Sample records for lifecycle transcriptomic analyses

  1. TRANSCRIPTOME ANALYSES REVEAL DIFFERENTIAL GENE EXPRESSION PATTERNS BETWEEN THE LIFE-CYCLE STAGES OF EMILIANIA HUXLEYI (HAPTOPHYTA) AND REFLECT SPECIALIZATION TO DIFFERENT ECOLOGICAL NICHES(1).

    PubMed

    Rokitta, Sebastian D; de Nooijer, Lennart J; Trimborn, Scarlett; de Vargas, Colomban; Rost, Björn; John, Uwe

    2011-08-01

    Coccolithophores, especially the abundant, cosmopolitan species Emiliania huxleyi (Lohmann) W. W. Hay et H. P. Mohler, are one of the main driving forces of the oceanic carbonate pump and contribute significantly to global carbon cycling, due to their ability to calcify. A recent study indicates that termination of diploid blooms by viral infection induces life-cycle transition, and speculation has arisen about the role of the haploid, noncalcifying stage in coccolithophore ecology. To explore gene expression patterns in both life-cycle stages, haploid and diploid cells of E. huxleyi (RCC 1217 and RCC 1216) were acclimated to limiting and saturating photon flux densities. Transcriptome analyses were performed to assess differential genomic expression related to different ploidy levels and acclimation light intensities. Analyses indicated that life-cycle stages exhibit different properties of regulating genome expression (e.g., pronounced gene activation and gene silencing in the diploid stage), proteome maintenance (e.g., increased turnover of proteins in the haploid stage), as well as metabolic processing (e.g., pronounced primary metabolism and motility in the haploid stage and calcification in the diploid stage). Furthermore, higher abundances of transcripts related to endocytotic and digestive machinery were observed in the diploid stage. A qualitative feeding experiment indicated that both life-cycle stages are capable of particle uptake (0.5 μm diameter) in late-stationary growth phase. Results showed that the two life-cycle stages represent functionally distinct entities that are evolutionarily shaped to thrive in the environment they typically inhabit. © 2011 Phycological Society of America.

  2. Phylogenomic Analyses Support Traditional Relationships within Cnidaria

    PubMed Central

    Zapata, Felipe; Goetz, Freya E.; Smith, Stephen A.; Howison, Mark; Siebert, Stefan; Church, Samuel H.; Sanders, Steven M.; Ames, Cheryl Lewis; McFadden, Catherine S.; France, Scott C.; Daly, Marymegan; Collins, Allen G.; Haddock, Steven H. D.; Dunn, Casey W.; Cartwright, Paulyn

    2015-01-01

    Cnidaria, the sister group to Bilateria, is a highly diverse group of animals in terms of morphology, lifecycles, ecology, and development. How this diversity originated and evolved is not well understood because phylogenetic relationships among major cnidarian lineages are unclear, and recent studies present contrasting phylogenetic hypotheses. Here, we use transcriptome data from 15 newly-sequenced species in combination with 26 publicly available genomes and transcriptomes to assess phylogenetic relationships among major cnidarian lineages. Phylogenetic analyses using different partition schemes and models of molecular evolution, as well as topology tests for alternative phylogenetic relationships, support the monophyly of Medusozoa, Anthozoa, Octocorallia, Hydrozoa, and a clade consisting of Staurozoa, Cubozoa, and Scyphozoa. Support for the monophyly of Hexacorallia is weak due to the equivocal position of Ceriantharia. Taken together, these results further resolve deep cnidarian relationships, largely support traditional phylogenetic views on relationships, and provide a historical framework for studying the evolutionary processes involved in one of the most ancient animal radiations. PMID:26465609

  3. Phylogenomic Analyses Support Traditional Relationships within Cnidaria.

    PubMed

    Zapata, Felipe; Goetz, Freya E; Smith, Stephen A; Howison, Mark; Siebert, Stefan; Church, Samuel H; Sanders, Steven M; Ames, Cheryl Lewis; McFadden, Catherine S; France, Scott C; Daly, Marymegan; Collins, Allen G; Haddock, Steven H D; Dunn, Casey W; Cartwright, Paulyn

    2015-01-01

    Cnidaria, the sister group to Bilateria, is a highly diverse group of animals in terms of morphology, lifecycles, ecology, and development. How this diversity originated and evolved is not well understood because phylogenetic relationships among major cnidarian lineages are unclear, and recent studies present contrasting phylogenetic hypotheses. Here, we use transcriptome data from 15 newly-sequenced species in combination with 26 publicly available genomes and transcriptomes to assess phylogenetic relationships among major cnidarian lineages. Phylogenetic analyses using different partition schemes and models of molecular evolution, as well as topology tests for alternative phylogenetic relationships, support the monophyly of Medusozoa, Anthozoa, Octocorallia, Hydrozoa, and a clade consisting of Staurozoa, Cubozoa, and Scyphozoa. Support for the monophyly of Hexacorallia is weak due to the equivocal position of Ceriantharia. Taken together, these results further resolve deep cnidarian relationships, largely support traditional phylogenetic views on relationships, and provide a historical framework for studying the evolutionary processes involved in one of the most ancient animal radiations.

  4. Cathepsin Gene Family Reveals Transcriptome Patterns Related to the Infective Stages of the Salmon Louse Caligus rogercresseyi

    PubMed Central

    Maldonado-Aguayo, Waleska; Chávez-Mardones, Jacqueline; Gonçalves, Ana Teresa; Gallardo-Escárate, Cristian

    2015-01-01

    Cathepsins are proteases involved in the ability of parasites to overcome and/or modulate host defenses so as to complete their own lifecycle. However, the mechanisms underlying this ability of cathepsins are still poorly understood. One excellent model for identifying and exploring the molecular functions of cathepsins is the marine ectoparasitic copepod Caligus rogercresseyi that currently affects the Chilean salmon industry. Using high-throughput transcriptome sequencing, 56 cathepsin-like sequences were found distributed in five cysteine protease groups (B, F, L, Z, and S) as well as in an aspartic protease group (D). Ontogenic transcriptome analysis evidenced that L cathepsins were the most abundant during the lifecycle, while cathepsins B and K were mostly expressed in the larval stages and adult females, thus suggesting participation in the molting processes and embryonic development, respectively. Interestingly, a variety of cathepsins from groups Z, L, D, B, K, and S were upregulated in the infective stage of copepodid, corroborating the complexity of the processes involved in the parasitic success of this copepod. Putative functional roles of cathepsins were conjectured based on the differential expressions found and on roles previously described in other phylogenetically related species. Moreover, 140 single nucleotide polymorphisms (SNP) were identified in transcripts annotated for cysteine and aspartic proteases located into untranslated regions, or the coding region. This study reports for the first time the presence of cathepsin-like genes and differential expressions throughout a copepod lifecycle. The identification of cathepsins together with functional validations represents a valuable strategy for pinpointing target molecules that could be used in the development of new delousing drugs or vaccines against C. rogercresseyi. PMID:25923525

  5. Cathepsin Gene Family Reveals Transcriptome Patterns Related to the Infective Stages of the Salmon Louse Caligus rogercresseyi.

    PubMed

    Maldonado-Aguayo, Waleska; Chávez-Mardones, Jacqueline; Gonçalves, Ana Teresa; Gallardo-Escárate, Cristian

    2015-01-01

    Cathepsins are proteases involved in the ability of parasites to overcome and/or modulate host defenses so as to complete their own lifecycle. However, the mechanisms underlying this ability of cathepsins are still poorly understood. One excellent model for identifying and exploring the molecular functions of cathepsins is the marine ectoparasitic copepod Caligus rogercresseyi that currently affects the Chilean salmon industry. Using high-throughput transcriptome sequencing, 56 cathepsin-like sequences were found distributed in five cysteine protease groups (B, F, L, Z, and S) as well as in an aspartic protease group (D). Ontogenic transcriptome analysis evidenced that L cathepsins were the most abundant during the lifecycle, while cathepsins B and K were mostly expressed in the larval stages and adult females, thus suggesting participation in the molting processes and embryonic development, respectively. Interestingly, a variety of cathepsins from groups Z, L, D, B, K, and S were upregulated in the infective stage of copepodid, corroborating the complexity of the processes involved in the parasitic success of this copepod. Putative functional roles of cathepsins were conjectured based on the differential expressions found and on roles previously described in other phylogenetically related species. Moreover, 140 single nucleotide polymorphisms (SNP) were identified in transcripts annotated for cysteine and aspartic proteases located into untranslated regions, or the coding region. This study reports for the first time the presence of cathepsin-like genes and differential expressions throughout a copepod lifecycle. The identification of cathepsins together with functional validations represents a valuable strategy for pinpointing target molecules that could be used in the development of new delousing drugs or vaccines against C. rogercresseyi.

  6. Building Maintenance and Repair Data for Life-Cycle Cost Analyses: Electrical Systems.

    DTIC Science & Technology

    1991-05-01

    Repair Data for Life-Cycle Cost Analyses: Electrical Systems by Edgar S. Neely Robert D. Neathammer James R. Stirn Robert P. Winkler This research...systems have been developed to assist planners in preparing DD Form 1391 documentation, designers in life-cycle cost component selection, and maintainers...Maintenance and Repair Data for Life-Cycle Cost Analyses: RDTE dated 1980 Electrical Systems REIMB 1984 - 1989 6. AUTH4OR(S) Edgar S. Neely, Robert D

  7. Transcriptome profiling of the dynamic life cycle of the scypohozoan jellyfish Aurelia aurita.

    PubMed

    Brekhman, Vera; Malik, Assaf; Haas, Brian; Sher, Noa; Lotan, Tamar

    2015-02-14

    The moon jellyfish Aurelia aurita is a widespread scyphozoan species that forms large seasonal blooms. Here we provide the first comprehensive view of the entire complex life of the Aurelia Red Sea strain by employing transcriptomic profiling of each stage from planula to mature medusa. A de novo transcriptome was assembled from Illumina RNA-Seq data generated from six stages throughout the Aurelia life cycle. Transcript expression profiling yielded clusters of annotated transcripts with functions related to each specific life-cycle stage. Free-swimming planulae were found highly enriched for functions related to cilia and microtubules, and the drastic morphogenetic process undergone by the planula while establishing the future body of the polyp may be mediated by specifically expressed Wnt ligands. Specific transcripts related to sensory functions were found in the strobila and the ephyra, whereas extracellular matrix functions were enriched in the medusa due to high expression of transcripts such as collagen, fibrillin and laminin, presumably involved in mesoglea development. The CL390-like gene, suggested to act as a strobilation hormone, was also highly expressed in the advanced strobila of the Red Sea species, and in the medusa stage we identified betaine-homocysteine methyltransferase, an enzyme that may play an important part in maintaining equilibrium of the medusa's bell. Finally, we identified the transcription factors participating in the Aurelia life-cycle and found that 70% of these 487 identified transcription factors were expressed in a developmental-stage-specific manner. This study provides the first scyphozoan transcriptome covering the entire developmental trajectory of the life cycle of Aurelia. It highlights the importance of numerous stage-specific transcription factors in driving morphological and functional changes throughout this complex metamorphosis, and is expected to be a valuable resource to the community.

  8. Transcriptome Data Reveal Syndermatan Relationships and Suggest the Evolution of Endoparasitism in Acanthocephala via an Epizoic Stage

    PubMed Central

    Rieger, Benjamin; Rosenkranz, David; Witek, Alexander; Welch, David B. Mark; Ebersberger, Ingo; Hankeln, Thomas

    2014-01-01

    The taxon Syndermata comprises the biologically interesting wheel animals (“Rotifera”: Bdelloidea + Monogononta + Seisonidea) and thorny-headed worms (Acanthocephala), and is central for testing superordinate phylogenetic hypotheses (Platyzoa, Gnathifera) in the metazoan tree of life. Recent analyses of syndermatan phylogeny suggested paraphyly of Eurotatoria (free-living bdelloids and monogononts) with respect to endoparasitic acanthocephalans. Data of epizoic seisonids, however, were absent, which may have affected the branching order within the syndermatan clade. Moreover, the position of Seisonidea within Syndermata should help in understanding the evolution of acanthocephalan endoparasitism. Here, we report the first phylogenomic analysis that includes all four higher-ranked groups of Syndermata. The analyzed data sets comprise new transcriptome data for Seison spec. (Seisonidea), Brachionus manjavacas (Monogononta), Adineta vaga (Bdelloidea), and Paratenuisentis ambiguus (Acanthocephala). Maximum likelihood and Bayesian trees for a total of 19 metazoan species were reconstructed from up to 410 functionally diverse proteins. The results unanimously place Monogononta basally within Syndermata, and Bdelloidea appear as the sister group to a clade comprising epizoic Seisonidea and endoparasitic Acanthocephala. Our results support monophyly of Syndermata, Hemirotifera (Bdelloidea + Seisonidea + Acanthocephala), and Pararotatoria (Seisonidea + Acanthocephala), rejecting monophyly of traditional Rotifera and Eurotatoria. This serves as an indication that early acanthocephalans lived epizoically or as ectoparasites on arthropods, before their complex lifecycle with arthropod intermediate and vertebrate definite hosts evolved. PMID:24520404

  9. Transcriptome data reveal Syndermatan relationships and suggest the evolution of endoparasitism in Acanthocephala via an epizoic stage.

    PubMed

    Wey-Fabrizius, Alexandra R; Herlyn, Holger; Rieger, Benjamin; Rosenkranz, David; Witek, Alexander; Welch, David B Mark; Ebersberger, Ingo; Hankeln, Thomas

    2014-01-01

    The taxon Syndermata comprises the biologically interesting wheel animals ("Rotifera": Bdelloidea + Monogononta + Seisonidea) and thorny-headed worms (Acanthocephala), and is central for testing superordinate phylogenetic hypotheses (Platyzoa, Gnathifera) in the metazoan tree of life. Recent analyses of syndermatan phylogeny suggested paraphyly of Eurotatoria (free-living bdelloids and monogononts) with respect to endoparasitic acanthocephalans. Data of epizoic seisonids, however, were absent, which may have affected the branching order within the syndermatan clade. Moreover, the position of Seisonidea within Syndermata should help in understanding the evolution of acanthocephalan endoparasitism. Here, we report the first phylogenomic analysis that includes all four higher-ranked groups of Syndermata. The analyzed data sets comprise new transcriptome data for Seison spec. (Seisonidea), Brachionus manjavacas (Monogononta), Adineta vaga (Bdelloidea), and Paratenuisentis ambiguus (Acanthocephala). Maximum likelihood and Bayesian trees for a total of 19 metazoan species were reconstructed from up to 410 functionally diverse proteins. The results unanimously place Monogononta basally within Syndermata, and Bdelloidea appear as the sister group to a clade comprising epizoic Seisonidea and endoparasitic Acanthocephala. Our results support monophyly of Syndermata, Hemirotifera (Bdelloidea + Seisonidea + Acanthocephala), and Pararotatoria (Seisonidea + Acanthocephala), rejecting monophyly of traditional Rotifera and Eurotatoria. This serves as an indication that early acanthocephalans lived epizoically or as ectoparasites on arthropods, before their complex lifecycle with arthropod intermediate and vertebrate definite hosts evolved.

  10. iTRAQ and RNA-Seq Analyses Provide New Insights into Regulation Mechanism of Symbiotic Germination of Dendrobium officinale Seeds (Orchidaceae).

    PubMed

    Chen, Juan; Liu, Si Si; Kohler, Annegret; Yan, Bo; Luo, Hong Mei; Chen, Xiao Mei; Guo, Shun Xing

    2017-06-02

    Mycorrhizal fungi colonize orchid seeds and induce germination. This so-called symbiotic germination is a critical developmental process in the lifecycle of all orchid species. However, the molecular changes that occur during orchid seed symbiotic germination remain largely unknown. To better understand the molecular mechanism of orchid seed germination, we performed a comparative transcriptomic and proteomic analysis of the Chinese traditional medicinal orchid Dendrobium officinale to explore the change in protein expression at the different developmental stages during asymbiotic and symbiotic germination and identify the key proteins that regulate the symbiotic germination of orchid seeds. Among 2256 identified plant proteins, 308 were differentially expressed across three developmental stages during asymbiotic and symbiotic germination, and 229 were differentially expressed during symbiotic germination compared to asymbiotic development. Of these, 32 proteins were coup-regulated at both the proteomic and transcriptomic levels during symbiotic germination compared to asymbiotic germination. Our results suggest that symbiotic germination of D. officinale seeds shares a common signaling pathway with asymbiotic germination during the early germination stage. However, compared to asymbiotic germination, fungal colonization of orchid seeds appears to induce higher and earlier expression of some key proteins involved in lipid and carbohydrate metabolism and thus improves the efficiency of utilization of stored substances present in the embryo. This study provides new insight into the molecular basis of orchid seed germination.

  11. Emiliania huxleyi endures N-limitation with an efficient metabolic budgeting and effective ATP synthesis.

    PubMed

    Rokitta, Sebastian D; Von Dassow, Peter; Rost, Björn; John, Uwe

    2014-12-02

    Global change will affect patterns of nutrient upwelling in marine environments, potentially becoming even stricter regulators of phytoplankton primary productivity. To better understand phytoplankton nutrient utilization on the subcellular basis, we assessed the transcriptomic responses of the life-cycle stages of the biogeochemically important microalgae Emiliania huxleyi to nitrogen-limitation. Cells grown in batch cultures were harvested at 'early' and 'full' nitrogen-limitation and were compared with non-limited cells. We applied microarray-based transcriptome profilings, covering ~10.000 known E. huxleyi gene models, and screened for expression patterns that indicate the subcellular responses. The diploid life-cycle stage scavenges nitrogen from external organic sources and -like diatoms- uses the ornithine-urea cycle to rapidly turn over cellular nitrogen. The haploid stage reacts similarly, although nitrogen scavenging is less pronounced and lipid oxidation is more prominent. Generally, polyamines and proline appear to constitute major organic pools that back up cellular nitrogen. Both stages induce a malate:quinone-oxidoreductase that efficiently feeds electrons into the respiratory chain and drives ATP generation with reduced respiratory carbon throughput. The use of the ornithine-urea cycle to budget the cellular nitrogen in situations of limitation resembles the responses observed earlier in diatoms. This suggests that underlying biochemical mechanisms are conserved among distant clades of marine phototrophic protists. The ornithine-urea cycle and proline oxidation appear to constitute a sensory-regulatory system that monitors and controls cellular nitrogen budgets under limitation. The similarity between the responses of the life-cycle stages, despite the usage of different genes, also indicates a strong functional consistency in the responses to nitrogen-limitation that appears to be owed to biochemical requirements. The malate:quinone-oxidoreductase is a genomic feature that appears to be absent from diatom genomes, and it is likely to strongly contribute to the uniquely high endurance of E. huxleyi under nutrient limitation.

  12. Dual RNA-seq reveals no plastic transcriptional response of the coccidian parasite Eimeria falciformis to host immune defenses.

    PubMed

    Ehret, Totta; Spork, Simone; Dieterich, Christoph; Lucius, Richard; Heitlinger, Emanuel

    2017-09-05

    Parasites can either respond to differences in immune defenses that exist between individual hosts plastically or, alternatively, follow a genetically canalized ("hard wired") program of infection. Assuming that large-scale functional plasticity would be discernible in the parasite transcriptome we have performed a dual RNA-seq study of the lifecycle of Eimeria falciformis using infected mice with different immune status as models for coccidian infections. We compared parasite and host transcriptomes (dual transcriptome) between naïve and challenge infected mice, as well as between immune competent and immune deficient ones. Mice with different immune competence show transcriptional differences as well as differences in parasite reproduction (oocyst shedding). Broad gene categories represented by differently abundant host genes indicate enrichments for immune reaction and tissue repair functions. More specifically, TGF-beta, EGF, TNF and IL-1 and IL-6 are examples of functional annotations represented differently depending on host immune status. Much in contrast, parasite transcriptomes were neither different between Coccidia isolated from immune competent and immune deficient mice, nor between those harvested from naïve and challenge infected mice. Instead, parasite transcriptomes have distinct profiles early and late in infection, characterized largely by biosynthesis or motility associated functional gene groups, respectively. Extracellular sporozoite and oocyst stages showed distinct transcriptional profiles and sporozoite transcriptomes were found enriched for species specific genes and likely pathogenicity factors. We propose that the niche and host-specific parasite E. falciformis uses a genetically canalized program of infection. This program is likely fixed in an evolutionary process rather than employing phenotypic plasticity to interact with its host. This in turn might limit the potential of the parasite to adapt to new host species or niches, forcing it to coevolve with its host.

  13. Exploring business process modelling paradigms and design-time to run-time transitions

    NASA Astrophysics Data System (ADS)

    Caron, Filip; Vanthienen, Jan

    2016-09-01

    The business process management literature describes a multitude of approaches (e.g. imperative, declarative or event-driven) that each result in a different mix of process flexibility, compliance, effectiveness and efficiency. Although the use of a single approach over the process lifecycle is often assumed, transitions between approaches at different phases in the process lifecycle may also be considered. This article explores several business process strategies by analysing the approaches at different phases in the process lifecycle as well as the various transitions.

  14. Ocean acidification affects redox-balance and ion-homeostasis in the life-cycle stages of Emiliania huxleyi.

    PubMed

    Rokitta, Sebastian D; John, Uwe; Rost, Björn

    2012-01-01

    Ocean Acidification (OA) has been shown to affect photosynthesis and calcification in the coccolithophore Emiliania huxleyi, a cosmopolitan calcifier that significantly contributes to the regulation of the biological carbon pumps. Its non-calcifying, haploid life-cycle stage was found to be relatively unaffected by OA with respect to biomass production. Deeper insights into physiological key processes and their dependence on environmental factors are lacking, but are required to understand and possibly estimate the dynamics of carbon cycling in present and future oceans. Therefore, calcifying diploid and non-calcifying haploid cells were acclimated to present and future CO(2) partial pressures (pCO(2); 38.5 Pa vs. 101.3 Pa CO(2)) under low and high light (50 vs. 300 µmol photons m(-2) s(-1)). Comparative microarray-based transcriptome profiling was used to screen for the underlying cellular processes and allowed to follow up interpretations derived from physiological data. In the diplont, the observed increases in biomass production under OA are likely caused by stimulated production of glycoconjugates and lipids. The observed lowered calcification under OA can be attributed to impaired signal-transduction and ion-transport. The haplont utilizes distinct genes and metabolic pathways, reflecting the stage-specific usage of certain portions of the genome. With respect to functionality and energy-dependence, however, the transcriptomic OA-responses resemble those of the diplont. In both life-cycle stages, OA affects the cellular redox-state as a master regulator and thereby causes a metabolic shift from oxidative towards reductive pathways, which involves a reconstellation of carbon flux networks within and across compartments. Whereas signal transduction and ion-homeostasis appear equally OA-sensitive under both light intensities, the effects on carbon metabolism and light physiology are clearly modulated by light availability. These interactive effects can be attributed to the influence of OA and light on the redox equilibria of NAD and NADP, which function as major sensors for energization and stress. This generic mode of action of OA may therefore provoke similar cell-physiological responses in other protists.

  15. Increasing transcriptome response of serpins during the ontogenetic stages in the salmon louse Caligus rogercresseyi (Copepoda: Caligidae).

    PubMed

    Maldonado-Aguayo, W; Gallardo-Escárate, C

    2014-06-01

    Serine protease inhibitors, or serpins, target serine proteases, and are important regulators of intra- and extracellular proteolysis. For parasite survival, parasite-derived protease inhibitors have been suggested to play essential roles in evading the host's immune system and protecting against exogenous host proteases. The aim of this work was to identify serpins via high throughput transcriptome sequencing and elucidate their potential functions during the lifecycle of the salmon louse Caligus rogercresseyi. Eleven putative, partial serpin sequences in the C. rogercresseyi transcriptome were identified and denoted as Cr-serpins 1 to 11. Comparative analysis of the deduced serpin-like amino acid sequences revealed a highly conserved reactive center loop region. Interestingly, P1 residues suggest putative functions involved with the trypsin/subtilisin, elastase, or subtilisin inhibitors, which evidenced increasing gene expression profiles from the copepodid to adult stage in C. rogercresseyi. Concerning this, Cr-serpin 10 was mainly expressed in the copepodid stage, while Cr-serpins 3, 4, 5, and 11 were mostly expressed in chalimus and adult stages. These results suggest that serpins could be involved in evading the immune response of the host fish. The identification of these serpins furthers the understanding of the immune system in this important ectoparasite species. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Life-cycle economics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lunde, P.J.

    1982-09-01

    In a continuation of previous economic analyses, life-cycle economics of solar projects are discussed using the concept of net present value (NPV) or net worth. The discount rate is defined and illustrated and a life-cycle analysis is worked out based on no down payment and a 25-year loan. The advantages of rising NPV are discussed and illustrated using an energy conserving $100 storm window as an example. Real payback period is discussed and it is concluded that NPV is the only valid method for the evaluation of an investment. Return on investment is cited as a satisfactory alternative method. (MJJ)

  17. Integrated analyses using RNA-Seq data reveal viral genomes, single nucleotide variations, the phylogenetic relationship, and recombination for Apple stem grooving virus.

    PubMed

    Jo, Yeonhwa; Choi, Hoseong; Kim, Sang-Min; Kim, Sun-Lim; Lee, Bong Choon; Cho, Won Kyong

    2016-08-09

    Next-generation sequencing (NGS) provides many possibilities for plant virology research. In this study, we performed integrated analyses using plant transcriptome data for plant virus identification using Apple stem grooving virus (ASGV) as an exemplar virus. We used 15 publicly available transcriptome libraries from three different studies, two mRNA-Seq studies and a small RNA-Seq study. We de novo assembled nearly complete genomes of ASGV isolates Fuji and Cuiguan from apple and pear transcriptomes, respectively, and identified single nucleotide variations (SNVs) of ASGV within the transcriptomes. We demonstrated the application of NGS raw data to confirm viral infections in the plant transcriptomes. In addition, we compared the usability of two de novo assemblers, Trinity and Velvet, for virus identification and genome assembly. A phylogenetic tree revealed that ASGV and Citrus tatter leaf virus (CTLV) are the same virus, which was divided into two clades. Recombination analyses identified six recombination events from 21 viral genomes. Taken together, our in silico analyses using NGS data provide a successful application of plant transcriptomes to reveal extensive information associated with viral genome assembly, SNVs, phylogenetic relationships, and genetic recombination.

  18. Early Design Energy Analysis Using Building Information Modeling Technology

    DTIC Science & Technology

    2011-11-01

    building, (a) floor plan and (b) 3D image. ....................................... 50 Figure 28. Comparison of different energy estimates...when they make the biggest impact on building life-cycle costs. Traditionally, most building energy analyses have been conducted late in design, by...complete energy analysis. This method enables project teams to make energy conscious decisions early in design when they impact building life-cycle

  19. Cost-effectiveness Analysis for Technology Acquisition.

    PubMed

    Chakravarty, A; Naware, S S

    2008-01-01

    In a developing country with limited resources, it is important to utilize the total cost visibility approach over the entire life-cycle of the technology and then analyse alternative options for acquiring technology. The present study analysed cost-effectiveness of an "In-house" magnetic resonance imaging (MRI) scan facility of a large service hospital against outsourcing possibilities. Cost per unit scan was calculated by operating costing method and break-even volume was calculated. Then life-cycle cost analysis was performed to enable total cost visibility of the MRI scan in both "In-house" and "outsourcing of facility" configuration. Finally, cost-effectiveness analysis was performed to identify the more acceptable decision option. Total cost for performing unit MRI scan was found to be Rs 3,875 for scans without contrast and Rs 4,129 with contrast. On life-cycle cost analysis, net present value (NPV) of the "In-house" configuration was found to be Rs-(4,09,06,265) while that of "outsourcing of facility" configuration was Rs-(5,70,23,315). Subsequently, cost-effectiveness analysis across eight Figures of Merit showed the "In-house" facility to be the more acceptable option for the system. Every decision for acquiring high-end technology must be subjected to life-cycle cost analysis.

  20. Differential gene transcription across the life cycle in Daphnia magna using a new all genome custom-made microarray.

    PubMed

    Campos, Bruno; Fletcher, Danielle; Piña, Benjamín; Tauler, Romà; Barata, Carlos

    2018-05-18

    Unravelling the link between genes and environment across the life cycle is a challenging goal that requires model organisms with well-characterized life-cycles, ecological interactions in nature, tractability in the laboratory, and available genomic tools. Very few well-studied invertebrate model species meet these requirements, being the waterflea Daphnia magna one of them. Here we report a full genome transcription profiling of D. magna during its life-cycle. The study was performed using a new microarray platform designed from the complete set of gene models representing the whole transcribed genome of D. magna. Up to 93% of the existing 41,317 D. magna gene models showed differential transcription patterns across the developmental stages of D. magna, 59% of which were functionally annotated. Embryos showed the highest number of unique transcribed genes, mainly related to DNA, RNA, and ribosome biogenesis, likely related to cellular proliferation and morphogenesis of the several body organs. Adult females showed an enrichment of transcripts for genes involved in reproductive processes. These female-specific transcripts were essentially absent in males, whose transcriptome was enriched in specific genes of male sexual differentiation genes, like doublesex. Our results define major characteristics of transcriptional programs involved in the life-cycle, differentiate males and females, and show that large scale gene-transcription data collected in whole animals can be used to identify genes involved in specific biological and biochemical processes.

  1. Trinity | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    Trinity Cancer Transcriptome Analysis Toolkit (CTAT) including de novo transcriptome assembly with downstream support for expression analysis and focused analyses on cancer transcriptomes, incorporating mutation and fusion transcript discovery, and single cell analysis.

  2. Expressing genes do not forget their LINEs: transposable elements and gene expression

    PubMed Central

    Kines, Kristine J.; Belancio, Victoria P.

    2012-01-01

    1. ABSTRACT Historically the accumulated mass of mammalian transposable elements (TEs), particularly those located within gene boundaries, was viewed as a genetic burden potentially detrimental to the genomic landscape. This notion has been strengthened by the discovery that transposable sequences can alter the architecture of the transcriptome, not only through insertion, but also long after the integration process is completed. Insertions previously considered harmless are now known to impact the expression of host genes via modification of the transcript quality or quantity, transcriptional interference, or by the control of pathways that affect the mRNA life-cycle. Conversely, several examples of the evolutionary advantageous impact of TEs on the host gene structure that diversified the cellular transcriptome are reported. TE-induced changes in gene expression can be tissue-or disease-specific, raising the possibility that the impact of TE sequences may vary during development, among normal cell types, and between normal and disease-affected tissues. The understanding of the rules and abundance of TE-interference with gene expression is in its infancy, and its contribution to human disease and/or evolution remains largely unexplored. PMID:22201807

  3. Examination of Triacylglycerol Biosynthetic Pathways via De Novo Transcriptomic and Proteomic Analyses in an Unsequenced Microalga

    PubMed Central

    Guarnieri, Michael T.; Nag, Ambarish; Smolinski, Sharon L.; Darzins, Al; Seibert, Michael; Pienkos, Philip T.

    2011-01-01

    Biofuels derived from algal lipids represent an opportunity to dramatically impact the global energy demand for transportation fuels. Systems biology analyses of oleaginous algae could greatly accelerate the commercialization of algal-derived biofuels by elucidating the key components involved in lipid productivity and leading to the initiation of hypothesis-driven strain-improvement strategies. However, higher-level systems biology analyses, such as transcriptomics and proteomics, are highly dependent upon available genomic sequence data, and the lack of these data has hindered the pursuit of such analyses for many oleaginous microalgae. In order to examine the triacylglycerol biosynthetic pathway in the unsequenced oleaginous microalga, Chlorella vulgaris, we have established a strategy with which to bypass the necessity for genomic sequence information by using the transcriptome as a guide. Our results indicate an upregulation of both fatty acid and triacylglycerol biosynthetic machinery under oil-accumulating conditions, and demonstrate the utility of a de novo assembled transcriptome as a search model for proteomic analysis of an unsequenced microalga. PMID:22043295

  4. The low-abundance transcriptome reveals novel biomarkers, specific intracellular pathways and targetable genes associated with advanced gastric cancer.

    PubMed

    Bizama, Carolina; Benavente, Felipe; Salvatierra, Edgardo; Gutiérrez-Moraga, Ana; Espinoza, Jaime A; Fernández, Elmer A; Roa, Iván; Mazzolini, Guillermo; Sagredo, Eduardo A; Gidekel, Manuel; Podhajcer, Osvaldo L

    2014-02-15

    Studies on the low-abundance transcriptome are of paramount importance for identifying the intimate mechanisms of tumor progression that can lead to novel therapies. The aim of the present study was to identify novel markers and targetable genes and pathways in advanced human gastric cancer through analyses of the low-abundance transcriptome. The procedure involved an initial subtractive hybridization step, followed by global gene expression analysis using microarrays. We observed profound differences, both at the single gene and gene ontology levels, between the low-abundance transcriptome and the whole transcriptome. Analysis of the low-abundance transcriptome led to the identification and validation by tissue microarrays of novel biomarkers, such as LAMA3 and TTN; moreover, we identified cancer type-specific intracellular pathways and targetable genes, such as IRS2, IL17, IFNγ, VEGF-C, WISP1, FZD5 and CTBP1 that were not detectable by whole transcriptome analyses. We also demonstrated that knocking down the expression of CTBP1 sensitized gastric cancer cells to mainstay chemotherapeutic drugs. We conclude that the analysis of the low-abundance transcriptome provides useful insights into the molecular basis and treatment of cancer. © 2013 UICC.

  5. The Anopheles gambiae transcriptome - a turning point for malaria control.

    PubMed

    Domingos, A; Pinheiro-Silva, R; Couto, J; do Rosário, V; de la Fuente, J

    2017-04-01

    Mosquitoes are important vectors of several pathogens and thereby contribute to the spread of diseases, with social, economic and public health impacts. Amongst the approximately 450 species of Anopheles, about 60 are recognized as vectors of human malaria, the most important parasitic disease. In Africa, Anopheles gambiae is the main malaria vector mosquito. Current malaria control strategies are largely focused on drugs and vector control measures such as insecticides and bed-nets. Improvement of current, and the development of new, mosquito-targeted malaria control methods rely on a better understanding of mosquito vector biology. An organism's transcriptome is a reflection of its physiological state and transcriptomic analyses of different conditions that are relevant to mosquito vector competence can therefore yield important information. Transcriptomic analyses have contributed significant information on processes such as blood-feeding parasite-vector interaction, insecticide resistance, and tissue- and stage-specific gene regulation, thereby facilitating the path towards the development of new malaria control methods. Here, we discuss the main applications of transcriptomic analyses in An. gambiae that have led to a better understanding of mosquito vector competence. © 2017 The Royal Entomological Society.

  6. Myeloid differentiation architecture of leukocyte transcriptome dynamics in perceived social isolation

    PubMed Central

    Cole, Steven W.; Capitanio, John P.; Chun, Katie; Arevalo, Jesusa M. G.; Ma, Jeffrey; Cacioppo, John T.

    2015-01-01

    To define the cellular mechanisms of up-regulated inflammatory gene expression and down-regulated antiviral response in people experiencing perceived social isolation (loneliness), we conducted integrative analyses of leukocyte gene regulation in humans and rhesus macaques. Five longitudinal leukocyte transcriptome surveys in 141 older adults showed up-regulation of the sympathetic nervous system (SNS), monocyte population expansion, and up-regulation of the leukocyte conserved transcriptional response to adversity (CTRA). Mechanistic analyses in a macaque model of perceived social isolation confirmed CTRA activation and identified selective up-regulation of the CD14++/CD16− classical monocyte transcriptome, functional glucocorticoid desensitization, down-regulation of Type I and II interferons, and impaired response to infection by simian immunodeficiency virus (SIV). These analyses identify neuroendocrine-related alterations in myeloid cell population dynamics as a key mediator of CTRA transcriptome skewing, which may both propagate perceived social isolation and contribute to its associated health risks. PMID:26598672

  7. Developmental Transcriptome for a Facultatively Eusocial Bee, Megalopta genalis

    PubMed Central

    Jones, Beryl M.; Wcislo, William T.; Robinson, Gene E.

    2015-01-01

    Transcriptomes provide excellent foundational resources for mechanistic and evolutionary analyses of complex traits. We present a developmental transcriptome for the facultatively eusocial bee Megalopta genalis, which represents a potential transition point in the evolution of eusociality. A de novo transcriptome assembly of Megalopta genalis was generated using paired-end Illumina sequencing and the Trinity assembler. Males and females of all life stages were aligned to this transcriptome for analysis of gene expression profiles throughout development. Gene Ontology analysis indicates that stage-specific genes are involved in ion transport, cell–cell signaling, and metabolism. A number of distinct biological processes are upregulated in each life stage, and transitions between life stages involve shifts in dominant functional processes, including shifts from transcriptional regulation in embryos to metabolism in larvae, and increased lipid metabolism in adults. We expect that this transcriptome will provide a useful resource for future analyses to better understand the molecular basis of the evolution of eusociality and, more generally, phenotypic plasticity. PMID:26276382

  8. Developmental Transcriptome for a Facultatively Eusocial Bee, Megalopta genalis.

    PubMed

    Jones, Beryl M; Wcislo, William T; Robinson, Gene E

    2015-08-14

    Transcriptomes provide excellent foundational resources for mechanistic and evolutionary analyses of complex traits. We present a developmental transcriptome for the facultatively eusocial bee Megalopta genalis, which represents a potential transition point in the evolution of eusociality. A de novo transcriptome assembly of Megalopta genalis was generated using paired-end Illumina sequencing and the Trinity assembler. Males and females of all life stages were aligned to this transcriptome for analysis of gene expression profiles throughout development. Gene Ontology analysis indicates that stage-specific genes are involved in ion transport, cell-cell signaling, and metabolism. A number of distinct biological processes are upregulated in each life stage, and transitions between life stages involve shifts in dominant functional processes, including shifts from transcriptional regulation in embryos to metabolism in larvae, and increased lipid metabolism in adults. We expect that this transcriptome will provide a useful resource for future analyses to better understand the molecular basis of the evolution of eusociality and, more generally, phenotypic plasticity. Copyright © 2015 Jones et al.

  9. A survey of the sorghum transcriptome using single-molecule long reads

    DOE PAGES

    Abdel-Ghany, Salah E.; Hamilton, Michael; Jacobi, Jennifer L.; ...

    2016-06-24

    Alternative splicing and alternative polyadenylation (APA) of pre-mRNAs greatly contribute to transcriptome diversity, coding capacity of a genome and gene regulatory mechanisms in eukaryotes. Second-generation sequencing technologies have been extensively used to analyse transcriptomes. However, a major limitation of short-read data is that it is difficult to accurately predict full-length splice isoforms. Here we sequenced the sorghum transcriptome using Pacific Biosciences single-molecule real-time long-read isoform sequencing and developed a pipeline called TAPIS (Transcriptome Analysis Pipeline for Isoform Sequencing) to identify full-length splice isoforms and APA sites. Our analysis reveals transcriptome-wide full-length isoforms at an unprecedented scale with over 11,000 novelmore » splice isoforms. Additionally, we uncover APA ofB11,000 expressed genes and more than 2,100 novel genes. Lastly, these results greatly enhance sorghum gene annotations and aid in studying gene regulation in this important bioenergy crop. The TAPIS pipeline will serve as a useful tool to analyse Iso-Seq data from any organism.« less

  10. A survey of the sorghum transcriptome using single-molecule long reads

    PubMed Central

    Abdel-Ghany, Salah E.; Hamilton, Michael; Jacobi, Jennifer L.; Ngam, Peter; Devitt, Nicholas; Schilkey, Faye; Ben-Hur, Asa; Reddy, Anireddy S. N.

    2016-01-01

    Alternative splicing and alternative polyadenylation (APA) of pre-mRNAs greatly contribute to transcriptome diversity, coding capacity of a genome and gene regulatory mechanisms in eukaryotes. Second-generation sequencing technologies have been extensively used to analyse transcriptomes. However, a major limitation of short-read data is that it is difficult to accurately predict full-length splice isoforms. Here we sequenced the sorghum transcriptome using Pacific Biosciences single-molecule real-time long-read isoform sequencing and developed a pipeline called TAPIS (Transcriptome Analysis Pipeline for Isoform Sequencing) to identify full-length splice isoforms and APA sites. Our analysis reveals transcriptome-wide full-length isoforms at an unprecedented scale with over 11,000 novel splice isoforms. Additionally, we uncover APA of ∼11,000 expressed genes and more than 2,100 novel genes. These results greatly enhance sorghum gene annotations and aid in studying gene regulation in this important bioenergy crop. The TAPIS pipeline will serve as a useful tool to analyse Iso-Seq data from any organism. PMID:27339290

  11. Comparative analyses of spent nuclear fuel transport modal options: Transport options under existing site constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brentlinger, L.A.; Hofmann, P.L.; Peterson, R.W.

    1989-08-01

    The movement of nuclear waste can be accomplished by various transport modal options involving different types of vehicles, transport casks, transport routes, and intermediate intermodal transfer facilities. A series of systems studies are required to evaluate modal/intermodal spent fuel transportation options in a consistent fashion. This report provides total life-cycle cost and life-cycle dose estimates for a series of transport modal options under existing site constraints. 14 refs., 7 figs., 28 tabs.

  12. Draft De Novo Transcriptome of the Rat Kangaroo Potorous tridactylus as a Tool for Cell Biology

    PubMed Central

    Udy, Dylan B.; Voorhies, Mark; Chan, Patricia P.; Lowe, Todd M.; Dumont, Sophie

    2015-01-01

    The rat kangaroo (long-nosed potoroo, Potorous tridactylus) is a marsupial native to Australia. Cultured rat kangaroo kidney epithelial cells (PtK) are commonly used to study cell biological processes. These mammalian cells are large, adherent, and flat, and contain large and few chromosomes—and are thus ideal for imaging intra-cellular dynamics such as those of mitosis. Despite this, neither the rat kangaroo genome nor transcriptome have been sequenced, creating a challenge for probing the molecular basis of these cellular dynamics. Here, we present the sequencing, assembly and annotation of the draft rat kangaroo de novo transcriptome. We sequenced 679 million reads that mapped to 347,323 Trinity transcripts and 20,079 Unigenes. We present statistics emerging from transcriptome-wide analyses, and analyses suggesting that the transcriptome covers full-length sequences of most genes, many with multiple isoforms. We also validate our findings with a proof-of-concept gene knockdown experiment. We expect that this high quality transcriptome will make rat kangaroo cells a more tractable system for linking molecular-scale function and cellular-scale dynamics. PMID:26252667

  13. Draft De Novo Transcriptome of the Rat Kangaroo Potorous tridactylus as a Tool for Cell Biology.

    PubMed

    Udy, Dylan B; Voorhies, Mark; Chan, Patricia P; Lowe, Todd M; Dumont, Sophie

    2015-01-01

    The rat kangaroo (long-nosed potoroo, Potorous tridactylus) is a marsupial native to Australia. Cultured rat kangaroo kidney epithelial cells (PtK) are commonly used to study cell biological processes. These mammalian cells are large, adherent, and flat, and contain large and few chromosomes-and are thus ideal for imaging intra-cellular dynamics such as those of mitosis. Despite this, neither the rat kangaroo genome nor transcriptome have been sequenced, creating a challenge for probing the molecular basis of these cellular dynamics. Here, we present the sequencing, assembly and annotation of the draft rat kangaroo de novo transcriptome. We sequenced 679 million reads that mapped to 347,323 Trinity transcripts and 20,079 Unigenes. We present statistics emerging from transcriptome-wide analyses, and analyses suggesting that the transcriptome covers full-length sequences of most genes, many with multiple isoforms. We also validate our findings with a proof-of-concept gene knockdown experiment. We expect that this high quality transcriptome will make rat kangaroo cells a more tractable system for linking molecular-scale function and cellular-scale dynamics.

  14. Light and temperature shape nuclear architecture and gene expression.

    PubMed

    Kaiserli, Eirini; Perrella, Giorgio; Davidson, Mhairi Lh

    2018-06-14

    Environmental stimuli play a major role in modulating growth and development throughout the life-cycle of a plant. Quantitative and qualitative variations in light and temperature trigger changes in gene expression that ultimately shape plant morphology for adaptation and survival. Although the phenotypic and transcriptomic basis of plant responses to the constantly changing environment have been examined for decades, the relationship between global changes in nuclear architecture and adaption to environmental stimuli is just being uncovered. This review presents recent discoveries investigating how changes in light and temperature trigger changes in chromatin structure and nuclear organization with a focus on the role of gene repositioning and chromatin accessibility in regulating gene expression. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  15. Visual Analytics Tools for Sustainable Lifecycle Design: Current Status, Challenges, and Future Opportunities.

    PubMed

    Ramanujan, Devarajan; Bernstein, William Z; Chandrasegaran, Senthil K; Ramani, Karthik

    2017-01-01

    The rapid rise in technologies for data collection has created an unmatched opportunity to advance the use of data-rich tools for lifecycle decision-making. However, the usefulness of these technologies is limited by the ability to translate lifecycle data into actionable insights for human decision-makers. This is especially true in the case of sustainable lifecycle design (SLD), as the assessment of environmental impacts, and the feasibility of making corresponding design changes, often relies on human expertise and intuition. Supporting human sense-making in SLD requires the use of both data-driven and user-driven methods while exploring lifecycle data. A promising approach for combining the two is through the use of visual analytics (VA) tools. Such tools can leverage the ability of computer-based tools to gather, process, and summarize data along with the ability of human-experts to guide analyses through domain knowledge or data-driven insight. In this paper, we review previous research that has created VA tools in SLD. We also highlight existing challenges and future opportunities for such tools in different lifecycle stages-design, manufacturing, distribution & supply chain, use-phase, end-of-life, as well as life cycle assessment. Our review shows that while the number of VA tools in SLD is relatively small, researchers are increasingly focusing on the subject matter. Our review also suggests that VA tools can address existing challenges in SLD and that significant future opportunities exist.

  16. Single-cell transcriptomics for microbial eukaryotes.

    PubMed

    Kolisko, Martin; Boscaro, Vittorio; Burki, Fabien; Lynn, Denis H; Keeling, Patrick J

    2014-11-17

    One of the greatest hindrances to a comprehensive understanding of microbial genomics, cell biology, ecology, and evolution is that most microbial life is not in culture. Solutions to this problem have mainly focused on whole-community surveys like metagenomics, but these analyses inevitably loose information and present particular challenges for eukaryotes, which are relatively rare and possess large, gene-sparse genomes. Single-cell analyses present an alternative solution that allows for specific species to be targeted, while retaining information on cellular identity, morphology, and partitioning of activities within microbial communities. Single-cell transcriptomics, pioneered in medical research, offers particular potential advantages for uncultivated eukaryotes, but the efficiency and biases have not been tested. Here we describe a simple and reproducible method for single-cell transcriptomics using manually isolated cells from five model ciliate species; we examine impacts of amplification bias and contamination, and compare the efficacy of gene discovery to traditional culture-based transcriptomics. Gene discovery using single-cell transcriptomes was found to be comparable to mass-culture methods, suggesting single-cell transcriptomics is an efficient entry point into genomic data from the vast majority of eukaryotic biodiversity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. FusionAnalyser: a new graphical, event-driven tool for fusion rearrangements discovery

    PubMed Central

    Piazza, Rocco; Pirola, Alessandra; Spinelli, Roberta; Valletta, Simona; Redaelli, Sara; Magistroni, Vera; Gambacorti-Passerini, Carlo

    2012-01-01

    Gene fusions are common driver events in leukaemias and solid tumours; here we present FusionAnalyser, a tool dedicated to the identification of driver fusion rearrangements in human cancer through the analysis of paired-end high-throughput transcriptome sequencing data. We initially tested FusionAnalyser by using a set of in silico randomly generated sequencing data from 20 known human translocations occurring in cancer and subsequently using transcriptome data from three chronic and three acute myeloid leukaemia samples. in all the cases our tool was invariably able to detect the presence of the correct driver fusion event(s) with high specificity. In one of the acute myeloid leukaemia samples, FusionAnalyser identified a novel, cryptic, in-frame ETS2–ERG fusion. A fully event-driven graphical interface and a flexible filtering system allow complex analyses to be run in the absence of any a priori programming or scripting knowledge. Therefore, we propose FusionAnalyser as an efficient and robust graphical tool for the identification of functional rearrangements in the context of high-throughput transcriptome sequencing data. PMID:22570408

  18. FusionAnalyser: a new graphical, event-driven tool for fusion rearrangements discovery.

    PubMed

    Piazza, Rocco; Pirola, Alessandra; Spinelli, Roberta; Valletta, Simona; Redaelli, Sara; Magistroni, Vera; Gambacorti-Passerini, Carlo

    2012-09-01

    Gene fusions are common driver events in leukaemias and solid tumours; here we present FusionAnalyser, a tool dedicated to the identification of driver fusion rearrangements in human cancer through the analysis of paired-end high-throughput transcriptome sequencing data. We initially tested FusionAnalyser by using a set of in silico randomly generated sequencing data from 20 known human translocations occurring in cancer and subsequently using transcriptome data from three chronic and three acute myeloid leukaemia samples. in all the cases our tool was invariably able to detect the presence of the correct driver fusion event(s) with high specificity. In one of the acute myeloid leukaemia samples, FusionAnalyser identified a novel, cryptic, in-frame ETS2-ERG fusion. A fully event-driven graphical interface and a flexible filtering system allow complex analyses to be run in the absence of any a priori programming or scripting knowledge. Therefore, we propose FusionAnalyser as an efficient and robust graphical tool for the identification of functional rearrangements in the context of high-throughput transcriptome sequencing data.

  19. Comparative transcriptome analysis and identification of candidate effectors in two related rust species (Gymnosporangium yamadae and Gymnosporangium asiaticum).

    PubMed

    Tao, Si-Qi; Cao, Bin; Tian, Cheng-Ming; Liang, Ying-Mei

    2017-08-23

    Rust fungi constitute the largest group of plant fungal pathogens. However, a paucity of data, including genomic sequences, transcriptome sequences, and associated molecular markers, hinders the development of inhibitory compounds and prevents their analysis from an evolutionary perspective. Gymnosporangium yamadae and G. asiaticum are two closely related rust fungal species, which are ecologically and economically important pathogens that cause apple rust and pear rust, respectively, proved to be devastating to orchards. In this study, we investigated the transcriptomes of these two Gymnosporangium species during the telial stage of their lifecycles. The aim of this study was to understand the evolutionary patterns of these two related fungi and to identify genes that developed by selection. The transcriptomes of G. yamadae and G. asiaticum were generated from a mixture of RNA from three biological replicates of each species. We obtained 49,318 and 54,742 transcripts, with N50 values of 1957 and 1664, for G. yamadae and G. asiaticum, respectively. We also identified a repertoire of candidate effectors and other gene families associated with pathogenicity. A total of 4947 pairs of putative orthologues between the two species were identified. Estimation of the non-synonymous/synonymous substitution rate ratios for these orthologues identified 116 pairs with Ka/Ks values greater than1 that are under positive selection and 170 pairs with Ka/Ks values of 1 that are under neutral selection, whereas the remaining 4661 genes are subjected to purifying selection. We estimate that the divergence time between the two species is approximately 5.2 Mya. This study constitutes a de novo assembly and comparative analysis between the transcriptomes of the two rust species G. yamadae and G. asiaticum. The results identified several orthologous genes, and many expressed genes were identified by annotation. Our analysis of Ka/Ks ratios identified orthologous genes subjected to positive or purifying selection. An evolutionary analysis of these two species provided a relatively precise divergence time. Overall, the information obtained in this study increases the genetic resources available for research on the genetic diversity of the Gymnosporangium genus.

  20. System Evaluation and Life-Cycle Cost Analysis of a Commercial-Scale High-Temperature Electrolysis Hydrogen Production Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

    2012-11-01

    Results of a system evaluation and lifecycle cost analysis are presented for a commercial-scale high-temperature electrolysis (HTE) central hydrogen production plant. The plant design relies on grid electricity to power the electrolysis process and system components, and industrial natural gas to provide process heat. The HYSYS process analysis software was used to evaluate the reference central plant design capable of producing 50,000 kg/day of hydrogen. The HYSYS software performs mass and energy balances across all components to allow optimization of the design using a detailed process flow sheet and realistic operating conditions specified by the analyst. The lifecycle cost analysismore » was performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes Microsoft Excel spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. The results of the lifecycle analyses indicate that for a 10% internal rate of return, a large central commercial-scale hydrogen production plant can produce 50,000 kg/day of hydrogen at an average cost of $2.68/kg. When the cost of carbon sequestration is taken into account, the average cost of hydrogen production increases by $0.40/kg to $3.08/kg.« less

  1. Life-Cycle Cost/Benefit Assessment of Expedite Departure Path (EDP)

    NASA Technical Reports Server (NTRS)

    Wang, Jianzhong Jay; Chang, Paul; Datta, Koushik

    2005-01-01

    This report presents a life-cycle cost/benefit assessment (LCCBA) of Expedite Departure Path (EDP), an air traffic control Decision Support Tool (DST) currently under development at NASA. This assessment is an update of a previous study performed by bd Systems, Inc. (bd) during FY01, with the following revisions: The life-cycle cost assessment methodology developed by bd for the previous study was refined and calibrated using Free Flight Phase 1 (FFP1) cost information for Traffic Management Advisor (TMA, or TMA-SC in the FAA's terminology). Adjustments were also made to the site selection and deployment scheduling methodology to include airspace complexity as a factor. This technique was also applied to the benefit extrapolation methodology to better estimate potential benefits for other years, and at other sites. This study employed a new benefit estimating methodology because bd s previous single year potential benefit assessment of EDP used unrealistic assumptions that resulted in optimistic estimates. This methodology uses an air traffic simulation approach to reasonably predict the impacts from the implementation of EDP. The results of the costs and benefits analyses were then integrated into a life-cycle cost/benefit assessment.

  2. Fish-T1K (Transcriptomes of 1,000 Fishes) Project: large-scale transcriptome data for fish evolution studies.

    PubMed

    Sun, Ying; Huang, Yu; Li, Xiaofeng; Baldwin, Carole C; Zhou, Zhuocheng; Yan, Zhixiang; Crandall, Keith A; Zhang, Yong; Zhao, Xiaomeng; Wang, Min; Wong, Alex; Fang, Chao; Zhang, Xinhui; Huang, Hai; Lopez, Jose V; Kilfoyle, Kirk; Zhang, Yong; Ortí, Guillermo; Venkatesh, Byrappa; Shi, Qiong

    2016-01-01

    Ray-finned fishes (Actinopterygii) represent more than 50 % of extant vertebrates and are of great evolutionary, ecologic and economic significance, but they are relatively underrepresented in 'omics studies. Increased availability of transcriptome data for these species will allow researchers to better understand changes in gene expression, and to carry out functional analyses. An international project known as the "Transcriptomes of 1,000 Fishes" (Fish-T1K) project has been established to generate RNA-seq transcriptome sequences for 1,000 diverse species of ray-finned fishes. The first phase of this project has produced transcriptomes from more than 180 ray-finned fishes, representing 142 species and covering 51 orders and 109 families. Here we provide an overview of the goals of this project and the work done so far.

  3. The transcriptome landscape of early maize meiosis

    USDA-ARS?s Scientific Manuscript database

    Meiosis, particularly meiotic recombination, is a major factor affecting yield and breeding of plants. To gain insight into the transcriptome landscape during early initiation steps of meiotic recombination, we profiled early prophase I meiocytes from maize using RNA-seq. Our analyses of genes prefe...

  4. Time-Series Analyses of Transcriptomes and Proteomes Reveal Molecular Networks Underlying Oil Accumulation in Canola.

    PubMed

    Wan, Huafang; Cui, Yixin; Ding, Yijuan; Mei, Jiaqin; Dong, Hongli; Zhang, Wenxin; Wu, Shiqi; Liang, Ying; Zhang, Chunyu; Li, Jiana; Xiong, Qing; Qian, Wei

    2016-01-01

    Understanding the regulation of lipid metabolism is vital for genetic engineering of canola ( Brassica napus L.) to increase oil yield or modify oil composition. We conducted time-series analyses of transcriptomes and proteomes to uncover the molecular networks associated with oil accumulation and dynamic changes in these networks in canola. The expression levels of genes and proteins were measured at 2, 4, 6, and 8 weeks after pollination (WAP). Our results show that the biosynthesis of fatty acids is a dominant cellular process from 2 to 6 WAP, while the degradation mainly happens after 6 WAP. We found that genes in almost every node of fatty acid synthesis pathway were significantly up-regulated during oil accumulation. Moreover, significant expression changes of two genes, acetyl-CoA carboxylase and acyl-ACP desaturase, were detected on both transcriptomic and proteomic levels. We confirmed the temporal expression patterns revealed by the transcriptomic analyses using quantitative real-time PCR experiments. The gene set association analysis show that the biosynthesis of fatty acids and unsaturated fatty acids are the most significant biological processes from 2-4 WAP and 4-6 WAP, respectively, which is consistent with the results of time-series analyses. These results not only provide insight into the mechanisms underlying lipid metabolism, but also reveal novel candidate genes that are worth further investigation for their values in the genetic engineering of canola.

  5. The duck genome and transcriptome provide insight into an avian influenza virus reservoir species

    PubMed Central

    Chen, Hualan; Zhang, Yong; Qian, Wubin; Kim, Heebal; Gan, Shangquan; Zhao, Yiqiang; Li, Jianwen; Yi, Kang; Feng, Huapeng; Zhu, Pengyang; Li, Bo; Liu, Qiuyue; Fairley, Suan; Magor, Katharine E; Du, Zhenlin; Hu, Xiaoxiang; Goodman, Laurie; Tafer, Hakim; Vignal, Alain; Lee, Taeheon; Kim, Kyu-Won; Sheng, Zheya; An, Yang; Searle, Steve; Herrero, Javier; Groenen, Martien A M; Crooijmans, Richard P M A; Faraut, Thomas; Cai, Qingle; Webster, Robert G; Aldridge, Jerry R; Warren, Wesley C; Bartschat, Sebastian; Kehr, Stephanie; Marz, Manja; Stadler, Peter F; Smith, Jacqueline; Kraus, Robert H S; Zhao, Yaofeng; Ren, Liming; Fei, Jing; Morisson, Mireille; Kaiser, Pete; Griffin, Darren K; Rao, Man; Pitel, Frederique; Wang, Jun; Li, Ning

    2014-01-01

    The duck (Anas platyrhynchos) is one of the principal natural hosts of influenza A viruses. We present the duck genome sequence and perform deep transcriptome analyses to investigate immune-related genes. Our data indicate that the duck possesses a contractive immune gene repertoire, as in chicken and zebra finch, and this repertoire has been shaped through lineage-specific duplications. We identify genes that are responsive to influenza A viruses using the lung transcriptomes of control ducks and ones that were infected with either a highly pathogenic (A/duck/Hubei/49/05) or a weakly pathogenic (A/goose/Hubei/65/05) H5N1 virus. Further, we show how the duck’s defense mechanisms against influenza infection have been optimized through the diversification of its β-defensin and butyrophilin-like repertoires. These analyses, in combination with the genomic and transcriptomic data, provide a resource for characterizing the interaction between host and influenza viruses. PMID:23749191

  6. Biochemical and transcriptomic analyses reveal different metabolite biosynthesis profiles among three color and developmental stages in 'Anji Baicha' (Camellia sinensis).

    PubMed

    Li, Chun-Fang; Xu, Yan-Xia; Ma, Jian-Qiang; Jin, Ji-Qiang; Huang, Dan-Juan; Yao, Ming-Zhe; Ma, Chun-Lei; Chen, Liang

    2016-09-08

    The new shoots of the albino tea cultivar 'Anji Baicha' are yellow or white at low temperatures and turn green as the environmental temperatures increase during the early spring. 'Anji Baicha' metabolite profiles exhibit considerable variability over three color and developmental stages, especially regarding the carotenoid, chlorophyll, and theanine concentrations. Previous studies focused on physiological characteristics, gene expression differences, and variations in metabolite abundances in albino tea plant leaves at specific growth stages. However, the molecular mechanisms regulating metabolite biosynthesis in various color and developmental stages in albino tea leaves have not been fully characterized. We used RNA-sequencing to analyze 'Anji Baicha' leaves at the yellow-green, albescent, and re-greening stages. The leaf transcriptomes differed considerably among the three stages. Functional classifications based on Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that differentially expressed unigenes were mainly related to metabolic pathways, biosynthesis of secondary metabolites, phenylpropanoid biosynthesis, and carbon fixation in photosynthetic organisms. Chemical analyses revealed higher β-carotene and theanine levels, but lower chlorophyll a levels, in the albescent stage than in the green stage. Furthermore, unigenes involved in carotenoid, chlorophyll, and theanine biosyntheses were identified, and the expression patterns of the differentially expressed unigenes in these biosynthesis pathways were characterized. Through co-expression analyses, we identified the key genes in these pathways. These genes may be responsible for the metabolite biosynthesis differences among the different leaf color and developmental stages of 'Anji Baicha' tea plants. Our study presents the results of transcriptomic and biochemical analyses of 'Anji Baicha' tea plants at various stages. The distinct transcriptome profiles for each color and developmental stage enabled us to identify changes to biosynthesis pathways and revealed the contributions of such variations to the albino phenotype of tea plants. Furthermore, comparisons of the transcriptomes and related metabolites helped clarify the molecular regulatory mechanisms underlying the secondary metabolic pathways in different stages.

  7. PIVOT: platform for interactive analysis and visualization of transcriptomics data.

    PubMed

    Zhu, Qin; Fisher, Stephen A; Dueck, Hannah; Middleton, Sarah; Khaladkar, Mugdha; Kim, Junhyong

    2018-01-05

    Many R packages have been developed for transcriptome analysis but their use often requires familiarity with R and integrating results of different packages requires scripts to wrangle the datatypes. Furthermore, exploratory data analyses often generate multiple derived datasets such as data subsets or data transformations, which can be difficult to track. Here we present PIVOT, an R-based platform that wraps open source transcriptome analysis packages with a uniform user interface and graphical data management that allows non-programmers to interactively explore transcriptomics data. PIVOT supports more than 40 popular open source packages for transcriptome analysis and provides an extensive set of tools for statistical data manipulations. A graph-based visual interface is used to represent the links between derived datasets, allowing easy tracking of data versions. PIVOT further supports automatic report generation, publication-quality plots, and program/data state saving, such that all analysis can be saved, shared and reproduced. PIVOT will allow researchers with broad background to easily access sophisticated transcriptome analysis tools and interactively explore transcriptome datasets.

  8. Necklace: combining reference and assembled transcriptomes for more comprehensive RNA-Seq analysis.

    PubMed

    Davidson, Nadia M; Oshlack, Alicia

    2018-05-01

    RNA sequencing (RNA-seq) analyses can benefit from performing a genome-guided and de novo assembly, in particular for species where the reference genome or the annotation is incomplete. However, tools for integrating an assembled transcriptome with reference annotation are lacking. Necklace is a software pipeline that runs genome-guided and de novo assembly and combines the resulting transcriptomes with reference genome annotations. Necklace constructs a compact but comprehensive superTranscriptome out of the assembled and reference data. Reads are subsequently aligned and counted in preparation for differential expression testing. Necklace allows a comprehensive transcriptome to be built from a combination of assembled and annotated transcripts, which results in a more comprehensive transcriptome for the majority of organisms. In addition RNA-seq data are mapped back to this newly created superTranscript reference to enable differential expression testing with standard methods.

  9. MDOT Pavement Management System : Prediction Models and Feedback System

    DOT National Transportation Integrated Search

    2000-10-01

    As a primary component of a Pavement Management System (PMS), prediction models are crucial for one or more of the following analyses: : maintenance planning, budgeting, life-cycle analysis, multi-year optimization of maintenance works program, and a...

  10. Reptilian-transcriptome v1.0, a glimpse in the brain transcriptome of five divergent Sauropsida lineages and the phylogenetic position of turtles.

    PubMed

    Tzika, Athanasia C; Helaers, Raphaël; Schramm, Gerrit; Milinkovitch, Michel C

    2011-09-26

    Reptiles are largely under-represented in comparative genomics despite the fact that they are substantially more diverse in many respects than mammals. Given the high divergence of reptiles from classical model species, next-generation sequencing of their transcriptomes is an approach of choice for gene identification and annotation. Here, we use 454 technology to sequence the brain transcriptome of four divergent reptilian and one reference avian species: the Nile crocodile, the corn snake, the bearded dragon, the red-eared turtle, and the chicken. Using an in-house pipeline for recursive similarity searches of >3,000,000 reads against multiple databases from 7 reference vertebrates, we compile a reptilian comparative transcriptomics dataset, with homology assignment for 20,000 to 31,000 transcripts per species and a cumulated non-redundant sequence length of 248.6 Mbases. Our approach identifies the majority (87%) of chicken brain transcripts and about 50% of de novo assembled reptilian transcripts. In addition to 57,502 microsatellite loci, we identify thousands of SNP and indel polymorphisms for population genetic and linkage analyses. We also build very large multiple alignments for Sauropsida and mammals (two million residues per species) and perform extensive phylogenetic analyses suggesting that turtles are not basal living reptiles but are rather associated with Archosaurians, hence, potentially answering a long-standing question in the phylogeny of Amniotes. The reptilian transcriptome (freely available at http://www.reptilian-transcriptomes.org) should prove a useful new resource as reptiles are becoming important new models for comparative genomics, ecology, and evolutionary developmental genetics.

  11. N-of-1-pathways MixEnrich: advancing precision medicine via single-subject analysis in discovering dynamic changes of transcriptomes.

    PubMed

    Li, Qike; Schissler, A Grant; Gardeux, Vincent; Achour, Ikbel; Kenost, Colleen; Berghout, Joanne; Li, Haiquan; Zhang, Hao Helen; Lussier, Yves A

    2017-05-24

    Transcriptome analytic tools are commonly used across patient cohorts to develop drugs and predict clinical outcomes. However, as precision medicine pursues more accurate and individualized treatment decisions, these methods are not designed to address single-patient transcriptome analyses. We previously developed and validated the N-of-1-pathways framework using two methods, Wilcoxon and Mahalanobis Distance (MD), for personal transcriptome analysis derived from a pair of samples of a single patient. Although, both methods uncover concordantly dysregulated pathways, they are not designed to detect dysregulated pathways with up- and down-regulated genes (bidirectional dysregulation) that are ubiquitous in biological systems. We developed N-of-1-pathways MixEnrich, a mixture model followed by a gene set enrichment test, to uncover bidirectional and concordantly dysregulated pathways one patient at a time. We assess its accuracy in a comprehensive simulation study and in a RNA-Seq data analysis of head and neck squamous cell carcinomas (HNSCCs). In presence of bidirectionally dysregulated genes in the pathway or in presence of high background noise, MixEnrich substantially outperforms previous single-subject transcriptome analysis methods, both in the simulation study and the HNSCCs data analysis (ROC Curves; higher true positive rates; lower false positive rates). Bidirectional and concordant dysregulated pathways uncovered by MixEnrich in each patient largely overlapped with the quasi-gold standard compared to other single-subject and cohort-based transcriptome analyses. The greater performance of MixEnrich presents an advantage over previous methods to meet the promise of providing accurate personal transcriptome analysis to support precision medicine at point of care.

  12. Temperature fine-tunes Mediterranean Arabidopsis thaliana life-cycle phenology geographically.

    PubMed

    Marcer, A; Vidigal, D S; James, P M A; Fortin, M-J; Méndez-Vigo, B; Hilhorst, H W M; Bentsink, L; Alonso-Blanco, C; Picó, F X

    2018-01-01

    To understand how adaptive evolution in life-cycle phenology operates in plants, we need to unravel the effects of geographic variation in putative agents of natural selection on life-cycle phenology by considering all key developmental transitions and their co-variation patterns. We address this goal by quantifying the temperature-driven and geographically varying relationship between seed dormancy and flowering time in the annual Arabidopsis thaliana across the Iberian Peninsula. We used data on genetic variation in two major life-cycle traits, seed dormancy (DSDS50) and flowering time (FT), in a collection of 300 A. thaliana accessions from the Iberian Peninsula. The geographically varying relationship between life-cycle traits and minimum temperature, a major driver of variation in DSDS50 and FT, was explored with geographically weighted regressions (GWR). The environmentally varying correlation between DSDS50 and FT was analysed by means of sliding window analysis across a minimum temperature gradient. Maximum local adjustments between minimum temperature and life-cycle traits were obtained in the southwest Iberian Peninsula, an area with the highest minimum temperatures. In contrast, in off-southwest locations, the effects of minimum temperature on DSDS50 were rather constant across the region, whereas those of minimum temperature on FT were more variable, with peaks of strong local adjustments of GWR models in central and northwest Spain. Sliding window analysis identified a minimum temperature turning point in the relationship between DSDS50 and FT around a minimum temperature of 7.2 °C. Above this minimum temperature turning point, the variation in the FT/DSDS50 ratio became rapidly constrained and the negative correlation between FT and DSDS50 did not increase any further with increasing minimum temperatures. The southwest Iberian Peninsula emerges as an area where variation in life-cycle phenology appears to be restricted by the duration and severity of the hot summer drought. The temperature-driven varying relationship between DSDS50 and FT detected environmental boundaries for the co-evolution between FT and DSDS50 in A. thaliana. In the context of global warming, we conclude that A. thaliana phenology from the southwest Iberian Peninsula, determined by early flowering and deep seed dormancy, might become the most common life-cycle phenotype for this annual plant in the region. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  13. Comparative transcriptome analysis of Aspergillus flavus isolates under different oxidative stresses and culture media

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus and aflatoxin contamination in the field are known to be influenced by numerous stress factors, particularly drought and heat stress. However, the purpose of aflatoxin production is unknown. Here, we report transcriptome analyses comprised of 282.6 Gb of sequencing data describing...

  14. Obesity modulates inflammation and lipid metabolism oocyte gene expression: A single cell transcriptome perspective

    USDA-ARS?s Scientific Manuscript database

    This study aimed to compare oocyte gene expression profiles and follicular fluid (FF) content from overweight/obese (OW) women and normal weight (NW) women who were undergoing fertility treatments. Using single cell transcriptomic analyses, we investigated oocyte gene expression using RNA-seq. Serum...

  15. NvERTx: a gene expression database to compare embryogenesis and regeneration in the sea anemone Nematostella vectensis.

    PubMed

    Warner, Jacob F; Guerlais, Vincent; Amiel, Aldine R; Johnston, Hereroa; Nedoncelle, Karine; Röttinger, Eric

    2018-05-17

    For over a century, researchers have been comparing embryogenesis and regeneration hoping that lessons learned from embryonic development will unlock hidden regenerative potential. This problem has historically been a difficult one to investigate because the best regenerative model systems are poor embryonic models and vice versa. Recently, however, there has been renewed interest in this question, as emerging models have allowed researchers to investigate these processes in the same organism. This interest has been further fueled by the advent of high-throughput transcriptomic analyses that provide virtual mountains of data. Here, we present N ematostella vectensis Embryogenesis and Regeneration Transcriptomics (NvERTx), a platform for comparing gene expression during embryogenesis and regeneration. NvERTx consists of close to 50 transcriptomic data sets spanning embryogenesis and regeneration in Nematostella These data were used to perform a robust de novo transcriptome assembly, with which users can search, conduct BLAST analyses, and plot the expression of multiple genes during these two developmental processes. The site is also home to the results of gene clustering analyses, to further mine the data and identify groups of co-expressed genes. The site can be accessed at http://nvertx.kahikai.org. © 2018. Published by The Company of Biologists Ltd.

  16. Maternal Pre-Pregnancy Obesity Is Associated with Altered Placental Transcriptome.

    PubMed

    Altmäe, Signe; Segura, Maria Teresa; Esteban, Francisco J; Bartel, Sabine; Brandi, Pilar; Irmler, Martin; Beckers, Johannes; Demmelmair, Hans; López-Sabater, Carmen; Koletzko, Berthold; Krauss-Etschmann, Susanne; Campoy, Cristina

    2017-01-01

    Maternal obesity has a major impact on pregnancy outcomes. There is growing evidence that maternal obesity has a negative influence on placental development and function, thereby adversely influencing offspring programming and health outcomes. However, the molecular mechanisms underlying these processes are poorly understood. We analysed ten term placenta's whole transcriptomes in obese (n = 5) and normal weight women (n = 5), using the Affymetrix microarray platform. Analyses of expression data were carried out using non-parametric methods. Hierarchical clustering and principal component analysis showed a clear distinction in placental transcriptome between obese and normal weight women. We identified 72 differentially regulated genes, with most being down-regulated in obesity (n = 61). Functional analyses of the targets using DAVID and IPA confirm the dysregulation of previously identified processes and pathways in the placenta from obese women, including inflammation and immune responses, lipid metabolism, cancer pathways, and angiogenesis. In addition, we detected new molecular aspects of obesity-derived effects on the placenta, involving the glucocorticoid receptor signalling pathway and dysregulation of several genes including CCL2, FSTL3, IGFBP1, MMP12, PRG2, PRL, QSOX1, SERPINE2 and TAC3. Our global gene expression profiling approach demonstrates that maternal obesity creates a unique in utero environment that impairs the placental transcriptome.

  17. Transcriptome analyses reveal genotype- and developmental stage-specific molecular responses to drought and salinity stresses in chickpea

    PubMed Central

    Garg, Rohini; Shankar, Rama; Thakkar, Bijal; Kudapa, Himabindu; Krishnamurthy, Lakshmanan; Mantri, Nitin; Varshney, Rajeev K.; Bhatia, Sabhyata; Jain, Mukesh

    2016-01-01

    Drought and salinity are the major factors that limit chickpea production worldwide. We performed whole transcriptome analyses of chickpea genotypes to investigate the molecular basis of drought and salinity stress response/adaptation. Phenotypic analyses confirmed the contrasting responses of the chickpea genotypes to drought or salinity stress. RNA-seq of the roots of drought and salinity related genotypes was carried out under control and stress conditions at vegetative and/or reproductive stages. Comparative analysis of the transcriptomes revealed divergent gene expression in the chickpea genotypes at different developmental stages. We identified a total of 4954 and 5545 genes exclusively regulated in drought-tolerant and salinity-tolerant genotypes, respectively. A significant fraction (~47%) of the transcription factor encoding genes showed differential expression under stress. The key enzymes involved in metabolic pathways, such as carbohydrate metabolism, photosynthesis, lipid metabolism, generation of precursor metabolites/energy, protein modification, redox homeostasis and cell wall component biogenesis, were affected by drought and/or salinity stresses. Interestingly, transcript isoforms showed expression specificity across the chickpea genotypes and/or developmental stages as illustrated by the AP2-EREBP family members. Our findings provide insights into the transcriptome dynamics and components of regulatory network associated with drought and salinity stress responses in chickpea. PMID:26759178

  18. Venom Gland Transcriptomic and Proteomic Analyses of the Enigmatic Scorpion Superstitionia donensis (Scorpiones: Superstitioniidae), with Insights on the Evolution of Its Venom Components.

    PubMed

    Santibáñez-López, Carlos E; Cid-Uribe, Jimena I; Batista, Cesar V F; Ortiz, Ernesto; Possani, Lourival D

    2016-12-09

    Venom gland transcriptomic and proteomic analyses have improved our knowledge on the diversity of the heterogeneous components present in scorpion venoms. However, most of these studies have focused on species from the family Buthidae. To gain insights into the molecular diversity of the venom components of scorpions belonging to the family Superstitioniidae, one of the neglected scorpion families, we performed a transcriptomic and proteomic analyses for the species Superstitionia donensis . The total mRNA extracted from the venom glands of two specimens was subjected to massive sequencing by the Illumina protocol, and a total of 219,073 transcripts were generated. We annotated 135 transcripts putatively coding for peptides with identity to known venom components available from different protein databases. Fresh venom collected by electrostimulation was analyzed by LC-MS/MS allowing the identification of 26 distinct components with sequences matching counterparts from the transcriptomic analysis. In addition, the phylogenetic affinities of the found putative calcins, scorpines, La1-like peptides and potassium channel κ toxins were analyzed. The first three components are often reported as ubiquitous in the venom of different families of scorpions. Our results suggest that, at least calcins and scorpines, could be used as molecular markers in phylogenetic studies of scorpion venoms.

  19. Venom Gland Transcriptomic and Proteomic Analyses of the Enigmatic Scorpion Superstitionia donensis (Scorpiones: Superstitioniidae), with Insights on the Evolution of Its Venom Components

    PubMed Central

    Santibáñez-López, Carlos E.; Cid-Uribe, Jimena I.; Batista, Cesar V. F.; Ortiz, Ernesto; Possani, Lourival D.

    2016-01-01

    Venom gland transcriptomic and proteomic analyses have improved our knowledge on the diversity of the heterogeneous components present in scorpion venoms. However, most of these studies have focused on species from the family Buthidae. To gain insights into the molecular diversity of the venom components of scorpions belonging to the family Superstitioniidae, one of the neglected scorpion families, we performed a transcriptomic and proteomic analyses for the species Superstitionia donensis. The total mRNA extracted from the venom glands of two specimens was subjected to massive sequencing by the Illumina protocol, and a total of 219,073 transcripts were generated. We annotated 135 transcripts putatively coding for peptides with identity to known venom components available from different protein databases. Fresh venom collected by electrostimulation was analyzed by LC-MS/MS allowing the identification of 26 distinct components with sequences matching counterparts from the transcriptomic analysis. In addition, the phylogenetic affinities of the found putative calcins, scorpines, La1-like peptides and potassium channel κ toxins were analyzed. The first three components are often reported as ubiquitous in the venom of different families of scorpions. Our results suggest that, at least calcins and scorpines, could be used as molecular markers in phylogenetic studies of scorpion venoms. PMID:27941686

  20. Enabling large-scale next-generation sequence assembly with Blacklight

    PubMed Central

    Couger, M. Brian; Pipes, Lenore; Squina, Fabio; Prade, Rolf; Siepel, Adam; Palermo, Robert; Katze, Michael G.; Mason, Christopher E.; Blood, Philip D.

    2014-01-01

    Summary A variety of extremely challenging biological sequence analyses were conducted on the XSEDE large shared memory resource Blacklight, using current bioinformatics tools and encompassing a wide range of scientific applications. These include genomic sequence assembly, very large metagenomic sequence assembly, transcriptome assembly, and sequencing error correction. The data sets used in these analyses included uncategorized fungal species, reference microbial data, very large soil and human gut microbiome sequence data, and primate transcriptomes, composed of both short-read and long-read sequence data. A new parallel command execution program was developed on the Blacklight resource to handle some of these analyses. These results, initially reported previously at XSEDE13 and expanded here, represent significant advances for their respective scientific communities. The breadth and depth of the results achieved demonstrate the ease of use, versatility, and unique capabilities of the Blacklight XSEDE resource for scientific analysis of genomic and transcriptomic sequence data, and the power of these resources, together with XSEDE support, in meeting the most challenging scientific problems. PMID:25294974

  1. 32 CFR 651.5 - Army policies.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... retain environmental analyses and data from requirements determination activities, and Science and... environmental analysis of acquisition life-cycle activities (including disposal). Planning to accomplish these... required, throughout the life cycle of the system. The MATDEV will coordinate with ASA (AL&T) or MACOM...

  2. 75 FR 14669 - Regulation of Fuels and Fuel Additives: Changes to Renewable Fuel Standard Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-26

    ...Under the Clean Air Act Section 211(o), as amended by the Energy Independence and Security Act of 2007 (EISA), the Environmental Protection Agency is required to promulgate regulations implementing changes to the Renewable Fuel Standard program. The revised statutory requirements specify the volumes of cellulosic biofuel, biomass-based diesel, advanced biofuel, and total renewable fuel that must be used in transportation fuel. This action finalizes the regulations that implement the requirements of EISA, including the cellulosic, biomass- based diesel, advanced biofuel, and renewable fuel standards that will apply to all gasoline and diesel produced or imported in 2010. The final regulations make a number of changes to the current Renewable Fuel Standard program while retaining many elements of the compliance and trading system already in place. This final rule also implements the revised statutory definitions and criteria, most notably the new greenhouse gas emission thresholds for renewable fuels and new limits on renewable biomass feedstocks. This rulemaking marks the first time that greenhouse gas emission performance is being applied in a regulatory context for a nationwide program. As mandated by the statute, our greenhouse gas emission assessments consider the full lifecycle emission impacts of fuel production from both direct and indirect emissions, including significant emissions from land use changes. In carrying out our lifecycle analysis we have taken steps to ensure that the lifecycle estimates are based on the latest and most up-to-date science. The lifecycle greenhouse gas assessments reflected in this rulemaking represent significant improvements in analysis based on information and data received since the proposal. However, we also recognize that lifecycle GHG assessment of biofuels is an evolving discipline and will continue to revisit our lifecycle analyses in the future as new information becomes available. EPA plans to ask the National Academy of Sciences for assistance as we move forward. Based on current analyses we have determined that ethanol from corn starch will be able to comply with the required greenhouse gas (GHG) threshold for renewable fuel. Similarly, biodiesel can be produced to comply with the 50% threshold for biomass-based diesel, sugarcane with the 50% threshold for advanced biofuel and multiple cellulosic-based fuels with their 60% threshold. Additional fuel pathways have also been determined to comply with their thresholds. The assessment for this rulemaking also indicates the increased use of renewable fuels will have important environmental, energy and economic impacts for our Nation.

  3. RNA sequencing of transformed lymphoblastoid cells from siblings discordant for autism spectrum disorders reveals transcriptomic and functional alterations: Evidence for sex-specific effects.

