Positioning Mechanism For Hoisting
NASA Technical Reports Server (NTRS)
Marlin, John D., III; Moore, Barry J.; Myers, Robert I.
1992-01-01
Mechanism positions large, heavy objects in container for lifting out by hoist, crane, or winch. Handles objects gently and ensures they are lifted cleanly away in vertical direction without bumping container. Developed for lifting offset pieces of solid-propellant core out of rocket motor through its propellant port. Similar specialized mechanisms can be developed to lift other specially shaped, specially contained heavy objects. Track in base of mechanism guides each trunnion and piece to which attached to middle as hydraulic rods extend. When mechanism lifted, tilted pieces swing inward and come to rest on energy-absorbing paddle.
... induce hernias: obesity or sudden weight gain lifting heavy objects diarrhea or constipation persistent coughing or sneezing ... might include pain when you cough, lift something heavy, or bend over. These types of hernias require ...
AORN Ergonomic Tool 6: lifting and carrying supplies and equipment in the perioperative setting.
Waters, Thomas; Baptiste, Andrea; Short, Manon; Plante-Mallon, Lori; Nelson, Audrey
2011-08-01
Perioperative team members often are required to lift and carry heavy supplies and equipment into and around the OR; this includes lifting equipment such as hand tables, fluoroscopy boards, stirrups, Wilson frames, irrigation containers for lithotripsy, and heavy instrument pans. Lifting heavy objects creates considerable risk for musculoskeletal injuries to the back and shoulders. AORN Ergonomic Tool 6: Lifting and Carrying Supplies and Equipment in the Perioperative Setting can help caregivers evaluate lifting and carrying tasks and take measures to protect themselves from injury. Caregivers can use the revised National Institute for Occupational Safety and Health lifting equation to assess whether a specific lifting task can be performed safely. Published by Elsevier Inc.
Prosthetic Hand Lifts Heavy Loads
NASA Technical Reports Server (NTRS)
Carden, James R.; Norton, William; Belcher, Jewell G.; Vest, Thomas W.
1991-01-01
Prosthetic hand designed to enable amputee to lift diverse heavy objects like rocks and logs. Has simple serrated end effector with no moving parts. Prosthesis held on forearm by system of flexible straps. Features include ruggedness, simplicity, and relatively low cost.
Back Pain at Work: Preventing Pain and Injury
Healthy Lifestyle Adult health Heavy lifting, repetitive movements and sitting at a desk all day can take a toll on your back. Get the facts ... your back — such as by lifting or moving heavy objects — can cause injury. Repetition. Repeating certain movements, ...
The fusimotor and reafferent origin of the sense of force and weight
Luu, Billy L; Day, Brian L; Cole, Jonathan D; Fitzpatrick, Richard C
2011-01-01
Abstract Signals associated with the command the brain sends to muscles are thought to create the sensation of heaviness when we lift an object. Thus, as a muscle is weakened by fatigue or partial paralysis (neuromuscular blockade), the increase in the motor command needed to lift a weight is thought to explain the increasing subjective heaviness of the lifted object. With different fatiguing contractions we approximately halved the force output of the thumb flexor muscles, which were then used to lift an object. For two deafferented subjects the perceived heaviness of the lifted object approximately doubled, in keeping with the central-signal theory. However, for normal subjects this resulted in objects feeling the same or lighter, inconsistent with the central-signal theory but consistent with the expected effects of the conditioning contractions on the sensitivity of peripheral receptors. In separate experiments we subjected the forearm muscles to complete paralysis with a non-depolarising neuromuscular blocking agent and then allowed them to recover to approximately half-force output. This also resulted in objects feeling lighter when lifted by the semi-paralysed thumb, even though the motor command to the motoneurons must have been greater. This is readily explained by reduced lift-related reafference caused by the prolonged paralysis of muscle spindle intrafusal fibres. We conclude that peripheral signals, including a major contribution from muscle spindles, normally give rise to the sense of exerted force. In concept, however, reafference from peripheral receptors may also be considered a centrally generated signal that traverses efferent and then afferent pathways to feed perceptual centres rather than one confined entirely to the central nervous system. These results therefore challenge the distinction between central- and peripheral-based perception, and the concept that muscle spindles provide only information about limb position and movement. PMID:21521756
Hydrostatic force used to handle outsized, heavy objects
NASA Technical Reports Server (NTRS)
Craft, G. W.; Starkey, A. W.
1967-01-01
Specially fitted barge is used to load and transport large, heavy objects to a dock side site. There the barge itself can lift, rotate, and position the objects. Typical functions are economically accomplished by water buoyancy.
Next generation solid boosters
NASA Technical Reports Server (NTRS)
Lund, R. K.
1991-01-01
Space transportation solid rocket motor systems; Shuttle derived heavy lift launch vehicles; advanced launch system (ALS) derived heavy lift launch vehicles; large launch solid booster vehicles are outlined. Performance capabilities and concept objectives are presented. Small launch vehicle concepts; enabling technologies; reusable flyback booster system; and high-performance solid motors for space are briefly described. This presentation is represented by viewgraphs.
Heavy Lift Launch Capability with a New Hydrocarbon Engine (NHE)
NASA Technical Reports Server (NTRS)
Threet, Grady E., Jr.; Holt, James B.; Philips, Alan D.; Garcia, Jessica A.
2011-01-01
The Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center has analyzed over 2000 Ares V and other heavy lift concepts in the last 3 years. These concepts were analyzed for Lunar Exploration Missions, heavy lift capability to Low Earth Orbit (LEO) as well as exploratory missions to other near earth objects in our solar system. With the pending retirement of the Shuttle fleet, our nation will be without a civil heavy lift launch capability, so the future development of a new heavy lift capability is imperative for the exploration and large science missions our Agency has been tasked to deliver. The majority of the heavy lift concepts analyzed by ACO during the last 3 years have been based on liquid oxygen / liquid hydrogen (LOX/LH2) core stage and solids booster stage propulsion technologies (Ares V / Shuttle Derived and their variants). These concepts were driven by the decisions made from the results of the Exploration Systems Architecture Study (ESAS), which in turn, led to the Ares V launch vehicle that has been baselined in the Constellation Program. Now that the decision has been made at the Agency level to cancel Constellation, other propulsion options such as liquid hydrocarbon fuels are back in the exploration trade space. NASA is still planning exploration missions with the eventual destination of Mars and a new heavy lift launch vehicle is still required and will serve as the centerpiece of our nation s next exploration architecture s infrastructure. With an extensive launch vehicle database already developed on LOX/LH2 based heavy lift launch vehicles, ACO initiated a study to look at using a new high thrust (> 1.0 Mlb vacuum thrust) hydrocarbon engine as the primary main stage propulsion in such a launch vehicle.
Posture recognition associated with lifting of heavy objects using Kinect and Adaboost
NASA Astrophysics Data System (ADS)
Raut, Sayli; Navaneethakrishna, M.; Ramakrishnan, S.
2017-12-01
Lifting of heavy objects is the common task in the industries. Recent statistics from the Bureau of Labour indicate, back injuries account for one of every five injuries in the workplace. Eighty per cent of these injuries occur to the lower back and are associated with manual materials handling tasks. According to the Industrial ergonomic safety manual, Squatting is the correct posture for lifting a heavy object. In this work, an attempt has been made to monitor posture of the workers during squat and stoop using 3D motion capture and machine learning techniques. For this, Microsoft Kinect V2 is used for capturing the depth data. Further, Dynamic Time Warping and Euclidian distance algorithms are used for extraction of features. Ada-boost algorithm is used for classification of stoop and squat. The results show that the 3D image data is large and complex to analyze. The application of nonlinear and linear metrics captures the variation in the lifting pattern. Additionally, the features extracted from this metric resulted in a classification accuracy of 85% and 81% respectively. This framework may be put-upon to alert the workers in the industrial ergonomic environments.
Awosan, Kehinde J; Yikawe, Semen S; Oche, Oche M; Oboirien, Muhammad
2017-12-01
Low back pain (LBP) is a common cause of disability worldwide. Healthcare workers are particularly prone to it because of the physical and emotional factors associated with their profession. To determine the prevalence, perception and correlates of LBP among healthcare workers in tertiary health institutions in Sokoto, Nigeria. A cross-sectional study was conducted among 320 healthcare workers selected by multistage sampling technique from July to September 2016. Anthropometry was done for the participants in addition to questionnaire administration. The mean age of the study participants was 36.99 ± 8.23 years. The lifetime, annual, and point prevalence of LBP among the participants were 56.2%, 39.1% and 17.2% respectively. Most, 151 (83.9%) of the 180 participants that have ever experienced LBP reported that it commenced after starting work, and they perceived it to be due to standing for long hours (57.2%), awkward postures (22.2%) and carrying heavy objects/patients at work (20.6%). Older age, female sex, longer duration of practice, overweight/obesity, and lifting heavy objects/patients at work were significantly associated with LBP among the participants. The prevalence of LBP is high among healthcare workers in Sokoto, Nigeria; although it was also associated with older age and female sex, being in practice for 10 years and above, overweight/obesity, and lifting heavy objects/patients at work were the predictors identified. Management of the respective hospitals should prevent workplace exposures to heavy weight/objects by establishing "lift teams" as a temporary measure, and also implement "zero lift programs" in their facilities. Nil.
Infants' prospective control during object manipulation in an uncertain environment.
Gottwald, Janna M; Gredebäck, Gustaf
2015-08-01
This study investigates how infants use visual and sensorimotor information to prospectively control their actions. We gave 14-month-olds two objects of different weight and observed how high they were lifted, using a Qualisys Motion Capture System. In one condition, the two objects were visually distinct (different color condition) in another they were visually identical (same color condition). Lifting amplitudes of the first movement unit were analyzed in order to assess prospective control. Results demonstrate that infants lifted a light object higher than a heavy object, especially when vision could be used to assess weight (different color condition). When being confronted with two visually identical objects of different weight (same color condition), infants showed a different lifting pattern than what could be observed in the different color condition, expressed by a significant interaction effect between object weight and color condition on lifting amplitude. These results indicate that (a) visual information about object weight can be used to prospectively control lifting actions and that (b) infants are able to prospectively control their lifting actions even without visual information about object weight. We argue that infants, in the absence of reliable visual information about object weight, heighten their dependence on non-visual information (tactile, sensorimotor memory) in order to estimate weight and pre-adjust their lifting actions in a prospective manner.
Coordinated interaction of two hydraulic cylinders when moving large-sized objects
NASA Astrophysics Data System (ADS)
Kreinin, G. V.; Misyurin, S. Yu; Lunev, A. V.
2017-12-01
The problem of the choice of parameters and the control scheme of the dynamics system for the coordinated displacement of a large mass object by two hydraulic piston type engines is considered. As a first stage, the problem is solved with respect to a system in which a heavy load of relatively large geometric dimensions is lifted or lowered in the progressive motion by two unidirectional hydraulic cylinders while maintaining the plane of the lifted object in a strictly horizontal position.
... help support the spine. A brace may prevent injuries in people who lift heavy objects at work. But ... Cervical radiculopathy; Herniated intervertebral disk; Prolapsed intervertebral disk; Slipped ...
Definition of avionics concepts for a heavy lift cargo vehicle. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1989-01-01
A cost effective, multiuser simulation, test, and demonstration facility to support the development of avionics systems for future space vehicles is examined. The technology needs and requirements of future Heavy Lift Cargo Vehicles (HLCVs) are analyzed and serve as the basis for sizing of the avionics facility, although the lab is not limited in use to support of HLCVs. Volume 1 provides a summary of the vehicle avionics trade studies, the avionics lab objectives, a summary of the lab's functional requirements and design, physical facility considerations, and cost estimates.
Mattioli, Stefano; Curti, Stefania; De Fazio, Rocco; Mt Cooke, Robin; Zanardi, Francesca; Bonfiglioli, Roberta; Violante, Francesco S
2012-01-01
Objectives Lifting heavy weights involves the Valsalva manoeuvre, which leads to intraocular pressure spikes. We used data from a case-control study to further investigate the hypothesis that occupational lifting is a risk factor for retinal detachment. Methods The study population included 48 cases (patients operated for retinal detachment) and 84 controls (outpatients attending an eye clinic). The odds ratios (OR) of idiopathic retinal detachment were estimated with a logistic regression model (adjusted for age, sex and body mass index). Three indexes were used to examine exposure to lifting; 1) maximum load lifted, 2) average weekly lifting, 3) lifelong cumulative lifting. Results For all indexes, the most exposed subjects showed an increased risk of retinal detachment compared with the unexposed (index 1: OR 3.57, 95% confidence interval [CI] 1.21-10.48; index 2: OR 3.24, 95% CI 1.32-7.97; index 3: OR 2.23, 95% CI 1.27-8.74) and dose-response relationships were apparent. Conclusion These results reinforce the hypothesis that heavy occupational lifting may be a relevant risk factor for retinal detachment. PMID:22953231
Complex Decision-Making Applications for the NASA Space Launch System
NASA Technical Reports Server (NTRS)
Lyles, Garry; Flores, Tim; Hundley, Jason; Monk, Timothy; Feldman, Stuart
2012-01-01
The Space Shuttle program is ending and elements of the Constellation Program are either being cancelled or transitioned to new NASA exploration endeavors. NASA is working diligently to select an optimum configuration for the Space Launch System (SLS), a heavy lift vehicle that will provide the foundation for future beyond LEO large ]scale missions for the next several decades. Thus, multiple questions must be addressed: Which heavy lift vehicle will best allow the agency to achieve mission objectives in the most affordable and reliable manner? Which heavy lift vehicle will allow for a sufficiently flexible exploration campaign of the solar system? Which heavy lift vehicle configuration will allow for minimizing risk in design, test, build and operations? Which heavy lift vehicle configuration will be sustainable in changing political environments? Seeking to address these questions drove the development of an SLS decisionmaking framework. From Fall 2010 until Spring 2011, this framework was formulated, tested, fully documented, and applied to multiple SLS vehicle concepts at NASA from previous exploration architecture studies. This was a multistep process that involved performing FOM-based assessments, creating Pass/Fail gates based on draft threshold requirements, performing a margin-based assessment with supporting statistical analyses, and performing sensitivity analysis on each. This paper discusses the various methods of this process that allowed for competing concepts to be compared across a variety of launch vehicle metrics. The end result was the identification of SLS launch vehicle candidates that could successfully meet the threshold requirements in support of the SLS Mission Concept Review (MCR) milestone.
Complex Decision-Making Applications for the NASA Space Launch System
NASA Technical Reports Server (NTRS)
Lyles, Garry; Flores, Tim; Hundley, Jason; Feldman, Stuart; Monk, Timothy
2012-01-01
The Space Shuttle program is ending and elements of the Constellation Program are either being cancelled or transitioned to new NASA exploration endeavors. The National Aeronautics and Space Administration (NASA) has worked diligently to select an optimum configuration for the Space Launch System (SLS), a heavy lift vehicle that will provide the foundation for future beyond low earth orbit (LEO) large-scale missions for the next several decades. Thus, multiple questions must be addressed: Which heavy lift vehicle will best allow the agency to achieve mission objectives in the most affordable and reliable manner? Which heavy lift vehicle will allow for a sufficiently flexible exploration campaign of the solar system? Which heavy lift vehicle configuration will allow for minimizing risk in design, test, build and operations? Which heavy lift vehicle configuration will be sustainable in changing political environments? Seeking to address these questions drove the development of an SLS decision-making framework. From Fall 2010 until Spring 2011, this framework was formulated, tested, fully documented, and applied to multiple SLS vehicle concepts at NASA from previous exploration architecture studies. This was a multistep process that involved performing figure of merit (FOM)-based assessments, creating Pass/Fail gates based on draft threshold requirements, performing a margin-based assessment with supporting statistical analyses, and performing sensitivity analysis on each. This paper discusses the various methods of this process that allowed for competing concepts to be compared across a variety of launch vehicle metrics. The end result was the identification of SLS launch vehicle candidates that could successfully meet the threshold requirements in support of the SLS Mission Concept Review (MCR) milestone.
Definition of avionics concepts for a heavy lift cargo vehicle, volume 2
NASA Technical Reports Server (NTRS)
1989-01-01
A cost effective, multiuser simulation, test, and demonstration facility to support the development of avionics systems for future space vehicles is defined. The technology needs and requirements of future Heavy Lift Cargo Vehicles (HLCVs) are analyzed and serve as the basis for sizing of the avionics facility although the lab is not limited in use to support of HLCVs. Volume 2 is the technical volume and provides the results of the vehicle avionics trade studies, the avionics lab objectives, the lab's functional requirements and design, physical facility considerations, and a summary cost estimate.
Three-dimensional motion analysis of the lumbar spine during "free squat" weight lift training.
Walsh, James C; Quinlan, John F; Stapleton, Robert; FitzPatrick, David P; McCormack, Damian
2007-06-01
Heavy weight lifting using a squat bar is a commonly used athletic training exercise. Previous in vivo motion studies have concentrated on lifting of everyday objects and not on the vastly increased loads that athletes subject themselves to when performing this exercise. Athletes significantly alter their lumbar spinal motion when performing squat lifting at heavy weights. Controlled laboratory study. Forty-eight athletes (28 men, 20 women) performed 6 lifts at 40% maximum, 4 lifts at 60% maximum, and 2 lifts at 80% maximum. The Zebris 3D motion analysis system was used to measure lumbar spine motion. Exercise was performed as a "free" squat and repeated with a weight lifting support belt. Data obtained were analyzed using SAS. A significant decrease (P < .05) was seen in flexion in all groups studied when lifting at 40% maximum compared with lifting at 60% and 80% of maximum lift. Flexion from calibrated 0 point ranged from 24.7 degrees (40% group) to 6.8 degrees (80% group). A significant increase (P < .05) was seen in extension when lifting at 40% maximum was compared with lifting at 60% and 80% maximum lift. Extension from calibrated 0 point ranged from -1.5 degrees (40% group) to -20.3 degrees (80% group). No statistically significant difference was found between motion seen when exercise was performed as a free squat or when lifting using a support belt in any of the groups studied. Weight lifting using a squat bar causes athletes to significantly hyperextend their lumbar spines at heavier weights. The use of a weight lifting support belt does not significantly alter spinal motion during lifting.
2008-01-01
Objectives To determine whether advice and training on working techniques and lifting equipment prevent back pain in jobs that involve heavy lifting. Data sources Medline, Embase, CENTRAL, Cochrane Back Group’s specialised register, CINAHL, Nioshtic, CISdoc, Science Citation Index, and PsychLIT were searched up to September-November 2005. Review methods The primary search focused on randomised controlled trials and the secondary search on cohort studies with a concurrent control group. Interventions aimed to modify techniques for lifting and handling heavy objects or patients and including measurements for back pain, consequent disability, or sick leave as the main outcome were considered for the review. Two authors independently assessed eligibility of the studies and methodological quality of those included. For data synthesis, we summarised the results of studies comparing similar interventions. We used odds ratios and effect sizes to combine the results in a meta-analysis. Finally, we compared the conclusions of the primary and secondary analyses. Results Six randomised trials and five cohort studies met the inclusion criteria. Two randomised trials and all cohort studies were labelled as high quality. Eight studies looked at lifting and moving patients, and three studies were conducted among baggage handlers or postal workers. Those in control groups received no intervention or minimal training, physical exercise, or use of back belts. None of the comparisons in randomised trials (17 720 participants) yielded significant differences. In the secondary analysis, none of the cohort studies (772 participants) had significant results, which supports the results of the randomised trials. Conclusions There is no evidence to support use of advice or training in working techniques with or without lifting equipment for preventing back pain or consequent disability. The findings challenge current widespread practice of advising workers on correct lifting technique. PMID:18244957
... a week. Stand and sit up straight. Avoid heavy lifting. If you do lift something heavy, bend your knees and keep your back straight. ... an accident, fall, or lifting something that’s too heavy. Acute back pain usually gets better on its ...
Jacks--A Study of Simple Machines.
ERIC Educational Resources Information Center
Parsons, Ralph
This vocational physics individualized student instructional module on jacks (simple machines used to lift heavy objects) contains student prerequisites and objectives, an introduction, and sections on the ratchet bumper jack, the hydraulic jack, the screw jack, and load limitations. Designed with a laboratory orientation, each section consists of…
NASA Technical Reports Server (NTRS)
Lancaster, J. W.
1975-01-01
Various types of lighter-than-air vehicles from fully buoyant to semibuoyant hybrids were examined. Geometries were optimized for gross lifting capabilities for ellipsoidal airships, modified delta planform lifting bodies, and a short-haul, heavy-lift vehicle concept. It is indicated that: (1) neutrally buoyant airships employing a conservative update of materials and propulsion technology provide significant improvements in productivity; (2) propulsive lift for VTOL and aerodynamic lift for cruise significantly improve the productivity of low to medium gross weight ellipsoidal airships; and (3) the short-haul, heavy-lift vehicle, consisting of a simple combination of an ellipsoidal airship hull and existing helicopter componentry, provides significant potential for low-cost, near-term applications for ultra-heavy lift missions.
Cross-Sensory Correspondences: Heaviness is Dark and Low-Pitched.
Walker, Peter; Scallon, Gabrielle; Francis, Brian
2017-07-01
Everyday language reveals how stimuli encoded in one sensory feature domain can possess qualities normally associated with a different domain (e.g., higher pitch sounds are bright, light in weight, sharp, and thin). Such cross-sensory associations appear to reflect crosstalk among aligned (corresponding) feature dimensions, including brightness, heaviness, and sharpness. Evidence for heaviness being one such dimension is very limited, with heaviness appearing primarily as a verbal associate of other feature contrasts (e.g., darker objects and lower pitch sounds are heavier than their opposites). Given the presumed bidirectionality of the crosstalk between corresponding dimensions, heaviness should itself induce the cross-sensory associations observed elsewhere, including with brightness and pitch. Taking care to dissociate effects arising from the size and mass of an object, this is confirmed. When hidden objects varying independently in size and mass are lifted, objects that feel heavier are judged to be darker and to make lower pitch sounds than objects feeling less heavy. These judgements track the changes in perceived heaviness induced by the size-weight illusion. The potential involvement of language, natural scene statistics, and Bayesian processes in correspondences, and the effects they induce, is considered.
Ground and Range Operations for a Heavy-Lift Vehicle: Preliminary Thoughts
NASA Technical Reports Server (NTRS)
Rabelo, Luis; Zhu, Yanshen; Compton, Jeppie; Bardina, Jorge
2011-01-01
This paper discusses the ground and range operations for a Shuttle derived Heavy-Lift Vehicle being launched from the Kennedy Space Center on the Eastern range. Comparisons will be made between the Shuttle and a heavy lift configuration (SLS-ETF MPCV April 2011) by contrasting their subsystems. The analysis will also describe a simulation configuration with the potential to be utilized for heavy lift vehicle processing/range simulation modeling and the development of decision-making systems utilized by the range. In addition, a simple simulation model is used to provide the required critical thinking foundations for this preliminary analysis.
The Relationship between Maternal Employment Status and Pregnancy Outcomes.
Khojasteh, Farnoush; Arbabisarjou, Azizollah; Boryri, Tahere; Safarzadeh, Amneh; Pourkahkhaei, Mohammad
2016-09-01
Women comprise a large percentage of the workforce in industrial countries. In Europe and many other places in the world, women of reproductive age comprise a significant proportion of the workforce at the workplaces, and the rules and regulations require employers to evaluate and minimize health risks to pregnant women. In U.K, 70%, and in the United States 59% of women are employed. In Iran, 13% of women are employed, which comes down to less than 5% at Sistan& Baluchestan Province. Various studies have reported contradictory results about the effects of maternal employment tasks such as standing, repetitive bending, climbing stairs, and lifting heavy objects during pregnancy on fetal growth, preterm birth and other obstetric complications. Given the growing number of working women, and potential complications for mothers, the present study has conducted to investigate the relationship between maternal employment status and pregnancy outcomes in Zahedan city, Iran. This cross-sectional study was based on survey conducted on 227 women (121 housewives, and 106 employed women) attending health centers in 2014. Using purposive convenient sampling method, eligible pregnant mothers (with no chronic diseases, singleton pregnancy, gravida 1-3, and no addiction) were selected as study subjects. Data were collected and recorded through a researcher-made questionnaire and also from mothers' medical records, including personal details, prenatal and labor complications, and infant's details. Collected data were fed into the SPSS version 21(IBM Corp, USA). Frequency of placental abruption was greater among housewives (P=0.02), and a significant relationship was found between employment status and lifting heavy objects, which was more frequent among housewives (P=0.01). Lifting heavy objects during pregnancy was only significantly related to reduced amniotic fluid (P=0.001) and low birth weight (P=0.01). Frequency of preterm labor was higher among housewives compared to employed women, but not significantly. Type of delivery was significantly related to employment, and employed mothers had more cesarean deliveries (P=0.0001). The results suggest more frequent lifting of heavy objects by housewives than by employed mothers, leading to increased complications such as reduced amniotic fluid, placental abruption, and low birth weight. Perhaps due to higher education levels, frequency of cesarean section and preterm labor was higher among employed mothers. However, employment alone does not predict pregnancy outcomes.
Launch Vehicle Demonstrator Using Shuttle Assets
NASA Technical Reports Server (NTRS)
Creech, Dennis M.; Threet, Grady E., Jr.; Philips, Alan D.; Waters, Eric D.
2011-01-01
The Advanced Concepts Office at NASA's George C. Marshall Space Flight Center undertook a study to define candidate early heavy lift demonstration launch vehicle concepts derived from existing space shuttle assets. The objective was to determine the performance capabilities of these vehicles and characterize potential early demonstration test flights. Given the anticipated budgetary constraints that may affect America's civil space program, and a lapse in U.S. heavy launch capability with the retirement of the space shuttle, an early heavy lift launch vehicle demonstration flight would not only demonstrate capabilities that could be utilized for future space exploration missions, but also serve as a building block for the development of our nation s next heavy lift launch system. An early heavy lift demonstration could be utilized as a test platform, demonstrating capabilities of future space exploration systems such as the Multi Purpose Crew Vehicle. By using existing shuttle assets, including the RS-25D engine inventory, the shuttle equipment manufacturing and tooling base, and the segmented solid rocket booster industry, a demonstrator concept could expedite the design-to-flight schedule while retaining critical human skills and capital. In this study two types of vehicle designs are examined. The first utilizes a high margin/safety factor battleship structural design in order to minimize development time as well as monetary investment. Structural design optimization is performed on the second, as if an operational vehicle. Results indicate low earth orbit payload capability is more than sufficient to support various vehicle and vehicle systems test programs including Multi-Purpose Crew Vehicle articles. Furthermore, a shuttle-derived, hydrogen core vehicle configuration offers performance benefits when trading evolutionary paths to maximum capability.
Heavy Lift Launch Capability with a New Hydrocarbon Engine
NASA Technical Reports Server (NTRS)
Threet, Grady E., Jr.; Holt, James B.; Philips, Alan D.; Garcia, Jessica A.
2011-01-01
The Advanced Concepts Office at NASA's George C. Marshall Space Flight Center was tasked to define the thrust requirement of a new liquid oxygen rich staged combustion cycle hydrocarbon engine that could be utilized in a launch vehicle to meet NASA s future heavy lift needs. Launch vehicle concepts were sized using this engine for different heavy lift payload classes. Engine out capabilities for one of the heavy lift configurations were also analyzed for increased reliability that may be desired for high value payloads or crewed missions. The applicability for this engine in vehicle concepts to meet military and commercial class payloads comparable to current ELV capability was also evaluated.
2003-07-22
KENNEDY SPACE CENTER, FLA. - A solid rocket booster (SRB) is lifted to vertical on Launch Complex 17-B, Cape Canaveral Air Force Station. The SRB will be attached to the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF). The Delta II Heavy features nine 46-inch-diameter, stretched SRBs. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
Is it important to know the load mass in lifting tasks to prevent falls?
Azevedo, Rui; Mourão, Paulo; Abade, Eduardo; Carvalho, Alberto
2015-01-01
Lifting objects without knowing its weight may result in postural imbalances and be a risk factor for falls. The aim of this study was to examine the influence of the load knowledge in postural balance when lifting different weight loads. Thirteen male subjects (23.8 ± 3.1 years; 73.5 ± 7.8 kg; 179.1 ± 7.5 cm; foot length, 25.7 ± 1.2 cm) participated in the study. The effect of the weight overestimation on the postural stability was measured by the Index of Proximity to Stability Boundary (IPSB) and through the anterior-posterior and medio-lateral lengths displacements of the Center of Pressure (CoP). The results showed an increase in the IPSB when the 5 kg lifting task was performed with load knowledge. Moreover, the length of the antero-posterior and medio-lateral CoP displacement was reduced in the 5 kg lift with knowledge. Results showed that the lack of the loads' knowledge may lead to balance loss. Thus, when the preparation processes are not adequate, picking up similar objects with different loads may increase the risk of fall, mainly when a light weight is suddenly lifted up after a heavy one.
NASA Astrophysics Data System (ADS)
Kamat, S. R.; Zula, N. E. N. Md; Rayme, N. S.; Shamsuddin, S.; Husain, K.
2017-06-01
Warehouse is an important entity in manufacturing organizations. It usually involves working activities that relate ergonomics risk factors including repetitive and heavy lifting activities. Aerospace manufacturing workers are prone of having musculoskeletal disorder (MSD) problems because of the manual handling activities. From the questionnaires is states that the workers may have experience discomforts experience during manual handling work. Thus, the objectives of this study are; to investigate the body posture and analyze the level of discomfort for body posture of the workers while performing the repetitive and heavy lifting activities that cause MSD problems and to suggest proper body posture and alternatives to reduce the MSD related problems. Methodology of this study involves interviews, questionnaires distribution, anthropometry measurements, RULA (Right Upper Limb Assessment) assessment sheet and CATIA V5 RULA analysis, NIOSH lifting index (LI) and recommended weight limit (RWL). Ten workers are selected for pilot study and as for anthropometry measurement all workers in the warehouse department were involved. From the first pilot study, the RULA assessment score in CATIA V5 shows the highest score which is 7 for all postures and results after improvement of working posture is very low hence, detecting weight of the material handling is not in recommendation. To reduce the risk of MSD through the improvisation of working posture, the weight limit is also calculated in order to have a RWL for each worker. Therefore, proposing a guideline for the aerospace workers involved with repetitive movement and excessive lifting will help in reducing the risk of getting MSD.
Ghiasi, Mohammad Sadegh; Arjmand, Navid; Boroushaki, Mehrdad; Farahmand, Farzam
2016-03-01
A six-degree-of-freedom musculoskeletal model of the lumbar spine was developed to predict the activity of trunk muscles during light, moderate and heavy lifting tasks in standing posture. The model was formulated into a multi-objective optimization problem, minimizing the sum of the cubed muscle stresses and maximizing the spinal stability index. Two intelligent optimization algorithms, i.e., the vector evaluated particle swarm optimization (VEPSO) and nondominated sorting genetic algorithm (NSGA), were employed to solve the optimization problem. The optimal solution for each task was then found in the way that the corresponding in vivo intradiscal pressure could be reproduced. Results indicated that both algorithms predicted co-activity in the antagonistic abdominal muscles, as well as an increase in the stability index when going from the light to the heavy task. For all of the light, moderate and heavy tasks, the muscles' activities predictions of the VEPSO and the NSGA were generally consistent and in the same order of the in vivo electromyography data. The proposed methodology is thought to provide improved estimations for muscle activities by considering the spinal stability and incorporating the in vivo intradiscal pressure data.
Civil markets for buoyant heavy-lift vehicles
NASA Technical Reports Server (NTRS)
Mettam, P. J.; Hansen, D.; Ardema, M. D.
1981-01-01
Worldwide civil markets for heavy lift airships were investigated. Substantial potential market demand was identified for payloads of from 13 to 800 tons. The largest markets appear to be in applications to relieve port congestion, construction of power generating plants, and, most notably, logging. Because of significant uncertainties both in vehicle and market characteristics, further analysis will be necessary to verify the identified market potential of heavy lift airship concepts.
Heavy Lift for Exploration: Options and Utilization
NASA Technical Reports Server (NTRS)
Creech, Steve; Sumrall, Phil
2010-01-01
Every study of exploration capabilities since the Apollo Program has recommended the renewal of a heavy lift launch capability for the United States. NASA is aggressively pursuing that capability. This paper will discuss several aspects of that effort and the potential uses for that heavy lift capability. The need for heavy lift was cited most recent in the findings of the Review of U.S. Human Space Flight Plans Committee. Combined with considerations of launch availability and on-orbit operations, the Committee finds that exploration will benefit from the availability of a heavy-lift vehicle, the report said. In addition, heavy lift would enable the launching of large scientific observatories and more capable deep-space missions. It may also provide benefit in national security applications. The most recent focus of NASA s heavy lift effort is the Ares V cargo launch vehicle, which is part of the Constellation Program architecture for human exploration beyond low Earth orbit (LEO). The most recent point-of-departure configuration of the Ares V was approved during the Lunar Capabilities concept Review (LCCR) in 2008. The Ares V first stage propulsion system consists of a core stage powered by six commercial liquid hydrogen/liquid oxygen (LH2/LOX) RS-68 engines, flanked by two 5.5-segment solid rocket boosters (SRBs) based on the 5-segment Ares I first stage. The boosters use the same Polybutadiene Acrylonitrile (PBAN) propellant as the Space Shuttle. Atop the core stage is the Earth departure stage (EDS), powered by a single J-2X upper stage engine based on the Ares I upper stage engine. The 33-foot-diameter payload shroud can enclose a lunar lander, scientific instruments, or other payloads. Since LCCR, NASA has continued to refine the design through several successive internal design cycles. In addition, NASA has worked to quantify the broad national consensus for heavy lift in ways that, to the extent possible, meet the needs of the user community.
NASA Technical Reports Server (NTRS)
1976-01-01
A Heavy Lift Airship combining buoyant lift derived from a conventional helium-filled non-rigid airship hull with propulsive lift derived from conventional helicopter rotors was investigated. The buoyant lift essentially offsets the empty weight of the vehicle; thus the rotor thrust is available for useful load and to maneuver and control the vehicle. Such a vehicle is capable of providing a quantum increase in current vertical lifting capability. Certain critical deficiencies of past airships are significantly minimized or eliminated.
46 CFR 525.1 - Purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ship's tackle. (11) Heavy lift means the service of providing heavy lift cranes and equipment for lifting cargo. (12) Loading and unloading means the service of loading or unloading cargo between any... storage spaces, cold storage plants, cranes, grain elevators and/or bulk cargo loading and/or unloading...
Final design report of a personnel launch system and a family of heavy lift launch vehicles
NASA Technical Reports Server (NTRS)
Tupa, James; Merritt, Debbie; Riha, David; Burton, Lee; Kubinski, Russell; Drake, Kerry; Mann, Darrin; Turner, Ken
1991-01-01
The objective was to design both a Personnel Launch System (PLS) and a family of Heavy Lift Launch Vehicles (FHLLVs) that provide low cost and efficient operation in missions not suited for the Shuttle. The PLS vehicle is designed primarily for space station crew rotation and emergency crew return. The final design of the PLS vehicle and its interior is given. The mission of the FHLLVs is to place large, massive payloads into Earth orbit with payload flexibility being considered foremost in the design. The final design of three launch vehicles was found to yield a payload capacity range from 20 to 200 mt. These designs include the use of multistaged, high thrust liquid engines mounted on the core stages of the rocket.
Advanced underwater lift device
NASA Technical Reports Server (NTRS)
Flanagan, David T.; Hopkins, Robert C.
1993-01-01
Flexible underwater lift devices ('lift bags') are used in underwater operations to provide buoyancy to submerged objects. Commercially available designs are heavy, bulky, and awkward to handle, and thus are limited in size and useful lifting capacity. An underwater lift device having less than 20 percent of the bulk and less than 10 percent of the weight of commercially available models was developed. The design features a dual membrane envelope, a nearly homogeneous envelope membrane stress distribution, and a minimum surface-to-volume ratio. A proof-of-concept model of 50 kg capacity was built and tested. Originally designed to provide buoyancy to mock-ups submerged in NASA's weightlessness simulators, the device may have application to water-landed spacecraft which must deploy flotation upon impact, and where launch weight and volume penalties are significant. The device may also be useful for the automated recovery of ocean floor probes or in marine salvage applications.
