Sample records for life2 computer code

  1. Computerized systems analysis and optimization of aircraft engine performance, weight, and life cycle costs

    NASA Technical Reports Server (NTRS)

    Fishbach, L. H.

    1979-01-01

    The computational techniques utilized to determine the optimum propulsion systems for future aircraft applications and to identify system tradeoffs and technology requirements are described. The characteristics and use of the following computer codes are discussed: (1) NNEP - a very general cycle analysis code that can assemble an arbitrary matrix fans, turbines, ducts, shafts, etc., into a complete gas turbine engine and compute on- and off-design thermodynamic performance; (2) WATE - a preliminary design procedure for calculating engine weight using the component characteristics determined by NNEP; (3) POD DRG - a table look-up program to calculate wave and friction drag of nacelles; (4) LIFCYC - a computer code developed to calculate life cycle costs of engines based on the output from WATE; and (5) INSTAL - a computer code developed to calculate installation effects, inlet performance and inlet weight. Examples are given to illustrate how these computer techniques can be applied to analyze and optimize propulsion system fuel consumption, weight, and cost for representative types of aircraft and missions.

  2. A high temperature fatigue life prediction computer code based on the total strain version of StrainRange Partitioning (SRP)

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.; Saltsman, James F.

    1993-01-01

    A recently developed high-temperature fatigue life prediction computer code is presented and an example of its usage given. The code discussed is based on the Total Strain version of Strainrange Partitioning (TS-SRP). Included in this code are procedures for characterizing the creep-fatigue durability behavior of an alloy according to TS-SRP guidelines and predicting cyclic life for complex cycle types for both isothermal and thermomechanical conditions. A reasonably extensive materials properties database is included with the code.

  3. Life Prediction for a CMC Component Using the NASALIFE Computer Code

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Murthy, Pappu L. N.; Mital, Subodh K.

    2005-01-01

    The computer code, NASALIFE, was used to provide estimates for life of an SiC/SiC stator vane under varying thermomechanical loading conditions. The primary intention of this effort is to show how the computer code NASALIFE can be used to provide reasonable estimates of life for practical propulsion system components made of advanced ceramic matrix composites (CMC). Simple loading conditions provided readily observable and acceptable life predictions. Varying the loading conditions such that low cycle fatigue and creep were affected independently provided expected trends in the results for life due to varying loads and life due to creep. Analysis was based on idealized empirical data for the 9/99 Melt Infiltrated SiC fiber reinforced SiC.

  4. Computational simulation of acoustic fatigue for hot composite structures

    NASA Technical Reports Server (NTRS)

    Singhal, S. N.; Nagpal, V. K.; Murthy, P. L. N.; Chamis, C. C.

    1991-01-01

    This paper presents predictive methods/codes for computational simulation of acoustic fatigue resistance of hot composite structures subjected to acoustic excitation emanating from an adjacent vibrating component. Select codes developed over the past two decades at the NASA Lewis Research Center are used. The codes include computation of (1) acoustic noise generated from a vibrating component, (2) degradation in material properties of the composite laminate at use temperature, (3) dynamic response of acoustically excited hot multilayered composite structure, (4) degradation in the first-ply strength of the excited structure due to acoustic loading, and (5) acoustic fatigue resistance of the excited structure, including propulsion environment. Effects of the laminate lay-up and environment on the acoustic fatigue life are evaluated. The results show that, by keeping the angled plies on the outer surface of the laminate, a substantial increase in the acoustic fatigue life is obtained. The effect of environment (temperature and moisure) is to relieve the residual stresses leading to an increase in the acoustic fatigue life of the excited panel.

  5. CARES/LIFE Software Commercialization

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The NASA Lewis Research Center has entered into a letter agreement with BIOSYM Technologies Inc. (now merged with Molecular Simulations Inc. (MSI)). Under this agreement, NASA will provide a developmental copy of the CARES/LIFE computer program to BIOSYM for evaluation. This computer code predicts the time-dependent reliability of a thermomechanically loaded component. BIOSYM will become familiar with CARES/LIFE, provide results of computations useful in validating the code, evaluate it for potential commercialization, and submit suggestions for improvements or extensions to the code or its documentation. If BIOSYM/Molecular Simulations reaches a favorable evaluation of CARES/LIFE, NASA will enter into negotiations for a cooperative agreement with BIOSYM/Molecular Simulations to further develop the code--adding features such as a user-friendly interface and other improvements. This agreement would give BIOSYM intellectual property rights in the modified codes, which they could protect and then commercialize. NASA would provide BIOSYM with the NASA-developed source codes and would agree to cooperate with BIOSYM in further developing the code. In return, NASA would receive certain use rights in the modified CARES/LIFE program. Presently BIOSYM Technologies Inc. has been involved with integration issues concerning its merger with Molecular Simulations Inc., since both companies used to compete in the computational chemistry market, and to some degree, in the materials market. Consequently, evaluation of the CARES/LIFE software is on hold for a month or two while the merger is finalized. Their interest in CARES continues, however, and they expect to get back to the evaluation by early November 1995.

  6. Computational simulation of acoustic fatigue for hot composite structures

    NASA Technical Reports Server (NTRS)

    Singhal, Surendra N.; Murthy, Pappu L. N.; Chamis, Christos C.; Nagpal, Vinod K.; Sutjahjo, Edhi

    1991-01-01

    Predictive methods/computer codes for the computational simulation of acoustic fatigue resistance of hot composite structures subjected to acoustic excitation emanating from an adjacent vibrating component are discussed. Select codes developed over the past two decades at the NASA Lewis Research Center are used. The codes include computation of acoustic noise generated from a vibrating component, degradation in material properties of a composite laminate at use temperature, dynamic response of acoustically excited hot multilayered composite structure, degradation in the first ply strength of the excited structure due to acoustic loading, and acoustic fatigue resistance of the excited structure, including the propulsion environment. Effects of the laminate lay-up and environment on the acoustic fatigue life are evaluated. The results show that, by keeping the angled plies on the outer surface of the laminate, a substantial increase in the acoustic fatigue life is obtained. The effect of environment (temperature and moisture) is to relieve the residual stresses leading to an increase in the acoustic fatigue life of the excited panel.

  7. Probabilistic Analysis of Aircraft Gas Turbine Disk Life and Reliability

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.; Zaretsky, Erwin V.; August, Richard

    1999-01-01

    Two series of low cycle fatigue (LCF) test data for two groups of different aircraft gas turbine engine compressor disk geometries were reanalyzed and compared using Weibull statistics. Both groups of disks were manufactured from titanium (Ti-6Al-4V) alloy. A NASA Glenn Research Center developed probabilistic computer code Probable Cause was used to predict disk life and reliability. A material-life factor A was determined for titanium (Ti-6Al-4V) alloy based upon fatigue disk data and successfully applied to predict the life of the disks as a function of speed. A comparison was made with the currently used life prediction method based upon crack growth rate. Applying an endurance limit to the computer code did not significantly affect the predicted lives under engine operating conditions. Failure location prediction correlates with those experimentally observed in the LCF tests. A reasonable correlation was obtained between the predicted disk lives using the Probable Cause code and a modified crack growth method for life prediction. Both methods slightly overpredict life for one disk group and significantly under predict it for the other.

  8. A Computer Code for Gas Turbine Engine Weight And Disk Life Estimation

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Ghosn, Louis J.; Halliwell, Ian; Wickenheiser, Tim (Technical Monitor)

    2002-01-01

    Reliable engine-weight estimation at the conceptual design stage is critical to the development of new aircraft engines. It helps to identify the best engine concept amongst several candidates. In this paper, the major enhancements to NASA's engine-weight estimate computer code (WATE) are described. These enhancements include the incorporation of improved weight-calculation routines for the compressor and turbine disks using the finite-difference technique. Furthermore, the stress distribution for various disk geometries was also incorporated, for a life-prediction module to calculate disk life. A material database, consisting of the material data of most of the commonly-used aerospace materials, has also been incorporated into WATE. Collectively, these enhancements provide a more realistic and systematic way to calculate the engine weight. They also provide additional insight into the design trade-off between engine life and engine weight. To demonstrate the new capabilities, the enhanced WATE code is used to perform an engine weight/life trade-off assessment on a production aircraft engine.

  9. Design for cyclic loading endurance of composites

    NASA Technical Reports Server (NTRS)

    Shiao, Michael C.; Murthy, Pappu L. N.; Chamis, Christos C.; Liaw, Leslie D. G.

    1993-01-01

    The application of the computer code IPACS (Integrated Probabilistic Assessment of Composite Structures) to aircraft wing type structures is described. The code performs a complete probabilistic analysis for composites taking into account the uncertainties in geometry, boundary conditions, material properties, laminate lay-ups, and loads. Results of the analysis are presented in terms of cumulative distribution functions (CDF) and probability density function (PDF) of the fatigue life of a wing type composite structure under different hygrothermal environments subjected to the random pressure. The sensitivity of the fatigue life to a number of critical structural/material variables is also computed from the analysis.

  10. Uses of Computer Simulation Models in Ag-Research and Everyday Life

    USDA-ARS?s Scientific Manuscript database

    When the news media talks about models they could be talking about role models, fashion models, conceptual models like the auto industry uses, or computer simulation models. A computer simulation model is a computer code that attempts to imitate the processes and functions of certain systems. There ...

  11. Nemo: an evolutionary and population genetics programming framework.

    PubMed

    Guillaume, Frédéric; Rougemont, Jacques

    2006-10-15

    Nemo is an individual-based, genetically explicit and stochastic population computer program for the simulation of population genetics and life-history trait evolution in a metapopulation context. It comes as both a C++ programming framework and an executable program file. Its object-oriented programming design gives it the flexibility and extensibility needed to implement a large variety of forward-time evolutionary models. It provides developers with abstract models allowing them to implement their own life-history traits and life-cycle events. Nemo offers a large panel of population models, from the Island model to lattice models with demographic or environmental stochasticity and a variety of already implemented traits (deleterious mutations, neutral markers and more), life-cycle events (mating, dispersal, aging, selection, etc.) and output operators for saving data and statistics. It runs on all major computer platforms including parallel computing environments. The source code, binaries and documentation are available under the GNU General Public License at http://nemo2.sourceforge.net.

  12. A users' guide to the trace contaminant control simulation computer program

    NASA Technical Reports Server (NTRS)

    Perry, J. L.

    1994-01-01

    The Trace Contaminant Control Simulation computer program is a tool for assessing the performance of various trace contaminant control technologies for removing trace chemical contamination from a spacecraft cabin atmosphere. The results obtained from the program can be useful in assessing different technology combinations, system sizing, system location with respect to other life support systems, and the overall life cycle economics of a trace contaminant control system. The user's manual is extracted in its entirety from NASA TM-108409 to provide a stand-alone reference for using any version of the program. The first publication of the manual as part of TM-108409 also included a detailed listing of version 8.0 of the program. As changes to the code were necessary, it became apparent that the user's manual should be separate from the computer code documentation and be general enough to provide guidance in using any version of the program. Provided in the guide are tips for input file preparation, general program execution, and output file manipulation. Information concerning source code listings of the latest version of the computer program may be obtained by contacting the author.

  13. Verification and Validation of the BISON Fuel Performance Code for PCMI Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamble, Kyle Allan Lawrence; Novascone, Stephen Rhead; Gardner, Russell James

    2016-06-01

    BISON is a modern finite element-based nuclear fuel performance code that has been under development at Idaho National Laboratory (INL) since 2009. The code is applicable to both steady and transient fuel behavior and has been used to analyze a variety of fuel forms in 1D spherical, 2D axisymmetric, or 3D geometries. A brief overview of BISON’s computational framework, governing equations, and general material and behavioral models is provided. BISON code and solution verification procedures are described. Validation for application to light water reactor (LWR) PCMI problems is assessed by comparing predicted and measured rod diameter following base irradiation andmore » power ramps. Results indicate a tendency to overpredict clad diameter reduction early in life, when clad creepdown dominates, and more significantly overpredict the diameter increase late in life, when fuel expansion controls the mechanical response. Initial rod diameter comparisons have led to consideration of additional separate effects experiments to better understand and predict clad and fuel mechanical behavior. Results from this study are being used to define priorities for ongoing code development and validation activities.« less

  14. Aerothermal modeling program, phase 2. Element B: Flow interaction experiment

    NASA Technical Reports Server (NTRS)

    Nikjooy, M.; Mongia, H. C.; Murthy, S. N. B.; Sullivan, J. P.

    1986-01-01

    The design process was improved and the efficiency, life, and maintenance costs of the turbine engine hot section was enhanced. Recently, there has been much emphasis on the need for improved numerical codes for the design of efficient combustors. For the development of improved computational codes, there is a need for an experimentally obtained data base to be used at test cases for the accuracy of the computations. The purpose of Element-B is to establish a benchmark quality velocity and scalar measurements of the flow interaction of circular jets with swirling flow typical of that in the dome region of annular combustor. In addition to the detailed experimental effort, extensive computations of the swirling flows are to be compared with the measurements for the purpose of assessing the accuracy of current and advanced turbulence and scalar transport models.

  15. 41 CFR 101-27.205 - Shelf-life codes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Shelf-life codes. 101-27...-Management of Shelf-Life Materials § 101-27.205 Shelf-life codes. Shelf-life items shall be identified by use of a one-digit code to provide for uniform coding of shelf-life materials by all agencies. (a) The...

  16. 41 CFR 101-27.205 - Shelf-life codes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 2 2011-07-01 2007-07-01 true Shelf-life codes. 101-27...-Management of Shelf-Life Materials § 101-27.205 Shelf-life codes. Shelf-life items shall be identified by use of a one-digit code to provide for uniform coding of shelf-life materials by all agencies. (a) The...

  17. 41 CFR 101-27.205 - Shelf-life codes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 2 2014-07-01 2012-07-01 true Shelf-life codes. 101-27...-Management of Shelf-Life Materials § 101-27.205 Shelf-life codes. Shelf-life items shall be identified by use of a one-digit code to provide for uniform coding of shelf-life materials by all agencies. (a) The...

  18. 41 CFR 101-27.205 - Shelf-life codes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 2 2013-07-01 2012-07-01 true Shelf-life codes. 101-27...-Management of Shelf-Life Materials § 101-27.205 Shelf-life codes. Shelf-life items shall be identified by use of a one-digit code to provide for uniform coding of shelf-life materials by all agencies. (a) The...

  19. 41 CFR 101-27.205 - Shelf-life codes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 2 2012-07-01 2012-07-01 false Shelf-life codes. 101-27...-Management of Shelf-Life Materials § 101-27.205 Shelf-life codes. Shelf-life items shall be identified by use of a one-digit code to provide for uniform coding of shelf-life materials by all agencies. (a) The...

  20. Validating the BISON fuel performance code to integral LWR experiments

    DOE PAGES

    Williamson, R. L.; Gamble, K. A.; Perez, D. M.; ...

    2016-03-24

    BISON is a modern finite element-based nuclear fuel performance code that has been under development at the Idaho National Laboratory (INL) since 2009. The code is applicable to both steady and transient fuel behavior and has been used to analyze a variety of fuel forms in 1D spherical, 2D axisymmetric, or 3D geometries. Code validation is underway and is the subject of this study. A brief overview of BISON’s computational framework, governing equations, and general material and behavioral models is provided. BISON code and solution verification procedures are described, followed by a summary of the experimental data used to datemore » for validation of Light Water Reactor (LWR) fuel. Validation comparisons focus on fuel centerline temperature, fission gas release, and rod diameter both before and following fuel-clad mechanical contact. Comparisons for 35 LWR rods are consolidated to provide an overall view of how the code is predicting physical behavior, with a few select validation cases discussed in greater detail. Our results demonstrate that 1) fuel centerline temperature comparisons through all phases of fuel life are very reasonable with deviations between predictions and experimental data within ±10% for early life through high burnup fuel and only slightly out of these bounds for power ramp experiments, 2) accuracy in predicting fission gas release appears to be consistent with state-of-the-art modeling and with the involved uncertainties and 3) comparison of rod diameter results indicates a tendency to overpredict clad diameter reduction early in life, when clad creepdown dominates, and more significantly overpredict the diameter increase late in life, when fuel expansion controls the mechanical response. In the initial rod diameter comparisons they were unsatisfactory and have lead to consideration of additional separate effects experiments to better understand and predict clad and fuel mechanical behavior. Results from this study are being used to define priorities for ongoing code development and validation activities.« less

  1. Parallelizing a peanut butter sandwich

    NASA Astrophysics Data System (ADS)

    Quenette, S. M.

    2005-12-01

    This poster aims to demonstrate, in a novel way, why contemporary computational code development is seemingly hard to a geodynamics modeler (i.e. a non-computer-scientist). For example, to utilise comtemporary computer hardware, parallelisation is required. But why do we chose the explicit approach (MPI) over an implicit (OpenMP) one? How does this relate to the typical geodynamics codes. And do we face this same style of problems in every day life? We aim to demonstrate that the little bit of complexity, fore-thought and effort is worth its while.

  2. Verification of Software: The Textbook and Real Problems

    NASA Technical Reports Server (NTRS)

    Carlson, Jan-Renee

    2006-01-01

    The process of verification, or determining the order of accuracy of computational codes, can be problematic when working with large, legacy computational methods that have been used extensively in industry or government. Verification does not ensure that the computer program is producing a physically correct solution, it ensures merely that the observed order of accuracy of solutions are the same as the theoretical order of accuracy. The Method of Manufactured Solutions (MMS) is one of several ways for determining the order of accuracy. MMS is used to verify a series of computer codes progressing in sophistication from "textbook" to "real life" applications. The degree of numerical precision in the computations considerably influenced the range of mesh density to achieve the theoretical order of accuracy even for 1-D problems. The choice of manufactured solutions and mesh form shifted the observed order in specific areas but not in general. Solution residual (iterative) convergence was not always achieved for 2-D Euler manufactured solutions. L(sub 2,norm) convergence differed variable to variable therefore an observed order of accuracy could not be determined conclusively in all cases, the cause of which is currently under investigation.

  3. Users manual and modeling improvements for axial turbine design and performance computer code TD2-2

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.

    1992-01-01

    Computer code TD2 computes design point velocity diagrams and performance for multistage, multishaft, cooled or uncooled, axial flow turbines. This streamline analysis code was recently modified to upgrade modeling related to turbine cooling and to the internal loss correlation. These modifications are presented in this report along with descriptions of the code's expanded input and output. This report serves as the users manual for the upgraded code, which is named TD2-2.

  4. [Footwear according to the "business dress code", and the health condition of women's feet--computer-assisted holistic evaluation].

    PubMed

    Lorkowski, Jacek; Mrzygłód, Mirosław; Kotela, Ireneusz; Kiełbasiewicz-Lorkowska, Ewa; Teul, Iwona

    2013-01-01

    According to the verdict of the Supreme Court in 2005, an employer may dismiss an employee if their conduct (including dress) exposes the employer to losses or threatens his interests. The aim of the study was a holistic assessment of the pleiotropic effects of high-heeled pointed shoes on the health condition of women's feet, wearing them at work, in accordance with the existing rules of the "business dress code". A holistic multidisciplinary analysis was performed. It takes into account: 1) women employees of banks and other large corporations (82 persons); 2) 2D FEM computer model developed by the authors of foot deformed by pointed high-heeled shoes; 3) web site found after entering the code "business dress code". Over 60% of women in the office wore high-heeled shoes. The following has been found among people walking to work in high heels: 1) reduction in the quality of life in about 70% of cases, through periodic occurrence of pain and reduction of functional capacity of the feet; 2) increase in the pressure on the plantar side of the forefoot at least twice; 3) the continued effects the forces deforming the forefoot. 1. An evolutionary change of "dress code" shoes is necessary in order to lead to a reduction in non-physiological overload of feet and the consequence of their disability. 2. These changes are particularly urgent in patients with so-called "sensitive foot".

  5. Simulation of Fatigue Behavior of High Temperature Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Tong, Mike T.; Singhal, Suren N.; Chamis, Christos C.; Murthy, Pappu L. N.

    1996-01-01

    A generalized relatively new approach is described for the computational simulation of fatigue behavior of high temperature metal matrix composites (HT-MMCs). This theory is embedded in a specialty-purpose computer code. The effectiveness of the computer code to predict the fatigue behavior of HT-MMCs is demonstrated by applying it to a silicon-fiber/titanium-matrix HT-MMC. Comparative results are shown for mechanical fatigue, thermal fatigue, thermomechanical (in-phase and out-of-phase) fatigue, as well as the effects of oxidizing environments on fatigue life. These results show that the new approach reproduces available experimental data remarkably well.

  6. Efficient Parallelization of a Dynamic Unstructured Application on the Tera MTA

    NASA Technical Reports Server (NTRS)

    Oliker, Leonid; Biswas, Rupak

    1999-01-01

    The success of parallel computing in solving real-life computationally-intensive problems relies on their efficient mapping and execution on large-scale multiprocessor architectures. Many important applications are both unstructured and dynamic in nature, making their efficient parallel implementation a daunting task. This paper presents the parallelization of a dynamic unstructured mesh adaptation algorithm using three popular programming paradigms on three leading supercomputers. We examine an MPI message-passing implementation on the Cray T3E and the SGI Origin2OOO, a shared-memory implementation using cache coherent nonuniform memory access (CC-NUMA) of the Origin2OOO, and a multi-threaded version on the newly-released Tera Multi-threaded Architecture (MTA). We compare several critical factors of this parallel code development, including runtime, scalability, programmability, and memory overhead. Our overall results demonstrate that multi-threaded systems offer tremendous potential for quickly and efficiently solving some of the most challenging real-life problems on parallel computers.

  7. 38 CFR 61.20 - Life Safety Code capital grants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2011-07-01 2011-07-01 false Life Safety Code capital... (CONTINUED) VA HOMELESS PROVIDERS GRANT AND PER DIEM PROGRAM § 61.20 Life Safety Code capital grants. (a) This section sets forth provisions for obtaining a Life Safety Code capital grant under 38 U.S.C. 2012...

  8. 38 CFR 61.20 - Life Safety Code capital grants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false Life Safety Code capital... (CONTINUED) VA HOMELESS PROVIDERS GRANT AND PER DIEM PROGRAM § 61.20 Life Safety Code capital grants. (a) This section sets forth provisions for obtaining a Life Safety Code capital grant under 38 U.S.C. 2012...

  9. 38 CFR 61.20 - Life Safety Code capital grants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2012-07-01 2012-07-01 false Life Safety Code capital... (CONTINUED) VA HOMELESS PROVIDERS GRANT AND PER DIEM PROGRAM § 61.20 Life Safety Code capital grants. (a) This section sets forth provisions for obtaining a Life Safety Code capital grant under 38 U.S.C. 2012...

  10. Development tests for the 2.5 megawatt Mod-2 wind turbine generator

    NASA Technical Reports Server (NTRS)

    Andrews, J. S.; Baskin, J. M.

    1982-01-01

    The 2.5 megawatt MOD-2 wind turbine generator test program is discussed. The development of the 2.5 megawatt MOD-2 wind turbine generator included an extensive program of testing which encompassed verification of analytical procedures, component development, and integrated system verification. The test program was to assure achievement of the thirty year design operational life of the wind turbine system as well as to minimize costly design modifications which would otherwise have been required during on site system testing. Computer codes were modified, fatigue life of structure and dynamic components were verified, mechanical and electrical component and subsystems were functionally checked and modified where necessary to meet system specifications, and measured dynamic responses of coupled systems confirmed analytical predictions.

  11. 26 CFR 1.801-2 - Taxable years affected.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) INCOME TAXES (CONTINUED) Life Insurance Companies § 1.801-2 Taxable years affected. Section 1.801-1 is... Code are to the Internal Revenue Code of 1954, as amended by the Life Insurance Company Income Tax Act... Internal Revenue Code of 1954, as amended by the Life Insurance Company Income Tax Act of 1959 (73 Stat...

  12. 26 CFR 1.801-2 - Taxable years affected.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) INCOME TAXES (CONTINUED) Life Insurance Companies § 1.801-2 Taxable years affected. Section 1.801-1 is... Code are to the Internal Revenue Code of 1954, as amended by the Life Insurance Company Income Tax Act... Internal Revenue Code of 1954, as amended by the Life Insurance Company Income Tax Act of 1959 (73 Stat...

  13. 26 CFR 1.801-2 - Taxable years affected.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) INCOME TAXES (CONTINUED) Life Insurance Companies § 1.801-2 Taxable years affected. Section 1.801-1 is... Code are to the Internal Revenue Code of 1954, as amended by the Life Insurance Company Income Tax Act... Internal Revenue Code of 1954, as amended by the Life Insurance Company Income Tax Act of 1959 (73 Stat...

  14. 26 CFR 1.801-2 - Taxable years affected.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) INCOME TAXES (CONTINUED) Life Insurance Companies § 1.801-2 Taxable years affected. Section 1.801-1 is... Code are to the Internal Revenue Code of 1954, as amended by the Life Insurance Company Income Tax Act... Internal Revenue Code of 1954, as amended by the Life Insurance Company Income Tax Act of 1959 (73 Stat...

  15. Computational Infrastructure for Engine Structural Performance Simulation

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1997-01-01

    Select computer codes developed over the years to simulate specific aspects of engine structures are described. These codes include blade impact integrated multidisciplinary analysis and optimization, progressive structural fracture, quantification of uncertainties for structural reliability and risk, benefits estimation of new technology insertion and hierarchical simulation of engine structures made from metal matrix and ceramic matrix composites. Collectively these codes constitute a unique infrastructure readiness to credibly evaluate new and future engine structural concepts throughout the development cycle from initial concept, to design and fabrication, to service performance and maintenance and repairs, and to retirement for cause and even to possible recycling. Stated differently, they provide 'virtual' concurrent engineering for engine structures total-life-cycle-cost.

  16. Computer codes developed and under development at Lewis

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1992-01-01

    The objective of this summary is to provide a brief description of: (1) codes developed or under development at LeRC; and (2) the development status of IPACS with some typical early results. The computer codes that have been developed and/or are under development at LeRC are listed in the accompanying charts. This list includes: (1) the code acronym; (2) select physics descriptors; (3) current enhancements; and (4) present (9/91) code status with respect to its availability and documentation. The computer codes list is grouped by related functions such as: (1) composite mechanics; (2) composite structures; (3) integrated and 3-D analysis; (4) structural tailoring; and (5) probabilistic structural analysis. These codes provide a broad computational simulation infrastructure (technology base-readiness) for assessing the structural integrity/durability/reliability of propulsion systems. These codes serve two other very important functions: they provide an effective means of technology transfer; and they constitute a depository of corporate memory.

  17. Gear optimization

    NASA Technical Reports Server (NTRS)

    Vanderplaats, G. N.; Chen, Xiang; Zhang, Ning-Tian

    1988-01-01

    The use of formal numerical optimization methods for the design of gears is investigated. To achieve this, computer codes were developed for the analysis of spur gears and spiral bevel gears. These codes calculate the life, dynamic load, bending strength, surface durability, gear weight and size, and various geometric parameters. It is necessary to calculate all such important responses because they all represent competing requirements in the design process. The codes developed here were written in subroutine form and coupled to the COPES/ADS general purpose optimization program. This code allows the user to define the optimization problem at the time of program execution. Typical design variables include face width, number of teeth and diametral pitch. The user is free to choose any calculated response as the design objective to minimize or maximize and may impose lower and upper bounds on any calculated responses. Typical examples include life maximization with limits on dynamic load, stress, weight, etc. or minimization of weight subject to limits on life, dynamic load, etc. The research codes were written in modular form for easy expansion and so that they could be combined to create a multiple reduction optimization capability in future.

  18. Tree-Structured Digital Organisms Model

    NASA Astrophysics Data System (ADS)

    Suzuki, Teruhiko; Nobesawa, Shiho; Tahara, Ikuo

    Tierra and Avida are well-known models of digital organisms. They describe a life process as a sequence of computation codes. A linear sequence model may not be the only way to describe a digital organism, though it is very simple for a computer-based model. Thus we propose a new digital organism model based on a tree structure, which is rather similar to the generic programming. With our model, a life process is a combination of various functions, as if life in the real world is. This implies that our model can easily describe the hierarchical structure of life, and it can simulate evolutionary computation through mutual interaction of functions. We verified our model by simulations that our model can be regarded as a digital organism model according to its definitions. Our model even succeeded in creating species such as viruses and parasites.

  19. High altitude chemically reacting gas particle mixtures. Volume 3: Computer code user's and applications manual. [rocket nozzle and orbital plume flow fields

    NASA Technical Reports Server (NTRS)

    Smith, S. D.

    1984-01-01

    A users manual for the RAMP2 computer code is provided. The RAMP2 code can be used to model the dominant phenomena which affect the prediction of liquid and solid rocket nozzle and orbital plume flow fields. The general structure and operation of RAMP2 are discussed. A user input/output guide for the modified TRAN72 computer code and the RAMP2F code is given. The application and use of the BLIMPJ module are considered. Sample problems involving the space shuttle main engine and motor are included.

  20. Recommendations for open data science.

    PubMed

    Gymrek, Melissa; Farjoun, Yossi

    2016-01-01

    Life science research increasingly relies on large-scale computational analyses. However, the code and data used for these analyses are often lacking in publications. To maximize scientific impact, reproducibility, and reuse, it is crucial that these resources are made publicly available and are fully transparent. We provide recommendations for improving the openness of data-driven studies in life sciences.

  1. A survey to identify the clinical coding and classification systems currently in use across Europe.

    PubMed

    de Lusignan, S; Minmagh, C; Kennedy, J; Zeimet, M; Bommezijn, H; Bryant, J

    2001-01-01

    This is a survey to identify what clinical coding systems are currently in use across the European Union, and the states seeking membership to it. We sought to identify what systems are currently used and to what extent they were subject to local adaptation. Clinical coding should facilitate identifying key medical events in a computerised medical record, and aggregating information across groups of records. The emerging new driver is as the enabler of the life-long computerised medical record. A prerequisite for this level of functionality is the transfer of information between different computer systems. This transfer can be facilitated either by working on the interoperability problems between disparate systems or by harmonising the underlying data. This paper examines the extent to which the latter has occurred across Europe. Literature and Internet search. Requests for information via electronic mail to pan-European mailing lists of health informatics professionals. Coding systems are now a de facto part of health information systems across Europe. There are relatively few coding systems in existence across Europe. ICD9 and ICD 10, ICPC and Read were the most established. However the local adaptation of these classification systems either on a by country or by computer software manufacturer basis; significantly reduces the ability for the meaning coded with patients computer records to be easily transferred from one medical record system to another. There is no longer any debate as to whether a coding or classification system should be used. Convergence of different classifications systems should be encouraged. Countries and computer manufacturers within the EU should be encouraged to stop making local modifications to coding and classification systems, as this practice risks significantly slowing progress towards easy transfer of records between computer systems.

  2. Hanford meteorological station computer codes: Volume 9, The quality assurance computer codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burk, K.W.; Andrews, G.L.

    1989-02-01

    The Hanford Meteorological Station (HMS) was established in 1944 on the Hanford Site to collect and archive meteorological data and provide weather forecasts and related services for Hanford Site approximately 1/2 mile east of the 200 West Area and is operated by PNL for the US Department of Energy. Meteorological data are collected from various sensors and equipment located on and off the Hanford Site. These data are stored in data bases on the Digital Equipment Corporation (DEC) VAX 11/750 at the HMS (hereafter referred to as the HMS computer). Files from those data bases are routinely transferred to themore » Emergency Management System (EMS) computer at the Unified Dose Assessment Center (UDAC). To ensure the quality and integrity of the HMS data, a set of Quality Assurance (QA) computer codes has been written. The codes will be routinely used by the HMS system manager or the data base custodian. The QA codes provide detailed output files that will be used in correcting erroneous data. The following sections in this volume describe the implementation and operation of QA computer codes. The appendices contain detailed descriptions, flow charts, and source code listings of each computer code. 2 refs.« less

  3. Plasma separation process. Betacell (BCELL) code, user's manual

    NASA Astrophysics Data System (ADS)

    Taherzadeh, M.

    1987-11-01

    The emergence of clearly defined applications for (small or large) amounts of long-life and reliable power sources has given the design and production of betavoltaic systems a new life. Moreover, because of the availability of the Plasma Separation Program, (PSP) at TRW, it is now possible to separate the most desirable radioisotopes for betacell power generating devices. A computer code, named BCELL, has been developed to model the betavoltaic concept by utilizing the available up-to-date source/cell parameters. In this program, attempts have been made to determine the betacell energy device maximum efficiency, degradation due to the emitting source radiation and source/cell lifetime power reduction processes. Additionally, comparison is made between the Schottky and PN junction devices for betacell battery design purposes. Certain computer code runs have been made to determine the JV distribution function and the upper limit of the betacell generated power for specified energy sources. A Ni beta emitting radioisotope was used for the energy source and certain semiconductors were used for the converter subsystem of the betacell system. Some results for a Promethium source are also given here for comparison.

  4. Analytical modeling of operating characteristics of premixing-prevaporizing fuel-air mixing passages. Volume 2: User's manual

    NASA Technical Reports Server (NTRS)

    Anderson, O. L.; Chiappetta, L. M.; Edwards, D. E.; Mcvey, J. B.

    1982-01-01

    A user's manual describing the operation of three computer codes (ADD code, PTRAK code, and VAPDIF code) is presented. The general features of the computer codes, the input/output formats, run streams, and sample input cases are described.

  5. The application of probabilistic fracture analysis to residual life evaluation of embrittled reactor vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickson, T.L.; Simonen, F.A.

    1992-05-01

    Probabilistic fracture mechanics analysis is a major element of comprehensive probabilistic methodology on which current NRC regulatory requirements for pressurized water reactor vessel integrity evaluation are based. Computer codes such as OCA-P and VISA-II perform probabilistic fracture analyses to estimate the increase in vessel failure probability that occurs as the vessel material accumulates radiation damage over the operating life of the vessel. The results of such analyses, when compared with limits of acceptable failure probabilities, provide an estimation of the residual life of a vessel. Such codes can be applied to evaluate the potential benefits of plant-specific mitigating actions designedmore » to reduce the probability of failure of a reactor vessel. 10 refs.« less

  6. The application of probabilistic fracture analysis to residual life evaluation of embrittled reactor vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickson, T.L.; Simonen, F.A.

    1992-01-01

    Probabilistic fracture mechanics analysis is a major element of comprehensive probabilistic methodology on which current NRC regulatory requirements for pressurized water reactor vessel integrity evaluation are based. Computer codes such as OCA-P and VISA-II perform probabilistic fracture analyses to estimate the increase in vessel failure probability that occurs as the vessel material accumulates radiation damage over the operating life of the vessel. The results of such analyses, when compared with limits of acceptable failure probabilities, provide an estimation of the residual life of a vessel. Such codes can be applied to evaluate the potential benefits of plant-specific mitigating actions designedmore » to reduce the probability of failure of a reactor vessel. 10 refs.« less

  7. Research in Computational Astrobiology

    NASA Technical Reports Server (NTRS)

    Chaban, Galina; Colombano, Silvano; Scargle, Jeff; New, Michael H.; Pohorille, Andrew; Wilson, Michael A.

    2003-01-01

    We report on several projects in the field of computational astrobiology, which is devoted to advancing our understanding of the origin, evolution and distribution of life in the Universe using theoretical and computational tools. Research projects included modifying existing computer simulation codes to use efficient, multiple time step algorithms, statistical methods for analysis of astrophysical data via optimal partitioning methods, electronic structure calculations on water-nuclei acid complexes, incorporation of structural information into genomic sequence analysis methods and calculations of shock-induced formation of polycylic aromatic hydrocarbon compounds.

  8. Results of comparative RBMK neutron computation using VNIIEF codes (cell computation, 3D statics, 3D kinetics). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grebennikov, A.N.; Zhitnik, A.K.; Zvenigorodskaya, O.A.

    1995-12-31

    In conformity with the protocol of the Workshop under Contract {open_quotes}Assessment of RBMK reactor safety using modern Western Codes{close_quotes} VNIIEF performed a neutronics computation series to compare western and VNIIEF codes and assess whether VNIIEF codes are suitable for RBMK type reactor safety assessment computation. The work was carried out in close collaboration with M.I. Rozhdestvensky and L.M. Podlazov, NIKIET employees. The effort involved: (1) cell computations with the WIMS, EKRAN codes (improved modification of the LOMA code) and the S-90 code (VNIIEF Monte Carlo). Cell, polycell, burnup computation; (2) 3D computation of static states with the KORAT-3D and NEUmore » codes and comparison with results of computation with the NESTLE code (USA). The computations were performed in the geometry and using the neutron constants presented by the American party; (3) 3D computation of neutron kinetics with the KORAT-3D and NEU codes. These computations were performed in two formulations, both being developed in collaboration with NIKIET. Formulation of the first problem maximally possibly agrees with one of NESTLE problems and imitates gas bubble travel through a core. The second problem is a model of the RBMK as a whole with imitation of control and protection system controls (CPS) movement in a core.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritchie, L.T.; Johnson, J.D.; Blond, R.M.

    The CRAC2 computer code is a revision of the Calculation of Reactor Accident Consequences computer code, CRAC, developed for the Reactor Safety Study. The CRAC2 computer code incorporates significant modeling improvements in the areas of weather sequence sampling and emergency response, and refinements to the plume rise, atmospheric dispersion, and wet deposition models. New output capabilities have also been added. This guide is to facilitate the informed and intelligent use of CRAC2. It includes descriptions of the input data, the output results, the file structures, control information, and five sample problems.

  10. CFD Modeling of Free-Piston Stirling Engines

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir B.; Zhang, Zhi-Guo; Tew, Roy C., Jr.; Gedeon, David; Simon, Terrence W.

    2001-01-01

    NASA Glenn Research Center (GRC) is funding Cleveland State University (CSU) to develop a reliable Computational Fluid Dynamics (CFD) code that can predict engine performance with the goal of significant improvements in accuracy when compared to one-dimensional (1-D) design code predictions. The funding also includes conducting code validation experiments at both the University of Minnesota (UMN) and CSU. In this paper a brief description of the work-in-progress is provided in the two areas (CFD and Experiments). Also, previous test results are compared with computational data obtained using (1) a 2-D CFD code obtained from Dr. Georg Scheuerer and further developed at CSU and (2) a multidimensional commercial code CFD-ACE+. The test data and computational results are for (1) a gas spring and (2) a single piston/cylinder with attached annular heat exchanger. The comparisons among the codes are discussed. The paper also discusses plans for conducting code validation experiments at CSU and UMN.

  11. The Secret Life of Quarks, Final Report for the University of North Carolina at Chapel Hill

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, Robert J.

    This final report summarizes activities and results at the University of North Carolina as part of the the SciDAC-2 Project The Secret Life of Quarks: National Computational Infrastructure for Lattice Quantum Chromodynamics. The overall objective of the project is to construct the software needed to study quantum chromo- dynamics (QCD), the theory of the strong interactions of subatomic physics, and similar strongly coupled gauge theories anticipated to be of importance in the LHC era. It built upon the successful efforts of the SciDAC-1 project National Computational Infrastructure for Lattice Gauge Theory, in which a QCD Applications Programming Interface (QCD API)more » was developed that enables lat- tice gauge theorists to make effective use of a wide variety of massively parallel computers. In the SciDAC-2 project, optimized versions of the QCD API were being created for the IBM Blue- Gene/L (BG/L) and BlueGene/P (BG/P), the Cray XT3/XT4 and its successors, and clusters based on multi-core processors and Infiniband communications networks. The QCD API is being used to enhance the performance of the major QCD community codes and to create new applications. Software libraries of physics tools have been expanded to contain sharable building blocks for inclusion in application codes, performance analysis and visualization tools, and software for au- tomation of physics work flow. New software tools were designed for managing the large data sets generated in lattice QCD simulations, and for sharing them through the International Lattice Data Grid consortium. As part of the overall project, researchers at UNC were funded through ASCR to work in three general areas. The main thrust has been performance instrumentation and analysis in support of the SciDAC QCD code base as it evolved and as it moved to new computation platforms. In support of the performance activities, performance data was to be collected in a database for the purpose of broader analysis. Third, the UNC work was done at RENCI (Renaissance Computing Institute), which has extensive expertise and facilities for scientific data visualization, so we acted in an ongoing consulting and support role in that area.« less

  12. A coded tracking telemetry system

    USGS Publications Warehouse

    Howey, P.W.; Seegar, W.S.; Fuller, M.R.; Titus, K.; Amlaner, Charles J.

    1989-01-01

    We describe the general characteristics of an automated radio telemetry system designed to operate for prolonged periods on a single frequency. Each transmitter sends a unique coded signal to a receiving system that encodes and records only the appropriater, pre-programmed codes. A record of the time of each reception is stored on diskettes in a micro-computer. This system enables continuous monitoring of infrequent signals (e.g. one per minute or one per hour), thus extending operation life or allowing size reduction of the transmitter, compared to conventional wildlife telemetry. Furthermore, when using unique codes transmitted on a single frequency, biologists can monitor many individuals without exceeding the radio frequency allocations for wildlife.

  13. Implementation of radiation shielding calculation methods. Volume 1: Synopsis of methods and summary of results

    NASA Technical Reports Server (NTRS)

    Capo, M. A.; Disney, R. K.

    1971-01-01

    The work performed in the following areas is summarized: (1) Analysis of Realistic nuclear-propelled vehicle was analyzed using the Marshall Space Flight Center computer code package. This code package includes one and two dimensional discrete ordinate transport, point kernel, and single scatter techniques, as well as cross section preparation and data processing codes, (2) Techniques were developed to improve the automated data transfer in the coupled computation method of the computer code package and improve the utilization of this code package on the Univac-1108 computer system. (3) The MSFC master data libraries were updated.

  14. Computer Description of the Field Artillery Ammunition Supply Vehicle

    DTIC Science & Technology

    1983-04-01

    Combinatorial Geometry (COM-GEOM) GIFT Computer Code Computer Target Description 2& AfTNACT (Cmne M feerve shb N ,neemssalyan ify by block number) A...input to the GIFT computer code to generate target vulnerability data. F.a- 4 ono OF I NOV 5S OLETE UNCLASSIFIED SECUOITY CLASSIFICATION OF THIS PAGE...Combinatorial Geometry (COM-GEOM) desrription. The "Geometric Information for Tarqets" ( GIFT ) computer code accepts the CO!-GEOM description and

  15. An emulator for minimizing computer resources for finite element analysis

    NASA Technical Reports Server (NTRS)

    Melosh, R.; Utku, S.; Islam, M.; Salama, M.

    1984-01-01

    A computer code, SCOPE, has been developed for predicting the computer resources required for a given analysis code, computer hardware, and structural problem. The cost of running the code is a small fraction (about 3 percent) of the cost of performing the actual analysis. However, its accuracy in predicting the CPU and I/O resources depends intrinsically on the accuracy of calibration data that must be developed once for the computer hardware and the finite element analysis code of interest. Testing of the SCOPE code on the AMDAHL 470 V/8 computer and the ELAS finite element analysis program indicated small I/O errors (3.2 percent), larger CPU errors (17.8 percent), and negligible total errors (1.5 percent).

  16. Computer Code Aids Design Of Wings

    NASA Technical Reports Server (NTRS)

    Carlson, Harry W.; Darden, Christine M.

    1993-01-01

    AERO2S computer code developed to aid design engineers in selection and evaluation of aerodynamically efficient wing/canard and wing/horizontal-tail configurations that includes simple hinged-flap systems. Code rapidly estimates longitudinal aerodynamic characteristics of conceptual airplane lifting-surface arrangements. Developed in FORTRAN V on CDC 6000 computer system, and ported to MS-DOS environment.

  17. FPGA acceleration of rigid-molecule docking codes

    PubMed Central

    Sukhwani, B.; Herbordt, M.C.

    2011-01-01

    Modelling the interactions of biological molecules, or docking, is critical both to understanding basic life processes and to designing new drugs. The field programmable gate array (FPGA) based acceleration of a recently developed, complex, production docking code is described. The authors found that it is necessary to extend their previous three-dimensional (3D) correlation structure in several ways, most significantly to support simultaneous computation of several correlation functions. The result for small-molecule docking is a 100-fold speed-up of a section of the code that represents over 95% of the original run-time. An additional 2% is accelerated through a previously described method, yielding a total acceleration of 36× over a single core and 10× over a quad-core. This approach is found to be an ideal complement to graphics processing unit (GPU) based docking, which excels in the protein–protein domain. PMID:21857870

  18. User manual for semi-circular compact range reflector code: Version 2

    NASA Technical Reports Server (NTRS)

    Gupta, Inder J.; Burnside, Walter D.

    1987-01-01

    A computer code has been developed at the Ohio State University ElectroScience Laboratory to analyze a semi-circular paraboloidal reflector with or without a rolled edge at the top and a skirt at the bottom. The code can be used to compute the total near field of the reflector or its individual components at a given distance from the center of the paraboloid. The code computes the fields along a radial, horizontal, vertical or axial cut at that distance. Thus, it is very effective in computing the size of the sweet spot for a semi-circular compact range reflector. This report describes the operation of the code. Various input and output statements are explained. Some results obtained using the computer code are presented to illustrate the code's capability as well as being samples of input/output sets.

  19. Working research codes into fluid dynamics education: a science gateway approach

    NASA Astrophysics Data System (ADS)

    Mason, Lachlan; Hetherington, James; O'Reilly, Martin; Yong, May; Jersakova, Radka; Grieve, Stuart; Perez-Suarez, David; Klapaukh, Roman; Craster, Richard V.; Matar, Omar K.

    2017-11-01

    Research codes are effective for illustrating complex concepts in educational fluid dynamics courses, compared to textbook examples, an interactive three-dimensional visualisation can bring a problem to life! Various barriers, however, prevent the adoption of research codes in teaching: codes are typically created for highly-specific `once-off' calculations and, as such, have no user interface and a steep learning curve. Moreover, a code may require access to high-performance computing resources that are not readily available in the classroom. This project allows academics to rapidly work research codes into their teaching via a minimalist `science gateway' framework. The gateway is a simple, yet flexible, web interface allowing students to construct and run simulations, as well as view and share their output. Behind the scenes, the common operations of job configuration, submission, monitoring and post-processing are customisable at the level of shell scripting. In this talk, we demonstrate the creation of an example teaching gateway connected to the Code BLUE fluid dynamics software. Student simulations can be run via a third-party cloud computing provider or a local high-performance cluster. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).

  20. 26 CFR 1.802-2 - Taxable years affected.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) INCOME TAXES Life Insurance Companies § 1.802-2 Taxable years affected. Section 1.802(b)-1 is applicable... 1954, as amended by the Life Insurance Company Income Tax Act of 1959 (73 Stat. 112) and section 235(c..., chapter 1 of the Code are to the Internal Revenue Code of 1954, as amended by the Life Insurance Company...

  1. Recent developments of the NESSUS probabilistic structural analysis computer program

    NASA Technical Reports Server (NTRS)

    Millwater, H.; Wu, Y.-T.; Torng, T.; Thacker, B.; Riha, D.; Leung, C. P.

    1992-01-01

    The NESSUS probabilistic structural analysis computer program combines state-of-the-art probabilistic algorithms with general purpose structural analysis methods to compute the probabilistic response and the reliability of engineering structures. Uncertainty in loading, material properties, geometry, boundary conditions and initial conditions can be simulated. The structural analysis methods include nonlinear finite element and boundary element methods. Several probabilistic algorithms are available such as the advanced mean value method and the adaptive importance sampling method. The scope of the code has recently been expanded to include probabilistic life and fatigue prediction of structures in terms of component and system reliability and risk analysis of structures considering cost of failure. The code is currently being extended to structural reliability considering progressive crack propagation. Several examples are presented to demonstrate the new capabilities.

  2. Plasma Separation Process: Betacell (BCELL) code: User's manual. [Bipolar barrier junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taherzadeh, M.

    1987-11-13

    The emergence of clearly defined applications for (small or large) amounts of long-life and reliable power sources has given the design and production of betavoltaic systems a new life. Moreover, because of the availability of the plasma separation program, (PSP) at TRW, it is now possible to separate the most desirable radioisotopes for betacell power generating devices. A computer code, named BCELL, has been developed to model the betavoltaic concept by utilizing the available up-to-date source/cell parameters. In this program, attempts have been made to determine the betacell energy device maximum efficiency, degradation due to the emitting source radiation andmore » source/cell lifetime power reduction processes. Additionally, comparison is made between the Schottky and PN junction devices for betacell battery design purposes. Certain computer code runs have been made to determine the JV distribution function and the upper limit of the betacell generated power for specified energy sources. A Ni beta emitting radioisotope was used for the energy source and certain semiconductors were used for the converter subsystem of the betacell system. Some results for a Promethium source are also given here for comparison. 16 refs.« less

  3. Navier-Stokes Simulation of Homogeneous Turbulence on the CYBER 205

    NASA Technical Reports Server (NTRS)

    Wu, C. T.; Ferziger, J. H.; Chapman, D. R.; Rogallo, R. S.

    1984-01-01

    A computer code which solves the Navier-Stokes equations for three dimensional, time-dependent, homogenous turbulence has been written for the CYBER 205. The code has options for both 64-bit and 32-bit arithmetic. With 32-bit computation, mesh sizes up to 64 (3) are contained within core of a 2 million 64-bit word memory. Computer speed timing runs were made for various vector lengths up to 6144. With this code, speeds a little over 100 Mflops have been achieved on a 2-pipe CYBER 205. Several problems encountered in the coding are discussed.

  4. Operations analysis (study 2.1). Program listing for the LOVES computer code

    NASA Technical Reports Server (NTRS)

    Wray, S. T., Jr.

    1974-01-01

    A listing of the LOVES computer program is presented. The program is coded partially in SIMSCRIPT and FORTRAN. This version of LOVES is compatible with both the CDC 7600 and the UNIVAC 1108 computers. The code has been compiled, loaded, and executed successfully on the EXEC 8 system for the UNIVAC 1108.

  5. Antenna pattern study, task 2

    NASA Technical Reports Server (NTRS)

    Harper, Warren

    1989-01-01

    Two electromagnetic scattering codes, NEC-BSC and ESP3, were delivered and installed on a NASA VAX computer for use by Marshall Space Flight Center antenna design personnel. The existing codes and certain supplementary software were updated, the codes installed on a computer that will be delivered to the customer, to provide capability for graphic display of the data to be computed by the use of the codes and to assist the customer in the solution of specific problems that demonstrate the use of the codes. With the exception of one code revision, all of these tasks were performed.

  6. Slow Crack Growth and Fatigue Life Prediction of Ceramic Components Subjected to Variable Load History

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama

    2001-01-01

    Present capabilities of the NASA CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code include probabilistic life prediction of ceramic components subjected to fast fracture, slow crack growth (stress corrosion), and cyclic fatigue failure modes. Currently, this code has the capability to compute the time-dependent reliability of ceramic structures subjected to simple time-dependent loading. For example, in slow crack growth (SCG) type failure conditions CARES/Life can handle the cases of sustained and linearly increasing time-dependent loads, while for cyclic fatigue applications various types of repetitive constant amplitude loads can be accounted for. In real applications applied loads are rarely that simple, but rather vary with time in more complex ways such as, for example, engine start up, shut down, and dynamic and vibrational loads. In addition, when a given component is subjected to transient environmental and or thermal conditions, the material properties also vary with time. The objective of this paper is to demonstrate a methodology capable of predicting the time-dependent reliability of components subjected to transient thermomechanical loads that takes into account the change in material response with time. In this paper, the dominant delayed failure mechanism is assumed to be SCG. This capability has been added to the NASA CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code, which has also been modified to have the ability of interfacing with commercially available FEA codes executed for transient load histories. An example involving a ceramic exhaust valve subjected to combustion cycle loads is presented to demonstrate the viability of this methodology and the CARES/Life program.

  7. Cloud Computing for Complex Performance Codes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appel, Gordon John; Hadgu, Teklu; Klein, Brandon Thorin

    This report describes the use of cloud computing services for running complex public domain performance assessment problems. The work consisted of two phases: Phase 1 was to demonstrate complex codes, on several differently configured servers, could run and compute trivial small scale problems in a commercial cloud infrastructure. Phase 2 focused on proving non-trivial large scale problems could be computed in the commercial cloud environment. The cloud computing effort was successfully applied using codes of interest to the geohydrology and nuclear waste disposal modeling community.

  8. 2,445 Hours of Code: What I Learned from Facilitating Hour of Code Events in High School Libraries

    ERIC Educational Resources Information Center

    Colby, Jennifer

    2015-01-01

    This article describes a school librarian's experience with initiating an Hour of Code event for her school's student body. Hadi Partovi of Code.org conceived the Hour of Code "to get ten million students to try one hour of computer science" (Partovi, 2013a), which is implemented during Computer Science Education Week with a goal of…

  9. Transient Reliability Analysis Capability Developed for CARES/Life

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.

    2001-01-01

    The CARES/Life software developed at the NASA Glenn Research Center provides a general-purpose design tool that predicts the probability of the failure of a ceramic component as a function of its time in service. This award-winning software has been widely used by U.S. industry to establish the reliability and life of a brittle material (e.g., ceramic, intermetallic, and graphite) structures in a wide variety of 21st century applications.Present capabilities of the NASA CARES/Life code include probabilistic life prediction of ceramic components subjected to fast fracture, slow crack growth (stress corrosion), and cyclic fatigue failure modes. Currently, this code can compute the time-dependent reliability of ceramic structures subjected to simple time-dependent loading. For example, in slow crack growth failure conditions CARES/Life can handle sustained and linearly increasing time-dependent loads, whereas in cyclic fatigue applications various types of repetitive constant-amplitude loads can be accounted for. However, in real applications applied loads are rarely that simple but vary with time in more complex ways such as engine startup, shutdown, and dynamic and vibrational loads. In addition, when a given component is subjected to transient environmental and or thermal conditions, the material properties also vary with time. A methodology has now been developed to allow the CARES/Life computer code to perform reliability analysis of ceramic components undergoing transient thermal and mechanical loading. This means that CARES/Life will be able to analyze finite element models of ceramic components that simulate dynamic engine operating conditions. The methodology developed is generalized to account for material property variation (on strength distribution and fatigue) as a function of temperature. This allows CARES/Life to analyze components undergoing rapid temperature change in other words, components undergoing thermal shock. In addition, the capability has been developed to perform reliability analysis for components that undergo proof testing involving transient loads. This methodology was developed for environmentally assisted crack growth (crack growth as a function of time and loading), but it will be extended to account for cyclic fatigue (crack growth as a function of load cycles) as well.

  10. Microgravity computing codes. User's guide

    NASA Astrophysics Data System (ADS)

    1982-01-01

    Codes used in microgravity experiments to compute fluid parameters and to obtain data graphically are introduced. The computer programs are stored on two diskettes, compatible with the floppy disk drives of the Apple 2. Two versions of both disks are available (DOS-2 and DOS-3). The codes are written in BASIC and are structured as interactive programs. Interaction takes place through the keyboard of any Apple 2-48K standard system with single floppy disk drive. The programs are protected against wrong commands given by the operator. The programs are described step by step in the same order as the instructions displayed on the monitor. Most of these instructions are shown, with samples of computation and of graphics.

  11. MIADS2 ... an alphanumeric map information assembly and display system for a large computer

    Treesearch

    Elliot L. Amidon

    1966-01-01

    A major improvement and extension of the Map Information Assembly and Display System (MIADS) developed in 1964 is described. Basic principles remain unchanged, but the computer programs have been expanded and rewritten for a large computer, in Fortran IV and MAP languages. The code system is extended from 99 integers to about 2,200 alphanumeric 2-character codes. Hand-...

  12. TEMPEST: A three-dimensional time-dependent computer program for hydrothermal analysis: Volume 2, Assessment and verification results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eyler, L L; Trent, D S; Budden, M J

    During the course of the TEMPEST computer code development a concurrent effort was conducted to assess the code's performance and the validity of computed results. The results of this work are presented in this document. The principal objective of this effort was to assure the code's computational correctness for a wide range of hydrothermal phenomena typical of fast breeder reactor application. 47 refs., 94 figs., 6 tabs.

  13. User's Guide for TOUGH2-MP - A Massively Parallel Version of the TOUGH2 Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Earth Sciences Division; Zhang, Keni; Zhang, Keni

    TOUGH2-MP is a massively parallel (MP) version of the TOUGH2 code, designed for computationally efficient parallel simulation of isothermal and nonisothermal flows of multicomponent, multiphase fluids in one, two, and three-dimensional porous and fractured media. In recent years, computational requirements have become increasingly intensive in large or highly nonlinear problems for applications in areas such as radioactive waste disposal, CO2 geological sequestration, environmental assessment and remediation, reservoir engineering, and groundwater hydrology. The primary objective of developing the parallel-simulation capability is to significantly improve the computational performance of the TOUGH2 family of codes. The particular goal for the parallel simulator ismore » to achieve orders-of-magnitude improvement in computational time for models with ever-increasing complexity. TOUGH2-MP is designed to perform parallel simulation on multi-CPU computational platforms. An earlier version of TOUGH2-MP (V1.0) was based on the TOUGH2 Version 1.4 with EOS3, EOS9, and T2R3D modules, a software previously qualified for applications in the Yucca Mountain project, and was designed for execution on CRAY T3E and IBM SP supercomputers. The current version of TOUGH2-MP (V2.0) includes all fluid property modules of the standard version TOUGH2 V2.0. It provides computationally efficient capabilities using supercomputers, Linux clusters, or multi-core PCs, and also offers many user-friendly features. The parallel simulator inherits all process capabilities from V2.0 together with additional capabilities for handling fractured media from V1.4. This report provides a quick starting guide on how to set up and run the TOUGH2-MP program for users with a basic knowledge of running the (standard) version TOUGH2 code, The report also gives a brief technical description of the code, including a discussion of parallel methodology, code structure, as well as mathematical and numerical methods used. To familiarize users with the parallel code, illustrative sample problems are presented.« less

  14. User's manual for a two-dimensional, ground-water flow code on the Octopus computer network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naymik, T.G.

    1978-08-30

    A ground-water hydrology computer code, programmed by R.L. Taylor (in Proc. American Society of Civil Engineers, Journal of Hydraulics Division, 93(HY2), pp. 25-33 (1967)), has been adapted to the Octopus computer system at Lawrence Livermore Laboratory. Using an example problem, this manual details the input, output, and execution options of the code.