    PubMed

    Tylee, Daniel S; Espinoza, Alfred J; Hess, Jonathan L; Tahir, Muhammad A; McCoy, Sarah Y; Rim, Joshua K; Dhimal, Totadri; Cohen, Ori S; Glatt, Stephen J

    2017-03-01

    Genome-wide expression studies of samples derived from individuals with autism spectrum disorder (ASD) and their unaffected siblings have been widely used to shed light on transcriptomic differences associated with this condition. Females have historically been under-represented in ASD genomic studies. Emerging evidence from studies of structural genetic variants and peripheral biomarkers suggest that sex-differences may exist in the biological correlates of ASD. Relatively few studies have explicitly examined whether sex-differences exist in the transcriptomic signature of ASD. The present study quantified genome-wide expression values by performing RNA sequencing on transformed lymphoblastoid cell lines and identified transcripts differentially expressed between same-sex, proximal-aged sibling pairs. We found that performing separate analyses for each sex improved our ability to detect ASD-related transcriptomic differences; we observed a larger number of dysregulated genes within our smaller set of female samples (n = 12 sibling pairs), as compared with the set of male samples (n = 24 sibling pairs), with small, but statistically significant overlap between the sexes. Permutation-based gene-set analyses and weighted gene co-expression network analyses also supported the idea that the transcriptomic signature of ASD may differ between males and females. We discuss our findings in the context of the relevant literature, underscoring the need for future ASD studies to explicitly account for differences between the sexes. Autism Res 2017, 10: 439-455. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.

  4. Modular organization of the white spruce (Picea glauca) transcriptome reveals functional organization and evolutionary signatures.

    PubMed

    Raherison, Elie S M; Giguère, Isabelle; Caron, Sébastien; Lamara, Mebarek; MacKay, John J

    2015-07-01

    Transcript profiling has shown the molecular bases of several biological processes in plants but few studies have developed an understanding of overall transcriptome variation. We investigated transcriptome structure in white spruce (Picea glauca), aiming to delineate its modular organization and associated functional and evolutionary attributes. Microarray analyses were used to: identify and functionally characterize groups of co-expressed genes; investigate expressional and functional diversity of vascular tissue preferential genes which were conserved among Picea species, and identify expression networks underlying wood formation. We classified 22 857 genes as variable (79%; 22 coexpression groups) or invariant (21%) by profiling across several vegetative tissues. Modular organization and complex transcriptome restructuring among vascular tissue preferential genes was revealed by their assignment to coexpression groups with partially overlapping profiles and partially distinct functions. Integrated analyses of tissue-based and temporally variable profiles identified secondary xylem gene networks, showed their remodelling over a growing season and identified PgNAC-7 (no apical meristerm (NAM), Arabidopsis transcription activation factor (ATAF) and cup-shaped cotyledon (CUC) transcription factor 007 in Picea glauca) as a major hub gene specific to earlywood formation. Reference profiling identified comprehensive, statistically robust coexpressed groups, revealing that modular organization underpins the evolutionary conservation of the transcriptome structure. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  5. Transcriptomic effects-based monitoring for endocrine active chemicals: Assessing relative contribution of treated wastewater to downstream pollution

    USGS Publications Warehouse

    Martinovic-Weigelt, Dalma; Mehinto, Alvine C.; Ankley, Gerald T.; Denslow, Nancy D.; Barber, Larry B.; Lee, Kathy E.; King, Ryan J.; Schoenfuss, Heiko L.; Schroeder, Anthony L.; Villeneuve, Daniel L.

    2014-01-01

    The present study investigated whether a combination of targeted analytical chemistry information with unsupervised, data-rich biological methodology (i.e., transcriptomics) could be utilized to evaluate relative contributions of wastewater treatment plant (WWTP) effluents to biological effects. The effects of WWTP effluents on fish exposed to ambient, receiving waters were studied at three locations with distinct WWTP and watershed characteristics. At each location, 4 d exposures of male fathead minnows to the WWTP effluent and upstream and downstream ambient waters were conducted. Transcriptomic analyses were performed on livers using 15 000 feature microarrays, followed by a canonical pathway and gene set enrichment analyses. Enrichment of gene sets indicative of teleost brain–pituitary–gonadal–hepatic (BPGH) axis function indicated that WWTPs serve as an important source of endocrine active chemicals (EACs) that affect the BPGH axis (e.g., cholesterol and steroid metabolism were altered). The results indicated that transcriptomics may even pinpoint pertinent adverse outcomes (i.e., liver vacuolization) and groups of chemicals that preselected chemical analytes may miss. Transcriptomic Effects-Based monitoring was capable of distinguishing sites, and it reflected chemical pollution gradients, thus holding promise for assessment of relative contributions of point sources to pollution and the efficacy of pollution remediation.

  6. Extensive Local Gene Duplication and Functional Divergence among Paralogs in Atlantic Salmon

    PubMed Central

    Warren, Ian A.; Ciborowski, Kate L.; Casadei, Elisa; Hazlerigg, David G.; Martin, Sam; Jordan, William C.; Sumner, Seirian

    2014-01-01

    Many organisms can generate alternative phenotypes from the same genome, enabling individuals to exploit diverse and variable environments. A prevailing hypothesis is that such adaptation has been favored by gene duplication events, which generate redundant genomic material that may evolve divergent functions. Vertebrate examples of recent whole-genome duplications are sparse although one example is the salmonids, which have undergone a whole-genome duplication event within the last 100 Myr. The life-cycle of the Atlantic salmon, Salmo salar, depends on the ability to produce alternating phenotypes from the same genome, to facilitate migration and maintain its anadromous life history. Here, we investigate the hypothesis that genome-wide and local gene duplication events have contributed to the salmonid adaptation. We used high-throughput sequencing to characterize the transcriptomes of three key organs involved in regulating migration in S. salar: Brain, pituitary, and olfactory epithelium. We identified over 10,000 undescribed S. salar sequences and designed an analytic workflow to distinguish between paralogs originating from local gene duplication events or from whole-genome duplication events. These data reveal that substantial local gene duplications took place shortly after the whole-genome duplication event. Many of the identified paralog pairs have either diverged in function or become noncoding. Future functional genomics studies will reveal to what extent this rich source of divergence in genetic sequence is likely to have facilitated the evolution of extreme phenotypic plasticity required for an anadromous life-cycle. PMID:24951567

  7. Molecular characteristics of the KCNJ5 mutated aldosterone-producing adenomas.

    PubMed

    Murakami, Masanori; Yoshimoto, Takanobu; Nakabayashi, Kazuhiko; Nakano, Yujiro; Fukaishi, Takahiro; Tsuchiya, Kyoichiro; Minami, Isao; Bouchi, Ryotaro; Okamura, Kohji; Fujii, Yasuhisa; Hashimoto, Koshi; Hata, Ken-Ichiro; Kihara, Kazunori; Ogawa, Yoshihiro

    2017-10-01

    The pathophysiology of aldosterone-producing adenomas (APAs) has been investigated via genetic approaches and the pathogenic significance of a series of somatic mutations, including KCNJ5 , has been uncovered. However, how the mutational status of an APA is associated with its molecular characteristics, including its transcriptome and methylome, has not been fully understood. This study was undertaken to explore the molecular characteristics of APAs, specifically focusing on APAs with KCNJ5 mutations as opposed to those without KCNJ5 mutations, by comparing their transcriptome and methylome status. Cortisol-producing adenomas (CPAs) were used as reference. We conducted transcriptome and methylome analyses of 29 APAs with KCNJ5 mutations, 8 APAs without KCNJ5 mutations and 5 CPAs. Genome-wide gene expression and CpG methylation profiles were obtained from RNA and DNA samples extracted from these 42 adrenal tumors. Cluster analysis of the transcriptome and methylome revealed molecular heterogeneity in APAs depending on their mutational status. DNA hypomethylation and gene expression changes in Wnt signaling and inflammatory response pathways were characteristic of APAs with KCNJ5 mutations. Comparisons between transcriptome data from our APAs and that from normal adrenal cortex obtained from the Gene Expression Omnibus suggested similarities between APAs with KCNJ5 mutations and zona glomerulosa. The present study, which is based on transcriptome and methylome analyses, indicates the molecular heterogeneity of APAs depends on their mutational status. Here, we report the unique characteristics of APAs with KCNJ5 mutations. © 2017 Society for Endocrinology.

  8. Comprehensive Transcriptome Analysis of Sex-Biased Expressed Genes Reveals Discrete Biological and Physiological Features of Male and Female Schistosoma japonicum.

    PubMed

    Cai, Pengfei; Liu, Shuai; Piao, Xianyu; Hou, Nan; Gobert, Geoffrey N; McManus, Donald P; Chen, Qijun

    2016-04-01

    Schistosomiasis is a chronic and debilitating disease caused by blood flukes (digenetic trematodes) of the genus Schistosoma. Schistosomes are sexually dimorphic and exhibit dramatic morphological changes during a complex lifecycle which requires subtle gene regulatory mechanisms to fulfil these complex biological processes. In the current study, a 41,982 features custom DNA microarray, which represents the most comprehensive probe coverage for any schistosome transcriptome study, was designed based on public domain and local databases to explore differential gene expression in S. japonicum. We found that approximately 1/10 of the total annotated genes in the S. japonicum genome are differentially expressed between adult males and females. In general, genes associated with the cytoskeleton, and motor and neuronal activities were readily expressed in male adult worms, whereas genes involved in amino acid metabolism, nucleotide biosynthesis, gluconeogenesis, glycosylation, cell cycle processes, DNA synthesis and genome fidelity and stability were enriched in females. Further, miRNAs target sites within these gene sets were predicted, which provides a scenario whereby the miRNAs potentially regulate these sex-biased expressed genes. The study significantly expands the expressional and regulatory characteristics of gender-biased expressed genes in schistosomes with high accuracy. The data provide a better appreciation of the biological and physiological features of male and female schistosome parasites, which may lead to novel vaccine targets and the development of new therapeutic interventions.

  9. A global view of the nonprotein-coding transcriptome in Plasmodium falciparum

    PubMed Central

    Raabe, Carsten A.; Sanchez, Cecilia P.; Randau, Gerrit; Robeck, Thomas; Skryabin, Boris V.; Chinni, Suresh V.; Kube, Michael; Reinhardt, Richard; Ng, Guey Hooi; Manickam, Ravichandran; Kuryshev, Vladimir Y.; Lanzer, Michael; Brosius, Juergen; Tang, Thean Hock; Rozhdestvensky, Timofey S.

    2010-01-01

    Nonprotein-coding RNAs (npcRNAs) represent an important class of regulatory molecules that act in many cellular pathways. Here, we describe the experimental identification and validation of the small npcRNA transcriptome of the human malaria parasite Plasmodium falciparum. We identified 630 novel npcRNA candidates. Based on sequence and structural motifs, 43 of them belong to the C/D and H/ACA-box subclasses of small nucleolar RNAs (snoRNAs) and small Cajal body-specific RNAs (scaRNAs). We further observed the exonization of a functional H/ACA snoRNA gene, which might contribute to the regulation of ribosomal protein L7a gene expression. Some of the small npcRNA candidates are from telomeric and subtelomeric repetitive regions, suggesting their potential involvement in maintaining telomeric integrity and subtelomeric gene silencing. We also detected 328 cis-encoded antisense npcRNAs (asRNAs) complementary to P. falciparum protein-coding genes of a wide range of biochemical pathways, including determinants of virulence and pathology. All cis-encoded asRNA genes tested exhibit lifecycle-specific expression profiles. For all but one of the respective sense–antisense pairs, we deduced concordant patterns of expression. Our findings have important implications for a better understanding of gene regulatory mechanisms in P. falciparum, revealing an extended and sophisticated npcRNA network that may control the expression of housekeeping genes and virulence factors. PMID:19864253

  10. A global view of the nonprotein-coding transcriptome in Plasmodium falciparum.

    PubMed

    Raabe, Carsten A; Sanchez, Cecilia P; Randau, Gerrit; Robeck, Thomas; Skryabin, Boris V; Chinni, Suresh V; Kube, Michael; Reinhardt, Richard; Ng, Guey Hooi; Manickam, Ravichandran; Kuryshev, Vladimir Y; Lanzer, Michael; Brosius, Juergen; Tang, Thean Hock; Rozhdestvensky, Timofey S

    2010-01-01

    Nonprotein-coding RNAs (npcRNAs) represent an important class of regulatory molecules that act in many cellular pathways. Here, we describe the experimental identification and validation of the small npcRNA transcriptome of the human malaria parasite Plasmodium falciparum. We identified 630 novel npcRNA candidates. Based on sequence and structural motifs, 43 of them belong to the C/D and H/ACA-box subclasses of small nucleolar RNAs (snoRNAs) and small Cajal body-specific RNAs (scaRNAs). We further observed the exonization of a functional H/ACA snoRNA gene, which might contribute to the regulation of ribosomal protein L7a gene expression. Some of the small npcRNA candidates are from telomeric and subtelomeric repetitive regions, suggesting their potential involvement in maintaining telomeric integrity and subtelomeric gene silencing. We also detected 328 cis-encoded antisense npcRNAs (asRNAs) complementary to P. falciparum protein-coding genes of a wide range of biochemical pathways, including determinants of virulence and pathology. All cis-encoded asRNA genes tested exhibit lifecycle-specific expression profiles. For all but one of the respective sense-antisense pairs, we deduced concordant patterns of expression. Our findings have important implications for a better understanding of gene regulatory mechanisms in P. falciparum, revealing an extended and sophisticated npcRNA network that may control the expression of housekeeping genes and virulence factors.

  11. Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium

    Treesearch

    Amber J. Vanden Wymelenberg; Jill Gaskell; Michael Mozuch; Grzegorz Sabat; John Ralph; Oleksandr Skyba; Shawn D Mansfield; Robert A. Blanchette; Diego Martinez; Igor Grigoriev; Philip J Kersten; Daniel Cullen

    2010-01-01

    Cellulose degradation by brown rot fungi, such as Postia placenta, is poorly understood relative to the phylogenetically related white rot basidiomycete, Phanerochaete chrysosporium. To elucidate the number, structure, and regulation of genes involved in lignocellulosic cell wall attack, secretome and transcriptome analyses were performed on both wood decay fungi...

  12. Transcriptomic analysis of Arabidopsis developing stems: a close-up on cell wall genes

    PubMed Central

    Minic, Zoran; Jamet, Elisabeth; San-Clemente, Hélène; Pelletier, Sandra; Renou, Jean-Pierre; Rihouey, Christophe; Okinyo, Denis PO; Proux, Caroline; Lerouge, Patrice; Jouanin, Lise

    2009-01-01

    Background Different strategies (genetics, biochemistry, and proteomics) can be used to study proteins involved in cell biogenesis. The availability of the complete sequences of several plant genomes allowed the development of transcriptomic studies. Although the expression patterns of some Arabidopsis thaliana genes involved in cell wall biogenesis were identified at different physiological stages, detailed microarray analysis of plant cell wall genes has not been performed on any plant tissues. Using transcriptomic and bioinformatic tools, we studied the regulation of cell wall genes in Arabidopsis stems, i.e. genes encoding proteins involved in cell wall biogenesis and genes encoding secreted proteins. Results Transcriptomic analyses of stems were performed at three different developmental stages, i.e., young stems, intermediate stage, and mature stems. Many genes involved in the synthesis of cell wall components such as polysaccharides and monolignols were identified. A total of 345 genes encoding predicted secreted proteins with moderate or high level of transcripts were analyzed in details. The encoded proteins were distributed into 8 classes, based on the presence of predicted functional domains. Proteins acting on carbohydrates and proteins of unknown function constituted the two most abundant classes. Other proteins were proteases, oxido-reductases, proteins with interacting domains, proteins involved in signalling, and structural proteins. Particularly high levels of expression were established for genes encoding pectin methylesterases, germin-like proteins, arabinogalactan proteins, fasciclin-like arabinogalactan proteins, and structural proteins. Finally, the results of this transcriptomic analyses were compared with those obtained through a cell wall proteomic analysis from the same material. Only a small proportion of genes identified by previous proteomic analyses were identified by transcriptomics. Conversely, only a few proteins encoded by genes having moderate or high level of transcripts were identified by proteomics. Conclusion Analysis of the genes predicted to encode cell wall proteins revealed that about 345 genes had moderate or high levels of transcripts. Among them, we identified many new genes possibly involved in cell wall biogenesis. The discrepancies observed between results of this transcriptomic study and a previous proteomic study on the same material revealed post-transcriptional mechanisms of regulation of expression of genes encoding cell wall proteins. PMID:19149885

  13. Plant stress biomarkers from biosimulations: the Transcriptome-To-Metabolome (TTM) technology - effects of drought stress on rice.

    PubMed

    Phelix, C F; Feltus, F A

    2015-01-01

    Measuring biomarkers from plant tissue samples is challenging and expensive when the desire is to integrate transcriptomics, fluxomics, metabolomics, lipidomics, proteomics, physiomics and phenomics. We present a computational biology method where only the transcriptome needs to be measured and is used to derive a set of parameters for deterministic kinetic models of metabolic pathways. The technology is called Transcriptome-To-Metabolome (TTM) biosimulations, currently under commercial development, but available for non-commercial use by researchers. The simulated results on metabolites of 30 primary and secondary metabolic pathways in rice (Oryza sativa) were used as the biomarkers to predict whether the transcriptome was from a plant that had been under drought conditions. The rice transcriptomes were accessed from public archives and each individual plant was simulated. This unique quality of the TTM technology allows standard analyses on biomarker assessments, i.e. sensitivity, specificity, positive and negative predictive values, accuracy, receiver operator characteristics (ROC) curve and area under the ROC curve (AUC). Two validation methods were also used, the holdout and 10-fold cross validations. Initially 17 metabolites were identified as candidate biomarkers based on either statistical significance on binary phenotype when compared with control samples or recognition from the literature. The top three biomarkers based on AUC were gibberellic acid 12 (0.89), trehalose (0.80) and sn1-palmitate-sn2-oleic-phosphatidylglycerol (0.70). Neither heat map analyses of transcriptomes nor all 300 metabolites clustered the stressed and control groups effectively. The TTM technology allows the emergent properties of the integrated system to generate unique and useful 'Omics' information. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  14. Reptilian-transcriptome v1.0, a glimpse in the brain transcriptome of five divergent Sauropsida lineages and the phylogenetic position of turtles

    PubMed Central

    2011-01-01

    Background Reptiles are largely under-represented in comparative genomics despite the fact that they are substantially more diverse in many respects than mammals. Given the high divergence of reptiles from classical model species, next-generation sequencing of their transcriptomes is an approach of choice for gene identification and annotation. Results Here, we use 454 technology to sequence the brain transcriptome of four divergent reptilian and one reference avian species: the Nile crocodile, the corn snake, the bearded dragon, the red-eared turtle, and the chicken. Using an in-house pipeline for recursive similarity searches of >3,000,000 reads against multiple databases from 7 reference vertebrates, we compile a reptilian comparative transcriptomics dataset, with homology assignment for 20,000 to 31,000 transcripts per species and a cumulated non-redundant sequence length of 248.6 Mbases. Our approach identifies the majority (87%) of chicken brain transcripts and about 50% of de novo assembled reptilian transcripts. In addition to 57,502 microsatellite loci, we identify thousands of SNP and indel polymorphisms for population genetic and linkage analyses. We also build very large multiple alignments for Sauropsida and mammals (two million residues per species) and perform extensive phylogenetic analyses suggesting that turtles are not basal living reptiles but are rather associated with Archosaurians, hence, potentially answering a long-standing question in the phylogeny of Amniotes. Conclusions The reptilian transcriptome (freely available at http://www.reptilian-transcriptomes.org) should prove a useful new resource as reptiles are becoming important new models for comparative genomics, ecology, and evolutionary developmental genetics. PMID:21943375

  15. Stronger transferability but lower variability in transcriptomic- than in anonymous microsatellites: evidence from Hylid frogs.

    PubMed

    Dufresnes, Christophe; Brelsford, Alan; Béziers, Paul; Perrin, Nicolas

    2014-07-01

    A simple way to quickly optimize microsatellites in nonmodel organisms is to reuse loci available in closely related taxa; however, this approach can be limited by the stochastic and low cross-amplification success experienced in some groups (e.g. amphibians). An efficient alternative is to develop loci from transcriptome sequences. Transcriptomic microsatellites have been found to vary in their levels of cross-species amplification and variability, but this has to date never been tested in amphibians. Here, we compare the patterns of cross-amplification and levels of polymorphism of 18 published anonymous microsatellites isolated from genomic DNA vs. 17 loci derived from a transcriptome, across nine species of tree frogs (Hyla arborea and Hyla cinerea group). We established a clear negative relationship between divergence time and amplification success, which was much steeper for anonymous than transcriptomic markers, with half-lives (time at which 50% of the markers still amplify) of 1.1 and 37 My, respectively. Transcriptomic markers are significantly less polymorphic than anonymous loci, but remain variable across diverged taxa. We conclude that the exploitation of amphibian transcriptomes for developing microsatellites seems an optimal approach for multispecies surveys (e.g. analyses of hybrid zones, comparative linkage mapping), whereas anonymous microsatellites may be more informative for fine-scale analyses of intraspecific variation. Moreover, our results confirm the pattern that microsatellite cross-amplification is greatly variable among amphibians and should be assessed independently within target lineages. Finally, we provide a bank of microsatellites for Palaearctic tree frogs (so far only available for H. arborea), which will be useful for conservation and evolutionary studies in this radiation. © 2013 John Wiley & Sons Ltd.

  16. Trinity: Transcriptome Assembly for Genetic and Functional Analysis of Cancer | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    The cancer transcriptome is shaped by genetic changes, variation in gene transcription, mRNA processing, editing and stability, and the cancer microbiome. Deciphering this variation and understanding its implications on tumorigenesis requires sophisticated computational analyses. Most RNA-Seq analyses rely on methods that first map short reads to a reference genome, and then compare them to annotated transcripts or assemble them. However, this strategy can be limited when the cancer genome is substantially different than the reference or for detecting sequences from the cancer microbiome.

  17. Transcriptomic Studies of the Effect of nod Gene-Inducing Molecules in Rhizobia: Different Weapons, One Purpose

    PubMed Central

    Jiménez-Guerrero, Irene; Acosta-Jurado, Sebastián; Navarro-Gómez, Pilar; López-Baena, Francisco Javier; Ollero, Francisco Javier

    2017-01-01

    Simultaneous quantification of transcripts of the whole bacterial genome allows the analysis of the global transcriptional response under changing conditions. RNA-seq and microarrays are the most used techniques to measure these transcriptomic changes, and both complement each other in transcriptome profiling. In this review, we exhaustively compiled the symbiosis-related transcriptomic reports (microarrays and RNA sequencing) carried out hitherto in rhizobia. This review is specially focused on transcriptomic changes that takes place when five rhizobial species, Bradyrhizobium japonicum (=diazoefficiens) USDA 110, Rhizobium leguminosarum biovar viciae 3841, Rhizobium tropici CIAT 899, Sinorhizobium (=Ensifer) meliloti 1021 and S. fredii HH103, recognize inducing flavonoids, plant-exuded phenolic compounds that activate the biosynthesis and export of Nod factors (NF) in all analysed rhizobia. Interestingly, our global transcriptomic comparison also indicates that each rhizobial species possesses its own arsenal of molecular weapons accompanying the set of NF in order to establish a successful interaction with host legumes. PMID:29267254

  18. Comparative analyses of two Geraniaceae transcriptomes using next-generation sequencing.

    PubMed

    Zhang, Jin; Ruhlman, Tracey A; Mower, Jeffrey P; Jansen, Robert K

    2013-12-29

    Organelle genomes of Geraniaceae exhibit several unusual evolutionary phenomena compared to other angiosperm families including accelerated nucleotide substitution rates, widespread gene loss, reduced RNA editing, and extensive genomic rearrangements. Since most organelle-encoded proteins function in multi-subunit complexes that also contain nuclear-encoded proteins, it is likely that the atypical organellar phenomena affect the evolution of nuclear genes encoding organellar proteins. To begin to unravel the complex co-evolutionary interplay between organellar and nuclear genomes in this family, we sequenced nuclear transcriptomes of two species, Geranium maderense and Pelargonium x hortorum. Normalized cDNA libraries of G. maderense and P. x hortorum were used for transcriptome sequencing. Five assemblers (MIRA, Newbler, SOAPdenovo, SOAPdenovo-trans [SOAPtrans], Trinity) and two next-generation technologies (454 and Illumina) were compared to determine the optimal transcriptome sequencing approach. Trinity provided the highest quality assembly of Illumina data with the deepest transcriptome coverage. An analysis to determine the amount of sequencing needed for de novo assembly revealed diminishing returns of coverage and quality with data sets larger than sixty million Illumina paired end reads for both species. The G. maderense and P. x hortorum transcriptomes contained fewer transcripts encoding the PLS subclass of PPR proteins relative to other angiosperms, consistent with reduced mitochondrial RNA editing activity in Geraniaceae. In addition, transcripts for all six plastid targeted sigma factors were identified in both transcriptomes, suggesting that one of the highly divergent rpoA-like ORFs in the P. x hortorum plastid genome is functional. The findings support the use of the Illumina platform and assemblers optimized for transcriptome assembly, such as Trinity or SOAPtrans, to generate high-quality de novo transcriptomes with broad coverage. In addition, results indicated no major improvements in breadth of coverage with data sets larger than six billion nucleotides or when sampling RNA from four tissue types rather than from a single tissue. Finally, this work demonstrates the power of cross-compartmental genomic analyses to deepen our understanding of the correlated evolution of the nuclear, plastid, and mitochondrial genomes in plants.

  19. Comparative analyses of two Geraniaceae transcriptomes using next-generation sequencing

    PubMed Central

    2013-01-01

    Background Organelle genomes of Geraniaceae exhibit several unusual evolutionary phenomena compared to other angiosperm families including accelerated nucleotide substitution rates, widespread gene loss, reduced RNA editing, and extensive genomic rearrangements. Since most organelle-encoded proteins function in multi-subunit complexes that also contain nuclear-encoded proteins, it is likely that the atypical organellar phenomena affect the evolution of nuclear genes encoding organellar proteins. To begin to unravel the complex co-evolutionary interplay between organellar and nuclear genomes in this family, we sequenced nuclear transcriptomes of two species, Geranium maderense and Pelargonium x hortorum. Results Normalized cDNA libraries of G. maderense and P. x hortorum were used for transcriptome sequencing. Five assemblers (MIRA, Newbler, SOAPdenovo, SOAPdenovo-trans [SOAPtrans], Trinity) and two next-generation technologies (454 and Illumina) were compared to determine the optimal transcriptome sequencing approach. Trinity provided the highest quality assembly of Illumina data with the deepest transcriptome coverage. An analysis to determine the amount of sequencing needed for de novo assembly revealed diminishing returns of coverage and quality with data sets larger than sixty million Illumina paired end reads for both species. The G. maderense and P. x hortorum transcriptomes contained fewer transcripts encoding the PLS subclass of PPR proteins relative to other angiosperms, consistent with reduced mitochondrial RNA editing activity in Geraniaceae. In addition, transcripts for all six plastid targeted sigma factors were identified in both transcriptomes, suggesting that one of the highly divergent rpoA-like ORFs in the P. x hortorum plastid genome is functional. Conclusions The findings support the use of the Illumina platform and assemblers optimized for transcriptome assembly, such as Trinity or SOAPtrans, to generate high-quality de novo transcriptomes with broad coverage. In addition, results indicated no major improvements in breadth of coverage with data sets larger than six billion nucleotides or when sampling RNA from four tissue types rather than from a single tissue. Finally, this work demonstrates the power of cross-compartmental genomic analyses to deepen our understanding of the correlated evolution of the nuclear, plastid, and mitochondrial genomes in plants. PMID:24373163

  20. Population genetics, phylogenomics and hybrid speciation of Juglans in China determined from whole chloroplast genomes, transcriptomes, and genotyping-by-sequencing (GBS)

    Treesearch

    Peng Zhao; Hui-Juan Zhou; Daniel Potter; Yi-Heng Hu; Xiao-Jia Feng; Meng Dang; Li Feng; Saman Zulfiqar; Wen-Zhe Liu; Gui-Fang Zhao; Keith Woeste

    2018-01-01

    Genomic data are a powerful tool for elucidating the processes involved in the evolution and divergence of species. The speciation and phylogenetic relationships among Chinese Juglans remain unclear. Here, we used results from phylogenomic and population genetic analyses, transcriptomics, Genotyping-By-Sequencing (GBS), and whole chloroplast...

  1. From cacti to carnivores: Improved phylotranscriptomic sampling and hierarchical homology inference provide further insight into the evolution of Caryophyllales.

    PubMed

    Walker, Joseph F; Yang, Ya; Feng, Tao; Timoneda, Alfonso; Mikenas, Jessica; Hutchison, Vera; Edwards, Caroline; Wang, Ning; Ahluwalia, Sonia; Olivieri, Julia; Walker-Hale, Nathanael; Majure, Lucas C; Puente, Raúl; Kadereit, Gudrun; Lauterbach, Maximilian; Eggli, Urs; Flores-Olvera, Hilda; Ochoterena, Helga; Brockington, Samuel F; Moore, Michael J; Smith, Stephen A

    2018-03-01

    The Caryophyllales contain ~12,500 species and are known for their cosmopolitan distribution, convergence of trait evolution, and extreme adaptations. Some relationships within the Caryophyllales, like those of many large plant clades, remain unclear, and phylogenetic studies often recover alternative hypotheses. We explore the utility of broad and dense transcriptome sampling across the order for resolving evolutionary relationships in Caryophyllales. We generated 84 transcriptomes and combined these with 224 publicly available transcriptomes to perform a phylogenomic analysis of Caryophyllales. To overcome the computational challenge of ortholog detection in such a large data set, we developed an approach for clustering gene families that allowed us to analyze >300 transcriptomes and genomes. We then inferred the species relationships using multiple methods and performed gene-tree conflict analyses. Our phylogenetic analyses resolved many clades with strong support, but also showed significant gene-tree discordance. This discordance is not only a common feature of phylogenomic studies, but also represents an opportunity to understand processes that have structured phylogenies. We also found taxon sampling influences species-tree inference, highlighting the importance of more focused studies with additional taxon sampling. Transcriptomes are useful both for species-tree inference and for uncovering evolutionary complexity within lineages. Through analyses of gene-tree conflict and multiple methods of species-tree inference, we demonstrate that phylogenomic data can provide unparalleled insight into the evolutionary history of Caryophyllales. We also discuss a method for overcoming computational challenges associated with homolog clustering in large data sets. © 2018 The Authors. American Journal of Botany is published by Wiley Periodicals, Inc. on behalf of the Botanical Society of America.

  2. RNA-Seq analysis of isolate- and growth phase-specific differences in the global transcriptomes of enteropathogenic Escherichia coli prototype isolates

    PubMed Central

    Hazen, Tracy H.; Daugherty, Sean C.; Shetty, Amol; Mahurkar, Anup A.; White, Owen; Kaper, James B.; Rasko, David A.

    2015-01-01

    Enteropathogenic Escherichia coli (EPEC) are a leading cause of diarrheal illness among infants in developing countries. E. coli isolates classified as typical EPEC are identified by the presence of the locus of enterocyte effacement (LEE) and the bundle-forming pilus (BFP), and absence of the Shiga-toxin genes, while the atypical EPEC also encode LEE but do not encode BFP or Shiga-toxin. Comparative genomic analyses have demonstrated that EPEC isolates belong to diverse evolutionary lineages and possess lineage- and isolate-specific genomic content. To investigate whether this genomic diversity results in significant differences in global gene expression, we used an RNA sequencing (RNA-Seq) approach to characterize the global transcriptomes of the prototype typical EPEC isolates E2348/69, B171, C581-05, and the prototype atypical EPEC isolate E110019. The global transcriptomes were characterized during laboratory growth in two different media and three different growth phases, as well as during adherence of the EPEC isolates to human cells using in vitro tissue culture assays. Comparison of the global transcriptomes during these conditions was used to identify isolate- and growth phase-specific differences in EPEC gene expression. These analyses resulted in the identification of genes that encode proteins involved in survival and metabolism that were coordinately expressed with virulence factors. These findings demonstrate there are isolate- and growth phase-specific differences in the global transcriptomes of EPEC prototype isolates, and highlight the utility of comparative transcriptomics for identifying additional factors that are directly or indirectly involved in EPEC pathogenesis. PMID:26124752

  3. Alterations in the developing testis transcriptome following embryonic vinclozolin exposure.

    PubMed

    Clement, Tracy M; Savenkova, Marina I; Settles, Matthew; Anway, Matthew D; Skinner, Michael K

    2010-11-01

    The current study investigates the direct effects of in utero vinclozolin exposure on the developing F1 generation rat testis transcriptome. Previous studies have demonstrated that exposure to vinclozolin during embryonic gonadal sex determination induces epigenetic modifications of the germ line and transgenerational adult onset disease states. Microarray analyses were performed to compare control and vinclozolin treated testis transcriptomes at embryonic days 13, 14 and 16. A total of 576 differentially expressed genes were identified and the major cellular functions and pathways associated with these altered transcripts were examined. The sets of regulated genes at the different development periods were found to be transiently altered and distinct. Categorization by major known functions of altered genes was performed. Specific cellular process and pathway analyses suggest the involvement of Wnt and calcium signaling, vascular development and epigenetic mechanisms as potential mediators of the direct F1 generation actions of vinclozolin. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. ALTERATIONS IN THE DEVELOPING TESTIS TRANSCRIPTOME FOLLOWING EMBRYONIC VINCLOZOLIN EXPOSURE

    PubMed Central

    Clement, Tracy M.; Savenkova, Marina I.; Settles, Matthew; Anway, Matthew D.; Skinner, Michael K.

    2010-01-01

    The current study investigates the direct effects of in utero vinclozolin exposure on the developing F1 generation rat testis transcriptome. Previous studies have demonstrated that exposure to vinclozolin during embryonic gonadal sex determination induces epigenetic modifications of the germ line and transgenerational adult onset disease states. Microarray analyses were performed to compare control and vinclozolin treated testis transcriptomes at embryonic day 13, 14 and 16. A total of 576 differentially expressed genes were identified and the major cellular functions and pathways associated with these altered transcripts were examined. The sets of regulated genes at the different development periods were found to be transiently altered and distinct. Categorization by major known functions of altered genes was performed. Specific cellular process and pathway analyses suggest the involvement of Wnt and calcium signaling, vascular development and epigenetic mechanisms as potential mediators of the direct F1 generation actions of vinclozolin. PMID:20566332

  5. Computational analysis of conserved RNA secondary structure in transcriptomes and genomes.

    PubMed

    Eddy, Sean R

    2014-01-01

    Transcriptomics experiments and computational predictions both enable systematic discovery of new functional RNAs. However, many putative noncoding transcripts arise instead from artifacts and biological noise, and current computational prediction methods have high false positive rates. I discuss prospects for improving computational methods for analyzing and identifying functional RNAs, with a focus on detecting signatures of conserved RNA secondary structure. An interesting new front is the application of chemical and enzymatic experiments that probe RNA structure on a transcriptome-wide scale. I review several proposed approaches for incorporating structure probing data into the computational prediction of RNA secondary structure. Using probabilistic inference formalisms, I show how all these approaches can be unified in a well-principled framework, which in turn allows RNA probing data to be easily integrated into a wide range of analyses that depend on RNA secondary structure inference. Such analyses include homology search and genome-wide detection of new structural RNAs.

  6. Lactobacillus gasseri K7 modulates the blood cell transcriptome of conventional mice infected with Escherichia coli O157:H7.

    PubMed

    Sagaya, F M; Hacin, B; Tompa, G; Ihan, A; Špela, Š; Černe, M; Hurrell, R F; Matijašić, B B; Rogelj, I; Vergères, G

    2014-05-01

    As the immune cells underlying the intestinal barrier sense luminal microbial signals, blood cell transcriptomics may identify subclinical changes triggered by gut bacteria that may otherwise not be detected. We have therefore investigated how Lactobacillus gasseri K7 and enterohemorrhagic Escherichia coli O157:H7 modulate the blood cell transcriptome of mice possessing an intact microbiota. We have analysed the transcriptome of five groups of C57BL/6J mice: (i) control, (ii) inoculated with a single dose of E. coli, (iii) inoculated during 2 weeks with Lact. gasseri, (iv) co-inoculated with E. coli and Lact. gasseri, (v) inoculated with Lact. gasseri prior to E. coli infection. The transcriptome could distinguish between the five treatment groups. Gene characteristics of bacterial infection, in particular inflammation, were upregulated in the mice inoculated with E. coli. Lact. gasseri had only mild effects on the transcriptome but modified the gene expression induced by E. coli. The transcriptome differentiates mice inoculated orally with E. coli, Lact. gasseri and combinations of these two strains. These results suggest that the blood cell transcriptome can be used as a source of biomarkers to monitor the impact of probiotics in subclinical models of infectious disease. © 2014 The Society for Applied Microbiology.

  7. Salivary biomarker development using genomic, proteomic and metabolomic approaches

    PubMed Central

    2012-01-01

    The use of saliva as a diagnostic sample provides a non-invasive, cost-efficient method of sample collection for disease screening without the need for highly trained professionals. Saliva collection is far more practical and safe compared with invasive methods of sample collection, because of the infection risk from contaminated needles during, for example, blood sampling. Furthermore, the use of saliva could increase the availability of accurate diagnostics for remote and impoverished regions. However, the development of salivary diagnostics has required technical innovation to allow stabilization and detection of analytes in the complex molecular mixture that is saliva. The recent development of cost-effective room temperature analyte stabilization methods, nucleic acid pre-amplification techniques and direct saliva transcriptomic analysis have allowed accurate detection and quantification of transcripts found in saliva. Novel protein stabilization methods have also facilitated improved proteomic analyses. Although candidate biomarkers have been discovered using epigenetic, transcriptomic, proteomic and metabolomic approaches, transcriptomic analyses have so far achieved the most progress in terms of sensitivity and specificity, and progress towards clinical implementation. Here, we review recent developments in salivary diagnostics that have been accomplished using genomic, transcriptomic, proteomic and metabolomic approaches. PMID:23114182

  8. 5 CFR 1601.40 - Lifecycle Funds.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 3 2011-01-01 2011-01-01 false Lifecycle Funds. 1601.40 Section 1601.40 Administrative Personnel FEDERAL RETIREMENT THRIFT INVESTMENT BOARD PARTICIPANTS' CHOICES OF TSP FUNDS Lifecycle Funds § 1601.40 Lifecycle Funds. The Executive Director will establish TSP Lifecycle Funds, which are...

  9. 5 CFR 1601.40 - Lifecycle Funds.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Lifecycle Funds. 1601.40 Section 1601.40 Administrative Personnel FEDERAL RETIREMENT THRIFT INVESTMENT BOARD PARTICIPANTS' CHOICES OF TSP FUNDS Lifecycle Funds § 1601.40 Lifecycle Funds. The Executive Director will establish TSP Lifecycle Funds, which are...

  10. Transcriptomic analyses and leukocyte telomere length measurement in subjects exposed to severe recent stressful life events.

    PubMed

    Lopizzo, N; Tosato, S; Begni, V; Tomassi, S; Cattane, N; Barcella, M; Turco, G; Ruggeri, M; Riva, M A; Pariante, C M; Cattaneo, A

    2017-02-21

    Stressful life events occurring in adulthood have been found able to affect mood and behavior, thus increasing the vulnerability for several stress-related psychiatric disorders. However, although there is plenty of clinical data supporting an association between stressful life events in adulthood and an enhanced vulnerability for psychopathology, the underlying molecular mechanisms are still poorly investigated. Thus, in this study we performed peripheral/whole-genome transcriptomic analyses in blood samples obtained from 53 adult subjects characterized for recent stressful life events occurred within the previous 6 months. Transcriptomic data were analyzed using Partek Genomics Suite; pathway and network analyses were performed using Ingenuity Pathway Analysis and GeneMANIA Software. We found 207 genes significantly differentially expressed in adult subjects who reported recent stressful life experiences (n=21) compared with those without such experiences (n=32). Moreover, the same subjects exposed to such stressful experiences showed a reduction in leukocyte telomere length. A correlation analyses between telomere length and transcriptomic data indicated an association between the exposures to recent stressful life events and the modulation of several pathways, mainly involved in immune-inflammatory-related processes and oxidative stress, such as natural killer cell signaling, interleukin-1 (IL-1) signaling, MIF regulation of innate immunity and IL-6 signaling. Our data suggest an association between exposures to recent stressful life events in adulthood and alterations in the immune, inflammatory and oxidative stress pathways, which could be also involved in the negative effect of stressful life events on leukocyte telomere length. The modulation of these mechanisms may underlie the clinical association between the exposure to recent Stressful life events in adulthood and an enhanced vulnerability to develop psychiatric diseases in adulthood.

  11. Transcriptome analyses provide insights into the difference of alkaloids biosynthesis in the Chinese goldthread (Coptis chinensis Franch.) from different biotopes.

    PubMed

    Chen, Hanting; Deng, Cao; Nie, Hu; Fan, Gang; He, Yang

    2017-01-01

    Coptis chinensis Franch., the Chinese goldthread ('Weilian' in Chinese), one of the most important medicinal plants from the family Ranunculaceae, and its rhizome has been widely used in Traditional Chinese Medicine for centuries. Here, we analyzed the chemical components and the transcriptome of the Chinese goldthread from three biotopes, including Zhenping, Zunyi and Shizhu. We built comprehensive, high-quality de novo transcriptome assemblies of the Chinese goldthread from short-read RNA-Sequencing data, obtaining 155,710 transcripts and 56,071 unigenes. More than 98.39% and 95.97% of core eukaryotic genes were found in the transcripts and unigenes respectively, indicating that this unigene set capture the majority of the coding genes. A total of 520,462, 493,718, and 507,247 heterozygous SNPs were identified in the three accessions from Zhenping, Zunyi, and Shizhu respectively, indicating high polymorphism in coding regions of the Chinese goldthread (∼1%). Chemical analyses of the rhizome identified six major components, including berberine, palmatine, coptisine, epiberberine, columbamine, and jatrorrhizine. Berberine has the highest concentrations, followed by coptisine, palmatine, and epiberberine sequentially for all the three accessions. The drug quality of the accession from Shizhu may be the highest among these accessions. Differential analyses of the transcriptome identified four pivotal candidate enzymes, including aspartate aminotransferaseprotein, polyphenol oxidase, primary-amine oxidase, and tyrosine decarboxylase, were significantly differentially expressed and may be responsible for the difference of alkaloids contents in the accessions from different biotopes.

  12. Environmental and economic assessment methods for waste management decision-support: possibilities and limitations.

    PubMed

    Finnveden, Göran; Björklund, Anna; Moberg, Asa; Ekvall, Tomas

    2007-06-01

    A large number of methods and approaches that can be used for supporting waste management decisions at different levels in society have been developed. In this paper an overview of methods is provided and preliminary guidelines for the choice of methods are presented. The methods introduced include: Environmental Impact Assessment, Strategic Environmental Assessment, Life Cycle Assessment, Cost-Benefit Analysis, Cost-effectiveness Analysis, Life-cycle Costing, Risk Assessment, Material Flow Accounting, Substance Flow Analysis, Energy Analysis, Exergy Analysis, Entropy Analysis, Environmental Management Systems, and Environmental Auditing. The characteristics used are the types of impacts included, the objects under study and whether the method is procedural or analytical. The different methods can be described as systems analysis methods. Waste management systems thinking is receiving increasing attention. This is, for example, evidenced by the suggested thematic strategy on waste by the European Commission where life-cycle analysis and life-cycle thinking get prominent positions. Indeed, life-cycle analyses have been shown to provide policy-relevant and consistent results. However, it is also clear that the studies will always be open to criticism since they are simplifications of reality and include uncertainties. This is something all systems analysis methods have in common. Assumptions can be challenged and it may be difficult to generalize from case studies to policies. This suggests that if decisions are going to be made, they are likely to be made on a less than perfect basis.

  13. De Novo Transcriptome Assembly and Analyses of Gene Expression during Photomorphogenesis in Diploid Wheat Triticum monococcum

    PubMed Central

    Naithani, Sushma; Sullivan, Chris; Preece, Justin; Tiwari, Vijay K.; Elser, Justin; Leonard, Jeffrey M.; Sage, Abigail; Gresham, Cathy; Kerhornou, Arnaud; Bolser, Dan; McCarthy, Fiona; Kersey, Paul; Lazo, Gerard R.; Jaiswal, Pankaj

    2014-01-01

    Background Triticum monococcum (2n) is a close ancestor of T. urartu, the A-genome progenitor of cultivated hexaploid wheat, and is therefore a useful model for the study of components regulating photomorphogenesis in diploid wheat. In order to develop genetic and genomic resources for such a study, we constructed genome-wide transcriptomes of two Triticum monococcum subspecies, the wild winter wheat T. monococcum ssp. aegilopoides (accession G3116) and the domesticated spring wheat T. monococcum ssp. monococcum (accession DV92) by generating de novo assemblies of RNA-Seq data derived from both etiolated and green seedlings. Principal Findings The de novo transcriptome assemblies of DV92 and G3116 represent 120,911 and 117,969 transcripts, respectively. We successfully mapped ∼90% of these transcripts from each accession to barley and ∼95% of the transcripts to T. urartu genomes. However, only ∼77% transcripts mapped to the annotated barley genes and ∼85% transcripts mapped to the annotated T. urartu genes. Differential gene expression analyses revealed 22% more light up-regulated and 35% more light down-regulated transcripts in the G3116 transcriptome compared to DV92. The DV92 and G3116 mRNA sequence reads aligned against the reference barley genome led to the identification of ∼500,000 single nucleotide polymorphism (SNP) and ∼22,000 simple sequence repeat (SSR) sites. Conclusions De novo transcriptome assemblies of two accessions of the diploid wheat T. monococcum provide new empirical transcriptome references for improving Triticeae genome annotations, and insights into transcriptional programming during photomorphogenesis. The SNP and SSR sites identified in our analysis provide additional resources for the development of molecular markers. PMID:24821410

  14. Metformin-Induced Changes of the Coding Transcriptome and Non-Coding RNAs in the Livers of Non-Alcoholic Fatty Liver Disease Mice.

    PubMed

    Guo, Jun; Zhou, Yuan; Cheng, Yafen; Fang, Weiwei; Hu, Gang; Wei, Jie; Lin, Yajun; Man, Yong; Guo, Lixin; Sun, Mingxiao; Cui, Qinghua; Li, Jian

    2018-01-01

    Recent studies have suggested that changes in non-coding mRNA play a key role in the progression of non-alcoholic fatty liver disease (NAFLD). Metformin is now recommended and effective for the treatment of NAFLD. We hope the current analyses of the non-coding mRNA transcriptome will provide a better presentation of the potential roles of mRNAs and long non-coding RNAs (lncRNAs) that underlie NAFLD and metformin intervention. The present study mainly analysed changes in the coding transcriptome and non-coding RNAs after the application of a five-week metformin intervention. Liver samples from three groups of mice were harvested for transcriptome profiling, which covered mRNA, lncRNA, microRNA (miRNA) and circular RNA (circRNA), using a microarray technique. A systematic alleviation of high-fat diet (HFD)-induced transcriptome alterations by metformin was observed. The metformin treatment largely reversed the correlations with diabetes-related pathways. Our analysis also suggested interaction networks between differentially expressed lncRNAs and known hepatic disease genes and interactions between circRNA and their disease-related miRNA partners. Eight HFD-responsive lncRNAs and three metformin-responsive lncRNAs were noted due to their widespread associations with disease genes. Moreover, seven miRNAs that interacted with multiple differentially expressed circRNAs were highlighted because they were likely to be associated with metabolic or liver diseases. The present study identified novel changes in the coding transcriptome and non-coding RNAs in the livers of NAFLD mice after metformin treatment that might shed light on the underlying mechanism by which metformin impedes the progression of NAFLD. © 2018 The Author(s). Published by S. Karger AG, Basel.

  15. A deep transcriptomic resource for the copepod crustacean Labidocera madurae: A potential indicator species for assessing near shore ecosystem health

    PubMed Central

    Christie, Andrew E.; Sommer, Stephanie A.; Cieslak, Matthew C.; Hartline, Daniel K.; Lenz, Petra H.

    2017-01-01

    Coral reef ecosystems of many sub-tropical and tropical marine coastal environments have suffered significant degradation from anthropogenic sources. Research to inform management strategies that mitigate stressors and promote a healthy ecosystem has focused on the ecology and physiology of coral reefs and associated organisms. Few studies focus on the surrounding pelagic communities, which are equally important to ecosystem function. Zooplankton, often dominated by small crustaceans such as copepods, is an important food source for invertebrates and fishes, especially larval fishes. The reef-associated zooplankton includes a sub-neustonic copepod family that could serve as an indicator species for the community. Here, we describe the generation of a de novo transcriptome for one such copepod, Labidocera madurae, a pontellid from an intensively-studied coral reef ecosystem, Kāne‘ohe Bay, Oahu, Hawai‘i. The transcriptome was assembled using high-throughput sequence data obtained from whole organisms. It comprised 211,002 unique transcripts, including 72,391 with coding regions. It was assessed for quality and completeness using multiple workflows. Bench-marking-universal-single-copy-orthologs (BUSCO) analysis identified transcripts for 88% of expected eukaryotic core proteins. Targeted gene-discovery analyses included searches for transcripts coding full-length “giant” proteins (>4,000 amino acids), proteins and splice variants of voltage-gated sodium channels, and proteins involved in the circadian signaling pathway. Four different reference transcriptomes were generated and compared for the detection of differential gene expression between copepodites and adult females; 6,229 genes were consistently identified as differentially expressed between the two regardless of reference. Automated bioinformatics analyses and targeted manual gene curation suggest that the de novo assembled L. madurae transcriptome is of high quality and completeness. This transcriptome provides a new resource for assessing the global physiological status of a planktonic species inhabiting a coral reef ecosystem that is subjected to multiple anthropogenic stressors. The workflows provide a template for generating and assessing transcriptomes in other non-model species. PMID:29065152

  16. A deep transcriptomic resource for the copepod crustacean Labidocera madurae: A potential indicator species for assessing near shore ecosystem health.

    PubMed

    Roncalli, Vittoria; Christie, Andrew E; Sommer, Stephanie A; Cieslak, Matthew C; Hartline, Daniel K; Lenz, Petra H

    2017-01-01

    Coral reef ecosystems of many sub-tropical and tropical marine coastal environments have suffered significant degradation from anthropogenic sources. Research to inform management strategies that mitigate stressors and promote a healthy ecosystem has focused on the ecology and physiology of coral reefs and associated organisms. Few studies focus on the surrounding pelagic communities, which are equally important to ecosystem function. Zooplankton, often dominated by small crustaceans such as copepods, is an important food source for invertebrates and fishes, especially larval fishes. The reef-associated zooplankton includes a sub-neustonic copepod family that could serve as an indicator species for the community. Here, we describe the generation of a de novo transcriptome for one such copepod, Labidocera madurae, a pontellid from an intensively-studied coral reef ecosystem, Kāne'ohe Bay, Oahu, Hawai'i. The transcriptome was assembled using high-throughput sequence data obtained from whole organisms. It comprised 211,002 unique transcripts, including 72,391 with coding regions. It was assessed for quality and completeness using multiple workflows. Bench-marking-universal-single-copy-orthologs (BUSCO) analysis identified transcripts for 88% of expected eukaryotic core proteins. Targeted gene-discovery analyses included searches for transcripts coding full-length "giant" proteins (>4,000 amino acids), proteins and splice variants of voltage-gated sodium channels, and proteins involved in the circadian signaling pathway. Four different reference transcriptomes were generated and compared for the detection of differential gene expression between copepodites and adult females; 6,229 genes were consistently identified as differentially expressed between the two regardless of reference. Automated bioinformatics analyses and targeted manual gene curation suggest that the de novo assembled L. madurae transcriptome is of high quality and completeness. This transcriptome provides a new resource for assessing the global physiological status of a planktonic species inhabiting a coral reef ecosystem that is subjected to multiple anthropogenic stressors. The workflows provide a template for generating and assessing transcriptomes in other non-model species.

  17. Microbiome and ecotypic adaption of Holcus lanatus (L.) to extremes of its soil pH range, investigated through transcriptome sequencing.

    PubMed

    Young, Ellen; Carey, Manus; Meharg, Andrew A; Meharg, Caroline

    2018-03-20

    Plants can adapt to edaphic stress, such as nutrient deficiency, toxicity and biotic challenges, by controlled transcriptomic responses, including microbiome interactions. Traditionally studied in model plant species with controlled microbiota inoculation treatments, molecular plant-microbiome interactions can be functionally investigated via RNA-Seq. Complex, natural plant-microbiome studies are limited, typically focusing on microbial rRNA and omitting functional microbiome investigations, presenting a fundamental knowledge gap. Here, root and shoot meta-transcriptome analyses, in tandem with shoot elemental content and root staining, were employed to investigate transcriptome responses in the wild grass Holcus lanatus and its associated natural multi-species eukaryotic microbiome. A full factorial reciprocal soil transplant experiment was employed, using plant ecotypes from two widely contrasting natural habitats, acid bog and limestone quarry soil, to investigate naturally occurring, and ecologically meaningful, edaphically driven molecular plant-microbiome interactions. Arbuscular mycorrhizal (AM) and non-AM fungal colonization was detected in roots in both soils. Staining showed greater levels of non-AM fungi, and transcriptomics indicated a predominance of Ascomycota-annotated genes. Roots in acid bog soil were dominated by Phialocephala-annotated transcripts, a putative growth-promoting endophyte, potentially involved in N nutrition and ion homeostasis. Limestone roots in acid bog soil had greater expression of other Ascomycete genera and Oomycetes and lower expression of Phialocephala-annotated transcripts compared to acid ecotype roots, which corresponded with reduced induction of pathogen defense processes, particularly lignin biosynthesis in limestone ecotypes. Ascomycota dominated in shoots and limestone soil roots, but Phialocephala-annotated transcripts were insignificant, and no single Ascomycete genus dominated. Fusarium-annotated transcripts were the most common genus in shoots, with Colletotrichum and Rhizophagus (AM fungi) most numerous in limestone soil roots. The latter coincided with upregulation of plant genes involved in AM symbiosis initiation and AM-based P acquisition in an environment where P availability is low. Meta-transcriptome analyses provided novel insights into H. lanatus transcriptome responses, associated eukaryotic microbiota functions and taxonomic community composition. Significant edaphic and plant ecotype effects were identified, demonstrating that meta-transcriptome-based functional analysis is a powerful tool for the study of natural plant-microbiome interactions.

  18. Transcriptome Changes Associated with Anaerobic Growth in Yersinia intermedia (ATCC29909)

    PubMed Central

    Kiley, Patricia J.; Glasner, Jeremy D.; Perna, Nicole T.

    2013-01-01

    Background The yersiniae (Enterobacteriaceae) occupy a variety of niches, including some in human and flea hosts. Metabolic adaptations of the yersiniae, which contribute to their success in these specialized environments, remain largely unknown. We report results of an investigation of the transcriptome under aerobic and anaerobic conditions for Y. intermedia, a non-pathogenic member of the genus that has been used as a research surrogate for Y. pestis. Y. intermedia shares characteristics of pathogenic yersiniae, but is not known to cause disease in humans. Oxygen restriction is an important environmental stimulus experienced by many bacteria during their life-cycles and greatly influences their survival in specific environments. How oxygen availability affects physiology in the yersiniae is of importance in their life cycles but has not been extensively characterized. Methodology/Principal Findings Tiled oligonucleotide arrays based on a draft genome sequence of Y. intermedia were used in transcript profiling experiments to identify genes that change expression in response to oxygen availability during growth in minimal media with glucose. The expression of more than 400 genes, constituting about 10% of the genome, was significantly altered due to oxygen-limitation in early log phase under these conditions. Broad functional categorization indicated that, in addition to genes involved in central metabolism, genes involved in adaptation to stress and genes likely involved with host interactions were affected by oxygen-availability. Notable among these, were genes encoding functions for motility, chemotaxis and biosynthesis of cobalamin, which were up-regulated and those for iron/heme utilization, methionine metabolism and urease, which were down-regulated. Conclusions/Significance This is the first transcriptome analysis of a non-pathogenic Yersinia spp. and one of few elucidating the global response to oxygen limitation for any of the yersiniae. Thus this study lays the foundation for further experimental characterization of oxygen-responsive genes and pathways in this ecologically diverse genus. PMID:24116118

  19. Transcriptome changes associated with anaerobic growth in Yersinia intermedia (ATCC29909).

    PubMed

    Babujee, Lavanya; Balakrishnan, Venkatesh; Kiley, Patricia J; Glasner, Jeremy D; Perna, Nicole T

    2013-01-01

    The yersiniae (Enterobacteriaceae) occupy a variety of niches, including some in human and flea hosts. Metabolic adaptations of the yersiniae, which contribute to their success in these specialized environments, remain largely unknown. We report results of an investigation of the transcriptome under aerobic and anaerobic conditions for Y. intermedia, a non-pathogenic member of the genus that has been used as a research surrogate for Y. pestis. Y. intermedia shares characteristics of pathogenic yersiniae, but is not known to cause disease in humans. Oxygen restriction is an important environmental stimulus experienced by many bacteria during their life-cycles and greatly influences their survival in specific environments. How oxygen availability affects physiology in the yersiniae is of importance in their life cycles but has not been extensively characterized. Tiled oligonucleotide arrays based on a draft genome sequence of Y. intermedia were used in transcript profiling experiments to identify genes that change expression in response to oxygen availability during growth in minimal media with glucose. The expression of more than 400 genes, constituting about 10% of the genome, was significantly altered due to oxygen-limitation in early log phase under these conditions. Broad functional categorization indicated that, in addition to genes involved in central metabolism, genes involved in adaptation to stress and genes likely involved with host interactions were affected by oxygen-availability. Notable among these, were genes encoding functions for motility, chemotaxis and biosynthesis of cobalamin, which were up-regulated and those for iron/heme utilization, methionine metabolism and urease, which were down-regulated. This is the first transcriptome analysis of a non-pathogenic Yersinia spp. and one of few elucidating the global response to oxygen limitation for any of the yersiniae. Thus this study lays the foundation for further experimental characterization of oxygen-responsive genes and pathways in this ecologically diverse genus.

  20. Sex and parasites: genomic and transcriptomic analysis of Microbotryum lychnidis-dioicae, the biotrophic and plant-castrating anther smut fungus.

    PubMed

    Perlin, Michael H; Amselem, Joelle; Fontanillas, Eric; Toh, Su San; Chen, Zehua; Goldberg, Jonathan; Duplessis, Sebastien; Henrissat, Bernard; Young, Sarah; Zeng, Qiandong; Aguileta, Gabriela; Petit, Elsa; Badouin, Helene; Andrews, Jared; Razeeq, Dominique; Gabaldón, Toni; Quesneville, Hadi; Giraud, Tatiana; Hood, Michael E; Schultz, David J; Cuomo, Christina A

    2015-06-16

    The genus Microbotryum includes plant pathogenic fungi afflicting a wide variety of hosts with anther smut disease. Microbotryum lychnidis-dioicae infects Silene latifolia and replaces host pollen with fungal spores, exhibiting biotrophy and necrosis associated with altering plant development. We determined the haploid genome sequence for M. lychnidis-dioicae and analyzed whole transcriptome data from plant infections and other stages of the fungal lifecycle, revealing the inventory and expression level of genes that facilitate pathogenic growth. Compared to related fungi, an expanded number of major facilitator superfamily transporters and secretory lipases were detected; lipase gene expression was found to be altered by exposure to lipid compounds, which signaled a switch to dikaryotic, pathogenic growth. In addition, while enzymes to digest cellulose, xylan, xyloglucan, and highly substituted forms of pectin were absent, along with depletion of peroxidases and superoxide dismutases that protect the fungus from oxidative stress, the repertoire of glycosyltransferases and of enzymes that could manipulate host development has expanded. A total of 14% of the genome was categorized as repetitive sequences. Transposable elements have accumulated in mating-type chromosomal regions and were also associated across the genome with gene clusters of small secreted proteins, which may mediate host interactions. The unique absence of enzyme classes for plant cell wall degradation and maintenance of enzymes that break down components of pollen tubes and flowers provides a striking example of biotrophic host adaptation.

  1. Quantitative RNA-seq analysis of the Campylobacter jejuni transcriptome

    PubMed Central

    Chaudhuri, Roy R.; Yu, Lu; Kanji, Alpa; Perkins, Timothy T.; Gardner, Paul P.; Choudhary, Jyoti; Maskell, Duncan J.

    2011-01-01

    Campylobacter jejuni is the most common bacterial cause of foodborne disease in the developed world. Its general physiology and biochemistry, as well as the mechanisms enabling it to colonize and cause disease in various hosts, are not well understood, and new approaches are required to understand its basic biology. High-throughput sequencing technologies provide unprecedented opportunities for functional genomic research. Recent studies have shown that direct Illumina sequencing of cDNA (RNA-seq) is a useful technique for the quantitative and qualitative examination of transcriptomes. In this study we report RNA-seq analyses of the transcriptomes of C. jejuni (NCTC11168) and its rpoN mutant. This has allowed the identification of hitherto unknown transcriptional units, and further defines the regulon that is dependent on rpoN for expression. The analysis of the NCTC11168 transcriptome was supplemented by additional proteomic analysis using liquid chromatography-MS. The transcriptomic and proteomic datasets represent an important resource for the Campylobacter research community. PMID:21816880

  2. Root Type-Specific Reprogramming of Maize Pericycle Transcriptomes by Local High Nitrate Results in Disparate Lateral Root Branching Patterns1[OPEN

    PubMed Central

    Lithio, Andrew

    2016-01-01

    The adaptability of root system architecture to unevenly distributed mineral nutrients in soil is a key determinant of plant performance. The molecular mechanisms underlying nitrate dependent plasticity of lateral root branching across the different root types of maize are only poorly understood. In this study, detailed morphological and anatomical analyses together with cell type-specific transcriptome profiling experiments combining laser capture microdissection with RNA-seq were performed to unravel the molecular signatures of lateral root formation in primary, seminal, crown, and brace roots of maize (Zea mays) upon local high nitrate stimulation. The four maize root types displayed divergent branching patterns of lateral roots upon local high nitrate stimulation. In particular, brace roots displayed an exceptional architectural plasticity compared to other root types. Transcriptome profiling revealed root type-specific transcriptomic reprogramming of pericycle cells upon local high nitrate stimulation. The alteration of the transcriptomic landscape of brace root pericycle cells in response to local high nitrate stimulation was most significant. Root type-specific transcriptome diversity in response to local high nitrate highlighted differences in the functional adaptability and systemic shoot nitrogen starvation response during development. Integration of morphological, anatomical, and transcriptomic data resulted in a framework underscoring similarity and diversity among root types grown in heterogeneous nitrate environments. PMID:26811190

  3. BABAR: an R package to simplify the normalisation of common reference design microarray-based transcriptomic datasets

    PubMed Central

    2010-01-01

    Background The development of DNA microarrays has facilitated the generation of hundreds of thousands of transcriptomic datasets. The use of a common reference microarray design allows existing transcriptomic data to be readily compared and re-analysed in the light of new data, and the combination of this design with large datasets is ideal for 'systems'-level analyses. One issue is that these datasets are typically collected over many years and may be heterogeneous in nature, containing different microarray file formats and gene array layouts, dye-swaps, and showing varying scales of log2- ratios of expression between microarrays. Excellent software exists for the normalisation and analysis of microarray data but many data have yet to be analysed as existing methods struggle with heterogeneous datasets; options include normalising microarrays on an individual or experimental group basis. Our solution was to develop the Batch Anti-Banana Algorithm in R (BABAR) algorithm and software package which uses cyclic loess to normalise across the complete dataset. We have already used BABAR to analyse the function of Salmonella genes involved in the process of infection of mammalian cells. Results The only input required by BABAR is unprocessed GenePix or BlueFuse microarray data files. BABAR provides a combination of 'within' and 'between' microarray normalisation steps and diagnostic boxplots. When applied to a real heterogeneous dataset, BABAR normalised the dataset to produce a comparable scaling between the microarrays, with the microarray data in excellent agreement with RT-PCR analysis. When applied to a real non-heterogeneous dataset and a simulated dataset, BABAR's performance in identifying differentially expressed genes showed some benefits over standard techniques. Conclusions BABAR is an easy-to-use software tool, simplifying the simultaneous normalisation of heterogeneous two-colour common reference design cDNA microarray-based transcriptomic datasets. We show BABAR transforms real and simulated datasets to allow for the correct interpretation of these data, and is the ideal tool to facilitate the identification of differentially expressed genes or network inference analysis from transcriptomic datasets. PMID:20128918

  4. Detecting specific infections in children through host responses: a paradigm shift.

    PubMed

    Mejias, Asuncion; Suarez, Nicolas M; Ramilo, Octavio

    2014-06-01

    There is a need for improved diagnosis and for optimal classification of patients with infectious diseases. An alternative approach to the pathogen-detection strategy is based on a comprehensive analysis of the host response to the infection. This review focuses on the value of transcriptome analyses of blood leukocytes for the diagnosis and management of patients with infectious diseases. Initial studies showed that RNA from blood leukocytes of children with acute viral and bacterial infections carried pathogen-specific transcriptional signatures. Subsequently, transcriptional signatures for several other infections have been described and validated in humans with malaria, dengue, salmonella, melioidosis, respiratory syncytial virus, influenza, tuberculosis, and HIV. In addition, transcriptome analyses represent an invaluable tool to understand disease pathogenesis and to objectively classify patients according to the clinical severity. Microarray studies have been shown to be highly reproducible using different platforms, and in different patient populations, confirming the value of blood transcriptome analyses to study pathogen-specific host immune responses in the clinical setting. Combining the detection of the pathogen with a comprehensive assessment of the host immune response will provide a new understanding of the correlations between specific causative agents, the host response, and the clinical manifestations of the disease.

  5. Lifecycle comparison of selected Li-ion battery chemistries under grid and electric vehicle duty cycle combinations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, Alasdair J.; Huang, Qian; Kintner-Meyer, Michael C. W.

    Li-ion batteries play a vital role in stabilizing the electrical grid. In this work, two different Li-ion battery chemistries based on LiNi0.8Co0.15Al0.05O2 (NCA) and LiFePO4 (LFP) cathodes have been tested under the grid duty cycles recently developed for frequency regulation (FR) and peak shaving (PS) with and without being subjected to electric vehicle (EV) drive cycles. The lifecycle comparison derived from capacity, round trip efficiency (RTE), resistance, charge/discharge energy and total utilized energy of the two battery chemistries have been discussed. The results can be used as a guideline for selection, deployment, operation and cost analyses of Li-ion batteries usedmore » for different applications.« less

  6. Molecular analyses reveal high species diversity of trematodes in a sub-Arctic lake

    USGS Publications Warehouse

    Soldánová, Miroslava; Georgieva, Simona; Roháčováa, Jana; Knudsen, Rune; Kuhn, Jesper A.; Henriksen, Eirik H.; Siwertsson, Anna; Shaw, Jenny C.; Kuris, Armand M.; Amundsen, Per-Arne; Scholz, Tomáš; Lafferty, Kevin D.; Kostadinova, Aneta

    2017-01-01

    To identify trematode diversity and life-cycles in the sub-Arctic Lake Takvatn, Norway, we characterised 120 trematode isolates from mollusc first intermediate hosts, metacercariae from second intermediate host fishes and invertebrates, and adults from fish and invertebrate definitive hosts, using molecular techniques. Phylogenies based on nuclear and/or mtDNA revealed high species richness (24 species or species-level genetic lineages), and uncovered trematode diversity (16 putative new species) from five families typical in lake ecosystems (Allocreadiidae, Diplostomidae, Plagiorchiidae, Schistosomatidae and Strigeidae). Sampling potential invertebrate hosts allowed matching of sequence data for different stages, thus achieving molecular elucidation of trematode life-cycles and exploration of host-parasite interactions. Phylogenetic analyses also helped identify three major mollusc intermediate hosts (Radix balthica, Pisidium casertanum and Sphaerium sp.) in the lake. Our findings increase the known trematode diversity at the sub-Arctic Lake Takvatn, showing that digenean diversity is high in this otherwise depauperate sub-Arctic freshwater ecosystem, and indicating that sub-Arctic and Arctic ecosystems may be characterised by unique trematode assemblages.

  7. Venom gland transcriptomics for identifying, cataloging, and characterizing venom proteins in snakes.

    PubMed

    Brahma, Rajeev Kungur; McCleary, Ryan J R; Kini, R Manjunatha; Doley, Robin

    2015-01-01

    Snake venoms are cocktails of protein toxins that play important roles in capture and digestion of prey. Significant qualitative and quantitative variation in snake venom composition has been observed among and within species. Understanding these variations in protein components is instrumental in interpreting clinical symptoms during human envenomation and in searching for novel venom proteins with potential therapeutic applications. In the last decade, transcriptomic analyses of venom glands have helped in understanding the composition of various snake venoms in great detail. Here we review transcriptomic analysis as a powerful tool for understanding venom profile, variation and evolution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. How Metamorphosis Is Different in Plethodontids: Larval Life History Perspectives on Life-Cycle Evolution

    PubMed Central

    Beachy, Christopher K.; Ryan, Travis J.; Bonett, Ronald M.

    2017-01-01

    Plethodontid salamanders exhibit biphasic, larval form paedomorphic, and direct developing life cycles. This diversity of developmental strategies exceeds that of any other family of terrestrial vertebrate. Here we compare patterns of larval development among the three divergent lineages of biphasic plethodontids and other salamanders. We discuss how patterns of life-cycle evolution and larval ecology might have produced a wide array of larval life histories. Compared with many other salamanders, most larval plethodontids have relatively slow growth rates and sometimes exceptionally long larval periods (up to 60 mo). Recent phylogenetic analyses of life-cycle evolution indicate that ancestral plethodontids were likely direct developers. If true, then biphasic and paedomorphic lineages might have been independently derived through different developmental mechanisms. Furthermore, biphasic plethodontids largely colonized stream habitats, which tend to have lower productivity than seasonally ephemeral ponds. Consistent with this, plethodontid larvae grow very slowly, and metamorphic timing does not appear to be strongly affected by growth history. On the basis of this, we speculate that feeding schedules and stress hormones might play a comparatively reduced role in governing the timing of metamorphosis of stream-dwelling salamanders, particularly plethodontids. PMID:29269959

  9. Integrated mRNA and microRNA transcriptome analyses reveal regulation of thermal acclimation in Gymnocypris przewalskii: A case study in Tibetan Schizothoracine fish

    PubMed Central

    Tian, Fei; Zhao, Kai

    2017-01-01

    Environmental acclimation is important episode in wildlife occupation of the high-altitude Tibetan Plateau (TP). Transcriptome-wide studies on thermal acclimation mechanism in fish species are rarely revealed in Tibetan Plateau fish at high altitude. Thus, we used mRNA and miRNA transcriptome sequencing to investigate regulation of thermal acclimation in larval Tibetan naked carp, Gymnocypris przewalskii. We first remodeled the regulation network of mRNA and miRNA in thermal acclimation, and then identified differential expression of miRNAs and target mRNAs enriched in metabolic and digestive pathways. Interestingly, we identified two candidate genes contributed to normal skeletal development. The altered expression of these gene groups could potentially be associated with the developmental issues of deformity and induced larval death. Our results have three important implications: first, these findings provide strong evidences to support our hypothesis that G. przewalskii possess ability to build heat-tolerance against the controversial issue. Second, this study shows that transcriptional and post-transcriptional regulations are extensively involved in thermal acclimation. Third, the integrated mRNA and microRNA transcriptome analyses provide a large number of valuable genetic resources for future studies on environmental stress response in G. przewalskii and as a case study in Tibetan Schizothoracine fish. PMID:29045433

  10. Deep, Staged Transcriptomic Resources for the Novel Coleopteran Models Atrachya menetriesi and Callosobruchus maculatus.

    PubMed

    Benton, Matthew A; Kenny, Nathan J; Conrads, Kai H; Roth, Siegfried; Lynch, Jeremy A

    2016-01-01

    Despite recent efforts to sample broadly across metazoan and insect diversity, current sequence resources in the Coleoptera do not adequately describe the diversity of the clade. Here we present deep, staged transcriptomic data for two coleopteran species, Atrachya menetriesi (Faldermann 1835) and Callosobruchus maculatus (Fabricius 1775). Our sampling covered key stages in ovary and early embryonic development in each species. We utilized this data to build combined assemblies for each species which were then analysed in detail. The combined A. menetriesi assembly consists of 228,096 contigs with an N50 of 1,598 bp, while the combined C. maculatus assembly consists of 128,837 contigs with an N50 of 2,263 bp. For these assemblies, 34.6% and 32.4% of contigs were identified using Blast2GO, and 97% and 98.3% of the BUSCO set of metazoan orthologs were present, respectively. We also carried out manual annotation of developmental signalling pathways and found that nearly all expected genes were present in each transcriptome. Our analyses show that both transcriptomes are of high quality. Lastly, we performed read mapping utilising our timed, stage specific RNA samples to identify differentially expressed contigs. The resources presented here will provide a firm basis for a variety of experimentation, both in developmental biology and in comparative genomic studies.

  11. Revealing the transcriptomic complexity of switchgrass by PacBio long-read sequencing.

    PubMed

    Zuo, Chunman; Blow, Matthew; Sreedasyam, Avinash; Kuo, Rita C; Ramamoorthy, Govindarajan Kunde; Torres-Jerez, Ivone; Li, Guifen; Wang, Mei; Dilworth, David; Barry, Kerrie; Udvardi, Michael; Schmutz, Jeremy; Tang, Yuhong; Xu, Ying

    2018-01-01

    Switchgrass ( Panicum virgatum L.) is an important bioenergy crop widely used for lignocellulosic research. While extensive transcriptomic analyses have been conducted on this species using short read-based sequencing techniques, very little has been reliably derived regarding alternatively spliced (AS) transcripts. We present an analysis of transcriptomes of six switchgrass tissue types pooled together, sequenced using Pacific Biosciences (PacBio) single-molecular long-read technology. Our analysis identified 105,419 unique transcripts covering 43,570 known genes and 8795 previously unknown genes. 45,168 are novel transcripts of known genes. A total of 60,096 AS transcripts are identified, 45,628 being novel. We have also predicted 1549 transcripts of genes involved in cell wall construction and remodeling, 639 being novel transcripts of known cell wall genes. Most of the predicted transcripts are validated against Illumina-based short reads. Specifically, 96% of the splice junction sites in all the unique transcripts are validated by at least five Illumina reads. Comparisons between genes derived from our identified transcripts and the current genome annotation revealed that among the gene set predicted by both analyses, 16,640 have different exon-intron structures. Overall, substantial amount of new information is derived from the PacBio RNA data regarding both the transcriptome and the genome of switchgrass.

  12. Transcriptomes of Trypanosoma brucei rhodesiense from sleeping sickness patients, rodents and culture: Effects of strain, growth conditions and RNA preparation methods

    PubMed Central

    Mulindwa, Julius; Leiss, Kevin; Ibberson, David; Kamanyi Marucha, Kevin; Helbig, Claudia; Melo do Nascimento, Larissa; Silvester, Eleanor; Matthews, Keith; Matovu, Enock; Enyaru, John

    2018-01-01

    All of our current knowledge of African trypanosome metabolism is based on results from trypanosomes grown in culture or in rodents. Drugs against sleeping sickness must however treat trypanosomes in humans. We here compare the transcriptomes of Trypanosoma brucei rhodesiense from the blood and cerebrospinal fluid of human patients with those of trypanosomes from culture and rodents. The data were aligned and analysed using new user-friendly applications designed for Kinetoplastid RNA-Seq data. The transcriptomes of trypanosomes from human blood and cerebrospinal fluid did not predict major metabolic differences that might affect drug susceptibility. Usefully, there were relatively few differences between the transcriptomes of trypanosomes from patients and those of similar trypanosomes grown in rats. Transcriptomes of monomorphic laboratory-adapted parasites grown in in vitro culture closely resembled those of the human parasites, but some differences were seen. In poly(A)-selected mRNA transcriptomes, mRNAs encoding some protein kinases and RNA-binding proteins were under-represented relative to mRNA that had not been poly(A) selected; further investigation revealed that the selection tends to result in loss of longer mRNAs. PMID:29474390

  13. Transcriptomes of Trypanosoma brucei rhodesiense from sleeping sickness patients, rodents and culture: Effects of strain, growth conditions and RNA preparation methods.

    PubMed

    Mulindwa, Julius; Leiss, Kevin; Ibberson, David; Kamanyi Marucha, Kevin; Helbig, Claudia; Melo do Nascimento, Larissa; Silvester, Eleanor; Matthews, Keith; Matovu, Enock; Enyaru, John; Clayton, Christine

    2018-02-01

    All of our current knowledge of African trypanosome metabolism is based on results from trypanosomes grown in culture or in rodents. Drugs against sleeping sickness must however treat trypanosomes in humans. We here compare the transcriptomes of Trypanosoma brucei rhodesiense from the blood and cerebrospinal fluid of human patients with those of trypanosomes from culture and rodents. The data were aligned and analysed using new user-friendly applications designed for Kinetoplastid RNA-Seq data. The transcriptomes of trypanosomes from human blood and cerebrospinal fluid did not predict major metabolic differences that might affect drug susceptibility. Usefully, there were relatively few differences between the transcriptomes of trypanosomes from patients and those of similar trypanosomes grown in rats. Transcriptomes of monomorphic laboratory-adapted parasites grown in in vitro culture closely resembled those of the human parasites, but some differences were seen. In poly(A)-selected mRNA transcriptomes, mRNAs encoding some protein kinases and RNA-binding proteins were under-represented relative to mRNA that had not been poly(A) selected; further investigation revealed that the selection tends to result in loss of longer mRNAs.

  14. Reptilian Transcriptomes v2.0: An Extensive Resource for Sauropsida Genomics and Transcriptomics

    PubMed Central

    Tzika, Athanasia C.; Ullate-Agote, Asier; Grbic, Djordje; Milinkovitch, Michel C.

    2015-01-01

    Despite the availability of deep-sequencing techniques, genomic and transcriptomic data remain unevenly distributed across phylogenetic groups. For example, reptiles are poorly represented in sequence databases, hindering functional evolutionary and developmental studies in these lineages substantially more diverse than mammals. In addition, different studies use different assembly and annotation protocols, inhibiting meaningful comparisons. Here, we present the “Reptilian Transcriptomes Database 2.0,” which provides extensive annotation of transcriptomes and genomes from species covering the major reptilian lineages. To this end, we sequenced normalized complementary DNA libraries of multiple adult tissues and various embryonic stages of the leopard gecko and the corn snake and gathered published reptilian sequence data sets from representatives of the four extant orders of reptiles: Squamata (snakes and lizards), the tuatara, crocodiles, and turtles. The LANE runner 2.0 software was implemented to annotate all assemblies within a single integrated pipeline. We show that this approach increases the annotation completeness of the assembled transcriptomes/genomes. We then built large concatenated protein alignments of single-copy genes and inferred phylogenetic trees that support the positions of turtles and the tuatara as sister groups of Archosauria and Squamata, respectively. The Reptilian Transcriptomes Database 2.0 resource will be updated to include selected new data sets as they become available, thus making it a reference for differential expression studies, comparative genomics and transcriptomics, linkage mapping, molecular ecology, and phylogenomic analyses involving reptiles. The database is available at www.reptilian-transcriptomes.org and can be enquired using a wwwblast server installed at the University of Geneva. PMID:26133641

  15. In utero and lactational exposure to low-doses of the pyrethroid insecticide cypermethrin leads to neurodevelopmental defects in male mice—An ethological and transcriptomic study

    PubMed Central

    Herzine, Ameziane; Perche, Olivier; Richard, Olivier; Montecot-Dubourg, Céline; Menuet, Arnaud; Mazaud-Guittot, Séverine; Lesné, Laurianne; Jegou, Bernard; Mortaud, Stéphane

    2017-01-01

    Accumulating evidence suggests that developmental exposure to environmental chemicals may modify the course of brain development, ultimately leading to neuropsychiatric / neurodegenerative disorders later in life. In the present study, we assessed the impact of one of the most frequently used pesticides in both residential and agricultural applications − the synthetic pyrethroid cypermethrin (CYP) − on developmental neurotoxicity (DNT). Female mice were perinatally exposed to low doses of CYP (5 and 20 mg/kg body weight) from gestation to postnatal day 15. Behavioral analyses were performed during the offspring’s early life and during adulthood. Postnatal analyses revealed that perinatal exposure to CYP disturbed motor development without modifying sensory and communicative skills. We found that later in life, CYP-exposed offspring expressed maladaptive behaviors in response to highly challenging tasks and abnormal sociability. Transcriptomic analyses performed in the offspring’s brain at the end of the exposure, highlighted mitochondrial dysfunction as a relevant pathomechanism underlying CYP-induced DNT. Interestingly, several genes involved in proteostasis maintenance were also shown to be dysregulated suggesting that alterations in biogenesis, folding, trafficking and degradation of proteins may significantly contribute to CYP-related DNT. From a regulatory perspective, this study highlights that behavioral and transcriptomic analyses are complementary tools providing useful direction for better DNT characterization, and as such, should be used together more systematically. PMID:29020013

  16. Impact of Life-Cycle Stage and Gender on the Ability to Balance Work and Family Responsibilities.

    ERIC Educational Resources Information Center

    Higgins, Christopher; And Others

    1994-01-01

    Examined impact of gender and life-cycle stage on three components of work-family conflict using sample of 3,616 respondents. For men, levels of work-family conflict were moderately lower in each successive life-cycle stage. For women, levels were similar in two early life-cycle stages but were significantly lower in later life-cycle stage.…

  17. Transcriptome of the adult female malaria mosquito vector Anopheles albimanus.

    PubMed

    Martínez-Barnetche, Jesús; Gómez-Barreto, Rosa E; Ovilla-Muñoz, Marbella; Téllez-Sosa, Juan; García López, David E; Dinglasan, Rhoel R; Ubaida Mohien, Ceereena; MacCallum, Robert M; Redmond, Seth N; Gibbons, John G; Rokas, Antonis; Machado, Carlos A; Cazares-Raga, Febe E; González-Cerón, Lilia; Hernández-Martínez, Salvador; Rodríguez López, Mario H

    2012-05-30

    Human Malaria is transmitted by mosquitoes of the genus Anopheles. Transmission is a complex phenomenon involving biological and environmental factors of humans, parasites and mosquitoes. Among more than 500 anopheline species, only a few species from different branches of the mosquito evolutionary tree transmit malaria, suggesting that their vectorial capacity has evolved independently. Anopheles albimanus (subgenus Nyssorhynchus) is an important malaria vector in the Americas. The divergence time between Anopheles gambiae, the main malaria vector in Africa, and the Neotropical vectors has been estimated to be 100 My. To better understand the biological basis of malaria transmission and to develop novel and effective means of vector control, there is a need to explore the mosquito biology beyond the An. gambiae complex. We sequenced the transcriptome of the An. albimanus adult female. By combining Sanger, 454 and Illumina sequences from cDNA libraries derived from the midgut, cuticular fat body, dorsal vessel, salivary gland and whole body, we generated a single, high-quality assembly containing 16,669 transcripts, 92% of which mapped to the An. darlingi genome and covered 90% of the core eukaryotic genome. Bidirectional comparisons between the An. gambiae, An. darlingi and An. albimanus predicted proteomes allowed the identification of 3,772 putative orthologs. More than half of the transcripts had a match to proteins in other insect vectors and had an InterPro annotation. We identified several protein families that may be relevant to the study of Plasmodium-mosquito interaction. An open source transcript annotation browser called GDAV (Genome-Delinked Annotation Viewer) was developed to facilitate public access to the data generated by this and future transcriptome projects. We have explored the adult female transcriptome of one important New World malaria vector, An. albimanus. We identified protein-coding transcripts involved in biological processes that may be relevant to the Plasmodium lifecycle and can serve as the starting point for searching targets for novel control strategies. Our data increase the available genomic information regarding An. albimanus several hundred-fold, and will facilitate molecular research in medical entomology, evolutionary biology, genomics and proteomics of anopheline mosquito vectors. The data reported in this manuscript is accessible to the community via the VectorBase website (http://www.vectorbase.org/Other/AdditionalOrganisms/).

