacts and benefits of the current municipal solid waste management system and two modified systems, EASEWASTE, a life-cycle-based model, was used to evaluate the waste system of Hangzhou city in China. An integrated model was established, including waste generation, collection, transportation, treatment, disposal and accompanying external processes. The results showed that CH(4) released from landfilling was the primary pollutant contributing to global warming, and HCl and NH(3) from incineration contributed most to acidification. Material recycling and incineration with energy recovery were important because of the induced savings in material production based on virgin materials and in energy production based on coal combustion. A modified system in which waste is transported to the nearest incinerators would be relatively better than the current system, mainly due to the decrease of pollution from landfilled waste and the increase in energy production from waste avoiding energy production by traditional power plants. A ban on free plastic bags for shopping was shown to reduce most environmental impacts due to saved oil resources and other materials used in producing the plastic bags. Sensitivity analysis confirmed the robustness of the results. LCA methodology and a model like EASEWASTE are very suitable for evaluating the overall environmental consequences, and can be used for decision support and strategic planning in developing countries such as China where pollution control has become increasingly important with the rapid increase of waste generation as well as the increasing public awareness of environmental protection.

  3. Advances in life cycle assessment and emergy evaluation with case studies in gold mining and pineapple production

    NASA Astrophysics Data System (ADS)

    Ingwersen, Wesley W.

    Life cycle assessment (LCA) is an internationally standardized framework for assessing the environmental impacts of products that is rapidly evolving to improve understanding and quantification of how complex product systems depend upon and affect the environment. This dissertation contributes to that evolution through the development of new methods for measuring impacts, estimating the uncertainty of impacts, and measuring ranges of environmental performance, with a focus on product systems in non-OECD countries that have not been well characterized. The integration of a measure of total energy use, emergy, is demonstrated in an LCA of gold from the Yanacocha mine in Peru in the second chapter. A model for estimating the accuracy of emergy results is proposed in the following chapter. The fourth chapter presents a template for LCA-based quantification of the range of environmental performance for tropical agricultural products using the example of fresh pineapple production for export in Costa Rica that can be used to create product labels with environmental information. The final chapter synthesizes how each methodological contribution will together improve the science of measuring product environmental performance.

  4. Quantification of urban metabolism through coupling with the life cycle assessment framework: concept development and case study

    NASA Astrophysics Data System (ADS)

    Goldstein, Benjamin; Birkved, Morten; Quitzau, Maj-Britt; Hauschild, Michael

    2013-09-01

    Cities now consume resources and produce waste in amounts that are incommensurate with the populations they contain. Quantifying and benchmarking the environmental impacts of cities is essential if urbanization of the world’s growing population is to occur sustainably. Urban metabolism (UM) is a promising assessment form in that it provides the annual sum material and energy inputs, and the resultant emissions of the emergent infrastructural needs of a city’s sociotechnical subsystems. By fusing UM and life cycle assessment (UM-LCA) this study advances the ability to quantify environmental impacts of cities by modeling pressures embedded in the flows upstream (entering) and downstream (leaving) of the actual urban systems studied, and by introducing an advanced suite of indicators. Applied to five global cities, the developed UM-LCA model provided enhanced quantification of mass and energy flows through cities over earlier UM methods. The hybrid model approach also enabled the dominant sources of a city’s different environmental footprints to be identified, making UM-LCA a novel and potentially powerful tool for policy makers in developing and monitoring urban development policies. Combining outputs with socioeconomic data hinted at how these forces influenced the footprints of the case cities, with wealthier ones more associated with personal consumption related impacts and poorer ones more affected by local burdens from archaic infrastructure.

  5. Life cycle assessment of integrated waste management systems for alternative legacy scenarios of the London Olympic Park.

    PubMed

    Parkes, Olga; Lettieri, Paola; Bogle, I David L

    2015-06-01

    This paper presents the results of the life cycle assessment (LCA) of 10 integrated waste management systems (IWMSs) for 3 potential post-event site design scenarios of the London Olympic Park. The aim of the LCA study is to evaluate direct and indirect emissions resulting from various treatment options of municipal solid waste (MSW) annually generated on site together with avoided emissions resulting from energy, materials and nutrients recovery. IWMSs are modelled using GaBi v6.0 Product Sustainability software and results are presented based on the CML (v.Nov-10) characterisation method. The results show that IWMSs with advanced thermal treatment (ATT) and incineration with energy recovery have the lowest Global Warming Potential (GWP) than IWMSs where landfill is the primary waste treatment process. This is due to higher direct emissions and lower avoided emissions from the landfill process compared to the emissions from the thermal treatment processes. LCA results demonstrate that significant environmental savings are achieved through substitution of virgin materials with recycled ones. The results of the sensitivity analysis carried out for IWMS 1 shows that increasing recycling rate by 5%, 10% and 15% compared to the baseline scenario can reduce GWP by 8%, 17% and 25% respectively. Sensitivity analysis also shows how changes in waste composition affect the overall result of the system. The outcomes of such assessments provide decision-makers with fundamental information regarding the environmental impacts of different waste treatment options necessary for sustainable waste management planning.

  6. Environmental assessment of digestate treatment technologies using LCA methodology.

    PubMed

    Vázquez-Rowe, Ian; Golkowska, Katarzyna; Lebuf, Viooltje; Vaneeckhaute, Céline; Michels, Evi; Meers, Erik; Benetto, Enrico; Koster, Daniel

    2015-09-01

    The production of biogas from energy crops, organic waste and manure has augmented considerably the amounts of digestate available in Flanders. This has pushed authorities to steadily introduce legislative changes to promote its use as a fertilising agent. There is limited arable land in Flanders, which entails that digestate has to compete with animal manure to be spread. This forces many anaerobic digestion plants to further treat digestate in such a way that it can either be exported or the nitrogen be removed. Nevertheless, the environmental impact of these treatment options is still widely unknown, as well as the influence of these impacts on the sustainability of Flemish anaerobic digestion plants in comparison to other regions where spreading of raw digestate is allowed. Despite important economic aspects that must be considered, the use of Life Cycle Assessment (LCA) is suggested in this study to identify the environmental impacts of spreading digestate directly as compared to four different treatment technologies. Results suggest relevant environmental gains when the digestate mix is treated using the examined conversion technologies prior to spreading, although important trade-offs between impact categories were observed and discussed. The promising results of digestate conversion technologies suggest that further LCA analyses should be performed to delve into, for instance, the appropriateness to shift to nutrient recovery technologies rather than digestate conversion treatments.

  7. Life cycle assessment of a power tower concentrating solar plant and the impacts of key design alternatives.

    PubMed

    Whitaker, Michael B; Heath, Garvin A; Burkhardt, John J; Turchi, Craig S

    2013-06-04

    A hybrid life cycle assessment (LCA) is used to evaluate four sustainability metrics over the life cycle of a power tower concentrating solar power (CSP) facility: greenhouse gas (GHG) emissions, water consumption, cumulative energy demand (CED), and energy payback time (EPBT). The reference design is for a dry-cooled, 106 MW(net) power tower facility located near Tucson, AZ that uses a mixture of mined nitrate salts as the heat transfer fluid and storage medium, a two-tank thermal energy storage system designed for six hours of full load-equivalent storage, and receives auxiliary power from the local electric grid. A thermocline-based storage system, synthetically derived salts, and natural gas auxiliary power are evaluated as design alternatives. Over its life cycle, the reference plant is estimated to have GHG emissions of 37 g CO2eq/kWh, consume 1.4 L/kWh of water and 0.49 MJ/kWh of energy, and have an EPBT of 15 months. Using synthetic salts is estimated to increase GHG emissions by 12%, CED by 7%, and water consumption by 4% compared to mined salts. Natural gas auxiliary power results in greater than 10% decreases in GHG emissions, water consumption, and CED. The thermocline design is most advantageous when coupled with the use of synthetic salts.

  8. Toward a life cycle-based, diet-level framework for food environmental impact and nutritional quality assessment: a critical review.

    PubMed

    Heller, Martin C; Keoleian, Gregory A; Willett, Walter C

    2013-11-19

    Supplying adequate human nutrition within ecosystem carrying capacities is a key element in the global environmental sustainability challenge. Life cycle assessment (LCA) has been used effectively to evaluate the environmental impacts of food production value chains and to identify opportunities for targeted improvement strategies. Dietary choices and resulting consumption patterns are the drivers of production, however, and a consumption-oriented life cycle perspective is useful in understanding the environmental implications of diet choices. This review identifies 32 studies that use an LCA framework to evaluate the environmental impact of diets or meals. It highlights the state of the art, emerging methodological trends and current challenges and limitations to such diet-level LCA studies. A wide range of bases for analysis and comparison (i.e., functional units) have been employed in LCAs of foods and diet; we conceptually map appropriate functional unit choices to research aims and scope and argue for a need to move in the direction of a more sophisticated and comprehensive nutritional basis in order to link nutritional health and environmental objectives. Nutritional quality indices are reviewed as potential approaches, but refinement through ongoing collaborative research between environmental and nutritional sciences is necessary. Additional research needs include development of regionally specific life cycle inventory databases for food and agriculture and expansion of the scope of assessments beyond the current focus on greenhouse gas emissions.

  9. A comparative life cycle assessment of material handling systems for sustainable mining.

    PubMed

    Erkayaoğlu, M; Demirel, N

    2016-06-01

    In this comprehensive LCA comparison study, main objectives are to investigate life cycle environmental impacts of off-highway mining trucks and belt conveyors in surface mining. The research methodology essentially entails determination of the functional unit as 20,000 tons/day coal production transported for 5 km distance. After the system boundary was selected as the entire life cycle of material handling systems including pre-manufacturing of steel parts and plastic components, manufacturing, transportation, and utilization data was compiled from equipment manufacturers and the Eco-invent database. Life cycle impact categories for both material-handling systems were identified and the developed model was implemented using SIMAPRO 7.3. Climate change and acidification were selected as major impact categories as they were considered to be major concerns in mining industry. Although manufacturing stage had a significant impact on all of the environmental parameters, utilization stage was the hotspot for the selected impact categories. The results of this study revealed that belt conveyors have a greater environmental burden in climate change impact category when compared to the trucks. On the other hand, trucks have a greater environmental burden in acidification impact category when compared to the belt conveyors. This study implied that technological improvement in fuel combustion and electricity generation is crucial for the improvement of environmental profiles of off-highway trucks and belt conveyors in the mining industry. The main novelty of this study is that it is the first initiative in applying LCA in the Turkish mining industry.

  10. Accounting for indirect land-use change in the life cycle assessment of biofuel supply chains.

    PubMed

    Sanchez, Susan Tarka; Woods, Jeremy; Akhurst, Mark; Brander, Matthew; O'Hare, Michael; Dawson, Terence P; Edwards, Robert; Liska, Adam J; Malpas, Rick

    2012-06-07

    The expansion of land used for crop production causes variable direct and indirect greenhouse gas emissions, and other economic, social and environmental effects. We analyse the use of life cycle analysis (LCA) for estimating the carbon intensity of biofuel production from indirect land-use change (ILUC). Two approaches are critiqued: direct, attributional life cycle analysis and consequential life cycle analysis (CLCA). A proposed hybrid 'combined model' of the two approaches for ILUC analysis relies on first defining the system boundary of the resulting full LCA. Choices are then made as to the modelling methodology (economic equilibrium or cause-effect), data inputs, land area analysis, carbon stock accounting and uncertainty analysis to be included. We conclude that CLCA is applicable for estimating the historic emissions from ILUC, although improvements to the hybrid approach proposed, coupled with regular updating, are required, and uncertainly values must be adequately represented; however, the scope and the depth of the expansion of the system boundaries required for CLCA remain controversial. In addition, robust prediction, monitoring and accounting frameworks for the dynamic and highly uncertain nature of future crop yields and the effectiveness of policies to reduce deforestation and encourage afforestation remain elusive. Finally, establishing compatible and comparable accounting frameworks for ILUC between the USA, the European Union, South East Asia, Africa, Brazil and other major biofuel trading blocs is urgently needed if substantial distortions between these markets, which would reduce its application in policy outcomes, are to be avoided.