Peters, Megan A. K.; Balzer, Jonathan; Shams, Ladan
2015-01-01
If one nondescript object’s volume is twice that of another, is it necessarily twice as heavy? As larger objects are typically heavier than smaller ones, one might assume humans use such heuristics in preparing to lift novel objects if other informative cues (e.g., material, previous lifts) are unavailable. However, it is also known that humans are sensitive to statistical properties of our environments, and that such sensitivity can bias perception. Here we asked whether statistical regularities in properties of liftable, everyday objects would bias human observers’ predictions about objects’ weight relationships. We developed state-of-the-art computer vision techniques to precisely measure the volume of everyday objects, and also measured their weight. We discovered that for liftable man-made objects, “twice as large” doesn’t mean “twice as heavy”: Smaller objects are typically denser, following a power function of volume. Interestingly, this “smaller is denser” relationship does not hold for natural or unliftable objects, suggesting some ideal density range for objects designed to be lifted. We then asked human observers to predict weight relationships between novel objects without lifting them; crucially, these weight predictions quantitatively match typical weight relationships shown by similarly-sized objects in everyday environments. These results indicate that the human brain represents the statistics of everyday objects and that this representation can be quantitatively abstracted and applied to novel objects. Finally, that the brain possesses and can use precise knowledge of the nonlinear association between size and weight carries important implications for implementation of forward models of motor control in artificial systems. PMID:25768977
2003-07-22
KENNEDY SPACE CENTER, FLA. - A solid rocket booster (SRB) for the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF) is lifted off its transporter on Launch Complex 17-B, Cape Canaveral Air Force Station. The SRB will be added to the launch vehicle in the background. The Delta II Heavy features nine 46-inch-diameter, stretched SRBs. SIRTF, consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
CH-53K Heavy Lift Replacement Helicopter (CH-53K)
2015-12-01
Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-390 CH-53K Heavy Lift Replacement Helicopter (CH-53K) As of FY 2017 President’s Budget...December 2015 SAR March 4, 2016 10:04:18 UNCLASSIFIED 4 Col Henry Vanderborght PMA-261 Heavy Lift Helicopters Program Executive Office - Air, Anti...Replacement Helicopter (CH-53K) DoD Component Navy Responsible Office References SAR Baseline (Development Estimate) Defense Acquisition Executive (DAE
The Use of Buoyancy to Lift Heavy Objects from the Sea.
1981-06-01
thoroughly piled and grouted to the ocean floor. These piles must be cut below -12- the mud line with explosive charges or diver air arc. Either way the pile...been considered. Re-use involves severing the jacket from the seabed, rotating the jacket to the horizontal and lifting it through the air / sea...stability on retraction through the air / sea interface. Accu -’i "l -- - F 1e. 4 i s - DD Forvu 1473 UNCIJAS 1Jak 3 O P’w$P~tkeDl 69CNIV C&W I
... which may be caused by a fall or heavy lifting. Back pain that lasts more than three ... back pain include: Muscle or ligament strain. Repeated heavy lifting or a sudden awkward movement may strain ...
Small helicopter could find niche in remote heavy lift operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-02-21
A new helicopter specifically designed for external vertical lift operations, such as moving transportable rig components or seismic equipment in remote locations, operates more efficiently than most other medium or heavy-lift helicopters, according to manufacturer Kaman Aerospace. The single-pilot helicopter was designed as an aerial truck for efficient lifting of heavy loads but with the operating costs of a light-lift craft. The K-Max helicopter can lift more pounds of cargo per gallon of fuel consumed than other similar helicopters, according to Kaman. For example, to transport a 5,000-lb load at an elevation of 8,000 ft, the K-Max helicopter consumes 85more » gal of fuel/hr. Under the same load conditions, the next most efficient commercially available helicopter consumes 160 gal of fuel/hr and requires two pilots. The 4,500-lb helicopter can lift 5,000 lb to an altitude of 8,000 ft or about 6,000 lb at low altitudes.« less
Progress on Enabling Unprecedented Payloads for Space in the 21st Century
NASA Technical Reports Server (NTRS)
Creech, Steve
2010-01-01
The NASA Ares Projects Office is developing the launch vehicles to move the United States and humanity beyond low earth orbit. Ares V is a heavy lift vehicle being designed to launch cargo into LEO and transfer cargo and crews to the Moon. Heavy Lift is a national asset with applications to science, business, and national defense. This is a snapshot of development. Ares V is early in the requirements formulation stage of development pending White House and Congressional deliberations. Work date will be useful to any future heavy lift development.
NASA Heavy Lift Rotorcraft Systems Investigation
NASA Technical Reports Server (NTRS)
Johnson, Wayne; Yamauchi, Gloria K.; Watts, Michael E.
2005-01-01
The NASA Heavy Lift Rotorcraft Systems Investigation examined in depth several rotorcraft configurations for large civil transport, designed to meet the technology goals of the NASA Vehicle Systems Program. The investigation identified the Large Civil Tiltrotor as the configuration with the best potential to meet the technology goals. The design presented was economically competitive, with the potential for substantial impact on the air transportation system. The keys to achieving a competitive aircraft were low drag airframe and low disk loading rotors; structural weight reduction, for both airframe and rotors; drive system weight reduction; improved engine efficiency; low maintenance design; and manufacturing cost comparable to fixed-wing aircraft. Risk reduction plans were developed to provide the strategic direction to support a heavy-lift rotorcraft development. The following high risk areas were identified for heavy lift rotorcraft: high torque, light weight drive system; high performance, structurally efficient rotor/wing system; low noise aircraft; and super-integrated vehicle management system.
Designs and Technology Requirements for Civil Heavy Lift Rotorcraft
NASA Technical Reports Server (NTRS)
Johnson, Wayne; Yamauchi, Gloria K.; Watts, Michael E.
2006-01-01
The NASA Heavy Lift Rotorcraft Systems Investigation examined in depth several rotorcraft configurations for large civil transport, designed to meet the technology goals of the NASA Vehicle Systems Program. The investigation identified the Large Civil Tiltrotor as the configuration with the best potential to meet the technology goals. The design presented was economically competitive, with the potential for substantial impact on the air transportation system. The keys to achieving a competitive aircraft were low drag airframe and low disk loading rotors; structural weight reduction, for both airframe and rotors; drive system weight reduction; improved engine efficiency; low maintenance design; and manufacturing cost comparable to fixed-wing aircraft. Risk reduction plans were developed to provide the strategic direction to support a heavy-lift rotorcraft development. The following high risk areas were identified for heavy lift rotorcraft: high torque, light weight drive system; high performance, structurally efficient rotor/wing system; low noise aircraft; and super-integrated vehicle management system.
Launch Vehicle Demonstrator Using Shuttle Assets
NASA Technical Reports Server (NTRS)
Threet, Grady E., Jr.; Creech, Dennis M.; Philips, Alan D.; Water, Eric D.
2011-01-01
The Marshall Space Flight Center Advanced Concepts Office (ACO) has the leading role for NASA s preliminary conceptual launch vehicle design and performance analysis. Over the past several years the ACO Earth-to-Orbit Team has evaluated thousands of launch vehicle concept variations for a multitude of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS). NASA plans to continue human space exploration and space station utilization. Launch vehicles used for heavy lift cargo and crew will be needed. One of the current leading concepts for future heavy lift capability is an inline one and a half stage concept using solid rocket boosters (SRB) and based on current Shuttle technology and elements. Potentially, the quickest and most cost-effective path towards an operational vehicle of this configuration is to make use of a demonstrator vehicle fabricated from existing shuttle assets and relying upon the existing STS launch infrastructure. Such a demonstrator would yield valuable proof-of-concept data and would provide a working test platform allowing for validated systems integration. Using shuttle hardware such as existing RS-25D engines and partial MPS, propellant tanks derived from the External Tank (ET) design and tooling, and four-segment SRB s could reduce the associated upfront development costs and schedule when compared to a concept that would rely on new propulsion technology and engine designs. There are potentially several other additional benefits to this demonstrator concept. Since a concept of this type would be based on man-rated flight proven hardware components, this demonstrator has the potential to evolve into the first iteration of heavy lift crew or cargo and serve as a baseline for block upgrades. This vehicle could also serve as a demonstration and test platform for the Orion Program. Critical spacecraft systems, re-entry and recovery systems, and launch abort systems of Orion could also be demonstrated in early test flights of the launch vehicle demo. Furthermore, an early demonstrator of this type would provide a stop-gap for retaining critical human capital and infrastructure while affording the current emerging generation of young engineers opportunity to work with and capture lessons learned from existing STS program offices and personnel, who were integral in the design and development of the Space Shuttle before these resources are no longer available. The objective of this study is to define candidate launch vehicle demonstration concepts that are based on Space Shuttle assets and determine their performance capabilities and how these demonstration vehicles could evolve to a heavy lift capability to low earth orbit.
NASA Technical Reports Server (NTRS)
Sumrall, Phil
2008-01-01
The NASA Ares Projects are developing the launch vehicles to move the United States and humanity beyond low earth orbit. Ares 1 is a crewed vehicle, and Ares V is a heavy-lift vehicle being designed to send crews and cargo to the Moon. The Ares V design is evolving and maturing toward an authority-to-proceed milestone in 2011. The Ares V vehicle will be considered a national asset, opening new worlds and creating unmatched opportunities for human exploration, science, national security, and space business.
Large Scale Composite Manufacturing for Heavy Lift Launch Vehicles
NASA Technical Reports Server (NTRS)
Stavana, Jacob; Cohen, Leslie J.; Houseal, Keth; Pelham, Larry; Lort, Richard; Zimmerman, Thomas; Sutter, James; Western, Mike; Harper, Robert; Stuart, Michael
2012-01-01
Risk reduction for the large scale composite manufacturing is an important goal to produce light weight components for heavy lift launch vehicles. NASA and an industry team successfully employed a building block approach using low-cost Automated Tape Layup (ATL) of autoclave and Out-of-Autoclave (OoA) prepregs. Several large, curved sandwich panels were fabricated at HITCO Carbon Composites. The aluminum honeycomb core sandwich panels are segments of a 1/16th arc from a 10 meter cylindrical barrel. Lessons learned highlight the manufacturing challenges required to produce light weight composite structures such as fairings for heavy lift launch vehicles.
Definition of avionics concepts for a heavy lift cargo vehicle, appendix A
NASA Technical Reports Server (NTRS)
1989-01-01
The major objective of the study task was to define a cost effective, multiuser simulation, test, and demonstration facility to support the development of avionics systems for future space vehicles. This volume provides the results of the main simulation processor selection study and describes some proof-of-concept demonstrations for the avionics test bed facility.
The Challenges Affecting Heavy Lift Aircraft Development to Support Sea Basing
2005-06-17
effect timely development of heavy lift aircraft to support sea basing. 15. SUBJECT TERMS Aircraft Development, Aircraft Acquisition, Aircraft Program...bullet theory, vision, technology, and politics are the most prevalent factors, amongst many, that could potentially effect timely development of heavy...discussion will focus on some current examples of aircraft that will support sea basing and on factors effecting their development. 14 Secondary Questions
Lifting Safety: Tips To Help Prevent Back Injuries
... injury from lifting? How can I improve my environment to reduce my risk of back injuries? Resources National Safety Council, Lift and Carry U.S. Department of Labor: Occupational Safety and Health Administration, Heavy Lifting Last Updated: March 15, 2017 ...
Assembly vs. direct launch of transfer vehicles
NASA Technical Reports Server (NTRS)
Katzberg, Stephen J.; Pritchard, E. Brian
1990-01-01
A top level assessment is performed of the relative impacts of on-orbit assembly of the lunar or Mars transfer vehicles versus direct launch. The objective is to identify the major option paths for the Earth-to-orbit, ETO, transportation systems. Heavy lift launch vehicles, if large enough, could reduce or eliminate on-orbit assembly. However, with every new approach, there are always counter-balancing considerations and it is the objective to begin the delineation of the necessary follow-on trade study issues.
Feasibility study of modern airships. Phase 2: Executive summary
NASA Technical Reports Server (NTRS)
1977-01-01
A feasibility study of modern airships has been completed. Three promising modern airship systems' concepts and their associated missions were studied; (1) a heavy-lift airship, employing a non-rigid hull and a significant amount of rotor lift, used for short-range transport and positioning of heavy military and civil payloads, (2) a VTOL (vertical take-off and landing), metalclad, partially buoyant airship used as a short-haul commercial transport; and (3) a class of fully-buoyant airships used for long-endurance Navy missions. The heavy-lift airship concept offers a substantial increase in vertical lift capability over existing systems and is projected to have lower total operating costs per ton-mile. The VTOL airship transport concept appears to be economically competitive with other VTOL aircraft concepts but can attain significantly lower noise levels. The fully-buoyant airship concept can provide an airborne platform with long endurance that satisfies many Navy mission requirements.
A mass-density model can account for the size-weight illusion.
Wolf, Christian; Bergmann Tiest, Wouter M; Drewing, Knut
2018-01-01
When judging the heaviness of two objects with equal mass, people perceive the smaller and denser of the two as being heavier. Despite the large number of theories, covering bottom-up and top-down approaches, none of them can fully account for all aspects of this size-weight illusion and thus for human heaviness perception. Here we propose a new maximum-likelihood estimation model which describes the illusion as the weighted average of two heaviness estimates with correlated noise: One estimate derived from the object's mass, and the other from the object's density, with estimates' weights based on their relative reliabilities. While information about mass can directly be perceived, information about density will in some cases first have to be derived from mass and volume. However, according to our model at the crucial perceptual level, heaviness judgments will be biased by the objects' density, not by its size. In two magnitude estimation experiments, we tested model predictions for the visual and the haptic size-weight illusion. Participants lifted objects which varied in mass and density. We additionally varied the reliability of the density estimate by varying the quality of either visual (Experiment 1) or haptic (Experiment 2) volume information. As predicted, with increasing quality of volume information, heaviness judgments were increasingly biased towards the object's density: Objects of the same density were perceived as more similar and big objects were perceived as increasingly lighter than small (denser) objects of the same mass. This perceived difference increased with an increasing difference in density. In an additional two-alternative forced choice heaviness experiment, we replicated that the illusion strength increased with the quality of volume information (Experiment 3). Overall, the results highly corroborate our model, which seems promising as a starting point for a unifying framework for the size-weight illusion and human heaviness perception.
NASA Technical Reports Server (NTRS)
Friedmann, P. P.
1984-01-01
An aeroelastic model suitable for the study of aeroelastic and structural dynamic effects in multirotor vehicles simulating a hybrid heavy lift vehicle was developed and applied to the study of a number of diverse problems. The analytical model developed proved capable of modeling a number of aeroelastic problems, namely: (1) isolated blade aeroelastic stability in hover and forward flight, (2) coupled rotor/fuselage aeromechanical problem in air or ground resonance, (3) tandem rotor coupled rotor/fuselage problems, and (4) the aeromechanical stability of a multirotor vehicle model representing a hybrid heavy lift airship (HHLA). The model was used to simulate the ground resonance boundaries of a three bladed hingeless rotor model, including the effect of aerodynamic loads, and the theoretical predictions compared well with experimental results. Subsequently the model was used to study the aeromechanical stability of a vehicle representing a hybrid heavy lift airship, and potential instabilities which could occur for this type of vehicle were identified. The coupling between various blade, supporting structure and rigid body modes was identified.
NASA Technical Reports Server (NTRS)
Whitney, E. Dow
1992-01-01
The Bush Administration has directed NASA to prepare for a return to the Moon and on to Mars - the Space Exploration Initiative. To meet this directive, powerful rocket boosters will be required in order to lift payloads that may reach the half-million pound range into low earth orbit. In this report an analysis is presented on logistics and potential hazards of the propellant systems envisioned for future Saturn 5 derived heavy lift launch vehicles. In discussing propellant logistics, particular attention has been given to possible problems associated with procurement, transportation, and storage of RP-1, HL2, and LOX, the heavy lift launch vehicle propellants. Current LOX producing facilities will need to be expanded and propellant storage and some support facilities will require relocation if current Launch Pads 39A and/or 39B are to be used for future heavy noise-abatement measures. Included in the report is a discussion of suggested additional studies, primarily economic and environmental, which should be undertaken in support of the goals of the Space Exploration Initiative.
ERIC Educational Resources Information Center
2000
All kids know the word "work." But they probably don't understand that work happens whenever a force is used to move something--whether it's lifting a heavy object or playing on a see-saw. All About Simple Machines introduces kids to the concepts of forces, work and how machines are used to make work easier. Six simple machines are…
NASA Technical Reports Server (NTRS)
1976-01-01
All themes require some form of advanced propulsion capabilities to achieve their stated objectives. Requirements cover a broad spectrum ranging from a new generation of heavy lift launch vehicles to low thrust, long lift system for on-orbit operations. The commonality extant between propulsive technologies was established and group technologies were grouped into vehicle classes by functional capability. The five classes of launch vehicles identified by the space transportation theme were augmented with a sixth class, encompassing planetary and on-orbit operations. Propulsion technologies in each class were then ranked, and assigned priority numbers. Prioritized technologies were matched to theme requirements.
Vehicle concepts and technology requirements for buoyant heavy-lift systems
NASA Technical Reports Server (NTRS)
Ardema, M. D.
1981-01-01
Several buoyant-vehicle (airship) concepts proposed for short hauls of heavy payloads are described. Numerous studies identified operating cost and payload capacity advantages relative to existing or proposed heavy-lift helicopters for such vehicles. Applications involving payloads of from 15 tons up to 800 tons were identified. The buoyant quad-rotor concept is discussed in detail, including the history of its development, current estimates of performance and economics, currently perceived technology requirements, and recent research and technology development. It is concluded that the buoyant quad-rotor, and possibly other buoyant vehicle concepts, has the potential of satisfying the market for very heavy vertical lift but that additional research and technology development are necessary. Because of uncertainties in analytical prediction methods and small-scale experimental measurements, there is a strong need for large or full-scale experiments in ground test facilities and, ultimately, with a flight research vehicle.
Weight and cost estimating relationships for heavy lift airships
NASA Technical Reports Server (NTRS)
Gray, D. W.
1979-01-01
Weight and cost estimating relationships, including additional parameters that influence the cost and performance of heavy-lift airships (HLA), are discussed. Inputs to a closed loop computer program, consisting of useful load, forward speed, lift module positive or negative thrust, and rotors and propellers, are examined. Detail is given to the HLA cost and weight program (HLACW), which computes component weights, vehicle size, buoyancy lift, rotor and propellar thrust, and engine horse power. This program solves the problem of interrelating the different aerostat, rotors, engines and propeller sizes. Six sets of 'default parameters' are left for the operator to change during each computer run enabling slight data manipulation without altering the program.
Ares V: Progress Toward Unprecedented Heavy Lift
NASA Technical Reports Server (NTRS)
Sumrall, Phil
2010-01-01
Every major examination of America s spaceflight capability since the Apollo program has highlighted and reinforced the need for a heavy lift vehicle for human exploration, science, national security, and commercial development. The Ares V is NASA s most recent effort to address this gap and provide the needed heavy lift capability for NASA and the nation. An Ares V-class heavy lift capability is important to supporting beyond earth orbit (BEO) human exploration. Initially, that consists of exploration of the Moon vastly expanded from the narrow equatorial Apollo missions to a global capability that includes the interesting polar regions. It also enables a permanent human outpost. Under the current program of record, both the Ares V and the lunar exploration it enables serve as a significant part of the technology and experience base for exploration beyond the Moon, including Mars, asteroids, and other destinations. The Ares V is part of NASA s Constellation Program architecture. The Ares V remains in an early stage of concept development, while NASA focused on development of the Ares I crew launch vehicle to replace the Space Shuttle fleet. However, Ares V development has benefitted from its commonality with Ares I, the Shuttle, and contemporary programs on which its design is based. The Constellation program is currently slated for cancellation under the proposed 2011 federal budget, pending review by the legislative branch. However, White House guidance on its 2011 budget retains funding for heavy lift research. This paper will discuss progress to date on the Ares V and its potential utility to payload users.
Alternative Fuels Data Center: CNG Refuse Haulers Do Heavy Lifting in New
YorkA> CNG Refuse Haulers Do Heavy Lifting in New York to someone by E-mail Share Alternative combat the rising cost of fuel. For information about this project, contact Greater Long Island Clean Maryland Public Television Related Videos Photo of a car Hydrogen Powers Fuel Cell Vehicles in California
An economic comparison of three heavy lift airborne systems
NASA Technical Reports Server (NTRS)
Carson, B. H.
1975-01-01
Current state of art trends indicate that a 50-ton payload helicopter could be built by the end of the decade. However, alternative aircraft that employ LTA principles are shown to be more economically attractive, both in terms of investment and operating costs for the ultra-heavy lift role. Costing methodology follows rationale developed by airframe manufacturers, and includes learning curve factors.
Performance of Advanced Heavy-Lift, High-Speed Rotorcraft Configurations
NASA Technical Reports Server (NTRS)
Johnson, Wayne; Yeo, Hyeonsoo; Acree, C. W., Jr.
2007-01-01
The aerodynamic performance of rotorcraft designed for heavy-lift and high-speed cruise is examined. Configurations considered include the tiltrotor, the compound helicopter, and the lift-offset rotor. Design conditions are hover and 250-350 knot cruise, at 5k/ISA+20oC (civil) or 4k/95oF (military); with cruise conditions at 4000 or 30,000 ft. The performance was calculated using the comprehensive analysis CAMRAD II, emphasizing rotor optimization and performance, including wing-rotor interference. Aircraft performance was calculated using estimates of the aircraft drag and auxiliary propulsion efficiency. The performance metric is total power, in terms of equivalent aircraft lift-to-drag ratio L/D = WV/P for cruise, and figure of merit for hover.
The weight of time: affordances for an integrated magnitude system.
Lu, Aitao; Mo, Lei; Hodges, Bert H
2011-12-01
In five experiments we explored the effects of weight on time in different action contexts to test the hypothesis that an integrated magnitude system is tuned to affordances. Larger magnitudes generally seem longer; however, Lu and colleagues (2009) found that if numbers were presented as weights in a range heavy enough to affect lifting, the "larger seems longer" effect was enhanced, but it was eliminated with weights too light to affect lifting. Experiments 1 and 2 revealed that actually lifting kilogram and gram weights had effects parallel to symbolized weights, suggesting that Lu et al.'s task implicitly evoked a lifting context. Experiments 3 and 4 showed that weights too heavy (e.g., tons) or too light to be discriminated by lifting, but relevant to other affordances (e.g., grams of a toxin) had effects on time as large or larger than for kilograms. Experiment 5 showed that the effect for grams in a toxicology context did not generalize to the lifting task of Experiment 2. Weight appears to integrate with other magnitudes when it is relevant to meaningful actions, including but not limited to lifting.
Larsen, Pernille Stemann; Strandberg-Larsen, Katrine; Juhl, Mette; Svendsen, Susanne Wulff; Bonde, Jens Peter; Andersen, Anne-Marie Nybo
2013-01-01
Pelvic pain during pregnancy is a common ailment, and the disease is a major cause of sickness absence during pregnancy. It is plausible that occupational lifting may be a risk factor of pelvic pain during pregnancy, but no previous studies have examined this specific exposure. The aim of this study was to examine the association between occupational lifting and pelvic pain during pregnancy. The study comprised 50 143 pregnant women, enrolled in the Danish National Birth Cohort in the period from 1996-2002. During pregnancy, the women provided information on occupational lifting (weight load and daily frequency), and six months post partum on pelvic pain. Adjusted odds ratios for pelvic pain during pregnancy according to occupational lifting were calculated by logistic regression. Any self-reported occupational lifting (>1 time/day and loads weighing >10 kg) was associated with an increased risk of pelvic pain during pregnancy as compared to no such lifting. A confounder-adjusted exposure-response relation was observed between self-reported total loads lifted and pelvic pain during pregnancy. Daily lifting of both medium (11-20 kg) and heavy loads (>20 kg) were associated with increased risk, and the highest risk was observed among women who lifted heavy loads independent of exposure to medium loads. Occupational lifting may increase the risk of pelvic pain during pregnancy.
The use of buoyancy to lift heavy objects from the sea
NASA Astrophysics Data System (ADS)
Fiske, R. P.
1981-06-01
To recover oil from economically marginal offshore fields the re-use of production platforms has been considered. Re-use involves severing the jacket from the seabed, rotating the jacket to the horizontal and lifting it through the air/sea interface in a configuration suitable for towing. Five systems are considered for use in the recovery process. Two systems currently used for installation are found suitable for modification to recover jackets. They are the pontoon barge system and the self-floating tower. Major problems to be overcome in modifying for retraction are mating of the pontoon barge with the tower, developing a pile system which can be refurbished, and ensuring transverse stability on retraction through the air/sea interface.
Processing of probabilistic information in weight perception and motor prediction.
Trampenau, Leif; van Eimeren, Thilo; Kuhtz-Buschbeck, Johann
2017-02-01
We studied the effects of probabilistic cues, i.e., of information of limited certainty, in the context of an action task (GL: grip-lift) and of a perceptual task (WP: weight perception). Normal subjects (n = 22) saw four different probabilistic visual cues, each of which announced the likely weight of an object. In the GL task, the object was grasped and lifted with a pinch grip, and the peak force rates indicated that the grip and load forces were scaled predictively according to the probabilistic information. The WP task provided the expected heaviness related to each probabilistic cue; the participants gradually adjusted the object's weight until its heaviness matched the expected weight for a given cue. Subjects were randomly assigned to two groups: one started with the GL task and the other one with the WP task. The four different probabilistic cues influenced weight adjustments in the WP task and peak force rates in the GL task in a similar manner. The interpretation and utilization of the probabilistic information was critically influenced by the initial task. Participants who started with the WP task classified the four probabilistic cues into four distinct categories and applied these categories to the subsequent GL task. On the other side, participants who started with the GL task applied three distinct categories to the four cues and retained this classification in the following WP task. The initial strategy, once established, determined the way how the probabilistic information was interpreted and implemented.
A test manager's perspective of a test concept for a heavy lift vehicle
NASA Technical Reports Server (NTRS)
Pargeon, John I., Jr.
1990-01-01
The developmment of a test concept is a significant part of the advanced planning activities accomplished for the Initial Operational Test and Evaluation (IOT&E) of new systems. A test concept is generally viewed as a description, including rationale, of the test structure, evaluation methodology and management approach required to plan and conduct the IOT&E of a program such as a new heavy lift launch vehicle system. The test concept as presented in this paper is made up of an operations area, a test area, an evaluation area, and a management area. The description presented here is written from the perspective of one test manager, and represents his views of a possible framework of a test concept using examples for a potential IOT&E of a heavy lift launch vehicle.
Current developments lighter than air systems. [heavy lift airships
NASA Technical Reports Server (NTRS)
Mayer, N. J.
1981-01-01
Lighter than air aircraft (LTA) developments and research in the United States and other countries are reviewed. The emphasis in the U.S. is on VTOL airships capable of heavy lift, and on long endurance types for coastal maritime patrol. Design concepts include hybrids which combine heavier than air and LTA components and characteristics. Research programs are concentrated on aerodynamics, flight dynamics, and control of hybrid types.
A mass-density model can account for the size-weight illusion
Bergmann Tiest, Wouter M.; Drewing, Knut
2018-01-01
When judging the heaviness of two objects with equal mass, people perceive the smaller and denser of the two as being heavier. Despite the large number of theories, covering bottom-up and top-down approaches, none of them can fully account for all aspects of this size-weight illusion and thus for human heaviness perception. Here we propose a new maximum-likelihood estimation model which describes the illusion as the weighted average of two heaviness estimates with correlated noise: One estimate derived from the object’s mass, and the other from the object’s density, with estimates’ weights based on their relative reliabilities. While information about mass can directly be perceived, information about density will in some cases first have to be derived from mass and volume. However, according to our model at the crucial perceptual level, heaviness judgments will be biased by the objects’ density, not by its size. In two magnitude estimation experiments, we tested model predictions for the visual and the haptic size-weight illusion. Participants lifted objects which varied in mass and density. We additionally varied the reliability of the density estimate by varying the quality of either visual (Experiment 1) or haptic (Experiment 2) volume information. As predicted, with increasing quality of volume information, heaviness judgments were increasingly biased towards the object’s density: Objects of the same density were perceived as more similar and big objects were perceived as increasingly lighter than small (denser) objects of the same mass. This perceived difference increased with an increasing difference in density. In an additional two-alternative forced choice heaviness experiment, we replicated that the illusion strength increased with the quality of volume information (Experiment 3). Overall, the results highly corroborate our model, which seems promising as a starting point for a unifying framework for the size-weight illusion and human heaviness perception. PMID:29447183
The evaluation of team lifting on physical work demands and workload in ironworkers.
van der Molen, Henk F; Visser, Steven; Kuijer, P Paul F M; Faber, Gert; Hoozemans, Marco J M; van Dieën, Jaap H; Frings-Dresen, Monique H W
2012-01-01
Lifting and carrying heavy loads occur frequently among ironworkers and result in high prevalence and incidence rates of low back complaints, injuries and work-disability. From a health perspective, little information is available on the effect of team lifting on work demands and workload. Therefore, the objective of this study was to compare the effects of team lifting of maximally 50 kg by two ironworkers (T50) with team lifting of maximally 100 kg by four ironworkers (T100). This study combined a field and laboratory study with the following outcome measures: duration and frequency of tasks and activities, energetic workload, perceived discomfort and maximal compression forces (Fc peak) on the low back. The physical work demands and workload of an individual iron worker during manual handling of rebar materials of 100 kg with four workers did not differ from the manual handling of rebar materials of 50 kg with two workers, with the exception of low back discomfort and Fc peak. The biomechanical workload of the low back exceeded for both T50 and T100 the NIOSH threshold limit of 3400N. Therefore, mechanical transport or other effective design solutions should be considered to reduce the biomechanical workload of the low back and the accompanying health risks among iron workers.
Effects of the European Community directive on lifting and handling practice.
Docker, S M
1993-07-01
The new legislation on lifting and handling requires the application of ergonomic principles to manual handling operations. A written assessment is required for all unavoidable manual handling operations which involve the risk of injury to employees. Employers are now expected to provide equipment to enable staff to avoid lifting heavy loads.
Use of Heavy Lift Ships as Modular Casualty Receiving Ships
2007-04-01
ship. • Combination product tanker and heavy lift ship. • Specialist dock or yacht transport ship. The M.V. Black Marlin, CombiDock, and the...regulations. • Pollution must be disposed of properly as set by various organizations. Pollutants include oil, noxious liquid substances in bulk, sewage ...pictured in Figure 21, is typically used to ship yachts from one location to another, and yacht owners have the option to travel with their yachts
2003-07-22
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, a solid rocket booster (SRB) is lifted into the mobile service tower, joining two others. They are three of nine 46-inch-diameter, stretched SRBs that are being attached to the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF). Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
2003-07-22
KENNEDY SPACE CENTER, FLA. - Workers on Launch Complex 17-B, Cape Canaveral Air Force Station, help steady a solid rocket booster (SRB) being lifted into the mobile service tower. It is one of nine 46-inch-diameter, stretched SRBs that are being attached to the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF). Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
2003-07-22
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, another solid rocket booster (SRB) is being raised from its transporter to lift it to vertical. It is one of nine 46-inch-diameter, stretched SRBs that are being attached to the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF). Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
Heavy-lifting of gauge theories by cosmic inflation
NASA Astrophysics Data System (ADS)
Kumar, Soubhik; Sundrum, Raman
2018-05-01
Future measurements of primordial non-Gaussianity can reveal cosmologically produced particles with masses of order the inflationary Hubble scale and their interactions with the inflaton, giving us crucial insights into the structure of fundamental physics at extremely high energies. We study gauge-Higgs theories that may be accessible in this regime, carefully imposing the constraints of gauge symmetry and its (partial) Higgsing. We distinguish two types of Higgs mechanisms: (i) a standard one in which the Higgs scale is constant before and after inflation, where the particles observable in non-Gaussianities are far heavier than can be accessed by laboratory experiments, perhaps associated with gauge unification, and (ii) a "heavy-lifting" mechanism in which couplings to curvature can result in Higgs scales of order the Hubble scale during inflation while reducing to far lower scales in the current era, where they may now be accessible to collider and other laboratory experiments. In the heavy-lifting option, renormalization-group running of terrestrial measurements yield predictions for cosmological non-Gaussianities. If the heavy-lifted gauge theory suffers a hierarchy problem, such as does the Standard Model, confirming such predictions would demonstrate a striking violation of the Naturalness Principle. While observing gauge-Higgs sectors in non-Gaussianities will be challenging given the constraints of cosmic variance, we show that it may be possible with reasonable precision given favorable couplings to the inflationary dynamics.
Lunar Lander Offloading Operations Using a Heavy-Lift Lunar Surface Manipulator System
NASA Technical Reports Server (NTRS)
Jefferies, Sharon A.; Doggett, William R.; Chrone, Jonathan; Angster, Scott; Dorsey, John T.; Jones, Thomas C.; Haddad, Michael E.; Helton, David A.; Caldwell, Darrell L., Jr.
2010-01-01
This study investigates the feasibility of using a heavy-lift variant of the Lunar Surface Manipulator System (LSMS-H) to lift and handle a 12 metric ton payload. Design challenges and requirements particular to handling heavy cargo were examined. Differences between the previously developed first-generation LSMS and the heavy-lift version are highlighted. An in-depth evaluation of the tip-over risk during LSMS-H operations has been conducted using the Synergistic Engineering Environment and potential methods to mitigate that risk are identified. The study investigated three specific offloading scenarios pertinent to current Lunar Campaign studies. The first involved offloading a large element, such as a habitat or logistics module, onto a mobility chassis with a lander-mounted LSMS-H and offloading that payload from the chassis onto the lunar surface with a surface-mounted LSMS-H. The second scenario involved offloading small pressurized rovers with a lander-mounted LSMS-H. The third scenario involved offloading cargo from a third-party lander, such as the proposed ESA cargo lander, with a chassis-mounted LSMS-H. In all cases, the analyses show that the LSMS-H can perform the required operations safely. However, Chariot-mounted operations require the addition of stabilizing outriggers, and when operating from the Lunar surface, LSMS-H functionality is enhanced by adding a simple ground anchoring system.
The Space Shuttle: An Attempt at Low-Cost, Routine Access to Space
1990-09-01
thinking on new heavy-lift launch systems. The thesis objective is to show the Space Shuttle was an attempt at developing a routine, low-cost access to... development costs were those used to create a launch facility at Vandenburg Air Force Base. DOD agreed in 1971 not to develop any new launch vehicles...booster. • To reduce the design weight of the Shuttle so as not to decrease the 65,000 pound payload capability. * To develop a new thermal protection
Assessment of Navy Heavy-Lift Aircraft Options
2005-01-01
and reduced rotor RPM – High risk advanced-control system for cyclic control and collective control of lift mixing – RVR not best suited for HL...transition to provide forward thrust once out of hover. These multiple lifting surfaces would have to be mixed together by some software-controlled lift...mistakes not repeated - Could add a decade to IOC estimates – Note Marine defintion of IOC is different from DoD’s • Marines — actual deployment
Seidler, Andreas; Bolm-Audorff, Ulrich; Abolmaali, Nasreddin; Elsner, Gine
2008-01-01
Objectives To examine the dose-response relationship between cumulative exposure to kneeling and squatting as well as to lifting and carrying of loads and symptomatic knee osteoarthritis (OA) in a population-based case-control study. Methods In five orthopedic clinics and five practices we recruited 295 male patients aged 25 to 70 with radiographically confirmed knee osteoarthritis associated with chronic complaints. A total of 327 male control subjects were recruited. Data were gathered in a structured personal interview. To calculate cumulative exposure, the self-reported duration of kneeling and squatting as well as the duration of lifting and carrying of loads were summed up over the entire working life. Results The results of our study support a dose-response relationship between kneeling/squatting and symptomatic knee osteoarthritis. For a cumulative exposure to kneeling and squatting > 10.800 hours, the risk of having radiographically confirmed knee osteoarthritis as measured by the odds ratio (adjusted for age, region, weight, jogging/athletics, and lifting or carrying of loads) is 2.4 (95% CI 1.1–5.0) compared to unexposed subjects. Lifting and carrying of loads is significantly associated with knee osteoarthritis independent of kneeling or similar activities. Conclusion As the knee osteoarthritis risk is strongly elevated in occupations that involve both kneeling/squatting and heavy lifting/carrying, preventive efforts should particularly focus on these "high-risk occupations". PMID:18625053
NASA Technical Reports Server (NTRS)
Venkatesan, C.; Friedman, P.