  15. Biosemiotics: a new understanding of life.

    PubMed

    Barbieri, Marcello

    2008-07-01

    Biosemiotics is the idea that life is based on semiosis, i.e., on signs and codes. This idea has been strongly suggested by the discovery of the genetic code, but so far it has made little impact in the scientific world and is largely regarded as a philosophy rather than a science. The main reason for this is that modern biology assumes that signs and meanings do not exist at the molecular level, and that the genetic code was not followed by any other organic code for almost four billion years, which implies that it was an utterly isolated exception in the history of life. These ideas have effectively ruled out the existence of semiosis in the organic world, and yet there are experimental facts against all of them. If we look at the evidence of life without the preconditions of the present paradigm, we discover that semiosis is there, in every single cell, and that it has been there since the very beginning. This is what biosemiotics is really about. It is not a philosophy. It is a new scientific paradigm that is rigorously based on experimental facts. Biosemiotics claims that the genetic code (1) is a real code and (2) has been the first of a long series of organic codes that have shaped the history of life on our planet. The reality of the genetic code and the existence of other organic codes imply that life is based on two fundamental processes--copying and coding--and this in turn implies that evolution took place by two distinct mechanisms, i.e., by natural selection (based on copying) and by natural conventions (based on coding). It also implies that the copying of genes works on individual molecules, whereas the coding of proteins operates on collections of molecules, which means that different mechanisms of evolution exist at different levels of organization. This review intends to underline the scientific nature of biosemiotics, and to this purpose, it aims to prove (1) that the cell is a real semiotic system, (2) that the genetic code is a real code, (3) that evolution took place by natural selection and by natural conventions, and (4) that it was natural conventions, i.e., organic codes, that gave origin to the great novelties of macroevolution. Biological semiosis, in other words, is a scientific reality because the codes of life are experimental realities. The time has come, therefore, to acknowledge this fact of life, even if that means abandoning the present theoretical framework in favor of a more general one where biology and semiotics finally come together and become biosemiotics.

  16. Emergence of Coding and its Specificity as a Physico-Informatic Problem

    NASA Astrophysics Data System (ADS)

    Wills, Peter R.; Nieselt, Kay; McCaskill, John S.

    2015-06-01

    We explore the origin-of-life consequences of the view that biological systems are demarcated from inanimate matter by their possession of referential information, which is processed computationally to control choices of specific physico-chemical events. Cells are cybernetic: they use genetic information in processes of communication and control, subjecting physical events to a system of integrated governance. The genetic code is the most obvious example of how cells use information computationally, but the historical origin of the usefulness of molecular information is not well understood. Genetic coding made information useful because it imposed a modular metric on the evolutionary search and thereby offered a general solution to the problem of finding catalysts of any specificity. We use the term "quasispecies symmetry breaking" to describe the iterated process of self-organisation whereby the alphabets of distinguishable codons and amino acids increased, step by step.

  17. 26 CFR 1.56(g)-0 - Table of Contents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Treatment of death benefits. (vi) Other rules. (A) Term life insurance contracts without net surrender... for adjusted current earnings. (5) General rule for applying Internal Revenue Code provisions in...) Property subject to new ACRS. (i) In general. (ii) Rules for computing the depreciation deduction. (iii...

  18. Biosemiotics: a new understanding of life

    NASA Astrophysics Data System (ADS)

    Barbieri, Marcello

    2008-07-01

    Biosemiotics is the idea that life is based on semiosis, i.e., on signs and codes. This idea has been strongly suggested by the discovery of the genetic code, but so far it has made little impact in the scientific world and is largely regarded as a philosophy rather than a science. The main reason for this is that modern biology assumes that signs and meanings do not exist at the molecular level, and that the genetic code was not followed by any other organic code for almost four billion years, which implies that it was an utterly isolated exception in the history of life. These ideas have effectively ruled out the existence of semiosis in the organic world, and yet there are experimental facts against all of them. If we look at the evidence of life without the preconditions of the present paradigm, we discover that semiosis is there, in every single cell, and that it has been there since the very beginning. This is what biosemiotics is really about. It is not a philosophy. It is a new scientific paradigm that is rigorously based on experimental facts. Biosemiotics claims that the genetic code (1) is a real code and (2) has been the first of a long series of organic codes that have shaped the history of life on our planet. The reality of the genetic code and the existence of other organic codes imply that life is based on two fundamental processes—copying and coding—and this in turn implies that evolution took place by two distinct mechanisms, i.e., by natural selection (based on copying) and by natural conventions (based on coding). It also implies that the copying of genes works on individual molecules, whereas the coding of proteins operates on collections of molecules, which means that different mechanisms of evolution exist at different levels of organization. This review intends to underline the scientific nature of biosemiotics, and to this purpose, it aims to prove (1) that the cell is a real semiotic system, (2) that the genetic code is a real code, (3) that evolution took place by natural selection and by natural conventions, and (4) that it was natural conventions, i.e., organic codes, that gave origin to the great novelties of macroevolution. Biological semiosis, in other words, is a scientific reality because the codes of life are experimental realities. The time has come, therefore, to acknowledge this fact of life, even if that means abandoning the present theoretical framework in favor of a more general one where biology and semiotics finally come together and become biosemiotics.

  19. Navier-Stokes and Comprehensive Analysis Performance Predictions of the NREL Phase VI Experiment

    NASA Technical Reports Server (NTRS)

    Duque, Earl P. N.; Burklund, Michael D.; Johnson, Wayne

    2003-01-01

    A vortex lattice code, CAMRAD II, and a Reynolds-Averaged Navier-Stoke code, OVERFLOW-D2, were used to predict the aerodynamic performance of a two-bladed horizontal axis wind turbine. All computations were compared with experimental data that was collected at the NASA Ames Research Center 80- by 120-Foot Wind Tunnel. Computations were performed for both axial as well as yawed operating conditions. Various stall delay models and dynamics stall models were used by the CAMRAD II code. Comparisons between the experimental data and computed aerodynamic loads show that the OVERFLOW-D2 code can accurately predict the power and spanwise loading of a wind turbine rotor.

  20. Monte Carlo simulation of Ising models by multispin coding on a vector computer

    NASA Astrophysics Data System (ADS)

    Wansleben, Stephan; Zabolitzky, John G.; Kalle, Claus

    1984-11-01

    Rebbi's efficient multispin coding algorithm for Ising models is combined with the use of the vector computer CDC Cyber 205. A speed of 21.2 million updates per second is reached. This is comparable to that obtained by special- purpose computers.

  1. Computation of neutron fluxes in clusters of fuel pins arranged in hexagonal assemblies (2D and 3D)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabha, H.; Marleau, G.

    2012-07-01

    For computations of fluxes, we have used Carvik's method of collision probabilities. This method requires tracking algorithms. An algorithm to compute tracks (in 2D and 3D) has been developed for seven hexagonal geometries with cluster of fuel pins. This has been implemented in the NXT module of the code DRAGON. The flux distribution in cluster of pins has been computed by using this code. For testing the results, they are compared when possible with the EXCELT module of the code DRAGON. Tracks are plotted in the NXT module by using MATLAB, these plots are also presented here. Results are presentedmore » with increasing number of lines to show the convergence of these results. We have numerically computed volumes, surface areas and the percentage errors in these computations. These results show that 2D results converge faster than 3D results. The accuracy on the computation of fluxes up to second decimal is achieved with fewer lines. (authors)« less

  2. Design of high temperature ceramic components against fast fracture and time-dependent failure using cares/life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jadaan, O.M.; Powers, L.M.; Nemeth, N.N.

    1995-08-01

    A probabilistic design methodology which predicts the fast fracture and time-dependent failure behavior of thermomechanically loaded ceramic components is discussed using the CARES/LIFE integrated design computer program. Slow crack growth (SCG) is assumed to be the mechanism responsible for delayed failure behavior. Inert strength and dynamic fatigue data obtained from testing coupon specimens (O-ring and C-ring specimens) are initially used to calculate the fast fracture and SCG material parameters as a function of temperature using the parameter estimation techniques available with the CARES/LIFE code. Finite element analysis (FEA) is used to compute the stress distributions for the tube as amore » function of applied pressure. Knowing the stress and temperature distributions and the fast fracture and SCG material parameters, the life time for a given tube can be computed. A stress-failure probability-time to failure (SPT) diagram is subsequently constructed for these tubes. Such a diagram can be used by design engineers to estimate the time to failure at a given failure probability level for a component subjected to a given thermomechanical load.« less

  3. Comparison of FDNS liquid rocket engine plume computations with SPF/2

    NASA Technical Reports Server (NTRS)

    Kumar, G. N.; Griffith, D. O., II; Warsi, S. A.; Seaford, C. M.

    1993-01-01

    Prediction of a plume's shape and structure is essential to the evaluation of base region environments. The JANNAF standard plume flowfield analysis code SPF/2 predicts plumes well, but cannot analyze base regions. Full Navier-Stokes CFD codes can calculate both zones; however, before they can be used, they must be validated. The CFD code FDNS3D (Finite Difference Navier-Stokes Solver) was used to analyze the single plume of a Space Transportation Main Engine (STME) and comparisons were made with SPF/2 computations. Both frozen and finite rate chemistry models were employed as well as two turbulence models in SPF/2. The results indicate that FDNS3D plume computations agree well with SPF/2 predictions for liquid rocket engine plumes.

  4. On the error statistics of Viterbi decoding and the performance of concatenated codes

    NASA Technical Reports Server (NTRS)

    Miller, R. L.; Deutsch, L. J.; Butman, S. A.

    1981-01-01

    Computer simulation results are presented on the performance of convolutional codes of constraint lengths 7 and 10 concatenated with the (255, 223) Reed-Solomon code (a proposed NASA standard). These results indicate that as much as 0.8 dB can be gained by concatenating this Reed-Solomon code with a (10, 1/3) convolutional code, instead of the (7, 1/2) code currently used by the DSN. A mathematical model of Viterbi decoder burst-error statistics is developed and is validated through additional computer simulations.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The worldwide semisubmersible drilling rig fleet is approaching retirement. But replacement is not an attractive option even though dayrates are reaching record highs. In 1991, Schlumberger Sedco Forex managers decided that an alternative might exist if regulators and insurers could be convinced to extend rig life expectancy through restoration. Sedco Forex chose their No. 704 semisubmersible, an 18-year North Sea veteran, to test their process. The first step was to determine what required restoration, meaning fatigue life analysis of each weld on the huge vessel. If inspected, the task would be unacceptably time-consuming and of questionable accuracy. Instead a suitemore » of computer programs modeled the stress seen by each weld, statistically estimated the sea states seen by the rig throughout its North Sea service and calibrated a beam-element model on which to run their computer simulations. The elastic stiffness of the structure and detailed stress analysis of each weld was performed with ANSYS, a commercially available finite-element analysis program. The use of computer codes to evaluate service life extension is described.« less

  6. COSIM: A Finite-Difference Computer Model to Predict Ternary Concentration Profiles Associated With Oxidation and Interdiffusion of Overlay-Coated Substrates

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.

    2001-01-01

    A finite-difference computer program (COSIM) has been written which models the one-dimensional, diffusional transport associated with high-temperature oxidation and interdiffusion of overlay-coated substrates. The program predicts concentration profiles for up to three elements in the coating and substrate after various oxidation exposures. Surface recession due to solute loss is also predicted. Ternary cross terms and concentration-dependent diffusion coefficients are taken into account. The program also incorporates a previously-developed oxide growth and spalling model to simulate either isothermal or cyclic oxidation exposures. In addition to predicting concentration profiles after various oxidation exposures, the program can also be used to predict coating life based on a concentration dependent failure criterion (e.g., surface solute content drops to 2%). The computer code is written in FORTRAN and employs numerous subroutines to make the program flexible and easily modifiable to other coating oxidation problems.

  7. Force user's manual: A portable, parallel FORTRAN

    NASA Technical Reports Server (NTRS)

    Jordan, Harry F.; Benten, Muhammad S.; Arenstorf, Norbert S.; Ramanan, Aruna V.

    1990-01-01

    The use of Force, a parallel, portable FORTRAN on shared memory parallel computers is described. Force simplifies writing code for parallel computers and, once the parallel code is written, it is easily ported to computers on which Force is installed. Although Force is nearly the same for all computers, specific details are included for the Cray-2, Cray-YMP, Convex 220, Flex/32, Encore, Sequent, Alliant computers on which it is installed.

  8. Pretest aerosol code comparisons for LWR aerosol containment tests LA1 and LA2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, A.L.; Wilson, J.H.; Arwood, P.C.

    The Light-Water-Reactor (LWR) Aerosol Containment Experiments (LACE) are being performed in Richland, Washington, at the Hanford Engineering Development Laboratory (HEDL) under the leadership of an international project board and the Electric Power Research Institute. These tests have two objectives: (1) to investigate, at large scale, the inherent aerosol retention behavior in LWR containments under simulated severe accident conditions, and (2) to provide an experimental data base for validating aerosol behavior and thermal-hydraulic computer codes. Aerosol computer-code comparison activities are being coordinated at the Oak Ridge National Laboratory. For each of the six LACE tests, ''pretest'' calculations (for code-to-code comparisons) andmore » ''posttest'' calculations (for code-to-test data comparisons) are being performed. The overall goals of the comparison effort are (1) to provide code users with experience in applying their codes to LWR accident-sequence conditions and (2) to evaluate and improve the code models.« less

  9. Development of a CFD code for casting simulation

    NASA Technical Reports Server (NTRS)

    Murph, Jesse E.

    1993-01-01

    Because of high rejection rates for large structural castings (e.g., the Space Shuttle Main Engine Alternate Turbopump Design Program), a reliable casting simulation computer code is very desirable. This code would reduce both the development time and life cycle costs by allowing accurate modeling of the entire casting process. While this code could be used for other types of castings, the most significant reductions of time and cost would probably be realized in complex investment castings, where any reduction in the number of development castings would be of significant benefit. The casting process is conveniently divided into three distinct phases: (1) mold filling, where the melt is poured or forced into the mold cavity; (2) solidification, where the melt undergoes a phase change to the solid state; and (3) cool down, where the solidified part continues to cool to ambient conditions. While these phases may appear to be separate and distinct, temporal overlaps do exist between phases (e.g., local solidification occurring during mold filling), and some phenomenological events are affected by others (e.g., residual stresses depend on solidification and cooling rates). Therefore, a reliable code must accurately model all three phases and the interactions between each. While many codes have been developed (to various stages of complexity) to model the solidification and cool down phases, only a few codes have been developed to model mold filling.

  10. A performance comparison of the Cray-2 and the Cray X-MP

    NASA Technical Reports Server (NTRS)

    Schmickley, Ronald; Bailey, David H.

    1986-01-01

    A suite of thirteen large Fortran benchmark codes were run on Cray-2 and Cray X-MP supercomputers. These codes were a mix of compute-intensive scientific application programs (mostly Computational Fluid Dynamics) and some special vectorized computation exercise programs. For the general class of programs tested on the Cray-2, most of which were not specially tuned for speed, the floating point operation rates varied under a variety of system load configurations from 40 percent up to 125 percent of X-MP performance rates. It is concluded that the Cray-2, in the original system configuration studied (without memory pseudo-banking) will run untuned Fortran code, on average, about 70 percent of X-MP speeds.

  11. Three-D CFD Analysis of Hydrostatic Bearings

    NASA Technical Reports Server (NTRS)

    Lin, Shyi-Jang; Hibbs, Robert I., Jr.

    1993-01-01

    The hydrostatic bearing promises life and speed characteristics currently unachievable with rolling element bearings alone. In order to achieve the speed and life requirements of the next generation of rocket engines, turbopump manufacturers are proposing hydrostatic bearings to be used in place of, or in series with, rolling element bearings. The design of a hydrostatic bearing is dependent on accurate pressure in the bearing. The stiffness and damping of the hydrostatic bearing is very sensitive to the bearing recess pressure ratio. In the conventional approach, usually ad hoc assumptions were made in determining the bearing pressure of this approach is inherently incorrect. In the present paper, a more elaborate approach to obtain bearing pressure is used. The bearing pressure and complete flow features of the bearing are directly computed by solving the complete 3-D Navier Stokes equation. The code used in the present calculation is a modified version of REACT3D code. Several calculations have been performed for the hydrostatic bearing designed and tested at Texas A&M. Good agreement has been obtained between computed and test results. Detailed flow features in the bearing will also be described and discussed.

  12. A Guide to Axial-Flow Turbine Off-Design Computer Program AXOD2

    NASA Technical Reports Server (NTRS)

    Chen, Shu-Cheng S.

    2014-01-01

    A Users Guide for the axial flow turbine off-design computer program AXOD2 is composed in this paper. This Users Guide is supplementary to the original Users Manual of AXOD. Three notable contributions of AXOD2 to its predecessor AXOD, both in the context of the Guide or in the functionality of the code, are described and discussed in length. These are: 1) a rational representation of the mathematical principles applied, with concise descriptions of the formulas implemented in the actual coding. Their physical implications are addressed; 2) the creation and documentation of an Addendum Listing of input namelist-parameters unique to AXOD2, that differ from or are in addition to the original input-namelists given in the Manual of AXOD. Their usages are discussed; and 3) the institution of proper stoppages of the code execution, encoding termination messaging and error messages of the execution to AXOD2. These measures are to safe-guard the integrity of the code execution, such that a failure mode encountered during a case-study would not plunge the code execution into indefinite loop, or cause a blow-out of the program execution. Details on these are discussed and illustrated in this paper. Moreover, this computer program has since been reconstructed substantially. Standard FORTRAN Langue was instituted, and the code was formatted in Double Precision (REAL*8). As the result, the code is now suited for use in a local Desktop Computer Environment, is perfectly portable to any Operating System, and can be executed by any FORTRAN compiler equivalent to a FORTRAN 9095 compiler. AXOD2 will be available through NASA Glenn Research Center (GRC) Software Repository.

  13. Calculation of Water Drop Trajectories to and About Arbitrary Three-Dimensional Bodies in Potential Airflow

    NASA Technical Reports Server (NTRS)

    Norment, H. G.

    1980-01-01

    Calculations can be performed for any atmospheric conditions and for all water drop sizes, from the smallest cloud droplet to large raindrops. Any subsonic, external, non-lifting flow can be accommodated; flow into, but not through, inlets also can be simulated. Experimental water drop drag relations are used in the water drop equations of motion and effects of gravity settling are included. Seven codes are described: (1) a code used to debug and plot body surface description data; (2) a code that processes the body surface data to yield the potential flow field; (3) a code that computes flow velocities at arrays of points in space; (4) a code that computes water drop trajectories from an array of points in space; (5) a code that computes water drop trajectories and fluxes to arbitrary target points; (6) a code that computes water drop trajectories tangent to the body; and (7) a code that produces stereo pair plots which include both the body and trajectories. Code descriptions include operating instructions, card inputs and printouts for example problems, and listing of the FORTRAN codes. Accuracy of the calculations is discussed, and trajectory calculation results are compared with prior calculations and with experimental data.

  14. Probabilistic Assessment of National Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Shah, A. R.; Shiao, M.; Chamis, C. C.

    1996-01-01

    A preliminary probabilistic structural assessment of the critical section of National Wind Tunnel (NWT) is performed using NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) computer code. Thereby, the capabilities of NESSUS code have been demonstrated to address reliability issues of the NWT. Uncertainties in the geometry, material properties, loads and stiffener location on the NWT are considered to perform the reliability assessment. Probabilistic stress, frequency, buckling, fatigue and proof load analyses are performed. These analyses cover the major global and some local design requirements. Based on the assumed uncertainties, the results reveal the assurance of minimum 0.999 reliability for the NWT. Preliminary life prediction analysis results show that the life of the NWT is governed by the fatigue of welds. Also, reliability based proof test assessment is performed.

  15. Short-lived non-coding transcripts (SLiTs): Clues to regulatory long non-coding RNA.

    PubMed

    Tani, Hidenori

    2017-03-22

    Whole transcriptome analyses have revealed a large number of novel long non-coding RNAs (lncRNAs). Although the importance of lncRNAs has been documented in previous reports, the biological and physiological functions of lncRNAs remain largely unknown. The role of lncRNAs seems an elusive problem. Here, I propose a clue to the identification of regulatory lncRNAs. The key point is RNA half-life. RNAs with a long half-life (t 1/2 > 4 h) contain a significant proportion of ncRNAs, as well as mRNAs involved in housekeeping functions, whereas RNAs with a short half-life (t 1/2 < 4 h) include known regulatory ncRNAs and regulatory mRNAs. This novel class of ncRNAs with a short half-life can be categorized as Short-Lived non-coding Transcripts (SLiTs). I consider that SLiTs are likely to be rich in functionally uncharacterized regulatory RNAs. This review describes recent progress in research into SLiTs.

  16. Spectral fitting, shock layer modeling, and production of nitrogen oxides and excited nitrogen

    NASA Technical Reports Server (NTRS)

    Blackwell, H. E.

    1991-01-01

    An analysis was made of N2 emission from 8.72 MJ/kg shock layer at 2.54, 1.91, and 1.27 cm positions and vibrational state distributions, temperatures, and relative electronic state populations was obtained from data sets. Other recorded arc jet N2 and air spectral data were reviewed and NO emission characteristics were studied. A review of operational procedures of the DSMC code was made. Information on other appropriate codes and modifications, including ionization, were made as well as a determination of the applicability of codes reviewed to task requirement. A review was also made of computational procedures used in CFD codes of Li and other codes on JSC computers. An analysis was made of problems associated with integration of specific chemical kinetics applicable to task into CFD codes.

  17. Gigaflop performance on a CRAY-2: Multitasking a computational fluid dynamics application

    NASA Technical Reports Server (NTRS)

    Tennille, Geoffrey M.; Overman, Andrea L.; Lambiotte, Jules J.; Streett, Craig L.

    1991-01-01

    The methodology is described for converting a large, long-running applications code that executed on a single processor of a CRAY-2 supercomputer to a version that executed efficiently on multiple processors. Although the conversion of every application is different, a discussion of the types of modification used to achieve gigaflop performance is included to assist others in the parallelization of applications for CRAY computers, especially those that were developed for other computers. An existing application, from the discipline of computational fluid dynamics, that had utilized over 2000 hrs of CPU time on CRAY-2 during the previous year was chosen as a test case to study the effectiveness of multitasking on a CRAY-2. The nature of dominant calculations within the application indicated that a sustained computational rate of 1 billion floating-point operations per second, or 1 gigaflop, might be achieved. The code was first analyzed and modified for optimal performance on a single processor in a batch environment. After optimal performance on a single CPU was achieved, the code was modified to use multiple processors in a dedicated environment. The results of these two efforts were merged into a single code that had a sustained computational rate of over 1 gigaflop on a CRAY-2. Timings and analysis of performance are given for both single- and multiple-processor runs.

  18. A fast technique for computing syndromes of BCH and RS codes. [deep space network

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Truong, T. K.; Miller, R. L.

    1979-01-01

    A combination of the Chinese Remainder Theorem and Winograd's algorithm is used to compute transforms of odd length over GF(2 to the m power). Such transforms are used to compute the syndromes needed for decoding CBH and RS codes. The present scheme requires substantially fewer multiplications and additions than the conventional method of computing the syndromes directly.

  19. Raptor: An Enterprise Knowledge Discovery Engine Version 2.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2011-08-31

    The Raptor Version 2.0 computer code uses a set of documents as seed documents to recommend documents of interest from a large, target set of documents. The computer code provides results that show the recommended documents with the highest similarity to the seed documents. Version 2.0 was specifically developed to work with SharePoint 2007 and MS SQL server.

  20. An evaluation of TRAC-PF1/MOD1 computer code performance during posttest simulations of Semiscale MOD-2C feedwater line break transients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, D.G.: Watkins, J.C.

    This report documents an evaluation of the TRAC-PF1/MOD1 reactor safety analysis computer code during computer simulations of feedwater line break transients. The experimental data base for the evaluation included the results of three bottom feedwater line break tests performed in the Semiscale Mod-2C test facility. The tests modeled 14.3% (S-FS-7), 50% (S-FS-11), and 100% (S-FS-6B) breaks. The test facility and the TRAC-PF1/MOD1 model used in the calculations are described. Evaluations of the accuracy of the calculations are presented in the form of comparisons of measured and calculated histories of selected parameters associated with the primary and secondary systems. In additionmore » to evaluating the accuracy of the code calculations, the computational performance of the code during the simulations was assessed. A conclusion was reached that the code is capable of making feedwater line break transient calculations efficiently, but there is room for significant improvements in the simulations that were performed. Recommendations are made for follow-on investigations to determine how to improve future feedwater line break calculations and for code improvements to make the code easier to use.« less

  1. Detecting well-being via computerized content analysis of brief diary entries.

    PubMed

    Tov, William; Ng, Kok Leong; Lin, Han; Qiu, Lin

    2013-12-01

    Two studies evaluated the correspondence between self-reported well-being and codings of emotion and life content by the Linguistic Inquiry and Word Count (LIWC; Pennebaker, Booth, & Francis, 2011). Open-ended diary responses were collected from 206 participants daily for 3 weeks (Study 1) and from 139 participants twice a week for 8 weeks (Study 2). LIWC negative emotion consistently correlated with self-reported negative emotion. LIWC positive emotion correlated with self-reported positive emotion in Study 1 but not in Study 2. No correlations were observed with global life satisfaction. Using a co-occurrence coding method to combine LIWC emotion codings with life-content codings, we estimated the frequency of positive and negative events in 6 life domains (family, friends, academics, health, leisure, and money). Domain-specific event frequencies predicted self-reported satisfaction in all domains in Study 1 but not consistently in Study 2. We suggest that the correspondence between LIWC codings and self-reported well-being is affected by the number of writing samples collected per day as well as the target period (e.g., past day vs. past week) assessed by the self-report measure. Extensions and possible implications for the analyses of similar types of open-ended data (e.g., social media messages) are discussed. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  2. Fault tolerant computing: A preamble for assuring viability of large computer systems

    NASA Technical Reports Server (NTRS)

    Lim, R. S.

    1977-01-01

    The need for fault-tolerant computing is addressed from the viewpoints of (1) why it is needed, (2) how to apply it in the current state of technology, and (3) what it means in the context of the Phoenix computer system and other related systems. To this end, the value of concurrent error detection and correction is described. User protection, program retry, and repair are among the factors considered. The technology of algebraic codes to protect memory systems and arithmetic codes to protect memory systems and arithmetic codes to protect arithmetic operations is discussed.

  3. Functional dissociation of stimulus intensity encoding and predictive coding of pain in the insula

    PubMed Central

    Geuter, Stephan; Boll, Sabrina; Eippert, Falk; Büchel, Christian

    2017-01-01

    The computational principles by which the brain creates a painful experience from nociception are still unknown. Classic theories suggest that cortical regions either reflect stimulus intensity or additive effects of intensity and expectations, respectively. By contrast, predictive coding theories provide a unified framework explaining how perception is shaped by the integration of beliefs about the world with mismatches resulting from the comparison of these beliefs against sensory input. Using functional magnetic resonance imaging during a probabilistic heat pain paradigm, we investigated which computations underlie pain perception. Skin conductance, pupil dilation, and anterior insula responses to cued pain stimuli strictly followed the response patterns hypothesized by the predictive coding model, whereas posterior insula encoded stimulus intensity. This novel functional dissociation of pain processing within the insula together with previously observed alterations in chronic pain offer a novel interpretation of aberrant pain processing as disturbed weighting of predictions and prediction errors. DOI: http://dx.doi.org/10.7554/eLife.24770.001 PMID:28524817

  4. Report of experiments and evidence for ASC L2 milestone 4467 : demonstration of a legacy application's path to exascale.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curry, Matthew L.; Ferreira, Kurt Brian; Pedretti, Kevin Thomas Tauke

    2012-03-01

    This report documents thirteen of Sandia's contributions to the Computational Systems and Software Environment (CSSE) within the Advanced Simulation and Computing (ASC) program between fiscal years 2009 and 2012. It describes their impact on ASC applications. Most contributions are implemented in lower software levels allowing for application improvement without source code changes. Improvements are identified in such areas as reduced run time, characterizing power usage, and Input/Output (I/O). Other experiments are more forward looking, demonstrating potential bottlenecks using mini-application versions of the legacy codes and simulating their network activity on Exascale-class hardware. The purpose of this report is to provemore » that the team has completed milestone 4467-Demonstration of a Legacy Application's Path to Exascale. Cielo is expected to be the last capability system on which existing ASC codes can run without significant modifications. This assertion will be tested to determine where the breaking point is for an existing highly scalable application. The goal is to stretch the performance boundaries of the application by applying recent CSSE RD in areas such as resilience, power, I/O, visualization services, SMARTMAP, lightweight LWKs, virtualization, simulation, and feedback loops. Dedicated system time reservations and/or CCC allocations will be used to quantify the impact of system-level changes to extend the life and performance of the ASC code base. Finally, a simulation of anticipated exascale-class hardware will be performed using SST to supplement the calculations. Determine where the breaking point is for an existing highly scalable application: Chapter 15 presented the CSSE work that sought to identify the breaking point in two ASC legacy applications-Charon and CTH. Their mini-app versions were also employed to complete the task. There is no single breaking point as more than one issue was found with the two codes. The results were that applications can expect to encounter performance issues related to the computing environment, system software, and algorithms. Careful profiling of runtime performance will be needed to identify the source of an issue, in strong combination with knowledge of system software and application source code.« less

  5. Three-dimensional turbopump flowfield analysis

    NASA Technical Reports Server (NTRS)

    Sharma, O. P.; Belford, K. A.; Ni, R. H.

    1992-01-01

    A program was conducted to develop a flow prediction method applicable to rocket turbopumps. The complex nature of a flowfield in turbopumps is described and examples of flowfields are discussed to illustrate that physics based models and analytical calculation procedures based on computational fluid dynamics (CFD) are needed to develop reliable design procedures for turbopumps. A CFD code developed at NASA ARC was used as the base code. The turbulence model and boundary conditions in the base code were modified, respectively, to: (1) compute transitional flows and account for extra rates of strain, e.g., rotation; and (2) compute surface heat transfer coefficients and allow computation through multistage turbomachines. Benchmark quality data from two and three-dimensional cascades were used to verify the code. The predictive capabilities of the present CFD code were demonstrated by computing the flow through a radial impeller and a multistage axial flow turbine. Results of the program indicate that the present code operated in a two-dimensional mode is a cost effective alternative to full three-dimensional calculations, and that it permits realistic predictions of unsteady loadings and losses for multistage machines.

  6. PyPedia: using the wiki paradigm as crowd sourcing environment for bioinformatics protocols.

    PubMed

    Kanterakis, Alexandros; Kuiper, Joël; Potamias, George; Swertz, Morris A

    2015-01-01

    Today researchers can choose from many bioinformatics protocols for all types of life sciences research, computational environments and coding languages. Although the majority of these are open source, few of them possess all virtues to maximize reuse and promote reproducible science. Wikipedia has proven a great tool to disseminate information and enhance collaboration between users with varying expertise and background to author qualitative content via crowdsourcing. However, it remains an open question whether the wiki paradigm can be applied to bioinformatics protocols. We piloted PyPedia, a wiki where each article is both implementation and documentation of a bioinformatics computational protocol in the python language. Hyperlinks within the wiki can be used to compose complex workflows and induce reuse. A RESTful API enables code execution outside the wiki. Initial content of PyPedia contains articles for population statistics, bioinformatics format conversions and genotype imputation. Use of the easy to learn wiki syntax effectively lowers the barriers to bring expert programmers and less computer savvy researchers on the same page. PyPedia demonstrates how wiki can provide a collaborative development, sharing and even execution environment for biologists and bioinformaticians that complement existing resources, useful for local and multi-center research teams. PyPedia is available online at: http://www.pypedia.com. The source code and installation instructions are available at: https://github.com/kantale/PyPedia_server. The PyPedia python library is available at: https://github.com/kantale/pypedia. PyPedia is open-source, available under the BSD 2-Clause License.

  7. 26 CFR 1.821-2 - Taxable years affected.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) INCOME TAXES (CONTINUED) Mutual Insurance Companies (other Than Life and Certain Marine Insurance Companies and Other Than Fire Or Flood Insurance Companies Which Operate on Basis of Perpetual Policies Or..., chapter 1 of the Code are to the Internal Revenue Code of 1954, as amended by the Life Insurance Company...

  8. 26 CFR 1.821-2 - Taxable years affected.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) INCOME TAXES (CONTINUED) Mutual Insurance Companies (other Than Life and Certain Marine Insurance Companies and Other Than Fire Or Flood Insurance Companies Which Operate on Basis of Perpetual Policies Or..., chapter 1 of the Code are to the Internal Revenue Code of 1954, as amended by the Life Insurance Company...

  9. 26 CFR 1.821-2 - Taxable years affected.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) INCOME TAXES (CONTINUED) Mutual Insurance Companies (other Than Life and Certain Marine Insurance Companies and Other Than Fire Or Flood Insurance Companies Which Operate on Basis of Perpetual Policies Or..., chapter 1 of the Code are to the Internal Revenue Code of 1954, as amended by the Life Insurance Company...

  10. 26 CFR 1.821-2 - Taxable years affected.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) INCOME TAXES (CONTINUED) Mutual Insurance Companies (other Than Life and Certain Marine Insurance Companies and Other Than Fire Or Flood Insurance Companies Which Operate on Basis of Perpetual Policies Or..., chapter 1 of the Code are to the Internal Revenue Code of 1954, as amended by the Life Insurance Company...

  11. Parallel Numerical Simulations of Water Reservoirs

    NASA Astrophysics Data System (ADS)

    Torres, Pedro; Mangiavacchi, Norberto

    2010-11-01

    The study of the water flow and scalar transport in water reservoirs is important for the determination of the water quality during the initial stages of the reservoir filling and during the life of the reservoir. For this scope, a parallel 2D finite element code for solving the incompressible Navier-Stokes equations coupled with scalar transport was implemented using the message-passing programming model, in order to perform simulations of hidropower water reservoirs in a computer cluster environment. The spatial discretization is based on the MINI element that satisfies the Babuska-Brezzi (BB) condition, which provides sufficient conditions for a stable mixed formulation. All the distributed data structures needed in the different stages of the code, such as preprocessing, solving and post processing, were implemented using the PETSc library. The resulting linear systems for the velocity and the pressure fields were solved using the projection method, implemented by an approximate block LU factorization. In order to increase the parallel performance in the solution of the linear systems, we employ the static condensation method for solving the intermediate velocity at vertex and centroid nodes separately. We compare performance results of the static condensation method with the approach of solving the complete system. In our tests the static condensation method shows better performance for large problems, at the cost of an increased memory usage. Performance results for other intensive parts of the code in a computer cluster are also presented.

  12. Effect of a Diffusion Zone on Fatigue Crack Propagation in Layered FGMs

    NASA Astrophysics Data System (ADS)

    Hauber, Brett; Brockman, Robert; Paulino, Glaucio

    2008-02-01

    Research into functionally graded materials (FGMs) has led to advances in our ability to analyze cracks. However, two prominent aspects remain relatively unexplored: 1) development and validation of modeling methods for fatigue crack propagation in FGMs, and 2) experimental validation of stress intensity models in engineered materials such as two phase monolithic and graded materials. This work addresses some of these problems for a limited set of conditions, material systems (e.g., Ti/TiB), and material gradients. Numerical analyses are conducted for single edge notch bend (SENB) specimens. Stress intensity factors are computed using the specialized finite element code I-Franc (Illinois Fracture Analysis Code), which is tailored for both homogeneous and graded materials, as well as Franc2DL and ABAQUS. Crack extension is considered by means of specified crack increments, together with fatigue evaluations to predict crack propagation life. Results will be used to determine linear material gradient parameters that are significant for prediction of fatigue crack growth behavior.

  13. ASR4: A computer code for fitting and processing 4-gage anelastic strain recovery data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warpinski, N.R.

    A computer code for analyzing four-gage Anelastic Strain Recovery (ASR) data has been modified for use on a personal computer. This code fits the viscoelastic model of Warpinski and Teufel to measured ASR data, calculates the stress orientation directly, and computes stress magnitudes if sufficient input data are available. The code also calculates the stress orientation using strain-rosette equations, and its calculates stress magnitudes using Blanton's approach, assuming sufficient input data are available. The program is written in FORTRAN, compiled with Ryan-McFarland Version 2.4. Graphics use PLOT88 software by Plotworks, Inc., but the graphics software must be obtained by themore » user because of licensing restrictions. A version without graphics can also be run. This code is available through the National Energy Software Center (NESC), operated by Argonne National Laboratory. 5 refs., 3 figs.« less

  14. Coupled 2-dimensional cascade theory for noise an d unsteady aerodynamics of blade row interaction in turbofans. Volume 2: Documentation for computer code CUP2D

    NASA Technical Reports Server (NTRS)

    Hanson, Donald B.

    1994-01-01

    A two dimensional linear aeroacoustic theory for rotor/stator interaction with unsteady coupling was derived and explored in Volume 1 of this report. Computer program CUP2D has been written in FORTRAN embodying the theoretical equations. This volume (Volume 2) describes the structure of the code, installation and running, preparation of the input file, and interpretation of the output. A sample case is provided with printouts of the input and output. The source code is included with comments linking it closely to the theoretical equations in Volume 1.

  15. Bellows flow-induced vibrations

    NASA Technical Reports Server (NTRS)

    Tygielski, P. J.; Smyly, H. M.; Gerlach, C. R.

    1983-01-01

    The bellows flow excitation mechanism and results of comprehensive test program are summarized. The analytical model for predicting bellows flow induced stress is refined. The model includes the effects of an upstream elbow, arbitrary geometry, and multiple piles. A refined computer code for predicting flow induced stress is described which allows life prediction if a material S-N diagram is available.

  16. Common Sense and the Uncommon Bacterium--Is "Life" Patentable?

    ERIC Educational Resources Information Center

    Kiley, Thomas D.

    1978-01-01

    The Supreme Court is faced with some difficult issues with a common origin in disagreement between the Patent and Trademark Office and the Court of Customs and Patent Appeals over the code that defines what things are and are not patentable. The patent concerns of the computer software and molecular biology fields are addressed. (JMD)

  17. Instructions for the use of the CIVM-Jet 4C finite-strain computer code to calculate the transient structural responses of partial and/or complete arbitrarily-curved rings subjected to fragment impact

    NASA Technical Reports Server (NTRS)

    Rodal, J. J. A.; French, S. E.; Witmer, E. A.; Stagliano, T. R.

    1979-01-01

    The CIVM-JET 4C computer program for the 'finite strain' analysis of 2 d transient structural responses of complete or partial rings and beams subjected to fragment impact stored on tape as a series of individual files. Which subroutines are found in these files are described in detail. All references to the CIVM-JET 4C program are made assuming that the user has a copy of NASA CR-134907 (ASRL TR 154-9) which serves as a user's guide to (1) the CIVM-JET 4B computer code and (2) the CIVM-JET 4C computer code 'with the use of the modified input instructions' attached hereto.

  18. Assuring Life in Composite Systems

    NASA Technical Reports Server (NTRS)

    Chamis, Christos c.

    2008-01-01

    A computational simulation method is presented to assure life in composite systems by using dynamic buckling of smart composite shells as an example. The combined use of composite mechanics, finite element computer codes, and probabilistic analysis enable the effective assessment of the dynamic buckling load of smart composite shells. A universal plot is generated to estimate the dynamic buckling load of composite shells at various load rates and probabilities. The shell structure is also evaluated with smart fibers embedded in the plies right below the outer plies. The results show that, on the average, the use of smart fibers improved the shell buckling resistance by about 9% at different probabilities and delayed the buckling occurrence time. The probabilistic sensitivities results indicate that uncertainties in the fiber volume ratio and ply thickness have major effects on the buckling load. The uncertainties in the electric field strength and smart material volume fraction have moderate effects and thereby in the assured life of the shell.

  19. Validation of the NCC Code for Staged Transverse Injection and Computations for a RBCC Combustor

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud; Liu, Nan-Suey

    2005-01-01

    The NCC code was validated for a case involving staged transverse injection into Mach 2 flow behind a rearward facing step. Comparisons with experimental data and with solutions from the FPVortex code was then used to perform computations to study fuel-air mixing for the combustor of a candidate rocket based combined cycle engine geometry. Comparisons with a one-dimensional analysis and a three-dimensional code (VULCAN) were performed to assess the qualitative and quantitative performance of the NCC solver.

  20. A supersonic three-dimensional code for flow over blunt bodies: Program documentation and test cases

    NASA Technical Reports Server (NTRS)

    Chaussee, D. S.; Mcmillan, O. J.

    1980-01-01

    The use of a computer code for the calculation of steady, supersonic, three dimensional, inviscid flow over blunt bodies is illustrated. Input and output are given and explained for two cases: a pointed code of 20 deg half angle at 15 deg angle of attack in a free stream with M sub infinite = 7, and a cone-ogive-cylinder at 10 deg angle of attack with M sub infinite = 2.86. A source listing of the computer code is provided.

  1. Simulation of 2D Kinetic Effects in Plasmas using the Grid Based Continuum Code LOKI

    NASA Astrophysics Data System (ADS)

    Banks, Jeffrey; Berger, Richard; Chapman, Tom; Brunner, Stephan

    2016-10-01

    Kinetic simulation of multi-dimensional plasma waves through direct discretization of the Vlasov equation is a useful tool to study many physical interactions and is particularly attractive for situations where minimal fluctuation levels are desired, for instance, when measuring growth rates of plasma wave instabilities. However, direct discretization of phase space can be computationally expensive, and as a result there are few examples of published results using Vlasov codes in more than a single configuration space dimension. In an effort to fill this gap we have developed the Eulerian-based kinetic code LOKI that evolves the Vlasov-Poisson system in 2+2-dimensional phase space. The code is designed to reduce the cost of phase-space computation by using fully 4th order accurate conservative finite differencing, while retaining excellent parallel scalability that efficiently uses large scale computing resources. In this poster I will discuss the algorithms used in the code as well as some aspects of their parallel implementation using MPI. I will also overview simulation results of basic plasma wave instabilities relevant to laser plasma interaction, which have been obtained using the code.

  2. Experimental and analytical comparison of flowfields in a 110 N (25 lbf) H2/O2 rocket

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.; Penko, Paul F.; Schneider, Steven J.; Kim, Suk C.

    1991-01-01

    A gaseous hydrogen/gaseous oxygen 110 N (25 lbf) rocket was examined through the RPLUS code using the full Navier-Stokes equations with finite rate chemistry. Performance tests were conducted on the rocket in an altitude test facility. Preliminary parametric analyses were performed for a range of mixture ratios and fuel film cooling pcts. It is shown that the computed values of specific impulse and characteristic exhaust velocity follow the trend of the experimental data. Specific impulse computed by the code is lower than the comparable test values by about two to three percent. The computed characteristic exhaust velocity values are lower than the comparable test values by three to four pct. Thrust coefficients computed by the code are found to be within two pct. of the measured values. It is concluded that the discrepancy between computed and experimental performance values could not be attributed to experimental uncertainty.

  3. The EDIT-COMGEOM Code

    DTIC Science & Technology

    1975-09-01

    This report assumes a familiarity with the GIFT and MAGIC computer codes. The EDIT-COMGEOM code is a FORTRAN computer code. The EDIT-COMGEOM code...converts the target description data which was used in the MAGIC computer code to the target description data which can be used in the GIFT computer code

  4. Procedures for the computation of unsteady transonic flows including viscous effects

    NASA Technical Reports Server (NTRS)

    Rizzetta, D. P.

    1982-01-01

    Modifications of the code LTRAN2, developed by Ballhaus and Goorjian, which account for viscous effects in the computation of planar unsteady transonic flows are presented. Two models are considered and their theoretical development and numerical implementation is discussed. Computational examples employing both models are compared with inviscid solutions and with experimental data. Use of the modified code is described.

  5. THC-MP: High performance numerical simulation of reactive transport and multiphase flow in porous media

    NASA Astrophysics Data System (ADS)

    Wei, Xiaohui; Li, Weishan; Tian, Hailong; Li, Hongliang; Xu, Haixiao; Xu, Tianfu

    2015-07-01

    The numerical simulation of multiphase flow and reactive transport in the porous media on complex subsurface problem is a computationally intensive application. To meet the increasingly computational requirements, this paper presents a parallel computing method and architecture. Derived from TOUGHREACT that is a well-established code for simulating subsurface multi-phase flow and reactive transport problems, we developed a high performance computing THC-MP based on massive parallel computer, which extends greatly on the computational capability for the original code. The domain decomposition method was applied to the coupled numerical computing procedure in the THC-MP. We designed the distributed data structure, implemented the data initialization and exchange between the computing nodes and the core solving module using the hybrid parallel iterative and direct solver. Numerical accuracy of the THC-MP was verified through a CO2 injection-induced reactive transport problem by comparing the results obtained from the parallel computing and sequential computing (original code). Execution efficiency and code scalability were examined through field scale carbon sequestration applications on the multicore cluster. The results demonstrate successfully the enhanced performance using the THC-MP on parallel computing facilities.

  6. Interface design of VSOP'94 computer code for safety analysis

    NASA Astrophysics Data System (ADS)

    Natsir, Khairina; Yazid, Putranto Ilham; Andiwijayakusuma, D.; Wahanani, Nursinta Adi

    2014-09-01

    Today, most software applications, also in the nuclear field, come with a graphical user interface. VSOP'94 (Very Superior Old Program), was designed to simplify the process of performing reactor simulation. VSOP is a integrated code system to simulate the life history of a nuclear reactor that is devoted in education and research. One advantage of VSOP program is its ability to calculate the neutron spectrum estimation, fuel cycle, 2-D diffusion, resonance integral, estimation of reactors fuel costs, and integrated thermal hydraulics. VSOP also can be used to comparative studies and simulation of reactor safety. However, existing VSOP is a conventional program, which was developed using Fortran 65 and have several problems in using it, for example, it is only operated on Dec Alpha mainframe platforms and provide text-based output, difficult to use, especially in data preparation and interpretation of results. We develop a GUI-VSOP, which is an interface program to facilitate the preparation of data, run the VSOP code and read the results in a more user friendly way and useable on the Personal 'Computer (PC). Modifications include the development of interfaces on preprocessing, processing and postprocessing. GUI-based interface for preprocessing aims to provide a convenience way in preparing data. Processing interface is intended to provide convenience in configuring input files and libraries and do compiling VSOP code. Postprocessing interface designed to visualized the VSOP output in table and graphic forms. GUI-VSOP expected to be useful to simplify and speed up the process and analysis of safety aspects.

  7. 17 CFR 270.6e-2 - Exemptions for certain variable life insurance separate accounts.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... variable life insurance separate accounts. 270.6e-2 Section 270.6e-2 Commodity and Securities Exchanges...-2 Exemptions for certain variable life insurance separate accounts. (a) A separate account, and the... a life insurance company pursuant to the insurance laws or code of (i) any state or territory of the...

  8. 17 CFR 270.6e-2 - Exemptions for certain variable life insurance separate accounts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... variable life insurance separate accounts. 270.6e-2 Section 270.6e-2 Commodity and Securities Exchanges...-2 Exemptions for certain variable life insurance separate accounts. (a) A separate account, and the... a life insurance company pursuant to the insurance laws or code of (i) any state or territory of the...

  9. 17 CFR 270.6e-2 - Exemptions for certain variable life insurance separate accounts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... variable life insurance separate accounts. 270.6e-2 Section 270.6e-2 Commodity and Securities Exchanges...-2 Exemptions for certain variable life insurance separate accounts. (a) A separate account, and the... a life insurance company pursuant to the insurance laws or code of (i) any state or territory of the...

  10. What the success of brain imaging implies about the neural code

    PubMed Central

    Guest, Olivia; Love, Bradley C

    2017-01-01

    The success of fMRI places constraints on the nature of the neural code. The fact that researchers can infer similarities between neural representations, despite fMRI’s limitations, implies that certain neural coding schemes are more likely than others. For fMRI to succeed given its low temporal and spatial resolution, the neural code must be smooth at the voxel and functional level such that similar stimuli engender similar internal representations. Through proof and simulation, we determine which coding schemes are plausible given both fMRI’s successes and its limitations in measuring neural activity. Deep neural network approaches, which have been forwarded as computational accounts of the ventral stream, are consistent with the success of fMRI, though functional smoothness breaks down in the later network layers. These results have implications for the nature of the neural code and ventral stream, as well as what can be successfully investigated with fMRI. DOI: http://dx.doi.org/10.7554/eLife.21397.001 PMID:28103186

  11. From Matter to Life

    NASA Astrophysics Data System (ADS)

    Imari Walker, Sara; Davies, Paul C. W.; Ellis, George F. R.

    2017-02-01

    1. Introduction Sara Imari Walker, Paul C. W. Davies and F. R. Ellis; Part I. Physics and Life: 2. The 'hard problem' of life Sara Imari Walker and Paul C. W. Davies; 3. Beyond initial conditions and laws of motion: constructor theory of information and life Chiara Marletto; Part II. Bio from Bit: 4. (How) did information emerge? Anne-Marie Grisogono; 5. On the emerging codes for chemical evolution Jillian E. Smith-Carpenter, Sha Li, Jay T. Goodwin, Anil K. Mehta and David G. Lynn; 6. Digital and analogue information in organisms Denis Noble; 7. From entropy to information: biased typewriters and the origin of life Christoph Adami and Thomas Labar; Part III. Life's Hidden Information: 8. Cryptographic nature David Krakauer; 9. Noise and function Steven Weinstein and Theodore Pavlic; 10. The many faces of state space compression David Wolpert, Eric Libby, Joshua Grochow and Simon DeDeo; 11. Causality, information and biological computation: an algorithmic software approach to life, disease and the immune system Hector Zenil, Angelika Schmidt and Jesper Tegnér; Part IV. Complexity and Causality: 12. Life's information hierarchy Jessica Flack; 13. Living through downward causation: from molecules to ecosystems Keith D. Farnsworth, George F. R. Ellis and Luc Jaeger; 14. Automata and animats: from dynamics to cause-effect structures Larissa Albantakis and Giulio Tononi; 15. Biological information, causality and specificity - an intimate relationship Karola Stotz and Paul Griffiths; Part V. From Matter to Mind: 16. Major transitions in political order Simon DeDeo; 17. Bits from biology for computational intelligence Michael Wibral, Joseph Lizier and Viola Priesemann; 18. Machine learning and the questions it raises G. Andrew D. Briggs and Dawid Potgieter.

  12. Transient Reliability of Ceramic Structures For Heat Engine Applications

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Jadaan, Osama M.

    2002-01-01

    The objectives of this report was to develop a methodology to predict the time-dependent reliability (probability of failure) of brittle material components subjected to transient thermomechanical loading, taking into account the change in material response with time. This methodology for computing the transient reliability in ceramic components subjected to fluctuation thermomechanical loading was developed, assuming SCG (Slow Crack Growth) as the delayed mode of failure. It takes into account the effect of varying Weibull modulus and materials with time. It was also coded into a beta version of NASA's CARES/Life code, and an example demonstrating its viability was presented.

  13. The Space Telescope SI C&DH system. [Scientific Instrument Control and Data Handling Subsystem

    NASA Technical Reports Server (NTRS)

    Gadwal, Govind R.; Barasch, Ronald S.

    1990-01-01

    The Hubble Space Telescope Scientific Instrument Control and Data Handling Subsystem (SI C&DH) is designed to interface with five scientific instruments of the Space Telescope to provide ground and autonomous control and collect health and status information using the Standard Telemetry and Command Components (STACC) multiplex data bus. It also formats high throughput science data into packets. The packetized data is interleaved and Reed-Solomon encoded for error correction and Pseudo Random encoded. An inner convolutional coding with the outer Reed-Solomon coding provides excellent error correction capability. The subsystem is designed with the capacity for orbital replacement in order to meet a mission life of fifteen years. The spacecraft computer and the SI C&DH computer coordinate the activities of the spacecraft and the scientific instruments to achieve the mission objectives.

  14. Composite Load Spectra for Select Space Propulsion Structural Components

    NASA Technical Reports Server (NTRS)

    Ho, Hing W.; Newell, James F.

    1994-01-01

    Generic load models are described with multiple levels of progressive sophistication to simulate the composite (combined) load spectra (CLS) that are induced in space propulsion system components, representative of Space Shuttle Main Engines (SSME), such as transfer ducts, turbine blades and liquid oxygen (LOX) posts. These generic (coupled) models combine the deterministic models for composite load dynamic, acoustic, high-pressure and high rotational speed, etc., load simulation using statistically varying coefficients. These coefficients are then determined using advanced probabilistic simulation methods with and without strategically selected experimental data. The entire simulation process is included in a CLS computer code. Applications of the computer code to various components in conjunction with the PSAM (Probabilistic Structural Analysis Method) to perform probabilistic load evaluation and life prediction evaluations are also described to illustrate the effectiveness of the coupled model approach.

  15. A verification of the gyrokinetic microstability codes GEM, GYRO, and GS2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bravenec, R. V.; Chen, Y.; Wan, W.

    2013-10-15

    A previous publication [R. V. Bravenec et al., Phys. Plasmas 18, 122505 (2011)] presented favorable comparisons of linear frequencies and nonlinear fluxes from the Eulerian gyrokinetic codes gyro[J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] and gs2[W. Dorland et al., Phys. Rev. Lett. 85, 5579 (2000)]. The motivation was to verify the codes, i.e., demonstrate that they correctly solve the gyrokinetic-Maxwell equations. The premise was that it is highly unlikely for both codes to yield the same incorrect results. In this work, we add the Lagrangian particle-in-cell code gem[Y. Chen and S. Parker, J. Comput. Phys.more » 220, 839 (2007)] to the comparisons, not simply to add another code, but also to demonstrate that the codes' algorithms do not matter. We find good agreement of gem with gyro and gs2 for the plasma conditions considered earlier, thus establishing confidence that the codes are verified and that ongoing validation efforts for these plasma parameters are warranted.« less

  16. NASA transmission research and its probable effects on helicopter transmission design

    NASA Technical Reports Server (NTRS)

    Zaretsky, E. V.; Coy, J. J.; Townsend, D. P.

    1983-01-01

    Transmissions studied for application to helicopters in addition to the more conventional geared transmissions include hybrid (traction/gear), bearingless planetary, and split torque transmissions. Research is being performed to establish the validity of analysis and computer codes developed to predict the performance, efficiency, life, and reliability of these transmissions. Results of this research should provide the transmission designer with analytical tools to design for minimum weight and noise with maximum life and efficiency. In addition, the advantages and limitations of drive systems as well as the more conventional systems will be defined.

  17. NASA transmission research and its probable effects on helicopter transmission design

    NASA Technical Reports Server (NTRS)

    Zaretsky, E. V.; Coy, J. J.; Townsend, D. P.

    1984-01-01

    Transmissions studied for application to helicopters in addition to the more conventional geared transmissions include hybrid (traction/gear), bearingless planetary, and split torque transmissions. Research is being performed to establish the validity of analysis and computer codes developed to predict the performance, efficiency, life, and reliability of these transmissions. Results of this research should provide the transmission designer with analytical tools to design for minimum weight and noise with maximum life and efficiency. In addition, the advantages and limitations of drive systems as well as the more conventional systems will be defined.

  18. Calculation of water drop trajectories to and about arbitrary three-dimensional lifting and nonlifting bodies in potential airflow

    NASA Technical Reports Server (NTRS)

    Norment, H. G.

    1985-01-01

    Subsonic, external flow about nonlifting bodies, lifting bodies or combinations of lifting and nonlifting bodies is calculated by a modified version of the Hess lifting code. Trajectory calculations can be performed for any atmospheric conditions and for all water drop sizes, from the smallest cloud droplet to large raindrops. Experimental water drop drag relations are used in the water drop equations of motion and effects of gravity settling are included. Inlet flow can be accommodated, and high Mach number compressibility effects are corrected for approximately. Seven codes are described: (1) a code used to debug and plot body surface description data; (2) a code that processes the body surface data to yield the potential flow field; (3) a code that computes flow velocities at arrays of points in space; (4) a code that computes water drop trajectories from an array of points in space; (5) a code that computes water drop trajectories and fluxes to arbitrary target points; (6) a code that computes water drop trajectories tangent to the body; and (7) a code that produces stereo pair plots which include both the body and trajectories. Accuracy of the calculations is discussed, and trajectory calculation results are compared with prior calculations and with experimental data.

  19. Hypercube matrix computation task

    NASA Technical Reports Server (NTRS)

    Calalo, R.; Imbriale, W.; Liewer, P.; Lyons, J.; Manshadi, F.; Patterson, J.

    1987-01-01

    The Hypercube Matrix Computation (Year 1986-1987) task investigated the applicability of a parallel computing architecture to the solution of large scale electromagnetic scattering problems. Two existing electromagnetic scattering codes were selected for conversion to the Mark III Hypercube concurrent computing environment. They were selected so that the underlying numerical algorithms utilized would be different thereby providing a more thorough evaluation of the appropriateness of the parallel environment for these types of problems. The first code was a frequency domain method of moments solution, NEC-2, developed at Lawrence Livermore National Laboratory. The second code was a time domain finite difference solution of Maxwell's equations to solve for the scattered fields. Once the codes were implemented on the hypercube and verified to obtain correct solutions by comparing the results with those from sequential runs, several measures were used to evaluate the performance of the two codes. First, a comparison was provided of the problem size possible on the hypercube with 128 megabytes of memory for a 32-node configuration with that available in a typical sequential user environment of 4 to 8 megabytes. Then, the performance of the codes was anlyzed for the computational speedup attained by the parallel architecture.

  20. Computerized systems analysis and optimization of aircraft engine performance, weight, and life cycle costs

    NASA Technical Reports Server (NTRS)

    Fishbach, L. H.

    1980-01-01

    The computational techniques are described which are utilized at Lewis Research Center to determine the optimum propulsion systems for future aircraft applications and to identify system tradeoffs and technology requirements. Cycle performance, and engine weight can be calculated along with costs and installation effects as opposed to fuel consumption alone. Almost any conceivable turbine engine cycle can be studied. These computer codes are: NNEP, WATE, LIFCYC, INSTAL, and POD DRG. Examples are given to illustrate how these computer techniques can be applied to analyze and optimize propulsion system fuel consumption, weight and cost for representative types of aircraft and missions.

  1. Collisionless high energy particle losses in optimized stellarators calculated in real-space coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemov, V. V.; Kasilov, S. V.; Institut für Theoretische Physik—Computational Physics, Technische Universität Graz, Fusion@ÖAW, Petersgasse 16, A-8010 Graz

    An approach for the direct computation of collisionless losses of high energy charged particles is developed for stellarator magnetic fields given in real space coordinates. With this approach, the corresponding computations can be performed for magnetic fields with three-dimensional inhomogeneities in the presence of stochastic regions as well as magnetic islands. A code, which is based on this approach, is applied to various stellarator configurations. It is found that the life time of fast particles obtained in real-space coordinates can be smaller than that obtained in magnetic coordinates.

  2. SCALE: A modular code system for performing Standardized Computer Analyses for Licensing Evaluation. Volume 1, Part 2: Control modules S1--H1; Revision 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    SCALE--a modular code system for Standardized Computer Analyses Licensing Evaluation--has been developed by Oak Ridge National Laboratory at the request of the US Nuclear Regulatory Commission. The SCALE system utilizes well-established computer codes and methods within standard analysis sequences that (1) allow an input format designed for the occasional user and/or novice, (2) automated the data processing and coupling between modules, and (3) provide accurate and reliable results. System development has been directed at problem-dependent cross-section processing and analysis of criticality safety, shielding, heat transfer, and depletion/decay problems. Since the initial release of SCALE in 1980, the code system hasmore » been heavily used for evaluation of nuclear fuel facility and package designs. This revision documents Version 4.3 of the system.« less

  3. In silico methods for co-transcriptional RNA secondary structure prediction and for investigating alternative RNA structure expression.