  11. Life cycle impact assessment of ammonia production in Algeria: A comparison with previous studies

    SciTech Connect

    Makhlouf, Ali Serradj, Tayeb; Cheniti, Hamza

    2015-01-15

    In this paper, a Life Cycle Analysis (LCA) from “cradle to gate” of one anhydrous ton of ammonia with a purity of 99% was achieved. Particularly, the energy and environmental performance of the product (ammonia) were evaluated. The eco-profile of the product and the share of each stage of the Life Cycle on the whole environmental impacts have been evaluated. The flows of material and energy for each phase of the life cycle were counted and the associated environmental problems were identified. Evaluation of the impact was achieved using GEMIS 4.7 software. The primary data collection was executed at the production installations located in Algeria (Annaba locality). The analysis was conducted according to the LCA standards ISO 14040 series. The results show that Cumulative Energy Requirement (CER) is of 51.945 × 10{sup 3} MJ/t of ammonia, which is higher than the global average. Global Warming Potential (GWP) is of 1.44 t CO{sub 2} eq/t of ammonia; this value is lower than the world average. Tropospheric ozone precursor and Acidification are also studied in this article, their values are: 549.3 × 10{sup −6} t NMVOC eq and 259.3 × 10{sup −6} t SO{sub 2} eq respectively.

  12. Accounting for indirect land-use change in the life cycle assessment of biofuel supply chains

    PubMed Central

    Sanchez, Susan Tarka; Woods, Jeremy; Akhurst, Mark; Brander, Matthew; O'Hare, Michael; Dawson, Terence P.; Edwards, Robert; Liska, Adam J.; Malpas, Rick

    2012-01-01

    The expansion of land used for crop production causes variable direct and indirect greenhouse gas emissions, and other economic, social and environmental effects. We analyse the use of life cycle analysis (LCA) for estimating the carbon intensity of biofuel production from indirect land-use change (ILUC). Two approaches are critiqued: direct, attributional life cycle analysis and consequential life cycle analysis (CLCA). A proposed hybrid ‘combined model’ of the two approaches for ILUC analysis relies on first defining the system boundary of the resulting full LCA. Choices are then made as to the modelling methodology (economic equilibrium or cause–effect), data inputs, land area analysis, carbon stock accounting and uncertainty analysis to be included. We conclude that CLCA is applicable for estimating the historic emissions from ILUC, although improvements to the hybrid approach proposed, coupled with regular updating, are required, and uncertainly values must be adequately represented; however, the scope and the depth of the expansion of the system boundaries required for CLCA remain controversial. In addition, robust prediction, monitoring and accounting frameworks for the dynamic and highly uncertain nature of future crop yields and the effectiveness of policies to reduce deforestation and encourage afforestation remain elusive. Finally, establishing compatible and comparable accounting frameworks for ILUC between the USA, the European Union, South East Asia, Africa, Brazil and other major biofuel trading blocs is urgently needed if substantial distortions between these markets, which would reduce its application in policy outcomes, are to be avoided. PMID:22467143

  13. Comparing environmental impacts of tertiary wastewater treatment technologies for advanced phosphorus removal and disinfection with life cycle assessment.

    PubMed

    Remy, C; Miehe, U; Lesjean, B; Bartholomäus, C

    2014-01-01

    Different technologies for tertiary wastewater treatment are compared in their environmental impacts with life cycle assessment (LCA). Targeting very low phosphorus concentration (50-120 μg/L) and seasonal disinfection of wastewater treatment plant (WWTP) secondary effluent, this LCA compares high-rate sedimentation, microsieve, dual media filtration (all with UV disinfection), and polymer ultrafiltration or ceramic microfiltration membranes for upgrading the large WWTP Berlin-Ruhleben. Results of the LCA show that mean effluent quality of membranes is highest, but at the cost of high electricity and chemical demand and associated emissions of greenhouse gases or other air pollutants. In contrast, gravity-driven treatment processes require less electricity and chemicals, but can reach significant removal of phosphorus. In fact, dual media filter or microsieve cause substantially lower specific CO2 emissions per kg P removed from the secondary effluent (180 kg CO2-eq/kg P, including UV) than the membrane schemes (275 kg CO2-eq/kg P).

  14. Delving into the environmental aspect of a Sardinian white wine: from partial to total life cycle assessment.

    PubMed

    Fusi, Alessandra; Guidetti, Riccardo; Benedetto, Graziella

    2014-02-15

    The aim of this study was to deepen the assessment of the environmental impacts of a white wine produced in Sardinia (FU 750 ml), performing an attributional LCA. The system boundaries were extended, from 'cradle to gate' (partial LCA) of a previous study, to 'cradle to grave' (total LCA), in order to identify the environmental impacts occurring along the wine life cycle stages (vine planting, grape production, wine production, bottling and packaging, distribution, final disposal of the glass bottle). Some assumptions were made in order to quantify the environmental impact of the transportation phase, regarding the few data which were available. Inventory data were mainly collected through direct communication with the Company involved in the study. Results showed that the environmental performance of wine was mostly determined by the glass bottle production (for all impact categories except ozone layer depletion). The second contributor was the agricultural phase, which included two sub-phases: vine planting and grape production. Results showed that the vine planting sub-phase was not negligible given its contribution to the agricultural phase, mainly due to diesel fuel consumption. Transportation impact was found to be relevant for long distance distribution (USA); the impact categories more affected by transport were acidification, eutrophication, photochemical oxidation and global warming potential. Suggested opportunities to reduce the overall environmental impact were the introduction of a lighter glass bottle or the substitution of the glass bottle with a polylaminate container.

  15. Environmental assessment of low-organic waste landfill scenarios by means of life-cycle assessment modelling (EASEWASTE).

    PubMed

    Manfredi, Simone; Christensen, Thomas H; Scharff, Heijo; Jacobs, Joeri

    2010-02-01

    The environmental performance of two low-organic waste landfill scenarios ('low-organic-energy' and 'low-organic-flare') was developed and compared with two household waste landfill scenarios ('household-energy' and 'household-flare') by means of LCA-modelling. The LCA-modelling was made for 1 tonne of wet waste landfilled and the environmental aspects were evaluated for a 100-year period after disposal. The data utilized in the LCA-calculations to model the first 10-20 years of landfilling of the two low-organic waste scenarios make extensive use of site-specific data from the Nauerna Landfill (The Netherlands), but average data from other comparable, existing landfills were used too. As data from full-scale landfills do not cover more than 30-40 years of landfilling, data from laboratory simulations and accelerated tests of limited scale were also utilized. The life-cycle impact assessments show that the low-organic waste scenarios achieved better environmental performance than the household waste scenarios with regard to both ordinary and toxicity-related environmental impact categories. This indicates that the reduction of organic matter accepted at landfills (as prescribed by the European Union Landfill Directive: Council Directive 1999/31/EC, EU, Brussels, 1999) can be a successful approach to decrease the environmental loads in several impact categories in comparison with landfilling of waste with significant organic content. However, when utilization of landfill gas is accounted for in the life-cycle impact assessment calculation, the small gas generation in low-organic waste landfills reduced the actual potential for energy generation and therefore the environmental savings obtained were reduced proportionally. Groundwater pollution from input of leachate was also evaluated and the WHO (Guidelines for Drinking-water Quality; WHO, Geneva, 2006) guideline for drinking water quality was assumed as reference. The results show that low-organic waste landfills

  16. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products, Part 3: LED Environmental Testing

    SciTech Connect

    Tuenge, Jason R.; Hollomon, Brad; Dillon, Heather E.; Snowden-Swan, Lesley J.

    2013-03-01

    This report covers the third part of a larger U.S. Department of Energy (DOE) project to assess the life-cycle environmental and resource impacts in the manufacturing, transport, use, and disposal of light-emitting diode (LED) lighting products in relation to incumbent lighting technologies. All three reports are available on the DOE website (www.ssl.energy.gov/tech_reports.html). • Part 1: Review of the Life-Cycle Energy Consumption of Incandescent, Compact Fluorescent and LED Lamps; • Part 2: LED Manufacturing and Performance; • Part 3: LED Environmental Testing. Parts 1 and 2 were published in February and June 2012, respectively. The Part 1 report included a summary of the life-cycle assessment (LCA) process and methodology, provided a literature review of more than 25 existing LCA studies of various lamp types, and performed a meta-analysis comparing LED lamps with incandescent and compact fluorescent lamps (CFLs). Drawing from the Part 1 findings, Part 2 performed a more detailed assessment of the LED manufacturing process and used these findings to provide a comparative LCA taking into consideration a wider range of environmental impacts. Both reports concluded that the life-cycle environmental impact of a given lamp is dominated by the energy used during lamp operation—the upstream generation of electricity drives the total environmental footprint of the product. However, a more detailed understanding of end-of-life disposal considerations for LED products has become increasingly important as their installation base has grown. The Part 3 study (reported herein) was undertaken to augment the LCA findings with chemical analysis of a variety of LED, CFL, and incandescent lamps using standard testing procedures. A total of 22 samples, representing 11 different models, were tested to determine whether any of 17 elements were present at levels exceeding California or Federal regulatory thresholds for hazardous waste. Key findings include: • The selected

  17. Sensitivity analysis in a life cycle assessment of an aged red wine production from Catalonia, Spain.

    PubMed

    Meneses, M; Torres, C M; Castells, F

    2016-08-15

    Sustainability in agriculture and food processing is an issue with a clear growing interest; especially in products were consumers have particular awareness regarding its environmental profile. This is the case of wine industry depending on grape production, winemaking and bottling. Also viticulture and generally agricultural production is significantly affected by climate variations. The aim of this article is to determine the environmental load of an aged red wine from a winery in Catalonia, Spain, over its entire life cycle, including sensitivity analysis of the main parameters related to the cultivation, vinification and bottling. The life cycle assessment (LCA) methodology is used for the environmental analysis. In a first step, life cycle inventory (LCI) data were collected by questionnaires and interviews with the winemaker, all data are actual operating data and all the stages involved in the production have been taken into account (viticulture, vinification, bottling and the disposal subsystem). Data were then used to determine the environmental profile by a life cycle impact assessment using the ReCiPe method. Annual variability in environmental performance, stresses the importance of including timeline analysis in the wine sector. Because of that this study is accompanied with a sensitivity analysis carried out by a Monte Carlo simulation that takes into account the uncertainty and variability of the parameters used. In this manner, the results are presented with confidence intervals to provide a wider view of the environmental issues derived from the activities of the studied wine estate regardless of the eventualities of a specific harvesting year. Since the beverage packaging has an important influence in this case, a dataset for the production of green glass was adapted to reflect the actual recycling situation in Spain. Furthermore, a hypothetical variation of the glass-recycling rate in the glass production completes this article, as a key variable

  18. Life cycle assessment of capital goods in waste management systems.

    PubMed

    Brogaard, Line K; Christensen, Thomas H

    2016-10-01

    The environmental importance of capital goods (trucks, buildings, equipment, etc.) was quantified by LCA modelling 1 tonne of waste treated in five different waste management scenarios. The scenarios involved a 240L collection bin, a 16m(3) collection truck, a composting plant, an anaerobic digestion plant, an incinerator and a landfill site. The contribution of capital goods to the overall environmental aspects of managing the waste was significant but varied greatly depending on the technology and the impact category: Global Warming: 1-17%, Stratospheric Ozone Depletion: 2-90%, Ionising Radiation, Human Health: 2-91%, Photochemical Ozone Formation: 2-56%, Freshwater Eutrophication: 0.05-99%, Marine Eutrophication: 0.03-8%, Terrestrial Acidification: 2-13%, Terrestrial Eutrophication: 1-8%, Particulate Matter: 11-26%, Human Toxicity, Cancer Effect: 10-92%, Human Toxicity, non-Cancer Effect: 1-71%, Freshwater Ecotoxicity: 3-58%. Depletion of Abiotic Resources - Fossil: 1-31% and Depletion of Abiotic Resources - Elements (Reserve base): 74-99%. The single most important contribution by capital goods was made by the high use of steel. Environmental impacts from capital goods are more significant for treatment facilities than for the collection and transportation of waste and for the landfilling of waste. It is concluded that the environmental impacts of capital goods should always be included in the LCA modelling of waste management, unless the only impact category considered is Global Warming.

  19. Metrics for biogeophysical climate forcings from land use and land cover changes and their inclusion in life cycle assessment: a critical review.