  18. A draft of the genome and four transcriptomes of a medicinal and pesticidal angiosperm Azadirachta indica

    PubMed Central

    2012-01-01

    Background The Azadirachta indica (neem) tree is a source of a wide number of natural products, including the potent biopesticide azadirachtin. In spite of its widespread applications in agriculture and medicine, the molecular aspects of the biosynthesis of neem terpenoids remain largely unexplored. The current report describes the draft genome and four transcriptomes of A. indica and attempts to contextualise the sequence information in terms of its molecular phylogeny, transcript expression and terpenoid biosynthesis pathways. A. indica is the first member of the family Meliaceae to be sequenced using next generation sequencing approach. Results The genome and transcriptomes of A. indica were sequenced using multiple sequencing platforms and libraries. The A. indica genome is AT-rich, bears few repetitive DNA elements and comprises about 20,000 genes. The molecular phylogenetic analyses grouped A. indica together with Citrus sinensis from the Rutaceae family validating its conventional taxonomic classification. Comparative transcript expression analysis showed either exclusive or enhanced expression of known genes involved in neem terpenoid biosynthesis pathways compared to other sequenced angiosperms. Genome and transcriptome analyses in A. indica led to the identification of repeat elements, nucleotide composition and expression profiles of genes in various organs. Conclusions This study on A. indica genome and transcriptomes will provide a model for characterization of metabolic pathways involved in synthesis of bioactive compounds, comparative evolutionary studies among various Meliaceae family members and help annotate their genomes. A better understanding of molecular pathways involved in the azadirachtin synthesis in A. indica will pave ways for bulk production of environment friendly biopesticides. PMID:22958331

  19. Genome-wide methylomic and transcriptomic analyses identify subtype-specific epigenetic signatures commonly dysregulated in glioma stem cells and glioblastoma.

    PubMed

    Pangeni, Rajendra P; Zhang, Zhou; Alvarez, Angel A; Wan, Xuechao; Sastry, Namratha; Lu, Songjian; Shi, Taiping; Huang, Tianzhi; Lei, Charles X; James, C David; Kessler, John A; Brennan, Cameron W; Nakano, Ichiro; Lu, Xinghua; Hu, Bo; Zhang, Wei; Cheng, Shi-Yuan

    2018-06-21

    Glioma stem cells (GSCs), a subpopulation of tumor cells, contribute to tumor heterogeneity and therapy resistance. Gene expression profiling classified glioblastoma (GBM) and GSCs into four transcriptomically-defined subtypes. Here, we determined the DNA methylation signatures in transcriptomically pre-classified GSC and GBM bulk tumors subtypes. We hypothesized that these DNA methylation signatures correlate with gene expression and are uniquely associated either with only GSCs or only GBM bulk tumors. Additional methylation signatures may be commonly associated with both GSCs and GBM bulk tumors, i.e., common to non-stem-like and stem-like tumor cell populations and correlating with the clinical prognosis of glioma patients. We analyzed Illumina 450K methylation array and expression data from a panel of 23 patient-derived GSCs. We referenced these results with The Cancer Genome Atlas (TCGA) GBM datasets to generate methylomic and transcriptomic signatures for GSCs and GBM bulk tumors of each transcriptomically pre-defined tumor subtype. Survival analyses were carried out for these signature genes using publicly available datasets, including from TCGA. We report that DNA methylation signatures in proneural and mesenchymal tumor subtypes are either unique to GSCs, unique to GBM bulk tumors, or common to both. Further, dysregulated DNA methylation correlates with gene expression and clinical prognoses. Additionally, many previously identified transcriptionally-regulated markers are also dysregulated due to DNA methylation. The subtype-specific DNA methylation signatures described in this study could be useful for refining GBM sub-classification, improving prognostic accuracy, and making therapeutic decisions.

  20. De novo Assembly and Analysis of the Chilean Pencil Catfish Trichomycterus areolatus Transcriptome

    PubMed Central

    Schulze, Thomas T.; Ali, Jonathan M.; Bartlett, Maggie L.; McFarland, Madalyn M.; Clement, Emalie J.; Won, Harim I.; Sanford, Austin G.; Monzingo, Elyssa B.; Martens, Matthew C.; Hemsley, Ryan M.; Kumar, Sidharta; Gouin, Nicolas; Kolok, Alan S.; Davis, Paul H.

    2016-01-01

    Trichomycterus areolatus is an endemic species of pencil catfish that inhabits the riffles and rapids of many freshwater ecosystems of Chile. Despite its unique adaptation to Chile's high gradient watersheds and therefore potential application in the investigation of ecosystem integrity and environmental contamination, relatively little is known regarding the molecular biology of this environmental sentinel. Here, we detail the assembly of the Trichomycterus areolatus transcriptome, a molecular resource for the study of this organism and its molecular response to the environment. RNA-Seq reads were obtained by next-generation sequencing with an Illumina® platform and processed using PRINSEQ. The transcriptome assembly was performed using TRINITY assembler. Transcriptome validation was performed by functional characterization with KOG, KEGG, and GO analyses. Additionally, differential expression analysis highlights sex-specific expression patterns, and a list of endocrine and oxidative stress related transcripts are included. PMID:27672404

  1. 78 FR 13566 - Energy Conservation Program for High-Intensity Discharge Lamps: Public Meeting and Availability...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    ... Prices C. Energy Use Analysis D. Life-Cycle Cost and Payback Period Analyses E. National Impact Analysis... projected energy prices and installed stock in each year. DOE calculates annual equipment expenditures by... DEPARTMENT OF ENERGY 10 CFR Part 431 [Docket No. EERE-2010-BT-STD-0043] RIN 1904-AC36 Energy...

  2. The FANTOM5 collection, a data series underpinning mammalian transcriptome atlases in diverse cell types.

    PubMed

    Kawaji, Hideya; Kasukawa, Takeya; Forrest, Alistair; Carninci, Piero; Hayashizaki, Yoshihide

    2017-08-29

    The latest project from the FANTOM consortium, an international collaborative effort initiated by RIKEN, generated atlases of transcriptomes, in particular promoters, transcribed enhancers, and long-noncoding RNAs, across a diverse set of mammalian cell types. Here, we introduce the FANTOM5 collection, bringing together data descriptors, articles and analyses of FANTOM5 data published across the Nature Research journals. Associated data are openly available for reuse by all.

  3. Transcriptome Analysis of PA Gain and Loss of Function Mutants.

    PubMed

    Marco, Francisco; Carrasco, Pedro

    2018-01-01

    Functional genomics has become a forefront methodology for plant science thanks to the widespread development of microarray technology. While technical difficulties associated with the process of obtaining raw expression data have been diminishing, allowing the appearance of tremendous amounts of transcriptome data in different databases, a common problem using "omic" technologies remains: the interpretation of these data and the inference of its biological meaning. In order to assist to this complex task, a wide variety of software tools have been developed. In this chapter we describe our current workflow of the application of some of these analyses. We have used it to compare the transcriptome of plants with differences in their polyamine levels.

  4. Resolving Relationships among the Megadiverse Butterflies and Moths with a Novel Pipeline for Anchored Phylogenomics.

    PubMed

    Breinholt, Jesse W; Earl, Chandra; Lemmon, Alan R; Lemmon, Emily Moriarty; Xiao, Lei; Kawahara, Akito Y

    2018-01-01

    The advent of next-generation sequencing technology has allowed for thecollection of large portions of the genome for phylogenetic analysis. Hybrid enrichment and transcriptomics are two techniques that leverage next-generation sequencing and have shown much promise. However, methods for processing hybrid enrichment data are still limited. We developed a pipeline for anchored hybrid enrichment (AHE) read assembly, orthology determination, contamination screening, and data processing for sequences flanking the target "probe" region. We apply this approach to study the phylogeny of butterflies and moths (Lepidoptera), a megadiverse group of more than 157,000 described species with poorly understood deep-level phylogenetic relationships. We introduce a new, 855 locus AHE kit for Lepidoptera phylogenetics and compare resulting trees to those from transcriptomes. The enrichment kit was designed from existing genomes, transcriptomes, and expressed sequence tags and was used to capture sequence data from 54 species from 23 lepidopteran families. Phylogenies estimated from AHE data were largely congruent with trees generated from transcriptomes, with strong support for relationships at all but the deepest taxonomic levels. We combine AHE and transcriptomic data to generate a new Lepidoptera phylogeny, representing 76 exemplar species in 42 families. The tree provides robust support for many relationships, including those among the seven butterfly families. The addition of AHE data to an existing transcriptomic dataset lowers node support along the Lepidoptera backbone, but firmly places taxa with AHE data on the phylogeny. Combining taxa sequenced for AHE with existing transcriptomes and genomes resulted in a tree with strong support for (Calliduloidea $+$ Gelechioidea $+$ Thyridoidea) $+$ (Papilionoidea $+$ Pyraloidea $+$ Macroheterocera). To examine the efficacy of AHE at a shallow taxonomic level, phylogenetic analyses were also conducted on a sister group representing a more recent divergence, the Saturniidae and Sphingidae. These analyses utilized sequences from the probe region and data flanking it, nearly doubled the size of the dataset; resulting trees supported new phylogenetics relationships, especially within the Saturniidae and Sphingidae (e.g., Hemarina derived in the latter). We hope that our data processing pipeline, hybrid enrichment gene set, and approach of combining AHE data with transcriptomes will be useful for the broader systematics community. © The Author(s) 2017. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Seasonal lipid dynamics of Calanus finmarchicus and C. helgolandicus in the Norwegian Sea: The role of energy for "decision making" in life-cycle events

    NASA Astrophysics Data System (ADS)

    Melle, W.; Broms, C.; Meier, S.; Mæhle, S.; Skern, R.

    2016-02-01

    Accumulation and utilization of stored lipids impact important life-cycle events of Calanus species. The con-generic copepods Calanus finmarchicus (cold-temperate) and C. helgolandicus (warm-temperate) co-occur in the Norwegian Sea, although their abundances and seasonal dynamics differ. These species also exhibit important differences regarding behaviour, fat metabolism and deposition, and diet. During one year, C. finmarchicus and C. helgolandicus were sampled at a number of stations in the Norwegian Sea in January, May and November. The samples are depth-stratified, taken down to 1500 meters depth, and have been analyzed to copepodite stages IV, V and VI males and females. The species are separated based on genetic analysis. The lipid classes (phospholipids, triacylglycerol and wax esters) composition of the different species are analysed by Folch extraction and Thin-Layer Chromatography (TLC) followed by gas chromatography analysis of fatty acids and alcohols. The species-, stage-, and depth specific lipid contents have been related to the Calanus species vertical distribution, physical environment, prey field, and invertebrate predator field. Questions that have been attempted answered: How does the lipid content affect vertical seasonal migration? How does the lipid content affect overwintering depth and duration of diapause? Can lipid content explain differences in behaviour and phenology between C. finmarchicus and C. helgolandicus? Preliminary analyses of fatty acids reveals only small differences in the diet composition of C. finmarchicus and C. helgolandicus sampled at the same location. The Calanus species are adapted to different habitats and temperature regimes. Improving our understanding of how diet and fat accumulation and utilization affects important life-cycle events will allow us to better predict how these species, and thus the herbivore community of the Norwegian Sea, will change in response to global warming.

  6. Influence of corn oil recovery on life-cycle greenhouse gas emissions of corn ethanol and corn oil biodiesel

    DOE PAGES

    Wang, Zhichao; Dunn, Jennifer B.; Han, Jeongwoo; ...

    2015-11-04

    Corn oil recovery and conversion to biodiesel has been widely adopted at corn ethanol plants recently. The US EPA has projected 2.6 billion liters of biodiesel will be produced from corn oil in 2022. Corn oil biodiesel may qualify for federal renewable identification number (RIN) credits under the Renewable Fuel Standard, as well as for low greenhouse gas (GHG) emission intensity credits under California’s Low Carbon Fuel Standard. Because multiple products [ethanol, biodiesel, and distiller’s grain with solubles (DGS)] are produced from one feedstock (corn), however, a careful co-product treatment approach is required to accurately estimate GHG intensities of bothmore » ethanol and corn oil biodiesel and to avoid double counting of benefits associated with corn oil biodiesel production. This study develops four co-product treatment methods: (1) displacement, (2) marginal, (3) hybrid allocation, and (4) process-level energy allocation. Life-cycle GHG emissions for corn oil biodiesel were more sensitive to the choice of co-product allocation method because significantly less corn oil biodiesel is produced than corn ethanol at a dry mill. Corn ethanol life-cycle GHG emissions with the displacement, marginal, and hybrid allocation approaches are similar (61, 62, and 59 g CO 2e/MJ, respectively). Although corn ethanol and DGS share upstream farming and conversion burdens in both the hybrid and process-level energy allocation methods, DGS bears a higher burden in the latter because it has lower energy content per selling price as compared to corn ethanol. As a result, with the process-level allocation approach, ethanol’s life-cycle GHG emissions are lower at 46 g CO 2e/MJ. Corn oil biodiesel life-cycle GHG emissions from the marginal, hybrid allocation, and process-level energy allocation methods were 14, 59, and 45 g CO 2e/MJ, respectively. Sensitivity analyses were conducted to investigate the influence corn oil yield, soy biodiesel, and defatted DGS displacement credits, and energy consumption for corn oil production and corn oil biodiesel production. Furthermore, this study’s results demonstrate that co-product treatment methodology strongly influences corn oil biodiesel life-cycle GHG emissions and can affect how this fuel is treated under the Renewable Fuel and Low Carbon Fuel Standards.« less

  7. Influence of corn oil recovery on life-cycle greenhouse gas emissions of corn ethanol and corn oil biodiesel.

    PubMed

    Wang, Zhichao; Dunn, Jennifer B; Han, Jeongwoo; Wang, Michael Q

    2015-01-01

    Corn oil recovery and conversion to biodiesel has been widely adopted at corn ethanol plants recently. The US EPA has projected 2.6 billion liters of biodiesel will be produced from corn oil in 2022. Corn oil biodiesel may qualify for federal renewable identification number (RIN) credits under the Renewable Fuel Standard, as well as for low greenhouse gas (GHG) emission intensity credits under California's Low Carbon Fuel Standard. Because multiple products [ethanol, biodiesel, and distiller's grain with solubles (DGS)] are produced from one feedstock (corn), however, a careful co-product treatment approach is required to accurately estimate GHG intensities of both ethanol and corn oil biodiesel and to avoid double counting of benefits associated with corn oil biodiesel production. This study develops four co-product treatment methods: (1) displacement, (2) marginal, (3) hybrid allocation, and (4) process-level energy allocation. Life-cycle GHG emissions for corn oil biodiesel were more sensitive to the choice of co-product allocation method because significantly less corn oil biodiesel is produced than corn ethanol at a dry mill. Corn ethanol life-cycle GHG emissions with the displacement, marginal, and hybrid allocation approaches are similar (61, 62, and 59 g CO2e/MJ, respectively). Although corn ethanol and DGS share upstream farming and conversion burdens in both the hybrid and process-level energy allocation methods, DGS bears a higher burden in the latter because it has lower energy content per selling price as compared to corn ethanol. As a result, with the process-level allocation approach, ethanol's life-cycle GHG emissions are lower at 46 g CO2e/MJ. Corn oil biodiesel life-cycle GHG emissions from the marginal, hybrid allocation, and process-level energy allocation methods were 14, 59, and 45 g CO2e/MJ, respectively. Sensitivity analyses were conducted to investigate the influence corn oil yield, soy biodiesel, and defatted DGS displacement credits, and energy consumption for corn oil production and corn oil biodiesel production. This study's results demonstrate that co-product treatment methodology strongly influences corn oil biodiesel life-cycle GHG emissions and can affect how this fuel is treated under the Renewable Fuel and Low Carbon Fuel Standards.

  8. Influence of corn oil recovery on life-cycle greenhouse gas emissions of corn ethanol and corn oil biodiesel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhichao; Dunn, Jennifer B.; Han, Jeongwoo

    Corn oil recovery and conversion to biodiesel has been widely adopted at corn ethanol plants recently. The US EPA has projected 2.6 billion liters of biodiesel will be produced from corn oil in 2022. Corn oil biodiesel may qualify for federal renewable identification number (RIN) credits under the Renewable Fuel Standard, as well as for low greenhouse gas (GHG) emission intensity credits under California’s Low Carbon Fuel Standard. Because multiple products [ethanol, biodiesel, and distiller’s grain with solubles (DGS)] are produced from one feedstock (corn), however, a careful co-product treatment approach is required to accurately estimate GHG intensities of bothmore » ethanol and corn oil biodiesel and to avoid double counting of benefits associated with corn oil biodiesel production. This study develops four co-product treatment methods: (1) displacement, (2) marginal, (3) hybrid allocation, and (4) process-level energy allocation. Life-cycle GHG emissions for corn oil biodiesel were more sensitive to the choice of co-product allocation method because significantly less corn oil biodiesel is produced than corn ethanol at a dry mill. Corn ethanol life-cycle GHG emissions with the displacement, marginal, and hybrid allocation approaches are similar (61, 62, and 59 g CO 2e/MJ, respectively). Although corn ethanol and DGS share upstream farming and conversion burdens in both the hybrid and process-level energy allocation methods, DGS bears a higher burden in the latter because it has lower energy content per selling price as compared to corn ethanol. As a result, with the process-level allocation approach, ethanol’s life-cycle GHG emissions are lower at 46 g CO 2e/MJ. Corn oil biodiesel life-cycle GHG emissions from the marginal, hybrid allocation, and process-level energy allocation methods were 14, 59, and 45 g CO 2e/MJ, respectively. Sensitivity analyses were conducted to investigate the influence corn oil yield, soy biodiesel, and defatted DGS displacement credits, and energy consumption for corn oil production and corn oil biodiesel production. Furthermore, this study’s results demonstrate that co-product treatment methodology strongly influences corn oil biodiesel life-cycle GHG emissions and can affect how this fuel is treated under the Renewable Fuel and Low Carbon Fuel Standards.« less

  9. Comparative Genomics and Transcriptomics Analyses Reveal Divergent Lifestyle Features of Nematode Endoparasitic Fungus Hirsutella minnesotensis

    PubMed Central

    Lai, Yiling; Liu, Keke; Zhang, Xinyu; Zhang, Xiaoling; Li, Kuan; Wang, Niuniu; Shu, Chi; Wu, Yunpeng; Wang, Chengshu; Bushley, Kathryn E.; Xiang, Meichun; Liu, Xingzhong

    2014-01-01

    Hirsutella minnesotensis [Ophiocordycipitaceae (Hypocreales, Ascomycota)] is a dominant endoparasitic fungus by using conidia that adhere to and penetrate the secondary stage juveniles of soybean cyst nematode. Its genome was de novo sequenced and compared with five entomopathogenic fungi in the Hypocreales and three nematode-trapping fungi in the Orbiliales (Ascomycota). The genome of H. minnesotensis is 51.4 Mb and encodes 12,702 genes enriched with transposable elements up to 32%. Phylogenomic analysis revealed that H. minnesotensis was diverged from entomopathogenic fungi in Hypocreales. Genome of H. minnesotensis is similar to those of entomopathogenic fungi to have fewer genes encoding lectins for adhesion and glycoside hydrolases for cellulose degradation, but is different from those of nematode-trapping fungi to possess more genes for protein degradation, signal transduction, and secondary metabolism. Those results indicate that H. minnesotensis has evolved different mechanism for nematode endoparasitism compared with nematode-trapping fungi. Transcriptomics analyses for the time-scale parasitism revealed the upregulations of lectins, secreted proteases and the genes for biosynthesis of secondary metabolites that could be putatively involved in host surface adhesion, cuticle degradation, and host manipulation. Genome and transcriptome analyses provided comprehensive understanding of the evolution and lifestyle of nematode endoparasitism. PMID:25359922

  10. Proteomic and transcriptomic analyses to explain the pleiotropic effects of Ankaferd blood stopper

    PubMed Central

    Simsek, Cem; Selek, Sebnem; Koca, Meltem; Haznedaroglu, Ibrahim Celal

    2017-01-01

    Ankaferd blood stopper is a standardized mixture of the plants Thymus vulgaris, Glycyrrhiza glabra, Vitis vinifera, Alpinia officinarum, and Urtica dioica and has been used as a topical hemostatic agent and with its clinical application established in randomized controlled trials and case reports. Ankaferd has been successfully used in gastrointestinal endobronchial mucosal and cutaneous bleedings and also in abdominal, thoracic, dental and oropharyngeal, and pelvic surgeries. Ankaferd’s hemostatic action is thought to form a protein complex with coagulation factors that facilitate adhesion of blood components. Besides its hemostatic action, Ankaferd has demonstrated pleiotropic effects, including anti-neoplastic and anti-microbial activities and tissue-healing properties; the underlying mechanisms for these have not been well studied. Ankaferd’s individual components were determined by proteomic and chemical analyses. Ankaferd also augments transcription of some transcription factors which is shown with transcriptomic analysis. The independent effects of these ingredients and augmented transcription factors are not known precisely. Here, we review what is known of Ankaferd blood stopper components from chemical, proteomic, and transcriptomic analyses and propose that individual components can explain some pleiotropic effects of Ankaferd. Certainly more research is needed focusing on individual ingredients of Ankaferd to elucidate their precise and effects. PMID:28839937

  11. A method for obtaining RNA from Hemileia vastatrix appressoria produced in planta, suitable for transcriptomic analyses.

    PubMed

    Loureiro, Andreia; Azinheira, Helena Gil; Silva, Maria do Céu; Talhinhas, Pedro

    2015-11-01

    Appressoria are the first infection structures developed by rust fungi and require specific topographic signals from the host for their differentiation. The ease in obtaining appressoria in vitro for these biotrophic fungi led to studies concerning gene expression and gene discovery at appressorial level, avoiding the need to distinguish plant and fungal transcripts. However, in some pathosystems, it was observed that gene expression in appressoria seems to be influenced by host-derived signals, suggesting that transcriptomic analyses performed from in planta differentiated appressoria would be potentially more informative than those from in vitro differentiated appressoria. Nevertheless analysing appressorial RNA obtained from in planta samples is often hampered by an excessive dilution of fungal RNA within plant RNA, besides uncertainty regarding the fungal or plant origin of RNA from highly conserved genes. To circumvent these difficulties, we have recovered Hemileia vastatrix appressoria from Arabica coffee leaf surface using a film of nitrocellulose dissolved in butyl and ethyl acetates (nail polish), and extracted fungal RNA from the polish peel. RNA thus obtained is of good quality and usable for cDNA synthesis and transcriptomic (quantitative PCR) studies. This method could provide the means to investigate specific host-induced appressoria-related fungal pathogenicity factors. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  12. 10 CFR 435.8 - Life-cycle costing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Life-cycle costing. 435.8 Section 435.8 Energy DEPARTMENT...-cycle costing. Each Federal agency shall determine life-cycle cost-effectiveness by using the procedures..., including lower life-cycle costs, positive net savings, savings-to-investment ratio that is estimated to be...

  13. 10 CFR 435.8 - Life-cycle costing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Life-cycle costing. 435.8 Section 435.8 Energy DEPARTMENT...-cycle costing. Each Federal agency shall determine life-cycle cost-effectiveness by using the procedures..., including lower life-cycle costs, positive net savings, savings-to-investment ratio that is estimated to be...

  14. 10 CFR 435.8 - Life-cycle costing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Life-cycle costing. 435.8 Section 435.8 Energy DEPARTMENT...-cycle costing. Each Federal agency shall determine life-cycle cost-effectiveness by using the procedures..., including lower life-cycle costs, positive net savings, savings-to-investment ratio that is estimated to be...

  15. 77 FR 38766 - Proposed Information Collection; Comment Request; International Client Life-Cycle Multi-Purpose...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... Request; International Client Life-Cycle Multi-Purpose Forms AGENCY: International Trade Administration... aspects of an international organization's life-cycle with CS. CS is mandated by Congress to help U.S... trade events to U.S. organizations. The International Client Life-cycle Multi-Purpose Forms, previously...

  16. 10 CFR 435.8 - Life-cycle costing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Life-cycle costing. 435.8 Section 435.8 Energy DEPARTMENT... BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise Residential Buildings. § 435.8 Life-cycle costing. Each Federal agency shall determine life-cycle cost-effectiveness by using the procedures...

  17. 77 FR 38582 - Proposed Information Collection; Comment Request; Domestic Client Life-Cycle Multi-Purpose Forms

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ... Request; Domestic Client Life-Cycle Multi-Purpose Forms AGENCY: International Trade Administration. ACTION... life-cycle with CS. CS is mandated by Congress to help U.S. organizations, particularly small and... Client Life-cycle Multi-Purpose Forms, previously titled Export Information Services Order Forms, are...

  18. 10 CFR 435.8 - Life-cycle costing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Life-cycle costing. 435.8 Section 435.8 Energy DEPARTMENT... BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise Residential Buildings. § 435.8 Life-cycle costing. Each Federal agency shall determine life-cycle cost-effectiveness by using the procedures...

  19. Alternative Fuels Data Center: Lifecycle Energy Balance

    Science.gov Websites

    Energy Balance to someone by E-mail Share Alternative Fuels Data Center: Lifecycle Energy Balance on Facebook Tweet about Alternative Fuels Data Center: Lifecycle Energy Balance on Twitter Bookmark Alternative Fuels Data Center: Lifecycle Energy Balance on Google Bookmark Alternative Fuels Data Center

  20. Cybersecurity and the Medical Device Product Development Lifecycle.

    PubMed

    Jones, Richard W; Katzis, Konstantinos

    2017-01-01

    Protecting connected medical devices from evolving cyber related threats, requires a continuous lifecycle approach whereby cybersecurity is integrated within the product development lifecycle and both complements and re-enforces the safety risk management processes therein. This contribution reviews the guidance relating to medical device cybersecurity within the product development lifecycle.

  1. The exposome concept in a human nutrigenomics study: evaluating the impact of exposure to a complex mixture of phytochemicals using transcriptomics signatures.

    PubMed

    van Breda, Simone G J; Wilms, Lonneke C; Gaj, Stan; Jennen, Danyel G J; Briedé, Jacob J; Kleinjans, Jos C S; de Kok, Theo M C M

    2015-11-01

    The application of transcriptome analyses in molecular epidemiology studies has become a promising tool in order to evaluate the impact of environmental exposures. These analyses have a great value in establishing the exposome, the totality of human exposures, both by identifying the chemical nature of the exposures and the induced molecular responses. Transcriptomic signatures can be regarded as biomarker of exposure as well as markers of effect which reflect the interaction between individual genetic background and exposure levels. However, the biological interpretation of modulated gene expression profiles is a challenging task and translating affected molecular pathways into risk assessment, for instance in terms of cancer promoting or disease preventing responses, is a far from standardised process. Here, we describe the in-depth analyses of the gene expression responses in a human dietary intervention in which the interaction between genotype and exposure to a blueberry-apple juice containing a complex mixture of phytochemicals is investigated. We also describe how data on differences in genetic background combined with different effect markers can provide a better understanding of gene-environment interactions. Pathway analyses of differentially expressed genes in combination with gene were used to identify complex but strong changes in several biological processes like immune response, cell adhesion, lipid metabolism and apoptosis. These observed changes may lead to upgraded growth control, induced immunity, reduced platelet aggregation and activation, diminished production of reactive oxidative species by platelets, blood glucose homeostasis, regulation of blood lipid levels and increased apoptosis. Our findings demonstrate that applying transcriptomics to well-controlled human dietary intervention studies can provide insight into mechanistic pathways involved in disease prevention by dietary factors. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Cardiac transcriptome profiling of diabetic Akita mice using microarray and next generation sequencing

    PubMed Central

    Kesherwani, Varun; Shahshahan, Hamid R.

    2017-01-01

    Although diabetes mellitus (DM) causes cardiomyopathy and exacerbates heart failure, the underlying molecular mechanisms for diabetic cardiomyopathy/heart failure are poorly understood. Insulin2 mutant (Ins2+/-) Akita is a mouse model of T1DM, which manifests cardiac dysfunction. However, molecular changes at cardiac transcriptome level that lead to cardiomyopathy remain unclear. To understand the molecular changes in the heart of diabetic Akita mice, we profiled cardiac transcriptome of Ins2+/- Akita and Ins2+/+ control mice using next generation sequencing (NGS) and microarray, and determined the implications of differentially expressed genes on various heart failure signaling pathways using Ingenuity pathway (IPA) analysis. First, we validated hyperglycemia, increased cardiac fibrosis, and cardiac dysfunction in twelve-week male diabetic Akita. Then, we analyzed the transcriptome levels in the heart. NGS analyses on Akita heart revealed 137 differentially expressed transcripts, where Bone Morphogenic Protein-10 (BMP10) was the most upregulated and hairy and enhancer of split-related (HELT) was the most downregulated gene. Moreover, twelve long non-coding RNAs (lncRNAs) were upregulated. The microarray analyses on Akita heart showed 351 differentially expressed transcripts, where vomeronasal-1 receptor-180 (Vmn1r180) was the most upregulated and WD Repeat Domain 83 Opposite Strand (WDR83OS) was the most downregulated gene. Further, miR-101c and H19 lncRNA were upregulated but Neat1 lncRNA was downregulated in Akita heart. Eleven common genes were upregulated in Akita heart in both NGS and microarray analyses. IPA analyses revealed the role of these differentially expressed genes in key signaling pathways involved in diabetic cardiomyopathy. Our results provide a platform to initiate focused future studies by targeting these genes and/or non-coding RNAs, which are differentially expressed in Akita hearts and are involved in diabetic cardiomyopathy. PMID:28837672

  3. Transcriptome alteration in Phytophthora infestans in response to phenazine-1-carboxylic acid production by Pseudomonas fluorescens strain LBUM223.

    PubMed

    Roquigny, Roxane; Novinscak, Amy; Arseneault, Tanya; Joly, David L; Filion, Martin

    2018-06-19

    Phytophthora infestans is responsible for late blight, one of the most important potato diseases. Phenazine-1-carboxylic acid (PCA)-producing Pseudomonas fluorescens strain LBUM223 isolated in our laboratory shows biocontrol potential against various plant pathogens. To characterize the effect of LBUM223 on the transcriptome of P. infestans, we conducted an in vitro time-course study. Confrontational assay was performed using P. infestans inoculated alone (control) or with LBUM223, its phzC- isogenic mutant (not producing PCA), or exogenically applied PCA. Destructive sampling was performed at 6, 9 and 12 days and the transcriptome of P. infestans was analysed using RNA-Seq. The expression of a subset of differentially expressed genes was validated by RT-qPCR. Both LBUM223 and exogenically applied PCA significantly repressed P. infestans' growth at all times. Compared to the control treatment, transcriptomic analyses showed that the percentages of all P. infestans' genes significantly altered by LBUM223 and exogenically applied PCA increased as time progressed, from 50 to 61% and from to 32 to 46%, respectively. When applying an absolute cut-off value of 3 fold change or more for all three harvesting times, 207 genes were found significantly differentially expressed by PCA, either produced by LBUM223 or exogenically applied. Gene ontology analysis revealed that both treatments altered the expression of key functional genes involved in major functions like phosphorylation mechanisms, transmembrane transport and oxidoreduction activities. Interestingly, even though no host plant tissue was present in the in vitro system, PCA also led to the overexpression of several genes encoding effectors. The mutant only slightly repressed P. infestans' growth and barely altered its transcriptome. Our study suggests that PCA is involved in P. infestans' growth repression and led to important transcriptomic changes by both up- and down-regulating gene expression in P. infestans over time. Different metabolic functions were altered and many effectors were found to be upregulated, suggesting their implication in biocontrol.

  4. Transcriptomic Studies of Malaria: a Paradigm for Investigation of Systemic Host-Pathogen Interactions

    PubMed Central

    2018-01-01

    SUMMARY Transcriptomics, the analysis of genome-wide RNA expression, is a common approach to investigate host and pathogen processes in infectious diseases. Technical and bioinformatic advances have permitted increasingly thorough analyses of the association of RNA expression with fundamental biology, immunity, pathogenesis, diagnosis, and prognosis. Transcriptomic approaches can now be used to realize a previously unattainable goal, the simultaneous study of RNA expression in host and pathogen, in order to better understand their interactions. This exciting prospect is not without challenges, especially as focus moves from interactions in vitro under tightly controlled conditions to tissue- and systems-level interactions in animal models and natural and experimental infections in humans. Here we review the contribution of transcriptomic studies to the understanding of malaria, a parasitic disease which has exerted a major influence on human evolution and continues to cause a huge global burden of disease. We consider malaria a paradigm for the transcriptomic assessment of systemic host-pathogen interactions in humans, because much of the direct host-pathogen interaction occurs within the blood, a readily sampled compartment of the body. We illustrate lessons learned from transcriptomic studies of malaria and how these lessons may guide studies of host-pathogen interactions in other infectious diseases. We propose that the potential of transcriptomic studies to improve the understanding of malaria as a disease remains partly untapped because of limitations in study design rather than as a consequence of technological constraints. Further advances will require the integration of transcriptomic data with analytical approaches from other scientific disciplines, including epidemiology and mathematical modeling. PMID:29695497

  5. Transcriptomic Studies of Malaria: a Paradigm for Investigation of Systemic Host-Pathogen Interactions.

    PubMed

    Lee, Hyun Jae; Georgiadou, Athina; Otto, Thomas D; Levin, Michael; Coin, Lachlan J; Conway, David J; Cunnington, Aubrey J

    2018-06-01

    Transcriptomics, the analysis of genome-wide RNA expression, is a common approach to investigate host and pathogen processes in infectious diseases. Technical and bioinformatic advances have permitted increasingly thorough analyses of the association of RNA expression with fundamental biology, immunity, pathogenesis, diagnosis, and prognosis. Transcriptomic approaches can now be used to realize a previously unattainable goal, the simultaneous study of RNA expression in host and pathogen, in order to better understand their interactions. This exciting prospect is not without challenges, especially as focus moves from interactions in vitro under tightly controlled conditions to tissue- and systems-level interactions in animal models and natural and experimental infections in humans. Here we review the contribution of transcriptomic studies to the understanding of malaria, a parasitic disease which has exerted a major influence on human evolution and continues to cause a huge global burden of disease. We consider malaria a paradigm for the transcriptomic assessment of systemic host-pathogen interactions in humans, because much of the direct host-pathogen interaction occurs within the blood, a readily sampled compartment of the body. We illustrate lessons learned from transcriptomic studies of malaria and how these lessons may guide studies of host-pathogen interactions in other infectious diseases. We propose that the potential of transcriptomic studies to improve the understanding of malaria as a disease remains partly untapped because of limitations in study design rather than as a consequence of technological constraints. Further advances will require the integration of transcriptomic data with analytical approaches from other scientific disciplines, including epidemiology and mathematical modeling. Copyright © 2018 Lee et al.

  6. Mitigation of formalin-induced RNA damage to advance whole transcriptomic analyses of archival tissues

    EPA Science Inventory

    Leveraging the use of biorepository samples for genomic analyses holds huge implications for human health, including applications in pathway identification, biomarker discovery, and tumor profiling for precision medicine. However, there is a need for better ways to reduce nucleic...

  7. Immunome differences between porcine ileal and jejunal Peyer's patches revealed by global transcriptome sequencing of gut-associated lymphoid tissues.

    PubMed

    Maroilley, T; Berri, M; Lemonnier, G; Esquerré, D; Chevaleyre, C; Mélo, S; Meurens, F; Coville, J L; Leplat, J J; Rau, A; Bed'hom, B; Vincent-Naulleau, S; Mercat, M J; Billon, Y; Lepage, P; Rogel-Gaillard, C; Estellé, J

    2018-06-13

    The epithelium of the intestinal mucosa and the gut-associated lymphoid tissues (GALT) constitute an essential physical and immunological barrier against pathogens. In order to study the specificities of the GALT transcriptome in pigs, we compared the transcriptome profiles of jejunal and ileal Peyer's patches (PPs), mesenteric lymph nodes (MLNs) and peripheral blood (PB) of four male piglets by RNA-Seq. We identified 1,103 differentially expressed (DE) genes between ileal PPs (IPPs) and jejunal PPs (JPPs), and six times more DE genes between PPs and MLNs. The master regulator genes FOXP3, GATA3, STAT4, TBX21 and RORC were less expressed in IPPs compared to JPPs, whereas the transcription factor BCL6 was found more expressed in IPPs. In comparison between IPPs and JPPs, our analyses revealed predominant differential expression related to the differentiation of T cells into Th1, Th2, Th17 and iTreg in JPPs. Our results were consistent with previous reports regarding a higher T/B cells ratio in JPPs compared to IPPs. We found antisense transcription for respectively 24%, 22% and 14% of the transcripts detected in MLNs, PPs and PB, and significant positive correlations between PB and GALT transcriptomes. Allele-specific expression analyses revealed both shared and tissue-specific cis-genetic control of gene expression.

  8. Deep, Staged Transcriptomic Resources for the Novel Coleopteran Models Atrachya menetriesi and Callosobruchus maculatus

    PubMed Central

    Conrads, Kai H.; Roth, Siegfried; Lynch, Jeremy A.

    2016-01-01

    Despite recent efforts to sample broadly across metazoan and insect diversity, current sequence resources in the Coleoptera do not adequately describe the diversity of the clade. Here we present deep, staged transcriptomic data for two coleopteran species, Atrachya menetriesi (Faldermann 1835) and Callosobruchus maculatus (Fabricius 1775). Our sampling covered key stages in ovary and early embryonic development in each species. We utilized this data to build combined assemblies for each species which were then analysed in detail. The combined A. menetriesi assembly consists of 228,096 contigs with an N50 of 1,598 bp, while the combined C. maculatus assembly consists of 128,837 contigs with an N50 of 2,263 bp. For these assemblies, 34.6% and 32.4% of contigs were identified using Blast2GO, and 97% and 98.3% of the BUSCO set of metazoan orthologs were present, respectively. We also carried out manual annotation of developmental signalling pathways and found that nearly all expected genes were present in each transcriptome. Our analyses show that both transcriptomes are of high quality. Lastly, we performed read mapping utilising our timed, stage specific RNA samples to identify differentially expressed contigs. The resources presented here will provide a firm basis for a variety of experimentation, both in developmental biology and in comparative genomic studies. PMID:27907180

  9. Transcriptome Bioinformatical Analysis of Vertebrate Stages of Schistosoma japonicum Reveals Alternative Splicing Events

    PubMed Central

    Wang, Xinye; Xu, Xindong; Lu, Xingyu; Zhang, Yuanbin; Pan, Weiqing

    2015-01-01

    Alternative splicing is a molecular process that contributes greatly to the diversification of proteome and to gene functions. Understanding the mechanisms of stage-specific alternative splicing can provide a better understanding of the development of eukaryotes and the functions of different genes. Schistosoma japonicum is an infectious blood-dwelling trematode with a complex lifecycle that causes the tropical disease schistosomiasis. In this study, we analyzed the transcriptome of Schistosoma japonicum to discover alternative splicing events in this parasite, by applying RNA-seq to cDNA library of adults and schistosomula. Results were validated by RT-PCR and sequencing. We found 11,623 alternative splicing events among 7,099 protein encoding genes and average proportion of alternative splicing events per gene was 42.14%. We showed that exon skip is the most common type of alternative splicing events as found in high eukaryotes, whereas intron retention is the least common alternative splicing type. According to intron boundary analysis, the parasite possesses same intron boundaries as other organisms, namely the classic “GT-AG” rule. And in alternative spliced introns or exons, this rule is less strict. And we have attempted to detect alternative splicing events in genes encoding proteins with signal peptides and transmembrane helices, suggesting that alternative splicing could change subcellular locations of specific gene products. Our results indicate that alternative splicing is prevalent in this parasitic worm, and that the worm is close to its hosts. The revealed secretome involved in alternative splicing implies new perspective into understanding interaction between the parasite and its host. PMID:26407301

  10. Updated estimation of energy efficiencies of U.S. petroleum refineries.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palou-Rivera, I.; Wang, M. Q.

    2010-12-08

    Evaluation of life-cycle (or well-to-wheels, WTW) energy and emission impacts of vehicle/fuel systems requires energy use (or energy efficiencies) of energy processing or conversion activities. In most such studies, petroleum fuels are included. Thus, determination of energy efficiencies of petroleum refineries becomes a necessary step for life-cycle analyses of vehicle/fuel systems. Petroleum refinery energy efficiencies can then be used to determine the total amount of process energy use for refinery operation. Furthermore, since refineries produce multiple products, allocation of energy use and emissions associated with petroleum refineries to various petroleum products is needed for WTW analysis of individual fuels suchmore » as gasoline and diesel. In particular, GREET, the life-cycle model developed at Argonne National Laboratory with DOE sponsorship, compares energy use and emissions of various transportation fuels including gasoline and diesel. Energy use in petroleum refineries is key components of well-to-pump (WTP) energy use and emissions of gasoline and diesel. In GREET, petroleum refinery overall energy efficiencies are used to determine petroleum product specific energy efficiencies. Argonne has developed petroleum refining efficiencies from LP simulations of petroleum refineries and EIA survey data of petroleum refineries up to 2006 (see Wang, 2008). This memo documents Argonne's most recent update of petroleum refining efficiencies.« less

  11. Biofuels that cause land-use change may have much larger non-GHG air quality emissions than fossil fuels.

    PubMed

    Tsao, C-C; Campbell, J E; Mena-Carrasco, M; Spak, S N; Carmichael, G R; Chen, Y

    2012-10-02

    Although biofuels present an opportunity for renewable energy production, significant land-use change resulting from biofuels may contribute to negative environmental, economic, and social impacts. Here we examined non-GHG air pollution impacts from both indirect and direct land-use change caused by the anticipated expansion of Brazilian biofuels production. We synthesized information on fuel loading, combustion completeness, and emission factors, and developed a spatially explicit approach with uncertainty and sensitivity analyses to estimate air pollution emissions. The land-use change emissions, ranging from 6.7 to 26.4 Tg PM(2.5), were dominated by deforestation burning practices associated with indirect land-use change. We also found Brazilian sugar cane ethanol and soybean biodiesel including direct and indirect land-use change effects have much larger life-cycle emissions than conventional fossil fuels for six regulated air pollutants. The emissions magnitude and uncertainty decrease with longer life-cycle integration periods. Results are conditional to the single LUC scenario employed here. After LUC uncertainty, the largest source of uncertainty in LUC emissions stems from the combustion completeness during deforestation. While current biofuels cropland burning policies in Brazil seek to reduce life-cycle emissions, these policies do not address the large emissions caused by indirect land-use change.

  12. The Opiliones tree of life: shedding light on harvestmen relationships through transcriptomics.

    PubMed

    Fernández, Rosa; Sharma, Prashant P; Tourinho, Ana Lúcia; Giribet, Gonzalo

    2017-02-22

    Opiliones are iconic arachnids with a Palaeozoic origin and a diversity that reflects ancient biogeographic patterns dating back at least to the times of Pangea. Owing to interest in harvestman diversity, evolution and biogeography, their relationships have been thoroughly studied using morphology and PCR-based Sanger approaches to infer their systematic relationships. More recently, two studies utilized transcriptomics-based phylogenomics to explore their basal relationships and diversification, but sampling was limiting for understanding deep evolutionary patterns, as they lacked good taxon representation at the family level. Here, we analysed a set of the 14 existing transcriptomes with 40 additional ones generated for this study, representing approximately 80% of the extant familial diversity in Opiliones. Our phylogenetic analyses, including a set of data matrices with different gene occupancy and evolutionary rates, and using a multitude of methods correcting for a diversity of factors affecting phylogenomic data matrices, provide a robust and stable Opiliones tree of life, where most families and higher taxa are precisely placed. Our dating analyses using alternative calibration points, methods and analytical parameters provide well-resolved old divergences, consistent with ancient regionalization in Pangea in some groups, and Pangean vicariance in others. The integration of state-of-the-art molecular techniques and analyses, together with the broadest taxonomic sampling to date presented in a phylogenomic study of harvestmen, provide new insights into harvestmen interrelationships, as well as an overview of the general biogeographic patterns of this ancient arthropod group. © 2017 The Author(s).

  13. The Opiliones tree of life: shedding light on harvestmen relationships through transcriptomics

    PubMed Central

    Sharma, Prashant P.; Tourinho, Ana Lúcia

    2017-01-01

    Opiliones are iconic arachnids with a Palaeozoic origin and a diversity that reflects ancient biogeographic patterns dating back at least to the times of Pangea. Owing to interest in harvestman diversity, evolution and biogeography, their relationships have been thoroughly studied using morphology and PCR-based Sanger approaches to infer their systematic relationships. More recently, two studies utilized transcriptomics-based phylogenomics to explore their basal relationships and diversification, but sampling was limiting for understanding deep evolutionary patterns, as they lacked good taxon representation at the family level. Here, we analysed a set of the 14 existing transcriptomes with 40 additional ones generated for this study, representing approximately 80% of the extant familial diversity in Opiliones. Our phylogenetic analyses, including a set of data matrices with different gene occupancy and evolutionary rates, and using a multitude of methods correcting for a diversity of factors affecting phylogenomic data matrices, provide a robust and stable Opiliones tree of life, where most families and higher taxa are precisely placed. Our dating analyses using alternative calibration points, methods and analytical parameters provide well-resolved old divergences, consistent with ancient regionalization in Pangea in some groups, and Pangean vicariance in others. The integration of state-of-the-art molecular techniques and analyses, together with the broadest taxonomic sampling to date presented in a phylogenomic study of harvestmen, provide new insights into harvestmen interrelationships, as well as an overview of the general biogeographic patterns of this ancient arthropod group. PMID:28228511

  14. Tracing the temporal-spatial transcriptome landscapes of the human fetal digestive tract using single-cell RNA-sequencing.

    PubMed

    Gao, Shuai; Yan, Liying; Wang, Rui; Li, Jingyun; Yong, Jun; Zhou, Xin; Wei, Yuan; Wu, Xinglong; Wang, Xiaoye; Fan, Xiaoying; Yan, Jie; Zhi, Xu; Gao, Yun; Guo, Hongshan; Jin, Xiao; Wang, Wendong; Mao, Yunuo; Wang, Fengchao; Wen, Lu; Fu, Wei; Ge, Hao; Qiao, Jie; Tang, Fuchou

    2018-06-01

    The development of the digestive tract is critical for proper food digestion and nutrient absorption. Here, we analyse the main organs of the digestive tract, including the oesophagus, stomach, small intestine and large intestine, from human embryos between 6 and 25 weeks of gestation as well as the large intestine from adults using single-cell RNA-seq analyses. In total, 5,227 individual cells are analysed and 40 cell types clearly identified. Their crucial biological features, including developmental processes, signalling pathways, cell cycle, nutrient digestion and absorption metabolism, and transcription factor networks, are systematically revealed. Moreover, the differentiation and maturation processes of the large intestine are thoroughly investigated by comparing the corresponding transcriptome profiles between embryonic and adult stages. Our work offers a rich resource for investigating the gene regulation networks of the human fetal digestive tract and adult large intestine at single-cell resolution.

  15. 32 CFR Appendix to Part 162 - Reporting Procedures

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... generated. e. Projected Life-Cycle Savings. For each PIF project provide the estimated amount of savings the project is projected to earn over the project's economic life. f. Projected Life-Cycle Cost Avoidance. For... Projected Life-Cycle Savings. e. Total Projected Life-Cycle Cost Avoidance. 3. CSI. Each DoD Component that...

  16. 10 CFR 433.8 - Life-cycle costing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Life-cycle costing. 433.8 Section 433.8 Energy DEPARTMENT... HIGH-RISE RESIDENTIAL BUILDINGS § 433.8 Life-cycle costing. Each Federal agency shall determine life... choose to use any of four methods, including lower life-cycle costs, positive net savings, savings-to...

  17. 10 CFR 436.42 - Evaluation of Life-Cycle Cost Effectiveness.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Evaluation of Life-Cycle Cost Effectiveness. 436.42... PROGRAMS Agency Procurement of Energy Efficient Products § 436.42 Evaluation of Life-Cycle Cost...) ENERGY STAR qualified and FEMP designated products may be assumed to be life-cycle cost-effective. (b) In...

  18. 10 CFR 433.8 - Life-cycle costing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Life-cycle costing. 433.8 Section 433.8 Energy DEPARTMENT... HIGH-RISE RESIDENTIAL BUILDINGS § 433.8 Life-cycle costing. Each Federal agency shall determine life... choose to use any of four methods, including lower life-cycle costs, positive net savings, savings-to...

  19. 10 CFR 436.42 - Evaluation of Life-Cycle Cost Effectiveness.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Evaluation of Life-Cycle Cost Effectiveness. 436.42... PROGRAMS Agency Procurement of Energy Efficient Products § 436.42 Evaluation of Life-Cycle Cost...) ENERGY STAR qualified and FEMP designated products may be assumed to be life-cycle cost-effective. (b) In...

  20. 10 CFR 436.42 - Evaluation of Life-Cycle Cost Effectiveness.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Evaluation of Life-Cycle Cost Effectiveness. 436.42... PROGRAMS Agency Procurement of Energy Efficient Products § 436.42 Evaluation of Life-Cycle Cost...) ENERGY STAR qualified and FEMP designated products may be assumed to be life-cycle cost-effective. (b) In...

  1. 10 CFR 433.8 - Life-cycle costing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Life-cycle costing. 433.8 Section 433.8 Energy DEPARTMENT... HIGH-RISE RESIDENTIAL BUILDINGS § 433.8 Life-cycle costing. Each Federal agency shall determine life... choose to use any of four methods, including lower life-cycle costs, positive net savings, savings-to...

  2. 10 CFR 433.8 - Life-cycle costing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Life-cycle costing. 433.8 Section 433.8 Energy DEPARTMENT... FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.8 Life-cycle costing. Each Federal agency shall determine life-cycle cost-effectiveness by using the procedures set out in subpart A...

  3. 10 CFR 433.8 - Life-cycle costing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Life-cycle costing. 433.8 Section 433.8 Energy DEPARTMENT... FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.8 Life-cycle costing. Each Federal agency shall determine life-cycle cost-effectiveness by using the procedures set out in subpart A...

  4. 10 CFR 436.42 - Evaluation of Life-Cycle Cost Effectiveness.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Evaluation of Life-Cycle Cost Effectiveness. 436.42... PROGRAMS Agency Procurement of Energy Efficient Products § 436.42 Evaluation of Life-Cycle Cost...) ENERGY STAR qualified and FEMP designated products may be assumed to be life-cycle cost-effective. (b) In...

  5. 10 CFR 436.42 - Evaluation of Life-Cycle Cost Effectiveness.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the life-cycle cost analysis method in part 436, subpart A, of title 10 of the Code of Federal... 10 Energy 3 2011-01-01 2011-01-01 false Evaluation of Life-Cycle Cost Effectiveness. 436.42... PROGRAMS Agency Procurement of Energy Efficient Products § 436.42 Evaluation of Life-Cycle Cost...

  6. A life-cycle description of underground coal mining

    NASA Technical Reports Server (NTRS)

    Lavin, M. L.; Borden, C. S.; Duda, J. R.

    1978-01-01

    An initial effort to relate the major technological and economic variables which impact conventional underground coal mining systems, in order to help identify promising areas for advanced mining technology is described. The point of departure is a series of investment analyses published by the United States Bureau of Mines, which provide both the analytical framework and guidance on a choice of variables.

  7. Molecular ecology of hemlock woolly adelgid, its hosts, and its natural enemies

    Treesearch

    Nathan P. Havill; Michael E. Montgomery; Robert Foottit

    2008-01-01

    Molecular analyses show that the hemlock woolly adelgid (HWA) has distinct native lineages in western North America, Japan, China, and Taiwan, while in eastern North America, HWA is not native and was introduced from Japan some time before 1951 (Havill et al. 2006 and 2007). The typical holocyclic lifecycle in the family Adelgidae involves primary hosts in the genus...

  8. Environmental effects of interstate power trading on electricity consumption mixes.

    PubMed

    Marriott, Joe; Matthews, H Scott

    2005-11-15

    Although many studies of electricity generation use national or state average generation mix assumptions, in reality a great deal of electricity is transferred between states with very different mixes of fossil and renewable fuels, and using the average numbers could result in incorrect conclusions in these studies. We create electricity consumption profiles for each state and for key industry sectors in the U.S. based on existing state generation profiles, net state power imports, industry presence by state, and an optimization model to estimate interstate electricity trading. Using these "consumption mixes" can provide a more accurate assessment of electricity use in life-cycle analyses. We conclude that the published generation mixes for states that import power are misleading, since the power consumed in-state has a different makeup than the power that was generated. And, while most industry sectors have consumption mixes similar to the U.S. average, some of the most critical sectors of the economy--such as resource extraction and material processing sectors--are very different. This result does validate the average mix assumption made in many environmental assessments, but it is important to accurately quantify the generation methods for electricity used when doing life-cycle analyses.

  9. Mapping the structure of the world economy.

    PubMed

    Lenzen, Manfred; Kanemoto, Keiichiro; Moran, Daniel; Geschke, Arne

    2012-08-07

    We have developed a new series of environmentally extended multi-region input-output (MRIO) tables with applications in carbon, water, and ecological footprinting, and Life-Cycle Assessment, as well as trend and key driver analyses. Such applications have recently been at the forefront of global policy debates, such as about assigning responsibility for emissions embodied in internationally traded products. The new time series was constructed using advanced parallelized supercomputing resources, and significantly advances the previous state of art because of four innovations. First, it is available as a continuous 20-year time series of MRIO tables. Second, it distinguishes 187 individual countries comprising more than 15,000 industry sectors, and hence offers unsurpassed detail. Third, it provides information just 1-3 years delayed therefore significantly improving timeliness. Fourth, it presents MRIO elements with accompanying standard deviations in order to allow users to understand the reliability of data. These advances will lead to material improvements in the capability of applications that rely on input-output tables. The timeliness of information means that analyses are more relevant to current policy questions. The continuity of the time series enables the robust identification of key trends and drivers of global environmental change. The high country and sector detail drastically improves the resolution of Life-Cycle Assessments. Finally, the availability of information on uncertainty allows policy-makers to quantitatively judge the level of confidence that can be placed in the results of analyses.

  10. Genomic and transcriptomic predictors of triglyceride response to regular exercise

    PubMed Central

    Sarzynski, Mark A; Davidsen, Peter K; Sung, Yun Ju; Hesselink, Matthijs K C; Schrauwen, Patrick; Rice, Treva K; Rao, D C; Falciani, Francesco; Bouchard, Claude

    2015-01-01

    Aim We performed genome-wide and transcriptome-wide profiling to identify genes and single nucleotide polymorphisms (SNPs) associated with the response of triglycerides (TG) to exercise training. Methods Plasma TG levels were measured before and after a 20-week endurance training programme in 478 white participants from the HERITAGE Family Study. Illumina HumanCNV370-Quad v3.0 BeadChips were genotyped using the Illumina BeadStation 500GX platform. Affymetrix HG-U133+2 arrays were used to quantitate gene expression levels from baseline muscle biopsies of a subset of participants (N=52). Genome-wide association study (GWAS) analysis was performed using MERLIN, while transcriptomic predictor models were developed using the R-package GALGO. Results The GWAS results showed that eight SNPs were associated with TG training-response (ΔTG) at p<9.9×10−6, while another 31 SNPs showed p values <1×10−4. In multivariate regression models, the top 10 SNPs explained 32.0% of the variance in ΔTG, while conditional heritability analysis showed that four SNPs statistically accounted for all of the heritability of ΔTG. A molecular signature based on the baseline expression of 11 genes predicted 27% of ΔTG in HERITAGE, which was validated in an independent study. A composite SNP score based on the top four SNPs, each from the genomic and transcriptomic analyses, was the strongest predictor of ΔTG (R2=0.14, p=3.0×10−68). Conclusions Our results indicate that skeletal muscle transcript abundance at 11 genes and SNPs at a number of loci contribute to TG response to exercise training. Combining data from genomics and transcriptomics analyses identified a SNP-based gene signature that should be further tested in independent samples. PMID:26491034

  11. Multi-host model-based identification of Armillifer agkistrodontis (Pentastomida), a new zoonotic parasite from China.

    PubMed

    Chen, Shao-Hong; Liu, Qin; Zhang, Yong-Nian; Chen, Jia-Xu; Li, Hao; Chen, Ying; Steinmann, Peter; Zhou, Xiao-Nong

    2010-04-06

    Pentastomiasis is a rare parasitic infection of humans. Pentastomids are dioecious obligate parasites requiring multiple hosts to complete their lifecycle. Despite their worm-like appearance, they are commonly placed into a separate sub-class of the subphylum Crustacea, phylum Arthropoda. However, their systematic position is not uncontested and historically, they have been considered as a separate phylum. An appraisal of Armillifer agkistrodontis was performed in terms of morphology and genetic identification after its lifecycle had been established in a multi-host model, i.e., mice and rats as intermediate hosts, and snakes (Agkistrodon acutus and Python molurus) as definitive hosts. Different stages of the parasite, including eggs, larvae and adults, were isolated and examined morphologically using light and electron microscopes. Phylogenetic and cluster analysis were also undertaken, focusing on the 18S rRNA and the Cox1 gene. The time for lifecycle completion was about 14 months, including 4 months for the development of eggs to infectious larvae in the intermediate host and 10 months for infectious larvae to mature in the final host. The main morphological difference between A. armillatus and Linguatula serrata is the number of abdominal annuli. Based on the 18S rRNA sequence, the shortest hereditary distance was found between A. agkistrodontis and Raillietiella spp. The highest degree of homology in the Cox 1 nucleic acid sequences and predicted amino acid sequences was found between A. agkistrodontis and A. armillatus. This is the first time that a multi-host model of the entire lifecycle of A. agkistrodontis has been established. Morphologic and genetic analyses supported the notion that pentastomids should be placed into the phylum Arthropoda.

  12. Lifecycle of South America Monsoon System Simulated by the Regional Eta Model

    NASA Astrophysics Data System (ADS)

    Cavalcanti, I. F.; Raia, A.; Chou, S. C.; Silveira, V. P.

    2017-12-01

    The SAMS comprises a set of features over South America that includes the rainy season over large areas of the continent, typical atmospheric circulation and humidity fluxes characteristics and occurrences of the South Atlantic Convergence Zone. The onset and duration of these characteristics are important to several economic sectors, such as Agriculture and Hydropower. Droughts during the summer season, as the 2014 and 2015 cases, or onset delays can affect these sectors. Predictions of the SAMS onset and duration can contribute to management actions. The Eta Regional model represents well the precipitation difference between summer and winter and the related atmospheric circulation differences over South America. Therefore the objective of this study is to analyze the lifecycle of the SAMS simulated by the Eta model to evaluate first the behaviour compared to observations and to further use as a tool to prediction of onset and duration. There are several methods to analyze the lifecycle of the monsoon and here the criterion is based on vertical integrated zonal moisture flux in the monsoon core, which is located at southern Amazonia. The climate simulation was performed with the Eta model using the HadGEM2_ES model, from CMIP5, as lateral boundary condition. The period of analyses is 1980 to 2005. The model results are compared to ERA-Interim reanalysis and GPCP precipitation dataset. The results show the interannual lifecycles and the average for the whole period, as well as the annual cycle of zonal wind, precipitation, temperature and specific humidity. Spatial maps of humidity convergence, atmospheric circulation at low and high levels indicate the changes during the onset and demise.

  13. 10 CFR 455.64 - Life-cycle cost methodology.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Life-cycle cost methodology. 455.64 Section 455.64 Energy..., Hospitals, Units of Local Government, and Public Care Institutions § 455.64 Life-cycle cost methodology. (a) The life-cycle cost methodology under § 455.63(b) of this part is a systematic comparison of the...

  14. 10 CFR 455.64 - Life-cycle cost methodology.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Life-cycle cost methodology. 455.64 Section 455.64 Energy..., Hospitals, Units of Local Government, and Public Care Institutions § 455.64 Life-cycle cost methodology. (a) The life-cycle cost methodology under § 455.63(b) of this part is a systematic comparison of the...

  15. UTILITY OF A FULL LIFE-CYCLE COPEPOD BIOASSAY APPROACH FOR ASSESSMENT OF SEDIMENT-ASSOCIATED CONTAMINANT MIXTURES. (R825279)

    EPA Science Inventory

    Abstract

    We compared a 21 day full life-cycle bioassay with an existing 14 day partial life-cycle bioassay for two species of meiobenthic copepods, Microarthridion littorale and Amphiascus tenuiremis. We hypothesized that full life-cycle tests would bette...

  16. "ATLAS" Advanced Technology Life-cycle Analysis System

    NASA Technical Reports Server (NTRS)

    Lollar, Louis F.; Mankins, John C.; ONeil, Daniel A.

    2004-01-01

    Making good decisions concerning research and development portfolios-and concerning the best systems concepts to pursue - as early as possible in the life cycle of advanced technologies is a key goal of R&D management This goal depends upon the effective integration of information from a wide variety of sources as well as focused, high-level analyses intended to inform such decisions Life-cycle Analysis System (ATLAS) methodology and tool kit. ATLAS encompasses a wide range of methods and tools. A key foundation for ATLAS is the NASA-created Technology Readiness. The toolkit is largely spreadsheet based (as of August 2003). This product is being funded by the Human and Robotics The presentation provides a summary of the Advanced Technology Level (TRL) systems Technology Program Office, Office of Exploration Systems, NASA Headquarters, Washington D.C. and is being integrated by Dan O Neil of the Advanced Projects Office, NASA/MSFC, Huntsville, AL

  17. Computational challenges, tools and resources for analyzing co- and post-transcriptional events in high throughput

    PubMed Central

    Bahrami-Samani, Emad; Vo, Dat T.; de Araujo, Patricia Rosa; Vogel, Christine; Smith, Andrew D.; Penalva, Luiz O. F.; Uren, Philip J.

    2014-01-01

    Co- and post-transcriptional regulation of gene expression is complex and multi-faceted, spanning the complete RNA lifecycle from genesis to decay. High-throughput profiling of the constituent events and processes is achieved through a range of technologies that continue to expand and evolve. Fully leveraging the resulting data is non-trivial, and requires the use of computational methods and tools carefully crafted for specific data sources and often intended to probe particular biological processes. Drawing upon databases of information pre-compiled by other researchers can further elevate analyses. Within this review, we describe the major co- and post-transcriptional events in the RNA lifecycle that are amenable to high-throughput profiling. We place specific emphasis on the analysis of the resulting data, in particular the computational tools and resources available, as well as looking towards future challenges that remain to be addressed. PMID:25515586

  18. Transcriptomic resources for the medicinal legume Mucuna pruriens: de novo transcriptome assembly, annotation, identification and validation of EST-SSR markers.

    PubMed

    Sathyanarayana, N; Pittala, Ranjith Kumar; Tripathi, Pankaj Kumar; Chopra, Ratan; Singh, Heikham Russiachand; Belamkar, Vikas; Bhardwaj, Pardeep Kumar; Doyle, Jeff J; Egan, Ashley N

    2017-05-25

    The medicinal legume Mucuna pruriens (L.) DC. has attracted attention worldwide as a source of the anti-Parkinson's drug L-Dopa. It is also a popular green manure cover crop that offers many agronomic benefits including high protein content, nitrogen fixation and soil nutrients. The plant currently lacks genomic resources and there is limited knowledge on gene expression, metabolic pathways, and genetics of secondary metabolite production. Here, we present transcriptomic resources for M. pruriens, including a de novo transcriptome assembly and annotation, as well as differential transcript expression analyses between root, leaf, and pod tissues. We also develop microsatellite markers and analyze genetic diversity and population structure within a set of Indian germplasm accessions. One-hundred ninety-one million two hundred thirty-three thousand two hundred forty-two bp cleaned reads were assembled into 67,561 transcripts with mean length of 626 bp and N50 of 987 bp. Assembled sequences were annotated using BLASTX against public databases with over 80% of transcripts annotated. We identified 7,493 simple sequence repeat (SSR) motifs, including 787 polymorphic repeats between the parents of a mapping population. 134 SSRs from expressed sequenced tags (ESTs) were screened against 23 M. pruriens accessions from India, with 52 EST-SSRs retained after quality control. Population structure analysis using a Bayesian framework implemented in fastSTRUCTURE showed nearly similar groupings as with distance-based (neighbor-joining) and principal component analyses, with most of the accessions clustering per geographical origins. Pair-wise comparison of transcript expression in leaves, roots and pods identified 4,387 differentially expressed transcripts with the highest number occurring between roots and leaves. Differentially expressed transcripts were enriched with transcription factors and transcripts annotated as belonging to secondary metabolite pathways. The M. pruriens transcriptomic resources generated in this study provide foundational resources for gene discovery and development of molecular markers. Polymorphic SSRs identified can be used for genetic diversity, marker-trait analyses, and development of functional markers for crop improvement. The results of differential expression studies can be used to investigate genes involved in L-Dopa synthesis and other key metabolic pathways in M. pruriens.

  19. De novo Assembly of the Burying Beetle Nicrophorus orbicollis (Coleoptera: Silphidae) Transcriptome Across Developmental Stages with Identification of Key Immune Transcripts

    PubMed Central

    Won, Harim I.; Schulze, Thomas T.; Clement, Emalie J.; Watson, Gabrielle F.; Watson, Sean M.; Warner, Rosalie C.; Ramler, Elizabeth A. M.; Witte, Elias J.; Schoenbeck, Mark A.; Rauter, Claudia M.; Davis, Paul H.

    2018-01-01

    Burying beetles (Nicrophorus spp.) are among the relatively few insects that provide parental care while not belonging to the eusocial insects such as ants or bees. This behavior incurs energy costs as evidenced by immune deficits and shorter life-spans in reproducing beetles. In the absence of an assembled transcriptome, relatively little is known concerning the molecular biology of these beetles. This work details the assembly and analysis of the Nicrophorus orbicollis transcriptome at multiple developmental stages. RNA-Seq reads were obtained by next-generation sequencing and the transcriptome was assembled using the Trinity assembler. Validation of the assembly was performed by functional characterization using Gene Ontology (GO), Eukaryotic Orthologous Groups (KOG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Differential expression analysis highlights developmental stage-specific expression patterns, and immunity-related transcripts are discussed. The data presented provides a valuable molecular resource to aid further investigation into immunocompetence throughout this organism's sexual development. PMID:29707046

  20. Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling

    NASA Astrophysics Data System (ADS)

    Pehl, Michaja; Arvesen, Anders; Humpenöder, Florian; Popp, Alexander; Hertwich, Edgar G.; Luderer, Gunnar

    2017-12-01

    Both fossil-fuel and non-fossil-fuel power technologies induce life-cycle greenhouse gas emissions, mainly due to their embodied energy requirements for construction and operation, and upstream CH4 emissions. Here, we integrate prospective life-cycle assessment with global integrated energy-economy-land-use-climate modelling to explore life-cycle emissions of future low-carbon power supply systems and implications for technology choice. Future per-unit life-cycle emissions differ substantially across technologies. For a climate protection scenario, we project life-cycle emissions from fossil fuel carbon capture and sequestration plants of 78-110 gCO2eq kWh-1, compared with 3.5-12 gCO2eq kWh-1 for nuclear, wind and solar power for 2050. Life-cycle emissions from hydropower and bioenergy are substantial (˜100 gCO2eq kWh-1), but highly uncertain. We find that cumulative emissions attributable to upscaling low-carbon power other than hydropower are small compared with direct sectoral fossil fuel emissions and the total carbon budget. Fully considering life-cycle greenhouse gas emissions has only modest effects on the scale and structure of power production in cost-optimal mitigation scenarios.

  1. Overview of the TriBITS Lifecycle Model: Lean/Agile Software Lifecycle Model for Research-based Computational Science and Engineering Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartlett, Roscoe A; Heroux, Dr. Michael A; Willenbring, James

    2012-01-01

    Software lifecycles are becoming an increasingly important issue for computational science & engineering (CSE) software. The process by which a piece of CSE software begins life as a set of research requirements and then matures into a trusted high-quality capability is both commonplace and extremely challenging. Although an implicit lifecycle is obviously being used in any effort, the challenges of this process--respecting the competing needs of research vs. production--cannot be overstated. Here we describe a proposal for a well-defined software lifecycle process based on modern Lean/Agile software engineering principles. What we propose is appropriate for many CSE software projects thatmore » are initially heavily focused on research but also are expected to eventually produce usable high-quality capabilities. The model is related to TriBITS, a build, integration and testing system, which serves as a strong foundation for this lifecycle model, and aspects of this lifecycle model are ingrained in the TriBITS system. Indeed this lifecycle process, if followed, will enable large-scale sustainable integration of many complex CSE software efforts across several institutions.« less

  2. An exploratory study of lead recovery in lead-acid battery lifecycle in US market: an evidence-based approach.

    PubMed

    Genaidy, A M; Sequeira, R; Tolaymat, T; Kohler, J; Rinder, M

    2008-12-15

    This research examines lead recovery and recycling in lead-acid batteries (LAB) which account for 88% of US lead consumption. We explore strategies to maximize lead recovery and recycling in the LAB lifecycle. Currently, there is limited information on recycling rates for LAB in the published literature and is derived from a single source. Therefore, its recycling efforts in the US has been unclear so as to determine the maximum opportunities for metal recovery and recycling in the face of significant demands for LAB particularly in the auto industry. The research utilizes an evidence-based approach to: (1) determine recycling rates for lead recovery in the LAB product lifecycle for the US market; and (2) quantify and identify opportunities where lead recovery and recycling can be improved. A comprehensive electronic search of the published literature was conducted to gather information on different LAB recycling models and actual data used to calculate recycling rates based on product lifecycle for the US market to identify strategies for increasing lead recovery and recycling. The electronic search yielded five models for calculating LAB recycling rates. The description of evidence was documented for each model. Furthermore, an integrated model was developed to identify and quantify the maximum opportunities for lead recovery and recycling. Results showed that recycling rates declined during the period spanning from 1999 to 2006. Opportunities were identified for recovery and recycling of lead in the LAB product lifecycle. One can deduce the following from the analyses undertaken in this report: (1) lead recovery and recycling has been stable between 1999 and 2006; (2) lead consumption has increased at an annual rate of 2.25%, thus, the values derived in this study for opportunities dealing with lead recovery and recycling underestimate the amount of lead in scrap and waste generated; and (3) the opportunities for maximizing lead recovery and recycling are centered on spent batteries left with consumers, mishandled LAB sent to auto wreckers, slag resulting from recycling technology process inefficiencies, and lead lost in municipal waste.

  3. Transporter genes identified in landraces associated with high zinc in polished rice through panicle transcriptome for biofortification

    PubMed Central

    Kulkarni, Kalyani S.; Madhu Babu, P.; Sanjeeva Rao, D.; Surekha, K.; Ravindra Babu, V

    2018-01-01

    Polished rice is poor source of micronutrients, however wide genotypic variability exists for zinc uptake and remobilization and zinc content in brown and polished grains in rice. Two landraces (Chittimutyalu and Kala Jeera Joha) and one popular improved variety (BPT 5204) were grown under zinc sufficient soil and their analyses showed high zinc in straw of improved variety, but high zinc in polished rice in landraces suggesting better translocation ability of zinc into the grain in landraces. Transcriptome analyses of the panicle tissue showed 41182 novel transcripts across three samples. Out of 1011 differentially expressed exclusive transcripts by two landraces, 311 were up regulated and 534 were down regulated. Phosphate transporter-exporter (PHO), proton-coupled peptide transporters (POT) and vacuolar iron transporter (VIT) showed enhanced and significant differential expression in landraces. Out of 24 genes subjected to quantitative real time analyses for confirmation, eight genes showed significant differential expression in landraces. Through mapping, six rice microsatellite markers spanning the genomic regions of six differentially expressed genes were validated for their association with zinc in brown and polished rice using recombinant inbred lines (RIL) of BPT 5204/Chittimutyalu. Thus, this study reports repertoire of genes associated with high zinc in polished rice and a proof concept for deployment of transcriptome information for validation in mapping population and its use in marker assisted selection for biofortification of rice with zinc. PMID:29394277

  4. Phylogenomics, Diversification Dynamics, and Comparative Transcriptomics across the Spider Tree of Life.

    PubMed

    Fernández, Rosa; Kallal, Robert J; Dimitrov, Dimitar; Ballesteros, Jesús A; Arnedo, Miquel A; Giribet, Gonzalo; Hormiga, Gustavo

    2018-05-07

    Dating back to almost 400 mya, spiders are among the most diverse terrestrial predators [1]. However, despite considerable effort [1-9], their phylogenetic relationships and diversification dynamics remain poorly understood. Here, we use a synergistic approach to study spider evolution through phylogenomics, comparative transcriptomics, and lineage diversification analyses. Our analyses, based on ca. 2,500 genes from 159 spider species, reject a single origin of the orb web (the "ancient orb-web hypothesis") and suggest that orb webs evolved multiple times since the late Triassic-Jurassic. We find no significant association between the loss of foraging webs and increases in diversification rates, suggesting that other factors (e.g., habitat heterogeneity or biotic interactions) potentially played a key role in spider diversification. Finally, we report notable genomic differences in the main spider lineages: while araneoids (ecribellate orb-weavers and their allies) reveal an enrichment in genes related to behavior and sensory reception, the retrolateral tibial apophysis (RTA) clade-the most diverse araneomorph spider lineage-shows enrichment in genes related to immune responses and polyphenic determination. This study, one of the largest invertebrate phylogenomic analyses to date, highlights the usefulness of transcriptomic data not only to build a robust backbone for the Spider Tree of Life, but also to address the genetic basis of diversification in the spider evolutionary chronicle. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin

    PubMed Central

    Shi, Haitao; Jiang, Chuan; Ye, Tiantian; Tan, Dun-xian; Reiter, Russel J.; Zhang, Heng; Liu, Renyi; Chan, Zhulong

    2015-01-01

    Melatonin (N-acetyl-5-methoxytryptamine), a well-known animal hormone, is also involved in plant development and abiotic stress responses. In this study, it is shown that exogenous application of melatonin conferred improved salt, drought, and cold stress resistances in bermudagrass. Moreover, exogenous melatonin treatment alleviated reactive oxygen species (ROS) burst and cell damage induced by abiotic stress; this involved activation of several antioxidants. Additionally, melatonin-pre-treated plants exhibited higher concentrations of 54 metabolites, including amino acids, organic acids, sugars, and sugar alcohols, than non-treated plants under abiotic stress conditions. Genome-wide transcriptomic profiling identified 3933 transcripts (2361 up-regulated and 1572 down-regulated) that were differentially expressed in melatonin-treated plants versus controls. Pathway and gene ontology (GO) term enrichment analyses revealed that genes involved in nitrogen metabolism, major carbohydrate metabolism, tricarboxylic acid (TCA)/org transformation, transport, hormone metabolism, metal handling, redox, and secondary metabolism were over-represented after melatonin pre-treatment. Taken together, this study provides the first evidence of the protective roles of exogenous melatonin in the bermudagrass response to abiotic stresses, partially via activation of antioxidants and modulation of metabolic homeostasis. Notably, metabolic and transcriptomic analyses showed that the underlying mechanisms of melatonin could involve major reorientation of photorespiratory and carbohydrate and nitrogen metabolism. PMID:25225478

  6. Transporter genes identified in landraces associated with high zinc in polished rice through panicle transcriptome for biofortification.

    PubMed

    Neeraja, C N; Kulkarni, Kalyani S; Madhu Babu, P; Sanjeeva Rao, D; Surekha, K; Ravindra Babu, V

    2018-01-01

    Polished rice is poor source of micronutrients, however wide genotypic variability exists for zinc uptake and remobilization and zinc content in brown and polished grains in rice. Two landraces (Chittimutyalu and Kala Jeera Joha) and one popular improved variety (BPT 5204) were grown under zinc sufficient soil and their analyses showed high zinc in straw of improved variety, but high zinc in polished rice in landraces suggesting better translocation ability of zinc into the grain in landraces. Transcriptome analyses of the panicle tissue showed 41182 novel transcripts across three samples. Out of 1011 differentially expressed exclusive transcripts by two landraces, 311 were up regulated and 534 were down regulated. Phosphate transporter-exporter (PHO), proton-coupled peptide transporters (POT) and vacuolar iron transporter (VIT) showed enhanced and significant differential expression in landraces. Out of 24 genes subjected to quantitative real time analyses for confirmation, eight genes showed significant differential expression in landraces. Through mapping, six rice microsatellite markers spanning the genomic regions of six differentially expressed genes were validated for their association with zinc in brown and polished rice using recombinant inbred lines (RIL) of BPT 5204/Chittimutyalu. Thus, this study reports repertoire of genes associated with high zinc in polished rice and a proof concept for deployment of transcriptome information for validation in mapping population and its use in marker assisted selection for biofortification of rice with zinc.

  7. Comparative whole genome transcriptome and metabolome analyses of five Klebsiella pneumonia strains.

    PubMed

    Lee, Soojin; Kim, Borim; Yang, Jeongmo; Jeong, Daun; Park, Soohyun; Shin, Sang Heum; Kook, Jun Ho; Yang, Kap-Seok; Lee, Jinwon

    2015-11-01

    The integration of transcriptomics and metabolomics can provide precise information on gene-to-metabolite networks for identifying the function of novel genes. The goal of this study was to identify novel gene functions involved in 2,3-butanediol (2,3-BDO) biosynthesis by a comprehensive analysis of the transcriptome and metabolome of five mutated Klebsiella pneumonia strains (∆wabG = SGSB100, ∆wabG∆budA = SGSB106, ∆wabG∆budB = SGSB107, ∆wabG∆budC = SGSB108, ∆wabG∆budABC = SGSB109). First, the transcriptomes of all five mutants were analyzed and the genes exhibiting reproducible changes in expression were determined. The transcriptome was well conserved among the five strains, and differences in gene expression occurred mainly in genes coding for 2,3-BDO biosynthesis (budA, budB, and budC) and the genes involved in the degradation of reactive oxygen, biosynthesis and transport of arginine, cysteine biosynthesis, sulfur metabolism, oxidoreductase reaction, and formate dehydrogenase reaction. Second, differences in the metabolome (estimated by carbon distribution, CO2 emission, and redox balance) among the five mutant strains due to gene alteration of the 2,3-BDO operon were detected. The functional genomics approach integrating metabolomics and transcriptomics in K. Pneumonia presented here provides an innovative means of identifying novel gene functions involved in 2,3-BDO biosynthesis metabolism and whole cell metabolism.

  8. Desiccation tolerance in bryophytes: The dehydration and rehydration transcriptomes in the desiccation-tolerant bryophyte Bryum argenteum.

    PubMed

    Gao, Bei; Li, Xiaoshuang; Zhang, Daoyuan; Liang, Yuqing; Yang, Honglan; Chen, Moxian; Zhang, Yuanming; Zhang, Jianhua; Wood, Andrew J

    2017-08-08

    The desiccation tolerant bryophyte Bryum argenteum is an important component of desert biological soil crusts (BSCs) and is emerging as a model system for studying vegetative desiccation tolerance. Here we present and analyze the hydration-dehydration-rehydration transcriptomes in B. argenteum to establish a desiccation-tolerance transcriptomic atlas. B. argenteum gametophores representing five different hydration stages (hydrated (H0), dehydrated for 2 h (D2), 24 h (D24), then rehydrated for 2 h (R2) and 48 h (R48)), were sampled for transcriptome analyses. Illumina high throughput RNA-Seq technology was employed and generated more than 488.46 million reads. An in-house de novo transcriptome assembly optimization pipeline based on Trinity assembler was developed to obtain a reference Hydration-Dehydration-Rehydration (H-D-R) transcriptome comprising of 76,206 transcripts, with an N50 of 2,016 bp and average length of 1,222 bp. Comprehensive transcription factor (TF) annotation discovered 978 TFs in 62 families, among which 404 TFs within 40 families were differentially expressed upon dehydration-rehydration. Pfam term enrichment analysis revealed 172 protein families/domains were significantly associated with the H-D-R cycle and confirmed early rehydration (i.e. the R2 stage) as exhibiting the maximum stress-induced changes in gene expression.

  9. Analysis of the JSF Engine Competition

    DTIC Science & Technology

    2012-09-01

    even 25 Competition for Support Services  Support costs are typically more than half of life-cycle costs and normally incurred in a sole-source...Strike Fighter), Aircraft Engines, Competition, Military Procurement, Defense Industry, Cost Analysis Analysis of the JSF Engine Competition James...different designs to meet the same functional requirements. Such a case was examined by the Institute for Defense Analyses in a forward-looking cost and

  10. Fly-by-light technology development plan

    NASA Technical Reports Server (NTRS)

    Todd, J. R.; Williams, T.; Goldthorpe, S.; Hay, J.; Brennan, M.; Sherman, B.; Chen, J.; Yount, Larry J.; Hess, Richard F.; Kravetz, J.