1984-01-01
This report presents a set of governing coupled differential equations for a model of a hybrid aircraft. The model consists of multiple rotor systems connected by an elastic interconnecting structure, with options to add any combination of or all of the following components; i.e., thrusters, a buoyant hull, and an underslung weight. The dynamic equations are written for the individual blade with hub motions, for the rigid body motions of the whole model, and also for the flexible modes of the interconnecting structure. One of the purposes of this study is to serve as the basis of a numerical study aimed at determining the aeroelastic stability and structural response characteristics of a Hybrid Heavy Lift Airship (HHLA). It is also expected that the formulation may be applicable to analyzing stability and responses of dual rotor helicopters such as a Heavy Lift Helicopter (HLH). Futhermore, the model is capable of representing coupled rotor/body aeromechanical problems of single rotor helicopters.
An air-bearing weight offload system for ground test of heavy LSS structures
NASA Technical Reports Server (NTRS)
Rice, R. B.
1989-01-01
The capability and use of the Gravity Offload Facility (GOF) are discussed. Briefly explained are the: truss and base casting; carriage assembly; carriage weldment; vertical lift axis control; lifting cylinder; payload gimbal; motion base layout; and control processor.
NASA Technical Reports Server (NTRS)
1995-01-01
The sections in this report include: Single Stage to Orbit (SSTO) Design Ground-rules; Operations Issues and Lessons Learned; Vertical-Takeoff/Landing Versus Vertical-Takeoff/Horizontal-Landing; SSTO Design Results; SSTO Simulation Results; SSTO Assessment Results; SSTO Sizing Tool User's Guide; SSto Turnaround Assessment Report; Ground Operations Assessment First Year Executive Summary; Health Management System Definition Study; Major TA-2 Presentations; First Lunar Outpost Heavy Lift Launch Vehicle Design and Assessment; and the section, Russian Propulsion Technology Assessment Reports.
Heavy Lift Vehicle (HLV) Avionics Flight Computing Architecture Study
NASA Technical Reports Server (NTRS)
Hodson, Robert F.; Chen, Yuan; Morgan, Dwayne R.; Butler, A. Marc; Sdhuh, Joseph M.; Petelle, Jennifer K.; Gwaltney, David A.; Coe, Lisa D.; Koelbl, Terry G.; Nguyen, Hai D.
2011-01-01
A NASA multi-Center study team was assembled from LaRC, MSFC, KSC, JSC and WFF to examine potential flight computing architectures for a Heavy Lift Vehicle (HLV) to better understand avionics drivers. The study examined Design Reference Missions (DRMs) and vehicle requirements that could impact the vehicles avionics. The study considered multiple self-checking and voting architectural variants and examined reliability, fault-tolerance, mass, power, and redundancy management impacts. Furthermore, a goal of the study was to develop the skills and tools needed to rapidly assess additional architectures should requirements or assumptions change.
Ares V: Designing the Heavy Lift Capability to Explore the Moon
NASA Technical Reports Server (NTRS)
Sumrall, John P.; McArthur, Craig
2007-01-01
NASA's Vision for Exploration requires a safe, efficient, reliable, and versatile launch vehicle capable ofplacing large payloads into Earth orbit for transfer to the Moon and destinations beyond. The Ares V Cargo Launch Vehicle (CaLV) will provide this heavy lift capability. The Ares V launch concept is shown. When it stands on the launch pad at Kennedy Space Center late in the next decade, the Ares V stack will be almost 360 feet fall. As currently envisioned, it will lift 136 metric tons (300,000 pounds) to a 30-by-160 nautical mile orbit at 28.5-degrees inclination, or 55 metric tons (120,000 pounds) to trans-lunar injection. This paper will cover the latest developments in the Ares V project in 2007 and discuss future activities.
NASA Technical Reports Server (NTRS)
Stachulla, M.; Pernpeinter, R.; Brewster J.; Curreri, P.; Hoffman, E.
2010-01-01
Improving structural efficiency while reducing manufacturing costs are key objectives when making future heavy-lift launchers more performing and cost efficient. The main enabling technologies are the application of advanced high performance materials as well as cost effective manufacture processes. This paper presents the status and main results of a joint industrial research & development effort to demonstrate TRL 6 of a novel manufacturing process for large liquid propellant tanks for launcher applications. Using high strength aluminium-lithium alloy combined with the spin forming manufacturing technique, this development aims at thinner wall thickness and weight savings up to 25% as well as a significant reduction in manufacturing effort. In this program, the concave spin forming process is used to manufacture tank domes from a single flat plate. Applied to aluminium alloy, this process allows reaching the highest possible material strength status T8, eliminating numerous welding steps which are typically necessary to assemble tank domes from 3D-curved panels. To minimize raw material costs for large diameter tank domes for launchers, the dome blank has been composed from standard plates welded together prior to spin forming by friction stir welding. After welding, the dome blank is contoured in order to meet the required wall thickness distribution. For achieving a material state of T8, also in the welding seams, the applied spin forming process allows the required cold stretching of the 3D-curved dome, with a subsequent ageing in a furnace. This combined manufacturing process has been demonstrated up to TRL 6 for tank domes with a 5.4 m diameter. In this paper, the manufacturing process as well as test results are presented. Plans are shown how this process could be applied to future heavy-lift launch vehicles developments, also for larger dome diameters.
Does team lifting increase the variability in peak lumbar compression in ironworkers?
Faber, Gert; Visser, Steven; van der Molen, Henk F; Kuijer, P Paul F M; Hoozemans, Marco J M; Van Dieën, Jaap H; Frings-Dresen, Monique H W
2012-01-01
Ironworkers frequently perform heavy lifting tasks in teams of two or four workers. Team lifting could potentially lead to a higher variation in peak lumbar compression forces than lifts performed by one worker, resulting in higher maximal peak lumbar compression forces. This study compared single-worker lifts (25-kg, iron bar) to two-worker lifts (50-kg, two iron bars) and to four-worker lifts (100-kg, iron lattice). Inverse dynamics was used to calculate peak lumbar compression forces. To assess the variability in peak lumbar loading, all three lifting tasks were performed six times. Results showed that the variability in peak lumbar loading was somewhat higher in the team lifts compared to the single-worker lifts. However, despite this increased variability, team lifts did not result in larger maximum peak lumbar compression forces. Therefore, it was concluded that, from a biomechanical point of view, team lifting does not result in an additional risk for low back complaints in ironworkers.
EFT-1 Delta IV Heavy lift to vertical
2014-10-01
The United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 is lifted to the vertical position in the mobile service tower on the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014.
EFT-1 Delta IV Heavy lift to vertical
2014-10-01
The United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 is being lifted to the vertical position at the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014.
An auto lifting device to lift manhole cover with ergonomics consideration
NASA Astrophysics Data System (ADS)
Draman, Wan Nur A'tiqah Wan; Majid, D. L.; Ishak, Muhammad Ikman; Rosli, M. U.; Lailina N., M.; Ismail, Ras Izzati
2017-09-01
The sewerage and maintenance process of manhole is important to ensure that the underground pipelines and other systems are in good condition. The manhole is covered with manhole cover to prevent people, animals or any objects fall into it. The manhole cover has one pocket which is to lock it and ensure that nobody open it. A questionnaire survey is distributed to the workers at Indah Water Konsortium Sdn Bhd, Kuala Lumpur and interviews are conducted with Indah Water Konsortium (IWK) and Jabatan Perkhidmatan Pembentungan (JPP), Selangor to access the user requirements and needs for an effective manhole cover lifter. Currently, the workers used a T-hook to unlock the heavy manhole cover and lift it. However, this method affected some of the workers because they experienced back, legs, shoulders and arm injuries. The T-hook is also quite heavy and it is difficult to bring anywhere. Based on the result of questionnaire survey, four concepts are designed to create new manhole cover lifter with automated operation. The best concept is finalized by using concept screening and scoring method. The chosen concept is applied pulley chain mechanism and it is selected as the best concept because it is easy and safe to use, low cost maintenance, low time consuming and affordable price. The design of the device is suitable for Malaysian male and secured them from musculoskeletal disorder. The worker's posture is analyzed by using Rapid Upper Limb Analysis (RULA) ergonomics analysis. The stability and strength of the device is analyzed by calculation and Finite Element Analysis (FEA) is used to analyze the screw cylinder.
[Compression fracture of a fragile lumbar vertebrae as a cause of low back pain].
Ostojić, Zdenko; Ostojić, Ljerka; Pehar, Zoran; Ceramida, Meliha; Letica, Ludvih
2002-01-01
The patient felt sharp back lumbal pain while lifting heavy object in flexion position of the back. Rtg showed compressive fracture of L2. MRI showed secondary posttraumatic edema around compressive fracture of the body of L2. The compressive fracture was caused by intracorporal haemangiome of L2. After six months we had spontaneous sanation of heamgiome. Regarding to the therapy only electromagnetotherapy was used as well as programme of kinezitherapy given according to the condition of the body of L2.
Delta II - SIRTF Lift and Mate
2003-07-28
Workers help guide the second stage of the Delta II Heavy rocket onto the first stage, below. The rocket will launch the Space Infrared Telescope Facility (SIRTF), currently scheduled for mid-August. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
Delta II - SIRTF Lift and Mate
2003-07-28
The second stage of the Delta II Heavy rocket is ready for mating onto the first stage, below. The rocket will launch the Space Infrared Telescope Facility (SIRTF), currently scheduled for mid-August. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
Park, Susanna B; Davare, Marco; Falla, Marika; Kennedy, William R; Selim, Mona M; Wendelschafer-Crabb, Gwen; Koltzenburg, Martin
2016-06-01
Sensory feedback from cutaneous mechanoreceptors in the fingertips is important in effective object manipulation, allowing appropriate scaling of grip and load forces during precision grip. However, the role of mechanoreceptor subtypes in these tasks remains incompletely understood. To address this issue, psychophysical tasks that may specifically assess function of type I fast-adapting (FAI) and slowly adapting (SAI) mechanoreceptors were used with object manipulation experiments to examine the regulation of grip force control in an experimental model of graded reduction in tactile sensitivity (healthy volunteers wearing 2 layers of latex gloves). With gloves, tactile sensitivity decreased significantly from 1.9 ± 0.4 to 12.3 ± 2.2 μm in the Bumps task assessing function of FAI afferents but not in a grating orientation task assessing SAI afferents (1.6 ± 0.1 to 1.8 ± 0.2 mm). Six axis force/torque sensors measured peak grip (PGF) and load (PLF) forces generated by the fingertips during a grip-lift task. With gloves there was a significant increase of PGF (14 ± 6%), PLF (17 ± 5%), and grip and load force rates (26 ± 8%, 20 ± 8%). A variable-weight series task was used to examine sensorimotor memory. There was a 20% increase in PGF when the lift of a light object was preceded by a heavy relative to a light object. This relationship was not significantly altered when lifting with gloves, suggesting that the addition of gloves did not change sensorimotor memory effects. We conclude that FAI fibers may be important for the online force scaling but not for the buildup of a sensorimotor memory. Copyright © 2016 the American Physiological Society.
Low back pain among mineworkers in relation to driving, cold environment and ergonomics.
Skandfer, Morten; Talykova, Ljudmila; Brenn, Tormod; Nilsson, Tohr; Vaktskjold, Arild
2014-01-01
We aimed to study the association between low back pain (LBP) and exposure to low temperature, wet clothes, heavy lifting and jobs that involve whole body vibration (WBV) in a population of miners. Health and personal data were collected in a population study by a questionnaire. A total of 3530 workers from four mines participated in the study. 51% of the workers reported LBP within the last 12 months. The adjusted odds ratio for LBP was above unity for working with wet clothes (1.82), working in cold conditions (1.52), lifting heavy (1.54), having worked as a driver previously (1.79) and driving Toro400 (2.61) or train (1.69). Wet clothing, cold working conditions, heavy lifting, previous work as a driver and driving certain vehicles were associated with LBP, but vehicles with WBV levels above action value were not. For better prevention of LBP, improved cabin conditions and clothing should be emphasised. To address risk factors for low back pain (LBP) in miners, a population study measured exposures and LBP. Cold work conditions, wet clothes and awkward postures appeared to be more strongly associated with LBP than exposure to whole body vibration from driving heavy vehicles. Prevention strategies must focus more on clothing and ergonomics.
Neuromuscular trunk activation patterns in back pain patients during one-handed lifting.
Mueller, Juliane; Engel, Tilman; Kopinski, Stephan; Mayer, Frank; Mueller, Steffen
2017-02-18
To analyze neuromuscular activity patterns of the trunk in healthy controls (H) and back pain patients (BPP) during one-handed lifting of light to heavy loads. After assessment of back pain (graded chronic pain scale according to von Korff) all subjects ( n = 43) performed a warm-up (treadmill walking). Next, subjects were instructed to lift 3 × a 20 kg weight placed in front of them (with both hand) onto a table (height: 0.75 m). Subsequently, all subjects lifted with one hand (left-side, 3 repetitions) a weight of 1 kg (light), 10 kg (middle) and 20 kg (heavy) in random order from the ground up onto the table left of them. Trunk muscle activity was assessed with a 12-lead EMG (6 ventral/6 dorsal muscles; 4000 Hz). EMG-RMS (%) was averaged over the 3 repetitions and analyzed for the whole one-handed lifting cycle, then normalized to RMS of the two-handed lifting. Additionally, the mean (normalized) EMG-RMS of four trunk areas [right/left ventral area (VR/VL); right/left dorsal area (DR/DL)] was calculated. Data were analyzed descriptively (mean ± SD) followed by student's t -test comparing H and BPP (α = 0.05). With respect to the unequal distribution of subjects in H and BPP, a matched-group analysis was conducted. Seven healthy controls were gender- and age-matched (group H matched ) to the 7 BPP. In addition, task failure was calculated and compared between H/H matched vs BPP using χ 2 . Seven subjects (3m/4f; 32 ± 7 years; 171 ± 7 cm; 65 ± 11 kg) were assigned to BPP (pain grade ≥ 2) and 36 (13m/23f; 28 ± 8 years; 174 ± 10 cm; 71 ± 12 kg) to H (pain grade ≤ 1). H and BPP did not differ significantly in anthropometrics ( P > 0.05). All subjects were able to lift the light and middle loads, but 57% of BPP and 22% of H were not able to lift the heavy load (all women). χ 2 analysis revealed statistically significant differences in task failure between H vs BPP ( P = 0.03). EMG-RMS ranged from 33% ± 10%/30% ± 9% (DL, 1 kg) to 356% ± 148%/283% ± 80% (VR, 20 kg) in H/BPP with no statistical difference between groups regardless of load ( P > 0.05). However, the EMG-RMS of the VR was greatest in all lifting tasks for both groups and increased with heavier loads. Heavier loading leads to an increase (2- to 3-fold) in trunk muscle activity with comparable patterns. Heavy loading (20 kg) leads to task failure, especially in women with back pain.
Neuromuscular trunk activation patterns in back pain patients during one-handed lifting
Mueller, Juliane; Engel, Tilman; Kopinski, Stephan; Mayer, Frank; Mueller, Steffen
2017-01-01
AIM To analyze neuromuscular activity patterns of the trunk in healthy controls (H) and back pain patients (BPP) during one-handed lifting of light to heavy loads. METHODS After assessment of back pain (graded chronic pain scale according to von Korff) all subjects (n = 43) performed a warm-up (treadmill walking). Next, subjects were instructed to lift 3 × a 20 kg weight placed in front of them (with both hand) onto a table (height: 0.75 m). Subsequently, all subjects lifted with one hand (left-side, 3 repetitions) a weight of 1 kg (light), 10 kg (middle) and 20 kg (heavy) in random order from the ground up onto the table left of them. Trunk muscle activity was assessed with a 12-lead EMG (6 ventral/6 dorsal muscles; 4000 Hz). EMG-RMS (%) was averaged over the 3 repetitions and analyzed for the whole one-handed lifting cycle, then normalized to RMS of the two-handed lifting. Additionally, the mean (normalized) EMG-RMS of four trunk areas [right/left ventral area (VR/VL); right/left dorsal area (DR/DL)] was calculated. Data were analyzed descriptively (mean ± SD) followed by student’s t-test comparing H and BPP (α = 0.05). With respect to the unequal distribution of subjects in H and BPP, a matched-group analysis was conducted. Seven healthy controls were gender- and age-matched (group Hmatched) to the 7 BPP. In addition, task failure was calculated and compared between H/Hmatched vs BPP using χ2. RESULTS Seven subjects (3m/4f; 32 ± 7 years; 171 ± 7 cm; 65 ± 11 kg) were assigned to BPP (pain grade ≥ 2) and 36 (13m/23f; 28 ± 8 years; 174 ± 10 cm; 71 ± 12 kg) to H (pain grade ≤ 1). H and BPP did not differ significantly in anthropometrics (P > 0.05). All subjects were able to lift the light and middle loads, but 57% of BPP and 22% of H were not able to lift the heavy load (all women). χ2 analysis revealed statistically significant differences in task failure between H vs BPP (P = 0.03). EMG-RMS ranged from 33% ± 10%/30% ± 9% (DL, 1 kg) to 356% ± 148%/283% ± 80% (VR, 20 kg) in H/BPP with no statistical difference between groups regardless of load (P > 0.05). However, the EMG-RMS of the VR was greatest in all lifting tasks for both groups and increased with heavier loads. CONCLUSION Heavier loading leads to an increase (2- to 3-fold) in trunk muscle activity with comparable patterns. Heavy loading (20 kg) leads to task failure, especially in women with back pain. PMID:28251064
Heavy-Load Lifting: Acute Response in Breast Cancer Survivors at Risk for Lymphedema
BLOOMQUIST, KIRA; OTURAI, PETER; STEELE, MEGAN L.; ADAMSEN, LIS; MØLLER, TOM; CHRISTENSEN, KARL BANG; EJLERTSEN, BENT; HAYES, SANDRA C.
2018-01-01
ABSTRACT Purpose Despite a paucity of evidence, prevention guidelines typically advise avoidance of heavy lifting in an effort to protect against breast cancer–related lymphedema. This study compared acute responses in arm swelling and related symptoms after low- and heavy-load resistance exercise among women at risk for lymphedema while receiving adjuvant taxane-based chemotherapy. Methods This is a randomized, crossover equivalence trial. Women receiving adjuvant taxane-based chemotherapy for breast cancer who had undergone axillary lymph node dissection (n = 21) participated in low-load (60%–65% 1-repetition maximum, two sets of 15–20 repetitions) and heavy-load (85%–90% 1-repetition maximum, three sets of 5–8 repetitions) upper-extremity resistance exercise separated by a 1-wk wash-out period. Swelling was determined by bioimpedance spectroscopy and dual-energy x-ray absorptiometry, with breast cancer–related lymphedema symptoms (heaviness, swelling, pain, tightness) reported using a numeric rating scale (0–10). Order of low- versus heavy-load was randomized. All outcomes were assessed before, immediately after, and 24 and 72 h after exercise. Generalized estimating equations were used to evaluate changes over time between groups, with equivalence between resistance exercise loads determined using the principle of confidence interval inclusion. Results The acute response to resistance exercise was equivalent for all outcomes at all time points irrespective of loads lifted, with the exception of extracellular fluid at 72 h after exercise with less swelling after heavy loads (estimated mean difference, −1.00; 95% confidence interval, −3.17 to 1.17). Conclusions Low- and heavy-load resistance exercise elicited similar acute responses in arm swelling and breast cancer–related lymphedema symptoms in women at risk for lymphedema receiving adjuvant taxane-based chemotherapy. These represent important preliminary findings, which can be used to inform future prospective evaluation of the long-term effects of repeated exposure to heavy-load resistance exercise. PMID:28991039
High gantry for lifting and handling
NASA Technical Reports Server (NTRS)
Kerley, J. J., Jr.; Tereniak, W. T.
1977-01-01
Standard gantry has been inexpensively modified with standard pipes to allow lifting of heavy loads to distances between 14 and 30 ft. Addition of air mounts permits extensive and sensitive equipment to be moved smoothly and safely over smooth or moderately rough surfaces. Unit has been tested at 6000 pounds without yielding.
Exploration Launch Projects RS-68B Engine Requirements for NASA's Heavy Lift Ares V
NASA Technical Reports Server (NTRS)
Sumrall, John P.; McArthur, J. Craig; Lacey, Matt
2007-01-01
NASA's Vision for Exploration requires a safe, efficient, reliable, and versatile launch vehicle capable of placing large payloads into Earth orbit for transfer to the Moon and destinations beyond. The Ares V Cargo Launch Vehicle (CaLV) will provide this heavy lift capability. The Ares V launch concept is shown in Fig. 1. When it stands on the launch pad at Kennedy Space Center late in the next decade, the Ares V stack will be almost 360 feet tall. As currently envisioned, it will lift 133,000 to 144,000 pounds to trans-lunar injection, depending on the length of loiter time on Earth orbit. This presentation will provide an overview of the Constellation architecture, the Ares launch vehicles, and, specifically, the latest developments in the RS-68B engine for the Ares V.
Parametric Weight Study of Cryogenic Metallic Tanks for the ``Bimodal'' NTR Mars Vehicle Concept
NASA Astrophysics Data System (ADS)
Kosareo, Daniel N.; Roche, Joseph M.
2006-01-01
A parametric weight assessment of large cryogenic metallic tanks was conducted using the design optimization capabilities in the ANSYS ® finite element analysis code. This analysis was performed to support the sizing of a ``bimodal'' nuclear thermal rocket (NTR) Mars vehicle concept developed at the NASA Glenn Research Center. The tank design study was driven by two load conditions: an in-line, ``Shuttle-derived'' heavy-lift launch with the tanks filled and pressurized, and a burst-test pressure. The main tank structural arrangement is a state-of-the art metallic construction which uses an aluminum-lithium alloy stiffened internally with a ring and stringer framework. The tanks must carry liquid hydrogen in separate launches to orbit where all vehicle components will dock and mate. All tank designs stayed within the available mass and payload volume limits of both the in-line heavy lift and Shuttle derived launch vehicles. Weight trends were developed over a range of tank lengths with varying stiffener cross-sections and tank wall thicknesses. The object of this parametric study was to verify that the proper mass was allocated for the tanks in the overall vehicle sizing model. This paper summarizes the tank weights over a range of tank lengths.
NASA Technical Reports Server (NTRS)
Covault, Craig
2005-01-01
The Space Shuttle Main Engine (SSME), developed 30 years ago, remains a strong candidate for use in the new Exploration Initiative as part of a shuttle-derived heavy-lift expendable booster. This is because the Boeing-Rocket- dyne man-rated SSME remains the most highly efficient liquid rocket engine ever developed. There are only enough parts for 12-15 existing SSMEs, however, so one NASA option is to reinitiate SSME production to use it as a throw-away, as opposed to a reusable, powerplant for NASA s new heavy-lift booster.
Foundation for Heavy Lift: Early Developments in the Ares V Cargo Launch Vehicle
NASA Technical Reports Server (NTRS)
Sumrall, John P.; McArthur, J. Craig
2007-01-01
The Ares V Cargo Launch Vehicle (CaLV) is NASA's primary vessel for safe, reliable delivery of the Lunar Surface Access Module (LSAM) and other resources into Earth orbit, as articulated in the U.S. Vision for Space Exploration.' The Ares V launch concept is shown. The foundation for this heavy-lift companion to the Ares I Crew Launch Vehicle (CLV) is taking shape within NASA and with its government and industry partners. This paper will address accomplishments in the Ares V Launch Vehicle during 2006 and 2007 and offer a preview of future activities.
Foundation for Heavy Lift - Early Developments in the Ares V Launch Vehicle
NASA Technical Reports Server (NTRS)
McArthur, J. Craig; Pannell, Bill; Lacey, Matt
2007-01-01
The Ares V Cargo Launch Vehicle (CaLV) is NASA's primary vessel for safe, reliable delivery of the Lunar Surface Access Module (LSAM) and other resources into Earth orbit, as articulated in the U.S. Vision for Space Exploration. The Ares V launch concept is shown. The foundation for this heavy-lift companion to the Ares I Crew Launch Vehicle (CLV) is taking shape within NASA and with its government and industry partners. This paper will address accomplishments in the Ares V Launch Vehicle during 2006 and 2007 and offer a preview of future activities.
NASA Technical Reports Server (NTRS)
Hanley, G.
1978-01-01
The development of transportation systems to support the operations required for the orbital assembly of a 5-gigawatt satellite is discussed as well as the construction of a ground receiving antenna (rectenna). Topics covered include heavy lift launch vehicle configurations for Earth-to LEO transport; the use of chemical, nuclear, and electric orbit transfer vehicles for LEO to GEO operations; personnel transport systems; ground operations; end-to-end analysis of the construction, operation, and maintenance of the satellite and rectenna; propellant production and storage; and payload packaging.
EFT-1 Delta IV Heavy lift to vertical
2014-10-01
The United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 is being lifted to the vertical position in the mobile service tower on the pad at the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014.
EFT-1 Delta IV Heavy lift to vertical
2014-10-01
United Launch Alliance, or ULA, workers monitor the progress as the ULA Delta IV Heavy rocket for Exploration Flight Test-1 is lifted to the vertical position in the mobile service tower on the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014.
Shuttle Derived In-Line Heavy Lift Vehicle
NASA Technical Reports Server (NTRS)
Greenwood, Terry; Twichell, Wallace; Ferrari, Daniel; Kuck, Frederick
2005-01-01
This paper introduces an evolvable Space Shuttle derived family of launch vehicles. It details the steps in the evolution of the vehicle family, noting how the evolving lift capability compares with the evolving lift requirements. A system description is given for each vehicle. The cost of each development stage is described. Also discussed are demonstration programs, the merits of the SSME vs. an expendable rocket engine (RS-68), and finally, the next steps needed to refine this concept.
Risk Factors of Orofacial Pain: A Population-Based Study in West Java Province, Indonesia
Rikmasari, Rasmi; Yubiliana, Gilang; Maulina, Tantry
2017-01-01
Background: The management of orofacial pain in Indonesia has not been well performed, which consequently led to an increase in the orofacial pain occurrences and a decreased quality of life. One of the possible reasons for this particular matter is the lack of evaluation on the risk factors that might induce orofacial pain in some individuals. Objective: The objective of the current study was to evaluate the risk factors of orofacial pain on productive age population in West Java province, Indonesia. Methods: One thousand and fifty-six participants (522 males; 534 females) were recruited for the study. A questionnaire that consists of demographic questions and questions evaluating several assumed risk factors for orofacial pain was used in a single interview. All data was analyzed by using Chi Square test to test the significance, Odds Ratio (OR), as well as Relative Risk (RR) by using SPSS version 23 (IBM Statistic, USA). Results: The result of the current study revealed that bruxism (p<0.01), daytime clenching (p<0.01), and unilateral chewing (p<0.01) were significantly related to the occurrence of orofacial pain. It was also found that participants who performed multitude of heavy liftings at work have an increased risk (RR=1.19: 95% CI: 1.04 – 1.35) of having orofacial pain compared to those who do not. Conclusion: Risk factors for the occurrence of orofacial pain on productive age population in Indonesian sample consisted of oral parafunctional habits and non-parafunctional habits, such as heavy lifting. Further study in this particular topic is of importance. PMID:29399215
Conceptual change and preschoolers' theory of mind: evidence from load-force adaptation.
Sabbagh, Mark A; Hopkins, Sydney F R; Benson, Jeannette E; Flanagan, J Randall
2010-01-01
Prominent theories of preschoolers' theory of mind development have included a central role for changing or adapting existing conceptual structures in response to experiences. Because of the relatively protracted timetable of theory of mind development, it has been difficult to test this assumption about the role of adaptation directly. To gain evidence that cognitive adaptation is particularly important for theory of mind development, we sought to determine whether individual differences in cognitive adaptation in a non-social domain predicted preschoolers' theory of mind development. Twenty-five preschoolers were tested on batteries of theory of mind tasks, executive functioning tasks, and on their ability to adapt their lifting behavior to smoothly lift an unexpectedly heavy object. Results showed that children who adapted their lifting behavior more rapidly performed better on theory of mind tasks than those who adapted more slowly. These findings held up when age and performance on the executive functioning battery were statistically controlled. Although preliminary, we argue that this relation is attributable to individual differences in children's domain general abilities to efficiently change existing conceptual structures in response to experience. Copyright © 2010 Elsevier Ltd. All rights reserved.
A Cohort Study on Meniscal Lesions among Airport Baggage Handlers.
Mikkelsen, Sigurd; Brauer, Charlotte; Pedersen, Ellen Bøtker; Alkjær, Tine; Koblauch, Henrik; Simonsen, Erik Bruun; Helweg-Larsen, Karin; Thygesen, Lau Caspar
2016-01-01
Meniscal lesions are common and may contribute to the development of knee arthrosis. A few case-control and cross-sectional studies have identified knee-straining work as risk factors for meniscal lesions, but exposure-response relations and the role of specific exposures are uncertain, and previous results may be sensitive to reporting and selection bias. We examined the relation between meniscal lesions and cumulative exposure to heavy lifting in a prospective register-based study with complete follow-up and independent information on exposure and outcome. We established a cohort of unskilled men employed at Copenhagen Airport or in other companies in the metropolitan Copenhagen area from 1990 to 2012 (the Copenhagen Airport Cohort). The cohort at risk included 3,307 airport baggage handlers with heavy lifting and kneeling or squatting work tasks and 63,934 referents with a similar socioeconomic background and less knee-straining work. Baggage handlers lifted suitcases with an average weight of approximately 15 kg, in total approximately five tonnes during a 9-hour workday. The cohort was followed in the National Patient Register and Civil Registration System. The outcome was a first time hospital diagnosis or surgery of a meniscal lesion. Baggage handlers had a higher incidence of meniscal lesions than the referents. Within baggage handlers spline regression showed that the incidence rate ratio was 1.91 (95% confidence interval: 1.29-2.84) after five years as a baggage handler and then decreased slowly to reach unity after approximately 30 years, adjusted for effects of potential confounders. This relation between baggage handling and meniscal lesions was present for work on the apron which involves lifting in a kneeling or squatting position, but not in the baggage hall, which only involves lifting in standing positions. The results support that long-term heavy lifting in a kneeling or squatting position is a risk factor for the development of symptomatic meniscal lesions.
Orion is Lifted for Mating with Delta IV
2014-11-12
At Cape Canaveral Air Force Station's Launch Complex 37, United Launch Alliance engineers and technicians prepare to lift the agency's Orion spacecraft for mounting atop its Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
Orion is Lifted for Mating with Delta IV
2014-11-12
At Cape Canaveral Air Force Station's Launch Complex 37, United Launch Alliance engineers and technicians begin lifting the agency's Orion spacecraft for mounting atop its Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
Levitation of heavy particles against gravity in asymptotically downward flows.
Angilella, Jean-Régis; Case, Daniel J; Motter, Adilson E
2017-03-01
In the fluid transport of particles, it is generally expected that heavy particles carried by a laminar fluid flow moving downward will also move downward. We establish a theory to show, however, that particles can be dynamically levitated and lifted by interacting vortices in such flows, thereby moving against gravity and the asymptotic direction of the flow, even when they are orders of magnitude denser than the fluid. The particle levitation is rigorously demonstrated for potential flows and supported by simulations for viscous flows. We suggest that this counterintuitive effect has potential implications for the air-transport of water droplets and the lifting of sediments in water.
Levitation of heavy particles against gravity in asymptotically downward flows
NASA Astrophysics Data System (ADS)
Angilella, Jean-Régis; Case, Daniel J.; Motter, Adilson E.
2017-03-01
In the fluid transport of particles, it is generally expected that heavy particles carried by a laminar fluid flow moving downward will also move downward. We establish a theory to show, however, that particles can be dynamically levitated and lifted by interacting vortices in such flows, thereby moving against gravity and the asymptotic direction of the flow, even when they are orders of magnitude denser than the fluid. The particle levitation is rigorously demonstrated for potential flows and supported by simulations for viscous flows. We suggest that this counterintuitive effect has potential implications for the air-transport of water droplets and the lifting of sediments in water.
Heavy Lift for National Security: The Ares V
NASA Technical Reports Server (NTRS)
Sumrall, Phil
2009-01-01
The NASA Ares Projects Office is developing the launch vehicles to move the United States and humanity beyond low earth orbit. Ares I is a crewed vehicle, and Ares V is a heavy lift vehicle being designed to launch cargo into LEO and transfer cargo and crews to the Moon. This is a snapshot of development and capabilities. Ares V is early in the requirements formulation stage of development pending the outcome of the Review of U.S. Human Space Flight Plans Committee and White House action. The Ares V vehicle will be considered a national asset, creating unmatched opportunities for human exploration, science, national security, and space business.
A Near-Term, High-Confidence Heavy Lift Launch Vehicle
NASA Technical Reports Server (NTRS)
Rothschild, William J.; Talay, Theodore A.
2009-01-01
The use of well understood, legacy elements of the Space Shuttle system could yield a near-term, high-confidence Heavy Lift Launch Vehicle that offers significant performance, reliability, schedule, risk, cost, and work force transition benefits. A side-mount Shuttle-Derived Vehicle (SDV) concept has been defined that has major improvements over previous Shuttle-C concepts. This SDV is shown to carry crew plus large logistics payloads to the ISS, support an operationally efficient and cost effective program of lunar exploration, and offer the potential to support commercial launch operations. This paper provides the latest data and estimates on the configurations, performance, concept of operations, reliability and safety, development schedule, risks, costs, and work force transition opportunities for this optimized side-mount SDV concept. The results presented in this paper have been based on established models and fully validated analysis tools used by the Space Shuttle Program, and are consistent with similar analysis tools commonly used throughout the aerospace industry. While these results serve as a factual basis for comparisons with other launch system architectures, no such comparisons are presented in this paper. The authors welcome comparisons between this optimized SDV and other Heavy Lift Launch Vehicle concepts.
A case of motor neuropathy after cryolipolysis of the arm.
Lee, Sang Jun; Kim, Young Jin; Park, Jae Beom; Suh, Dong Hye; Kwon, Do Young; Ryu, Hwa Jung
2016-11-01
Cryolipolysis treatment is a non-invasive option for localized fat reduction without damaging the surrounding tissue. Clinical studies about cryolipolysis show various side effects, including temporary erythema, bruising, and transient numbness. But, no reports are available on motor nerve malfunction after cryolipolysis. A 24-year-old female received cryolipolysis treatment on abdomen, both arms. After 10 days, patient complained of weakness and inability to lift heavy objects. Symptoms continued for 6 months, and fully recovered without treatment. Thus, we report a case of motor neuropathy after cryolipolysis, which is a rare complication of cryolipolysis.
NASA Technical Reports Server (NTRS)
Hanley, G. M.
1981-01-01
Additional analyses and investigations were conducted to further define transportation system concepts that will be needed for the developmental and operational phases of an SPS program. To accomplish these objectives, transportation systems such as the Shuttle and its derivatives were identified; new heavy lift launch vehicle (HLLV) concepts, cargo and personnel orbital transfer vehicles (EOTV and POTV), and intraorbit transfer vehicle (IOTV) concepts were evaluated; and, to a limited degree, the program implications of their operations and costs were assessed. The results of these analyses were integrated into other elements of the overall SPS concept definition studies.