    PubMed

    Meyer, Irmtraud M

    2017-05-01

    RNA transcripts are the primary products of active genes in any living organism, including many viruses. Their cellular destiny not only depends on primary sequence signals, but can also be determined by RNA structure. Recent experimental evidence shows that many transcripts can be assigned more than a single functional RNA structure throughout their cellular life and that structure formation happens co-transcriptionally, i.e. as the transcript is synthesised in the cell. Moreover, functional RNA structures are not limited to non-coding transcripts, but can also feature in coding transcripts. The picture that now emerges is that RNA structures constitute an additional layer of information that can be encoded in any RNA transcript (and on top of other layers of information such as protein-context) in order to exert a wide range of functional roles. Moreover, different encoded RNA structures can be expressed at different stages of a transcript's life in order to alter the transcript's behaviour depending on its actual cellular context. Similar to the concept of alternative splicing for protein-coding genes, where a single transcript can yield different proteins depending on cellular context, it is thus appropriate to propose the notion of alternative RNA structure expression for any given transcript. This review introduces several computational strategies that my group developed to detect different aspects of RNA structure expression in vivo. Two aspects are of particular interest to us: (1) RNA secondary structure features that emerge during co-transcriptional folding and (2) functional RNA structure features that are expressed at different times of a transcript's life and potentially mutually exclusive. Copyright © 2017. Published by Elsevier Inc.

  4. Error threshold for color codes and random three-body Ising models.

    PubMed

    Katzgraber, Helmut G; Bombin, H; Martin-Delgado, M A

    2009-08-28

    We study the error threshold of color codes, a class of topological quantum codes that allow a direct implementation of quantum Clifford gates suitable for entanglement distillation, teleportation, and fault-tolerant quantum computation. We map the error-correction process onto a statistical mechanical random three-body Ising model and study its phase diagram via Monte Carlo simulations. The obtained error threshold of p(c) = 0.109(2) is very close to that of Kitaev's toric code, showing that enhanced computational capabilities do not necessarily imply lower resistance to noise.

  5. Photoionization and High Density Gas

    NASA Technical Reports Server (NTRS)

    Kallman, T.; Bautista, M.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present results of calculations using the XSTAR version 2 computer code. This code is loosely based on the XSTAR v.1 code which has been available for public use for some time. However it represents an improvement and update in several major respects, including atomic data, code structure, user interface, and improved physical description of ionization/excitation. In particular, it now is applicable to high density situations in which significant excited atomic level populations are likely to occur. We describe the computational techniques and assumptions, and present sample runs with particular emphasis on high density situations.

  6. Guide to AERO2S and WINGDES Computer Codes for Prediction and Minimization of Drag Due to Lift

    NASA Technical Reports Server (NTRS)

    Carlson, Harry W.; Chu, Julio; Ozoroski, Lori P.; McCullers, L. Arnold

    1997-01-01

    The computer codes, AER02S and WINGDES, are now widely used for the analysis and design of airplane lifting surfaces under conditions that tend to induce flow separation. These codes have undergone continued development to provide additional capabilities since the introduction of the original versions over a decade ago. This code development has been reported in a variety of publications (NASA technical papers, NASA contractor reports, and society journals). Some modifications have not been publicized at all. Users of these codes have suggested the desirability of combining in a single document the descriptions of the code development, an outline of the features of each code, and suggestions for effective code usage. This report is intended to supply that need.

  7. Hypersonic simulations using open-source CFD and DSMC solvers

    NASA Astrophysics Data System (ADS)

    Casseau, V.; Scanlon, T. J.; John, B.; Emerson, D. R.; Brown, R. E.

    2016-11-01

    Hypersonic hybrid hydrodynamic-molecular gas flow solvers are required to satisfy the two essential requirements of any high-speed reacting code, these being physical accuracy and computational efficiency. The James Weir Fluids Laboratory at the University of Strathclyde is currently developing an open-source hybrid code which will eventually reconcile the direct simulation Monte-Carlo method, making use of the OpenFOAM application called dsmcFoam, and the newly coded open-source two-temperature computational fluid dynamics solver named hy2Foam. In conjunction with employing the CVDV chemistry-vibration model in hy2Foam, novel use is made of the QK rates in a CFD solver. In this paper, further testing is performed, in particular with the CFD solver, to ensure its efficacy before considering more advanced test cases. The hy2Foam and dsmcFoam codes have shown to compare reasonably well, thus providing a useful basis for other codes to compare against.

  8. Solution of 3-dimensional time-dependent viscous flows. Part 2: Development of the computer code

    NASA Technical Reports Server (NTRS)

    Weinberg, B. C.; Mcdonald, H.

    1980-01-01

    There is considerable interest in developing a numerical scheme for solving the time dependent viscous compressible three dimensional flow equations to aid in the design of helicopter rotors. The development of a computer code to solve a three dimensional unsteady approximate form of the Navier-Stokes equations employing a linearized block emplicit technique in conjunction with a QR operator scheme is described. Results of calculations of several Cartesian test cases are presented. The computer code can be applied to more complex flow fields such as these encountered on rotating airfoils.

  9. Critical evaluation of Jet-A spray combustion using propane chemical kinetics in gas turbine combustion simulated by KIVA-2

    NASA Technical Reports Server (NTRS)

    Nguyen, H. L.; Ying, S.-J.

    1990-01-01

    Jet-A spray combustion has been evaluated in gas turbine combustion with the use of propane chemical kinetics as the first approximation for the chemical reactions. Here, the numerical solutions are obtained by using the KIVA-2 computer code. The KIVA-2 code is the most developed of the available multidimensional combustion computer programs for application of the in-cylinder combustion dynamics of internal combustion engines. The released version of KIVA-2 assumes that 12 chemical species are present; the code uses an Arrhenius kinetic-controlled combustion model governed by a four-step global chemical reaction and six equilibrium reactions. Researchers efforts involve the addition of Jet-A thermophysical properties and the implementation of detailed reaction mechanisms for propane oxidation. Three different detailed reaction mechanism models are considered. The first model consists of 131 reactions and 45 species. This is considered as the full mechanism which is developed through the study of chemical kinetics of propane combustion in an enclosed chamber. The full mechanism is evaluated by comparing calculated ignition delay times with available shock tube data. However, these detailed reactions occupy too much computer memory and CPU time for the computation. Therefore, it only serves as a benchmark case by which to evaluate other simplified models. Two possible simplified models were tested in the existing computer code KIVA-2 for the same conditions as used with the full mechanism. One model is obtained through a sensitivity analysis using LSENS, the general kinetics and sensitivity analysis program code of D. A. Bittker and K. Radhakrishnan. This model consists of 45 chemical reactions and 27 species. The other model is based on the work published by C. K. Westbrook and F. L. Dryer.

  10. Development and Validation of a Fast, Accurate and Cost-Effective Aeroservoelastic Method on Advanced Parallel Computing Systems

    NASA Technical Reports Server (NTRS)

    Goodwin, Sabine A.; Raj, P.

    1999-01-01

    Progress to date towards the development and validation of a fast, accurate and cost-effective aeroelastic method for advanced parallel computing platforms such as the IBM SP2 and the SGI Origin 2000 is presented in this paper. The ENSAERO code, developed at the NASA-Ames Research Center has been selected for this effort. The code allows for the computation of aeroelastic responses by simultaneously integrating the Euler or Navier-Stokes equations and the modal structural equations of motion. To assess the computational performance and accuracy of the ENSAERO code, this paper reports the results of the Navier-Stokes simulations of the transonic flow over a flexible aeroelastic wing body configuration. In addition, a forced harmonic oscillation analysis in the frequency domain and an analysis in the time domain are done on a wing undergoing a rigid pitch and plunge motion. Finally, to demonstrate the ENSAERO flutter-analysis capability, aeroelastic Euler and Navier-Stokes computations on an L-1011 wind tunnel model including pylon, nacelle and empennage are underway. All computational solutions are compared with experimental data to assess the level of accuracy of ENSAERO. As the computations described above are performed, a meticulous log of computational performance in terms of wall clock time, execution speed, memory and disk storage is kept. Code scalability is also demonstrated by studying the impact of varying the number of processors on computational performance on the IBM SP2 and the Origin 2000 systems.

  11. An efficient method for computing unsteady transonic aerodynamics of swept wings with control surfaces

    NASA Technical Reports Server (NTRS)

    Liu, D. D.; Kao, Y. F.; Fung, K. Y.

    1989-01-01

    A transonic equivalent strip (TES) method was further developed for unsteady flow computations of arbitrary wing planforms. The TES method consists of two consecutive correction steps to a given nonlinear code such as LTRAN2; namely, the chordwise mean flow correction and the spanwise phase correction. The computation procedure requires direct pressure input from other computed or measured data. Otherwise, it does not require airfoil shape or grid generation for given planforms. To validate the computed results, four swept wings of various aspect ratios, including those with control surfaces, are selected as computational examples. Overall trends in unsteady pressures are established with those obtained by XTRAN3S codes, Isogai's full potential code and measured data by NLR and RAE. In comparison with these methods, the TES has achieved considerable saving in computer time and reasonable accuracy which suggests immediate industrial applications.

  12. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation. Functional modules F1--F8 -- Volume 2, Part 1, Revision 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, N.M.; Petrie, L.M.; Westfall, R.M.

    SCALE--a modular code system for Standardized Computer Analyses Licensing Evaluation--has been developed by Oak Ridge National Laboratory at the request of the US Nuclear Regulatory Commission. The SCALE system utilizes well-established computer codes and methods within standard analysis sequences that (1) allow an input format designed for the occasional user and/or novice, (2) automate the data processing and coupling between modules, and (3) provide accurate and reliable results. System development has been directed at problem-dependent cross-section processing and analysis of criticality safety, shielding, heat transfer, and depletion/decay problems. Since the initial release of SCALE in 1980, the code system hasmore » been heavily used for evaluation of nuclear fuel facility and package designs. This revision documents Version 4.2 of the system. The manual is divided into three volumes: Volume 1--for the control module documentation; Volume 2--for functional module documentation; and Volume 3--for documentation of the data libraries and subroutine libraries.« less

  13. Efficient Helicopter Aerodynamic and Aeroacoustic Predictions on Parallel Computers

    NASA Technical Reports Server (NTRS)

    Wissink, Andrew M.; Lyrintzis, Anastasios S.; Strawn, Roger C.; Oliker, Leonid; Biswas, Rupak

    1996-01-01

    This paper presents parallel implementations of two codes used in a combined CFD/Kirchhoff methodology to predict the aerodynamics and aeroacoustics properties of helicopters. The rotorcraft Navier-Stokes code, TURNS, computes the aerodynamic flowfield near the helicopter blades and the Kirchhoff acoustics code computes the noise in the far field, using the TURNS solution as input. The overall parallel strategy adds MPI message passing calls to the existing serial codes to allow for communication between processors. As a result, the total code modifications required for parallel execution are relatively small. The biggest bottleneck in running the TURNS code in parallel comes from the LU-SGS algorithm that solves the implicit system of equations. We use a new hybrid domain decomposition implementation of LU-SGS to obtain good parallel performance on the SP-2. TURNS demonstrates excellent parallel speedups for quasi-steady and unsteady three-dimensional calculations of a helicopter blade in forward flight. The execution rate attained by the code on 114 processors is six times faster than the same cases run on one processor of the Cray C-90. The parallel Kirchhoff code also shows excellent parallel speedups and fast execution rates. As a performance demonstration, unsteady acoustic pressures are computed at 1886 far-field observer locations for a sample acoustics problem. The calculation requires over two hundred hours of CPU time on one C-90 processor but takes only a few hours on 80 processors of the SP2. The resultant far-field acoustic field is analyzed with state of-the-art audio and video rendering of the propagating acoustic signals.

  14. Variation in clinical coding lists in UK general practice: a barrier to consistent data entry?

    PubMed

    Tai, Tracy Waize; Anandarajah, Sobanna; Dhoul, Neil; de Lusignan, Simon

    2007-01-01

    Routinely collected general practice computer data are used for quality improvement; poor data quality including inconsistent coding can reduce their usefulness. To document the diversity of data entry systems currently in use in UK general practice and highlight possible implications for data quality. General practice volunteers provided screen shots of the clinical coding screen they would use to code a diagnosis or problem title in the clinical consultation. The six clinical conditions examined were: depression, cystitis, type 2 diabetes mellitus, sore throat, tired all the time, and myocardial infarction. We looked at the picking lists generated for these problem titles in EMIS, IPS, GPASS and iSOFT general practice clinical computer systems, using the Triset browser as a gold standard for comparison. A mean of 19.3 codes is offered in the picking list after entering a diagnosis or problem title. EMIS produced the longest picking lists and GPASS the shortest, with a mean number of choices of 35.2 and 12.7, respectively. Approximately three-quarters (73.5%) of codes are diagnoses, one-eighth (12.5%) symptom codes, and the remainder come from a range of Read chapters. There was no readily detectable consistent order in which codes were displayed. Velocity coding, whereby commonly-used codes are placed higher in the picking list, results in variation between practices even where they have the same brand of computer system. Current systems for clinical coding promote diversity rather than consistency of clinical coding. As the UK moves towards an integrated health IT system consistency of coding will become more important. A standardised, limited list of codes for primary care might help address this need.

  15. Getting Started in Classroom Computing.

    ERIC Educational Resources Information Center

    Ahl, David H.

    Written for secondary students, this booklet provides an introduction to several computer-related concepts through a set of six classroom games, most of which can be played with little more than a sheet of paper and a pencil. The games are: 1) SECRET CODES--introduction to binary coding, punched cards, and paper tape; 2) GUESS--efficient methods…

  16. A Computational Model for Observation in Quantum Mechanics.

    DTIC Science & Technology

    1987-03-16

    Interferometer experiment ............. 17 2.3 The EPR Paradox experiment ................. 22 3 The Computational Model, an Overview 28 4 Implementation 34...40 4.4 Code for the EPR paradox experiment ............... 46 4.5 Code for the double slit interferometer experiment ..... .. 50 5 Conclusions 59 A...particle run counter to fact. The EPR paradox experiment (see section 2.3) is hard to resolve with this class of models, collectively called hidden

  17. A Combinatorial Geometry Computer Description of the XR311 Vehicle

    DTIC Science & Technology

    1978-04-01

    cards or magnetic tape. The shot line output of the GRID subroutine of the GIFT code is also stored on magnetic tape for future vulnera- bility...descriptions as processed by the Geometric Information For Targets ( GIFT )2 computer code. This report documents the COM-GEOM target description for all...72, March 1974. ’L.W. Bains and M.J. Reisinger, "The GIFT Code User Manual, VOL 1, Introduction and Input Requirements, " Ballistic Research

  18. Verifying a computational method for predicting extreme ground motion

    USGS Publications Warehouse

    Harris, R.A.; Barall, M.; Andrews, D.J.; Duan, B.; Ma, S.; Dunham, E.M.; Gabriel, A.-A.; Kaneko, Y.; Kase, Y.; Aagaard, Brad T.; Oglesby, D.D.; Ampuero, J.-P.; Hanks, T.C.; Abrahamson, N.

    2011-01-01

    In situations where seismological data is rare or nonexistent, computer simulations may be used to predict ground motions caused by future earthquakes. This is particularly practical in the case of extreme ground motions, where engineers of special buildings may need to design for an event that has not been historically observed but which may occur in the far-distant future. Once the simulations have been performed, however, they still need to be tested. The SCEC-USGS dynamic rupture code verification exercise provides a testing mechanism for simulations that involve spontaneous earthquake rupture. We have performed this examination for the specific computer code that was used to predict maximum possible ground motion near Yucca Mountain. Our SCEC-USGS group exercises have demonstrated that the specific computer code that was used for the Yucca Mountain simulations produces similar results to those produced by other computer codes when tackling the same science problem. We also found that the 3D ground motion simulations produced smaller ground motions than the 2D simulations.

  19. Experimental aerothermodynamic research of hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Cleary, Joseph W.

    1987-01-01

    The 2-D and 3-D advance computer codes being developed for use in the design of such hypersonic aircraft as the National Aero-Space Plane require comparison of the computational results with a broad spectrum of experimental data to fully assess the validity of the codes. This is particularly true for complex flow fields with control surfaces present and for flows with separation, such as leeside flow. Therefore, the objective is to provide a hypersonic experimental data base required for validation of advanced computational fluid dynamics (CFD) computer codes and for development of more thorough understanding of the flow physics necessary for these codes. This is being done by implementing a comprehensive test program for a generic all-body hypersonic aircraft model in the NASA/Ames 3.5 foot Hypersonic Wind Tunnel over a broad range of test conditions to obtain pertinent surface and flowfield data. Results from the flow visualization portion of the investigation are presented.

  20. Intrasystem Analysis Program (IAP) code summaries

    NASA Astrophysics Data System (ADS)

    Dobmeier, J. J.; Drozd, A. L. S.; Surace, J. A.

    1983-05-01

    This report contains detailed descriptions and capabilities of the codes that comprise the Intrasystem Analysis Program. The four codes are: Intrasystem Electromagnetic Compatibility Analysis Program (IEMCAP), General Electromagnetic Model for the Analysis of Complex Systems (GEMACS), Nonlinear Circuit Analysis Program (NCAP), and Wire Coupling Prediction Models (WIRE). IEMCAP is used for computer-aided evaluation of electromagnetic compatibility (ECM) at all stages of an Air Force system's life cycle, applicable to aircraft, space/missile, and ground-based systems. GEMACS utilizes a Method of Moments (MOM) formalism with the Electric Field Integral Equation (EFIE) for the solution of electromagnetic radiation and scattering problems. The code employs both full matrix decomposition and Banded Matrix Iteration solution techniques and is expressly designed for large problems. NCAP is a circuit analysis code which uses the Volterra approach to solve for the transfer functions and node voltage of weakly nonlinear circuits. The Wire Programs deal with the Application of Multiconductor Transmission Line Theory to the Prediction of Cable Coupling for specific classes of problems.

  1. Accelerating execution of the integrated TIGER series Monte Carlo radiation transport codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, L.M.; Hochstedler, R.D.

    1997-02-01

    Execution of the integrated TIGER series (ITS) of coupled electron/photon Monte Carlo radiation transport codes has been accelerated by modifying the FORTRAN source code for more efficient computation. Each member code of ITS was benchmarked and profiled with a specific test case that directed the acceleration effort toward the most computationally intensive subroutines. Techniques for accelerating these subroutines included replacing linear search algorithms with binary versions, replacing the pseudo-random number generator, reducing program memory allocation, and proofing the input files for geometrical redundancies. All techniques produced identical or statistically similar results to the original code. Final benchmark timing of themore » accelerated code resulted in speed-up factors of 2.00 for TIGER (the one-dimensional slab geometry code), 1.74 for CYLTRAN (the two-dimensional cylindrical geometry code), and 1.90 for ACCEPT (the arbitrary three-dimensional geometry code).« less

  2. MPD thruster technology

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.

    1991-01-01

    Inhouse magnetoplasmadynamic (MPD) thruster technology is discussed. The study focussed on steady state thrusters at powers of less than 1 MW. Performance measurement and diagnostics technologies were developed for high power thrusters. Also developed was a MPD computer code. The stated goals of the program are to establish: performance and life limitation; influence of applied fields; propellant effects; and scaling laws. The presentation is mostly through graphs and charts.

  3. ART/Ada design project, phase 1: Project plan

    NASA Technical Reports Server (NTRS)

    Allen, Bradley P.

    1988-01-01

    The plan and schedule for Phase 1 of the Ada based ESBT Design Research Project is described. The main platform for the project is a DEC Ada compiler on VAX mini-computers and VAXstations running the Virtual Memory System (VMS) operating system. The Ada effort and lines of code are given in tabular form. A chart is given of the entire project life cycle.

  4. BRYNTRN: A baryon transport model

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Townsend, Lawrence W.; Nealy, John E.; Chun, Sang Y.; Hong, B. S.; Buck, Warren W.; Lamkin, S. L.; Ganapol, Barry D.; Khan, Ferdous; Cucinotta, Francis A.

    1989-01-01

    The development of an interaction data base and a numerical solution to the transport of baryons through an arbitrary shield material based on a straight ahead approximation of the Boltzmann equation are described. The code is most accurate for continuous energy boundary values, but gives reasonable results for discrete spectra at the boundary using even a relatively coarse energy grid (30 points) and large spatial increments (1 cm in H2O). The resulting computer code is self-contained, efficient and ready to use. The code requires only a very small fraction of the computer resources required for Monte Carlo codes.

  5. Monte Carlo calculations of the incineration of plutonium and minor actinides of laser fusion inertial confinement fusion fission energy (LIFE) engine

    NASA Astrophysics Data System (ADS)

    Adem, ACIR; Eşref, BAYSAL

    2018-07-01

    In this paper, neutronic analysis in a laser fusion inertial confinement fusion fission energy (LIFE) engine fuelled plutonium and minor actinides using a MCNP codes was investigated. LIFE engine fuel zone contained 10 vol% TRISO particles and 90 vol% natural lithium coolant mixture. TRISO fuel compositions have Mod①: reactor grade plutonium (RG-Pu), Mod②: weapon grade plutonium (WG-Pu) and Mod③: minor actinides (MAs). Tritium breeding ratios (TBR) were computed as 1.52, 1.62 and 1.46 for Mod①, Mod② and Mod③, respectively. The operation period was computed as ∼21 years when the reference TBR > 1.05 for a self-sustained reactor for all investigated cases. Blanket energy multiplication values (M) were calculated as 4.18, 4.95 and 3.75 for Mod①, Mod② and Mod③, respectively. The burnup (BU) values were obtained as ∼1230, ∼1550 and ∼1060 GWd tM–1, respectively. As a result, the higher BU were provided with using TRISO particles for all cases in LIFE engine.

  6. Parallel Higher-order Finite Element Method for Accurate Field Computations in Wakefield and PIC Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candel, A.; Kabel, A.; Lee, L.

    Over the past years, SLAC's Advanced Computations Department (ACD), under SciDAC sponsorship, has developed a suite of 3D (2D) parallel higher-order finite element (FE) codes, T3P (T2P) and Pic3P (Pic2P), aimed at accurate, large-scale simulation of wakefields and particle-field interactions in radio-frequency (RF) cavities of complex shape. The codes are built on the FE infrastructure that supports SLAC's frequency domain codes, Omega3P and S3P, to utilize conformal tetrahedral (triangular)meshes, higher-order basis functions and quadratic geometry approximation. For time integration, they adopt an unconditionally stable implicit scheme. Pic3P (Pic2P) extends T3P (T2P) to treat charged-particle dynamics self-consistently using the PIC (particle-in-cell)more » approach, the first such implementation on a conformal, unstructured grid using Whitney basis functions. Examples from applications to the International Linear Collider (ILC), Positron Electron Project-II (PEP-II), Linac Coherent Light Source (LCLS) and other accelerators will be presented to compare the accuracy and computational efficiency of these codes versus their counterparts using structured grids.« less

  7. Turbulent Bubbly Flow in a Vertical Pipe Computed By an Eddy-Resolving Reynolds Stress Model

    DTIC Science & Technology

    2014-09-19

    the numerical code OpenFOAM R©. 1 Introduction Turbulent bubbly flows are encountered in many industrially relevant applications, such as chemical in...performed using the OpenFOAM -2.2.2 computational code utilizing a cell- center-based finite volume method on an unstructured numerical grid. The...the mean Courant number is always below 0.4. The utilized turbulence models were implemented into the so-called twoPhaseEulerFoam solver in OpenFOAM , to

  8. Application of CARS to scramjet combustion

    NASA Technical Reports Server (NTRS)

    Antcliff, R. R.

    1987-01-01

    A coherent anti-Stokes Raman spectroscopic (CARS) instrument has been developed for measuring simultaneously temperature and N2 - O2 species concentration in hostile flame environments. A folded BOXCARS arrangement was employed to obtain high spatial resolution. Polarization discrimination against the nonresonant background decreased the lower limits of O2 detectivity. The instrument has been primarily employed for validation of computational fluid-dynamics computer-model codes. Comparisons have been made to both the CHARNAL and TEACH codes on a hydrogen diffusion flame with good results.

  9. Laser Signature Prediction Using The VALUE Computer Program

    NASA Astrophysics Data System (ADS)

    Akerman, Alexander; Hoffman, George A.; Patton, Ronald

    1989-09-01

    A variety of enhancements are being made to the 1976-vintage LASERX computer code. These include: - Surface characterization with BDRF tabular data - Specular reflection from transparent surfaces - Generation of glint direction maps - Generation of relative range imagery - Interface to the LOWTRAN atmospheric transmission code - Interface to the LEOPS laser sensor code - User friendly menu prompting for easy setup Versions of VALUE have been written for both VAX/VMS and PC/DOS computer environments. Outputs have also been revised to be user friendly and include tables, plots, and images for (1) intensity, (2) cross section,(3) reflectance, (4) relative range, (5) region type, and (6) silhouette.

  10. Calculation of two-dimensional inlet flow fields in a supersonic free stream: Program documentation and test cases

    NASA Technical Reports Server (NTRS)

    Biringen, S. H.; Mcmillan, O. J.

    1980-01-01

    The use of a computer code for the calculation of two dimensional inlet flow fields in a supersonic free stream and a nonorthogonal mesh-generation code are illustrated by specific examples. Input, output, and program operation and use are given and explained for the case of supercritical inlet operation at a subdesign Mach number (M Mach free stream = 2.09) for an isentropic-compression, drooped-cowl inlet. Source listings of the computer codes are also provided.

  11. A Combinatorial Geometry Target Description of the High Mobility Multipurpose Wheeled Vehicle (HMMWV)

    DTIC Science & Technology

    1985-10-01

    NOTE3 1W. KFY OORDS (Continwo =n reverse aide If necesesar aid ldwttlfy by" block ntmber) •JW7 Regions, COM-EOM Region Ident• fication GIFT Material...technique of mobna.tcri• i Geometr- (Com-Geom). The Com-Gem data is used as input to the Geometric Inf• •cation for Targets ( GIFT ) computer code to... GIFT ) 2 3 computer code. This report documents the combinatorial geometry (Com-Geom) target description data which is the input data for the GIFT code

  12. A return mapping algorithm for isotropic and anisotropic plasticity models using a line search method

    DOE PAGES

    Scherzinger, William M.

    2016-05-01

    The numerical integration of constitutive models in computational solid mechanics codes allows for the solution of boundary value problems involving complex material behavior. Metal plasticity models, in particular, have been instrumental in the development of these codes. Here, most plasticity models implemented in computational codes use an isotropic von Mises yield surface. The von Mises, of J 2, yield surface has a simple predictor-corrector algorithm - the radial return algorithm - to integrate the model.

  13. Computer programs to characterize alloys and predict cyclic life using the total strain version of strainrange partitioning: Tutorial and users manual, version 1.0

    NASA Technical Reports Server (NTRS)

    Saltsman, James F.

    1992-01-01

    This manual presents computer programs for characterizing and predicting fatigue and creep-fatigue resistance of metallic materials in the high-temperature, long-life regime for isothermal and nonisothermal fatigue. The programs use the total strain version of Strainrange Partitioning (TS-SRP). An extensive database has also been developed in a parallel effort. This database is probably the largest source of high-temperature, creep-fatigue test data available in the public domain and can be used with other life prediction methods as well. This users manual, software, and database are all in the public domain and are available through COSMIC (382 East Broad Street, Athens, GA 30602; (404) 542-3265, FAX (404) 542-4807). Two disks accompany this manual. The first disk contains the source code, executable files, and sample output from these programs. The second disk contains the creep-fatigue data in a format compatible with these programs.

  14. Development and application of GASP 2.0

    NASA Technical Reports Server (NTRS)

    Mcgrory, W. D.; Huebner, L. D.; Slack, D. C.; Walters, R. W.

    1992-01-01

    GASP 2.0 represents a major new release of the computational fluid dynamics code in wide use by the aerospace community. The authors have spent the last two years analyzing the strengths and weaknesses of the previous version of the finite-rate chemistry, Navier Stokes solution algorithm. What has resulted is a completely redesigned computer code that offers two to four times the performance of previous versions while requiring as little as one quarter of the memory requirements. In addition to the improvements in efficiency over the original code, Version 2.0 contains many new features. A brief discussion of the improvements made to GASP, and an application using GASP 2.0 which demonstrates some of the new features are presented.

  15. Scattered Dose Calculations and Measurements in a Life-Like Mouse Phantom

    PubMed Central

    Welch, David; Turner, Leah; Speiser, Michael; Randers-Pehrson, Gerhard; Brenner, David J.

    2017-01-01

    Anatomically accurate phantoms are useful tools for radiation dosimetry studies. In this work, we demonstrate the construction of a new generation of life-like mouse phantoms in which the methods have been generalized to be applicable to the fabrication of any small animal. The mouse phantoms, with built-in density inhomogeneity, exhibit different scattering behavior dependent on where the radiation is delivered. Computer models of the mouse phantoms and a small animal irradiation platform were devised in Monte Carlo N-Particle code (MCNP). A baseline test replicating the irradiation system in a computational model shows minimal differences from experimental results from 50 Gy down to 0.1 Gy. We observe excellent agreement between scattered dose measurements and simulation results from X-ray irradiations focused at either the lung or the abdomen within our phantoms. This study demonstrates the utility of our mouse phantoms as measurement tools with the goal of using our phantoms to verify complex computational models. PMID:28140787

  16. Validation and Comparison of 2D and 3D Codes for Nearshore Motion of Long Waves Using Benchmark Problems

    NASA Astrophysics Data System (ADS)

    Velioǧlu, Deniz; Cevdet Yalçıner, Ahmet; Zaytsev, Andrey

    2016-04-01

    Tsunamis are huge waves with long wave periods and wave lengths that can cause great devastation and loss of life when they strike a coast. The interest in experimental and numerical modeling of tsunami propagation and inundation increased considerably after the 2011 Great East Japan earthquake. In this study, two numerical codes, FLOW 3D and NAMI DANCE, that analyze tsunami propagation and inundation patterns are considered. Flow 3D simulates linear and nonlinear propagating surface waves as well as long waves by solving three-dimensional Navier-Stokes (3D-NS) equations. NAMI DANCE uses finite difference computational method to solve 2D depth-averaged linear and nonlinear forms of shallow water equations (NSWE) in long wave problems, specifically tsunamis. In order to validate these two codes and analyze the differences between 3D-NS and 2D depth-averaged NSWE equations, two benchmark problems are applied. One benchmark problem investigates the runup of long waves over a complex 3D beach. The experimental setup is a 1:400 scale model of Monai Valley located on the west coast of Okushiri Island, Japan. Other benchmark problem is discussed in 2015 National Tsunami Hazard Mitigation Program (NTHMP) Annual meeting in Portland, USA. It is a field dataset, recording the Japan 2011 tsunami in Hilo Harbor, Hawaii. The computed water surface elevation and velocity data are compared with the measured data. The comparisons showed that both codes are in fairly good agreement with each other and benchmark data. The differences between 3D-NS and 2D depth-averaged NSWE equations are highlighted. All results are presented with discussions and comparisons. Acknowledgements: Partial support by Japan-Turkey Joint Research Project by JICA on earthquakes and tsunamis in Marmara Region (JICA SATREPS - MarDiM Project), 603839 ASTARTE Project of EU, UDAP-C-12-14 project of AFAD Turkey, 108Y227, 113M556 and 213M534 projects of TUBITAK Turkey, RAPSODI (CONCERT_Dis-021) of CONCERT-Japan Joint Call and Istanbul Metropolitan Municipality are all acknowledged.

  17. NASA/Army Rotorcraft Transmission Research, a Review of Recent Significant Accomplishments

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy L.

    1994-01-01

    A joint helicopter transmission research program between NASA Lewis Research Center and the U.S. Army Research Lab has existed since 1970. Research goals are to reduce weight and noise while increasing life, reliability, and safety. These research goals are achieved by the NASA/Army Mechanical Systems Technology Branch through both in-house research and cooperative research projects with university and industry partners. Some recent significant technical accomplishments produced by this cooperative research are reviewed. The following research projects are reviewed: oil-off survivability of tapered roller bearings, design and evaluation of high contact ratio gearing, finite element analysis of spiral bevel gears, computer numerical control grinding of spiral bevel gears, gear dynamics code validation, computer program for life and reliability of helicopter transmissions, planetary gear train efficiency study, and the Advanced Rotorcraft Transmission (ART) program.

  18. 48 CFR 2101.104-1 - Publication and code arrangement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MANAGEMENT, FEDERAL EMPLOYEES GROUP LIFE INSURANCE FEDERAL ACQUISITION REGULATION GENERAL FEDERAL ACQUISITION... its subsequent changes are published in: (1) Daily issues of the Federal Register; and (2) The Code of...

  19. Is Life Unique?

    PubMed Central

    Abel, David L.

    2011-01-01

    Is life physicochemically unique? No. Is life unique? Yes. Life manifests innumerable formalisms that cannot be generated or explained by physicodynamics alone. Life pursues thousands of biofunctional goals, not the least of which is staying alive. Neither physicodynamics, nor evolution, pursue goals. Life is largely directed by linear digital programming and by the Prescriptive Information (PI) instantiated particularly into physicodynamically indeterminate nucleotide sequencing. Epigenomic controls only compound the sophistication of these formalisms. Life employs representationalism through the use of symbol systems. Life manifests autonomy, homeostasis far from equilibrium in the harshest of environments, positive and negative feedback mechanisms, prevention and correction of its own errors, and organization of its components into Sustained Functional Systems (SFS). Chance and necessity—heat agitation and the cause-and-effect determinism of nature’s orderliness—cannot spawn formalisms such as mathematics, language, symbol systems, coding, decoding, logic, organization (not to be confused with mere self-ordering), integration of circuits, computational success, and the pursuit of functionality. All of these characteristics of life are formal, not physical. PMID:25382119

  20. cloudPEST - A python module for cloud-computing deployment of PEST, a program for parameter estimation

    USGS Publications Warehouse

    Fienen, Michael N.; Kunicki, Thomas C.; Kester, Daniel E.

    2011-01-01

    This report documents cloudPEST-a Python module with functions to facilitate deployment of the model-independent parameter estimation code PEST on a cloud-computing environment. cloudPEST makes use of low-level, freely available command-line tools that interface with the Amazon Elastic Compute Cloud (EC2(TradeMark)) that are unlikely to change dramatically. This report describes the preliminary setup for both Python and EC2 tools and subsequently describes the functions themselves. The code and guidelines have been tested primarily on the Windows(Registered) operating system but are extensible to Linux(Registered).

  1. An arbitrary grid CFD algorithm for configuration aerodynamics analysis. Volume 2: FEMNAS user guide

    NASA Technical Reports Server (NTRS)

    Manhardt, Paul D.; Orzechowski, J. A.; Baker, A. J.

    1992-01-01

    This report documents the user input and output data requirements for the FEMNAS finite element Navier-Stokes code for real-gas simulations of external aerodynamics flowfields. This code was developed for the configuration aerodynamics branch of NASA ARC, under SBIR Phase 2 contract NAS2-124568 by Computational Mechanics Corporation (COMCO). This report is in two volumes. Volume 1 contains the theory for the derived finite element algorithm and describes the test cases used to validate the computer program described in the Volume 2 user guide.

  2. A Computational Method for Determining the Equilibrium Composition and Product Temperature in a LH2/LOX Combustor

    NASA Technical Reports Server (NTRS)

    Sozen, Mehmet

    2003-01-01

    In what follows, the model used for combustion of liquid hydrogen (LH2) with liquid oxygen (LOX) using chemical equilibrium assumption, and the novel computational method developed for determining the equilibrium composition and temperature of the combustion products by application of the first and second laws of thermodynamics will be described. The modular FORTRAN code developed as a subroutine that can be incorporated into any flow network code with little effort has been successfully implemented in GFSSP as the preliminary runs indicate. The code provides capability of modeling the heat transfer rate to the coolants for parametric analysis in system design.

  3. Transcriptome-wide discovery of circular RNAs in Archaea

    PubMed Central

    Danan, Miri; Schwartz, Schraga; Edelheit, Sarit; Sorek, Rotem

    2012-01-01

    Circular RNA forms had been described in all domains of life. Such RNAs were shown to have diverse biological functions, including roles in the life cycle of viral and viroid genomes, and in maturation of permuted tRNA genes. Despite their potentially important biological roles, discovery of circular RNAs has so far been mostly serendipitous. We have developed circRNA-seq, a combined experimental/computational approach that enriches for circular RNAs and allows profiling their prevalence in a whole-genome, unbiased manner. Application of this approach to the archaeon Sulfolobus solfataricus P2 revealed multiple circular transcripts, a subset of which was further validated independently. The identified circular RNAs included expected forms, such as excised tRNA introns and rRNA processing intermediates, but were also enriched with non-coding RNAs, including C/D box RNAs and RNase P, as well as circular RNAs of unknown function. Many of the identified circles were conserved in Sulfolobus acidocaldarius, further supporting their functional significance. Our results suggest that circular RNAs, and particularly circular non-coding RNAs, are more prevalent in archaea than previously recognized, and might have yet unidentified biological roles. Our study establishes a specific and sensitive approach for identification of circular RNAs using RNA-seq, and can readily be applied to other organisms. PMID:22140119

  4. Development and application of the GIM code for the Cyber 203 computer

    NASA Technical Reports Server (NTRS)

    Stainaker, J. F.; Robinson, M. A.; Rawlinson, E. G.; Anderson, P. G.; Mayne, A. W.; Spradley, L. W.

    1982-01-01

    The GIM computer code for fluid dynamics research was developed. Enhancement of the computer code, implicit algorithm development, turbulence model implementation, chemistry model development, interactive input module coding and wing/body flowfield computation are described. The GIM quasi-parabolic code development was completed, and the code used to compute a number of example cases. Turbulence models, algebraic and differential equations, were added to the basic viscous code. An equilibrium reacting chemistry model and implicit finite difference scheme were also added. Development was completed on the interactive module for generating the input data for GIM. Solutions for inviscid hypersonic flow over a wing/body configuration are also presented.

  5. Proceedings of the 14th International Conference on the Numerical Simulation of Plasmas

    NASA Astrophysics Data System (ADS)

    Partial Contents are as follows: Numerical Simulations of the Vlasov-Maxwell Equations by Coupled Particle-Finite Element Methods on Unstructured Meshes; Electromagnetic PIC Simulations Using Finite Elements on Unstructured Grids; Modelling Travelling Wave Output Structures with the Particle-in-Cell Code CONDOR; SST--A Single-Slice Particle Simulation Code; Graphical Display and Animation of Data Produced by Electromagnetic, Particle-in-Cell Codes; A Post-Processor for the PEST Code; Gray Scale Rendering of Beam Profile Data; A 2D Electromagnetic PIC Code for Distributed Memory Parallel Computers; 3-D Electromagnetic PIC Simulation on the NRL Connection Machine; Plasma PIC Simulations on MIMD Computers; Vlasov-Maxwell Algorithm for Electromagnetic Plasma Simulation on Distributed Architectures; MHD Boundary Layer Calculation Using the Vortex Method; and Eulerian Codes for Plasma Simulations.

  6. Numerical, Analytical, Experimental Study of Fluid Dynamic Forces in Seals Volume 6: Description of Scientific CFD Code SCISEAL

    NASA Technical Reports Server (NTRS)

    Athavale, Mahesh; Przekwas, Andrzej

    2004-01-01

    The objectives of the program were to develop computational fluid dynamics (CFD) codes and simpler industrial codes for analyzing and designing advanced seals for air-breathing and space propulsion engines. The CFD code SCISEAL is capable of producing full three-dimensional flow field information for a variety of cylindrical configurations. An implicit multidomain capability allow the division of complex flow domains to allow optimum use of computational cells. SCISEAL also has the unique capability to produce cross-coupled stiffness and damping coefficients for rotordynamic computations. The industrial codes consist of a series of separate stand-alone modules designed for expeditious parametric analyses and optimization of a wide variety of cylindrical and face seals. Coupled through a Knowledge-Based System (KBS) that provides a user-friendly Graphical User Interface (GUI), the industrial codes are PC based using an OS/2 operating system. These codes were designed to treat film seals where a clearance exists between the rotating and stationary components. Leakage is inhibited by surface roughness, small but stiff clearance films, and viscous pumping devices. The codes have demonstrated to be a valuable resource for seal development of future air-breathing and space propulsion engines.

  7. The WISGSK: A computer code for the prediction of a multistage axial compressor performance with water ingestion

    NASA Technical Reports Server (NTRS)

    Tsuchiya, T.; Murthy, S. N. B.

    1982-01-01

    A computer code is presented for the prediction of off-design axial flow compressor performance with water ingestion. Four processes were considered to account for the aero-thermo-mechanical interactions during operation with air-water droplet mixture flow: (1) blade performance change, (2) centrifuging of water droplets, (3) heat and mass transfer process between the gaseous and the liquid phases and (4) droplet size redistribution due to break-up. Stage and compressor performance are obtained by a stage stacking procedure using representative veocity diagrams at a rotor inlet and outlet mean radii. The Code has options for performance estimation with (1) mixtures of gas and (2) gas-water droplet mixtures, and therefore can take into account the humidity present in ambient conditions. A test case illustrates the method of using the Code. The Code follows closely the methodology and architecture of the NASA-STGSTK Code for the estimation of axial-flow compressor performance with air flow.

  8. Real-time computer treatment of THz passive device images with the high image quality

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.

    2012-06-01

    We demonstrate real-time computer code improving significantly the quality of images captured by the passive THz imaging system. The code is not only designed for a THz passive device: it can be applied to any kind of such devices and active THz imaging systems as well. We applied our code for computer processing of images captured by four passive THz imaging devices manufactured by different companies. It should be stressed that computer processing of images produced by different companies requires using the different spatial filters usually. The performance of current version of the computer code is greater than one image per second for a THz image having more than 5000 pixels and 24 bit number representation. Processing of THz single image produces about 20 images simultaneously corresponding to various spatial filters. The computer code allows increasing the number of pixels for processed images without noticeable reduction of image quality. The performance of the computer code can be increased many times using parallel algorithms for processing the image. We develop original spatial filters which allow one to see objects with sizes less than 2 cm. The imagery is produced by passive THz imaging devices which captured the images of objects hidden under opaque clothes. For images with high noise we develop an approach which results in suppression of the noise after using the computer processing and we obtain the good quality image. With the aim of illustrating the efficiency of the developed approach we demonstrate the detection of the liquid explosive, ordinary explosive, knife, pistol, metal plate, CD, ceramics, chocolate and other objects hidden under opaque clothes. The results demonstrate the high efficiency of our approach for the detection of hidden objects and they are a very promising solution for the security problem.

  9. Space Station Freedom electrical performance model

    NASA Technical Reports Server (NTRS)

    Hojnicki, Jeffrey S.; Green, Robert D.; Kerslake, Thomas W.; Mckissock, David B.; Trudell, Jeffrey J.

    1993-01-01

    The baseline Space Station Freedom electric power system (EPS) employs photovoltaic (PV) arrays and nickel hydrogen (NiH2) batteries to supply power to housekeeping and user electrical loads via a direct current (dc) distribution system. The EPS was originally designed for an operating life of 30 years through orbital replacement of components. As the design and development of the EPS continues, accurate EPS performance predictions are needed to assess design options, operating scenarios, and resource allocations. To meet these needs, NASA Lewis Research Center (LeRC) has, over a 10 year period, developed SPACE (Station Power Analysis for Capability Evaluation), a computer code designed to predict EPS performance. This paper describes SPACE, its functionality, and its capabilities.

  10. Decoding the "CoDe": A Framework for Conceptualizing and Designing Help Options in Computer-Based Second Language Listening

    ERIC Educational Resources Information Center

    Cardenas-Claros, Monica Stella; Gruba, Paul A.

    2013-01-01

    This paper proposes a theoretical framework for the conceptualization and design of help options in computer-based second language (L2) listening. Based on four empirical studies, it aims at clarifying both conceptualization and design (CoDe) components. The elements of conceptualization consist of a novel four-part classification of help options:…

  11. Reeds computer code

    NASA Technical Reports Server (NTRS)

    Bjork, C.

    1981-01-01

    The REEDS (rocket exhaust effluent diffusion single layer) computer code is used for the estimation of certain rocket exhaust effluent concentrations and dosages and their distributions near the Earth's surface following a rocket launch event. Output from REEDS is used in producing near real time air quality and environmental assessments of the effects of certain potentially harmful effluents, namely HCl, Al2O3, CO, and NO.

  12. Modeling Laser Damage Thresholds Using the Thompson-Gerstman Model

    DTIC Science & Technology

    2014-10-01

    Gerstman model was intended to be a modular tool fit for integration into other computational models. This adds usability to the standalone code...Advanced Study Institute, Series A – Life Sciences, Vol. 34, pp. 77-97. New York: Plenum Press . 4. Birngruber, R., V.-P. Gabel and F. Hillenkamp...Random granule placement - varies with melnum. ; ii. Depth averaging or shadowing - varies with melnum. ; iii. T(r,t) single granule calc

  13. PROTEUS two-dimensional Navier-Stokes computer code, version 1.0. Volume 2: User's guide

    NASA Technical Reports Server (NTRS)

    Towne, Charles E.; Schwab, John R.; Benson, Thomas J.; Suresh, Ambady

    1990-01-01

    A new computer code was developed to solve the two-dimensional or axisymmetric, Reynolds averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The thin-layer or Euler equations may also be solved. Turbulence is modeled using an algebraic eddy viscosity model. The objective was to develop a code for aerospace applications that is easy to use and easy to modify. Code readability, modularity, and documentation were emphasized. The equations are written in nonorthogonal body-fitted coordinates, and solved by marching in time using a fully-coupled alternating direction-implicit procedure with generalized first- or second-order time differencing. All terms are linearized using second-order Taylor series. The boundary conditions are treated implicitly, and may be steady, unsteady, or spatially periodic. Simple Cartesian or polar grids may be generated internally by the program. More complex geometries require an externally generated computational coordinate system. The documentation is divided into three volumes. Volume 2 is the User's Guide, and describes the program's general features, the input and output, the procedure for setting up initial conditions, the computer resource requirements, the diagnostic messages that may be generated, the job control language used to run the program, and several test cases.

  14. Moment method analysis of linearly tapered slot antennas: Low loss components for switched beam radiometers

    NASA Technical Reports Server (NTRS)

    Koeksal, Adnan; Trew, Robert J.; Kauffman, J. Frank

    1992-01-01

    A Moment Method Model for the radiation pattern characterization of single Linearly Tapered Slot Antennas (LTSA) in air or on a dielectric substrate is developed. This characterization consists of: (1) finding the radiated far-fields of the antenna; (2) determining the E-Plane and H-Plane beamwidths and sidelobe levels; and (3) determining the D-Plane beamwidth and cross polarization levels, as antenna parameters length, height, taper angle, substrate thickness, and the relative substrate permittivity vary. The LTSA geometry does not lend itself to analytical solution with the given parameter ranges. Therefore, a computer modeling scheme and a code are necessary to analyze the problem. This necessity imposes some further objectives or requirements on the solution method (modeling) and tool (computer code). These may be listed as follows: (1) a good approximation to the real antenna geometry; and (2) feasible computer storage and time requirements. According to these requirements, the work is concentrated on the development of efficient modeling schemes for these type of problems and on reducing the central processing unit (CPU) time required from the computer code. A Method of Moments (MoM) code is developed for the analysis of LTSA's within the parameter ranges given.

  15. A Computer Program for Flow-Log Analysis of Single Holes (FLASH)

    USGS Publications Warehouse

    Day-Lewis, F. D.; Johnson, C.D.; Paillet, Frederick L.; Halford, K.J.

    2011-01-01

    A new computer program, FLASH (Flow-Log Analysis of Single Holes), is presented for the analysis of borehole vertical flow logs. The code is based on an analytical solution for steady-state multilayer radial flow to a borehole. The code includes options for (1) discrete fractures and (2) multilayer aquifers. Given vertical flow profiles collected under both ambient and stressed (pumping or injection) conditions, the user can estimate fracture (or layer) transmissivities and far-field hydraulic heads. FLASH is coded in Microsoft Excel with Visual Basic for Applications routines. The code supports manual and automated model calibration. ?? 2011, The Author(s). Ground Water ?? 2011, National Ground Water Association.

  16. Development of a CFD Code for Analysis of Fluid Dynamic Forces in Seals

    NASA Technical Reports Server (NTRS)

    Athavale, Mahesh M.; Przekwas, Andrzej J.; Singhal, Ashok K.

    1991-01-01

    The aim is to develop a 3-D computational fluid dynamics (CFD) code for the analysis of fluid flow in cylindrical seals and evaluation of the dynamic forces on the seals. This code is expected to serve as a scientific tool for detailed flow analysis as well as a check for the accuracy of the 2D industrial codes. The features necessary in the CFD code are outlined. The initial focus was to develop or modify and implement new techniques and physical models. These include collocated grid formulation, rotating coordinate frames and moving grid formulation. Other advanced numerical techniques include higher order spatial and temporal differencing and an efficient linear equation solver. These techniques were implemented in a 2D flow solver for initial testing. Several benchmark test cases were computed using the 2D code, and the results of these were compared to analytical solutions or experimental data to check the accuracy. Tests presented here include planar wedge flow, flow due to an enclosed rotor, and flow in a 2D seal with a whirling rotor. Comparisons between numerical and experimental results for an annular seal and a 7-cavity labyrinth seal are also included.

  17. Evolvix BEST Names for semantic reproducibility across code2brain interfaces

    PubMed Central

    Scheuer, Katherine S.; Keel, Seth A.; Vyas, Vaibhav; Liblit, Ben; Hanlon, Bret; Ferris, Michael C.; Yin, John; Dutra, Inês; Pietsch, Anthony; Javid, Christine G.; Moog, Cecilia L.; Meyer, Jocelyn; Dresel, Jerdon; McLoone, Brian; Loberger, Sonya; Movaghar, Arezoo; Gilchrist‐Scott, Morgaine; Sabri, Yazeed; Sescleifer, Dave; Pereda‐Zorrilla, Ivan; Zietlow, Andrew; Smith, Rodrigo; Pietenpol, Samantha; Goldfinger, Jacob; Atzen, Sarah L.; Freiberg, Erika; Waters, Noah P.; Nusbaum, Claire; Nolan, Erik; Hotz, Alyssa; Kliman, Richard M.; Mentewab, Ayalew; Fregien, Nathan; Loewe, Martha

    2016-01-01

    Names in programming are vital for understanding the meaning of code and big data. We define code2brain (C2B) interfaces as maps in compilers and brains between meaning and naming syntax, which help to understand executable code. While working toward an Evolvix syntax for general‐purpose programming that makes accurate modeling easy for biologists, we observed how names affect C2B quality. To protect learning and coding investments, C2B interfaces require long‐term backward compatibility and semantic reproducibility (accurate reproduction of computational meaning from coder‐brains to reader‐brains by code alone). Semantic reproducibility is often assumed until confusing synonyms degrade modeling in biology to deciphering exercises. We highlight empirical naming priorities from diverse individuals and roles of names in different modes of computing to show how naming easily becomes impossibly difficult. We present the Evolvix BEST (Brief, Explicit, Summarizing, Technical) Names concept for reducing naming priority conflicts, test it on a real challenge by naming subfolders for the Project Organization Stabilizing Tool system, and provide naming questionnaires designed to facilitate C2B debugging by improving names used as keywords in a stabilizing programming language. Our experiences inspired us to develop Evolvix using a flipped programming language design approach with some unexpected features and BEST Names at its core. PMID:27918836

  18. Turbofan noise generation. Volume 2: Computer programs

    NASA Technical Reports Server (NTRS)

    Ventres, C. S.; Theobald, M. A.; Mark, W. D.

    1982-01-01

    The use of a package of computer programs developed to calculate the in duct acoustic mods excited by a fan/stator stage operating at subsonic tip speed is described. The following three noise source mechanisms are included: (1) sound generated by the rotor blades interacting with turbulence ingested into, or generated within, the inlet duct; (2) sound generated by the stator vanes interacting with the turbulent wakes of the rotor blades; and (3) sound generated by the stator vanes interacting with the velocity deficits in the mean wakes of the rotor blades. The computations for three different noise mechanisms are coded as three separate computer program packages. The computer codes are described by means of block diagrams, tables of data and variables, and example program executions; FORTRAN listings are included.

  19. Turbofan noise generation. Volume 2: Computer programs

    NASA Astrophysics Data System (ADS)

    Ventres, C. S.; Theobald, M. A.; Mark, W. D.

    1982-07-01

    The use of a package of computer programs developed to calculate the in duct acoustic mods excited by a fan/stator stage operating at subsonic tip speed is described. The following three noise source mechanisms are included: (1) sound generated by the rotor blades interacting with turbulence ingested into, or generated within, the inlet duct; (2) sound generated by the stator vanes interacting with the turbulent wakes of the rotor blades; and (3) sound generated by the stator vanes interacting with the velocity deficits in the mean wakes of the rotor blades. The computations for three different noise mechanisms are coded as three separate computer program packages. The computer codes are described by means of block diagrams, tables of data and variables, and example program executions; FORTRAN listings are included.

  20. Towards Reproducibility in Computational Hydrology

    NASA Astrophysics Data System (ADS)

    Hutton, Christopher; Wagener, Thorsten; Freer, Jim; Han, Dawei; Duffy, Chris; Arheimer, Berit

    2017-04-01

    Reproducibility is a foundational principle in scientific research. The ability to independently re-run an experiment helps to verify the legitimacy of individual findings, and evolve (or reject) hypotheses and models of how environmental systems function, and move them from specific circumstances to more general theory. Yet in computational hydrology (and in environmental science more widely) the code and data that produces published results are not regularly made available, and even if they are made available, there remains a multitude of generally unreported choices that an individual scientist may have made that impact the study result. This situation strongly inhibits the ability of our community to reproduce and verify previous findings, as all the information and boundary conditions required to set up a computational experiment simply cannot be reported in an article's text alone. In Hutton et al 2016 [1], we argue that a cultural change is required in the computational hydrological community, in order to advance and make more robust the process of knowledge creation and hypothesis testing. We need to adopt common standards and infrastructures to: (1) make code readable and re-useable; (2) create well-documented workflows that combine re-useable code together with data to enable published scientific findings to be reproduced; (3) make code and workflows available, easy to find, and easy to interpret, using code and code metadata repositories. To create change we argue for improved graduate training in these areas. In this talk we reflect on our progress in achieving reproducible, open science in computational hydrology, which are relevant to the broader computational geoscience community. In particular, we draw on our experience in the Switch-On (EU funded) virtual water science laboratory (http://www.switch-on-vwsl.eu/participate/), which is an open platform for collaboration in hydrological experiments (e.g. [2]). While we use computational hydrology as the example application area, we believe that our conclusions are of value to the wider environmental and geoscience community as far as the use of code and models for scientific advancement is concerned. References: [1] Hutton, C., T. Wagener, J. Freer, D. Han, C. Duffy, and B. Arheimer (2016), Most computational hydrology is not reproducible, so is it really science?, Water Resour. Res., 52, 7548-7555, doi:10.1002/2016WR019285. [2] Ceola, S., et al. (2015), Virtual laboratories: New opportunities for collaborative water science, Hydrol. Earth Syst. Sci. Discuss., 11(12), 13443-13478, doi:10.5194/hessd-11-13443-2014.

  1. Aeroacoustic Prediction Codes

    NASA Technical Reports Server (NTRS)

    Gliebe, P; Mani, R.; Shin, H.; Mitchell, B.; Ashford, G.; Salamah, S.; Connell, S.; Huff, Dennis (Technical Monitor)

    2000-01-01

    This report describes work performed on Contract NAS3-27720AoI 13 as part of the NASA Advanced Subsonic Transport (AST) Noise Reduction Technology effort. Computer codes were developed to provide quantitative prediction, design, and analysis capability for several aircraft engine noise sources. The objective was to provide improved, physics-based tools for exploration of noise-reduction concepts and understanding of experimental results. Methods and codes focused on fan broadband and 'buzz saw' noise and on low-emissions combustor noise and compliment work done by other contractors under the NASA AST program to develop methods and codes for fan harmonic tone noise and jet noise. The methods and codes developed and reported herein employ a wide range of approaches, from the strictly empirical to the completely computational, with some being semiempirical analytical, and/or analytical/computational. Emphasis was on capturing the essential physics while still considering method or code utility as a practical design and analysis tool for everyday engineering use. Codes and prediction models were developed for: (1) an improved empirical correlation model for fan rotor exit flow mean and turbulence properties, for use in predicting broadband noise generated by rotor exit flow turbulence interaction with downstream stator vanes: (2) fan broadband noise models for rotor and stator/turbulence interaction sources including 3D effects, noncompact-source effects. directivity modeling, and extensions to the rotor supersonic tip-speed regime; (3) fan multiple-pure-tone in-duct sound pressure prediction methodology based on computational fluid dynamics (CFD) analysis; and (4) low-emissions combustor prediction methodology and computer code based on CFD and actuator disk theory. In addition. the relative importance of dipole and quadrupole source mechanisms was studied using direct CFD source computation for a simple cascadeigust interaction problem, and an empirical combustor-noise correlation model was developed from engine acoustic test results. This work provided several insights on potential approaches to reducing aircraft engine noise. Code development is described in this report, and those insights are discussed.

  2. The DOPEX code: An application of the method of steepest descent to laminated-shield-weight optimization with several constraints

    NASA Technical Reports Server (NTRS)

    Lahti, G. P.

    1972-01-01

    A two- or three-constraint, two-dimensional radiation shield weight optimization procedure and a computer program, DOPEX, is described. The DOPEX code uses the steepest descent method to alter a set of initial (input) thicknesses for a shield configuration to achieve a minimum weight while simultaneously satisfying dose constaints. The code assumes an exponential dose-shield thickness relation with parameters specified by the user. The code also assumes that dose rates in each principal direction are dependent only on thicknesses in that direction. Code input instructions, FORTRAN 4 listing, and a sample problem are given. Typical computer time required to optimize a seven-layer shield is about 0.1 minute on an IBM 7094-2.

  3. A Rocket Engine Design Expert System

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth J.

    1989-01-01

    The overall structure and capabilities of an expert system designed to evaluate rocket engine performance are described. The expert system incorporates a JANNAF standard reference computer code to determine rocket engine performance and a state of the art finite element computer code to calculate the interactions between propellant injection, energy release in the combustion chamber, and regenerative cooling heat transfer. Rule-of-thumb heuristics were incorporated for the H2-O2 coaxial injector design, including a minimum gap size constraint on the total number of injector elements. One dimensional equilibrium chemistry was used in the energy release analysis of the combustion chamber. A 3-D conduction and/or 1-D advection analysis is used to predict heat transfer and coolant channel wall temperature distributions, in addition to coolant temperature and pressure drop. Inputting values to describe the geometry and state properties of the entire system is done directly from the computer keyboard. Graphical display of all output results from the computer code analyses is facilitated by menu selection of up to five dependent variables per plot.

  4. Turbofan forced mixer-nozzle internal flowfield. Volume 2: Computational fluid dynamic predictions

    NASA Technical Reports Server (NTRS)

    Werle, M. J.; Vasta, V. N.

    1982-01-01

    A general program was conducted to develop and assess a computational method for predicting the flow properties in a turbofan forced mixed duct. The detail assessment of the resulting computer code is presented. It was found that the code provided excellent predictions of the kinematics of the mixing process throughout the entire length of the mixer nozzle. The thermal mixing process between the hot core and cold fan flows was found to be well represented in the low speed portion of the flowfield.