    PubMed

    Bright, Ryan M

    2015-03-17

    The regulation by vegetation of heat, momentum, and moisture exchanges between the land surface and the atmosphere is a major component in Earth's climate system. By altering surface biogeophysics, anthropogenic land use activities often perturb these exchanges and thereby directly affect climate. Although long recognized scientifically as being important, biogeophysical climate forcings from land use and land cover changes (LULCC) are rarely included in life cycle assessment (LCA). Here, I review climate metrics for characterizing biogeophysical climate forcings from LULCC, focusing mostly on those that do not require coupled land-atmosphere climate models to compute. I discuss their merits, highlight their pros and cons in terms of their compatibility with the LCA framework, outline near-term practical guidelines and solutions for their integration, and point to areas of longer term research needs in both the climate science and LCA research communities.

  20. Wind LCA Harmonization (Fact Sheet), NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Not Available

    2013-06-01

    NREL recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that provides more exact estimates of GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty. This involved a systematic review and harmonization of life cycle assessment (LCA) literature of utility-scale wind power systems in order to determine the causes of life cycle greenhouse gases (GHG) emissions and, where possible, reduce variability in GHG estimates.

  1. Assessing food security in water scarce regions by Life Cycle Analysis: a case study in the Gaza strip

    NASA Astrophysics Data System (ADS)

    Recanati, Francesca; Castelletti, Andrea; Melià, Paco; Dotelli, Giovanni

    2013-04-01

    Food security is a major issue in Palestine for both political and physical reasons, with direct effects on the local population living conditions: the nutritional level of people in Gaza is classified by FAO as "insecure". As most of the protein supply comes from irrigated agricultural production and aquaculture, freshwater availability is a limiting factor to food security, and the primary reason for frequent conflicts among food production processes (e.g. aquaculture, land livestock or different types of crops). In this study we use Life Cycle Analysis to assess the environmental impacts associated to all the stages of water-based protein production (from agriculture and aquaculture) in the Gaza strip under different agricultural scenarios and hydroclimatic variability. As reported in several recent studies, LCA seems to be an appropriate methodology to analyze agricultural systems and assess associated food security in different socio-economic contexts. However, we argue that the inherently linear and static nature of LCA might prove inadequate to tackle with the complex interaction between water cycle variability and the food production system in water-scarce regions of underdeveloped countries. Lack of sufficient and reliable data to characterize the water cycle is a further source of uncertainty affecting the robustness of the analysis. We investigate pros and cons of LCA and LCA-based option planning in an average size farm in Gaza strip, where farming and aquaculture are family-based and integrated by reuse of fish breeding water for irrigation. Different technological solutions (drip irrigation system, greenhouses etc.) are evaluated to improve protein supply and reduce the pressure on freshwater, particularly during droughts. But this use of technology represent also a contribution in increasing sustainability in agricultural processes, and therefore in economy, of Gaza Strip (reduction in chemical fertilizers and pesticides etc.).

  2. Life cycle assessment of integrated waste management systems for alternative legacy scenarios of the London Olympic Park

    SciTech Connect

    Parkes, Olga Lettieri, Paola Bogle, I. David L.

    2015-06-15

    Highlights: • Application of LCA in planning integrated waste management systems. • Environmental valuation of 3 legacy scenarios for the Olympic Park. • Hot-spot analysis highlights the importance of energy and materials recovery. • Most environmental savings are achieved through materials recycling. • Sensitivity analysis shows importance of waste composition and recycling rates. - Abstract: This paper presents the results of the life cycle assessment (LCA) of 10 integrated waste management systems (IWMSs) for 3 potential post-event site design scenarios of the London Olympic Park. The aim of the LCA study is to evaluate direct and indirect emissions resulting from various treatment options of municipal solid waste (MSW) annually generated on site together with avoided emissions resulting from energy, materials and nutrients recovery. IWMSs are modelled using GaBi v6.0 Product Sustainability software and results are presented based on the CML (v.Nov-10) characterisation method. The results show that IWMSs with advanced thermal treatment (ATT) and incineration with energy recovery have the lowest Global Warming Potential (GWP) than IWMSs where landfill is the primary waste treatment process. This is due to higher direct emissions and lower avoided emissions from the landfill process compared to the emissions from the thermal treatment processes. LCA results demonstrate that significant environmental savings are achieved through substitution of virgin materials with recycled ones. The results of the sensitivity analysis carried out for IWMS 1 shows that increasing recycling rate by 5%, 10% and 15% compared to the baseline scenario can reduce GWP by 8%, 17% and 25% respectively. Sensitivity analysis also shows how changes in waste composition affect the overall result of the system. The outcomes of such assessments provide decision-makers with fundamental information regarding the environmental impacts of different waste treatment options necessary for

  3. Beyond the material grave: Life Cycle Impact Assessment of leaching from secondary materials in road and earth constructions.

    PubMed

    Schwab, Oliver; Bayer, Peter; Juraske, Ronnie; Verones, Francesca; Hellweg, Stefanie

    2014-10-01

    In industrialized countries, large amounts of mineral wastes are produced. They are re-used in various ways, particularly in road and earth constructions, substituting primary resources such as gravel. However, they may also contain pollutants, such as heavy metals, which may be leached to the groundwater. The toxic impacts of these emissions are so far often neglected within Life Cycle Assessments (LCA) of products or waste treatment services and thus, potentially large environmental impacts are currently missed. This study aims at closing this gap by assessing the ecotoxic impacts of heavy metal leaching from industrial mineral wastes in road and earth constructions. The flows of metals such as Sb, As, Pb, Cd, Cr, Cu, Mo, Ni, V and Zn originating from three typical constructions to the environment are quantified, their fate in the environment is assessed and potential ecotoxic effects evaluated. For our reference country, Germany, the industrial wastes that are applied as Granular Secondary Construction Material (GSCM) carry more than 45,000 t of diverse heavy metals per year. Depending on the material quality and construction type applied, up to 150 t of heavy metals may leach to the environment within the first 100 years after construction. Heavy metal retardation in subsoil can potentially reduce the fate to groundwater by up to 100%. One major challenge of integrating leaching from constructions into macro-scale LCA frameworks is the high variability in micro-scale technical and geographical factors, such as material qualities, construction types and soil types. In our work, we consider a broad range of parameter values in the modeling of leaching and fate. This allows distinguishing between the impacts of various road constructions, as well as sites with different soil properties. The findings of this study promote the quantitative consideration of environmental impacts of long-term leaching in Life Cycle Assessment, complementing site-specific risk

  4. Improvement of agricultural life cycle assessment studies through spatial differentiation and new impact categories: case study on greenhouse tomato production.

    PubMed

    Antón, Assumpció; Torrellas, Marta; Núñez, Montserrat; Sevigné, Eva; Amores, Maria José; Muñoz, Pere; Montero, Juan I

    2014-08-19

    This paper presents the inclusion of new, relevant impact categories for agriculture life cycle assessments. We performed a specific case study with a focus on the applicability of spatially explicit characterization factors. The main goals were to provide a detailed evaluation of these new impact category methods, compare the results with commonly used methods (ReCiPe and USEtox) and demonstrate how these new methods can help improve environmental assessment in agriculture. As an overall conclusion, the newly developed impact categories helped fill the most important gaps related to land use, water consumption, pesticide toxicity, and nontoxic emissions linked to fertilizer use. We also found that including biodiversity damage due to land use and the effect of water consumption on wetlands represented a scientific advance toward more realistic environmental assessment of agricultural practices. Likewise, the dynamic crop model for assessing human toxicity from pesticide residue in food can lead to better practice in pesticide application. In further life cycle assessment (LCA) method developments, common end point units and normalization units should be agreed upon to make it possible to compare different impacts and methods. In addition, the application of site-specific characterization factors allowed us to be more accurate regarding inventory data and to identify precisely where background flows acquire high relevance.

  5. Life cycle assessment of biomethane use in Argentina.

    PubMed

    Morero, Betzabet; Groppelli, Eduardo; Campanella, Enrique A

    2015-04-01

    Renewable substitutes for natural gas, such as biogas, require adequate treatment to remove impurities. This paper presents the life cycle and environmental impact of upgrading biogas using absorption-desorption process with three different solvents: water, diglycolamine and polyethylene glycol dimethyl ether. The results showed that water produces a minor impact in most of the considered categories, and an economic analysis showed that water is the most feasible solvent for obtaining the lowest payback period. This analysis includes three different sources for biogas production and two end uses for biomethane. The use of different wastes as sources results in different environmental impacts depending on the type of energy used in the anaerobic digestion. The same situation occurs when considering the use of biomethane as a domestic fuel or for power generation. Using energy from biogas to replace conventional energy sources in production and upgrading biogas significantly reduce the environmental impacts of processes.

  6. Life cycle cost assessment of future low heat rejection engines

    NASA Technical Reports Server (NTRS)

    Petersen, D. R.

    1986-01-01

    The Adiabatic Diesel Engine Component Development (ADECD) represents a project which has the objective to accelerate the development of highway truck engines with advanced technology aimed at reduced fuel consumption. The project comprises three steps, including the synthesis of a number of engine candidate designs, the coupling of each with a number of systems for utilizing exhaust gas energy, and the evaluation of each combination in terms of desirability. Particular attention is given to the employed evaluation method and the development of this method. The objective of Life Cycle Cost (LCC) evaluation in the ADECD program was to select the best from among 42 different low heat rejection engine (LHRE)/exhaust energy recovery system configurations. The LCC model is discussed along with a maintenance cost model, the evaluation strategy, the selection of parameter ranges, and a full factorial analysis.

  7. Life cycle assessment of Italian citrus-based products. Sensitivity analysis and improvement scenarios.

    PubMed

    Beccali, Marco; Cellura, Maurizio; Iudicello, Maria; Mistretta, Marina

    2010-07-01

    Though many studies concern the agro-food sector in the EU and Italy, and its environmental impacts, literature is quite lacking in works regarding LCA application on citrus products. This paper represents one of the first studies on the environmental impacts of citrus products in order to suggest feasible strategies and actions to improve their environmental performance. In particular, it is part of a research aimed to estimate environmental burdens associated with the production of the following citrus-based products: essential oil, natural juice and concentrated juice from oranges and lemons. The life cycle assessment of these products, published in a previous paper, had highlighted significant environmental issues in terms of energy consumption, associated CO(2) emissions, and water consumption. Starting from such results the authors carry out an improvement analysis of the assessed production system, whereby sustainable scenarios for saving water and energy are proposed to reduce environmental burdens of the examined production system. In addition, a sensitivity analysis to estimate the effects of the chosen methods will be performed, giving data on the outcome of the study. Uncertainty related to allocation methods, secondary data sources, and initial assumptions on cultivation, transport modes, and waste management is analysed. The results of the performed analyses allow stating that every assessed eco-profile is differently influenced by the uncertainty study. Different assumptions on initial data and methods showed very sensible variations in the energy and environmental performances of the final products. Besides, the results show energy and environmental benefits that clearly state the improvement of the products eco-profile, by reusing purified water use for irrigation, using the railway mode for the delivery of final products, when possible, and adopting efficient technologies, as the mechanical vapour recompression, in the pasteurisation and

  8. Life cycle assessment of facile microwave-assisted zinc oxide (ZnO) nanostructures.

    PubMed

    Papadaki, D; Foteinis, S; Mhlongo, G H; Nkosi, S S; Motaung, D E; Ray, S S; Tsoutsos, T; Kiriakidis, G

    2017-05-15

    The life cycle assessment of several zinc oxide (ZnO) nanostructures, fabricated by a facile microwave technique, is presented. Key synthesis parameters such as annealing temperature, varied from 90°C to 220°C, and microwave power, varied from 110W to 710W, are assessed. The effect of these parameters on both the structural characteristics and the environmental sustainability of the nanostructures is examined. The nanostructures were characterized by means of X-ray diffraction (XRD), focused ion beam scanning electron microscopy (FIB-SEM), ultraviolet-visible spectroscopy (UV-Vis), Photoluminescence (PL) and Brunauer-Emmett-Teller (BET) analysis. Crystalline size was found to be 22.40nm at 110W microwave power, 24.83nm at 310W, and 24.01nm at 710W. Microwave power and synthesis temperature were both directly proportional to the surface area. At 110W the surface area was 10.44m(2)/g, at 310W 12.88m(2)/g, and at 710W 14.60m(2)/g; while it was found to be 11.64m(2)/g at 150°C and 18.09m(2)/g at 220°C. Based on these, a life cycle analysis (LCA) of the produced ZnO nanoparticles was carried out, using the ZnO surface area (1m(2)/g) as the functional unit. It was found that the main environmental weaknesses identified during the production process were; (a) the use of ethanol for purifying the produced nanomaterials and (b) the electricity consumption for the ZnO calcination, provided by South Africa's fossil-fuel dependent electricity source. When the effect of the key synthesis parameters on environmental sustainability was examined it was found that an increase of either microwave power (from 110 to 710W) or synthesis temperatures (from 90 to 220°C), results in higher sustainability, with the environmental footprint reduced by 27% and 41%, respectively. Through a sensitivity analysis, it was observed that an electricity mix based on renewable energy could improve the environmental sustainability of the nanoparticles by 25%.