    1990-01-01

    The driving factors and developments which make a fly-by-light (FBL) viable are discussed. Documentation, analyses, and recommendations are provided on the major issues pertinent to facilitating the U.S. implementation of commercial FBL aircraft before the turn of the century. Areas of particular concern include ultra-reliable computing (hardware/software); electromagnetic environment (EME); verification and validation; optical techniques; life-cycle maintenance; and basis and procedures for certification.

  11. The Model Life-cycle: Training Module

    EPA Pesticide Factsheets

    Model Life-Cycle includes identification of problems & the subsequent development, evaluation, & application of the model. Objectives: define ‘model life-cycle’, explore stages of model life-cycle, & strategies for development, evaluation, & applications.

  12. TriBITS lifecycle model. Version 1.0, a lean/agile software lifecycle model for research-based computational science and engineering and applied mathematical software.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willenbring, James M.; Bartlett, Roscoe Ainsworth; Heroux, Michael Allen

    2012-01-01

    Software lifecycles are becoming an increasingly important issue for computational science and engineering (CSE) software. The process by which a piece of CSE software begins life as a set of research requirements and then matures into a trusted high-quality capability is both commonplace and extremely challenging. Although an implicit lifecycle is obviously being used in any effort, the challenges of this process - respecting the competing needs of research vs. production - cannot be overstated. Here we describe a proposal for a well-defined software lifecycle process based on modern Lean/Agile software engineering principles. What we propose is appropriate for manymore » CSE software projects that are initially heavily focused on research but also are expected to eventually produce usable high-quality capabilities. The model is related to TriBITS, a build, integration and testing system, which serves as a strong foundation for this lifecycle model, and aspects of this lifecycle model are ingrained in the TriBITS system. Here, we advocate three to four phases or maturity levels that address the appropriate handling of many issues associated with the transition from research to production software. The goals of this lifecycle model are to better communicate maturity levels with customers and to help to identify and promote Software Engineering (SE) practices that will help to improve productivity and produce better software. An important collection of software in this domain is Trilinos, which is used as the motivation and the initial target for this lifecycle model. However, many other related and similar CSE (and non-CSE) software projects can also make good use of this lifecycle model, especially those that use the TriBITS system. Indeed this lifecycle process, if followed, will enable large-scale sustainable integration of many complex CSE software efforts across several institutions.« less

  13. Transcriptome Profiling of Watermelon Root in Response to Short-Term Osmotic Stress

    PubMed Central

    Yang, Yongchao; Mo, Yanling; Yang, Xiaozheng; Zhang, Haifei; Wang, Yongqi; Li, Hao; Wei, Chunhua; Zhang, Xian

    2016-01-01

    Osmotic stress adversely affects the growth, fruit quality and yield of watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai). Increasing the tolerance of watermelon to osmotic stress caused by factors such as high salt and water deficit is an effective way to improve crop survival in osmotic stress environments. Roots are important organs in water absorption and are involved in the initial response to osmosis stress; however, few studies have examined the underlying mechanism of tolerance to osmotic stress in watermelon roots. For better understanding of this mechanism, the inbred watermelon accession M08, which exhibits relatively high tolerance to water deficits, was treated with 20% polyethylene glycol (PEG) 6000. The root samples were harvested at 6 h after PEG treatment and untreated samples were used as controls. Transcriptome analyses were carried out by Illumina RNA sequencing. A total of 5246 differentially expressed genes were identified. Gene ontology enrichment and biochemical pathway analyses of these 5246 genes showed that short-term osmotic stress affected osmotic adjustment, signal transduction, hormone responses, cell division, cell cycle and ribosome, and M08 may repress root growth to adapt osmotic stress. The results of this study describe the watermelon root transcriptome under osmotic stress and propose new insight into watermelon root responses to osmotic stress at the transcriptome level. Accordingly, these results allow us to better understand the molecular mechanisms of watermelon in response to drought stress and will facilitate watermelon breeding projects to improve drought tolerance. PMID:27861528

  14. Comparison of normalization methods for differential gene expression analysis in RNA-Seq experiments

    PubMed Central

    Maza, Elie; Frasse, Pierre; Senin, Pavel; Bouzayen, Mondher; Zouine, Mohamed

    2013-01-01

    In recent years, RNA-Seq technologies became a powerful tool for transcriptome studies. However, computational methods dedicated to the analysis of high-throughput sequencing data are yet to be standardized. In particular, it is known that the choice of a normalization procedure leads to a great variability in results of differential gene expression analysis. The present study compares the most widespread normalization procedures and proposes a novel one aiming at removing an inherent bias of studied transcriptomes related to their relative size. Comparisons of the normalization procedures are performed on real and simulated data sets. Real RNA-Seq data sets analyses, performed with all the different normalization methods, show that only 50% of significantly differentially expressed genes are common. This result highlights the influence of the normalization step on the differential expression analysis. Real and simulated data sets analyses give similar results showing 3 different groups of procedures having the same behavior. The group including the novel method named “Median Ratio Normalization” (MRN) gives the lower number of false discoveries. Within this group the MRN method is less sensitive to the modification of parameters related to the relative size of transcriptomes such as the number of down- and upregulated genes and the gene expression levels. The newly proposed MRN method efficiently deals with intrinsic bias resulting from relative size of studied transcriptomes. Validation with real and simulated data sets confirmed that MRN is more consistent and robust than existing methods. PMID:26442135

  15. Comparative transcriptome analyses of three medicinal Forsythia species and prediction of candidate genes involved in secondary metabolisms.

    PubMed

    Sun, Luchao; Rai, Amit; Rai, Megha; Nakamura, Michimi; Kawano, Noriaki; Yoshimatsu, Kayo; Suzuki, Hideyuki; Kawahara, Nobuo; Saito, Kazuki; Yamazaki, Mami

    2018-05-07

    The three Forsythia species, F. suspensa, F. viridissima and F. koreana, have been used as herbal medicines in China, Japan and Korea for centuries and they are known to be rich sources of numerous pharmaceutical metabolites, forsythin, forsythoside A, arctigenin, rutin and other phenolic compounds. In this study, de novo transcriptome sequencing and assembly was performed on these species. Using leaf and flower tissues of F. suspensa, F. viridissima and F. koreana, 1.28-2.45-Gbp sequences of Illumina based pair-end reads were obtained and assembled into 81,913, 88,491 and 69,458 unigenes, respectively. Classification of the annotated unigenes in gene ontology terms and KEGG pathways was used to compare the transcriptome of three Forsythia species. The expression analysis of orthologous genes across all three species showed the expression in leaf tissues being highly correlated. The candidate genes presumably involved in the biosynthetic pathway of lignans and phenylethanoid glycosides were screened as co-expressed genes. They express highly in the leaves of F. viridissima and F. koreana. Furthermore, the three unigenes annotated as acyltransferase were predicted to be associated with the biosynthesis of acteoside and forsythoside A from the expression pattern and phylogenetic analysis. This study is the first report on comparative transcriptome analyses of medicinally important Forsythia genus and will serve as an important resource to facilitate further studies on biosynthesis and regulation of therapeutic compounds in Forsythia species.

  16. Transcriptome instability as a molecular pan-cancer characteristic of carcinomas.

    PubMed

    Sveen, Anita; Johannessen, Bjarne; Teixeira, Manuel R; Lothe, Ragnhild A; Skotheim, Rolf I

    2014-08-10

    We have previously proposed transcriptome instability as a genome-wide, pre-mRNA splicing-related characteristic of colorectal cancer. Here, we explore the hypothesis of transcriptome instability being a general characteristic of cancer. Exon-level microarray expression data from ten cancer datasets were analyzed, including breast cancer, cervical cancer, colorectal cancer, gastric cancer, lung cancer, neuroblastoma, and prostate cancer (555 samples), as well as paired normal tissue samples from the colon, lung, prostate, and stomach (93 samples). Based on alternative splicing scores across the genomes, we calculated sample-wise relative amounts of aberrant exon skipping and inclusion. Strong and non-random (P < 0.001) correlations between these estimates and the expression levels of splicing factor genes (n = 280) were found in most cancer types analyzed (breast-, cervical-, colorectal-, lung- and prostate cancer). This suggests a biological explanation for the splicing variation. Surprisingly, these associations prevailed in pan-cancer analyses. This is in contrast to the tissue and cancer specific patterns observed in comparisons across healthy tissue samples from the colon, lung, prostate, and stomach, and between paired cancer-normal samples from the same four tissue types. Based on exon-level expression profiling and computational analyses of alternative splicing, we propose transcriptome instability as a molecular pan-cancer characteristic. The affected cancers show strong and non-random associations between low expression levels of splicing factor genes, and high amounts of aberrant exon skipping and inclusion, and vice versa, on a genome-wide scale.

  17. Transcriptomic Changes Associated with Pregnancy in a Marsupial, the Gray Short-Tailed Opossum Monodelphis domestica

    PubMed Central

    Hansen, Victoria Leigh; Schilkey, Faye Dorothy; Miller, Robert David

    2016-01-01

    Live birth has emerged as a reproductive strategy many times across vertebrate evolution; however, mammals account for the majority of viviparous vertebrates. Marsupials are a mammalian lineage that last shared a common ancestor with eutherians (placental mammals) over 148 million years ago. Marsupials are noted for giving birth to highly altricial young after a short gestation, and represent humans’ most distant viviparous mammalian relatives. Here we ask what insight can be gained into the evolution of viviparity in mammals specifically and vertebrates in general by analyzing the global uterine transcriptome in a marsupial. Transcriptome analyses were performed using NextGen sequencing of uterine RNA samples from the gray short-tailed opossum, Monodelphis domestica. Samples were collected from late stage pregnant, virgin, and non-pregnant experienced breeders. Three different algorithms were used to determine differential expression, and results were confirmed by quantitative PCR. Over 900 opossum gene transcripts were found to be significantly more abundant in the pregnant uterus than non-pregnant, and over 1400 less so. Most with increased abundance were genes related to metabolism, immune systems processes, and transport. This is the first study to characterize the transcriptomic differences between pregnant, non-pregnant breeders, and virgin marsupial uteruses and helps to establish a set of pregnancy-associated genes in the opossum. These observations allowed for comparative analyses of the differentially transcribed genes with other mammalian and non-mammalian viviparous species, revealing similarities in pregnancy related gene expression over 300 million years of amniote evolution. PMID:27598793

  18. Single-cell transcriptomes identify human islet cell signatures and reveal cell-type–specific expression changes in type 2 diabetes

    PubMed Central

    Bolisetty, Mohan; Kursawe, Romy; Sun, Lili; Sivakamasundari, V.; Kycia, Ina

    2017-01-01

    Blood glucose levels are tightly controlled by the coordinated action of at least four cell types constituting pancreatic islets. Changes in the proportion and/or function of these cells are associated with genetic and molecular pathophysiology of monogenic, type 1, and type 2 (T2D) diabetes. Cellular heterogeneity impedes precise understanding of the molecular components of each islet cell type that govern islet (dys)function, particularly the less abundant delta and gamma/pancreatic polypeptide (PP) cells. Here, we report single-cell transcriptomes for 638 cells from nondiabetic (ND) and T2D human islet samples. Analyses of ND single-cell transcriptomes identified distinct alpha, beta, delta, and PP/gamma cell-type signatures. Genes linked to rare and common forms of islet dysfunction and diabetes were expressed in the delta and PP/gamma cell types. Moreover, this study revealed that delta cells specifically express receptors that receive and coordinate systemic cues from the leptin, ghrelin, and dopamine signaling pathways implicating them as integrators of central and peripheral metabolic signals into the pancreatic islet. Finally, single-cell transcriptome profiling revealed genes differentially regulated between T2D and ND alpha, beta, and delta cells that were undetectable in paired whole islet analyses. This study thus identifies fundamental cell-type–specific features of pancreatic islet (dys)function and provides a critical resource for comprehensive understanding of islet biology and diabetes pathogenesis. PMID:27864352

  19. Comparative Transcriptomics Unravel Biochemical Specialization of Leaf Tissues of Stevia for Diterpenoid Production1

    PubMed Central

    Kim, Mi Jung; Jin, Jingjing; Zheng, Junshi

    2015-01-01

    Stevia (Stevia rebaudiana) produces not only a group of diterpenoid glycosides known as steviol glycosides (SGs), but also other labdane-type diterpenoids that may be spatially separated from SGs. However, their biosynthetic routes and spatial distribution in leaf tissues have not yet been elucidated. Here, we integrate metabolome and transcriptome analyses of Stevia to explore the biosynthetic capacity of leaf tissues for diterpenoid metabolism. Tissue-specific chemical analyses confirmed that SGs were accumulated in leaf cells but not in trichomes. On the other hand, Stevia leaf trichomes stored other labdane-type diterpenoids such as oxomanoyl oxide and agatholic acid. RNA sequencing analyses from two different tissues of Stevia provided a comprehensive overview of dynamic metabolic activities in trichomes and leaf without trichomes. These metabolite-guided transcriptomics and phylogenetic and gene expression analyses clearly identified specific gene members encoding enzymes involved in the 2-C-methyl-d-erythritol 4-phosphate pathway and the biosynthesis of steviol or other labdane-type diterpenoids. Additionally, our RNA sequencing analysis uncovered copalyl diphosphate synthase (SrCPS) and kaurene synthase1 (SrKS1) homologs, SrCPS2 and KS-like (SrKSL), which were specifically expressed in trichomes. In vitro and in planta assays showed that unlike SrCPS and SrKS1, SrCPS2 synthesized labda-13-en-8-ol diphosphate and successively catalyzed the formation of manoyl oxide and epi-manoyl oxide in combination with SrKSL. Our findings suggest that Stevia may have evolved to use distinct metabolic pathways to avoid metabolic interferences in leaf tissues for efficient production of diverse secondary metabolites. PMID:26438788

  20. The evolutionary ecology of complex lifecycle parasites: linking phenomena with mechanisms

    PubMed Central

    Auld, S KJR; Tinsley, M C

    2015-01-01

    Many parasitic infections, including those of humans, are caused by complex lifecycle parasites (CLPs): parasites that sequentially infect different hosts over the course of their lifecycle. CLPs come from a wide range of taxonomic groups—from single-celled bacteria to multicellular flatworms—yet share many common features in their life histories. Theory tells us when CLPs should be favoured by selection, but more empirical studies are required in order to quantify the costs and benefits of having a complex lifecycle, especially in parasites that facultatively vary their lifecycle complexity. In this article, we identify ecological conditions that favour CLPs over their simple lifecycle counterparts and highlight how a complex lifecycle can alter transmission rate and trade-offs between growth and reproduction. We show that CLPs participate in dynamic host–parasite coevolution, as more mobile hosts can fuel CLP adaptation to less mobile hosts. Then, we argue that a more general understanding of the evolutionary ecology of CLPs is essential for the development of effective frameworks to manage the many diseases they cause. More research is needed identifying the genetics of infection mechanisms used by CLPs, particularly into the role of gene duplication and neofunctionalisation in lifecycle evolution. We propose that testing for signatures of selection in infection genes will reveal much about how and when complex lifecycles evolved, and will help quantify complex patterns of coevolution between CLPs and their various hosts. Finally, we emphasise four key areas where new research approaches will provide fertile opportunities to advance this field. PMID:25227255

  1. Production of a reference transcriptome and transcriptomic database (EdwardsiellaBase) for the lined sea anemone, Edwardsiella lineata, a parasitic cnidarian

    PubMed Central

    2014-01-01

    Background The lined sea anemone Edwardsiella lineata is an informative model system for evolutionary-developmental studies of parasitism. In this species, it is possible to compare alternate developmental pathways leading from a larva to either a free-living polyp or a vermiform parasite that inhabits the mesoglea of a ctenophore host. Additionally, E. lineata is confamilial with the model cnidarian Nematostella vectensis, providing an opportunity for comparative genomic, molecular and organismal studies. Description We generated a reference transcriptome for E. lineata via high-throughput sequencing of RNA isolated from five developmental stages (parasite; parasite-to-larva transition; larva; larva-to-adult transition; adult). The transcriptome comprises 90,440 contigs assembled from >15 billion nucleotides of DNA sequence. Using a molecular clock approach, we estimated the divergence between E. lineata and N. vectensis at 215–364 million years ago. Based on gene ontology and metabolic pathway analyses and gene family surveys (bHLH-PAS, deiodinases, Fox genes, LIM homeodomains, minicollagens, nuclear receptors, Sox genes, and Wnts), the transcriptome of E. lineata is comparable in depth and completeness to N. vectensis. Analyses of protein motifs and revealed extensive conservation between the proteins of these two edwardsiid anemones, although we show the NF-κB protein of E. lineata reflects the ancestral structure, while the NF-κB protein of N. vectensis has undergone a split that separates the DNA-binding domain from the inhibitory domain. All contigs have been deposited in a public database (EdwardsiellaBase), where they may be searched according to contig ID, gene ontology, protein family motif (Pfam), enzyme commission number, and BLAST. The alignment of the raw reads to the contigs can also be visualized via JBrowse. Conclusions The transcriptomic data and database described here provide a platform for studying the evolutionary developmental genomics of a derived parasitic life cycle. In addition, these data from E. lineata will aid in the interpretation of evolutionary novelties in gene sequence or structure that have been reported for the model cnidarian N. vectensis (e.g., the split NF-κB locus). Finally, we include custom computational tools to facilitate the annotation of a transcriptome based on high-throughput sequencing data obtained from a “non-model system.” PMID:24467778

  2. Production of a reference transcriptome and transcriptomic database (EdwardsiellaBase) for the lined sea anemone, Edwardsiella lineata, a parasitic cnidarian.

    PubMed

    Stefanik, Derek J; Lubinski, Tristan J; Granger, Brian R; Byrd, Allyson L; Reitzel, Adam M; DeFilippo, Lukas; Lorenc, Allison; Finnerty, John R

    2014-01-28

    The lined sea anemone Edwardsiella lineata is an informative model system for evolutionary-developmental studies of parasitism. In this species, it is possible to compare alternate developmental pathways leading from a larva to either a free-living polyp or a vermiform parasite that inhabits the mesoglea of a ctenophore host. Additionally, E. lineata is confamilial with the model cnidarian Nematostella vectensis, providing an opportunity for comparative genomic, molecular and organismal studies. We generated a reference transcriptome for E. lineata via high-throughput sequencing of RNA isolated from five developmental stages (parasite; parasite-to-larva transition; larva; larva-to-adult transition; adult). The transcriptome comprises 90,440 contigs assembled from >15 billion nucleotides of DNA sequence. Using a molecular clock approach, we estimated the divergence between E. lineata and N. vectensis at 215-364 million years ago. Based on gene ontology and metabolic pathway analyses and gene family surveys (bHLH-PAS, deiodinases, Fox genes, LIM homeodomains, minicollagens, nuclear receptors, Sox genes, and Wnts), the transcriptome of E. lineata is comparable in depth and completeness to N. vectensis. Analyses of protein motifs and revealed extensive conservation between the proteins of these two edwardsiid anemones, although we show the NF-κB protein of E. lineata reflects the ancestral structure, while the NF-κB protein of N. vectensis has undergone a split that separates the DNA-binding domain from the inhibitory domain. All contigs have been deposited in a public database (EdwardsiellaBase), where they may be searched according to contig ID, gene ontology, protein family motif (Pfam), enzyme commission number, and BLAST. The alignment of the raw reads to the contigs can also be visualized via JBrowse. The transcriptomic data and database described here provide a platform for studying the evolutionary developmental genomics of a derived parasitic life cycle. In addition, these data from E. lineata will aid in the interpretation of evolutionary novelties in gene sequence or structure that have been reported for the model cnidarian N. vectensis (e.g., the split NF-κB locus). Finally, we include custom computational tools to facilitate the annotation of a transcriptome based on high-throughput sequencing data obtained from a "non-model system."

  3. The developmental transcriptome atlas of the spoon worm Urechis unicinctus (Echiurida: Annelida).

    PubMed

    Park, Chungoo; Han, Yong-Hee; Lee, Sung-Gwon; Ry, Kyoung-Bin; Oh, Jooseong; Kern, Elizabeth M A; Park, Joong-Ki; Cho, Sung-Jin

    2018-03-01

    Echiurida is one of the most intriguing major subgroups of annelida because, unlike most other annelids, echiurids lack metameric body segmentation as adults. For this reason, transcriptome analyses from various developmental stages of echiurid species can be of substantial value for understanding precise expression levels and the complex regulatory networks during early and larval development. A total of 914 million raw RNA-Seq reads were produced from 14 developmental stages of Urechis unicinctus and were de novo assembled into contigs spanning 63,928,225 bp with an N50 length of 2700 bp. The resulting comprehensive transcriptome database of the early developmental stages of U. unicinctus consists of 20,305 representative functional protein-coding transcripts. Approximately 66% of unigenes were assigned to superphylum-level taxa, including Lophotrochozoa (40%). The completeness of the transcriptome assembly was assessed using benchmarking universal single-copy orthologs; 75.7% of the single-copy orthologs were presented in our transcriptome database. We observed 3 distinct patterns of global transcriptome profiles from 14 developmental stages and identified 12,705 genes that showed dynamic regulation patterns during the differentiation and maturation of U. unicinctus cells. We present the first large-scale developmental transcriptome dataset of U. unicinctus and provide a general overview of the dynamics of global gene expression changes during its early developmental stages. The analysis of time-course gene expression data is a first step toward understanding the complex developmental gene regulatory networks in U. unicinctus and will furnish a valuable resource for analyzing the functions of gene repertoires in various developmental phases.

  4. Towards a Lifecycle Information Framework and Technology in Manufacturing.

    PubMed

    Hedberg, Thomas; Feeney, Allison Barnard; Helu, Moneer; Camelio, Jaime A

    2017-06-01

    Industry has been chasing the dream of integrating and linking data across the product lifecycle and enterprises for decades. However, industry has been challenged by the fact that the context in which data is used varies based on the function / role in the product lifecycle that is interacting with the data. Holistically, the data across the product lifecycle must be considered an unstructured data-set because multiple data repositories and domain-specific schema exist in each phase of the lifecycle. This paper explores a concept called the Lifecycle Information Framework and Technology (LIFT). LIFT is a conceptual framework for lifecycle information management and the integration of emerging and existing technologies, which together form the basis of a research agenda for dynamic information modeling in support of digital-data curation and reuse in manufacturing. This paper provides a discussion of the existing technologies and activities that the LIFT concept leverages. Also, the paper describes the motivation for applying such work to the domain of manufacturing. Then, the LIFT concept is discussed in detail, while underlying technologies are further examined and a use case is detailed. Lastly, potential impacts are explored.

  5. Molecular and physiological responses to titanium dioxide ...

    EPA Pesticide Factsheets

    - Changes in tissue transcriptomes and productivity of Arabidopsis thaliana were investigated during exposure of plants to two widely-used engineered metal oxide nanoparticles, titanium dioxide (nano-titanium) and cerium dioxide (nano-cerium). Microarray analyses confirmed that exposure to either nanoparticle altered the transcriptomes of rosette leaves and roots, with comparatively larger numbers of differentially expressed genes (DEGs) found under nano-titania exposure. Nano-titania induced more DEGs in rosette leaves, whereas roots had more DEGs under nano-ceria exposure. MapMan analyses indicated that while nano-titania up-regulated overall and secondary metabolism in both tissues, metabolic processes under nano-ceria remained mostly unchanged. Gene enrichment analysis indicated that both nanoparticles mainly enriched ontology groups such as responses to stress (abiotic and biotic), and defense responses (pathogens), and responses to endogenous stimuli (hormones). Nano-titania specifically induced genes associated with photosynthesis, whereas nano-ceria induced expression of genes related to activating transcription factors, most notably those belonging to the ethylene responsive element binding protein family. Interestingly, there were also increased numbers of rosette leaves and plant biomass under nano-ceria exposure, but not under nano-titania. Other transcriptomic responses did not clearly relate to responses observed at the organism level. This may b

  6. Transcriptome analysis of Petunia axillaris flowers reveals genes involved in morphological differentiation and metabolite transport

    PubMed Central

    Amano, Ikuko; Kitajima, Sakihito; Suzuki, Hideyuki; Koeduka, Takao

    2018-01-01

    The biosynthesis of plant secondary metabolites is associated with morphological and metabolic differentiation. As a consequence, gene expression profiles can change drastically, and primary and secondary metabolites, including intermediate and end-products, move dynamically within and between cells. However, little is known about the molecular mechanisms underlying differentiation and transport mechanisms. In this study, we performed a transcriptome analysis of Petunia axillaris subsp. parodii, which produces various volatiles in its corolla limbs and emits metabolites to attract pollinators. RNA-sequencing from leaves, buds, and limbs identified 53,243 unigenes. Analysis of differentially expressed genes, combined with gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses, showed that many biological processes were highly enriched in limbs. These included catabolic processes and signaling pathways of hormones, such as gibberellins, and metabolic pathways, including phenylpropanoids and fatty acids. Moreover, we identified five transporter genes that showed high expression in limbs, and we performed spatiotemporal expression analyses and homology searches to infer their putative functions. Our systematic analysis provides comprehensive transcriptomic information regarding morphological differentiation and metabolite transport in the Petunia flower and lays the foundation for establishing the specific mechanisms that control secondary metabolite biosynthesis in plants. PMID:29902274

  7. The transcriptome of the bowhead whale Balaena mysticetus reveals adaptations of the longest-lived mammal

    PubMed Central

    Seim, Inge; Ma, Siming; Zhou, Xuming; Gerashchenko, Maxim V.; Lee, Sang-Goo; Suydam, Robert; George, John C.; Bickham, John W.; Gladyshev, Vadim N.

    2014-01-01

    Mammals vary dramatically in lifespan, by at least two-orders of magnitude, but the molecular basis for this difference remains largely unknown. The bowhead whale Balaena mysticetus is the longest-lived mammal known, with an estimated maximal lifespan in excess of two hundred years. It is also one of the two largest animals and the most cold-adapted baleen whale species. Here, we report the first genome-wide gene expression analyses of the bowhead whale, based on the de novo assembly of its transcriptome. Bowhead whale or cetacean-specific changes in gene expression were identified in the liver, kidney and heart, and complemented with analyses of positively selected genes. Changes associated with altered insulin signaling and other gene expression patterns could help explain the remarkable longevity of bowhead whales as well as their adaptation to a lipid-rich diet. The data also reveal parallels in candidate longevity adaptations of the bowhead whale, naked mole rat and Brandt's bat. The bowhead whale transcriptome is a valuable resource for the study of this remarkable animal, including the evolution of longevity and its important correlates such as resistance to cancer and other diseases. PMID:25411232

  8. Characterization of gonadal transcriptomes from the turbot (Scophthalmus maximus).

    PubMed

    Hu, Yulong; Huang, Meng; Wang, Weiji; Guan, Jiantao; Kong, Jie

    2016-01-01

    The mechanisms underlying sexual reproduction and sex ratio determination remains unclear in turbot, a flatfish of great commercial value. And there is limited information in the turbot database regarding genes related to the reproductive system. Here, we conducted high-throughput transcriptome profiling of turbot gonad tissues to better understand their reproductive functions and to supply essential gene sequence information for marker-assisted selection programs in the turbot industry. In this study, two gonad libraries representing sex differences in Scophthalmus maximus yielded 453 818 high-quality reads that were assembled into 24 611 contigs and 33 713 singletons by using 454 pyrosequencing, 13 936 contigs and singletons (CS) of which were annotated using BLASTx. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analyses revealed that various biological functions and processes were associated with many of the annotated CS. Expression analyses showed that 510 genes were differentially expressed in males versus females; 80% of these genes were annotated. In addition, 6484 and 6036 single nucleotide polymorphisms (SNPs) were identified in male and female libraries, respectively. This transcriptome resource will serve as the foundation for cDNA or SNP microarray construction, gene expression characterization, and sex-specific linkage mapping in turbot.

  9. Environmental impact assessment of european non-ferro mining industries through life-cycle assessment

    NASA Astrophysics Data System (ADS)

    Hisan Farjana, Shahjadi; Huda, Nazmul; Parvez Mahmud, M. A.

    2018-05-01

    European mining industries are the vast industrial sector which contributes largely on their economy which constitutes of ferro and non-ferro metals and minerals industries. The non-ferro metals extraction and processing industries require focus of attention due to sustainability concerns as their manufacturing processes are highly energy intensive and impacts globally on environment. This paper analyses major environmental effects caused by European metal industries based on the life-cycle impact analysis technologies. This research work is the first work in considering the comparative environmental impact analysis of European non-ferro metal industries which will reveal their technological similarities and dissimilarities to assess their environmental loads. The life-cycle inventory datasets are collected from the EcoInvent database while the analysis is done using the CML baseline and ReCipe endpoint method using SimaPro software version 8.4. The CML and ReCipe method are chosen because they are specialized impact assessment methods for European continent. The impact categories outlined for discussion here are human health, global warming and ecotoxicity. The analysis results reveal that the gold industry is vulnerable for the environment due to waste emission and similar result retained by silver mines a little bit. But copper, lead, manganese and zinc mining processes and industries are environment friendly in terms of metal extraction technologies and waste emissions.

  10. Linking Science Analysis with Observation Planning: A Full Circle Data Lifecycle

    NASA Technical Reports Server (NTRS)

    Grosvenor, Sandy; Jones, Jeremy; Koratkar, Anuradha; Li, Connie; Mackey, Jennifer; Neher, Ken; Wolf, Karl; Obenschain, Arthur F. (Technical Monitor)

    2001-01-01

    A clear goal of the Virtual Observatory (VO) is to enable new science through analysis of integrated astronomical archives. An additional and powerful possibility of the VO is to link and integrate these new analyses with planning of new observations. By providing tools that can be used for observation planning in the VO, the VO will allow the data lifecycle to come full circle: from theory to observations to data and back around to new theories and new observations. The Scientist's Expert Assistant (SEA) Simulation Facility (SSF) is working to combine the ability to access existing archives with the ability to model and visualize new observations. Integrating the two will allow astronomers to better use the integrated archives of the VO to plan and predict the success of potential new observations more efficiently, The full circle lifecycle enabled by SEA can allow astronomers to make substantial leaps in the quality of data and science returns on new observations. Our paper examines the exciting potential of integrating archival analysis with new observation planning, such as performing data calibration analysis on archival images and using that analysis to predict the success of new observations, or performing dynamic signal-to-noise analysis combining historical results with modeling of new instruments or targets. We will also describe how the development of the SSF is progressing and what have been its successes and challenges.

  11. Linking Science Analysis with Observation Planning: A Full Circle Data Lifecycle

    NASA Technical Reports Server (NTRS)

    Jones, Jeremy; Grosvenor, Sandy; Wolf, Karl; Li, Connie; Koratkar, Anuradha; Powers, Edward I. (Technical Monitor)

    2001-01-01

    A clear goal of the Virtual Observatory (VO) is to enable new science through analysis of integrated astronomical archives. An additional and powerful possibility of the VO is to link and integrate these new analyses with planning of new observations. By providing tools that can be used for observation planning in the VO, the VO will allow the data lifecycle to come full circle: from theory to observations to data and back around to new theories and new observations. The Scientist's Expert Assistant (SEA) Simulation Facility (SSF) is working to combine the ability to access existing archives with the ability to model and visualize new observations. Integrating the two will allow astronomers to better use the integrated archives of the VO to plan and predict the success of potential new observations. The full circle lifecycle enabled by SEA can allow astronomers to make substantial leaps in the quality of data and science returns on new observations. Our paper will examine the exciting potential of integrating archival analysis with new observation planning, such as performing data calibration analysis on archival images and using that analysis to predict the success of new observations, or performing dynamic signal-to-noise analysis combining historical results with modeling of new instruments or targets. We will also describe how the development of the SSF is progressing and what has been its successes and challenges.

  12. The circle of life: A cross-cultural comparison of children's attribution of life-cycle traits.

    PubMed

    Burdett, Emily R R; Barrett, Justin L

    2016-06-01

    Do children attribute mortality and other life-cycle traits to all minded beings? The present study examined whether culture influences young children's ability to conceptualize and differentiate human beings from supernatural beings (such as God) in terms of life-cycle traits. Three-to-5-year-old Israeli and British children were questioned whether their mother, a friend, and God would be subject to various life-cycle processes: Birth, death, ageing, existence/longevity, and parentage. Children did not anthropomorphize but differentiated among human and supernatural beings, attributing life-cycle traits to humans, but not to God. Although 3-year-olds differentiated significantly among agents, 5-year-olds attributed correct life-cycle traits more consistently than younger children. The results also indicated some cross-cultural variation in these attributions. Implications for biological conceptual development are discussed. © 2015 The British Psychological Society.

  13. Idea Paper: The Lifecycle of Software for Scientific Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubey, Anshu; McInnes, Lois C.

    The software lifecycle is a well researched topic that has produced many models to meet the needs of different types of software projects. However, one class of projects, software development for scientific computing, has received relatively little attention from lifecycle researchers. In particular, software for end-to-end computations for obtaining scientific results has received few lifecycle proposals and no formalization of a development model. An examination of development approaches employed by the teams implementing large multicomponent codes reveals a great deal of similarity in their strategies. This idea paper formalizes these related approaches into a lifecycle model for end-to-end scientific applicationmore » software, featuring loose coupling between submodels for development of infrastructure and scientific capability. We also invite input from stakeholders to converge on a model that captures the complexity of this development processes and provides needed lifecycle guidance to the scientific software community.« less

  14. A Single-Cell Roadmap of Lineage Bifurcation in Human ESC Models of Embryonic Brain Development.

    PubMed

    Yao, Zizhen; Mich, John K; Ku, Sherman; Menon, Vilas; Krostag, Anne-Rachel; Martinez, Refugio A; Furchtgott, Leon; Mulholland, Heather; Bort, Susan; Fuqua, Margaret A; Gregor, Ben W; Hodge, Rebecca D; Jayabalu, Anu; May, Ryan C; Melton, Samuel; Nelson, Angelique M; Ngo, N Kiet; Shapovalova, Nadiya V; Shehata, Soraya I; Smith, Michael W; Tait, Leah J; Thompson, Carol L; Thomsen, Elliot R; Ye, Chaoyang; Glass, Ian A; Kaykas, Ajamete; Yao, Shuyuan; Phillips, John W; Grimley, Joshua S; Levi, Boaz P; Wang, Yanling; Ramanathan, Sharad

    2017-01-05

    During human brain development, multiple signaling pathways generate diverse cell types with varied regional identities. Here, we integrate single-cell RNA sequencing and clonal analyses to reveal lineage trees and molecular signals underlying early forebrain and mid/hindbrain cell differentiation from human embryonic stem cells (hESCs). Clustering single-cell transcriptomic data identified 41 distinct populations of progenitor, neuronal, and non-neural cells across our differentiation time course. Comparisons with primary mouse and human gene expression data demonstrated rostral and caudal progenitor and neuronal identities from early brain development. Bayesian analyses inferred a unified cell-type lineage tree that bifurcates between cortical and mid/hindbrain cell types. Two methods of clonal analyses confirmed these findings and further revealed the importance of Wnt/β-catenin signaling in controlling this lineage decision. Together, these findings provide a rich transcriptome-based lineage map for studying human brain development and modeling developmental disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Transcriptomic and proteomic landscape of mitochondrial dysfunction reveals secondary coenzyme Q deficiency in mammals

    PubMed Central

    Atanassov, Ilian; Kuznetsova, Irina; Hinze, Yvonne; Mourier, Arnaud; Filipovska, Aleksandra

    2017-01-01

    Dysfunction of the oxidative phosphorylation (OXPHOS) system is a major cause of human disease and the cellular consequences are highly complex. Here, we present comparative analyses of mitochondrial proteomes, cellular transcriptomes and targeted metabolomics of five knockout mouse strains deficient in essential factors required for mitochondrial DNA gene expression, leading to OXPHOS dysfunction. Moreover, we describe sequential protein changes during post-natal development and progressive OXPHOS dysfunction in time course analyses in control mice and a middle lifespan knockout, respectively. Very unexpectedly, we identify a new response pathway to OXPHOS dysfunction in which the intra-mitochondrial synthesis of coenzyme Q (ubiquinone, Q) and Q levels are profoundly decreased, pointing towards novel possibilities for therapy. Our extensive omics analyses provide a high-quality resource of altered gene expression patterns under severe OXPHOS deficiency comparing several mouse models, that will deepen our understanding, open avenues for research and provide an important reference for diagnosis and treatment. PMID:29132502

  16. Computer-Based Model Calibration and Uncertainty Analysis: Terms and Concepts

    DTIC Science & Technology

    2015-07-01

    uncertainty analyses throughout the lifecycle of planning, designing, and operating of Civil Works flood risk management projects as described in...value 95% of the time. In the frequentist approach to PE, model parameters area regarded as having true values, and their estimate is based on the...in catchment models. 1. Evaluating parameter uncertainty. Water Resources Research 19(5):1151–1172. Lee, P. M. 2012. Bayesian statistics: An

  17. Food waste minimization from a life-cycle perspective.

    PubMed

    Bernstad Saraiva Schott, A; Andersson, T

    2015-01-01

    This article investigates potentials and environmental impacts related to household food waste minimization, based on a case study in Southern Sweden. In the study, the amount of avoidable and unavoidable food waste currently being disposed of by households was assessed through waste composition analyses and the different types of avoidable food waste were classified. Currently, both avoidable and unavoidable food waste is either incinerated or treated through anaerobic digestion. A hypothetical scenario with no generation of avoidable food waste and either anaerobic digestion or incineration of unavoidable food waste was compared to the current situation using the life-cycle assessment method, limited to analysis of global warming potential (GWP). The results from the waste composition analyses indicate that an average of 35% of household food waste is avoidable. Minimization of this waste could result in reduction of greenhouse gas emissions of 800-1400 kg/tonne of avoidable food waste. Thus, a minimization strategy would result in increased avoidance of GWP compared to the current situation. The study clearly shows that although modern alternatives for food waste treatment can result in avoidance of GWP through nutrient and energy recovery, food waste prevention yields far greater benefits for GWP compared to both incineration and anaerobic digestion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Environmental effects of interstate power trading on electricity consumption mixes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joe Marriott; H. Scott Matthews

    2005-11-15

    Although many studies of electricity generation use national or state average generation mix assumptions, in reality a great deal of electricity is transferred between states with very different mixes of fossil and renewable fuels, and using the average numbers could result in incorrect conclusions in these studies. The authors create electricity consumption profiles for each state and for key industry sectors in the U.S. based on existing state generation profiles, net state power imports, industry presence by state, and an optimization model to estimate interstate electricity trading. Using these 'consumption mixes' can provide a more accurate assessment of electricity usemore » in life-cycle analyses. It is concluded that the published generation mixes for states that import power are misleading, since the power consumed in-state has a different makeup than the power that was generated. And, while most industry sectors have consumption mixes similar to the U.S. average, some of the most critical sectors of the economy - such as resource extraction and material processing sectors - are very different. This result does validate the average mix assumption made in many environmental assessments, but it is important to accurately quantify the generation methods for electricity used when doing life-cycle analyses. 16 refs., 7 figs., 2 tabs.« less

  19. Materials Lifecycle and Environmental Consideration at NASA

    NASA Technical Reports Server (NTRS)

    Clark-Ingram, Marceia

    2010-01-01

    The aerospace community faces tremendous challenges with continued availability of existing material supply chains during the lifecycle of a program. Many obsolescence drivers affect the availability of materials: environmental safety ahd health regulations, vendor and supply economics, market sector demands,and natural disasters. Materials selection has become increasingly more critical when designing aerospace hardware. NASA and DoD conducted a workshop with subject matter experts to discuss issues and define solutions for materials selections during the lifecycle phases of a product/system/component. The three primary lifecycle phases were: Conceptualization/Design, Production & Sustainment, and End of life / Reclamation. Materials obsolescence and pollution prevention considerations were explored for the aforementioned lifecycle phases. The recommended solutions from the workshop are being presented.

  20. De novo transcriptome assembly of drought tolerant CAM plants, Agave deserti and Agave tequilana.

    PubMed

    Gross, Stephen M; Martin, Jeffrey A; Simpson, June; Abraham-Juarez, María Jazmín; Wang, Zhong; Visel, Axel

    2013-08-19

    Agaves are succulent monocotyledonous plants native to xeric environments of North America. Because of their adaptations to their environment, including crassulacean acid metabolism (CAM, a water-efficient form of photosynthesis), and existing technologies for ethanol production, agaves have gained attention both as potential lignocellulosic bioenergy feedstocks and models for exploring plant responses to abiotic stress. However, the lack of comprehensive Agave sequence datasets limits the scope of investigations into the molecular-genetic basis of Agave traits. Here, we present comprehensive, high quality de novo transcriptome assemblies of two Agave species, A. tequilana and A. deserti, built from short-read RNA-seq data. Our analyses support completeness and accuracy of the de novo transcriptome assemblies, with each species having a minimum of approximately 35,000 protein-coding genes. Comparison of agave proteomes to those of additional plant species identifies biological functions of gene families displaying sequence divergence in agave species. Additionally, a focus on the transcriptomics of the A. deserti juvenile leaf confirms evolutionary conservation of monocotyledonous leaf physiology and development along the proximal-distal axis. Our work presents a comprehensive transcriptome resource for two Agave species and provides insight into their biology and physiology. These resources are a foundation for further investigation of agave biology and their improvement for bioenergy development.

  1. De novo transcriptome assembly of drought tolerant CAM plants, Agave deserti and Agave tequilana

    PubMed Central

    2013-01-01

    Background Agaves are succulent monocotyledonous plants native to xeric environments of North America. Because of their adaptations to their environment, including crassulacean acid metabolism (CAM, a water-efficient form of photosynthesis), and existing technologies for ethanol production, agaves have gained attention both as potential lignocellulosic bioenergy feedstocks and models for exploring plant responses to abiotic stress. However, the lack of comprehensive Agave sequence datasets limits the scope of investigations into the molecular-genetic basis of Agave traits. Results Here, we present comprehensive, high quality de novo transcriptome assemblies of two Agave species, A. tequilana and A. deserti, built from short-read RNA-seq data. Our analyses support completeness and accuracy of the de novo transcriptome assemblies, with each species having a minimum of approximately 35,000 protein-coding genes. Comparison of agave proteomes to those of additional plant species identifies biological functions of gene families displaying sequence divergence in agave species. Additionally, a focus on the transcriptomics of the A. deserti juvenile leaf confirms evolutionary conservation of monocotyledonous leaf physiology and development along the proximal-distal axis. Conclusions Our work presents a comprehensive transcriptome resource for two Agave species and provides insight into their biology and physiology. These resources are a foundation for further investigation of agave biology and their improvement for bioenergy development. PMID:23957668

  2. Genome wide transcriptome profiling reveals differential gene expression in secondary metabolite pathway of Cymbopogon winterianus.

    PubMed

    Devi, Kamalakshi; Mishra, Surajit K; Sahu, Jagajjit; Panda, Debashis; Modi, Mahendra K; Sen, Priyabrata

    2016-02-15

    Advances in transcriptome sequencing provide fast, cost-effective and reliable approach to generate large expression datasets especially suitable for non-model species to identify putative genes, key pathway and regulatory mechanism. Citronella (Cymbopogon winterianus) is an aromatic medicinal grass used for anti-tumoral, antibacterial, anti-fungal, antiviral, detoxifying and natural insect repellent properties. Despite of having number of utilities, the genes involved in terpenes biosynthetic pathway is not yet clearly elucidated. The present study is a pioneering attempt to generate an exhaustive molecular information of secondary metabolite pathway and to increase genomic resources in Citronella. Using high-throughput RNA-Seq technology, root and leaf transcriptome was analysed at an unprecedented depth (11.7 Gb). Targeted searches identified majority of the genes associated with metabolic pathway and other natural product pathway viz. antibiotics synthesis along with many novel genes. Terpenoid biosynthesis genes comparative expression results were validated for 15 unigenes by RT-PCR and qRT-PCR. Thus the coverage of these transcriptome is comprehensive enough to discover all known genes of major metabolic pathways. This transcriptome dataset can serve as important public information for gene expression, genomics and function genomics studies in Citronella and shall act as a benchmark for future improvement of the crop.

  3. Transcriptome analysis of tube foot and large scale marker discovery in sea cucumber, Apostichopus japonicus.

    PubMed

    Zhou, Xiaoxu; Wang, Hongdi; Cui, Jun; Qiu, Xuemei; Chang, Yaqing; Wang, Xiuli

    2016-12-01

    Tube foot as one of the ambulacral appendages types in Aspidochirote holothurioids, is known for their functions in locomotion, feeding, chemoreception, light sensitivity and respiration. In this study, we explored the characteristic of transcriptome in the tube foot of sea cucumber (Apostichopus japonicus). Our results showed that among 390 unigenes which specifically expressed in the tube foot, 190 of them were annotated. Based on the assembly transcriptome, we found 219,860 SNPs from 34,749 unigenes, 97,683, 53,624, 27,767 and 40,786 were located in CDSs, 5'-UTRs, 3'-UTRs and non-CDS separately. Furthermore, 12,114 SSRs were detected from 7394 unigenes. Target genes of four specifically expressed miRNAs (miR-29a, miR-29b, miR-278-3p and miR-2005) in tube foot were also predicted based on the transcriptome, which contain immune-related factors (MBL, VLRA, AjC3, MyD88, CFB), skin pigmentation (MITF), candidate regeneration factor (TRP) and holothurians autolysis-related factor (CL). These results develop a relatively large number of molecular markers and transcriptome resources, and will provide a foundation for further analyses on the function and molecular mechanisms underlying A. japonicas tube foot. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Bus Lifecycle Cost Model for Federal Land Management Agencies.

    DOT National Transportation Integrated Search

    2011-09-30

    The Bus Lifecycle Cost Model is a spreadsheet-based planning tool that estimates capital, operating, and maintenance costs for various bus types over the full lifecycle of the vehicle. The model is based on a number of operating characteristics, incl...

  5. A Transcriptomic Network Underlies Microstructural and Physiological Responses to Cadmium in Populus × canescens1[C][W

    PubMed Central

    He, Jiali; Li, Hong; Luo, Jie; Ma, Chaofeng; Li, Shaojun; Qu, Long; Gai, Ying; Jiang, Xiangning; Janz, Dennis; Polle, Andrea; Tyree, Melvin; Luo, Zhi-Bin

    2013-01-01

    Bark tissue of Populus × canescens can hyperaccumulate cadmium, but microstructural, transcriptomic, and physiological response mechanisms are poorly understood. Histochemical assays, transmission electron microscopic observations, energy-dispersive x-ray microanalysis, and transcriptomic and physiological analyses have been performed to enhance our understanding of cadmium accumulation and detoxification in P. × canescens. Cadmium was allocated to the phloem of the bark, and subcellular cadmium compartmentalization occurred mainly in vacuoles of phloem cells. Transcripts involved in microstructural alteration, changes in nutrition and primary metabolism, and stimulation of stress responses showed significantly differential expression in the bark of P. × canescens exposed to cadmium. About 48% of the differentially regulated transcripts formed a coregulation network in which 43 hub genes played a central role both in cross talk among distinct biological processes and in coordinating the transcriptomic regulation in the bark of P. × canescens in response to cadmium. The cadmium transcriptome in the bark of P. × canescens was mirrored by physiological readouts. Cadmium accumulation led to decreased total nitrogen, phosphorus, and calcium and increased sulfur in the bark. Cadmium inhibited photosynthesis, resulting in decreased carbohydrate levels. Cadmium induced oxidative stress and antioxidants, including free proline, soluble phenolics, ascorbate, and thiol compounds. These results suggest that orchestrated microstructural, transcriptomic, and physiological regulation may sustain cadmium hyperaccumulation in P. × canescens bark and provide new insights into engineering woody plants for phytoremediation. PMID:23530184

  6. De novo transcriptome assemblies of four xylem sap-feeding insects

    PubMed Central

    Tassone, Erica E.; Cowden, Charles C.

    2017-01-01

    Abstract Background: Spittle bugs and sharpshooters are well-known xylem sap-feeding insects and vectors of the phytopathogenic bacterium Xylella fastidiosa (Wells), a causal agent of Pierce's disease of grapevines and other crop diseases. Specialized feeding on nutrient-deficient xylem sap is relatively rare among insect herbivores, and only limited genomic and transcriptomic information has been generated for xylem-sap feeders. To develop a more comprehensive understanding of biochemical adaptations and symbiotic relationships that support survival on a nutritionally austere dietary source, transcriptome assemblies for three sharpshooter species and one spittlebug species were produced. Findings: Trinity-based de novo transcriptome assemblies were generated for all four xylem-sap feeders using raw sequencing data originating from whole-insect preps. Total transcripts for each species ranged from 91 384 for Cuerna arida to 106 998 for Homalodisca liturata with transcript totals for Graphocephala atropunctata and the spittlebug Clastoptera arizonana falling in between. The percentage of transcripts comprising complete open reading frames ranged from 60% for H. liturata to 82% for C. arizonana. Bench-marking universal single-copy orthologs analyses for each dataset indicated quality assemblies and a high degree of completeness for all four species. Conclusions: These four transcriptomes represent a significant expansion of data for insect herbivores that feed exclusively on xylem sap, a nutritionally deficient dietary source relative to other plant tissues and fluids. Comparison of transcriptome data with insect herbivores that utilize other dietary sources may illuminate fundamental differences in the biochemistry of dietary specialization. PMID:28327966

  7. De novo assembly and annotation of the Antarctic copepod (Tigriopus kingsejongensis) transcriptome.

    PubMed

    Kim, Hui-Su; Lee, Bo-Young; Han, Jeonghoon; Lee, Young Hwan; Min, Gi-Sik; Kim, Sanghee; Lee, Jae-Seong

    2016-08-01

    The whole transcriptome of the Antarctic copepod (Tigriopus kingsejongensis) was sequenced using Illumina RNA-seq. De novo assembly was performed with 64,785,098 raw reads using Trinity, which assembled into 81,653 contigs. TransDecoder found 38,250 candidate coding contigs which showed homology to other species by BLAST analysis. Functional gene annotation was performed by Gene Ontology (GO), InterProScan, and KEGG pathway analyses. Finally, we identified a number of expressed gene catalog for T. kingsejongensis that is a useful model animal for gene information-based polar research to uncover molecular mechanisms of environmental adaptation on harsh environments. In particular, we observed highly developing lipid metabolism in T. kingsejongensis directly compared to those of the Far East Pacific coast copepod Tigriopus japonicus at the transcriptome level. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Comparative transcriptome analyses of flower development in four species of Achimenes (Gesneriaceae).

    PubMed

    Roberts, Wade R; Roalson, Eric H

    2017-03-20

    Flowers have an amazingly diverse display of colors and shapes, and these characteristics often vary significantly among closely related species. The evolution of diverse floral form can be thought of as an adaptive response to pollination and reproduction, but it can also be seen through the lens of morphological and developmental constraints. To explore these interactions, we use RNA-seq across species and development to investigate gene expression and sequence evolution as they relate to the evolution of the diverse flowers in a group of Neotropical plants native to Mexico-magic flowers (Achimenes, Gesneriaceae). The assembled transcriptomes contain between 29,000 and 42,000 genes expressed during development. We combine sequence orthology and coexpression clustering with analyses of protein evolution to identify candidate genes for roles in floral form evolution. Over 25% of transcripts captured were distinctive to Achimenes and overrepresented by genes involved in transcription factor activity. Using a model-based clustering approach we find dynamic, temporal patterns of gene expression among species. Selection tests provide evidence of positive selection in several genes with roles in pigment production, flowering time, and morphology. Combining these approaches to explore genes related to flower color and flower shape, we find distinct patterns that correspond to transitions of floral form among Achimenes species. The floral transcriptomes developed from four species of Achimenes provide insight into the mechanisms involved in the evolution of diverse floral form among closely related species with different pollinators. We identified several candidate genes that will serve as an important and useful resource for future research. High conservation of sequence structure, patterns of gene coexpression, and detection of positive selection acting on few genes suggests that large phenotypic differences in floral form may be caused by genetic differences in a small set of genes. Our characterized floral transcriptomes provided here should facilitate further analyses into the genomics of flower development and the mechanisms underlying the evolution of diverse flowers in Achimenes and other Neotropical Gesneriaceae.

  9. Towards a Lifecycle Information Framework and Technology in Manufacturing

    PubMed Central

    Hedberg, Thomas; Feeney, Allison Barnard; Helu, Moneer; Camelio, Jaime A.

    2016-01-01

    Industry has been chasing the dream of integrating and linking data across the product lifecycle and enterprises for decades. However, industry has been challenged by the fact that the context in which data is used varies based on the function / role in the product lifecycle that is interacting with the data. Holistically, the data across the product lifecycle must be considered an unstructured data-set because multiple data repositories and domain-specific schema exist in each phase of the lifecycle. This paper explores a concept called the Lifecycle Information Framework and Technology (LIFT). LIFT is a conceptual framework for lifecycle information management and the integration of emerging and existing technologies, which together form the basis of a research agenda for dynamic information modeling in support of digital-data curation and reuse in manufacturing. This paper provides a discussion of the existing technologies and activities that the LIFT concept leverages. Also, the paper describes the motivation for applying such work to the domain of manufacturing. Then, the LIFT concept is discussed in detail, while underlying technologies are further examined and a use case is detailed. Lastly, potential impacts are explored. PMID:28265224

  10. Comparative transcriptomics with self-organizing map reveals cryptic photosynthetic differences between two accessions of North American Lake cress.

    PubMed

    Nakayama, Hokuto; Sakamoto, Tomoaki; Okegawa, Yuki; Kaminoyama, Kaori; Fujie, Manabu; Ichihashi, Yasunori; Kurata, Tetsuya; Motohashi, Ken; Al-Shehbaz, Ihsan; Sinha, Neelima; Kimura, Seisuke

    2018-02-19

    Because natural variation in wild species is likely the result of local adaptation, it provides a valuable resource for understanding plant-environmental interactions. Rorippa aquatica (Brassicaceae) is a semi-aquatic North American plant with morphological differences between several accessions, but little information available on any physiological differences. Here, we surveyed the transcriptomes of two R. aquatica accessions and identified cryptic physiological differences between them. We first reconstructed a Rorippa phylogeny to confirm relationships between the accessions. We performed large-scale RNA-seq and de novo assembly; the resulting 87,754 unigenes were then annotated via comparisons to different databases. Between-accession physiological variation was identified with transcriptomes from both accessions. Transcriptome data were analyzed with principal component analysis and self-organizing map. Results of analyses suggested that photosynthetic capability differs between the accessions. Indeed, physiological experiments revealed between-accession variation in electron transport rate and the redox state of the plastoquinone pool. These results indicated that one accession may have adapted to differences in temperature or length of the growing season.

  11. Genomics and Transcriptomics Analyses of the Oil-Accumulating Basidiomycete Yeast Trichosporon oleaginosus: Insights into Substrate Utilization and Alternative Evolutionary Trajectories of Fungal Mating Systems

    PubMed Central

    Bracharz, Felix; Lorenzen, Jan; Kracht, Octavia N.; Chovatia, Mansi; Daum, Chris; Deshpande, Shweta; Lipzen, Anna; Nolan, Matt; Ohm, Robin A.; Grigoriev, Igor V.; Sun, Sheng; Heitman, Joseph

    2015-01-01

    ABSTRACT Microbial fermentation of agro-industrial waste holds great potential for reducing the environmental impact associated with the production of lipids for industrial purposes from plant biomass. However, the chemical complexity of many residues currently prevents efficient conversion into lipids, creating a high demand for strains with the ability to utilize all energy-rich components of agricultural residues. Here, we present results of genome and transcriptome analyses of Trichosporon oleaginosus. This oil-accumulating yeast is able to grow on a wide variety of substrates, including pentoses and N-acetylglucosamine, making it an interesting candidate for biotechnological applications. Transcriptomics shows specific changes in gene expression patterns under lipid-accumulating conditions. Furthermore, gene content and expression analyses indicate that T. oleaginosus is well-adapted for the utilization of chitin-rich biomass. We also focused on the T. oleaginosus mating type, because this species is a member of the Tremellomycetes, a group that has been intensively analyzed as a model for the evolution of sexual development, the best-studied member being Cryptococcus neoformans. The structure of the T. oleaginosus mating-type regions differs significantly from that of other Tremellomycetes and reveals a new evolutionary trajectory paradigm. Comparative analysis shows that recruitment of developmental genes to the ancestral tetrapolar mating-type loci occurred independently in the Trichosporon and Cryptococcus lineages, supporting the hypothesis of a trend toward larger mating-type regions in fungi. PMID:26199329

  12. Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin.

    PubMed

    Shi, Haitao; Jiang, Chuan; Ye, Tiantian; Tan, Dun-Xian; Reiter, Russel J; Zhang, Heng; Liu, Renyi; Chan, Zhulong

    2015-02-01

    Melatonin (N-acetyl-5-methoxytryptamine), a well-known animal hormone, is also involved in plant development and abiotic stress responses. In this study, it is shown that exogenous application of melatonin conferred improved salt, drought, and cold stress resistances in bermudagrass. Moreover, exogenous melatonin treatment alleviated reactive oxygen species (ROS) burst and cell damage induced by abiotic stress; this involved activation of several antioxidants. Additionally, melatonin-pre-treated plants exhibited higher concentrations of 54 metabolites, including amino acids, organic acids, sugars, and sugar alcohols, than non-treated plants under abiotic stress conditions. Genome-wide transcriptomic profiling identified 3933 transcripts (2361 up-regulated and 1572 down-regulated) that were differentially expressed in melatonin-treated plants versus controls. Pathway and gene ontology (GO) term enrichment analyses revealed that genes involved in nitrogen metabolism, major carbohydrate metabolism, tricarboxylic acid (TCA)/org transformation, transport, hormone metabolism, metal handling, redox, and secondary metabolism were over-represented after melatonin pre-treatment. Taken together, this study provides the first evidence of the protective roles of exogenous melatonin in the bermudagrass response to abiotic stresses, partially via activation of antioxidants and modulation of metabolic homeostasis. Notably, metabolic and transcriptomic analyses showed that the underlying mechanisms of melatonin could involve major reorientation of photorespiratory and carbohydrate and nitrogen metabolism. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  13. Genomic and transcriptomic approaches to study immunology in cyprinids: What is next?

    PubMed

    Petit, Jules; David, Lior; Dirks, Ron; Wiegertjes, Geert F

    2017-10-01

    Accelerated by the introduction of Next-Generation Sequencing (NGS), a number of genomes of cyprinid fish species have been drafted, leading to a highly valuable collective resource of comparative genome information on cyprinids (Cyprinidae). In addition, NGS-based transcriptome analyses of different developmental stages, organs, or cell types, increasingly contribute to the understanding of complex physiological processes, including immune responses. Cyprinids are a highly interesting family because they comprise one of the most-diversified families of teleosts and because of their variation in ploidy level, with diploid, triploid, tetraploid, hexaploid and sometimes even octoploid species. The wealth of data obtained from NGS technologies provides both challenges and opportunities for immunological research, which will be discussed here. Correct interpretation of ploidy effects on immune responses requires knowledge of the degree of functional divergence between duplicated genes, which can differ even between closely-related cyprinid fish species. We summarize NGS-based progress in analysing immune responses and discuss the importance of respecting the presence of (multiple) duplicated gene sequences when performing transcriptome analyses for detailed understanding of complex physiological processes. Progressively, advances in NGS technology are providing workable methods to further elucidate the implications of gene duplication events and functional divergence of duplicates genes and proteins involved in immune responses in cyprinids. We conclude with discussing how future applications of NGS technologies and analysis methods could enhance immunological research and understanding. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Transcriptomics of cortical gray matter thickness decline during normal aging

    PubMed Central

    Kochunov, P; Charlesworth, J; Winkler, A; Hong, LE; Nichols, T; Curran, JE; Sprooten, E; Jahanshad, N; Thompson, PM; Johnson, MP; Kent, JW; Landman, BA; Mitchell, B; Cole, SA; Dyer, TD; Moses, EK; Goring, HHH; Almasy, L; Duggirala, R; Olvera, RL; Glahn, DC; Blangero, J

    2013-01-01

    Introduction We performed a whole-transcriptome correlation analysis, followed by the pathway enrichment and testing of innate immune response pathways analyses to evaluate the hypothesis that transcriptional activity can predict cortical gray matter thickness (GMT) variability during normal cerebral aging Methods Transcriptome and GMT data were availabe for 379 individuals (age range=28–85) community-dwelling members of large extended Mexican-American families. Collection of transcriptome data preceded that of neuroimaging data by 17 years. Genome-wide gene transcriptome data consisted of 20,413 heritable lymphocytes-based transcripts. GMT measurements were performed from high-resolution (isotropic 800µm) T1-weighted MRI. Transcriptome-wide and pathway enrichment analysis was used to classify genes correlated with GMT. Transcripts for sixty genes from seven innate immune pathways were tested as specific predictors of GMT variability. Results Transcripts for eight genes (IGFBP3, LRRN3, CRIP2, SCD, IDS, TCF4, GATA3, HN1) passed the transcriptome-wide significance threshold. Four orthogonal factors extracted from this set predicted 31.9% of the variability in the whole-brain and between 23.4 and 35% of regional GMT measurements. Pathway enrichment analysis identified six functional categories including cellular proliferation, aggregation, differentiation, viral infection, and metabolism. The integrin signaling pathway was significantly (p<10−6) enriched with GMT. Finally, three innate immune pathways (complement signaling, toll-receptors and scavenger and immunoglobulins) were significantly associated with GMT. Conclusion Expression activity for the genes that regulate cellular proliferation, adhesion, differentiation and inflammation can explain a significant proportion of individual variability in cortical GMT. Our findings suggest that normal cerebral aging is the product of a progressive decline in regenerative capacity and increased neuroinflammation. PMID:23707588

  15. Transcriptomics of cortical gray matter thickness decline during normal aging.

    PubMed

    Kochunov, P; Charlesworth, J; Winkler, A; Hong, L E; Nichols, T E; Curran, J E; Sprooten, E; Jahanshad, N; Thompson, P M; Johnson, M P; Kent, J W; Landman, B A; Mitchell, B; Cole, S A; Dyer, T D; Moses, E K; Goring, H H H; Almasy, L; Duggirala, R; Olvera, R L; Glahn, D C; Blangero, J

    2013-11-15

    We performed a whole-transcriptome correlation analysis, followed by the pathway enrichment and testing of innate immune response pathway analyses to evaluate the hypothesis that transcriptional activity can predict cortical gray matter thickness (GMT) variability during normal cerebral aging. Transcriptome and GMT data were available for 379 individuals (age range=28-85) community-dwelling members of large extended Mexican American families. Collection of transcriptome data preceded that of neuroimaging data by 17 years. Genome-wide gene transcriptome data consisted of 20,413 heritable lymphocytes-based transcripts. GMT measurements were performed from high-resolution (isotropic 800 μm) T1-weighted MRI. Transcriptome-wide and pathway enrichment analysis was used to classify genes correlated with GMT. Transcripts for sixty genes from seven innate immune pathways were tested as specific predictors of GMT variability. Transcripts for eight genes (IGFBP3, LRRN3, CRIP2, SCD, IDS, TCF4, GATA3, and HN1) passed the transcriptome-wide significance threshold. Four orthogonal factors extracted from this set predicted 31.9% of the variability in the whole-brain and between 23.4 and 35% of regional GMT measurements. Pathway enrichment analysis identified six functional categories including cellular proliferation, aggregation, differentiation, viral infection, and metabolism. The integrin signaling pathway was significantly (p<10(-6)) enriched with GMT. Finally, three innate immune pathways (complement signaling, toll-receptors and scavenger and immunoglobulins) were significantly associated with GMT. Expression activity for the genes that regulate cellular proliferation, adhesion, differentiation and inflammation can explain a significant proportion of individual variability in cortical GMT. Our findings suggest that normal cerebral aging is the product of a progressive decline in regenerative capacity and increased neuroinflammation. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. A Snapshot of a Coral “Holobiont”: A Transcriptome Assembly of the Scleractinian Coral, Porites, Captures a Wide Variety of Genes from Both the Host and Symbiotic Zooxanthellae

    PubMed Central

    Shinzato, Chuya; Inoue, Mayuri; Kusakabe, Makoto

    2014-01-01

    Massive scleractinian corals of the genus Porites are important reef builders in the Indo-Pacific, and they are more resistant to thermal stress than other stony corals, such as the genus Acropora. Because coral health and survival largely depend on the interaction between a coral host and its symbionts, it is important to understand the molecular interactions of an entire “coral holobiont”. We simultaneously sequenced transcriptomes of Porites australiensis and its symbionts using the Illumina Hiseq2000 platform. We obtained 14.3 Gbp of sequencing data and assembled it into 74,997 contigs (average: 1,263 bp, N50 size: 2,037 bp). We successfully distinguished contigs originating from the host (Porites) and the symbiont (Symbiodinium) by aligning nucleotide sequences with the decoded Acropora digitifera and Symbiodinium minutum genomes. In contrast to previous coral transcriptome studies, at least 35% of the sequences were found to have originated from the symbionts, indicating that it is possible to analyze both host and symbiont transcriptomes simultaneously. Conserved protein domain and KEGG analyses showed that the dataset contains broad gene repertoires of both Porites and Symbiodinium. Effective utilization of sequence reads revealed that the polymorphism rate in P. australiensis is 1.0% and identified the major symbiotic Symbiodinium as Type C15. Analyses of amino acid biosynthetic pathways suggested that this Porites holobiont is probably able to synthesize most of the common amino acids and that Symbiodinium is potentially able to provide essential amino acids to its host. We believe this to be the first molecular evidence of complementarity in amino acid metabolism between coral hosts and their symbionts. We successfully assembled genes originating from both the host coral and the symbiotic Symbiodinium to create a snapshot of the coral holobiont transcriptome. This dataset will facilitate a deeper understanding of molecular mechanisms of coral symbioses and stress responses. PMID:24454815

  17. A snapshot of a coral "holobiont": a transcriptome assembly of the scleractinian coral, porites, captures a wide variety of genes from both the host and symbiotic zooxanthellae.

    PubMed

    Shinzato, Chuya; Inoue, Mayuri; Kusakabe, Makoto

    2014-01-01

    Massive scleractinian corals of the genus Porites are important reef builders in the Indo-Pacific, and they are more resistant to thermal stress than other stony corals, such as the genus Acropora. Because coral health and survival largely depend on the interaction between a coral host and its symbionts, it is important to understand the molecular interactions of an entire "coral holobiont". We simultaneously sequenced transcriptomes of Porites australiensis and its symbionts using the Illumina Hiseq2000 platform. We obtained 14.3 Gbp of sequencing data and assembled it into 74,997 contigs (average: 1,263 bp, N50 size: 2,037 bp). We successfully distinguished contigs originating from the host (Porites) and the symbiont (Symbiodinium) by aligning nucleotide sequences with the decoded Acropora digitifera and Symbiodinium minutum genomes. In contrast to previous coral transcriptome studies, at least 35% of the sequences were found to have originated from the symbionts, indicating that it is possible to analyze both host and symbiont transcriptomes simultaneously. Conserved protein domain and KEGG analyses showed that the dataset contains broad gene repertoires of both Porites and Symbiodinium. Effective utilization of sequence reads revealed that the polymorphism rate in P. australiensis is 1.0% and identified the major symbiotic Symbiodinium as Type C15. Analyses of amino acid biosynthetic pathways suggested that this Porites holobiont is probably able to synthesize most of the common amino acids and that Symbiodinium is potentially able to provide essential amino acids to its host. We believe this to be the first molecular evidence of complementarity in amino acid metabolism between coral hosts and their symbionts. We successfully assembled genes originating from both the host coral and the symbiotic Symbiodinium to create a snapshot of the coral holobiont transcriptome. This dataset will facilitate a deeper understanding of molecular mechanisms of coral symbioses and stress responses.

  18. Proteomics and transcriptomics analyses of Arabidopsis floral buds uncover important functions of ARABIDOPSIS SKP1-LIKE1

    DOE PAGES

    Lu, Dihong; Ni, Weimin; Stanley, Bruce A.; ...

    2016-03-03

    The ARABIDOPSIS SKP1-LIKE1 (ASK1) protein functions as a subunit of SKP1-CUL1-F-box (SCF) E3 ubiquitin ligases. Previous genetic studies showed that ASK1 plays important roles in Arabidopsis flower development and male meiosis. However, the molecular impact of ASK1-containing SCF E3 ubiquitin ligases (ASK1-E3s) on the floral proteome and transcriptome is unknown. Here we identified proteins that are potentially regulated by ASK1-E3s by comparing floral bud proteomes of wild-type and the ask1 mutant plants. More than 200 proteins were detected in the ask1 mutant but not in wild-type and >300 were detected at higher levels in the ask1 mutant than in wild-type,more » but their RNA levels were not significantly different between wild-type and ask1 floral buds as shown by transcriptomics analysis, suggesting that they are likely regulated at the protein level by ASK1-E3s. Integrated analyses of floral proteomics and transcriptomics of ask1 and wild-type uncovered several potential aspects of ASK1-E3 functions, including regulation of transcription regulators, kinases, peptidases, and ribosomal proteins, with implications on possible mechanisms of ASK1-E3 functions in floral development. In conclusion, our results suggested that ASK1-E3s play important roles in Arabidopsis protein degradation during flower development. This study opens up new possibilities for further functional studies of these candidate E3 substrates.« less

  19. Proteomics and transcriptomics analyses of Arabidopsis floral buds uncover important functions of ARABIDOPSIS SKP1-LIKE1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Dihong; Ni, Weimin; Stanley, Bruce A.

    The ARABIDOPSIS SKP1-LIKE1 (ASK1) protein functions as a subunit of SKP1-CUL1-F-box (SCF) E3 ubiquitin ligases. Previous genetic studies showed that ASK1 plays important roles in Arabidopsis flower development and male meiosis. However, the molecular impact of ASK1-containing SCF E3 ubiquitin ligases (ASK1-E3s) on the floral proteome and transcriptome is unknown. Here we identified proteins that are potentially regulated by ASK1-E3s by comparing floral bud proteomes of wild-type and the ask1 mutant plants. More than 200 proteins were detected in the ask1 mutant but not in wild-type and >300 were detected at higher levels in the ask1 mutant than in wild-type,more » but their RNA levels were not significantly different between wild-type and ask1 floral buds as shown by transcriptomics analysis, suggesting that they are likely regulated at the protein level by ASK1-E3s. Integrated analyses of floral proteomics and transcriptomics of ask1 and wild-type uncovered several potential aspects of ASK1-E3 functions, including regulation of transcription regulators, kinases, peptidases, and ribosomal proteins, with implications on possible mechanisms of ASK1-E3 functions in floral development. In conclusion, our results suggested that ASK1-E3s play important roles in Arabidopsis protein degradation during flower development. This study opens up new possibilities for further functional studies of these candidate E3 substrates.« less

  20. A New Omics Data Resource of Pleurocybella porrigens for Gene Discovery

    PubMed Central

    Dohra, Hideo; Someya, Takumi; Takano, Tomoyuki; Harada, Kiyonori; Omae, Saori; Hirai, Hirofumi; Yano, Kentaro; Kawagishi, Hirokazu

    2013-01-01

    Background Pleurocybella porrigens is a mushroom-forming fungus, which has been consumed as a traditional food in Japan. In 2004, 55 people were poisoned by eating the mushroom and 17 people among them died of acute encephalopathy. Since then, the Japanese government has been alerting Japanese people to take precautions against eating the P . porrigens mushroom. Unfortunately, despite efforts, the molecular mechanism of the encephalopathy remains elusive. The genome and transcriptome sequence data of P . porrigens and the related species, however, are not stored in the public database. To gain the omics data in P . porrigens , we sequenced genome and transcriptome of its fruiting bodies and mycelia by next generation sequencing. Methodology/Principal Findings Short read sequences of genomic DNAs and mRNAs in P . porrigens were generated by Illumina Genome Analyzer. Genome short reads were de novo assembled into scaffolds using Velvet. Comparisons of genome signatures among Agaricales showed that P . porrigens has a unique genome signature. Transcriptome sequences were assembled into contigs (unigenes). Biological functions of unigenes were predicted by Gene Ontology and KEGG pathway analyses. The majority of unigenes would be novel genes without significant counterparts in the public omics databases. Conclusions Functional analyses of unigenes present the existence of numerous novel genes in the basidiomycetes division. The results mean that the omics information such as genome, transcriptome and metabolome in basidiomycetes is short in the current databases. The large-scale omics information on P . porrigens , provided from this research, will give a new data resource for gene discovery in basidiomycetes. PMID:23936076

  1. Analysis of the Transcriptomes Downstream of Eyeless and the Hedgehog, Decapentaplegic and Notch Signaling Pathways in Drosophila melanogaster

    PubMed Central

    Nfonsam, Landry E.; Cano, Carlos; Mudge, Joann; Schilkey, Faye D.; Curtiss, Jennifer

    2012-01-01

    Tissue-specific transcription factors are thought to cooperate with signaling pathways to promote patterned tissue specification, in part by co-regulating transcription. The Drosophila melanogaster Pax6 homolog Eyeless forms a complex, incompletely understood regulatory network with the Hedgehog, Decapentaplegic and Notch signaling pathways to control eye-specific gene expression. We report a combinatorial approach, including mRNAseq and microarray analyses, to identify targets co-regulated by Eyeless and Hedgehog, Decapentaplegic or Notch. Multiple analyses suggest that the transcriptomes resulting from co-misexpression of Eyeless+signaling factors provide a more complete picture of eye development compared to previous efforts involving Eyeless alone: (1) Principal components analysis and two-way hierarchical clustering revealed that the Eyeless+signaling factor transcriptomes are closer to the eye control transcriptome than when Eyeless is misexpressed alone; (2) more genes are upregulated at least three-fold in response to Eyeless+signaling factors compared to Eyeless alone; (3) based on gene ontology analysis, the genes upregulated in response to Eyeless+signaling factors had a greater diversity of functions compared to Eyeless alone. Through a secondary screen that utilized RNA interference, we show that the predicted gene CG4721 has a role in eye development. CG4721 encodes a neprilysin family metalloprotease that is highly up-regulated in response to Eyeless+Notch, confirming the validity of our approach. Given the similarity between D. melanogaster and vertebrate eye development, the large number of novel genes identified as potential targets of Ey+signaling factors will provide novel insights to our understanding of eye development in D. melanogaster and humans. PMID:22952997

  2. Information system life-cycle and documentation standards, volume 1

    NASA Technical Reports Server (NTRS)

    Callender, E. David; Steinbacher, Jody

    1989-01-01

    The Software Management and Assurance Program (SMAP) Information System Life-Cycle and Documentation Standards Document describes the Version 4 standard information system life-cycle in terms of processes, products, and reviews. The description of the products includes detailed documentation standards. The standards in this document set can be applied to the life-cycle, i.e., to each phase in the system's development, and to the documentation of all NASA information systems. This provides consistency across the agency as well as visibility into the completeness of the information recorded. An information system is software-intensive, but consists of any combination of software, hardware, and operational procedures required to process, store, or transmit data. This document defines a standard life-cycle model and content for associated documentation.

  3. Increased risk of brain metastases in women with breast cancer and p16 expression in metastatic lymph-nodes.

    PubMed

    Furet, Elise; El Bouchtaoui, Morad; Feugeas, Jean-Paul; Miquel, Catherine; Leboeuf, Christophe; Beytout, Clémentine; Bertheau, Philippe; Le Rhun, Emilie; Bonneterre, Jacques; Janin, Anne; Bousquet, Guilhem

    2017-06-06

    Metastatic breast cancer is a leading cause of mortality in women, partly on account of brain metastases. However, the mechanisms by which cancer cells cross the blood-brain barrier remain undeciphered. Most molecular studies predicting metastatic risk have been performed on primary breast cancer samples. Here we studied metastatic lymph-nodes from patients with breast cancers to identify markers associated with the occurrence of brain metastases. Transcriptomic analyses identified CDKN2A/p16 as a gene potentially associated with brain metastases. Fifty-two patients with HER2-overexpressing or triple-negative breast carcinoma with lymph nodes and distant metastases were included in this study. Transcriptomic analyses were performed on laser-microdissected tumor cells from 28 metastatic lymph-nodes. Supervised analyses compared the transcriptomic profiles of women who developed brain metastases and those who did not. As a validation series, we studied metastatic lymph-nodes from 24 other patients.Immunohistochemistry investigations showed that p16 mean scores were significantly higher in patients with brain metastases than in patients without (7.4 vs. 1.7 respectively, p < 0.01). This result was confirmed on the validation series. Multivariate analyses showed that the p16 score was the only variable positively associated with the risk of brain metastases (p = 0.01).With the same threshold of 5 for p16 scores using a Cox model, overall survival was shorter in women with a p16 score over 5 in both series. The risk of brain metastases in women with HER2-overexpressing or triple-negative breast cancer could be better assessed by studying p16 protein expression on surgically removed axillary lymph-nodes.

  4. Comparative Transcriptomics Unravel Biochemical Specialization of Leaf Tissues of Stevia for Diterpenoid Production.

    PubMed

    Kim, Mi Jung; Jin, Jingjing; Zheng, Junshi; Wong, Limsoon; Chua, Nam-Hai; Jang, In-Cheol

    2015-12-01

    Stevia (Stevia rebaudiana) produces not only a group of diterpenoid glycosides known as steviol glycosides (SGs), but also other labdane-type diterpenoids that may be spatially separated from SGs. However, their biosynthetic routes and spatial distribution in leaf tissues have not yet been elucidated. Here, we integrate metabolome and transcriptome analyses of Stevia to explore the biosynthetic capacity of leaf tissues for diterpenoid metabolism. Tissue-specific chemical analyses confirmed that SGs were accumulated in leaf cells but not in trichomes. On the other hand, Stevia leaf trichomes stored other labdane-type diterpenoids such as oxomanoyl oxide and agatholic acid. RNA sequencing analyses from two different tissues of Stevia provided a comprehensive overview of dynamic metabolic activities in trichomes and leaf without trichomes. These metabolite-guided transcriptomics and phylogenetic and gene expression analyses clearly identified specific gene members encoding enzymes involved in the 2-C-methyl-d-erythritol 4-phosphate pathway and the biosynthesis of steviol or other labdane-type diterpenoids. Additionally, our RNA sequencing analysis uncovered copalyl diphosphate synthase (SrCPS) and kaurene synthase1 (SrKS1) homologs, SrCPS2 and KS-like (SrKSL), which were specifically expressed in trichomes. In vitro and in planta assays showed that unlike SrCPS and SrKS1, SrCPS2 synthesized labda-13-en-8-ol diphosphate and successively catalyzed the formation of manoyl oxide and epi-manoyl oxide in combination with SrKSL. Our findings suggest that Stevia may have evolved to use distinct metabolic pathways to avoid metabolic interferences in leaf tissues for efficient production of diverse secondary metabolites. © 2015 American Society of Plant Biologists. All Rights Reserved.

  5. Reducing Life-Cycle Costs.

    ERIC Educational Resources Information Center

    Roodvoets, David L.

    2003-01-01

    Presents factors to consider when determining roofing life-cycle costs, explaining that costs do not tell the whole story; discussing components that should go into the decision (cost, maintenance, energy use, and environmental costs); and concluding that important elements in reducing life-cycle costs include energy savings through increased…

  6. An economic analysis comparison of stationary and dual-axis tracking grid-connected photovoltaic systems in the US Upper Midwest

    NASA Astrophysics Data System (ADS)

    Choi, Wongyu; Pate, Michael B.; Warren, Ryan D.; Nelson, Ron M.

    2018-05-01

    This paper presents an economic analysis of stationary and dual-axis tracking photovoltaic (PV) systems installed in the US Upper Midwest in terms of life-cycle costs, payback period, internal rate of return, and the incremental cost of solar energy. The first-year performance and energy savings were experimentally found along with documented initial cost. Future PV performance, savings, and operating and maintenance costs were estimated over 25-year assumed life. Under the given assumptions and discount rates, the life-cycle savings were found to be negative. Neither system was found to have payback periods less than the assumed system life. The lifetime average incremental costs of energy generated by the stationary and dual-axis tracking systems were estimated to be 0.31 and 0.37 per kWh generated, respectively. Economic analyses of different scenarios, each having a unique set of assumptions for costs and metering, showed a potential for economic feasibility under certain conditions when compared to alternative investments with assumed yields.

  7. Life-cycle energy and GHG emissions of forest biomass harvest and transport for biofuel production in Michigan

    DOE PAGES

    Zhang, Fengli; Johnson, Dana M.; Wang, Jinjiang

    2015-04-01

    High dependence on imported oil has increased U.S. strategic vulnerability and prompted more research in the area of renewable energy production. Ethanol production from renewable woody biomass, which could be a substitute for gasoline, has seen increased interest. This study analysed energy use and greenhouse gas emission impacts on the forest biomass supply chain activities within the State of Michigan. A life-cycle assessment of harvesting and transportation stages was completed utilizing peer-reviewed literature. Results for forest-delivered ethanol were compared with those for petroleum gasoline using data specific to the U.S. The analysis from a woody biomass feedstock supply perspective uncoveredmore » that ethanol production is more environmentally friendly (about 62% less greenhouse gas emissions) compared with petroleum based fossil fuel production. Sensitivity analysis was conducted with key inputs associated with harvesting and transportation operations. The results showed that research focused on improving biomass recovery efficiency and truck fuel economy further reduced GHG emissions and energy consumption.« less

  8. An evaluation of very large airplanes and alternative fuels. Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikolowsky, W.T.; Noggle, L.W.; Hederman, W.F.