  5. Assessment of the impact of the change from manual to automated coding on mortality statistics in Australia.

    PubMed

    McKenzie, Kirsten; Walker, Sue; Tong, Shilu

    It remains unclear whether the change from a manual to an automated coding system (ACS) for deaths has significantly affected the consistency of Australian mortality data. The underlying causes of 34,000 deaths registered in 1997 in Australia were dual coded, in ICD-9 manually, and by using an automated computer coding program. The diseases most affected by the change from manual to ACS were senile/presenile dementia, and pneumonia. The most common disease to which a manually assigned underlying cause of senile dementia was coded with ACS was unspecified psychoses (37.2%). Only 12.5% of codes assigned by ACS as senile dementia were coded the same by manual coders. This study indicates some important differences in mortality rates when comparing mortality data that have been coded manually with those coded using an automated computer coding program. These differences may be related to both the different interpretation of ICD coding rules between manual and automated coding, and different co-morbidities or co-existing conditions among demographic groups.

  6. The moral code in Islam and organ donation in Western countries: reinterpreting religious scriptures to meet utilitarian medical objectives.

    PubMed

    Rady, Mohamed Y; Verheijde, Joseph L

    2014-06-02

    End-of-life organ donation is controversial in Islam. The controversy stems from: (1) scientifically flawed medical criteria of death determination; (2) invasive perimortem procedures for preserving transplantable organs; and (3) incomplete disclosure of information to consenting donors and families. Data from a survey of Muslims residing in Western countries have shown that the interpretation of religious scriptures and advice of faith leaders were major barriers to willingness for organ donation. Transplant advocates have proposed corrective interventions: (1) reinterpreting religious scriptures, (2) reeducating faith leaders, and (3) utilizing media campaigns to overcome religious barriers in Muslim communities. This proposal disregards the intensifying scientific, legal, and ethical controversies in Western societies about the medical criteria of death determination in donors. It would also violate the dignity and inviolability of human life which are pertinent values incorporated in the Islamic moral code. Reinterpreting religious scriptures to serve the utilitarian objectives of a controversial end-of-life practice, perceived to be socially desirable, transgresses the Islamic moral code. It may also have deleterious practical consequences, as donors can suffer harm before death. The negative normative consequences of utilitarian secular moral reasoning reset the Islamic moral code upholding the sanctity and dignity of human life.

  7. The moral code in Islam and organ donation in Western countries: reinterpreting religious scriptures to meet utilitarian medical objectives

    PubMed Central

    2014-01-01

    End-of-life organ donation is controversial in Islam. The controversy stems from: (1) scientifically flawed medical criteria of death determination; (2) invasive perimortem procedures for preserving transplantable organs; and (3) incomplete disclosure of information to consenting donors and families. Data from a survey of Muslims residing in Western countries have shown that the interpretation of religious scriptures and advice of faith leaders were major barriers to willingness for organ donation. Transplant advocates have proposed corrective interventions: (1) reinterpreting religious scriptures, (2) reeducating faith leaders, and (3) utilizing media campaigns to overcome religious barriers in Muslim communities. This proposal disregards the intensifying scientific, legal, and ethical controversies in Western societies about the medical criteria of death determination in donors. It would also violate the dignity and inviolability of human life which are pertinent values incorporated in the Islamic moral code. Reinterpreting religious scriptures to serve the utilitarian objectives of a controversial end-of-life practice, perceived to be socially desirable, transgresses the Islamic moral code. It may also have deleterious practical consequences, as donors can suffer harm before death. The negative normative consequences of utilitarian secular moral reasoning reset the Islamic moral code upholding the sanctity and dignity of human life. PMID:24888748

  8. Progressive Failure And Life Prediction of Ceramic and Textile Composites

    NASA Technical Reports Server (NTRS)

    Xue, David Y.; Shi, Yucheng; Katikala, Madhu; Johnston, William M., Jr.; Card, Michael F.

    1998-01-01

    An engineering approach to predict the fatigue life and progressive failure of multilayered composite and textile laminates is presented. Analytical models which account for matrix cracking, statistical fiber failures and nonlinear stress-strain behavior have been developed for both composites and textiles. The analysis method is based on a combined micromechanics, fracture mechanics and failure statistics analysis. Experimentally derived empirical coefficients are used to account for the interface of fiber and matrix, fiber strength, and fiber-matrix stiffness reductions. Similar approaches were applied to textiles using Repeating Unit Cells. In composite fatigue analysis, Walker's equation is applied for matrix fatigue cracking and Heywood's formulation is used for fiber strength fatigue degradation. The analysis has been compared with experiment with good agreement. Comparisons were made with Graphite-Epoxy, C/SiC and Nicalon/CAS composite materials. For textile materials, comparisons were made with triaxial braided and plain weave materials under biaxial or uniaxial tension. Fatigue predictions were compared with test data obtained from plain weave C/SiC materials tested at AS&M. Computer codes were developed to perform the analysis. Composite Progressive Failure Analysis for Laminates is contained in the code CPFail. Micromechanics Analysis for Textile Composites is contained in the code MicroTex. Both codes were adapted to run as subroutines for the finite element code ABAQUS and CPFail-ABAQUS and MicroTex-ABAQUS. Graphic user interface (GUI) was developed to connect CPFail and MicroTex with ABAQUS.

  9. Transonic Navier-Stokes wing solutions using a zonal approach. Part 2: High angle-of-attack simulation

    NASA Technical Reports Server (NTRS)

    Chaderjian, N. M.

    1986-01-01

    A computer code is under development whereby the thin-layer Reynolds-averaged Navier-Stokes equations are to be applied to realistic fighter-aircraft configurations. This transonic Navier-Stokes code (TNS) utilizes a zonal approach in order to treat complex geometries and satisfy in-core computer memory constraints. The zonal approach has been applied to isolated wing geometries in order to facilitate code development. Part 1 of this paper addresses the TNS finite-difference algorithm, zonal methodology, and code validation with experimental data. Part 2 of this paper addresses some numerical issues such as code robustness, efficiency, and accuracy at high angles of attack. Special free-stream-preserving metrics proved an effective way to treat H-mesh singularities over a large range of severe flow conditions, including strong leading-edge flow gradients, massive shock-induced separation, and stall. Furthermore, lift and drag coefficients have been computed for a wing up through CLmax. Numerical oil flow patterns and particle trajectories are presented both for subcritical and transonic flow. These flow simulations are rich with complex separated flow physics and demonstrate the efficiency and robustness of the zonal approach.

  10. Alien Mindscapes—A Perspective on the Search for Extraterrestrial Intelligence

    NASA Astrophysics Data System (ADS)

    Cabrol, Nathalie A.

    2016-09-01

    Advances in planetary and space sciences, astrobiology, and life and cognitive sciences, combined with developments in communication theory, bioneural computing, machine learning, and big data analysis, create new opportunities to explore the probabilistic nature of alien life. Brought together in a multidisciplinary approach, they have the potential to support an integrated and expanded Search for Extraterrestrial Intelligence (SETI1), a search that includes looking for life as we do not know it. This approach will augment the odds of detecting a signal by broadening our understanding of the evolutionary and systemic components in the search for extraterrestrial intelligence (ETI), provide more targets for radio and optical SETI, and identify new ways of decoding and coding messages using universal markers.

  11. Parallel community climate model: Description and user`s guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drake, J.B.; Flanery, R.E.; Semeraro, B.D.

    This report gives an overview of a parallel version of the NCAR Community Climate Model, CCM2, implemented for MIMD massively parallel computers using a message-passing programming paradigm. The parallel implementation was developed on an Intel iPSC/860 with 128 processors and on the Intel Delta with 512 processors, and the initial target platform for the production version of the code is the Intel Paragon with 2048 processors. Because the implementation uses a standard, portable message-passing libraries, the code has been easily ported to other multiprocessors supporting a message-passing programming paradigm. The parallelization strategy used is to decompose the problem domain intomore » geographical patches and assign each processor the computation associated with a distinct subset of the patches. With this decomposition, the physics calculations involve only grid points and data local to a processor and are performed in parallel. Using parallel algorithms developed for the semi-Lagrangian transport, the fast Fourier transform and the Legendre transform, both physics and dynamics are computed in parallel with minimal data movement and modest change to the original CCM2 source code. Sequential or parallel history tapes are written and input files (in history tape format) are read sequentially by the parallel code to promote compatibility with production use of the model on other computer systems. A validation exercise has been performed with the parallel code and is detailed along with some performance numbers on the Intel Paragon and the IBM SP2. A discussion of reproducibility of results is included. A user`s guide for the PCCM2 version 2.1 on the various parallel machines completes the report. Procedures for compilation, setup and execution are given. A discussion of code internals is included for those who may wish to modify and use the program in their own research.« less

  12. Generalized Advanced Propeller Analysis System (GAPAS). Volume 2: Computer program user manual

    NASA Technical Reports Server (NTRS)

    Glatt, L.; Crawford, D. R.; Kosmatka, J. B.; Swigart, R. J.; Wong, E. W.

    1986-01-01

    The Generalized Advanced Propeller Analysis System (GAPAS) computer code is described. GAPAS was developed to analyze advanced technology multi-bladed propellers which operate on aircraft with speeds up to Mach 0.8 and altitudes up to 40,000 feet. GAPAS includes technology for analyzing aerodynamic, structural, and acoustic performance of propellers. The computer code was developed for the CDC 7600 computer and is currently available for industrial use on the NASA Langley computer. A description of all the analytical models incorporated in GAPAS is included. Sample calculations are also described as well as users requirements for modifying the analysis system. Computer system core requirements and running times are also discussed.

  13. An arbitrary grid CFD algorithm for configuration aerodynamics analysis. Volume 1: Theory and validations

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Iannelli, G. S.; Manhardt, Paul D.; Orzechowski, J. A.

    1993-01-01

    This report documents the user input and output data requirements for the FEMNAS finite element Navier-Stokes code for real-gas simulations of external aerodynamics flowfields. This code was developed for the configuration aerodynamics branch of NASA ARC, under SBIR Phase 2 contract NAS2-124568 by Computational Mechanics Corporation (COMCO). This report is in two volumes. Volume 1 contains the theory for the derived finite element algorithm and describes the test cases used to validate the computer program described in the Volume 2 user guide.

  14. General Electromagnetic Model for the Analysis of Complex Systems (GEMACS) Computer Code Documentation (Version 3). Volume 3, Part 4.

    DTIC Science & Technology

    1983-09-01

    6ENFRAL. ELECTROMAGNETIC MODEL FOR THE ANALYSIS OF COMPLEX SYSTEMS **%(GEMA CS) Computer Code Documentation ii( Version 3 ). A the BDM Corporation Dr...ANALYSIS FnlTcnclRpr F COMPLEX SYSTEM (GmCS) February 81 - July 83- I TR CODE DOCUMENTATION (Version 3 ) 6.PROMN N.REPORT NUMBER 5. CONTRACT ORGAT97...the ti and t2 directions on the source patch. 3 . METHOD: The electric field at a segment observation point due to the source patch j is given by 1-- lnA

  15. FORCE2: A state-of-the-art two-phase code for hydrodynamic calculations

    NASA Astrophysics Data System (ADS)

    Ding, Jianmin; Lyczkowski, R. W.; Burge, S. W.

    1993-02-01

    A three-dimensional computer code for two-phase flow named FORCE2 has been developed by Babcock and Wilcox (B & W) in close collaboration with Argonne National Laboratory (ANL). FORCE2 is capable of both transient as well as steady-state simulations. This Cartesian coordinates computer program is a finite control volume, industrial grade and quality embodiment of the pilot-scale FLUFIX/MOD2 code and contains features such as three-dimensional blockages, volume and surface porosities to account for various obstructions in the flow field, and distributed resistance modeling to account for pressure drops caused by baffles, distributor plates and large tube banks. Recently computed results demonstrated the significance of and necessity for three-dimensional models of hydrodynamics and erosion. This paper describes the process whereby ANL's pilot-scale FLUFIX/MOD2 models and numerics were implemented into FORCE2. A description of the quality control to assess the accuracy of the new code and the validation using some of the measured data from Illinois Institute of Technology (UT) and the University of Illinois at Urbana-Champaign (UIUC) are given. It is envisioned that one day, FORCE2 with additional modules such as radiation heat transfer, combustion kinetics and multi-solids together with user-friendly pre- and post-processor software and tailored for massively parallel multiprocessor shared memory computational platforms will be used by industry and researchers to assist in reducing and/or eliminating the environmental and economic barriers which limit full consideration of coal, shale and biomass as energy sources, to retain energy security, and to remediate waste and ecological problems.

  16. The noncavitating performance and life of a small vane-type positive displacement pump in liquid hydrogen

    NASA Technical Reports Server (NTRS)

    Ulbricht, T. E.; Hemminger, J. A.

    1986-01-01

    The low flow rate and high head rise requirements of hydrogen/oxygen auxiliary propulsion systems make the application of centrifugal pumps difficult. Positive displacement pumps are well-suited for these flow conditions, but little is known about their performance and life characteristics in liquid hydrogen. An experimental and analytical investigation was conducted to determine the performance and life characteristics of a vane-type, positive displacement pump. In the experimental part of this effort, mass flow rate and shaft torque were determined as functions of shaft speed and pump pressure rise. Since liquid hydrogen offers little lubrication in a rubbing situation, pump life is an issue. During the life test, the pump was operated intermittently for 10 hr at the steady-state point of 0.074 lbm/sec (0.03 kg/sec) flow rate, 3000 psid (2.07 MPa) pressure rise, and 8000 rpm (838 rad/sec) shaft speed. Pump performance was monitored during the life test series and the results indicated no loss in performance. Material loss from the vanes was recorded and wear of the other components was documented. In the analytical part of this effort, a comprehensive pump performance analysis computer code, developed in-house, was used to predict pump performance. The results of the experimental investigation are presented and compared with the results of the analysis. Results of the life test are also presented.

  17. Performance of a parallel code for the Euler equations on hypercube computers

    NASA Technical Reports Server (NTRS)

    Barszcz, Eric; Chan, Tony F.; Jesperson, Dennis C.; Tuminaro, Raymond S.

    1990-01-01

    The performance of hypercubes were evaluated on a computational fluid dynamics problem and the parallel environment issues were considered that must be addressed, such as algorithm changes, implementation choices, programming effort, and programming environment. The evaluation focuses on a widely used fluid dynamics code, FLO52, which solves the two dimensional steady Euler equations describing flow around the airfoil. The code development experience is described, including interacting with the operating system, utilizing the message-passing communication system, and code modifications necessary to increase parallel efficiency. Results from two hypercube parallel computers (a 16-node iPSC/2, and a 512-node NCUBE/ten) are discussed and compared. In addition, a mathematical model of the execution time was developed as a function of several machine and algorithm parameters. This model accurately predicts the actual run times obtained and is used to explore the performance of the code in interesting but yet physically realizable regions of the parameter space. Based on this model, predictions about future hypercubes are made.

  18. An evaluation of three two-dimensional computational fluid dynamics codes including low Reynolds numbers and transonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Hicks, Raymond M.; Cliff, Susan E.

    1991-01-01

    Full-potential, Euler, and Navier-Stokes computational fluid dynamics (CFD) codes were evaluated for use in analyzing the flow field about airfoils sections operating at Mach numbers from 0.20 to 0.60 and Reynolds numbers from 500,000 to 2,000,000. The potential code (LBAUER) includes weakly coupled integral boundary layer equations for laminar and turbulent flow with simple transition and separation models. The Navier-Stokes code (ARC2D) uses the thin-layer formulation of the Reynolds-averaged equations with an algebraic turbulence model. The Euler code (ISES) includes strongly coupled integral boundary layer equations and advanced transition and separation calculations with the capability to model laminar separation bubbles and limited zones of turbulent separation. The best experiment/CFD correlation was obtained with the Euler code because its boundary layer equations model the physics of the flow better than the other two codes. An unusual reversal of boundary layer separation with increasing angle of attack, following initial shock formation on the upper surface of the airfoil, was found in the experiment data. This phenomenon was not predicted by the CFD codes evaluated.

  19. Efficient preparation of large-block-code ancilla states for fault-tolerant quantum computation

    NASA Astrophysics Data System (ADS)

    Zheng, Yi-Cong; Lai, Ching-Yi; Brun, Todd A.

    2018-03-01

    Fault-tolerant quantum computation (FTQC) schemes that use multiqubit large block codes can potentially reduce the resource overhead to a great extent. A major obstacle is the requirement for a large number of clean ancilla states of different types without correlated errors inside each block. These ancilla states are usually logical stabilizer states of the data-code blocks, which are generally difficult to prepare if the code size is large. Previously, we have proposed an ancilla distillation protocol for Calderbank-Shor-Steane (CSS) codes by classical error-correcting codes. It was assumed that the quantum gates in the distillation circuit were perfect; however, in reality, noisy quantum gates may introduce correlated errors that are not treatable by the protocol. In this paper, we show that additional postselection by another classical error-detecting code can be applied to remove almost all correlated errors. Consequently, the revised protocol is fully fault tolerant and capable of preparing a large set of stabilizer states sufficient for FTQC using large block codes. At the same time, the yield rate can be boosted from O (t-2) to O (1 ) in practice for an [[n ,k ,d =2 t +1

  20. Computational study of duct and pipe flows using the method of pseudocompressibility

    NASA Technical Reports Server (NTRS)

    Williams, Robert W.

    1991-01-01

    A viscous, three-dimensional, incompressible, Navier-Stokes Computational Fluid Dynamics code employing pseudocompressibility is used for the prediction of laminar primary and secondary flows in two 90-degree bends of constant cross section. Under study are a square cross section duct bend with 2.3 radius ratio and a round cross section pipe bend with 2.8 radius ratio. Sensitivity of predicted primary and secondary flow to inlet boundary conditions, grid resolution, and code convergence is investigated. Contour and velocity versus spanwise coordinate plots comparing prediction to experimental data flow components are shown at several streamwise stations before, within, and after the duct and pipe bends. Discussion includes secondary flow physics, computational method, computational requirements, grid dependence, and convergence rates.

  1. Comprehensive Micromechanics-Analysis Code - Version 4.0

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Bednarcyk, B. A.

    2005-01-01

    Version 4.0 of the Micromechanics Analysis Code With Generalized Method of Cells (MAC/GMC) has been developed as an improved means of computational simulation of advanced composite materials. The previous version of MAC/GMC was described in "Comprehensive Micromechanics-Analysis Code" (LEW-16870), NASA Tech Briefs, Vol. 24, No. 6 (June 2000), page 38. To recapitulate: MAC/GMC is a computer program that predicts the elastic and inelastic thermomechanical responses of continuous and discontinuous composite materials with arbitrary internal microstructures and reinforcement shapes. The predictive capability of MAC/GMC rests on a model known as the generalized method of cells (GMC) - a continuum-based model of micromechanics that provides closed-form expressions for the macroscopic response of a composite material in terms of the properties, sizes, shapes, and responses of the individual constituents or phases that make up the material. Enhancements in version 4.0 include a capability for modeling thermomechanically and electromagnetically coupled ("smart") materials; a more-accurate (high-fidelity) version of the GMC; a capability to simulate discontinuous plies within a laminate; additional constitutive models of materials; expanded yield-surface-analysis capabilities; and expanded failure-analysis and life-prediction capabilities on both the microscopic and macroscopic scales.

  2. PHoToNs–A parallel heterogeneous and threads oriented code for cosmological N-body simulation

    NASA Astrophysics Data System (ADS)

    Wang, Qiao; Cao, Zong-Yan; Gao, Liang; Chi, Xue-Bin; Meng, Chen; Wang, Jie; Wang, Long

    2018-06-01

    We introduce a new code for cosmological simulations, PHoToNs, which incorporates features for performing massive cosmological simulations on heterogeneous high performance computer (HPC) systems and threads oriented programming. PHoToNs adopts a hybrid scheme to compute gravitational force, with the conventional Particle-Mesh (PM) algorithm to compute the long-range force, the Tree algorithm to compute the short range force and the direct summation Particle-Particle (PP) algorithm to compute gravity from very close particles. A self-similar space filling a Peano-Hilbert curve is used to decompose the computing domain. Threads programming is advantageously used to more flexibly manage the domain communication, PM calculation and synchronization, as well as Dual Tree Traversal on the CPU+MIC platform. PHoToNs scales well and efficiency of the PP kernel achieves 68.6% of peak performance on MIC and 74.4% on CPU platforms. We also test the accuracy of the code against the much used Gadget-2 in the community and found excellent agreement.

  3. Implementation of a 3D mixing layer code on parallel computers

    NASA Technical Reports Server (NTRS)

    Roe, K.; Thakur, R.; Dang, T.; Bogucz, E.

    1995-01-01

    This paper summarizes our progress and experience in the development of a Computational-Fluid-Dynamics code on parallel computers to simulate three-dimensional spatially-developing mixing layers. In this initial study, the three-dimensional time-dependent Euler equations are solved using a finite-volume explicit time-marching algorithm. The code was first programmed in Fortran 77 for sequential computers. The code was then converted for use on parallel computers using the conventional message-passing technique, while we have not been able to compile the code with the present version of HPF compilers.

  4. Analytical investigation of the dynamics of tethered constellations in Earth orbit, phase 2

    NASA Technical Reports Server (NTRS)

    Lorenzini, E.

    1985-01-01

    This Quarterly Report deals with the deployment maneuver of a single-axis, vertical constellation with three masses. A new, easy to handle, computer code that simulates the two-dimensional dynamics of the constellation has been implemented. This computer code is used for designing control laws for the deployment maneuver that minimizes the acceleration level of the low-g platform during the maneuver.

  5. Cyber physical systems role in manufacturing technologies

    NASA Astrophysics Data System (ADS)

    Al-Ali, A. R.; Gupta, Ragini; Nabulsi, Ahmad Al

    2018-04-01

    Empowered by the recent development in single System-on-Chip, Internet of Things, and cloud computing technologies, cyber physical systems are evolving as a major controller during and post the manufacturing products process. In additional to their real physical space, cyber products nowadays have a virtual space. A product virtual space is a digital twin that is attached to it to enable manufacturers and their clients to better manufacture, monitor, maintain and operate it throughout its life time cycles, i.e. from the product manufacturing date, through operation and to the end of its lifespan. Each product is equipped with a tiny microcontroller that has a unique identification number, access code and WiFi conductivity to access it anytime and anywhere during its life cycle. This paper presents the cyber physical systems architecture and its role in manufacturing. Also, it highlights the role of Internet of Things and cloud computing in industrial manufacturing and factory automation.

  6. Alien Mindscapes-A Perspective on the Search for Extraterrestrial Intelligence.

    PubMed

    Cabrol, Nathalie A

    2016-09-01

    Advances in planetary and space sciences, astrobiology, and life and cognitive sciences, combined with developments in communication theory, bioneural computing, machine learning, and big data analysis, create new opportunities to explore the probabilistic nature of alien life. Brought together in a multidisciplinary approach, they have the potential to support an integrated and expanded Search for Extraterrestrial Intelligence (SETI (1) ), a search that includes looking for life as we do not know it. This approach will augment the odds of detecting a signal by broadening our understanding of the evolutionary and systemic components in the search for extraterrestrial intelligence (ETI), provide more targets for radio and optical SETI, and identify new ways of decoding and coding messages using universal markers. SETI-Astrobiology-Coevolution of Earth and life-Planetary habitability and biosignatures. Astrobiology 16, 661-676.

  7. Detection of non-coding RNA in bacteria and archaea using the DETR'PROK Galaxy pipeline.

    PubMed

    Toffano-Nioche, Claire; Luo, Yufei; Kuchly, Claire; Wallon, Claire; Steinbach, Delphine; Zytnicki, Matthias; Jacq, Annick; Gautheret, Daniel

    2013-09-01

    RNA-seq experiments are now routinely used for the large scale sequencing of transcripts. In bacteria or archaea, such deep sequencing experiments typically produce 10-50 million fragments that cover most of the genome, including intergenic regions. In this context, the precise delineation of the non-coding elements is challenging. Non-coding elements include untranslated regions (UTRs) of mRNAs, independent small RNA genes (sRNAs) and transcripts produced from the antisense strand of genes (asRNA). Here we present a computational pipeline (DETR'PROK: detection of ncRNAs in prokaryotes) based on the Galaxy framework that takes as input a mapping of deep sequencing reads and performs successive steps of clustering, comparison with existing annotation and identification of transcribed non-coding fragments classified into putative 5' UTRs, sRNAs and asRNAs. We provide a step-by-step description of the protocol using real-life example data sets from Vibrio splendidus and Escherichia coli. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Study of Two-Dimensional Compressible Non-Acoustic Modeling of Stirling Machine Type Components

    NASA Technical Reports Server (NTRS)

    Tew, Roy C., Jr.; Ibrahim, Mounir B.

    2001-01-01

    A two-dimensional (2-D) computer code was developed for modeling enclosed volumes of gas with oscillating boundaries, such as Stirling machine components. An existing 2-D incompressible flow computer code, CAST, was used as the starting point for the project. CAST was modified to use the compressible non-acoustic Navier-Stokes equations to model an enclosed volume including an oscillating piston. The devices modeled have low Mach numbers and are sufficiently small that the time required for acoustics to propagate across them is negligible. Therefore, acoustics were excluded to enable more time efficient computation. Background information about the project is presented. The compressible non-acoustic flow assumptions are discussed. The governing equations used in the model are presented in transport equation format. A brief description is given of the numerical methods used. Comparisons of code predictions with experimental data are then discussed.

  9. LTCP 2D Graphical User Interface. Application Description and User's Guide

    NASA Technical Reports Server (NTRS)

    Ball, Robert; Navaz, Homayun K.

    1996-01-01

    A graphical user interface (GUI) written for NASA's LTCP (Liquid Thrust Chamber Performance) 2 dimensional computational fluid dynamic code is described. The GUI is written in C++ for a desktop personal computer running under a Microsoft Windows operating environment. Through the use of common and familiar dialog boxes, features, and tools, the user can easily and quickly create and modify input files for the LTCP code. In addition, old input files used with the LTCP code can be opened and modified using the GUI. The application is written in C++ for a desktop personal computer running under a Microsoft Windows operating environment. The program and its capabilities are presented, followed by a detailed description of each menu selection and the method of creating an input file for LTCP. A cross reference is included to help experienced users quickly find the variables which commonly need changes. Finally, the system requirements and installation instructions are provided.

  10. 26 CFR 1.801-2 - Taxable years affected.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) INCOME TAXES Life Insurance Companies § 1.801-2 Taxable years affected. Section 1.801-1 is applicable... Internal Revenue Code of 1954, as amended by the Life Insurance Company Income Tax Act of 1959 (73 Stat... 1954, as amended by the Life Insurance Company Income Tax Act of 1959 (73 Stat. 112) and section 3 of...

  11. Observations on computational methodologies for use in large-scale, gradient-based, multidisciplinary design incorporating advanced CFD codes

    NASA Technical Reports Server (NTRS)

    Newman, P. A.; Hou, G. J.-W.; Jones, H. E.; Taylor, A. C., III; Korivi, V. M.

    1992-01-01

    How a combination of various computational methodologies could reduce the enormous computational costs envisioned in using advanced CFD codes in gradient based optimized multidisciplinary design (MdD) procedures is briefly outlined. Implications of these MdD requirements upon advanced CFD codes are somewhat different than those imposed by a single discipline design. A means for satisfying these MdD requirements for gradient information is presented which appear to permit: (1) some leeway in the CFD solution algorithms which can be used; (2) an extension to 3-D problems; and (3) straightforward use of other computational methodologies. Many of these observations have previously been discussed as possibilities for doing parts of the problem more efficiently; the contribution here is observing how they fit together in a mutually beneficial way.

  12. Computation of turbulent boundary layers employing the defect wall-function method. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Brown, Douglas L.

    1994-01-01

    In order to decrease overall computational time requirements of spatially-marching parabolized Navier-Stokes finite-difference computer code when applied to turbulent fluid flow, a wall-function methodology, originally proposed by R. Barnwell, was implemented. This numerical effort increases computational speed and calculates reasonably accurate wall shear stress spatial distributions and boundary-layer profiles. Since the wall shear stress is analytically determined from the wall-function model, the computational grid near the wall is not required to spatially resolve the laminar-viscous sublayer. Consequently, a substantially increased computational integration step size is achieved resulting in a considerable decrease in net computational time. This wall-function technique is demonstrated for adiabatic flat plate test cases from Mach 2 to Mach 8. These test cases are analytically verified employing: (1) Eckert reference method solutions, (2) experimental turbulent boundary-layer data of Mabey, and (3) finite-difference computational code solutions with fully resolved laminar-viscous sublayers. Additionally, results have been obtained for two pressure-gradient cases: (1) an adiabatic expansion corner and (2) an adiabatic compression corner.

  13. Final Technical Report for SBIR entitled Four-Dimensional Finite-Orbit-Width Fokker-Planck Code with Sources, for Neoclassical/Anomalous Transport Simulation of Ion and Electron Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, R. W.; Petrov, Yu. V.

    2013-12-03

    Within the US Department of Energy/Office of Fusion Energy magnetic fusion research program, there is an important whole-plasma-modeling need for a radio-frequency/neutral-beam-injection (RF/NBI) transport-oriented finite-difference Fokker-Planck (FP) code with combined capabilities for 4D (2R2V) geometry near the fusion plasma periphery, and computationally less demanding 3D (1R2V) bounce-averaged capabilities for plasma in the core of fusion devices. Demonstration of proof-of-principle achievement of this goal has been carried out in research carried out under Phase I of the SBIR award. Two DOE-sponsored codes, the CQL3D bounce-average Fokker-Planck code in which CompX has specialized, and the COGENT 4D, plasma edge-oriented Fokker-Planck code whichmore » has been constructed by Lawrence Livermore National Laboratory and Lawrence Berkeley Laboratory scientists, where coupled. Coupling was achieved by using CQL3D calculated velocity distributions including an energetic tail resulting from NBI, as boundary conditions for the COGENT code over the two-dimensional velocity space on a spatial interface (flux) surface at a given radius near the plasma periphery. The finite-orbit-width fast ions from the CQL3D distributions penetrated into the peripheral plasma modeled by the COGENT code. This combined code demonstrates the feasibility of the proposed 3D/4D code. By combining these codes, the greatest computational efficiency is achieved subject to present modeling needs in toroidally symmetric magnetic fusion devices. The more efficient 3D code can be used in its regions of applicability, coupled to the more computationally demanding 4D code in higher collisionality edge plasma regions where that extended capability is necessary for accurate representation of the plasma. More efficient code leads to greater use and utility of the model. An ancillary aim of the project is to make the combined 3D/4D code user friendly. Achievement of full-coupling of these two Fokker-Planck codes will advance computational modeling of plasma devices important to the USDOE magnetic fusion energy program, in particular the DIII-D tokamak at General Atomics, San Diego, the NSTX spherical tokamak at Princeton, New Jersey, and the MST reversed-field-pinch Madison, Wisconsin. The validation studies of the code against the experiments will improve understanding of physics important for magnetic fusion, and will increase our design capabilities for achieving the goals of the International Tokamak Experimental Reactor (ITER) project in which the US is a participant and which seeks to demonstrate at least a factor of five in fusion power production divided by input power.« less

  14. Convergence acceleration of the Proteus computer code with multigrid methods

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.; Ibraheem, S. O.

    1995-01-01

    This report presents the results of a study to implement convergence acceleration techniques based on the multigrid concept in the two-dimensional and three-dimensional versions of the Proteus computer code. The first section presents a review of the relevant literature on the implementation of the multigrid methods in computer codes for compressible flow analysis. The next two sections present detailed stability analysis of numerical schemes for solving the Euler and Navier-Stokes equations, based on conventional von Neumann analysis and the bi-grid analysis, respectively. The next section presents details of the computational method used in the Proteus computer code. Finally, the multigrid implementation and applications to several two-dimensional and three-dimensional test problems are presented. The results of the present study show that the multigrid method always leads to a reduction in the number of iterations (or time steps) required for convergence. However, there is an overhead associated with the use of multigrid acceleration. The overhead is higher in 2-D problems than in 3-D problems, thus overall multigrid savings in CPU time are in general better in the latter. Savings of about 40-50 percent are typical in 3-D problems, but they are about 20-30 percent in large 2-D problems. The present multigrid method is applicable to steady-state problems and is therefore ineffective in problems with inherently unstable solutions.

  15. 40 CFR 194.23 - Models and computer codes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Models and computer codes. 194.23... General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... obtain stable solutions; (iv) Computer models accurately implement the numerical models; i.e., computer...

  16. 40 CFR 194.23 - Models and computer codes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Models and computer codes. 194.23... General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... obtain stable solutions; (iv) Computer models accurately implement the numerical models; i.e., computer...

  17. 40 CFR 194.23 - Models and computer codes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Models and computer codes. 194.23... General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... obtain stable solutions; (iv) Computer models accurately implement the numerical models; i.e., computer...

  18. 40 CFR 194.23 - Models and computer codes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Models and computer codes. 194.23... General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... obtain stable solutions; (iv) Computer models accurately implement the numerical models; i.e., computer...

  19. 40 CFR 194.23 - Models and computer codes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Models and computer codes. 194.23... General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... obtain stable solutions; (iv) Computer models accurately implement the numerical models; i.e., computer...

  20. Selected Aspects of Cryogenic Tank Fatigue Calculations for Offshore Application

    NASA Astrophysics Data System (ADS)

    Skrzypacz, J.; Jaszak, P.

    2018-02-01

    The paper presents the way of the fatigue life calculation of a cryogenic tank dedicated for the carriers ship application. The independent tank type C was taken into consideration. The calculation took into account a vast range of the load spectrum resulting in the ship accelerations. The stress at the most critical point of the tank was determined by means of the finite element method. The computation methods and codes used in the design of the LNG tank were presented. The number of fatigue cycles was determined by means of S-N curve. The cumulated linear damage theory was used to determine life factor.

  1. Computational electronics and electromagnetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, C. C.

    The Computational Electronics and Electromagnetics thrust area at Lawrence Livermore National Laboratory serves as the focal point for engineering R&D activities for developing computer-based design, analysis, and tools for theory. Key representative applications include design of particle accelerator cells and beamline components; engineering analysis and design of high-power components, photonics, and optoelectronics circuit design; EMI susceptibility analysis; and antenna synthesis. The FY-96 technology-base effort focused code development on (1) accelerator design codes; (2) 3-D massively parallel, object-oriented time-domain EM codes; (3) material models; (4) coupling and application of engineering tools for analysis and design of high-power components; (5) 3-D spectral-domainmore » CEM tools; and (6) enhancement of laser drilling codes. Joint efforts with the Power Conversion Technologies thrust area include development of antenna systems for compact, high-performance radar, in addition to novel, compact Marx generators. 18 refs., 25 figs., 1 tab.« less

  2. The practical impact of elastohydrodynamic lubrication

    NASA Technical Reports Server (NTRS)

    Anderson, W. J.

    1978-01-01

    The use of elastohydrodynamics in the analysis of rolling element bearings is discussed. Relationships for minimum film thickness and tractive force were incorporated into computer codes and used for bearing performance prediction. The lambda parameter (ratio of film thickness to composite surface roughness) was shown to be important in predicting bearing life and failure mode. Results indicate that at values of lambda below 3 failure modes other than the classic subsurface initiated fatigue can occur.

  3. Probabilistic structural analysis of aerospace components using NESSUS

    NASA Technical Reports Server (NTRS)

    Shiao, Michael C.; Nagpal, Vinod K.; Chamis, Christos C.

    1988-01-01

    Probabilistic structural analysis of a Space Shuttle main engine turbopump blade is conducted using the computer code NESSUS (numerical evaluation of stochastic structures under stress). The goal of the analysis is to derive probabilistic characteristics of blade response given probabilistic descriptions of uncertainties in blade geometry, material properties, and temperature and pressure distributions. Probability densities are derived for critical blade responses. Risk assessment and failure life analysis is conducted assuming different failure models.

  4. Fast Acceleration of 2D Wave Propagation Simulations Using Modern Computational Accelerators

    PubMed Central

    Wang, Wei; Xu, Lifan; Cavazos, John; Huang, Howie H.; Kay, Matthew

    2014-01-01

    Recent developments in modern computational accelerators like Graphics Processing Units (GPUs) and coprocessors provide great opportunities for making scientific applications run faster than ever before. However, efficient parallelization of scientific code using new programming tools like CUDA requires a high level of expertise that is not available to many scientists. This, plus the fact that parallelized code is usually not portable to different architectures, creates major challenges for exploiting the full capabilities of modern computational accelerators. In this work, we sought to overcome these challenges by studying how to achieve both automated parallelization using OpenACC and enhanced portability using OpenCL. We applied our parallelization schemes using GPUs as well as Intel Many Integrated Core (MIC) coprocessor to reduce the run time of wave propagation simulations. We used a well-established 2D cardiac action potential model as a specific case-study. To the best of our knowledge, we are the first to study auto-parallelization of 2D cardiac wave propagation simulations using OpenACC. Our results identify several approaches that provide substantial speedups. The OpenACC-generated GPU code achieved more than speedup above the sequential implementation and required the addition of only a few OpenACC pragmas to the code. An OpenCL implementation provided speedups on GPUs of at least faster than the sequential implementation and faster than a parallelized OpenMP implementation. An implementation of OpenMP on Intel MIC coprocessor provided speedups of with only a few code changes to the sequential implementation. We highlight that OpenACC provides an automatic, efficient, and portable approach to achieve parallelization of 2D cardiac wave simulations on GPUs. Our approach of using OpenACC, OpenCL, and OpenMP to parallelize this particular model on modern computational accelerators should be applicable to other computational models of wave propagation in multi-dimensional media. PMID:24497950

  5. ACDOS2: an improved neutron-induced dose rate code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagache, J.C.

    1981-06-01

    To calculate the expected dose rate from fusion reactors as a function of geometry, composition, and time after shutdown a computer code, ACDOS2, was written, which utilizes up-to-date libraries of cross-sections and radioisotope decay data. ACDOS2 is in ANSI FORTRAN IV, in order to make it readily adaptable elsewhere.

  6. 15 CFR 740.7 - Computers (APP).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 4A003. (2) Technology and software. License Exception APP authorizes exports of technology and software... License Exception. (2) Access and release restrictions. (i)[Reserved] (ii) Technology and source code. Technology and source code eligible for License Exception APP may not be released to nationals of Cuba, Iran...

  7. Validation of NASA Thermal Ice Protection Computer Codes Part 2 - LEWICE/Thermal

    DOT National Transportation Integrated Search

    1996-01-01

    The Icing Technology Branch at NASA Lewis has been involved in an effort to validate two thermal ice protection codes developed at the NASA Lewis Research Center: LEWICE/Thermal 1 (electrothermal de-icing and anti-icing), and ANTICE 2 (hot gas and el...

  8. Numerical solution of Space Shuttle Orbiter flow field including real gas effects

    NASA Technical Reports Server (NTRS)

    Prabhu, D. K.; Tannehill, J. C.

    1984-01-01

    The hypersonic, laminar flow around the Space Shuttle Orbiter has been computed for both an ideal gas (gamma = 1.2) and equilibrium air using a real-gas, parabolized Navier-Stokes code. This code employs a generalized coordinate transformation; hence, it places no restrictions on the orientation of the solution surfaces. The initial solution in the nose region was computed using a 3-D, real-gas, time-dependent Navier-Stokes code. The thermodynamic and transport properties of equilibrium air were obtained from either approximate curve fits or a table look-up procedure. Numerical results are presented for flight conditions corresponding to the STS-3 trajectory. The computed surface pressures and convective heating rates are compared with data from the STS-3 flight.

  9. CELCAP: A Computer Model for Cogeneration System Analysis

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A description of the CELCAP cogeneration analysis program is presented. A detailed description of the methodology used by the Naval Civil Engineering Laboratory in developing the CELCAP code and the procedures for analyzing cogeneration systems for a given user are given. The four engines modeled in CELCAP are: gas turbine with exhaust heat boiler, diesel engine with waste heat boiler, single automatic-extraction steam turbine, and back-pressure steam turbine. Both the design point and part-load performances are taken into account in the engine models. The load model describes how the hourly electric and steam demand of the user is represented by 24 hourly profiles. The economic model describes how the annual and life-cycle operating costs that include the costs of fuel, purchased electricity, and operation and maintenance of engines and boilers are calculated. The CELCAP code structure and principal functions of the code are described to how the various components of the code are related to each other. Three examples of the application of the CELCAP code are given to illustrate the versatility of the code. The examples shown represent cases of system selection, system modification, and system optimization.

  10. Computer Description of Black Hawk Helicopter

    DTIC Science & Technology

    1979-06-01

    Model Combinatorial Geometry Models Black Hawk Helicopter Helicopter GIFT Computer Code Geometric Description of Targets 20. ABSTRACT...description was made using the technique of combinatorial geometry (COM-GEOM) and will be used as input to the GIFT computer code which generates Tliic...rnHp The data used bv the COVART comtmter code was eenerated bv the Geometric Information for Targets ( GIFT )Z computer code. This report documents

  11. 2-Step scalar deadzone quantization for bitplane image coding.

    PubMed

    Auli-Llinas, Francesc

    2013-12-01

    Modern lossy image coding systems generate a quality progressive codestream that, truncated at increasing rates, produces an image with decreasing distortion. Quality progressivity is commonly provided by an embedded quantizer that employs uniform scalar deadzone quantization (USDQ) together with a bitplane coding strategy. This paper introduces a 2-step scalar deadzone quantization (2SDQ) scheme that achieves same coding performance as that of USDQ while reducing the coding passes and the emitted symbols of the bitplane coding engine. This serves to reduce the computational costs of the codec and/or to code high dynamic range images. The main insights behind 2SDQ are the use of two quantization step sizes that approximate wavelet coefficients with more or less precision depending on their density, and a rate-distortion optimization technique that adjusts the distortion decreases produced when coding 2SDQ indexes. The integration of 2SDQ in current codecs is straightforward. The applicability and efficiency of 2SDQ are demonstrated within the framework of JPEG2000.

  12. 76 FR 11339 - Update to NFPA 101, Life Safety Code, for State Home Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ... DEPARTMENT OF VETERANS AFFAIRS 38 CFR Part 51 RIN 2900-AN59 Update to NFPA 101, Life Safety Code..., Life Safety Code. The change is designed to assure that State Home facilities meet current industry- wide standards regarding life safety and fire safety. DATES: Effective Date: This final rule is...

  13. ITER Simulations Using the PEDESTAL Module in the PTRANSP Code

    NASA Astrophysics Data System (ADS)

    Halpern, F. D.; Bateman, G.; Kritz, A. H.; Pankin, A. Y.; Budny, R. V.; Kessel, C.; McCune, D.; Onjun, T.

    2006-10-01

    PTRANSP simulations with a computed pedestal height are carried out for ITER scenarios including a standard ELMy H-mode (15 MA discharge) and a hybrid scenario (12MA discharge). It has been found that fusion power production predicted in simulations of ITER discharges depends sensitively on the height of the H-mode temperature pedestal [1]. In order to study this effect, the NTCC PEDESTAL module [2] has been implemented in PTRANSP code to provide boundary conditions used for the computation of the projected performance of ITER. The PEDESTAL module computes both the temperature and width of the pedestal at the edge of type I ELMy H-mode discharges once the threshold conditions for the H-mode are satisfied. The anomalous transport in the plasma core is predicted using the GLF23 or MMM95 transport models. To facilitate the steering of lengthy PTRANSP computations, the PTRANSP code has been modified to allow changes in the transport model when simulations are restarted. The PTRANSP simulation results are compared with corresponding results obtained using other integrated modeling codes.[1] G. Bateman, T. Onjun and A.H. Kritz, Plasma Physics and Controlled Fusion, 45, 1939 (2003).[2] T. Onjun, G. Bateman, A.H. Kritz, and G. Hammett, Phys. Plasmas 9, 5018 (2002).

  14. Study of SOL in DIII-D tokamak with SOLPS suite of codes.

    NASA Astrophysics Data System (ADS)

    Pankin, Alexei; Bateman, Glenn; Brennan, Dylan; Coster, David; Hogan, John; Kritz, Arnold; Kukushkin, Andrey; Schnack, Dalton; Snyder, Phil

    2005-10-01

    The scrape-of-layer (SOL) region in DIII-D tokamak is studied with the SOLPS integrated suite of codes. The SOLPS package includes the 3D multi-species Monte-Carlo neutral code EIRINE and 2D multi-fluid code B2. The EIRINE and B2 codes are cross-coupled through B2-EIRINE interface. The results of SOLPS simulations are used in the integrated modeling of the plasma edge in DIII-D tokamak with the ASTRA transport code. Parameterized dependences for neutral particle fluxes that are computed with the SOLPS code are implemented in a model for the H-mode pedestal and ELMs [1] in the ASTRA code. The effects of neutrals on the H-mode pedestal and ELMs are studied in this report. [1] A. Y. Pankin, I. Voitsekhovitch, G. Bateman, et al., Plasma Phys. Control. Fusion 47, 483 (2005).

  15. How to differentiate collective variables in free energy codes: Computer-algebra code generation and automatic differentiation

    NASA Astrophysics Data System (ADS)

    Giorgino, Toni

    2018-07-01

    The proper choice of collective variables (CVs) is central to biased-sampling free energy reconstruction methods in molecular dynamics simulations. The PLUMED 2 library, for instance, provides several sophisticated CV choices, implemented in a C++ framework; however, developing new CVs is still time consuming due to the need to provide code for the analytical derivatives of all functions with respect to atomic coordinates. We present two solutions to this problem, namely (a) symbolic differentiation and code generation, and (b) automatic code differentiation, in both cases leveraging open-source libraries (SymPy and Stan Math, respectively). The two approaches are demonstrated and discussed in detail implementing a realistic example CV, the local radius of curvature of a polymer. Users may use the code as a template to streamline the implementation of their own CVs using high-level constructs and automatic gradient computation.

  16. Nonlinear 3D visco-resistive MHD modeling of fusion plasmas: a comparison between numerical codes

    NASA Astrophysics Data System (ADS)

    Bonfiglio, D.; Chacon, L.; Cappello, S.

    2008-11-01

    Fluid plasma models (and, in particular, the MHD model) are extensively used in the theoretical description of laboratory and astrophysical plasmas. We present here a successful benchmark between two nonlinear, three-dimensional, compressible visco-resistive MHD codes. One is the fully implicit, finite volume code PIXIE3D [1,2], which is characterized by many attractive features, notably the generalized curvilinear formulation (which makes the code applicable to different geometries) and the possibility to include in the computation the energy transport equation and the extended MHD version of Ohm's law. In addition, the parallel version of the code features excellent scalability properties. Results from this code, obtained in cylindrical geometry, are compared with those produced by the semi-implicit cylindrical code SpeCyl, which uses finite differences radially, and spectral formulation in the other coordinates [3]. Both single and multi-mode simulations are benchmarked, regarding both reversed field pinch (RFP) and ohmic tokamak magnetic configurations. [1] L. Chacon, Computer Physics Communications 163, 143 (2004). [2] L. Chacon, Phys. Plasmas 15, 056103 (2008). [3] S. Cappello, Plasma Phys. Control. Fusion 46, B313 (2004) & references therein.

  17. Computations of the Magnus effect for slender bodies in supersonic flow

    NASA Technical Reports Server (NTRS)

    Sturek, W. B.; Schiff, L. B.

    1980-01-01

    A recently reported Parabolized Navier-Stokes code has been employed to compute the supersonic flow field about spinning cone, ogive-cylinder, and boattailed bodies of revolution at moderate incidence. The computations were performed for flow conditions where extensive measurements for wall pressure, boundary layer velocity profiles and Magnus force had been obtained. Comparisons between the computational results and experiment indicate excellent agreement for angles of attack up to six degrees. The comparisons for Magnus effects show that the code accurately predicts the effects of body shape and Mach number for the selected models for Mach numbers in the range of 2-4.

  18. A 2D electrostatic PIC code for the Mark III Hypercube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferraro, R.D.; Liewer, P.C.; Decyk, V.K.

    We have implemented a 2D electrostastic plasma particle in cell (PIC) simulation code on the Caltech/JPL Mark IIIfp Hypercube. The code simulates plasma effects by evolving in time the trajectories of thousands to millions of charged particles subject to their self-consistent fields. Each particle`s position and velocity is advanced in time using a leap frog method for integrating Newton`s equations of motion in electric and magnetic fields. The electric field due to these moving charged particles is calculated on a spatial grid at each time by solving Poisson`s equation in Fourier space. These two tasks represent the largest part ofmore » the computation. To obtain efficient operation on a distributed memory parallel computer, we are using the General Concurrent PIC (GCPIC) algorithm previously developed for a 1D parallel PIC code.« less

  19. Numerical simulation of turbulent jet noise, part 2

    NASA Technical Reports Server (NTRS)

    Metcalfe, R. W.; Orszag, S. A.

    1976-01-01

    Results on the numerical simulation of jet flow fields were used to study the radiated sound field, and in addition, to extend and test the capabilities of the turbulent jet simulation codes. The principal result of the investigation was the computation of the radiated sound field from a turbulent jet. In addition, the computer codes were extended to account for the effects of compressibility and eddy viscosity, and the treatment of the nonlinear terms of the Navier-Stokes equations was modified so that they can be computed in a semi-implicit way. A summary of the flow model and a description of the numerical methods used for its solution are presented. Calculations of the radiated sound field are reported. In addition, the extensions that were made to the fundamental dynamical codes are described. Finally, the current state-of-the-art for computer simulation of turbulent jet noise is summarized.

  20. Computations of spray, fuel-air mixing, and combustion in a lean-premixed-prevaporized combustor

    NASA Technical Reports Server (NTRS)

    Dasgupta, A.; Li, Z.; Shih, T. I.-P.; Kundu, K.; Deur, J. M.

    1993-01-01

    A code was developed for computing the multidimensional flow, spray, combustion, and pollutant formation inside gas turbine combustors. The code developed is based on a Lagrangian-Eulerian formulation and utilizes an implicit finite-volume method. The focus of this paper is on the spray part of the code (both formulation and algorithm), and a number of issues related to the computation of sprays and fuel-air mixing in a lean-premixed-prevaporized combustor. The issues addressed include: (1) how grid spacings affect the diffusion of evaporated fuel, and (2) how spurious modes can arise through modelling of the spray in the Lagrangian computations. An upwind interpolation scheme is proposed to account for some effects of grid spacing on the artificial diffusion of the evaporated fuel. Also, some guidelines are presented to minimize errors associated with the spurious modes.

  1. Probabilistic Structural Analysis Methods (PSAM) for select space propulsion system components, part 2

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The technical effort and computer code enhancements performed during the sixth year of the Probabilistic Structural Analysis Methods program are summarized. Various capabilities are described to probabilistically combine structural response and structural resistance to compute component reliability. A library of structural resistance models is implemented in the Numerical Evaluations of Stochastic Structures Under Stress (NESSUS) code that included fatigue, fracture, creep, multi-factor interaction, and other important effects. In addition, a user interface was developed for user-defined resistance models. An accurate and efficient reliability method was developed and was successfully implemented in the NESSUS code to compute component reliability based on user-selected response and resistance models. A risk module was developed to compute component risk with respect to cost, performance, or user-defined criteria. The new component risk assessment capabilities were validated and demonstrated using several examples. Various supporting methodologies were also developed in support of component risk assessment.

  2. Vibrational Spectroscopy and Astrobiology

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.; Kwak, D. (Technical Monitor)

    2001-01-01

    Role of vibrational spectroscopy in solving problems related to astrobiology will be discussed. Vibrational (infrared) spectroscopy is a very sensitive tool for identifying molecules. Theoretical approach used in this work is based on direct computation of anharmonic vibrational frequencies and intensities from electronic structure codes. One of the applications of this computational technique is possible identification of biological building blocks (amino acids, small peptides, DNA bases) in the interstellar medium (ISM). Identifying small biological molecules in the ISM is very important from the point of view of origin of life. Hybrid (quantum mechanics/molecular mechanics) theoretical techniques will be discussed that may allow to obtain accurate vibrational spectra of biomolecular building blocks and to create a database of spectroscopic signatures that can assist observations of these molecules in space. Another application of the direct computational spectroscopy technique is to help to design and analyze experimental observations of ice surfaces of one of the Jupiter's moons, Europa, that possibly contains hydrated salts. The presence of hydrated salts on the surface can be an indication of a subsurface ocean and the possible existence of life forms inhabiting such an ocean.

  3. Apocalypse Soon? The Bug.

    ERIC Educational Resources Information Center

    Clyde, Anne

    1999-01-01

    Discussion of the Year 2000 (Y2K) problem, the computer-code problem that affects computer programs or computer chips, focuses on the impact on teacher-librarians. Topics include automated library systems, access to online information services, library computers and software, and other electronic equipment such as photocopiers and fax machines.…

  4. Development of probabilistic multimedia multipathway computer codes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, C.; LePoire, D.; Gnanapragasam, E.

    2002-01-01

    The deterministic multimedia dose/risk assessment codes RESRAD and RESRAD-BUILD have been widely used for many years for evaluation of sites contaminated with residual radioactive materials. The RESRAD code applies to the cleanup of sites (soils) and the RESRAD-BUILD code applies to the cleanup of buildings and structures. This work describes the procedure used to enhance the deterministic RESRAD and RESRAD-BUILD codes for probabilistic dose analysis. A six-step procedure was used in developing default parameter distributions and the probabilistic analysis modules. These six steps include (1) listing and categorizing parameters; (2) ranking parameters; (3) developing parameter distributions; (4) testing parameter distributionsmore » for probabilistic analysis; (5) developing probabilistic software modules; and (6) testing probabilistic modules and integrated codes. The procedures used can be applied to the development of other multimedia probabilistic codes. The probabilistic versions of RESRAD and RESRAD-BUILD codes provide tools for studying the uncertainty in dose assessment caused by uncertain input parameters. The parameter distribution data collected in this work can also be applied to other multimedia assessment tasks and multimedia computer codes.« less

  5. Computer program BL2D for solving two-dimensional and axisymmetric boundary layers

    NASA Technical Reports Server (NTRS)

    Iyer, Venkit

    1995-01-01

    This report presents the formulation, validation, and user's manual for the computer program BL2D. The program is a fourth-order-accurate solution scheme for solving two-dimensional or axisymmetric boundary layers in speed regimes that range from low subsonic to hypersonic Mach numbers. A basic implementation of the transition zone and turbulence modeling is also included. The code is a result of many improvements made to the program VGBLP, which is described in NASA TM-83207 (February 1982), and can effectively supersede it. The code BL2D is designed to be modular, user-friendly, and portable to any machine with a standard fortran77 compiler. The report contains the new formulation adopted and the details of its implementation. Five validation cases are presented. A detailed user's manual with the input format description and instructions for running the code is included. Adequate information is presented in the report to enable the user to modify or customize the code for specific applications.

  6. Sensitivity analysis of the Gupta and Park chemical models on the heat flux by DSMC and CFD codes

    NASA Astrophysics Data System (ADS)

    Morsa, Luigi; Festa, Giandomenico; Zuppardi, Gennaro

    2012-11-01

    The present study is the logical continuation of a former paper by the first author in which the influence of the chemical models by Gupta and by Park on the computation of heat flux on the Orion and EXPERT capsules was evaluated. Tests were carried out by the direct simulation Monte Carlo code DS2V and by the computational fluiddynamic (CFD) code H3NS. DS2V implements the Gupta model, while H3NS implements the Park model. In order to compare the effects of the chemical models, the Park model was implemented also in DS2V. The results showed that DS2V and H3NS compute a different composition both in the flow field and on the surface, even using the same chemical model (Park). Furthermore DS2V computes, by the two chemical models, different compositions in the flow field but the same composition on the surface, therefore the same heat flux. In the present study, in order to evaluate the influence of these chemical models also in a CFD code, the Gupta and the Park models have been implemented in FLUENT. Tests by DS2V and by FLUENT, have been carried out for the EXPERT capsule at the altitude of 70 km and with velocity of 5000 m/s. The capsule experiences a hypersonic, continuum low density regime. Due to the energy level of the flow, the vibration equation, lacking in the original version of FLUENT, has been implemented. The results of the heat flux computation verify that FLUENT is quite sensitive to the Gupta and to the Park chemical models. In fact, at the stagnation point, the percentage difference between the models is about 13%. On the opposite the DS2V results by the two models are practically equivalent.

  7. CDAC Student Report: Summary of LLNL Internship

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herriman, Jane E.

    Multiple objectives motivated me to apply for an internship at LLNL: I wanted to experience the work environment at a national lab, to learn about research and job opportunities at LLNL in particular, and to gain greater experience with code development, particularly within the realm of high performance computing (HPC). This summer I was selected to participate in LLNL's Computational Chemistry and Material Science Summer Institute (CCMS). CCMS is a 10 week program hosted by the Quantum Simulations group leader, Dr. Eric Schwegler. CCMS connects graduate students to mentors at LLNL involved in similar re- search and provides weekly seminarsmore » on a broad array of topics from within chemistry and materials science. Dr. Xavier Andrade and Dr. Erik Draeger served as my co-mentors over the summer, and Dr. Andrade continues to mentor me now that CCMS has concluded. Dr. Andrade is a member of the Quantum Simulations group within the Physical and Life Sciences at LLNL, and Dr. Draeger leads the HPC group within the Center for Applied Scientific Computing (CASC). The two have worked together to develop Qb@ll, an open-source first principles molecular dynamics code that was the platform for my summer research project.« less

  8. High altitude chemically reacting gas particle mixtures. Volume 2: Program manual for RAMP2. [rocket nozzle and orbital plume flow fields

    NASA Technical Reports Server (NTRS)

    Smith, S. D.

    1984-01-01

    All of the elements used in the Reacting and Multi-Phase (RAMP2) computer code are described in detail. The code can be used to model the dominant phenomena which affect the prediction of liquid and solid rocket nozzle and orbital plume flow fields.

  9. Code White: A Signed Code Protection Mechanism for Smartphones

    DTIC Science & Technology

    2010-09-01

    analogous to computer security is the use of antivirus (AV) software . 12 AV software is a brute force approach to security. The software ...these users, numerous malicious programs have also surfaced. And while smartphones have desktop-like capabilities to execute software , they do not...11 2.3.1 Antivirus and Mobile Phones ............................................................... 11 2.3.2

  10. Quantum Error Correction

    NASA Astrophysics Data System (ADS)

    Lidar, Daniel A.; Brun, Todd A.