NASA Technical Reports Server (NTRS)
1969-01-01
The HL-10 lifting body is seen here in flight over Rogers Dry Lake at Edwards AFB. After the vehicle's fins were modified following its first flight, the HL-10 proved to be the best handling of the heavy-weight lifting bodies flown at Edwards Air Force Base. The HL-10 flew much better than the M2-F2, and pilots were eager to fly it. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new and different lessons were learned through the successful flight testing of the HL-10. These lessons, when combined with information from it's sister ship, the M2-F2/F3, provided an excellent starting point for designers of future entry vehicles, including the Space Shuttle.
Linking actions and objects: Context-specific learning of novel weight priors.
Trewartha, Kevin M; Flanagan, J Randall
2017-06-01
Distinct explicit and implicit memory processes support weight predictions used when lifting objects and making perceptual judgments about weight, respectively. The first time that an object is encountered weight is predicted on the basis of learned associations, or priors, linking size and material to weight. A fundamental question is whether the brain maintains a single, global representation of priors, or multiple representations that can be updated in a context specific way. A second key question is whether the updating of priors, or the ability to scale lifting forces when repeatedly lifting unusually weighted objects requires focused attention. To investigate these questions we compared the adaptability of weight predictions used when lifting objects and judging their weights in different groups of participants who experienced size-weight inverted objects passively (with the objects placed on the hands) or actively (where participants lift the objects) under full or divided attention. To assess weight judgments we measured the size-weight illusion after every 20 trials of experience with the inverted objects both passively and actively. The attenuation of the illusion that arises when lifting inverted object was found to be context-specific such that the attenuation was larger when the mode of interaction with the inverted objects matched the method of assessment of the illusion. Dividing attention during interaction with the inverted objects had no effect on attenuation of the illusion, but did slow the rate at which lifting forces were scaled to the weight inverted objects. These findings suggest that the brain stores multiple representations of priors that are context specific, and that focused attention is important for scaling lifting forces, but not for updating weight predictions used when judging object weight. Copyright © 2017 Elsevier B.V. All rights reserved.
Study of lifting operation of a tripod foundation for offshore wind turbine
NASA Astrophysics Data System (ADS)
Zhu, H.; Li, L.; Ong, M. C.
2017-12-01
This study addresses numerical analysis of the installation of a tripod foundation using a heavy lift vessel (HLV). Limiting sea states are firstly predicted in the frequency domain based on crane tip vertical motions using linear transfer functions. Then, numerical modelling and simulations are carried out in the time domain to analyse the coupled dynamic system taking into consideration of the nonlinearities of the system. In time-domain analysis, two lifting phases are brought into focus, i.e., the lift-off and the lowering phases. For the lift-off phase, two scenarios are considered, i.e., lift-off from the own deck of the HLV and lift-off from a transport barge. Moreover, comparative studies using two types of installation vessels, a floating vessel and a Jack-up, are investigated for the lowering process. Critical responses including the motions of the tripod and the lift wire tensions are presented and compared under various environmental and loading conditions.
Drifting Recovery Base Concept for GEO Derelict Object Capture
NASA Technical Reports Server (NTRS)
Bacon, John B.
2009-01-01
Over 250 objects hover within 6 m/sec of perfect geostationary orbit. Over half of these objects lie within 0.1 m/sec of the GEO velocity. Such items have 62% of the total velocity required to achieve Earth gravitational escape. A conceptual architecture is proposed to clean this orbit area of derelict objects while providing a demonstration mission for many facets of future asteroid mining operations. These near-GEO objects average nearly 2000kg each, consisting of (typically functioning) power systems, batteries, and large quantities of components and raw aerospace-grade refined materials. Such a demonstration collection system could capture, collect and remove all GEO derelict objects in an international effort to create a depot of components and of aerospace-grade raw materials--with a total mass greater than that of the International Space Station--as a space scrap depot ready for transfer to lunar or Mars orbit, using only two heavy-lift launches and 2-3 years of on-orbit operations.
Constant angular velocity of the wrist during the lifting of a sphere.
Chappell, P H; Metcalf, C D; Burridge, J H; Yule, V T; Pickering, R M
2010-05-01
The primary objective of the experiments was to investigate the wrist motion of a person while they were carrying out a prehensile task from a clinical hand function test. A six-camera movement system was used to observe the wrist motion of 10 participants. A very light sphere and a heavy sphere were used in the experiments to study any mass effects. While seated at a table, a participant moved a sphere over a small obstacle using their dominant hand. The participants were observed to move their wrist at a constant angular velocity. This phenomenon has not been reported previously. Theoretically, the muscles of the wrist provide an impulse of force at the start of the rotation while the forearm maintains a constant vertical force on a sphere. Light-heavy mean differences for the velocities, absolute velocities, angles and times taken showed no significant differences (p = 0.05).
Mette, Janika; Mache, Stefanie; Harth, Volker; Preisser, Alexandra M
2018-01-01
Objectives To assess the physical strains of employees in the German offshore wind industry, according to job type and phase of the wind farm (under construction or operation). Design Web-based cross-sectional survey. Setting Offshore wind farm companies operating within the German exclusive economic zone. Participants Male workers with regular offshore commitments and at least 28 days spent offshore in the past year (n=268). Outcome measures Physical strains (eg, climbing, noise, working overhead, with twisted upper body or in confined spaces, vibration, heavy lifting, humidity, odours). Results The most frequently mentioned physical strain was ’climbing’ with 63.8% of the respondents reporting to be always or frequently confronted with climbing and ascending stairs during offshore work. Work as a technician was associated with a greater exposition to noise, vibrations, humidity, cold, heat, chemical substances, lifting/carrying heavy loads, transport of equipment, working in non-ergonomic positions and in cramped spaces, as well as climbing. Indeed, statistical analyses showed that, after adjusting for phase of the wind farm, age, nationality, offshore experience, work schedule and type of shift, compared with non-technicians, working as a technician was associated with more frequently lifting/carrying of heavy loads (OR 2.58, 95% CI 1.58 to 4.23), transport of equipment (OR 2.06 95% CI 1.27 to 3.33), working with a twisted upper body (OR 2.85 95% CI 1.74 to 4.69), working overhead (OR 2.77 95% CI 1.67 to 4.58) and climbing (OR 2.30 95% CI 1.40 to 3.77). Working in wind farms under construction was strongly associated with increased and decreased exposure to humidity (OR 2.32 95% CI 1.38 to 3.92) and poor air quality (OR 0.58 95% CI 0.35 to 0.95), respectively. Conclusions Workers on offshore wind farms constitute a heterogeneous group, including a wide variety of occupations. The degree of exposure to detrimental physical strains varies depending on the type of job. Technicians are more exposed to ergonomic challenges than other offshore workers. PMID:29602849
Equal-magnitude size-weight illusions experienced within and between object categories.
Buckingham, Gavin; Goodale, Melvyn A; White, Justin A; Westwood, David A
2016-01-01
In the size-weight illusion (SWI), small objects feel heavier than larger objects of the same mass. This effect is typically thought to be a consequence of the lifter's expectation that the large object will outweigh the small object, because objects of the same type typically get heavier as they get larger. Here, we show that this perceptual effect can occur across object category, where there are no strong expectations about the correspondence between size and mass. One group of participants lifted same-colored large and small cubes with the same mass as one another, while another group lifted differently-colored large and small cubes with the same mass as one another. The group who lifted the same-colored cubes experienced a robust SWI and initially lifted the large object with more force than the small object. By contrast, the group who lifted the different-colored objects did so with equal initial forces on the first trial, but experienced just as strong an illusion as those who lifted the same-colored objects. These results demonstrate that color cues can selectively influence the application of fingertip force rates while not impacting at all upon the lifter's perception of object weight, highlighting a stark dissociation in how prior information affects perception and action.
Occupational lifting and rhegmatogenous retinal detachment: a follow-up study of Swedish conscripts.
Farioli, Andrea; Kriebel, David; Mattioli, Stefano; Kjellberg, Katarina; Hemmingsson, Tomas
2017-07-01
To investigate the association between occupational lifting and the risk of rhegmatogenous retinal detachment (RRD) using data from a large population of men. We used data from a national cohort of 49 321 Swedish men conscripted for compulsory military service in 1969-1970. We collected information on surgically treated RRD from the National Patient Register and we followed up the cohort between 1991 and 2009 at ages 40-60 years. Exposure to occupational lifting was assessed by applying a job exposure matrix to occupational data from the 1990 census. Incidence rate ratios (IRRs) and 95% CIs were estimated through Poisson regression models adjusted by degree of myopia, income and education level. We observed 217 cases of RRD in 7 80 166 person-years. In univariate analyses we did not observe an association between occupational lifting and RRD. However, after adjustment for myopia and socioeconomic factors, we found an increased risk of RRD (IRR 2.38, 95% CI 1.15 to 4.93) for subjects in the highest category of exposure compared with those in the lowest one. The incidence rate of RRD among subjects lifting heavy loads at least twice per week, aged between 50 years and 59 years, and affected by severe myopia was as high as 7.9 cases per 1000 person-years, compared with an overall rate of 0.28. Our study supports the hypothesis that heavy occupational lifting is a risk factor for RRD. Information on myopia degree and socioeconomic status is necessary when studying the association between occupational lifting and RRD. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Space Logistics: Launch Capabilities
NASA Technical Reports Server (NTRS)
Furnas, Randall B.
1989-01-01
The current maximum launch capability for the United States are shown. The predicted Earth-to-orbit requirements for the United States are presented. Contrasting the two indicates the strong National need for a major increase in Earth-to-orbit lift capability. Approximate weights for planned payloads are shown. NASA is studying the following options to meet the need for a new heavy-lift capability by mid to late 1990's: (1) Shuttle-C for near term (include growth versions); and (2) the Advanced Lauching System (ALS) for the long term. The current baseline two-engine Shuttle-C has a 15 x 82 ft payload bay and an expected lift capability of 82,000 lb to Low Earth Orbit. Several options are being considered which have expanded diameter payload bays. A three-engine Shuttle-C with an expected lift of 145,000 lb to LEO is being evaluated as well. The Advanced Launch System (ALS) is a potential joint development between the Air Force and NASA. This program is focused toward long-term launch requirements, specifically beyond the year 2000. The basic approach is to develop a family of vehicles with the same high reliability as the Shuttle system, yet offering a much greater lift capability at a greatly reduced cost (per pound of payload). The ALS unmanned family of vehicles will provide a low end lift capability equivalent to Titan IV, and a high end lift capability greater than the Soviet Energia if requirements for such a high-end vehicle are defined.In conclusion, the planning of the next generation space telescope should not be constrained to the current launch vehicles. New vehicle designs will be driven by the needs of anticipated heavy users.
Ramjet/scramjet plus rocket propulsion for a heavy-lift Space Shuttle
NASA Astrophysics Data System (ADS)
Lantz, Edward
1993-10-01
The possibility of using hydrogen-fueled ramjet/scramjet engines for improving the performance and reducing the operating cost of a second-generation Space Shuttle is examined. For a heavy-lift capability, a two-stage system would be necessary. This could consist of a central Trans Atmospheric Vehicle (TAV) with a hypersonic booster attached to each side. A wheeled ground-based launcher could make the takeoff of such a system possible. By using data from the NASP project and the present Space Shuttle, it is shown that a TAV, which is about 20 percent longer than a Boeing 747, could take a payload of about 200,000 pounds to an earth orbit.
Characteristics of Heavy Summer Rainfall in Southwestern Taiwan in Relation to Orographic Effects
NASA Technical Reports Server (NTRS)
Chen, Ching-Sen; Chen, Wan-Chin; Tao, Wei-Kuo
2004-01-01
On the windward side of southwestern Taiwan, about a quarter to a half of all rainfall during mid-July through August from 1994 to 2000 came from convective systems embedded in the southwesterly monsoon flow. k this study, the causes of two heavy rainfall events (daily rainfall exceeding 100 mm day over at least three rainfall stations) observed over the slopes and/or lowlands of southwestern Taiwan were examined. Data from European Center for Medium-Range Weather Forecasts /Tropical Ocean- Global Atmosphere (EC/TOGA) analyses, the rainfall stations of the Automatic Rainfall and Meteorological Telemetry System (ARMTS) and the conventional surface stations over Taiwan, and the simulation results from a regional-scale numerical model were used to accomplish the objectives. In one event (393 mm day on 9 August 1999), heavy rainfall was observed over the windward slopes of southern Taiwan in a potentially unstable environment with very humid air around 850 hPa. The extreme accumulation was simulated and attributed to orographic lifting effects. No preexisting convection drifted in from the Taiwan Strait into western Taiwan.
Spacely's rockets: Personnel launch system/family of heavy lift launch vehicles
NASA Technical Reports Server (NTRS)
1991-01-01
During 1990, numerous questions were raised regarding the ability of the current shuttle orbiter to provide reliable, on demand support of the planned space station. Besides being plagued by reliability problems, the shuttle lacks the ability to launch some of the heavy payloads required for future space exploration, and is too expensive to operate as a mere passenger ferry to orbit. Therefore, additional launch systems are required to complement the shuttle in a more robust and capable Space Transportation System. In December 1990, the Report of the Advisory Committee on the Future of the U.S. Space Program, advised NASA of the risks of becoming too dependent on the space shuttle as an all-purpose vehicle. Furthermore, the committee felt that reducing the number of shuttle missions would prolong the life of the existing fleet. In their suggestions, the board members strongly advocated the establishment of a fleet of unmanned, heavy lift launch vehicles (HLLV's) to support the space station and other payload-intensive enterprises. Another committee recommendation was that a space station crew rotation/rescue vehicle be developed as an alternative to the shuttle, or as a contingency if the shuttle is not available. The committee emphasized that this vehicle be designed for use as a personnel carrier, not a cargo carrier. This recommendation was made to avoid building another version of the existing shuttle, which is not ideally suited as a passenger vehicle only. The objective of this project was to design both a Personnel Launch System (PLS) and a family of HLLV's that provide low cost and efficient operation in missions not suited for the shuttle.
Preliminary Sizing of 120-Passenger Advanced Civil Rotorcraft Concepts
NASA Technical Reports Server (NTRS)
vanAken, Johannes M.; Sinsay, Jeffrey D.
2006-01-01
The results of a preliminary sizing study of advanced civil rotorcraft concepts that are capable of carrying 120 passengers over a range of 1,200 nautical miles are presented. The cruise altitude of these rotorcraft is 30,000 ft and the cruise velocity is 350 knots. The mission requires a hover capability, creating a runway independent solution, which might aid in reducing strain on the existing airport infrastructure. Concepts studied are a tiltrotor, a tandem rotor compound, and an advancing blade concept. The first objective of the study is to determine the relative merits of these designs in terms of mission gross weight, engine size, fuel weight, aircraft purchase price, and direct operating cost. The second objective is to identify the enabling technology for these advanced heavy lift civil rotorcraft.
Durán-Nah, Jaime Jesús; Benítez-Rodríguez, Carlos René; Miam-Viana, Emilio Jesús
2016-01-01
Chronic low back pain (CLBP) is frequently seen in the orthopedic outpatient consultation. The aim of this paper is to identify risk factors associated with CLBP in patients cared for during the year 2012, at a General Hospital belonging to Instituto Mexicano del Seguro Social, in Yucatán, Mexico. Data of 95 patients with CLBP (cases) was compared with data of 190 patients without CLBP (controls) using a binary logistic model (BLM), from which odd ratios (OR) and 95 % confidence intervals (95 % CI) were obtained. School level, body mass index (BMI) as a continuous variable, story of heavy weight lifting, some types of comorbidities and dyslipidemia, were identified as statistically significant in the bivariate analysis (p ≤ 0.05 each). In a second step, secondary school level (OR 0.25, 95 % CI: 0.08-0.81), dyslipidemia (OR 0.26, 95 % CI: 0.12-0.56), heavy weights lifting (OR 0.22, 95 % CI: 0.12-0.42), and BMI (OR 1.22, 95 % CI: 1.12-1.32) were all identified by the BLM as statistically significant. In this sample, secondary school level, dislipidemia and heavy weights lifting reduced the risk of CLBP, while the BMI increased the risk.
Factors contributing to work related low back pain among personal care workers in old age.
Yeung, Simon S
2012-01-01
This study aims to preliminary explore the work related and individual factors that contributed to the occurrence of low back pain (LBP) that affected work activities of Personal Care Workers (PCWs). A cross-sectional study was conducted to 36 PCWs in an old age home of Hong Kong. The study is divided into three parts: 1) a questionnaire to document the workload exposure factors and the musculoskeletal symptoms survey of the PCWs, 2) work posture evaluation; and 3) an evaluation of the physical fitness and lifting capacity of the PCWs. Univariate analyses were used to explore the risk factors associated with LBP that affected work activities. The results indicated that individual physical profile and lifting capacities did not contribute to occurrence of low back pain at work. For the work demand factors, the perceived physical demands in lifting and lowering heavy objects, awkward sustain neck and back postures, loading on the back, and perceived effort of cleaning task contributed to the occurrence of LBP. For the physical environment factors, thermal stress and improper ventilation were associated with the occurrence of LBP cases. For the individual factor, LBP cases were associated with workers' self perceived muscular effort, and perceived risk of mental illness in response to work requirements.
Ultrasound generation with high power and coil only EMAT concepts.
Rueter, Dirk; Morgenstern, Tino
2014-12-01
Electro-magnetic acoustic transducers (EMATs) are intended as non-contact and non-destructive ultrasound transducers for metallic material. The transmitted intensities from EMATS are modest, particularly at notable lift off distances. Some time ago a concept for a "coil only EMAT" was presented, without static magnetic field. In this contribution, such compact "coil only EMATs" with effective areas of 1-5cm(2) were driven to excessive power levels at MHz frequencies, using pulsed power technologies. RF induction currents of 10kA and tens of Megawatts are applied. With increasing power the electroacoustic conversion efficiency also increases. The total effect is of second order or quadratic, therefore non-linear and progressive, and yields strong ultrasound signals up to kW/cm(2) at MHz frequencies in the metal. Even at considerable lift off distances (cm) the ultrasound can be readily detected. Test materials are aluminum, ferromagnetic steel and stainless steel (non-ferromagnetic). Thereby, most metal types are represented. The technique is compared experimentally with other non-contact methods: laser pulse induced ultrasound and spark induced ultrasound, both damaging to the test object's surface. At small lift off distances, the intensity from this EMAT concept clearly outperforms the laser pulses or heavy spark impacts. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Osborne, Robert D.
1999-06-01
In recent years, a lot of time and energy has been spent exploring possible mission scenarios for a human mission to Mars. NASA along with the privately funded Mars Society and a number of universities have come up with many options that could place people on the surface of Mars in a relatively short period of time at a relatively low cost. However, a common theme among all or at least most of these missions is that they require heavy lift vehicles such as the Russian Energia or the NASA proposed Magnum 100MT class vehicle to transport large payloads from the surface of Earth into a staging orbit about Earth. However, there is no current budget or any signs for a future budget to review the Russian Energia, the US made Saturn V, or to design and build a new heavy lift vehicle. However, there is a lot of interest and many companies looking into the possibility of "space planes". These vehicles will have the capability to place a payload into orbit without throwing any parts of the vehicle away. The concept of a space plane is basically that the plane is transported to a given altitude either by it's own power or on the back of another air worthy vehicle before the rocket engines are ignited. From this altitude, a Single Step to Orbit (SsTO) vehicle with a significant payload is possible. This report looks at the possibility of removing the requirement of a heavy lift vehicle by using the Stanford designed Single Step to Orbit.(SsTO) Launch Vehicle. The SsTO would eliminate the need for heavy lift vehicles and actually reduce the cost of the mission because of the very low costs involved with each SSTO launch. Although this scenario may add a small amount of risk assembling transfer vehicles in Earth orbit, it should add no additional risk to the crew.
Work-related lesions of the supraspinatus tendon: a case-control study.
Seidler, Andreas; Bolm-Audorff, Ulrich; Petereit-Haack, Gabriela; Ball, Elke; Klupp, Magdalena; Krauss, Noëlle; Elsner, Gine
2011-04-01
To examine the dose-response relationship between cumulative duration of work with highly elevated arms (work above shoulder level) as well as of manual material handling and ruptures of the supraspinatus tendon in a population-based case-control study. In 14 radiologic practices, we recruited 483 male patients aged 25-65 with radiographically confirmed partial (n = 385) or total (n = 98) supraspinatus tears associated with shoulder pain. A total of 300 male control subjects were recruited. Data were gathered in a structured personal interview. To calculate cumulative exposure, the self-reported duration of lifting/carrying of heavy loads (>20 kg) as well as the duration of work with highly elevated arms was added up over the entire working life. The results of our study support a dose-response relationship between cumulative duration of work with highly elevated arms and symptomatic supraspinatus tendon tears. For a cumulative duration of >3,195 h work above shoulder level, the risk of a supraspinatus tendon rupture is elevated to 2.0 (95% CI 1.1-3.5), adjusted for age, region, lifting/carrying of heavy loads, handheld vibration, apparatus gymnastics/shot put/javelin/hammer throwing/wrestling, and tennis. The cumulative duration of carrying/lifting of heavy loads also yields a positive dose-response relation with disease (independent from work above shoulder level and from handheld vibration), with an adjusted odds ratio of 1.8 (95% CI 1.0-3.2) in the highest exposure category (>77 h). We find an increased risk for subjects exposed to handheld vibration with an adjusted OR of 3.2 (95% CI 1.7-5.9) in the highest exposure category (16 years or more in the job with exposure), but a clear dose-response relationship is lacking. This study points to a potential etiologic role of long-term cumulative effects of work with highly elevated arms and heavy lifting/carrying on shoulder tendon disorders.
Heavy-Lift for a New Paradigm in Space Operations
NASA Technical Reports Server (NTRS)
Morris, Bruce; Burkey, Martin
2010-01-01
NASA is developing an unprecedented heavy-lift capability to enable human exploration beyond low Earth orbit (LEO). This capability could also significantly enhance numerous other missions of scientific, national security, and commercial importance. That capability is currently configured as the Ares V cargo launch vehicle. This capability will eclipse the capability the United States lost with the retirement of the Saturn V. It is capable of launching roughly 53 percent more payload mass to trans lunar injection (TLI) and 30 percent more payload mass to LEO than its Apollo Program predecessor. Ares V is a major element of NASA's Constellation Program, which also includes the Ares I crew launch vehicle (CLV), Orion crew exploration vehicle (CEV), and a lunar lander for crew and cargo. As currently configured, Ares V will be capable of launching 413,800 pounds (187.7 mT) to LEO, 138,500 pounds (63 mT) direct to the Moon or 156,700 pounds (71.1 mT) in its dual-launch architecture role with Ares I. Its 33-foot (10 m) shroud provides unprecedented payload volume. Assessment of astronomy and planetary science payload requirements since spring 2008 has indicated that a Saturn V-class heavy-lift vehicle has the potential to support a range of payloads and missions. This vehicle configuration enables some missions previously considered difficult or impossible and enhances many others. Collaborative design/architecture inputs, exchanges, and analyses have already begun between scientists and payload developers. This early dialogue between NASA engineers and payload designers allows both communities to shape their designs and operational concepts to be mutually supportive to the extent possible with the least financial impact. This paper provides an overview of the capabilities of a heavy-lift vehicle to launch payloads with increased mass and/or volume and reduce technical and cost risk in both design and operations.
2007 Expeditionary Warfare Conference (12th)
2007-10-25
Ships 10 Joint High Speed Vessel (JHSV) Today • Program Capability – High speed lift ship capable of transporting cargo and personnel across...develop technologies that will: – Improve the capability to transfer cargo between Sea Base platforms – Provide for high speed / heavy lift...state actors for legitimacy and influence over the relevant population” Joint High Speed Vessel In-Service Amphibs LCAC & Ship to Shore
Aerocrane: A hybrid LTA aircraft for aerial crane applications
NASA Technical Reports Server (NTRS)
Perkins, R. G., Jr.; Doolittle, D. B.
1975-01-01
The Aerocrane, a hybrid aircraft, combines rotor lift with buoyant lift to offer VTOL load capability greatly in excess of helicopter technology while eliminating the airship problem of ballast transfer. In addition, the Aerocrane concept sharply reduces the mooring problem of airships and provides 360 deg vectorable thrust to supply a relatively large force component for control of gust loads. Designed for use in short range, ultra heavy lift missions, the Aerocrane operates in a performance envelope unsuitable for either helicopters or airships. Basic design considerations and potential problem areas of the concept are addressed.
Study of Civil Markets for Heavy-Lift Airships
NASA Technical Reports Server (NTRS)
Mettam, P. J.; Hansen, D.; Chabot, C.; Byrne, R.
1978-01-01
The civil markets for heavy lift airships (HLAs) were defined by first identifying areas of most likely application. The operational suitability of HLAs for the applications identified were then assessed. The operating economics of HLAs were established and the market size for HLA services estimated by comparing HLA operating and economic characteristics with those of competing modes. The sensitivities of the market size to HLA characteristics were evaluated and the number and sizes of the vehicles required to service the more promising markets were defined. Important characteristics for future HLAs are discussed that were derived from the study of each application, including operational requirements, features enhancing profitability, military compatibility, improved design requirements, approach to entry into service, and institutional implications for design and operation.
Reduction of Dynamic Loads in Mine Lifting Installations
NASA Astrophysics Data System (ADS)
Kuznetsov, N. K.; Eliseev, S. V.; Perelygina, A. Yu
2018-01-01
Article is devoted to a problem of decrease in the dynamic loadings arising in transitional operating modes of the mine lifting installations leading to heavy oscillating motions of lifting vessels and decrease in efficiency and reliability of work. The known methods and means of decrease in dynamic loadings and oscillating motions of the similar equipment are analysed. It is shown that an approach based on the concept of the inverse problems of dynamics can be effective method of the solution of this problem. The article describes the design model of a one-ended lifting installation in the form of a two-mass oscillation system, in which the inertial elements are the mass of the lifting vessel and the reduced mass of the engine, reducer, drum and pulley. The simplified mathematical model of this system and results of an efficiency research of an active way of reduction of dynamic loadings of lifting installation on the basis of the concept of the inverse problems of dynamics are given.
NASA Technical Reports Server (NTRS)
Harris, Elizabeth; Ogle, James; Schoppe, Dean
1989-01-01
The lifting machine will assist in lifting cargo off of landers sent to the Moon and in the construction of a lunar base. Three possible designs were considered for the overall configuration of the lifting machine: the variable angle crane, the tower crane, and the gantry crane. Alternate designs were developed for the major components of the lifting machine. A teleoperable, variable angle crane was chosen as its final design. The design consists of a telescoping boom mounted to a chassis that is supported by two conical wheels for towing and four outriggers for stability. Attached to the end of the boom is a seven degree of freedom robot arm for light, dexterous, lifting operations. A cable and hook suspends from the end of the boom for heavy, gross, lifting operations. Approximate structural sizes were determined for the lifter and its components. However, further analysis is needed to determine the optimum design dimensions. The design team also constructed a model of the design which demonstrates its features and operating principals.
NASA Technical Reports Server (NTRS)
1995-01-01
Sections 10 to 13 of the Advanced Transportation System Studies final report are included in this volume. Section 10 contains a copy of an executive summary that was prepared by Lockheed Space Operations Company (LSOC) to document their support to the TA-2 contract during the first-year period of performance of the contract, May 1992 through May 1993. LSOC participated on the TA-2 contract as part of the concurrent engineering launch system definition team, and provided outstanding heavy lift launch vehicle (HLLV) ground operations requirements and concept assessments for Lockheed Missiles and Space Company (LMSC) through an intercompany work transfer as well as providing specific HLLV ground operations assessments at the direction of NASA KSC through KSC funding that was routed to the TA-2 contract. Section 11 contains a copy of a vehicle-independent, launch system health management requirements assessment. The purpose of the assessment was to define both health management requirements and the associated interfaces between a generic advanced transportation system launch vehicle and all related elements of the entire transportation system, including the ground segment. Section 12 presents the major TA-2 presentations provided to summarize the significant results and conclusions that were developed over the course of the contract. Finally, Section 13 presents the design and assessment report on the first lunar outpost heavy lift launch vehicle.
... heavy lifting Being overweight or obese Pregnancy and childbirth The muscles, ligaments and connective tissue that support ... naturally more likely to develop posterior vaginal prolapse. Childbirth. If you have vaginally delivered multiple children, you ...
Visuomotor training improves stroke-related ipsilesional upper extremity impairments.
Quaney, Barbara M; He, Jianghua; Timberlake, George; Dodd, Kevin; Carr, Caitlin
2010-01-01
Unilateral middle cerebral artery infarction has been reported to impair bilateral hand grasp. Individuals (5 males and 5 females; age 33-86 years) with chronic unilateral middle cerebral artery stroke (4 right lesions and 6 left lesions) repeatedly lifted a 260-g object. Participants were then trained to lift the object using visuomotor feedback via an oscilloscope that displayed their actual grip force (GF) and a target GF, which roughly matched the physical properties of the object. The subjects failed to accurately modulate the predictive GF when relying on somatosensory information from the previous lifts. Instead, for all the lifts, they programmed excessive GF equivalent to the force used for the first lift. The predictive GF was lowered for lifts following the removal of the visual feedback. The mean difference in predictive GF between the lifts before and after visual training was significant (4.35 +/- 0.027 N; P
NASA Technical Reports Server (NTRS)
McCurry, J.
1995-01-01
The purpose of the TA-2 contract was to provide advanced launch vehicle concept definition and analysis to assist NASA in the identification of future launch vehicle requirements. Contracted analysis activities included vehicle sizing and performance analysis, subsystem concept definition, propulsion subsystem definition (foreign and domestic), ground operations and facilities analysis, and life cycle cost estimation. This document is part of the final report for the TA-2 contract. The final report consists of three volumes: Volume 1 is the Executive Summary, Volume 2 is Technical Results, and Volume 3 is Program Cost Estimates. The document-at-hand, Volume 1, provides a summary description of the technical activities that were performed over the entire contract duration, covering three distinct launch vehicle definition activities: heavy-lift (300,000 pounds injected mass to low Earth orbit) launch vehicles for the First Lunar Outpost (FLO), medium-lift (50,000-80,000 pounds injected mass to low Earth orbit) launch vehicles, and single-stage-to-orbit (SSTO) launch vehicles (25,000 pounds injected mass to a Space Station orbit).
NASA Technical Reports Server (NTRS)
1967-01-01
Cockpit of the HL-10 lifting body. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new and different lessons were learned through the successful flight testing of the HL-10. These lessons, when combined with information from it's sister ship, the M2-F2/F3, provided an excellent starting point for designers of future entry vehicles, including the Space Shuttle.
An Analytical Approach to Prioritizing the Development of Seabasing Components
2007-04-05
high - speed ferries. The ships have served in intra-theater lift roles worldwide, as a staging platform for SOF during OIF, and as a ...testing. If Seabasing is to reach its full potential, a concerted effort needs to be made to develop a long-range, high - speed , heavy-lift cargo ...deck, high speed , containerized amphibious aircraft carriers) and aircraft (large, long range, naval airlift). A lot of money and energy will
Li, Yong; Randerath, Jennifer; Bauer, Hans; Marquardt, Christian; Goldenberg, Georg; Hermsdörfer, Joachim
2009-01-03
When we manipulate familiar objects in our daily life, our grip force anticipates the physical demands right from the moment of contact with the object, indicating the existence of a memory for relevant object properties. This study explores the formation and consolidation of the memory processes that associate either familiar (size) or arbitrary object features (color) with object weight. In the general task, participants repetitively lifted two differently weighted objects (580 and 280 g) in a pseudo-random order. Forty young healthy adults participated in this study and were randomly distributed into four groups: Color Cue Single task (CCS, blue and red, 9.8(3)cm(3)), Color Cue Dual task (CCD), No Cue (NC) and Size Cue (SC, 9.8(3) and 6(3)cm(3)) group. All groups performed a repetitive precision grasp-lift task and were retested with the same protocol after a 5-min pause. The CCD group was also required to simultaneously perform a memory task during each lift of differently weighted objects coded by color. The results show that groups lifting objects with arbitrary or familiar features successfully formed the association between object weight and manipulated object features and incorporated this into grip force programming, as observed in the different scaling of grip force and grip force rate for different object weights. An arbitrary feature, i.e., color, can be sufficiently associated with object weight, however with less strength than the familiar feature of size. The simultaneous memory task impaired anticipatory force scaling during repetitive object lifting but did not jeopardize the learning process and the consolidation of the associative memory.
The Business Case for Spiral Development in Heavy Lift Launch Vehicle Systems
NASA Technical Reports Server (NTRS)
Farr, Rebecca A.; Christensen, David L.; Keith, Edward L.
2005-01-01
Performance capabilities of a specific combination of the Space Shuttle external tank and various liquid engines in an in-line configuration, two-stage core vehicle with multiple redesigned solid rocket motor strap-ons are reexamined. This concept proposes using existing assets, hardware, and capabilities that are already crew-rated, flight certified, being manufactured under existing contracts, have a long history of component and system ground testing, and have been flown for over 20 yr. This paper goes beyond describing potential performance capabilities of specific components to discuss the overall system feasibility-from end to end, start to finish-describing the inherent cost advantages of the Spiral Development concept, which builds on existing capabilities and assets, as opposed to starting up a "fresh sheet" heavy-lift launch vehicle program from scratch.
Barco, Raul; Antuña, Samuel A.
2017-01-01
Medial elbow pain is uncommon when compared with lateral elbow pain. Medial epicondylitis is an uncommon diagnosis and can be confused with other sources of pain. Overhead throwers and workers lifting heavy objects are at increased risk of medial elbow pain. Differential diagnosis includes ulnar nerve disorders, cervical radiculopathy, injured ulnar collateral ligament, altered distal triceps anatomy or joint disorders. Children with medial elbow pain have to be assessed for ‘Little League elbow’ and fractures of the medial epicondyle following a traumatic event. This paper is primarily focused on the differential diagnosis of medial elbow pain with basic recommendations on treatment strategies. Cite this article: EFORT Open Rev 2017;2:362-371. DOI: 10.1302/2058-5241.2.160006 PMID:28932488
HL-10 on lakebed showing subsonic control surface configuration
NASA Technical Reports Server (NTRS)
1966-01-01
This photo shows the HL-10 on lakebed with its subsonic control surface configuration. The unusual shapes of the lifting bodies, as well as the demands of flying a re-entry shape to comparative low-speed landings, required a complex set of control surfaces. The rudders also served as speed brakes, allowing the pilot to adjust his speed during descent. Moving the flaps at the rear of the fuselage in the same direction pitched the nose up, while moving them in opposite directions rolled the vehicle to the right or left. After the HL-10's fins were modified to improve its handling qualities, the vehicle proved to be the best handling of the original heavy-weight lifting bodies. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new and different lessons were learned through the successful flight testing of the HL-10. These lessons, when combined with information from it's sister ship, the M2-F2/F3, provided an excellent starting point for designers of future entry vehicles, including the Space Shuttle.
Corneal transplant - discharge
... heavy lifting. Stay away from dust and blowing sand. Follow your provider's instructions for using eye drops ... A.D.A.M. follows rigorous standards of quality and accountability. A.D.A.M. is among ...
Arterial blood pressure response to heavy resistance exercise.