    1976-12-01

    Very large airplanes using alternative fuels are examined in the context of existing and possible future Air Force missions. Synthetic jet fuel (JP), liquid methane, liquid hydrogen, and nuclear propulsion are the fuel alternatives selected for detailed analysis. Conceptual designs of airplanes using each of these fuels were developed and estimates were made of their lifecycle cost and life-cycle energy consumption. Mission analyses were performed to determine the effectiveness of the alternative airplanes in strategic airlift specifically and in the station-keeping role in general. Results indicate that for most military applications airplanes with gross weights in excess of one millionmore » pounds promise to be superior to any comtemporary airplanes in terms of cost-effectiveness and energy-hydrocarbon jet fuel, whether manufactured from oil shale, coal or crude oil, remains the most attractive aviation fuel for future Air Force use. Policy recommendations are made pertaining both to alternative fuels and to advanced-technology large airplanes. Future research and developments are also identified.« less

  9. Life-cycle energy and GHG emissions of forest biomass harvest and transport for biofuel production in Michigan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fengli; Johnson, Dana M.; Wang, Jinjiang

    High dependence on imported oil has increased U.S. strategic vulnerability and prompted more research in the area of renewable energy production. Ethanol production from renewable woody biomass, which could be a substitute for gasoline, has seen increased interest. This study analysed energy use and greenhouse gas emission impacts on the forest biomass supply chain activities within the State of Michigan. A life-cycle assessment of harvesting and transportation stages was completed utilizing peer-reviewed literature. Results for forest-delivered ethanol were compared with those for petroleum gasoline using data specific to the U.S. The analysis from a woody biomass feedstock supply perspective uncoveredmore » that ethanol production is more environmentally friendly (about 62% less greenhouse gas emissions) compared with petroleum based fossil fuel production. Sensitivity analysis was conducted with key inputs associated with harvesting and transportation operations. The results showed that research focused on improving biomass recovery efficiency and truck fuel economy further reduced GHG emissions and energy consumption.« less

  10. LIFE-CYCLE IMPACT ASSESSMENT DEMONSTRATION FOR THE BGU-24

    EPA Science Inventory

    The primary goal of this project was to develop and demonstrate a life-cycle impact assessment (LCIA) approach using existing life-cycle inventory (LCI) data on one of the propellants, energetics, and pyrotechnic (PEP) materials of interest to the U.S. Department of Defense (DoD)...

  11. Industrial ecology: Quantitative methods for exploring a lower carbon future

    NASA Astrophysics Data System (ADS)

    Thomas, Valerie M.

    2015-03-01

    Quantitative methods for environmental and cost analyses of energy, industrial, and infrastructure systems are briefly introduced and surveyed, with the aim of encouraging broader utilization and development of quantitative methods in sustainable energy research. Material and energy flow analyses can provide an overall system overview. The methods of engineering economics and cost benefit analysis, such as net present values, are the most straightforward approach for evaluating investment options, with the levelized cost of energy being a widely used metric in electricity analyses. Environmental lifecycle assessment has been extensively developed, with both detailed process-based and comprehensive input-output approaches available. Optimization methods provide an opportunity to go beyond engineering economics to develop detailed least-cost or least-impact combinations of many different choices.

  12. De novo transcriptome assembly and RNA-Seq expression analysis in blood from beluga whales of Bristol Bay, AK.

    PubMed

    Morey, Jeanine S; Burek Huntington, Kathy A; Campbell, Michelle; Clauss, Tonya M; Goertz, Caroline E; Hobbs, Roderick C; Lunardi, Denise; Moors, Amanda J; Neely, Marion G; Schwacke, Lori H; Van Dolah, Frances M

    2017-10-01

    Assessing the health of marine mammal sentinel species is crucial to understanding the impacts of environmental perturbations on marine ecosystems and human health. In Arctic regions, beluga whales, Delphinapterus leucas, are upper level predators that may serve as a sentinel species, potentially forecasting impacts on human health. While gene expression profiling from blood transcriptomes has widely been used to assess health status and environmental exposures in human and veterinary medicine, its use in wildlife has been limited due to the lack of available genomes and baseline data. To this end we constructed the first beluga whale blood transcriptome de novo from samples collected during annual health assessments of the healthy Bristol Bay, AK stock during 2012-2014 to establish baseline information on the content and variation of the beluga whale blood transcriptome. The Trinity transcriptome assembly from beluga was comprised of 91,325 transcripts that represented a wide array of cellular functions and processes and was extremely similar in content to the blood transcriptome of another cetacean, the bottlenose dolphin. Expression of hemoglobin transcripts was much lower in beluga (25.6% of TPM, transcripts per million) than has been observed in many other mammals. A T12A amino acid substitution in the HBB sequence of beluga whales, but not bottlenose dolphins, was identified and may play a role in low temperature adaptation. The beluga blood transcriptome was extremely stable between sex and year, with no apparent clustering of samples by principle components analysis and <4% of genes differentially expressed (EBseq, FDR<0.05). While the impacts of season, sexual maturity, disease, and geography on the beluga blood transcriptome must be established, the presence of transcripts involved in stress, detoxification, and immune functions indicate that blood gene expression analyses may provide information on health status and exposure. This study provides a wealth of transcriptomic data on beluga whales and provides a sizeable pool of preliminary data for comparison with other studies in beluga whale. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. De novo transcriptome of Ischnura elegans provides insights into sensory biology, colour and vision genes.

    PubMed

    Chauhan, Pallavi; Hansson, Bengt; Kraaijeveld, Ken; de Knijff, Peter; Svensson, Erik I; Wellenreuther, Maren

    2014-09-22

    There is growing interest in odonates (damselflies and dragonflies) as model organisms in ecology and evolutionary biology but the development of genomic resources has been slow. So far only one draft genome (Ladona fulva) and one transcriptome assembly (Enallagma hageni) have been published. Odonates have some of the most advanced visual systems among insects and several species are colour polymorphic, and genomic and transcriptomic data would allow studying the genomic architecture of these interesting traits and make detailed comparative studies between related species possible. Here, we present a comprehensive de novo transcriptome assembly for the blue-tailed damselfly Ischnura elegans (Odonata: Coenagrionidae) built from short-read RNA-seq data. The transcriptome analysis in this paper provides a first step towards identifying genes and pathways underlying the visual and colour systems in this insect group. Illumina RNA sequencing performed on tissues from the head, thorax and abdomen generated 428,744,100 paired-ends reads amounting to 110 Gb of sequence data, which was assembled de novo with Trinity. A transcriptome was produced after filtering and quality checking yielding a final set of 60,232 high quality transcripts for analysis. CEGMA software identified 247 out of 248 ultra-conserved core proteins as 'complete' in the transcriptome assembly, yielding a completeness of 99.6%. BLASTX and InterProScan annotated 55% of the assembled transcripts and showed that the three tissue types differed both qualitatively and quantitatively in I. elegans. Differential expression identified 8,625 transcripts to be differentially expressed in head, thorax and abdomen. Targeted analyses of vision and colour functional pathways identified the presence of four different opsin types and three pigmentation pathways. We also identified transcripts involved in temperature sensitivity, thermoregulation and olfaction. All these traits and their associated transcripts are of considerable ecological and evolutionary interest for this and other insect orders. Our work presents a comprehensive transcriptome resource for the ancient insect order Odonata and provides insight into their biology and physiology. The transcriptomic resource can provide a foundation for future investigations into this diverse group, including the evolution of colour, vision, olfaction and thermal adaptation.

  14. Lifecycle greenhouse gas emissions of coal, conventional and unconventional natural gas for electricity generation

    EPA Science Inventory

    An analysis of the lifecycle greenhouse gas (GHG) emissions associated with natural gas use recently published by Howarth et al. (2011) stated that use of natural gas produced from shale formations via hydraulic fracturing would generate greater lifecycle GHG emissions than petro...

  15. LIFE-CYCLE IMPACT ASSESSMENT DEMONSTRATION FOR THE GBU-24

    EPA Science Inventory

    The primary goal of this project was to develop and demonstrate a life-cycle impact assessment (LCIA) approach using existing life-cycle inventory (LCI) data on one of the propellants, energetics, and pyro-technic (PEP) materials of interest to the U.S. Department of Defense (DoD...

  16. Life-cycle energy and emissions inventories for motorcycles, diesel automobiles, school buses, electric buses, Chicago rail, and New York City rail

    DOT National Transportation Integrated Search

    2009-05-01

    The development of life-cycle energy and emissions factors for passenger transportation modes : is critical for understanding the total environmental costs of travel. Previous life-cycle studies : have focused on the automobile given its dominating s...

  17. Enterprise Information Lifecycle Management

    DTIC Science & Technology

    2011-01-01

    Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing...regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington...Need for Information Lifecycle Management .......................................................... 6 3.3 Challenges of Information Lifecycle

  18. Knowledge based system verification and validation as related to automation of space station subsystems: Rationale for a knowledge based system lifecycle

    NASA Technical Reports Server (NTRS)

    Richardson, Keith; Wong, Carla

    1988-01-01

    The role of verification and validation (V and V) in software has been to support and strengthen the software lifecycle and to ensure that the resultant code meets the standards of the requirements documents. Knowledge Based System (KBS) V and V should serve the same role, but the KBS lifecycle is ill-defined. The rationale of a simple form of the KBS lifecycle is presented, including accommodation to certain critical KBS differences from software development.

  19. Analysis of the Lifecycle of Mechanical Engineering Products

    NASA Astrophysics Data System (ADS)

    Gubaydulina, R. H.; Gruby, S. V.; Davlatov, G. D.

    2016-08-01

    Principal phases of the lifecycle of mechanical engineering products are analyzed in the paper. The authors have developed methods and procedures to improve designing, manufacturing, operating and recycling of the machine. It has been revealed that economic lifecycle of the product is a base for appropriate organization of mechanical engineering production. This lifecycle is calculated as a minimal sum total of consumer and producer costs. The machine construction and its manufacturing technology are interrelated through a maximal possible company profit. The products are to be recycled by their producer. Recycling should be considered as a feedback phase, necessary to make the whole lifecycle of the product a constantly functioning self-organizing system. The principles, outlined in this paper can be used as fundamentals to develop an automated PLM-system.

  20. Evaluation of life-cycle air emission factors of freight transportation.

    PubMed

    Facanha, Cristiano; Horvath, Arpad

    2007-10-15

    Life-cycle air emission factors associated with road, rail, and air transportation of freight in the United States are analyzed. All life-cycle phases of vehicles, infrastructure, and fuels are accounted for in a hybrid life-cycle assessment (LCA). It includes not only fuel combustion, but also emissions from vehicle manufacturing, maintenance, and end of life, infrastructure construction, operation, maintenance, and end of life, and petroleum exploration, refining, and fuel distribution. Results indicate that total life-cycle emissions of freight transportation modes are underestimated if only tailpipe emissions are accounted for. In the case of CO2 and NOx, tailpipe emissions underestimate total emissions by up to 38%, depending on the mode. Total life-cycle emissions of CO and SO2 are up to seven times higher than tailpipe emissions. Sensitivity analysis considers the effects of vehicle type, geography, and mode efficiency on the final results. Policy implications of this analysis are also discussed. For example, while it is widely assumed that currently proposed regulations will result in substantial reductions in emissions, we find that this is true for NOx, emissions, because fuel combustion is the main cause, and to a lesser extent for SO2, but not for PM10 emissions, which are significantly affected by the other life-cycle phases.

  1. Sex Determination in Ceratopteris richardii Is Accompanied by Transcriptome Changes That Drive Epigenetic Reprogramming of the Young Gametophyte.

    PubMed

    Atallah, Nadia M; Vitek, Olga; Gaiti, Federico; Tanurdzic, Milos; Banks, Jo Ann

    2018-05-02

    The fern Ceratopteris richardii is an important model for studies of sex determination and gamete differentiation in homosporous plants. Here we use RNA-seq to de novo assemble a transcriptome and identify genes differentially expressed in young gametophytes as their sex is determined by the presence or absence of the male-inducing pheromone called antheridiogen. Of the 1,163 consensus differentially expressed genes identified, the vast majority (1,030) are up-regulated in gametophytes treated with antheridiogen. GO term enrichment analyses of these DEGs reveals that a large number of genes involved in epigenetic reprogramming of the gametophyte genome are up-regulated by the pheromone. Additional hormone response and development genes are also up-regulated by the pheromone. This C. richardii gametophyte transcriptome and gene expression dataset will prove useful for studies focusing on sex determination and differentiation in plants. Copyright © 2018, G3: Genes, Genomes, Genetics.

  2. Transcriptome profile of Trichoderma harzianum IOC-3844 induced by sugarcane bagasse.

    PubMed

    Horta, Maria Augusta Crivelente; Vicentini, Renato; Delabona, Priscila da Silva; Laborda, Prianda; Crucello, Aline; Freitas, Sindélia; Kuroshu, Reginaldo Massanobu; Polikarpov, Igor; Pradella, José Geraldo da Cruz; Souza, Anete Pereira

    2014-01-01

    Profiling the transcriptome that underlies biomass degradation by the fungus Trichoderma harzianum allows the identification of gene sequences with potential application in enzymatic hydrolysis processing. In the present study, the transcriptome of T. harzianum IOC-3844 was analyzed using RNA-seq technology. The sequencing generated 14.7 Gbp for downstream analyses. De novo assembly resulted in 32,396 contigs, which were submitted for identification and classified according to their identities. This analysis allowed us to define a principal set of T. harzianum genes that are involved in the degradation of cellulose and hemicellulose and the accessory genes that are involved in the depolymerization of biomass. An additional analysis of expression levels identified a set of carbohydrate-active enzymes that are upregulated under different conditions. The present study provides valuable information for future studies on biomass degradation and contributes to a better understanding of the role of the genes that are involved in this process.

  3. Garlic (Allium sativum L.) fertility: transcriptome and proteome analyses provide insight into flower and pollen development

    PubMed Central

    Shemesh-Mayer, Einat; Ben-Michael, Tomer; Rotem, Neta; Rabinowitch, Haim D.; Doron-Faigenboim, Adi; Kosmala, Arkadiusz; Perlikowski, Dawid; Sherman, Amir; Kamenetsky, Rina

    2015-01-01

    Commercial cultivars of garlic, a popular condiment, are sterile, making genetic studies and breeding of this plant challenging. However, recent fertility restoration has enabled advanced physiological and genetic research and hybridization in this important crop. Morphophysiological studies, combined with transcriptome and proteome analyses and quantitative PCR validation, enabled the identification of genes and specific processes involved in gametogenesis in fertile and male-sterile garlic genotypes. Both genotypes exhibit normal meiosis at early stages of anther development, but in the male-sterile plants, tapetal hypertrophy after microspore release leads to pollen degeneration. Transcriptome analysis and global gene-expression profiling showed that >16,000 genes are differentially expressed in the fertile vs. male-sterile developing flowers. Proteome analysis and quantitative comparison of 2D-gel protein maps revealed 36 significantly different protein spots, 9 of which were present only in the male-sterile genotype. Bioinformatic and quantitative PCR validation of 10 candidate genes exhibited significant expression differences between male-sterile and fertile flowers. A comparison of morphophysiological and molecular traits of fertile and male-sterile garlic flowers suggests that respiratory restrictions and/or non-regulated programmed cell death of the tapetum can lead to energy deficiency and consequent pollen abortion. Potential molecular markers for male fertility and sterility in garlic are proposed. PMID:25972879

  4. Global Analysis of Salmonella Alternative Sigma Factor E on Protein Translation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jie; Nakayasu, Ernesto S.; Overall, Christopher C.

    The alternative sigma factor E (σ E) is critical for response to extracytoplasmic stress in Salmonella. Extensive studies have been conducted on σ E-regulated gene expression, particularly at the transcriptional level. Increasing evidence suggests however that σ E may indirectly participate in post-transcriptional regulation. Here in this study, we conducted sample-matched global proteomic and transcriptomic analyses to determine the level of regulation mediated by σ E in Salmonella. We analysed samples from wild type and isogenic rpoE mutant Salmonella cultivated in three different conditions; nutrient-rich and conditions that mimic early and late intracellular infection. We found that 30% of themore » observed proteome was regulated by σ E combining all three conditions. In different growth conditions, σ E affected the expression of a broad spectrum of Salmonella proteins required for miscellaneous functions. Those involved in transport and binding, protein synthesis, and stress response were particularly highlighted. By comparing transcriptomic and proteomic data, we identified genes post-transcriptionally regulated by σ E and found that post-transcriptional regulation was responsible for a majority of changes observed in the σ E-regulated proteome. Further, comparison of transcriptomic and proteomic data from hfq mutant of Salmonella demonstrated that σ E–mediated post-transcriptional regulation was partially dependent on the RNA-binding protein Hfq.« less

  5. RNA-seq analyses of the midgut from blood- and serum-fed Ixodes ricinus ticks

    PubMed Central

    Perner, Jan; Provazník, Jan; Schrenková, Jana; Urbanová, Veronika; Ribeiro, José M. C.; Kopáček, Petr

    2016-01-01

    Adult females of the genus Ixodes imbibe blood meals exceeding about 100 times their own weight within 7‒9 days. During this period, ticks internalise components of host blood by endocytic digest cells that line the tick midgut epithelium. Using RNA-seq, we aimed to characterise the midgut transcriptome composition in adult Ixodes ricinus females during early and late phase of engorgement. To address specific adaptations to the haemoglobin-rich diet, we compared the midgut transcriptomes of genetically homogenous female siblings fed either bovine blood or haemoglobin-depleted serum. We noted that tick gut transcriptomes are subject to substantial temporal-dependent expression changes between day 3 and day 8 of feeding. In contrast, the number of transcripts significantly affected by the presence or absence of host red blood cells was low. Transcripts relevant to the processes associated with blood-meal digestion were analysed and involvement of selected encoded proteins in the tick midgut physiology discussed. A total of 7215 novel sequences from I. ricinus were deposited in public databases as an additional outcome of this study. Our results broaden the current knowledge of tick digestive system and may lead to the discovery of potential molecular targets for efficient tick control. PMID:27824139

  6. Global Analysis of Salmonella Alternative Sigma Factor E on Protein Translation

    DOE PAGES

    Li, Jie; Nakayasu, Ernesto S.; Overall, Christopher C.; ...

    2015-02-16

    The alternative sigma factor E (σ E) is critical for response to extracytoplasmic stress in Salmonella. Extensive studies have been conducted on σ E-regulated gene expression, particularly at the transcriptional level. Increasing evidence suggests however that σ E may indirectly participate in post-transcriptional regulation. Here in this study, we conducted sample-matched global proteomic and transcriptomic analyses to determine the level of regulation mediated by σ E in Salmonella. We analysed samples from wild type and isogenic rpoE mutant Salmonella cultivated in three different conditions; nutrient-rich and conditions that mimic early and late intracellular infection. We found that 30% of themore » observed proteome was regulated by σ E combining all three conditions. In different growth conditions, σ E affected the expression of a broad spectrum of Salmonella proteins required for miscellaneous functions. Those involved in transport and binding, protein synthesis, and stress response were particularly highlighted. By comparing transcriptomic and proteomic data, we identified genes post-transcriptionally regulated by σ E and found that post-transcriptional regulation was responsible for a majority of changes observed in the σ E-regulated proteome. Further, comparison of transcriptomic and proteomic data from hfq mutant of Salmonella demonstrated that σ E–mediated post-transcriptional regulation was partially dependent on the RNA-binding protein Hfq.« less

  7. Phylogenomic analyses of deep gastropod relationships reject Orthogastropoda

    PubMed Central

    Zapata, Felipe; Wilson, Nerida G.; Howison, Mark; Andrade, Sónia C. S.; Jörger, Katharina M.; Schrödl, Michael; Goetz, Freya E.; Giribet, Gonzalo; Dunn, Casey W.

    2014-01-01

    Gastropods are a highly diverse clade of molluscs that includes many familiar animals, such as limpets, snails, slugs and sea slugs. It is one of the most abundant groups of animals in the sea and the only molluscan lineage that has successfully colonized land. Yet the relationships among and within its constituent clades have remained in flux for over a century of morphological, anatomical and molecular study. Here, we re-evaluate gastropod phylogenetic relationships by collecting new transcriptome data for 40 species and analysing them in combination with publicly available genomes and transcriptomes. Our datasets include all five main gastropod clades: Patellogastropoda, Vetigastropoda, Neritimorpha, Caenogastropoda and Heterobranchia. We use two different methods to assign orthology, subsample each of these matrices into three increasingly dense subsets, and analyse all six of these supermatrices with two different models of molecular evolution. All 12 analyses yield the same unrooted network connecting the five major gastropod lineages. This reduces deep gastropod phylogeny to three alternative rooting hypotheses. These results reject the prevalent hypothesis of gastropod phylogeny, Orthogastropoda. Our dated tree is congruent with a possible end-Permian recovery of some gastropod clades, namely Caenogastropoda and some Heterobranchia subclades. PMID:25232139

  8. Advanced vehicle systems assessment. Volume 3: Systems assessment

    NASA Technical Reports Server (NTRS)

    Hardy, K.

    1985-01-01

    The systems analyses integrate the advanced component and vehicle characteristics into conceptual vehicles with identical performance (for a given application) and evaluates the vehicles in typical use patterns. Initial and life-cycle costs are estimated and compared to conventional reference vehicles with comparable technological advances, assuming the vehicles will be in competition in the early 1990s. Electric vans, commuter vehicles, and full-size vehicles, in addition to electric/heat-engine hybrid and fuel-cell powered vehicles, are addressed in terms of performance and economics. System and subsystem recommendations for vans and two-passenger commuter vehicles are based on the economic analyses in this volume.

  9. Evaluation of Externality Costs in Life-Cycle Optimization of Municipal Solid Waste Management Systems.

    PubMed

    Martinez-Sanchez, Veronica; Levis, James W; Damgaard, Anders; DeCarolis, Joseph F; Barlaz, Morton A; Astrup, Thomas F

    2017-03-21

    The development of sustainable solid waste management (SWM) systems requires consideration of both economic and environmental impacts. Societal life-cycle costing (S-LCC) provides a quantitative framework to estimate both economic and environmental impacts, by including "budget costs" and "externality costs". Budget costs include market goods and services (economic impact), whereas externality costs include effects outside the economic system (e.g., environmental impact). This study demonstrates the applicability of S-LCC to SWM life-cycle optimization through a case study based on an average suburban U.S. county of 500 000 people generating 320 000 Mg of waste annually. Estimated externality costs are based on emissions of CO 2 , CH 4 , N 2 O, PM 2.5 , PM 10 , NO x , SO 2 , VOC, CO, NH 3 , Hg, Pb, Cd, Cr (VI), Ni, As, and dioxins. The results indicate that incorporating S-LCC into optimized SWM strategy development encourages the use of a mixed waste material recovery facility with residues going to incineration, and separated organics to anaerobic digestion. Results are sensitive to waste composition, energy mix and recycling rates. Most of the externality costs stem from SO 2 , NO x , PM 2.5 , CH 4 , fossil CO 2 , and NH 3 emissions. S-LCC proved to be a valuable tool for policy analysis, but additional data on key externality costs such as organic compounds emissions to water would improve future analyses.

  10. Customized workflow development and data modularization concepts for RNA-Sequencing and metatranscriptome experiments.

    PubMed

    Lott, Steffen C; Wolfien, Markus; Riege, Konstantin; Bagnacani, Andrea; Wolkenhauer, Olaf; Hoffmann, Steve; Hess, Wolfgang R

    2017-11-10

    RNA-Sequencing (RNA-Seq) has become a widely used approach to study quantitative and qualitative aspects of transcriptome data. The variety of RNA-Seq protocols, experimental study designs and the characteristic properties of the organisms under investigation greatly affect downstream and comparative analyses. In this review, we aim to explain the impact of structured pre-selection, classification and integration of best-performing tools within modularized data analysis workflows and ready-to-use computing infrastructures towards experimental data analyses. We highlight examples for workflows and use cases that are presented for pro-, eukaryotic and mixed dual RNA-Seq (meta-transcriptomics) experiments. In addition, we are summarizing the expertise of the laboratories participating in the project consortium "Structured Analysis and Integration of RNA-Seq experiments" (de.STAIR) and its integration with the Galaxy-workbench of the RNA Bioinformatics Center (RBC). Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  11. A Comparative Transcriptomic Analysis Reveals Conserved Features of Stem Cell Pluripotency in Planarians and Mammals

    PubMed Central

    Labbé, Roselyne M.; Irimia, Manuel; Currie, Ko W.; Lin, Alexander; Zhu, Shu Jun; Brown, David D.R.; Ross, Eric J.; Voisin, Veronique; Bader, Gary D.; Blencowe, Benjamin J.; Pearson, Bret J.

    2014-01-01

    Many long-lived species of animals require the function of adult stem cells throughout their lives. However, the transcriptomes of stem cells in invertebrates and vertebrates have not been compared, and consequently, ancestral regulatory circuits that control stem cell populations remain poorly defined. In this study, we have used data from high-throughput RNA sequencing to compare the transcriptomes of pluripotent adult stem cells from planarians with the transcriptomes of human and mouse pluripotent embryonic stem cells. From a stringently defined set of 4,432 orthologs shared between planarians, mice and humans, we identified 123 conserved genes that are ≥5-fold differentially expressed in stem cells from all three species. Guided by this gene set, we used RNAi screening in adult planarians to discover novel stem cell regulators, which we found to affect the stem cell-associated functions of tissue homeostasis, regeneration, and stem cell maintenance. Examples of genes that disrupted these processes included the orthologs of TBL3, PSD12, TTC27, and RACK1. From these analyses, we concluded that by comparing stem cell transcriptomes from diverse species, it is possible to uncover conserved factors that function in stem cell biology. These results provide insights into which genes comprised the ancestral circuitry underlying the control of stem cell self-renewal and pluripotency. PMID:22696458

  12. Aging-like Changes in the Transcriptome of Irradiated Microglia

    PubMed Central

    Li, Matthew D.; Burns, Terry C.; Kumar, Sunny; Morgan, Alexander A.; Sloan, Steven A.; Palmer, Theo D.

    2014-01-01

    Whole brain irradiation remains important in the management of brain tumors. Although necessary for improving survival outcomes, cranial irradiation also results in cognitive decline in long-term survivors. A chronic inflammatory state characterized by microglial activation has been implicated in radiation-induced brain injury. We here provide the first comprehensive transcriptional profile of irradiated microglia. Fluorescence-activated cell sorting (FACS) was used to isolate CD11b+ microglia from the hippocampi of C57BL/6 and Balb/c mice 1 month after 10Gy cranial irradiation. Affymetrix gene expression profiles were evaluated using linear modeling, rank product analyses. One month after irradiation, a conserved irradiation signature across strains was identified, comprising 448 and 85 differentially up- and down-regulated genes, respectively. Gene set enrichment analysis (GSEA) demonstrated enrichment for inflammation, including M1 macrophage-associated genes, but also an unexpected enrichment for extracellular matrix and blood coagulation-related gene sets, in contrast previously described microglial states. Weighted gene co-expression network analysis (WGCNA) confirmed these findings and further revealed alterations in mitochondrial function. The RNA-seq transcriptome of microglia 24h post-radiation proved similar to the 1-month transcriptome, but additionally featured alterations in apoptotic and lysosomal gene expression. Re-analysis of published aging mouse microglia transcriptome data demonstrated striking similarity to the 1 month irradiated microglia transcriptome, suggesting that shared mechanisms may underlie aging and chronic irradiation-induced cognitive decline. PMID:25690519

  13. Competitive Strategies of States: A Life-Cycle Perspective. EQW Working Papers.

    ERIC Educational Resources Information Center

    Flynn, Patricia M.

    This paper demonstrates that production life-cycle models provide a conceptual framework to analyze systematically the interrelationships between industrial and technological change and human resources. Section II presents the life-cycle model, focusing on its implications for the types and level of employment and skill requirements in an area.…

  14. [A Medical Devices Management Information System Supporting Full Life-Cycle Process Management].

    PubMed

    Tang, Guoping; Hu, Liang

    2015-07-01

    Medical equipments are essential supplies to carry out medical work. How to ensure the safety and reliability of the medical equipments in diagnosis, and reduce procurement and maintenance costs is a topic of concern to everyone. In this paper, product lifecycle management (PLM) and enterprise resource planning (ERP) are cited to establish a lifecycle management information system. Through integrative and analysis of the various stages of the relevant data in life-cycle, it can ensure safety and reliability of medical equipments in the operation and provide the convincing data for meticulous management.

  15. Product-related research: how research can contribute to successful life-cycle management.

    PubMed

    Sandner, Peter; Ziegelbauer, Karl

    2008-05-01

    Declining productivity with decreasing new molecular entity output combined with increased R&D spending is one of the key challenges for the entire pharmaceutical industry. In order to offset decreasing new molecular entity output, life-cycle management activities for established drugs become more and more important to maintain or even expand clinical indication and market opportunities. Life-cycle management covers a whole range of activities from strategic pricing to a next generation product launch. In this communication, we review how research organizations can contribute to successful life-cycle management strategies using phosphodiesterase 5 inhibitors as an example.

  16. An RNA-Seq-based reference transcriptome for Citrus.

    PubMed

    Terol, Javier; Tadeo, Francisco; Ventimilla, Daniel; Talon, Manuel

    2016-03-01

    Previous RNA-Seq studies in citrus have been focused on physiological processes relevant to fruit quality and productivity of the major species, especially sweet orange. Less attention has been paid to vegetative or reproductive tissues, while most Citrus species have never been analysed. In this work, we characterized the transcriptome of vegetative and reproductive tissues from 12 Citrus species from all main phylogenetic groups. Our aims were to acquire a complete view of the citrus transcriptome landscape, to improve previous functional annotations and to obtain genetic markers associated with genes of agronomic interest. 28 samples were used for RNA-Seq analysis, obtained from 12 Citrus species: C. medica, C. aurantifolia, C. limon, C. bergamia, C. clementina, C. deliciosa, C. reshni, C. maxima, C. paradisi, C. aurantium, C. sinensis and Poncirus trifoliata. Four different organs were analysed: root, phloem, leaf and flower. A total of 3421 million Illumina reads were produced and mapped against the reference C. clementina genome sequence. Transcript discovery pipeline revealed 3326 new genes, the number of genes with alternative splicing was increased to 19,739, and a total of 73,797 transcripts were identified. Differential expression studies between the four tissues showed that gene expression is overall related to the physiological function of the specific organs above any other variable. Variants discovery analysis revealed the presence of indels and SNPs in genes associated with fruit quality and productivity. Pivotal pathways in citrus such as those of flavonoids, flavonols, ethylene and auxin were also analysed in detail. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  17. Comparative Transcriptomic Exploration Reveals Unique Molecular Adaptations of Neuropathogenic Trichobilharzia to Invade and Parasitize Its Avian Definitive Host

    PubMed Central

    Leontovyč, Roman; Young, Neil D.; Korhonen, Pasi K.; Hall, Ross S.; Tan, Patrick; Mikeš, Libor; Kašný, Martin; Horák, Petr; Gasser, Robin B.

    2016-01-01

    To date, most molecular investigations of schistosomatids have focused principally on blood flukes (schistosomes) of humans. Despite the clinical importance of cercarial dermatitis in humans caused by Trichobilharzia regenti and the serious neuropathologic disease that this parasite causes in its permissive avian hosts and accidental mammalian hosts, almost nothing is known about the molecular aspects of how this fluke invades its hosts, migrates in host tissues and how it interacts with its hosts’ immune system. Here, we explored selected aspects using a transcriptomic-bioinformatic approach. To do this, we sequenced, assembled and annotated the transcriptome representing two consecutive life stages (cercariae and schistosomula) of T. regenti involved in the first phases of infection of the avian host. We identified key biological and metabolic pathways specific to each of these two developmental stages and also undertook comparative analyses using data available for taxonomically related blood flukes of the genus Schistosoma. Detailed comparative analyses revealed the unique involvement of carbohydrate metabolism, translation and amino acid metabolism, and calcium in T. regenti cercariae during their invasion and in growth and development, as well as the roles of cell adhesion molecules, microaerobic metabolism (citrate cycle and oxidative phosphorylation), peptidases (cathepsins) and other histolytic and lysozomal proteins in schistosomula during their particular migration in neural tissues of the avian host. In conclusion, the present transcriptomic exploration provides new and significant insights into the molecular biology of T. regenti, which should underpin future genomic and proteomic investigations of T. regenti and, importantly, provides a useful starting point for a range of comparative studies of schistosomatids and other trematodes. PMID:26863542

  18. Optimizing Hybrid de Novo Transcriptome Assembly and Extending Genomic Resources for Giant Freshwater Prawns (Macrobrachium rosenbergii): The Identification of Genes and Markers Associated with Reproduction.

    PubMed

    Jung, Hyungtaek; Yoon, Byung-Ha; Kim, Woo-Jin; Kim, Dong-Wook; Hurwood, David A; Lyons, Russell E; Salin, Krishna R; Kim, Heui-Soo; Baek, Ilseon; Chand, Vincent; Mather, Peter B

    2016-05-07

    The giant freshwater prawn, Macrobrachium rosenbergii, a sexually dimorphic decapod crustacean is currently the world's most economically important cultured freshwater crustacean species. Despite its economic importance, there is currently a lack of genomic resources available for this species, and this has limited exploration of the molecular mechanisms that control the M. rosenbergii sex-differentiation system more widely in freshwater prawns. Here, we present the first hybrid transcriptome from M. rosenbergii applying RNA-Seq technologies directed at identifying genes that have potential functional roles in reproductive-related traits. A total of 13,733,210 combined raw reads (1720 Mbp) were obtained from Ion-Torrent PGM and 454 FLX. Bioinformatic analyses based on three state-of-the-art assemblers, the CLC Genomic Workbench, Trans-ABySS, and Trinity, that use single and multiple k-mer methods respectively, were used to analyse the data. The influence of multiple k-mers on assembly performance was assessed to gain insight into transcriptome assembly from short reads. After optimisation, de novo assembly resulted in 44,407 contigs with a mean length of 437 bp, and the assembled transcripts were further functionally annotated to detect single nucleotide polymorphisms and simple sequence repeat motifs. Gene expression analysis was also used to compare expression patterns from ovary and testis tissue libraries to identify genes with potential roles in reproduction and sex differentiation. The large transcript set assembled here represents the most comprehensive set of transcriptomic resources ever developed for reproduction traits in M. rosenbergii, and the large number of genetic markers predicted should constitute an invaluable resource for future genetic research studies on M. rosenbergii and can be applied more widely on other freshwater prawn species in the genus Macrobrachium.

  19. Optimizing Hybrid de Novo Transcriptome Assembly and Extending Genomic Resources for Giant Freshwater Prawns (Macrobrachium rosenbergii): The Identification of Genes and Markers Associated with Reproduction

    PubMed Central

    Jung, Hyungtaek; Yoon, Byung-Ha; Kim, Woo-Jin; Kim, Dong-Wook; Hurwood, David A.; Lyons, Russell E.; Salin, Krishna R.; Kim, Heui-Soo; Baek, Ilseon; Chand, Vincent; Mather, Peter B.

    2016-01-01

    The giant freshwater prawn, Macrobrachium rosenbergii, a sexually dimorphic decapod crustacean is currently the world’s most economically important cultured freshwater crustacean species. Despite its economic importance, there is currently a lack of genomic resources available for this species, and this has limited exploration of the molecular mechanisms that control the M. rosenbergii sex-differentiation system more widely in freshwater prawns. Here, we present the first hybrid transcriptome from M. rosenbergii applying RNA-Seq technologies directed at identifying genes that have potential functional roles in reproductive-related traits. A total of 13,733,210 combined raw reads (1720 Mbp) were obtained from Ion-Torrent PGM and 454 FLX. Bioinformatic analyses based on three state-of-the-art assemblers, the CLC Genomic Workbench, Trans-ABySS, and Trinity, that use single and multiple k-mer methods respectively, were used to analyse the data. The influence of multiple k-mers on assembly performance was assessed to gain insight into transcriptome assembly from short reads. After optimisation, de novo assembly resulted in 44,407 contigs with a mean length of 437 bp, and the assembled transcripts were further functionally annotated to detect single nucleotide polymorphisms and simple sequence repeat motifs. Gene expression analysis was also used to compare expression patterns from ovary and testis tissue libraries to identify genes with potential roles in reproduction and sex differentiation. The large transcript set assembled here represents the most comprehensive set of transcriptomic resources ever developed for reproduction traits in M. rosenbergii, and the large number of genetic markers predicted should constitute an invaluable resource for future genetic research studies on M. rosenbergii and can be applied more widely on other freshwater prawn species in the genus Macrobrachium. PMID:27164098

  20. Analysis of Litopenaeus vannamei Transcriptome Using the Next-Generation DNA Sequencing Technique

    PubMed Central

    Li, Chaozheng; Weng, Shaoping; Chen, Yonggui; Yu, Xiaoqiang; Lü, Ling; Zhang, Haiqing; He, Jianguo; Xu, Xiaopeng

    2012-01-01

    Background Pacific white shrimp (Litopenaeus vannamei), the major species of farmed shrimps in the world, has been attracting extensive studies, which require more and more genome background knowledge. The now available transcriptome data of L. vannamei are insufficient for research requirements, and have not been adequately assembled and annotated. Methodology/Principal Findings This is the first study that used a next-generation high-throughput DNA sequencing technique, the Solexa/Illumina GA II method, to analyze the transcriptome from whole bodies of L. vannamei larvae. More than 2.4 Gb of raw data were generated, and 109,169 unigenes with a mean length of 396 bp were assembled using the SOAP denovo software. 73,505 unigenes (>200 bp) with good quality sequences were selected and subjected to annotation analysis, among which 37.80% can be matched in NCBI Nr database, 37.3% matched in Swissprot, and 44.1% matched in TrEMBL. Using BLAST and BLAST2Go softwares, 11,153 unigenes were classified into 25 Clusters of Orthologous Groups of proteins (COG) categories, 8171 unigenes were assigned into 51 Gene ontology (GO) functional groups, and 18,154 unigenes were divided into 220 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. To primarily verify part of the results of assembly and annotations, 12 assembled unigenes that are homologous to many embryo development-related genes were chosen and subjected to RT-PCR for electrophoresis and Sanger sequencing analyses, and to real-time PCR for expression profile analyses during embryo development. Conclusions/Significance The L. vannamei transcriptome analyzed using the next-generation sequencing technique enriches the information of L. vannamei genes, which will facilitate our understanding of the genome background of crustaceans, and promote the studies on L. vannamei. PMID:23071809

  1. A Transcriptomic Analysis of Cave, Surface, and Hybrid Isopod Crustaceans of the Species Asellus aquaticus

    PubMed Central

    Stahl, Bethany A.; Gross, Joshua B.; Speiser, Daniel I.; Oakley, Todd H.; Patel, Nipam H.; Gould, Douglas B.; Protas, Meredith E.

    2015-01-01

    Cave animals, compared to surface-dwelling relatives, tend to have reduced eyes and pigment, longer appendages, and enhanced mechanosensory structures. Pressing questions include how certain cave-related traits are gained and lost, and if they originate through the same or different genetic programs in independent lineages. An excellent system for exploring these questions is the isopod, Asellus aquaticus. This species includes multiple cave and surface populations that have numerous morphological differences between them. A key feature is that hybrids between cave and surface individuals are viable, which enables genetic crosses and linkage analyses. Here, we advance this system by analyzing single animal transcriptomes of Asellus aquaticus. We use high throughput sequencing of non-normalized cDNA derived from the head of a surface-dwelling male, the head of a cave-dwelling male, the head of a hybrid male (produced by crossing a surface individual with a cave individual), and a pooled sample of surface embryos and hatchlings. Assembling reads from surface and cave head RNA pools yielded an integrated transcriptome comprised of 23,984 contigs. Using this integrated assembly as a reference transcriptome, we aligned reads from surface-, cave- and hybrid- head tissue and pooled surface embryos and hatchlings. Our approach identified 742 SNPs and placed four new candidate genes to an existing linkage map for A. aquaticus. In addition, we examined SNPs for allele-specific expression differences in the hybrid individual. All of these resources will facilitate identification of genes and associated changes responsible for cave adaptation in A. aquaticus and, in concert with analyses of other species, will inform our understanding of the evolutionary processes accompanying adaptation to the subterranean environment. PMID:26462237

  2. Transcriptional activity of transposable elements in coelacanth.

    PubMed

    Forconi, Mariko; Chalopin, Domitille; Barucca, Marco; Biscotti, Maria Assunta; De Moro, Gianluca; Galiana, Delphine; Gerdol, Marco; Pallavicini, Alberto; Canapa, Adriana; Olmo, Ettore; Volff, Jean-Nicolas

    2014-09-01

    The morphological stasis of coelacanths has long suggested a slow evolutionary rate. General genomic stasis might also imply a decrease of transposable elements activity. To evaluate the potential activity of transposable elements (TEs) in "living fossil" species, transcriptomic data of Latimeria chalumnae and its Indonesian congener Latimeria menadoensis were compared through the RNA-sequencing mapping procedures in three different organs (liver, testis, and muscle). The analysis of coelacanth transcriptomes highlights a significant percentage of transcribed TEs in both species. Major contributors are LINE retrotransposons, especially from the CR1 family. Furthermore, some particular elements such as a LF-SINE and a LINE2 sequences seem to be more expressed than other elements. The amount of TEs expressed in testis suggests possible transposition burst in incoming generations. Moreover, significant amount of TEs in liver and muscle transcriptomes were also observed. Analyses of elements displaying marked organ-specific expression gave us the opportunity to highlight exaptation cases, that is, the recruitment of TEs as new cellular genes, but also to identify a new Latimeria-specific family of Short Interspersed Nuclear Elements called CoeG-SINEs. Overall, transcriptome results do not seem to be in line with a slow-evolving genome with poor TE activity. © 2013 Wiley Periodicals, Inc.

  3. Comparative Transcriptome Analyses Uncover Key Candidate Genes Mediating Flight Capacity in Bactrocera dorsalis (Hendel) and Bactrocera correcta (Bezzi) (Diptera: Tephritidae).

    PubMed

    Guo, Shaokun; Zhao, Zihua; Liu, Lijun; Li, Zhihong; Shen, Jie

    2018-01-30

    Flight capacity is important for invasive pests during entry, establishment and spreading. Both Bactrocera dorsalis Hendel and Bactrocera correcta Bezzi are invasive fruit flies but their flight capacities differ. Here, a tethered flight mill test demonstrated that B. dorsalis exhibits a greater flight capacity than B. correcta . RNA-Seq was used to determine the transcriptomic differences associated with the flight capacity of two Bactrocera species. Transcriptome data showed that 6392 unigenes were differentially expressed between the two species in the larval stage, whereas in the adult stage, 4104 differentially expressed genes (DEGs) were identified in females, and 3445 DEGs were observed in males. The flight capacity appeared to be correlated with changes in the transcriptional levels of genes involved in wing formation, flight muscle structure, energy metabolism, and hormonal control. Using RNA interference (RNAi) to verify the function of one DEG, the epidermal growth factor receptor ( EGFR ), we confirmed the role of this gene in regulating wing development, and thereby flight capacity, in both species. This work reveals the flight mechanism of fruit flies and provides insight into fundamental transcriptomics for further studies on the flight performance of insects.

  4. RNAseq-based transcriptome comparison of Saccharomyces cerevisiae strains isolated from diverse fermentative environments.

    PubMed

    Ibáñez, Clara; Pérez-Torrado, Roberto; Morard, Miguel; Toft, Christina; Barrio, Eladio; Querol, Amparo

    2017-09-18

    Transcriptome analyses play a central role in unraveling the complexity of gene expression regulation in Saccharomyces cerevisiae. This species, one of the most important microorganisms for humans given its industrial applications, shows an astonishing degree of genetic and phenotypic variability among different strains adapted to specific environments. In order to gain novel insights into the Saccharomyces cerevisiae biology of strains adapted to different fermentative environments, we analyzed the whole transcriptome of three strains isolated from wine, flor wine or mezcal fermentations. An RNA-seq transcriptome comparison of the different yeasts in the samples obtained during synthetic must fermentation highlighted the differences observed in the genes that encode mannoproteins, and in those involved in aroma, sugar transport, glycerol and alcohol metabolism, which are important under alcoholic fermentation conditions. These differences were also observed in the physiology of the strains after mannoprotein and aroma determinations. This study offers an essential foundation for understanding how gene expression variations contribute to the fermentation differences of the strains adapted to unequal fermentative environments. Such knowledge is crucial to make improvements in fermentation processes and to define targets for the genetic improvement or selection of wine yeasts. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Extraction of Molecular Features through Exome to Transcriptome Alignment

    PubMed Central

    Mudvari, Prakriti; Kowsari, Kamran; Cole, Charles; Mazumder, Raja; Horvath, Anelia

    2014-01-01

    Integrative Next Generation Sequencing (NGS) DNA and RNA analyses have very recently become feasible, and the published to date studies have discovered critical disease implicated pathways, and diagnostic and therapeutic targets. A growing number of exomes, genomes and transcriptomes from the same individual are quickly accumulating, providing unique venues for mechanistic and regulatory features analysis, and, at the same time, requiring new exploration strategies. In this study, we have integrated variation and expression information of four NGS datasets from the same individual: normal and tumor breast exomes and transcriptomes. Focusing on SNPcentered variant allelic prevalence, we illustrate analytical algorithms that can be applied to extract or validate potential regulatory elements, such as expression or growth advantage, imprinting, loss of heterozygosity (LOH), somatic changes, and RNA editing. In addition, we point to some critical elements that might bias the output and recommend alternative measures to maximize the confidence of findings. The need for such strategies is especially recognized within the growing appreciation of the concept of systems biology: integrative exploration of genome and transcriptome features reveal mechanistic and regulatory insights that reach far beyond linear addition of the individual datasets. PMID:24791251

  6. A Pipeline for High-Throughput Concentration Response Modeling of Gene Expression for Toxicogenomics

    PubMed Central

    House, John S.; Grimm, Fabian A.; Jima, Dereje D.; Zhou, Yi-Hui; Rusyn, Ivan; Wright, Fred A.

    2017-01-01

    Cell-based assays are an attractive option to measure gene expression response to exposure, but the cost of whole-transcriptome RNA sequencing has been a barrier to the use of gene expression profiling for in vitro toxicity screening. In addition, standard RNA sequencing adds variability due to variable transcript length and amplification. Targeted probe-sequencing technologies such as TempO-Seq, with transcriptomic representation that can vary from hundreds of genes to the entire transcriptome, may reduce some components of variation. Analyses of high-throughput toxicogenomics data require renewed attention to read-calling algorithms and simplified dose–response modeling for datasets with relatively few samples. Using data from induced pluripotent stem cell-derived cardiomyocytes treated with chemicals at varying concentrations, we describe here and make available a pipeline for handling expression data generated by TempO-Seq to align reads, clean and normalize raw count data, identify differentially expressed genes, and calculate transcriptomic concentration–response points of departure. The methods are extensible to other forms of concentration–response gene-expression data, and we discuss the utility of the methods for assessing variation in susceptibility and the diseased cellular state. PMID:29163636

  7. De novo assembly and analysis of the Artemisia argyi transcriptome and identification of genes involved in terpenoid biosynthesis.

    PubMed

    Liu, Miaomiao; Zhu, Jinhang; Wu, Shengbing; Wang, Chenkai; Guo, Xingyi; Wu, Jiawen; Zhou, Meiqi

    2018-04-11

    Artemisia argyi Lev. et Vant. (A. argyi) is widely utilized for moxibustion in Chinese medicine, and the mechanism underlying terpenoid biosynthesis in its leaves is suggested to play an important role in its medicinal use. However, the A. argyi transcriptome has not been sequenced. Herein, we performed RNA sequencing for A. argyi leaf, root and stem tissues to identify as many as possible of the transcribed genes. In total, 99,807 unigenes were assembled by analysing the expression profiles generated from the three tissue types, and 67,446 of those unigenes were annotated in public databases. We further performed differential gene expression analysis to compare leaf tissue with the other two tissue types and identified numerous genes that were specifically expressed or up-regulated in leaf tissue. Specifically, we identified multiple genes encoding significant enzymes or transcription factors related to terpenoid synthesis. This study serves as a valuable resource for transcriptome information, as many transcribed genes related to terpenoid biosynthesis were identified in the A. argyi transcriptome, providing a functional genomic basis for additional studies on molecular mechanisms underlying the medicinal use of A. argyi.

  8. Comparative Transcriptome Analyses Uncover Key Candidate Genes Mediating Flight Capacity in Bactrocera dorsalis (Hendel) and Bactrocera correcta (Bezzi) (Diptera: Tephritidae)

    PubMed Central

    Zhao, Zihua; Liu, Lijun; Li, Zhihong; Shen, Jie

    2018-01-01

    Flight capacity is important for invasive pests during entry, establishment and spreading. Both Bactrocera dorsalis Hendel and Bactrocera correcta Bezzi are invasive fruit flies but their flight capacities differ. Here, a tethered flight mill test demonstrated that B. dorsalis exhibits a greater flight capacity than B. correcta. RNA-Seq was used to determine the transcriptomic differences associated with the flight capacity of two Bactrocera species. Transcriptome data showed that 6392 unigenes were differentially expressed between the two species in the larval stage, whereas in the adult stage, 4104 differentially expressed genes (DEGs) were identified in females, and 3445 DEGs were observed in males. The flight capacity appeared to be correlated with changes in the transcriptional levels of genes involved in wing formation, flight muscle structure, energy metabolism, and hormonal control. Using RNA interference (RNAi) to verify the function of one DEG, the epidermal growth factor receptor (EGFR), we confirmed the role of this gene in regulating wing development, and thereby flight capacity, in both species. This work reveals the flight mechanism of fruit flies and provides insight into fundamental transcriptomics for further studies on the flight performance of insects. PMID:29385681

  9. Gate-to-gate Life-Cycle Inventory of Hardboard Production in North America

    Treesearch

    Richard Bergman

    2014-01-01

    Whole-building life-cycle assessments (LCAs) populated by life-cycle inventory (LCI) data are incorporated into environmental footprint software tools for establishing green building certification by building professionals and code. However, LCI data on some wood building products are still needed to help fill gaps in the data and thus provide a more complete picture...

  10. A Review of the Application of Lifecycle Analysis to Renewable Energy Systems

    ERIC Educational Resources Information Center

    Lund, Chris; Biswas, Wahidul

    2008-01-01

    The lifecycle concept is a "cradle to grave" approach to thinking about products, processes, and services, recognizing that all stages have environmental and economic impacts. Any rigorous and meaningful comparison of energy supply options must be done using a lifecycle analysis approach. It has been applied to an increasing number of conventional…

  11. Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours | Office of Cancer Genomics

    Cancer.gov

    Analysis of molecular aberrations across multiple cancer types, known as pan-cancer analysis, identifies commonalities and differences in key biological processes that are dysregulated in cancer cells from diverse lineages. Pan-cancer analyses have been performed for adult1–4 but not paediatric cancers, which commonly occur in developing mesodermic rather than adult epithelial tissues5.

  12. Life-cycle inventory of hardwood lumber manufacturing in the Northeastern and North Central United States.

    Treesearch

    Richard Bergman; Scott A. Bowe

    2007-01-01

    The goal of this study was to find the environmental impact of hardwood lumber production through a gate-to-gate Life-Cycle Inventory (LCI) on hardwood sawmills in the northeast and northcentral (NE/NC) United States. Primary mill data was collected per CORRIM Research Guidelines (CORRIM 2001). Lifecycle analysis is beyond the scope of the study.

  13. Life-Cycle Thinking in Inquiry-Based Sustainability Education--Effects on Students' Attitudes towards Chemistry and Environmental Literacy

    ERIC Educational Resources Information Center

    Juntunen, Marianne; Aksela, Maija

    2013-01-01

    The aim of the present study is to improve the quality of students' environmental literacy and sustainability education in chemistry teaching by combining the socio-scientific issue of life-cycle thinking with inquiry-based learning approaches. This case study presents results from an inquiry-based life-cycle thinking project: an interdisciplinary…

  14. Genetic signatures of adaptation revealed from transcriptome sequencing of Arctic and red foxes.

    PubMed

    Kumar, Vikas; Kutschera, Verena E; Nilsson, Maria A; Janke, Axel

    2015-08-07

    The genus Vulpes (true foxes) comprises numerous species that inhabit a wide range of habitats and climatic conditions, including one species, the Arctic fox (Vulpes lagopus) which is adapted to the arctic region. A close relative to the Arctic fox, the red fox (Vulpes vulpes), occurs in subarctic to subtropical habitats. To study the genetic basis of their adaptations to different environments, transcriptome sequences from two Arctic foxes and one red fox individual were generated and analyzed for signatures of positive selection. In addition, the data allowed for a phylogenetic analysis and divergence time estimate between the two fox species. The de novo assembly of reads resulted in more than 160,000 contigs/transcripts per individual. Approximately 17,000 homologous genes were identified using human and the non-redundant databases. Positive selection analyses revealed several genes involved in various metabolic and molecular processes such as energy metabolism, cardiac gene regulation, apoptosis and blood coagulation to be under positive selection in foxes. Branch site tests identified four genes to be under positive selection in the Arctic fox transcriptome, two of which are fat metabolism genes. In the red fox transcriptome eight genes are under positive selection, including molecular process genes, notably genes involved in ATP metabolism. Analysis of the three transcriptomes and five Sanger re-sequenced genes in additional individuals identified a lower genetic variability within Arctic foxes compared to red foxes, which is consistent with distribution range differences and demographic responses to past climatic fluctuations. A phylogenomic analysis estimated that the Arctic and red fox lineages diverged about three million years ago. Transcriptome data are an economic way to generate genomic resources for evolutionary studies. Despite not representing an entire genome, this transcriptome analysis identified numerous genes that are relevant to arctic adaptation in foxes. Similar to polar bears, fat metabolism seems to play a central role in adaptation of Arctic foxes to the cold climate, as has been identified in the polar bear, another arctic specialist.

  15. Ovary transcriptome profiling via artificial intelligence reveals a transcriptomic fingerprint predicting egg quality in striped bass, Morone saxatilis.

    PubMed

    Chapman, Robert W; Reading, Benjamin J; Sullivan, Craig V

    2014-01-01

    Inherited gene transcripts deposited in oocytes direct early embryonic development in all vertebrates, but transcript profiles indicative of embryo developmental competence have not previously been identified. We employed artificial intelligence to model profiles of maternal ovary gene expression and their relationship to egg quality, evaluated as production of viable mid-blastula stage embryos, in the striped bass (Morone saxatilis), a farmed species with serious egg quality problems. In models developed using artificial neural networks (ANNs) and supervised machine learning, collective changes in the expression of a limited suite of genes (233) representing <2% of the queried ovary transcriptome explained >90% of the eventual variance in embryo survival. Egg quality related to minor changes in gene expression (<0.2-fold), with most individual transcripts making a small contribution (<1%) to the overall prediction of egg quality. These findings indicate that the predictive power of the transcriptome as regards egg quality resides not in levels of individual genes, but rather in the collective, coordinated expression of a suite of transcripts constituting a transcriptomic "fingerprint". Correlation analyses of the corresponding candidate genes indicated that dysfunction of the ubiquitin-26S proteasome, COP9 signalosome, and subsequent control of the cell cycle engenders embryonic developmental incompetence. The affected gene networks are centrally involved in regulation of early development in all vertebrates, including humans. By assessing collective levels of the relevant ovarian transcripts via ANNs we were able, for the first time in any vertebrate, to accurately predict the subsequent embryo developmental potential of eggs from individual females. Our results show that the transcriptomic fingerprint evidencing developmental dysfunction is highly predictive of, and therefore likely to regulate, egg quality, a biologically complex trait crucial to reproductive fitness.

  16. De novo Transcriptome Assembly of Common Wild Rice (Oryza rufipogon Griff.) and Discovery of Drought-Response Genes in Root Tissue Based on Transcriptomic Data.

    PubMed

    Tian, Xin-Jie; Long, Yan; Wang, Jiao; Zhang, Jing-Wen; Wang, Yan-Yan; Li, Wei-Min; Peng, Yu-Fa; Yuan, Qian-Hua; Pei, Xin-Wu

    2015-01-01

    The perennial O. rufipogon (common wild rice), which is considered to be the ancestor of Asian cultivated rice species, contains many useful genetic resources, including drought resistance genes. However, few studies have identified the drought resistance and tissue-specific genes in common wild rice. In this study, transcriptome sequencing libraries were constructed, including drought-treated roots (DR) and control leaves (CL) and roots (CR). Using Illumina sequencing technology, we generated 16.75 million bases of high-quality sequence data for common wild rice and conducted de novo assembly and annotation of genes without prior genome information. These reads were assembled into 119,332 unigenes with an average length of 715 bp. A total of 88,813 distinct sequences (74.42% of unigenes) significantly matched known genes in the NCBI NT database. Differentially expressed gene (DEG) analysis showed that 3617 genes were up-regulated and 4171 genes were down-regulated in the CR library compared with the CL library. Among the DEGs, 535 genes were expressed in roots but not in shoots. A similar comparison between the DR and CR libraries showed that 1393 genes were up-regulated and 315 genes were down-regulated in the DR library compared with the CR library. Finally, 37 genes that were specifically expressed in roots were screened after comparing the DEGs identified in the above-described analyses. This study provides a transcriptome sequence resource for common wild rice plants and establishes a digital gene expression profile of wild rice plants under drought conditions using the assembled transcriptome data as a reference. Several tissue-specific and drought-stress-related candidate genes were identified, representing a fully characterized transcriptome and providing a valuable resource for genetic and genomic studies in plants.

  17. De novo transcriptome assemblies of four xylem sap-feeding insects.

    PubMed

    Tassone, Erica E; Cowden, Charles C; Castle, S J

    2017-03-01

    Spittle bugs and sharpshooters are well-known xylem sap-feeding insects and vectors of the phytopathogenic bacterium Xylella fastidiosa (Wells), a causal agent of Pierce's disease of grapevines and other crop diseases. Specialized feeding on nutrient-deficient xylem sap is relatively rare among insect herbivores, and only limited genomic and transcriptomic information has been generated for xylem-sap feeders. To develop a more comprehensive understanding of biochemical adaptations and symbiotic relationships that support survival on a nutritionally austere dietary source, transcriptome assemblies for three sharpshooter species and one spittlebug species were produced. Trinity-based de novo transcriptome assemblies were generated for all four xylem-sap feeders using raw sequencing data originating from whole-insect preps. Total transcripts for each species ranged from 91 384 for Cuerna arida to 106 998 for Homalodisca liturata with transcript totals for Graphocephala atropunctata and the spittlebug Clastoptera arizonana falling in between. The percentage of transcripts comprising complete open reading frames ranged from 60% for H. liturata to 82% for C. arizonana. Bench-marking universal single-copy orthologs analyses for each dataset indicated quality assemblies and a high degree of completeness for all four species. These four transcriptomes represent a significant expansion of data for insect herbivores that feed exclusively on xylem sap, a nutritionally deficient dietary source relative to other plant tissues and fluids. Comparison of transcriptome data with insect herbivores that utilize other dietary sources may illuminate fundamental differences in the biochemistry of dietary specialization. Published by Oxford University Press on behalf of GIGSCI 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  18. Ovary Transcriptome Profiling via Artificial Intelligence Reveals a Transcriptomic Fingerprint Predicting Egg Quality in Striped Bass, Morone saxatilis

    PubMed Central

    2014-01-01

    Inherited gene transcripts deposited in oocytes direct early embryonic development in all vertebrates, but transcript profiles indicative of embryo developmental competence have not previously been identified. We employed artificial intelligence to model profiles of maternal ovary gene expression and their relationship to egg quality, evaluated as production of viable mid-blastula stage embryos, in the striped bass (Morone saxatilis), a farmed species with serious egg quality problems. In models developed using artificial neural networks (ANNs) and supervised machine learning, collective changes in the expression of a limited suite of genes (233) representing <2% of the queried ovary transcriptome explained >90% of the eventual variance in embryo survival. Egg quality related to minor changes in gene expression (<0.2-fold), with most individual transcripts making a small contribution (<1%) to the overall prediction of egg quality. These findings indicate that the predictive power of the transcriptome as regards egg quality resides not in levels of individual genes, but rather in the collective, coordinated expression of a suite of transcripts constituting a transcriptomic “fingerprint”. Correlation analyses of the corresponding candidate genes indicated that dysfunction of the ubiquitin-26S proteasome, COP9 signalosome, and subsequent control of the cell cycle engenders embryonic developmental incompetence. The affected gene networks are centrally involved in regulation of early development in all vertebrates, including humans. By assessing collective levels of the relevant ovarian transcripts via ANNs we were able, for the first time in any vertebrate, to accurately predict the subsequent embryo developmental potential of eggs from individual females. Our results show that the transcriptomic fingerprint evidencing developmental dysfunction is highly predictive of, and therefore likely to regulate, egg quality, a biologically complex trait crucial to reproductive fitness. PMID:24820964

  19. Comparative transcriptomics of elasmobranchs and teleosts highlight important processes in adaptive immunity and regional endothermy.

    PubMed

    Marra, Nicholas J; Richards, Vincent P; Early, Angela; Bogdanowicz, Steve M; Pavinski Bitar, Paulina D; Stanhope, Michael J; Shivji, Mahmood S

    2017-01-30

    Comparative genomic and/or transcriptomic analyses involving elasmobranchs remain limited, with genome level comparisons of the elasmobranch immune system to that of higher vertebrates, non-existent. This paper reports a comparative RNA-seq analysis of heart tissue from seven species, including four elasmobranchs and three teleosts, focusing on immunity, but concomitantly seeking to identify genetic similarities shared by the two lamnid sharks and the single billfish in our study, which could be linked to convergent evolution of regional endothermy. Across seven species, we identified an average of 10,877 Swiss-Prot annotated genes from an average of 32,474 open reading frames within each species' heart transcriptome. About half of these genes were shared between all species while the remainder included functional differences between our groups of interest (elasmobranch vs. teleost and endotherms vs. ectotherms) as revealed by Gene Ontology (GO) and selection analyses. A repeatedly represented functional category, in both the uniquely expressed elasmobranch genes (total of 259) and the elasmobranch GO enrichment results, involved antibody-mediated immunity, either in the recruitment of immune cells (Fc receptors) or in antigen presentation, including such terms as "antigen processing and presentation of exogenous peptide antigen via MHC class II", and such genes as MHC class II, HLA-DPB1. Molecular adaptation analyses identified three genes in elasmobranchs with a history of positive selection, including legumain (LGMN), a gene with roles in both innate and adaptive immunity including producing antigens for presentation by MHC class II. Comparisons between the endothermic and ectothermic species revealed an enrichment of GO terms associated with cardiac muscle contraction in endotherms, with 19 genes expressed solely in endotherms, several of which have significant roles in lipid and fat metabolism. This collective comparative evidence provides the first multi-taxa transcriptomic-based perspective on differences between elasmobranchs and teleosts, and suggests various unique features associated with the adaptive immune system of elasmobranchs, pointing in particular to the potential importance of MHC Class II. This in turn suggests that expanded comparative work involving additional tissues, as well as genome sequencing of multiple elasmobranch species would be productive in elucidating the regulatory and genome architectural hallmarks of elasmobranchs.

  20. De Novo Adult Transcriptomes of Two European Brittle Stars: Spotlight on Opsin-Based Photoreception

    PubMed Central

    Mallefet, Jérôme; Flammang, Patrick

    2016-01-01

    Next generation sequencing (NGS) technology allows to obtain a deeper and more complete view of transcriptomes. For non-model or emerging model marine organisms, NGS technologies offer a great opportunity for rapid access to genetic information. In this study, paired-end Illumina HiSeqTM technology has been employed to analyse transcriptomes from the arm tissues of two European brittle star species, Amphiura filiformis and Ophiopsila aranea. About 48 million Illumina reads were generated and 136,387 total unigenes were predicted from A. filiformis arm tissues. For O. aranea arm tissues, about 47 million reads were generated and 123,324 total unigenes were obtained. Twenty-four percent of the total unigenes from A. filiformis show significant matches with sequences present in reference online databases, whereas, for O. aranea, this percentage amounts to 23%. In both species, around 50% of the predicted annotated unigenes were significantly similar to transcripts from the purple sea urchin, the closest species to date that has undergone complete genome sequencing and annotation. GO, COG and KEGG analyses were performed on predicted brittle star unigenes. We focused our analyses on the phototransduction actors involved in light perception. Firstly, two new echinoderm opsins were identified in O. aranea: one rhabdomeric opsin (homologous to vertebrate melanopsin) and one RGR opsin. The RGR-opsin is supposed to be involved in retinal regeneration while the r-opsin is suspected to play a role in visual-like behaviour. Secondly, potential phototransduction actors were identified in both transcriptomes using the fly (rhabdomeric) and mammal (ciliary) classical phototransduction pathways as references. Finally, the sensitivity of O.aranea to monochromatic light was investigated to complement data available for A. filiformis. The presence of microlens-like structures at the surface of dorsal arm plate of O. aranea could potentially explain phototactic behaviour differences between the two species. The results confirm (i) the ability of these brittle stars to perceive light using opsin-based photoreception, (ii) suggest the co-occurrence of both rhabdomeric and ciliary photoreceptors, and (iii) emphasise the complexity of light perception in this echinoderm class. PMID:27119739

  1. De novo transcriptome analysis and microsatellite marker development for population genetic study of a serious insect pest, Rhopalosiphum padi (L.) (Hemiptera: Aphididae).

    PubMed

    Duan, Xinle; Wang, Kang; Su, Sha; Tian, Ruizheng; Li, Yuting; Chen, Maohua

    2017-01-01

    The bird cherry-oat aphid, Rhopalosiphum padi (L.), is one of the most abundant aphid pests of cereals and has a global distribution. Next-generation sequencing (NGS) is a rapid and efficient method for developing molecular markers. However, transcriptomic and genomic resources of R. padi have not been investigated. In this study, we used transcriptome information obtained by RNA-Seq to develop polymorphic microsatellites for investigating population genetics in this species. The transcriptome of R. padi was sequenced on an Illumina HiSeq 2000 platform. A total of 114.4 million raw reads with a GC content of 40.03% was generated. The raw reads were cleaned and assembled into 29,467 unigenes with an N50 length of 1,580 bp. Using several public databases, 82.47% of these unigenes were annotated. Of the annotated unigenes, 8,022 were assigned to COG pathways, 9,895 were assigned to GO pathways, and 14,586 were mapped to 257 KEGG pathways. A total of 7,936 potential microsatellites were identified in 5,564 unigenes, 60 of which were selected randomly and amplified using specific primer pairs. Fourteen loci were found to be polymorphic in the four R. padi populations. The transcriptomic data presented herein will facilitate gene discovery, gene analyses, and development of molecular markers for future studies of R. padi and other closely related aphid species.

  2. Isoform Sequencing Provides a More Comprehensive View of the Panax ginseng Transcriptome.

    PubMed

    Jo, Ick-Hyun; Lee, Jinsu; Hong, Chi Eun; Lee, Dong Jin; Bae, Wonsil; Park, Sin-Gi; Ahn, Yong Ju; Kim, Young Chang; Kim, Jang Uk; Lee, Jung Woo; Hyun, Dong Yun; Rhee, Sung-Keun; Hong, Chang Pyo; Bang, Kyong Hwan; Ryu, Hojin

    2017-09-15

    Korean ginseng ( Panax ginseng C.A. Meyer) has been widely used for medicinal purposes and contains potent plant secondary metabolites, including ginsenosides. To obtain transcriptomic data that offers a more comprehensive view of functional genomics in P. ginseng , we generated genome-wide transcriptome data from four different P. ginseng tissues using PacBio isoform sequencing (Iso-Seq) technology. A total of 135,317 assembled transcripts were generated with an average length of 3.2 kb and high assembly completeness. Of those unigenes, 67.5% were predicted to be complete full-length (FL) open reading frames (ORFs) and exhibited a high gene annotation rate. Furthermore, we successfully identified unique full-length genes involved in triterpenoid saponin synthesis and plant hormonal signaling pathways, including auxin and cytokinin. Studies on the functional genomics of P. ginseng seedlings have confirmed the rapid upregulation of negative feed-back loops by auxin and cytokinin signaling cues. The conserved evolutionary mechanisms in the auxin and cytokinin canonical signaling pathways of P. ginseng are more complex than those in Arabidopsis thaliana . Our analysis also revealed a more detailed view of transcriptome-wide alternative isoforms for 88 genes. Finally, transposable elements (TEs) were also identified, suggesting transcriptional activity of TEs in P. ginseng . In conclusion, our results suggest that long-read, full-length or partial-unigene data with high-quality assemblies are invaluable resources as transcriptomic references in P. ginseng and can be used for comparative analyses in closely related medicinal plants.

  3. Transcriptome sequencing reveals high isoform diversity in the ant Formica exsecta

    PubMed Central

    Paviala, Jenni; Morandin, Claire; Wheat, Christopher; Sundström, Liselotte; Helanterä, Heikki

    2017-01-01

    Transcriptome resources for social insects have the potential to provide new insight into polyphenism, i.e., how divergent phenotypes arise from the same genome. Here we present a transcriptome based on paired-end RNA sequencing data for the ant Formica exsecta (Formicidae, Hymenoptera). The RNA sequencing libraries were constructed from samples of several life stages of both sexes and female castes of queens and workers, in order to maximize representation of expressed genes. We first compare the performance of common assembly and scaffolding software (Trinity, Velvet-Oases, and SOAPdenovo-trans), in producing de novo assemblies. Second, we annotate the resulting expressed contigs to the currently published genomes of ants, and other insects, including the honeybee, to filter genes that have annotation evidence of being true genes. Our pipeline resulted in a final assembly of altogether 39,262 mRNA transcripts, with an average coverage of >300X, belonging to 17,496 unique genes with annotation in the related ant species. From these genes, 536 genes were unique to one caste or sex only, highlighting the importance of comprehensive sampling. Our final assembly also showed expression of several splice variants in 6,975 genes, and we show that accounting for splice variants affects the outcome of downstream analyses such as gene ontologies. Our transcriptome provides an outstanding resource for future genetic studies on F. exsecta and other ant species, and the presented transcriptome assembly can be adapted to any non-model species that has genomic resources available from a related taxon. PMID:29177112

  4. Molecular candidates for early-stage flower-to-fruit transition in stenospermocarpic table grape (Vitis vinifera L.) inflorescences ascribed by differential transcriptome and metabolome profiles.

    PubMed

    Domingos, Sara; Fino, Joana; Paulo, Octávio S; Oliveira, Cristina M; Goulao, Luis F

    2016-03-01

    Flower-to-fruit transition depends of nutrient availability and regulation at the molecular level by sugar and hormone signalling crosstalk. However, in most species, the identities of fruit initiation regulators and their targets are largely unknown. To ascertain the main pathways involved in stenospermocarpic table grape fruit set, comprehensive transcriptional and metabolomic analyses were conducted specifically targeting the early phase of this developmental stage in 'Thompson Seedless'. The high-throughput analyses performed disclosed the involvement of 496 differentially expressed genes and 28 differently accumulated metabolites in the sampled inflorescences. Our data show broad transcriptome reprogramming of molecule transporters, globally down-regulating gene expression, and suggest that regulation of sugar- and hormone-mediated pathways determines the downstream activation of berry development. The most affected gene was the SWEET14 sugar transporter. Hormone-related transcription changes were observed associated with increased indole-3-acetic acid, stimulation of ethylene and gibberellin metabolisms and cytokinin degradation, and regulation of MADS-box and AP2-like ethylene-responsive transcription factor expression. Secondary metabolism, the most representative biological process at transcriptome level, was predominantly repressed. The results add to the knowledge of molecular events occurring in grapevine inflorescence fruit set and provide a list of candidates, paving the way for genetic manipulation aimed at model research and plant breeding. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Belowground neighbor perception in Arabidopsis thaliana studied by transcriptome analysis: roots of Hieracium pilosella cause biotic stress

    PubMed Central

    Schmid, Christoph; Bauer, Sibylle; Müller, Benedikt; Bartelheimer, Maik

    2013-01-01

    Root-root interactions are much more sophisticated than previously thought, yet the mechanisms of belowground neighbor perception remain largely obscure. Genome-wide transcriptome analyses allow detailed insight into plant reactions to environmental cues. A root interaction trial was set up to explore both morphological and whole genome transcriptional responses in roots of Arabidopsis thaliana in the presence or absence of an inferior competitor, Hieracium pilosella. Neighbor perception was indicated by Arabidopsis roots predominantly growing away from the neighbor (segregation), while solitary plants placed more roots toward the middle of the pot. Total biomass remained unaffected. Database comparisons in transcriptome analysis revealed considerable similarity between Arabidopsis root reactions to neighbors and reactions to pathogens. Detailed analyses of the functional category “biotic stress” using MapMan tools found the sub-category “pathogenesis-related proteins” highly significantly induced. A comparison to a study on intraspecific competition brought forward a core of genes consistently involved in reactions to neighbor roots. We conclude that beyond resource depletion roots perceive neighboring roots or their associated microorganisms by a relatively uniform mechanism that involves the strong induction of pathogenesis-related proteins. In an ecological context the findings reveal that belowground neighbor detection may occur independently of resource depletion, allowing for a time advantage for the root to prepare for potential interactions. PMID:23967000

  6. Insights into the Sesquiterpenoid Pathway by Metabolic Profiling and De novo Transcriptome Assembly of Stem-Chicory (Cichorium intybus Cultigroup “Catalogna”)

    PubMed Central

    Testone, Giulio; Mele, Giovanni; Di Giacomo, Elisabetta; Gonnella, Maria; Renna, Massimiliano; Tenore, Gian Carlo; Nicolodi, Chiara; Frugis, Giovanna; Iannelli, Maria Adelaide; Arnesi, Giuseppe; Schiappa, Alessandro; Giannino, Donato

    2016-01-01

    Stem-chicory of the “Catalogna” group is a vegetable consumed for bitter-flavored stems. Type and levels of bitter sesquiterpene lactones (STLs) participate in conferring bitterness in vegetables. The content of lactucin—and lactucopocrin-like STLs was higher in “Molfettese” than “Galatina” landrace stalks, regardless of the cultivation sites, consistently with bitterness scores and gustative differences. The “Galatina” transcriptome assembly resulted in 58,872 unigenes, 77% of which were annotated, paving the way to molecular investigation of the STL pathway. Comparative transcriptome analysis allowed the identification of 69,352 SNPs and of 1640 differentially expressed genes that maintained the pattern independently of the site. Enrichment analyses revealed that 4 out of 29 unigenes were up-regulated in “Molfettese” vs “Galatina” within the sesquiterpenoid pathway. The expression of two germacrene A -synthase (GAS) and one -oxidase (GAO) genes of the costunolide branch correlated positively with the contents of lactucin-like molecules, supporting that STL biosynthesis regulation occurs at the transcriptional level. Finally, 46 genes encoding transcription factors (TFs) maintained a differential expression pattern between the two varieties regardless of the growth site; correlation analyses among TFs, GAS, GAO gene expressions and STLs contents suggest that one MYB and one bHLH may act in the pathway. PMID:27877190

  7. Large-scale transcriptome sequencing and gene analyses in the crab-eating macaque (Macaca fascicularis) for biomedical research

    PubMed Central

    2012-01-01

    Background As a human replacement, the crab-eating macaque (Macaca fascicularis) is an invaluable non-human primate model for biomedical research, but the lack of genetic information on this primate has represented a significant obstacle for its broader use. Results Here, we sequenced the transcriptome of 16 tissues originated from two individuals of crab-eating macaque (male and female), and identified genes to resolve the main obstacles for understanding the biological response of the crab-eating macaque. From 4 million reads with 1.4 billion base sequences, 31,786 isotigs containing genes similar to those of humans, 12,672 novel isotigs, and 348,160 singletons were identified using the GS FLX sequencing method. Approximately 86% of human genes were represented among the genes sequenced in this study. Additionally, 175 tissue-specific transcripts were identified, 81 of which were experimentally validated. In total, 4,314 alternative splicing (AS) events were identified and analyzed. Intriguingly, 10.4% of AS events were associated with transposable element (TE) insertions. Finally, investigation of TE exonization events and evolutionary analysis were conducted, revealing interesting phenomena of human-specific amplified trends in TE exonization events. Conclusions This report represents the first large-scale transcriptome sequencing and genetic analyses of M. fascicularis and could contribute to its utility for biomedical research and basic biology. PMID:22554259

  8. Extensive tissue-specific transcriptomic plasticity in maize primary roots upon water deficit.

    PubMed

    Opitz, Nina; Marcon, Caroline; Paschold, Anja; Malik, Waqas Ahmed; Lithio, Andrew; Brandt, Ronny; Piepho, Hans-Peter; Nettleton, Dan; Hochholdinger, Frank

    2016-02-01

    Water deficit is the most important environmental constraint severely limiting global crop growth and productivity. This study investigated early transcriptome changes in maize (Zea mays L.) primary root tissues in response to moderate water deficit conditions by RNA-Sequencing. Differential gene expression analyses revealed a high degree of plasticity of the water deficit response. The activity status of genes (active/inactive) was determined by a Bayesian hierarchical model. In total, 70% of expressed genes were constitutively active in all tissues. In contrast, <3% (50 genes) of water deficit-responsive genes (1915) were consistently regulated in all tissues, while >75% (1501 genes) were specifically regulated in a single root tissue. Water deficit-responsive genes were most numerous in the cortex of the mature root zone and in the elongation zone. The most prominent functional categories among differentially expressed genes in all tissues were 'transcriptional regulation' and 'hormone metabolism', indicating global reprogramming of cellular metabolism as an adaptation to water deficit. Additionally, the most significant transcriptomic changes in the root tip were associated with cell wall reorganization, leading to continued root growth despite water deficit conditions. This study provides insight into tissue-specific water deficit responses and will be a resource for future genetic analyses and breeding strategies to develop more drought-tolerant maize cultivars. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. Identification of candidate chemosensory genes in the antennal transcriptome of Tenebrio molitor (Coleoptera: Tenebrionidae).

    PubMed

    Liu, Su; Rao, Xiang-Jun; Li, Mao-Ye; Feng, Ming-Feng; He, Meng-Zhu; Li, Shi-Guang

    2015-03-01

    We present the first antennal transcriptome sequencing information for the yellow mealworm beetle, Tenebrio molitor (Coleoptera: Tenebrionidae). Analysis of the transcriptome dataset obtained 52,216,616 clean reads, from which 35,363 unigenes were assembled. Of these, 18,820 unigenes showed significant similarity (E-value <10(-5)) to known proteins in the NCBI non-redundant protein database. Gene ontology (GO) and Cluster of Orthologous Groups (COG) analyses were used for functional classification of these unigenes. We identified 19 putative odorant-binding protein (OBP) genes, 12 chemosensory protein (CSP) genes, 20 olfactory receptor (OR) genes, 6 ionotropic receptor (IR) genes and 2 sensory neuron membrane protein (SNMP) genes. BLASTX best hit results indicated that these chemosensory genes were most identical to their respective orthologs from Tribolium castaneum. Phylogenetic analyses also revealed that the T. molitor OBPs and CSPs are closely related to those of T. castaneum. Real-time quantitative PCR assays showed that eight TmolOBP genes were antennae-specific. Of these, TmolOBP5, TmolOBP7 and TmolOBP16 were found to be predominantly expressed in male antennae, while TmolOBP17 was expressed mainly in the legs of males. Several other genes were identified that were neither tissue-specific nor sex-specific. These results establish a firm foundation for future studies of the chemosensory genes in T. molitor. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Life-cycle assessment of redwood decking in the United States with a comparison to three other decking materials

    Treesearch

    R. Bergman; H. Sup-Han; E. Oneil; I. Eastin

    2013-01-01

    The goal of the study was to conduct a life-cycle inventory (LCI) of California redwood (Sequoia sempervirens) decking that would quantify the critical environmental impacts of decking from cradle to grave. Using that LCI data, a life-cycle assessment (LCA) was produced for redwood decking. The results were used to compare the environmental footprint...

  11. A Life-Cycle Assessment of Biofuels: Tracing Energy and Carbon through a Fuel-Production System

    ERIC Educational Resources Information Center

    Krauskopf, Sara

    2010-01-01

    A life-cycle assessment (LCA) is a tool used by engineers to make measurements of net energy, greenhouse gas production, water consumption, and other items of concern. This article describes an activity designed to walk students through the qualitative part of an LCA. It asks them to consider the life-cycle costs of ethanol production, in terms of…

  12. Product Lifecycle Management Architecture: A Model Based Systems Engineering Analysis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noonan, Nicholas James

    2015-07-01

    This report is an analysis of the Product Lifecycle Management (PLM) program. The analysis is centered on a need statement generated by a Nuclear Weapons (NW) customer. The need statement captured in this report creates an opportunity for the PLM to provide a robust service as a solution. Lifecycles for both the NW and PLM are analyzed using Model Based System Engineering (MBSE).

  13. Building Information Modeling (BIM) Primer. Report 1: Facility Life-Cycle Process and Technology Innovation

    DTIC Science & Technology

    2012-08-01

    Building Information Modeling ( BIM ) Primer Report 1: Facility Life-cycle Process and Technology Innovation In fo...is unlimited. ERDC/ITL TR-12-2 August 2012 Building Information Modeling ( BIM ) Primer Report 1: Facility Life-cycle Process and Technology...and to enhance the quality of projects through the design, construction, and handover phases. Building Information Modeling ( BIM ) is a

  14. Analyses of transcriptome sequences reveal multiple ancient large-scale duplication events in the ancestor of Sphagnopsida (Bryophyta).

    PubMed

    Devos, Nicolas; Szövényi, Péter; Weston, David J; Rothfels, Carl J; Johnson, Matthew G; Shaw, A Jonathan

    2016-07-01

    The goal of this research was to investigate whether there has been a whole-genome duplication (WGD) in the ancestry of Sphagnum (peatmoss) or the class Sphagnopsida, and to determine if the timing of any such duplication(s) and patterns of paralog retention could help explain the rapid radiation and current ecological dominance of peatmosses. RNA sequencing (RNA-seq) data were generated for nine taxa in Sphagnopsida (Bryophyta). Analyses of frequency plots for synonymous substitutions per synonymous site (Ks ) between paralogous gene pairs and reconciliation of 578 gene trees were conducted to assess evidence of large-scale or genome-wide duplication events in each transcriptome. Both Ks frequency plots and gene tree-based analyses indicate multiple duplication events in the history of the Sphagnopsida. The most recent WGD event predates divergence of Sphagnum from the two other genera of Sphagnopsida. Duplicate retention is highly variable across species, which might be best explained by local adaptation. Our analyses indicate that the last WGD could have been an important factor underlying the diversification of peatmosses and facilitated their rise to ecological dominance in peatlands. The timing of the duplication events and their significance in the evolutionary history of peat mosses are discussed. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  15. NFP, a LysM protein controlling Nod factor perception, also intervenes in Medicago truncatula resistance to pathogens.