    2013-09-01

    Prologue; Preface; Part I. Background: 1. Introduction to decoherence and noise in open quantum systems Daniel Lidar and Todd Brun; 2. Introduction to quantum error correction Dave Bacon; 3. Introduction to decoherence-free subspaces and noiseless subsystems Daniel Lidar; 4. Introduction to quantum dynamical decoupling Lorenza Viola; 5. Introduction to quantum fault tolerance Panos Aliferis; Part II. Generalized Approaches to Quantum Error Correction: 6. Operator quantum error correction David Kribs and David Poulin; 7. Entanglement-assisted quantum error-correcting codes Todd Brun and Min-Hsiu Hsieh; 8. Continuous-time quantum error correction Ognyan Oreshkov; Part III. Advanced Quantum Codes: 9. Quantum convolutional codes Mark Wilde; 10. Non-additive quantum codes Markus Grassl and Martin Rötteler; 11. Iterative quantum coding systems David Poulin; 12. Algebraic quantum coding theory Andreas Klappenecker; 13. Optimization-based quantum error correction Andrew Fletcher; Part IV. Advanced Dynamical Decoupling: 14. High order dynamical decoupling Zhen-Yu Wang and Ren-Bao Liu; 15. Combinatorial approaches to dynamical decoupling Martin Rötteler and Pawel Wocjan; Part V. Alternative Quantum Computation Approaches: 16. Holonomic quantum computation Paolo Zanardi; 17. Fault tolerance for holonomic quantum computation Ognyan Oreshkov, Todd Brun and Daniel Lidar; 18. Fault tolerant measurement-based quantum computing Debbie Leung; Part VI. Topological Methods: 19. Topological codes Héctor Bombín; 20. Fault tolerant topological cluster state quantum computing Austin Fowler and Kovid Goyal; Part VII. Applications and Implementations: 21. Experimental quantum error correction Dave Bacon; 22. Experimental dynamical decoupling Lorenza Viola; 23. Architectures Jacob Taylor; 24. Error correction in quantum communication Mark Wilde; Part VIII. Critical Evaluation of Fault Tolerance: 25. Hamiltonian methods in QEC and fault tolerance Eduardo Novais, Eduardo Mucciolo and Harold Baranger; 26. Critique of fault-tolerant quantum information processing Robert Alicki; References; Index.

  11. Visual Computing Environment

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Putt, Charles W.

    1997-01-01

    The Visual Computing Environment (VCE) is a NASA Lewis Research Center project to develop a framework for intercomponent and multidisciplinary computational simulations. Many current engineering analysis codes simulate various aspects of aircraft engine operation. For example, existing computational fluid dynamics (CFD) codes can model the airflow through individual engine components such as the inlet, compressor, combustor, turbine, or nozzle. Currently, these codes are run in isolation, making intercomponent and complete system simulations very difficult to perform. In addition, management and utilization of these engineering codes for coupled component simulations is a complex, laborious task, requiring substantial experience and effort. To facilitate multicomponent aircraft engine analysis, the CFD Research Corporation (CFDRC) is developing the VCE system. This system, which is part of NASA's Numerical Propulsion Simulation System (NPSS) program, can couple various engineering disciplines, such as CFD, structural analysis, and thermal analysis. The objectives of VCE are to (1) develop a visual computing environment for controlling the execution of individual simulation codes that are running in parallel and are distributed on heterogeneous host machines in a networked environment, (2) develop numerical coupling algorithms for interchanging boundary conditions between codes with arbitrary grid matching and different levels of dimensionality, (3) provide a graphical interface for simulation setup and control, and (4) provide tools for online visualization and plotting. VCE was designed to provide a distributed, object-oriented environment. Mechanisms are provided for creating and manipulating objects, such as grids, boundary conditions, and solution data. This environment includes parallel virtual machine (PVM) for distributed processing. Users can interactively select and couple any set of codes that have been modified to run in a parallel distributed fashion on a cluster of heterogeneous workstations. A scripting facility allows users to dictate the sequence of events that make up the particular simulation.

  12. User's manual for semi-circular compact range reflector code

    NASA Technical Reports Server (NTRS)

    Gupta, Inder J.; Burnside, Walter D.

    1986-01-01

    A computer code was developed to analyze a semi-circular paraboloidal reflector antenna with a rolled edge at the top and a skirt at the bottom. The code can be used to compute the total near field of the antenna or its individual components at a given distance from the center of the paraboloid. Thus, it is very effective in computing the size of the sweet spot for RCS or antenna measurement. The operation of the code is described. Various input and output statements are explained. Some results obtained using the computer code are presented to illustrate the code's capability as well as being samples of input/output sets.

  13. Efficient full wave code for the coupling of large multirow multijunction LH grills

    NASA Astrophysics Data System (ADS)

    Preinhaelter, Josef; Hillairet, Julien; Milanesio, Daniele; Maggiora, Riccardo; Urban, Jakub; Vahala, Linda; Vahala, George

    2017-11-01

    The full wave code OLGA, for determining the coupling of a single row lower hybrid launcher (waveguide grills) to the plasma, is extended to handle multirow multijunction active passive structures (like the C3 and C4 launchers on TORE SUPRA) by implementing the scattering matrix formalism. The extended code is still computationally fast because of the use of (i) 2D splines of the plasma surface admittance in the accessibility region of the k-space, (ii) high order Gaussian quadrature rules for the integration of the coupling elements and (iii) utilizing the symmetries of the coupling elements in the multiperiodic structures. The extended OLGA code is benchmarked against the ALOHA-1D, ALOHA-2D and TOPLHA codes for the coupling of the C3 and C4 TORE SUPRA launchers for several plasma configurations derived from reflectometry and interferometery. Unlike nearly all codes (except the ALOHA-1D code), OLGA does not require large computational resources and can be used for everyday usage in planning experimental runs. In particular, it is shown that the OLGA code correctly handles the coupling of the C3 and C4 launchers over a very wide range of plasma densities in front of the grill.

  14. ADPAC v1.0: User's Manual

    NASA Technical Reports Server (NTRS)

    Hall, Edward J.; Heidegger, Nathan J.; Delaney, Robert A.

    1999-01-01

    The overall objective of this study was to evaluate the effects of turbulence models in a 3-D numerical analysis on the wake prediction capability. The current version of the computer code resulting from this study is referred to as ADPAC v7 (Advanced Ducted Propfan Analysis Codes -Version 7). This report is intended to serve as a computer program user's manual for the ADPAC code used and modified under Task 15 of NASA Contract NAS3-27394. The ADPAC program is based on a flexible multiple-block and discretization scheme permitting coupled 2-D/3-D mesh block solutions with application to a wide variety of geometries. Aerodynamic calculations are based on a four-stage Runge-Kutta time-marching finite volume solution technique with added numerical dissipation. Steady flow predictions are accelerated by a multigrid procedure. Turbulence models now available in the ADPAC code are: a simple mixing-length model, the algebraic Baldwin-Lomax model with user defined coefficients, the one-equation Spalart-Allmaras model, and a two-equation k-R model. The consolidated ADPAC code is capable of executing in either a serial or parallel computing mode from a single source code.

  15. Mechanical and Assembly Units of Viral Capsids Identified via Quasi-Rigid Domain Decomposition

    PubMed Central

    Polles, Guido; Indelicato, Giuliana; Potestio, Raffaello; Cermelli, Paolo; Twarock, Reidun; Micheletti, Cristian

    2013-01-01

    Key steps in a viral life-cycle, such as self-assembly of a protective protein container or in some cases also subsequent maturation events, are governed by the interplay of physico-chemical mechanisms involving various spatial and temporal scales. These salient aspects of a viral life cycle are hence well described and rationalised from a mesoscopic perspective. Accordingly, various experimental and computational efforts have been directed towards identifying the fundamental building blocks that are instrumental for the mechanical response, or constitute the assembly units, of a few specific viral shells. Motivated by these earlier studies we introduce and apply a general and efficient computational scheme for identifying the stable domains of a given viral capsid. The method is based on elastic network models and quasi-rigid domain decomposition. It is first applied to a heterogeneous set of well-characterized viruses (CCMV, MS2, STNV, STMV) for which the known mechanical or assembly domains are correctly identified. The validated method is next applied to other viral particles such as L-A, Pariacoto and polyoma viruses, whose fundamental functional domains are still unknown or debated and for which we formulate verifiable predictions. The numerical code implementing the domain decomposition strategy is made freely available. PMID:24244139

  16. Highly fault-tolerant parallel computation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spielman, D.A.

    We re-introduce the coded model of fault-tolerant computation in which the input and output of a computational device are treated as words in an error-correcting code. A computational device correctly computes a function in the coded model if its input and output, once decoded, are a valid input and output of the function. In the coded model, it is reasonable to hope to simulate all computational devices by devices whose size is greater by a constant factor but which are exponentially reliable even if each of their components can fail with some constant probability. We consider fine-grained parallel computations inmore » which each processor has a constant probability of producing the wrong output at each time step. We show that any parallel computation that runs for time t on w processors can be performed reliably on a faulty machine in the coded model using w log{sup O(l)} w processors and time t log{sup O(l)} w. The failure probability of the computation will be at most t {center_dot} exp(-w{sup 1/4}). The codes used to communicate with our fault-tolerant machines are generalized Reed-Solomon codes and can thus be encoded and decoded in O(n log{sup O(1)} n) sequential time and are independent of the machine they are used to communicate with. We also show how coded computation can be used to self-correct many linear functions in parallel with arbitrarily small overhead.« less

  17. What to do with a Dead Research Code

    NASA Astrophysics Data System (ADS)

    Nemiroff, Robert J.

    2016-01-01

    The project has ended -- should all of the computer codes that enabled the project be deleted? No. Like research papers, research codes typically carry valuable information past project end dates. Several possible end states to the life of research codes are reviewed. Historically, codes are typically left dormant on an increasingly obscure local disk directory until forgotten. These codes will likely become any or all of: lost, impossible to compile and run, difficult to decipher, and likely deleted when the code's proprietor moves on or dies. It is argued here, though, that it would be better for both code authors and astronomy generally if project codes were archived after use in some way. Archiving is advantageous for code authors because archived codes might increase the author's ADS citable publications, while astronomy as a science gains transparency and reproducibility. Paper-specific codes should be included in the publication of the journal papers they support, just like figures and tables. General codes that support multiple papers, possibly written by multiple authors, including their supporting websites, should be registered with a code registry such as the Astrophysics Source Code Library (ASCL). Codes developed on GitHub can be archived with a third party service such as, currently, BackHub. An important code version might be uploaded to a web archiving service like, currently, Zenodo or Figshare, so that this version receives a Digital Object Identifier (DOI), enabling it to found at a stable address into the future. Similar archiving services that are not DOI-dependent include perma.cc and the Internet Archive Wayback Machine at archive.org. Perhaps most simply, copies of important codes with lasting value might be kept on a cloud service like, for example, Google Drive, while activating Google's Inactive Account Manager.

  18. LSENS, a general chemical kinetics and sensitivity analysis code for homogeneous gas-phase reactions. 2: Code description and usage

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; Bittker, David A.

    1994-01-01

    LSENS, the Lewis General Chemical Kinetics Analysis Code, has been developed for solving complex, homogeneous, gas-phase chemical kinetics problems and contains sensitivity analysis for a variety of problems, including nonisothermal situations. This report is part 2 of a series of three reference publications that describe LSENS, provide a detailed guide to its usage, and present many example problems. Part 2 describes the code, how to modify it, and its usage, including preparation of the problem data file required to execute LSENS. Code usage is illustrated by several example problems, which further explain preparation of the problem data file and show how to obtain desired accuracy in the computed results. LSENS is a flexible, convenient, accurate, and efficient solver for chemical reaction problems such as static system; steady, one-dimensional, inviscid flow; reaction behind incident shock wave, including boundary layer correction; and perfectly stirred (highly backmixed) reactor. In addition, the chemical equilibrium state can be computed for the following assigned states: temperature and pressure, enthalpy and pressure, temperature and volume, and internal energy and volume. For static problems the code computes the sensitivity coefficients of the dependent variables and their temporal derivatives with respect to the initial values of the dependent variables and/or the three rate coefficient parameters of the chemical reactions. Part 1 (NASA RP-1328) derives the governing equations describes the numerical solution procedures for the types of problems that can be solved by lSENS. Part 3 (NASA RP-1330) explains the kinetics and kinetics-plus-sensitivity-analysis problems supplied with LSENS and presents sample results.

  19. Analysis of steam generator loss-of-feedwater experiments with APROS and RELAP5/MOD3.1 computer codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virtanen, E.; Haapalehto, T.; Kouhia, J.

    1995-09-01

    Three experiments were conducted to study the behavior of the new horizontal steam generator construction of the PACTEL test facility. In the experiments the secondary side coolant level was reduced stepwise. The experiments were calculated with two computer codes RELAP5/MOD3.1 and APROS version 2.11. A similar nodalization scheme was used for both codes to that the results may be compared. Only the steam generator was modelled and the rest of the facility was given as a boundary condition. The results show that both codes calculate well the behaviour of the primary side of the steam generator. On the secondary sidemore » both codes calculate lower steam temperatures in the upper part of the heat exchange tube bundle than was measured in the experiments.« less

  20. Enhancement of the Probabilistic CEramic Matrix Composite ANalyzer (PCEMCAN) Computer Code

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin

    2000-01-01

    This report represents a final technical report for Order No. C-78019-J entitled "Enhancement of the Probabilistic Ceramic Matrix Composite Analyzer (PCEMCAN) Computer Code." The scope of the enhancement relates to including the probabilistic evaluation of the D-Matrix terms in MAT2 and MAT9 material properties card (available in CEMCAN code) for the MSC/NASTRAN. Technical activities performed during the time period of June 1, 1999 through September 3, 1999 have been summarized, and the final version of the enhanced PCEMCAN code and revisions to the User's Manual is delivered along with. Discussions related to the performed activities were made to the NASA Project Manager during the performance period. The enhanced capabilities have been demonstrated using sample problems.

  1. Orion Service Module Reaction Control System Plume Impingement Analysis Using PLIMP/RAMP2

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Gati, Frank; Yuko, James R.; Motil, Brian J.; Lumpkin, Forrest E.

    2009-01-01

    The Orion Crew Exploration Vehicle Service Module Reaction Control System engine plume impingement was computed using the plume impingement program (PLIMP). PLIMP uses the plume solution from RAMP2, which is the refined version of the reacting and multiphase program (RAMP) code. The heating rate and pressure (force and moment) on surfaces or components of the Service Module were computed. The RAMP2 solution of the flow field inside the engine and the plume was compared with those computed using GASP, a computational fluid dynamics code, showing reasonable agreement. The computed heating rate and pressure using PLIMP were compared with the Reaction Control System plume model (RPM) solution and the plume impingement dynamics (PIDYN) solution. RPM uses the GASP-based plume solution, whereas PIDYN uses the SCARF plume solution. Three sets of the heating rate and pressure solutions agree well. Further thermal analysis on the avionic ring of the Service Module showed that thermal protection is necessary because of significant heating from the plume.

  2. A generalized one-dimensional computer code for turbomachinery cooling passage flow calculations

    NASA Technical Reports Server (NTRS)

    Kumar, Ganesh N.; Roelke, Richard J.; Meitner, Peter L.

    1989-01-01

    A generalized one-dimensional computer code for analyzing the flow and heat transfer in the turbomachinery cooling passages was developed. This code is capable of handling rotating cooling passages with turbulators, 180 degree turns, pin fins, finned passages, by-pass flows, tip cap impingement flows, and flow branching. The code is an extension of a one-dimensional code developed by P. Meitner. In the subject code, correlations for both heat transfer coefficient and pressure loss computations were developed to model each of the above mentioned type of coolant passages. The code has the capability of independently computing the friction factor and heat transfer coefficient on each side of a rectangular passage. Either the mass flow at the inlet to the channel or the exit plane pressure can be specified. For a specified inlet total temperature, inlet total pressure, and exit static pressure, the code computers the flow rates through the main branch and the subbranches, flow through tip cap for impingement cooling, in addition to computing the coolant pressure, temperature, and heat transfer coefficient distribution in each coolant flow branch. Predictions from the subject code for both nonrotating and rotating passages agree well with experimental data. The code was used to analyze the cooling passage of a research cooled radial rotor.

  3. Modeling of pulsed propellant reorientation

    NASA Technical Reports Server (NTRS)

    Patag, A. E.; Hochstein, J. I.; Chato, D. J.

    1989-01-01

    Optimization of the propellant reorientation process can provide increased payload capability and extend the service life of spacecraft. The use of pulsed propellant reorientation to optimize the reorientation process is proposed. The ECLIPSE code was validated for modeling the reorientation process and is used to study pulsed reorientation in small-scale and full-scale propellant tanks. A dimensional analysis of the process is performed and the resulting dimensionless groups are used to present and correlate the computational predictions for reorientation performance.

  4. Human life support during interplanetary travel and domicile. II - Generic Modular Flow Schematic modeling

    NASA Technical Reports Server (NTRS)

    Farral, Joseph F.; Seshan, P. K.; Rohatgi, Naresh K.

    1991-01-01

    This paper describes the Generic Modular Flow Schematic (GMFS) architecture capable of encompassing all functional elements of a physical/chemical life support system (LSS). The GMFS can be implemented to synthesize, model, analyze, and quantitatively compare many configurations of LSSs, from a simple, completely open-loop to a very complex closed-loop. The GMFS model is coded in ASPEN, a state-of-the-art chemical process simulation program, to accurately compute the material, heat, and power flow quantities for every stream in each of the subsystem functional elements (SFEs) in the chosen configuration of a life support system. The GMFS approach integrates the various SFEs and subsystems in a hierarchical and modular fashion facilitating rapid substitutions and reconfiguration of a life support system. The comprehensive ASPEN material and energy balance output is transferred to a systems and technology assessment spreadsheet for rigorous system analysis and trade studies.

  5. TRIAD VIII: Nationwide Multicenter Evaluation to Determine Whether Patient Video Testimonials Can Safely Help Ensure Appropriate Critical Versus End-of-Life Care.

    PubMed

    Mirarchi, Ferdinando L; Cooney, Timothy E; Venkat, Arvind; Wang, David; Pope, Thaddeus M; Fant, Abra L; Terman, Stanley A; Klauer, Kevin M; Williams-Murphy, Monica; Gisondi, Michael A; Clemency, Brian; Doshi, Ankur A; Siegel, Mari; Kraemer, Mary S; Aberger, Kate; Harman, Stephanie; Ahuja, Neera; Carlson, Jestin N; Milliron, Melody L; Hart, Kristopher K; Gilbertson, Chelsey D; Wilson, Jason W; Mueller, Larissa; Brown, Lori; Gordon, Bradley D

    2017-06-01

    End-of-life interventions should be predicated on consensus understanding of patient wishes. Written documents are not always understood; adding a video testimonial/message (VM) might improve clarity. Goals of this study were to (1) determine baseline rates of consensus in assigning code status and resuscitation decisions in critically ill scenarios and (2) determine whether adding a VM increases consensus. We randomly assigned 2 web-based survey links to 1366 faculty and resident physicians at institutions with graduate medical education programs in emergency medicine, family practice, and internal medicine. Each survey asked for code status interpretation of stand-alone Physician Orders for Life-Sustaining Treatment (POLST) and living will (LW) documents in 9 scenarios. Respondents assigned code status and resuscitation decisions to each scenario. For 1 of 2 surveys, a VM was included to help clarify patient wishes. Response rate was 54%, and most were male emergency physicians who lacked formal advanced planning document interpretation training. Consensus was not achievable for stand-alone POLST or LW documents (68%-78% noted "DNR"). Two of 9 scenarios attained consensus for code status (97%-98% responses) and treatment decisions (96%-99%). Adding a VM significantly changed code status responses by 9% to 62% (P ≤ 0.026) in 7 of 9 scenarios with 4 achieving consensus. Resuscitation responses changed by 7% to 57% (P ≤ 0.005) with 4 of 9 achieving consensus with VMs. For most scenarios, consensus was not attained for code status and resuscitation decisions with stand-alone LW and POLST documents. Adding VMs produced significant impacts toward achieving interpretive consensus.

  6. BRYNTRN: A baryon transport computer code, computation procedures and data base

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Townsend, Lawrence W.; Chun, Sang Y.; Buck, Warren W.; Khan, Ferdous; Cucinotta, Frank

    1988-01-01

    The development is described of an interaction data base and a numerical solution to the transport of baryons through the arbitrary shield material based on a straight ahead approximation of the Boltzmann equation. The code is most accurate for continuous energy boundary values but gives reasonable results for discrete spectra at the boundary with even a relatively coarse energy grid (30 points) and large spatial increments (1 cm in H2O).

  7. Joint Services Electronics Program Annual Progress Report.

    DTIC Science & Technology

    1985-11-01

    one symbol memory) adaptive lHuffman codes were performed, and the compression achieved was compared with that of Ziv - Lempel coding. As was expected...MATERIALS 8 4. Information Systems 9 4.1 REAL TIME STATISTICAL DATA PROCESSING 9 -. 4.2 DATA COMPRESSION for COMPUTER DATA STRUCTURES 9 5. PhD...a. Real Time Statistical Data Processing (T. Kailatb) b. Data Compression for Computer Data Structures (J. Gill) Acces Fo NTIS CRA&I I " DTIC TAB

  8. COM-GEOM Interactive Display Debugger (CIDD)

    DTIC Science & Technology

    1984-08-01

    necessery and Identify by block nlum.ber) Target Description GIFT interactive Computer Graphics SolIi d Geone t ry Combintatorial Gecometry * COM-GLOM 120...program was written to speed up the process of formulating the Com-Geom data used by the Geometric Information for Targets ( GIFT ) 1,2 computer code...Polyhedron Lawrence W. Bain, Mathew J. Reisinger, "The GIFT Code User Manual; Volume I, Introduction and Input Requirements (u)," BRL Report No. 1802

  9. Review of numerical models to predict cooling tower performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, B.M.; Nomura, K.K.; Bartz, J.A.

    1987-01-01

    Four state-of-the-art computer models developed to predict the thermal performance of evaporative cooling towers are summarized. The formulation of these models, STAR and TEFERI (developed in Europe) and FACTS and VERA2D (developed in the U.S.), is summarized. A fifth code, based on Merkel analysis, is also discussed. Principal features of the codes, computation time and storage requirements are described. A discussion of model validation is also provided.

  10. Efficient Proximity Computation Techniques Using ZIP Code Data for Smart Cities †

    PubMed Central

    Murdani, Muhammad Harist; Hong, Bonghee

    2018-01-01

    In this paper, we are interested in computing ZIP code proximity from two perspectives, proximity between two ZIP codes (Ad-Hoc) and neighborhood proximity (Top-K). Such a computation can be used for ZIP code-based target marketing as one of the smart city applications. A naïve approach to this computation is the usage of the distance between ZIP codes. We redefine a distance metric combining the centroid distance with the intersecting road network between ZIP codes by using a weighted sum method. Furthermore, we prove that the results of our combined approach conform to the characteristics of distance measurement. We have proposed a general and heuristic approach for computing Ad-Hoc proximity, while for computing Top-K proximity, we have proposed a general approach only. Our experimental results indicate that our approaches are verifiable and effective in reducing the execution time and search space. PMID:29587366

  11. Efficient Proximity Computation Techniques Using ZIP Code Data for Smart Cities †.

    PubMed

    Murdani, Muhammad Harist; Kwon, Joonho; Choi, Yoon-Ho; Hong, Bonghee

    2018-03-24

    In this paper, we are interested in computing ZIP code proximity from two perspectives, proximity between two ZIP codes ( Ad-Hoc ) and neighborhood proximity ( Top-K ). Such a computation can be used for ZIP code-based target marketing as one of the smart city applications. A naïve approach to this computation is the usage of the distance between ZIP codes. We redefine a distance metric combining the centroid distance with the intersecting road network between ZIP codes by using a weighted sum method. Furthermore, we prove that the results of our combined approach conform to the characteristics of distance measurement. We have proposed a general and heuristic approach for computing Ad-Hoc proximity, while for computing Top-K proximity, we have proposed a general approach only. Our experimental results indicate that our approaches are verifiable and effective in reducing the execution time and search space.

  12. Computerized systems analysis and optimization of aircraft engine performance, weight, and life cycle costs

    NASA Technical Reports Server (NTRS)

    Fishbach, L. H.

    1979-01-01

    The paper describes the computational techniques employed in determining the optimal propulsion systems for future aircraft applications and to identify system tradeoffs and technology requirements. The computer programs used to perform calculations for all the factors that enter into the selection process of determining the optimum combinations of airplanes and engines are examined. Attention is given to the description of the computer codes including NNEP, WATE, LIFCYC, INSTAL, and POD DRG. A process is illustrated by which turbine engines can be evaluated as to fuel consumption, engine weight, cost and installation effects. Examples are shown as to the benefits of variable geometry and of the tradeoff between fuel burned and engine weights. Future plans for further improvements in the analytical modeling of engine systems are also described.

  13. System statistical reliability model and analysis

    NASA Technical Reports Server (NTRS)

    Lekach, V. S.; Rood, H.

    1973-01-01

    A digital computer code was developed to simulate the time-dependent behavior of the 5-kwe reactor thermoelectric system. The code was used to determine lifetime sensitivity coefficients for a number of system design parameters, such as thermoelectric module efficiency and degradation rate, radiator absorptivity and emissivity, fuel element barrier defect constant, beginning-of-life reactivity, etc. A probability distribution (mean and standard deviation) was estimated for each of these design parameters. Then, error analysis was used to obtain a probability distribution for the system lifetime (mean = 7.7 years, standard deviation = 1.1 years). From this, the probability that the system will achieve the design goal of 5 years lifetime is 0.993. This value represents an estimate of the degradation reliability of the system.

  14. Navier-Stokes analysis of cold scramjet-afterbody flows

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay; Engelund, Walter C.; Eleshaky, Mohamed E.

    1989-01-01

    The progress of two efforts in coding solutions of Navier-Stokes equations is summarized. The first effort concerns a 3-D space marching parabolized Navier-Stokes (PNS) code being modified to compute the supersonic mixing flow through an internal/external expansion nozzle with multicomponent gases. The 3-D PNS equations, coupled with a set of species continuity equations, are solved using an implicit finite difference scheme. The completed work is summarized and includes code modifications for four chemical species, computing the flow upstream of the upper cowl for a theoretical air mixture, developing an initial plane solution for the inner nozzle region, and computing the flow inside the nozzle for both a N2/O2 mixture and a Freon-12/Ar mixture, and plotting density-pressure contours for the inner nozzle region. The second effort concerns a full Navier-Stokes code. The species continuity equations account for the diffusion of multiple gases. This 3-D explicit afterbody code has the ability to use high order numerical integration schemes such as the 4th order MacCormack, and the Gottlieb-MacCormack schemes. Changes to the work are listed and include, but are not limited to: (1) internal/external flow capability; (2) new treatments of the cowl wall boundary conditions and relaxed computations around the cowl region and cowl tip; (3) the entering of the thermodynamic and transport properties of Freon-12, Ar, O, and N; (4) modification to the Baldwin-Lomax turbulence model to account for turbulent eddies generated by cowl walls inside and external to the nozzle; and (5) adopting a relaxation formula to account for the turbulence in the mixing shear layer.

  15. Numerical simulation of mushrooms during freezing using the FEM and an enthalpy: Kirchhoff formulation

    NASA Astrophysics Data System (ADS)

    Santos, M. V.; Lespinard, A. R.

    2011-12-01

    The shelf life of mushrooms is very limited since they are susceptible to physical and microbial attack; therefore they are usually blanched and immediately frozen for commercial purposes. The aim of this work was to develop a numerical model using the finite element technique to predict freezing times of mushrooms considering the actual shape of the product. The original heat transfer equation was reformulated using a combined enthalpy-Kirchhoff formulation, therefore an own computational program using Matlab 6.5 (MathWorks, Natick, Massachusetts) was developed, considering the difficulties encountered when simulating this non-linear problem in commercial softwares. Digital images were used to generate the irregular contour and the domain discretization. The numerical predictions agreed with the experimental time-temperature curves during freezing of mushrooms (maximum absolute error <3.2°C) obtaining accurate results and minimum computer processing times. The codes were then applied to determine required processing times for different operating conditions (external fluid temperatures and surface heat transfer coefficients).

  16. Trellis coding with multidimensional QAM signal sets

    NASA Technical Reports Server (NTRS)

    Pietrobon, Steven S.; Costello, Daniel J.

    1993-01-01

    Trellis coding using multidimensional QAM signal sets is investigated. Finite-size 2D signal sets are presented that have minimum average energy, are 90-deg rotationally symmetric, and have from 16 to 1024 points. The best trellis codes using the finite 16-QAM signal set with two, four, six, and eight dimensions are found by computer search (the multidimensional signal set is constructed from the 2D signal set). The best moderate complexity trellis codes for infinite lattices with two, four, six, and eight dimensions are also found. The minimum free squared Euclidean distance and number of nearest neighbors for these codes were used as the selection criteria. Many of the multidimensional codes are fully rotationally invariant and give asymptotic coding gains up to 6.0 dB. From the infinite lattice codes, the best codes for transmitting J, J + 1/4, J + 1/3, J + 1/2, J + 2/3, and J + 3/4 bit/sym (J an integer) are presented.

  17. A CFD/CSD Interaction Methodology for Aircraft Wings

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Manoj K.

    1997-01-01

    With advanced subsonic transports and military aircraft operating in the transonic regime, it is becoming important to determine the effects of the coupling between aerodynamic loads and elastic forces. Since aeroelastic effects can contribute significantly to the design of these aircraft, there is a strong need in the aerospace industry to predict these aero-structure interactions computationally. To perform static aeroelastic analysis in the transonic regime, high fidelity computational fluid dynamics (CFD) analysis tools must be used in conjunction with high fidelity computational structural fluid dynamics (CSD) analysis tools due to the nonlinear behavior of the aerodynamics in the transonic regime. There is also a need to be able to use a wide variety of CFD and CSD tools to predict these aeroelastic effects in the transonic regime. Because source codes are not always available, it is necessary to couple the CFD and CSD codes without alteration of the source codes. In this study, an aeroelastic coupling procedure is developed which will perform static aeroelastic analysis using any CFD and CSD code with little code integration. The aeroelastic coupling procedure is demonstrated on an F/A-18 Stabilator using NASTD (an in-house McDonnell Douglas CFD code) and NASTRAN. In addition, the Aeroelastic Research Wing (ARW-2) is used for demonstration of the aeroelastic coupling procedure by using ENSAERO (NASA Ames Research Center CFD code) and a finite element wing-box code (developed as part of this research).

  18. HELIOS-R: An Ultrafast, Open-Source Retrieval Code For Exoplanetary Atmosphere Characterization

    NASA Astrophysics Data System (ADS)

    LAVIE, Baptiste

    2015-12-01

    Atmospheric retrieval is a growing, new approach in the theory of exoplanet atmosphere characterization. Unlike self-consistent modeling it allows us to fully explore the parameter space, as well as the degeneracies between the parameters using a Bayesian framework. We present HELIOS-R, a very fast retrieving code written in Python and optimized for GPU computation. Once it is ready, HELIOS-R will be the first open-source atmospheric retrieval code accessible to the exoplanet community. As the new generation of direct imaging instruments (SPHERE, GPI) have started to gather data, the first version of HELIOS-R focuses on emission spectra. We use a 1D two-stream forward model for computing fluxes and couple it to an analytical temperature-pressure profile that is constructed to be in radiative equilibrium. We use our ultra-fast opacity calculator HELIOS-K (also open-source) to compute the opacities of CO2, H2O, CO and CH4 from the HITEMP database. We test both opacity sampling (which is typically used by other workers) and the method of k-distributions. Using this setup, we compute a grid of synthetic spectra and temperature-pressure profiles, which is then explored using a nested sampling algorithm. By focusing on model selection (Occam’s razor) through the explicit computation of the Bayesian evidence, nested sampling allows us to deal with current sparse data as well as upcoming high-resolution observations. Once the best model is selected, HELIOS-R provides posterior distributions of the parameters. As a test for our code we studied HR8799 system and compared our results with the previous analysis of Lee, Heng & Irwin (2013), which used the proprietary NEMESIS retrieval code. HELIOS-R and HELIOS-K are part of the set of open-source community codes we named the Exoclimes Simulation Platform (www.exoclime.org).

  19. Evaluation of three coding schemes designed for improved data communication

    NASA Technical Reports Server (NTRS)

    Snelsire, R. W.

    1974-01-01

    Three coding schemes designed for improved data communication are evaluated. Four block codes are evaluated relative to a quality function, which is a function of both the amount of data rejected and the error rate. The Viterbi maximum likelihood decoding algorithm as a decoding procedure is reviewed. This evaluation is obtained by simulating the system on a digital computer. Short constraint length rate 1/2 quick-look codes are studied, and their performance is compared to general nonsystematic codes.

  20. Volume accumulator design analysis computer codes

    NASA Technical Reports Server (NTRS)

    Whitaker, W. D.; Shimazaki, T. T.

    1973-01-01

    The computer codes, VANEP and VANES, were written and used to aid in the design and performance calculation of the volume accumulator units (VAU) for the 5-kwe reactor thermoelectric system. VANEP computes the VAU design which meets the primary coolant loop VAU volume and pressure performance requirements. VANES computes the performance of the VAU design, determined from the VANEP code, at the conditions of the secondary coolant loop. The codes can also compute the performance characteristics of the VAU's under conditions of possible modes of failure which still permit continued system operation.

  1. Proteus two-dimensional Navier-Stokes computer code, version 2.0. Volume 2: User's guide

    NASA Technical Reports Server (NTRS)

    Towne, Charles E.; Schwab, John R.; Bui, Trong T.

    1993-01-01

    A computer code called Proteus 2D was developed to solve the two-dimensional planar or axisymmetric, Reynolds-averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The objective in this effort was to develop a code for aerospace propulsion applications that is easy to use and easy to modify. Code readability, modularity, and documentation were emphasized. The governing equations are solved in generalized nonorthogonal body-fitted coordinates, by marching in time using a fully-coupled ADI solution procedure. The boundary conditions are treated implicitly. All terms, including the diffusion terms, are linearized using second-order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation eddy viscosity model. The thin-layer or Euler equations may also be solved. The energy equation may be eliminated by the assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used. Several time step options are available for convergence acceleration. The documentation is divided into three volumes. This is the User's Guide, and describes the program's features, the input and output, the procedure for setting up initial conditions, the computer resource requirements, the diagnostic messages that may be generated, the job control language used to run the program, and several test cases.

  2. "Hour of Code": Can It Change Students' Attitudes toward Programming?

    ERIC Educational Resources Information Center

    Du, Jie; Wimmer, Hayden; Rada, Roy

    2016-01-01

    The Hour of Code is a one-hour introduction to computer science organized by Code.org, a non-profit dedicated to expanding participation in computer science. This study investigated the impact of the Hour of Code on students' attitudes towards computer programming and their knowledge of programming. A sample of undergraduate students from two…

  3. [Series: Medical Applications of the PHITS Code (2): Acceleration by Parallel Computing].

    PubMed

    Furuta, Takuya; Sato, Tatsuhiko

    2015-01-01

    Time-consuming Monte Carlo dose calculation becomes feasible owing to the development of computer technology. However, the recent development is due to emergence of the multi-core high performance computers. Therefore, parallel computing becomes a key to achieve good performance of software programs. A Monte Carlo simulation code PHITS contains two parallel computing functions, the distributed-memory parallelization using protocols of message passing interface (MPI) and the shared-memory parallelization using open multi-processing (OpenMP) directives. Users can choose the two functions according to their needs. This paper gives the explanation of the two functions with their advantages and disadvantages. Some test applications are also provided to show their performance using a typical multi-core high performance workstation.

  4. Development of a computer code for calculating the steady super/hypersonic inviscid flow around real configurations. Volume 2: Code description

    NASA Technical Reports Server (NTRS)

    Marconi, F.; Yaeger, L.

    1976-01-01

    A numerical procedure was developed to compute the inviscid super/hypersonic flow field about complex vehicle geometries accurately and efficiently. A second-order accurate finite difference scheme is used to integrate the three-dimensional Euler equations in regions of continuous flow, while all shock waves are computed as discontinuities via the Rankine-Hugoniot jump conditions. Conformal mappings are used to develop a computational grid. The effects of blunt nose entropy layers are computed in detail. Real gas effects for equilibrium air are included using curve fits of Mollier charts. Typical calculated results for shuttle orbiter, hypersonic transport, and supersonic aircraft configurations are included to demonstrate the usefulness of this tool.

  5. SORTA: a system for ontology-based re-coding and technical annotation of biomedical phenotype data.

    PubMed

    Pang, Chao; Sollie, Annet; Sijtsma, Anna; Hendriksen, Dennis; Charbon, Bart; de Haan, Mark; de Boer, Tommy; Kelpin, Fleur; Jetten, Jonathan; van der Velde, Joeri K; Smidt, Nynke; Sijmons, Rolf; Hillege, Hans; Swertz, Morris A

    2015-01-01

    There is an urgent need to standardize the semantics of biomedical data values, such as phenotypes, to enable comparative and integrative analyses. However, it is unlikely that all studies will use the same data collection protocols. As a result, retrospective standardization is often required, which involves matching of original (unstructured or locally coded) data to widely used coding or ontology systems such as SNOMED CT (clinical terms), ICD-10 (International Classification of Disease) and HPO (Human Phenotype Ontology). This data curation process is usually a time-consuming process performed by a human expert. To help mechanize this process, we have developed SORTA, a computer-aided system for rapidly encoding free text or locally coded values to a formal coding system or ontology. SORTA matches original data values (uploaded in semicolon delimited format) to a target coding system (uploaded in Excel spreadsheet, OWL ontology web language or OBO open biomedical ontologies format). It then semi- automatically shortlists candidate codes for each data value using Lucene and n-gram based matching algorithms, and can also learn from matches chosen by human experts. We evaluated SORTA's applicability in two use cases. For the LifeLines biobank, we used SORTA to recode 90 000 free text values (including 5211 unique values) about physical exercise to MET (Metabolic Equivalent of Task) codes. For the CINEAS clinical symptom coding system, we used SORTA to map to HPO, enriching HPO when necessary (315 terms matched so far). Out of the shortlists at rank 1, we found a precision/recall of 0.97/0.98 in LifeLines and of 0.58/0.45 in CINEAS. More importantly, users found the tool both a major time saver and a quality improvement because SORTA reduced the chances of human mistakes. Thus, SORTA can dramatically ease data (re)coding tasks and we believe it will prove useful for many more projects. Database URL: http://molgenis.org/sorta or as an open source download from http://www.molgenis.org/wiki/SORTA. © The Author(s) 2015. Published by Oxford University Press.

  6. SORTA: a system for ontology-based re-coding and technical annotation of biomedical phenotype data

    PubMed Central

    Pang, Chao; Sollie, Annet; Sijtsma, Anna; Hendriksen, Dennis; Charbon, Bart; de Haan, Mark; de Boer, Tommy; Kelpin, Fleur; Jetten, Jonathan; van der Velde, Joeri K.; Smidt, Nynke; Sijmons, Rolf; Hillege, Hans; Swertz, Morris A.

    2015-01-01

    There is an urgent need to standardize the semantics of biomedical data values, such as phenotypes, to enable comparative and integrative analyses. However, it is unlikely that all studies will use the same data collection protocols. As a result, retrospective standardization is often required, which involves matching of original (unstructured or locally coded) data to widely used coding or ontology systems such as SNOMED CT (clinical terms), ICD-10 (International Classification of Disease) and HPO (Human Phenotype Ontology). This data curation process is usually a time-consuming process performed by a human expert. To help mechanize this process, we have developed SORTA, a computer-aided system for rapidly encoding free text or locally coded values to a formal coding system or ontology. SORTA matches original data values (uploaded in semicolon delimited format) to a target coding system (uploaded in Excel spreadsheet, OWL ontology web language or OBO open biomedical ontologies format). It then semi- automatically shortlists candidate codes for each data value using Lucene and n-gram based matching algorithms, and can also learn from matches chosen by human experts. We evaluated SORTA’s applicability in two use cases. For the LifeLines biobank, we used SORTA to recode 90 000 free text values (including 5211 unique values) about physical exercise to MET (Metabolic Equivalent of Task) codes. For the CINEAS clinical symptom coding system, we used SORTA to map to HPO, enriching HPO when necessary (315 terms matched so far). Out of the shortlists at rank 1, we found a precision/recall of 0.97/0.98 in LifeLines and of 0.58/0.45 in CINEAS. More importantly, users found the tool both a major time saver and a quality improvement because SORTA reduced the chances of human mistakes. Thus, SORTA can dramatically ease data (re)coding tasks and we believe it will prove useful for many more projects. Database URL: http://molgenis.org/sorta or as an open source download from http://www.molgenis.org/wiki/SORTA PMID:26385205

  7. 26 CFR 1.441-1 - Period for computation of taxable income.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Internal Revenue Code, and the regulations thereunder. (2) Length of taxable year. Except as otherwise provided in the Internal Revenue Code and the regulations thereunder (e.g., § 1.441-2 regarding 52-53-week... and definitions. The general rules and definitions in this paragraph (b) apply for purposes of...

  8. 26 CFR 1.441-1 - Period for computation of taxable income.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Internal Revenue Code, and the regulations thereunder. (2) Length of taxable year. Except as otherwise provided in the Internal Revenue Code and the regulations thereunder (e.g., § 1.441-2 regarding 52-53-week... and definitions. The general rules and definitions in this paragraph (b) apply for purposes of...

  9. 26 CFR 1.441-1 - Period for computation of taxable income.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Internal Revenue Code, and the regulations thereunder. (2) Length of taxable year. Except as otherwise provided in the Internal Revenue Code and the regulations thereunder (e.g., § 1.441-2 regarding 52-53-week... and definitions. The general rules and definitions in this paragraph (b) apply for purposes of...

  10. Influence of temperature fluctuations on infrared limb radiance: a new simulation code

    NASA Astrophysics Data System (ADS)

    Rialland, Valérie; Chervet, Patrick

    2006-08-01

    Airborne infrared limb-viewing detectors may be used as surveillance sensors in order to detect dim military targets. These systems' performances are limited by the inhomogeneous background in the sensor field of view which impacts strongly on target detection probability. This background clutter, which results from small-scale fluctuations of temperature, density or pressure must therefore be analyzed and modeled. Few existing codes are able to model atmospheric structures and their impact on limb-observed radiance. SAMM-2 (SHARC-4 and MODTRAN4 Merged), the Air Force Research Laboratory (AFRL) background radiance code can be used to in order to predict the radiance fluctuation as a result of a normalized temperature fluctuation, as a function of the line-of-sight. Various realizations of cluttered backgrounds can then be computed, based on these transfer functions and on a stochastic temperature field. The existing SIG (SHARC Image Generator) code was designed to compute the cluttered background which would be observed from a space-based sensor. Unfortunately, this code was not able to compute accurate scenes as seen by an airborne sensor especially for lines-of-sight close to the horizon. Recently, we developed a new code called BRUTE3D and adapted to our configuration. This approach is based on a method originally developed in the SIG model. This BRUTE3D code makes use of a three-dimensional grid of temperature fluctuations and of the SAMM-2 transfer functions to synthesize an image of radiance fluctuations according to sensor characteristics. This paper details the working principles of the code and presents some output results. The effects of the small-scale temperature fluctuations on infrared limb radiance as seen by an airborne sensor are highlighted.

  11. Legacy Code Modernization

    NASA Technical Reports Server (NTRS)

    Hribar, Michelle R.; Frumkin, Michael; Jin, Haoqiang; Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)

    1998-01-01

    Over the past decade, high performance computing has evolved rapidly; systems based on commodity microprocessors have been introduced in quick succession from at least seven vendors/families. Porting codes to every new architecture is a difficult problem; in particular, here at NASA, there are many large CFD applications that are very costly to port to new machines by hand. The LCM ("Legacy Code Modernization") Project is the development of an integrated parallelization environment (IPE) which performs the automated mapping of legacy CFD (Fortran) applications to state-of-the-art high performance computers. While most projects to port codes focus on the parallelization of the code, we consider porting to be an iterative process consisting of several steps: 1) code cleanup, 2) serial optimization,3) parallelization, 4) performance monitoring and visualization, 5) intelligent tools for automated tuning using performance prediction and 6) machine specific optimization. The approach for building this parallelization environment is to build the components for each of the steps simultaneously and then integrate them together. The demonstration will exhibit our latest research in building this environment: 1. Parallelizing tools and compiler evaluation. 2. Code cleanup and serial optimization using automated scripts 3. Development of a code generator for performance prediction 4. Automated partitioning 5. Automated insertion of directives. These demonstrations will exhibit the effectiveness of an automated approach for all the steps involved with porting and tuning a legacy code application for a new architecture.

  12. HYDRA-II: A hydrothermal analysis computer code: Volume 2, User's manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCann, R.A.; Lowery, P.S.; Lessor, D.L.

    1987-09-01

    HYDRA-II is a hydrothermal computer code capable of three-dimensional analysis of coupled conduction, convection, and thermal radiation problems. This code is especially appropriate for simulating the steady-state performance of spent fuel storage systems. The code has been evaluated for this application for the US Department of Energy's Commercial Spent Fuel Management Program. HYDRA-II provides a finite-difference solution in cartesian coordinates to the equations governing the conservation of mass, momentum, and energy. A cylindrical coordinate system may also be used to enclose the cartesian coordinate system. This exterior coordinate system is useful for modeling cylindrical cask bodies. The difference equations formore » conservation of momentum incorporate directional porosities and permeabilities that are available to model solid structures whose dimensions may be smaller than the computational mesh. The equation for conservation of energy permits modeling of orthotropic physical properties and film resistances. Several automated methods are available to model radiation transfer within enclosures and from fuel rod to fuel rod. The documentation of HYDRA-II is presented in three separate volumes. Volume 1 - Equations and Numerics describes the basic differential equations, illustrates how the difference equations are formulated, and gives the solution procedures employed. This volume, Volume 2 - User's Manual, contains code flow charts, discusses the code structure, provides detailed instructions for preparing an input file, and illustrates the operation of the code by means of a sample problem. The final volume, Volume 3 - Verification/Validation Assessments, provides a comparison between the analytical solution and the numerical simulation for problems with a known solution. 6 refs.« less

  13. co2amp: A software program for modeling the dynamics of ultrashort pulses in optical systems with CO 2 amplifiers

    DOE PAGES

    Polyanskiy, Mikhail N.

    2015-01-01

    We describe a computer code for simulating the amplification of ultrashort mid-infrared laser pulses in CO 2 amplifiers and their propagation through arbitrary optical systems. This code is based on a comprehensive model that includes an accurate consideration of the CO 2 active medium and a physical optics propagation algorithm, and takes into account the interaction of the laser pulse with the material of the optical elements. Finally, the application of the code for optimizing an isotopic regenerative amplifier is described.

  14. CFD Simulation on the J-2X Engine Exhaust in the Center-Body Diffuser and Spray Chamber at the B-2 Facility

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Wey, Thomas; Buehrle, Robert

    2009-01-01

    A computational fluid dynamic (CFD) code is used to simulate the J-2X engine exhaust in the center-body diffuser and spray chamber at the Spacecraft Propulsion Facility (B-2). The CFD code is named as the space-time conservation element and solution element (CESE) Euler solver and is very robust at shock capturing. The CESE results are compared with independent analysis results obtained by using the National Combustion Code (NCC) and show excellent agreement.

  15. Talking about Code: Integrating Pedagogical Code Reviews into Early Computing Courses

    ERIC Educational Resources Information Center

    Hundhausen, Christopher D.; Agrawal, Anukrati; Agarwal, Pawan

    2013-01-01

    Given the increasing importance of soft skills in the computing profession, there is good reason to provide students withmore opportunities to learn and practice those skills in undergraduate computing courses. Toward that end, we have developed an active learning approach for computing education called the "Pedagogical Code Review"…

  16. Axisymmetric whole pin life modelling of advanced gas-cooled reactor nuclear fuel

    NASA Astrophysics Data System (ADS)

    Mella, R.; Wenman, M. R.

    2013-06-01

    Thermo-mechanical contributions to pellet-clad interaction (PCI) in advanced gas-cooled reactors (AGRs) are modelled in the ABAQUS finite element (FE) code. User supplied sub-routines permit the modelling of the non-linear behaviour of AGR fuel through life. Through utilisation of ABAQUS's well-developed pre- and post-processing ability, the behaviour of the axially constrained steel clad fuel was modelled. The 2D axisymmetric model includes thermo-mechanical behaviour of the fuel with time and condition dependent material properties. Pellet cladding gap dynamics and thermal behaviour are also modelled. The model treats heat up as a fully coupled temperature-displacement study. Dwell time and direct power cycling was applied to model the impact of online refuelling, a key feature of the AGR. The model includes the visco-plastic behaviour of the fuel under the stress and irradiation conditions within an AGR core and a non-linear heat transfer model. A multiscale fission gas release model is applied to compute pin pressure; this model is coupled to the PCI gap model through an explicit fission gas inventory code. Whole pin, whole life, models are able to show the impact of the fuel on all segments of cladding including weld end caps and cladding pellet locking mechanisms (unique to AGR fuel). The development of this model in a commercial FE package shows that the development of a potentially verified and future-proof fuel performance code can be created and used. The usability of a FE based fuel performance code would be an enhancement over past codes. Pre- and post-processors have lowered the entry barrier for the development of a fuel performance model to permit the ability to model complicated systems. Typical runtimes for a 5 year axisymmetric model takes less than one hour on a single core workstation. The current model has implemented: Non-linear fuel thermal behaviour, including a complex description of heat flow in the fuel. Coupled with a variety of different FE and finite difference models. Non-linear mechanical behaviour of the fuel and cladding including, fuel creep and swelling and cladding creep and plasticity each with dependencies on a variety of different properties. A fission gas release model which takes inputs from first principles calculations. Explicitly integrated inventory calculations performed in a coupled manner. Freedom to model steady state and transient behaviour using implicit time integration. The whole pin geometry is considered over an entire typical fuel life. The model showed by examination of normal operation and a subsequent transient chosen for software demonstration purposes: ABAQUS may be a sufficiently flexible platform to develop a complete and verified fuel performance code. The importance and effectiveness of the geometry of the fuel spacer pellets was characterised. The fuels performance under normal conditions (high friction no power spikes) would not suggest serious degradation of the cladding in fuel life. Large plastic strains were found when pellet bonding was strong, these would appear at all pellets cladding triple points and all pellet radial crack and cladding interfaces thus showing a possible axial direction to cracks forming from ductility exhaustion.

  17. Computational fluid dynamics analysis of space shuttle main propulsion feed line 17-inch disconnect valves

    NASA Technical Reports Server (NTRS)

    Kandula, Max; Pearce, Daniel

    1989-01-01

    A steady incompressible three-dimensional (3-D) viscous flow analysis was conducted for the Space Shuttle Main Propulsion External Tank (ET)/Orbiter (ORB) propellant feed line quick separable 17-inch disconnect flapper valves for liquid oxygen (LO2) and liquid hydrogen (LH2). The main objectives of the analysis were to predict and correlate the hydrodynamic stability of the flappers and pressure drop with available water test data. Computational Fluid Dynamics (CFD) computer codes were procured at no cost from the public domain, and were modified and extended to carry out the disconnect flow analysis. The grid generator codes SVTGD3D and INGRID were obtained. NASA Ames Research Center supplied the flow solution code INS3D, and the color graphics code PLOT3D. A driver routine was developed to automate the grid generation process. Components such as pipes, elbows, and flappers can be generated with simple commands, and flapper angles can be varied easily. The flow solver INS3D code was modified to treat interior flappers, and other interfacing routines were developed, which include a turbulence model, a force/moment routine, a time-step routine, and initial and boundary conditions. In particular, an under-relaxation scheme was implemented to enhance the solution stability. Major physical assumptions and simplifications made in the analysis include the neglect of linkages, slightly reduced flapper diameter, and smooth solid surfaces. A grid size of 54 x 21 x 25 was employed for both the LO2 and LH2 units. Mixing length theory applied to turbulent shear flow in pipes formed the basis for the simple turbulence model. Results of the analysis are presented for LO2 and LH2 disconnects.

  18. Effect of Oxygen Enrichment in Propane Laminar Diffusion Flames under Microgravity and Earth Gravity Conditions

    NASA Astrophysics Data System (ADS)

    Bhatia, Pramod; Singh, Ravinder

    2017-06-01

    Diffusion flames are the most common type of flame which we see in our daily life such as candle flame and match-stick flame. Also, they are the most used flames in practical combustion system such as industrial burner (coal fired, gas fired or oil fired), diesel engines, gas turbines, and solid fuel rockets. In the present study, steady-state global chemistry calculations for 24 different flames were performed using an axisymmetric computational fluid dynamics code (UNICORN). Computation involved simulations of inverse and normal diffusion flames of propane in earth and microgravity condition with varying oxidizer compositions (21, 30, 50, 100 % O2, by mole, in N2). 2 cases were compared with the experimental result for validating the computational model. These flames were stabilized on a 5.5 mm diameter burner with 10 mm of burner length. The effect of oxygen enrichment and variation in gravity (earth gravity and microgravity) on shape and size of diffusion flames, flame temperature, flame velocity have been studied from the computational result obtained. Oxygen enrichment resulted in significant increase in flame temperature for both types of diffusion flames. Also, oxygen enrichment and gravity variation have significant effect on the flame configuration of normal diffusion flames in comparison with inverse diffusion flames. Microgravity normal diffusion flames are spherical in shape and much wider in comparison to earth gravity normal diffusion flames. In inverse diffusion flames, microgravity flames were wider than earth gravity flames. However, microgravity inverse flames were not spherical in shape.

  19. Computational strategies for three-dimensional flow simulations on distributed computer systems

    NASA Technical Reports Server (NTRS)

    Sankar, Lakshmi N.; Weed, Richard A.

    1995-01-01

    This research effort is directed towards an examination of issues involved in porting large computational fluid dynamics codes in use within the industry to a distributed computing environment. This effort addresses strategies for implementing the distributed computing in a device independent fashion and load balancing. A flow solver called TEAM presently in use at Lockheed Aeronautical Systems Company was acquired to start this effort. The following tasks were completed: (1) The TEAM code was ported to a number of distributed computing platforms including a cluster of HP workstations located in the School of Aerospace Engineering at Georgia Tech; a cluster of DEC Alpha Workstations in the Graphics visualization lab located at Georgia Tech; a cluster of SGI workstations located at NASA Ames Research Center; and an IBM SP-2 system located at NASA ARC. (2) A number of communication strategies were implemented. Specifically, the manager-worker strategy and the worker-worker strategy were tested. (3) A variety of load balancing strategies were investigated. Specifically, the static load balancing, task queue balancing and the Crutchfield algorithm were coded and evaluated. (4) The classical explicit Runge-Kutta scheme in the TEAM solver was replaced with an LU implicit scheme. And (5) the implicit TEAM-PVM solver was extensively validated through studies of unsteady transonic flow over an F-5 wing, undergoing combined bending and torsional motion. These investigations are documented in extensive detail in the dissertation, 'Computational Strategies for Three-Dimensional Flow Simulations on Distributed Computing Systems', enclosed as an appendix.

  20. Computational strategies for three-dimensional flow simulations on distributed computer systems

    NASA Astrophysics Data System (ADS)

    Sankar, Lakshmi N.; Weed, Richard A.

    1995-08-01

    This research effort is directed towards an examination of issues involved in porting large computational fluid dynamics codes in use within the industry to a distributed computing environment. This effort addresses strategies for implementing the distributed computing in a device independent fashion and load balancing. A flow solver called TEAM presently in use at Lockheed Aeronautical Systems Company was acquired to start this effort. The following tasks were completed: (1) The TEAM code was ported to a number of distributed computing platforms including a cluster of HP workstations located in the School of Aerospace Engineering at Georgia Tech; a cluster of DEC Alpha Workstations in the Graphics visualization lab located at Georgia Tech; a cluster of SGI workstations located at NASA Ames Research Center; and an IBM SP-2 system located at NASA ARC. (2) A number of communication strategies were implemented. Specifically, the manager-worker strategy and the worker-worker strategy were tested. (3) A variety of load balancing strategies were investigated. Specifically, the static load balancing, task queue balancing and the Crutchfield algorithm were coded and evaluated. (4) The classical explicit Runge-Kutta scheme in the TEAM solver was replaced with an LU implicit scheme. And (5) the implicit TEAM-PVM solver was extensively validated through studies of unsteady transonic flow over an F-5 wing, undergoing combined bending and torsional motion. These investigations are documented in extensive detail in the dissertation, 'Computational Strategies for Three-Dimensional Flow Simulations on Distributed Computing Systems', enclosed as an appendix.

  1. Guidelines for developing vectorizable computer programs

    NASA Technical Reports Server (NTRS)

    Miner, E. W.

    1982-01-01

    Some fundamental principles for developing computer programs which are compatible with array-oriented computers are presented. The emphasis is on basic techniques for structuring computer codes which are applicable in FORTRAN and do not require a special programming language or exact a significant penalty on a scalar computer. Researchers who are using numerical techniques to solve problems in engineering can apply these basic principles and thus develop transportable computer programs (in FORTRAN) which contain much vectorizable code. The vector architecture of the ASC is discussed so that the requirements of array processing can be better appreciated. The "vectorization" of a finite-difference viscous shock-layer code is used as an example to illustrate the benefits and some of the difficulties involved. Increases in computing speed with vectorization are illustrated with results from the viscous shock-layer code and from a finite-element shock tube code. The applicability of these principles was substantiated through running programs on other computers with array-associated computing characteristics, such as the Hewlett-Packard (H-P) 1000-F.

  2. User Manual for the NASA Glenn Ice Accretion Code LEWICE: Version 2.0

    NASA Technical Reports Server (NTRS)

    Wright, William B.

    1999-01-01

    A research project is underway at NASA Glenn to produce a computer code which can accurately predict ice growth under a wide range of meteorological conditions for any aircraft surface. This report will present a description of the code inputs and outputs from version 2.0 of this code, which is called LEWICE. This version differs from previous releases due to its robustness and its ability to reproduce results accurately for different spacing and time step criteria across computing platform. It also differs in the extensive effort undertaken to compare the results against the database of ice shapes which have been generated in the NASA Glenn Icing Research Tunnel (IRT) 1. This report will only describe the features of the code related to the use of the program. The report will not describe the inner working of the code or the physical models used. This information is available in the form of several unpublished documents which will be collectively referred to as a Programmers Manual for LEWICE 2 in this report. These reports are intended as an update/replacement for all previous user manuals of LEWICE. In addition to describing the changes and improvements made for this version, information from previous manuals may be duplicated so that the user will not need to consult previous manuals to use this code.

  3. The Helicopter Antenna Radiation Prediction Code (HARP)

    NASA Technical Reports Server (NTRS)

    Klevenow, F. T.; Lynch, B. G.; Newman, E. H.; Rojas, R. G.; Scheick, J. T.; Shamansky, H. T.; Sze, K. Y.

    1990-01-01

    The first nine months effort in the development of a user oriented computer code, referred to as the HARP code, for analyzing the radiation from helicopter antennas is described. The HARP code uses modern computer graphics to aid in the description and display of the helicopter geometry. At low frequencies the helicopter is modeled by polygonal plates, and the method of moments is used to compute the desired patterns. At high frequencies the helicopter is modeled by a composite ellipsoid and flat plates, and computations are made using the geometrical theory of diffraction. The HARP code will provide a user friendly interface, employing modern computer graphics, to aid the user to describe the helicopter geometry, select the method of computation, construct the desired high or low frequency model, and display the results.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, J.E.; Roussin, R.W.; Gilpin, H.