  9. Life cycle assessment of oriented strand boards (OSB): from process innovation to ecodesign.

    PubMed

    Benetto, Enrico; Becker, Marko; Welfring, Joëlle

    2009-08-01

    Oriented strand boards (OSBs) are wood panels that are used worldwide mainly in the packaging and the building sectors. Their market share is rapidly increasing thanks to their outstanding mechanical properties and to a renewed interest for wood based products. The OSB production process generates, nonetheless, emissions of volatile organic compounds (VOCs) during the air-drying of wood strands. This known problem in the literature leads to an odorous nuisance in the surrounding area of the production site. In order to address this problem, a novel application to wood drying of an innovative vapor drying technology is successfully operated at the production site of Kronospan Luxembourg S.A. In addition to the reduced odorous nuisance, a significant environmental added value is expected because of the other modifications induced by the vapor-drying technique on the OSB production process viz. the reduced energy and raw materials demands and the change of adhesive mixture, with the addition of phenol resin. The potential impact of this technology on the OSB market is therefore very significant. This study was aimed at assessing the environmental added value provided by the vapor-drying technique through a life cycle assessment (LCA) according to ISO 14040-44 standards. The objective was to compare the environmental performances of the former and the current OSB production processes. Considering only the pollutant emissions from the OSB production process, the reduction of climate change impact and human health damage is significant respectively, 15-20% and 50-75%. When the lifecycle processes related to the OSB production are included, the reduction of damages does not exceed 3-7%. Following an uncertainty analysis,this reduction was nevertheless proven to be statistically significant. However, it is observed that the reduction of environmental impacts and damages allowed by the vapor-drying technology is counterbalanced by the change of adhesive mixture. Indeed the

  10. Can Carbon Nanomaterials Improve CZTS Photovoltaic Devices? Evaluation of Performance and Impacts Using Integrated Life-Cycle Assessment and Decision Analysis.

    PubMed

    Scott, Ryan P; Cullen, Alison C; Fox-Lent, Cate; Linkov, Igor

    2016-10-01

    In emergent photovoltaics, nanoscale materials hold promise for optimizing device characteristics; however, the related impacts remain uncertain, resulting in challenges to decisions on strategic investment in technology innovation. We integrate multi-criteria decision analysis (MCDA) and life-cycle assessment (LCA) results (LCA-MCDA) as a method of incorporating values of a hypothetical federal acquisition manager into the assessment of risks and benefits of emerging photovoltaic materials. Specifically, we compare adoption of copper zinc tin sulfide (CZTS) devices with molybdenum back contacts to alternative devices employing graphite or graphene instead of molybdenum. LCA impact results are interpreted alongside benefits of substitution including cost reductions and performance improvements through application of multi-attribute utility theory. To assess the role of uncertainty we apply Monte Carlo simulation and sensitivity analysis. We find that graphene or graphite back contacts outperform molybdenum under most scenarios and assumptions. The use of decision analysis clarifies potential advantages of adopting graphite as a back contact while emphasizing the importance of mitigating conventional impacts of graphene production processes if graphene is used in emerging CZTS devices. Our research further demonstrates that a combination of LCA and MCDA increases the usability of LCA in assessing product sustainability. In particular, this approach identifies the most influential assumptions and data gaps in the analysis and the areas in which either engineering controls or further data collection may be necessary.

  11. Resource recovery from residual household waste: An application of exergy flow analysis and exergetic life cycle assessment.

    PubMed

    Laner, David; Rechberger, Helmut; De Soete, Wouter; De Meester, Steven; Astrup, Thomas F

    2015-12-01

    Exergy is based on the Second Law of thermodynamics and can be used to express physical and chemical potential and provides a unified measure for resource accounting. In this study, exergy analysis was applied to four residual household waste management scenarios with focus on the achieved resource recovery efficiencies. The calculated exergy efficiencies were used to compare the scenarios and to evaluate the applicability of exergy-based measures for expressing resource quality and for optimizing resource recovery. Exergy efficiencies were determined based on two approaches: (i) exergy flow analysis of the waste treatment system under investigation and (ii) exergetic life cycle assessment (LCA) using the Cumulative Exergy Extraction from the Natural Environment (CEENE) as a method for resource accounting. Scenario efficiencies of around 17-27% were found based on the exergy flow analysis (higher efficiencies were associated with high levels of material recycling), while the scenario efficiencies based on the exergetic LCA lay in a narrow range around 14%. Metal recovery was beneficial in both types of analyses, but had more influence on the overall efficiency in the exergetic LCA approach, as avoided burdens associated with primary metal production were much more important than the exergy content of the recovered metals. On the other hand, plastic recovery was highly beneficial in the exergy flow analysis, but rather insignificant in exergetic LCA. The two approaches thereby offered different quantitative results as well as conclusions regarding material recovery. With respect to resource quality, the main challenge for the exergy flow analysis is the use of exergy content and exergy losses as a proxy for resource quality and resource losses, as exergy content is not per se correlated with the functionality of a material. In addition, the definition of appropriate waste system boundaries is critical for the exergy efficiencies derived from the flow analysis, as it

  12. Consequential environmental life cycle assessment of a farm-scale biogas plant.

    PubMed

    Van Stappen, Florence; Mathot, Michaël; Decruyenaere, Virginie; Loriers, Astrid; Delcour, Alice; Planchon, Viviane; Goffart, Jean-Pierre; Stilmant, Didier

    2016-06-15

    Producing biogas via anaerobic digestion is a promising technology for meeting European and regional goals on energy production from renewable sources. It offers interesting opportunities for the agricultural sector, allowing waste and by-products to be converted into bioenergy and bio-based materials. A consequential life cycle assessment (cLCA) was conducted to examine the consequences of the installation of a farm-scale biogas plant, taking account of assumptions about processes displaced by biogas plant co-products (power, heat and digestate) and the uses of the biogas plant feedstock prior to plant installation. Inventory data were collected on an existing farm-scale biogas plant. The plant inputs are maize cultivated for energy, solid cattle manure and various by-products from surrounding agro-food industries. Based on hypotheses about displaced electricity production (oil or gas) and the initial uses of the plant feedstock (animal feed, compost or incineration), six scenarios were analyzed and compared. Digested feedstock previously used in animal feed was replaced with other feed ingredients in equivalent feed diets, designed to take account of various nutritional parameters for bovine feeding. The displaced production of mineral fertilizers and field emissions due to the use of digestate as organic fertilizer was balanced against the avoided use of manure and compost. For all of the envisaged scenarios, the installation of the biogas plant led to reduced impacts on water depletion and aquatic ecotoxicity (thanks mainly to the displaced mineral fertilizer production). However, with the additional animal feed ingredients required to replace digested feedstock in the bovine diets, extra agricultural land was needed in all scenarios. Field emissions from the digestate used as organic fertilizer also had a significant impact on acidification and eutrophication. The choice of displaced marginal technologies has a huge influence on the results, as have the

  13. Life cycle assessment of carbon capture and utilization from ammonia process in Mexico.

    PubMed

    Morales Mora, M A; Vergara, C Pretelín; Leiva, M A; Martínez Delgadillo, S A; Rosa-Domínguez, E R

    2016-12-01

    Post-combustion CO2 capture (PCC) of flue gas from an ammonia plant (AP) and the environmental performance of the carbon capture utilization (CCU) technology for greenhouse gas (GHG) emissions to an enhanced oil recovery (EOR) system in Mexico was performed as case study. The process simulations (PS) and life cycle assessment (LCA) were used as supporting tools to quantify the CO2 capture and their environmental impacts, respectively. Two scenarios were considered: 1) the AP with its shift and CO2 removal unit and 2) Scenario 1 plus PCC of the flue gas from the AP primary reformer (AP-2CO2) and the global warming (GW) impact. Also, the GW of the whole of a CO2-EOR project, from these two streams of captured CO2, was evaluated. Results show that 372,426 tCO2/year can be PCC from the flue gas of the primary reformer and 480,000 tons/y of capacity from the AP. The energy requirement for solvent regeneration is estimated to be 2.8 MJ/kgCO2 or a GW impact of 0.22 kgCO2e/kgCO2 captured. GW performances are 297.6 kgCO2e emitted/barrel (bbl) for scenario one, and 106.5 kgCO2e emitted/bbl for the second. The net emissions, in scenario one, were 0.52 tCO2e/bbl and 0.33 tCO2e/bbl in scenario two. Based on PS, this study could be used to evaluate the potential of CO2 capture of 4080 t/d of 4 ammonia plants. The integration of PS-LCA to a PCC study allows the applicability as methodological framework for the development of a cluster of projects in which of CO2 could be recycled back to fuel, chemical, petrochemical products or for enhanced oil recovery (EOR). With AP-2CO2, "CO2 emission free" ammonia production could be achieved.

  14. Life cycle assessment of energy self-sufficiency systems based on agricultural residues for organic arable farms.

    PubMed

    Kimming, M; Sundberg, C; Nordberg, A; Baky, A; Bernesson, S; Norén, O; Hansson, P-A

    2011-01-01

    The agricultural industry today consumes large amounts of fossil fuels. This study used consequential life cycle assessment (LCA) to analyse two potential energy self-sufficient systems for organic arable farms, based on agricultural residues. The analysis focused on energy balance, resource use and greenhouse gas (GHG) emissions. A scenario based on straw was found to require straw harvest from 25% of the farm area; 45% of the total energy produced from the straw was required for energy carrier production and GHG emissions were reduced by 9% compared with a fossil fuel-based reference scenario. In a scenario based on anaerobic digestion of ley, the corresponding figures were 13%, 24% and 35%. The final result was sensitive to assumptions regarding, e.g., soil carbon content and handling of by-products.

  15. Life cycle assessment of ethanol derived from sawdust.

    PubMed

    Roy, Poritosh; Dutta, Animesh

    2013-12-01

    The life cycle of ethanol derived from sawdust by enzymatic hydrolysis process is evaluated to determine if environmentally preferable and economically viable ethanol can be produced. Two scenarios are considered to estimate net energy consumption, greenhouse gas (GHG) emission and production costs. The estimated net energy consumption, GHG emission and production costs are 12.29-13.37 MJ/L, 0.75-0.92 kg CO2 e/L and about $0.98-$1.04/L, respectively depending on the scenarios of this study. The result confirmed that environmental benefit can be gained with present technologies; however, economic viability remains doubtful unless Feed-in Tariff (FiT) is considered. The production cost of ethanol reduces to $0.5/L, if FiT is considered to be $0.025/MJ. This study indicates that the implementation of FiT program for ethanol industry not only helps Ontario mitigate GHG emissions, but may also attract more investment and create rural employment opportunities.

  16. Fluoxetine effects assessment on the life cycle of aquatic invertebrates.

    PubMed

    Péry, A R R; Gust, M; Vollat, B; Mons, R; Ramil, M; Fink, G; Ternes, T; Garric, J

    2008-09-01

    Fluoxetine is a serotonin re-uptake inhibitor, generally used as an antidepressant. It is suspected to provoke substantial effects in the aquatic environment. This study reports the effects of fluoxetine on the life cycle of four invertebrate species, Daphnia magna, Hyalella azteca and the snail Potamopyrgus antipodarum exposed to fluoxetine spiked-water and the midge Chironomus riparius exposed to fluoxetine-spiked sediments. For D. magna, a multi-generational study was performed with exposition of newborns from exposed organisms. Effects of fluoxetine could be found at low measured concentrations (around 10microgl(-1)), especially for parthenogenetic reproduction of D. magna and P. antipodarum. For daphnids, newborns length was impacted by fluoxetine and the second generation of exposed individuals showed much more pronounced effects than the first one, with a NOEC of 8.9microgl(-1). For P. antipodarum, significant decrease of reproduction was found for concentrations around 10microgl(-1). In contrast, we found no effect on the reproduction of H. azteca but a significant effect on growth, which resulted in a NOEC of 33microgl(-1), expressed in nominal concentration. No effect on C. riparius could be found for measured concentrations up to 59.5mgkg(-1). General mechanistic energy-based models showed poor relevance for data analysis, which suggests that fluoxetine targets specific mechanisms of reproduction.