MacDougall, J D; Tuxen, D; Sale, D G; Moroz, J R; Sutton, J R
1985-03-01
The purpose of this study was to record the blood pressure response to heavy weight-lifting exercise in five experienced body builders. Blood pressure was directly recorded by means of a capacitance transducer connected to a catheter in the brachial artery. Intrathoracic pressure with the Valsalva maneuver was recorded as mouth pressure by having the subject maintain an open glottis while expiring against a column of Hg during the lifts. Exercises included single-arm curls, overhead presses, and both double- and single-leg presses performed to failure at 80, 90, 95, and 100% of maximum. Systolic and diastolic blood pressures rose rapidly to extremely high values during the concentric contraction phase for each lift and declined with the eccentric contraction. The greatest peak pressures occurred during the double-leg press where the mean value for the group was 320/250 mmHg, with pressures in one subject exceeding 480/350 mmHg. Peak pressures with the single-arm curl exercise reached a mean group value of 255/190 mmHg when repetitions were continued to failure. Mouth pressures of 30-50 Torr during a single maximum lift, or as subjects approached failure with a submaximal weight, indicate that a portion of the observed increase in blood pressure was caused by a Valsalva maneuver. It was concluded that when healthy young subjects perform weight-lifting exercises the mechanical compression of blood vessels combines with a potent pressor response and a Valsalva response to produce extreme elevations in blood pressure. Pressures are extreme even when exercise is performed with a relatively small muscle mass.
Preparing for Combat Readiness for the Fight: Physical Performance Profile of Female U.S. Marines.
Kelly, Karen R; Jameson, Jason T
2016-03-01
Females have been restricted from serving in direct combat arms' positions for decades. One reason for the exclusion derives from the perceived physical demands of these positions. As a result, many current efforts are directed toward defining the physical demands of combat arms' positions. The purpose of this study was to develop a physical performance and body composition profile of females who could overcome the physical demands of combat tasks that rely primarily on upper body strength. This study is based on an analysis of archival data from 2 separate samples of active-duty female Marines (n = 802), who had been recruited to participate in heavy lifting tasks. These tasks included lifting a heavy machine gun (HMG) lift (cohort 1, n = 423) and Clean and Press lifts (29.5-52.3 kg) (cohort 2, n = 379). To develop the physical performance profile, data from annual physical fitness tests were collected, which included run times, ammunition can lift, 804. Seven-meter (880-yard) movement to contact, and the maneuver under fire. In cohort 1, 65 females (∼15%; n = 423 females) successfully completed HMG; in cohort 2, 33 females (∼9%; n = 379 females) successfully completed another strength task, a Clean and Press of 52.3 kg. In both samples, female Marines who were successful on these tasks also outperformed their unsuccessful counterparts on the annual physical fitness tests. In addition, larger females typically outperformed their smaller counterparts. Females seeking assignment to closed combat arms' positions would thus be well served by targeting upper body strength, while maintaining overall physical fitness.
Next Generation Heavy-Lift Launch Vehicle: Large Diameter, Hydrocarbon-Fueled Concepts
NASA Technical Reports Server (NTRS)
Holliday, Jon; Monk, Timothy; Adams, Charles; Campbell, Ricky
2012-01-01
With the passage of the 2010 NASA Authorization Act, NASA was directed to begin the development of the Space Launch System (SLS) as a follow-on to the Space Shuttle Program. The SLS is envisioned as a heavy lift launch vehicle that will provide the foundation for future large-scale, beyond low Earth orbit (LEO) missions. Supporting the Mission Concept Review (MCR) milestone, several teams were formed to conduct an initial Requirements Analysis Cycle (RAC). These teams identified several vehicle concept candidates capable of meeting the preliminary system requirements. One such team, dubbed RAC Team 2, was tasked with identifying launch vehicles that are based on large stage diameters (up to the Saturn V S-IC and S-II stage diameters of 33 ft) and utilize high-thrust liquid oxygen (LOX)/RP engines as a First Stage propulsion system. While the trade space for this class of LOX/RP vehicles is relatively large, recent NASA activities (namely the Heavy Lift Launch Vehicle Study in late 2009 and the Heavy Lift Propulsion Technology Study of 2010) examined specific families within this trade space. Although the findings from these studies were incorporated in the Team 2 activity, additional branches of the trade space were examined and alternative approaches to vehicle development were considered. Furthermore, Team 2 set out to define a highly functional, flexible, and cost-effective launch vehicle concept. Utilizing this approach, a versatile two-stage launch vehicle concept was chosen as a preferred option. The preferred vehicle option has the capability to fly in several different configurations (e.g. engine arrangements) that gives this concept an inherent operational flexibility which allows the vehicle to meet a wide range of performance requirements without the need for costly block upgrades. Even still, this concept preserves the option for evolvability should the need arise in future mission scenarios. The foundation of this conceptual design is a focus on low cost and effectiveness rather than efficiency or cutting-edge technology. This paper details the approach and process, as well as the trade space analysis, leading to the preferred vehicle concept.
Ali, Yasser Helmy
2018-02-01
Thread-lifting rejuvenation procedures have evolved again, with the development of absorbable threads. Although they have gained popularity among plastic surgeons and dermatologists, very few articles have been written in literature about absorbable threads. This study aims to evaluate two years' outcome of thread lifting using absorbable barbed threads for facial rejuvenation. Prospective comparative stud both objectively and subjectively and follow-up assessment for 24 months. Thread lifting for face rejuvenation has significant long-lasting effects that include skin lifting from 3-10 mm and high degree of patients' satisfaction with less incidence rate of complications, about 4.8%. Augmented results are obtained when thread lifting is combined with other lifting and rejuvenation modalities. Significant facial rejuvenation is achieved by thread lifting and highly augmented results are observed when they are combined with Botox, fillers, and/or platelet rich plasma (PRP) rejuvenations.
NASA's Space Launch System: A Heavy-Lift Platform for Entirely New Missions
NASA Technical Reports Server (NTRS)
Creech, Stephen D.
2012-01-01
The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) will contribute a new capability for human space flight and scientific missions beyond low-Earth orbit (LEO). The SLS Program, managed at NASA s Marshall Space Flight Center, will develop the heavy-lift vehicle that will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. Orion will carry crews to space, provide emergency abort capability, sustain the crew during space travel, and provide safe reentry from deep-space return velocities. Supporting Orion s first autonomous flight to lunar orbit and back in 2017 and its first crewed flight in 2021, the SLS ultimately offers a flexible platform for both human and scientific exploration. The SLS plan leverages legacy infrastructure and hardware in NASA s inventory, as well as continues with advanced technologies now in development, to deliver an initial 70 metric ton (t) lift capability in 2017, evolving to a 130-t capability, using a block upgrade approach. This paper will give an overview of the SLS design and management approach against a backdrop of the missions it will support. It will detail the plan to deliver the initial SLS capability to the launch pad in the near term, as well as summarize the innovative approaches the SLS team is applying to deliver a safe, affordable, and sustainable long-range capability for entirely new missions-opening a new realm of knowledge and a world of possibilities for multiple partners. Design reference missions that the SLS is being planned to support include Mars, Jupiter, Lagrange Points, and near-Earth asteroids (NEAs), among others. The Agency is developing its mission manifest in parallel with the development of a heavy-lift flagship that will dramatically increase total lift and volume capacity beyond current launch vehicle options, reduce trip times, and provide a robust platform for conducting new missions destined to rewrite textbooks with the information they deliver, while creating a framework for further collaboration among domestic and international partners, and potentially spurring economic expansion into new markets.
NASA's Space Launch System: A Heavy-Lift Platform for Entirely New Missions
NASA Technical Reports Server (NTRS)
Creech, Stephen A.
2012-01-01
The National Aeronautics and Space Administration s (NASA's) Space Launch System (SLS) will contribute a new capability for human space flight and scientific missions beyond low-Earth orbit. The SLS Program, managed at NASA s Marshall Space Fight Center, will develop the heavy-lift vehicle that will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions. Orion will carry crews to space, provide emergency abort capability, sustain the crew during space travel, and provide safe reentry from deep-space return velocities. Supporting Orion s first autonomous flight to lunar orbit and back in 2017 and its first crewed flight in 2021, the SLS ultimately offers a flexible platform for both human and scientific exploration. The SLS plan leverages legacy infrastructure and hardware in NASA s inventory, as well as continues with advanced propulsion technologies now in development, to deliver an initial 70 metric ton (t) lift capability in 2017, evolving to a 130-t capability after 2021, using a block upgrade approach. This paper will give an overview of the SLS design and management approach against a backdrop of the missions it will support. It will detail the plan to deliver the initial SLS capability to the launch pad in the near term, as well as summarize the innovative approaches the SLS team is applying to deliver a safe, affordable, and sustainable long-range capability for entirely new missions opening a new realm of knowledge and a world of possibilities for multiple partners. Design reference missions that the SLS is being planned to support include asteroids, Lagrange Points, and Mars, among others. The Agency is developing its mission manifest in parallel with the development of a heavy-lift flagship that will dramatically increase total lift and volume capacity beyond current launch vehicle options, reduce trip times, and provide a robust platform for conducting new missions destined to rewrite textbooks with the information they deliver, while creating a framework for further collaboration among domestic and international partners, and potentially spurring economic expansion into new markets.
Counter-balanced, multiple cable construction crane
NASA Astrophysics Data System (ADS)
Mikulas, Martin M., Jr.; Yang, Li-Farn
1991-11-01
The invention is a counter-balanced, multiple cable construction crane. The apparatus for hoisting payloads comprises a crane having a lifting means, the lifting means comprising an end effector means and three suspension means or cables. One end of each cable attaches to a different winding means located on the lifting means, and the other end of each cable attaches to a different point on the end effector, such that the three cables have a theoretical point of convergence with this point corresponding to the center of mass of the payload. Three controls command rotation of the winding means to a predetermined position. Accordingly, the crane provides precise and autonomous positioning of the payload without human guidance. The crane further comprises a counter-balancing means. Two controls position the counter-balancing means to offset the overturning moment which arises during the lifting of heavy payloads.
Counter-balanced, multiple cable construction crane
NASA Astrophysics Data System (ADS)
Mikulas, Martin M., Jr.; Yang, Li-Farn
1993-10-01
The invention is a counter-balanced, multiple cable construction crane. The apparatus for hoisting payloads comprises a crane having a lifting means, the lifting means comprising an end effector means and three suspension means or cables. One end of each cable attaches to a different winding means located on the lifting means, and the other end of each cable attaches to a different point on the end effector, such that the three cables have a theoretical point of convergence with this point corresponding to the center of mass of the payload. Three controls command rotation of the winding means to a predetermined position. Accordingly, the crane provides precise and autonomous positioning of the payload without human guidance. The crane further comprises a counter-balancing means. Two controls position the counter-balancing means to offset the overturning moment which arises during the lifting of heavy payloads.
Counter-balanced, multiple cable construction crane
NASA Technical Reports Server (NTRS)
Mikulas, Martin M., Jr. (Inventor); Yang, Li-Farn (Inventor)
1993-01-01
The invention is a counter-balanced, multiple cable construction crane. The apparatus for hoisting payloads comprises a crane having a lifting means, the lifting means comprising an end effector means and three suspension means or cables. One end of each cable attaches to a different winding means located on the lifting means, and the other end of each cable attaches to a different point on the end effector, such that the three cables have a theoretical point of convergence with this point corresponding to the center of mass of the payload. Three controls command rotation of the winding means to a predetermined position. Accordingly, the crane provides precise and autonomous positioning of the payload without human guidance. The crane further comprises a counter-balancing means. Two controls position the counter-balancing means to offset the overturning moment which arises during the lifting of heavy payloads.
HLLV avionics requirements study and electronic filing system database development
NASA Technical Reports Server (NTRS)
1994-01-01
This final report provides a summary of achievements and activities performed under Contract NAS8-39215. The contract's objective was to explore a new way of delivering, storing, accessing, and archiving study products and information and to define top level system requirements for Heavy Lift Launch Vehicle (HLLV) avionics that incorporate Vehicle Health Management (VHM). This report includes technical objectives, methods, assumptions, recommendations, sample data, and issues as specified by DPD No. 772, DR-3. The report is organized into two major subsections, one specific to each of the two tasks defined in the Statement of Work: the Index Database Task and the HLLV Avionics Requirements Task. The Index Database Task resulted in the selection and modification of a commercial database software tool to contain the data developed during the HLLV Avionics Requirements Task. All summary information is addressed within each task's section.
Stress incontinence Overview Urinary incontinence is the unintentional loss of urine. Stress incontinence happens when physical movement or activity — such ... coughing, sneezing, running or heavy lifting — puts pressure (stress) on your bladder. Stress incontinence is not related ...
Small Bowel Prolapse (Enterocele)
... heavy lifting Being overweight or obese Pregnancy and childbirth Pregnancy and childbirth are the most common causes of pelvic organ ... of developing small bowel prolapse include: Pregnancy and childbirth. Vaginal delivery of one or more children contributes ...
Structure and properties of polyethylene films used in heavy lift balloons
NASA Technical Reports Server (NTRS)
Khoury, F.; Crissman, J. M.; Fanconi, B. M.; Wagner, H. L.; Botz, L. H.
1985-01-01
The following features of five polyethylene films used by NASA in the construction of heavy lift balloons have been examined: molecular weight, molecular weight distribution, branching, melting behavior, density, surface texture, birefringence, orientation of crystalline regions, unlaxial deformation in the machine and transverse directions, and the effect of sample geometry and strain rate on deformation behavior. The goal of this exploratory study was to determine whether there are significant differences in any of the above mentioned features, or combination of features between the films. The acquisition of such information is a first step towards determining whether there are any specific correlations between film characteristics and the incidence of catastrophic failure of balloons during ascent through the troposphere. This exploratory study has resulted in the identification of similarities and differences between various features of the films.
NASA Technical Reports Server (NTRS)
Craig, Anthony P.; Hansman, R. John
1987-01-01
Wind tunnel experiments were conducted on Wortmann FX67-K170, NACA 0012, and NACA 64-210 airfoils at rain rates of 1000 mm/hr and Reynolds numbers of 310,000 to compare the aerodynamic performance degradation of the airfoils and to attempt to identify the various mechanisms which affect performance in heavy rain conditions. Lift and drag were measured in dry and wet conditions, a variety of flow visualization techniques were employed, and a computational code which predicted airfoil boundary layer behavior was used. At low angles of attack, the lift degradation in wet conditions varied significantly between the airfoils. The Wortmann section had the greatest overall lift degradation and the NACA 64-210 airfoil had the smallest. At high angles of attack, the NACA 64-210 and 0012 airfoils had improved aerodynamic performance in rain conditions due to an apparent reduction of the boundry layer separation. Performance degradation in heavy rain for all three airfoils at low angles of attack could be emulated by forced boundary layer transition near the leading edge. The secondary effect occurs at time scales consistent with top surface water runback times. The runback layer is thought to effectively alter the airfoil geometry. The severity of the performance degradation for the airfoils varied. The relative differences appeared to be related to the susceptibility of each airfoil to premature boundary layer transition.
Effects of varying gravity levels in parabolic flight on the size-mass illusion.
Clément, Gilles
2014-01-01
When an observer lifts two objects with the same weight but different sizes, the smaller object is consistently reported to feel heavier than the larger object even after repeated trials. Here we explored the effect of reduced and increased gravity on this perceptual size-mass illusion. Experiments were performed on board the CNES Airbus A300 Zero-G during parabolic flights eliciting repeated exposures to short periods of zero g, 0.16 g, 0.38 g, one g, and 1.8 g. Subjects were asked to assess perceived heaviness by actively oscillating objects with various sizes and masses. The results showed that a perceptual size-mass illusion was clearly present at all gravity levels. During the oscillations, the peak arm acceleration varied as a function of the gravity level, irrespective of the mass and size of the objects. In other words we did not observe a sensorimotor size-mass illusion. These findings confirm dissociation between the sensorimotor and perceptual systems for determining object mass. In addition, they suggest that astronauts on the Moon or Mars with the eyes closed will be able to accurately determine the relative difference in mass between objects.
Effects of Varying Gravity Levels in Parabolic Flight on the Size-Mass Illusion
Clément, Gilles
2014-01-01
When an observer lifts two objects with the same weight but different sizes, the smaller object is consistently reported to feel heavier than the larger object even after repeated trials. Here we explored the effect of reduced and increased gravity on this perceptual size-mass illusion. Experiments were performed on board the CNES Airbus A300 Zero-G during parabolic flights eliciting repeated exposures to short periods of zero g, 0.16 g, 0.38 g, one g, and 1.8 g. Subjects were asked to assess perceived heaviness by actively oscillating objects with various sizes and masses. The results showed that a perceptual size-mass illusion was clearly present at all gravity levels. During the oscillations, the peak arm acceleration varied as a function of the gravity level, irrespective of the mass and size of the objects. In other words we did not observe a sensorimotor size-mass illusion. These findings confirm dissociation between the sensorimotor and perceptual systems for determining object mass. In addition, they suggest that astronauts on the Moon or Mars with the eyes closed will be able to accurately determine the relative difference in mass between objects. PMID:24901519
Core Stage Inter-Tank Umbilical (CSITU) Lift at ML
2017-10-11
A heavy-lift crane and rigging are used to lift the Core Stage Inter-tank Umbilical (CSITU) up to about the 140-foot level of the mobile launcher (ML) tower at NASA's Kennedy Space Center in Florida. The CSITU is moved into place for a fit check of the attachment hardware. The umbilical will then be lowered down and installed permanently on the ML at a later date. The CSITU is a swing-arm umbilical that will connect to the Space Launch System core stage inter-tank. It will provide conditioned air, pressurized gases and power and data connection to the core stage. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Parker Solar Probe Delta IV Heavy LVOS
2018-04-17
The first stage of a United Launch Alliance Delta IV Heavy rocket is prepared to be lifted vertical at the Vertical Integration Facility near Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.
Parker Solar Probe Delta IV Heavy LVOS
2018-04-17
The United Launch Alliance Delta IV Heavy first stage is being lifted to the vertical position at the Vertical Integration Facility near Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.
Parker Solar Probe Delta IV Heavy LVOS
2018-04-17
The United Launch Alliance Delta IV Heavy first stage has been lifted to the vertical position and is inside the Vertical Integration Facility near Space Launch 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.
NASA Technical Reports Server (NTRS)
Piasecki, F. N.
1975-01-01
A hybrid VTOL airship which is combined with helicopters is evaluated. The static lift of the airship supports approximately the full empty weight of the entire assembly. The helicopter rotors furnish the lift to support the payload as well as the propulsion and control about all axes. Thus existing helicopters, with no new technology required, can be made to lift payloads of ten times the capacity of each one alone, and considerably more than that of any airship built so far. A vehicle is described which has a 75-ton payload, based on four existing CH-53D helicopters and an airship of 3,600,000 cu. ft. The method of interconnection is described along with discussion of control, instrumentation, drive system and critical design conditions. The vertical lift and positioning capabilities of this vehicle far exceed any other means available today, yet can be built with a minimum of risk, development cost and time.
McGregor, Heather R.; Pun, Henry C. H.; Buckingham, Gavin; Gribble, Paul L.
2016-01-01
The human sensorimotor system is routinely capable of making accurate predictions about an object's weight, which allows for energetically efficient lifts and prevents objects from being dropped. Often, however, poor predictions arise when the weight of an object can vary and sensory cues about object weight are sparse (e.g., picking up an opaque water bottle). The question arises, what strategies does the sensorimotor system use to make weight predictions when one is dealing with an object whose weight may vary? For example, does the sensorimotor system use a strategy that minimizes prediction error (minimal squared error) or one that selects the weight that is most likely to be correct (maximum a posteriori)? In this study we dissociated the predictions of these two strategies by having participants lift an object whose weight varied according to a skewed probability distribution. We found, using a small range of weight uncertainty, that four indexes of sensorimotor prediction (grip force rate, grip force, load force rate, and load force) were consistent with a feedforward strategy that minimizes the square of prediction errors. These findings match research in the visuomotor system, suggesting parallels in underlying processes. We interpret our findings within a Bayesian framework and discuss the potential benefits of using a minimal squared error strategy. NEW & NOTEWORTHY Using a novel experimental model of object lifting, we tested whether the sensorimotor system models the weight of objects by minimizing lifting errors or by selecting the statistically most likely weight. We found that the sensorimotor system minimizes the square of prediction errors for object lifting. This parallels the results of studies that investigated visually guided reaching, suggesting an overlap in the underlying mechanisms between tasks that involve different sensory systems. PMID:27760821
A Real-Time Lift Detection Strategy for a Hip Exoskeleton
Chen, Baojun; Grazi, Lorenzo; Lanotte, Francesco; Vitiello, Nicola; Crea, Simona
2018-01-01
Repetitive lifting of heavy loads increases the risk of back pain and even lumbar vertebral injuries to workers. Active exoskeletons can help workers lift loads by providing power assistance, and therefore reduce the moment and force applied on L5/S1 joint of human body when performing lifting tasks. However, most existing active exoskeletons for lifting assistance are unable to automatically detect user's lift movement, which limits the wide application of active exoskeletons in factories. In this paper, we propose a simple but effective lift detection strategy for exoskeleton control. This strategy uses only exoskeleton integrated sensors, without any extra sensors to capture human motion intentions. This makes the lift detection system more practical for applications in manufacturing environments. Seven healthy subjects participated in this research. Three different sessions were carried out, two for training and one for testing the algorithm. In the two training sessions, subjects were asked to wear a hip exoskeleton, controlled in transparent mode, and perform repetitive lifting and a locomotion circuit; lifting was executed with different techniques. The collected data were used to train the lift detection model. In the testing session, the exoskeleton was controlled in order to deliver torque to assist the lifting action, based on the lift detection made by the trained algorithm. The across-subject average accuracy of lift detection during online test was 97.97 ± 1.39% with subject-dependent model. Offline, the algorithm was trained with data acquired from all subjects to verify its performance for subject-independent detection, and an accuracy of 97.48 ± 1.53% was achieved. In addition, timeliness of the algorithm was quantitatively evaluated and the time delay was <160 ms across different lifting speeds. Surface electromyography was also measured to assess the efficacy of the exoskeleton in assisting subjects in performing load lifting tasks. These results validate the promise of applying the proposed lift detection strategy for exoskeleton control aiming at lift assistance. PMID:29706881
A Real-Time Lift Detection Strategy for a Hip Exoskeleton.
Chen, Baojun; Grazi, Lorenzo; Lanotte, Francesco; Vitiello, Nicola; Crea, Simona
2018-01-01
Repetitive lifting of heavy loads increases the risk of back pain and even lumbar vertebral injuries to workers. Active exoskeletons can help workers lift loads by providing power assistance, and therefore reduce the moment and force applied on L5/S1 joint of human body when performing lifting tasks. However, most existing active exoskeletons for lifting assistance are unable to automatically detect user's lift movement, which limits the wide application of active exoskeletons in factories. In this paper, we propose a simple but effective lift detection strategy for exoskeleton control. This strategy uses only exoskeleton integrated sensors, without any extra sensors to capture human motion intentions. This makes the lift detection system more practical for applications in manufacturing environments. Seven healthy subjects participated in this research. Three different sessions were carried out, two for training and one for testing the algorithm. In the two training sessions, subjects were asked to wear a hip exoskeleton, controlled in transparent mode, and perform repetitive lifting and a locomotion circuit; lifting was executed with different techniques. The collected data were used to train the lift detection model. In the testing session, the exoskeleton was controlled in order to deliver torque to assist the lifting action, based on the lift detection made by the trained algorithm. The across-subject average accuracy of lift detection during online test was 97.97 ± 1.39% with subject-dependent model. Offline, the algorithm was trained with data acquired from all subjects to verify its performance for subject-independent detection, and an accuracy of 97.48 ± 1.53% was achieved. In addition, timeliness of the algorithm was quantitatively evaluated and the time delay was <160 ms across different lifting speeds. Surface electromyography was also measured to assess the efficacy of the exoskeleton in assisting subjects in performing load lifting tasks. These results validate the promise of applying the proposed lift detection strategy for exoskeleton control aiming at lift assistance.
Catalytic Generation of Lift Gases for Balloons
NASA Technical Reports Server (NTRS)
Zubrin, Robert; Berggren, Mark
2011-01-01
A lift-gas cracker (LGC) is an apparatus that generates a low-molecular-weight gas (mostly hydrogen with smaller amounts of carbon monoxide and/or carbon dioxide) at low gauge pressure by methanol reforming. LGCs are undergoing development for use as sources of buoyant gases for filling zero-gauge-pressure meteorological and scientific balloons in remote locations where heavy, high-pressure helium cylinders are not readily available. LGCs could also be used aboard large, zero-gauge-pressure, stratospheric research balloons to extend the duration of flight.
Uses for lunar crawler transporters
NASA Astrophysics Data System (ADS)
Kaden, Richard A.
This article discusses state-of-the-art crawler transporters and expresses the need for additional research and development for lunar crawlers. The thrust of the paper illustrates how the basic crawler technology has progressed to a point where extremely large modules can be shop fabricated and move to some distant location at a considerable savings. Also, extremely heavy loads may be lifted by large crawler cranes and placed in designed locations. The Transi-Lift Crawler crane with its traveling counterweight is an attractive concept for lunar construction.
2004-07-06
KENNEDY SPACE CENTER, FLA. - The Boeing Delta II Heavy second-stage engine, the Aerojet AJ10-118K, is lifted up the mobile service tower at Pad 17-B, Cape Canaveral Air Force Station. The Delta II is the launch vehicle for the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) spacecraft, scheduled to lift off Aug. 2. Bound for Mercury, the spacecraft is expected to reach orbit around the planet in March 2011. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
Risk Factors of Orofacial Pain: A Population-Based Study in West Java Province, Indonesia.
Rikmasari, Rasmi; Yubiliana, Gilang; Maulina, Tantry
2017-01-01
The management of orofacial pain in Indonesia has not been well performed, which consequently led to an increase in the orofacial pain occurrences and a decreased quality of life. One of the possible reasons for this particular matter is the lack of evaluation on the risk factors that might induce orofacial pain in some individuals. The objective of the current study was to evaluate the risk factors of orofacial pain on productive age population in West Java province, Indonesia. One thousand and fifty-six participants (522 males; 534 females) were recruited for the study. A questionnaire that consists of demographic questions and questions evaluating several assumed risk factors for orofacial pain was used in a single interview. All data was analyzed by using Chi Square test to test the significance, Odds Ratio (OR), as well as Relative Risk (RR) by using SPSS version 23 (IBM Statistic, USA). The result of the current study revealed that bruxism ( p <0.01), daytime clenching ( p <0.01), and unilateral chewing ( p <0.01) were significantly related to the occurrence of orofacial pain. It was also found that participants who performed multitude of heavy liftings at work have an increased risk (RR=1.19: 95% CI: 1.04 - 1.35) of having orofacial pain compared to those who do not. Risk factors for the occurrence of orofacial pain on productive age population in Indonesian sample consisted of oral parafunctional habits and non-parafunctional habits, such as heavy lifting. Further study in this particular topic is of importance.
Sundstrup, Emil; Hansen, Åse Marie; Mortensen, Erik Lykke; Poulsen, Otto Melchior; Clausen, Thomas; Rugulies, Reiner; Møller, Anne; Andersen, Lars L
2018-01-01
Objective To determine the prospective association between retrospectively assessed physical work environment during working life and prospectively assessed sickness absence and labour market exit among older workers. Methods Using Cox regression analyses we estimated the 4-year to 6-year prospective risk of register-based long-term sickness absence (LTSA), disability pension, early retirement and unemployment from exposure to different physical work environmental factors during working life among 5076 older workers (age 49–63 at baseline) from the Copenhagen Aging and Midlife Biobank cohort. Results Very hard physical work throughout working life was a risk factor for LTSA (HR 1.66,95% CI 1.32 to 2.07), disability pension (HR 2.21,95% CI 1.04 to 4.72) and early retirement (HR 1.57,95% CI 1.13 to 2.17). Both short-term (<10 years) and long-term (≥20 years) exposures to lifting or carrying of heavy burdens predicted the risk of LTSA (HRs 1.49–1.56) and disability pension (HRs 2.26–3.29). In contrast, exposure to dust was associated with LTSA and disability pension only following 20 or more exposure years. Conclusions Retrospectively assessed hard physical work during working life and exposure to several factors in the physical work environment, especially heavy lifting, were important for labour market exit and sickness absence. This study underscores the importance of reducing physical work exposures throughout the working life course for preventing sickness absence and premature exit from the labour market. PMID:28819019
Radial Internal Material Handling System (RIMS) for Circular Habitat Volumes
NASA Technical Reports Server (NTRS)
Howe, Alan S.; Haselschwardt, Sally; Bogatko, Alex; Humphrey, Brian; Patel, Amit
2013-01-01
On planetary surfaces, pressurized human habitable volumes will require a means to carry equipment around within the volume of the habitat, regardless of the partial gravity (Earth, Moon, Mars, etc.). On the NASA Habitat Demonstration Unit (HDU), a vertical cylindrical volume, it was determined that a variety of heavy items would need to be carried back and forth from deployed locations to the General Maintenance Work Station (GMWS) when in need of repair, and other equipment may need to be carried inside for repairs, such as rover parts and other external equipment. The vertical cylindrical volume of the HDU lent itself to a circular overhead track and hoist system that allows lifting of heavy objects from anywhere in the habitat to any other point in the habitat interior. In addition, the system is able to hand-off lifted items to other material handling systems through the side hatches, such as through an airlock. The overhead system consists of two concentric circle tracks that have a movable beam between them. The beam has a hoist carriage that can move back and forth on the beam. Therefore, the entire system acts like a bridge crane curved around to meet itself in a circle. The novelty of the system is in its configuration, and how it interfaces with the volume of the HDU habitat. Similar to how a bridge crane allows coverage for an entire rectangular volume, the RIMS system covers a circular volume. The RIMS system is the first generation of what may be applied to future planetary surface vertical cylinder habitats on the Moon or on Mars.
Investigating reduced bag weight as an effective risk mediator for mason tenders.
Davis, Kermit G; Kotowski, Susan E; Albers, James; Marras, William S
2010-10-01
Masonry workers face some of the highest physical demands in the construction industry where large bags of masonry material weighing 42.7 kg are commonly handled by mason tenders who mix the mortar, distribute mortar and bricks/blocks, and erect/dismantle scaffolding throughout the day. The objective of this study was to determine the effectiveness of using half-weight bags (21.4 kg) on reducing the biomechanical loading, physiological response, and perceived exertions. Ten male subjects performed asymmetric lifting tasks simulating unloading bags from a pallet. Muscle activity, trunk kinematics, heart rate, blood pressure and subjective rating data were collected. Spine loads were predicted from a well-validated EMG-assisted model. Bag weight, lift type, bag height at origin, and asymmetry at destination significantly impacted the spine loads. While there was a 50% reduction in bag weight, the peak loads for the half-weight bags were only 25% less than the more available full-weight bags (a reduction of about 320 N of shear and 1000 N of compression). Lifts allowing movement of the feet reduced the loads by about 22% in shear and 27% in compression compared to constrained postures. Interestingly, cumulative spine loads were greater for the lighter bags than the heavy bags ( approximately 40%). The subjective ratings of exertion and risk were significantly lower for the lighter bags. RELEVANCE TO INDUSTRY: The reduction in peak spine loading for the half-weight bags, particularly at the higher heights and when the feet were allowed to move could significantly reduce the injuries of masonry workers. However, there were trade-offs with cumulative loads that may minimize the reduced risk. Overall, given the limited amount of time lifting bags, the reduction of peak loads.
... the circulation of blood in the hypertension or high blood pressure in the vein. This leg veins is impaired. ... pregnancies • Prolonged standing • Heavy lifting Limited physical activity, high blood pressure and obesity have also been linked with the ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bain, B.
Effectiveness of a portable, ice-pack cooling vest (Steelevest) in prolonging work tolerance time in chemical defense clothing in the heat (33 C dry bulb, 33% relative humidity or 25 C WBGT) was evaluated while subjects exercised at a metabolic rate of approx. 700 watts. Subjects were six male volunteers. The protocol consisted of a 20 minute treadmill walk at 1.33 m/s. and 7.5% grade, followed by 15 minutes of a lifting task, 5 minutes rest, then another 20 minutes of lifting task for a total of one hour. The lifting task consisted of lifting of 20 kg box, carrying itmore » 3 meters and setting it down. This was followed by a 6 m walk (3m back to the start point and 3 m back to the box) 15 sec after which the lifting cycle began again. The work was classified as heavy as previously defined. This protocol was repeated until the subjects were unable to continue or they reached a physiological endpoint. Time to voluntary cessation or physiological endpoint was called the work tolerance time. Physiological endpoints were rectal temperature of 39 C, heart rate exceeding 95% of maximum for two consecutive minutes or visible loss of motor control or nausea. The cooling vest had no effect on work tolerance time, rate of rise of rectal temperature or sweat loss. It was concluded that the Steelvest ice-vest is ineffective in prolonging work tolerance time and preventing increases in rectal temperature while wearing chemical protective clothing.« less
NASA Technical Reports Server (NTRS)
1966-01-01
The HL-10, seen here parked on the ramp, was one of five lifting body designs flown at NASA's Dryden Flight Research Center, Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new and different lessons were learned through the successful flight testing of the HL-10. These lessons, when combined with information from it's sister ship, the M2-F2/F3, provided an excellent starting point for designers of future entry vehicles, including the Space Shuttle.
Plamondon, André; Larivière, Christian; Delisle, Alain; Denis, Denys; Gagnon, Denis
2012-01-01
The objective of this study was to measure the effect size of three important factors in manual material handling, namely expertise, lifting height and weight lifted. The effect of expertise was evaluated by contrasting 15 expert and 15 novice handlers, the effect of the weight lifted with a 15-kg box and a 23-kg box and the effect of lifting height with two different box heights: ground level and a 32 cm height. The task consisted of transferring a series of boxes from a conveyor to a hand trolley. Lifting height and weight lifted had more effect size than expertise on external back loading variables (moments) while expertise had low impact. On the other hand, expertise showed a significant effect of posture variables on the lumbar spine and knees. All three factors are important, but for a reduction of external back loading, the focus should be on the lifting height and weight lifted. The objective was to measure the effect size of three important factors in a transfer of boxes from a conveyor to a hand trolley. Lifting height and weight lifted had more effect size than expertise on external back loading variables but expertise was a major determinant in back posture.
Current Status of NASA's Heavy Lift Plans
NASA Technical Reports Server (NTRS)
Creech, Steve
2010-01-01
Numerous studies since the Apollo Program of the 1960s have highlighted the benefits of - and the need for - a national heavy lift launch capability to support human exploration, science, national security, and commercial development of space. NASA's most recent and most refined effort to develop that heavy lift capability is the Ares V. Ares V is a key element of NASA's Constellation Program. It s overall goal s part of approved national space policy is to retire the Space Shuttle and develop its successor, complete the International Space Station, and resume human exploration beyond low Earth orbit (LEO), beginning with exploration of the Moon as a step to other destinations in the Solar System. Ares V s first role is that of cargo vehicle to carry a lunar lander into Earth orbit, rendezvous with astronauts launched on the smaller Ares I crew launch vehicle, and perform the trans lunar injection (TLI) mission to send the mated crew and lander vehicles to the Moon. The design reference missions (DRMs) envisioned for it also include direct lunar cargo flights and a human Mars mission. Although NASA's priority from the start of the Constellation Program to the present has been development of the Ares I and Orion crew vehicle to replace the retiring Shuttle fleet, the Ares team has made significant progress in understanding the performance, design trades, technology needs, mission scenarios, ground and flight operations, cost, and other factors associated with heavy lift development. The current reference configuration was selected during the Lunar Capabilities Concept Review (LCCR) in fall 2008. That design has served since then as a point of departure for further refinements and trades among five participating NASA field centers. Ares V development to date has benefited from progress on the Ares I due to commonality between the vehicles. The Ares I first stage completed a successful firing of a 5-segment solid rocket motor. The Ares I-X launch Numerous studies since the Apollo Program of the 1960s have highlighted the benefits of and the need for - a national heavy lift launch capability to support human exploration, science, national security, and commercial development of space. NASA s most recent and most refined effort to develop that heavy lift capability is the Ares V. Ares V is a key element of NASA s Constellation Program. It s overall goal s part of approved national space policy is to retire the Space Shuttle and develop its successor, complete the International Space Station, and resume human exploration beyond low Earth orbit (LEO), beginning with exploration of the Moon as a step to other destinations in the Solar System. Ares V s first role is that of cargo vehicle to carry a lunar lander into Earth orbit, rendezvous with astronauts launched on the smaller Ares I crew launch vehicle, and perform the trans lunar injection (TLI) mission to send the mated crew and lander vehicles to the Moon. The design reference missions (DRMs) envisioned for it also include direct lunar cargo flights and a human Mars mission. Although NASA s priority from the start of the Constellation Program to the present has been development of the Ares I and Orion crew vehicle to replace the retiring Shuttle fleet, the Ares team has made significant progress in understanding the performance, design trades, technology needs, mission scenarios, ground and flight operations, cost, and other factors associated with heavy lift development. The current reference configuration was selected during the Lunar Capabilities Concept Review (LCCR) in fall 2008. That design has served since then as a point of departure for further refinements and trades among five participating NASA field centers. Ares V development to date has benefited from progress on the Ares I due to commonality between the vehicles. The Ares I first stage completed a successful firing of a 5-segment solid rocket motor. The Ares I-X launch successfully demonstrated in suborbital flighhe ability to assemble, prepare, launch, control and recover the Ares I configuration and compare performance to computer models. Component tests continue on the J-2X engine, which will put both the Ares I and Ares V upper stages into orbit. In addition, more than 100,000 parts have been manufactured or on the assembly line for the first J-2X powerpack and the first two development engines, with hot fire tests to begin in 2011. This paper will further detail the progress to date on the Ares V and planned activities for the remainder of 2010. In addition, the Ares V team has continued its outreach to potential user communities in science and national security. Through the Constellation Program, NASA has amassed an enormous knowledge base in the design, technologies, and operations of heavy lift launch vehicles that will be a national asset for any future launch vehicle decision. This early phase of the design presents the best opportunity to incorporate where possible the insights and needs of other users.