    A version of the CRAC2 computer code applicable for use in analyses of consequences and risks of reactor accidents in case work for environmental statements has been implemented for use on the Nuclear Regulatory Commission Data General MV/8000 computer system. Input preparation is facilitated through the use of an interactive computer program which operates on an IBM personal computer. The resulting CRAC2 input deck is transmitted to the MV/8000 by using an error-free file transfer mechanism. To facilitate the use of CRAC2 at NRC, relevant background material on input requirements and model descriptions has been extracted from four reports -more » ''Calculations of Reactor Accident Consequences,'' Version 2, NUREG/CR-2326 (SAND81-1994) and ''CRAC2 Model Descriptions,'' NUREG/CR-2552 (SAND82-0342), ''CRAC Calculations for Accident Sections of Environmental Statements, '' NUREG/CR-2901 (SAND82-1693), and ''Sensitivity and Uncertainty Studies of the CRAC2 Computer Code,'' NUREG/CR-4038 (ORNL-6114). When this background information is combined with instructions on the input processor, this report provides a self-contained guide for preparing CRAC2 input data with a specific orientation toward applications on the MV/8000. 8 refs., 11 figs., 10 tabs.« less

  5. Multi-dimensional computer simulation of MHD combustor hydrodynamics

    NASA Astrophysics Data System (ADS)

    Berry, G. F.; Chang, S. L.; Lottes, S. A.; Rimkus, W. A.

    1991-04-01

    Argonne National Laboratory is investigating the nonreacting jet gas mixing patterns in an MHD second stage combustor by using a 2-D multiphase hydrodynamics computer program and a 3-D single phase hydrodynamics computer program. The computer simulations are intended to enhance the understanding of flow and mixing patterns in the combustor, which in turn may lead to improvement of the downstream MHD channel performance. A 2-D steady state computer model, based on mass and momentum conservation laws for multiple gas species, is used to simulate the hydrodynamics of the combustor in which a jet of oxidizer is injected into an unconfined cross stream gas flow. A 3-D code is used to examine the effects of the side walls and the distributed jet flows on the non-reacting jet gas mixing patterns. The code solves the conservation equations of mass, momentum, and energy, and a transport equation of a turbulence parameter and allows permeable surfaces to be specified for any computational cell.

  6. Enhanced fault-tolerant quantum computing in d-level systems.

    PubMed

    Campbell, Earl T

    2014-12-05

    Error-correcting codes protect quantum information and form the basis of fault-tolerant quantum computing. Leading proposals for fault-tolerant quantum computation require codes with an exceedingly rare property, a transversal non-Clifford gate. Codes with the desired property are presented for d-level qudit systems with prime d. The codes use n=d-1 qudits and can detect up to ∼d/3 errors. We quantify the performance of these codes for one approach to quantum computation known as magic-state distillation. Unlike prior work, we find performance is always enhanced by increasing d.

  7. Convergence acceleration of the Proteus computer code with multigrid methods

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.; Ibraheem, S. O.

    1992-01-01

    Presented here is the first part of a study to implement convergence acceleration techniques based on the multigrid concept in the Proteus computer code. A review is given of previous studies on the implementation of multigrid methods in computer codes for compressible flow analysis. Also presented is a detailed stability analysis of upwind and central-difference based numerical schemes for solving the Euler and Navier-Stokes equations. Results are given of a convergence study of the Proteus code on computational grids of different sizes. The results presented here form the foundation for the implementation of multigrid methods in the Proteus code.

  8. Nonuniform code concatenation for universal fault-tolerant quantum computing

    NASA Astrophysics Data System (ADS)

    Nikahd, Eesa; Sedighi, Mehdi; Saheb Zamani, Morteza

    2017-09-01

    Using transversal gates is a straightforward and efficient technique for fault-tolerant quantum computing. Since transversal gates alone cannot be computationally universal, they must be combined with other approaches such as magic state distillation, code switching, or code concatenation to achieve universality. In this paper we propose an alternative approach for universal fault-tolerant quantum computing, mainly based on the code concatenation approach proposed in [T. Jochym-O'Connor and R. Laflamme, Phys. Rev. Lett. 112, 010505 (2014), 10.1103/PhysRevLett.112.010505], but in a nonuniform fashion. The proposed approach is described based on nonuniform concatenation of the 7-qubit Steane code with the 15-qubit Reed-Muller code, as well as the 5-qubit code with the 15-qubit Reed-Muller code, which lead to two 49-qubit and 47-qubit codes, respectively. These codes can correct any arbitrary single physical error with the ability to perform a universal set of fault-tolerant gates, without using magic state distillation.

  9. A high performance scientific cloud computing environment for materials simulations

    NASA Astrophysics Data System (ADS)

    Jorissen, K.; Vila, F. D.; Rehr, J. J.

    2012-09-01

    We describe the development of a scientific cloud computing (SCC) platform that offers high performance computation capability. The platform consists of a scientific virtual machine prototype containing a UNIX operating system and several materials science codes, together with essential interface tools (an SCC toolset) that offers functionality comparable to local compute clusters. In particular, our SCC toolset provides automatic creation of virtual clusters for parallel computing, including tools for execution and monitoring performance, as well as efficient I/O utilities that enable seamless connections to and from the cloud. Our SCC platform is optimized for the Amazon Elastic Compute Cloud (EC2). We present benchmarks for prototypical scientific applications and demonstrate performance comparable to local compute clusters. To facilitate code execution and provide user-friendly access, we have also integrated cloud computing capability in a JAVA-based GUI. Our SCC platform may be an alternative to traditional HPC resources for materials science or quantum chemistry applications.

  10. Heat transfer, thermal stress analysis and the dynamic behaviour of high power RF structures. [MARC and SUPERFISH codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKeown, J.; Labrie, J.P.

    1983-08-01

    A general purpose finite element computer code called MARC is used to calculate the temperature distribution and dimensional changes in linear accelerator rf structures. Both steady state and transient behaviour are examined with the computer model. Combining results from MARC with the cavity evaluation computer code SUPERFISH, the static and dynamic behaviour of a structure under power is investigated. Structure cooling is studied to minimize loss in shunt impedance and frequency shifts during high power operation. Results are compared with an experimental test carried out on a cw 805 MHz on-axis coupled structure at an energy gradient of 1.8 MeV/m.more » The model has also been used to compare the performance of on-axis and coaxial structures and has guided the mechanical design of structures suitable for average gradients in excess of 2.0 MeV/m at 2.45 GHz.« less

  11. Improvements to Busquet's Non LTE algorithm in NRL's Hydro code

    NASA Astrophysics Data System (ADS)

    Klapisch, M.; Colombant, D.

    1996-11-01

    Implementation of the Non LTE model RADIOM (M. Busquet, Phys. Fluids B, 5, 4191 (1993)) in NRL's RAD2D Hydro code in conservative form was reported previously(M. Klapisch et al., Bull. Am. Phys. Soc., 40, 1806 (1995)).While the results were satisfactory, the algorithm was slow and not always converging. We describe here modifications that address the latter two shortcomings. This method is quicker and more stable than the original. It also gives information about the validity of the fitting. It turns out that the number and distribution of groups in the multigroup diffusion opacity tables - a basis for the computation of radiation effects in the ionization balance in RADIOM- has a large influence on the robustness of the algorithm. These modifications give insight about the algorithm, and allow to check that the obtained average charge state is the true average. In addition, code optimization resulted in greatly reduced computing time: The ratio of Non LTE to LTE computing times being now between 1.5 and 2.

  12. Evolvix BEST Names for semantic reproducibility across code2brain interfaces.

    PubMed

    Loewe, Laurence; Scheuer, Katherine S; Keel, Seth A; Vyas, Vaibhav; Liblit, Ben; Hanlon, Bret; Ferris, Michael C; Yin, John; Dutra, Inês; Pietsch, Anthony; Javid, Christine G; Moog, Cecilia L; Meyer, Jocelyn; Dresel, Jerdon; McLoone, Brian; Loberger, Sonya; Movaghar, Arezoo; Gilchrist-Scott, Morgaine; Sabri, Yazeed; Sescleifer, Dave; Pereda-Zorrilla, Ivan; Zietlow, Andrew; Smith, Rodrigo; Pietenpol, Samantha; Goldfinger, Jacob; Atzen, Sarah L; Freiberg, Erika; Waters, Noah P; Nusbaum, Claire; Nolan, Erik; Hotz, Alyssa; Kliman, Richard M; Mentewab, Ayalew; Fregien, Nathan; Loewe, Martha

    2017-01-01

    Names in programming are vital for understanding the meaning of code and big data. We define code2brain (C2B) interfaces as maps in compilers and brains between meaning and naming syntax, which help to understand executable code. While working toward an Evolvix syntax for general-purpose programming that makes accurate modeling easy for biologists, we observed how names affect C2B quality. To protect learning and coding investments, C2B interfaces require long-term backward compatibility and semantic reproducibility (accurate reproduction of computational meaning from coder-brains to reader-brains by code alone). Semantic reproducibility is often assumed until confusing synonyms degrade modeling in biology to deciphering exercises. We highlight empirical naming priorities from diverse individuals and roles of names in different modes of computing to show how naming easily becomes impossibly difficult. We present the Evolvix BEST (Brief, Explicit, Summarizing, Technical) Names concept for reducing naming priority conflicts, test it on a real challenge by naming subfolders for the Project Organization Stabilizing Tool system, and provide naming questionnaires designed to facilitate C2B debugging by improving names used as keywords in a stabilizing programming language. Our experiences inspired us to develop Evolvix using a flipped programming language design approach with some unexpected features and BEST Names at its core. © 2016 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

  13. Performance analysis of a cascaded coding scheme with interleaved outer code

    NASA Technical Reports Server (NTRS)

    Lin, S.

    1986-01-01

    A cascaded coding scheme for a random error channel with a bit-error rate is analyzed. In this scheme, the inner code C sub 1 is an (n sub 1, m sub 1l) binary linear block code which is designed for simultaneous error correction and detection. The outer code C sub 2 is a linear block code with symbols from the Galois field GF (2 sup l) which is designed for correcting both symbol errors and erasures, and is interleaved with a degree m sub 1. A procedure for computing the probability of a correct decoding is presented and an upper bound on the probability of a decoding error is derived. The bound provides much better results than the previous bound for a cascaded coding scheme with an interleaved outer code. Example schemes with inner codes ranging from high rates to very low rates are evaluated. Several schemes provide extremely high reliability even for very high bit-error rates say 10 to the -1 to 10 to the -2 power.

  14. A Comparison of Automatic Parallelization Tools/Compilers on the SGI Origin 2000 Using the NAS Benchmarks

    NASA Technical Reports Server (NTRS)

    Saini, Subhash; Frumkin, Michael; Hribar, Michelle; Jin, Hao-Qiang; Waheed, Abdul; Yan, Jerry

    1998-01-01

    Porting applications to new high performance parallel and distributed computing platforms is a challenging task. Since writing parallel code by hand is extremely time consuming and costly, porting codes would ideally be automated by using some parallelization tools and compilers. In this paper, we compare the performance of the hand written NAB Parallel Benchmarks against three parallel versions generated with the help of tools and compilers: 1) CAPTools: an interactive computer aided parallelization too] that generates message passing code, 2) the Portland Group's HPF compiler and 3) using compiler directives with the native FORTAN77 compiler on the SGI Origin2000.

  15. Porting a Hall MHD Code to a Graphic Processing Unit

    NASA Technical Reports Server (NTRS)

    Dorelli, John C.

    2011-01-01

    We present our experience porting a Hall MHD code to a Graphics Processing Unit (GPU). The code is a 2nd order accurate MUSCL-Hancock scheme which makes use of an HLL Riemann solver to compute numerical fluxes and second-order finite differences to compute the Hall contribution to the electric field. The divergence of the magnetic field is controlled with Dedner?s hyperbolic divergence cleaning method. Preliminary benchmark tests indicate a speedup (relative to a single Nehalem core) of 58x for a double precision calculation. We discuss scaling issues which arise when distributing work across multiple GPUs in a CPU-GPU cluster.

  16. STGSTK: A computer code for predicting multistage axial flow compressor performance by a meanline stage stacking method

    NASA Technical Reports Server (NTRS)

    Steinke, R. J.

    1982-01-01

    A FORTRAN computer code is presented for off-design performance prediction of axial-flow compressors. Stage and compressor performance is obtained by a stage-stacking method that uses representative velocity diagrams at rotor inlet and outlet meanline radii. The code has options for: (1) direct user input or calculation of nondimensional stage characteristics; (2) adjustment of stage characteristics for off-design speed and blade setting angle; (3) adjustment of rotor deviation angle for off-design conditions; and (4) SI or U.S. customary units. Correlations from experimental data are used to model real flow conditions. Calculations are compared with experimental data.

  17. A microkernel design for component-based parallel numerical software systems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balay, S.

    1999-01-13

    What is the minimal software infrastructure and what type of conventions are needed to simplify development of sophisticated parallel numerical application codes using a variety of software components that are not necessarily available as source code? We propose an opaque object-based model where the objects are dynamically loadable from the file system or network. The microkernel required to manage such a system needs to include, at most: (1) a few basic services, namely--a mechanism for loading objects at run time via dynamic link libraries, and consistent schemes for error handling and memory management; and (2) selected methods that all objectsmore » share, to deal with object life (destruction, reference counting, relationships), and object observation (viewing, profiling, tracing). We are experimenting with these ideas in the context of extensible numerical software within the ALICE (Advanced Large-scale Integrated Computational Environment) project, where we are building the microkernel to manage the interoperability among various tools for large-scale scientific simulations. This paper presents some preliminary observations and conclusions from our work with microkernel design.« less

  18. Higher order turbulence closure models

    NASA Technical Reports Server (NTRS)

    Amano, Ryoichi S.; Chai, John C.; Chen, Jau-Der

    1988-01-01

    Theoretical models are developed and numerical studies conducted on various types of flows including both elliptic and parabolic. The purpose of this study is to find better higher order closure models for the computations of complex flows. This report summarizes three new achievements: (1) completion of the Reynolds-stress closure by developing a new pressure-strain correlation; (2) development of a parabolic code to compute jets and wakes; and, (3) application to a flow through a 180 deg turnaround duct by adopting a boundary fitted coordinate system. In the above mentioned models near-wall models are developed for pressure-strain correlation and third-moment, and incorporated into the transport equations. This addition improved the results considerably and is recommended for future computations. A new parabolic code to solve shear flows without coordinate tranformations is developed and incorporated in this study. This code uses the structure of the finite volume method to solve the governing equations implicitly. The code was validated with the experimental results available in the literature.

  19. Effect of Light Water Reactor Water Environments on the Fatigue Life of Reactor Materials

    DOE PAGES

    Chopra, O. K.; Stevens, G. L.; Tregoning, R.; ...

    2017-10-06

    The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (Code) provides rules for the design of Class 1 components of nuclear power plants. Figures I-9.1 through I-9.6 of Appendix I to Section III of the Code specify fatigue design curves for applicable structural materials. However, the Code design curves do not explicitly address the effects of light water reactor (LWR) water environments. Existing fatigue strain-vs.-life (ε-N) laboratory data illustrate potentially significant effects of LWR water environments on the fatigue resistance of pressure vessel and piping steels. Extensive studies have been conducted at Argonne National Laboratory and elsewheremore » since 1990 to investigate the effects of LWR environments on the fatigue life of piping and pressure vessel steels. This article summarizes the results of these studies. Existing fatigue ε-N data were evaluated to identify the various material, environmental, and loading conditions that influence fatigue crack initiation; a methodology for estimating fatigue lives as a function of these parameters was developed. The effects were incorporated into the ASME Code Section III fatigue evaluations in terms of an environmental correction factor, F en, which is defined as the ratio of fatigue life in air at room temperature to the fatigue life in the LWR water environment at reactor operating temperatures. Available fatigue data were used to develop fatigue design curves for carbon and low-alloy steels, austenitic stainless steels, and nickel-chromium-iron (NiCr-Fe) alloys and their weld metals in air at room temperature. A review of the Code Section III fatigue adjustment factors of 2 on strain and 20 on life is also presented and the possible conservatism inherent in the choice of these adjustment factors is evaluated. A brief description of potential effects of neutron irradiation on fatigue crack initiation for these structural materials is also presented.« less

  20. Effect of Light Water Reactor Water Environments on the Fatigue Life of Reactor Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chopra, O. K.; Stevens, G. L.; Tregoning, R.

    The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (Code) provides rules for the design of Class 1 components of nuclear power plants. Figures I-9.1 through I-9.6 of Appendix I to Section III of the Code specify fatigue design curves for applicable structural materials. However, the Code design curves do not explicitly address the effects of light water reactor (LWR) water environments. Existing fatigue strain-vs.-life (ε-N) laboratory data illustrate potentially significant effects of LWR water environments on the fatigue resistance of pressure vessel and piping steels. Extensive studies have been conducted at Argonne National Laboratory and elsewheremore » since 1990 to investigate the effects of LWR environments on the fatigue life of piping and pressure vessel steels. This article summarizes the results of these studies. Existing fatigue ε-N data were evaluated to identify the various material, environmental, and loading conditions that influence fatigue crack initiation; a methodology for estimating fatigue lives as a function of these parameters was developed. The effects were incorporated into the ASME Code Section III fatigue evaluations in terms of an environmental correction factor, F en, which is defined as the ratio of fatigue life in air at room temperature to the fatigue life in the LWR water environment at reactor operating temperatures. Available fatigue data were used to develop fatigue design curves for carbon and low-alloy steels, austenitic stainless steels, and nickel-chromium-iron (NiCr-Fe) alloys and their weld metals in air at room temperature. A review of the Code Section III fatigue adjustment factors of 2 on strain and 20 on life is also presented and the possible conservatism inherent in the choice of these adjustment factors is evaluated. A brief description of potential effects of neutron irradiation on fatigue crack initiation for these structural materials is also presented.« less

  1. VORCOR: A computer program for calculating characteristics of wings with edge vortex separation by using a vortex-filament and-core model

    NASA Technical Reports Server (NTRS)

    Pao, J. L.; Mehrotra, S. C.; Lan, C. E.

    1982-01-01

    A computer code base on an improved vortex filament/vortex core method for predicting aerodynamic characteristics of slender wings with edge vortex separations is developed. The code is applicable to camber wings, straked wings or wings with leading edge vortex flaps at subsonic speeds. The prediction of lifting pressure distribution and the computer time are improved by using a pair of concentrated vortex cores above the wing surface. The main features of this computer program are: (1) arbitrary camber shape may be defined and an option for exactly defining leading edge flap geometry is also provided; (2) the side edge vortex system is incorporated.

  2. Green's function methods in heavy ion shielding

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Costen, Robert C.; Shinn, Judy L.; Badavi, Francis F.

    1993-01-01

    An analytic solution to the heavy ion transport in terms of Green's function is used to generate a highly efficient computer code for space applications. The efficiency of the computer code is accomplished by a nonperturbative technique extending Green's function over the solution domain. The computer code can also be applied to accelerator boundary conditions to allow code validation in laboratory experiments.

  3. Validation of High-Speed Turbulent Boundary Layer and Shock-Boundary Layer Interaction Computations with the OVERFLOW Code

    NASA Technical Reports Server (NTRS)

    Oliver, A. B.; Lillard, R. P.; Blaisdell, G. A.; Lyrintizis, A. S.

    2006-01-01

    The capability of the OVERFLOW code to accurately compute high-speed turbulent boundary layers and turbulent shock-boundary layer interactions is being evaluated. Configurations being investigated include a Mach 2.87 flat plate to compare experimental velocity profiles and boundary layer growth, a Mach 6 flat plate to compare experimental surface heat transfer,a direct numerical simulation (DNS) at Mach 2.25 for turbulent quantities, and several Mach 3 compression ramps to compare computations of shock-boundary layer interactions to experimental laser doppler velocimetry (LDV) data and hot-wire data. The present paper describes outlines the study and presents preliminary results for two of the flat plate cases and two small-angle compression corner test cases.

  4. A user`s guide to LUGSAN II. A computer program to calculate and archive lug and sway brace loads for aircraft-carried stores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn, W.N.

    1998-03-01

    LUG and Sway brace ANalysis (LUGSAN) II is an analysis and database computer program that is designed to calculate store lug and sway brace loads for aircraft captive carriage. LUGSAN II combines the rigid body dynamics code, SWAY85, with a Macintosh Hypercard database to function both as an analysis and archival system. This report describes the LUGSAN II application program, which operates on the Macintosh System (Hypercard 2.2 or later) and includes function descriptions, layout examples, and sample sessions. Although this report is primarily a user`s manual, a brief overview of the LUGSAN II computer code is included with suggestedmore » resources for programmers.« less

  5. Validation of Framework Code Approach to a Life Prediction System for Fiber Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Gravett, Phillip

    1997-01-01

    The grant was conducted by the MMC Life Prediction Cooperative, an industry/government collaborative team, Ohio Aerospace Institute (OAI) acted as the prime contractor on behalf of the Cooperative for this grant effort. See Figure I for the organization and responsibilities of team members. The technical effort was conducted during the period August 7, 1995 to June 30, 1996 in cooperation with Erwin Zaretsky, the LERC Program Monitor. Phil Gravett of Pratt & Whitney was the principal technical investigator. Table I documents all meeting-related coordination memos during this period. The effort under this grant was closely coordinated with an existing USAF sponsored program focused on putting into practice a life prediction system for turbine engine components made of metal matrix composites (MMC). The overall architecture of the NMC life prediction system was defined in the USAF sponsored program (prior to this grant). The efforts of this grant were focussed on implementing and tailoring of the life prediction system, the framework code within it and the damage modules within it to meet the specific requirements of the Cooperative. T'he tailoring of the life prediction system provides the basis for pervasive and continued use of this capability by the industry/government cooperative. The outputs of this grant are: 1. Definition of the framework code to analysis modules interfaces, 2. Definition of the interface between the materials database and the finite element model, and 3. Definition of the integration of the framework code into an FEM design tool.

  6. Game-Coding Workshops in New Zealand Public Libraries: Evaluation of a Pilot Project

    ERIC Educational Resources Information Center

    Bolstad, Rachel

    2016-01-01

    This report evaluates a game coding workshop offered to young people and adults in seven public libraries round New Zealand. Participants were taken step by step through the process of creating their own simple 2D videogame, learning the basics of coding, computational thinking, and digital game design. The workshops were free and drew 426 people…

  7. Overview of aerothermodynamic loads definition study

    NASA Technical Reports Server (NTRS)

    Gaugler, Raymond E.

    1991-01-01

    The objective of the Aerothermodynamic Loads Definition Study is to develop methods of accurately predicting the operating environment in advanced Earth-to-Orbit (ETO) propulsion systems, such as the Space Shuttle Main Engine (SSME) powerhead. Development of time averaged and time dependent three dimensional viscous computer codes as well as experimental verification and engine diagnostic testing are considered to be essential in achieving that objective. Time-averaged, nonsteady, and transient operating loads must all be well defined in order to accurately predict powerhead life. Described here is work in unsteady heat flow analysis, improved modeling of preburner flow, turbulence modeling for turbomachinery, computation of three dimensional flow with heat transfer, and unsteady viscous multi-blade row turbine analysis.

  8. Automated apparatus and method of generating native code for a stitching machine

    NASA Technical Reports Server (NTRS)

    Miller, Jeffrey L. (Inventor)

    2000-01-01

    A computer system automatically generates CNC code for a stitching machine. The computer determines the locations of a present stitching point and a next stitching point. If a constraint is not found between the present stitching point and the next stitching point, the computer generates code for making a stitch at the next stitching point. If a constraint is found, the computer generates code for changing a condition (e.g., direction) of the stitching machine's stitching head.

  9. Searching for Organics, Fossils, and Biology on Mars

    NASA Technical Reports Server (NTRS)

    McKay, Christopher P.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    One of the goals of Astrobiology is to understand life on a fundamental level. All life on Earth is constructed from the same basic biochemical building blocks consisting of 20 amino acids with left handed symmetry, five nucleotides, a few sugars of right handed symmetry and some lipids. Using the metaphor of computers this is equivalent to saying that all life shares the same hardware. Beyond hardware similarity, it is now known that all life has fundamentally the same software. The genetic code of life is common to all organisms. Some have argued that the "hammer of evolution is heavy" and life anywhere is likely to be composed of identical biochemical and genetic patterns. However, in a system as complex as biochemistry it is likely that there are numerous local optima and the details of the optimum found by evolutionary selection on another world would likely depend on the initial conditions and random developments in the early biological history on that world. To address these fundamental questions in Astrobiology we need a second example of life: a second genesis.

  10. Comparison of Models for Ball Bearing Dynamic Capacity and Life

    NASA Technical Reports Server (NTRS)

    Gupta, Pradeep K.; Oswald, Fred B.; Zaretsky, Erwin V.

    2015-01-01

    Generalized formulations for dynamic capacity and life of ball bearings, based on the models introduced by Lundberg and Palmgren and Zaretsky, have been developed and implemented in the bearing dynamics computer code, ADORE. Unlike the original Lundberg-Palmgren dynamic capacity equation, where the elastic properties are part of the life constant, the generalized formulations permit variation of elastic properties of the interacting materials. The newly updated Lundberg-Palmgren model allows prediction of life as a function of elastic properties. For elastic properties similar to those of AISI 52100 bearing steel, both the original and updated Lundberg-Palmgren models provide identical results. A comparison between the Lundberg-Palmgren and the Zaretsky models shows that at relatively light loads the Zaretsky model predicts a much higher life than the Lundberg-Palmgren model. As the load increases, the Zaretsky model provides a much faster drop off in life. This is because the Zaretsky model is much more sensitive to load than the Lundberg-Palmgren model. The generalized implementation where all model parameters can be varied provides an effective tool for future model validation and enhancement in bearing life prediction capabilities.

  11. Development of a Model and Computer Code to Describe Solar Grade Silicon Production Processes

    NASA Technical Reports Server (NTRS)

    Srivastava, R.; Gould, R. K.

    1979-01-01

    Mathematical models and computer codes based on these models, which allow prediction of the product distribution in chemical reactors for converting gaseous silicon compounds to condensed-phase silicon were developed. The following tasks were accomplished: (1) formulation of a model for silicon vapor separation/collection from the developing turbulent flow stream within reactors of the Westinghouse (2) modification of an available general parabolic code to achieve solutions to the governing partial differential equations (boundary layer type) which describe migration of the vapor to the reactor walls, (3) a parametric study using the boundary layer code to optimize the performance characteristics of the Westinghouse reactor, (4) calculations relating to the collection efficiency of the new AeroChem reactor, and (5) final testing of the modified LAPP code for use as a method of predicting Si(1) droplet sizes in these reactors.

  12. Development of structured ICD-10 and its application to computer-assisted ICD coding.

    PubMed

    Imai, Takeshi; Kajino, Masayuki; Sato, Megumi; Ohe, Kazuhiko

    2010-01-01

    This paper presents: (1) a framework of formal representation of ICD10, which functions as a bridge between ontological information and natural language expressions; and (2) a methodology to use formally described ICD10 for computer-assisted ICD coding. First, we analyzed and structurized the meanings of categories in 15 chapters of ICD10. Then we expanded the structured ICD10 (S-ICD10) by adding subordinate concepts and labels derived from Japanese Standard Disease Names. The information model to describe formal representation was refined repeatedly. The resultant model includes 74 types of semantic links. We also developed an ICD coding module based on S-ICD10 and a 'Coding Principle,' which achieved high accuracy (>70%) for four chapters. These results not only demonstrate the basic feasibility of our coding framework but might also inform the development of the information model for formal description framework in the ICD11 revision.

  13. Cloud Fingerprinting: Using Clock Skews To Determine Co Location Of Virtual Machines

    DTIC Science & Technology

    2016-09-01

    DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Cloud computing has quickly revolutionized computing practices of organizations, to include the Department of... Cloud computing has quickly revolutionized computing practices of organizations, to in- clude the Department of Defense. However, security concerns...vi Table of Contents 1 Introduction 1 1.1 Proliferation of Cloud Computing . . . . . . . . . . . . . . . . . . 1 1.2 Problem Statement

  14. Advanced Subsonic Technology (AST) Area of Interest (AOI) 6: Develop and Validate Aeroelastic Codes for Turbomachinery

    NASA Technical Reports Server (NTRS)

    Gardner, Kevin D.; Liu, Jong-Shang; Murthy, Durbha V.; Kruse, Marlin J.; James, Darrell

    1999-01-01

    AlliedSignal Engines, in cooperation with NASA GRC (National Aeronautics and Space Administration Glenn Research Center), completed an evaluation of recently-developed aeroelastic computer codes using test cases from the AlliedSignal Engines fan blisk and turbine databases. Test data included strain gage, performance, and steady-state pressure information obtained for conditions where synchronous or flutter vibratory conditions were found to occur. Aeroelastic codes evaluated included quasi 3-D UNSFLO (MIT Developed/AE Modified, Quasi 3-D Aeroelastic Computer Code), 2-D FREPS (NASA-Developed Forced Response Prediction System Aeroelastic Computer Code), and 3-D TURBO-AE (NASA/Mississippi State University Developed 3-D Aeroelastic Computer Code). Unsteady pressure predictions for the turbine test case were used to evaluate the forced response prediction capabilities of each of the three aeroelastic codes. Additionally, one of the fan flutter cases was evaluated using TURBO-AE. The UNSFLO and FREPS evaluation predictions showed good agreement with the experimental test data trends, but quantitative improvements are needed. UNSFLO over-predicted turbine blade response reductions, while FREPS under-predicted them. The inviscid TURBO-AE turbine analysis predicted no discernible blade response reduction, indicating the necessity of including viscous effects for this test case. For the TURBO-AE fan blisk test case, significant effort was expended getting the viscous version of the code to give converged steady flow solutions for the transonic flow conditions. Once converged, the steady solutions provided an excellent match with test data and the calibrated DAWES (AlliedSignal 3-D Viscous Steady Flow CFD Solver). However, efforts expended establishing quality steady-state solutions prevented exercising the unsteady portion of the TURBO-AE code during the present program. AlliedSignal recommends that unsteady pressure measurement data be obtained for both test cases examined for use in aeroelastic code validation.

  15. Probabilistic Structural Analysis Methods for select space propulsion system components (PSAM). Volume 2: Literature surveys of critical Space Shuttle main engine components

    NASA Technical Reports Server (NTRS)

    Rajagopal, K. R.

    1992-01-01

    The technical effort and computer code development is summarized. Several formulations for Probabilistic Finite Element Analysis (PFEA) are described with emphasis on the selected formulation. The strategies being implemented in the first-version computer code to perform linear, elastic PFEA is described. The results of a series of select Space Shuttle Main Engine (SSME) component surveys are presented. These results identify the critical components and provide the information necessary for probabilistic structural analysis. Volume 2 is a summary of critical SSME components.

  16. Multiprocessing on supercomputers for computational aerodynamics

    NASA Technical Reports Server (NTRS)

    Yarrow, Maurice; Mehta, Unmeel B.

    1990-01-01

    Very little use is made of multiple processors available on current supercomputers (computers with a theoretical peak performance capability equal to 100 MFLOPs or more) in computational aerodynamics to significantly improve turnaround time. The productivity of a computer user is directly related to this turnaround time. In a time-sharing environment, the improvement in this speed is achieved when multiple processors are used efficiently to execute an algorithm. The concept of multiple instructions and multiple data (MIMD) through multi-tasking is applied via a strategy which requires relatively minor modifications to an existing code for a single processor. Essentially, this approach maps the available memory to multiple processors, exploiting the C-FORTRAN-Unix interface. The existing single processor code is mapped without the need for developing a new algorithm. The procedure for building a code utilizing this approach is automated with the Unix stream editor. As a demonstration of this approach, a Multiple Processor Multiple Grid (MPMG) code is developed. It is capable of using nine processors, and can be easily extended to a larger number of processors. This code solves the three-dimensional, Reynolds averaged, thin-layer and slender-layer Navier-Stokes equations with an implicit, approximately factored and diagonalized method. The solver is applied to generic oblique-wing aircraft problem on a four processor Cray-2 computer. A tricubic interpolation scheme is developed to increase the accuracy of coupling of overlapped grids. For the oblique-wing aircraft problem, a speedup of two in elapsed (turnaround) time is observed in a saturated time-sharing environment.

  17. Structural analysis of cylindrical thrust chambers, volume 3

    NASA Technical Reports Server (NTRS)

    Pearson, M. L.

    1981-01-01

    A system of three computer programs is described for use in conjunction with the BOPAGE finite element program. The programs are demonstrated by analyzing cumulative plastic deformation in a regeneratively cooled rocket thrust chamber. The codes provide the capability to predict geometric and material nonlinear behavior of cyclically loaded structures without performing a cycle-by-cycle analysis over the life of the structure. The program set consists of a BOPACE restart tape reader routine, and extrapolation program and a plot package.

  18. Numerical, analytical, experimental study of fluid dynamic forces in seals

    NASA Technical Reports Server (NTRS)

    Shapiro, William; Artiles, Antonio; Aggarwal, Bharat; Walowit, Jed; Athavale, Mahesh M.; Preskwas, Andrzej J.

    1992-01-01

    NASA/Lewis Research Center is sponsoring a program for providing computer codes for analyzing and designing turbomachinery seals for future aerospace and engine systems. The program is made up of three principal components: (1) the development of advanced three dimensional (3-D) computational fluid dynamics codes, (2) the production of simpler two dimensional (2-D) industrial codes, and (3) the development of a knowledge based system (KBS) that contains an expert system to assist in seal selection and design. The first task has been to concentrate on cylindrical geometries with straight, tapered, and stepped bores. Improvements have been made by adoption of a colocated grid formulation, incorporation of higher order, time accurate schemes for transient analysis and high order discretization schemes for spatial derivatives. This report describes the mathematical formulations and presents a variety of 2-D results, including labyrinth and brush seal flows. Extensions of 3-D are presently in progress.

  19. VizieR Online Data Catalog: Habitable zone code (Valle+, 2014)

    NASA Astrophysics Data System (ADS)

    Valle, G.; Dell'Omodarme, M.; Prada Moroni, P. G.; Degl'Innocenti, S.

    2014-06-01

    A C computation code that provide in output the distance dm (i for which the duration of habitability is longest, the corresponding duration tm (in Gyr), the width W (in AU) of the zone for which the habitability lasts tm/2, the inner (Ri) and outer (Ro) boundaries of the 4Gyr continuously habitable zone. The code read the input file HZ-input.dat, containing in each row the mass of the host star (range: 0.70-1.10M⊙), its metallicity (either Z (range: 0.005-0.004) or [Fe/H]), the helium-to-metal enrichment ratio (range: 1-3, standard value = 2), the equilibrium temperature for habitable zone outer boundary computation (range: 169-203K) and the planet Bond Albedo (range: 0.0-1.0, Earth = 0.3). The output is printed on-screen. Compilation: just use your favorite C compiler: gcc hz.c -lm -o HZ (2 data files).

  20. 10 CFR 2.1003 - Availability of material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... months in advance of submitting its license application for a geologic repository, the NRC shall make... of privilege in § 2.1006, graphic-oriented documentary material that includes raw data, computer runs, computer programs and codes, field notes, laboratory notes, maps, diagrams and photographs, which have been...

  1. 10 CFR 2.1003 - Availability of material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... months in advance of submitting its license application for a geologic repository, the NRC shall make... of privilege in § 2.1006, graphic-oriented documentary material that includes raw data, computer runs, computer programs and codes, field notes, laboratory notes, maps, diagrams and photographs, which have been...

  2. The Underrepresentation of Women in Computing Fields: A Synthesis of Literature Using a Life Course Perspective

    ERIC Educational Resources Information Center

    Main, Joyce B.; Schimpf, Corey

    2017-01-01

    Using a life course perspective, this literature review synthesizes research on women's underrepresentation in computing fields across four life stages: 1) pre-high school; 2) high school; 3) college major choice and persistence; and 4) post-baccalaureate employment. Issues associated with access to, and use of, computing resources at the pre-high…

  3. Spatial transform coding of color images.

    NASA Technical Reports Server (NTRS)

    Pratt, W. K.

    1971-01-01

    The application of the transform-coding concept to the coding of color images represented by three primary color planes of data is discussed. The principles of spatial transform coding are reviewed and the merits of various methods of color-image representation are examined. A performance analysis is presented for the color-image transform-coding system. Results of a computer simulation of the coding system are also given. It is shown that, by transform coding, the chrominance content of a color image can be coded with an average of 1.0 bits per element or less without serious degradation. If luminance coding is also employed, the average rate reduces to about 2.0 bits per element or less.

  4. Reactivity effects in VVER-1000 of the third unit of the kalinin nuclear power plant at physical start-up. Computations in ShIPR intellectual code system with library of two-group cross sections generated by UNK code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zizin, M. N.; Zimin, V. G.; Zizina, S. N., E-mail: zizin@adis.vver.kiae.ru

    2010-12-15

    The ShIPR intellectual code system for mathematical simulation of nuclear reactors includes a set of computing modules implementing the preparation of macro cross sections on the basis of the two-group library of neutron-physics cross sections obtained for the SKETCH-N nodal code. This library is created by using the UNK code for 3D diffusion computation of first VVER-1000 fuel loadings. Computation of neutron fields in the ShIPR system is performed using the DP3 code in the two-group diffusion approximation in 3D triangular geometry. The efficiency of all groups of control rods for the first fuel loading of the third unit ofmore » the Kalinin Nuclear Power Plant is computed. The temperature, barometric, and density effects of reactivity as well as the reactivity coefficient due to the concentration of boric acid in the reactor were computed additionally. Results of computations are compared with the experiment.« less

  5. Reactivity effects in VVER-1000 of the third unit of the kalinin nuclear power plant at physical start-up. Computations in ShIPR intellectual code system with library of two-group cross sections generated by UNK code

    NASA Astrophysics Data System (ADS)

    Zizin, M. N.; Zimin, V. G.; Zizina, S. N.; Kryakvin, L. V.; Pitilimov, V. A.; Tereshonok, V. A.

    2010-12-01

    The ShIPR intellectual code system for mathematical simulation of nuclear reactors includes a set of computing modules implementing the preparation of macro cross sections on the basis of the two-group library of neutron-physics cross sections obtained for the SKETCH-N nodal code. This library is created by using the UNK code for 3D diffusion computation of first VVER-1000 fuel loadings. Computation of neutron fields in the ShIPR system is performed using the DP3 code in the two-group diffusion approximation in 3D triangular geometry. The efficiency of all groups of control rods for the first fuel loading of the third unit of the Kalinin Nuclear Power Plant is computed. The temperature, barometric, and density effects of reactivity as well as the reactivity coefficient due to the concentration of boric acid in the reactor were computed additionally. Results of computations are compared with the experiment.

  6. Study on Fatigue Performance of Composite Bolted Joints with Bolt-Hole Delamination

    NASA Astrophysics Data System (ADS)

    Liu, M. J.; Yu, S.; Zhao, Q. Y.

    2018-03-01

    Fatigue performance of composite structure with imperfections is a challenging subject at present. Based on cohesive zone method and multi-continuum theory, delamination evolution response and fatigue life prediction of a 3D composite single-lap joint with a bolt-hole have been investigated through computer codes Abaqus and Fe-safe. Results from the comparison of a perfect composite bolted joint with another defect one indicates that a relatively small delamination damage around the bolt hole brings about significant degradation of local material performance. More notably, fatigue life of stress concentration region of composite bolted joints is highly sensitive to external loads, as an increase of 67% cyclic load amplitude leads to an decrease of 99.5% local fatigue life in this study. However, the numerical strategy for solving composite fatigue problems is meaningful to engineering works.

  7. Alien Mindscapes—A Perspective on the Search for Extraterrestrial Intelligence

    PubMed Central

    2016-01-01

    Abstract Advances in planetary and space sciences, astrobiology, and life and cognitive sciences, combined with developments in communication theory, bioneural computing, machine learning, and big data analysis, create new opportunities to explore the probabilistic nature of alien life. Brought together in a multidisciplinary approach, they have the potential to support an integrated and expanded Search for Extraterrestrial Intelligence (SETI1), a search that includes looking for life as we do not know it. This approach will augment the odds of detecting a signal by broadening our understanding of the evolutionary and systemic components in the search for extraterrestrial intelligence (ETI), provide more targets for radio and optical SETI, and identify new ways of decoding and coding messages using universal markers. Key Words: SETI—Astrobiology—Coevolution of Earth and life—Planetary habitability and biosignatures. Astrobiology 16, 661–676. PMID:27383691

  8. Automated collection and processing of environmental samples

    DOEpatents

    Troyer, Gary L.; McNeece, Susan G.; Brayton, Darryl D.; Panesar, Amardip K.

    1997-01-01

    For monitoring an environmental parameter such as the level of nuclear radiation, at distributed sites, bar coded sample collectors are deployed and their codes are read using a portable data entry unit that also records the time of deployment. The time and collector identity are cross referenced in memory in the portable unit. Similarly, when later recovering the collector for testing, the code is again read and the time of collection is stored as indexed to the sample collector, or to a further bar code, for example as provided on a container for the sample. The identity of the operator can also be encoded and stored. After deploying and/or recovering the sample collectors, the data is transmitted to a base processor. The samples are tested, preferably using a test unit coupled to the base processor, and again the time is recorded. The base processor computes the level of radiation at the site during exposure of the sample collector, using the detected radiation level of the sample, the delay between recovery and testing, the duration of exposure and the half life of the isotopes collected. In one embodiment, an identity code and a site code are optically read by an image grabber coupled to the portable data entry unit.

  9. An Object-Oriented Approach to Writing Computational Electromagnetics Codes

    NASA Technical Reports Server (NTRS)

    Zimmerman, Martin; Mallasch, Paul G.

    1996-01-01

    Presently, most computer software development in the Computational Electromagnetics (CEM) community employs the structured programming paradigm, particularly using the Fortran language. Other segments of the software community began switching to an Object-Oriented Programming (OOP) paradigm in recent years to help ease design and development of highly complex codes. This paper examines design of a time-domain numerical analysis CEM code using the OOP paradigm, comparing OOP code and structured programming code in terms of software maintenance, portability, flexibility, and speed.

  10. BEARCLAW: Boundary Embedded Adaptive Refinement Conservation LAW package

    NASA Astrophysics Data System (ADS)

    Mitran, Sorin

    2011-04-01

    The BEARCLAW package is a multidimensional, Eulerian AMR-capable computational code written in Fortran to solve hyperbolic systems for astrophysical applications. It is part of AstroBEAR, a hydrodynamic & magnetohydrodynamic code environment designed for a variety of astrophysical applications which allows simulations in 2, 2.5 (i.e., cylindrical), and 3 dimensions, in either cartesian or curvilinear coordinates.

  11. Particle Impact Erosion. Volume 4. User’s Manual Erosion Prediction Procedure for Rocket Nozzle Expansion Region

    DTIC Science & Technology

    1983-05-01

    empirical erosion model, with use of the debris-layer model optional. 1.1 INTERFACE WITH ISPP ISPP is a collection of computer codes designed to calculate...expansion with the ODK code, 4. A two-dimensional, two-phase nozzle expansion with the TD2P code, 5. A turbulent boundary layer solution along the...INPUT THERMODYNAMIC DATA FOR TEMPERATURESBELOW 300°K OIF NEEDED) NO A• 11 READ SSP NAMELIST (ODE. BAL. ODK . TD2P. TEL. NOZZLE GEOMETRY) PROfLM 2

  12. Particle-in-cell simulations with charge-conserving current deposition on graphic processing units

    NASA Astrophysics Data System (ADS)

    Ren, Chuang; Kong, Xianglong; Huang, Michael; Decyk, Viktor; Mori, Warren

    2011-10-01

    Recently using CUDA, we have developed an electromagnetic Particle-in-Cell (PIC) code with charge-conserving current deposition for Nvidia graphic processing units (GPU's) (Kong et al., Journal of Computational Physics 230, 1676 (2011). On a Tesla M2050 (Fermi) card, the GPU PIC code can achieve a one-particle-step process time of 1.2 - 3.2 ns in 2D and 2.3 - 7.2 ns in 3D, depending on plasma temperatures. In this talk we will discuss novel algorithms for GPU-PIC including charge-conserving current deposition scheme with few branching and parallel particle sorting. These algorithms have made efficient use of the GPU shared memory. We will also discuss how to replace the computation kernels of existing parallel CPU codes while keeping their parallel structures. This work was supported by U.S. Department of Energy under Grant Nos. DE-FG02-06ER54879 and DE-FC02-04ER54789 and by NSF under Grant Nos. PHY-0903797 and CCF-0747324.

  13. Inclusion of pressure and flow in a new 3D MHD equilibrium code

    NASA Astrophysics Data System (ADS)

    Raburn, Daniel; Fukuyama, Atsushi

    2012-10-01

    Flow and nonsymmetric effects can play a large role in plasma equilibria and energy confinement. A concept for such a 3D equilibrium code was developed and presented in 2011. The code is called the Kyoto ITerative Equilibrium Solver (KITES) [1], and the concept is based largely on the PIES code [2]. More recently, the work-in-progress KITES code was used to calculate force-free equilibria. Here, progress and results on the inclusion of pressure and flow in the code are presented. [4pt] [1] Daniel Raburn and Atsushi Fukuyama, Plasma and Fusion Research: Regular Articles, 7:240381 (2012).[0pt] [2] H. S. Greenside, A. H. Reiman, and A. Salas, J. Comput. Phys, 81(1):102-136 (1989).

  14. SU-D-BRD-03: A Gateway for GPU Computing in Cancer Radiotherapy Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, X; Folkerts, M; Shi, F

    Purpose: Graphics Processing Unit (GPU) has become increasingly important in radiotherapy. However, it is still difficult for general clinical researchers to access GPU codes developed by other researchers, and for developers to objectively benchmark their codes. Moreover, it is quite often to see repeated efforts spent on developing low-quality GPU codes. The goal of this project is to establish an infrastructure for testing GPU codes, cross comparing them, and facilitating code distributions in radiotherapy community. Methods: We developed a system called Gateway for GPU Computing in Cancer Radiotherapy Research (GCR2). A number of GPU codes developed by our group andmore » other developers can be accessed via a web interface. To use the services, researchers first upload their test data or use the standard data provided by our system. Then they can select the GPU device on which the code will be executed. Our system offers all mainstream GPU hardware for code benchmarking purpose. After the code running is complete, the system automatically summarizes and displays the computing results. We also released a SDK to allow the developers to build their own algorithm implementation and submit their binary codes to the system. The submitted code is then systematically benchmarked using a variety of GPU hardware and representative data provided by our system. The developers can also compare their codes with others and generate benchmarking reports. Results: It is found that the developed system is fully functioning. Through a user-friendly web interface, researchers are able to test various GPU codes. Developers also benefit from this platform by comprehensively benchmarking their codes on various GPU platforms and representative clinical data sets. Conclusion: We have developed an open platform allowing the clinical researchers and developers to access the GPUs and GPU codes. This development will facilitate the utilization of GPU in radiation therapy field.« less

  15. Comprehensive Benchmark Suite for Simulation of Particle Laden Flows Using the Discrete Element Method with Performance Profiles from the Multiphase Flow with Interface eXchanges (MFiX) Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Peiyuan; Brown, Timothy; Fullmer, William D.

    Five benchmark problems are developed and simulated with the computational fluid dynamics and discrete element model code MFiX. The benchmark problems span dilute and dense regimes, consider statistically homogeneous and inhomogeneous (both clusters and bubbles) particle concentrations and a range of particle and fluid dynamic computational loads. Several variations of the benchmark problems are also discussed to extend the computational phase space to cover granular (particles only), bidisperse and heat transfer cases. A weak scaling analysis is performed for each benchmark problem and, in most cases, the scalability of the code appears reasonable up to approx. 103 cores. Profiling ofmore » the benchmark problems indicate that the most substantial computational time is being spent on particle-particle force calculations, drag force calculations and interpolating between discrete particle and continuum fields. Hardware performance analysis was also carried out showing significant Level 2 cache miss ratios and a rather low degree of vectorization. These results are intended to serve as a baseline for future developments to the code as well as a preliminary indicator of where to best focus performance optimizations.« less

  16. Computation of transonic separated wing flows using an Euler/Navier-Stokes zonal approach

    NASA Technical Reports Server (NTRS)

    Kaynak, Uenver; Holst, Terry L.; Cantwell, Brian J.

    1986-01-01

    A computer program called Transonic Navier Stokes (TNS) has been developed which solves the Euler/Navier-Stokes equations around wings using a zonal grid approach. In the present zonal scheme, the physical domain of interest is divided into several subdomains called zones and the governing equations are solved interactively. The advantages of the Zonal Grid approach are as follows: (1) the grid for any subdomain can be generated easily; (2) grids can be, in a sense, adapted to the solution; (3) different equation sets can be used in different zones; and, (4) this approach allows for a convenient data base organization scheme. Using this code, separated flows on a NACA 0012 section wing and on the NASA Ames WING C have been computed. First, the effects of turbulence and artificial dissipation models incorporated into the code are assessed by comparing the TNS results with other CFD codes and experiments. Then a series of flow cases is described where data are available. The computed results, including cases with shock-induced separation, are in good agreement with experimental data. Finally, some futuristic cases are presented to demonstrate the abilities of the code for massively separated cases which do not have experimental data.

  17. 48 CFR 252.227-7013 - Rights in technical data-Noncommercial items.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... causing a computer to perform a specific operation or series of operations. (3) Computer software means computer programs, source code, source code listings, object code listings, design details, algorithms... or will be developed exclusively with Government funds; (ii) Studies, analyses, test data, or similar...

  18. 48 CFR 252.227-7013 - Rights in technical data-Noncommercial items.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... causing a computer to perform a specific operation or series of operations. (3) Computer software means computer programs, source code, source code listings, object code listings, design details, algorithms... or will be developed exclusively with Government funds; (ii) Studies, analyses, test data, or similar...

  19. 48 CFR 252.227-7013 - Rights in technical data-Noncommercial items.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... causing a computer to perform a specific operation or series of operations. (3) Computer software means computer programs, source code, source code listings, object code listings, design details, algorithms... or will be developed exclusively with Government funds; (ii) Studies, analyses, test data, or similar...

  20. 48 CFR 252.227-7013 - Rights in technical data-Noncommercial items.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... causing a computer to perform a specific operation or series of operations. (3) Computer software means computer programs, source code, source code listings, object code listings, design details, algorithms... developed exclusively with Government funds; (ii) Studies, analyses, test data, or similar data produced for...

  1. Computer Power: Part 1: Distribution of Power (and Communications).

    ERIC Educational Resources Information Center

    Price, Bennett J.

    1988-01-01

    Discussion of the distribution of power to personal computers and computer terminals addresses options such as extension cords, perimeter raceways, and interior raceways. Sidebars explain: (1) the National Electrical Code; (2) volts, amps, and watts; (3) transformers, circuit breakers, and circuits; and (4) power vs. data wiring. (MES)

  2. Gyrokinetic micro-turbulence simulations on the NERSC 16-way SMP IBM SP computer: experiences and performance results

    NASA Astrophysics Data System (ADS)

    Ethier, Stephane; Lin, Zhihong

    2001-10-01

    Earlier this year, the National Energy Research Scientific Computing center (NERSC) took delivery of the second most powerful computer in the world. With its 2,528 processors running at a peak performance of 1.5 GFlops, this IBM SP machine has a theoretical performance of almost 3.8 TFlops. To efficiently harness such computing power in one single code is not an easy task and requires a good knowledge of the computer's architecture. Here we present the steps that we followed to improve our gyrokinetic micro-turbulence code GTC in order to take advantage of the new 16-way shared memory nodes of the NERSC IBM SP. Performance results are shown as well as details about the improved mixed-mode MPI-OpenMP model that we use. The enhancements to the code allowed us to tackle much bigger problem sizes, getting closer to our goal of simulating an ITER-size tokamak with both kinetic ions and electrons.(This work is supported by DOE Contract No. DE-AC02-76CH03073 (PPPL), and in part by the DOE Fusion SciDAC Project.)

  3. Securing mobile code.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Link, Hamilton E.; Schroeppel, Richard Crabtree; Neumann, William Douglas

    2004-10-01

    If software is designed so that the software can issue functions that will move that software from one computing platform to another, then the software is said to be 'mobile'. There are two general areas of security problems associated with mobile code. The 'secure host' problem involves protecting the host from malicious mobile code. The 'secure mobile code' problem, on the other hand, involves protecting the code from malicious hosts. This report focuses on the latter problem. We have found three distinct camps of opinions regarding how to secure mobile code. There are those who believe special distributed hardware ismore » necessary, those who believe special distributed software is necessary, and those who believe neither is necessary. We examine all three camps, with a focus on the third. In the distributed software camp we examine some commonly proposed techniques including Java, D'Agents and Flask. For the specialized hardware camp, we propose a cryptographic technique for 'tamper-proofing' code over a large portion of the software/hardware life cycle by careful modification of current architectures. This method culminates by decrypting/authenticating each instruction within a physically protected CPU, thereby protecting against subversion by malicious code. Our main focus is on the camp that believes that neither specialized software nor hardware is necessary. We concentrate on methods of code obfuscation to render an entire program or a data segment on which a program depends incomprehensible. The hope is to prevent or at least slow down reverse engineering efforts and to prevent goal-oriented attacks on the software and execution. The field of obfuscation is still in a state of development with the central problem being the lack of a basis for evaluating the protection schemes. We give a brief introduction to some of the main ideas in the field, followed by an in depth analysis of a technique called 'white-boxing'. We put forth some new attacks and improvements on this method as well as demonstrating its implementation for various algorithms. We also examine cryptographic techniques to achieve obfuscation including encrypted functions and offer a new application to digital signature algorithms. To better understand the lack of security proofs for obfuscation techniques, we examine in detail general theoretical models of obfuscation. We explain the need for formal models in order to obtain provable security and the progress made in this direction thus far. Finally we tackle the problem of verifying remote execution. We introduce some methods of verifying remote exponentiation computations and some insight into generic computation checking.« less

  4. Infrared imaging - A validation technique for computational fluid dynamics codes used in STOVL applications

    NASA Technical Reports Server (NTRS)

    Hardman, R. R.; Mahan, J. R.; Smith, M. H.; Gelhausen, P. A.; Van Dalsem, W. R.

    1991-01-01

    The need for a validation technique for computational fluid dynamics (CFD) codes in STOVL applications has led to research efforts to apply infrared thermal imaging techniques to visualize gaseous flow fields. Specifically, a heated, free-jet test facility was constructed. The gaseous flow field of the jet exhaust was characterized using an infrared imaging technique in the 2 to 5.6 micron wavelength band as well as conventional pitot tube and thermocouple methods. These infrared images are compared to computer-generated images using the equations of radiative exchange based on the temperature distribution in the jet exhaust measured with the thermocouple traverses. Temperature and velocity measurement techniques, infrared imaging, and the computer model of the infrared imaging technique are presented and discussed. From the study, it is concluded that infrared imaging techniques coupled with the radiative exchange equations applied to CFD models are a valid method to qualitatively verify CFD codes used in STOVL applications.

  5. 15 CFR 740.7 - Computers (APP).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 4A003. (2) Technology and software. License Exception APP authorizes exports of technology and software... programmability. (ii) Technology and source code. Technology and source code eligible for License Exception APP..., reexports and transfers (in-country) for nuclear, chemical, biological, or missile end-users and end-uses...

  6. ATHENA 3D: A finite element code for ultrasonic wave propagation

    NASA Astrophysics Data System (ADS)

    Rose, C.; Rupin, F.; Fouquet, T.; Chassignole, B.

    2014-04-01

    The understanding of wave propagation phenomena requires use of robust numerical models. 3D finite element (FE) models are generally prohibitively time consuming. However, advances in computing processor speed and memory allow them to be more and more competitive. In this context, EDF R&D developed the 3D version of the well-validated FE code ATHENA2D. The code is dedicated to the simulation of wave propagation in all kinds of elastic media and in particular, heterogeneous and anisotropic materials like welds. It is based on solving elastodynamic equations in the calculation zone expressed in terms of stress and particle velocities. The particularity of the code relies on the fact that the discretization of the calculation domain uses a Cartesian regular 3D mesh while the defect of complex geometry can be described using a separate (2D) mesh using the fictitious domains method. This allows combining the rapidity of regular meshes computation with the capability of modelling arbitrary shaped defects. Furthermore, the calculation domain is discretized with a quasi-explicit time evolution scheme. Thereby only local linear systems of small size have to be solved. The final step to reduce the computation time relies on the fact that ATHENA3D has been parallelized and adapted to the use of HPC resources. In this paper, the validation of the 3D FE model is discussed. A cross-validation of ATHENA 3D and CIVA is proposed for several inspection configurations. The performances in terms of calculation time are also presented in the cases of both local computer and computation cluster use.

  7. Three-dimensional structural analysis using interactive graphics

    NASA Technical Reports Server (NTRS)

    Biffle, J.; Sumlin, H. A.

    1975-01-01

    The application of computer interactive graphics to three-dimensional structural analysis was described, with emphasis on the following aspects: (1) structural analysis, and (2) generation and checking of input data and examination of the large volume of output data (stresses, displacements, velocities, accelerations). Handling of three-dimensional input processing with a special MESH3D computer program was explained. Similarly, a special code PLTZ may be used to perform all the needed tasks for output processing from a finite element code. Examples were illustrated.

  8. SINGER: A Computer Code for General Analysis of Two-Dimensional Reinforced Concrete Structures. Volume 1. Solution Process

    DTIC Science & Technology

    1975-05-01

    Conference on Earthquake Engineering, Santiago de Chile, 13-18 January 1969, Vol. I , Session B2, Chilean Association oil Seismology and Earth- quake...Nuclear Agency May 1975 DISTRIBUTED BY: KJ National Technical Information Service U. S. DEPARTMENT OF COMMERCE ^804J AFWL-TR-74-228, Vol. I ...CM o / i ’•fu.r ) V V AFWL-TR- 74-228 Vol. I SINGER: A COMPUTER CODE FOR GENERAL ANALYSIS OF TWO-DIMENSIONAL CONCRETE STRUCTURES Volum« I

  9. Subscale Fast Cookoff Testing and Modeling for the Hazard Assessment of Large Rocket Motors

    DTIC Science & Technology

    2001-03-01

    41 LIST OF TABLES Table 1 Heats of Vaporization Parameter for Two-liner Phase Transformation - Complete Liner Sublimation and/or Combined Liner...One-dimensional 2-D Two-dimensional ALE3D Arbitrary-Lagrange-Eulerian (3-D) Computer Code ALEGRA 3-D Arbitrary-Lagrange-Eulerian Computer Code for...case-liner bond areas and in the grain inner bore to explore the pre-ignition and ignition phases , as well as burning evolution in rocket motor fast

  10. Determination of the Core of a Minimal Bacterial Gene Set†

    PubMed Central

    Gil, Rosario; Silva, Francisco J.; Peretó, Juli; Moya, Andrés

    2004-01-01

    The availability of a large number of complete genome sequences raises the question of how many genes are essential for cellular life. Trying to reconstruct the core of the protein-coding gene set for a hypothetical minimal bacterial cell, we have performed a computational comparative analysis of eight bacterial genomes. Six of the analyzed genomes are very small due to a dramatic genome size reduction process, while the other two, corresponding to free-living relatives, are larger. The available data from several systematic experimental approaches to define all the essential genes in some completely sequenced bacterial genomes were also considered, and a reconstruction of a minimal metabolic machinery necessary to sustain life was carried out. The proposed minimal genome contains 206 protein-coding genes with all the genetic information necessary for self-maintenance and reproduction in the presence of a full complement of essential nutrients and in the absence of environmental stress. The main features of such a minimal gene set, as well as the metabolic functions that must be present in the hypothetical minimal cell, are discussed. PMID:15353568

  11. Quantum error correcting codes and 4-dimensional arithmetic hyperbolic manifolds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guth, Larry, E-mail: lguth@math.mit.edu; Lubotzky, Alexander, E-mail: alex.lubotzky@mail.huji.ac.il

    2014-08-15

    Using 4-dimensional arithmetic hyperbolic manifolds, we construct some new homological quantum error correcting codes. They are low density parity check codes with linear rate and distance n{sup ε}. Their rate is evaluated via Euler characteristic arguments and their distance using Z{sub 2}-systolic geometry. This construction answers a question of Zémor [“On Cayley graphs, surface codes, and the limits of homological coding for quantum error correction,” in Proceedings of Second International Workshop on Coding and Cryptology (IWCC), Lecture Notes in Computer Science Vol. 5557 (2009), pp. 259–273], who asked whether homological codes with such parameters could exist at all.