  17. Life cycle assessment of automobile/fuel options.

    PubMed

    MacLean, Heather L; Lave, Lester B

    2003-12-01

    We examine the possibilities for a "greener" car that would use less material and fuel, be less polluting, and would have a well-managed end-of-life. Light-duty vehicles are fundamental to our economy and will continue to be for the indefinite future. Any redesign to make these vehicles greener requires consumer acceptance. Consumer desires for large, powerful vehicles have been the major stumbling block in achieving a "green car". The other major barrier is inherent contradictions among social goals such as fuel economy, safety, low emissions of pollutants, and low emissions of greenhouse gases, which has led to conflicting regulations such as emissions regulations blocking sales of direct injection diesels in California, which would save fuel. In evaluating fuel/vehicle options with the potential to improve the greenness of cars [diesel (direct injection) and ethanol in internal combustion engines, battery-powered, gasoline hybrid electric, and hydrogen fuel cells], we find no option dominates the others on all dimensions. The principles of green design developed by Anastas and Zimmerman (Environ. Sci. Technol. 2003, 37, 94A-101A) and the use of a life cycle approach provide insights on the key sustainability issues associated with the various options.

  18. Revision and extension of Eco-LCA metrics for sustainability assessment of the energy and chemical processes.

    PubMed

    Yang, Shiying; Yang, Siyu; Kraslawski, Andrzej; Qian, Yu

    2013-12-17

    Ecologically based life cycle assessment (Eco-LCA) is an appealing approach for the evaluation of resources utilization and environmental impacts of the process industries from an ecological scale. However, the aggregated metrics of Eco-LCA suffer from some drawbacks: the environmental impact metric has limited applicability; the resource utilization metric ignores indirect consumption; the renewability metric fails to address the quantitative distinction of resources availability; the productivity metric seems self-contradictory. In this paper, the existing Eco-LCA metrics are revised and extended for sustainability assessment of the energy and chemical processes. A new Eco-LCA metrics system is proposed, including four independent dimensions: environmental impact, resource utilization, resource availability, and economic effectiveness. An illustrative example of comparing assessment between a gas boiler and a solar boiler process provides insight into the features of the proposed approach.

  19. High-resolution assessment of land use impacts on biodiversity in life cycle assessment using species habitat suitability models.

    PubMed

    de Baan, Laura; Curran, Michael; Rondinini, Carlo; Visconti, Piero; Hellweg, Stefanie; Koellner, Thomas

    2015-02-17

    Agricultural land use is a main driver of global biodiversity loss. The assessment of land use impacts in decision-support tools such as life cycle assessment (LCA) requires spatially explicit models, but existing approaches are either not spatially differentiated or modeled at very coarse scales (e.g., biomes or ecoregions). In this paper, we develop a high-resolution (900 m) assessment method for land use impacts on biodiversity based on habitat suitability models (HSM) of mammal species. This method considers potential land use effects on individual species, and impacts are weighted by the species' conservation status and global rarity. We illustrate the method using a case study of crop production in East Africa, but the underlying HSMs developed by the Global Mammals Assessment are available globally. We calculate impacts of three major export crops and compare the results to two previously developed methods (focusing on local and regional impacts, respectively) to assess the relevance of the methodological innovations proposed in this paper. The results highlight hotspots of product-related biodiversity impacts that help characterize the links among agricultural production, consumption, and biodiversity loss.

  20. Life cycle assessment of biofuels: energy and greenhouse gas balances.

    PubMed

    Gnansounou, E; Dauriat, A; Villegas, J; Panichelli, L

    2009-11-01

    The promotion of biofuels as energy for transportation in the industrialized countries is mainly driven by the perspective of oil depletion, the concerns about energy security and global warming. However due to sustainability constraints, biofuels will replace only 10 to 15% of fossil liquid fuels in the transport sector. Several governments have defined a minimum target of GHG emissions reduction for those biofuels that will be eligible to public incentives, for example a 35% emissions reduction in case of biofuels in Members States of the European Union. This article points out the significant biases in estimating GHG balances of biofuels stemming from modelling choices about system definition and boundaries, functional unit, reference systems and allocation methods. The extent to which these choices influence the results is investigated. After performing a comparison and constructive criticism of various modelling choices, the LCA of wheat-to-bioethanol is used as an illustrative case where bioethanol is blended with gasoline at various percentages (E5, E10 and E85). The performance of these substitution options is evaluated as well. The results show a large difference in the reduction of the GHG emissions with a high sensitivity to the following factors: the method used to allocate the impacts between the co-products, the type of reference systems, the choice of the functional unit and the type of blend. The authors come out with some recommendations for basing the estimation of energy and GHG balances of biofuels on principles such as transparency, consistency and accuracy.

  1. Life-cycle assessment of biodiesel production from microalgae.

    PubMed

    Lardon, Laurent; Hélias, Arnaud; Sialve, Bruno; Steyer, Jean-Philippe; Bernard, Olivier

    2009-09-01

    This paper provides an analysis of the potential environmental impacts of biodiesel production from microalgae. High production yields of microalgae have called forth interest of economic and scientific actors but it is still unclear whether the production of biodiesel is environmentally interesting and which transformation steps need further adjustment and optimization. A comparative LCA study of a virtual facility has been undertaken to assessthe energetic balance and the potential environmental impacts of the whole process chain, from the biomass production to the biodiesel combustion. Two different culture conditions, nominal fertilizing or nitrogen starvation, as well as two different extraction options, dry or wet extraction, have been tested. The best scenario has been compared to first generation biodiesel and oil diesel. The outcome confirms the potential of microalgae as an energy source but highlights the imperative necessity of decreasing the energy and fertilizer consumption. Therefore control of nitrogen stress during the culture and optimization of wet extraction seem to be valuable options. This study also emphasizes the potential of anaerobic digestion of oilcakes as a way to reduce external energy demand and to recycle a part of the mineral fertilizers.

  2. Life cycle assessment of municipal solid waste management with regard to greenhouse gas emissions: case study of Tianjin, China.

    PubMed

    Zhao, Wei; van der Voet, Ester; Zhang, Yufeng; Huppes, Gjalt

    2009-02-15

    The environmental impacts of municipal solid waste (MSW) management have been highlighted in China, due to the continually increasing amount of MSW being generated and the limited capacity of waste treatment facilities. Of particular interest is greenhouse gas (GHG) mitigation, aided by the Kyoto Mechanisms. China is an important case study for this global issue; however, an analysis of the entire life cycle of MSW management on GHG emissions is not available for China. This study evaluates the current and possible patterns of MSW management with regard to GHG emissions, using life cycle assessment (LCA), based on the Tianjin case. We assess the baseline scenario, reflecting the existing MSW management system, as well as a set of alternative scenarios, five exploring waste treatment technology innovations and one exploring integrated MSW management, to quantitatively predict potentials of GHG mitigation for Tianjin. Additionally, a sensitivity analysis is used to investigate the influence of landfill gas (LFG) collection efficiency, recycling rate and methodological choice, especially allocation, on the outcomes. The results show GHG emissions from Tianjin's MSW management system amount to 467.34 Mg CO2 eq. per year, based on the treatment of MSW collected in the central districts in 2006, and the key issue is LFG released. The integrated MSW management scenario, combining different improvement options, shows the highest GHG mitigation potential. Given the limited financial support and the current waste management practice in Tianjin, LFG utilization scenario would be the preferred choice. The sensitivity analysis of recycling rate shows an approximately linear relation of inverse proportion between recycling rate and total GHG emissions. Kitchen waste composting makes a considerable contribution to total GHG emissions reduction. Allocation choices result in differences in total quantitative outcomes, but preference orders and contributions analysis are found to be

  3. Updated Life-Cycle Assessment of Aluminum Production and Semi-fabrication for the GREET Model

    SciTech Connect

    Dai, Qiang; Kelly, Jarod C.; Burnham, Andrew; Elgowainy, Amgad

    2015-09-01

    This report serves as an update for the life-cycle analysis (LCA) of aluminum production based on the most recent data representing the state-of-the-art of the industry in North America. The 2013 Aluminum Association (AA) LCA report on the environmental footprint of semifinished aluminum products in North America provides the basis for the update (The Aluminum Association, 2013). The scope of this study covers primary aluminum production, secondary aluminum production, as well as aluminum semi-fabrication processes including hot rolling, cold rolling, extrusion and shape casting. This report focuses on energy consumptions, material inputs and criteria air pollutant emissions for each process from the cradle-to-gate of aluminum, which starts from bauxite extraction, and ends with manufacturing of semi-fabricated aluminum products. The life-cycle inventory (LCI) tables compiled are to be incorporated into the vehicle cycle model of Argonne National Laboratory’s Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model for the release of its 2015 version.

  4. Life cycle assessment of microalgae-based aviation fuel: Influence of lipid content with specific productivity and nitrogen nutrient effects.

    PubMed

    Guo, Fang; Zhao, Jing; A, Lusi; Yang, Xiaoyi

    2016-12-01

    The aim of this work is to compare the life cycle assessments of low-N and normal culture conditions for a balance between the lipid content and specific productivity. In order to achieve the potential contribution of lipid content to the life cycle assessment, this study established relationships between lipid content (nitrogen effect) and specific productivity based on three microalgae strains including Chlorella, Isochrysis and Nannochloropsis. For microalgae-based aviation fuel, the effects of the lipid content on fossil fuel consumption and greenhouse gas (GHG) emissions are similar. The fossil fuel consumption (0.32-0.68MJ·MJ(-1)MBAF) and GHG emissions (17.23-51.04gCO2e·MJ(-1)MBAF) increase (59.70-192.22%) with the increased lipid content. The total energy input decreases (2.13-3.08MJ·MJ(-1)MBAF, 14.91-27.95%) with the increased lipid content. The LCA indicators increased (0-47.10%) with the decreased nitrogen recovery efficiency (75-50%).

  5. A Methodology for Integrated, Multiregional Life Cycle Assessment Scenarios under Large-Scale Technological Change.

    PubMed

    Gibon, Thomas; Wood, Richard; Arvesen, Anders; Bergesen, Joseph D; Suh, Sangwon; Hertwich, Edgar G

    2015-09-15

    Climate change mitigation demands large-scale technological change on a global level and, if successfully implemented, will significantly affect how products and services are produced and consumed. In order to anticipate the life cycle environmental impacts of products under climate mitigation scenarios, we present the modeling framework of an integrated hybrid life cycle assessment model covering nine world regions. Life cycle assessment databases and multiregional input-output tables are adapted using forecasted changes in technology and resources up to 2050 under a 2 °C scenario. We call the result of this modeling "technology hybridized environmental-economic model with integrated scenarios" (THEMIS). As a case study, we apply THEMIS in an integrated environmental assessment of concentrating solar power. Life-cycle greenhouse gas emissions for this plant range from 33 to 95 g CO2 eq./kWh across different world regions in 2010, falling to 30-87 g CO2 eq./kWh in 2050. Using regional life cycle data yields insightful results. More generally, these results also highlight the need for systematic life cycle frameworks that capture the actual consequences and feedback effects of large-scale policies in the long term.

  6. Evaluation of different end-of-life management alternatives for used natural cork stoppers through life cycle assessment.