    PubMed

    Rey, Thomas; Nars, Amaury; Bonhomme, Maxime; Bottin, Arnaud; Huguet, Stéphanie; Balzergue, Sandrine; Jardinaud, Marie-Françoise; Bono, Jean-Jacques; Cullimore, Julie; Dumas, Bernard; Gough, Clare; Jacquet, Christophe

    2013-05-01

    Plant LysM proteins control the perception of microbial-derived N-acetylglucosamine compounds for the establishment of symbiosis or activation of plant immunity. This raises questions about how plants, and notably legumes, can differentiate friends and foes using similar molecular actors and whether any receptors can intervene in both symbiosis and resistance. To study this question, nfp and lyk3 LysM-receptor like kinase mutants of Medicago truncatula that are affected in the early steps of nodulation, were analysed following inoculation with Aphanomyces euteiches, a root oomycete. The role of NFP in this interaction was further analysed by overexpression of NFP and by transcriptome analyses. nfp, but not lyk3, mutants were significantly more susceptible than wildtype plants to A. euteiches, whereas NFP overexpression increased resistance. Transcriptome analyses on A. euteiches inoculation showed that mutation in the NFP gene led to significant changes in the expression of c. 500 genes, notably involved in cell dynamic processes previously associated with resistance to pathogen penetration. nfp mutants also showed an increased susceptibility to the fungus Colletotrichum trifolii. These results demonstrate that NFP intervenes in M. truncatula immunity, suggesting an unsuspected role for NFP in the perception of pathogenic signals. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  16. A comprehensive porcine blood transcriptome

    USDA-ARS?s Scientific Manuscript database

    Blood sample analyses are extensively used in high throughput assays in biomedicine, as well as animal genetics and physiology research. However, the draft quality of the current pig genome (Sscrofa 10.2) is insufficient for accurate interpretation of many of these assays because of incomplete gene ...

  17. Molecular and physiological responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis

    EPA Science Inventory

    - Changes in tissue transcriptomes and productivity of Arabidopsis thaliana were investigated during exposure of plants to two widely-used engineered metal oxide nanoparticles, titanium dioxide (nano-titanium) and cerium dioxide (nano-cerium). Microarray analyses confirmed that e...

  18. Perspectives on social media in and as research: A synthetic review.

    PubMed

    Lafferty, Natalie T; Manca, Annalisa

    2015-04-01

    With the growth of social media use in both the private and public spheres, researchers are currently exploring the new opportunities and practices offered by these tools in the research lifecycle. This area is still in its infancy: As methodological approaches and methods are being tested - mainly through pragmatic and exploratory approaches - practices are being shaped and negotiated by the actors involved in research. A further element of complexity is added by the ambivalent status of social media within research activities. They can be both a tool - for recruitment, data collection, analysis - and data - as what constitutes the corpus to be analysed - both in an observational and interactive domain. This synthetic analysis of the literature is aimed at identifying how social media are currently being used in research and how they fit into the research lifecycle. We identify and discuss emerging evidence and trends in the adoption of social media in research, which can be used and applied by psychiatry research practitioners as a framework to inform the development of a personalized research network and social media strategy in research.

  19. Investigation of the impacts of selected nanotechnology products with view to their demand for raw materials and energy

    NASA Astrophysics Data System (ADS)

    Möller, M.; Diesner, M.; Manhart, A.; Küppers, P.; Spieth-Achtnich, A.; Pistner, C.

    2014-08-01

    In the study presented here qualitative and quantitative life-cycle considerations were employed to assess the potential material and energy savings that might be achieved through nanoenabled applications. Ten nanotechnology application fields with broad market coverage and immediate impact to either the generation of renewable energies or the use of critical resources were analyzed. Organic photovoltaic modules (solar cells that essentially consist of organic materials) and electronically dimmable windows (electrochromic laminated glass, which can be adjusted to conform to the ambient light conditions) as two very promising nano-enabled applications were quantitatively analyzed. Eight further products including neodymium magnets were evaluated on a qualitative basis. All assessments contain classical indicators such as energy efficiency, product carbon footprint, and resource consumption. In addition, pollutant aspects (exposure and toxicology) as well as other sustainability aspects (such as user benefits) were taken into account in the framework of a so-called "hot spot analysis". Furthermore, drivers behind the innovation as well as associated rebound effects were identified. The results highlight the importance of product specific analyses based on a life-cycle thinking approach.

  20. Lifecycle comparison of selected Li-ion battery chemistries under grid and electric vehicle duty cycle combinations

    NASA Astrophysics Data System (ADS)

    Crawford, Alasdair J.; Huang, Qian; Kintner-Meyer, Michael C. W.; Zhang, Ji-Guang; Reed, David M.; Sprenkle, Vincent L.; Viswanathan, Vilayanur V.; Choi, Daiwon

    2018-03-01

    Li-ion batteries are expected to play a vital role in stabilizing the electrical grid as solar and wind generation capacity becomes increasingly integrated into the electric infrastructure. This article describes how two different commercial Li-ion batteries based on LiNi0.8Co0.15Al0.05O2 (NCA) and LiFePO4 (LFP) chemistries were tested under grid duty cycles recently developed for two specific grid services: (1) frequency regulation (FR) and (2) peak shaving (PS) with and without being subjected to electric vehicle (EV) drive cycles. The lifecycle comparison derived from the capacity, round-trip efficiency (RTE), resistance, charge/discharge energy, and total used energy of the two battery chemistries are discussed. The LFP chemistry shows better stability for the energy-intensive PS service, while the NCA chemistry is more conducive to the FR service under the operating regimes investigated. The results can be used as a guideline for selection, deployment, operation, and cost analyses of Li-ion batteries used for different applications.

  1. Development of EST-SSR markers for Taxillus nigrans (Loranthaceae) in southwestern China using next-generation sequencing1

    PubMed Central

    Miao, Ning; Zhang, Lei; Li, Maoping; Fan, Liqiang; Mao, Kangshan

    2017-01-01

    Premise of the study: We developed transcriptome microsatellite markers (simple sequence repeats) for Taxillus nigrans (Loranthaceae) to survey the genetic diversity and population structure of this species. Methods and Results: We used Illumina HiSeq data to reconstruct the transcriptome of T. nigrans by de novo assembly and used the transcriptome to develop a set of simple sequence repeat markers. Overall, 40 primer pairs were designed and tested; 19 of them amplified successfully and demonstrated polymorphisms. Two loci that detected null alleles were eliminated, and the remaining 17, which were subjected to further analyses, yielded two to 21 alleles per locus. Conclusions: The markers will serve as a basis for studies to assess the extent and pattern of distribution of genetic variation in T. nigrans, and they may also be useful in conservation genetic, ecological, and evolutionary studies of the genus Taxillus, a group of plant species of importance in Chinese traditional medicine. PMID:28924510

  2. Probing the evolution, ecology and physiology of marine protists using transcriptomics.

    PubMed

    Caron, David A; Alexander, Harriet; Allen, Andrew E; Archibald, John M; Armbrust, E Virginia; Bachy, Charles; Bell, Callum J; Bharti, Arvind; Dyhrman, Sonya T; Guida, Stephanie M; Heidelberg, Karla B; Kaye, Jonathan Z; Metzner, Julia; Smith, Sarah R; Worden, Alexandra Z

    2017-01-01

    Protists, which are single-celled eukaryotes, critically influence the ecology and chemistry of marine ecosystems, but genome-based studies of these organisms have lagged behind those of other microorganisms. However, recent transcriptomic studies of cultured species, complemented by meta-omics analyses of natural communities, have increased the amount of genetic information available for poorly represented branches on the tree of eukaryotic life. This information is providing insights into the adaptations and interactions between protists and other microorganisms and macroorganisms, but many of the genes sequenced show no similarity to sequences currently available in public databases. A better understanding of these newly discovered genes will lead to a deeper appreciation of the functional diversity and metabolic processes in the ocean. In this Review, we summarize recent developments in our understanding of the ecology, physiology and evolution of protists, derived from transcriptomic studies of cultured strains and natural communities, and discuss how these novel large-scale genetic datasets will be used in the future.

  3. Phenotypic and Transcriptomic Analyses of Autotetraploid and Diploid Mulberry (Morus alba L.).

    PubMed

    Dai, Fanwei; Wang, Zhenjiang; Luo, Guoqing; Tang, Cuiming

    2015-09-22

    Autopolyploid plants and their organs are often larger than their diploid counterparts, which makes them attractive to plant breeders. Mulberry (Morus alba L.) is an important commercial woody plant in many tropical and subtropical areas. In this study, we obtained a series of autotetraploid mulberry plants resulting from a colchicine treatment. To evaluate the effects of genome duplications in mulberry, we compared the phenotypes and transcriptomes of autotetraploid and diploid mulberry trees. In the autotetraploids, the height, breast-height diameter, leaf size, and fruit size were larger than those of diploids. Transcriptome data revealed that of 21,229 expressed genes only 609 (2.87%) were differentially expressed between diploids and autotetraploids. Among them, 30 genes were associated with the biosynthesis and signal transduction of plant hormones, including cytokinin, gibberellins, ethylene, and auxin. In addition, 41 differentially expressed genes were involved in photosynthesis. These results enhance our understanding of the variations that occur in mulberry autotetraploids and will benefit future breeding work.

  4. Phenotypic and Transcriptomic Analyses of Autotetraploid and Diploid Mulberry (Morus alba L.)

    PubMed Central

    Dai, Fanwei; Wang, Zhenjiang; Luo, Guoqing; Tang, Cuiming

    2015-01-01

    Autopolyploid plants and their organs are often larger than their diploid counterparts, which makes them attractive to plant breeders. Mulberry (Morus alba L.) is an important commercial woody plant in many tropical and subtropical areas. In this study, we obtained a series of autotetraploid mulberry plants resulting from a colchicine treatment. To evaluate the effects of genome duplications in mulberry, we compared the phenotypes and transcriptomes of autotetraploid and diploid mulberry trees. In the autotetraploids, the height, breast-height diameter, leaf size, and fruit size were larger than those of diploids. Transcriptome data revealed that of 21,229 expressed genes only 609 (2.87%) were differentially expressed between diploids and autotetraploids. Among them, 30 genes were associated with the biosynthesis and signal transduction of plant hormones, including cytokinin, gibberellins, ethylene, and auxin. In addition, 41 differentially expressed genes were involved in photosynthesis. These results enhance our understanding of the variations that occur in mulberry autotetraploids and will benefit future breeding work. PMID:26402678

  5. Transcriptome and proteome analysis of Salmonella enterica serovar Typhimurium systemic infection of wild type and immune-deficient mice

    PubMed Central

    Oshota, Olusegun; Fookes, Maria; Schreiber, Fernanda; Chaudhuri, Roy R.; Yu, Lu; Clare, Simon; Choudhary, Jyoti; Thomson, Nicholas R.; Lio, Pietro

    2017-01-01

    Salmonella enterica are a threat to public health. Current vaccines are not fully effective. The ability to grow in infected tissues within phagocytes is required for S. enterica virulence in systemic disease. As the infection progresses the bacteria are exposed to a complex host immune response. Consequently, in order to continue growing in the tissues, S. enterica requires the coordinated regulation of fitness genes. Bacterial gene regulation has so far been investigated largely using exposure to artificial environmental conditions or to in vitro cultured cells, and little information is available on how S. enterica adapts in vivo to sustain cell division and survival. We have studied the transcriptome, proteome and metabolic flux of Salmonella, and the transcriptome of the host during infection of wild type C57BL/6 and immune-deficient gp91-/-phox mice. Our analyses advance the understanding of how S. enterica and the host behaves during infection to a more sophisticated level than has previously been reported. PMID:28796780

  6. Single prokaryotic cell isolation and total transcript amplification protocol for transcriptomic analysis.

    PubMed

    Kang, Yun; McMillan, Ian; Norris, Michael H; Hoang, Tung T

    2015-07-01

    Until recently, transcriptome analyses of single cells have been confined to eukaryotes. The information obtained from single-cell transcripts can provide detailed insight into spatiotemporal gene expression, and it could be even more valuable if expanded to prokaryotic cells. Transcriptome analysis of single prokaryotic cells is a recently developed and powerful tool. Here we describe a procedure that allows amplification of the total transcript of a single prokaryotic cell for in-depth analysis. This is performed by using a laser-capture microdissection instrument for single-cell isolation, followed by reverse transcription via Moloney murine leukemia virus, degradation of chromosomal DNA with McrBC and DpnI restriction enzymes, single-stranded cDNA (ss-cDNA) ligation using T4 polynucleotide kinase and CircLigase, and polymerization of ss-cDNA to double-stranded cDNA (ds-cDNA) by Φ29 polymerase. This procedure takes ∼5 d, and sufficient amounts of ds-cDNA can be obtained from single-cell RNA template for further microarray analysis.

  7. Title: Comparative transcriptome profiling of the human and mouse dorsal root ganglia: an RNA-seq-based resource for pain and sensory neuroscience research.

    PubMed

    Ray, Pradipta; Torck, Andrew; Quigley, Lilyana; Wangzhou, Andi; Neiman, Matthew; Rao, Chandranshu; Lam, Tiffany; Kim, Ji-Young; Kim, Tae Hoon; Zhang, Michael Q; Dussor, Gregory; Price, Theodore J

    2018-03-20

    Molecular neurobiological insight into human nervous tissues is needed to generate next generation therapeutics for neurological disorders like chronic pain. We obtained human Dorsal Root Ganglia (DRG) samples from organ donors and performed RNA-sequencing (RNA-seq) to study the human DRG (hDRG) transcriptional landscape, systematically comparing it with publicly available data from a variety of human and orthologous mouse tissues, including mouse DRG (mDRG). We characterized the hDRG transcriptional profile in terms of tissue-restricted gene co-expression patterns and putative transcriptional regulators, and formulated an information-theoretic framework to quantify DRG enrichment. Relevant gene families and pathways were also analyzed, including transcription factors (TFs), g-protein coupled receptors (GCPRs) and ion channels. Our analyses reveal a hDRG-enriched protein-coding gene set (∼140), some of which have not been described in the context of DRG or pain signaling. A majority of these show conserved enrichment in mDRG, and were mined for known drug - gene product interactions. Conserved enrichment of the vast majority of TFs suggest that the mDRG is a faithful model system for studying hDRGs, due to evolutionarily conserved regulatory programs. Comparison of hDRG and tibial nerve transcriptomes suggest trafficking of neuronal mRNA to axons in adult hDRG, and are consistent with studies of axonal transport in rodent sensory neurons. We present our work as an online, searchable repository (https://www.utdallas.edu/bbs/painneurosciencelab/sensoryomics/drgtxome), creating a resource for the community. Our analyses provide insight into DRG biology for guiding development of novel therapeutics, and a blueprint for cross-species transcriptomic analyses.

  8. Ontology for Life-Cycle Modeling of Water Distribution Systems: Model View Definition

    DTIC Science & Technology

    2013-06-01

    Research and Development Center, Construction Engineering Research Laboratory (ERDC-CERL) to develop a life-cycle building model have resulted in the...Laboratory (ERDC-CERL) to develop a life-cycle building model have resulted in the definition of a “core” building information model that contains...developed experimental BIM models us- ing commercial off-the-shelf (COTS) software. Those models represent three types of typical low-rise Army

  9. Policy implications of uncertainty in modeled life-cycle greenhouse gas emissions of biofuels.

    PubMed

    Mullins, Kimberley A; Griffin, W Michael; Matthews, H Scott

    2011-01-01

    Biofuels have received legislative support recently in California's Low-Carbon Fuel Standard and the Federal Energy Independence and Security Act. Both present new fuel types, but neither provides methodological guidelines for dealing with the inherent uncertainty in evaluating their potential life-cycle greenhouse gas emissions. Emissions reductions are based on point estimates only. This work demonstrates the use of Monte Carlo simulation to estimate life-cycle emissions distributions from ethanol and butanol from corn or switchgrass. Life-cycle emissions distributions for each feedstock and fuel pairing modeled span an order of magnitude or more. Using a streamlined life-cycle assessment, corn ethanol emissions range from 50 to 250 g CO(2)e/MJ, for example, and each feedstock-fuel pathway studied shows some probability of greater emissions than a distribution for gasoline. Potential GHG emissions reductions from displacing fossil fuels with biofuels are difficult to forecast given this high degree of uncertainty in life-cycle emissions. This uncertainty is driven by the importance and uncertainty of indirect land use change emissions. Incorporating uncertainty in the decision making process can illuminate the risks of policy failure (e.g., increased emissions), and a calculated risk of failure due to uncertainty can be used to inform more appropriate reduction targets in future biofuel policies.

  10. Characterization of the Adult Head Transcriptome and Identification of Migration and Olfaction Genes in the Oriental Armyworm Mythimna separate.

    PubMed

    Bian, Hai-Xu; Ma, Hong-Fang; Zheng, Xi-Xi; Peng, Ming-Hui; Li, Yu-Ping; Su, Jun-Fang; Wang, Huan; Li, Qun; Xia, Run-Xi; Liu, Yan-Qun; Jiang, Xing-Fu

    2017-05-24

    The oriental armyworm Mythimna separate is an economically important insect with a wide distribution and strong migratory activity. However, knowledge about the molecular mechanisms regulating the physiological and behavioural responses of the oriental armyworm is scarce. In the present study, we took a transcriptomic approach to characterize the gene network in the adult head of M. separate. The sequencing and de novo assembly yielded 63,499 transcripts, which were further assembled into 46,459 unigenes with an N50 of 1,153 bp. In the head transcriptome data, unigenes involved in the 'signal transduction mechanism' are the most abundant. In total, 937 signal transduction unigenes were assigned to 22 signalling pathways. The circadian clock, melanin synthesis, and non-receptor protein of olfactory gene families were then identified, and phylogenetic analyses were performed with these M. separate genes, the model insect Bombyx mori and other insects. Furthermore, 1,372 simple sequence repeats of 2-6 bp in unit length were identified. The transcriptome data represent a comprehensive molecular resource for the adult head of M. separate, and these identified genes can be valid targets for further gene function research to address the molecular mechanisms regulating the migratory and olfaction genes of the oriental armyworm.

  11. Multiplexed transcriptome analysis to detect ALK, ROS1 and RET rearrangements in lung cancer

    PubMed Central

    Rogers, Toni-Maree; Arnau, Gisela Mir; Ryland, Georgina L.; Huang, Stephen; Lira, Maruja E.; Emmanuel, Yvette; Perez, Omar D.; Irwin, Darryl; Fellowes, Andrew P.; Wong, Stephen Q.; Fox, Stephen B.

    2017-01-01

    ALK, ROS1 and RET gene fusions are important predictive biomarkers for tyrosine kinase inhibitors in lung cancer. Currently, the gold standard method for gene fusion detection is Fluorescence In Situ Hybridization (FISH) and while highly sensitive and specific, it is also labour intensive, subjective in analysis, and unable to screen a large numbers of gene fusions. Recent developments in high-throughput transcriptome-based methods may provide a suitable alternative to FISH as they are compatible with multiplexing and diagnostic workflows. However, the concordance between these different methods compared with FISH has not been evaluated. In this study we compared the results from three transcriptome-based platforms (Nanostring Elements, Agena LungFusion panel and ThermoFisher NGS fusion panel) to those obtained from ALK, ROS1 and RET FISH on 51 clinical specimens. Overall agreement of results ranged from 86–96% depending on the platform used. While all platforms were highly sensitive, both the Agena panel and Thermo Fisher NGS fusion panel reported minor fusions that were not detectable by FISH. Our proof–of–principle study illustrates that transcriptome-based analyses are sensitive and robust methods for detecting actionable gene fusions in lung cancer and could provide a robust alternative to FISH testing in the diagnostic setting. PMID:28181564

  12. Differential Tissue-specific and Pathway-specific Anti-obesity Effects of Green Tea and Taeumjowitang, a Traditional Korean Medicine, in Mice.

    PubMed

    Kim, Junil; Park, Sujin; An, Haein; Choi, Ji-Young; Choi, Myung-Sook; Choi, Sang-Woon; Kim, Seong-Jin

    2017-09-01

    Traditional medicines have been leveraged for the treatment and prevention of obesity, one of the fastest growing diseases in the world. However, the exact mechanisms underlying the effects of traditional medicine on obesity are not yet fully understood. We produced the transcriptomes of epididymal white adipose tissue (eWAT), liver, muscle, and hypothalamus harvested from mice fed a normal diet, high-fat-diet alone, high-fat-diet together with green tea, or a high-fat-diet together with Taeumjowitang, a traditional Korean medicine. We found tissue-specific gene expression patterns as follows: (i) the eWAT transcriptome was more significantly altered by Taeumjowitang than by green tea, (ii) the liver transcriptome was similarly altered by Taeumjowitang and green tea, and (iii) both the muscle and hypothalamus transcriptomes were more significantly altered by green tea than Taeumjowitang. We then applied integrated network analyses, which revealed that functional networks associated with lymphocyte activation were more effectively regulated by Taeumjowitang than by green tea in the eWAT. In contrast, green tea was a more effective regulator of functional networks associated with glucose metabolic processes in the eWAT. Taeumjowitang and green tea have a differential tissue-specific and pathway-specific therapeutic effect on obesity.

  13. Differential Tissue-specific and Pathway-specific Anti-obesity Effects of Green Tea and Taeumjowitang, a Traditional Korean Medicine, in Mice

    PubMed Central

    Kim, Junil; Park, Sujin; An, Haein; Choi, Ji-Young; Choi, Myung-Sook; Choi, Sang-Woon; Kim, Seong-Jin

    2017-01-01

    Background Traditional medicines have been leveraged for the treatment and prevention of obesity, one of the fastest growing diseases in the world. However, the exact mechanisms underlying the effects of traditional medicine on obesity are not yet fully understood. Methods We produced the transcriptomes of epididymal white adipose tissue (eWAT), liver, muscle, and hypothalamus harvested from mice fed a normal diet, high-fat-diet alone, high-fat-diet together with green tea, or a high-fat-diet together with Taeumjowitang, a traditional Korean medicine. Results We found tissue-specific gene expression patterns as follows: (i) the eWAT transcriptome was more significantly altered by Taeumjowitang than by green tea, (ii) the liver transcriptome was similarly altered by Taeumjowitang and green tea, and (iii) both the muscle and hypothalamus transcriptomes were more significantly altered by green tea than Taeumjowitang. We then applied integrated network analyses, which revealed that functional networks associated with lymphocyte activation were more effectively regulated by Taeumjowitang than by green tea in the eWAT. In contrast, green tea was a more effective regulator of functional networks associated with glucose metabolic processes in the eWAT. Conclusions Taeumjowitang and green tea have a differential tissue-specific and pathway-specific therapeutic effect on obesity. PMID:29018779

  14. Gene expression analysis of rocket salad under pre-harvest and postharvest stresses: A transcriptomic resource for Diplotaxis tenuifolia

    PubMed Central

    Cavaiuolo, Marina; Cocetta, Giacomo; Spadafora, Natasha Damiana; Müller, Carsten T.; Rogers, Hilary J.

    2017-01-01

    Diplotaxis tenuifolia L. is of important economic value in the fresh-cut industry for its nutraceutical and sensorial properties. However, information on the molecular mechanisms conferring tolerance of harvested leaves to pre- and postharvest stresses during processing and shelf-life have never been investigated. Here, we provide the first transcriptomic resource of rocket by de novo RNA sequencing assembly, functional annotation and stress-induced expression analysis of 33874 transcripts. Transcriptomic changes in leaves subjected to commercially-relevant pre-harvest (salinity, heat and nitrogen starvation) and postharvest stresses (cold, dehydration, dark, wounding) known to affect quality and shelf-life were analysed 24h after stress treatment, a timing relevant to subsequent processing of salad leaves. Transcription factors and genes involved in plant growth regulator signaling, autophagy, senescence and glucosinolate metabolism were the most affected by the stresses. Hundreds of genes with unknown function but uniquely expressed under stress were identified, providing candidates to investigate stress responses in rocket. Dehydration and wounding had the greatest effect on the transcriptome and different stresses elicited changes in the expression of genes related to overlapping groups of hormones. These data will allow development of approaches targeted at improving stress tolerance, quality and shelf-life of rocket with direct applications in the fresh-cut industries. PMID:28558066

  15. Gene expression analysis of rocket salad under pre-harvest and postharvest stresses: A transcriptomic resource for Diplotaxis tenuifolia.

    PubMed

    Cavaiuolo, Marina; Cocetta, Giacomo; Spadafora, Natasha Damiana; Müller, Carsten T; Rogers, Hilary J; Ferrante, Antonio

    2017-01-01

    Diplotaxis tenuifolia L. is of important economic value in the fresh-cut industry for its nutraceutical and sensorial properties. However, information on the molecular mechanisms conferring tolerance of harvested leaves to pre- and postharvest stresses during processing and shelf-life have never been investigated. Here, we provide the first transcriptomic resource of rocket by de novo RNA sequencing assembly, functional annotation and stress-induced expression analysis of 33874 transcripts. Transcriptomic changes in leaves subjected to commercially-relevant pre-harvest (salinity, heat and nitrogen starvation) and postharvest stresses (cold, dehydration, dark, wounding) known to affect quality and shelf-life were analysed 24h after stress treatment, a timing relevant to subsequent processing of salad leaves. Transcription factors and genes involved in plant growth regulator signaling, autophagy, senescence and glucosinolate metabolism were the most affected by the stresses. Hundreds of genes with unknown function but uniquely expressed under stress were identified, providing candidates to investigate stress responses in rocket. Dehydration and wounding had the greatest effect on the transcriptome and different stresses elicited changes in the expression of genes related to overlapping groups of hormones. These data will allow development of approaches targeted at improving stress tolerance, quality and shelf-life of rocket with direct applications in the fresh-cut industries.

  16. Transcriptome sequencing of purple petal spot region in tree peony reveals differentially expressed anthocyanin structural genes.

    PubMed

    Zhang, Yanzhao; Cheng, Yanwei; Ya, Huiyuan; Xu, Shuzhen; Han, Jianming

    2015-01-01

    The pigmented cells in defined region of a petal constitute the petal spots. Petal spots attract pollinators and are found in many angiosperm families. Several cultivars of tree peony contain a single red or purple spot at the base of petal that makes the flower more attractive for the ornamental market. So far, the understanding of the molecular mechanism of spot formation is inadequate. In this study, we sequenced the transcriptome of the purple spot and the white non-spot of tree peony flower. We assembled and annotated 67,892 unigenes. Comparative analyses of the two transcriptomes showed 1,573 differentially expressed genes, among which 933 were up-regulated, and 640 were down-regulated in the purple spot. Subsequently, we examined four anthocyanin structural genes, including PsCHS, PsF3'H, PsDFR, and PsANS, which expressed at a significantly higher level in the purple spot than in the white non-spot. We further validated the digital expression data using quantitative real-time PCR. Our result uncovered transcriptome variance between the spot and non-spot of tree peony flower, and revealed that the co-expression of four anthocyanin structural genes was responsible for spot pigment in tree peony. The data will further help to unravel the genetic mechanism of peony flower spot formation.

  17. Transcriptomics of mRNA and egg quality in farmed fish: Some recent developments and future directions.

    PubMed

    Sullivan, Craig V; Chapman, Robert W; Reading, Benjamin J; Anderson, Paul E

    2015-09-15

    Maternal mRNA transcripts deposited in growing oocytes regulate early development and are under intensive investigation as determinants of egg quality. The research has evolved from single gene studies to microarray and now RNA-Seq analyses in which mRNA expression by virtually every gene can be assessed and related to gamete quality. Such studies have mainly focused on genes changing two- to several-fold in expression between biological states, and have identified scores of candidate genes and a few gene networks whose functioning is related to successful development. However, ever-increasing yields of information from high throughput methods for detecting transcript abundance have far outpaced progress in methods for analyzing the massive quantities of gene expression data, and especially for meaningful relation of whole transcriptome profiles to gamete quality. We have developed a new approach to this problem employing artificial neural networks and supervised machine learning with other novel bioinformatics procedures to discover a previously unknown level of ovarian transcriptome function at which minute changes in expression of a few hundred genes is highly predictive of egg quality. In this paper, we briefly review the progress in transcriptomics of fish egg quality and discuss some future directions for this field of study. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Life-style transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses

    USDA-ARS?s Scientific Manuscript database

    Colletotrichum species are devastating fungal pathogens of major crop plants worldwide. Infection involves differentiation of specialized cell-types associated with host surface penetration, growth inside living host cells (biotrophy) and tissue destruction (necrotrophy). Here we report genome and t...

  19. The bench scientist's guide to RNA-Seq analysis

    USDA-ARS?s Scientific Manuscript database

    RNA sequencing (RNA-Seq) is emerging as a highly accurate method to quantify transcript abundance. However, analyses of the large data sets obtained by sequencing the entire transcriptome of organisms have generally been performed by bioinformatic specialists. Here we outline a methods strategy desi...

  20. Alterations in Grapevine Leaf Metabolism Occur Prior to Esca Apoplexy Appearance.

    PubMed

    Magnin-Robert, Maryline; Adrian, Marielle; Trouvelot, Sophie; Spagnolo, Alessandro; Jacquens, Lucile; Letousey, Patricia; Rabenoelina, Fanja; Harir, Mourad; Roullier-Gall, Chloé; Clément, Christophe; Schmitt-Kopplin, Philippe; Vallat, Armelle; Abou-Mansour, Eliane; Fontaine, Florence

    2017-12-01

    Esca disease is one of the major grapevine trunk diseases in Europe and the etiology is complex, since several inhabiting fungi are identified to be associated with this disease. Among the foliar symptom expressions, the apoplectic form may be distinguished and characterized by sudden dieback of shoots, leaf drop, and shriveling of grape clusters in a few days that can ultimately induce the plant death. To further understand this drastic event, we conducted transcriptomic and metabolomic analyses to characterize responses of leaves during the period preceding symptom appearance (20 and 7 days before foliar symptom expression) and at the day of apoplexy expression. Transcriptomic and metabolomic analyses provide signatures for the apoplectic leaves and most changes concerning the metabolism of carbohydrates, amino acids, and phenylpropanoids. In deciphering glutathione-S-transferase (GST), its preferential location in phloem, correlated with the upregulation of GST genes and a decrease of the glutathione level, offers further support to the putative role of glutathione during apoplexy expression.

  1. Streptococcus pneumoniae Supragenome Hybridization Arrays for Profiling of Genetic Content and Gene Expression.

    PubMed

    Kadam, Anagha; Janto, Benjamin; Eutsey, Rory; Earl, Joshua P; Powell, Evan; Dahlgren, Margaret E; Hu, Fen Z; Ehrlich, Garth D; Hiller, N Luisa

    2015-02-02

    There is extensive genomic diversity among Streptococcus pneumoniae isolates. Approximately half of the comprehensive set of genes in the species (the supragenome or pangenome) is present in all the isolates (core set), and the remaining is unevenly distributed among strains (distributed set). The Streptococcus pneumoniae Supragenome Hybridization (SpSGH) array provides coverage for an extensive set of genes and polymorphisms encountered within this species, capturing this genomic diversity. Further, the capture is quantitative. In this manner, the SpSGH array allows for both genomic and transcriptomic analyses of diverse S. pneumoniae isolates on a single platform. In this unit, we present the SpSGH array, and describe in detail its design and implementation for both genomic and transcriptomic analyses. The methodology can be applied to construction and modification of SpSGH array platforms, as well to other bacterial species as long as multiple whole-genome sequences are available that collectively capture the vast majority of the species supragenome. Copyright © 2015 John Wiley & Sons, Inc.

  2. Whipworm genome and dual-species transcriptome analyses provide molecular insights into an intimate host-parasite interaction.

    PubMed

    Foth, Bernardo J; Tsai, Isheng J; Reid, Adam J; Bancroft, Allison J; Nichol, Sarah; Tracey, Alan; Holroyd, Nancy; Cotton, James A; Stanley, Eleanor J; Zarowiecki, Magdalena; Liu, Jimmy Z; Huckvale, Thomas; Cooper, Philip J; Grencis, Richard K; Berriman, Matthew

    2014-07-01

    Whipworms are common soil-transmitted helminths that cause debilitating chronic infections in man. These nematodes are only distantly related to Caenorhabditis elegans and have evolved to occupy an unusual niche, tunneling through epithelial cells of the large intestine. We report here the whole-genome sequences of the human-infective Trichuris trichiura and the mouse laboratory model Trichuris muris. On the basis of whole-transcriptome analyses, we identify many genes that are expressed in a sex- or life stage-specific manner and characterize the transcriptional landscape of a morphological region with unique biological adaptations, namely, bacillary band and stichosome, found only in whipworms and related parasites. Using RNA sequencing data from whipworm-infected mice, we describe the regulated T helper 1 (TH1)-like immune response of the chronically infected cecum in unprecedented detail. In silico screening identified numerous new potential drug targets against trichuriasis. Together, these genomes and associated functional data elucidate key aspects of the molecular host-parasite interactions that define chronic whipworm infection.

  3. Whipworm genome and dual-species transcriptome analyses provide molecular insights into an intimate host-parasite interaction

    PubMed Central

    Nichol, Sarah; Tracey, Alan; Holroyd, Nancy; Cotton, James A.; Stanley, Eleanor J.; Zarowiecki, Magdalena; Liu, Jimmy Z.; Huckvale, Thomas; Cooper, Philip J.; Grencis, Richard K.; Berriman, Matthew

    2014-01-01

    Whipworms are common soil-transmitted helminths that cause debilitating chronic infections in man. These nematodes are only distantly related to Caenorhabditis elegans and have evolved to occupy an unusual niche, tunneling through epithelial cells of the large intestine. Here we present the genome sequences of the human-infective Trichuris trichiura and the murine laboratory model T. muris. Based on whole transcriptome analyses we identify many genes that are expressed in a gender- or life stage-specific manner and characterise the transcriptional landscape of a morphological region with unique biological adaptations, namely bacillary band and stichosome, found only in whipworms and related parasites. Using RNAseq data from whipworm-infected mice we describe the regulated Th1-like immune response of the chronically infected cecum in unprecedented detail. In silico screening identifies numerous potential new drug targets against trichuriasis. Together, these genomes and associated functional data elucidate key aspects of the molecular host-parasite interactions that define chronic whipworm infection. PMID:24929830

  4. Mitochondrial dysfunction, oxidative stress and apoptosis revealed by proteomic and transcriptomic analyses of the striata in two mouse models of Parkinson’s disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, Mark H.; Qian, Weijun; Wang, Haixing

    2008-02-10

    The molecular mechanisms underlying the changes in the nigrostriatal pathway in Parkinson disease (PD) are not completely understood. Here we use mass spectrometry and microarrays to study the proteomic and transcriptomic changes in the striatum of two mouse models of PD, induced by the distinct neurotoxins 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and methamphetamine (METH). Proteomic analyses resulted in the identification and relative quantification of 912 proteins with two or more unique peptides and 85 proteins with significant abundance changes following neurotoxin treatment. Similarly, microarray analyses revealed 181 genes with significant changes in mRNA following neurotoxin treatment. The combined protein and gene list providesmore » a clearer picture of the potential mechanisms underlying neurodegeneration observed in PD. Functional analysis of this combined list revealed a number of significant categories, including mitochondrial dysfunction, oxidative stress response and apoptosis. Additionally, codon usage and miRNAs may play an important role in translational control in the striatum. These results constitute one of the largest datasets integrating protein and transcript changes for these neurotoxin models with many similar endpoint phenotypes but distinct mechanisms.« less

  5. Endogenous cellulolytic enzyme systems in the longhorn beetle Mesosa myops (Insecta: Coleoptera) studied by transcriptomic analysis.

    PubMed

    Liu, Jie; Song, Keqing; Teng, Huajing; Zhang, Bin; Li, Wenzhu; Xue, Huaijun; Yang, Xingke

    2015-09-01

    The Cerambycidae (longhorn beetle) is a large family of Coleoptera with xylophagous feeding habits. Cellulose digestion plays an important role in these wood-feeding insects. In this study, transcriptomic technology was used to obtain one glycoside hydrolase family 45 (GH45) cellulase and seven GH5 cellulases from Mesosa myops, a typical longhorn beetle. Analyses of expression dynamics and evolutionary relationships provided a complete description of the cellulolytic system. The expression dynamics related to individual development indicated that endogenous GH45 and GH5 cellulases dominate cellulose digestion in M. myops. Evolutionary analyses suggested that GH45 cellulase gene is a general gene in the Coleoptera Suborder Polyphaga. Evolutionary analyses also indicated that the GH5 cellulase group in Lamiinae longhorn beetles is closely associated with wood feeding. This study demonstrated that there is a complex endogenous cellulolytic system in M. myops that is dominated by cellulases belonging to two glycoside hydrolase families. © The Author 2015. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  6. Cradle-to-gate life-cycle assessment of laminated veneer lumber produced in the southeast region of the United States

    Treesearch

    Richard D. Bergman; Sevda Alanya-Rosenbaum

    2017-01-01

    The goal of the present study was to develop life-cycle impact assessment (LCIA) data associated with gate-to-gate laminated veneer lumber (LVL) production in the southeast (SE) region of the U.S. with the ultimate aim of constructing an updated cradle-to-gate mill output life-cycle assessment (LCA). The authors collected primary (survey) mill data from LVL production...

  7. Ontology for Life-Cycle Modeling of Water Distribution Systems: Application of Model View Definition Attributes

    DTIC Science & Technology

    2013-06-01

    ER D C/ CE RL C R- 13 -5 Ontology for Life-Cycle Modeling of Water Distribution Systems : Application of Model View Definition...2013 Ontology for Life-Cycle Modeling of Water Distribution Systems : Application of Model View Definition Attributes Kristine K. Fallon, Robert A...interior plumbing systems and the information exchange requirements for every participant in the design. The findings were used to develop an

  8. Model of the Product Development Lifecycle.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Sunny L.; Roe, Natalie H.; Wood, Evan

    2015-10-01

    While the increased use of Commercial Off-The-Shelf information technology equipment has presented opportunities for improved cost effectiveness and flexibility, the corresponding loss of control over the product's development creates unique vulnerabilities and security concerns. Of particular interest is the possibility of a supply chain attack. A comprehensive model for the lifecycle of hardware and software products is proposed based on a survey of existing literature from academic, government, and industry sources. Seven major lifecycle stages are identified and defined: (1) Requirements, (2) Design, (3) Manufacturing for hardware and Development for software, (4) Testing, (5) Distribution, (6) Use and Maintenance, andmore » (7) Disposal. The model is then applied to examine the risk of attacks at various stages of the lifecycle.« less

  9. Commercial Discount Rate Estimation for Efficiency Standards Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujita, K. Sydny

    2016-04-13

    Underlying each of the Department of Energy's (DOE's) federal appliance and equipment standards are a set of complex analyses of the projected costs and benefits of regulation. Any new or amended standard must be designed to achieve significant additional energy conservation, provided that it is technologically feasible and economically justified (42 U.S.C. 6295(o)(2)(A)). A proposed standard is considered economically justified when its benefits exceed its burdens, as represented by the projected net present value of costs and benefits. DOE performs multiple analyses to evaluate the balance of costs and benefits of commercial appliance and equipment e efficiency standards, at themore » national and individual building or business level, each framed to capture different nuances of the complex impact of standards on the commercial end user population. The Life-Cycle Cost (LCC) analysis models the combined impact of appliance first cost and operating cost changes on a representative commercial building sample in order to identify the fraction of customers achieving LCC savings or incurring net cost at the considered efficiency levels.1 Thus, the choice of commercial discount rate value(s) used to calculate the present value of energy cost savings within the Life-Cycle Cost model implicitly plays a key role in estimating the economic impact of potential standard levels.2 This report is intended to provide a more in-depth discussion of the commercial discount rate estimation process than can be readily included in standard rulemaking Technical Support Documents (TSDs).« less

  10. The past, present, and future of Leishmania genomics and transcriptomics

    PubMed Central

    Cantacessi, Cinzia; Dantas-Torres, Filipe; Nolan, Matthew J.; Otranto, Domenico

    2015-01-01

    It has been nearly 10 years since the completion of the first entire genome sequence of a Leishmania parasite. Genomic and transcriptomic analyses have advanced our understanding of the biology of Leishmania, and shed new light on the complex interactions occurring within the parasite–host–vector triangle. Here, we review these advances and examine potential avenues for translation of these discoveries into treatment and control programs. In addition, we argue for a strong need to explore how disease in dogs relates to that in humans, and how an improved understanding in line with the ‘One Health’ concept may open new avenues for the control of these devastating diseases. PMID:25638444

  11. Controlling bias and inflation in epigenome- and transcriptome-wide association studies using the empirical null distribution.

    PubMed

    van Iterson, Maarten; van Zwet, Erik W; Heijmans, Bastiaan T

    2017-01-27

    We show that epigenome- and transcriptome-wide association studies (EWAS and TWAS) are prone to significant inflation and bias of test statistics, an unrecognized phenomenon introducing spurious findings if left unaddressed. Neither GWAS-based methodology nor state-of-the-art confounder adjustment methods completely remove bias and inflation. We propose a Bayesian method to control bias and inflation in EWAS and TWAS based on estimation of the empirical null distribution. Using simulations and real data, we demonstrate that our method maximizes power while properly controlling the false positive rate. We illustrate the utility of our method in large-scale EWAS and TWAS meta-analyses of age and smoking.

  12. Application of metagenomics technologies for antimicrobial resistance and food safety research and beyond

    USDA-ARS?s Scientific Manuscript database

    Current developments in the field of metagenomics in biological sciences have demonstrated the need and potential usefulness of taxonomical and functional analyses of meta-omics data generated by genomics, transcriptomics, proteomics, and metabolomics. This review will provide a general overview of...

  13. Transcriptome analyses of mosaic (MSC) mitochondrial mutants of cucumber in a highly inbred nuclear background

    USDA-ARS?s Scientific Manuscript database

    Cucumber (Cucumis sativus L.) has a large, paternally transmitted mitochondrial genome. Cucumber plants regenerated cell cultures may show mosaic (MSC) phenotypes characterized by slower growth, chlorotic patterns on the leaves and fruit, lower fertility, and rearrangements in their mitochondrial (m...

  14. N6-methyladenosine modification and the YTHDF2 reader protein play cell type specific roles in lytic viral gene expression during Kaposi's sarcoma-associated herpesvirus infection

    PubMed Central

    Dominissini, Dan; He, Chuan

    2018-01-01

    Methylation at the N6 position of adenosine (m6A) is a highly prevalent and reversible modification within eukaryotic mRNAs that has been linked to many stages of RNA processing and fate. Recent studies suggest that m6A deposition and proteins involved in the m6A pathway play a diverse set of roles in either restricting or modulating the lifecycles of select viruses. Here, we report that m6A levels are significantly increased in cells infected with the oncogenic human DNA virus Kaposi’s sarcoma-associated herpesvirus (KSHV). Transcriptome-wide m6A-sequencing of the KSHV-positive renal carcinoma cell line iSLK.219 during lytic reactivation revealed the presence of m6A across multiple kinetic classes of viral transcripts, and a concomitant decrease in m6A levels across much of the host transcriptome. However, we found that depletion of the m6A machinery had differential pro- and anti-viral impacts on viral gene expression depending on the cell-type analyzed. In iSLK.219 and iSLK.BAC16 cells the pathway functioned in a pro-viral manner, as depletion of the m6A writer METTL3 and the reader YTHDF2 significantly impaired virion production. In iSLK.219 cells the defect was linked to their roles in the post-transcriptional accumulation of the major viral lytic transactivator ORF50, which is m6A modified. In contrast, although the ORF50 mRNA was also m6A modified in KSHV infected B cells, ORF50 protein expression was instead increased upon depletion of METTL3, or, to a lesser extent, YTHDF2. These results highlight that the m6A pathway is centrally involved in regulating KSHV gene expression, and underscore how the outcome of this dynamically regulated modification can vary significantly between cell types. PMID:29659627

  15. A Systems Level Analysis Reveals Transcriptomic and Proteomic Complexity in Ixodes Ricinus Midgut and Salivary Glands During Early Attachment and Feeding*

    PubMed Central

    Schwarz, Alexandra; Tenzer, Stefan; Hackenberg, Michael; Erhart, Jan; Gerhold-Ay, Aslihan; Mazur, Johanna; Kuharev, Jörg; Ribeiro, José M. C.; Kotsyfakis, Michail

    2014-01-01

    Although pathogens are usually transmitted within the first 24–48 h of attachment of the castor bean tick Ixodes ricinus, little is known about the tick's biological responses at these earliest phases of attachment. Tick midgut and salivary glands are the main tissues involved in tick blood feeding and pathogen transmission but the limited genomic information for I. ricinus delays the application of high-throughput methods to study their physiology. We took advantage of the latest advances in the fields of Next Generation RNA-Sequencing and Label-free Quantitative Proteomics to deliver an unprecedented, quantitative description of the gene expression dynamics in the midgut and salivary glands of this disease vector upon attachment to the vertebrate host. A total of 373 of 1510 identified proteins had higher expression in the salivary glands, but only 110 had correspondingly high transcript levels in the same tissue. Furthermore, there was midgut-specific expression of 217 genes at both the transcriptome and proteome level. Tissue-dependent transcript, but not protein, accumulation was revealed for 552 of 885 genes. Moreover, we discovered the enrichment of tick salivary glands in proteins involved in gene transcription and translation, which agrees with the secretory role of this tissue; this finding also agrees with our finding of lower tick t-RNA representation in the salivary glands when compared with the midgut. The midgut, in turn, is enriched in metabolic components and proteins that support its mechanical integrity in order to accommodate and metabolize the ingested blood. Beyond understanding the physiological events that support hematophagy by arthropod ectoparasites, we discovered more than 1500 proteins located at the interface between ticks, the vertebrate host, and the tick-borne pathogens. Thus, our work significantly improves the knowledge of the genetics underlying the transmission lifecycle of this tick species, which is an essential step for developing alternative methods to better control tick-borne diseases. PMID:25048707

  16. Comparative transcriptome analysis of second- and third-generation merozoites of Eimeria necatrix.

    PubMed

    Su, Shijie; Hou, Zhaofeng; Liu, Dandan; Jia, Chuanli; Wang, Lele; Xu, Jinjun; Tao, Jianping

    2017-08-16

    Eimeria is a common genus of apicomplexan parasites that infect diverse vertebrates, most notably poultry, causing serious disease and economic losses. Eimeria species have complex life-cycles consisting of three developmental stages. However, the molecular basis of the Eimeria reproductive mode switch remains an enigma. Total RNA extracted from second- (MZ-2) and third-generation merozoites (MZ-3) of Eimeria necatrix was subjected to transcriptome analysis using RNA sequencing (RNA-seq) followed by qRT-PCR validation. A total of 6977 and 6901 unigenes were obtained from MZ-2 and MZ-3, respectively. Approximately 2053 genes were differentially expressed genes (DEGs) between MZ-2 and MZ-3. Compared with MZ-2, 837 genes were upregulated and 1216 genes were downregulated in MZ-3. Approximately 95 genes in MZ-2 and 48 genes in MZ-3 were further identified to have stage-specific expression. Gene ontology category and KEGG analysis suggested that 216 upregulated genes in MZ-2 were annotated by 70 GO assignments, 242 upregulated genes were associated with 188 signal pathways, while 321 upregulated genes in MZ-3 were annotated by 56 GO assignments, 322 upregulated genes were associated with 168 signal pathways. The molecular functions of upregulated genes in MZ-2 were mainly enriched for protein degradation and amino acid metabolism. The molecular functions of upregulated genes in MZ-3 were mainly enriched for transcriptional activity, cell proliferation and cell differentiation. To the best of our knowledge, this is the first RNA-seq data study of the MZ-2 and MZ-3 stages of E. necatrix; it demonstrates a high number of differentially expressed genes between the MZ-2 and MZ-3 of E. necatrix. This study forms a basis for deciphering the molecular mechanisms underlying the shift from the second to third generation schizogony in Eimeria. It also provides valuable resources for future studies on Eimeria, and provides insight into the understanding of reproductive mode plasticity in different Eimeria species.

  17. De Novo Assembly and Comparative Transcriptome Analyses of Red and Green Morphs of Sweet Basil Grown in Full Sunlight.

    PubMed

    Torre, Sara; Tattini, Massimiliano; Brunetti, Cecilia; Guidi, Lucia; Gori, Antonella; Marzano, Cristina; Landi, Marco; Sebastiani, Federico

    2016-01-01

    Sweet basil (Ocimum basilicum), one of the most popular cultivated herbs worldwide, displays a number of varieties differing in several characteristics, such as the color of the leaves. The development of a reference transcriptome for sweet basil, and the analysis of differentially expressed genes in acyanic and cyanic cultivars exposed to natural sunlight irradiance, has interest from horticultural and biological point of views. There is still great uncertainty about the significance of anthocyanins in photoprotection, and how green and red morphs may perform when exposed to photo-inhibitory light, a condition plants face on daily and seasonal basis. We sequenced the leaf transcriptome of the green-leaved Tigullio (TIG) and the purple-leaved Red Rubin (RR) exposed to full sunlight over a four-week experimental period. We assembled and annotated 111,007 transcripts. A total of 5,468 and 5,969 potential SSRs were identified in TIG and RR, respectively, out of which 66 were polymorphic in silico. Comparative analysis of the two transcriptomes showed 2,372 differentially expressed genes (DEGs) clustered in 222 enriched Gene ontology terms. Green and red basil mostly differed for transcripts abundance of genes involved in secondary metabolism. While the biosynthesis of waxes was up-regulated in red basil, the biosynthesis of flavonols and carotenoids was up-regulated in green basil. Data from our study provides a comprehensive transcriptome survey, gene sequence resources and microsatellites that can be used for further investigations in sweet basil. The analysis of DEGs and their functional classification also offers new insights on the functional role of anthocyanins in photoprotection.

  18. Expression Profiling Smackdown: Human Transcriptome Array HTA 2.0 vs. RNA-Seq

    PubMed Central

    Palermo, Meghann; Driscoll, Heather; Tighe, Scott; Dragon, Julie; Bond, Jeff; Shukla, Arti; Vangala, Mahesh; Vincent, James; Hunter, Tim

    2014-01-01

    The advent of both microarray and massively parallel sequencing have revolutionized high-throughput analysis of the human transcriptome. Due to limitations in microarray technology, detecting and quantifying coding transcript isoforms, in addition to non-coding transcripts, has been challenging. As a result, RNA-Seq has been the preferred method for characterizing the full human transcriptome, until now. A new high-resolution array from Affymetrix, GeneChip Human Transcriptome Array 2.0 (HTA 2.0), has been designed to interrogate all transcript isoforms in the human transcriptome with >6 million probes targeting coding transcripts, exon-exon splice junctions, and non-coding transcripts. Here we compare expression results from GeneChip HTA 2.0 and RNA-Seq data using identical RNA extractions from three samples each of healthy human mesothelial cells in culture, LP9-C1, and healthy mesothelial cells treated with asbestos, LP9-A1. For GeneChip HTA 2.0 sample preparation, we chose to compare two target preparation methods, NuGEN Ovation Pico WTA V2 with the Encore Biotin Module versus Affymetrix's GeneChip WT PLUS with the WT Terminal Labeling Kit, on identical RNA extractions from both untreated and treated samples. These same RNA extractions were used for the RNA-Seq library preparation. All analyses were performed in Partek Genomics Suite 6.6. Expression profiles for control and asbestos-treated mesothelial cells prepared with NuGEN versus Affymetrix target preparation methods (GeneChip HTA 2.0) are compared to each other as well as to RNA-Seq results.

  19. Analyses of advanced rice anther transcriptomes reveal global tapetum secretory functions and potential proteins for lipid exine formation.

    PubMed

    Huang, Ming-Der; Wei, Fu-Jin; Wu, Cheng-Cheih; Hsing, Yue-Ie Caroline; Huang, Anthony H C

    2009-02-01

    The anthers in flowers perform important functions in sexual reproduction. Several recent studies used microarrays to study anther transcriptomes to explore genes controlling anther development. To analyze the secretion and other functions of the tapetum, we produced transcriptomes of anthers of rice (Oryza sativa subsp. japonica) at six progressive developmental stages and pollen with sequencing-by-synthesis technology. The transcriptomes included at least 18,000 unique transcripts, about 25% of which had antisense transcripts. In silico anther-minus-pollen subtraction produced transcripts largely unique to the tapetum; these transcripts include all the reported tapetum-specific transcripts of orthologs in other species. The differential developmental profiles of the transcripts and their antisense transcripts signify extensive regulation of gene expression in the anther, especially the tapetum, during development. The transcriptomes were used to dissect two major cell/biochemical functions of the tapetum. First, we categorized and charted the developmental profiles of all transcripts encoding secretory proteins present in the cellular exterior; these transcripts represent about 12% and 30% of the those transcripts having more than 100 and 1,000 transcripts per million, respectively. Second, we successfully selected from hundreds of transcripts several transcripts encoding potential proteins for lipid exine synthesis during early anther development. These proteins include cytochrome P450, acyltransferases, and lipid transfer proteins in our hypothesized mechanism of exine synthesis in and export from the tapetum. Putative functioning of these proteins in exine formation is consistent with proteins and metabolites detected in the anther locule fluid obtained by micropipetting.

  20. CONVERGENT TRANSCRIPTOMICS AND PROTEOMICS OF ENVIRONMENTAL ENRICHMENT AND COCAINE IDENTIFIES NOVEL THERAPEUTIC STRATEGIES FOR ADDICTION

    PubMed Central

    ZHANG, YAFANG; CROFTON, ELIZABETH J.; FAN, XIUZHEN; LI, DINGGE; KONG, FANPING; SINHA, MALA; LUXON, BRUCE A.; SPRATT, HEIDI M.; LICHTI, CHERYL F.; GREEN, THOMAS A.

    2016-01-01

    Transcriptomic and proteomic approaches have separately proven effective at identifying novel mechanisms affecting addiction-related behavior; however, it is difficult to prioritize the many promising leads from each approach. A convergent secondary analysis of proteomic and transcriptomic results can glean additional information to help prioritize promising leads. The current study is a secondary analysis of the convergence of recently published separate transcriptomic and proteomic analyses of nucleus accumbens (NAc) tissue from rats subjected to environmental enrichment vs. isolation and cocaine self-administration vs. saline. Multiple bioinformatics approaches (e.g. Gene Ontology (GO) analysis, Ingenuity Pathway Analysis (IPA), and Gene Set Enrichment Analysis (GSEA)) were used to interrogate these rich data sets. Although there was little correspondence between mRNA vs. protein at the individual target level, good correspondence was found at the level of gene/protein sets, particularly for the environmental enrichment manipulation. These data identify gene sets where there is a positive relationship between changes in mRNA and protein (e.g. glycolysis, ATP synthesis, translation elongation factor activity, etc.) and gene sets where there is an inverse relationship (e.g. ribosomes, Rho GTPase signaling, protein ubiquitination, etc.). Overall environmental enrichment produced better correspondence than cocaine self-administration. The individual targets contributing to mRNA and protein effects were largely not overlapping. As a whole, these results confirm that robust transcriptomic and proteomic data sets can provide similar results at the gene/protein set level even when there is little correspondence at the individual target level and little overlap in the targets contributing to the effects. PMID:27717806

  1. Comparative transcriptomics reveals genes involved in metabolic and immune pathways in the digestive gland of scallop Chlamys farreri following cadmium exposure

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Zhai, Yuxiu; Yao, Lin; Jiang, Yanhua; Li, Fengling

    2017-05-01

    Chlamys farreri is an economically important mollusk that can accumulate excessive amounts of cadmium (Cd). Studying the molecular mechanism of Cd accumulation in bivalves is difficult because of the lack of genome background. Transcriptomic analysis based on high-throughput RNA sequencing has been shown to be an efficient and powerful method for the discovery of relevant genes in non-model and genome reference-free organisms. Here, we constructed two cDNA libraries (control and Cd exposure groups) from the digestive gland of C. farreri and compared the transcriptomic data between them. A total of 227 673 transcripts were assembled into 105 071 unigenes, most of which shared high similarity with sequences in the NCBI non-redundant protein database. For functional classification, 24 493 unigenes were assigned to Gene Ontology terms. Additionally, EuKaryotic Ortholog Groups and Kyoto Encyclopedia of Genes and Genomes analyses assigned 12 028 unigenes to 26 categories and 7 849 unigenes to five pathways, respectively. Comparative transcriptomics analysis identified 3 800 unigenes that were differentially expressed in the Cd-treated group compared with the control group. Among them, genes associated with heavy metal accumulation were screened, including metallothionein, divalent metal transporter, and metal tolerance protein. The functional genes and predicted pathways identified in our study will contribute to a better understanding of the metabolic and immune system in the digestive gland of C. farreri. In addition, the transcriptomic data will provide a comprehensive resource that may contribute to the understanding of molecular mechanisms that respond to marine pollutants in bivalves.

  2. Transcriptome Sequencing and Developmental Regulation of Gene Expression in Anopheles aquasalis

    PubMed Central

    Silva, Maria C. P.; Lopes, Adriana R.; Barros, Michele S.; Sá-Nunes, Anderson; Kojin, Bianca B.; Carvalho, Eneas; Suesdek, Lincoln; Silva-Neto, Mário Alberto C.; James, Anthony A.; Capurro, Margareth L.

    2014-01-01

    Background Anopheles aquasalis is a major malaria vector in coastal areas of South and Central America where it breeds preferentially in brackish water. This species is very susceptible to Plasmodium vivax and it has been already incriminated as responsible vector in malaria outbreaks. There has been no high-throughput investigation into the sequencing of An. aquasalis genes, transcripts and proteins despite its epidemiological relevance. Here we describe the sequencing, assembly and annotation of the An. aquasalis transcriptome. Methodology/Principal Findings A total of 419 thousand cDNA sequence reads, encompassing 164 million nucleotides, were assembled in 7544 contigs of ≥2 sequences, and 1999 singletons. The majority of the An. aquasalis transcripts encode proteins with their closest counterparts in another neotropical malaria vector, An. darlingi. Several analyses in different protein databases were used to annotate and predict the putative functions of the deduced An. aquasalis proteins. Larval and adult-specific transcripts were represented by 121 and 424 contig sequences, respectively. Fifty-one transcripts were only detected in blood-fed females. The data also reveal a list of transcripts up- or down-regulated in adult females after a blood meal. Transcripts associated with immunity, signaling networks and blood feeding and digestion are discussed. Conclusions/Significance This study represents the first large-scale effort to sequence the transcriptome of An. aquasalis. It provides valuable information that will facilitate studies on the biology of this species and may lead to novel strategies to reduce malaria transmission on the South American continent. The An. aquasalis transcriptome is accessible at http://exon.niaid.nih.gov/transcriptome/An_aquasalis/Anaquexcel.xlsx. PMID:25033462

  3. The Transcriptomes of Xiphinema index and Longidorus elongatus Suggest Independent Acquisition of Some Plant Parasitism Genes by Horizontal Gene Transfer in Early-Branching Nematodes

    PubMed Central

    Danchin, Etienne G.J.; Perfus-Barbeoch, Laetitia; Rancurel, Corinne; Thorpe, Peter; Da Rocha, Martine; Bajew, Simon; Neilson, Roy; Sokolova (Guzeeva), Elena; Da Silva, Corinne; Guy, Julie; Labadie, Karine; Esmenjaud, Daniel; Helder, Johannes; Jones, John T.

    2017-01-01

    Nematodes have evolved the ability to parasitize plants on at least four independent occasions, with plant parasites present in Clades 1, 2, 10 and 12 of the phylum. In the case of Clades 10 and 12, horizontal gene transfer of plant cell wall degrading enzymes from bacteria and fungi has been implicated in the evolution of plant parasitism. We have used ribonucleic acid sequencing (RNAseq) to generate reference transcriptomes for two economically important nematode species, Xiphinema index and Longidorus elongatus, representative of two genera within the early-branching Clade 2 of the phylum Nematoda. We used a transcriptome-wide analysis to identify putative horizontal gene transfer events. This represents the first in-depth transcriptome analysis from any plant-parasitic nematode of this clade. For each species, we assembled ~30 million Illumina reads into a reference transcriptome. We identified 62 and 104 transcripts, from X. index and L. elongatus, respectively, that were putatively acquired via horizontal gene transfer. By cross-referencing horizontal gene transfer prediction with a phylum-wide analysis of Pfam domains, we identified Clade 2-specific events. Of these, a GH12 cellulase from X. index was analysed phylogenetically and biochemically, revealing a likely bacterial origin and canonical enzymatic function. Horizontal gene transfer was previously shown to be a phenomenon that has contributed to the evolution of plant parasitism among nematodes. Our findings underline the importance and the extensiveness of this phenomenon in the evolution of plant-parasitic life styles in this speciose and widespread animal phylum. PMID:29065523

  4. The Transcriptomes of Xiphinema index and Longidorus elongatus Suggest Independent Acquisition of Some Plant Parasitism Genes by Horizontal Gene Transfer in Early-Branching Nematodes.

    PubMed

    Danchin, Etienne G J; Perfus-Barbeoch, Laetitia; Rancurel, Corinne; Thorpe, Peter; Da Rocha, Martine; Bajew, Simon; Neilson, Roy; Guzeeva, Elena Sokolova; Da Silva, Corinne; Guy, Julie; Labadie, Karine; Esmenjaud, Daniel; Helder, Johannes; Jones, John T; den Akker, Sebastian Eves-van

    2017-10-23

    Nematodes have evolved the ability to parasitize plants on at least four independent occasions, with plant parasites present in Clades 1, 2, 10 and 12 of the phylum. In the case of Clades 10 and 12, horizontal gene transfer of plant cell wall degrading enzymes from bacteria and fungi has been implicated in the evolution of plant parasitism. We have used ribonucleic acid sequencing (RNAseq) to generate reference transcriptomes for two economically important nematode species, Xiphinema index and Longidorus elongatus , representative of two genera within the early-branching Clade 2 of the phylum Nematoda. We used a transcriptome-wide analysis to identify putative horizontal gene transfer events. This represents the first in-depth transcriptome analysis from any plant-parasitic nematode of this clade. For each species, we assembled ~30 million Illumina reads into a reference transcriptome. We identified 62 and 104 transcripts, from X. index and L. elongatus , respectively, that were putatively acquired via horizontal gene transfer. By cross-referencing horizontal gene transfer prediction with a phylum-wide analysis of Pfam domains, we identified Clade 2-specific events. Of these, a GH12 cellulase from X. index was analysed phylogenetically and biochemically, revealing a likely bacterial origin and canonical enzymatic function. Horizontal gene transfer was previously shown to be a phenomenon that has contributed to the evolution of plant parasitism among nematodes. Our findings underline the importance and the extensiveness of this phenomenon in the evolution of plant-parasitic life styles in this speciose and widespread animal phylum.

  5. The lifecycle of e-learning course in the adaptive educational environment

    NASA Astrophysics Data System (ADS)

    Gustun, O. N.; Budaragin, N. V.

    2017-01-01

    In the article we have considered the lifecycle model of the e-learning course in the electronic educational environment. This model consists of three stages and nine phases. In order to implement the adaptive control of the learning process we have determined the actions which are necessary to undertake at different phases of the e-learning course lifecycle. The general characteristics of the SPACEL-technology is given for creating adaptive educational environments of the next generation.

  6. RNA-Seq effectively monitors gene expression in Eutrema salsugineum plants growing in an extreme natural habitat and in controlled growth cabinet conditions

    PubMed Central

    2013-01-01

    Background The investigation of extremophile plant species growing in their natural environment offers certain advantages, chiefly that plants adapted to severe habitats have a repertoire of stress tolerance genes that are regulated to maximize plant performance under physiologically challenging conditions. Accordingly, transcriptome sequencing offers a powerful approach to address questions concerning the influence of natural habitat on the physiology of an organism. We used RNA sequencing of Eutrema salsugineum, an extremophile relative of Arabidopsis thaliana, to investigate the extent to which genetic variation and controlled versus natural environments contribute to differences between transcript profiles. Results Using 10 million cDNA reads, we compared transcriptomes from two natural Eutrema accessions (originating from Yukon Territory, Canada and Shandong Province, China) grown under controlled conditions in cabinets and those from Yukon plants collected at a Yukon field site. We assessed the genetic heterogeneity between individuals using single-nucleotide polymorphisms (SNPs) and the expression patterns of 27,016 genes. Over 39,000 SNPs distinguish the Yukon from the Shandong accessions but only 4,475 SNPs differentiated transcriptomes of Yukon field plants from an inbred Yukon line. We found 2,989 genes that were differentially expressed between the three sample groups and multivariate statistical analyses showed that transcriptomes of individual plants from a Yukon field site were as reproducible as those from inbred plants grown under controlled conditions. Predicted functions based upon gene ontology classifications show that the transcriptomes of field plants were enriched by the differential expression of light- and stress-related genes, an observation consistent with the habitat where the plants were found. Conclusion Our expectation that comparative RNA-Seq analysis of transcriptomes from plants originating in natural habitats would be confounded by uncontrolled genetic and environmental factors was not borne out. Moreover, the transcriptome data shows little genetic variation between laboratory Yukon Eutrema plants and those found at a field site. Transcriptomes were reproducible and biological associations meaningful whether plants were grown in cabinets or found in the field. Thus RNA-Seq is a valuable approach to study native plants in natural environments and this technology can be exploited to discover new gene targets for improved crop performance under adverse conditions. PMID:23984645

  7. 77 FR 65665 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-30

    ...: International Trade Administration. Title: International Client Life-cycle Multi-Purpose Forms. OMB Control... of an international client's life-cycle with CS, involves merging with other information collections...

  8. Co-expression networks reveal the tissue-specific regulation of transcription and splicing

    PubMed Central

    Saha, Ashis; Kim, Yungil; Gewirtz, Ariel D.H.; Jo, Brian; Gao, Chuan; McDowell, Ian C.; Engelhardt, Barbara E.

    2017-01-01

    Gene co-expression networks capture biologically important patterns in gene expression data, enabling functional analyses of genes, discovery of biomarkers, and interpretation of genetic variants. Most network analyses to date have been limited to assessing correlation between total gene expression levels in a single tissue or small sets of tissues. Here, we built networks that additionally capture the regulation of relative isoform abundance and splicing, along with tissue-specific connections unique to each of a diverse set of tissues. We used the Genotype-Tissue Expression (GTEx) project v6 RNA sequencing data across 50 tissues and 449 individuals. First, we developed a framework called Transcriptome-Wide Networks (TWNs) for combining total expression and relative isoform levels into a single sparse network, capturing the interplay between the regulation of splicing and transcription. We built TWNs for 16 tissues and found that hubs in these networks were strongly enriched for splicing and RNA binding genes, demonstrating their utility in unraveling regulation of splicing in the human transcriptome. Next, we used a Bayesian biclustering model that identifies network edges unique to a single tissue to reconstruct Tissue-Specific Networks (TSNs) for 26 distinct tissues and 10 groups of related tissues. Finally, we found genetic variants associated with pairs of adjacent nodes in our networks, supporting the estimated network structures and identifying 20 genetic variants with distant regulatory impact on transcription and splicing. Our networks provide an improved understanding of the complex relationships of the human transcriptome across tissues. PMID:29021288

  9. Uncovering the pathways underlying whole body regeneration in a chordate model, Botrylloides leachi using de novo transcriptome analysis.

    PubMed

    Zondag, Lisa E; Rutherford, Kim; Gemmell, Neil J; Wilson, Megan J

    2016-02-16

    Regenerative capacity differs greatly between animals. In vertebrates regenerative abilities are highly limited and tissue or organ specific. However the closest related chordate to the vertebrate clade, Botrylloides leachi, can undergo whole body regeneration (WBR). Therefore, research on WBR in B. leachi has focused on pathways known to be important for regeneration in vertebrates. To obtain a comprehensive vision of this unique process we have carried out the first de novo transcriptome sequencing for multiple stages of WBR occurring in B. leachi. The identified changes in gene expression during B. leachi WBR offer novel insights into this remarkable ability to regenerate. The transcriptome of B. leachi tissue undergoing WBR were analysed using differential gene expression, gene ontology and pathway analyses. We observed up-regulation in the expression of genes involved in wound healing and known developmental pathways including WNT, TGF-β and Notch, during the earliest stages of WBR. Later in WBR, the expression patterns in several pathways required for protein synthesis, biogenesis and the organisation of cellular components were up-regulated. While the genes expressed early on are characteristic of a necessary wound healing response to an otherwise lethal injury, the subsequent vast increase in protein synthesis conceivably sustains the reestablishment of the tissue complexity and body axis polarity within the regenerating zooid. We have, for the first time, provided a global overview of the genes and their corresponding pathways that are modulated during WBR in B. leachi.

  10. First Transcriptome and Digital Gene Expression Analysis in Neuroptera with an Emphasis on Chemoreception Genes in Chrysopa pallens (Rambur).

    PubMed

    Li, Zhao-Qun; Zhang, Shuai; Ma, Yan; Luo, Jun-Yu; Wang, Chun-Yi; Lv, Li-Min; Dong, Shuang-Lin; Cui, Jin-Jie

    2013-01-01

    Chrysopa pallens (Rambur) are the most important natural enemies and predators of various agricultural pests. Understanding the sophisticated olfactory system in insect antennae is crucial for studying the physiological bases of olfaction and also could lead to effective applications of C. pallens in integrated pest management. However no transcriptome information is available for Neuroptera, and sequence data for C. pallens are scarce, so obtaining more sequence data is a priority for researchers on this species. To facilitate identifying sets of genes involved in olfaction, a normalized transcriptome of C. pallens was sequenced. A total of 104,603 contigs were obtained and assembled into 10,662 clusters and 39,734 singletons; 20,524 were annotated based on BLASTX analyses. A large number of candidate chemosensory genes were identified, including 14 odorant-binding proteins (OBPs), 22 chemosensory proteins (CSPs), 16 ionotropic receptors, 14 odorant receptors, and genes potentially involved in olfactory modulation. To better understand the OBPs, CSPs and cytochrome P450s, phylogenetic trees were constructed. In addition, 10 digital gene expression libraries of different tissues were constructed and gene expression profiles were compared among different tissues in males and females. Our results provide a basis for exploring the mechanisms of chemoreception in C. pallens, as well as other insects. The evolutionary analyses in our study provide new insights into the differentiation and evolution of insect OBPs and CSPs. Our study provided large-scale sequence information for further studies in C. pallens.

  11. Unbiased transcriptomic analyses reveal distinct effects of immune deficiency in CNS function with and without injury.

    PubMed

    Luo, Dandan; Ge, Weihong; Hu, Xiao; Li, Chen; Lee, Chia-Ming; Zhou, Liqiang; Wu, Zhourui; Yu, Juehua; Lin, Sheng; Yu, Jing; Xu, Wei; Chen, Lei; Zhang, Chong; Jiang, Kun; Zhu, Xingfei; Li, Haotian; Gao, Xinpei; Geng, Yanan; Jing, Bo; Wang, Zhen; Zheng, Changhong; Zhu, Rongrong; Yan, Qiao; Lin, Quan; Ye, Keqiang; Sun, Yi E; Cheng, Liming

    2018-06-28

    The mammalian central nervous system (CNS) is considered an immune privileged system as it is separated from the periphery by the blood brain barrier (BBB). Yet, immune functions have been postulated to heavily influence the functional state of the CNS, especially after injury or during neurodegeneration. There is controversy regarding whether adaptive immune responses are beneficial or detrimental to CNS injury repair. In this study, we utilized immunocompromised SCID mice and subjected them to spinal cord injury (SCI). We analyzed motor function, electrophysiology, histochemistry, and performed unbiased RNA-sequencing. SCID mice displayed improved CNS functional recovery compared to WT mice after SCI. Weighted gene-coexpression network analysis (WGCNA) of spinal cord transcriptomes revealed that SCID mice had reduced expression of immune function-related genes and heightened expression of neural transmission-related genes after SCI, which was confirmed by immunohistochemical analysis and was consistent with better functional recovery. Transcriptomic analyses also indicated heightened expression of neurotransmission-related genes before injury in SCID mice, suggesting that a steady state of immune-deficiency potentially led to CNS hyper-connectivity. Consequently, SCID mice without injury demonstrated worse performance in Morris water maze test. Taken together, not only reduced inflammation after injury but also dampened steady-state immune function without injury heightened the neurotransmission program, resulting in better or worse behavioral outcomes respectively. This study revealed the intricate relationship between immune and nervous systems, raising the possibility for therapeutic manipulation of neural function via immune modulation.

  12. Uncovering iron regulation with species-specific transcriptome patterns in Atlantic and coho salmon during a Caligus rogercresseyi infestation.

    PubMed

    Valenzuela-Muñoz, V; Boltaña, S; Gallardo-Escárate, C

    2017-09-01

    Salmon species cultured in Chile evidence different levels of susceptibility to the sea louse Caligus rogercresseyi. These differences have mainly been associated with specific immune responses. Moreover, iron regulation seems to be an important mechanism to confer immunity during the host infestation. This response called nutritional immunity has been described in bacterial infections, despite that no comprehensive studies involving in marine ectoparasites infestation have been reported. With this aim, we analysed the transcriptome profiles of Atlantic and coho salmon infected with C. rogercresseyi to evidence modulation of the iron metabolism as a proxy of nutritional immune responses. Whole transcriptome sequencing was performed in samples of skin and head kidney from Atlantic and coho salmon infected with sea lice. RNA-seq analyses revealed significant upregulation of transcripts in both salmon species at 7 and 14 dpi in skin and head kidney, respectively. However, iron regulation transcripts were differentially modulated, evidencing species-specific expression profiles. Genes related to heme degradation and iron transport such as hepcidin, transferrin and haptoglobin were primary upregulated in Atlantic salmon; meanwhile, in coho salmon, genes associated with heme biosynthesis were strongly transcribed. In summary, Atlantic salmon, which are more susceptible to infestation, presented molecular mechanisms to deplete cellular iron availability, suggesting putative mechanisms of nutritional immunity. In contrast, resistant coho salmon were less affected by sea lice, mainly activating pro-inflammatory mechanisms to cope with infestation. © 2017 John Wiley & Sons Ltd.

  13. Is chloroplastic class IIA aldolase a marine enzyme?

    PubMed

    Miyasaka, Hitoshi; Ogata, Takeru; Tanaka, Satoshi; Ohama, Takeshi; Kano, Sanae; Kazuhiro, Fujiwara; Hayashi, Shuhei; Yamamoto, Shinjiro; Takahashi, Hiro; Matsuura, Hideyuki; Hirata, Kazumasa

    2016-11-01

    Expressed sequence tag analyses revealed that two marine Chlorophyceae green algae, Chlamydomonas sp. W80 and Chlamydomonas sp. HS5, contain genes coding for chloroplastic class IIA aldolase (fructose-1, 6-bisphosphate aldolase: FBA). These genes show robust monophyly with those of the marine Prasinophyceae algae genera Micromonas, Ostreococcus and Bathycoccus, indicating that the acquisition of this gene through horizontal gene transfer by an ancestor of the green algal lineage occurred prior to the divergence of the core chlorophytes (Chlorophyceae and Trebouxiophyceae) and the prasinophytes. The absence of this gene in some freshwater chlorophytes, such as Chlamydomonas reinhardtii, Volvox carteri, Chlorella vulgaris, Chlorella variabilis and Coccomyxa subellipsoidea, can therefore be explained by the loss of this gene somewhere in the evolutionary process. Our survey on the distribution of this gene in genomic and transcriptome databases suggests that this gene occurs almost exclusively in marine algae, with a few exceptions, and as such, we propose that chloroplastic class IIA FBA is a marine environment-adapted enzyme. This hypothesis was also experimentally tested using Chlamydomonas W80, for which we found that the transcript levels of this gene to be significantly lower under low-salt (that is, simulated terrestrial) conditions. Expression analyses of transcriptome data for two algae, Prymnesium parvum and Emiliania huxleyi, taken from the Sequence Read Archive database also indicated that the expression of this gene under terrestrial conditions (low NaCl and low sulfate) is significantly downregulated. Thus, these experimental and transcriptome data provide support for our hypothesis.

  14. Is chloroplastic class IIA aldolase a marine enzyme?

    PubMed Central

    Miyasaka, Hitoshi; Ogata, Takeru; Tanaka, Satoshi; Ohama, Takeshi; Kano, Sanae; Kazuhiro, Fujiwara; Hayashi, Shuhei; Yamamoto, Shinjiro; Takahashi, Hiro; Matsuura, Hideyuki; Hirata, Kazumasa

    2016-01-01

    Expressed sequence tag analyses revealed that two marine Chlorophyceae green algae, Chlamydomonas sp. W80 and Chlamydomonas sp. HS5, contain genes coding for chloroplastic class IIA aldolase (fructose-1, 6-bisphosphate aldolase: FBA). These genes show robust monophyly with those of the marine Prasinophyceae algae genera Micromonas, Ostreococcus and Bathycoccus, indicating that the acquisition of this gene through horizontal gene transfer by an ancestor of the green algal lineage occurred prior to the divergence of the core chlorophytes (Chlorophyceae and Trebouxiophyceae) and the prasinophytes. The absence of this gene in some freshwater chlorophytes, such as Chlamydomonas reinhardtii, Volvox carteri, Chlorella vulgaris, Chlorella variabilis and Coccomyxa subellipsoidea, can therefore be explained by the loss of this gene somewhere in the evolutionary process. Our survey on the distribution of this gene in genomic and transcriptome databases suggests that this gene occurs almost exclusively in marine algae, with a few exceptions, and as such, we propose that chloroplastic class IIA FBA is a marine environment-adapted enzyme. This hypothesis was also experimentally tested using Chlamydomonas W80, for which we found that the transcript levels of this gene to be significantly lower under low-salt (that is, simulated terrestrial) conditions. Expression analyses of transcriptome data for two algae, Prymnesium parvum and Emiliania huxleyi, taken from the Sequence Read Archive database also indicated that the expression of this gene under terrestrial conditions (low NaCl and low sulfate) is significantly downregulated. Thus, these experimental and transcriptome data provide support for our hypothesis. PMID:27058504

  15. Gene regulation network behind drought escape, avoidance and tolerance strategies in black poplar (Populus nigra L.).

    PubMed

    Yıldırım, Kubilay; Kaya, Zeki

    2017-06-01

    Drought is the major environmental problem limiting the productivity and survival of plant species. Here, previously identified three black poplar genotypes having contrasting response to drought were subjected to gradual soil water depletion in a pot trial to identify their physiological, morphological and antioxidation related adaptations. We also performed a microarray based transcriptome analyses on the leaves of genotypes by using Affymetrix poplar Genome Array containing 56,000 transcripts. Phenotypic analyses of each genotype confirmed their differential adaptations to drought that could be classified as drought escape, avoidance and tolerance. Comparative transcriptomic analysis indicated highly divergent gene expression patterns among the genotypes in response to drought and post drought re-watering (PDR). We identified 10641, 3824 and 9411 transcripts exclusively regulated in drought escape, avoidance and tolerant genotypes, respectively. The key genes involved in metabolic pathways, such as carbohydrate metabolism, photosynthesis, lipid metabolism, generation of precursor metabolites/energy, protein folding, redox homeostasis, secondary metabolic process and cell wall component biogenesis, were affected by drought stresses in the leaves of these genotypes. Transcript isoforms showed increased expression specificity in the genes coding for bark storage proteins and small heat shock proteins in drought tolerant genotype. On the other hand, drought-avoiding genotype specifically induced the transcripts annotated to the genes functional in secondary metabolite production that linked to enhanced leaf water content and growth performance under drought stress. Transcriptome profiling of drought escape genotype indicated specific regulation of the genes functional in programmed cell death and leaf senescence. Specific upregulation of GTP cyclohydrolase II and transcription factors (WRKY and ERFs) in only this genotype were associated to ROS dependent signalling pathways and gene regulation network responsible in induction of many degrading enzymes acting on cell wall carbohydrates, fatty acids and proteins under drought stress. Our findings provide new insights into the transcriptome dynamics and components of regulatory network associated with drought adaptation strategies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. De novo transcriptome sequencing and analysis of the cereal cyst nematode, Heterodera avenae.

    PubMed

    Kumar, Mukesh; Gantasala, Nagavara Prasad; Roychowdhury, Tanmoy; Thakur, Prasoon Kumar; Banakar, Prakash; Shukla, Rohit N; Jones, Michael G K; Rao, Uma

    2014-01-01

    The cereal cyst nematode (CCN, Heterodera avenae) is a major pest of wheat (Triticum spp) that reduces crop yields in many countries. Cyst nematodes are obligate sedentary endoparasites that reproduce by amphimixis. Here, we report the first transcriptome analysis of two stages of H. avenae. After sequencing extracted RNA from pre parasitic infective juvenile and adult stages of the life cycle, 131 million Illumina high quality paired end reads were obtained which generated 27,765 contigs with N50 of 1,028 base pairs, of which 10,452 were annotated. Comparative analyses were undertaken to evaluate H. avenae sequences with those of other plant, animal and free living nematodes to identify differences in expressed genes. There were 4,431 transcripts common to H. avenae and the free living nematode Caenorhabditis elegans, and 9,462 in common with more closely related potato cyst nematode, Globodera pallida. Annotation of H. avenae carbohydrate active enzymes (CAZy) revealed fewer glycoside hydrolases (GHs) but more glycosyl transferases (GTs) and carbohydrate esterases (CEs) when compared to M. incognita. 1,280 transcripts were found to have secretory signature, presence of signal peptide and absence of transmembrane. In a comparison of genes expressed in the pre-parasitic juvenile and feeding female stages, expression levels of 30 genes with high RPKM (reads per base per kilo million) value, were analysed by qRT-PCR which confirmed the observed differences in their levels of expression levels. In addition, we have also developed a user-friendly resource, Heterodera transcriptome database (HATdb) for public access of the data generated in this study. The new data provided on the transcriptome of H. avenae adds to the genetic resources available to study plant parasitic nematodes and provides an opportunity to seek new effectors that are specifically involved in the H. avenae-cereal host interaction.