  12. Multi-Zone Liquid Thrust Chamber Performance Code with Domain Decomposition for Parallel Processing

    NASA Technical Reports Server (NTRS)

    Navaz, Homayun K.

    2002-01-01

    Computational Fluid Dynamics (CFD) has considerably evolved in the last decade. There are many computer programs that can perform computations on viscous internal or external flows with chemical reactions. CFD has become a commonly used tool in the design and analysis of gas turbines, ramjet combustors, turbo-machinery, inlet ducts, rocket engines, jet interaction, missile, and ramjet nozzles. One of the problems of interest to NASA has always been the performance prediction for rocket and air-breathing engines. Due to the complexity of flow in these engines it is necessary to resolve the flowfield into a fine mesh to capture quantities like turbulence and heat transfer. However, calculation on a high-resolution grid is associated with a prohibitively increasing computational time that can downgrade the value of the CFD for practical engineering calculations. The Liquid Thrust Chamber Performance (LTCP) code was developed for NASA/MSFC (Marshall Space Flight Center) to perform liquid rocket engine performance calculations. This code is a 2D/axisymmetric full Navier-Stokes (NS) solver with fully coupled finite rate chemistry and Eulerian treatment of liquid fuel and/or oxidizer droplets. One of the advantages of this code has been the resemblance of its input file to the JANNAF (Joint Army Navy NASA Air Force Interagency Propulsion Committee) standard TDK code, and its automatic grid generation for JANNAF defined combustion chamber wall geometry. These options minimize the learning effort for TDK users, and make the code a good candidate for performing engineering calculations. Although the LTCP code was developed for liquid rocket engines, it is a general-purpose code and has been used for solving many engineering problems. However, the single zone formulation of the LTCP has limited the code to be applicable to problems with complex geometry. Furthermore, the computational time becomes prohibitively large for high-resolution problems with chemistry, two-equation turbulence model, and two-phase flow. To overcome these limitations, the LTCP code is rewritten to include the multi-zone capability with domain decomposition that makes it suitable for parallel processing, i.e., enabling the code to run every zone or sub-domain on a separate processor. This can reduce the run time by a factor of 6 to 8, depending on the problem.

  13. Optimal periodic binary codes of lengths 28 to 64

    NASA Technical Reports Server (NTRS)

    Tyler, S.; Keston, R.

    1980-01-01

    Results from computer searches performed to find repeated binary phase coded waveforms with optimal periodic autocorrelation functions are discussed. The best results for lengths 28 to 64 are given. The code features of major concern are where (1) the peak sidelobe in the autocorrelation function is small and (2) the sum of the squares of the sidelobes in the autocorrelation function is small.

  14. CFL3D User's Manual (Version 5.0)

    NASA Technical Reports Server (NTRS)

    Krist, Sherrie L.; Biedron, Robert T.; Rumsey, Christopher L.

    1998-01-01

    This document is the User's Manual for the CFL3D computer code, a thin-layer Reynolds-averaged Navier-Stokes flow solver for structured multiple-zone grids. Descriptions of the code's input parameters, non-dimensionalizations, file formats, boundary conditions, and equations are included. Sample 2-D and 3-D test cases are also described, and many helpful hints for using the code are provided.

  15. 48 CFR 252.227-7013 - Rights in technical data-Noncommercial items.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... causing a computer to perform a specific operation or series of operations. (3) Computer software means computer programs, source code, source code listings, object code listings, design details, algorithms... funds; (ii) Studies, analyses, test data, or similar data produced for this contract, when the study...

  16. Parallel Computation of the Jacobian Matrix for Nonlinear Equation Solvers Using MATLAB

    NASA Technical Reports Server (NTRS)

    Rose, Geoffrey K.; Nguyen, Duc T.; Newman, Brett A.

    2017-01-01

    Demonstrating speedup for parallel code on a multicore shared memory PC can be challenging in MATLAB due to underlying parallel operations that are often opaque to the user. This can limit potential for improvement of serial code even for the so-called embarrassingly parallel applications. One such application is the computation of the Jacobian matrix inherent to most nonlinear equation solvers. Computation of this matrix represents the primary bottleneck in nonlinear solver speed such that commercial finite element (FE) and multi-body-dynamic (MBD) codes attempt to minimize computations. A timing study using MATLAB's Parallel Computing Toolbox was performed for numerical computation of the Jacobian. Several approaches for implementing parallel code were investigated while only the single program multiple data (spmd) method using composite objects provided positive results. Parallel code speedup is demonstrated but the goal of linear speedup through the addition of processors was not achieved due to PC architecture.

  17. Workshop report - A validation study of Navier-Stokes codes for transverse injection into a Mach 2 flow

    NASA Technical Reports Server (NTRS)

    Eklund, Dean R.; Northam, G. B.; Mcdaniel, J. C.; Smith, Cliff

    1992-01-01

    A CFD (Computational Fluid Dynamics) competition was held at the Third Scramjet Combustor Modeling Workshop to assess the current state-of-the-art in CFD codes for the analysis of scramjet combustors. Solutions from six three-dimensional Navier-Stokes codes were compared for the case of staged injection of air behind a step into a Mach 2 flow. This case was investigated experimentally at the University of Virginia and extensive in-stream data was obtained. Code-to-code comparisons have been made with regard to both accuracy and efficiency. The turbulence models employed in the solutions are believed to be a major source of discrepancy between the six solutions.

  18. An accurate evaluation of the performance of asynchronous DS-CDMA systems with zero-correlation-zone coding in Rayleigh fading

    NASA Astrophysics Data System (ADS)

    Walker, Ernest; Chen, Xinjia; Cooper, Reginald L.

    2010-04-01

    An arbitrarily accurate approach is used to determine the bit-error rate (BER) performance for generalized asynchronous DS-CDMA systems, in Gaussian noise with Raleigh fading. In this paper, and the sequel, new theoretical work has been contributed which substantially enhances existing performance analysis formulations. Major contributions include: substantial computational complexity reduction, including a priori BER accuracy bounding; an analytical approach that facilitates performance evaluation for systems with arbitrary spectral spreading distributions, with non-uniform transmission delay distributions. Using prior results, augmented by these enhancements, a generalized DS-CDMA system model is constructed and used to evaluated the BER performance, in a variety of scenarios. In this paper, the generalized system modeling was used to evaluate the performance of both Walsh- Hadamard (WH) and Walsh-Hadamard-seeded zero-correlation-zone (WH-ZCZ) coding. The selection of these codes was informed by the observation that WH codes contain N spectral spreading values (0 to N - 1), one for each code sequence; while WH-ZCZ codes contain only two spectral spreading values (N/2 - 1,N/2); where N is the sequence length in chips. Since these codes span the spectral spreading range for DS-CDMA coding, by invoking an induction argument, the generalization of the system model is sufficiently supported. The results in this paper, and the sequel, support the claim that an arbitrary accurate performance analysis for DS-CDMA systems can be evaluated over the full range of binary coding, with minimal computational complexity.

  19. 75 FR 41106 - Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan to Update Water...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... (also called water quality criteria) for human health and aquatic life for toxic pollutants in the... Commission in 1996 adopted water quality criteria for human health and aquatic life for Water Quality Zones 2... Objectives for Toxic Pollutants for the Protection of Aquatic Life'', Table 6, ``Stream Quality Objectives...

  20. Task 7: ADPAC User's Manual

    NASA Technical Reports Server (NTRS)

    Hall, E. J.; Topp, D. A.; Delaney, R. A.

    1996-01-01

    The overall objective of this study was to develop a 3-D numerical analysis for compressor casing treatment flowfields. The current version of the computer code resulting from this study is referred to as ADPAC (Advanced Ducted Propfan Analysis Codes-Version 7). This report is intended to serve as a computer program user's manual for the ADPAC code developed under Tasks 6 and 7 of the NASA Contract. The ADPAC program is based on a flexible multiple- block grid discretization scheme permitting coupled 2-D/3-D mesh block solutions with application to a wide variety of geometries. Aerodynamic calculations are based on a four-stage Runge-Kutta time-marching finite volume solution technique with added numerical dissipation. Steady flow predictions are accelerated by a multigrid procedure. An iterative implicit algorithm is available for rapid time-dependent flow calculations, and an advanced two equation turbulence model is incorporated to predict complex turbulent flows. The consolidated code generated during this study is capable of executing in either a serial or parallel computing mode from a single source code. Numerous examples are given in the form of test cases to demonstrate the utility of this approach for predicting the aerodynamics of modem turbomachinery configurations.

  1. User Instructions for the Systems Assessment Capability, Rev. 1, Computer Codes Volume 3: Utility Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eslinger, Paul W.; Aaberg, Rosanne L.; Lopresti, Charles A.

    2004-09-14

    This document contains detailed user instructions for a suite of utility codes developed for Rev. 1 of the Systems Assessment Capability. The suite of computer codes for Rev. 1 of Systems Assessment Capability performs many functions.

  2. Orion Service Module Reaction Control System Plume Impingement Analysis Using PLIMP/RAMP2

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Lumpkin, Forrest E., III; Gati, Frank; Yuko, James R.; Motil, Brian J.

    2009-01-01

    The Orion Crew Exploration Vehicle Service Module Reaction Control System engine plume impingement was computed using the plume impingement program (PLIMP). PLIMP uses the plume solution from RAMP2, which is the refined version of the reacting and multiphase program (RAMP) code. The heating rate and pressure (force and moment) on surfaces or components of the Service Module were computed. The RAMP2 solution of the flow field inside the engine and the plume was compared with those computed using GASP, a computational fluid dynamics code, showing reasonable agreement. The computed heating rate and pressure using PLIMP were compared with the Reaction Control System plume model (RPM) solution and the plume impingement dynamics (PIDYN) solution. RPM uses the GASP-based plume solution, whereas PIDYN uses the SCARF plume solution. Three sets of the heating rate and pressure solutions agree well. Further thermal analysis on the avionic ring of the Service Module was performed using MSC Patran/Pthermal. The obtained temperature results showed that thermal protection is necessary because of significant heating from the plume.

  3. Adjoint-Based Sensitivity and Uncertainty Analysis for Density and Composition: A User’s Guide

    DOE PAGES

    Favorite, Jeffrey A.; Perko, Zoltan; Kiedrowski, Brian C.; ...

    2017-03-01

    The ability to perform sensitivity analyses using adjoint-based first-order sensitivity theory has existed for decades. This paper provides guidance on how adjoint sensitivity methods can be used to predict the effect of material density and composition uncertainties in critical experiments, including when these uncertain parameters are correlated or constrained. Two widely used Monte Carlo codes, MCNP6 (Ref. 2) and SCALE 6.2 (Ref. 3), are both capable of computing isotopic density sensitivities in continuous energy and angle. Additionally, Perkó et al. have shown how individual isotope density sensitivities, easily computed using adjoint methods, can be combined to compute constrained first-order sensitivitiesmore » that may be used in the uncertainty analysis. This paper provides details on how the codes are used to compute first-order sensitivities and how the sensitivities are used in an uncertainty analysis. Constrained first-order sensitivities are computed in a simple example problem.« less

  4. Computation of Sound Generated by Flow Over a Circular Cylinder: An Acoustic Analogy Approach

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.; Cox, Jared S.; Rumsey, Christopher L.; Younis, Bassam A.

    1997-01-01

    The sound generated by viscous flow past a circular cylinder is predicted via the Lighthill acoustic analogy approach. The two dimensional flow field is predicted using two unsteady Reynolds-averaged Navier-Stokes solvers. Flow field computations are made for laminar flow at three Reynolds numbers (Re = 1000, Re = 10,000, and Re = 90,000) and two different turbulent models at Re = 90,000. The unsteady surface pressures are utilized by an acoustics code that implements Farassat's formulation 1A to predict the acoustic field. The acoustic code is a 3-D code - 2-D results are found by using a long cylinder length. The 2-D predictions overpredict the acoustic amplitude; however, if correlation lengths in the range of 3 to 10 cylinder diameters are used, the predicted acoustic amplitude agrees well with experiment.

  5. Majorana fermion surface code for universal quantum computation

    DOE PAGES

    Vijay, Sagar; Hsieh, Timothy H.; Fu, Liang

    2015-12-10

    In this study, we introduce an exactly solvable model of interacting Majorana fermions realizing Z 2 topological order with a Z 2 fermion parity grading and lattice symmetries permuting the three fundamental anyon types. We propose a concrete physical realization by utilizing quantum phase slips in an array of Josephson-coupled mesoscopic topological superconductors, which can be implemented in a wide range of solid-state systems, including topological insulators, nanowires, or two-dimensional electron gases, proximitized by s-wave superconductors. Our model finds a natural application as a Majorana fermion surface code for universal quantum computation, with a single-step stabilizer measurement requiring no physicalmore » ancilla qubits, increased error tolerance, and simpler logical gates than a surface code with bosonic physical qubits. We thoroughly discuss protocols for stabilizer measurements, encoding and manipulating logical qubits, and gate implementations.« less

  6. Lewis Structures Technology, 1988. Volume 2: Structural Mechanics

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Lewis Structures Div. performs and disseminates results of research conducted in support of aerospace engine structures. These results have a wide range of applicability to practitioners of structural engineering mechanics beyond the aerospace arena. The engineering community was familiarized with the depth and range of research performed by the division and its academic and industrial partners. Sessions covered vibration control, fracture mechanics, ceramic component reliability, parallel computing, nondestructive evaluation, constitutive models and experimental capabilities, dynamic systems, fatigue and damage, wind turbines, hot section technology (HOST), aeroelasticity, structural mechanics codes, computational methods for dynamics, structural optimization, and applications of structural dynamics, and structural mechanics computer codes.

  7. RAMONA-4B a computer code with three-dimensional neutron kinetics for BWR and SBWR system transient - user`s manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohatgi, U.S.; Cheng, H.S.; Khan, H.J.

    This document is the User`s Manual for the Boiling Water Reactor (BWR), and Simplified Boiling Water Reactor (SBWR) systems transient code RAMONA-4B. The code uses a three-dimensional neutron-kinetics model coupled with a multichannel, nonequilibrium, drift-flux, phase-flow model of the thermal hydraulics of the reactor vessel. The code is designed to analyze a wide spectrum of BWR core and system transients. Chapter 1 gives an overview of the code`s capabilities and limitations; Chapter 2 describes the code`s structure, lists major subroutines, and discusses the computer requirements. Chapter 3 is on code, auxillary codes, and instructions for running RAMONA-4B on Sun SPARCmore » and IBM Workstations. Chapter 4 contains component descriptions and detailed card-by-card input instructions. Chapter 5 provides samples of the tabulated output for the steady-state and transient calculations and discusses the plotting procedures for the steady-state and transient calculations. Three appendices contain important user and programmer information: lists of plot variables (Appendix A) listings of input deck for sample problem (Appendix B), and a description of the plotting program PAD (Appendix C). 24 refs., 18 figs., 11 tabs.« less

  8. Rectified factor networks for biclustering of omics data.

    PubMed

    Clevert, Djork-Arné; Unterthiner, Thomas; Povysil, Gundula; Hochreiter, Sepp

    2017-07-15

    Biclustering has become a major tool for analyzing large datasets given as matrix of samples times features and has been successfully applied in life sciences and e-commerce for drug design and recommender systems, respectively. actor nalysis for cluster cquisition (FABIA), one of the most successful biclustering methods, is a generative model that represents each bicluster by two sparse membership vectors: one for the samples and one for the features. However, FABIA is restricted to about 20 code units because of the high computational complexity of computing the posterior. Furthermore, code units are sometimes insufficiently decorrelated and sample membership is difficult to determine. We propose to use the recently introduced unsupervised Deep Learning approach Rectified Factor Networks (RFNs) to overcome the drawbacks of existing biclustering methods. RFNs efficiently construct very sparse, non-linear, high-dimensional representations of the input via their posterior means. RFN learning is a generalized alternating minimization algorithm based on the posterior regularization method which enforces non-negative and normalized posterior means. Each code unit represents a bicluster, where samples for which the code unit is active belong to the bicluster and features that have activating weights to the code unit belong to the bicluster. On 400 benchmark datasets and on three gene expression datasets with known clusters, RFN outperformed 13 other biclustering methods including FABIA. On data of the 1000 Genomes Project, RFN could identify DNA segments which indicate, that interbreeding with other hominins starting already before ancestors of modern humans left Africa. https://github.com/bioinf-jku/librfn. djork-arne.clevert@bayer.com or hochreit@bioinf.jku.at. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  9. Coding efficiency of AVS 2.0 for CBAC and CABAC engines

    NASA Astrophysics Data System (ADS)

    Cui, Jing; Choi, Youngkyu; Chae, Soo-Ik

    2015-12-01

    In this paper we compare the coding efficiency of AVS 2.0[1] for engines of the Context-based Binary Arithmetic Coding (CBAC)[2] in the AVS 2.0 and the Context-Adaptive Binary Arithmetic Coder (CABAC)[3] in the HEVC[4]. For fair comparison, the CABAC is embedded in the reference code RD10.1 because the CBAC is in the HEVC in our previous work[5]. The rate estimation table is employed only for RDOQ in the RD code. To reduce the computation complexity of the video encoder, therefore we modified the RD code so that the rate estimation table is employed for all RDO decision. Furthermore, we also simplify the complexity of rate estimation table by reducing the bit depth of its fractional part to 2 from 8. The simulation result shows that the CABAC has the BD-rate loss of about 0.7% compared to the CBAC. It seems that the CBAC is a little more efficient than that the CABAC in the AVS 2.0.

  10. Extensions and improvements on XTRAN3S

    NASA Technical Reports Server (NTRS)

    Borland, C. J.

    1989-01-01

    Improvements to the XTRAN3S computer program are summarized. Work on this code, for steady and unsteady aerodynamic and aeroelastic analysis in the transonic flow regime has concentrated on the following areas: (1) Maintenance of the XTRAN3S code, including correction of errors, enhancement of operational capability, and installation on the Cray X-MP system; (2) Extension of the vectorization concepts in XTRAN3S to include additional areas of the code for improved execution speed; (3) Modification of the XTRAN3S algorithm for improved numerical stability for swept, tapered wing cases and improved computational efficiency; and (4) Extension of the wing-only version of XTRAN3S to include pylon and nacelle or external store capability.

  11. POLYSHIFT Communications Software for the Connection Machine System CM-200

    DOE PAGES

    George, William; Brickner, Ralph G.; Johnsson, S. Lennart

    1994-01-01

    We describe the use and implementation of a polyshift function PSHIFT for circular shifts and end-offs shifts. Polyshift is useful in many scientific codes using regular grids, such as finite difference codes in several dimensions, and multigrid codes, molecular dynamics computations, and in lattice gauge physics computations, such as quantum chromodynamics (QCD) calculations. Our implementation of the PSHIFT function on the Connection Machine systems CM-2 and CM-200 offers a speedup of up to a factor of 3–4 compared with CSHIFT when the local data motion within a node is small. The PSHIFT routine is included in the Connection Machine Scientificmore » Software Library (CMSSL).« less

  12. NEAMS Update. Quarterly Report for October - December 2011.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, K.

    2012-02-16

    The Advanced Modeling and Simulation Office within the DOE Office of Nuclear Energy (NE) has been charged with revolutionizing the design tools used to build nuclear power plants during the next 10 years. To accomplish this, the DOE has brought together the national laboratories, U.S. universities, and the nuclear energy industry to establish the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program. The mission of NEAMS is to modernize computer modeling of nuclear energy systems and improve the fidelity and validity of modeling results using contemporary software environments and high-performance computers. NEAMS will create a set of engineering-level codes aimedmore » at designing and analyzing the performance and safety of nuclear power plants and reactor fuels. The truly predictive nature of these codes will be achieved by modeling the governing phenomena at the spatial and temporal scales that dominate the behavior. These codes will be executed within a simulation environment that orchestrates code integration with respect to spatial meshing, computational resources, and execution to give the user a common 'look and feel' for setting up problems and displaying results. NEAMS is building upon a suite of existing simulation tools, including those developed by the federal Scientific Discovery through Advanced Computing and Advanced Simulation and Computing programs. NEAMS also draws upon existing simulation tools for materials and nuclear systems, although many of these are limited in terms of scale, applicability, and portability (their ability to be integrated into contemporary software and hardware architectures). NEAMS investments have directly and indirectly supported additional NE research and development programs, including those devoted to waste repositories, safeguarded separations systems, and long-term storage of used nuclear fuel. NEAMS is organized into two broad efforts, each comprising four elements. The quarterly highlights October-December 2011 are: (1) Version 1.0 of AMP, the fuel assembly performance code, was tested on the JAGUAR supercomputer and released on November 1, 2011, a detailed discussion of this new simulation tool is given; (2) A coolant sub-channel model and a preliminary UO{sub 2} smeared-cracking model were implemented in BISON, the single-pin fuel code, more information on how these models were developed and benchmarked is given; (3) The Object Kinetic Monte Carlo model was implemented to account for nucleation events in meso-scale simulations and a discussion of the significance of this advance is given; (4) The SHARP neutronics module, PROTEUS, was expanded to be applicable to all types of reactors, and a discussion of the importance of PROTEUS is given; (5) A plan has been finalized for integrating the high-fidelity, three-dimensional reactor code SHARP with both the systems-level code RELAP7 and the fuel assembly code AMP. This is a new initiative; (6) Work began to evaluate the applicability of AMP to the problem of dry storage of used fuel and to define a relevant problem to test the applicability; (7) A code to obtain phonon spectra from the force-constant matrix for a crystalline lattice has been completed. This important bridge between subcontinuum and continuum phenomena is discussed; (8) Benchmarking was begun on the meso-scale, finite-element fuels code MARMOT to validate its new variable splitting algorithm; (9) A very computationally demanding simulation of diffusion-driven nucleation of new microstructural features has been completed. An explanation of the difficulty of this simulation is given; (10) Experiments were conducted with deformed steel to validate a crystal plasticity finite-element code for bodycentered cubic iron; (11) The Capability Transfer Roadmap was completed and published as an internal laboratory technical report; (12) The AMP fuel assembly code input generator was integrated into the NEAMS Integrated Computational Environment (NiCE). More details on the planned NEAMS computing environment is given; and (13) The NEAMS program website (neams.energy.gov) is nearly ready to launch.« less

  13. Manned systems utilization analysis (study 2.1). Volume 3: LOVES computer simulations, results, and analyses

    NASA Technical Reports Server (NTRS)

    Stricker, L. T.

    1975-01-01

    The LOVES computer program was employed to analyze the geosynchronous portion of the NASA's 1973 automated satellite mission model from 1980 to 1990. The objectives of the analyses were: (1) to demonstrate the capability of the LOVES code to provide the depth and accuracy of data required to support the analyses; and (2) to tradeoff the concept of space servicing automated satellites composed of replaceable modules against the concept of replacing expendable satellites upon failure. The computer code proved to be an invaluable tool in analyzing the logistic requirements of the various test cases required in the tradeoff. It is indicated that the concept of space servicing offers the potential for substantial savings in the cost of operating automated satellite systems.

  14. Annual Report of the ECSU Home-Institution Support Program (1993)

    DTIC Science & Technology

    1993-09-30

    summer of 1992. Stephanie plans to attend graduate school at the University of Alabama at Birmingham. r 3 . Deborah Jones has attended the ISSP program for...computer equipment Component #2 A visiting lecturer series Component # 3 : Students pay & faculty release time Component #4 Student/sponsor travel program...DTXC QUA, ty rNpBT 3 S. 0. CODE: 1133 DISBURSING CODE: N001 79 AGO CODE: N66005 CAGE CODE: OJLKO 3 PART I: A succinct narrative which should

  15. Development of a model and computer code to describe solar grade silicon production processes

    NASA Technical Reports Server (NTRS)

    Gould, R. K.; Srivastava, R.

    1979-01-01

    Two computer codes were developed for describing flow reactors in which high purity, solar grade silicon is produced via reduction of gaseous silicon halides. The first is the CHEMPART code, an axisymmetric, marching code which treats two phase flows with models describing detailed gas-phase chemical kinetics, particle formation, and particle growth. It can be used to described flow reactors in which reactants, mix, react, and form a particulate phase. Detailed radial gas-phase composition, temperature, velocity, and particle size distribution profiles are computed. Also, deposition of heat, momentum, and mass (either particulate or vapor) on reactor walls is described. The second code is a modified version of the GENMIX boundary layer code which is used to compute rates of heat, momentum, and mass transfer to the reactor walls. This code lacks the detailed chemical kinetics and particle handling features of the CHEMPART code but has the virtue of running much more rapidly than CHEMPART, while treating the phenomena occurring in the boundary layer in more detail.

  16. Computing the cross sections of nuclear reactions with nuclear clusters emission for proton energies between 30 MeV and 2.6 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korovin, Yu. A.; Maksimushkina, A. V., E-mail: AVMaksimushkina@mephi.ru; Frolova, T. A.

    2016-12-15

    The cross sections of nuclear reactions involving emission of clusters of light nuclei in proton collisions with a heavy-metal target are computed for incident-proton energies between 30 MeV and 2.6 GeV. The calculation relies on the ALICE/ASH and CASCADE/INPE computer codes. The parameters determining the pre-equilibrium cluster emission are varied in the computation.

  17. A prototype Knowledge-Based System to Aid Space System Restoration Management.

    DTIC Science & Technology

    1986-12-01

    Systems. ......... 122 Appendix B: Computation of Weights With AHP . . .. 132 Appendix C: ART Code .. ............... 138 Appendix D: Test Outputs...45 5.1 Earth Coverage With Geosynchronous Satellites 49 5.2 Space System Configurations ... ........... . 50 5.3 AHP Hierarchy...67 5.4 AHP Hierarchy With Weights .... ............ 68 6.1 TALK Schema Structure ..... .............. 75 6.2 ART Code for TALK Satellite C

  18. Comparison of two computer codes for crack growth analysis: NASCRAC Versus NASA/FLAGRO

    NASA Technical Reports Server (NTRS)

    Stallworth, R.; Meyers, C. A.; Stinson, H. C.

    1989-01-01

    Results are presented from the comparison study of two computer codes for crack growth analysis - NASCRAC and NASA/FLAGRO. The two computer codes gave compatible conservative results when the part through crack analysis solutions were analyzed versus experimental test data. Results showed good correlation between the codes for the through crack at a lug solution. For the through crack at a lug solution, NASA/FLAGRO gave the most conservative results.

  19. Parallel computation of multigroup reactivity coefficient using iterative method

    NASA Astrophysics Data System (ADS)

    Susmikanti, Mike; Dewayatna, Winter

    2013-09-01

    One of the research activities to support the commercial radioisotope production program is a safety research target irradiation FPM (Fission Product Molybdenum). FPM targets form a tube made of stainless steel in which the nuclear degrees of superimposed high-enriched uranium. FPM irradiation tube is intended to obtain fission. The fission material widely used in the form of kits in the world of nuclear medicine. Irradiation FPM tube reactor core would interfere with performance. One of the disorders comes from changes in flux or reactivity. It is necessary to study a method for calculating safety terrace ongoing configuration changes during the life of the reactor, making the code faster became an absolute necessity. Neutron safety margin for the research reactor can be reused without modification to the calculation of the reactivity of the reactor, so that is an advantage of using perturbation method. The criticality and flux in multigroup diffusion model was calculate at various irradiation positions in some uranium content. This model has a complex computation. Several parallel algorithms with iterative method have been developed for the sparse and big matrix solution. The Black-Red Gauss Seidel Iteration and the power iteration parallel method can be used to solve multigroup diffusion equation system and calculated the criticality and reactivity coeficient. This research was developed code for reactivity calculation which used one of safety analysis with parallel processing. It can be done more quickly and efficiently by utilizing the parallel processing in the multicore computer. This code was applied for the safety limits calculation of irradiated targets FPM with increment Uranium.

  20. Computational Predictions of the Performance Wright 'Bent End' Propellers

    NASA Technical Reports Server (NTRS)

    Wang, Xiang-Yu; Ash, Robert L.; Bobbitt, Percy J.; Prior, Edwin (Technical Monitor)

    2002-01-01

    Computational analysis of two 1911 Wright brothers 'Bent End' wooden propeller reproductions have been performed and compared with experimental test results from the Langley Full Scale Wind Tunnel. The purpose of the analysis was to check the consistency of the experimental results and to validate the reliability of the tests. This report is one part of the project on the propeller performance research of the Wright 'Bent End' propellers, intend to document the Wright brothers' pioneering propeller design contributions. Two computer codes were used in the computational predictions. The FLO-MG Navier-Stokes code is a CFD (Computational Fluid Dynamics) code based on the Navier-Stokes Equations. It is mainly used to compute the lift coefficient and the drag coefficient at specified angles of attack at different radii. Those calculated data are the intermediate results of the computation and a part of the necessary input for the Propeller Design Analysis Code (based on Adkins and Libeck method), which is a propeller design code used to compute the propeller thrust coefficient, the propeller power coefficient and the propeller propulsive efficiency.

  1. [The QR code in society, economy and medicine--fields of application, options and chances].

    PubMed

    Flaig, Benno; Parzeller, Markus

    2011-01-01

    2D codes like the QR Code ("Quick Response") are becoming more and more common in society and medicine. The application spectrum and benefits in medicine and other fields are described. 2D codes can be created free of charge on any computer with internet access without any previous knowledge. The codes can be easily used in publications, presentations, on business cards and posters. Editors choose between contact details, text or a hyperlink as information behind the code. At expert conferences, linkage by QR Code allows the audience to download presentations and posters quickly. The documents obtained can then be saved, printed, processed etc. Fast access to stored data in the internet makes it possible to integrate additional and explanatory multilingual videos into medical posters. In this context, a combination of different technologies (printed handout, QR Code and screen) may be reasonable.

  2. Proceduracy: Computer Code Writing in the Continuum of Literacy

    ERIC Educational Resources Information Center

    Vee, Annette

    2010-01-01

    This dissertation looks at computer programming through the lens of literacy studies, building from the concept of code as a written text with expressive and rhetorical power. I focus on the intersecting technological and social factors of computer code writing as a literacy--a practice I call "proceduracy". Like literacy, proceduracy is a human…

  3. Computational electronics and electromagnetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, C C

    The Computational Electronics and Electromagnetics thrust area serves as the focal point for Engineering R and D activities for developing computer-based design and analysis tools. Representative applications include design of particle accelerator cells and beamline components; design of transmission line components; engineering analysis and design of high-power (optical and microwave) components; photonics and optoelectronics circuit design; electromagnetic susceptibility analysis; and antenna synthesis. The FY-97 effort focuses on development and validation of (1) accelerator design codes; (2) 3-D massively parallel, time-dependent EM codes; (3) material models; (4) coupling and application of engineering tools for analysis and design of high-power components; andmore » (5) development of beam control algorithms coupled to beam transport physics codes. These efforts are in association with technology development in the power conversion, nondestructive evaluation, and microtechnology areas. The efforts complement technology development in Lawrence Livermore National programs.« less

  4. COMSAC: Computational Methods for Stability and Control. Part 2

    NASA Technical Reports Server (NTRS)

    Fremaux, C. Michael (Compiler); Hall, Robert M. (Compiler)

    2004-01-01

    The unprecedented advances being made in computational fluid dynamic (CFD) technology have demonstrated the powerful capabilities of codes in applications to civil and military aircraft. Used in conjunction with wind-tunnel and flight investigations, many codes are now routinely used by designers in diverse applications such as aerodynamic performance predictions and propulsion integration. Typically, these codes are most reliable for attached, steady, and predominantly turbulent flows. As a result of increasing reliability and confidence in CFD, wind-tunnel testing for some new configurations has been substantially reduced in key areas, such as wing trade studies for mission performance guarantees. Interest is now growing in the application of computational methods to other critical design challenges. One of the most important disciplinary elements for civil and military aircraft is prediction of stability and control characteristics. CFD offers the potential for significantly increasing the basic understanding, prediction, and control of flow phenomena associated with requirements for satisfactory aircraft handling characteristics.

  5. Simulation of Jet Noise with OVERFLOW CFD Code and Kirchhoff Surface Integral

    NASA Technical Reports Server (NTRS)

    Kandula, M.; Caimi, R.; Voska, N. (Technical Monitor)

    2002-01-01

    An acoustic prediction capability for supersonic axisymmetric jets was developed on the basis of OVERFLOW Navier-Stokes CFD (Computational Fluid Dynamics) code of NASA Langley Research Center. Reynolds-averaged turbulent stresses in the flow field are modeled with the aid of Spalart-Allmaras one-equation turbulence model. Appropriate acoustic and outflow boundary conditions were implemented to compute time-dependent acoustic pressure in the nonlinear source-field. Based on the specification of acoustic pressure, its temporal and normal derivatives on the Kirchhoff surface, the near-field and the far-field sound pressure levels are computed via Kirchhoff surface integral, with the Kirchhoff surface chosen to enclose the nonlinear sound source region described by the CFD code. The methods are validated by a comparison of the predictions of sound pressure levels with the available data for an axisymmetric turbulent supersonic (Mach 2) perfectly expanded jet.

  6. Simulation of Supersonic Jet Noise with the Adaptation of Overflow CFD Code and Kirchhoff Surface Integral

    NASA Technical Reports Server (NTRS)

    Kandula, Max; Caimi, Raoul; Steinrock, T. (Technical Monitor)

    2001-01-01

    An acoustic prediction capability for supersonic axisymmetric jets was developed on the basis of OVERFLOW Navier-Stokes CFD (Computational Fluid Dynamics) code of NASA Langley Research Center. Reynolds-averaged turbulent stresses in the flow field are modeled with the aid of Spalart-Allmaras one-equation turbulence model. Appropriate acoustic and outflow boundary conditions were implemented to compute time-dependent acoustic pressure in the nonlinear source-field. Based on the specification of acoustic pressure, its temporal and normal derivatives on the Kirchhoff surface, the near-field and the far-field sound pressure levels are computed via Kirchhoff surface integral, with the Kirchhoff surface chosen to enclose the nonlinear sound source region described by the CFD code. The methods are validated by a comparison of the predictions of sound pressure levels with the available data for an axisymmetric turbulent supersonic (Mach 2) perfectly expanded jet.

  7. Code manual for CONTAIN 2.0: A computer code for nuclear reactor containment analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murata, K.K.; Williams, D.C.; Griffith, R.O.

    1997-12-01

    The CONTAIN 2.0 computer code is an integrated analysis tool used for predicting the physical conditions, chemical compositions, and distributions of radiological materials inside a containment building following the release of material from the primary system in a light-water reactor accident. It can also predict the source term to the environment. CONTAIN 2.0 is intended to replace the earlier CONTAIN 1.12, which was released in 1991. The purpose of this Code Manual is to provide full documentation of the features and models in CONTAIN 2.0. Besides complete descriptions of the models, this Code Manual provides a complete description of themore » input and output from the code. CONTAIN 2.0 is a highly flexible and modular code that can run problems that are either quite simple or highly complex. An important aspect of CONTAIN is that the interactions among thermal-hydraulic phenomena, aerosol behavior, and fission product behavior are taken into account. The code includes atmospheric models for steam/air thermodynamics, intercell flows, condensation/evaporation on structures and aerosols, aerosol behavior, and gas combustion. It also includes models for reactor cavity phenomena such as core-concrete interactions and coolant pool boiling. Heat conduction in structures, fission product decay and transport, radioactive decay heating, and the thermal-hydraulic and fission product decontamination effects of engineered safety features are also modeled. To the extent possible, the best available models for severe accident phenomena have been incorporated into CONTAIN, but it is intrinsic to the nature of accident analysis that significant uncertainty exists regarding numerous phenomena. In those cases, sensitivity studies can be performed with CONTAIN by means of user-specified input parameters. Thus, the code can be viewed as a tool designed to assist the knowledge reactor safety analyst in evaluating the consequences of specific modeling assumptions.« less

  8. Life Lab Computer Support System's Manual.

    ERIC Educational Resources Information Center

    Lippman, Beatrice D.; Walfish, Stephen

    Step-by-step procedures for utilizing the computer support system of Miami-Dade Community College's Life Lab program are described for the following categories: (1) Registration--Student's Lists and Labels, including three separate computer programs for current listings, next semester listings, and grade listings; (2) Competence and Resource…

  9. Pattern-based integer sample motion search strategies in the context of HEVC

    NASA Astrophysics Data System (ADS)

    Maier, Georg; Bross, Benjamin; Grois, Dan; Marpe, Detlev; Schwarz, Heiko; Veltkamp, Remco C.; Wiegand, Thomas

    2015-09-01

    The H.265/MPEG-H High Efficiency Video Coding (HEVC) standard provides a significant increase in coding efficiency compared to its predecessor, the H.264/MPEG-4 Advanced Video Coding (AVC) standard, which however comes at the cost of a high computational burden for a compliant encoder. Motion estimation (ME), which is a part of the inter-picture prediction process, typically consumes a high amount of computational resources, while significantly increasing the coding efficiency. In spite of the fact that both H.265/MPEG-H HEVC and H.264/MPEG-4 AVC standards allow processing motion information on a fractional sample level, the motion search algorithms based on the integer sample level remain to be an integral part of ME. In this paper, a flexible integer sample ME framework is proposed, thereby allowing to trade off significant reduction of ME computation time versus coding efficiency penalty in terms of bit rate overhead. As a result, through extensive experimentation, an integer sample ME algorithm that provides a good trade-off is derived, incorporating a combination and optimization of known predictive, pattern-based and early termination techniques. The proposed ME framework is implemented on a basis of the HEVC Test Model (HM) reference software, further being compared to the state-of-the-art fast search algorithm, which is a native part of HM. It is observed that for high resolution sequences, the integer sample ME process can be speed-up by factors varying from 3.2 to 7.6, resulting in the bit-rate overhead of 1.5% and 0.6% for Random Access (RA) and Low Delay P (LDP) configurations, respectively. In addition, the similar speed-up is observed for sequences with mainly Computer-Generated Imagery (CGI) content while trading off the bit rate overhead of up to 5.2%.

  10. Thermodynamic properties of gaseous fluorocarbons and isentropic equilibrium expansions of two binary mixtures of fluorocarbons and argon

    NASA Technical Reports Server (NTRS)

    Talcott, N. A., Jr.

    1977-01-01

    Equations and computer code are given for the thermodynamic properties of gaseous fluorocarbons in chemical equilibrium. In addition, isentropic equilibrium expansions of two binary mixtures of fluorocarbons and argon are included. The computer code calculates the equilibrium thermodynamic properties and, in some cases, the transport properties for the following fluorocarbons: CCl2F, CCl2F2, CBrF3, CF4, CHCl2F, CHF3, CCL2F-CCl2F, CCLF2-CClF2, CF3-CF3, and C4F8. Equilibrium thermodynamic properties are tabulated for six of the fluorocarbons(CCl3F, CCL2F2, CBrF3, CF4, CF3-CF3, and C4F8) and pressure-enthalpy diagrams are presented for CBrF3.

  11. Multidisciplinary High-Fidelity Analysis and Optimization of Aerospace Vehicles. Part 2; Preliminary Results

    NASA Technical Reports Server (NTRS)

    Walsh, J. L.; Weston, R. P.; Samareh, J. A.; Mason, B. H.; Green, L. L.; Biedron, R. T.

    2000-01-01

    An objective of the High Performance Computing and Communication Program at the NASA Langley Research Center is to demonstrate multidisciplinary shape and sizing optimization of a complete aerospace vehicle configuration by using high-fidelity finite-element structural analysis and computational fluid dynamics aerodynamic analysis in a distributed, heterogeneous computing environment that includes high performance parallel computing. A software system has been designed and implemented to integrate a set of existing discipline analysis codes, some of them computationally intensive, into a distributed computational environment for the design of a high-speed civil transport configuration. The paper describes both the preliminary results from implementing and validating the multidisciplinary analysis and the results from an aerodynamic optimization. The discipline codes are integrated by using the Java programming language and a Common Object Request Broker Architecture compliant software product. A companion paper describes the formulation of the multidisciplinary analysis and optimization system.

  12. APC: A New Code for Atmospheric Polarization Computations

    NASA Technical Reports Server (NTRS)

    Korkin, Sergey V.; Lyapustin, Alexei I.; Rozanov, Vladimir V.

    2014-01-01

    A new polarized radiative transfer code Atmospheric Polarization Computations (APC) is described. The code is based on separation of the diffuse light field into anisotropic and smooth (regular) parts. The anisotropic part is computed analytically. The smooth regular part is computed numerically using the discrete ordinates method. Vertical stratification of the atmosphere, common types of bidirectional surface reflection and scattering by spherical particles or spheroids are included. A particular consideration is given to computation of the bidirectional polarization distribution function (BPDF) of the waved ocean surface.

  13. The relationship between computer games and quality of life in adolescents.

    PubMed

    Dolatabadi, Nayereh Kasiri; Eslami, Ahmad Ali; Mostafavi, Firooze; Hassanzade, Akbar; Moradi, Azam

    2013-01-01

    Term of doing computer games among teenagers is growing rapidly. This popular phenomenon can cause physical and psychosocial issues in them. Therefore, this study examined the relationship between computer games and quality of life domains in adolescents aging 12-15 years. In a cross-sectional study using the 2-stage stratified cluster sampling method, 444 male and female students in Borkhar were selected. The data collection tool consisted of 1) World Health Organization Quality Of Life - BREF questionnaire and 2) personal information questionnaire. The data were analyzed by Pearson correlation, Spearman correlation, chi-square, independent t-tests and analysis of covariance. The total mean score of quality of life in students was 67.11±13.34. The results showed a significant relationship between the age of starting to play games and the overall quality of life score and its fourdomains (range r=-0.13 to -0.18). The mean of overall quality of life score in computer game users was 68.27±13.03 while it was 64.81±13.69 among those who did not play computer games and the difference was significant (P=0.01). There were significant differences in environmental and mental health domains between the two groups (P<0.05). However, there was no significant relationship between BMI with the time spent and the type of computer games. Playing computer games for a short time under parental supervision can have positive effects on quality of life in adolescents. However, spending long hours for playing computer games may have negative long-term effects.

  14. Computational and experimental investigation of two-dimensional scramjet inlets and hypersonic flow over a sharp flat plate

    NASA Astrophysics Data System (ADS)

    Messitt, Donald G.

    1999-11-01

    The WIND code was employed to compute the hypersonic flow in the shock wave boundary layer merged region near the leading edge of a sharp flat plate. Solutions were obtained at Mach numbers from 9.86 to 15.0 and free stream Reynolds numbers of 3,467 to 346,700 in-1 (1.365 · 105 to 1.365 · 107 m-1) for perfect gas conditions. The numerical results indicated a merged shock wave and viscous layer near the leading edge. The merged region grew in size with increasing free stream Mach number, proportional to Minfinity 2/Reinfinity. Profiles of the static pressure in the merged region indicated a strong normal pressure gradient (∂p/∂y). The normal pressure gradient has been neglected in previous analyses which used the boundary layer equations. The shock wave near the leading edge was thick, as has been experimentally observed. Computed shock wave locations and surface pressures agreed well within experimental error for values of the rarefaction parameter, chi/M infinity2 < 0.3. A preliminary analysis using kinetic theory indicated that rarefied flow effects became important above this value. In particular, the WIND solution agreed well in the transition region between the merged flow, which was predicted well by the theory of Li and Nagamatsu, and the downstream region where the strong interaction theory applied. Additional computations with the NPARC code, WIND's predecessor, demonstrated the ability of the code to compute hypersonic inlet flows at free stream Mach numbers up to 20. Good qualitative agreement with measured pressure data indicated that the code captured the important physical features of the shock wave - boundary layer interactions. The computed surface and pitot pressures fell within the combined experimental and numerical error bounds for most points. The calculations demonstrated the need for extremely fine grids when computing hypersonic interaction flows.

  15. Hardware-efficient bosonic quantum error-correcting codes based on symmetry operators

    NASA Astrophysics Data System (ADS)

    Niu, Murphy Yuezhen; Chuang, Isaac L.; Shapiro, Jeffrey H.

    2018-03-01

    We establish a symmetry-operator framework for designing quantum error-correcting (QEC) codes based on fundamental properties of the underlying system dynamics. Based on this framework, we propose three hardware-efficient bosonic QEC codes that are suitable for χ(2 )-interaction based quantum computation in multimode Fock bases: the χ(2 ) parity-check code, the χ(2 ) embedded error-correcting code, and the χ(2 ) binomial code. All of these QEC codes detect photon-loss or photon-gain errors by means of photon-number parity measurements, and then correct them via χ(2 ) Hamiltonian evolutions and linear-optics transformations. Our symmetry-operator framework provides a systematic procedure for finding QEC codes that are not stabilizer codes, and it enables convenient extension of a given encoding to higher-dimensional qudit bases. The χ(2 ) binomial code is of special interest because, with m ≤N identified from channel monitoring, it can correct m -photon-loss errors, or m -photon-gain errors, or (m -1 )th -order dephasing errors using logical qudits that are encoded in O (N ) photons. In comparison, other bosonic QEC codes require O (N2) photons to correct the same degree of bosonic errors. Such improved photon efficiency underscores the additional error-correction power that can be provided by channel monitoring. We develop quantum Hamming bounds for photon-loss errors in the code subspaces associated with the χ(2 ) parity-check code and the χ(2 ) embedded error-correcting code, and we prove that these codes saturate their respective bounds. Our χ(2 ) QEC codes exhibit hardware efficiency in that they address the principal error mechanisms and exploit the available physical interactions of the underlying hardware, thus reducing the physical resources required for implementing their encoding, decoding, and error-correction operations, and their universal encoded-basis gate sets.

  16. Optimizing research in symptomatic uterine fibroids with development of a computable phenotype for use with electronic health records.

    PubMed

    Hoffman, Sarah R; Vines, Anissa I; Halladay, Jacqueline R; Pfaff, Emily; Schiff, Lauren; Westreich, Daniel; Sundaresan, Aditi; Johnson, La-Shell; Nicholson, Wanda K

    2018-06-01

    Women with symptomatic uterine fibroids can report a myriad of symptoms, including pain, bleeding, infertility, and psychosocial sequelae. Optimizing fibroid research requires the ability to enroll populations of women with image-confirmed symptomatic uterine fibroids. Our objective was to develop an electronic health record-based algorithm to identify women with symptomatic uterine fibroids for a comparative effectiveness study of medical or surgical treatments on quality-of-life measures. Using an iterative process and text-mining techniques, an effective computable phenotype algorithm, composed of demographics, and clinical and laboratory characteristics, was developed with reasonable performance. Such algorithms provide a feasible, efficient way to identify populations of women with symptomatic uterine fibroids for the conduct of large traditional or pragmatic trials and observational comparative effectiveness studies. Symptomatic uterine fibroids, due to menorrhagia, pelvic pain, bulk symptoms, or infertility, are a source of substantial morbidity for reproductive-age women. Comparing Treatment Options for Uterine Fibroids is a multisite registry study to compare the effectiveness of hormonal or surgical fibroid treatments on women's perceptions of their quality of life. Electronic health record-based algorithms are able to identify large numbers of women with fibroids, but additional work is needed to develop electronic health record algorithms that can identify women with symptomatic fibroids to optimize fibroid research. We sought to develop an efficient electronic health record-based algorithm that can identify women with symptomatic uterine fibroids in a large health care system for recruitment into large-scale observational and interventional research in fibroid management. We developed and assessed the accuracy of 3 algorithms to identify patients with symptomatic fibroids using an iterative approach. The data source was the Carolina Data Warehouse for Health, a repository for the health system's electronic health record data. In addition to International Classification of Diseases, Ninth Revision diagnosis and procedure codes and clinical characteristics, text data-mining software was used to derive information from imaging reports to confirm the presence of uterine fibroids. Results of each algorithm were compared with expert manual review to calculate the positive predictive values for each algorithm. Algorithm 1 was composed of the following criteria: (1) age 18-54 years; (2) either ≥1 International Classification of Diseases, Ninth Revision diagnosis codes for uterine fibroids or mention of fibroids using text-mined key words in imaging records or documents; and (3) no International Classification of Diseases, Ninth Revision or Current Procedural Terminology codes for hysterectomy and no reported history of hysterectomy. The positive predictive value was 47% (95% confidence interval 39-56%). Algorithm 2 required ≥2 International Classification of Diseases, Ninth Revision diagnosis codes for fibroids and positive text-mined key words and had a positive predictive value of 65% (95% confidence interval 50-79%). In algorithm 3, further refinements included ≥2 International Classification of Diseases, Ninth Revision diagnosis codes for fibroids on separate outpatient visit dates, the exclusion of women who had a positive pregnancy test within 3 months of their fibroid-related visit, and exclusion of incidentally detected fibroids during prenatal or emergency department visits. Algorithm 3 achieved a positive predictive value of 76% (95% confidence interval 71-81%). An electronic health record-based algorithm is capable of identifying cases of symptomatic uterine fibroids with moderate positive predictive value and may be an efficient approach for large-scale study recruitment. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Hypercube matrix computation task

    NASA Technical Reports Server (NTRS)

    Calalo, Ruel H.; Imbriale, William A.; Jacobi, Nathan; Liewer, Paulett C.; Lockhart, Thomas G.; Lyzenga, Gregory A.; Lyons, James R.; Manshadi, Farzin; Patterson, Jean E.

    1988-01-01

    A major objective of the Hypercube Matrix Computation effort at the Jet Propulsion Laboratory (JPL) is to investigate the applicability of a parallel computing architecture to the solution of large-scale electromagnetic scattering problems. Three scattering analysis codes are being implemented and assessed on a JPL/California Institute of Technology (Caltech) Mark 3 Hypercube. The codes, which utilize different underlying algorithms, give a means of evaluating the general applicability of this parallel architecture. The three analysis codes being implemented are a frequency domain method of moments code, a time domain finite difference code, and a frequency domain finite elements code. These analysis capabilities are being integrated into an electromagnetics interactive analysis workstation which can serve as a design tool for the construction of antennas and other radiating or scattering structures. The first two years of work on the Hypercube Matrix Computation effort is summarized. It includes both new developments and results as well as work previously reported in the Hypercube Matrix Computation Task: Final Report for 1986 to 1987 (JPL Publication 87-18).

  18. Research in Parallel Algorithms and Software for Computational Aerosciences

    NASA Technical Reports Server (NTRS)

    Domel, Neal D.

    1996-01-01

    Phase I is complete for the development of a Computational Fluid Dynamics parallel code with automatic grid generation and adaptation for the Euler analysis of flow over complex geometries. SPLITFLOW, an unstructured Cartesian grid code developed at Lockheed Martin Tactical Aircraft Systems, has been modified for a distributed memory/massively parallel computing environment. The parallel code is operational on an SGI network, Cray J90 and C90 vector machines, SGI Power Challenge, and Cray T3D and IBM SP2 massively parallel machines. Parallel Virtual Machine (PVM) is the message passing protocol for portability to various architectures. A domain decomposition technique was developed which enforces dynamic load balancing to improve solution speed and memory requirements. A host/node algorithm distributes the tasks. The solver parallelizes very well, and scales with the number of processors. Partially parallelized and non-parallelized tasks consume most of the wall clock time in a very fine grain environment. Timing comparisons on a Cray C90 demonstrate that Parallel SPLITFLOW runs 2.4 times faster on 8 processors than its non-parallel counterpart autotasked over 8 processors.

  19. Research in Parallel Algorithms and Software for Computational Aerosciences

    NASA Technical Reports Server (NTRS)

    Domel, Neal D.

    1996-01-01

    Phase 1 is complete for the development of a computational fluid dynamics CFD) parallel code with automatic grid generation and adaptation for the Euler analysis of flow over complex geometries. SPLITFLOW, an unstructured Cartesian grid code developed at Lockheed Martin Tactical Aircraft Systems, has been modified for a distributed memory/massively parallel computing environment. The parallel code is operational on an SGI network, Cray J90 and C90 vector machines, SGI Power Challenge, and Cray T3D and IBM SP2 massively parallel machines. Parallel Virtual Machine (PVM) is the message passing protocol for portability to various architectures. A domain decomposition technique was developed which enforces dynamic load balancing to improve solution speed and memory requirements. A host/node algorithm distributes the tasks. The solver parallelizes very well, and scales with the number of processors. Partially parallelized and non-parallelized tasks consume most of the wall clock time in a very fine grain environment. Timing comparisons on a Cray C90 demonstrate that Parallel SPLITFLOW runs 2.4 times faster on 8 processors than its non-parallel counterpart autotasked over 8 processors.

  20. Mechanistic prediction of fission-gas behavior during in-cell transient heating tests on LWR fuel using the GRASS-SST and FASTGRASS computer codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rest, J; Gehl, S M

    1979-01-01

    GRASS-SST and FASTGRASS are mechanistic computer codes for predicting fission-gas behavior in UO/sub 2/-base fuels during steady-state and transient conditions. FASTGRASS was developed in order to satisfy the need for a fast-running alternative to GRASS-SST. Althrough based on GRASS-SST, FASTGRASS is approximately an order of magnitude quicker in execution. The GRASS-SST transient analysis has evolved through comparisons of code predictions with the fission-gas release and physical phenomena that occur during reactor operation and transient direct-electrical-heating (DEH) testing of irradiated light-water reactor fuel. The FASTGRASS calculational procedure is described in this paper, along with models of key physical processes included inmore » both FASTGRASS and GRASS-SST. Predictions of fission-gas release obtained from GRASS-SST and FASTGRASS analyses are compared with experimental observations from a series of DEH tests. The major conclusions is that the computer codes should include an improved model for the evolution of the grain-edge porosity.« less

  1. PROTEUS two-dimensional Navier-Stokes computer code, version 1.0. Volume 3: Programmer's reference

    NASA Technical Reports Server (NTRS)

    Towne, Charles E.; Schwab, John R.; Benson, Thomas J.; Suresh, Ambady

    1990-01-01

    A new computer code was developed to solve the 2-D or axisymmetric, Reynolds-averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The thin-layer or Euler equations may also be solved. Turbulence is modeled using an algebraic eddy viscosity model. The objective was to develop a code for aerospace applications that is easy to use and easy to modify. Code readability, modularity, and documentation were emphasized. The equations are written in nonorthogonal body-fitted coordinates, and solved by marching in time using a fully-coupled alternating-direction-implicit procedure with generalized first- or second-order time differencing. All terms are linearized using second-order Taylor series. The boundary conditions are treated implicitly, and may be steady, unsteady, or spatially periodic. Simple Cartesian or polar grids may be generated internally by the program. More complex geometries require an externally generated computational coordinate system. The documentation is divided into three volumes. Volume 3 is the Programmer's Reference, and describes the program structure, the FORTRAN variables stored in common blocks, and the details of each subprogram.

  2. Field estimates of gravity terrain corrections and Y2K-compatible method to convert from gravity readings with multiple base stations to tide- and long-term drift-corrected observations

    USGS Publications Warehouse

    Plouff, Donald

    2000-01-01

    Gravity observations are directly made or are obtained from other sources by the U.S. Geological Survey in order to prepare maps of the anomalous gravity field and consequently to interpret the subsurface distribution of rock densities and associated lithologic or geologic units. Observations are made in the field with gravity meters at new locations and at reoccupations of previously established gravity "stations." This report illustrates an interactively-prompted series of steps needed to convert gravity "readings" to values that are tied to established gravity datums and includes computer programs to implement those steps. Inasmuch as individual gravity readings have small variations, gravity-meter (instrument) drift may not be smoothly variable, and acommodations may be needed for ties to previously established stations, the reduction process is iterative. Decision-making by the program user is prompted by lists of best values and graphical displays. Notes about irregularities of topography, which affect the value of observed gravity but are not shown in sufficient detail on topographic maps, must be recorded in the field. This report illustrates ways to record field notes (distances, heights, and slope angles) and includes computer programs to convert field notes to gravity terrain corrections. This report includes approaches that may serve as models for other applications, for example: portrayal of system flow; style of quality control to document and validate computer applications; lack of dependence on proprietary software except source code compilation; method of file-searching with a dwindling list; interactive prompting; computer code to write directly in the PostScript (Adobe Systems Incorporated) printer language; and high-lighting the four-digit year on the first line of time-dependent data sets for assured Y2K compatibility. Computer source codes provided are written in the Fortran scientific language. In order for the programs to operate, they first must be converted (compiled) into an executable form on the user's computer. Although program testing was done in a UNIX (tradename of American Telephone and Telegraph Company) computer environment, it is anticipated that only a system-dependent date-and-time function may need to be changed for adaptation to other computer platforms that accept standard Fortran code.d del iliscipit volorer sequi ting etue feum zzriliquatum zzriustrud esenibh ex esto esequat.

  3. Nonoccurrence of Negotiation of Meaning in Task-Based Synchronous Computer-Mediated Communication

    ERIC Educational Resources Information Center

    Van Der Zwaard, Rose; Bannink, Anne

    2016-01-01

    This empirical study investigated the occurrence of meaning negotiation in an interactive synchronous computer-mediated second language (L2) environment. Sixteen dyads (N = 32) consisting of nonnative speakers (NNSs) and native speakers (NSs) of English performed 2 different tasks using videoconferencing and written chat. The data were coded and…

  4. Utilizing GPUs to Accelerate Turbomachinery CFD Codes

    NASA Technical Reports Server (NTRS)

    MacCalla, Weylin; Kulkarni, Sameer

    2016-01-01

    GPU computing has established itself as a way to accelerate parallel codes in the high performance computing world. This work focuses on speeding up APNASA, a legacy CFD code used at NASA Glenn Research Center, while also drawing conclusions about the nature of GPU computing and the requirements to make GPGPU worthwhile on legacy codes. Rewriting and restructuring of the source code was avoided to limit the introduction of new bugs. The code was profiled and investigated for parallelization potential, then OpenACC directives were used to indicate parallel parts of the code. The use of OpenACC directives was not able to reduce the runtime of APNASA on either the NVIDIA Tesla discrete graphics card, or the AMD accelerated processing unit. Additionally, it was found that in order to justify the use of GPGPU, the amount of parallel work being done within a kernel would have to greatly exceed the work being done by any one portion of the APNASA code. It was determined that in order for an application like APNASA to be accelerated on the GPU, it should not be modular in nature, and the parallel portions of the code must contain a large portion of the code's computation time.