    PubMed

    Demertzi, Martha; Dias, Ana Cláudia; Matos, Arlindo; Arroja, Luís Manuel

    2015-12-01

    An important aspect of sustainable development is the implementation of effective and sustainable waste management strategies. The present study focuses on a Life Cycle Assessment (LCA) approach to different waste management strategies for natural cork stoppers, namely incineration at a municipal solid waste incinerator, landfilling in a sanitary landfill, and recycling. In the literature, there are no LCA studies analyzing in detail the end-of-life stage of natural cork stoppers as well as other cork products. In addition, cork is usually treated as wood at the end-of-life stage. Thus, the outcome of this study can provide an important insight into this matter. The results showed that different management alternatives, namely incineration and recycling, could be chosen depending on the impact category considered. The former alternative presented the best environmental results in the impact categories of climate change, ozone depletion and acidification, while the latter for photochemical ozone formation and mineral and fossil resource depletion. The landfilling alternative did not present the best environmental performance in any of the impact categories. However, when the biogenic carbon dioxide emission was assessed for the climate change category, the landfilling alternative was found to be the most effective since most of the biogenic carbon would be permanently stored in the cork products and not emitted into the atmosphere. A sensitivity analysis was performed and the results showed that there are various parameters that can significantly influence the results (e.g., carbon content in cork and decay rate of cork in the landfill). Thus, LCA studies should include a detailed description concerning their assumptions when the end-of-life stage is included in the boundaries since they can influence the results, and furthermore, to facilitate the comparison of different end-of-life scenarios. The present study and the obtained results could be useful for the

  7. Life cycle assessment of animal feeds prepared from liquid food residues: a case study of rice-washing water.

    PubMed

    Ogino, Akifumi; Ishida, Mitsuyoshi; Ohmori, Hideyuki; Tanaka, Yasuo; Yamashita, Takahiro; Yokoyama, Hiroshi; Tatsugawa, Kenji; Ijiri, Satoru; Kawashima, Tomoyuki

    2012-01-01

    Life cycle assessment (LCA) was used to compare the greenhouse gas (GHG) emissions and energy consumption of three methods used to produce animal feed from concentrated rice-washing water (CRW) and disposing of the rice-washing water through wastewater treatment. Four scenarios were compared using LCA: (i) producing concentrated liquid feed by centrifugation (CC) of CRW with wastewater treatment and discharge of the supernatant, (ii) producing concentrated liquid feed by heating evaporation (HC) of CRW, (iii) producing dehydrated feed by dehydration (DH) of CRW, and (iv) wastewater treatment and discharge of nonconcentrated rice-washing water (WT). The functional unit (FU) was defined as 1 metric ton of rice washed for cooking or processing. Our results suggested that the energy consumptions of CC, HC, DH, and WT were 108, 322, 739, and 242 MJ per FU, respectively, and the amounts of GHG emissions from CC, HC, DH, and WT were 6.4, 15.8, 45.5, and 22.5 kg of CO equivalents per FU, respectively. When the produced feed prepared from CRW was assumed to be transported 200 km to farms, CC and HC still emitted smaller GHGs than the other scenarios, and CC consumed the smallest amount of energy among the scenarios. The present study indicates that liquid feed production from CRW by centrifugation has a remarkably reduced environmental impact compared with the wastewater treatment and discharge of rice-washing water.

  8. Investigation of the environmental impacts of municipal wastewater treatment plants through a Life Cycle Assessment software tool.

    PubMed

    De Feo, G; Ferrara, C

    2016-10-11

    This paper investigates the total and per capita environmental impacts of municipal wastewater treatment in the function of the population equivalent (PE) with a Life Cycle Assessment (LCA) approach using the processes of the Ecoinvent 2.2 database available in the software tool SimaPro v.7.3. Besides the wastewater treatment plant (WWTP), the study also considers the sewerage system. The obtained results confirm that there is a 'scale factor' for the wastewater collection and treatment even in environmental terms, in addition to the well-known scale factor in terms of management costs. Thus, the more the treatment plant size is, the less the per capita environmental impacts are. However, the Ecoinvent 2.2 database does not contain information about treatment systems with a capacity lower than 30 PE. Nevertheless, worldwide there are many sparsely populated areas, where it is not convenient to realize a unique centralized WWTP. Therefore, it would be very important to conduct an LCA study in order to compare alternative on-site small-scale systems with treatment capacity of few PE.

  9. Comparing the Environmental Impacts of Alkali Activated Mortar and Traditional Portland Cement Mortar using Life Cycle Assessment

    NASA Astrophysics Data System (ADS)

    Matheu, P. S.; Ellis, K.; Varela, B.

    2015-11-01

    Since the year 1908 there has been research into the use alkali activated materials (AAM) in order to develop cementitious materials with similar properties to Ordinary Portland Cement. AAMs are considered green materials since their production and synthesis is not energy intensive. Even though AAMs have a high compressive strength, the average cost of production among other issues limits its feasibility. Previous research by the authors yielded a low cost AAM that uses mine tailings, wollastonite and ground granulated blast furnace slag (GGBFS). This mortar has an average compressive strength of 50MPa after 28 days of curing. In this paper the software SimaPro was used to create a product base cradle to gate Life Cycle Assessment (LCA). This compared the environmental impact of the AAM mortar to an Ordinary Portland Cement mortar (PCHM) with similar compressive strength. The main motivation for this research is the environmental impact of producing Ordinary Portland Cement as compared to alkali activated slag materials. The results of this LCA show that the Alkali Activated Material has a lower environmental impact than traditional Portland cement hydraulic mortar, in 10 out of 12 categories including Global Warming Potential, Ecotoxicity, and Smog. Areas of improvement and possible future work were also discovered with this analysis.

  10. Comparative Life Cycle Assessment of Sunscreen Lotion Using Organic Chemicals Versus Nano-Titanium Dioxide as UV Blocker

    NASA Astrophysics Data System (ADS)

    Thakur, Ankita

    The production of nanomaterials has been increasing and so are their applications in various products, while the environmental impacts and human impacts of these nanomaterials are still in the process of being explored. In this thesis, a process for producing nano-titanium dioxide (nano-TiO 2) is studied and a case-study has been conducted on comparative Life Cycle Assessment (LCA) of the application of these nano-TiO2 particles in the sunscreen lotion as a UV-blocker with the conventional organic chemical sunscreen lotion using GaBi software. Nano-TiO2 particles were identified in the sunscreen lotion using Transmission Electron Microscope suggesting the use of these particles in the lotion. The LCA modeling includes the comparison of the environmental impacts of producing nano-TiO2 particles with that of conventional organic chemical UV-blockers (octocrylene and avobenzone). It also compares the environmental life cycle impacts of the two sunscreen lotions studied. TRACI 2.1 was used for the assessment of the impacts which were then normalized and weighted for the ranking of the impact categories. Results indicate that nano-TiO 2 had higher impacts on the environment than the conventional organic chemical UV-blockers (octocrylene and avobenzone). For the two sunscreen lotions studied, nano-TiO2 sunscreen variant had lower environmental life cycle impacts than its counterpart because of the other chemicals used in the formulation. In the organic chemical sunscreen variant the major impacts came from production of glycerine, ethanol, and avobenzone but in the nano-TiO 2 sunscreen variant the major impacts came from the production of nano-TiO 2 particles. Analysis further signifies the trade-offs between few environmental impact categories, for example, the human toxicity impacts were more in the nano-TiO 2 sunscreen variant, but the other environmental impact categories viz. fossil fuel depletion, global warming potential, eutrophication were less compared to the

  11. Including pathogen risk in life cycle assessment of wastewater management. 2. Quantitative comparison of pathogen risk to other impacts on human health.

    PubMed

    Heimersson, Sara; Harder, Robin; Peters, Gregory M; Svanström, Magdalena

    2014-08-19

    Resource recovery from sewage sludge has the potential to save natural resources, but the potential risks connected to human exposure to heavy metals, organic micropollutants, and pathogenic microorganisms attract stakeholder concern. The purpose of the presented study was to include pathogen risks to human health in life cycle assessment (LCA) of wastewater and sludge management systems, as this is commonly omitted from LCAs due to methodological limitations. Part 1 of this article series estimated the overall pathogen risk for such a system with agricultural use of the sludge, in a way that enables the results to be integrated in LCA. This article (part 2) presents a full LCA for two model systems (with agricultural utilization or incineration of sludge) to reveal the relative importance of pathogen risk in relation to other potential impacts on human health. The study showed that, for both model systems, pathogen risk can constitute an important part (in this study up to 20%) of the total life cycle impacts on human health (expressed in disability adjusted life years) which include other important impacts such as human toxicity potential, global warming potential, and photochemical oxidant formation potential.

  12. CASE STUDIES EXAMINING LCA STREAMLINING TECHNIQUES

    EPA Science Inventory

    Pressure is mounting for more streamlined Life Cycle Assessment (LCA) methods that allow for evaluations that are quick and simple, but accurate. As part of an overall research effort to develop and demonstrate streamlined LCA, the U.S. Environmental Protection Agency has funded ...

  13. Life Cycle Assessment Perspectives on Delivering an Infant in the US

    PubMed Central

    Campion, Nicole; Thiel, Cassandra L.; DeBlois, Justin; Woods, Noe C.; Landis, Amy E.; Bilec, Melissa M.

    2012-01-01

    This study introduces life cycle assessment as a tool to analyze one aspect of sustainability in healthcare: the birth of a baby. The process life cycle assessment case study presented evaluates two common procedures in a hospital, a cesarean section and a vaginal birth. This case study was conducted at Magee-Womens Hospital of the University of Pittsburgh Medical Center, which delivers over 10,000 infants per year. The results show that heating, ventilation, and air conditioning (HVAC), waste disposal, and the production of the disposable custom packs comprise a large percentage of the environmental impacts. Applying the life cycle assessment tool to medical procedures allows hospital decision makers to target and guide efforts to reduce the environmental impacts of healthcare procedures. PMID:22482785

  14. WaLA, a versatile model for the life cycle assessment of urban water systems: Formalism and framework for a modular approach.

    PubMed

    Loubet, Philippe; Roux, Philippe; Bellon-Maurel, Véronique

    2016-01-01

    The emphasis on the sustainable urban water management has increased over the last decades. In this context decision makers need tools to measure and improve the environmental performance of urban water systems (UWS) and their related scenarios. In this paper, we propose a versatile model, named WaLA (Water system Life cycle Assessment), which reduces the complexity of the UWS while ensuring a good representation of water issues and fulfilling life cycle assessment (LCA) requirements. Indeed, LCAs require building UWS models, which can be tedious if several scenarios are to be compared. The WaLA model is based on a framework that uses a "generic component" representing alternately water technology units and water users, with their associated water flows, and the associated impacts due to water deprivation, emissions, operation and infrastructure. UWS scenarios can be built by inter-operating and connecting the technologies and users components in a modular and integrated way. The model calculates life cycle impacts at a monthly temporal resolution for a set of services provided to users, as defined by the scenario. It also provides the ratio of impacts to amount of services provided and useful information for UWS diagnosis or comparison of different scenarios. The model is implemented in a Matlab/Simulink interface thanks to object-oriented programming. The applicability of the model is demonstrated using a virtual case study based on available life cycle inventory data.

  15. Guidance on How to Move from Current Practice to Recommended Practice in Life Cycle Impact Assessment (UNEP/SETAC Life Cycle Initiative Publication)

    EPA Science Inventory

    The report provides guidance on how to move from current practice to recommended practice in Life Cycle Impact Assessment. It is composed of three complementary parts elaborated in the first task force (TFI) of the LCIA programme, with contribution of the other three task forces:

  16. Modeling spatially- and temporally-explicit water stress indices for use in life cycle assessment

    NASA Astrophysics Data System (ADS)

    Scherer, L.; Venkatesh, A.; Karuppiah, R.; Usadi, A.; Pfister, S.; Hellweg, S.