Satellite Power Systems (SPS) concept definition study. Volume 4: Transportation analysis
NASA Technical Reports Server (NTRS)
Hanley, G. M.
1980-01-01
Transportation system elements were synthesized and evaluated on the basis of their potential to satisfy overall satellite (SPS) transportation requirements and of their sensitivities, interfaces, and impact on the SPS. Additional analyses and investigations were conducted to further define transportation system concepts that will be needed for the developmental and operational phases of an SPS program. To accomplish these objectives, transportation systems such as shuttle and its derivatives have been identified; new heavy lift launch vehicle concepts, cargo and personnel orbital transfer vehicles and intra-orbit transfer vehicle concepts have been evaluated. To a limited degree, the program implications of their operations and costs were assessed. The results of these analyses have been integrated into other elements of the overall SPS concept definition studies.
NASA Technical Reports Server (NTRS)
Bender, Robert L.; Reardon, John E.; Prendergast, Maurice J.; Schmitz, Craig P.; Brown, John R.
1992-01-01
A preliminary analysis of National Launch System ascent plume induced base heating environments has been completed to support the Induced Environments Panel's objective to assist in maturing the NLS vehicle (1.5 stage and heavy launch lift vehicle) design. Environments during ascent have been determined from this analysis for a few selected locations on the engine nozzles and base heat shield for both vehicles. The environments reflect early summer 1991 configurations and performance data and conservative methodology. A more complete and thorough analysis is under way to update these environments for the cycle 1 review in January 1992.
HL-10 mounted on a pedestal in front of the Dryden main gate at sunset
NASA Technical Reports Server (NTRS)
1992-01-01
The HL-10 Lifting Body, as shown here, is currently displayed on a pedestal in front of the main gate at NASA's Dryden Flight Research Center, Edwards, California. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new and different lessons were learned through the successful flight testing of the HL-10. These lessons, when combined with information from it's sister ship, the M2-F2/F3, provided an excellent starting point for designers of future entry vehicles, including the Space Shuttle.
Hoellinger, Thomas; McIntyre, Joseph; Jami, Lena; Hanneton, Sylvain; Cheron, Guy; Roby-Brami, Agnes
2017-08-15
It is not known whether, during the course of aging, changes occur in the motor strategies used by the CNS for lifting objects of different weights. Here, we analyzed the kinematics of object-lifting in two different healthy groups (young and elderly people) plus one well-known deafferented patient (GL). The task was to reach and lift onto a shelf an opaque cylindrical object with changing weight. The movements of the hand and object were recorded with electromagnetic sensors. In an ecological context (i.e. no instruction was given about movement speed), we found that younger participants, elderly people and GL did not all move at the same speed and that, surprisingly, elder people are faster. We also observed that the lifting trajectories were constant for both the elderly and the deafferented patient while younger participants raised their hand higher when the object weighed more. It appears that, depending on age and on available proprioceptive information, the CNS uses different strategies of lifting. We suggest that elder people tend to optimize their feedforward control in order to compensate for less functional afferent feedback, perhaps to optimize movement time and energy expenditure at the expense of high precision. In the case of complete loss of proprioceptive input, however, compensation follows a different strategy as suggested by GL's behavior who moved more slowly compared to both our younger and older participants. Copyright © 2017. Published by Elsevier Ltd.
Heavy Lift Launch Vehicles for 1995 and Beyond
NASA Technical Reports Server (NTRS)
Toelle, R. (Compiler)
1985-01-01
A Heavy Lift Launch Vehicle (HLLV) designed to deliver 300,000 lb to a 540 n mi circular polar orbit may be required to meet national needs for 1995 and beyond. The vehicle described herein can accommodate payload envelopes up to 50 ft diameter by 200 ft in length. Design requirements include reusability for the more expensive components such as avionics and propulsion systems, rapid launch turnaround time, minimum hardware inventory, stage and component flexibility and commonality, and low operational costs. All ascent propulsion systems utilize liquid propellants, and overall launch vehicle stack height is minimized while maintaining a reasonable vehicle diameter. The ascent propulsion systems are based on the development of a new liquid oxygen/hydrocarbon booster engine and liquid oxygen/liquid hydrogen upper stage engine derived from today's SSME technology. Wherever possible, propulsion and avionics systems are contained in reusable propulsion/avionics modules that are recovered after each launch.
NASA Technical Reports Server (NTRS)
Pokora, Darlene C.; Springer, Anthony M.
1994-01-01
A shadowgraph study of the National Launch System's (NLS's) 1 1/2 stage and heavy lift launch vehicle (HLLV) configurations is presented. Shadowgraphs are shown for the range of Mach numbers from Mach 0.6 to 5.0 at various angles-of-attack and roll angles. Since the 1 1/2 stage configuration is generally symmetric, no shadowgraphs of any roll angle are shown for this configuration. The major flow field phenomena over the NLS 1 1/2 stage and HLLV configurations are shown in the shadowgraphs. These shadowgraphs are used in the aerothermodynamic analysis of the external flow conditions the launch vehicle would encounter during the ascent stage of flight. The shadowgraphs presented in this study were obtained from configurations tested in the Marshall Space Flight Center's 14-Inch Trisonic Wind Tunnel during 1992.
Hang Them High: A Hands-Free Technique for Upper Extremity Limb Holding During Surgical Preparation.
Aneja, Arun; Leung, Patrick; Marquez-Lara, Alejandro
Lifting and holding upper and lower limbs during the "prep and drape" portion of certain orthopaedic procedures exert strong forces on the holder and may lead to musculoskeletal disorders. To address these challenges during upper extremity procedures, this article describes a hand-free elevation and traction technique of the upper limbs during preoperative skin preparation with the use of items readily available within the operating room (OR). This technique is particularly useful for heavy or fractured limbs that may impose a physical challenge to lift and maintain in a stable position. Implementation of this technique reduces the risk to nurses, OR personnel, and caregivers of developing work-related musculoskeletal injuries while lifting and holding limbs in the orthopaedic OR.
"Doing the heavy lifting: health care workers take back their backs".
Morse, Tim; Fekieta, Renee; Rubenstein, Harriet; Warren, Nick; Alexander, Darryl; Wawzyniecki, Patricia
2008-01-01
Health care workers have the highest musculoskeletal disorder prevalence and incidence of any occupational/industry group, and patient handling tasks are so biomechanically demanding that they cannot be made safe through the commonly used, technique-oriented methods such as "back school" training programs. Although there is standard-setting activity for "no-lift" programs in some states, there is still no federal standard. Health care worker unions and nurses' associations have begun to take action through training members in equipment need, use, and acceptance in programs to encourage adoption of no-lifting programs. Acceptance of lifting equipment is increasing due to recognition of the high human and economic costs of MSD, consistent documentation of cost savings from no-lift programs, major improvements in lifting equipment, and shortages of health care staff. An action-oriented training program for health care workers is described that provides knowledge about the 1) Scope of the current problem of back injuries in health care, 2) Costs of injuries, both to workers and to the hospital, 3) Elements of a safe patient-handling program, and 4) Success stories. The program also builds skills through: 1) Hands-on experience with safe lifting equipment, and 2) Assessing organizational and union readiness and planning for action at the workplace.
Sensorimotor memory of object weight distribution during multidigit grasp.
Albert, Frederic; Santello, Marco; Gordon, Andrew M
2009-10-09
We studied the ability to transfer three-digit force sharing patterns learned through consecutive lifts of an object with an asymmetric center of mass (CM). After several object lifts, we asked subjects to rotate and translate the object to the contralateral hand and perform one additional lift. This task was performed under two weight conditions (550 and 950 g) to determine the extent to which subjects would be able to transfer weight and CM information. Learning transfer was quantified by measuring the extent to which force sharing patterns and peak object roll on the first post-translation trial resembled those measured on the pre-translation trial with the same CM. We found that the overall gain of fingertip forces was transferred following object rotation, but that the scaling of individual digit forces was specific to the learned digit-object configuration, and thus was not transferred following rotation. As a result, on the first post-translation trial there was a significantly larger object roll following object lift-off than on the pre-translation trial. This suggests that sensorimotor memories for weight, requiring scaling of fingertip force gain, may differ from memories for mass distribution.
NASA Technical Reports Server (NTRS)
1969-01-01
Air Force Major Peter Hoag stands in front of the HL-10 Lifting Body. Maj. Hoag joined the HL-10 program in 1969 and made his first glide flight on June 6, 1969. He made a total of 8 flights in the HL-10. They included the fastest lifting-body flight, which reached Mach 1.861 on Feb. 18, 1970. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new and different lessons were learned through the successful flight testing of the HL-10. These lessons, when combined with information from it's sister ship, the M2-F2/F3, provided an excellent starting point for designers of future entry vehicles, including the Space Shuttle.
HL-10 on lakebed with pilot John Manke
NASA Technical Reports Server (NTRS)
1969-01-01
John Manke is shown here on the lakebed next to the HL-10, one of four different lifting-body vehicles he flew, including the X-24B, which he flew 16 times. His total of 42 lifting-body flights was second only to the 51 flights Milt Thompson achieved, including one in the remotely piloted Hyper III. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new and different lessons were learned through the successful flight testing of the HL-10. These lessons, when combined with information from it's sister ship, the M2-F2/F3, provided an excellent starting point for designers of future entry vehicles, including the Space Shuttle.
Parker Solar Probe Delta IV Heavy LVOS
2018-04-17
A brilliant blue sky serves as a backdrop as the United Launch Alliance Delta IV Heavy first stage is being lifted to the vertical position at the Vertical Integration Facility near Space Launch 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.
Parker Solar Probe Delta IV Heavy LVOS
2018-04-17
A view from above in the Vertical Integration Facility near Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The first stage of a United Launch Alliance Delta IV Heavy is being prepared to be lifted to vertical in the facility. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.
Parker Solar Probe Delta IV Heavy LVOS
2018-04-17
A brilliant blue sky serves as a backdrop as the United Launch Alliance Delta IV Heavy first stage is being lifted to the vertical position at the Vertical Integration Facility near Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.
NASA Technical Reports Server (NTRS)
Singleterry, R. C.
2013-01-01
An analysis is performed on four typical materials (aluminum, liquid hydrogen, polyethylene, and water) to assess their impact on the length of time an astronaut can stay in deep space and not exceed a design basis radiation exposure of 150 mSv. A large number of heavy lift launches of pure shielding mass are needed to enable long duration, deep space missions to keep astronauts at or below the exposure value with shielding provided by the vehicle. Therefore, vehicle mass using the assumptions in the paper cannot be the sole shielding mechanism for long duration, deep space missions. As an example, to enable the Mars Design Reference Mission 5.0 with a 400 day transit to and from Mars, not including the 500 day stay on the surface, a minimum of 24 heavy lift launches of polyethylene at 89,375 lbm (40.54 tonnes) each are needed for the 1977 galactic cosmic ray environment. With the assumptions used in this paper, a single heavy lift launch of water or polyethylene can protect astronauts for a 130 day mission before exceeding the exposure value. Liquid hydrogen can only protect the astronauts for 160 days. Even a single launch of pure shielding material cannot protect an astronaut in deep space for more than 180 days using the assumptions adopted in the analysis. It is shown that liquid hydrogen is not the best shielding material for the same mass as polyethylene for missions that last longer than 225 days.
Comparison of Autoclave and Out-of-Autoclave Composites
NASA Technical Reports Server (NTRS)
Sutter, James K.; Kenner, W. Scott; Pelham, Larry; Miller, Sandi G.; Polis, Danel L.; Nailadi, Chaitra; Zimmerman, Thomas J.; Lort, Richard D.; Hou, Tan-Hung; Quade, Derek J.;
2010-01-01
The National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate initiated an Advanced Composite Technology Project through the Exploration Technology Development Program in order to support the polymer composite needs for future heavy lift launch architectures. As an example, the large composite dry structural applications on Ares V inspired the evaluation of autoclave and out-of-autoclave (OOA) composite materials. A NASA and industry team selected the most appropriate materials based on component requirements for a heavy lift launch vehicle. Autoclaved and OOA composites were fabricated and results will highlight differences in processing conditions, laminate quality, as well as initial room temperature thermal and mechanical performance. Results from this study compare solid laminates that were both fiber-placed and hand-laid. Due to the large size of heavy-lift launch vehicle composite structures, there is significant potential that the uncured composite material or prepreg will experience significant out-life during component fabrication. Therefore, prepreg out-life was a critical factor examined in this comparison. In order to rigorously test material suppliers recommended out-life, the NASA/Industry team extended the out-time of the uncured composite prepreg to values that were approximately 50% beyond the manufacturers out-time limits. Early results indicate that the OOA prepreg composite materials suffered in both composite quality and mechanical property performance from their extended out-time. However, the OOA materials performed similarly to the autoclaved composites when processed within a few days of exposure to ambient "shop" floor handling. Follow on studies evaluating autoclave and OOA aluminum honeycomb core sandwich composites are planned.
Anticipatory scaling of grip forces when lifting objects of everyday life.
Hermsdörfer, Joachim; Li, Yong; Randerath, Jennifer; Goldenberg, Georg; Eidenmüller, Sandra
2011-07-01
The ability to predict and anticipate the mechanical demands of the environment promotes smooth and skillful motor actions. Thus, the finger forces produced to grasp and lift an object are scaled to the physical properties such as weight. While grip force scaling is well established for neutral objects, only few studies analyzed objects known from daily routine and none studied grip forces. In the present study, eleven healthy subjects each lifted twelve objects of everyday life that encompassed a wide range of weights. The finger pads were covered with force sensors that enabled the measurement of grip force. A scale registered load forces. In a control experiment, the objects were wrapped into paper to prevent recognition by the subjects. Data from the first lift of each object confirmed that object weight was anticipated by adequately scaled forces. The maximum grip force rate during the force increase phase emerged as the most reliable measure to verify that weight was actually predicted and to characterize the precision of this prediction, while other force measures were scaled to object weight also when object identity was not known. Variability and linearity of the grip force-weight relationship improved for time points reached after liftoff, suggesting that sensory information refined the force adjustment. The same mechanism seemed to be involved with unrecognizable objects, though a lower precision was reached. Repeated lifting of the same object within a second and third presentation block did not improve the precision of the grip force scaling. Either practice was too variable or the motor system does not prioritize the optimization of the internal representation when objects are highly familiar.
Brennan-Olsen, Sharon L; Solovieva, Svetlana; Viikari-Juntura, Eira; Ackerman, Ilana N; Bowe, Steven J; Kowal, Paul; Naidoo, Nirmala; Chatterji, Somnath; Wluka, Anita E; Leech, Michelle T; Page, Richard S; Sanders, Kerrie M; Gomez, Fernando; Duque, Gustavo; Green, Darci; Mohebbi, Mohammadreza
2018-06-08
In higher income countries, work-related squatting and heavy lifting have been associated with increased arthritis risk. Here, we address the paucity of data regarding associations between arthritis and work-related physical stressors in lower- and middle-income countries. Data were extracted from the Study on global AGEing and adult health (SAGE) Wave 1 (2007-10) for adults (aged ≥50 years) from Ghana, India, Russia and South Africa for whom detailed occupation data was available (n = 21,389; 49.2% women). Arthritis cases were identified using a symptom-defined algorithm (current) and self-reported doctor-diagnosis (lifetime). A sex-specific Job Exposure Matrix was used to classify work-related stressors: heavy physical work, kneeling/squatting, heavy lifting, arm elevation and awkward trunk posture. Using the International Standard Classification of Occupations, we linked SAGE and the Job Exposure Matrix. Logistic regression was used to investigate associations between arthritis and work-related stressors, adjusting for age (10 year age groupings), potential socioeconomic-related confounders, and body mass index. Excess exposure risk due to two-way interactions with other risk factors were explored. Doctor-diagnosed arthritis was associated with heavy physical work (adjusted odds ratios [OR] 1.12, 95%CI 1.01-1.23), awkward trunk posture (adjusted OR 1.23, 95%CI 1.12-1.36), kneeling or squatting (adjusted OR 1.25, 95%CI 1.12-1.38), and arm elevation (adjusted OR 1.66, 95%CI 1.37-2.00). Symptom-based arthritis was associated with kneeling or squatting (adjusted OR 1.27, 95%CI 1.08-1.50), heavy lifting (adjusted OR 1.33, 95%CI 1.11-1.58), and arm elevation (adjusted OR 2.16, 95%CI 1.63-2.86). Two-way interactions suggested excess arthritis risk existed for higher body mass index, and higher income or education. Minimization of occupational health risk factors is common practice in higher income countries: attention should now be directed toward reducing work-related arthritis burden in lower- and middle-income countries.
2004-07-06
KENNEDY SPACE CENTER, FLA. - The Boeing Delta II Heavy second-stage engine, the Aerojet AJ10-118K, is ready for lifting up the mobile service tower at Pad 17-B, Cape Canaveral Air Force Station. The Delta II is the launch vehicle for the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) spacecraft, scheduled to lift off Aug. 2. Bound for Mercury, the spacecraft is expected to reach orbit around the planet in March 2011. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
The Dirigible: A Catalyst for Resource Exploitation in Remote Areas?
1985-04-01
ir’ship (26’.: 13). .. Hybrid . A he ,vi er than air vehiLile which Lomb nes.’-. s.tar~ it (gas) anrid cly ,mi L (pro~pel 1er s, jet e, g ines ) li ft...another test with a hybrid airship (8:.33). TABLE 1. - Airships Rejected p The three remaining airships will be discussed next. All arc? hybrid LTAs...heavy-lift markets. (Drawing at Appendix 3.) The Cyclo-Crane is a hybrid aircraft utilizing aerostatic lift from a helium filled centerbody to support
NASA Technical Reports Server (NTRS)
1969-01-01
The HL-10 Lifting Body is seen here in flight over Rogers Dry lakebed. Like the other lifting bodies, the HL-10 made a steep descent toward the lakebed, followed by a high-speed landing. This was due to the vehicle's low lift-over-drag ratio. The first 11 flights of the HL-10 were unpowered, flown to check the vehicle's handling and stability before rocket-powered flights began using the XLR-11 rocket engine. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new and different lessons were learned through the successful flight testing of the HL-10. These lessons, when combined with information from it's sister ship, the M2-F2/F3, provided an excellent starting point for designers of future entry vehicles, including the Space Shuttle.
30 CFR Appendix I to Subpart M of... - National Consensus Standards
Code of Federal Regulations, 2010 CFR
2010-07-01
... object protective structures (FOPS) SAE J231—January, 1981. Fork-lift trucks American National Standards Institute (ANSI) safety standard for low lift and high lift trucks, B 56.1, section 7.27—1983; or, American National Standards Institute (ANSI) standard, rough terrain fork lift trucks, B56.6—1987. ...
30 CFR Appendix I to Subpart M of... - National Consensus Standards
Code of Federal Regulations, 2010 CFR
2010-07-01
... object protective structures (FOPS) SAE J231—January, 1981. Fork-lift trucks American National Standards Institute (ANSI) safety standard for low lift and high lift trucks, B 56.1, section 7.27—1983; or American National Standards Institute (ANSI) standard, rough terrain fork lift trucks, B 56.6—1987. ...
30 CFR Appendix I to Subpart M of... - National Consensus Standards
Code of Federal Regulations, 2011 CFR
2011-07-01
... object protective structures (FOPS) SAE J231—January, 1981. Fork-lift trucks American National Standards Institute (ANSI) safety standard for low lift and high lift trucks, B 56.1, section 7.27—1983; or American National Standards Institute (ANSI) standard, rough terrain fork lift trucks, B 56.6—1987. ...
30 CFR Appendix I to Subpart M of... - National Consensus Standards
Code of Federal Regulations, 2011 CFR
2011-07-01
... object protective structures (FOPS) SAE J231—January, 1981. Fork-lift trucks American National Standards Institute (ANSI) safety standard for low lift and high lift trucks, B 56.1, section 7.27—1983; or, American National Standards Institute (ANSI) standard, rough terrain fork lift trucks, B56.6—1987. ...
Claus, Matthias; Kimbel, Renate; Spahn, Daniel; Dudenhöffer, Sarah; Rose, Dirk-Matthias; Letzel, Stephan
2014-02-25
In Germany, about 70,000 teachers and educational staff were teaching at more than 3,000 special schools during the school year 2010/2011. Nursing services like lifting pupils form a substantial part of the work content of the staff at special schools. Since nursing care often involves carrying and lifting pupils, there is a reason to assume an adverse effect on the musculoskeletal health of teachers and other professionals. With the present study we aimed to describe the prevalence and risk factors of chronic back pain among employees at this type of school. The cross-sectional survey was carried out between August 2010 and August 2012 at 13 special schools focusing on motoric and/or holistic development of handicapped children in Rhineland-Palatinate (Germany). Teachers and educational staff were interviewed using a questionnaire. We applied multivariable logistic regression analyses to identify influencing factors of chronic back pain. Altogether 395 persons (response rate: 59.7%) participated in our study. Respondents were mostly female (86.8%) with a mean age of 45 years. The prevalence of chronic back pain was 38.7%. More than 40% reported frequently carrying and lifting heavy loads (>20 kg). Age [adjusted OR = 1.03 (95%-CI 1.00-1.05) for 1-year increase in age], current smoking [adjusted OR = 2.31 (95%-CI 1.27-4.23)], depression/depressive mood [adjusted OR = 1.85 (95%-CI 1.12-3.06)], frequently carrying and lifting heavy loads [adjusted OR = 2.69 (95%-CI 1.53-4.75)], and frequent exposure to environmental impacts [adjusted OR = 2.18 (95%-CI 1.26-3.76)] were influencing factors of chronic back pain in the final multivariable regression model. A large proportion of teachers and educational staff suffered from chronic back pain in our study, indicating a high need for treatment in this professional group. Increasing age, current smoking, a diagnosed depression/depressive mood, carrying and lifting heavy loads, and exposure to environmental impacts were associated with chronic back pain. Due to the sparse literature on the topic, further studies using a longitudinal design are necessary for a better understanding of the risk factors of chronic back pain.
Wheelchair Lifts on Transit Buses : Summary of U.S. Experience
DOT National Transportation Integrated Search
1983-01-01
The overall objective of this project was to develop information and guidance for the transit industry concerning wheelchair lifts on transit buses in the areas of lift procurement, testing and acceptance, training, and maintenance.
Zehr, Jackie D; Carnegie, Danielle R; Welsh, Timothy N; Beach, Tyson A C
2018-03-19
To compare the effects of object handled and handgrip used on lumbar spine motion and loading during occupational lifting task simulations. Eight male and eight female volunteers performed barbell and crate lifts with a pronated (barbell) and a neutral (crate) handgrip. The mass of barbells/crates lifted was identical across the objects and fixed at 11.6 and 9.3 kg for men and women, respectively. The initial heights of barbells/crates were individualized to mid-shank level. Body segment kinematics and foot-ground reaction kinetics were collected, and then input into an electromyography-assisted dynamic biomechanical model to quantify lumbar spine motion and loading. Lumbar compression and net lumbosacral moment magnitudes were 416 N and 17 Nm lower when lifting a barbell than when lifting a crate (p < 0.001), respectively. There were no between-condition differences in lumbar flexion displacements (p > 0.392) or flexion/extension velocities (p > 0.085). Crate- and barbell-lifting tasks can be used interchangeably if assessing lifting mechanics based on peak spine motion variables. If assessments are based on the spine loading responses to task demands, however, then crate- and barbell-lifting tasks cannot be used interchangeably.
U.S. Marine Corps Concepts & Programs 2009
2009-01-01
war efforts in the CENTCOM AOR — that will demand balanced apportionment of limited re- sources . In this, the Marine Corps has identified four...Strike Fighter (JSF) Transition Plan 123 MV-22 Osprey Program 125 H-1 Upgrade (UH-1Y Huey/AH-1Z Cobra) 127 KC-130 Hercules 129 CH-53K Heavy Lift...leading joint-service development of our light, medium and heavy tactical wheeled vehicles for the joint force. The Expeditionary Fighting Vehicle (EFV
Code of Federal Regulations, 2014 CFR
2014-10-01
... sites in the respiratory system and intrathoracic organs. (xi) Mesothelioma. (xii) Malignant neoplasms of the peripheral nerves and autonomic nervous system, and other connective and soft tissue. (xiii... disorder means a chronic or recurrent disorder of the musculoskeletal system caused by heavy lifting or...
Flight dynamics analysis and simulation of heavy lift airships. Volume 5: Programmer's manual
NASA Technical Reports Server (NTRS)
Ringland, R. F.; Tischler, M. B.; Jex, H. R.; Emmen, R. D.; Ashkenas, I. L.
1982-01-01
The Programmer's Manual contains explanations of the logic embodied in the various program modules, a dictionary of program variables, a subroutine listing, subroutine/common block/cross reference listing, and a calling/called subroutine cross reference listing.
Examine impact to highways/structures : vehicles equipped with lift axles.
DOT National Transportation Integrated Search
2011-12-01
"The main objective of this research study is to examine the effects of trucks equipped with lift axles on : pavement and bridge structures on Maryland roadways. In this report, the information presented intends to : meet the research objectives outl...
Modular Approach to Launch Vehicle Design Based on a Common Core Element
NASA Technical Reports Server (NTRS)
Creech, Dennis M.; Threet, Grady E., Jr.; Philips, Alan D.; Waters, Eric D.; Baysinger, Mike
2010-01-01
With a heavy lift launch vehicle as the centerpiece of our nation's next exploration architecture's infrastructure, the Advanced Concepts Office at NASA's Marshall Space Flight Center initiated a study to examine the utilization of elements derived from a heavy lift launch vehicle for other potential launch vehicle applications. The premise of this study is to take a vehicle concept, which has been optimized for Lunar Exploration, and utilize the core stage with other existing or near existing stages and boosters to determine lift capabilities for alternative missions. This approach not only yields a vehicle matrix with a wide array of capabilities, but also produces an evolutionary pathway to a vehicle family based on a minimum development and production cost approach to a launch vehicle system architecture, instead of a purely performance driven approach. The upper stages and solid rocket booster selected for this study were chosen to reflect a cross-section of: modified existing assets in the form of a modified Delta IV upper stage and Castor-type boosters; potential near term launch vehicle component designs including an Ares I upper stage and 5-segment boosters; and longer lead vehicle components such as a Shuttle External Tank diameter upper stage. The results of this approach to a modular launch system are given in this paper.
2016-10-19
A heavy-lift crane lifts the first half of the C-level work platforms, C south, for NASA’s Space Launch System (SLS) rocket, up from the transfer aisle floor of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. Large Tandemloc bars have been attached to the platform to keep it level during lifting and installation. The C platform will be installed on the south side of High Bay 3. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.
ICPSU Install onto Mobile Launcher - Preps for Lift
2018-03-15
Construction workers with JP Donovan attach a heavy-lift crane to the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) to prepare for lifting and installation on the mobile launcher (ML) tower at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical will be located at about the 240-foot-level of the ML and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.
Lee, Bokim; Jung, Hye-Sun
2012-01-01
The researchers conducted a cross-sectional survey to determine the relationship between handling heavy items during pregnancy and spontaneous abortion among working women in South Korea. One thousand working women were selected from a database of those eligible for maternity benefits under the National Employment Insurance Plan. Study results showed that handling heavy items during pregnancy was associated with an increased risk of spontaneous abortion after adjusting for general characteristics of the participants and their work environment. A collective effort is needed on the parts of employers, employees, occupational health nurses, and the government to protect working women from lifting heavy items while pregnant. Copyright 2012, SLACK Incorporated.
Gentzler, Marc D; Smither, Janan A
2012-01-01
Restaurant employees must deal with loud noise, busy environments, difficult customers, heavy, awkward, sharp, and hot objects, repetitive motions, and stress on various joints, all of which can lead to fatigue, sudden accidents, and longterm musculoskeletal injury. The goal of this case study was to assess the risk of injuries and accidents from conducting various tasks in the restaurant, specifically carrying/lifting, table management, and polishing silverware. The nine participants were servers at a local country club restaurant. Physical workload was measured by a scale of physical exertion. Cognitive workload was assessed, as well as cumulative trauma disorder risk. Overall results show that there is sufficient risk in some of the tasks to warrant concern. Specific results are discussed, as well as recommendations for improved safety.
NASA Astrophysics Data System (ADS)
Hameer, Sameer
Rotorcraft transmission design is limited by empirical weight trends that are proportional to the power/torque raised to the two-thirds coupled with the relative inexperience industry has with the employment of variable speed transmission to heavy lift helicopters of the order of 100,000 lbs gross weight and 30,000 installed horsepower. The advanced rotorcraft transmission program objectives are to reduce transmission weight by at least 25%, reduce sound pressure levels by at least 10 dB, have a 5000 hr mean time between removal, and also incorporate the use of split torque technology in rotorcraft drivetrains of the future. The major obstacle that challenges rotorcraft drivetrain design is the selection, design, and optimization of a variable speed transmission in the goal of achieving a 50% reduction in rotor speed and its ability to handle high torque with light weight gears, as opposed to using a two-speed transmission which has inherent structural problems and is highly unreliable due to the embodiment of the traction type transmission, complex clutch and brake system. This thesis selects a nontraction pericyclic continuously variable transmission (P-CVT) as the best approach for a single main rotor heavy lift helicopter. The objective is to target and overcome the above mentioned obstacle for drivetrain design. Overcoming this obstacle provides advancement in the state of the art of drivetrain design over existing planetary and split torque transmissions currently used in helicopters. The goal of the optimization process was to decrease weight, decrease noise, increase efficiency, and increase safety and reliability. The objective function utilized the minimization of the weight and the major constraint is the tooth bending stress of the facegears. The most important parameters of the optimization process are weight, maintainability, and reliability which are cross-functionally related to each other, and these parameters are related to the torques and operating speeds. The analysis of the split torque type P-CVT achieved a weight reduction of 42.5% and 40.7% over planetary and split torque transmissions respectively. In addition, a 19.5 dB sound pressure level reduction was achieved using active gear struts, and also the use of fabricated steel truss like housing provided a higher maintainability and reliability, low cost, and low weight over cast magnesium housing currently employed in helicopters. The static finite element analysis of the split torque type P-CVT, both 2-D and 3-D, yielded stresses below the allowable bending stress of the material. The goal of the finite element analysis is to see if the designed product has met its functional requirements. The safety assessment of the split torque type P-CVT yielded a 99% probability of mission success based on a Monte Carlo simulation using stochastic-petri net analysis and a failure hazard analysis. This was followed by an FTA/RBD analysis which yielded an overall system failure rate of 140.35 failures per million hours, and a preliminary certification and time line of certification was performed. The use of spherical facegears and pericyclic kinematics has advanced the state of the art in drivetrain design primarily in the reduction of weight and noise coupled with high safety, reliability, and efficiency.
Quantifying feedforward control: a linear scaling model for fingertip forces and object weight.
Lu, Ying; Bilaloglu, Seda; Aluru, Viswanath; Raghavan, Preeti
2015-07-01
The ability to predict the optimal fingertip forces according to object properties before the object is lifted is known as feedforward control, and it is thought to occur due to the formation of internal representations of the object's properties. The control of fingertip forces to objects of different weights has been studied extensively by using a custom-made grip device instrumented with force sensors. Feedforward control is measured by the rate of change of the vertical (load) force before the object is lifted. However, the precise relationship between the rate of change of load force and object weight and how it varies across healthy individuals in a population is not clearly understood. Using sets of 10 different weights, we have shown that there is a log-linear relationship between the fingertip load force rates and weight among neurologically intact individuals. We found that after one practice lift, as the weight increased, the peak load force rate (PLFR) increased by a fixed percentage, and this proportionality was common among the healthy subjects. However, at any given weight, the level of PLFR varied across individuals and was related to the efficiency of the muscles involved in lifting the object, in this case the wrist and finger extensor muscles. These results quantify feedforward control during grasp and lift among healthy individuals and provide new benchmarks to interpret data from neurologically impaired populations as well as a means to assess the effect of interventions on restoration of feedforward control and its relationship to muscular control. Copyright © 2015 the American Physiological Society.
How Weight Affects the Perceived Spacing between the Thumb and Fingers during Grasping
Butler, Annie A.; Héroux, Martin E.; Gandevia, Simon C.
2015-01-01
We know much about mechanisms determining the perceived size and weight of lifted objects, but little about how these properties of size and weight affect the body representation (e.g. grasp aperture of the hand). Without vision, subjects (n = 16) estimated spacing between fingers and thumb (perceived grasp aperture) while lifting canisters of the same width (6.6cm) but varied weights (300, 600, 900, and 1200 g). Lifts were performed by movement of either the wrist, elbow or shoulder to examine whether lifting with different muscle groups affects the judgement of grasp aperture. Results for perceived grasp aperture were compared with changes in perceived weight of objects of different sizes (5.2, 6.6, and 10 cm) but the same weight (600 g). When canisters of the same width but different weights were lifted, perceived grasp aperture decreased 4.8% [2.2 ‒ 7.4] (mean [95% CI]; P < 0.001) from the lightest to the heaviest canister, no matter how they were lifted. For objects of the same weight but different widths, perceived weight decreased 42.3% [38.2 ‒ 46.4] from narrowest to widest (P < 0.001), as expected from the size-weight illusion. Thus, despite a highly distorted perception of the weight of objects based on their size, we conclude that proprioceptive afferents maintain a reasonably stable perception of the aperture of the grasping hand over a wide range of object weights. Given the small magnitude of this ‘weight-grasp aperture’ illusion, we propose the brain has access to a relatively stable ‘perceptual ruler’ to aid the manipulation of different objects. PMID:25996760
Trends in satellite mass and heavy lift launch vehicles : Quarterly Launch Report : special report
DOT National Transportation Integrated Search
1997-01-01
The size of commercial GEO satellites has steadily grown as a result of the telecommunications market demanding more satellites with higher power and more transponders. Many analysts within the satellite manufacturing and launch industries see this t...
Code of Federal Regulations, 2011 CFR
2011-04-01
... waiting time at the dock), ocean and other freight, loading, heavy lift, wharfage, tollage, switching, dumping and trimming, lighterage, insurance, commodity inspection services, and services of a freight...) Source means the country from which a commodity is shipped to the cooperating country, or the cooperating...
Delta IV Heavy Centaur Stage Mate to Booster - Parker Solar Prob
2018-03-02
A United Launch Alliance (ULA) worker on a scissor lift watches as the second stage of a ULA Delta IV Heavy is mated to the common booster core inside the Horizontal Integration Facility near Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.