  17. De Novo Transcriptome Sequencing and Analysis of the Cereal Cyst Nematode, Heterodera avenae

    PubMed Central

    Kumar, Mukesh; Gantasala, Nagavara Prasad; Roychowdhury, Tanmoy; Thakur, Prasoon Kumar; Banakar, Prakash; Shukla, Rohit N.; Jones, Michael G. K.; Rao, Uma

    2014-01-01

    The cereal cyst nematode (CCN, Heterodera avenae) is a major pest of wheat (Triticum spp) that reduces crop yields in many countries. Cyst nematodes are obligate sedentary endoparasites that reproduce by amphimixis. Here, we report the first transcriptome analysis of two stages of H. avenae. After sequencing extracted RNA from pre parasitic infective juvenile and adult stages of the life cycle, 131 million Illumina high quality paired end reads were obtained which generated 27,765 contigs with N50 of 1,028 base pairs, of which 10,452 were annotated. Comparative analyses were undertaken to evaluate H. avenae sequences with those of other plant, animal and free living nematodes to identify differences in expressed genes. There were 4,431 transcripts common to H. avenae and the free living nematode Caenorhabditis elegans, and 9,462 in common with more closely related potato cyst nematode, Globodera pallida. Annotation of H. avenae carbohydrate active enzymes (CAZy) revealed fewer glycoside hydrolases (GHs) but more glycosyl transferases (GTs) and carbohydrate esterases (CEs) when compared to M. incognita. 1,280 transcripts were found to have secretory signature, presence of signal peptide and absence of transmembrane. In a comparison of genes expressed in the pre-parasitic juvenile and feeding female stages, expression levels of 30 genes with high RPKM (reads per base per kilo million) value, were analysed by qRT-PCR which confirmed the observed differences in their levels of expression levels. In addition, we have also developed a user-friendly resource, Heterodera transcriptome database (HATdb) for public access of the data generated in this study. The new data provided on the transcriptome of H. avenae adds to the genetic resources available to study plant parasitic nematodes and provides an opportunity to seek new effectors that are specifically involved in the H. avenae-cereal host interaction. PMID:24802510

  18. Floral gene resources from basal angiosperms for comparative genomics research

    PubMed Central

    Albert, Victor A; Soltis, Douglas E; Carlson, John E; Farmerie, William G; Wall, P Kerr; Ilut, Daniel C; Solow, Teri M; Mueller, Lukas A; Landherr, Lena L; Hu, Yi; Buzgo, Matyas; Kim, Sangtae; Yoo, Mi-Jeong; Frohlich, Michael W; Perl-Treves, Rafael; Schlarbaum, Scott E; Bliss, Barbara J; Zhang, Xiaohong; Tanksley, Steven D; Oppenheimer, David G; Soltis, Pamela S; Ma, Hong; dePamphilis, Claude W; Leebens-Mack, James H

    2005-01-01

    Background The Floral Genome Project was initiated to bridge the genomic gap between the most broadly studied plant model systems. Arabidopsis and rice, although now completely sequenced and under intensive comparative genomic investigation, are separated by at least 125 million years of evolutionary time, and cannot in isolation provide a comprehensive perspective on structural and functional aspects of flowering plant genome dynamics. Here we discuss new genomic resources available to the scientific community, comprising cDNA libraries and Expressed Sequence Tag (EST) sequences for a suite of phylogenetically basal angiosperms specifically selected to bridge the evolutionary gaps between model plants and provide insights into gene content and genome structure in the earliest flowering plants. Results Random sequencing of cDNAs from representatives of phylogenetically important eudicot, non-grass monocot, and gymnosperm lineages has so far (as of 12/1/04) generated 70,514 ESTs and 48,170 assembled unigenes. Efficient sorting of EST sequences into putative gene families based on whole Arabidopsis/rice proteome comparison has permitted ready identification of cDNA clones for finished sequencing. Preliminarily, (i) proportions of functional categories among sequenced floral genes seem representative of the entire Arabidopsis transcriptome, (ii) many known floral gene homologues have been captured, and (iii) phylogenetic analyses of ESTs are providing new insights into the process of gene family evolution in relation to the origin and diversification of the angiosperms. Conclusion Initial comparisons illustrate the utility of the EST data sets toward discovery of the basic floral transcriptome. These first findings also afford the opportunity to address a number of conspicuous evolutionary genomic questions, including reproductive organ transcriptome overlap between angiosperms and gymnosperms, genome-wide duplication history, lineage-specific gene duplication and functional divergence, and analyses of adaptive molecular evolution. Since not all genes in the floral transcriptome will be associated with flowering, these EST resources will also be of interest to plant scientists working on other functions, such as photosynthesis, signal transduction, and metabolic pathways. PMID:15799777

  19. Getting the most out of parasitic helminth transcriptomes using HelmDB: implications for biology and biotechnology.

    PubMed

    Mangiola, Stefano; Young, Neil D; Korhonen, Pasi; Mondal, Alinda; Scheerlinck, Jean-Pierre; Sternberg, Paul W; Cantacessi, Cinzia; Hall, Ross S; Jex, Aaron R; Gasser, Robin B

    2013-12-01

    Compounded by a massive global food shortage, many parasitic diseases have a devastating, long-term impact on animal and human health and welfare worldwide. Parasitic helminths (worms) affect the health of billions of animals. Unlocking the systems biology of these neglected pathogens will underpin the design of new and improved interventions against them. Currently, the functional annotation of genomic and transcriptomic sequence data for socio-economically important parasitic worms relies almost exclusively on comparative bioinformatic analyses using model organism- and other databases. However, many genes and gene products of parasitic helminths (often >50%) cannot be annotated using this approach, because they are specific to parasites and/or do not have identifiable homologs in other organisms for which sequence data are available. This inability to fully annotate transcriptomes and predicted proteomes is a major challenge and constrains our understanding of the biology of parasites, interactions with their hosts and of parasitism and the pathogenesis of disease on a molecular level. In the present article, we compiled transcriptomic data sets of key, socioeconomically important parasitic helminths, and constructed and validated a curated database, called HelmDB (www.helmdb.org). We demonstrate how this database can be used effectively for the improvement of functional annotation by employing data integration and clustering. Importantly, HelmDB provides a practical and user-friendly toolkit for sequence browsing and comparative analyses among divergent helminth groups (including nematodes and trematodes), and should be readily adaptable and applicable to a wide range of other organisms. This web-based, integrative database should assist 'systems biology' studies of parasitic helminths, and the discovery and prioritization of novel drug and vaccine targets. This focus provides a pathway toward developing new and improved approaches for the treatment and control of parasitic diseases, with the potential for important biotechnological outcomes. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Analysis of a native whitefly transcriptome and its sequence divergence with two invasive whitefly species.

    PubMed

    Wang, Xiao-Wei; Zhao, Qiong-Yi; Luan, Jun-Bo; Wang, Yu-Jun; Yan, Gen-Hong; Liu, Shu-Sheng

    2012-10-04

    Genomic divergence between invasive and native species may provide insight into the molecular basis underlying specific characteristics that drive the invasion and displacement of closely related species. In this study, we sequenced the transcriptome of an indigenous species, Asia II 3, of the Bemisia tabaci complex and compared its genetic divergence with the transcriptomes of two invasive whiteflies species, Middle East Asia Minor 1 (MEAM1) and Mediterranean (MED), respectively. More than 16 million reads of 74 base pairs in length were obtained for the Asia II 3 species using the Illumina sequencing platform. These reads were assembled into 52,535 distinct sequences (mean size: 466 bp) and 16,596 sequences were annotated with an E-value above 10-5. Protein family comparisons revealed obvious diversification among the transcriptomes of these species suggesting species-specific adaptations during whitefly evolution. On the contrary, substantial conservation of the whitefly transcriptomes was also evident, despite their differences. The overall divergence of coding sequences between the orthologous gene pairs of Asia II 3 and MEAM1 is 1.73%, which is comparable to the average divergence of Asia II 3 and MED transcriptomes (1.84%) and much higher than that of MEAM1 and MED (0.83%). This is consistent with the previous phylogenetic analyses and crossing experiments suggesting these are distinct species. We also identified hundreds of highly diverged genes and compiled sequence identify data into gene functional groups and found the most divergent gene classes are Cytochrome P450, Glutathione metabolism and Oxidative phosphorylation. These results strongly suggest that the divergence of genes related to metabolism might be the driving force of the MEAM1 and Asia II 3 differentiation. We also analyzed single nucleotide polymorphisms within the orthologous gene pairs of indigenous and invasive whiteflies which are helpful for the investigation of association between allelic and phenotypes. Our data present the most comprehensive sequences for the indigenous whitefly species Asia II 3. The extensive comparisons of Asia II 3, MEAM1 and MED transcriptomes will serve as an invaluable resource for revealing the genetic basis of whitefly invasion and the molecular mechanisms underlying their biological differences.

  1. Analysis of a native whitefly transcriptome and its sequence divergence with two invasive whitefly species

    PubMed Central

    2012-01-01

    Background Genomic divergence between invasive and native species may provide insight into the molecular basis underlying specific characteristics that drive the invasion and displacement of closely related species. In this study, we sequenced the transcriptome of an indigenous species, Asia II 3, of the Bemisia tabaci complex and compared its genetic divergence with the transcriptomes of two invasive whiteflies species, Middle East Asia Minor 1 (MEAM1) and Mediterranean (MED), respectively. Results More than 16 million reads of 74 base pairs in length were obtained for the Asia II 3 species using the Illumina sequencing platform. These reads were assembled into 52,535 distinct sequences (mean size: 466 bp) and 16,596 sequences were annotated with an E-value above 10-5. Protein family comparisons revealed obvious diversification among the transcriptomes of these species suggesting species-specific adaptations during whitefly evolution. On the contrary, substantial conservation of the whitefly transcriptomes was also evident, despite their differences. The overall divergence of coding sequences between the orthologous gene pairs of Asia II 3 and MEAM1 is 1.73%, which is comparable to the average divergence of Asia II 3 and MED transcriptomes (1.84%) and much higher than that of MEAM1 and MED (0.83%). This is consistent with the previous phylogenetic analyses and crossing experiments suggesting these are distinct species. We also identified hundreds of highly diverged genes and compiled sequence identify data into gene functional groups and found the most divergent gene classes are Cytochrome P450, Glutathione metabolism and Oxidative phosphorylation. These results strongly suggest that the divergence of genes related to metabolism might be the driving force of the MEAM1 and Asia II 3 differentiation. We also analyzed single nucleotide polymorphisms within the orthologous gene pairs of indigenous and invasive whiteflies which are helpful for the investigation of association between allelic and phenotypes. Conclusions Our data present the most comprehensive sequences for the indigenous whitefly species Asia II 3. The extensive comparisons of Asia II 3, MEAM1 and MED transcriptomes will serve as an invaluable resource for revealing the genetic basis of whitefly invasion and the molecular mechanisms underlying their biological differences. PMID:23036081

  2. Comprehensive transcriptome analysis provides new insights into nutritional strategies and phylogenetic relationships of chrysophytes

    PubMed Central

    Graupner, Nadine; Bock, Christina; Wodniok, Sabina; Grossmann, Lars; Vos, Matthijs; Sures, Bernd

    2017-01-01

    Background Chrysophytes are protist model species in ecology and ecophysiology and important grazers of bacteria-sized microorganisms and primary producers. However, they have not yet been investigated in detail at the molecular level, and no genomic and only little transcriptomic information is available. Chrysophytes exhibit different trophic modes: while phototrophic chrysophytes perform only photosynthesis, mixotrophs can gain carbon from bacterial food as well as from photosynthesis, and heterotrophs solely feed on bacteria-sized microorganisms. Recent phylogenies and megasystematics demonstrate an immense complexity of eukaryotic diversity with numerous transitions between phototrophic and heterotrophic organisms. The question we aim to answer is how the diverse nutritional strategies, accompanied or brought about by a reduction of the plasmid and size reduction in heterotrophic strains, affect physiology and molecular processes. Results We sequenced the mRNA of 18 chrysophyte strains on the Illumina HiSeq platform and analysed the transcriptomes to determine relations between the trophic mode (mixotrophic vs. heterotrophic) and gene expression. We observed an enrichment of genes for photosynthesis, porphyrin and chlorophyll metabolism for phototrophic and mixotrophic strains that can perform photosynthesis. Genes involved in nutrient absorption, environmental information processing and various transporters (e.g., monosaccharide, peptide, lipid transporters) were present or highly expressed only in heterotrophic strains that have to sense, digest and absorb bacterial food. We furthermore present a transcriptome-based alignment-free phylogeny construction approach using transcripts assembled from short reads to determine the evolutionary relationships between the strains and the possible influence of nutritional strategies on the reconstructed phylogeny. We discuss the resulting phylogenies in comparison to those from established approaches based on ribosomal RNA and orthologous genes. Finally, we make functionally annotated reference transcriptomes of each strain available to the community, significantly enhancing publicly available data on Chrysophyceae. Conclusions Our study is the first comprehensive transcriptomic characterisation of a diverse set of Chrysophyceaen strains. In addition, we showcase the possibility of inferring phylogenies from assembled transcriptomes using an alignment-free approach. The raw and functionally annotated data we provide will prove beneficial for further examination of the diversity within this taxon. Our molecular characterisation of different trophic modes presents a first such example. PMID:28097055

  3. Variant discovery in the sheep milk transcriptome using RNA sequencing.

    PubMed

    Suárez-Vega, Aroa; Gutiérrez-Gil, Beatriz; Klopp, Christophe; Tosser-Klopp, Gwenola; Arranz, Juan José

    2017-02-15

    The identification of genetic variation underlying desired phenotypes is one of the main challenges of current livestock genetic research. High-throughput transcriptome sequencing (RNA-Seq) offers new opportunities for the detection of transcriptome variants (SNPs and short indels) in different tissues and species. In this study, we used RNA-Seq on Milk Sheep Somatic Cells (MSCs) with the goal of characterizing the genetic variation within the coding regions of the milk transcriptome in Churra and Assaf sheep, two common dairy sheep breeds farmed in Spain. A total of 216,637 variants were detected in the MSCs transcriptome of the eight ewes analyzed. Among them, a total of 57,795 variants were detected in the regions harboring Quantitative Trait Loci (QTL) for milk yield, protein percentage and fat percentage, of which 21.44% were novel variants. Among the total variants detected, 561 (2.52%) and 1,649 (7.42%) were predicted to produce high or moderate impact changes in the corresponding transcriptional unit, respectively. In the functional enrichment analysis of the genes positioned within selected QTL regions harboring novel relevant functional variants (high and moderate impact), the KEGG pathway with the highest enrichment was "protein processing in endoplasmic reticulum". Additionally, a total of 504 and 1,063 variants were identified in the genes encoding principal milk proteins and molecules involved in the lipid metabolism, respectively. Of these variants, 20 mutations were found to have putative relevant effects on the encoded proteins. We present herein the first transcriptomic approach aimed at identifying genetic variants of the genes expressed in the lactating mammary gland of sheep. Through the transcriptome analysis of variability within regions harboring QTL for milk yield, protein percentage and fat percentage, we have found several pathways and genes that harbor mutations that could affect dairy production traits. Moreover, remarkable variants were also found in candidate genes coding for major milk proteins and proteins related to milk fat metabolism. Several of the SNPs found in this study could be included as suitable markers in genotyping platforms or custom SNP arrays to perform association analyses in commercial populations and apply genomic selection protocols in the dairy production industry.

  4. Life-cycle energy impacts for adapting an urban water supply system to droughts.

    PubMed

    Lam, Ka Leung; Stokes-Draut, Jennifer R; Horvath, Arpad; Lane, Joe L; Kenway, Steven J; Lant, Paul A

    2017-12-15

    In recent years, cities in some water stressed regions have explored alternative water sources such as seawater desalination and potable water recycling in spite of concerns over increasing energy consumption. In this study, we evaluate the current and future life-cycle energy impacts of four alternative water supply strategies introduced during a decade-long drought in South East Queensland (SEQ), Australia. These strategies were: seawater desalination, indirect potable water recycling, network integration, and rainwater tanks. Our work highlights the energy burden of alternative water supply strategies which added approximately 24% life-cycle energy use to the existing supply system (with surface water sources) in SEQ even for a current post-drought low utilisation status. Over half of this additional life-cycle energy use was from the centralised alternative supply strategies. Rainwater tanks contributed an estimated 3% to regional water supply, but added over 10% life-cycle energy use to the existing system. In the future scenario analysis, we compare the life-cycle energy use between "Normal", "Dry", "High water demand" and "Design capacity" scenarios. In the "Normal" scenario, a long-term low utilisation of the desalination system and the water recycling system has greatly reduced the energy burden of these centralised strategies to only 13%. In contrast, higher utilisation in the unlikely "Dry" and "Design capacity" scenarios add 86% and 140% to life-cycle energy use of the existing system respectively. In the "High water demand" scenario, a 20% increase in per capita water use over 20 years "consumes" more energy than is used by the four alternative strategies in the "Normal" scenario. This research provides insight for developing more realistic long-term scenarios to evaluate and compare life-cycle energy impacts of drought-adaptation infrastructure and regional decentralised water sources. Scenario building for life-cycle assessments of water supply systems should consider i) climate variability and, therefore, infrastructure utilisation rate, ii) potential under-utilisation for both installed centralised and decentralised sources, and iii) the potential energy penalty for operating infrastructure well below its design capacity (e.g., the operational energy intensity of the desalination system is three times higher at low utilisation rates). This study illustrates that evaluating the life-cycle energy use and intensity of these type of supply sources without considering their realistic long-term operating scenario(s) can potentially distort and overemphasise their energy implications. To other water stressed regions, this work shows that managing long-term water demand is also important, in addition to acknowledging the energy-intensive nature of some alternative water sources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A transcriptome approach to ecdysozoan phylogeny.

    PubMed

    Borner, Janus; Rehm, Peter; Schill, Ralph O; Ebersberger, Ingo; Burmester, Thorsten

    2014-11-01

    The monophyly of Ecdysozoa, which comprise molting phyla, has received strong support from several lines of evidence. However, the internal relationships of Ecdysozoa are still contended. We generated expressed sequence tags from a priapulid (penis worm), a kinorhynch (mud dragon), a tardigrade (water bear) and five chelicerate taxa by 454 transcriptome sequencing. A multigene alignment was assembled from 63 taxa, which comprised after matrix optimization 24,249 amino acid positions with high data density (2.6% gaps, 19.1% missing data). Phylogenetic analyses employing various models support the monophyly of Ecdysozoa. A clade combining Priapulida and Kinorhyncha (i.e. Scalidophora) was recovered as the earliest branch among Ecdysozoa. We conclude that Cycloneuralia, a taxon erected to combine Priapulida, Kinorhyncha and Nematoda (and others), are paraphyletic. Rather Arthropoda (including Onychophora) are allied with Nematoda and Tardigrada. Within Arthropoda, we found strong support for most clades, including monophyletic Mandibulata and Pancrustacea. The phylogeny within the Euchelicerata remained largely unresolved. There is conflicting evidence on the position of tardigrades: While Bayesian and maximum likelihood analyses of only slowly evolving genes recovered Tardigrada as a sister group to Arthropoda, analyses of the full data set, and of subsets containing genes evolving at fast and intermediate rates identified a clade of Tardigrada and Nematoda. Notably, the latter topology is also supported by the analyses of indel patterns. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Genome, transcriptome, and functional analyses of Penicillium expansum provide new insights into secondary metabolism and pathogenicity

    USDA-ARS?s Scientific Manuscript database

    The relationship between secondary metabolism and infection in pathogenic fungi has remained largely elusive. Penicillium comprises a group of plant pathogens with varying host specificities and with the ability to produce a wide array of secondary metabolites. The genomes of three Penicillium exp...

  7. Multi-tissue omics analyses reveal molecular regulatory networks for puberty in composite beef cattle

    USDA-ARS?s Scientific Manuscript database

    Puberty is a complex physiological event by which animals mature into an adult capable of sexual reproduction. In order to enhance our understanding of the genes and regulatory pathways and networks involved in puberty, we characterized the transcriptome of five reproductive tissues (i.e., hypothal...

  8. Derivation of Tissue-specific Functional Gene Sets to Aid Transcriptomic Analysis of Chemical Impacts on the Teleost Reproductive Axis.

    EPA Science Inventory

    Oligonucleotide microarrays are a powerful tool for unsupervised analysis of chemical impacts on biological systems. However, the lack of well annotated biological pathways for many aquatic organisms, including fish, and the poor power of microarray-based analyses to detect diffe...

  9. Sequencing the genome of the Burmese python (Python molurus bivittatus) as a model for studying extreme adaptations in snakes.

    PubMed

    Castoe, Todd A; de Koning, Jason A P; Hall, Kathryn T; Yokoyama, Ken D; Gu, Wanjun; Smith, Eric N; Feschotte, Cédric; Uetz, Peter; Ray, David A; Dobry, Jason; Bogden, Robert; Mackessy, Stephen P; Bronikowski, Anne M; Warren, Wesley C; Secor, Stephen M; Pollock, David D

    2011-07-28

    The Consortium for Snake Genomics is in the process of sequencing the genome and creating transcriptomic resources for the Burmese python. Here, we describe how this will be done, what analyses this work will include, and provide a timeline.

  10. Methods for transcriptomic analyses of the porcine host immune response: application to Salmonella infection using microarrays

    USDA-ARS?s Scientific Manuscript database

    Technological developments in both the collection and analysis of molecular genetic data over the past few years have provided new opportunities for an improved understanding of the global response to pathogen exposure. Such developments are particularly dramatic for scientists studying the pig, whe...

  11. Deep sequencing and transcriptome analyses to identify genes involved in secoiridoid biosynthesis in Tibetan medicinal plant Sewertia mussotii

    USDA-ARS?s Scientific Manuscript database

    Swertia mussotii Franch. is an important traditional Tibetan medicinal plant with pharmacological properties useful for the treatment of various ailments, such as hepatitis. Secoiridoids, including swertiamarin, are the major bioactive compounds in S. mussotii. The development of genomic resources ...

  12. Comparative transcriptome and lipidome analyses reveal molecular systems underlying chilling response in chilling-tolerant sorghums

    USDA-ARS?s Scientific Manuscript database

    Chilling temperatures are a major constraint for temperate cultivation of tropical-origin crops, including the cereal crop sorghum (Sorghum bicolor [L.] Moench). Northern Chinese sorghums have adapted to early-season chilling, but molecular mechanisms of chilling tolerance are unknown. We used RNA ...

  13. Female reproductive impacts of dietary methylmercury in yellow perch (Perca flavescens) and zebrafish (Danio rerio).

    PubMed

    DeBofsky, Abigail R; Klingler, Rebekah H; Mora-Zamorano, Francisco X; Walz, Marcus; Shepherd, Brian; Larson, Jeremy K; Anderson, David; Yang, Luobin; Goetz, Frederick; Basu, Niladri; Head, Jessica; Tonellato, Peter; Armstrong, Brandon M; Murphy, Cheryl; Carvan, Michael J

    2018-03-01

    The purpose of this study was to evaluate the effects of environmentally relevant dietary MeHg exposures on adult female yellow perch (Perca flavescens) and female zebrafish (Danio rerio) ovarian development and reproduction. Yellow perch were used in the study for their socioeconomic and ecological importance within the Great Lakes basin, and the use of zebrafish allowed for a detailed analysis of the molecular effects of MeHg following a whole life-cycle exposure. Chronic whole life dietary exposure of F 1 zebrafish to MeHg mimics realistic wildlife exposure scenarios, and the twenty-week adult yellow perch exposure (where whole life-cycle exposures are difficult) captures early seasonal ovarian development. For both species, target dietary accumulation values were achieved prior to analyses. In zebrafish, several genes involved in reproductive processes were shown to be dysregulated by RNA-sequencing and quantitative real-time polymerase chain reaction (QPCR), but no significant phenotypic changes were observed regarding ovarian staging, fecundity, or embryo mortality. Yellow perch were exposed to dietary MeHg for 12, 16, or 20 weeks. In this species, a set of eight genes were assessed by QPCR in the pituitary, liver, and ovary, and no exposure-related changes were observed. The lack of genomic resources in yellow perch hinders the characterization of subtle molecular impacts. The ovarian somatic index, circulating estradiol and testosterone, and ovarian staging were not significantly altered by MeHg exposure in yellow perch. These results suggest that environmentally relevant MeHg exposures do not drastically reduce the reproductively important endpoints in these fish, but to capture realistic exposure scenarios, whole life-cycle yellow perch exposures are needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Environmental impact assessment and eco-friendly decision-making in civil structures.

    PubMed

    Kim, Sang-Hyo; Choi, Moon-Seock; Mha, Ho-Seong; Joung, Jung-Yeun

    2013-09-15

    This study develops two useful procedures in performing an environmental-impact assessment. One is the advanced life-cycle assessment (LCA) method, which effectively tracks the flow of materials and considers the recycling and demolition of a civil structure. The other is an eco-friendly decision-making procedure, which may effectively apply when determining the prototype of a civil structure. The advanced LCA method differs from traditional LCA procedure, as it classifies the input material prior to the impact assessment. Classification work is performed to establish independent life-cycle stages for each material. The processes of recycling and demolition are appropriately added to the life-cycle stages. The impact assessment is performed separately for the materials, and results are aggregated at the end of the analysis. The eco-friendly decision-making procedure enables designers to choose an economical, and environmentally friendly, alternative during the planning phase of the construction project. This procedure rationally amalgamates economical value and environmental effects into a single indicator. The life cycle cost (LCC) of a structure can be analysed by using conventional LCC tools, whereas the environmental impact is estimated by LCA. The results from LCC and LCA are then integrated by using either a CO2 conversion method or an analytical hierarchy process (AHP). The CO2 conversion method presents the result as a monetary value, whereas the AHP presents the result as a non-dimensional value. A practical example using a steel box girder bridge and a pre-stressed concrete (PSC) box-girder bridge is also given in order to aid the understanding of the presented procedure. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Constellation Program Life-cycle Cost Analysis Model (LCAM)

    NASA Technical Reports Server (NTRS)

    Prince, Andy; Rose, Heidi; Wood, James

    2008-01-01

    The Constellation Program (CxP) is NASA's effort to replace the Space Shuttle, return humans to the moon, and prepare for a human mission to Mars. The major elements of the Constellation Lunar sortie design reference mission architecture are shown. Unlike the Apollo Program of the 1960's, affordability is a major concern of United States policy makers and NASA management. To measure Constellation affordability, a total ownership cost life-cycle parametric cost estimating capability is required. This capability is being developed by the Constellation Systems Engineering and Integration (SE&I) Directorate, and is called the Lifecycle Cost Analysis Model (LCAM). The requirements for LCAM are based on the need to have a parametric estimating capability in order to do top-level program analysis, evaluate design alternatives, and explore options for future systems. By estimating the total cost of ownership within the context of the planned Constellation budget, LCAM can provide Program and NASA management with the cost data necessary to identify the most affordable alternatives. LCAM is also a key component of the Integrated Program Model (IPM), an SE&I developed capability that combines parametric sizing tools with cost, schedule, and risk models to perform program analysis. LCAM is used in the generation of cost estimates for system level trades and analyses. It draws upon the legacy of previous architecture level cost models, such as the Exploration Systems Mission Directorate (ESMD) Architecture Cost Model (ARCOM) developed for Simulation Based Acquisition (SBA), and ATLAS. LCAM is used to support requirements and design trade studies by calculating changes in cost relative to a baseline option cost. Estimated costs are generally low fidelity to accommodate available input data and available cost estimating relationships (CERs). LCAM is capable of interfacing with the Integrated Program Model to provide the cost estimating capability for that suite of tools.

  16. Oil biosynthesis in a basal angiosperm: transcriptome analysis of Persea Americana mesocarp.

    PubMed

    Kilaru, Aruna; Cao, Xia; Dabbs, Parker B; Sung, Ha-Jung; Rahman, Md Mahbubur; Thrower, Nicholas; Zynda, Greg; Podicheti, Ram; Ibarra-Laclette, Enrique; Herrera-Estrella, Luis; Mockaitis, Keithanne; Ohlrogge, John B

    2015-08-16

    The mechanism by which plants synthesize and store high amounts of triacylglycerols (TAG) in tissues other than seeds is not well understood. The comprehension of controls for carbon partitioning and oil accumulation in nonseed tissues is essential to generate oil-rich biomass in perennial bioenergy crops. Persea americana (avocado), a basal angiosperm with unique features that are ancestral to most flowering plants, stores ~ 70 % TAG per dry weight in its mesocarp, a nonseed tissue. Transcriptome analyses of select pathways, from generation of pyruvate and leading up to TAG accumulation, in mesocarp tissues of avocado was conducted and compared with that of oil-rich monocot (oil palm) and dicot (rapeseed and castor) tissues to identify tissue- and species-specific regulation and biosynthesis of TAG in plants. RNA-Seq analyses of select lipid metabolic pathways of avocado mesocarp revealed patterns similar to that of other oil-rich species. However, only some predominant orthologs of the fatty acid biosynthetic pathway genes in this basal angiosperm were similar to those of monocots and dicots. The accumulation of TAG, rich in oleic acid, was associated with higher transcript levels for a putative stearoyl-ACP desaturase and endoplasmic reticulum (ER)-associated acyl-CoA synthetases, during fruit development. Gene expression levels for enzymes involved in terminal steps to TAG biosynthesis in the ER further indicated that both acyl-CoA-dependent and -independent mechanisms might play a role in TAG assembly, depending on the developmental stage of the fruit. Furthermore, in addition to the expression of an ortholog of WRINKLED1 (WRI1), a regulator of fatty acid biosynthesis, high transcript levels for WRI2-like and WRI3-like suggest a role for additional transcription factors in nonseed oil accumulation. Plastid pyruvate necessary for fatty acid synthesis is likely driven by the upregulation of genes involved in glycolysis and transport of its intermediates. Together, a comparative transcriptome analyses for storage oil biosynthesis in diverse plants and tissues suggested that several distinct and conserved features in this basal angiosperm species might contribute towards its rich TAG content. Our work represents a comprehensive transcriptome resource for a basal angiosperm species and provides insight into their lipid metabolism in mesocarp tissues. Furthermore, comparison of the transcriptome of oil-rich mesocarp of avocado, with oil-rich seed and nonseed tissues of monocot and dicot species, revealed lipid gene orthologs that are highly conserved during evolution. The orthologs that are distinctively expressed in oil-rich mesocarp tissues of this basal angiosperm, such as WRI2, ER-associated acyl-CoA synthetases, and lipid-droplet associated proteins were also identified. This study provides a foundation for future investigations to increase oil-content and has implications for metabolic engineering to enhance storage oil content in nonseed tissues of diverse species.

  17. Life-cycle environmental performance of renewable building materials in the context of residential construction : phase II research report : an extension to the 2005 phase I research report. Module N, Life-cycle inventory of manufacturing prefinished engineered wood flooring in the eastern United States

    Treesearch

    Richard D. Bergman; Scott A. Bowe

    2011-01-01

    This study summarizes the environmental performance of prefinished engineered wood flooring using life-cycle inventory (LCI) analysis. Using primary mill data gathered from manufacturers in the eastern United States and applying the methods found in Consortium for Research on Renewable Industrial Materials (CORRIM) Research Guidelines and International Organization of...

  18. Engineering sustainable development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prendergast, J.

    1993-10-01

    This article discusses sustainable development, a policy which attempts to balance environmental preservation and economic growth, and promises a way to provide a decent life for Earth's human inhabitants without destroying the global ecosystem. Sustainable development is an effort to use technology to help clean up the mess it helped make, and engineers will be central players in its success or failure. Key aspects include more efficient energy use through conservation measures and switching to renewable sources, waste minimization, much greater recycling and reuse of materials, more comprehensive economic/environmental assessments employing life-cycle analyses, and better management of resources.

  19. RNA sequencing, de novo assembly and differential analysis of the gill transcriptome of freshwater climbing perch Anabas testudineus after six days of seawater exposure.

    PubMed

    Chen, X L; Lui, E Y; Ip, Y Kwong; Lam, S H

    2018-06-21

    To obtain transcriptomic insights into branchial responses to salinity challenge in Anabas testudineus, this study employed RNA sequencing (RNA-Seq) to analyse the gill transcriptome of A. testudineus exposed to seawater (SW) for 6 days compared with the freshwater (FW) control group. A combined FW and SW gill transcriptome was de novo assembled from 169.9 million 101 bp paired-end reads. In silico validation employing 17 A. testudineus Sanger full-length coding sequences showed that 15/17 of them had greater than 80% of their sequences aligned to the de novo assembled contigs where 5/17 had their full-length (100%) aligned and 9/17 had greater than 90% of their sequences aligned. The combined FW and SW gill transcriptome was mapped to 13780 unique human identifiers at E-value < 1.0E-20 while 952 and 886 identifiers were determined as up and down-regulated by 1.5 fold, respectively, in the gills of A. testudineus in SW when compared with FW. These genes were found to be associated with at least 23 biological processes. A larger proportion of genes encoding enzymes and transporters associated with molecular transport, energy production, metabolisms were up-regulated, while a larger proportion of genes encoding transmembrane receptors, G-protein coupled receptors, kinases and transcription regulators associated with cell cycle, growth, development, signalling, morphology and gene expression were relatively lower in the gills of A. testudineus in SW when compared with FW. High correlation (R = 0.99) was observed between RNA-Seq data and real-time quantitative PCR validation for 13 selected genes. The transcriptomic sequence information will facilitate development of molecular resources and tools while the findings will provide insights for future studies into branchial iono-osmoregulation and related cellular processes in A. testudineus. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Transcriptome Analysis of Fat Bodies from Two Brown Planthopper (Nilaparvata lugens) Populations with Different Virulence Levels in Rice

    PubMed Central

    Chen, Hongdan; Lai, Wenxiang; Fu, Qiang; Lou, Yonggen

    2014-01-01

    Background The brown planthopper (BPH), Nilaparvata lugens (Stål), one of the most serious rice insect pests in Asia, can quickly overcome rice resistance by evolving new virulent populations. The insect fat body plays essential roles in the life cycles of insects and in plant-insect interactions. However, whether differences in fat body transcriptomes exist between insect populations with different virulence levels and whether the transcriptomic differences are related to insect virulence remain largely unknown. Methodology/Principal Findings In this study, we performed transcriptome-wide analyses on the fat bodies of two BPH populations with different virulence levels in rice. The populations were derived from rice variety TN1 (TN1 population) and Mudgo (M population). In total, 33,776 and 32,332 unigenes from the fat bodies of TN1 and M populations, respectively, were generated using Illumina technology. Gene ontology annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology classifications indicated that genes related to metabolism and immunity were significantly active in the fat bodies. In addition, a total of 339 unigenes showed homology to genes of yeast-like symbionts (YLSs) from 12 genera and endosymbiotic bacteria Wolbachia. A comparative analysis of the two transcriptomes generated 7,860 differentially expressed genes. GO annotations and enrichment analysis of KEGG pathways indicated these differentially expressed transcripts might be involved in metabolism and immunity. Finally, 105 differentially expressed genes from YLSs and Wolbachia were identified, genes which might be associated with the formation of different virulent populations. Conclusions/Significance This study was the first to compare the fat-body transcriptomes of two BPH populations having different virulence traits and to find genes that may be related to this difference. Our findings provide a molecular resource for future investigations of fat bodies and will be useful in examining the interactions between the fat body and virulence variation in the BPH. PMID:24533099

  1. Integrated transcriptomic and proteomic evaluation of gentamicin nephrotoxicity in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Com, Emmanuelle, E-mail: emmanuelle.com@univ-rennes1.fr; INSERM U625, Proteomics Core Facility Biogenouest, Rennes; Boitier, Eric

    2012-01-01

    Gentamicin is an aminoglycoside antibiotic, which induces renal tubular necrosis in rats. In the context of the European InnoMed PredTox project, transcriptomic and proteomic studies were performed to provide new insights into the molecular mechanisms of gentamicin-induced nephrotoxicity. Male Wistar rats were treated with 25 and 75 mg/kg/day subcutaneously for 1, 3 and 14 days. Histopathology observations showed mild tubular degeneration/necrosis and regeneration and moderate mononuclear cell infiltrate after long-term treatment. Transcriptomic data indicated a strong treatment-related gene expression modulation in kidney and blood cells at the high dose after 14 days of treatment, with the regulation of 463 andmore » 3241 genes, respectively. Of note, the induction of NF-kappa B pathway via the p38 MAPK cascade in the kidney, together with the activation of T-cell receptor signaling in blood cells were suggestive of inflammatory processes in relation with the recruitment of mononuclear cells in the kidney. Proteomic results showed a regulation of 163 proteins in kidney at the high dose after 14 days of treatment. These protein modulations were suggestive of a mitochondrial dysfunction with impairment of cellular energy production, induction of oxidative stress, an effect on protein biosynthesis and on cellular assembly and organization. Proteomic results also provided clues for potential nephrotoxicity biomarkers such as AGAT and PRBP4 which were strongly modulated in the kidney. Transcriptomic and proteomic data turned out to be complementary and their integration gave a more comprehensive insight into the putative mode of nephrotoxicity of gentamicin which was in accordance with histopathological findings. -- Highlights: ► Gentamicin induces renal tubular necrosis in rats. ► The mechanisms of gentamicin nephrotoxicity remain still elusive. ► Transcriptomic and proteomic analyses were performed to study this toxicity in rats. ► Transcriptomic and proteomic data turned out to be complementary and are integrated. ► A more comprehensive putative model of nephrotoxicity of gentamicin is presented.« less

  2. Transcriptome analysis of fat bodies from two brown planthopper (Nilaparvata lugens) populations with different virulence levels in rice.

    PubMed

    Yu, Haixin; Ji, Rui; Ye, Wenfeng; Chen, Hongdan; Lai, Wenxiang; Fu, Qiang; Lou, Yonggen

    2014-01-01

    The brown planthopper (BPH), Nilaparvata lugens (Stål), one of the most serious rice insect pests in Asia, can quickly overcome rice resistance by evolving new virulent populations. The insect fat body plays essential roles in the life cycles of insects and in plant-insect interactions. However, whether differences in fat body transcriptomes exist between insect populations with different virulence levels and whether the transcriptomic differences are related to insect virulence remain largely unknown. In this study, we performed transcriptome-wide analyses on the fat bodies of two BPH populations with different virulence levels in rice. The populations were derived from rice variety TN1 (TN1 population) and Mudgo (M population). In total, 33,776 and 32,332 unigenes from the fat bodies of TN1 and M populations, respectively, were generated using Illumina technology. Gene ontology annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology classifications indicated that genes related to metabolism and immunity were significantly active in the fat bodies. In addition, a total of 339 unigenes showed homology to genes of yeast-like symbionts (YLSs) from 12 genera and endosymbiotic bacteria Wolbachia. A comparative analysis of the two transcriptomes generated 7,860 differentially expressed genes. GO annotations and enrichment analysis of KEGG pathways indicated these differentially expressed transcripts might be involved in metabolism and immunity. Finally, 105 differentially expressed genes from YLSs and Wolbachia were identified, genes which might be associated with the formation of different virulent populations. This study was the first to compare the fat-body transcriptomes of two BPH populations having different virulence traits and to find genes that may be related to this difference. Our findings provide a molecular resource for future investigations of fat bodies and will be useful in examining the interactions between the fat body and virulence variation in the BPH.

  3. Polyphenism in social insects: insights from a transcriptome-wide analysis of gene expression in the life stages of the key pollinator, Bombus terrestris

    PubMed Central

    2011-01-01

    Background Understanding polyphenism, the ability of a single genome to express multiple morphologically and behaviourally distinct phenotypes, is an important goal for evolutionary and developmental biology. Polyphenism has been key to the evolution of the Hymenoptera, and particularly the social Hymenoptera where the genome of a single species regulates distinct larval stages, sexual dimorphism and physical castes within the female sex. Transcriptomic analyses of social Hymenoptera will therefore provide unique insights into how changes in gene expression underlie such complexity. Here we describe gene expression in individual specimens of the pre-adult stages, sexes and castes of the key pollinator, the buff-tailed bumblebee Bombus terrestris. Results cDNA was prepared from mRNA from five life cycle stages (one larva, one pupa, one male, one gyne and two workers) and a total of 1,610,742 expressed sequence tags (ESTs) were generated using Roche 454 technology, substantially increasing the sequence data available for this important species. Overlapping ESTs were assembled into 36,354 B. terrestris putative transcripts, and functionally annotated. A preliminary assessment of differences in gene expression across non-replicated specimens from the pre-adult stages, castes and sexes was performed using R-STAT analysis. Individual samples from the life cycle stages of the bumblebee differed in the expression of a wide array of genes, including genes involved in amino acid storage, metabolism, immunity and olfaction. Conclusions Detailed analyses of immune and olfaction gene expression across phenotypes demonstrated how transcriptomic analyses can inform our understanding of processes central to the biology of B. terrestris and the social Hymenoptera in general. For example, examination of immunity-related genes identified high conservation of important immunity pathway components across individual specimens from the life cycle stages while olfactory-related genes exhibited differential expression with a wider repertoire of gene expression within adults, especially sexuals, in comparison to immature stages. As there is an absence of replication across the samples, the results of this study are preliminary but provide a number of candidate genes which may be related to distinct phenotypic stage expression. This comprehensive transcriptome catalogue will provide an important gene discovery resource for directed programmes in ecology, evolution and conservation of a key pollinator. PMID:22185240

  4. Dynamics of gene expression during development and expansion of vegetative stem internodes of bioenergy sorghum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kebrom, Tesfamichael H.; McKinley, Brian; Mullet, John E.

    Bioenergy sorghum accumulates 75% of shoot biomass in stem internodes. Grass stem internodes are formed during vegetative growth and elongate in response to developmental and environmental signals. To identify genes and molecular mechanisms that modulate the extent of internode growth, we conducted microscopic and transcriptomic analyses of four successive sub-apical vegetative internodes representing different stages of internode development of the bioenergy sorghum genotype R.07020. Stem internodes of sorghum genotype R.07020 are formed during the vegetative phase and their length is enhanced by environmental signals such as shade and floral induction in short days. During vegetative growth, the first visible andmore » youngest sub-apical internode was ~0.7 cm in length, whereas the fourth fully expanded internode was ~5 cm in length. Microscopic analyses revealed that all internode tissue types including pith parenchyma and vascular bundles are present in the four successive internodes. Growth in the first two sub-apical internodes occurred primarily through an increase in cell number consistent with expression of genes involved in the cell cycle and DNA replication. Growth of the 3rd internode was associated with an increase in cell length and growth cessation in the 4th internode was associated with up-regulation of genes involved in secondary cell wall deposition. The expression of genes involved in hormone metabolism and signaling indicates that GA, BR, and CK activity decreased while ethylene, ABA, and JA increased in the 3rd/4th internodes. While the level of auxin appears to be increasing as indicated by the up-regulation of ARFs, down-regulation of TIR during development indicates that auxin signaling is also modified. The expression patterns of transcription factors are closely associated with their role during the development of the vegetative internodes. Microscopic and transcriptome analyses of four successive sub-apical internodes characterized the developmental progression of vegetative stem internodes from initiation through full elongation in the sorghum genotype R.07020. Transcriptome profiling indicates that dynamic variation in the levels and action of GA, CK, IAA, BR, ethylene, ABA, and JA modulate gene expression and growth during internode growth and development. Thus, this study provides detailed microscopic and transcriptomic data useful for identifying genes and molecular pathways regulating internode elongation in response to various developmental and environmental signals.« less

  5. Dynamics of gene expression during development and expansion of vegetative stem internodes of bioenergy sorghum

    DOE PAGES

    Kebrom, Tesfamichael H.; McKinley, Brian; Mullet, John E.

    2017-06-21

    Bioenergy sorghum accumulates 75% of shoot biomass in stem internodes. Grass stem internodes are formed during vegetative growth and elongate in response to developmental and environmental signals. To identify genes and molecular mechanisms that modulate the extent of internode growth, we conducted microscopic and transcriptomic analyses of four successive sub-apical vegetative internodes representing different stages of internode development of the bioenergy sorghum genotype R.07020. Stem internodes of sorghum genotype R.07020 are formed during the vegetative phase and their length is enhanced by environmental signals such as shade and floral induction in short days. During vegetative growth, the first visible andmore » youngest sub-apical internode was ~0.7 cm in length, whereas the fourth fully expanded internode was ~5 cm in length. Microscopic analyses revealed that all internode tissue types including pith parenchyma and vascular bundles are present in the four successive internodes. Growth in the first two sub-apical internodes occurred primarily through an increase in cell number consistent with expression of genes involved in the cell cycle and DNA replication. Growth of the 3rd internode was associated with an increase in cell length and growth cessation in the 4th internode was associated with up-regulation of genes involved in secondary cell wall deposition. The expression of genes involved in hormone metabolism and signaling indicates that GA, BR, and CK activity decreased while ethylene, ABA, and JA increased in the 3rd/4th internodes. While the level of auxin appears to be increasing as indicated by the up-regulation of ARFs, down-regulation of TIR during development indicates that auxin signaling is also modified. The expression patterns of transcription factors are closely associated with their role during the development of the vegetative internodes. Microscopic and transcriptome analyses of four successive sub-apical internodes characterized the developmental progression of vegetative stem internodes from initiation through full elongation in the sorghum genotype R.07020. Transcriptome profiling indicates that dynamic variation in the levels and action of GA, CK, IAA, BR, ethylene, ABA, and JA modulate gene expression and growth during internode growth and development. Thus, this study provides detailed microscopic and transcriptomic data useful for identifying genes and molecular pathways regulating internode elongation in response to various developmental and environmental signals.« less

  6. 49 CFR 236.917 - Retention of records.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-Based Signal and Train Control Systems § 236.917 Retention of records. (a) What life-cycle and...: (i) For the life-cycle of the product, adequate documentation to demonstrate that the PSP meets the...

  7. 49 CFR 236.917 - Retention of records.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-Based Signal and Train Control Systems § 236.917 Retention of records. (a) What life-cycle and...: (i) For the life-cycle of the product, adequate documentation to demonstrate that the PSP meets the...

  8. Life-cycle assessment of Nebraska bridges.

    DOT National Transportation Integrated Search

    2013-05-01

    Life-cycle cost analysis (LCCA) is a necessary component in bridge management systems (BMSs) for : assessing investment decisions and identifying the most cost-effective improvement alternatives. The : LCCA helps to identify the lowest cost alternati...

  9. Life-cycle costing: Practical considerations

    NASA Technical Reports Server (NTRS)

    Eisenberger, I.; Lorden, G.

    1977-01-01

    The history and methodology of life-cycle costing are presented and analyzed, contrasting the potential benefits of the technique with the difficulties of its application. Examples and a short survey of the literature are given.

  10. A Collaborative Approach to Lifecycle Management: An Engineering Perspective

    NASA Technical Reports Server (NTRS)

    Cooper, L. P.; Spellman, K.

    1998-01-01

    In this paper, we will discuss how the partnership formed between the engineering and archival disciplines at the Jet Propulsion Laboratory (JPL) is working to improve lifecycle management for all users.

  11. Simplified Life-Cycle Cost Estimation

    NASA Technical Reports Server (NTRS)

    Remer, D. S.; Lorden, G.; Eisenberger, I.

    1983-01-01

    Simple method for life-cycle cost (LCC) estimation avoids pitfalls inherent in formulations requiring separate estimates of inflation and interest rates. Method depends for validity observation that interest and inflation rates closely track each other.

  12. Planning for Cost Effectiveness.

    ERIC Educational Resources Information Center

    Schlaebitz, William D.

    1984-01-01

    A heat pump life-cycle cost analysis is used to explain the technique. Items suggested for the life-cycle analysis approach include lighting, longer-life batteries, site maintenance, and retaining experts to inspect specific building components. (MLF)

  13. Veterinary Medicine and Multi-Omics Research for Future Nutrition Targets: Metabolomics and Transcriptomics of the Common Degenerative Mitral Valve Disease in Dogs.

    PubMed

    Li, Qinghong; Freeman, Lisa M; Rush, John E; Huggins, Gordon S; Kennedy, Adam D; Labuda, Jeffrey A; Laflamme, Dorothy P; Hannah, Steven S

    2015-08-01

    Canine degenerative mitral valve disease (DMVD) is the most common form of heart disease in dogs. The objective of this study was to identify cellular and metabolic pathways that play a role in DMVD by performing metabolomics and transcriptomics analyses on serum and tissue (mitral valve and left ventricle) samples previously collected from dogs with DMVD or healthy hearts. Gas or liquid chromatography followed by mass spectrophotometry were used to identify metabolites in serum. Transcriptomics analysis of tissue samples was completed using RNA-seq, and selected targets were confirmed by RT-qPCR. Random Forest analysis was used to classify the metabolites that best predicted the presence of DMVD. Results identified 41 known and 13 unknown serum metabolites that were significantly different between healthy and DMVD dogs, representing alterations in fat and glucose energy metabolism, oxidative stress, and other pathways. The three metabolites with the greatest single effect in the Random Forest analysis were γ-glutamylmethionine, oxidized glutathione, and asymmetric dimethylarginine. Transcriptomics analysis identified 812 differentially expressed transcripts in left ventricle samples and 263 in mitral valve samples, representing changes in energy metabolism, antioxidant function, nitric oxide signaling, and extracellular matrix homeostasis pathways. Many of the identified alterations may benefit from nutritional or medical management. Our study provides evidence of the growing importance of integrative approaches in multi-omics research in veterinary and nutritional sciences.

  14. Transcriptome sequencing of purple petal spot region in tree peony reveals differentially expressed anthocyanin structural genes

    PubMed Central

    Zhang, Yanzhao; Cheng, Yanwei; Ya, Huiyuan; Xu, Shuzhen; Han, Jianming

    2015-01-01

    The pigmented cells in defined region of a petal constitute the petal spots. Petal spots attract pollinators and are found in many angiosperm families. Several cultivars of tree peony contain a single red or purple spot at the base of petal that makes the flower more attractive for the ornamental market. So far, the understanding of the molecular mechanism of spot formation is inadequate. In this study, we sequenced the transcriptome of the purple spot and the white non-spot of tree peony flower. We assembled and annotated 67,892 unigenes. Comparative analyses of the two transcriptomes showed 1,573 differentially expressed genes, among which 933 were up-regulated, and 640 were down-regulated in the purple spot. Subsequently, we examined four anthocyanin structural genes, including PsCHS, PsF3′H, PsDFR, and PsANS, which expressed at a significantly higher level in the purple spot than in the white non-spot. We further validated the digital expression data using quantitative real-time PCR. Our result uncovered transcriptome variance between the spot and non-spot of tree peony flower, and revealed that the co-expression of four anthocyanin structural genes was responsible for spot pigment in tree peony. The data will further help to unravel the genetic mechanism of peony flower spot formation. PMID:26583029

  15. Host transcriptomic responses to pneumonic plague reveal that Yersinia pestis inhibits both the initial adaptive and innate immune responses in mice.

    PubMed

    Yang, Huiying; Wang, Tong; Tian, Guang; Zhang, Qingwen; Wu, Xiaohong; Xin, Youqian; Yan, Yanfeng; Tan, Yafang; Cao, Shiyang; Liu, Wanbing; Cui, Yujun; Yang, Ruifu; Du, Zongmin

    2017-01-01

    Pneumonic plague is the most deadly form of infection caused by Yersinia pestis and can progress extremely fast. However, our understanding on the host transcriptomic response to pneumonic plague is insufficient. Here, we used RNA-sequencing technology to analyze transcriptomic responses in mice infected with fully virulent strain 201 or EV76, a live attenuated vaccine strain lacking the pigmentation locus. Approximately 600 differentially expressed genes (DEGs) were detected in lungs from both 201- and EV76-infected mice at 12h post-infection (hpi). DEGs in lungs of 201-infected mice exceeded 2000 at 48hpi, accompanied by sustained large numbers of DEGs in the liver and spleen; however, limited numbers of DEGs were detected in those organs of EV-infected mice. Remarkably, DEGs in lungs were significantly enriched in critical immune responses pathways in EV76-infected but not 201-infected mice, including antigen processing and presentation, T cell receptor signaling among others. Pathological and bacterial load analyses confirmed the rapid systemic dissemination of 201-infection and the confined EV76-infection in lungs. Our results suggest that fully virulent Y. pestis inhibits both the innate and adaptive immune responses that are substantially stimulated in a self-limited infection, which update our holistic views on the transcriptomic response to pneumonic plague. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Germination Potential of Dormant and Nondormant Arabidopsis Seeds Is Driven by Distinct Recruitment of Messenger RNAs to Polysomes

    PubMed Central

    Basbouss-Serhal, Isabelle; Soubigou-Taconnat, Ludivine; Bailly, Christophe; Leymarie, Juliette

    2015-01-01

    Dormancy is a complex evolutionary trait that temporally prevents seed germination, thus allowing seedling growth at a favorable season. High-throughput analyses of transcriptomes have led to significant progress in understanding the molecular regulation of this process, but the role of posttranscriptional mechanisms has received little attention. In this work, we have studied the dynamics of messenger RNA association with polysomes and compared the transcriptome with the translatome in dormant and nondormant seeds of Arabidopsis (Arabidopsis thaliana) during their imbibition at 25°C in darkness, a temperature preventing germination of dormant seeds only. DNA microarray analysis revealed that 4,670 and 7,028 transcripts were differentially abundant in dormant and nondormant seeds in the transcriptome and the translatome, respectively. We show that there is no correlation between transcriptome and translatome and that germination regulation is also largely translational, implying a selective and dynamic recruitment of messenger RNAs to polysomes in both dormant and nondormant seeds. The study of 5′ untranslated region features revealed that GC content and the number of upstream open reading frames could play a role in selective translation occurring during germination. Gene Ontology clustering showed that the functions of polysome-associated transcripts differed between dormant and nondormant seeds and revealed actors in seed dormancy and germination. In conclusion, our results demonstrate the essential role of selective polysome loading in this biological process. PMID:26019300

  17. Doubled Haploid ‘CUDH2107’ as a Reference for Bulb Onion (Allium cepa L.) Research: Development of a Transcriptome Catalogue and Identification of Transcripts Associated with Male Fertility

    PubMed Central

    Khosa, Jiffinvir S.; Lee, Robyn; Bräuning, Sophia; Lord, Janice; Pither-Joyce, Meeghan; McCallum, John; Macknight, Richard C.

    2016-01-01

    Researchers working on model plants have derived great benefit from developing genomic and genetic resources using ‘reference’ genotypes. Onion has a large and highly heterozygous genome making the sharing of germplasm and analysis of sequencing data complicated. To simplify the discovery and analysis of genes underlying important onion traits, we are promoting the use of the homozygous double haploid line ‘CUDH2107’ by the onion research community. In the present investigation, we performed transcriptome sequencing on vegetative and reproductive tissues of CUDH2107 to develop a multi-organ reference transcriptome catalogue. A total of 396 million 100 base pair paired reads was assembled using the Trinity pipeline, resulting in 271,665 transcript contigs. This dataset was analysed for gene ontology and transcripts were classified on the basis of putative biological processes, molecular function and cellular localization. Significant differences were observed in transcript expression profiles between different tissues. To demonstrate the utility of our CUDH2107 transcriptome catalogue for understanding the genetic and molecular basis of various traits, we identified orthologues of rice genes involved in male fertility and flower development. These genes provide an excellent starting point for studying the molecular regulation, and the engineering of reproductive traits. PMID:27861615

  18. Genomic and Transcriptomic Associations Identify a New Insecticide Resistance Phenotype for the Selective Sweep at the Cyp6g1 Locus of Drosophila melanogaster.

    PubMed

    Battlay, Paul; Schmidt, Joshua M; Fournier-Level, Alexandre; Robin, Charles

    2016-08-09

    Scans of the Drosophila melanogaster genome have identified organophosphate resistance loci among those with the most pronounced signature of positive selection. In this study, the molecular basis of resistance to the organophosphate insecticide azinphos-methyl was investigated using the Drosophila Genetic Reference Panel, and genome-wide association. Recently released full transcriptome data were used to extend the utility of the Drosophila Genetic Reference Panel resource beyond traditional genome-wide association studies to allow systems genetics analyses of phenotypes. We found that both genomic and transcriptomic associations independently identified Cyp6g1, a gene involved in resistance to DDT and neonicotinoid insecticides, as the top candidate for azinphos-methyl resistance. This was verified by transgenically overexpressing Cyp6g1 using natural regulatory elements from a resistant allele, resulting in a 6.5-fold increase in resistance. We also identified four novel candidate genes associated with azinphos-methyl resistance, all of which are involved in either regulation of fat storage, or nervous system development. In Cyp6g1, we find a demonstrable resistance locus, a verification that transcriptome data can be used to identify variants associated with insecticide resistance, and an overlap between peaks of a genome-wide association study, and a genome-wide selective sweep analysis. Copyright © 2016 Battlay et al.

  19. Transcriptome remodeling associated with chronological aging in the dinoflagellate, Karenia brevis.

    PubMed

    Johnson, Jillian G; Morey, Jeanine S; Neely, Marion G; Ryan, James C; Van Dolah, Frances M

    2012-03-01

    The toxic dinoflagellate, Karenia brevis, forms dense blooms in the Gulf of Mexico that persist for many months in coastal waters, where they can cause extensive marine animal mortalities and human health impacts. The mechanisms that enable cell survival in high density, low growth blooms, and the mechanisms leading to often rapid bloom demise are not well understood. To gain an understanding of processes that underlie chronological aging in this dinoflagellate, a microarray study was carried out to identify changes in the global transcriptome that accompany the entry and maintenance of stationary phase up to the onset of cell death. The transcriptome of K. brevis was assayed using a custom 10,263 feature oligonucleotide microarray from mid-logarithmic growth to the onset of culture demise. A total of 2958 (29%) features were differentially expressed, with the mid-stationary phase timepoint demonstrating peak changes in expression. Gene ontology enrichment analyses identified a significant shift in transcripts involved in energy acquisition, ribosome biogenesis, gene expression, stress adaptation, calcium signaling, and putative brevetoxin biosynthesis. The extensive remodeling of the transcriptome observed in the transition into a quiescent non-dividing phase appears to be indicative of a global shift in the metabolic and signaling requirements and provides the basis from which to understand the process of chronological aging in a dinoflagellate. Published by Elsevier B.V.

  20. HANFORD RIVER PROTECTION PROJECT ENHANCED MISSION PLANNING THROUGH INNOVATIVE TOOLS LIFECYCLE COST MODELING AND AQUEOUS THERMODYNAMIC MODELING - 12134

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PIERSON KL; MEINERT FL

    2012-01-26

    Two notable modeling efforts within the Hanford Tank Waste Operations Simulator (HTWOS) are currently underway to (1) increase the robustness of the underlying chemistry approximations through the development and implementation of an aqueous thermodynamic model, and (2) add enhanced planning capabilities to the HTWOS model through development and incorporation of the lifecycle cost model (LCM). Since even seemingly small changes in apparent waste composition or treatment parameters can result in large changes in quantities of high-level waste (HLW) and low-activity waste (LAW) glass, mission duration or lifecycle cost, a solubility model that more accurately depicts the phases and concentrations ofmore » constituents in tank waste is required. The LCM enables evaluation of the interactions of proposed changes on lifecycle mission costs, which is critical for decision makers.« less

  1. Productive Lifecycle of Human Papillomaviruses that Depends Upon Squamous Epithelial Differentiation

    PubMed Central

    Kajitani, Naoko; Satsuka, Ayano; Kawate, Akifumi; Sakai, Hiroyuki

    2012-01-01

    Human papillomaviruses (HPVs) target the stratified epidermis, and can causes diseases ranging from benign condylomas to malignant tumors. Infections of HPVs in the genital tract are among the most common sexually transmitted diseases, and a major risk factor for cervical cancer. The virus targets epithelial cells in the basal layer of the epithelium, while progeny virions egress from terminally differentiated cells in the cornified layer, the surface layer of the epithelium. In infected basal cells, the virus maintains its genomic DNA at low-copy numbers, at which the viral productive lifecycle cannot proceed. Progression of the productive lifecycle requires differentiation of the host cell, indicating that there is tight crosstalk between viral replication and host differentiation programs. In this review, we discuss the regulation of the HPV lifecycle controlled by the differentiation program of the host cells. PMID:22536200

  2. Comparing the environmental footprints of home-care and personal-hygiene products: the relevance of different life-cycle phases.

    PubMed

    Koehler, Annette; Wildbolz, Caroline

    2009-11-15

    An in-depth life-cycle assessment of nine home-care and personal-hygiene products was conducted to determine the ecological relevance of different life-cycle phases and compare the environmental profiles of products serving equal applications. Using detailed data from industry and consumer-behavior studies a broad range of environmental impacts were analyzed to identify the main drivers in each life-cycle stage and potentials for improving the environmental footprints. Although chemical production significantly adds to environmental burdens, substantial impacts are caused in the consumer-use phase. As such, this research provides recommendations for product development, supply chain management, product policies, and consumer use. To reduce environmental burdens products should, for instance, be produced in concentrated form, while consumers should apply correct product dosages and low water temperatures during product application.

  3. Consideration of black carbon and primary organic carbon emissions in life-cycle analysis of Greenhouse gas emissions of vehicle systems and fuels.

    PubMed

    Cai, Hao; Wang, Michael Q

    2014-10-21

    The climate impact assessment of vehicle/fuel systems may be incomplete without considering short-lived climate forcers of black carbon (BC) and primary organic carbon (POC). We quantified life-cycle BC and POC emissions of a large variety of vehicle/fuel systems with an expanded Greenhouse gases, Regulated Emissions, and Energy use in Transportation model developed at Argonne National Laboratory. Life-cycle BC and POC emissions have small impacts on life-cycle greenhouse gas (GHG) emissions of gasoline, diesel, and other fuel vehicles, but would add 34, 16, and 16 g CO2 equivalent (CO2e)/mile, or 125, 56, and 56 g CO2e/mile with the 100 or 20 year Global Warming Potentials of BC and POC emissions, respectively, for vehicles fueled with corn stover-, willow tree-, and Brazilian sugarcane-derived ethanol, mostly due to BC- and POC-intensive biomass-fired boilers in cellulosic and sugarcane ethanol plants for steam and electricity production, biomass open burning in sugarcane fields, and diesel-powered agricultural equipment for biomass feedstock production/harvest. As a result, life-cycle GHG emission reduction potentials of these ethanol types, though still significant, are reduced from those without considering BC and POC emissions. These findings, together with a newly expanded GREET version, help quantify the previously unknown impacts of BC and POC emissions on life-cycle GHG emissions of U.S. vehicle/fuel systems.

  4. Identification of novel RNA viruses in alfalfa (Medicago sativa): an Alphapartitivirus, a Deltapartitivirus, and a Marafivirus.

    PubMed

    Kim, Hyein; Park, Dongbin; Hahn, Yoonsoo

    2018-01-05

    Genomic RNA molecules of plant RNA viruses are often co-isolated with the host RNAs, and their sequences can be detected in plant transcriptome datasets. Here, an alfalfa (Medicago sativa) transcriptome dataset was analyzed and three new RNA viruses were identified, which were named Medicago sativa alphapartitivirus 1 (MsAPV1), Medicago sativa deltapartitivirus 1 (MsDPV1), and Medicago sativa marafivirus 1 (MsMV1). The RNA-dependent RNA polymerases of MsAPV1, MsDPV1, and MsMV1 showed about 68%, 58%, and 46% amino acid sequence identity, respectively, with their closest virus species. Sequence similarity and phylogenetic analyses indicated that MsAPV1, MsDPV1, and MsMV1 were novel RNA virus species that belong to the genus Alphapartitivirus of the family Partitiviridae, the genus Deltapartitivirus of the family Partitiviridae, and the genus Marafivirus of the family Tymoviridae, respectively. The bioinformatics procedure applied in this study may facilitate the identification of novel RNA viruses from plant transcriptome data. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Resveratrol induces dynamic changes to the microglia transcriptome, inhibiting inflammatory pathways and protecting against microglia-mediated photoreceptor apoptosis.

    PubMed

    Wiedemann, Johanna; Rashid, Khalid; Langmann, Thomas

    2018-06-18

    Microglia activation is central to the pathophysiology of retinal degenerative disorders. Resveratrol, a naturally occurring non-flavonoid phenolic compound present in red wine has potent anti-inflammatory and immunomodulatory properties. However, molecular mechanisms by which resveratrol influences microglial inflammatory pathways and housekeeping functions remain unclear. Here, we first studied the immuno-modulatory effects of resveratrol on BV-2 microglial cells at the transcriptome level using DNA-microarrays and selected qRT-PCR analyses. We then analyzed resveratrol effects on microglia morphology, phagocytosis and migration and estimated their neurotoxicity on 661 W photoreceptors by quantification of caspase 3/7 levels. We found that resveratrol effectively blocked gene expression of a broad spectrum of lipopolysaccharide (LPS)-induced pro-inflammatory molecules, including cytokines and complement proteins. These transcriptomic changes were accompanied by potent inhibition of LPS-induced nitric oxide secretion and reduced microglia-mediated apoptosis of 661 W photoreceptor cultures. Our findings highlight novel targets involved in the anti-inflammatory and neuroprotective action of resveratrol against neuroinflammatory responses. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Rare Cell Detection by Single-Cell RNA Sequencing as Guided by Single-Molecule RNA FISH.

    PubMed

    Torre, Eduardo; Dueck, Hannah; Shaffer, Sydney; Gospocic, Janko; Gupte, Rohit; Bonasio, Roberto; Kim, Junhyong; Murray, John; Raj, Arjun

    2018-02-28

    Although single-cell RNA sequencing can reliably detect large-scale transcriptional programs, it is unclear whether it accurately captures the behavior of individual genes, especially those that express only in rare cells. Here, we use single-molecule RNA fluorescence in situ hybridization as a gold standard to assess trade-offs in single-cell RNA-sequencing data for detecting rare cell expression variability. We quantified the gene expression distribution for 26 genes that range from ubiquitous to rarely expressed and found that the correspondence between estimates across platforms improved with both transcriptome coverage and increased number of cells analyzed. Further, by characterizing the trade-off between transcriptome coverage and number of cells analyzed, we show that when the number of genes required to answer a given biological question is small, then greater transcriptome coverage is more important than analyzing large numbers of cells. More generally, our report provides guidelines for selecting quality thresholds for single-cell RNA-sequencing experiments aimed at rare cell analyses. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Life-Cycle environmental impact assessment of mineral industries

    NASA Astrophysics Data System (ADS)

    Hisan Farjana, Shahjadi; Huda, Nazmul; Parvez Mahmud, M. A.

    2018-05-01

    Mining is the extraction and processing of valuable ferro and non-ferro metals and minerals to be further used in manufacturing industries. Valuable metals and minerals are extracted from the geological deposits and ores deep in the surface through complex manufacturing technologies. The extraction and processing of mining industries involve particle emission to air or water, toxicity to the environment, contamination of water resources, ozone layer depletion and most importantly decay of human health. Despite all these negative impacts towards sustainability, mining industries are working throughout the world to facilitate the employment sector, economy and technological growth. The five most important miners in the world are South Africa, Russia, Australia, Ukraine, Guinea. The mining industries contributes to their GDP significantly. However, the most important issue is making the mining world sustainable thus reducing the emissions. To address the environmental impacts caused by the mining sectors, this paper is going to analyse the environmental impacts caused by the 5 major minerals extraction processes, which are bauxite, ilmenite, iron ore, rutile and uranium by using the life-cycle impact assessment technologies. The analysis is done here using SimaPro software version 8.4 using ReCipe, CML and Australian indicator method.

  8. Software Defined Cyberinfrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foster, Ian; Blaiszik, Ben; Chard, Kyle

    Within and across thousands of science labs, researchers and students struggle to manage data produced in experiments, simulations, and analyses. Largely manual research data lifecycle management processes mean that much time is wasted, research results are often irreproducible, and data sharing and reuse remain rare. In response, we propose a new approach to data lifecycle management in which researchers are empowered to define the actions to be performed at individual storage systems when data are created or modified: actions such as analysis, transformation, copying, and publication. We term this approach software-defined cyberinfrastructure because users can implement powerful data management policiesmore » by deploying rules to local storage systems, much as software-defined networking allows users to configure networks by deploying rules to switches.We argue that this approach can enable a new class of responsive distributed storage infrastructure that will accelerate research innovation by allowing any researcher to associate data workflows with data sources, whether local or remote, for such purposes as data ingest, characterization, indexing, and sharing. We report on early experiments with this approach in the context of experimental science, in which a simple if-trigger-then-action (IFTA) notation is used to define rules.« less

  9. Analysis of the Seismic Performance of Isolated Buildings according to Life-Cycle Cost

    PubMed Central

    Dang, Yu; Han, Jian-ping; Li, Yong-tao

    2015-01-01

    This paper proposes an indicator of seismic performance based on life-cycle cost of a building. It is expressed as a ratio of lifetime damage loss to life-cycle cost and determines the seismic performance of isolated buildings. Major factors are considered, including uncertainty in hazard demand and structural capacity, initial costs, and expected loss during earthquakes. Thus, a high indicator value indicates poor building seismic performance. Moreover, random vibration analysis is conducted to measure structural reliability and evaluate the expected loss and life-cycle cost of isolated buildings. The expected loss of an actual, seven-story isolated hospital building is only 37% of that of a fixed-base building. Furthermore, the indicator of the structural seismic performance of the isolated building is much lower in value than that of the structural seismic performance of the fixed-base building. Therefore, isolated buildings are safer and less risky than fixed-base buildings. The indicator based on life-cycle cost assists owners and engineers in making investment decisions in consideration of structural design, construction, and expected loss. It also helps optimize the balance between building reliability and building investment. PMID:25653677

  10. Analysis of the seismic performance of isolated buildings according to life-cycle cost.

    PubMed

    Dang, Yu; Han, Jian-Ping; Li, Yong-Tao

    2015-01-01

    This paper proposes an indicator of seismic performance based on life-cycle cost of a building. It is expressed as a ratio of lifetime damage loss to life-cycle cost and determines the seismic performance of isolated buildings. Major factors are considered, including uncertainty in hazard demand and structural capacity, initial costs, and expected loss during earthquakes. Thus, a high indicator value indicates poor building seismic performance. Moreover, random vibration analysis is conducted to measure structural reliability and evaluate the expected loss and life-cycle cost of isolated buildings. The expected loss of an actual, seven-story isolated hospital building is only 37% of that of a fixed-base building. Furthermore, the indicator of the structural seismic performance of the isolated building is much lower in value than that of the structural seismic performance of the fixed-base building. Therefore, isolated buildings are safer and less risky than fixed-base buildings. The indicator based on life-cycle cost assists owners and engineers in making investment decisions in consideration of structural design, construction, and expected loss. It also helps optimize the balance between building reliability and building investment.

  11. Course of induced infection by Eimeria krijgsmannni in immunocompetent and immunodeficient mice.

    PubMed

    Ono, Yuina; Matsubayashi, Makoto; Kawaguchi, Hiroaki; Tsujio, Masashi; Mizuno, Masanobu; Tanaka, Tetsuya; Masatani, Tatsunori; Matsui, Toshihiro; Matsuo, Tomohide

    2016-01-01

    Recently, we have demonstrated the utility of Eimeria krijgsmanni as a novel mouse eimerian parasite for elucidating the biological diversity. The parasite showed notable infectivity to mice with various levels of immune status and susceptibility to antimicrobial agents including coccidiostat. However, the detailed lifecycle of E. krijgsmanni had not yet been determined and this information was lacking in discussion of previous findings. In the present study, we clarified the morphological characteristics of E. krijgsmanni and its lifecycle in normal mice, and examined the effects in immunodeficient mice and lifecycle stage for challenge infections after the primary inoculation. In immunocompetent mice, the lifecycle consisted of four asexual stages and the sexual sages followed by formation of oocysts during the prepatent periods. Interestingly, the second-generation meronts were detected in all observation periods after the disappearance of the other stages. For the challenge infection of immunodeficient mice, all developmental stages except for the second generation meronts were temporarily vanished. This finding suggests a "rest" or marked delay in development and a "restart" of the promotion toward the next generations. The second generation meronts may play an important role in the lifecycle of E. krijgsmanni.

  12. Life-cycle environmental inventory of passenger transportation modes in the United States

    NASA Astrophysics Data System (ADS)

    Chester, Mikhail Vin

    To appropriately mitigate environmental impacts from transportation, it is necessary for decision makers to consider the life-cycle energy consumption and emissions associated with each mode. A life-cycle energy, greenhouse gas, and criteria air pollutant emissions inventory is created for the passenger transportation modes of automobiles, urban buses, heavy rail transit, light rail transit, and aircraft in the U.S. Each mode's inventory includes an assessment of vehicles, infrastructure, and fuel components. For each component, analysis is performed for material extraction through use and maintenance in both direct and indirect (supply chain) processes. For each mode's life-cycle components, energy inputs and emission outputs are determined. Energy inputs include electricity and petroleum-based fuels. Emission outputs include greenhouse gases (CO2, CH4, and N2O) and criteria pollutants (CO, SO2, NOx , VOCs, and PM). The inputs and outputs are normalized by vehicle lifetime, vehicle mile traveled, and passenger mile traveled. A consistent system boundary is applied to all modal inventories which captures the entire life-cycle, except for end-of-life. For each modal life-cycle component, both direct and indirect processes are included if possible. A hybrid life-cycle assessment approach is used to estimate the components in the inventories. We find that life-cycle energy inputs and emission outputs increase significantly compared to the vehicle operational phase. Life-cycle energy consumption is 39-56% larger than vehicle operation for autos, 38% for buses, 93-160% for rail, and 19-24% for air systems per passenger mile traveled. Life-cycle greenhouse gas emissions are 47-65% larger than vehicle operation for autos, 43% for buses, 39-150% for rail, and 24-31% for air systems per passenger mile traveled. The energy and greenhouse gas increases are primarily due to vehicle manufacturing and maintenance, infrastructure construction, and fuel production. For criteria air pollutants, life-cycle components often dominate total emissions and can be a magnitude larger than operational counterparts. Per passenger mile traveled, total SO2 emissions (between 350 and 460 mg) are 19-27 times larger than operational emissions as a result of electricity generation in vehicle manufacturing, infrastructure construction, and fuel production. NOx emissions increase 50-73% for automobiles, 24% for buses, 13-1300% for rail, and 19-24% for aircraft. Non-tailpipe VOCs are 27-40% of total automobile, 71-95% of rail, and 51-81% of air total emissions. Infrastructure and parking construction are major components of total PM10 emissions resulting in total emissions over three times larger than operational emissions for autos and even larger for many rail systems and aircraft (the major contributor being emissions from hot-mix asphalt plants and concrete production). Infrastructure construction and operation as well as vehicle manufacturing increase total CO emissions by 5-17 times from tailpipe performance for rail and 3-9 times for air. A case study comparing the environmental performance of metropolitan regions is presented as an application of the inventory results. The San Francisco Bay Area, Chicago, and New York City are evaluated capturing passenger transportation life-cycle energy inputs and greenhouse gas and criteria air pollutant emissions. The regions are compared between off-peak and peak travel as well as personal and public transit. Additionally, healthcare externalities are computed from vehicle emissions. It is estimated that life-cycle energy varies from 6.3 MJ/PMT in the Bay Area to 5.7 MJ/PMT in Chicago and 5.3 MJ/PMT in New York for an average trip. Life-cycle GHG emissions range from 480 g CO2e/PMT in the Bay Area to 440 g CO2e/PMT for Chicago and 410 g CO 2e/PMT in New York. CAP emissions vary depending on the pollutant with differences as large as 25% between regions. Life-cycle CAP emissions are between 11% and 380% larger than their operational counterparts. Peak travel, with typical higher riderships, does not necessarily environmentally outperform off-peak travel due to the large share of auto PMT and less than ideal operating conditions during congestion. The social costs of travel range from ¢51 (in ¢2007) per auto passenger per trip during peak in New York to ¢6 per public transit passenger per trip during peak hours in the Bay Area and New York. Average personal transit costs are around ¢30 while public transit ranges from ¢28 to ¢41. (Abstract shortened by UMI.)

  13. 77 FR 59373 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-27

    ...: International Trade Administration. Title: Domestic Client Life-cycle Multi-Purpose Forms. OMB Control Number... customized for each CS client, and will cover all aspects of a client's life-cycle with CS, involves merging...

  14. Life-cycle management: a long-term challenge.

    PubMed

    Newman, Chris

    2003-04-01

    With some electronics components being withdrawn after only two years, life-cycle management is becoming a key strategic issue for users and manufacturers of electromedical equipment. This article describes some approaches to tackling the challenge.

  15. Integrated analysis of whole-exome sequencing and transcriptome profiling in males with autism spectrum disorders.

    PubMed

    Codina-Solà, Marta; Rodríguez-Santiago, Benjamín; Homs, Aïda; Santoyo, Javier; Rigau, Maria; Aznar-Laín, Gemma; Del Campo, Miguel; Gener, Blanca; Gabau, Elisabeth; Botella, María Pilar; Gutiérrez-Arumí, Armand; Antiñolo, Guillermo; Pérez-Jurado, Luis Alberto; Cuscó, Ivon

    2015-01-01

    Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders with high heritability. Recent findings support a highly heterogeneous and complex genetic etiology including rare de novo and inherited mutations or chromosomal rearrangements as well as double or multiple hits. We performed whole-exome sequencing (WES) and blood cell transcriptome by RNAseq in a subset of male patients with idiopathic ASD (n = 36) in order to identify causative genes, transcriptomic alterations, and susceptibility variants. We detected likely monogenic causes in seven cases: five de novo (SCN2A, MED13L, KCNV1, CUL3, and PTEN) and two inherited X-linked variants (MAOA and CDKL5). Transcriptomic analyses allowed the identification of intronic causative mutations missed by the usual filtering of WES and revealed functional consequences of some rare mutations. These included aberrant transcripts (PTEN, POLR3C), deregulated expression in 1.7% of mutated genes (that is, SEMA6B, MECP2, ANK3, CREBBP), allele-specific expression (FUS, MTOR, TAF1C), and non-sense-mediated decay (RIT1, ALG9). The analysis of rare inherited variants showed enrichment in relevant pathways such as the PI3K-Akt signaling and the axon guidance. Integrative analysis of WES and blood RNAseq data has proven to be an efficient strategy to identify likely monogenic forms of ASD (19% in our cohort), as well as additional rare inherited mutations that can contribute to ASD risk in a multifactorial manner. Blood transcriptomic data, besides validating 88% of expressed variants, allowed the identification of missed intronic mutations and revealed functional correlations of genetic variants, including changes in splicing, expression levels, and allelic expression.

  16. Intra-tumor heterogeneity in breast cancer has limited impact on transcriptomic-based molecular profiling.

    PubMed

    Karthik, Govindasamy-Muralidharan; Rantalainen, Mattias; Stålhammar, Gustav; Lövrot, John; Ullah, Ikram; Alkodsi, Amjad; Ma, Ran; Wedlund, Lena; Lindberg, Johan; Frisell, Jan; Bergh, Jonas; Hartman, Johan

    2017-11-29

    Transcriptomic profiling of breast tumors provides opportunity for subtyping and molecular-based patient stratification. In diagnostic applications the specimen profiled should be representative of the expression profile of the whole tumor and ideally capture properties of the most aggressive part of the tumor. However, breast cancers commonly exhibit intra-tumor heterogeneity at molecular, genomic and in phenotypic level, which can arise during tumor evolution. Currently it is not established to what extent a random sampling approach may influence molecular breast cancer diagnostics. In this study we applied RNA-sequencing to quantify gene expression in 43 pieces (2-5 pieces per tumor) from 12 breast tumors (Cohort 1). We determined molecular subtype and transcriptomic grade for all tumor pieces and analysed to what extent pieces originating from the same tumors are concordant or discordant with each other. Additionally, we validated our finding in an independent cohort consisting of 19 pieces (2-6 pieces per tumor) from 6 breast tumors (Cohort 2) profiled using microarray technique. Exome sequencing was also performed on this cohort, to investigate the extent of intra-tumor genomic heterogeneity versus the intra-tumor molecular subtype classifications. Molecular subtyping was consistent in 11 out of 12 tumors and transcriptomic grade assignments were consistent in 11 out of 12 tumors as well. Molecular subtype predictions revealed consistent subtypes in four out of six patients in this cohort 2. Interestingly, we observed extensive intra-tumor genomic heterogeneity in these tumor pieces but not in their molecular subtype classifications. Our results suggest that macroscopic intra-tumoral transcriptomic heterogeneity is limited and unlikely to have an impact on molecular diagnostics for most patients.

  17. Transcriptome landscape of Lactococcus lactis reveals many novel RNAs including a small regulatory RNA involved in carbon uptake and metabolism.

    PubMed

    van der Meulen, Sjoerd B; de Jong, Anne; Kok, Jan

    2016-01-01

    RNA sequencing has revolutionized genome-wide transcriptome analyses, and the identification of non-coding regulatory RNAs in bacteria has thus increased concurrently. Here we reveal the transcriptome map of the lactic acid bacterial paradigm Lactococcus lactis MG1363 by employing differential RNA sequencing (dRNA-seq) and a combination of manual and automated transcriptome mining. This resulted in a high-resolution genome annotation of L. lactis and the identification of 60 cis-encoded antisense RNAs (asRNAs), 186 trans-encoded putative regulatory RNAs (sRNAs) and 134 novel small ORFs. Based on the putative targets of asRNAs, a novel classification is proposed. Several transcription factor DNA binding motifs were identified in the promoter sequences of (a)sRNAs, providing insight in the interplay between lactococcal regulatory RNAs and transcription factors. The presence and lengths of 14 putative sRNAs were experimentally confirmed by differential Northern hybridization, including the abundant RNA 6S that is differentially expressed depending on the available carbon source. For another sRNA, LLMGnc_147, functional analysis revealed that it is involved in carbon uptake and metabolism. L. lactis contains 13% leaderless mRNAs (lmRNAs) that, from an analysis of overrepresentation in GO classes, seem predominantly involved in nucleotide metabolism and DNA/RNA binding. Moreover, an A-rich sequence motif immediately following the start codon was uncovered, which could provide novel insight in the translation of lmRNAs. Altogether, this first experimental genome-wide assessment of the transcriptome landscape of L. lactis and subsequent sRNA studies provide an extensive basis for the investigation of regulatory RNAs in L. lactis and related lactococcal species.