    2013-12-01

    Water scarcity is a regional issue in many areas across the world, and can affect human health and ecosystems locally. Water stress indices (WSIs) have been developed as quantitative indicators of such scarcities - examples include the Falkenmark indicator, Social Water Stress Index, and the Water Supply Stress Index1. Application of these indices helps us understand water supply and demand risks for multiple users, including those in the agricultural, industrial, residential and commercial sectors. Pfister et al.2 developed a method to calculate WSIs that were used to estimate characterization factors (CFs) in order to quantify environmental impacts of freshwater consumption within a life cycle assessment (LCA) framework. Global WSIs were based on data from the WaterGAP model3, and presented as annual averages for watersheds. Since water supply and demand varies regionally and temporally, the resolution used in Pfister et al. does not effectively differentiate between seasonal and permanent water scarcity. This study aims to improve the temporal and spatial resolution of the water scarcity calculations used to estimate WSIs and CFs. We used the Soil and Water Assessment Tool (SWAT)4 hydrological model to properly simulate water supply in different world regions with high spatial and temporal resolution, and coupled it with water use data from WaterGAP3 and Pfister et al.5. Input data to SWAT included weather, land use, soil characteristics and a digital elevation model (DEM), all from publicly available global data sets. Potential evapotranspiration, which affects water supply, was determined using an improved Priestley-Taylor approach. In contrast to most other hydrological studies, large reservoirs, water consumption and major water transfers were simulated. The model was calibrated against observed monthly discharge, actual evapotranspiration, and snow water equivalents wherever appropriate. Based on these simulations, monthly WSIs were calculated for a few

  17. Supply Chain Resilience: Assessing USAF Weapon System Life Cycle

    DTIC Science & Technology

    2010-03-01

    Signed // ____________ 12 March 2010 Timothy J. Pettit , Lt Col, PhD (Chairman) Date ______________// Signed //______________ 12...advisor, Lt Col Tim Pettit , and my committee member, Maj Dan Mattioda, for their guidance and support during this research effort. I would, also, like...Resilience Assessment and Management (SCRAM™) tool ( Pettit , 2008). The SCRAM™ tool is used to measure current supply chain vulnerabilities and capabilities

  18. Material and energy recovery in integrated waste management systems. An evaluation based on life cycle assessment.

    PubMed

    Giugliano, Michele; Cernuschi, Stefano; Grosso, Mario; Rigamonti, Lucia

    2011-01-01

    This paper reports the environmental results, integrated with those arising from mass and energy balances, of a research project on the comparative analysis of strategies for material and energy recovery from waste, funded by the Italian Ministry of Education, University and Research. The project, involving the cooperation of five University research groups, was devoted to the optimisation of material and energy recovery activities within integrated municipal solid waste (MSW) management systems. Four scenarios of separate collection (overall value of 35%, 50% without the collection of food waste, 50% including the collection of food waste, 65%) were defined for the implementation of energetic, environmental and economic balances. Two sizes of integrated MSW management system (IWMS) were considered: a metropolitan area, with a gross MSW production of 750,000 t/year and an average province, with a gross MSW production of 150,000 t/year. The environmental analysis was conducted using Life Cycle Assessment methodology (LCA), for both material and energy recovery activities. In order to avoid allocation we have used the technique of the expansion of the system boundaries. This means taking into consideration the impact on the environment related to the waste management activities in comparison with the avoided impacts related to the saving of raw materials and primary energy. Under the hypotheses of the study, both for the large and for the small IWMS, the energetic and environmental benefits are higher than the energetic and environmental impacts for all the scenarios analysed in terms of all the indicators considered: the scenario with 50% separate collection in a drop-off scheme excluding food waste shows the most promising perspectives, mainly arising from the highest collection (and recycling) of all the packaging materials, which is the activity giving the biggest energetic and environmental benefits. Main conclusions of the study in the general field of the

  19. Material and energy recovery in integrated waste management systems. An evaluation based on life cycle assessment

    SciTech Connect

    Giugliano, Michele; Cernuschi, Stefano; Grosso, Mario; Rigamonti, Lucia

    2011-09-15

    This paper reports the environmental results, integrated with those arising from mass and energy balances, of a research project on the comparative analysis of strategies for material and energy recovery from waste, funded by the Italian Ministry of Education, University and Research. The project, involving the cooperation of five University research groups, was devoted to the optimisation of material and energy recovery activities within integrated municipal solid waste (MSW) management systems. Four scenarios of separate collection (overall value of 35%, 50% without the collection of food waste, 50% including the collection of food waste, 65%) were defined for the implementation of energetic, environmental and economic balances. Two sizes of integrated MSW management system (IWMS) were considered: a metropolitan area, with a gross MSW production of 750,000 t/year and an average province, with a gross MSW production of 150,000 t/year. The environmental analysis was conducted using Life Cycle Assessment methodology (LCA), for both material and energy recovery activities. In order to avoid allocation we have used the technique of the expansion of the system boundaries. This means taking into consideration the impact on the environment related to the waste management activities in comparison with the avoided impacts related to the saving of raw materials and primary energy. Under the hypotheses of the study, both for the large and for the small IWMS, the energetic and environmental benefits are higher than the energetic and environmental impacts for all the scenarios analysed in terms of all the indicators considered: the scenario with 50% separate collection in a drop-off scheme excluding food waste shows the most promising perspectives, mainly arising from the highest collection (and recycling) of all the packaging materials, which is the activity giving the biggest energetic and environmental benefits. Main conclusions of the study in the general field of the

  20. Life cycle assessment and nutrient analysis of various processing pathways in algal biofuel production.

    PubMed

    Mu, Dongyan; Ruan, Roger; Addy, Min; Mack, Sarah; Chen, Paul; Zhou, Yong

    2017-04-01

    This study focuses on analyzing nutrient distributions and environmental impacts of nutrient recycling, reusing, and discharging in algal biofuels production. The three biomass conversion pathways compared in this study were: hydrothermal liquefaction technology (HTL), hydrothermal hydrolysis pretreatment +HTL (HTP), and wet lipid extraction (WLE). Carbon, nitrogen, and phosphorous (C, N, P) flows were described in each pathway. A primary cost analysis was conducted to evaluate the economic performance. The LCA results show that the HTP reduced life cycle NOx emissions by 10% from HTL, but increased fossil fuel use, greenhouse gas emissions, and eutrophication potential by 14%, 5%, and 28% respectively. The cost of per gallon biodiesel produced in HTP was less than in HTL. To further reduce emissions, efforts should be focused on improving nutrient uptake rates in algae cultivation, increasing biomass carbon detention in hydrothermal hydrolysis, and/or enhancing biomass conversion rates in the biooil upgrading processes.

  1. Life Cycle Assessment for Chemical Agent Resistant Coating.

    DTIC Science & Technology

    1996-09-01

    opportunity assessment QSAR quantitative structure -activity relationship RD&D Research, Design and Development RTECS Registry of Toxic Effects of...Lethal or Chronic Toxicity Effects TRNSFREF Application efficiency of equipment used WTRUSE Water Consumption Figure 6-4. Structure of the analytic...6-23 Figure 6-4. Structure of the analytic hierarchy for CARC alternatives .................. 6-35 Figure 6-5. Overall weights derived for

  2. Exposure assessment of MWCNTs in their life cycle

    NASA Astrophysics Data System (ADS)

    Ono-Ogasawara, M.; Takaya, M.; Yamada, M.

    2015-05-01

    Multi-walled carbon nanotubes (MWCNTs) are used as a filler in composites to obtain electrical conductivity, and improve mechanical strength and other properties. However, exposure to MWCNTs may pose health risks because of their size, shape, and insolubility. A quantitative exposure assessment method for CNTs is therefore needed. We have developed a promising carbon analysis method that considers the size distribution of elemental carbon. We conducted exposure assessment according to the lifecycle of CNTs. At the first stage, large quantity of CNTs are handled and exposure to neat CNTs is likely to occur. When large quantity of CNTs are handled, enclosure and automated process are strongly recommended. By applying appropriate measures, CNT concentration can be well controlled. Local exhaust ventilation and less-restrictive enclosures were found to work well during the second stage, which involves handling smaller CNT quantities. At measured sites, MWCNT concentrations were below an occupational exposure level proposed by Nakanishi (i.e., 0.030 mg/m3). This analysis method can also be applied to particles containing MWCNTs. At downstream stages of the lifecycle, neat MWCNTs were not observed and concentrations of embedded MWCNTs were lower than 0.015 mg/m3.

  3. Life cycle assessment of switchgrass- and corn stover-derived ethanol-fueled automobiles.

    PubMed

    Spatari, Sabrina; Zhang, Yimin; MacLean, Heather L

    2005-12-15

    Utilizing domestically produced cellulose-derived ethanol for the light-duty vehicle fleet can potentially improve the environmental performance and sustainability of the transport and energy sectors of the economy. A life cycle assessment model was developed to examine environmental implications of the production and use of ethanol in automobiles in Ontario, Canada. The results were compared to those of low-sulfur reformulated gasoline (RFG) in a functionally equivalent automobile. Two time frames were evaluated, one near-term (2010), which examines converting a dedicated energy crop (switchgrass) and an agricultural residue (corn stover) to ethanol; and one midterm (2020), which assumes technological improvements in the switchgrass-derived ethanol life cycle. Near-term results show that, compared to a RFG automobile, life cycle greenhouse gas (GHG) emissions are 57% lower for an E85-fueled automobile derived from switchgrass and 65% lower for ethanol from corn stover, on a grams of CO2 equivalent per kilometer basis. Corn stover ethanol exhibits slightly lower life cycle GHG emissions, primarily due to sharing emissions with grain production. Through projected improvements in crop and ethanol yields, results for the mid-term scenario show that GHG emissions could be 25-35% lower than those in 2010 and that, even with anticipated improvements in RFG automobiles, E85 automobiles could still achieve up to 70% lower GHG emissions across the life cycle.

  4. Life cycle assessment of Chinese shrimp farming systems targeted for export and domestic sales.

    PubMed

    Cao, Ling; Diana, James S; Keoleian, Gregory A; Lai, Qiuming

    2011-08-01

    We conducted surveys of six hatcheries and 18 farms for data inputs to complete a cradle-to-farm-gate life cycle assessment (LCA) to evaluate the environmental performance for intensive (for export markets in Chicago) and semi-intensive (for domestic markets in Shanghai) shrimp farming systems in Hainan Province, China. The relative contribution to overall environmental performance of processing and distribution to final markets were also evaluated from a cradle-to-destination-port perspective. Environmental impact categories included global warming, acidification, eutrophication, cumulative energy use, and biotic resource use. Our results indicated that intensive farming had significantly higher environmental impacts per unit production than semi-intensive farming in all impact categories. The grow-out stage contributed between 96.4% and 99.6% of the cradle-to-farm-gate impacts. These impacts were mainly caused by feed production, electricity use, and farm-level effluents. By averaging over intensive (15%) and semi-intensive (85%) farming systems, 1 metric ton (t) live-weight of shrimp production in China required 38.3 ± 4.3 GJ of energy, as well as 40.4 ± 1.7 t of net primary productivity, and generated 23.1 ± 2.6 kg of SO(2) equiv, 36.9 ± 4.3 kg of PO(4) equiv, and 3.1 ± 0.4 t of CO(2) equiv. Processing made a higher contribution to cradle-to-destination-port impacts than distribution of processed shrimp from farm gate to final markets in both supply chains. In 2008, the estimated total electricity consumption, energy consumption, and greenhouse gas emissions from Chinese white-leg shrimp production would be 1.1 billion kW·h, 49 million GJ, and 4 million metric tons, respectively. Improvements suggested for Chinese shrimp aquaculture include changes in feed composition, farm management, electricity-generating sources, and effluent treatment before discharge. Our results can be used to optimize market-oriented shrimp supply chains and promote more

  5. Beyond the material grave: Life Cycle Impact Assessment of leaching from secondary materials in road and earth constructions

    SciTech Connect

    Schwab, Oliver; Bayer, Peter; Juraske, Ronnie; Verones, Francesca; Hellweg, Stefanie

    2014-10-15

    Highlights: • We model environmental impacts of leaching from secondary construction material. • Industrial wastes in construction contain up to 45,000 t heavy metals per year (D). • In a scenario, 150 t are leached to the environment within 100 years after construction. • All heavy metals but As, Sb and Mo are adsorbed by 20 cm subsoil in this scenario. • Environmental impacts depend on material, pollutant, construction type, and geography. - Abstract: In industrialized countries, large amounts of mineral wastes are produced. They are re-used in various ways, particularly in road and earth constructions, substituting primary resources such as gravel. However, they may also contain pollutants, such as heavy metals, which may be leached to the groundwater. The toxic impacts of these emissions are so far often neglected within Life Cycle Assessments (LCA) of products or waste treatment services and thus, potentially large environmental impacts are currently missed. This study aims at closing this gap by assessing the ecotoxic impacts of heavy metal leaching from industrial mineral wastes in road and earth constructions. The flows of metals such as Sb, As, Pb, Cd, Cr, Cu, Mo, Ni, V and Zn originating from three typical constructions to the environment are quantified, their fate in the environment is assessed and potential ecotoxic effects evaluated. For our reference country, Germany, the industrial wastes that are applied as Granular Secondary Construction Material (GSCM) carry more than 45,000 t of diverse heavy metals per year. Depending on the material quality and construction type applied, up to 150 t of heavy metals may leach to the environment within the first 100 years after construction. Heavy metal retardation in subsoil can potentially reduce the fate to groundwater by up to 100%. One major challenge of integrating leaching from constructions into macro-scale LCA frameworks is the high variability in micro-scale technical and geographical factors

  6. LIFE CYCLE IMPACT ASSESSMENT FOR THE BUILDING DESIGN AND CONSTRUCTION INDUSTRY

    EPA Science Inventory

    The most effective way to achieve long-term environmental results is through the use of a consistent set of metrics within a decision-making framework. This paper describes the role of Life Cycle Impact Assessment (LCIA) and details its use within two tools available to this indu...