NASA Technical Reports Server (NTRS)
Siders, Jeffrey A.; Smith, Robert H.
2004-01-01
The continued assembly and operation of the International Space Station (ISS) is the cornerstone within NASA's overall Strategic P an. As indicated in NASA's Integrated Space Transportation Plan (ISTP), the International Space Station requires Shuttle to fly through at least the middle of the next decade to complete assembly of the Station, provide crew transport, and to provide heavy lift up and down mass capability. The ISTP reflects a tight coupling among the Station, Shuttle, and OSP programs to support our Nation's space goal . While the Shuttle is a critical component of this ISTP, there is a new emphasis for the need to achieve greater efficiency and safety in transporting crews to and from the Space Station. This need is being addressed through the Orbital Space Plane (OSP) Program. However, the OSP is being designed to "complement" the Shuttle as the primary means for crew transfer, and will not replace all the Shuttle's capabilities. The unique heavy lift capabilities of the Space Shuttle is essential for both ISS, as well as other potential missions extending beyond low Earth orbit. One concept under discussion to better fulfill this role of a heavy lift carrier, is the transformation of the Shuttle to an "un-piloted" autonomous system. This concept would eliminate the loss of crew risk, while providing a substantial increase in payload to orbit capability. Using the guidelines reflected in the NASA ISTP, the autonomous Shuttle a simplified concept of operations can be described as; "a re-supply of cargo to the ISS through the use of an un-piloted Shuttle vehicle from launch through landing". Although this is the primary mission profile, the other major consideration in developing an autonomous Shuttle is maintaining a crew transportation capability to ISS as an assured human access to space capability.
Review on risk factors related to lower back disorders at workplace
NASA Astrophysics Data System (ADS)
A' Tifah Jaffar, Nur; Nasrull Abdol Rahman, Mohd
2017-08-01
This review examines the evidence of the occurrence of risk exposure on work-related lower back disorders in the workplace. This review also investigates potential interactions between the risk factors in the workplace which include heavy physical work risk factor, static work postures risk factor, frequent bending and twisting risk factor, lifting risk factor, pushing and pulling risk factor, repetitive work risk factor, vibration risk factor, psychological and psychosocial risk factor that may be associated with symptoms of musculoskeletal disorders of lower back. These risk factors can reinforce each other and their influence can also be mediated by cultural or social factors. A systematic review of the literature was carried out by searching using databases and the searching strategy was used combined keyword for risk factors, work-related lower back disorders, heavy physical work, static work postures, frequent bending and twisting, lifting, pushing and pulling, repetitive work, vibration, psychological and psychosocial risk factor. A total of 67 articles were identified and reviewed. The risk factors identified that related for low back disorder are seven which are heavy physical work, static work postures, frequent bending and twisting, lifting, pushing and pulling, repetitive work, vibration, psychological and psychosocial risk factor and the level of evidence supporting the relationship with lower back disorders also described such as strong, moderate, insufficient, limited and no evidence. This result confirms that, existing of higher physical and psychosocial demand related to reported risk factors of low back disorders. The result also showed that previous reviews had evaluated relationship between risk factors of low back disorders and specific types of musculoskeletal disorders. This review also highlights the scarves evidence regarding some of the frequently reported risk factors for work related lower back disorders.
Feasibility of Retrofitting Lifts on Commuter and Light Rail Vehicles
DOT National Transportation Integrated Search
1980-09-01
The objectives of this study were to determine if lift retrofit applications to rail vehicles are technically feasible, and if so, the extent to which existing bus lift technology can be utilized. This report examines some of the technical issues ass...
NASA Technical Reports Server (NTRS)
1968-01-01
As shown in this photo of the HL-10 flight simulator, the lifting-body pilots and engineers made use of early simulators for both training and the determination of a given vehicle's handling at various speeds, attitudes, and altitudes. This provided warning of possible problems. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new and different lessons were learned through the successful flight testing of the HL-10. These lessons, when combined with information from it's sister ship, the M2-F2/F3, provided an excellent starting point for designers of future entry vehicles, including the Space Shuttle.
HL-10 on lakebed with B-52 flyby
NASA Technical Reports Server (NTRS)
1969-01-01
NASA research pilot Bill Dana takes a moment to watch NASA's NB-52B cruise overhead after a research flight in the HL-10. On the left, John Reeves can be seen at the cockpit of the lifting body. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new and different lessons were learned through the successful flight testing of the HL-10. These lessons, when combined with information from it's sister ship, the M2-F2/F3, provided an excellent starting point for designers of future entry vehicles, including the Space Shuttle.
HL-10 on lakebed with Jerauld R. Gentry, Peter Hoag, John A. Manke, and Bill Dana
NASA Technical Reports Server (NTRS)
1969-01-01
The four principal HL-10 pilots are seen here with the lifting body aircraft. They are, left to right; Air Force Major Jerauld R. Gentry, Air Force test pilot Peter Hoag, and NASA pilots John A. Manke and Bill Dana. All are wearing the pressure suits needed for flying above 50,000 feet. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new and different lessons were learned through the successful flight testing of the HL-10. These lessons, when combined with information from it's sister ship, the M2-F2/F3, provided an excellent starting point for designers of future entry vehicles, including the Space Shuttle.
HL-10 after first flight with pilot Bruce Peterson
NASA Technical Reports Server (NTRS)
1966-01-01
The HL-10 after its first flight, shown with pilot Bruce Peterson. Although the lifting-body aircraft was predicted to have good flying qualities, this first flight showed major control and stability problems. The cause was airflow separation from the vehicle's fins. Changes to the fins' leading-edge shape fixed the problem. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new and different lessons were learned through the successful flight testing of the HL-10. These lessons, when combined with information from it's sister ship, the M2-F2/F3, provided an excellent starting point for designers of future entry vehicles, including the Space Shuttle.
HL-10 landing on lakebed with F-104 chase aircraft
NASA Technical Reports Server (NTRS)
1970-01-01
In this photo, the HL-10 has touched down on its main landing gear, while the pilot was holding the nose up to slow the vehicle. The F-104 in the background was used as a chase plane. Its pilot would give the HL-10's pilot calls on his altitude above the lakebed as well as warnings about any problems. The NASA F-104s were also used for lifting-body training. With the landing gear extended and flaps lowered, the F-104 could simulate the steep, high-speed descent and landing of a lifting body. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new and different lessons were learned through the successful flight testing of the HL-10. These lessons, when combined with information from it's sister ship, the M2-F2/F3, provided an excellent starting point for designers of future entry vehicles, including the Space Shuttle.
HL-10 on lakebed with pilot Bill Dana
NASA Technical Reports Server (NTRS)
1966-01-01
NASA research pilot Bill Dana stands in front of the HL-10 Lifting Body following his first glide flight on April 25, 1969. Dana later retired Chief Engineer at NASA's Dryden Flight Research Center, which was called only the NASA Flight Research Center in 1969. Prior to his lifting body assignment, Dana flew the famed X-15 research airplane. He flew the rocket-powered aircraft 16 times, reaching a top speed of 3,897 miles per hour and a peak altitude of 310,000 feet (almost 59 miles high). The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new and different lessons were learned through the successful flight testing of the HL-10. These lessons, when combined with information from it's sister ship, the M2-F2/F3, provided an excellent starting point for designers of future entry vehicles, including the Space Shuttle.
Code of Federal Regulations, 2014 CFR
2014-04-01
... the source country (including waiting time at the dock), ocean and other freight, loading, heavy lift..., and services of a freight forwarder. Delivery services may also include work and materials necessary... which a commodity is shipped to the cooperating country, or the cooperating country if the commodity is...
Code of Federal Regulations, 2012 CFR
2012-04-01
... the source country (including waiting time at the dock), ocean and other freight, loading, heavy lift..., and services of a freight forwarder. Delivery services may also include work and materials necessary... which a commodity is shipped to the cooperating country, or the cooperating country if the commodity is...
Code of Federal Regulations, 2013 CFR
2013-04-01
... the source country (including waiting time at the dock), ocean and other freight, loading, heavy lift..., and services of a freight forwarder. Delivery services may also include work and materials necessary... which a commodity is shipped to the cooperating country, or the cooperating country if the commodity is...
Code of Federal Regulations, 2010 CFR
2010-04-01
... the source country (including waiting time at the dock), ocean and other freight, loading, heavy lift..., and services of a freight forwarder. Delivery services may also include work and materials necessary... which a commodity is shipped to the cooperating country, or the cooperating country if the commodity is...
Code of Federal Regulations, 2011 CFR
2011-04-01
... the source country (including waiting time at the dock), ocean and other freight, loading, heavy lift..., and services of a freight forwarder. Delivery services may also include work and materials necessary... which a commodity is shipped to the cooperating country, or the cooperating country if the commodity is...
An experimental investigation of the flow physics of high-lift systems
NASA Technical Reports Server (NTRS)
Thomas, Flint O.; Nelson, R. C.
1995-01-01
This progress report, a series of viewgraphs, outlines experiments on the flow physics of confluent boundary layers for high lift systems. The design objective is to design high lift systems with improved C(sub Lmax) for landing approach and improved take-off L/D and simultaneously reduce acquisition and maintenance costs. In effect, achieve improved performance with simpler designs. The research objectives include: establish the role of confluent boundary layer flow physics in high-lift production; contrast confluent boundary layer structure for optimum and non-optimum C(sub L) cases; formation of a high quality, detailed archival data base for CFD/modeling; and examination of the role of relaminarization and streamline curvature.
Waters, Thomas R; Dick, Robert B; Krieg, Edward F
2011-09-01
To assess trends in risk factors for work-related musculoskeletal disorders (MSDs). Results from two similar national surveys (2002 and 2006) examined trends in relationships between individual, psychosocial, and physical factors and MSDs. Findings between years were similar, but important differences included a stronger effect of "Work Stress" on "Pain in Arms," and a stronger combined effect of "Hand Movement" and "Work Stress" on "Pain in Arms." Also, two interactions were statistically significant in the 2006 data, but not in the 2002 data, revealing potentially increased risks. These were "Hand Movement" and "Work Stress" on "Back Pain," and "Heavy Lifting" and "Work Stress" on "Pain in Arms." New strategies for preventing both low back and upper extremity MSDs should focus on work stress, heavy lifting, and hand movement, individually and in combination. (C)2011The American College of Occupational and Environmental Medicine
Strain on the back in concrete reinforcement work.
Wickström, G; Niskanen, T; Riihimäki, H
1985-01-01
To investigate the long term effect of heavy construction work on the back the occurrence of postures, lifting, carrying, and accidents in concrete reinforcement work and in maintenance house painting were measured. The 32 620 observations covering 272 work hours showed that reinforcement work necessitated stooped postures and heavy lifting more often than did painting. Reported minor back accidents were more than ten times as common in reinforcement work than in painting (1.3 compared with 0.11 accidents per man-year, p less than 0.001). Accidents of the musculoskeletal system, registered by the insurance companies, were also several times more common in reinforcement work (81 compared with 25 per 1000 man-years, p less than 0.001). The premature development of lumbar degeneration detected in the clinical study of the reinforcement workers was evidently due to the occupational strain on the back. The different types of hazardous back loads probably potentiate the effects of each other. PMID:3978042
The impact of drywall handling tools on the low back.
Hess, Jennifer A; Kincl, Laurel D; Davis, Kermit
2010-03-01
Carpenters and other construction workers who install drywall have high rates of strains and sprains to the low back and shoulder. Drywall is heavy and awkward to handle resulting in increased risk of injury. The purpose of this study was to evaluate several low-cost coupling tools that have the potential to reduce awkward postures in drywall installers. Five coupling tools were evaluated using the Lumbar Motion Monitor that measures trunk kinematics and predicts probability of low back disorder group membership risk (LBD risk). Workers answered surveys about their comfort while using each tool. The results indicate that use of the 2-person manual lift and the J-handle provide the best reduction in awkward postures, motions, low back sagittal moment, and LBD risk. The two-person manual lift appears to be the safest method of lifting and moving drywall, though using the two-person J-handle also significantly reduces injury risk. Given that carpenters are skeptical about using equipment that can get in the way or get lost, a practical recommendation is promotion of two-person manual lifting. For single-person lifts, the Old Man tool is a viable option to decrease risk of MSDs.
Scaling laws for testing of high lift airfoils under heavy rainfall
NASA Technical Reports Server (NTRS)
Bilanin, A. J.
1985-01-01
The results of studies regarding the effect of rainfall about aircraft are briefly reviewed. It is found that performance penalties on airfoils have been identified in subscale tests. For this reason, it is of great importance that scaling laws be dveloped to aid in the extrapolation of these data to fullscale. The present investigation represents an attempt to develop scaling laws for testing subscale airfoils under heavy rain conditions. Attention is given to rain statistics, airfoil operation in heavy rain, scaling laws, thermodynamics of condensation and/or evaporation, rainfall and airfoil scaling, aspects of splash back, film thickness, rivulets, and flap slot blockage. It is concluded that the extrapolation of airfoil performance data taken at subscale under simulated heavy rain conditions to fullscale must be undertaken with caution.
Antares: A low cost modular launch vehicle for the future
NASA Technical Reports Server (NTRS)
1991-01-01
The single-stage-to-orbit launch vehicle Antares is a revolutionary concept based on identical modular units, enabling the Antares to efficiently launch communications satellites, as well as heavy payloads, into Earth orbit and beyond. The basic unit of the modular system, a single Antares vehicle, is aimed at launching approximately 10,000 kg (22,000 lb) into low Earth orbit (LEO). When coupled with a standard Centaur upper stage, it is capable of placing 4000 kg (8800 lb) into geosynchronous Earth orbit (GE0). The Antares incorporates a reusable engine, the Dual Mixture Ratio Engine (DMRE), as its propulsive device. This enables Antares to compete and excel in the satellite launch market by dramatically reducing launch costs. Inherent in the design is the capability to attach several of these vehicles together to provide heavy lift capability. Any number of these vehicles can be attached depending on the payload and mission requirements. With a seven-vehicle configuration, the Antares' modular concept provides a heavy lift capability of approximately 70,000 kg (154,000 lb) to LEO. This expandability allows for a wide range of payload options, such as large Earth satellites, Space Station Freedom material, and interplanetary spacecraft, and also offers a significant cost savings over a mixed fleet based on different launch vehicles.
Antares: A low cost modular launch vehicle for the future
NASA Astrophysics Data System (ADS)
The single-stage-to-orbit launch vehicle Antares is a revolutionary concept based on identical modular units, enabling the Antares to efficiently launch communications satellites, as well as heavy payloads, into Earth orbit and beyond. The basic unit of the modular system, a single Antares vehicle, is aimed at launching approximately 10,000 kg (22,000 lb) into low Earth orbit (LEO). When coupled with a standard Centaur upper stage, it is capable of placing 4000 kg (8800 lb) into geosynchronous Earth orbit (GE0). The Antares incorporates a reusable engine, the Dual Mixture Ratio Engine (DMRE), as its propulsive device. This enables Antares to compete and excel in the satellite launch market by dramatically reducing launch costs. Inherent in the design is the capability to attach several of these vehicles together to provide heavy lift capability. Any number of these vehicles can be attached depending on the payload and mission requirements. With a seven-vehicle configuration, the Antares' modular concept provides a heavy lift capability of approximately 70,000 kg (154,000 lb) to LEO. This expandability allows for a wide range of payload options, such as large Earth satellites, Space Station Freedom material, and interplanetary spacecraft, and also offers a significant cost savings over a mixed fleet based on different launch vehicles.
Materials Handling. Module SH-01. Safety and Health.
ERIC Educational Resources Information Center
Center for Occupational Research and Development, Inc., Waco, TX.
This student module on materials handling is one of 50 modules concerned with job safety and health. It presents the procedures for safe materials handling. Discussed are manual handling methods (lifting and carrying by hand) and mechanical lifting (lifting by powered trucks, cranes or conveyors). Following the introduction, 15 objectives (each…
Raffler, Nastaran; Rissler, Jörg; Ellegast, Rolf; Schikowsky, Christian; Kraus, Thomas; Ochsmann, Elke
2017-11-01
Multifactorial workloads such as whole-body vibration (WBV), awkward posture and heavy lifting are potential predictors for low back pain (LBP). In this study, we investigate the association between LBP and these exposures among 102 professional drivers. The combined exposures of WBV and posture are measured at different workplaces. Health and personal data as well as information about lifting tasks are collected by a questionnaire. The daily vibration exposure value (odds ratio 1.69) and an index for awkward posture (odds ratio 1.63) show significant association with the occurence of LBP. Awkward posture and heavy lifting appear to be more strongly associated with sick leave than WBV exposure. Furthermore, a combination of the measurement results of WBV and awkward posture into one quantity also shows significant correlation to LBP. The combined exposure of WBV and awkward posture can be described in terms of the daily vibration exposure and the index for awkward posture. This facilitates work place assessments and future research in this area. Practitioner Summary: For the first time, quantitative measures combining whole-body vibration and awkward posture exposures have shown to correlate with the occurrence of low back pain significantly. This validates the proposed quantities and measurement methods, which facilitate workplace assessments and assist in the design of further studies which are necessary to establish a causal exposure-response relationship.
SpaceX Falcon Heavy Demo Flight - Booster Separation
2018-02-06
The SpaceX Falcon Heavy rocket’s two side cores separate from the center core as the vehicle performs its demonstration flight. The rocket lifted off at 3:45 p.m. EST from Launch Complex 39A at NASA's Kennedy Space Center in Florida. This is a significant milestone for the world's premier multi-user spaceport. In 2014, NASA signed a property agreement with SpaceX for the use and operation of the center's pad 39A, where the company has launched Falcon 9 rockets and prepared for the first Falcon Heavy. NASA also has Space Act Agreements in place with partners, such as SpaceX, to provide services needed to process and launch rockets and spacecraft.
ERIC Educational Resources Information Center
Green, Sharon; Grierson, Lawrence E. M.; Dubrowski, Adam; Carnahan, Heather
2010-01-01
It is well known that sensorimotor memories are built and updated through experience with objects. These representations are useful to anticipatory and feedforward control processes that preset grip and load forces during lifting. When individuals lift objects with qualities that are not congruent with their memory-derived expectations, feedback…
2012-09-01
experiments. J. Aerosol Sci., 40, 603- 612. Zheng, M., Cass, G. R., Schauer, J. J., Edgerton, E. S. (2002) Source Apportionment of PM2.5 in the...Energy Heavy Vehicle Research Program. The SERDP project WP1627 team consists of the following members (listed in alphabetical order of the last name...aircraft emissions are dominated by a fleet of high payload aircraft, such as the C-130, B1 B-52, and a variety of heavy -lift turboshaft vehicles
30 CFR Appendix I to Subpart M of... - National Consensus Standards
Code of Federal Regulations, 2013 CFR
2013-07-01
... loaders and bulldozers Society of Automotive Engineers (SAE) minimum performance criteria for falling object protective structures (FOPS) SAE J231—January, 1981. Fork-lift trucks American National Standards Institute (ANSI) safety standard for low lift and high lift trucks, B 56.1, section 7.27—1983; or, American...
30 CFR Appendix I to Subpart M of... - National Consensus Standards
Code of Federal Regulations, 2014 CFR
2014-07-01
... loaders and bulldozers Society of Automotive Engineers (SAE) minimum performance criteria for falling object protective structures (FOPS) SAE J231—January, 1981. Fork-lift trucks American National Standards Institute (ANSI) safety standard for low lift and high lift trucks, B 56.1, section 7.27—1983; or, American...
30 CFR Appendix I to Subpart M of... - National Consensus Standards
Code of Federal Regulations, 2012 CFR
2012-07-01
... loaders and bulldozers Society of Automotive Engineers (SAE) minimum performance criteria for falling object protective structures (FOPS) SAE J231—January, 1981. Fork-lift trucks American National Standards Institute (ANSI) safety standard for low lift and high lift trucks, B 56.1, section 7.27—1983; or, American...
30 CFR Appendix I to Subpart M of... - National Consensus Standards
Code of Federal Regulations, 2013 CFR
2013-07-01
... loaders and bulldozers Society of Automotive Engineers (SAE) minimum performance criteria for falling object protective structures (FOPS) SAE J231—January, 1981. Fork-lift trucks American National Standards Institute (ANSI) safety standard for low lift and high lift trucks, B 56.1, section 7.27—1983; or American...
30 CFR Appendix I to Subpart M of... - National Consensus Standards
Code of Federal Regulations, 2012 CFR
2012-07-01
... loaders and bulldozers Society of Automotive Engineers (SAE) minimum performance criteria for falling object protective structures (FOPS) SAE J231—January, 1981. Fork-lift trucks American National Standards Institute (ANSI) safety standard for low lift and high lift trucks, B 56.1, section 7.27—1983; or American...
30 CFR Appendix I to Subpart M of... - National Consensus Standards
Code of Federal Regulations, 2014 CFR
2014-07-01
... loaders and bulldozers Society of Automotive Engineers (SAE) minimum performance criteria for falling object protective structures (FOPS) SAE J231—January, 1981. Fork-lift trucks American National Standards Institute (ANSI) safety standard for low lift and high lift trucks, B 56.1, section 7.27—1983; or American...
2004-07-06
KENNEDY SPACE CENTER, FLA. - The Boeing Delta II Heavy second-stage engine, the Aerojet AJ10-118K, is lifted up the mobile service tower on Pad 17-B, Cape Canaveral Air Force Station. At right can be seen the first stage of the Delta II and the nine Solid Rocket Boosters surrounding it. The Delta II is the launch vehicle for the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) spacecraft, scheduled to lift off Aug. 2. Bound for Mercury, the spacecraft is expected to reach orbit around the planet in March 2011. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
2012-03-08
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a large crane lifts a new engine and generator high overhead for installation on crawler-transporter 2 CT-2). The Apollo era diesel engines were removed last month. Work continues in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Jim Grossmann
2012-02-15
CAPE CANAVERAL, Fla. –– Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane is used to lift an Apollo era diesel engine away from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-03-08
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians monitor the progress as a large crane lifts a new engine and generator for installation on crawler-transporter 2 CT-2). The Apollo era diesel engines were removed last month. Work continues in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Jim Grossmann
2012-02-15
CAPE CANAVERAL, Fla. –– Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane is used to lift an Apollo era diesel engine away from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-03-08
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a large crane is used to lift a new engine and generator high overhead for installation on crawler-transporter 2 CT-2). The Apollo era diesel engines were removed last month. Work continues in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Jim Grossmann
2012-02-15
CAPE CANAVERAL, Fla. –– Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane begins to lift part of an Apollo era diesel engine from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-02-15
CAPE CANAVERAL, Fla. –– Just outside of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane is used to lift an Apollo era diesel engine away from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-02-15
CAPE CANAVERAL, Fla. –– Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians monitor the progress as a crane begins to lift an Apollo era diesel engine from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-02-15
CAPE CANAVERAL, Fla. –– Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane operator lifts part of an Apollo era diesel engine away from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-03-08
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians monitor the progress as a large crane begins to lift a new engine and generator for installation on crawler-transporter 2 CT-2). The Apollo era diesel engines were removed last month. Work continues in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Jim Grossmann
2012-02-15
CAPE CANAVERAL, Fla. –– Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane begins to lift part of an Apollo era diesel engine from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-02-15
CAPE CANAVERAL, Fla. –– Just outside of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane is used to lift an Apollo era diesel engine away from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-02-15
CAPE CANAVERAL, Fla. ––Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a technician monitors the progress as a crane begins to lift an Apollo era diesel engine from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-03-08
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a large crane lifts a new engine and generator high overhead for installation on crawler-transporter 2 CT-2). The Apollo era diesel engines were removed last month. Work continues in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Jim Grossmann
2012-02-15
CAPE CANAVERAL, Fla. –– Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a technician monitors the progress as a crane lifts an Apollo era diesel engine from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-02-15
CAPE CANAVERAL, Fla. –– Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians prepare an Apollo era diesel engine to be lifted by crane from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-02-15
CAPE CANAVERAL, Fla. –– Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane lifts part of an Apollo era diesel engine from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-02-15
CAPE CANAVERAL, Fla. –– Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians monitor the progress as a crane lifts an Apollo era diesel engine from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Creech, Steve; Taylor, Jim; Bellamy, Scott; Kuck, Fritz
2008-01-01
Ares V is the heavy lift vehicle NASA is designing for lunar and other space missions. It has significantly more lift capability than the Saturn V vehicle used for the Apollo missions to the moon. Ares V is powered by two recoverable 5.5 segment solid rocket boosters and six RS-68B engines on the core stage. The upper stage, designated as the Earth Departure Stage, is powered by a single J-2X engine. This paper provides an overview of the Ares V vehicle and the RS-68B engine, an upgrade to the Pratt & Whitney Rocketdyne RS-68 engine developed for the Delta IV vehicle.
NASA Technical Reports Server (NTRS)
1966-01-01
The HL-10, seen here parked on the ramp at NASA's Flight Research Center in 1966, had a radically different shape from that of the M2-F2/F3. While the M2s were flat on top and had rounded undersides (giving them a bathtub shape), the HL-10 had a flat lower surface and a rounded top. Both shapes provided lift without wings, however. This photo was taken before the HL-10's fins were modified. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. The vehicle was unstable and required modifications to its fins to improve its handling qualities and stability. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new and different lessons were learned through the successful flight testing of the HL-10. These lessons, when combined with information from it's sister ship, the M2-F2/F3, provided an excellent starting point for designers of future entry vehicles, including the Space Shuttle.
NASA Technical Reports Server (NTRS)
1966-01-01
The HL-10 Lifting Body completes its first research flight with a landing on Rogers Dry Lake. Due to control problems, pilot Bruce Peterson had to land at a higher speed than originally planned in order to keep the vehicle under control. The actual touchdown speed was about 280 knots. This was 30 knots above the speed called for in the flight plan. The HL-10's first flight had lasted 3 minutes and 9 seconds. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new and different lessons were learned through the successful flight testing of the HL-10. These lessons, when combined with information from it's sister ship, the M2-F2/F3, provided an excellent starting point for designers of future entry vehicles, including the Space Shuttle.
NASA Technical Reports Server (NTRS)
1966-01-01
The HL-10 Lifting Body completes its first research flight with a landing on Rogers Dry Lake at Edwards AFB, California, on December 22, 1966. The HL-10 suffered from buffeting and poor control during the flight. Pilot Bruce Peterson was able to make a successful landing despite the severe problems. These were traced to airflow separation from the fins. As a result, the fins were no longer able to stabilize the vehicle. A small reshaping of the fins' leading edges cured the airflow separation, but it was not until March 15, 1968, that the second HL-10 flight occurred. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new and different lessons were learned through the successful flight testing of the HL-10. These lessons, when combined with information from it's sister ship, the M2-F2/F3, provided an excellent starting point for designers of future entry vehicles, including the Space Shuttle.
NASA Technical Reports Server (NTRS)
1969-01-01
The HL-10 Lifting Body is seen here in powered flight shortly after launch from the B-52 mothership. When HL-10 powered flights began on October 23, 1968, the vehicle used the same basic XLR-11 rocket engine that powered the original X-1s. A total of five powered flights were made before the HL-10 first flew supersonically on May 9, 1969, with John Manke in the pilot's seat. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new and different lessons were learned through the successful flight testing of the HL-10. These lessons, when combined with information from it's sister ship, the M2-F2/F3, provided an excellent starting point for designers of future entry vehicles, including the Space Shuttle.
HL-10 on lakebed with pilot Major Jerauld R. Gentry
NASA Technical Reports Server (NTRS)
1968-01-01
Pilot Major Jerauld R. Gentry stands in front of the HL-10 Lifting Body. Gentry was the Air Force project pilot for the HL-10 while it was making the early glide and powered flights in 1968 following its modification. He made a total of nine flights in the vehicle. For his work on the HL-10, Gentry was awarded the Harmon International Trophy for his outstanding contribution to the science of flying. He later became the Air Force pilot for the X-24A. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new and different lessons were learned through the successful flight testing of the HL-10. These lessons, when combined with information from it's sister ship, the M2-F2/F3, provided an excellent starting point for designers of future entry vehicles, including the Space Shuttle.
NASA Technical Reports Server (NTRS)
1968-01-01
The HL-10 Lifting Body is seen here parked on Rogers Dry Lake, the unique location where it landed after research flights. This 1968 photo shows the vehicle after the fins were modified to remove instabilities encountered on the first flight. It involved a change to the shape of the leading edge of the fins to eliminate flow separation. It required extensive wind-tunnel testing at Langley Research Center, Hampton, Va. NASA Flight Research Center (FRC) engineer Bob Kempel than plotted thousands of data points by hand to come up with the modification, which involved a fiberglass glove backed with a metal structure on each fin's leading edge. This transformed the vehicle from a craft that was difficult to control into the best handling of the original group of lifting bodies at the FRC. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new and different lessons were learned through the successful flight testing of the HL-10. These lessons, when combined with information from it's sister ship, the M2-F2/F3, provided an excellent starting point for designers of future entry vehicles, including the Space Shuttle.
Purwaningrum, Lu'lu'; Funatsu, Kyotaro; Xiong, Jinghong; Rosyidi, Cucuk Nur; Muraki, Satoshi
2015-01-01
Rearranging furniture in elementary school classrooms encourages classroom activities. In elementary schools in Indonesia and some other developing countries, usually only one style of furniture is used for all children, and the furniture is heavy and oversized for younger children. This affects their ability to carry it. The objective of this study is to investigate the effects of elementary school furniture weight and children's age on performance of three carrying tasks (carrying a chair, lifting and turning a chair on a desk, and carrying both a chair and a desk together), from the ergonomics point of view. A total of 42 schoolchildren (ages 6-9; 17 Indonesian, 25 Japanese) participated in this study. Two types of Japanese chairs (Chair A and B, weight: 3.2 kg and 3.9 kg), one type of Indonesian chair (Chair C, weight: 5.0 kg), and two types of desks (height: 58 cm and 68 cm) were used. Indonesian chairs took significantly longer time to carry than the two Japanese chairs, and there was a significant negative relationship between age and task time for Chairs B and C, but not Chair A. Success rates for lifting and turning the chair declined as age decreased and chair weight increased, but were not significantly influenced by desk height. Success rates for carrying a chair and desk together significantly decreased with heavier furniture. Children aged six showed an extremely low success rate in almost all conditions. In conclusion, children's ability to carry furniture is affected by their age and furniture characteristics, especially weight. In order to encourage classroom activities in elementary school, school furniture should be of appropriate weight. Supervision for younger children is required during classroom furniture arrangement.
Funatsu, Kyotaro; Xiong, Jinghong; Rosyidi, Cucuk Nur
2015-01-01
Rearranging furniture in elementary school classrooms encourages classroom activities. In elementary schools in Indonesia and some other developing countries, usually only one style of furniture is used for all children, and the furniture is heavy and oversized for younger children. This affects their ability to carry it. The objective of this study is to investigate the effects of elementary school furniture weight and children’s age on performance of three carrying tasks (carrying a chair, lifting and turning a chair on a desk, and carrying both a chair and a desk together), from the ergonomics point of view. A total of 42 schoolchildren (ages 6–9; 17 Indonesian, 25 Japanese) participated in this study. Two types of Japanese chairs (Chair A and B, weight: 3.2 kg and 3.9 kg), one type of Indonesian chair (Chair C, weight: 5.0 kg), and two types of desks (height: 58 cm and 68 cm) were used. Indonesian chairs took significantly longer time to carry than the two Japanese chairs, and there was a significant negative relationship between age and task time for Chairs B and C, but not Chair A. Success rates for lifting and turning the chair declined as age decreased and chair weight increased, but were not significantly influenced by desk height. Success rates for carrying a chair and desk together significantly decreased with heavier furniture. Children aged six showed an extremely low success rate in almost all conditions. In conclusion, children’s ability to carry furniture is affected by their age and furniture characteristics, especially weight. In order to encourage classroom activities in elementary school, school furniture should be of appropriate weight. Supervision for younger children is required during classroom furniture arrangement. PMID:26053154
Perception-action dissociation generalizes to the size-inertia illusion.
Platkiewicz, Jonathan; Hayward, Vincent
2014-04-01
Two objects of similar visual aspects and of equal mass, but of different sizes, generally do not elicit the same percept of heaviness in humans. The larger object is consistently felt to be lighter than the smaller, an effect known as the "size-weight illusion." When asked to repeatedly lift the two objects, the grip forces were observed to adapt rapidly to the true object weight while the size-weight illusion persisted, a phenomenon interpreted as a dissociation between perception and action. We investigated whether the same phenomenon can be observed if the mass of an object is available to participants through inertial rather than gravitational cues and if the number and statistics of the stimuli is such that participants cannot remember each individual stimulus. We compared the responses of 10 participants in 2 experimental conditions, where they manipulated 33 objects having uncorrelated masses and sizes, supported by a frictionless, air-bearing slide that could be oriented vertically or horizontally. We also analyzed the participants' anticipatory motor behavior by measuring the grip force before motion onset. We found that the perceptual illusory effect was quantitatively the same in the two conditions and observed that both visual size and haptic mass had a negligible effect on the anticipatory gripping control of the participants in the gravitational and inertial conditions, despite the enormous differences in the mechanics of the two conditions and the large set of uncorrelated stimuli.
The lift-fan aircraft: Lessons learned
NASA Technical Reports Server (NTRS)
Deckert, Wallace H.
1995-01-01
This report summarizes the highlights and results of a workshop held at NASA Ames Research Center in October 1992. The objective of the workshop was a thorough review of the lessons learned from past research on lift fans, and lift-fan aircraft, models, designs, and components. The scope included conceptual design studies, wind tunnel investigations, propulsion systems components, piloted simulation, flight of aircraft such as the SV-5A and SV-5B and a recent lift-fan aircraft development project. The report includes a brief summary of five technical presentations that addressed the subject The Lift-Fan Aircraft: Lessons Learned.
HL-10 in flight, turning to line up with lakebed runway 18
NASA Technical Reports Server (NTRS)
1969-01-01
This photo shows the HL-10 in flight, turning to line up with lakebed runway 18. The pilot for this flight, the 29th of the HL-10 series, was Bill Dana. The HL-10 reached a peak altitude of 64,590 feet and a top speed of Mach 1.59 on this particular flight. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new and different lessons were learned through the successful flight testing of the HL-10. These lessons, when combined with information from it's sister ship, the M2-F2/F3, provided an excellent starting point for designers of future entry vehicles, including the Space Shuttle.
HL-10 pilots assist with pilot entry into lifting body
NASA Technical Reports Server (NTRS)
1969-01-01
Not every moment of a test pilot's day is serious business. In a moment of levity, NASA pilots Bill Dana (left) and John A. Manke try to drag Air Force test pilot Peter Hoag away from the HL-10 lifting body while Air Force Major Jerauld R. Gentry helps from the cockpit. These four men were the principal pilots for the HL-10 program. This was not the only prank involving the HL-10 and its pilots. Once 'Captain Midnight' (Gentry) and the 'Midnight skulkers' sneaked into the NASA hangar and put 'U.S. Air Force' on the aircraft using stick-on letters. Later, while Gentry was making a lifting-body flight, his 1954 Ford was 'borrowed' from the parking lot, painted with yellow-green zinc-chromate primer, and decorated with large stick-on flowers about one foot in diameter. After Gentry returned from the flight, he was surprised to see what had happened to his car. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new and different lessons were learned through the successful flight testing of the HL-10. These lessons, when combined with information from it's sister ship, the M2-F2/F3, provided an excellent starting point for designers of future entry vehicles, including the Space Shuttle.
EFT-1 Delta IV Heavy lift to vertical
2014-10-01
This close-up view shows the United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 being raised into the vertical position at the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014.
Blue Origin Facility - Construction Progress
2017-03-21
Construction is progressing on Blue Origin's 750,000-square-foot facility being built at Exploration Park on NASA Kennedy Space Center property in Florida. Blue Origin will use the factory to manufacture its two-stage super-heavy-lift New Glenn launch vehicle and launch the vehicles from Space Launch Complex 46 at Cape Canaveral Air Force Station.