  5. PASCO: Structural panel analysis and sizing code: Users manual - Revised

    NASA Technical Reports Server (NTRS)

    Anderson, M. S.; Stroud, W. J.; Durling, B. J.; Hennessy, K. W.

    1981-01-01

    A computer code denoted PASCO is described for analyzing and sizing uniaxially stiffened composite panels. Buckling and vibration analyses are carried out with a linked plate analysis computer code denoted VIPASA, which is included in PASCO. Sizing is based on nonlinear mathematical programming techniques and employs a computer code denoted CONMIN, also included in PASCO. Design requirements considered are initial buckling, material strength, stiffness and vibration frequency. A user's manual for PASCO is presented.

  6. Computation of Reacting Flows in Combustion Processes

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Chen, Kuo-Huey

    1997-01-01

    The main objective of this research was to develop an efficient three-dimensional computer code for chemically reacting flows. The main computer code developed is ALLSPD-3D. The ALLSPD-3D computer program is developed for the calculation of three-dimensional, chemically reacting flows with sprays. The ALL-SPD code employs a coupled, strongly implicit solution procedure for turbulent spray combustion flows. A stochastic droplet model and an efficient method for treatment of the spray source terms in the gas-phase equations are used to calculate the evaporating liquid sprays. The chemistry treatment in the code is general enough that an arbitrary number of reaction and species can be defined by the users. Also, it is written in generalized curvilinear coordinates with both multi-block and flexible internal blockage capabilities to handle complex geometries. In addition, for general industrial combustion applications, the code provides both dilution and transpiration cooling capabilities. The ALLSPD algorithm, which employs the preconditioning and eigenvalue rescaling techniques, is capable of providing efficient solution for flows with a wide range of Mach numbers. Although written for three-dimensional flows in general, the code can be used for two-dimensional and axisymmetric flow computations as well. The code is written in such a way that it can be run in various computer platforms (supercomputers, workstations and parallel processors) and the GUI (Graphical User Interface) should provide a user-friendly tool in setting up and running the code.

  7. Space shuttle environmental and thermal control life support system computer program

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A computer program for the design and operation of the space shuttle environmental and thermal control life support system is presented. The subjects discussed are: (1) basic optimization program, (2) off design performance, (3) radiator/evaporator expendable usage, (4) component weights, and (5) computer program operating procedures.

  8. The contemptuous separation: Facial expressions of emotion and breakups in young adulthood

    PubMed Central

    Heshmati, Saeideh; Sbarra, David A.; Mason, Ashley E.

    2017-01-01

    The importance of studying specific and expressed emotions after a stressful life event is well known, yet few studies have moved beyond assessing self-reported emotional responses to a romantic breakup. This study examined associations between computer-recognized facial expressions and self-reported breakup-related distress among recently separated college-aged young adults (N = 135; 37 men) on four visits across 9 weeks. Participants’ facial expressions were coded using the Computer Expression Recognition Toolbox while participants spoke about their breakups. Of the seven expressed emotions studied, only Contempt showed a unique association with breakup-related distress over time. At baseline, greater Contempt was associated with less breakup-related distress; however, over time, greater Contempt was associated with greater breakup-related distress. PMID:29249896

  9. The contemptuous separation: Facial expressions of emotion and breakups in young adulthood.

    PubMed

    Heshmati, Saeideh; Sbarra, David A; Mason, Ashley E

    2017-06-01

    The importance of studying specific and expressed emotions after a stressful life event is well known, yet few studies have moved beyond assessing self-reported emotional responses to a romantic breakup. This study examined associations between computer-recognized facial expressions and self-reported breakup-related distress among recently separated college-aged young adults ( N = 135; 37 men) on four visits across 9 weeks. Participants' facial expressions were coded using the Computer Expression Recognition Toolbox while participants spoke about their breakups. Of the seven expressed emotions studied, only Contempt showed a unique association with breakup-related distress over time. At baseline, greater Contempt was associated with less breakup-related distress; however, over time, greater Contempt was associated with greater breakup-related distress.

  10. Computer program optimizes design of nuclear radiation shields

    NASA Technical Reports Server (NTRS)

    Lahti, G. P.

    1971-01-01

    Computer program, OPEX 2, determines minimum weight, volume, or cost for shields. Program incorporates improved coding, simplified data input, spherical geometry, and an expanded output. Method is capable of altering dose-thickness relationship when a shield layer has been removed.

  11. Evaluation of a Multicore-Optimized Implementation for Tomographic Reconstruction

    PubMed Central

    Agulleiro, Jose-Ignacio; Fernández, José Jesús

    2012-01-01

    Tomography allows elucidation of the three-dimensional structure of an object from a set of projection images. In life sciences, electron microscope tomography is providing invaluable information about the cell structure at a resolution of a few nanometres. Here, large images are required to combine wide fields of view with high resolution requirements. The computational complexity of the algorithms along with the large image size then turns tomographic reconstruction into a computationally demanding problem. Traditionally, high-performance computing techniques have been applied to cope with such demands on supercomputers, distributed systems and computer clusters. In the last few years, the trend has turned towards graphics processing units (GPUs). Here we present a detailed description and a thorough evaluation of an alternative approach that relies on exploitation of the power available in modern multicore computers. The combination of single-core code optimization, vector processing, multithreading and efficient disk I/O operations succeeds in providing fast tomographic reconstructions on standard computers. The approach turns out to be competitive with the fastest GPU-based solutions thus far. PMID:23139768

  12. MHD code using multi graphical processing units: SMAUG+

    NASA Astrophysics Data System (ADS)

    Gyenge, N.; Griffiths, M. K.; Erdélyi, R.

    2018-01-01

    This paper introduces the Sheffield Magnetohydrodynamics Algorithm Using GPUs (SMAUG+), an advanced numerical code for solving magnetohydrodynamic (MHD) problems, using multi-GPU systems. Multi-GPU systems facilitate the development of accelerated codes and enable us to investigate larger model sizes and/or more detailed computational domain resolutions. This is a significant advancement over the parent single-GPU MHD code, SMAUG (Griffiths et al., 2015). Here, we demonstrate the validity of the SMAUG + code, describe the parallelisation techniques and investigate performance benchmarks. The initial configuration of the Orszag-Tang vortex simulations are distributed among 4, 16, 64 and 100 GPUs. Furthermore, different simulation box resolutions are applied: 1000 × 1000, 2044 × 2044, 4000 × 4000 and 8000 × 8000 . We also tested the code with the Brio-Wu shock tube simulations with model size of 800 employing up to 10 GPUs. Based on the test results, we observed speed ups and slow downs, depending on the granularity and the communication overhead of certain parallel tasks. The main aim of the code development is to provide massively parallel code without the memory limitation of a single GPU. By using our code, the applied model size could be significantly increased. We demonstrate that we are able to successfully compute numerically valid and large 2D MHD problems.

  13. NASA Rotor 37 CFD Code Validation: Glenn-HT Code

    NASA Technical Reports Server (NTRS)

    Ameri, Ali A.

    2010-01-01

    In order to advance the goals of NASA aeronautics programs, it is necessary to continuously evaluate and improve the computational tools used for research and design at NASA. One such code is the Glenn-HT code which is used at NASA Glenn Research Center (GRC) for turbomachinery computations. Although the code has been thoroughly validated for turbine heat transfer computations, it has not been utilized for compressors. In this work, Glenn-HT was used to compute the flow in a transonic compressor and comparisons were made to experimental data. The results presented here are in good agreement with this data. Most of the measures of performance are well within the measurement uncertainties and the exit profiles of interest agree with the experimental measurements.

  14. Final report for the Tera Computer TTI CRADA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, G.S.; Pavlakos, C.; Silva, C.

    1997-01-01

    Tera Computer and Sandia National Laboratories have completed a CRADA, which examined the Tera Multi-Threaded Architecture (MTA) for use with large codes of importance to industry and DOE. The MTA is an innovative architecture that uses parallelism to mask latency between memories and processors. The physical implementation is a parallel computer with high cross-section bandwidth and GaAs processors designed by Tera, which support many small computation threads and fast, lightweight context switches between them. When any thread blocks while waiting for memory accesses to complete, another thread immediately begins execution so that high CPU utilization is maintained. The Tera MTAmore » parallel computer has a single, global address space, which is appealing when porting existing applications to a parallel computer. This ease of porting is further enabled by compiler technology that helps break computations into parallel threads. DOE and Sandia National Laboratories were interested in working with Tera to further develop this computing concept. While Tera Computer would continue the hardware development and compiler research, Sandia National Laboratories would work with Tera to ensure that their compilers worked well with important Sandia codes, most particularly CTH, a shock physics code used for weapon safety computations. In addition to that important code, Sandia National Laboratories would complete research on a robotic path planning code, SANDROS, which is important in manufacturing applications, and would evaluate the MTA performance on this code. Finally, Sandia would work directly with Tera to develop 3D visualization codes, which would be appropriate for use with the MTA. Each of these tasks has been completed to the extent possible, given that Tera has just completed the MTA hardware. All of the CRADA work had to be done on simulators.« less

  15. Analysis of cold worked holes for structural life extension

    NASA Technical Reports Server (NTRS)

    Wieland, David H.; Cutshall, Jon T.; Burnside, O. Hal; Cardinal, Joseph W.

    1994-01-01

    Cold working holes for improved fatigue life of fastener holes are widely used on aircraft. This paper presents methods used by the authors to determine the percent of cold working to be applied and to analyze fatigue crack growth of cold worked fastener holes. An elastic, perfectly-plastic analysis of a thick-walled tube is used to determine the stress field during the cold working process and the residual stress field after the process is completed. The results of the elastic/plastic analysis are used to determine the amount of cold working to apply to a hole. The residual stress field is then used to perform damage tolerance analysis of a crack growing out of a cold worked fastener hole. This analysis method is easily implemented in existing crack growth computer codes so that the cold worked holes can be used to extend the structural life of aircraft. Analytical results are compared to test data where appropriate.

  16. An Analysis and Procedure for Determining Space Environmental Sink Temperatures With Selected Computational Results

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2001-01-01

    The purpose of this report was to analyze the heat-transfer problem posed by the determination of spacecraft temperatures and to incorporate the theoretically derived relationships in the computational code TSCALC. The basis for the code was a theoretical analysis of the thermal radiative equilibrium in space, particularly in the Solar System. Beginning with the solar luminosity, the code takes into account these key variables: (1) the spacecraft-to-Sun distance expressed in astronomical units (AU), where 1 AU represents the average Sun-to-Earth distance of 149.6 million km; (2) the angle (arc degrees) at which solar radiation is incident upon a spacecraft surface (ILUMANG); (3) the spacecraft surface temperature (a radiator or photovoltaic array) in kelvin, the surface absorptivity-to-emissivity ratio alpha/epsilon with respect to the solar radiation and (alpha/epsilon)(sub 2) with respect to planetary radiation; and (4) the surface view factor to space F. Outputs from the code have been used to determine environmental temperatures in various Earth orbits. The code was also utilized as a subprogram in the design of power system radiators for deep-space probes.

  17. Diablo 2.0: A modern DNS/LES code for the incompressible NSE leveraging new time-stepping and multigrid algorithms

    NASA Astrophysics Data System (ADS)

    Cavaglieri, Daniele; Bewley, Thomas; Mashayek, Ali

    2015-11-01

    We present a new code, Diablo 2.0, for the simulation of the incompressible NSE in channel and duct flows with strong grid stretching near walls. The code leverages the fractional step approach with a few twists. New low-storage IMEX (implicit-explicit) Runge-Kutta time-marching schemes are tested which are superior to the traditional and widely-used CN/RKW3 (Crank-Nicolson/Runge-Kutta-Wray) approach; the new schemes tested are L-stable in their implicit component, and offer improved overall order of accuracy and stability with, remarkably, similar computational cost and storage requirements. For duct flow simulations, our new code also introduces a new smoother for the multigrid solver for the pressure Poisson equation. The classic approach, involving alternating-direction zebra relaxation, is replaced by a new scheme, dubbed tweed relaxation, which achieves the same convergence rate with roughly half the computational cost. The code is then tested on the simulation of a shear flow instability in a duct, a classic problem in fluid mechanics which has been the object of extensive numerical modelling for its role as a canonical pathway to energetic turbulence in several fields of science and engineering.

  18. Development of a dynamic coupled hydro-geomechanical code and its application to induced seismicity

    NASA Astrophysics Data System (ADS)

    Miah, Md Mamun

    This research describes the importance of a hydro-geomechanical coupling in the geologic sub-surface environment from fluid injection at geothermal plants, large-scale geological CO2 sequestration for climate mitigation, enhanced oil recovery, and hydraulic fracturing during wells construction in the oil and gas industries. A sequential computational code is developed to capture the multiphysics interaction behavior by linking a flow simulation code TOUGH2 and a geomechanics modeling code PyLith. Numerical formulation of each code is discussed to demonstrate their modeling capabilities. The computational framework involves sequential coupling, and solution of two sub-problems- fluid flow through fractured and porous media and reservoir geomechanics. For each time step of flow calculation, pressure field is passed to the geomechanics code to compute effective stress field and fault slips. A simplified permeability model is implemented in the code that accounts for the permeability of porous and saturated rocks subject to confining stresses. The accuracy of the TOUGH-PyLith coupled simulator is tested by simulating Terzaghi's 1D consolidation problem. The modeling capability of coupled poroelasticity is validated by benchmarking it against Mandel's problem. The code is used to simulate both quasi-static and dynamic earthquake nucleation and slip distribution on a fault from the combined effect of far field tectonic loading and fluid injection by using an appropriate fault constitutive friction model. Results from the quasi-static induced earthquake simulations show a delayed response in earthquake nucleation. This is attributed to the increased total stress in the domain and not accounting for pressure on the fault. However, this issue is resolved in the final chapter in simulating a single event earthquake dynamic rupture. Simulation results show that fluid pressure has a positive effect on slip nucleation and subsequent crack propagation. This is confirmed by running a sensitivity analysis that shows an increase in injection well distance results in delayed slip nucleation and rupture propagation on the fault.

  19. The dilemma of the symbols: analogies between philosophy, biology and artificial life.

    PubMed

    Spadaro, Salvatore

    2013-01-01

    This article analyzes some analogies going from Artificial Life questions about the symbol-matter connection to Artificial Intelligence questions about symbol-grounding. It focuses on the notion of the interpretability of syntax and how the symbols are integrated in a unity ("binding problem"). Utilizing the DNA code as a model, this paper discusses how syntactic features could be defined as high-grade characteristics of the non syntactic relations in a material-dynamic structure, by using an emergentist approach. This topic furnishes the ground for a confutation of J. Searle's statement that syntax is observer-relative, as he wrote in his book "Mind: A Brief Introduction". Moreover the evolving discussion also modifies the classic symbol-processing doctrine in the mind which Searle attacks as a strong AL argument, that life could be implemented in a computational mode. Lastly, this paper furnishes a new way of support for the autonomous systems thesis in Artificial Life and Artificial Intelligence, using, inter alia, the "adaptive resonance theory" (ART).

  20. Analysis of the Length of Braille Texts in English Braille American Edition, the Nemeth Code, and Computer Braille Code versus the Unified English Braille Code

    ERIC Educational Resources Information Center

    Knowlton, Marie; Wetzel, Robin

    2006-01-01

    This study compared the length of text in English Braille American Edition, the Nemeth code, and the computer braille code with the Unified English Braille Code (UEBC)--also known as Unified English Braille (UEB). The findings indicate that differences in the length of text are dependent on the type of material that is transcribed and the grade…

  1. A MATLAB based 3D modeling and inversion code for MT data

    NASA Astrophysics Data System (ADS)

    Singh, Arun; Dehiya, Rahul; Gupta, Pravin K.; Israil, M.

    2017-07-01

    The development of a MATLAB based computer code, AP3DMT, for modeling and inversion of 3D Magnetotelluric (MT) data is presented. The code comprises two independent components: grid generator code and modeling/inversion code. The grid generator code performs model discretization and acts as an interface by generating various I/O files. The inversion code performs core computations in modular form - forward modeling, data functionals, sensitivity computations and regularization. These modules can be readily extended to other similar inverse problems like Controlled-Source EM (CSEM). The modular structure of the code provides a framework useful for implementation of new applications and inversion algorithms. The use of MATLAB and its libraries makes it more compact and user friendly. The code has been validated on several published models. To demonstrate its versatility and capabilities the results of inversion for two complex models are presented.

  2. Enhancing Scalability and Efficiency of the TOUGH2_MP for LinuxClusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Keni; Wu, Yu-Shu

    2006-04-17

    TOUGH2{_}MP, the parallel version TOUGH2 code, has been enhanced by implementing more efficient communication schemes. This enhancement is achieved through reducing the amount of small-size messages and the volume of large messages. The message exchange speed is further improved by using non-blocking communications for both linear and nonlinear iterations. In addition, we have modified the AZTEC parallel linear-equation solver to nonblocking communication. Through the improvement of code structuring and bug fixing, the new version code is now more stable, while demonstrating similar or even better nonlinear iteration converging speed than the original TOUGH2 code. As a result, the new versionmore » of TOUGH2{_}MP is improved significantly in its efficiency. In this paper, the scalability and efficiency of the parallel code are demonstrated by solving two large-scale problems. The testing results indicate that speedup of the code may depend on both problem size and complexity. In general, the code has excellent scalability in memory requirement as well as computing time.« less

  3. Groundwater flow and heat transport for systems undergoing freeze-thaw: Intercomparison of numerical simulators for 2D test cases

    NASA Astrophysics Data System (ADS)

    Grenier, Christophe; Anbergen, Hauke; Bense, Victor; Chanzy, Quentin; Coon, Ethan; Collier, Nathaniel; Costard, François; Ferry, Michel; Frampton, Andrew; Frederick, Jennifer; Gonçalvès, Julio; Holmén, Johann; Jost, Anne; Kokh, Samuel; Kurylyk, Barret; McKenzie, Jeffrey; Molson, John; Mouche, Emmanuel; Orgogozo, Laurent; Pannetier, Romain; Rivière, Agnès; Roux, Nicolas; Rühaak, Wolfram; Scheidegger, Johanna; Selroos, Jan-Olof; Therrien, René; Vidstrand, Patrik; Voss, Clifford

    2018-04-01

    In high-elevation, boreal and arctic regions, hydrological processes and associated water bodies can be strongly influenced by the distribution of permafrost. Recent field and modeling studies indicate that a fully-coupled multidimensional thermo-hydraulic approach is required to accurately model the evolution of these permafrost-impacted landscapes and groundwater systems. However, the relatively new and complex numerical codes being developed for coupled non-linear freeze-thaw systems require verification. This issue is addressed by means of an intercomparison of thirteen numerical codes for two-dimensional test cases with several performance metrics (PMs). These codes comprise a wide range of numerical approaches, spatial and temporal discretization strategies, and computational efficiencies. Results suggest that the codes provide robust results for the test cases considered and that minor discrepancies are explained by computational precision. However, larger discrepancies are observed for some PMs resulting from differences in the governing equations, discretization issues, or in the freezing curve used by some codes.

  4. Toward a first-principles integrated simulation of tokamak edge plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, C S; Klasky, Scott A; Cummings, Julian

    2008-01-01

    Performance of the ITER is anticipated to be highly sensitive to the edge plasma condition. The edge pedestal in ITER needs to be predicted from an integrated simulation of the necessary firstprinciples, multi-scale physics codes. The mission of the SciDAC Fusion Simulation Project (FSP) Prototype Center for Plasma Edge Simulation (CPES) is to deliver such a code integration framework by (1) building new kinetic codes XGC0 and XGC1, which can simulate the edge pedestal buildup; (2) using and improving the existing MHD codes ELITE, M3D-OMP, M3D-MPP and NIMROD, for study of large-scale edge instabilities called Edge Localized Modes (ELMs); andmore » (3) integrating the codes into a framework using cutting-edge computer science technology. Collaborative effort among physics, computer science, and applied mathematics within CPES has created the first working version of the End-to-end Framework for Fusion Integrated Simulation (EFFIS), which can be used to study the pedestal-ELM cycles.« less

  5. Code OK3 - An upgraded version of OK2 with beam wobbling function

    NASA Astrophysics Data System (ADS)

    Ogoyski, A. I.; Kawata, S.; Popov, P. H.

    2010-07-01

    For computer simulations on heavy ion beam (HIB) irradiation onto a target with an arbitrary shape and structure in heavy ion fusion (HIF), the code OK2 was developed and presented in Computer Physics Communications 161 (2004). Code OK3 is an upgrade of OK2 including an important capability of wobbling beam illumination. The wobbling beam introduces a unique possibility for a smooth mechanism of inertial fusion target implosion, so that sufficient fusion energy is released to construct a fusion reactor in future. New version program summaryProgram title: OK3 Catalogue identifier: ADST_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADST_v3_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 221 517 No. of bytes in distributed program, including test data, etc.: 2 471 015 Distribution format: tar.gz Programming language: C++ Computer: PC (Pentium 4, 1 GHz or more recommended) Operating system: Windows or UNIX RAM: 2048 MBytes Classification: 19.7 Catalogue identifier of previous version: ADST_v2_0 Journal reference of previous version: Comput. Phys. Comm. 161 (2004) 143 Does the new version supersede the previous version?: Yes Nature of problem: In heavy ion fusion (HIF), ion cancer therapy, material processing, etc., a precise beam energy deposition is essentially important [1]. Codes OK1 and OK2 have been developed to simulate the heavy ion beam energy deposition in three-dimensional arbitrary shaped targets [2, 3]. Wobbling beam illumination is important to smooth the beam energy deposition nonuniformity in HIF, so that a uniform target implosion is realized and a sufficient fusion output energy is released. Solution method: OK3 code works on the base of OK1 and OK2 [2, 3]. The code simulates a multi-beam illumination on a target with arbitrary shape and structure, including beam wobbling function. Reasons for new version: The code OK3 is based on OK2 [3] and uses the same algorithm with some improvements, the most important one is the beam wobbling function. Summary of revisions:In the code OK3, beams are subdivided on many bunches. The displacement of each bunch center from the initial beam direction is calculated. Code OK3 allows the beamlet number to vary from bunch to bunch. That reduces the calculation error especially in case of very complicated mesh structure with big internal holes. The target temperature rises during the time of energy deposition. Some procedures are improved to perform faster. The energy conservation is checked up on each step of calculation process and corrected if necessary. New procedures included in OK3 Procedure BeamCenterRot( ) rotates the beam axis around the impinging direction of each beam. Procedure BeamletRot( ) rotates the beamlet axes that belong to each beam. Procedure Rotation( ) sets the coordinates of rotated beams and beamlets in chamber and pellet systems. Procedure BeamletOut( ) calculates the lost energy of ions that have not impinged on the target. Procedure TargetT( ) sets the temperature of the target layer of energy deposition during the irradiation process. Procedure ECL( ) checks up the energy conservation law at each step of the energy deposition process. Procedure ECLt( ) performs the final check up of the energy conservation law at the end of deposition process. Modified procedures in OK3 Procedure InitBeam( ): This procedure initializes the beam radius and coefficients A1, A2, A3, A4 and A5 for Gauss distributed beams [2]. It is enlarged in OK3 and can set beams with radii from 1 to 20 mm. Procedure kBunch( ) is modified to allow beamlet number variation from bunch to bunch during the deposition. Procedure ijkSp( ) and procedure Hole( ) are modified to perform faster. Procedure Espl( ) and procedure ChechE( ) are modified to increase the calculation accuracy. Procedure SD( ) calculates the total relative root-mean-square (RMS) deviation and the total relative peak-to-valley (PTV) deviation in energy deposition non-uniformity. This procedure is not included in code OK2 because of its limited applications (for spherical targets only). It is taken from code OK1 and modified to perform with code OK3. Running time: The execution time depends on the pellet mesh number and the number of beams in the simulated illumination as well as on the beam characteristics (beam radius on the pellet surface, beam subdivision, projectile particle energy and so on). In almost all of the practical running tests performed, the typical running time for one beam deposition is about 30 s on a PC with a CPU of Pentium 4, 2.4 GHz. References:A.I. Ogoyski, et al., Heavy ion beam irradiation non-uniformity in inertial fusion, Phys. Lett. A 315 (2003) 372-377. A.I. Ogoyski, et al., Code OK1 - Simulation of multi-beam irradiation on a spherical target in heavy ion fusion, Comput. Phys. Comm. 157 (2004) 160-172. A.I. Ogoyski, et al., Code OK2 - A simulation code of ion-beam illumination on an arbitrary shape and structure target, Comput. Phys. Comm. 161 (2004) 143-150.

  6. Applications of automatic differentiation in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Green, Lawrence L.; Carle, A.; Bischof, C.; Haigler, Kara J.; Newman, Perry A.

    1994-01-01

    Automatic differentiation (AD) is a powerful computational method that provides for computing exact sensitivity derivatives (SD) from existing computer programs for multidisciplinary design optimization (MDO) or in sensitivity analysis. A pre-compiler AD tool for FORTRAN programs called ADIFOR has been developed. The ADIFOR tool has been easily and quickly applied by NASA Langley researchers to assess the feasibility and computational impact of AD in MDO with several different FORTRAN programs. These include a state-of-the-art three dimensional multigrid Navier-Stokes flow solver for wings or aircraft configurations in transonic turbulent flow. With ADIFOR the user specifies sets of independent and dependent variables with an existing computer code. ADIFOR then traces the dependency path throughout the code, applies the chain rule to formulate derivative expressions, and generates new code to compute the required SD matrix. The resulting codes have been verified to compute exact non-geometric and geometric SD for a variety of cases. in less time than is required to compute the SD matrix using centered divided differences.

  7. Fundamentals, current state of the development of, and prospects for further improvement of the new-generation thermal-hydraulic computational HYDRA-IBRAE/LM code for simulation of fast reactor systems

    NASA Astrophysics Data System (ADS)

    Alipchenkov, V. M.; Anfimov, A. M.; Afremov, D. A.; Gorbunov, V. S.; Zeigarnik, Yu. A.; Kudryavtsev, A. V.; Osipov, S. L.; Mosunova, N. A.; Strizhov, V. F.; Usov, E. V.

    2016-02-01

    The conceptual fundamentals of the development of the new-generation system thermal-hydraulic computational HYDRA-IBRAE/LM code are presented. The code is intended to simulate the thermalhydraulic processes that take place in the loops and the heat-exchange equipment of liquid-metal cooled fast reactor systems under normal operation and anticipated operational occurrences and during accidents. The paper provides a brief overview of Russian and foreign system thermal-hydraulic codes for modeling liquid-metal coolants and gives grounds for the necessity of development of a new-generation HYDRA-IBRAE/LM code. Considering the specific engineering features of the nuclear power plants (NPPs) equipped with the BN-1200 and the BREST-OD-300 reactors, the processes and the phenomena are singled out that require a detailed analysis and development of the models to be correctly described by the system thermal-hydraulic code in question. Information on the functionality of the computational code is provided, viz., the thermalhydraulic two-phase model, the properties of the sodium and the lead coolants, the closing equations for simulation of the heat-mass exchange processes, the models to describe the processes that take place during the steam-generator tube rupture, etc. The article gives a brief overview of the usability of the computational code, including a description of the support documentation and the supply package, as well as possibilities of taking advantages of the modern computer technologies, such as parallel computations. The paper shows the current state of verification and validation of the computational code; it also presents information on the principles of constructing of and populating the verification matrices for the BREST-OD-300 and the BN-1200 reactor systems. The prospects are outlined for further development of the HYDRA-IBRAE/LM code, introduction of new models into it, and enhancement of its usability. It is shown that the program of development and practical application of the code will allow carrying out in the nearest future the computations to analyze the safety of potential NPP projects at a qualitatively higher level.

  8. Performance assessment of KORAT-3D on the ANL IBM-SP computer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexeyev, A.V.; Zvenigorodskaya, O.A.; Shagaliev, R.M.

    1999-09-01

    The TENAR code is currently being developed at the Russian Federal Nuclear Center (VNIIEF) as a coupled dynamics code for the simulation of transients in VVER and RBMK systems and other nuclear systems. The neutronic module in this code system is KORAT-3D. This module is also one of the most computationally intensive components of the code system. A parallel version of KORAT-3D has been implemented to achieve the goal of obtaining transient solutions in reasonable computational time, particularly for RBMK calculations that involve the application of >100,000 nodes. An evaluation of the KORAT-3D code performance was recently undertaken on themore » Argonne National Laboratory (ANL) IBM ScalablePower (SP) parallel computer located in the Mathematics and Computer Science Division of ANL. At the time of the study, the ANL IBM-SP computer had 80 processors. This study was conducted under the auspices of a technical staff exchange program sponsored by the International Nuclear Safety Center (INSC).« less

  9. Scalability of Parallel Spatial Direct Numerical Simulations on Intel Hypercube and IBM SP1 and SP2

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.; Hanebutte, Ulf R.; Zubair, Mohammad

    1995-01-01

    The implementation and performance of a parallel spatial direct numerical simulation (PSDNS) approach on the Intel iPSC/860 hypercube and IBM SP1 and SP2 parallel computers is documented. Spatially evolving disturbances associated with the laminar-to-turbulent transition in boundary-layer flows are computed with the PSDNS code. The feasibility of using the PSDNS to perform transition studies on these computers is examined. The results indicate that PSDNS approach can effectively be parallelized on a distributed-memory parallel machine by remapping the distributed data structure during the course of the calculation. Scalability information is provided to estimate computational costs to match the actual costs relative to changes in the number of grid points. By increasing the number of processors, slower than linear speedups are achieved with optimized (machine-dependent library) routines. This slower than linear speedup results because the computational cost is dominated by FFT routine, which yields less than ideal speedups. By using appropriate compile options and optimized library routines on the SP1, the serial code achieves 52-56 M ops on a single node of the SP1 (45 percent of theoretical peak performance). The actual performance of the PSDNS code on the SP1 is evaluated with a "real world" simulation that consists of 1.7 million grid points. One time step of this simulation is calculated on eight nodes of the SP1 in the same time as required by a Cray Y/MP supercomputer. For the same simulation, 32-nodes of the SP1 and SP2 are required to reach the performance of a Cray C-90. A 32 node SP1 (SP2) configuration is 2.9 (4.6) times faster than a Cray Y/MP for this simulation, while the hypercube is roughly 2 times slower than the Y/MP for this application. KEY WORDS: Spatial direct numerical simulations; incompressible viscous flows; spectral methods; finite differences; parallel computing.

  10. Profugus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Thomas; Hamilton, Steven; Slattery, Stuart

    Profugus is an open-source mini-application (mini-app) for radiation transport and reactor applications. It contains the fundamental computational kernels used in the Exnihilo code suite from Oak Ridge National Laboratory. However, Exnihilo is production code with a substantial user base. Furthermore, Exnihilo is export controlled. This makes collaboration with computer scientists and computer engineers difficult. Profugus is designed to bridge that gap. By encapsulating the core numerical algorithms in an abbreviated code base that is open-source, computer scientists can analyze the algorithms and easily make code-architectural changes to test performance without compromising the production code values of Exnihilo. Profugus is notmore » meant to be production software with respect to problem analysis. The computational kernels in Profugus are designed to analyze performance, not correctness. Nonetheless, users of Profugus can setup and run problems with enough real-world features to be useful as proof-of-concept for actual production work.« less

  11. Coupled multi-disciplinary composites behavior simulation

    NASA Technical Reports Server (NTRS)

    Singhal, Surendra N.; Murthy, Pappu L. N.; Chamis, Christos C.

    1993-01-01

    The capabilities of the computer code CSTEM (Coupled Structural/Thermal/Electro-Magnetic Analysis) are discussed and demonstrated. CSTEM computationally simulates the coupled response of layered multi-material composite structures subjected to simultaneous thermal, structural, vibration, acoustic, and electromagnetic loads and includes the effect of aggressive environments. The composite material behavior and structural response is determined at its various inherent scales: constituents (fiber/matrix), ply, laminate, and structural component. The thermal and mechanical properties of the constituents are considered to be nonlinearly dependent on various parameters such as temperature and moisture. The acoustic and electromagnetic properties also include dependence on vibration and electromagnetic wave frequencies, respectively. The simulation is based on a three dimensional finite element analysis in conjunction with composite mechanics and with structural tailoring codes, and with acoustic and electromagnetic analysis methods. An aircraft engine composite fan blade is selected as a typical structural component to demonstrate the CSTEM capabilities. Results of various coupled multi-disciplinary heat transfer, structural, vibration, acoustic, and electromagnetic analyses for temperature distribution, stress and displacement response, deformed shape, vibration frequencies, mode shapes, acoustic noise, and electromagnetic reflection from the fan blade are discussed for their coupled effects in hot and humid environments. Collectively, these results demonstrate the effectiveness of the CSTEM code in capturing the coupled effects on the various responses of composite structures subjected to simultaneous multiple real-life loads.

  12. 26 CFR 1.802-2 - Taxable years affected.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) INCOME TAXES (CONTINUED) Life Insurance Companies § 1.802-2 Taxable years affected. Section 1.802(b)-1 is... Revenue Code of 1954, as amended by the Life Insurance Company Income Tax Act of 1959 (73 Stat. 112) and... Insurance Company Income Tax Act of 1959 (73 Stat. 112), section 3 of the Act of October 23, 1962 (76 Stat...

  13. 26 CFR 1.802-2 - Taxable years affected.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) INCOME TAXES (CONTINUED) Life Insurance Companies § 1.802-2 Taxable years affected. Section 1.802(b)-1 is... Revenue Code of 1954, as amended by the Life Insurance Company Income Tax Act of 1959 (73 Stat. 112) and... Insurance Company Income Tax Act of 1959 (73 Stat. 112), section 3 of the Act of October 23, 1962 (76 Stat...

  14. 26 CFR 1.802-2 - Taxable years affected.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) INCOME TAXES (CONTINUED) Life Insurance Companies § 1.802-2 Taxable years affected. Section 1.802(b)-1 is... Revenue Code of 1954, as amended by the Life Insurance Company Income Tax Act of 1959 (73 Stat. 112) and... Insurance Company Income Tax Act of 1959 (73 Stat. 112), section 3 of the Act of October 23, 1962 (76 Stat...

  15. 26 CFR 1.802-2 - Taxable years affected.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) INCOME TAXES (CONTINUED) Life Insurance Companies § 1.802-2 Taxable years affected. Section 1.802(b)-1 is... Revenue Code of 1954, as amended by the Life Insurance Company Income Tax Act of 1959 (73 Stat. 112) and... Insurance Company Income Tax Act of 1959 (73 Stat. 112), section 3 of the Act of October 23, 1962 (76 Stat...

  16. The MCNP6 Analytic Criticality Benchmark Suite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Forrest B.

    2016-06-16

    Analytical benchmarks provide an invaluable tool for verifying computer codes used to simulate neutron transport. Several collections of analytical benchmark problems [1-4] are used routinely in the verification of production Monte Carlo codes such as MCNP® [5,6]. Verification of a computer code is a necessary prerequisite to the more complex validation process. The verification process confirms that a code performs its intended functions correctly. The validation process involves determining the absolute accuracy of code results vs. nature. In typical validations, results are computed for a set of benchmark experiments using a particular methodology (code, cross-section data with uncertainties, and modeling)more » and compared to the measured results from the set of benchmark experiments. The validation process determines bias, bias uncertainty, and possibly additional margins. Verification is generally performed by the code developers, while validation is generally performed by code users for a particular application space. The VERIFICATION_KEFF suite of criticality problems [1,2] was originally a set of 75 criticality problems found in the literature for which exact analytical solutions are available. Even though the spatial and energy detail is necessarily limited in analytical benchmarks, typically to a few regions or energy groups, the exact solutions obtained can be used to verify that the basic algorithms, mathematics, and methods used in complex production codes perform correctly. The present work has focused on revisiting this benchmark suite. A thorough review of the problems resulted in discarding some of them as not suitable for MCNP benchmarking. For the remaining problems, many of them were reformulated to permit execution in either multigroup mode or in the normal continuous-energy mode for MCNP. Execution of the benchmarks in continuous-energy mode provides a significant advance to MCNP verification methods.« less

  17. Large-Scale Computation of Nuclear Magnetic Resonance Shifts for Paramagnetic Solids Using CP2K.

    PubMed

    Mondal, Arobendo; Gaultois, Michael W; Pell, Andrew J; Iannuzzi, Marcella; Grey, Clare P; Hutter, Jürg; Kaupp, Martin

    2018-01-09

    Large-scale computations of nuclear magnetic resonance (NMR) shifts for extended paramagnetic solids (pNMR) are reported using the highly efficient Gaussian-augmented plane-wave implementation of the CP2K code. Combining hyperfine couplings obtained with hybrid functionals with g-tensors and orbital shieldings computed using gradient-corrected functionals, contact, pseudocontact, and orbital-shift contributions to pNMR shifts are accessible. Due to the efficient and highly parallel performance of CP2K, a wide variety of materials with large unit cells can be studied with extended Gaussian basis sets. Validation of various approaches for the different contributions to pNMR shifts is done first for molecules in a large supercell in comparison with typical quantum-chemical codes. This is then extended to a detailed study of g-tensors for extended solid transition-metal fluorides and for a series of complex lithium vanadium phosphates. Finally, lithium pNMR shifts are computed for Li 3 V 2 (PO 4 ) 3 , for which detailed experimental data are available. This has allowed an in-depth study of different approaches (e.g., full periodic versus incremental cluster computations of g-tensors and different functionals and basis sets for hyperfine computations) as well as a thorough analysis of the different contributions to the pNMR shifts. This study paves the way for a more-widespread computational treatment of NMR shifts for paramagnetic materials.

  18. Simulation of multi-photon emission isotopes using time-resolved SimSET multiple photon history generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, Chih-Chieh; Lin, Hsin-Hon; Lin, Chang-Shiun

    Abstract-Multiple-photon emitters, such as In-111 or Se-75, have enormous potential in the field of nuclear medicine imaging. For example, Se-75 can be used to investigate the bile acid malabsorption and measure the bile acid pool loss. The simulation system for emission tomography (SimSET) is a well-known Monte Carlo simulation (MCS) code in nuclear medicine for its high computational efficiency. However, current SimSET cannot simulate these isotopes due to the lack of modeling of complex decay scheme and the time-dependent decay process. To extend the versatility of SimSET for simulation of those multi-photon emission isotopes, a time-resolved multiple photon history generatormore » based on SimSET codes is developed in present study. For developing the time-resolved SimSET (trSimSET) with radionuclide decay process, the new MCS model introduce new features, including decay time information and photon time-of-flight information, into this new code. The half-life of energy states were tabulated from the Evaluated Nuclear Structure Data File (ENSDF) database. The MCS results indicate that the overall percent difference is less than 8.5% for all simulation trials as compared to GATE. To sum up, we demonstrated that time-resolved SimSET multiple photon history generator can have comparable accuracy with GATE and keeping better computational efficiency. The new MCS code is very useful to study the multi-photon imaging of novel isotopes that needs the simulation of lifetime and the time-of-fight measurements. (authors)« less

  19. Aerodynamic Interference Due to MSL Reaction Control System

    NASA Technical Reports Server (NTRS)

    Dyakonov, Artem A.; Schoenenberger, Mark; Scallion, William I.; VanNorman, John W.; Novak, Luke A.; Tang, Chun Y.

    2009-01-01

    An investigation of effectiveness of the reaction control system (RCS) of Mars Science Laboratory (MSL) entry capsule during atmospheric flight has been conducted. The reason for the investigation is that MSL is designed to fly a lifting actively guided entry with hypersonic bank maneuvers, therefore an understanding of RCS effectiveness is required. In the course of the study several jet configurations were evaluated using Langley Aerothermal Upwind Relaxation Algorithm (LAURA) code, Data Parallel Line Relaxation (DPLR) code, Fully Unstructured 3D (FUN3D) code and an Overset Grid Flowsolver (OVERFLOW) code. Computations indicated that some of the proposed configurations might induce aero-RCS interactions, sufficient to impede and even overwhelm the intended control torques. It was found that the maximum potential for aero-RCS interference exists around peak dynamic pressure along the trajectory. Present analysis largely relies on computational methods. Ground testing, flight data and computational analyses are required to fully understand the problem. At the time of this writing some experimental work spanning range of Mach number 2.5 through 4.5 has been completed and used to establish preliminary levels of confidence for computations. As a result of the present work a final RCS configuration has been designed such as to minimize aero-interference effects and it is a design baseline for MSL entry capsule.

  20. Experimental investigations, modeling, and analyses of high-temperature devices for space applications: Part 2. Final report, June 1996--December 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tournier, J.; El-Genk, M.S.; Huang, L.

    1999-01-01

    The Institute of Space and Nuclear Power Studies at the University of New Mexico has developed a computer simulation of cylindrical geometry alkali metal thermal-to-electric converter cells using a standard Fortran 77 computer code. The objective and use of this code was to compare the experimental measurements with computer simulations, upgrade the model as appropriate, and conduct investigations of various methods to improve the design and performance of the devices for improved efficiency, durability, and longer operational lifetime. The Institute of Space and Nuclear Power Studies participated in vacuum testing of PX series alkali metal thermal-to-electric converter cells and developedmore » the alkali metal thermal-to-electric converter Performance Evaluation and Analysis Model. This computer model consisted of a sodium pressure loss model, a cell electrochemical and electric model, and a radiation/conduction heat transfer model. The code closely predicted the operation and performance of a wide variety of PX series cells which led to suggestions for improvements to both lifetime and performance. The code provides valuable insight into the operation of the cell, predicts parameters of components within the cell, and is a useful tool for predicting both the transient and steady state performance of systems of cells.« less

  1. Fast H.264/AVC FRExt intra coding using belief propagation.

    PubMed

    Milani, Simone

    2011-01-01

    In the H.264/AVC FRExt coder, the coding performance of Intra coding significantly overcomes the previous still image coding standards, like JPEG2000, thanks to a massive use of spatial prediction. Unfortunately, the adoption of an extensive set of predictors induces a significant increase of the computational complexity required by the rate-distortion optimization routine. The paper presents a complexity reduction strategy that aims at reducing the computational load of the Intra coding with a small loss in the compression performance. The proposed algorithm relies on selecting a reduced set of prediction modes according to their probabilities, which are estimated adopting a belief-propagation procedure. Experimental results show that the proposed method permits saving up to 60 % of the coding time required by an exhaustive rate-distortion optimization method with a negligible loss in performance. Moreover, it permits an accurate control of the computational complexity unlike other methods where the computational complexity depends upon the coded sequence.

  2. Computations in turbulent flows and off-design performance predictions for airframe-integrated scramjets

    NASA Technical Reports Server (NTRS)

    Goglia, G. L.; Spiegler, E.

    1977-01-01

    The research activity focused on two main tasks: (1) the further development of the SCRAM program and, in particular, the addition of a procedure for modeling the mechanism of the internal adjustment process of the flow, in response to the imposed thermal load across the combustor and (2) the development of a numerical code for the computation of the variation of concentrations throughout a turbulent field, where finite-rate reactions occur. The code also includes an estimation of the effect of the phenomenon called 'unmixedness'.

  3. Numerical computation of viscous flow around bodies and wings moving at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Tannehill, J. C.

    1984-01-01

    Research in aerodynamics is discussed. The development of equilibrium air curve fits; computation of hypersonic rarefield leading edge flows; computation of 2-D and 3-D blunt body laminar flows with an impinging shock; development of a two-dimensional or axisymmetric real gas blunt body code; a study of an over-relaxation procedure forthe MacCormack finite-difference scheme; computation of 2-D blunt body turbulent flows with an impinging shock; computation of supersonic viscous flow over delta wings at high angles of attack; and computation of the Space Shuttle Orbiter flowfield are discussed.

  4. Numerical algorithm comparison for the accurate and efficient computation of high-incidence vortical flow

    NASA Technical Reports Server (NTRS)

    Chaderjian, Neal M.

    1991-01-01

    Computations from two Navier-Stokes codes, NSS and F3D, are presented for a tangent-ogive-cylinder body at high angle of attack. Features of this steady flow include a pair of primary vortices on the leeward side of the body as well as secondary vortices. The topological and physical plausibility of this vortical structure is discussed. The accuracy of these codes are assessed by comparison of the numerical solutions with experimental data. The effects of turbulence model, numerical dissipation, and grid refinement are presented. The overall efficiency of these codes are also assessed by examining their convergence rates, computational time per time step, and maximum allowable time step for time-accurate computations. Overall, the numerical results from both codes compared equally well with experimental data, however, the NSS code was found to be significantly more efficient than the F3D code.

  5. User's Manual for FEMOM3DR. Version 1.0

    NASA Technical Reports Server (NTRS)

    Reddy, C. J.

    1998-01-01

    FEMoM3DR is a computer code written in FORTRAN 77 to compute radiation characteristics of antennas on 3D body using combined Finite Element Method (FEM)/Method of Moments (MoM) technique. The code is written to handle different feeding structures like coaxial line, rectangular waveguide, and circular waveguide. This code uses the tetrahedral elements, with vector edge basis functions for FEM and triangular elements with roof-top basis functions for MoM. By virtue of FEM, this code can handle any arbitrary shaped three dimensional bodies with inhomogeneous lossy materials; and due to MoM the computational domain can be terminated in any arbitrary shape. The User's Manual is written to make the user acquainted with the operation of the code. The user is assumed to be familiar with the FORTRAN 77 language and the operating environment of the computers on which the code is intended to run.

  6. Selection of a computer code for Hanford low-level waste engineered-system performance assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGrail, B.P.; Mahoney, L.A.

    Planned performance assessments for the proposed disposal of low-level waste (LLW) glass produced from remediation of wastes stored in underground tanks at Hanford, Washington will require calculations of radionuclide release rates from the subsurface disposal facility. These calculations will be done with the aid of computer codes. Currently available computer codes were ranked in terms of the feature sets implemented in the code that match a set of physical, chemical, numerical, and functional capabilities needed to assess release rates from the engineered system. The needed capabilities were identified from an analysis of the important physical and chemical process expected tomore » affect LLW glass corrosion and the mobility of radionuclides. The highest ranked computer code was found to be the ARES-CT code developed at PNL for the US Department of Energy for evaluation of and land disposal sites.« less

  7. User's manual for a material transport code on the Octopus Computer Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naymik, T.G.; Mendez, G.D.

    1978-09-15

    A code to simulate material transport through porous media was developed at Oak Ridge National Laboratory. This code has been modified and adapted for use at Lawrence Livermore Laboratory. This manual, in conjunction with report ORNL-4928, explains the input, output, and execution of the code on the Octopus Computer Network.

  8. Nonlinear to Linear Elastic Code Coupling in 2-D Axisymmetric Media.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preston, Leiph

    Explosions within the earth nonlinearly deform the local media, but at typical seismological observation distances, the seismic waves can be considered linear. Although nonlinear algorithms can simulate explosions in the very near field well, these codes are computationally expensive and inaccurate at propagating these signals to great distances. A linearized wave propagation code, coupled to a nonlinear code, provides an efficient mechanism to both accurately simulate the explosion itself and to propagate these signals to distant receivers. To this end we have coupled Sandia's nonlinear simulation algorithm CTH to a linearized elastic wave propagation code for 2-D axisymmetric media (axiElasti)more » by passing information from the nonlinear to the linear code via time-varying boundary conditions. In this report, we first develop the 2-D axisymmetric elastic wave equations in cylindrical coordinates. Next we show how we design the time-varying boundary conditions passing information from CTH to axiElasti, and finally we demonstrate the coupling code via a simple study of the elastic radius.« less

  9. Three-dimensional computational aerodynamics in the 1980's

    NASA Technical Reports Server (NTRS)

    Lomax, H.

    1978-01-01

    The future requirements for constructing codes that can be used to compute three-dimensional flows about aerodynamic shapes should be assessed in light of the constraints imposed by future computer architectures and the reality of usable algorithms that can provide practical three-dimensional simulations. On the hardware side, vector processing is inevitable in order to meet the CPU speeds required. To cope with three-dimensional geometries, massive data bases with fetch/store conflicts and transposition problems are inevitable. On the software side, codes must be prepared that: (1) can be adapted to complex geometries, (2) can (at the very least) predict the location of laminar and turbulent boundary layer separation, and (3) will converge rapidly to sufficiently accurate solutions.

  10. Applications of potential theory computations to transonic aeroelasticity

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.

    1986-01-01

    Unsteady aerodynamic and aeroelastic stability calculations based upon transonic small disturbance (TSD) potential theory are presented. Results from the two-dimensional XTRAN2L code and the three-dimensional XTRAN3S code are compared with experiment to demonstrate the ability of TSD codes to treat transonic effects. The necessity of nonisentropic corrections to transonic potential theory is demonstrated. Dynamic computational effects resulting from the choice of grid and boundary conditions are illustrated. Unsteady airloads for a number of parameter variations including airfoil shape and thickness, Mach number, frequency, and amplitude are given. Finally, samples of transonic aeroelastic calculations are given. A key observation is the extent to which unsteady transonic airloads calculated by inviscid potential theory may be treated in a locally linear manner.

  11. Validation of NASA Thermal Ice Protection Computer Codes. Part 3; The Validation of Antice

    NASA Technical Reports Server (NTRS)

    Al-Khalil, Kamel M.; Horvath, Charles; Miller, Dean R.; Wright, William B.

    2001-01-01

    An experimental program was generated by the Icing Technology Branch at NASA Glenn Research Center to validate two ice protection simulation codes: (1) LEWICE/Thermal for transient electrothermal de-icing and anti-icing simulations, and (2) ANTICE for steady state hot gas and electrothermal anti-icing simulations. An electrothermal ice protection system was designed and constructed integral to a 36 inch chord NACA0012 airfoil. The model was fully instrumented with thermo-couples, RTD'S, and heat flux gages. Tests were conducted at several icing environmental conditions during a two week period at the NASA Glenn Icing Research Tunnel. Experimental results of running-wet and evaporative cases were compared to the ANTICE computer code predictions and are presented in this paper.

  12. PURDU-WINCOF: A computer code for establishing the performance of a fan-compressor unit with water ingestion

    NASA Technical Reports Server (NTRS)

    Leonardo, M.; Tsuchiya, T.; Murthy, S. N. B.

    1982-01-01

    A model for predicting the performance of a multi-spool axial-flow compressor with a fan during operation with water ingestion was developed incorporating several two-phase fluid flow effects as follows: (1) ingestion of water, (2) droplet interaction with blades and resulting changes in blade characteristics, (3) redistribution of water and water vapor due to centrifugal action, (4) heat and mass transfer processes, and (5) droplet size adjustment due to mass transfer and mechanical stability considerations. A computer program, called the PURDU-WINCOF code, was generated based on the model utilizing a one-dimensional formulation. An illustrative case serves to show the manner in which the code can be utilized and the nature of the results obtained.

  13. Heat pipe design handbook, part 2. [digital computer code specifications

    NASA Technical Reports Server (NTRS)

    Skrabek, E. A.

    1972-01-01

    The utilization of a digital computer code for heat pipe analysis and design (HPAD) is described which calculates the steady state hydrodynamic heat transport capability of a heat pipe with a particular wick configuration, the working fluid being a function of wick cross-sectional area. Heat load, orientation, operating temperature, and heat pipe geometry are specified. Both one 'g' and zero 'g' environments are considered, and, at the user's option, the code will also perform a weight analysis and will calculate heat pipe temperature drops. The central porous slab, circumferential porous wick, arterial wick, annular wick, and axial rectangular grooves are the wick configurations which HPAD has the capability of analyzing. For Vol. 1, see N74-22569.

  14. Performance analysis of three dimensional integral equation computations on a massively parallel computer. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Logan, Terry G.

    1994-01-01

    The purpose of this study is to investigate the performance of the integral equation computations using numerical source field-panel method in a massively parallel processing (MPP) environment. A comparative study of computational performance of the MPP CM-5 computer and conventional Cray-YMP supercomputer for a three-dimensional flow problem is made. A serial FORTRAN code is converted into a parallel CM-FORTRAN code. Some performance results are obtained on CM-5 with 32, 62, 128 nodes along with those on Cray-YMP with a single processor. The comparison of the performance indicates that the parallel CM-FORTRAN code near or out-performs the equivalent serial FORTRAN code for some cases.

  15. USSR Space Life Sciences Digest. Index to issues 1-4

    NASA Technical Reports Server (NTRS)

    Teeter, R.; Hooke, L. R.

    1986-01-01

    This document is an index to issues 1 to 4 of the USSR Space Life Sciences Digest and is arranged in three sections. In section 1, abstracts from the first four issues are grouped according to subject; please note the four letter codes in the upper right hand corner of the pages. Section 2 lists the categories according to which digest entries are grouped and cites additional entries relevant to that category by four letter code and entry number in section 1. Refer to section 1 for titles and other pertinent information. Key words are indexed in section 3.

  16. Computer-Integrated Manufacturing Technology. Tech Prep Competency Profile.

    ERIC Educational Resources Information Center

    Lakeland Tech Prep Consortium, Kirtland, OH.

    This tech prep competency profile covers these occupations: manufacturing technician, computer-assisted design and drafting (CADD) technician, quality technician, and mechanical technician. Section 1 provides occupation definitions. Section 2 lists development committee members. Section 3 provides the leveling codes---abbreviations for grade level…

  17. Computer Description of the M561 Utility Truck

    DTIC Science & Technology

    1984-10-01

    GIFT Computer Code Sustainabi1ity Predictions for Army Spare Components Requirements for Combat (SPARC) 20. ABSTRACT (Caotfmia «a NWM eitim ft...used as input to the GIFT computer code to generate target vulnerability data. DO FORM V JAM 73 1473 EDITION OF I NOV 65 IS OBSOLETE Unclass i f ied...anaLyiis requires input from the Geometric Information for Targets ( GIFT ) ’ computer code. This report documents the combina- torial geometry (Com-Geom

  18. f1: a code to compute Appell's F1 hypergeometric function

    NASA Astrophysics Data System (ADS)

    Colavecchia, F. D.; Gasaneo, G.

    2004-02-01

    In this work we present the FORTRAN code to compute the hypergeometric function F1( α, β1, β2, γ, x, y) of Appell. The program can compute the F1 function for real values of the variables { x, y}, and complex values of the parameters { α, β1, β2, γ}. The code uses different strategies to calculate the function according to the ideas outlined in [F.D. Colavecchia et al., Comput. Phys. Comm. 138 (1) (2001) 29]. Program summaryTitle of the program: f1 Catalogue identifier: ADSJ Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADSJ Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: none Computers: PC compatibles, SGI Origin2∗ Operating system under which the program has been tested: Linux, IRIX Programming language used: Fortran 90 Memory required to execute with typical data: 4 kbytes No. of bits in a word: 32 No. of bytes in distributed program, including test data, etc.: 52 325 Distribution format: tar gzip file External subprograms used: Numerical Recipes hypgeo [W.H. Press et al., Numerical Recipes in Fortran 77, Cambridge Univ. Press, 1996] or chyp routine of R.C. Forrey [J. Comput. Phys. 137 (1997) 79], rkf45 [L.F. Shampine and H.H. Watts, Rep. SAND76-0585, 1976]. Keywords: Numerical methods, special functions, hypergeometric functions, Appell functions, Gauss function Nature of the physical problem: Computing the Appell F1 function is relevant in atomic collisions and elementary particle physics. It is usually the result of multidimensional integrals involving Coulomb continuum states. Method of solution: The F1 function has a convergent-series definition for | x|<1 and | y|<1, and several analytic continuations for other regions of the variable space. The code tests the values of the variables and selects one of the precedent cases. In the convergence region the program uses the series definition near the origin of coordinates, and a numerical integration of the third-order differential parametric equation for the F1 function. Also detects several special cases according to the values of the parameters. Restrictions on the complexity of the problem: The code is restricted to real values of the variables { x, y}. Also, there are some parameter domains that are not covered. These usually imply differences between integer parameters that lead to negative integer arguments of Gamma functions. Typical running time: Depends basically on the variables. The computation of Table 4 of [F.D. Colavecchia et al., Comput. Phys. Comm. 138 (1) (2001) 29] (64 functions) requires approximately 0.33 s in a Athlon 900 MHz processor.

  19. Tough2{_}MP: A parallel version of TOUGH2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Keni; Wu, Yu-Shu; Ding, Chris

    2003-04-09

    TOUGH2{_}MP is a massively parallel version of TOUGH2. It was developed for running on distributed-memory parallel computers to simulate large simulation problems that may not be solved by the standard, single-CPU TOUGH2 code. The new code implements an efficient massively parallel scheme, while preserving the full capacity and flexibility of the original TOUGH2 code. The new software uses the METIS software package for grid partitioning and AZTEC software package for linear-equation solving. The standard message-passing interface is adopted for communication among processors. Numerical performance of the current version code has been tested on CRAY-T3E and IBM RS/6000 SP platforms. Inmore » addition, the parallel code has been successfully applied to real field problems of multi-million-cell simulations for three-dimensional multiphase and multicomponent fluid and heat flow, as well as solute transport. In this paper, we will review the development of the TOUGH2{_}MP, and discuss the basic features, modules, and their applications.« less

  20. Computer-based coding of free-text job descriptions to efficiently identify occupations in epidemiological studies.

    PubMed

    Russ, Daniel E; Ho, Kwan-Yuet; Colt, Joanne S; Armenti, Karla R; Baris, Dalsu; Chow, Wong-Ho; Davis, Faith; Johnson, Alison; Purdue, Mark P; Karagas, Margaret R; Schwartz, Kendra; Schwenn, Molly; Silverman, Debra T; Johnson, Calvin A; Friesen, Melissa C

    2016-06-01

    Mapping job titles to standardised occupation classification (SOC) codes is an important step in identifying occupational risk factors in epidemiological studies. Because manual coding is time-consuming and has moderate reliability, we developed an algorithm called SOCcer (Standardized Occupation Coding for Computer-assisted Epidemiologic Research) to assign SOC-2010 codes based on free-text job description components. Job title and task-based classifiers were developed by comparing job descriptions to multiple sources linking job and task descriptions to SOC codes. An industry-based classifier was developed based on the SOC prevalence within an industry. These classifiers were used in a logistic model trained using 14 983 jobs with expert-assigned SOC codes to obtain empirical weights for an algorithm that scored each SOC/job description. We assigned the highest scoring SOC code to each job. SOCcer was validated in 2 occupational data sources by comparing SOC codes obtained from SOCcer to expert assigned SOC codes and lead exposure estimates obtained by linking SOC codes to a job-exposure matrix. For 11 991 case-control study jobs, SOCcer-assigned codes agreed with 44.5% and 76.3% of manually assigned codes at the 6-digit and 2-digit level, respectively. Agreement increased with the score, providing a mechanism to identify assignments needing review. Good agreement was observed between lead estimates based on SOCcer and manual SOC assignments (κ 0.6-0.8). Poorer performance was observed for inspection job descriptions, which included abbreviations and worksite-specific terminology. Although some manual coding will remain necessary, using SOCcer may improve the efficiency of incorporating occupation into large-scale epidemiological studies. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

Top