  7. Towards a Sustainable Approach to Nanotechnology by Integrating Life Cycle Assessment into the Undergraduate Engineering Curriculum

    ERIC Educational Resources Information Center

    Kopelevich, Dmitry I.; Ziegler, Kirk J.; Lindner, Angela S.; Bonzongo, Jean-Claude J.

    2012-01-01

    Because rapid growth of nanotechnology is expected to lead to intentional and non-intentional releases, future engineers will need to minimize negative environmental and health impacts of nanomaterials. We developed two upper-level undergraduate courses centered on life-cycle assessment of nanomaterials. The first part of the course sequence…

  8. US EPA’s Life Cycle Impact Assessment Research for Land Use

    EPA Science Inventory

    Initially, Life Cycle Impact Assessment (LCIA ) researchers focused on chemical emissions categories for a variety of reasons, including the ease of modeling, and the historical regulations in this area. As LCIA researchers become more involved in developing land use impact asse...

  9. LIFE CYCLE IMPACT ASSESSMENT WORKSHOP SUMMARY - MIDPOINTS VERSUS ENDPOINTS: THE SACRIFICES AND BENEFITS

    EPA Science Inventory

    On 5/25-26/2000 in Brighton, England, the third international workshop was held under the umbrella of UNEP addressing issues in Life Cycle Impact Assessment (LCIA). The workshop provided a forum for experts to discuss midpoint vs. endpoint modeling. Midpoints are considered to be...

  10. Understanding Life Cycle Assessment: Applications for OSWER's Land and Materials Managment

    EPA Science Inventory

    The Office of Superfund Remediation and Technology Innovation (OSRTI) is hosting an informative webcast presentation by Jane Bare, expert on Life Cycle Impact Assessment (LCIA) in EPA's Office of Research and Development. Ms. Bare's presentation will provide an overview of LCIA, ...

  11. Understanding the impacts of allocation approaches during process-based life cycle assessment of water treatment chemicals.

    PubMed

    Alvarez-Gaitan, Juan P; Peters, Gregory M; Short, Michael D; Schulz, Matthias; Moore, Stephen

    2014-01-01

    Chemicals are an important component of advanced water treatment operations not only in terms of economics but also from an environmental standpoint. Tools such as life cycle assessment (LCA) are useful for estimating the environmental impacts of water treatment operations. At the same time, LCA analysts must manage several fundamental and as yet unresolved methodological challenges, one of which is the question of how best to "allocate" environmental burdens in multifunctional processes. Using water treatment chemicals as a case study example, this article aims to quantify the variability in greenhouse gas emissions estimates stemming from methodological choices made in respect of allocation during LCA. The chemicals investigated and reported here are those most important to coagulation and disinfection processes, and the outcomes are illustrated on the basis of treating 1000 ML of noncoagulated and nondisinfected water. Recent process and economic data for the production of these chemicals is used and methodological alternatives for solving the multifunctionality problem, including system expansion and mass, exergy, and economic allocation, are applied to data from chlor-alkali plants. In addition, Monte Carlo simulation is included to provide a comprehensive picture of the robustness of economic allocation results to changes in the market price of these industrial commodities. For disinfection, results demonstrate that chlorine gas has a lower global warming potential (GWP) than sodium hypochlorite regardless of the technique used to solve allocation issues. For coagulation, when mass or economic allocation is used to solve the multifunctionality problem in the chlor-alkali facility, ferric chloride was found to have a higher GWP than aluminum sulfate and a slightly lower burden where system expansion or exergy allocation are applied instead. Monte Carlo results demonstrate that when economic allocation is used, GWP results were relatively robust and resilient

  12. Hybrid life-cycle assessment of natural gas based fuel chains for transportation.

    PubMed

    Strømman, Anders Hammer; Solli, Christian; Hertwich, Edgar G

    2006-04-15

    This research compares the use of natural gas, methanol, and hydrogen as transportation fuels. These three fuel chains start with the extraction and processing of natural gas in the Norwegian North Sea and end with final use in Central Europe. The end use is passenger transportation with a sub-compact car that has an internal combustion engine for the natural gas case and a fuel cell for the methanol and hydrogen cases. The life cycle assessment is performed by combining a process based life-cycle inventory with economic input-output data. The analysis shows that the potential climate impacts are lowest for the hydrogen fuel scenario with CO2 deposition. The hydrogen fuel chain scenario has no significant environmental disadvantage compared to the other fuel chains. Detailed analysis shows that the construction of the car contributes significantly to most impact categories. Finally, it is shown how the application of a hybrid inventory model ensures a more complete inventory description compared to standard process-based life-cycle assessment. This is particularly significant for car construction which would have been significantly underestimated in this study using standard process life-cycle assessment alone.

  13. Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies

    PubMed Central

    Hertwich, Edgar G.; Gibon, Thomas; Bouman, Evert A.; Arvesen, Anders; Heath, Garvin A.; Bergesen, Joseph D.; Ramirez, Andrea; Vega, Mabel I.; Shi, Lei

    2015-01-01

    Decarbonization of electricity generation can support climate-change mitigation and presents an opportunity to address pollution resulting from fossil-fuel combustion. Generally, renewable technologies require higher initial investments in infrastructure than fossil-based power systems. To assess the tradeoffs of increased up-front emissions and reduced operational emissions, we present, to our knowledge, the first global, integrated life-cycle assessment (LCA) of long-term, wide-scale implementation of electricity generation from renewable sources (i.e., photovoltaic and solar thermal, wind, and hydropower) and of carbon dioxide capture and storage for fossil power generation. We compare emissions causing particulate matter exposure, freshwater ecotoxicity, freshwater eutrophication, and climate change for the climate-change-mitigation (BLUE Map) and business-as-usual (Baseline) scenarios of the International Energy Agency up to 2050. We use a vintage stock model to conduct an LCA of newly installed capacity year-by-year for each region, thus accounting for changes in the energy mix used to manufacture future power plants. Under the Baseline scenario, emissions of air and water pollutants more than double whereas the low-carbon technologies introduced in the BLUE Map scenario allow a doubling of electricity supply while stabilizing or even reducing pollution. Material requirements per unit generation for low-carbon technologies can be higher than for conventional fossil generation: 11–40 times more copper for photovoltaic systems and 6–14 times more iron for wind power plants. However, only two years of current global copper and one year of iron production will suffice to build a low-carbon energy system capable of supplying the world's electricity needs in 2050. PMID:25288741

  14. Waste management of printed wiring boards: a life cycle assessment of the metals recycling chain from liberation through refining.

    PubMed

    Xue, Mianqiang; Kendall, Alissa; Xu, Zhenming; Schoenung, Julie M

    2015-01-20

    Due to economic and societal reasons, informal activities including open burning, backyard recycling, and landfill are still the prevailing methods used for electronic waste treatment in developing countries. Great efforts have been made, especially in China, to promote formal approaches for electronic waste management by enacting laws, developing green recycling technologies, initiating pilot programs, etc. The formal recycling process can, however, engender environmental impact and resource consumption, although information on the environmental loads and resource consumption is currently limited. To quantitatively assess the environmental impact of the processes in a formal printed wiring board (PWB) recycling chain, life cycle assessment (LCA) was applied to a formal recycling chain that includes the steps from waste liberation through materials refining. The metal leaching in the refining stage was identified as a critical process, posing most of the environmental impact in the recycling chain. Global warming potential was the most significant environmental impact category after normalization and weighting, followed by fossil abiotic depletion potential, and marine aquatic eco-toxicity potential. Scenario modeling results showed that variations in the power source and chemical reagents consumption had the greatest influence on the environmental performance. The environmental impact from transportation used for PWB collection was also evaluated. The results were further compared to conventional primary metals production processes, highlighting the environmental benefit of metal recycling from waste PWBs. Optimizing the collection mode, increasing the precious metals recovery efficiency in the beneficiation stage and decreasing the chemical reagents consumption in the refining stage by effective materials liberation and separation are proposed as potential improvement strategies to make the recycling chain more environmentally friendly. The LCA results provide

  15. Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies.

    PubMed

    Hertwich, Edgar G; Gibon, Thomas; Bouman, Evert A; Arvesen, Anders; Suh, Sangwon; Heath, Garvin A; Bergesen, Joseph D; Ramirez, Andrea; Vega, Mabel I; Shi, Lei

    2015-05-19

    Decarbonization of electricity generation can support climate-change mitigation and presents an opportunity to address pollution resulting from fossil-fuel combustion. Generally, renewable technologies require higher initial investments in infrastructure than fossil-based power systems. To assess the tradeoffs of increased up-front emissions and reduced operational emissions, we present, to our knowledge, the first global, integrated life-cycle assessment (LCA) of long-term, wide-scale implementation of electricity generation from renewable sources (i.e., photovoltaic and solar thermal, wind, and hydropower) and of carbon dioxide capture and storage for fossil power generation. We compare emissions causing particulate matter exposure, freshwater ecotoxicity, freshwater eutrophication, and climate change for the climate-change-mitigation (BLUE Map) and business-as-usual (Baseline) scenarios of the International Energy Agency up to 2050. We use a vintage stock model to conduct an LCA of newly installed capacity year-by-year for each region, thus accounting for changes in the energy mix used to manufacture future power plants. Under the Baseline scenario, emissions of air and water pollutants more than double whereas the low-carbon technologies introduced in the BLUE Map scenario allow a doubling of electricity supply while stabilizing or even reducing pollution. Material requirements per unit generation for low-carbon technologies can be higher than for conventional fossil generation: 11-40 times more copper for photovoltaic systems and 6-14 times more iron for wind power plants. However, only two years of current global copper and one year of iron production will suffice to build a low-carbon energy system capable of supplying the world's electricity needs in 2050.

  16. Benefits of clean development mechanism application on the life cycle assessment perspective: a case study in the palm oil industry.

    PubMed

    Chuen, Onn Chiu; Yusoff, Sumiani

    2012-03-01

    This study performed an assessment on the beneficial of the Clean Development Mechanism (CDM) application on waste treatment system in a local palm oil industry in Malaysia. Life cycle assessment (LCA) was conducted to assess the environmental impacts of the greenhouse gas (GHG) reduction from the CDM application. Calculations on the emission reduction used the methodology based on AM002 (Avoided Wastewater and On-site Energy Use Emissions in the Industrial Sector) Version 4 published by United Nations Framework Convention on Climate Change (UNFCC). The results from the studies showed that the introduction of CDM in the palm oil mill through conversion of the captured biogas from palm oil mill effluent (POME) treatment into power generation were able to reduce approximate 0.12 tonnes CO2 equivalent concentration (tCO2e) emission and 30 kW x hr power generation per 1 tonne of fresh fruit bunch processed. Thus, the application of CDM methodology on palm oil mill wastewater treatment was able to reduce up to 1/4 of the overall environment impact generated in palm oil mill.

  17. Comparison of scenarios for the integrated management of construction and demolition waste by life cycle assessment: A case study in Brazil.

    PubMed

    Penteado, Carmenlucia Santos Giordano; Rosado, Laís Peixoto

    2016-10-01

    Brazil, as a result of economic development and strengthening of the construction industry in recent years, is generating an increasing amount of construction and demolition waste (CDW). Hence, environmental assessment of the management systems is vital. A life cycle assessment (LCA) is presented of CDW management in a medium-sized municipality located in the southeast region of Brazil, where the impacts of leaching were not considered due to absence of consistent data. Six different proposed scenarios for the current CDW management situation have been considered. These scenarios comprised the combined use of landfilling, sorting, and recycling, and the use of CDW as paving material for landfill roads, in different percentages. Considering 0.8 ton of waste as the functional unit, the life cycle inventory was performed using primary data obtained from field survey and secondary data from the database Ecoinvent version 3.1, and from the literature. The method CML 2 baseline 2001 was used for environmental impacts evaluation. The results highlight that recycling is beneficial when efficient CDW sorting takes place at construction sites, avoiding the transport of refuse to sorting and recycling facilities, and the distance between the generation source and the recycling unit is within 30 km. Thus, our results are helpful to ensure that the decision-making processes are based on environmental and technical aspects, and not only on economic and political factors, and also provide data and support for other LCA studies on CDW.

  18. Consequential environmental and economic life cycle assessment of green and gray stormwater infrastructures for combined sewer systems.

    PubMed

    Wang, Ranran; Eckelman, Matthew J; Zimmerman, Julie B

    2013-10-