  18. Leveraging CyVerse Resources for De Novo Comparative Transcriptomics of Underserved (Non-model) Organisms

    PubMed Central

    Joyce, Blake L.; Haug-Baltzell, Asher K.; Hulvey, Jonathan P.; McCarthy, Fiona; Devisetty, Upendra Kumar; Lyons, Eric

    2017-01-01

    This workflow allows novice researchers to leverage advanced computational resources such as cloud computing to carry out pairwise comparative transcriptomics. It also serves as a primer for biologists to develop data scientist computational skills, e.g. executing bash commands, visualization and management of large data sets. All command line code and further explanations of each command or step can be found on the wiki (https://wiki.cyverse.org/wiki/x/dgGtAQ). The Discovery Environment and Atmosphere platforms are connected together through the CyVerse Data Store. As such, once the initial raw sequencing data has been uploaded there is no more need to transfer large data files over an Internet connection, minimizing the amount of time needed to conduct analyses. This protocol is designed to analyze only two experimental treatments or conditions. Differential gene expression analysis is conducted through pairwise comparisons, and will not be suitable to test multiple factors. This workflow is also designed to be manual rather than automated. Each step must be executed and investigated by the user, yielding a better understanding of data and analytical outputs, and therefore better results for the user. Once complete, this protocol will yield de novo assembled transcriptome(s) for underserved (non-model) organisms without the need to map to previously assembled reference genomes (which are usually not available in underserved organism). These de novo transcriptomes are further used in pairwise differential gene expression analysis to investigate genes differing between two experimental conditions. Differentially expressed genes are then functionally annotated to understand the genetic response organisms have to experimental conditions. In total, the data derived from this protocol is used to test hypotheses about biological responses of underserved organisms. PMID:28518075

  19. Transcriptomic analysis of Petunia hybrida in response to salt stress using high throughput RNA sequencing.

    PubMed

    Villarino, Gonzalo H; Bombarely, Aureliano; Giovannoni, James J; Scanlon, Michael J; Mattson, Neil S

    2014-01-01

    Salinity and drought stress are the primary cause of crop losses worldwide. In sodic saline soils sodium chloride (NaCl) disrupts normal plant growth and development. The complex interactions of plant systems with abiotic stress have made RNA sequencing a more holistic and appealing approach to study transcriptome level responses in a single cell and/or tissue. In this work, we determined the Petunia transcriptome response to NaCl stress by sequencing leaf samples and assembling 196 million Illumina reads with Trinity software. Using our reference transcriptome we identified more than 7,000 genes that were differentially expressed within 24 h of acute NaCl stress. The proposed transcriptome can also be used as an excellent tool for biological and bioinformatics in the absence of an available Petunia genome and it is available at the SOL Genomics Network (SGN) http://solgenomics.net. Genes related to regulation of reactive oxygen species, transport, and signal transductions as well as novel and undescribed transcripts were among those differentially expressed in response to salt stress. The candidate genes identified in this study can be applied as markers for breeding or to genetically engineer plants to enhance salt tolerance. Gene Ontology analyses indicated that most of the NaCl damage happened at 24 h inducing genotoxicity, affecting transport and organelles due to the high concentration of Na+ ions. Finally, we report a modification to the library preparation protocol whereby cDNA samples were bar-coded with non-HPLC purified primers, without affecting the quality and quantity of the RNA-seq data. The methodological improvement presented here could substantially reduce the cost of sample preparation for future high-throughput RNA sequencing experiments.

  20. Transcriptomic responses to wounding: meta-analysis of gene expression microarray data.

    PubMed

    Sass, Piotr Andrzej; Dąbrowski, Michał; Charzyńska, Agata; Sachadyn, Paweł

    2017-11-07

    A vast amount of microarray data on transcriptomic response to injury has been collected so far. We designed the analysis in order to identify the genes displaying significant changes in expression after wounding in different organisms and tissues. This meta-analysis is the first study to compare gene expression profiles in response to wounding in as different tissues as heart, liver, skin, bones, and spinal cord, and species, including rat, mouse and human. We collected available microarray transcriptomic profiles obtained from different tissue injury experiments and selected the genes showing a minimum twofold change in expression in response to wounding in prevailing number of experiments for each of five wound healing stages we distinguished: haemostasis & early inflammation, inflammation, early repair, late repair and remodelling. During the initial phases after wounding, haemostasis & early inflammation and inflammation, the transcriptomic responses showed little consistency between different tissues and experiments. For the later phases, wound repair and remodelling, we identified a number of genes displaying similar transcriptional responses in all examined tissues. As revealed by ontological analyses, activation of certain pathways was rather specific for selected phases of wound healing, such as e.g. responses to vitamin D pronounced during inflammation. Conversely, we observed induction of genes encoding inflammatory agents and extracellular matrix proteins in all wound healing phases. Further, we selected several genes differentially upregulated throughout different stages of wound response, including established factors of wound healing in addition to those previously unreported  in this context such as PTPRC and AQP4. We found that transcriptomic responses to wounding showed similar traits in a diverse selection of tissues including skin, muscles, internal organs and nervous system. Notably, we distinguished transcriptional induction of inflammatory genes not only in the initial response to wounding, but also later, during wound repair and tissue remodelling.

  1. Modeling hormonal and inflammatory contributions to preterm and term labor using uterine temporal transcriptomics.

    PubMed

    Migale, Roberta; MacIntyre, David A; Cacciatore, Stefano; Lee, Yun S; Hagberg, Henrik; Herbert, Bronwen R; Johnson, Mark R; Peebles, Donald; Waddington, Simon N; Bennett, Phillip R

    2016-06-13

    Preterm birth is now recognized as the primary cause of infant mortality worldwide. Interplay between hormonal and inflammatory signaling in the uterus modulates the onset of contractions; however, the relative contribution of each remains unclear. In this study we aimed to characterize temporal transcriptome changes in the uterus preceding term labor and preterm labor (PTL) induced by progesterone withdrawal or inflammation in the mouse and compare these findings with human data. Myometrium was collected at multiple time points during gestation and labor from three murine models of parturition: (1) term gestation; (2) PTL induced by RU486; and (3) PTL induced by lipopolysaccharide (LPS). RNA was extracted and cDNA libraries were prepared and sequenced using the Illumina HiSeq 2000 system. Resulting RNA-Seq data were analyzed using multivariate modeling approaches as well as pathway and causal network analyses and compared against human myometrial transcriptome data. We identified a core set of temporal myometrial gene changes associated with term labor and PTL in the mouse induced by either inflammation or progesterone withdrawal. Progesterone withdrawal initiated labor without inflammatory gene activation, yet LPS activation of uterine inflammation was sufficient to override the repressive effects of progesterone and induce a laboring phenotype. Comparison of human and mouse uterine transcriptomic datasets revealed that human labor more closely resembles inflammation-induced PTL in the mouse. Labor in the mouse can be achieved through inflammatory gene activation yet these changes are not a requisite for labor itself. Human labor more closely resembles LPS-induced PTL in the mouse, supporting an essential role for inflammatory mediators in human "functional progesterone withdrawal." This improved understanding of inflammatory and progesterone influence on the uterine transcriptome has important implications for the development of PTL prevention strategies.

  2. Venom-gland transcriptomics and venom proteomics of the black-back scorpion (Hadrurus spadix) reveal detectability challenges and an unexplored realm of animal toxin diversity.

    PubMed

    Rokyta, Darin R; Ward, Micaiah J

    2017-03-15

    The order Scorpiones is one of the most ancient and diverse lineages of venomous animals, having originated approximately 430 million years ago and diversified into 14 extant families. Although partial venom characterizations have been described for numerous scorpion species, we provided the first quantitative transcriptome/proteome comparison for a scorpion species using single-animal approaches. We sequenced the venom-gland transcriptomes of a male and female black-back scorpion (Hadrurus spadix) from the family Caraboctonidae using the Illumina sequencing platform and conducted independent quantitative mass-spectrometry analyses of their venoms. We identified 79 proteomically confirmed venom proteins, an additional 69 transcripts with homology to toxins from other species, and 596 nontoxin proteins expressed at high levels in the venom glands. The venom of H. spadix was rich in antimicrobial peptides, K + -channel toxins, and several classes of peptidases. However, the most diverse and one of the most abundant classes of putative toxins could not be assigned even a tentative functional role on the basis of homology, indicating that this venom contained a wealth of previously unexplored animal toxin diversity. We found good agreement between both transcriptomic and proteomic abundances across individuals, but transcriptomic and proteomic abundandances differed substantially within each individual. Small peptide toxins such as K + -channel toxins and antimicrobial peptides proved challenging to detect proteomically, at least in part due to the significant proteolytic processing involved in their maturation. In addition, we found a significant tendency for our proteomic approach to overestimate the abundances of large putative toxins and underestimate the abundances of smaller toxins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Genome and Transcriptome Sequencing of the Ostreid herpesvirus 1 From Tomales Bay, California

    NASA Astrophysics Data System (ADS)

    Burge, C. A.; Langevin, S.; Closek, C. J.; Roberts, S. B.; Friedman, C. S.

    2016-02-01

    Mass mortalities of larval and seed bivalve molluscs attributed to the Ostreid herpesvirus 1 (OsHV-1) occur globally. OsHV-1 was fully sequenced and characterized as a member of the Family Malacoherpesviridae. Multiple strains of OsHV-1 exist and may vary in virulence, i.e. OsHV-1 µvar. For most global variants of OsHV-1, sequence data is limited to PCR-based sequencing of segments, including two recent genomes. In the United States, OsHV-1 is limited to detection in adjacent embayments in California, Tomales and Drakes bays. Limited DNA sequence data of OsHV-1 infecting oysters in Tomales Bay indicates the virus detected in Tomales Bay is similar but not identical to any one global variant of OsHV-1. In order to better understand both strain variation and virulence of OsHV-1 infecting oysters in Tomales Bay, we used genomic and transcriptomic sequencing. Meta-genomic sequencing (Illumina MiSeq) was conducted from infected oysters (n=4 per year) collected in 2003, 2007, and 2014, where full OsHV-1 genome sequences and low overall microbial diversity were achieved from highly infected oysters. Increased microbial diversity was detected in three of four samples sequenced from 2003, where qPCR based genome copy numbers of OsHV-1 were lower. Expression analysis (SOLiD RNA sequencing) of OsHV-1 genes expressed in oyster larvae at 24 hours post exposure revealed a nearly complete transcriptome, with several highly expressed genes, which are similar to recent transcriptomic analyses of other OsHV-1 variants. Taken together, our results indicate that genome and transcriptome sequencing may be powerful tools in understanding both strain variation and virulence of non-culturable marine viruses.

  4. Transcriptome analysis of Pinus halepensis under drought stress and during recovery

    PubMed Central

    Fox, Hagar; Doron-Faigenboim, Adi; Kelly, Gilor; Bourstein, Ronny; Attia, Ziv; Zhou, Jing; Moshe, Yosef; Moshelion, Menachem; David-Schwartz, Rakefet

    2018-01-01

    Abstract Forest trees use various strategies to cope with drought stress and these strategies involve complex molecular mechanisms. Pinus halepensis Miller (Aleppo pine) is found throughout the Mediterranean basin and is one of the most drought-tolerant pine species. In order to decipher the molecular mechanisms that P. halepensis uses to withstand drought, we performed large-scale physiological and transcriptome analyses. We selected a mature tree from a semi-arid area with suboptimal growth conditions for clonal propagation through cuttings. We then used a high-throughput experimental system to continuously monitor whole-plant transpiration rates, stomatal conductance and the vapor pressure deficit. The transcriptomes of plants were examined at six physiological stages: pre-stomatal response, partial stomatal closure, minimum transpiration, post-irrigation, partial recovery and full recovery. At each stage, data from plants exposed to the drought treatment were compared with data collected from well-irrigated control plants. A drought-stressed P. halepensis transcriptome was created using paired-end RNA-seq. In total, ~6000 differentially expressed, non-redundant transcripts were identified between drought-treated and control trees. Cluster analysis has revealed stress-induced down-regulation of transcripts related to photosynthesis, reactive oxygen species (ROS)-scavenging through the ascorbic acid (AsA)-glutathione cycle, fatty acid and cell wall biosynthesis, stomatal activity, and the biosynthesis of flavonoids and terpenoids. Up-regulated processes included chlorophyll degradation, ROS-scavenging through AsA-independent thiol-mediated pathways, abscisic acid response and accumulation of heat shock proteins, thaumatin and exordium. Recovery from drought induced strong transcription of retrotransposons, especially the retrovirus-related transposon Tnt1-94. The drought-related transcriptome illustrates this species’ dynamic response to drought and recovery and unravels novel mechanisms. PMID:29177514

  5. Characterization of the platelet transcriptome by RNA sequencing in patients with acute myocardial infarction

    PubMed Central

    Eicher, John D.; Wakabayashi, Yoshiyuki; Vitseva, Olga; Esa, Nada; Yang, Yanqin; Zhu, Jun; Freedman, Jane E.; McManus, David D.; Johnson, Andrew D.

    2016-01-01

    Transcripts in platelets are largely produced in precursor megakaryocytes but remain physiologically-active as platelets translate RNAs and regulate protein/RNA levels. Recent studies using transcriptome sequencing (RNA-seq) characterized the platelet transcriptome in limited numbers of non-diseased individuals. Here, we expand upon these RNA-seq studies by completing RNA-seq in platelets from 32 patients with acute myocardial infarction (MI). Our goals were to characterize the platelet transcriptome using a population of patients with acute MI and relate gene expression to platelet aggregation measures and ST-segment elevation MI (STEMI) (n=16) versus non-STEMI (NSTEMI) (n=16) subtypes. Similar to other studies, we detected 9,565 expressed transcripts, including several known platelet-enriched markers (e.g., PPBP, OST4). Our RNA-seq data strongly correlated with independently ascertained platelet expression data and showed enrichment for platelet-related pathways (e.g., wound response, hemostasis, and platelet activation), as well as actin-related and post-transcriptional processes. Several transcripts displayed suggestively higher (FBXL4, ECHDC3, KCNE1, TAOK2, AURKB, ERG, and FKBP5) and lower (MIAT, PVRL3and PZP) expression in STEMI platelets compared to NSTEMI. We also identified transcripts correlated with platelet aggregation to TRAP (ATP6V1G2, SLC2A3), collagen (CEACAM1, ITGA2), and ADP (PDGFB, PDGFC, ST3GAL6). Our study adds to current platelet gene expression resources by providing transcriptome-wide analyses in platelets isolated from patients with acute MI. In concert with prior studies, we identify various genes for further study in regards to platelet function and acute MI. Future platelet RNA-seq studies examining more diverse sets of healthy and diseased samples will add to our understanding of platelet thrombotic and non-thrombotic functions. PMID:26367242

  6. The impact of oxygen on the transcriptome of recombinant S. cerevisiae and P. pastoris - a comparative analysis.

    PubMed

    Baumann, Kristin; Dato, Laura; Graf, Alexandra B; Frascotti, Gianni; Dragosits, Martin; Porro, Danilo; Mattanovich, Diethard; Ferrer, Pau; Branduardi, Paola

    2011-05-09

    Saccharomyces cerevisiae and Pichia pastoris are two of the most relevant microbial eukaryotic platforms for the production of recombinant proteins. Their known genome sequences enabled several transcriptomic profiling studies under many different environmental conditions, thus mimicking not only perturbations and adaptations which occur in their natural surroundings, but also in industrial processes. Notably, the majority of such transcriptome analyses were performed using non-engineered strains.In this comparative study, the gene expression profiles of S. cerevisiae and P. pastoris, a Crabtree positive and Crabtree negative yeast, respectively, were analyzed for three different oxygenation conditions (normoxic, oxygen-limited and hypoxic) under recombinant protein producing conditions in chemostat cultivations. The major differences in the transcriptomes of S. cerevisiae and P. pastoris were observed between hypoxic and normoxic conditions, where the availability of oxygen strongly affected ergosterol biosynthesis, central carbon metabolism and stress responses, particularly the unfolded protein response. Steady state conditions under low oxygen set-points seemed to perturb the transcriptome of S. cerevisiae to a much lesser extent than the one of P. pastoris, reflecting the major tolerance of the baker's yeast towards oxygen limitation, and a higher fermentative capacity. Further important differences were related to Fab production, which was not significantly affected by oxygen availability in S. cerevisiae, while a clear productivity increase had been previously reported for hypoxically grown P. pastoris. The effect of three different levels of oxygen availability on the physiology of P. pastoris and S. cerevisiae revealed a very distinct remodelling of the transcriptional program, leading to novel insights into the different adaptive responses of Crabtree negative and positive yeasts to oxygen availability. Moreover, the application of such comparative genomic studies to recombinant hosts grown in different environments might lead to the identification of key factors for efficient protein production.

  7. Transcriptome and Proteome Exploration to Provide a Resource for the Study of Agrocybe aegerita

    PubMed Central

    Jiang, Shuai; Chen, Yijie; Yin, Yalin; Pan, Yongfu; Yu, Guojun; Li, Yamu; Wong, Barry Hon Cheung; Liang, Yi; Sun, Hui

    2013-01-01

    Background Agrocybe aegerita, the black poplar mushroom, has been highly valued as a functional food for its medicinal and nutritional benefits. Several bioactive extracts from A. aegerita have been found to exhibit antitumor and antioxidant activities. However, limited genetic resources for A. aegerita have hindered exploration of this species. Methodology/Principal Findings To facilitate the research on A. aegerita, we established a deep survey of the transcriptome and proteome of this mushroom. We applied high-throughput sequencing technology (Illumina) to sequence A. aegerita transcriptomes from mycelium and fruiting body. The raw clean reads were de novo assembled into a total of 36,134 expressed sequences tags (ESTs) with an average length of 663 bp. These ESTs were annotated and classified according to Gene Ontology (GO), Clusters of Orthologous Groups (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways. Gene expression profile analysis showed that 18,474 ESTs were differentially expressed, with 10,131 up-regulated in mycelium and 8,343 up-regulated in fruiting body. Putative genes involved in polysaccharide and steroid biosynthesis were identified from A. aegerita transcriptome, and these genes were differentially expressed at the two stages of A. aegerita. Based on one-dimensional gel electrophoresis (1-DGE) coupled with electrospray ionization liquid chromatography tandem MS (LC-ESI-MS/MS), we identified a total of 309 non-redundant proteins. And many metabolic enzymes involved in glycolysis were identified in the protein database. Conclusions/Significance This is the first study on transcriptome and proteome analyses of A. aegerita. The data in this study serve as a resource of A. aegerita transcripts and proteins, and offer clues to the applications of this mushroom in nutrition, pharmacy and industry. PMID:23418592

  8. Subtractive transcriptome analysis of leaf and rhizome reveals differentially expressed transcripts in Panax sokpayensis.

    PubMed

    Gurung, Bhusan; Bhardwaj, Pardeep K; Talukdar, Narayan C

    2016-11-01

    In the present study, suppression subtractive hybridization (SSH) strategy was used to identify rare and differentially expressed transcripts in leaf and rhizome tissues of Panax sokpayensis. Out of 1102 randomly picked clones, 513 and 374 high quality expressed sequenced tags (ESTs) were generated from leaf and rhizome subtractive libraries, respectively. Out of them, 64.92 % ESTs from leaf and 69.26 % ESTs from rhizome SSH libraries were assembled into different functional categories, while others were of unknown function. In particular, ESTs encoding galactinol synthase 2, ribosomal RNA processing Brix domain protein, and cell division cycle protein 20.1, which are involved in plant growth and development, were most abundant in the leaf SSH library. Other ESTs encoding protein KIAA0664 homologue, ubiquitin-activating enzyme e11, and major latex protein, which are involved in plant immunity and defense response, were most abundant in the rhizome SSH library. Subtractive ESTs also showed similarity with genes involved in ginsenoside biosynthetic pathway, namely farnesyl pyrophosphate synthase, squalene synthase, and dammarenediol synthase. Expression profiles of selected ESTs validated the quality of libraries and confirmed their differential expression in the leaf, stem, and rhizome tissues. In silico comparative analyses revealed that around 13.75 % of unigenes from the leaf SSH library were not represented in the available leaf transcriptome of Panax ginseng. Similarly, around 18.12, 23.75, 25, and 6.25 % of unigenes from the rhizome SSH library were not represented in available root/rhizome transcriptomes of P. ginseng, Panax notoginseng, Panax quinquefolius, and Panax vietnamensis, respectively, indicating a major fraction of novel ESTs. Therefore, these subtractive transcriptomes provide valuable resources for gene discovery in P. sokpayensis and would complement the available transcriptomes from other Panax species.

  9. Transcriptome analysis of Pinus halepensis under drought stress and during recovery.

    PubMed

    Fox, Hagar; Doron-Faigenboim, Adi; Kelly, Gilor; Bourstein, Ronny; Attia, Ziv; Zhou, Jing; Moshe, Yosef; Moshelion, Menachem; David-Schwartz, Rakefet

    2018-03-01

    Forest trees use various strategies to cope with drought stress and these strategies involve complex molecular mechanisms. Pinus halepensis Miller (Aleppo pine) is found throughout the Mediterranean basin and is one of the most drought-tolerant pine species. In order to decipher the molecular mechanisms that P. halepensis uses to withstand drought, we performed large-scale physiological and transcriptome analyses. We selected a mature tree from a semi-arid area with suboptimal growth conditions for clonal propagation through cuttings. We then used a high-throughput experimental system to continuously monitor whole-plant transpiration rates, stomatal conductance and the vapor pressure deficit. The transcriptomes of plants were examined at six physiological stages: pre-stomatal response, partial stomatal closure, minimum transpiration, post-irrigation, partial recovery and full recovery. At each stage, data from plants exposed to the drought treatment were compared with data collected from well-irrigated control plants. A drought-stressed P. halepensis transcriptome was created using paired-end RNA-seq. In total, ~6000 differentially expressed, non-redundant transcripts were identified between drought-treated and control trees. Cluster analysis has revealed stress-induced down-regulation of transcripts related to photosynthesis, reactive oxygen species (ROS)-scavenging through the ascorbic acid (AsA)-glutathione cycle, fatty acid and cell wall biosynthesis, stomatal activity, and the biosynthesis of flavonoids and terpenoids. Up-regulated processes included chlorophyll degradation, ROS-scavenging through AsA-independent thiol-mediated pathways, abscisic acid response and accumulation of heat shock proteins, thaumatin and exordium. Recovery from drought induced strong transcription of retrotransposons, especially the retrovirus-related transposon Tnt1-94. The drought-related transcriptome illustrates this species' dynamic response to drought and recovery and unravels novel mechanisms.

  10. Transcriptome and proteome exploration to provide a resource for the study of Agrocybe aegerita.

    PubMed

    Wang, Man; Gu, Bianli; Huang, Jie; Jiang, Shuai; Chen, Yijie; Yin, Yalin; Pan, Yongfu; Yu, Guojun; Li, Yamu; Wong, Barry Hon Cheung; Liang, Yi; Sun, Hui

    2013-01-01

    Agrocybe aegerita, the black poplar mushroom, has been highly valued as a functional food for its medicinal and nutritional benefits. Several bioactive extracts from A. aegerita have been found to exhibit antitumor and antioxidant activities. However, limited genetic resources for A. aegerita have hindered exploration of this species. To facilitate the research on A. aegerita, we established a deep survey of the transcriptome and proteome of this mushroom. We applied high-throughput sequencing technology (Illumina) to sequence A. aegerita transcriptomes from mycelium and fruiting body. The raw clean reads were de novo assembled into a total of 36,134 expressed sequences tags (ESTs) with an average length of 663 bp. These ESTs were annotated and classified according to Gene Ontology (GO), Clusters of Orthologous Groups (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways. Gene expression profile analysis showed that 18,474 ESTs were differentially expressed, with 10,131 up-regulated in mycelium and 8,343 up-regulated in fruiting body. Putative genes involved in polysaccharide and steroid biosynthesis were identified from A. aegerita transcriptome, and these genes were differentially expressed at the two stages of A. aegerita. Based on one-dimensional gel electrophoresis (1-DGE) coupled with electrospray ionization liquid chromatography tandem MS (LC-ESI-MS/MS), we identified a total of 309 non-redundant proteins. And many metabolic enzymes involved in glycolysis were identified in the protein database. This is the first study on transcriptome and proteome analyses of A. aegerita. The data in this study serve as a resource of A. aegerita transcripts and proteins, and offer clues to the applications of this mushroom in nutrition, pharmacy and industry.

  11. Transcriptomic Analysis of Petunia hybrida in Response to Salt Stress Using High Throughput RNA Sequencing

    PubMed Central

    Villarino, Gonzalo H.; Bombarely, Aureliano; Giovannoni, James J.; Scanlon, Michael J.; Mattson, Neil S.

    2014-01-01

    Salinity and drought stress are the primary cause of crop losses worldwide. In sodic saline soils sodium chloride (NaCl) disrupts normal plant growth and development. The complex interactions of plant systems with abiotic stress have made RNA sequencing a more holistic and appealing approach to study transcriptome level responses in a single cell and/or tissue. In this work, we determined the Petunia transcriptome response to NaCl stress by sequencing leaf samples and assembling 196 million Illumina reads with Trinity software. Using our reference transcriptome we identified more than 7,000 genes that were differentially expressed within 24 h of acute NaCl stress. The proposed transcriptome can also be used as an excellent tool for biological and bioinformatics in the absence of an available Petunia genome and it is available at the SOL Genomics Network (SGN) http://solgenomics.net. Genes related to regulation of reactive oxygen species, transport, and signal transductions as well as novel and undescribed transcripts were among those differentially expressed in response to salt stress. The candidate genes identified in this study can be applied as markers for breeding or to genetically engineer plants to enhance salt tolerance. Gene Ontology analyses indicated that most of the NaCl damage happened at 24 h inducing genotoxicity, affecting transport and organelles due to the high concentration of Na+ ions. Finally, we report a modification to the library preparation protocol whereby cDNA samples were bar-coded with non-HPLC purified primers, without affecting the quality and quantity of the RNA-seq data. The methodological improvement presented here could substantially reduce the cost of sample preparation for future high-throughput RNA sequencing experiments. PMID:24722556

  12. De Novo Assembly and Comparative Transcriptome Analyses of Red and Green Morphs of Sweet Basil Grown in Full Sunlight

    PubMed Central

    Torre, Sara; Tattini, Massimiliano; Brunetti, Cecilia; Guidi, Lucia; Gori, Antonella; Marzano, Cristina; Landi, Marco; Sebastiani, Federico

    2016-01-01

    Sweet basil (Ocimum basilicum), one of the most popular cultivated herbs worldwide, displays a number of varieties differing in several characteristics, such as the color of the leaves. The development of a reference transcriptome for sweet basil, and the analysis of differentially expressed genes in acyanic and cyanic cultivars exposed to natural sunlight irradiance, has interest from horticultural and biological point of views. There is still great uncertainty about the significance of anthocyanins in photoprotection, and how green and red morphs may perform when exposed to photo-inhibitory light, a condition plants face on daily and seasonal basis. We sequenced the leaf transcriptome of the green-leaved Tigullio (TIG) and the purple-leaved Red Rubin (RR) exposed to full sunlight over a four-week experimental period. We assembled and annotated 111,007 transcripts. A total of 5,468 and 5,969 potential SSRs were identified in TIG and RR, respectively, out of which 66 were polymorphic in silico. Comparative analysis of the two transcriptomes showed 2,372 differentially expressed genes (DEGs) clustered in 222 enriched Gene ontology terms. Green and red basil mostly differed for transcripts abundance of genes involved in secondary metabolism. While the biosynthesis of waxes was up-regulated in red basil, the biosynthesis of flavonols and carotenoids was up-regulated in green basil. Data from our study provides a comprehensive transcriptome survey, gene sequence resources and microsatellites that can be used for further investigations in sweet basil. The analysis of DEGs and their functional classification also offers new insights on the functional role of anthocyanins in photoprotection. PMID:27483170

  13. Dataset Lifecycle Policy

    NASA Technical Reports Server (NTRS)

    Armstrong, Edward; Tauer, Eric

    2013-01-01

    The presentation focused on describing a new dataset lifecycle policy that the NASA Physical Oceanography DAAC (PO.DAAC) has implemented for its new and current datasets to foster improved stewardship and consistency across its archive. The overarching goal is to implement this dataset lifecycle policy for all new GHRSST GDS2 datasets and bridge the mission statements from the GHRSST Project Office and PO.DAAC to provide the best quality SST data in a cost-effective, efficient manner, preserving its integrity so that it will be available and usable to a wide audience.

  14. Are the Performance Based Logistics Prophets Using Science or Alchemy to Create Life-Cycle Affordability? Using Theory to Predict the Efficacy of Performance Based Logistics

    DTIC Science & Technology

    2013-10-01

    Based Logistics Prophets Using Science or Alchemy to Create Life-Cycle Affordability? Using Theory to Predict the Efficacy of Performance Based...Using Science or Alchemy to Create Life-Cycle Affordability? Using Theory to Predict the Efficacy of Performance Based Logistics 5a. CONTRACT NUMBER 5b...Are the PBL Prophets Using Science or Alchemy to Create Life Cycle Affordability? 328Defense ARJ, October 2013, Vol. 20 No. 3 : 325–348 Defense

  15. Life cycle environmental performance of renewable building materials in the context of residential construction : phase II research report: an extension to the 2005 phase I research report. Module C, Life-cycle inventory of hardwood lumber manufacturing in the Northeast and North Central United States.

    Treesearch

    Richard Bergman; Scott A. Bowe

    2008-01-01

    The goal of this study was to find the environmental impact of hardwood lumber production through a gate-to-gate Life-Cycle Inventory (LCI) on hardwood sawmills in the northeast and northcentral (NE/NC) United States. Primary mill data was collected per CORRIM Research Guidelines (CORRIM 2001). Life-cycle analysis is beyond the scope of the study.

  16. Life cycle environmental performance of renewable building materials in the context of residential construction : phase II research report: an extension to the 2005 phase I research report. Module L, Life-cycle inventory of hardwood lumber manufacturing in the Southeastern United States.

    Treesearch

    Richard D. Bergman; Scott A. Bowe

    2010-01-01

    The goal of this study was to gain an understanding of the environmental impact of hardwood lumber production through a gate-to-gate life-cycle inventory (LCI) of hardwood sawmills in the Southeastern United States (SE). Primary mill data were collected per Consortium on Research for Renewable Industrial Materials (CORRIM) Research Guidelines. Life-cycle impact...

  17. Isolation of polysomal RNA for analyzing stress-responsive genes regulated at the translational level in plants

    USDA-ARS?s Scientific Manuscript database

    Alteration of gene expression is an essential mechanism, which allows plants to respond and adapt to adverse environmental conditions. Transcriptome and proteome analyses in plants exposed to abiotic stresses revealed that protein levels are not correlated with the changes in corresponding mRNAs, in...

  18. DNA-Guided Precision Medicine for Cancer: A Case of Irrational Exuberance?

    PubMed

    Voest, Emile E; Bernards, Rene

    2016-02-01

    Precision treatment with targeted cancer drugs requires the selection of patients who are most likely to benefit from a given therapy. We argue here that the use of a combination of both DNA and transcriptome analyses will significantly improve drug response prediction. ©2016 American Association for Cancer Research.

  19. Transcriptome and secretome analyses of Phanerochaete chrysosporium reveal complex patterns of gene expression

    Treesearch

    Amber J. Vanden Wymelenberg; Jill A. Gaskell; Michael D. Mozuch; Philip J. Kersten; Grzegorz Sabat; Diego Martinez; Daniel Cullen

    2009-01-01

    The wood decay basidiomycete Phanerochaete chrysosporium was grown under standard ligninolytic or cellulolytic conditions and subjected to whole-genome expression microarray analysis and liquid chromatography-tandem mass spectrometry of extracellular proteins. A total of 545 genes were flagged on the basis of significant changes in transcript accumulation and/or...

  20. Transcriptomic analyses of the secreted proteins from the salivary glands of the wheat midge larvae

    USDA-ARS?s Scientific Manuscript database

    Both the wheat midge (Sitodiplosis mosellana) and the Hessian fly (Mayetiola destructor) belong to a group of insects called gall midges (Diptera: Cecidomyiidae) and both are destructive pests of wheat. From Hessian fly larvae, a large number of genes have been identified to encode Secreted Salivary...

  1. Protein discovery: combined transcriptomic and proteomic analyses of venom from the endoparasitoid Cotesia chilonis (Hymenoptera: Brachonidae)

    USDA-ARS?s Scientific Manuscript database

    Background: Many species of endoparasitoid wasps provide biological control services in agroecosystems. Although there is a great deal of information on the ecology and physiology of host/parasitoid interactions, relatively little is known on the protein composition of venom and how specific venom p...

  2. Co-expression analysis of fetal weight-related genes in ovine skeletal muscle during mid and late fetal development stages

    USDA-ARS?s Scientific Manuscript database

    Muscle development and lipid metabolism play important roles during fetal development stages. The commercial Texel sheep are more muscular than the indigenous Ujumqin sheep which are fatter. We performed serial transcriptomics assays and systems biology analyses to investigate the dynamics of gene e...

  3. Transcriptome profiling and expression analyses of genes critical to wheat adaptation to low temperature

    USDA-ARS?s Scientific Manuscript database

    Background: To identify the genes involved in the development of low temperature (LT) tolerance in hexaploid wheat, we examined the global changes in expression in response to cold of the 55,052 potentially unique genes represented in the Affymetrix Wheat Genome microarray. We compared the expressi...

  4. Evaluation of Montanide TM ISA 71 VG adjuvant during profilin vaccination against experimental coccidiosis

    USDA-ARS?s Scientific Manuscript database

    Chickens were immunized subcutaneously with an Eimeria recombinant profilin protein plus MontanideTM ISA 70 VG (ISA 70) or MontanideTM ISA 71 VG (ISA 71) water-in-oil adjuvants, or with profilin alone, and comparative RNA microarray analyses were performed to ascertain global transcriptomic changes ...

  5. Deciphering the adaptation strategies of Desulfovibrio piezophilus to hydrostatic pressure through metabolic and transcriptional analyses.

    PubMed

    Amrani, Amira; van Helden, Jacques; Bergon, Aurélie; Aouane, Aicha; Ben Hania, Wajdi; Tamburini, Christian; Loriod, Béatrice; Imbert, Jean; Ollivier, Bernard; Pradel, Nathalie; Dolla, Alain

    2016-08-01

    Desulfovibrio piezophilus strain C1TLV30(T) is a mesophilic piezophilic sulfate-reducer isolated from Wood Falls at 1700 m depth in the Mediterranean Sea. In this study, we analysed the effect of the hydrostatic pressure on this deep-sea living bacterium at the physiologic and transcriptomic levels. Our results showed that lactate oxidation and energy metabolism were affected by the hydrostatic pressure. Especially, acetyl-CoA oxidation pathway and energy conservation through hydrogen and formate recycling would be more important when the hydrostatic pressure is above (26 MPa) than below (0.1 MPa) the optimal one (10 MPa). This work underlines also the role of the amino acid glutamate as a piezolyte for the Desulfovibrio genus. The transcriptomic analysis revealed 146 differentially expressed genes emphasizing energy production and conversion, amino acid transport and metabolism and cell motility and signal transduction mechanisms as hydrostatic pressure responding processes. This dataset allowed us to identify a sequence motif upstream of a subset of differentially expressed genes as putative pressure-dependent regulatory element. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Protein Discovery: Combined Transcriptomic and Proteomic Analyses of Venom from the Endoparasitoid Cotesia chilonis (Hymenoptera: Braconidae)

    PubMed Central

    Teng, Zi-Wen; Xiong, Shi-Jiao; Xu, Gang; Gan, Shi-Yu; Chen, Xuan; Stanley, David; Yan, Zhi-Chao; Ye, Gong-Yin; Fang, Qi

    2017-01-01

    Many species of endoparasitoid wasps provide biological control services in agroecosystems. Although there is a great deal of information on the ecology and physiology of host/parasitoid interactions, relatively little is known about the protein composition of venom and how specific venom proteins influence physiological systems within host insects. This is a crucial gap in our knowledge because venom proteins act in modulating host physiology in ways that favor parasitoid development. Here, we identified 37 possible venom proteins from the polydnavirus-carrying endoparasitoid Cotesia chilonis by combining transcriptomic and proteomic analyses. The most abundant proteins were hydrolases, such as proteases, peptidases, esterases, glycosyl hydrolase, and endonucleases. Some components are classical parasitoid venom proteins with known functions, including extracellular superoxide dismutase 3, serine protease inhibitor and calreticulin. The venom contains novel proteins, not recorded from any other parasitoid species, including tolloid-like proteins, chitooligosaccharidolytic β-N-acetylglucosaminidase, FK506-binding protein 14, corticotropin-releasing factor-binding protein and vascular endothelial growth factor receptor 2. These new data generate hypotheses and provide a platform for functional analysis of venom components. PMID:28417942

  7. Global Transcriptional, Physiological, and Metabolite Analyses of the Responses of Desulfovibrio vulgaris Hildenborough to Salt Adaptation ▿ †

    PubMed Central

    He, Zhili; Zhou, Aifen; Baidoo, Edward; He, Qiang; Joachimiak, Marcin P.; Benke, Peter; Phan, Richard; Mukhopadhyay, Aindrila; Hemme, Christopher L.; Huang, Katherine; Alm, Eric J.; Fields, Matthew W.; Wall, Judy; Stahl, David; Hazen, Terry C.; Keasling, Jay D.; Arkin, Adam P.; Zhou, Jizhong

    2010-01-01

    The response of Desulfovibrio vulgaris Hildenborough to salt adaptation (long-term NaCl exposure) was examined by performing physiological, global transcriptional, and metabolite analyses. Salt adaptation was reflected by increased expression of genes involved in amino acid biosynthesis and transport, electron transfer, hydrogen oxidation, and general stress responses (e.g., heat shock proteins, phage shock proteins, and oxidative stress response proteins). The expression of genes involved in carbon metabolism, cell growth, and phage structures was decreased. Transcriptome profiles of D. vulgaris responses to salt adaptation were compared with transcriptome profiles of D. vulgaris responses to salt shock (short-term NaCl exposure). Metabolite assays showed that glutamate and alanine accumulated under salt adaptation conditions, suggesting that these amino acids may be used as osmoprotectants in D. vulgaris. Addition of amino acids (glutamate, alanine, and tryptophan) or yeast extract to the growth medium relieved salt-related growth inhibition. A conceptual model that links the observed results to currently available knowledge is proposed to increase our understanding of the mechanisms of D. vulgaris adaptation to elevated NaCl levels. PMID:20038696

  8. The life-cycle of Emiliania huxleyi: A brief review and a study of relative ploidy levels analysed by flow cytometry

    NASA Astrophysics Data System (ADS)

    Green, J. C.; Course, P. A.; Tarran, G. A.

    1996-10-01

    Emiliania huxleyi exists in several principal forms including the familiar coccolith-bearing C-cell, non-motile naked N-cells, and scale-bearing swarmers (S-cells), but the relationships between these cells are unclear. Flow cytometric analyses have been undertaken on whole cells using fluorochrome staining of the DNA in order to determine the relative DNA content and the relative GC content of the S- and C-cells of selected clones. Results showed that the DNA complement of the S-cells was half that of the C-cells and the two cell types are, therefore, haploid and diploid relative to each other. The S-cells may, therefore, represent a gametic stage, though processes such as sexual fusion and meiosis have not been observed.

  9. Integration and validation testing for PhEDEx, DBS and DAS with the PhEDEx LifeCycle agent

    NASA Astrophysics Data System (ADS)

    Boeser, C.; Chwalek, T.; Giffels, M.; Kuznetsov, V.; Wildish, T.

    2014-06-01

    The ever-increasing amount of data handled by the CMS dataflow and workflow management tools poses new challenges for cross-validation among different systems within CMS experiment at LHC. To approach this problem we developed an integration test suite based on the LifeCycle agent, a tool originally conceived for stress-testing new releases of PhEDEx, the CMS data-placement tool. The LifeCycle agent provides a framework for customising the test workflow in arbitrary ways, and can scale to levels of activity well beyond those seen in normal running. This means we can run realistic performance tests at scales not likely to be seen by the experiment for some years, or with custom topologies to examine particular situations that may cause concern some time in the future. The LifeCycle agent has recently been enhanced to become a general purpose integration and validation testing tool for major CMS services. It allows cross-system integration tests of all three components to be performed in controlled environments, without interfering with production services. In this paper we discuss the design and implementation of the LifeCycle agent. We describe how it is used for small-scale debugging and validation tests, and how we extend that to large-scale tests of whole groups of sub-systems. We show how the LifeCycle agent can emulate the action of operators, physicists, or software agents external to the system under test, and how it can be scaled to large and complex systems.

  10. Phylogenomics and Divergence Dating of Fungus-Farming Ants (Hymenoptera: Formicidae) of the Genera Sericomyrmex and Apterostigma.

    PubMed

    Ješovnik, Ana; González, Vanessa L; Schultz, Ted R

    2016-01-01

    Fungus-farming ("attine") ants are model systems for studies of symbiosis, coevolution, and advanced eusociality. A New World clade of nearly 300 species in 15 genera, all attine ants cultivate fungal symbionts for food. In order to better understand the evolution of ant agriculture, we sequenced, assembled, and analyzed transcriptomes of four different attine ant species in two genera: three species in the higher-attine genus Sericomyrmex and a single lower-attine ant species, Apterostigma megacephala, representing the first genomic data for either genus. These data were combined with published genomes of nine other ant species and the honey bee Apis mellifera for phylogenomic and divergence-dating analyses. The resulting phylogeny confirms relationships inferred in previous studies of fungus-farming ants. Divergence-dating analyses recovered slightly older dates than most prior analyses, estimating that attine ants originated 53.6-66.7 million of years ago, and recovered a very long branch subtending a very recent, rapid radiation of the genus Sericomyrmex. This result is further confirmed by a separate analysis of the three Sericomyrmex species, which reveals that 92.71% of orthologs have 99% - 100% pairwise-identical nucleotide sequences. We searched the transcriptomes for genes of interest, most importantly argininosuccinate synthase and argininosuccinate lyase, which are functional in other ants but which are known to have been lost in seven previously studied attine ant species. Loss of the ability to produce the amino acid arginine has been hypothesized to contribute to the obligate dependence of attine ants upon their cultivated fungi, but the point in fungus-farming ant evolution at which these losses occurred has remained unknown. We did not find these genes in any of the sequenced transcriptomes. Although expected for Sericomyrmex species, the absence of arginine anabolic genes in the lower-attine ant Apterostigma megacephala strongly suggests that the loss coincided with the origin of attine ants.

  11. Spliced leader–based metatranscriptomic analyses lead to recognition of hidden genomic features in dinoflagellates

    PubMed Central

    Lin, Senjie; Zhang, Huan; Zhuang, Yunyun; Tran, Bao; Gill, John

    2010-01-01

    Environmental transcriptomics (metatranscriptomics) for a specific lineage of eukaryotic microbes (e.g., Dinoflagellata) would be instrumental for unraveling the genetic mechanisms by which these microbes respond to the natural environment, but it has not been exploited because of technical difficulties. Using the recently discovered dinoflagellate mRNA-specific spliced leader as a selective primer, we constructed cDNA libraries (e-cDNAs) from one marine and two freshwater plankton assemblages. Small-scale sequencing of the e-cDNAs revealed functionally diverse transcriptomes proven to be of dinoflagellate origin. A set of dinoflagellate common genes and transcripts of dominant dinoflagellate species were identified. Further analyses of the dataset prompted us to delve into the existing, largely unannotated dinoflagellate EST datasets (DinoEST). Consequently, all four nucleosome core histones, two histone modification proteins, and a nucleosome assembly protein were detected, clearly indicating the presence of nucleosome-like machinery long thought not to exist in dinoflagellates. The isolation of rhodopsin from taxonomically and ecotypically diverse dinoflagellates and its structural similarity and phylogenetic affinity to xanthorhodopsin suggest a common genetic potential in dinoflagellates to use solar energy nonphotosynthetically. Furthermore, we found 55 cytoplasmic ribosomal proteins (RPs) from the e-cDNAs and 24 more from DinoEST, showing that the dinoflagellate phylum possesses all 79 eukaryotic RPs. Our results suggest that a sophisticated eukaryotic molecular machine operates in dinoflagellates that likely encodes many more unsuspected physiological capabilities and, meanwhile, demonstrate that unique spliced leaders are useful for profiling lineage-specific microbial transcriptomes in situ. PMID:21041634

  12. Spliced leader-based metatranscriptomic analyses lead to recognition of hidden genomic features in dinoflagellates.

    PubMed

    Lin, Senjie; Zhang, Huan; Zhuang, Yunyun; Tran, Bao; Gill, John

    2010-11-16

    Environmental transcriptomics (metatranscriptomics) for a specific lineage of eukaryotic microbes (e.g., Dinoflagellata) would be instrumental for unraveling the genetic mechanisms by which these microbes respond to the natural environment, but it has not been exploited because of technical difficulties. Using the recently discovered dinoflagellate mRNA-specific spliced leader as a selective primer, we constructed cDNA libraries (e-cDNAs) from one marine and two freshwater plankton assemblages. Small-scale sequencing of the e-cDNAs revealed functionally diverse transcriptomes proven to be of dinoflagellate origin. A set of dinoflagellate common genes and transcripts of dominant dinoflagellate species were identified. Further analyses of the dataset prompted us to delve into the existing, largely unannotated dinoflagellate EST datasets (DinoEST). Consequently, all four nucleosome core histones, two histone modification proteins, and a nucleosome assembly protein were detected, clearly indicating the presence of nucleosome-like machinery long thought not to exist in dinoflagellates. The isolation of rhodopsin from taxonomically and ecotypically diverse dinoflagellates and its structural similarity and phylogenetic affinity to xanthorhodopsin suggest a common genetic potential in dinoflagellates to use solar energy nonphotosynthetically. Furthermore, we found 55 cytoplasmic ribosomal proteins (RPs) from the e-cDNAs and 24 more from DinoEST, showing that the dinoflagellate phylum possesses all 79 eukaryotic RPs. Our results suggest that a sophisticated eukaryotic molecular machine operates in dinoflagellates that likely encodes many more unsuspected physiological capabilities and, meanwhile, demonstrate that unique spliced leaders are useful for profiling lineage-specific microbial transcriptomes in situ.

  13. Multilayer-omics analysis of renal cell carcinoma, including the whole exome, methylome and transcriptome.

    PubMed

    Arai, Eri; Sakamoto, Hiromi; Ichikawa, Hitoshi; Totsuka, Hirohiko; Chiku, Suenori; Gotoh, Masahiro; Mori, Taisuke; Nakatani, Tamao; Ohnami, Sumiko; Nakagawa, Tohru; Fujimoto, Hiroyuki; Wang, Linghua; Aburatani, Hiroyuki; Yoshida, Teruhiko; Kanai, Yae

    2014-09-15

    The aim of this study was to identify pathways that have a significant impact during renal carcinogenesis. Sixty-seven paired samples of both noncancerous renal cortex tissue and cancerous tissue from patients with clear cell renal cell carcinomas (RCCs) were subjected to whole-exome, methylome and transcriptome analyses using Agilent SureSelect All Exon capture followed by sequencing on an Illumina HiSeq 2000 platform, Illumina Infinium HumanMethylation27 BeadArray and Agilent SurePrint Human Gene Expression microarray, respectively. Sanger sequencing and quantitative reverse transcription-PCR were performed for technical verification. MetaCore software was used for pathway analysis. Somatic nonsynonymous single-nucleotide mutations, insertions/deletions and intragenic breaks of 2,153, 359 and 8 genes were detected, respectively. Mutations of GCN1L1, MED12 and CCNC, which are members of CDK8 mediator complex directly regulating β-catenin-driven transcription, were identified in 16% of the RCCs. Mutations of MACF1, which functions in the Wnt/β-catenin signaling pathway, were identified in 4% of the RCCs. A combination of methylome and transcriptome analyses further highlighted the significant role of the Wnt/β-catenin signaling pathway in renal carcinogenesis. Genetic aberrations and reduced expression of ERC2 and ABCA13 were frequent in RCCs, and MTOR mutations were identified as one of the major disrupters of cell signaling during renal carcinogenesis. Our results confirm that multilayer-omics analysis can be a powerful tool for revealing pathways that play a significant role in carcinogenesis. © 2014 The Authors. Published by Wiley Periodicals, Inc. on behalf of UICC.

  14. Multilayer-omics analysis of renal cell carcinoma, including the whole exome, methylome and transcriptome

    PubMed Central

    Arai, Eri; Sakamoto, Hiromi; Ichikawa, Hitoshi; Totsuka, Hirohiko; Chiku, Suenori; Gotoh, Masahiro; Mori, Taisuke; Nakatani, Tamao; Ohnami, Sumiko; Nakagawa, Tohru; Fujimoto, Hiroyuki; Wang, Linghua; Aburatani, Hiroyuki; Yoshida, Teruhiko; Kanai, Yae

    2014-01-01

    The aim of this study was to identify pathways that have a significant impact during renal carcinogenesis. Sixty-seven paired samples of both noncancerous renal cortex tissue and cancerous tissue from patients with clear cell renal cell carcinomas (RCCs) were subjected to whole-exome, methylome and transcriptome analyses using Agilent SureSelect All Exon capture followed by sequencing on an Illumina HiSeq 2000 platform, Illumina Infinium HumanMethylation27 BeadArray and Agilent SurePrint Human Gene Expression microarray, respectively. Sanger sequencing and quantitative reverse transcription-PCR were performed for technical verification. MetaCore software was used for pathway analysis. Somatic nonsynonymous single-nucleotide mutations, insertions/deletions and intragenic breaks of 2,153, 359 and 8 genes were detected, respectively. Mutations of GCN1L1, MED12 and CCNC, which are members of CDK8 mediator complex directly regulating β-catenin-driven transcription, were identified in 16% of the RCCs. Mutations of MACF1, which functions in the Wnt/β-catenin signaling pathway, were identified in 4% of the RCCs. A combination of methylome and transcriptome analyses further highlighted the significant role of the Wnt/β-catenin signaling pathway in renal carcinogenesis. Genetic aberrations and reduced expression of ERC2 and ABCA13 were frequent in RCCs, and MTOR mutations were identified as one of the major disrupters of cell signaling during renal carcinogenesis. Our results confirm that multilayer-omics analysis can be a powerful tool for revealing pathways that play a significant role in carcinogenesis. PMID:24504440

  15. CO-Releasing Molecules Have Nonheme Targets in Bacteria: Transcriptomic, Mathematical Modeling and Biochemical Analyses of CORM-3 [Ru(CO)3Cl(glycinate)] Actions on a Heme-Deficient Mutant of Escherichia coli

    PubMed Central

    Wilson, Jayne Louise; Wareham, Lauren K.; McLean, Samantha; Begg, Ronald; Greaves, Sarah; Mann, Brian E.; Sanguinetti, Guido

    2015-01-01

    Abstract Aims: Carbon monoxide-releasing molecules (CORMs) are being developed with the ultimate goal of safely utilizing the therapeutic potential of CO clinically, including applications in antimicrobial therapy. Hemes are generally considered the prime targets of CO and CORMs, so we tested this hypothesis using heme-deficient bacteria, applying cellular, transcriptomic, and biochemical tools. Results: CORM-3 [Ru(CO)3Cl(glycinate)] readily penetrated Escherichia coli hemA bacteria and was inhibitory to these and Lactococcus lactis, even though they lack all detectable hemes. Transcriptomic analyses, coupled with mathematical modeling of transcription factor activities, revealed that the response to CORM-3 in hemA bacteria is multifaceted but characterized by markedly elevated expression of iron acquisition and utilization mechanisms, global stress responses, and zinc management processes. Cell membranes are disturbed by CORM-3. Innovation: This work has demonstrated for the first time that CORM-3 (and to a lesser extent its inactivated counterpart) has multiple cellular targets other than hemes. A full understanding of the actions of CORMs is vital to understand their toxic effects. Conclusion: This work has furthered our understanding of the key targets of CORM-3 in bacteria and raises the possibility that the widely reported antimicrobial effects cannot be attributed to classical biochemical targets of CO. This is a vital step in exploiting the potential, already demonstrated, for using optimized CORMs in antimicrobial therapy. Antioxid. Redox Signal. 23, 148–162. PMID:25811604

  16. Co-expression networks reveal the tissue-specific regulation of transcription and splicing.

    PubMed

    Saha, Ashis; Kim, Yungil; Gewirtz, Ariel D H; Jo, Brian; Gao, Chuan; McDowell, Ian C; Engelhardt, Barbara E; Battle, Alexis

    2017-11-01

    Gene co-expression networks capture biologically important patterns in gene expression data, enabling functional analyses of genes, discovery of biomarkers, and interpretation of genetic variants. Most network analyses to date have been limited to assessing correlation between total gene expression levels in a single tissue or small sets of tissues. Here, we built networks that additionally capture the regulation of relative isoform abundance and splicing, along with tissue-specific connections unique to each of a diverse set of tissues. We used the Genotype-Tissue Expression (GTEx) project v6 RNA sequencing data across 50 tissues and 449 individuals. First, we developed a framework called Transcriptome-Wide Networks (TWNs) for combining total expression and relative isoform levels into a single sparse network, capturing the interplay between the regulation of splicing and transcription. We built TWNs for 16 tissues and found that hubs in these networks were strongly enriched for splicing and RNA binding genes, demonstrating their utility in unraveling regulation of splicing in the human transcriptome. Next, we used a Bayesian biclustering model that identifies network edges unique to a single tissue to reconstruct Tissue-Specific Networks (TSNs) for 26 distinct tissues and 10 groups of related tissues. Finally, we found genetic variants associated with pairs of adjacent nodes in our networks, supporting the estimated network structures and identifying 20 genetic variants with distant regulatory impact on transcription and splicing. Our networks provide an improved understanding of the complex relationships of the human transcriptome across tissues. © 2017 Saha et al.; Published by Cold Spring Harbor Laboratory Press.

  17. Transcriptome Analysis of the Entomopathogenic Oomycete Lagenidium giganteum Reveals Putative Virulence Factors

    PubMed Central

    Quiroz Velasquez, Paula F.; Abiff, Sumayyah K.; Fins, Katrina C.; Conway, Quincy B.; Salazar, Norma C.; Delgado, Ana Paula; Dawes, Jhanelle K.; Douma, Lauren G.

    2014-01-01

    A combination of 454 pyrosequencing and Sanger sequencing was used to sample and characterize the transcriptome of the entomopathogenic oomycete Lagenidium giganteum. More than 50,000 high-throughput reads were annotated through homology searches. Several selected reads served as seeds for the amplification and sequencing of full-length transcripts. Phylogenetic analyses inferred from full-length cellulose synthase alignments revealed that L giganteum is nested within the peronosporalean galaxy and as such appears to have evolved from a phytopathogenic ancestor. In agreement with the phylogeny reconstructions, full-length L. giganteum oomycete effector orthologs, corresponding to the cellulose-binding elicitor lectin (CBEL), crinkler (CRN), and elicitin proteins, were characterized by domain organizations similar to those of pathogenicity factors of plant-pathogenic oomycetes. Importantly, the L. giganteum effectors provide a basis for detailing the roles of canonical CRN, CBEL, and elicitin proteins in the infectious process of an oomycete known principally as an animal pathogen. Finally, phylogenetic analyses and genome mining identified members of glycoside hydrolase family 5 subfamily 27 (GH5_27) as putative virulence factors active on the host insect cuticle, based in part on the fact that GH5_27 genes are shared by entomopathogenic oomycetes and fungi but are underrepresented in nonentomopathogenic genomes. The genomic resources gathered from the L. giganteum transcriptome analysis strongly suggest that filamentous entomopathogens (oomycetes and fungi) exhibit convergent evolution: they have evolved independently from plant-associated microbes, have retained genes indicative of plant associations, and may share similar cores of virulence factors, such as GH5_27 enzymes, that are absent from the genomes of their plant-pathogenic relatives. PMID:25107973

  18. First Transcriptome and Digital Gene Expression Analysis in Neuroptera with an Emphasis on Chemoreception Genes in Chrysopa pallens (Rambur)

    PubMed Central

    Li, Zhao-Qun; Zhang, Shuai; Ma, Yan; Luo, Jun-Yu; Wang, Chun-Yi; Lv, Li-Min; Dong, Shuang-Lin; Cui, Jin-Jie

    2013-01-01

    Background Chrysopa pallens (Rambur) are the most important natural enemies and predators of various agricultural pests. Understanding the sophisticated olfactory system in insect antennae is crucial for studying the physiological bases of olfaction and also could lead to effective applications of C. pallens in integrated pest management. However no transcriptome information is available for Neuroptera, and sequence data for C. pallens are scarce, so obtaining more sequence data is a priority for researchers on this species. Results To facilitate identifying sets of genes involved in olfaction, a normalized transcriptome of C. pallens was sequenced. A total of 104,603 contigs were obtained and assembled into 10,662 clusters and 39,734 singletons; 20,524 were annotated based on BLASTX analyses. A large number of candidate chemosensory genes were identified, including 14 odorant-binding proteins (OBPs), 22 chemosensory proteins (CSPs), 16 ionotropic receptors, 14 odorant receptors, and genes potentially involved in olfactory modulation. To better understand the OBPs, CSPs and cytochrome P450s, phylogenetic trees were constructed. In addition, 10 digital gene expression libraries of different tissues were constructed and gene expression profiles were compared among different tissues in males and females. Conclusions Our results provide a basis for exploring the mechanisms of chemoreception in C. pallens, as well as other insects. The evolutionary analyses in our study provide new insights into the differentiation and evolution of insect OBPs and CSPs. Our study provided large-scale sequence information for further studies in C. pallens. PMID:23826220

  19. Single-Copy Genes as Molecular Markers for Phylogenomic Studies in Seed Plants

    PubMed Central

    De La Torre, Amanda R.; Sterck, Lieven; Cánovas, Francisco M.; Avila, Concepción; Merino, Irene; Cabezas, José Antonio; Cervera, María Teresa; Ingvarsson, Pär K.

    2017-01-01

    Phylogenetic relationships among seed plant taxa, especially within the gymnosperms, remain contested. In contrast to angiosperms, for which several genomic, transcriptomic and phylogenetic resources are available, there are few, if any, molecular markers that allow broad comparisons among gymnosperm species. With few gymnosperm genomes available, recently obtained transcriptomes in gymnosperms are a great addition to identifying single-copy gene families as molecular markers for phylogenomic analysis in seed plants. Taking advantage of an increasing number of available genomes and transcriptomes, we identified single-copy genes in a broad collection of seed plants and used these to infer phylogenetic relationships between major seed plant taxa. This study aims at extending the current phylogenetic toolkit for seed plants, assessing its ability for resolving seed plant phylogeny, and discussing potential factors affecting phylogenetic reconstruction. In total, we identified 3,072 single-copy genes in 31 gymnosperms and 2,156 single-copy genes in 34 angiosperms. All studied seed plants shared 1,469 single-copy genes, which are generally involved in functions like DNA metabolism, cell cycle, and photosynthesis. A selected set of 106 single-copy genes provided good resolution for the seed plant phylogeny except for gnetophytes. Although some of our analyses support a sister relationship between gnetophytes and other gymnosperms, phylogenetic trees from concatenated alignments without 3rd codon positions and amino acid alignments under the CAT + GTR model, support gnetophytes as a sister group to Pinaceae. Our phylogenomic analyses demonstrate that, in general, single-copy genes can uncover both recent and deep divergences of seed plant phylogeny. PMID:28460034

  20. Product Lifecycle Management and Sustainable Space Exploration

    NASA Technical Reports Server (NTRS)

    Caruso, Pamela W.; Dumbacher, Daniel L.; Grieves, Michael

    2011-01-01

    This slide presentation reviews the use of product lifecycle management (PLM) in the general aerospace industry, its use and development at NASA and at Marshall Space Flight Center, and how the use of PLM can lead to sustainable space exploration.

  1. A Sensitivity Analysis of the Rigid Pavement Life-Cycle Cost Analysis Program

    DOT National Transportation Integrated Search

    2000-12-01

    Original Report Date: September 1999. This report describes the sensitivity analysis performed on the Rigid Pavement Life-Cycle Cost Analysis program, a computer program developed by the Center for Transportation Research for the Texas Department of ...

  2. U.S. EPA'S RESEARCH ON LIFE-CYCLE ANALYSIS

    EPA Science Inventory

    Life-cycle analysis (LCA) consists of looking at a product, process or activity from its inception through its completion. or consumer products, this includes the stages of raw material acquisition, manufacturing and fabrication, distribution, consumer use/reuse and final disposa...

  3. Infrastructure and automobile shifts: positioning transit to reduce life-cycle environmental impacts for urban sustainability goals

    NASA Astrophysics Data System (ADS)

    Chester, Mikhail; Pincetl, Stephanie; Elizabeth, Zoe; Eisenstein, William; Matute, Juan

    2013-03-01

    Public transportation systems are often part of strategies to reduce urban environmental impacts from passenger transportation, yet comprehensive energy and environmental life-cycle measures, including upfront infrastructure effects and indirect and supply chain processes, are rarely considered. Using the new bus rapid transit and light rail lines in Los Angeles, near-term and long-term life-cycle impact assessments are developed, including consideration of reduced automobile travel. Energy consumption and emissions of greenhouse gases and criteria pollutants are assessed, as well the potential for smog and respiratory impacts. Results show that life-cycle infrastructure, vehicle, and energy production components significantly increase the footprint of each mode (by 48-100% for energy and greenhouse gases, and up to 6200% for environmental impacts), and emerging technologies and renewable electricity standards will significantly reduce impacts. Life-cycle results are identified as either local (in Los Angeles) or remote, and show how the decision to build and operate a transit system in a city produces environmental impacts far outside of geopolitical boundaries. Ensuring shifts of between 20-30% of transit riders from automobiles will result in passenger transportation greenhouse gas reductions for the city, and the larger the shift, the quicker the payback, which should be considered for time-specific environmental goals.

  4. Long-term shifts in life-cycle energy efficiency and carbon intensity.

    PubMed

    Yeh, Sonia; Mishra, Gouri Shankar; Morrison, Geoff; Teter, Jacob; Quiceno, Raul; Gillingham, Kenneth; Riera-Palou, Xavier

    2013-03-19

    The quantity of primary energy needed to support global human activity is in large part determined by how efficiently that energy is converted to a useful form. We estimate the system-level life-cycle energy efficiency (EF) and carbon intensity (CI) across primary resources for 2005-2100. Our results underscore that although technological improvements at each energy conversion process will improve technology efficiency and lead to important reductions in primary energy use, market mediated effects and structural shifts toward less efficient pathways and pathways with multiple stages of conversion will dampen these efficiency gains. System-level life-cycle efficiency may decrease as mitigation efforts intensify, since low-efficiency renewable systems with high output have much lower GHG emissions than some high-efficiency fossil fuel systems. Climate policies accelerate both improvements in EF and the adoption of renewable technologies, resulting in considerably lower primary energy demand and GHG emissions. Life-cycle EF and CI of useful energy provide a useful metric for understanding dynamics of implementing climate policies. The approaches developed here reiterate the necessity of a combination of policies that target efficiency and decarbonized energy technologies. We also examine life-cycle exergy efficiency (ExF) and find that nearly all of the qualitative results hold regardless of whether we use ExF or EF.

  5. National Geospatial Data Asset Lifecycle Baseline Maturity Assessment for the Federal Geographic Data Committee

    NASA Astrophysics Data System (ADS)

    Peltz-Lewis, L. A.; Blake-Coleman, W.; Johnston, J.; DeLoatch, I. B.

    2014-12-01

    The Federal Geographic Data Committee (FGDC) is designing a portfolio management process for 193 geospatial datasets contained within the 16 topical National Spatial Data Infrastructure themes managed under OMB Circular A-16 "Coordination of Geographic Information and Related Spatial Data Activities." The 193 datasets are designated as National Geospatial Data Assets (NGDA) because of their significance in implementing to the missions of multiple levels of government, partners and stakeholders. As a starting point, the data managers of these NGDAs will conduct a baseline maturity assessment of the dataset(s) for which they are responsible. The maturity is measured against benchmarks related to each of the seven stages of the data lifecycle management framework promulgated within the OMB Circular A-16 Supplemental Guidance issued by OMB in November 2010. This framework was developed by the interagency Lifecycle Management Work Group (LMWG), consisting of 16 Federal agencies, under the 2004 Presidential Initiative the Geospatial Line of Business,using OMB Circular A-130" Management of Federal Information Resources" as guidance The seven lifecycle stages are: Define, Inventory/Evaluate, Obtain, Access, Maintain, Use/Evaluate, and Archive. This paper will focus on the Lifecycle Baseline Maturity Assessment, and efforts to integration the FGDC approach with other data maturity assessments.

  6. Life-Cycle Costing of Food Waste Management in Denmark: Importance of Indirect Effects.

    PubMed

    Martinez-Sanchez, Veronica; Tonini, Davide; Møller, Flemming; Astrup, Thomas Fruergaard

    2016-04-19

    Prevention has been suggested as the preferred food waste management solution compared to alternatives such as conversion to animal fodder or to energy. In this study we used societal life-cycle costing, as a welfare economic assessment, and environmental life-cycle costing, as a financial assessment combined with life-cycle assessment, to evaluate food waste management. Both life-cycle costing assessments included direct and indirect effects. The latter are related to income effects, accounting for the marginal consumption induced when alternative scenarios lead to different household expenses, and the land-use-changes effect, associated with food production. The results highlighted that prevention, while providing the highest welfare gains as more services/goods could be consumed with the same income, could also incur the highest environmental impacts if the monetary savings from unpurchased food commodities were spent on goods/services with a more environmentally damaging production than that of the (prevented) food. This was not the case when savings were used, e.g., for health care, education, and insurances. This study demonstrates that income effects, although uncertain, should be included whenever alternative scenarios incur different financial costs. Furthermore, it highlights that food prevention measures should not only demote the purchase of unconsumed food but also promote a low-impact use of the savings generated.

  7. Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation.

    PubMed

    Jaramillo, Paulina; Griffin, W Michael; Matthews, H Scott

    2007-09-01

    The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/ LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG.

  8. Telescience Resource Kit Software Lifecycle

    NASA Technical Reports Server (NTRS)

    Griner, Carolyn S.; Schneider, Michelle

    1998-01-01

    The challenge of a global operations capability led to the Telescience Resource Kit (TReK) project, an in-house software development project of the Mission Operations Laboratory (MOL) at NASA's Marshall Space Flight Center (MSFC). The TReK system is being developed as an inexpensive comprehensive personal computer- (PC-) based ground support system that can be used by payload users from their home sites to interact with their payloads on board the International Space Station (ISS). The TReK project is currently using a combination of the spiral lifecycle model and the incremental lifecycle model. As with any software development project, there are four activities that can be very time consuming: Software design and development, project documentation, testing, and umbrella activities, such as quality assurance and configuration management. In order to produce a quality product, it is critical that each of these activities receive the appropriate amount of attention. For TReK, the challenge was to lay out a lifecycle and project plan that provides full support for these activities, is flexible, provides a way to deal with changing risks, can accommodate unknowns, and can respond to changes in the environment quickly. This paper will provide an overview of the TReK lifecycle, a description of the project's environment, and a general overview of project activities.

  9. Systems analysis of the prostate transcriptome in African-American men compared with European-American men.

    PubMed

    Hardiman, Gary; Savage, Stephen J; Hazard, E Starr; Wilson, Robert C; Courtney, Sean M; Smith, Michael T; Hollis, Bruce W; Halbert, Chanita Hughes; Gattoni-Celli, Sebastiano

    2016-07-01

    African-Americans (AA) have increased prostate cancer risk and a greater mortality rate than European-Americans (EA). AA exhibit a high prevalence of vitamin D deficiency. We examined the global prostate transcriptome in AA and EA, and the effect of vitamin D 3 supplementation. Twenty-seven male subjects (ten AA and 17 EA), slated to undergo prostatectomy were enrolled in the study. Fourteen subjects received vitamin D 3 (4000 IU daily) and 13 subjects received placebo for 2 months prior to surgery. AA show higher expression of genes associated with immune response and inflammation. Systems level analyses support the concept that Inflammatory processes may contribute to disease progression in AA. These transcripts can be modulated by a short course of vitamin D 3 supplementation.

  10. The economic value of innovative treatments over the product life cycle: the case of targeted trastuzumab therapy for breast cancer.

    PubMed

    Garrison, Louis P; Veenstra, David L

    2009-01-01

    Pharmacoeconomic analyses typically project the expected cost-effectiveness of a new product for a specific indication. This analysis develops a dynamic life-cycle model to conduct a multi-indication evaluation using the case of trastuzumab licensed in the United States for both early-stage and metastatic (or late-stage) human epidermal growth factor receptor 2 (HER2)-positive breast cancer therapy (early breast cancer [EBC]; metastatic breast cancer [MBC]), approved in 2006 and 1998, respectively. This dynamic model combined information on expected incremental cost-utility ratios for specific indications with an epidemiologically based projection of utilization by indication over the product life cycle-from 1998 to 2016. Net economic value was estimated as the cumulative quality-adjusted life years (QALYs) gained over the life cycle multiplied by a societal valuation of health gains ($/QALY) minus cumulative net direct treatment costs. Sensitivity analyses were performed under a range of assumptions. We projected that the annual number of EBC patients receiving trastuzumab will be more than three times that of MBC by 2016, in part because adjuvant treatment reduces the future incidence of MBC. Over this life cycle, the estimated overall incremental cost-effectiveness ratio (ICER) was $35,590/QALY with a total of 432,547 discounted QALYs gained. Under sensitivity analyses, the overall ICER varied from $21,000 to $53,000/QALY, and the projected net economic value resulting from trastuzumab treatment ranged from $6.2 billion to $49.5 billion. Average ICERs for multi-indication compounds can increase or decrease over the product life cycle. In this example, the projected overall life-cycle ICER for trastuzumab was less than one half of that in the initial indication. This dynamic perspective-versus the usual static one-highlights the interdependence of drug development decisions and investment incentives, raising important reimbursement policy issues.

  11. Transcriptome analysis of thermophilic methylotrophic Bacillus methanolicus MGA3 using RNA-sequencing provides detailed insights into its previously uncharted transcriptional landscape.

    PubMed

    Irla, Marta; Neshat, Armin; Brautaset, Trygve; Rückert, Christian; Kalinowski, Jörn; Wendisch, Volker F

    2015-02-14

    Bacillus methanolicus MGA3 is a thermophilic, facultative ribulose monophosphate (RuMP) cycle methylotroph. Together with its ability to produce high yields of amino acids, the relevance of this microorganism as a promising candidate for biotechnological applications is evident. The B. methanolicus MGA3 genome consists of a 3,337,035 nucleotides (nt) circular chromosome, the 19,174 nt plasmid pBM19 and the 68,999 nt plasmid pBM69. 3,218 protein-coding regions were annotated on the chromosome, 22 on pBM19 and 82 on pBM69. In the present study, the RNA-seq approach was used to comprehensively investigate the transcriptome of B. methanolicus MGA3 in order to improve the genome annotation, identify novel transcripts, analyze conserved sequence motifs involved in gene expression and reveal operon structures. For this aim, two different cDNA library preparation methods were applied: one which allows characterization of the whole transcriptome and another which includes enrichment of primary transcript 5'-ends. Analysis of the primary transcriptome data enabled the detection of 2,167 putative transcription start sites (TSSs) which were categorized into 1,642 TSSs located in the upstream region (5'-UTR) of known protein-coding genes and 525 TSSs of novel antisense, intragenic, or intergenic transcripts. Firstly, 14 wrongly annotated translation start sites (TLSs) were corrected based on primary transcriptome data. Further investigation of the identified 5'-UTRs resulted in the detailed characterization of their length distribution and the detection of 75 hitherto unknown cis-regulatory RNA elements. Moreover, the exact TSSs positions were utilized to define conserved sequence motifs for translation start sites, ribosome binding sites and promoters in B. methanolicus MGA3. Based on the whole transcriptome data set, novel transcripts, operon structures and mRNA abundances were determined. The analysis of the operon structures revealed that almost half of the genes are transcribed monocistronically (940), whereas 1,164 genes are organized in 381 operons. Several of the genes related to methylotrophy had highly abundant transcripts. The extensive insights into the transcriptional landscape of B. methanolicus MGA3, gained in this study, represent a valuable foundation for further comparative quantitative transcriptome analyses and possibly also for the development of molecular biology tools which at present are very limited for this organism.

  12. A western-style diet, with and without chronic androgen treatment, alters the number, structure and function of small antral follicles in ovaries of young adult monkeys

    PubMed Central

    Bishop, Cecily V.; Xu, Fuhua; Xu, Jing; Ting, Alison Y.; Galbreath, Etienne; McGee, Whitney K.; Zelinski, Mary B.; Hennebold, Jon D.; Cameron, Judy L.; Stouffer, Richard L.

    2015-01-01

    Objective To examine the small antral follicle (SAF) cohort in ovaries of adult rhesus monkeys following consumption of a western-style diet (WSD), with or without chronically elevated androgen levels since before puberty. Design Cholesterol or testosterone (T; n=6/group) implants were placed subcutaneously in female rhesus macaques beginning at 1 yr of age (pre-pubertal), with addition of a WSD (high fat/fructose) at 5.5 yrs (menarche ~2.6 yrs). Ovaries were collected at 7 yrs of age. One ovary/female was embedded in paraffin for morphological and immunohistochemical analyses. The SAFs (<2.5mm) were dissected from the other ovary obtained at/near menses in a subgroup of females (n=3/group), and processed for microarray analyses of the SAF transcriptome. Ovaries of adult monkeys consuming a standard macaque diet (low in fats and sugars) were obtained at similar stages of the menstrual cycle and used as controls for all analyses. Setting National primate research center Animals Adult, female rhesus monkeys (Macaca mulatta) Interventions None Main outcome measures Histological analyses, SAF counts and morphology, protein localization and abundance in SAFs, transcriptome in SAFs (mRNAs) Results Compared to controls, consumption of a WSD, with and without T treatment, increased the numbers of SAFs per ovary, due to the presence of more atretic follicles. Numbers of granulosa cells expressing cellular proliferation markers (pRb and pH3) was greater in healthy SAFs, while numbers of cells expressing the cell cycle inhibitor (p21) was higher in atretic SAFs. Intense CYP17A1 staining was observed in the theca cells of SAFs from WSD+/− T groups, compared to controls. Microarray analyses of the transcriptome in SAFs isolated from WSD and WSD+T treated females and controls consuming a standard diet, identified 1944 genes whose mRNA levels changed ≥2-fold among the three groups. Further analyses identified several gene pathways altered by WSD and/or WSD+T associated with steroid, carbohydrate and lipid metabolism, plus ovarian processes. Alterations in levels of several SAF mRNAs are similar to those observed in follicular cells from women with polycystic ovary syndrome (PCOS). Conclusion These data indicate that consumption of a WSD high in fats and sugars in the presence and absence of chronically elevated T alters the structure and function of SAFs within primate ovaries. PMID:26718060

  13. De novo transcriptome analysis of an imminent biofuel crop, Camelina sativa L. using Illumina GAIIX sequencing platform and identification of SSR markers.

    PubMed

    Mudalkar, Shalini; Golla, Ramesh; Ghatty, Sreenivas; Reddy, Attipalli Ramachandra

    2014-01-01

    Camelina sativa L. is an emerging biofuel crop with potential applications in industry, medicine, cosmetics and human nutrition. The crop is unexploited owing to very limited availability of transcriptome and genomic data. In order to analyse the various metabolic pathways, we performed de novo assembly of the transcriptome on Illumina GAIIX platform with paired end sequencing for obtaining short reads. The sequencing output generated a FastQ file size of 2.97 GB with 10.83 million reads having a maximum read length of 101 nucleotides. The number of contigs generated was 53,854 with maximum and minimum lengths of 10,086 and 200 nucleotides respectively. These trancripts were annotated using BLAST search against the Aracyc, Swiss-Prot, TrEMBL, gene ontology and clusters of orthologous groups (KOG) databases. The genes involved in lipid metabolism were studied and the transcription factors were identified. Sequence similarity studies of Camelina with the other related organisms indicated the close relatedness of Camelina with Arabidopsis. In addition, bioinformatics analysis revealed the presence of a total of 19,379 simple sequence repeats. This is the first report on Camelina sativa L., where the transcriptome of the entire plant, including seedlings, seed, root, leaves and stem was done. Our data established an excellent resource for gene discovery and provide useful information for functional and comparative genomic studies in this promising biofuel crop.

  14. Histological and Transcriptomic Analysis during Bulbil Formation in Lilium lancifolium

    PubMed Central

    Yang, Panpan; Xu, Leifeng; Xu, Hua; Tang, Yuchao; He, Guoren; Cao, Yuwei; Feng, Yayan; Yuan, Suxia; Ming, Jun

    2017-01-01

    Aerial bulbils are an important propagative organ, playing an important role in population expansion. However, the detailed gene regulatory patterns and molecular mechanism underlying bulbil formation remain unclear. Triploid Lilium lancifolium, which develops many aerial bulbils on the leaf axils of middle-upper stem, is a useful species for investigating bulbil formation. To investigate the mechanism of bulbil formation in triploid L. lancifolium, we performed histological and transcriptomic analyses using samples of leaf axils located in the upper and lower stem of triploid L. lancifolium during bulbil formation. Histological results indicated that the bulbils of triploid L. lancifolium are derived from axillary meristems that initiate de novo from cells on the adaxial side of the petiole base. Transcriptomic analysis generated ~650 million high-quality reads and 11,871 differentially expressed genes (DEGs). Functional analysis showed that the DEGs were significantly enriched in starch and sucrose metabolism and plant hormone signal transduction. Starch synthesis and accumulation likely promoted the initiation of upper bulbils in triploid L. lancifolium. Hormone-associated pathways exhibited distinct patterns of change in each sample. Auxin likely promoted the initiation of bulbils and then inhibited further bulbil formation. High biosynthesis and low degradation of cytokinin might have led to bulbil formation in the upper leaf axil. The present study achieved a global transcriptomic analysis focused on gene expression changes and pathways' enrichment during upper bulbil formation in triploid L. lancifolium, laying a solid foundation for future molecular studies on bulbil formation. PMID:28912794

  15. Analysis of de novo sequencing and transcriptome assembly and lignocellulolytic enzymes gene expression of Coriolopsis gallica HTC.

    PubMed

    Chen, Yuehong; Cao, Qinghua; Tao, Xiang; Shao, Huanhuan; Zhang, Kun; Zhang, Yizheng; Tan, Xuemei

    2017-03-01

    White-rot basidiomycete Coriolopsis gallica HTC is one of the main biodegraders of poplar. In our previous study, we have shown the strong capacity of C. gallica HTC to degrade lignocellulose. In this study, equal amounts of total RNA fromC. Gallica HTC cultures grown in different conditions were pooled together. Illumina paired-end RNA sequencing was performed, and 13.2 million 90-bp paired-end reads were generated. We chose the Merged Assembly of Oases data-set for the following blast searches and gene ontology analyses. The reads were assembled de novo into 28,034 transcripts (≥ 100 bp) using combined assembly strategy MAO. The transcripts were annotated using Blast2GO. In all, 18,810 transcripts (≥100 bp) achieved BLASTX hits, of which, 7048 transcripts had GO term and 2074 had ECs. The expression level of 11 lignocellulolytic enzyme genes from the assembled C. gallica HTC transcriptome were detected by real-time quantitative polymerase chain reaction. The results showed that expression levels of these genes were affected by carbon source and nitrogen source at the level of transcription. The current abundant transcriptome data allowed the identification of many new transcripts in C. gallica HTC. Data provided here represent the most comprehensive and integrated genomic resources for cloning and identifying genes of interest from C. gallica HTC. Characterization of C. gallica HTC transcriptome provides an effective tool to understand mechanisms underlying cellular and molecular functions of C. gallica HTC.

  16. Comparative analyses of lung transcriptomes in patients with alveolar capillary dysplasia with misalignment of pulmonary veins and in foxf1 heterozygous knockout mice

    USDA-ARS?s Scientific Manuscript database

    Alveolar Capillary Dysplasia with Misalignment of Pulmonary Veins (ACDMPV) is a developmental disorder of the lungs, primarily affecting their vasculature. FOXF1 haploinsufficiency due to heterozygous genomic deletions and point mutations have been reported in most patients with ACDMPV. The majority...

  17. Self-Directed Student Research through Analysis of Microarray Datasets: A Computer-Based Functional Genomics Practical Class for Masters-Level Students

    ERIC Educational Resources Information Center

    Grenville-Briggs, Laura J.; Stansfield, Ian

    2011-01-01

    This report describes a linked series of Masters-level computer practical workshops. They comprise an advanced functional genomics investigation, based upon analysis of a microarray dataset probing yeast DNA damage responses. The workshops require the students to analyse highly complex transcriptomics datasets, and were designed to stimulate…

  18. Transcriptome analyses suggest a disturbance of iron homeostasis in soybean leaves during white mould disease establishment

    USDA-ARS?s Scientific Manuscript database

    Sclerotinia sclerotiorum is a serious pathogen of numerous crops around the world. The major virulence factor of this pathogen is oxalic acid (OA). Mutants that cannot produce OA do not cause disease, and plants that express enzymes that degrade OA, such as oxalate oxidase (OxO) are very resistant t...

  19. 14 CFR 170.23 - LORAN-C establishment criteria.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ratio of the present value of the LORAN-C life-cycle benefits (PVB) to the present value of LORAN-C life-cycle costs (PVC): PVB/PVC ≥ 1.0 (c) The criteria do not cover all situations that may arise and are not...

  20. 14 CFR 170.23 - LORAN-C establishment criteria.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ratio of the present value of the LORAN-C life-cycle benefits (PVB) to the present value of LORAN-C life-cycle costs (PVC): PVB/PVC ≥ 1.0 (c) The criteria do not cover all situations that may arise and are not...

Top