Warfighting and Logistic Support of Joint Forces from the Joint Sea Base
2007-01-01
Intel- ligence Community. For more information on RAND’s Acquisition and Technology Policy Center, contact the Director, Philip Antón. He can be reached...This is similar to ships such as the 225-meter MV American Cor- morant , a float-on/float-off heavy lift semisubmersible vessel, and the pumping
Heavy Lift Helicopter - Prototype Technical Summary
1980-04-01
in an inte- grated design. The following paragraphs discuss the swash - plate actuator servo loops and provide details...instrumentation in the prototype aircraft. Development testing of the flight control module in conjunc- tion with the transmission-driven pump and the reservoir was...PFCS employed cockpit controllers and force-feel actuation developed in the ATC
In depth review of the 1979 AIAA Lighter-Than-Air Systems Technology Conference
NASA Technical Reports Server (NTRS)
Ardema, M. D.
1979-01-01
The lighter than air (LTA) systems technology conference is reviewed. Highlights of the conference were: (1) the interest shown in patrol and surveillance airships, particularly for coastal patrol missions; (2) the session devoted to overviews of foreign activity; and (3) heavy lift and long range transport aircraft design considerations.
The Heavy Lifting of Diversity: A Need for Scholar Administrators
ERIC Educational Resources Information Center
Saffold, Jacinta R.
2018-01-01
Technological innovation and new economic terrain of the twenty-first century has called for higher education to re-examine how interdisciplinary ethnic studies and minority serving programs are positioned in the twenty-first century. This essay considers the utility of spaces like Black Studies departments and programs like the Mellon Mays…
ERIC Educational Resources Information Center
Pierce, Dennis
2016-01-01
As one of the 30 community college presidents taking part in the American Association of Community Colleges' (AACC) Pathways Project, El Paso Community College (EPCC) President William Serrata is learning from coaches and national experts at each of six Pathways Institutes run by AACC. He also has a key state-level resource that allows him to…
2011-10-04
CAPE CANAVERAL, Fla. -- Members of the crawlerway system evaluation team pose for a group portrait in front of the Headquarters Building at NASA's Kennedy Space Center in Florida. The team received the Florida Project of the Year award from the American Society of Civil Engineers (ASCE). The Cape Canaveral branch of the ASCE nominated the team for its project, the Crawlerway Evaluation to Support a Heavy-Lift Program. The crawlerway is a 130-foot-wide, specialty-built roadway between Kennedy's Vehicle Assembly Building (VAB), where rockets and spacecraft are prepared for flight, and Launch Pad 39A and 39B. The team's more than two-year evaluation confirmed the crawlerway system would be able to support the weight of moving the agency's future heavy-lift rockets and potential commercial vehicles from the VAB to the launch pads. The award honors the team's outstanding engineering efforts in research, design, construction and management, recognizing the complexity of multi-agency coordination and cost-effective engineering advances. For more information on the American Society of Civil Engineers, visit: http://www.asce.org. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
McCurry, J. B.
1995-01-01
The purpose of the TA-2 contract was to provide advanced launch vehicle concept definition and analysis to assist NASA in the identification of future launch vehicle requirements. Contracted analysis activities included vehicle sizing and performance analysis, subsystem concept definition, propulsion subsystem definition (foreign and domestic), ground operations and facilities analysis, and life cycle cost estimation. The basic period of performance of the TA-2 contract was from May 1992 through May 1993. No-cost extensions were exercised on the contract from June 1993 through July 1995. This document is part of the final report for the TA-2 contract. The final report consists of three volumes: Volume 1 is the Executive Summary, Volume 2 is Technical Results, and Volume 3 is Program Cost Estimates. The document-at-hand, Volume 3, provides a work breakdown structure dictionary, user's guide for the parametric life cycle cost estimation tool, and final report developed by ECON, Inc., under subcontract to Lockheed Martin on TA-2 for the analysis of heavy lift launch vehicle concepts.
NASA Advisory Council: Fact-Finding Session
NASA Technical Reports Server (NTRS)
Cohen, Aaron; Martin, Franklin D.; Craig, Mark K.; Duke, Michael B.
1992-01-01
The principal agenda item for this fact-finding meeting of the NASA Advisory Council was NASA's preliminary planning of options to implement the President's initiative for establishing a base on the Moon and launching a human expedition to Mars. NASA's presentation (1) reviewed the key elements in the President's speech of July 20, 1989, summoning the Nation to launch a new exploration initiative to the Moon and Mars; (2) outlined five candidate options analyzed in terms of schedule and scale of effort (for a return to the Moon and for a voyage to Mars); (3) outlined tentative robotic mission milestones for both a 'vigorous deployment' option and a 'paced deployment' option; (4) reviewed Earth-to-orbit delivery requirements for a lunar heavy-lift launch vehicle, the National Space Transportation System, and a Mars heavy-lift launch vehicle; (5) summarized the associated Space Station Freedom requirements; (6) outlined the technology as well as human factors requirements for the candidate options; and (7) summarized the themes and approaches that could be employed for the science aspects of a national Moon/Mars exploration program.
Update on the Ares V to Support Heavy Lift for U.S. Space Exploration Policy
NASA Technical Reports Server (NTRS)
Sumrall, John P.; Creech, Steve
2008-01-01
When NASA's Ares V cargo launch vehicle begins flying late next decade, its capabilities will significantly exceed the 1960s-era Saturn V. It will send more crew and cargo to more places on the lunar surface than Apollo and provide ongoing support to a permanent lunar outpost that will open the Moon to greater exploration, science and adventure than ever before. Moreover, it will restore the United States heavy-lift capability, which can support human and robotic exploration for decades to come. Ares V remains in a pre-design analysis cycle stage pending a planned Authority to Proceed (ATP) in late 2010. Ares V benefits from the decision to draw from heritage hardware and its commonality with the Ares I crew launch vehicle, which completed its preliminary design review (PDR) in September 2008. Most of the work on Ares V to date has been focused on refining the vehicle design through a variety of internal studies. This paper will provide background information on the Ares V evolution, emphasizing the vehicle configuration as it exists today.
NASA Technical Reports Server (NTRS)
1995-01-01
The purpose of the Advanced Transportation System Studies (ATSS) Technical Area 2 (TA-2) Heavy Lift Launch Vehicle Development contract was to provide advanced launch vehicle concept definition and analysis to assist NASA in the identification of future launch vehicle requirements. Contracted analysis activities included vehicle sizing and performance analysis, subsystem concept definition, propulsion subsystem definition (foreign and domestic), ground operations and facilities analysis, and life cycle cost estimation. This document is Volume 2 of the final report for the contract. It provides documentation of selected technical results from various TA-2 analysis activities, including a detailed narrative description of the SSTO concept assessment results, a user's guide for the associated SSTO sizing tools, an SSTO turnaround assessment report, an executive summary of the ground operations assessments performed during the first year of the contract, a configuration-independent vehicle health management system requirements report, a copy of all major TA-2 contract presentations, a copy of the FLO launch vehicle final report, and references to Pratt & Whitney's TA-2 sponsored final reports regarding the identification of Russian main propulsion technologies.
Physiological, Biomechanical, and Medical Aspects of Lifting and Repetitive Lifting: A Review
1983-11-01
charateristics of the object lifted. Four major variables have been investigated: 1) box length or dimension of the box in the transverse plane, 2) box...The Department of Labour of Great Britian found that accident rates due to lifting, carrying, pushing and pulling in 1940 was 7.9 per 1000 persons ...employed (25% of the total injuries). In 1956 rates were 6.3 per 1000 persons or 27.7% of the total injuries. In England in 1962 "manual handling
Investigation of advanced thrust vectoring exhaust systems for high speed propulsive lift
NASA Technical Reports Server (NTRS)
Hutchison, R. A.; Petit, J. E.; Capone, F. J.; Whittaker, R. W.
1980-01-01
The paper presents the results of a wind tunnel investigation conducted at the NASA-Langley research center to determine thrust vectoring/induced lift characteristics of advanced exhaust nozzle concepts installed on a supersonic tactical airplane model. Specific test objectives include: (1) basic aerodynamics of a wing body configuration, (2) investigation of induced lift effects, (3) evaluation of static and forward speed performance, and (4) the effectiveness of a canard surface to trim thrust vectoring/induced lift forces and moments.
Project Antares: A low cost modular launch vehicle for the future
NASA Astrophysics Data System (ADS)
Aarnio, Steve; Anderson, Hobie; Arzaz, El Mehdi; Bailey, Michelle; Beeghly, Jeff; Cartwright, Curt; Chau, William; Dawdy, Andrew; Detert, Bruce; Ervin, Miles
1991-06-01
The single stage to orbit launch vehicle Antares is based upon the revolutionary concept of modularity, enabling the Antares to efficiently launch communications satellites, as well as heavy payloads, into Earth's orbit and beyond. The basic unit of the modular system, a single Antares vehicle, is aimed at launching approximately 10,000 kg into low Earth orbit (LEO). When coupled with a Centaur upper stage it is capable of placing 3500 kg into geostationary orbit. The Antares incorporates a reusable engine, the Dual Mixture Ratio Engine (DMRE), as its propulsive device. This enables Antares to compete and excel in the satellite launch market by dramatically reducing launch costs. Antares' projected launch costs are $1340 per kg to LEO which offers a tremendous savings over launch vehicles available today. Inherent in the design is the capability to attach several of these vehicles together to provide heavy lift capability. Any number of these vehicles, up to seven, can be attached depending on the payload and mission requirements. With a seven vehicle configuration Antares's modular concept provides a heavy lift capability of approximately 70,000 kg to LEO. This expandability allows for a wider range of payload options such as large Earth satellites, Space Station Freedom support, and interplanetary spacecraft, and also offers a significant cost savings over a mixed fleet based on different launch vehicles.
Project Antares: A low cost modular launch vehicle for the future
NASA Technical Reports Server (NTRS)
Aarnio, Steve; Anderson, Hobie; Arzaz, El Mehdi; Bailey, Michelle; Beeghly, Jeff; Cartwright, Curt; Chau, William; Dawdy, Andrew; Detert, Bruce; Ervin, Miles
1991-01-01
The single stage to orbit launch vehicle Antares is based upon the revolutionary concept of modularity, enabling the Antares to efficiently launch communications satellites, as well as heavy payloads, into Earth's orbit and beyond. The basic unit of the modular system, a single Antares vehicle, is aimed at launching approximately 10,000 kg into low Earth orbit (LEO). When coupled with a Centaur upper stage it is capable of placing 3500 kg into geostationary orbit. The Antares incorporates a reusable engine, the Dual Mixture Ratio Engine (DMRE), as its propulsive device. This enables Antares to compete and excel in the satellite launch market by dramatically reducing launch costs. Antares' projected launch costs are $1340 per kg to LEO which offers a tremendous savings over launch vehicles available today. Inherent in the design is the capability to attach several of these vehicles together to provide heavy lift capability. Any number of these vehicles, up to seven, can be attached depending on the payload and mission requirements. With a seven vehicle configuration Antares's modular concept provides a heavy lift capability of approximately 70,000 kg to LEO. This expandability allows for a wider range of payload options such as large Earth satellites, Space Station Freedom support, and interplanetary spacecraft, and also offers a significant cost savings over a mixed fleet based on different launch vehicles.
HEAVY MANUAL WORK THROUGHOUT THE WORKING LIFETIME AND MUSCLE STRENGTH AMONG MEN AT RETIREMENT AGE
Walker-Bone, K; D’Angelo, S; Syddall, HE; Palmer, KT; Cooper, C; Coggon, D; Sayer, AA
2016-01-01
Introduction Reductions in heavy manual work as a consequence of mechanisation might impact adversely on muscle strength at older ages. We investigated the association between grip strength at retirement age and lifetime occupational exposure to physically demanding activities. Grip strength is an important predictor of long-term health and physical function in older people. Methods Grip strength (maximum of three readings in each hand) was measured in men from the Hertfordshire Cohort Study at a single examination when their mean age was 65.8 (SD 2.9) years. Associations with lifetime occupational exposure (ascertained by questionnaire) to three activities (standing/walking ≥4 hours/day; lifting ≥25 kg; and energetic work sufficient to induce sweating) were assessed by multivariable linear regression with adjustment for various potential confounders. Results Complete data were available from 1,418 men who had worked for at least 20 years. After adjustment for age, height and weight, those with longer exposures to walking/standing and heavy lifting had lower grip strength, but the relationship disappeared after further adjustment for confounders. Working at physical intensity sufficient to induce sweating was not significantly associated with grip strength. Conclusions We found no evidence that physically demanding occupational activities increase hand grip strength at normal retirement age. Any advantages of regular physical occupational activity may have been obscured by unmeasured socio-economic confounders. PMID:26896253
Occupational Physical Loading Tasks and Knee Osteoarthritis: A Review of the Evidence
Ezzat, Allison M.
2014-01-01
ABSTRACT Purpose: To perform a systematic review with best evidence synthesis examining the literature on the relationship between occupational loading tasks and knee osteoarthritis (OA). Methods: Two databases were searched to identify articles published between 1946 and April, 2011. Eligible studies were those that (1) included adults reporting on their employment history; (2) measured individuals' exposure to work-related activities with heavy loading in the knee joint; and (3) identified presence of knee OA (determined by X-ray), cartilage defects associated with knee OA (identified by magnetic resonance imaging), or joint replacement surgery. Results: A total of 32 articles from 31 studies met the inclusion criteria. We found moderate evidence that combined heavy lifting and kneeling is a risk factor for knee OA, with odds ratios (OR) varying from 1.8 to 7.9, and limited evidence for heavy lifting (OR=1.4–7.3), kneeling (OR=1.5–6.9), stair climbing (OR=1.6–5.1), and occupational groups (OR=1.4–4.7) as risk factors. When examined by sex, moderate level evidence of knee OA was found in men; however, the evidence in women was limited. Conclusions: Further high-quality prospective studies are warranted to provide further evidence on the role of occupational loading tasks in knee OA, particularly in women. PMID:24719516
Effects of height and load weight on shoulder muscle work during overhead lifting task.
Blache, Y; Desmoulins, L; Allard, P; Plamondon, A; Begon, M
2015-01-01
Few musculoskeletal models are available to assess shoulder deeper muscle demand during overhead lifting tasks. Our objective was to implement a musculoskeletal model to assess the effect of lifting height and load on shoulder muscle work. A musculoskeletal model scaled from 15 male subjects was used to calculate shoulder muscle work during six lifting tasks. Boxes containing three different loads (6, 12 and 18 kg) were lifted by the subjects from the waist to shoulder or eye level. After optimisation of the maximal isometric force of the model's muscles, the bio-fidelity of the model was improved by 19%. The latter was able to reproduce the subjects' lifting movements. Mechanical work of the rotator cuff muscles, upper trapezius and anterior deltoid was increased with lifting load and height augmentation. In conclusion, the use of a musculoskeletal model validated by electromyography enabled to evaluate the muscle demand of deep muscles during lifting tasks.
A Soft Gripper with Rigidity Tunable Elastomer Strips as Ligaments.
Nasab, Amir Mohammadi; Sabzehzar, Amin; Tatari, Milad; Majidi, Carmel; Shan, Wanliang
2017-12-01
Like their natural counterparts, soft bioinspired robots capable of actively tuning their mechanical rigidity can rapidly transition between a broad range of motor tasks-from lifting heavy loads to dexterous manipulation of delicate objects. Reversible rigidity tuning also enables soft robot actuators to reroute their internal loading and alter their mode of deformation in response to intrinsic activation. In this study, we demonstrate this principle with a three-fingered pneumatic gripper that contains "programmable" ligaments that change stiffness when activated with electrical current. The ligaments are composed of a conductive, thermoplastic elastomer composite that reversibly softens under resistive heating. Depending on which ligaments are activated, the gripper will bend inward to pick up an object, bend laterally to twist it, and bend outward to release it. All of the gripper motions are generated with a single pneumatic source of pressure. An activation-deactivation cycle can be completed within 15 s. The ability to incorporate electrically programmable ligaments in a pneumatic or hydraulic actuator has the potential to enhance versatility and reduce dependency on tubing and valves.
Hydraulic lift in a neotropical savanna: experimental manipulation and model simulations
Fabian G. Scholz; Sandra J. Bucci; William A. Hoffmann; Frederick C. Meinzer; Guillermo Goldstein
2010-01-01
The objective of this study was to assess the magnitude of hydraulic lift in Brazilian savannas (Cerrado) and to test the hypothesis that hydraulic lift by herbaceous plants contributes substantially to slowing the decline of water potential and water storage in the upper soil layers during the dry season. To this effect, field observations of soil water content and...
Heuch, Ingrid; Heuch, Ivar; Hagen, Knut; Zwart, John-Anker
2017-01-01
Physical activity in leisure time seems to reduce the risk of low back pain, but it is not known whether occupational activity, as recorded in a representative working population, produces a higher or lower risk. To study associations between physical activity level at work and risk of chronic low back pain. Associations were examined in a Norwegian prospective study using data from the HUNT2 and HUNT3 surveys carried out in the whole county of Nord-Trøndelag. Participants were 7580 women and 7335 men who supplied information about physical activity level at work. Levels considered were sedentary work, work involving walking but no heavy lifting, work involving walking and heavy lifting, and particularly strenuous physical work. Nobody in the cohort was affected by chronic low back pain at baseline. After 11 years, participants reported whether they suffered from chronic low back pain. Generalized linear modelling with adjustment for potential confounders was applied to assess associations with risk factors. In age-adjusted analyses both women and men showed statistically significant associations between physical activity at work and risk of chronic low back pain, suggesting positive relationships. For particularly strenuous physical work the relative risk of chronic low back pain was 1.30 (95% CI: 1.00-1.71) in women and 1.36 (95% CI 1.17-1.59) in men, compared to sedentary work. Women still showed a general association with activity level after adjustment for education, leisure time physical activity, BMI, smoking and occupational category. In men, the higher risk was only maintained for particularly strenuous work. In this cohort, women had a higher risk of chronic low back pain with work involving walking and heavy lifting or particularly strenuous work, compared to sedentary work. Men participating in particularly strenuous work also experienced a higher risk of chronic low back pain.
A New Heavy-Lift Capability for Space Exploration: NASA's Ares V Cargo Launch Vehicle
NASA Technical Reports Server (NTRS)
Sumrall, John P.; McArthur, J. Craig
2007-01-01
The National Aeronautics and Space Administration (NASA) is developing new launch systems and preparing to retire the Space Shuttle by 2010, as directed in the United States (U.S.) Vision for Space Exploration. The Ares I Crew Launch Vehicle (CLV) and the Ares V heavy-lift Cargo Launch Vehicle (CaLV) systems will build upon proven, reliable hardware derived from the Apollo-Saturn and Space Shuttle programs to deliver safe, reliable, affordable space transportation solutions. This approach leverages existing aerospace talent and a unique infrastructure, as well as legacy knowledge gained from nearly 50 years' experience developing space hardware. Early next decade, the Ares I will launch the new Orion Crew Exploration Vehicle (CEV) to the International Space Station (ISS) or to low-Earth orbit for trips to the Moon and, ultimately, Mars. Late next decade, the Ares V's Earth Departure Stage will carry larger payloads such as the lunar lander into orbit, and the Crew Exploration Vehicle will dock with it for missions to the Moon, where astronauts will explore new territories and conduct science and technology experiments. Both Ares I and Ares V are being designed to support longer future trips to Mars. The Exploration Launch Projects Office is designing, developing, testing, and evaluating both launch vehicle systems in partnership with other NASA Centers, Government agencies, and industry contractors. This paper provides top-level information regarding the genesis and evolution of the baseline configuration for the Ares V heavy-lift system. It also discusses riskbased, management strategies, such as building on powerful hardware and promoting common features between the Ares I and Ares V systems to reduce technical, schedule, and cost risks, as well as development and operations costs. Finally, it summarizes several notable accomplishments since October 2005, when the Exploration Launch Projects effort officially kicked off, and looks ahead at work planned for 2007 and beyond.
Galpin, Andrew J; Malyszek, Kylie K; Davis, Kyle A; Record, Shaina M; Brown, Lee E; Coburn, Jared W; Harmon, RoQue A; Steele, Jeff M; Manolovitz, Adam D
2015-12-01
Loading a barbell with variable resistance positively alters kinetic characteristics during the back squat and bench press but has never been studied during the deadlift. The purpose of this project was to examine the acute effects of combining elastic bands and free weights during the deadlift at moderate and heavy loads. Twelve trained men (age: 24.08 ± 2.35 years, height: 175.94 ± 5.38 cm, mass: 85.58 ± 12.49 kg, deadlift 1 repetition maximum (RM): 188.64 ± 16.13 kg) completed 2 variable resistance (B1 and B2) and 1 traditional free-weight (NB) condition at both 60 and 85% 1RM on a force plate. B1 had 15% resistance from bands, with the remaining 85% from free weights. B2 had 35% bands and 65% free weights. NB used free weights only. Average resistance was equated for all conditions. Power and velocity generally increased, whereas force decreased with the addition of bands. The amount of band tension (B1 or B2) had little impact on power when lifting at 60% 1RM. However, greater resistance from bands resulted in greater peak and relative power when lifting at 85% 1RM. Adding elastic bands decreased time to peak force (PF), time between PF and peak power (PP), and time between PF and peak velocity (PV) when compared with NB at 60% 1RM (NB > B1 > B2). These differences only reached significance for NB > B2 when lifting at 85% 1RM. These same differences existed for time between PP and PV. Thus, the amount of tension from bands has less impact on interpeak variables at heavier absolute loads. Practitioners should consider using heavy bands when prescribing the deadlift for speed or power, but not maximal force.
The Revolutionary Vertical Lift Technology (RVLT) Project
NASA Technical Reports Server (NTRS)
Yamauchi, Gloria K.
2018-01-01
The Revolutionary Vertical Lift Technology (RVLT) Project is one of six projects in the Advanced Air Vehicles Program (AAVP) of the NASA Aeronautics Research Mission Directorate. The overarching goal of the RVLT Project is to develop and validate tools, technologies, and concepts to overcome key barriers for vertical lift vehicles. The project vision is to enable the next generation of vertical lift vehicles with aggressive goals for efficiency, noise, and emissions, to expand current capabilities and develop new commercial markets. The RVLT Project invests in technologies that support conventional, non-conventional, and emerging vertical-lift aircraft in the very light to heavy vehicle classes. Research areas include acoustic, aeromechanics, drive systems, engines, icing, hybrid-electric systems, impact dynamics, experimental techniques, computational methods, and conceptual design. The project research is executed at NASA Ames, Glenn, and Langley Research Centers; the research extensively leverages partnerships with the US Army, the Federal Aviation Administration, industry, and academia. The primary facilities used by the project for testing of vertical-lift technologies include the 14- by 22-Ft Wind Tunnel, Icing Research Tunnel, National Full-Scale Aerodynamics Complex, 7- by 10-Ft Wind Tunnel, Rotor Test Cell, Landing and Impact Research facility, Compressor Test Facility, Drive System Test Facilities, Transonic Turbine Blade Cascade Facility, Vertical Motion Simulator, Mobile Acoustic Facility, Exterior Effects Synthesis and Simulation Lab, and the NASA Advanced Supercomputing Complex. To learn more about the RVLT Project, please stop by booth #1004 or visit their website at https://www.nasa.gov/aeroresearch/programs/aavp/rvlt.
Prien-Larsen, Jens Christian; Prien-Larsen, Thomas; Cieslak, Lars; Dessau, Ram B
2016-07-01
Although there is clear consensus on the use of monofilament polypropylene tapes for treating stress urinary incontinence (SUI), tapes differ in weight, stiffness, and elasticity. In this study, we compared outcomes of two tape types: high-stiffness Intramesh SOFT L.I.F.T versus low-stiffness Intramesh L.I.F.T. tape. Our null hypothesis was that in terms of performance, SOFT tape equaled L.I.F.T. tape. Six hundred and sixty women underwent prospective transvaginal tape (TVT) surgery for SUI: 210 had the SOFT tape placed and 450 the L.I.F.T. tape. Follow-ups were scheduled at 3 and 12 months. Objective cure at 3-months' follow-up was 87 % in the SOFT group vs 94 % in the L.I.F.T. group (p = 0.003) and at 12 months 86 vs 96 % (p = 0.0004), respectively. Subjective outcomes were equal. For SOFT tape, the objective failure rate at 3 months was especially pronounced in women older than 70 years: 31 vs 10 % (p = 0.008), and subjective failure was 24 vs 7 % (p = 0.01). At 12 months, objective failure for the SOFT tape was significantly higher in both age groups compared with L.I.F.T. [odds ratio (OR) 2.17]. Multivariate analysis showed that body mass index (BMI) ≥30 (OR 2.41), mixed incontinence (MUI) (OR 2.24), use of SOFT tape (OR 2.17), and age ≥ 70 years are significant independent risk factors for surgical failure. Outcomes with SOFT tape are significantly inferior than with L.I.F.T. tape, especially among elderly women. Therefore, the two variants of monofilament polypropylene tape are not interchangeable.
Orion is Lifted for Mating with Delta IV
2014-11-12
At Cape Canaveral Air Force Station's Launch Complex 37, United Launch Alliance engineers and technicians mate the agency's Orion spacecraft to its Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
Osteodiskitis of Lumbar Spine Due to Migrated Fractured Inferior Vena Cava Filter.
Aoun, Salah G; Bedros, Nicole; El Ahmadieh, Tarek Y; Kreck, Jake; Mehta, Nikhil; Al Tamimi, Mazin
2018-05-01
Venous thromboembolism can be a significant cause of morbidity in the trauma population. Medical and surgical specialties have been pushing the indication for prophylactic filter placement. A 36-year-old man presented with axial lower back pain with a radicular right L2 component after lifting a heavy object. He had a history of penetrating brain trauma 3 years prior, with placement of a prophylactic inferior vena cava filter. His radiograph, computed tomography, and magnetic resonance imaging of the lumbar spine showed fracture of his filter, with migration of the fractured fragment through the inferior vena cava and into the L2-L3 disk space, and surrounding bony lysis and severe osteodiskitis. He was treated medically with intravenous and then oral antibiotics and improved clinically and radiographically. Conservative use of filter devices and early retrieval once their indication expires are paramount to avoid unnecessary complications. Copyright © 2018 Elsevier Inc. All rights reserved.
Self-running and self-floating two-dimensional actuator using near-field acoustic levitation
NASA Astrophysics Data System (ADS)
Chen, Keyu; Gao, Shiming; Pan, Yayue; Guo, Ping
2016-09-01
Non-contact actuators are promising technologies in metrology, machine-tools, and hovercars, but have been suffering from low energy efficiency, complex design, and low controllability. Here we report a new design of a self-running and self-floating actuator capable of two-dimensional motion with an unlimited travel range. The proposed design exploits near-field acoustic levitation for heavy object lifting, and coupled resonant vibration for generation of acoustic streaming for non-contact motion in designated directions. The device utilizes resonant vibration of the structure for high energy efficiency, and adopts a single piezo element to achieve both levitation and non-contact motion for a compact and simple design. Experiments demonstrate that the proposed actuator can reach a 1.65 cm/s or faster moving speed and is capable of transporting a total weight of 80 g under 1.2 W power consumption.
Satellite Power System: Concept development and evaluation program. Volume 7: Space transportation
NASA Technical Reports Server (NTRS)
1981-01-01
During the several phases of the satellite power system (SPS) concept definition study, various transportation system elements were synthesized and evaluated on the basis of their potential to satisfy overall SPS transportation requirements and their sensitivities, interfaces, and impact on the SPS. Additional analyses and investigations were conducted to further define transportation system concepts that will be needed for the developmental and operational phases of an SPS program. To accomplish these objectives, transportation systems such as the shuttle and its derivatives were identified; new heavy-lift launch vehicle (HLLV) concepts, cargo and personnel orbital transfer vehicles (COTV and POTV), and intra-orbit transfer vehicle (IOTV) concepts were evaluated; and, to a limited degree, the program implications of their operations and costs were assessed. The results of these analyses were integrated into other elements of the overall SPS concept definition studies.
Haney, Steven J.; Herron, Donald Joe
2003-05-13
A compact, vacuum compatible motorized jack for supporting heavy loads and adjusting their positions is provided. The motorized jack includes: (a) a housing having a base; (b) a first roller device that provides a first slidable surface and that is secured to the base; (c) a second roller device that provides a second slidable surface and that has an upper surface; (d) a wedge that is slidably positioned between the first roller device and the second roller device so that the wedge is in contact with the first slidable surface and the second slidable surface; (e) a motor; and (d) a drive mechanism that connects the motor and the wedge to cause the motor to controllably move the wedge forwards or backwards. Individual motorized jacks can support and lift of an object at an angle. Two or more motorized jacks can provide tip, tilt and vertical position adjustment capabilities.
Haney, Steven J.; Herron, Donald Joe
2001-01-01
A compact, vacuum compatible motorized jack for supporting heavy loads and adjusting their positions is provided. The motorized jack includes: (a) a housing having a base; (b) a first roller device that provides a first slidable surface and that is secured to the base; (c) a second roller device that provides a second slidable surface and that has an upper surface; (d) a wedge that is slidably positioned between the first roller device and the second roller device so that the wedge is in contact with the first slidable surface and the second slidable surface; (e) a motor; and (d) a drive mechanism that connects the motor and the wedge to cause the motor to controllably move the wedge forwards or backwards. Individual motorized jacks can support and lift of an object at an angle. Two or more motorized jacks can provide tip, tilt and vertical position adjustment capabilities.
Feasibility of modern airships - Preliminary assessment
NASA Technical Reports Server (NTRS)
Ardema, M. D.
1977-01-01
Attention is given to the NASA program, Feasibility Study of Modern Airships, initiated to investigate potential research and technology programs associated with airship development. A historical survey of the program is presented, including the development of past airship concepts, aerodynamical and design improvements, structure and material concepts, and research in controls, avionics, instrumentation, flight operations, and ground handling. A mission analysis was carried out which considered passenger and cargo transportation, heavy-lift, short-haul applications, surveillance missions, and the transportation of natural gas. A vehicle parametric analysis examined the entire range of airship concepts, discussing both conventional airships and hybrids. Various design options were evaluated, such as choice of structural materials, use of boundary-layer control, and choice of lifting gas.
2016-10-19
A heavy-lift crane lifts the first half of the C-level work platforms, C south, for NASA’s Space Launch System (SLS) rocket, high up from the transfer aisle floor of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. The C platform will be installed on the south side of High Bay 3. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.
2016-11-10
A heavy-lift crane lifts the second half of the C-level work platforms, C north, for NASA’s Space Launch System (SLS) rocket, high up from the transfer aisle floor of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. The C platform will be installed on the north side of High Bay 3. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.
2016-10-19
A heavy-lift crane lifts the first half of the C-level work platforms, C south, for NASA’s Space Launch System (SLS) rocket, high up from the transfer aisle floor of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. The C platform will be moved into High Bay 3 for installation on the south wall. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.
2016-11-10
A heavy-lift crane lifts the second half of the C-level work platforms, C north, for NASA’s Space Launch System (SLS) rocket, up from the transfer aisle floor of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. The C platform will be installed on the north side of High Bay 3. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.
2016-11-10
A heavy-lift crane lifts the second half of the C-level work platforms, C north, for NASA’s Space Launch System (SLS) rocket, high up from the transfer aisle floor of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. The C platform will be moved into High Bay 3 for installation on the north wall. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.
Jensen, Jens Christian; Haahr, Jens Peder; Frost, Poul; Andersen, Johan Hviid
2013-10-01
Musculoskeletal pain conditions remain a major cause of care-seeking in general practice. Not all patients with musculoskeletal pain (MP) seek care at their general practitioner (GP), but for those who do, the GP's knowledge of what work-related factors might have influenced the patient's decision to seek care could be important in order to give more well-founded advice to our patients. The objective of this study was to elucidate the effects of workloads on care-seeking for back pain or upper extremity pain during an eighteen-month follow-up period. This is a prospective study with a baseline questionnaire and eighteen-month follow-up. Among the registered patients of 8 GPs, we identified 8,517 persons between 17 and 65 years of age, who all received the questionnaire. A total of 5,068 (59.5 %) persons answered. During the eighteen months of follow-up, we used the International Classification for Primary Care (ICPC) to identify all care-seekers with either back pain or upper extremity pain. Of these, all currently employed persons were included in our analysis, in all 4,325 persons. For analysis, we used Cox proportional hazards regression analysis. Analyses were stratified by gender. High levels of heavy lifting, defined as the upper tertile on a categorical scale, were associated with care-seeking for back pain (HR 1.90 [95 % CI: 1.14-3.15]) and upper extremity pain (HR 2.09 [95 % CI: 1.30-3.38]) among males, but not in a statistically significant way among females. Repetitive work and psychosocial factors did not have any statistically significant impact on care-seeking for neither back pain nor upper extremity pain. Work-related factors such as heavy lifting do, to some extent, contribute to care-seeking with MP. We suggest that asking the patient about physical workloads should be routinely included in consultations dealing with MP.
How to Extend the Capabilities of Space Systems for Long Duration Space Exploration Systems
NASA Technical Reports Server (NTRS)
Marzwell, Neville I.; Waterman, Robert D.; KrishnaKumar, Kalmanje; Waterman, Susan J.
2005-01-01
For sustainable Exploration Missions the need exists to assemble systems-of-systems in space, on the Moon or on other planetary surfaces. To fulfill this need new and innovative system architecture is needed that can be satisfied with the present lift capability of existing rocket technology without the added cost of developing a new heavy lift vehicle. To enable ultra-long life missions with minimum redundancy and lighter mass the need exists to develop system soft,i,are and hardware reconfigurability, which enables increasing functionality and multiple use of launched assets while at the same time overcoming any components failures. Also the need exists to develop the ability to dynamically demate and reassemble individual system elements during a mission in order to work around failed hardware or changed mission requirements. Therefore to meet the goals of Space Exploration Missions in hiteroperability and Reconfigurability, many challenges must be addressed to transform the traditional static avionics architecture into architecture with dynamic capabilities. The objective of this paper is to introduce concepts associated with reconfigurable computer systems; review the various needs and challenges associated with reconfigurable avionics space systems; provide an operational example that illustrates the needs applicable to either the Crew Exploration Vehicle or a collection of "Habot like" mobile surface elements; summarize the approaches that address key challenges to acceptance of a Flexible, Intelligent, Modular and Affordable reconfigurable avionics space system.
System and method for removal of buried objects
Alexander, Robert G [Richland, WA; Crass, Dennis [Kennewick, WA; Grams, William [Kennewick, WA; Phillips, Steven J [Sunnyside, WA; Riess, Mark [Kennewick, WA
2008-06-03
The present invention is a system and method for removal of buried objects. According to one embodiment of the invention, a crane with a vibrator casing driver is used to lift and suspend a large diameter steel casing over the buried object. Then the casing is driven into the ground by the vibratory driver until the casing surrounds the buried object. Then the open bottom of the casing is sealed shut by injecting grout into the ground within the casing near its bottom. When the seal has cured and hardened, the top of the casing is lifted to retrieve the casing, with the buried object inside, from the ground.
Nowak, Dennis A; Hermsdörfer, Joachim
2003-09-01
Persons with impaired manual sensibility frequently report problems to use the hand in manipulative tasks, such as using tools or buttoning a shirt. At least two control processes determine grip forces during voluntary object manipulation. Anticipatory force control specifies the motor commands on the basis of predictions about physical object properties and the consequences of our own actions. Feedback sensory information from the grasping digits, representing mechanical events at the skin-object interface, automatically modifies grip force according to the actual loading requirements and updates sensorimotor memories to support anticipatory grip force control. We investigated grip force control in nine patients with moderately impaired tactile sensibility of the grasping digits and in nine sex- and age-matched healthy controls lifting and holding an instrumented object. In healthy controls grip force was adequately scaled to the weight of the object to be lifted. The grip force was programmed to smoothly change in parallel with load force over the entire lifting movement. In particular, the grip force level was regulated in an economical way to be always slightly higher than the minimum required to prevent the object slipping. The temporal coupling between the grip and load force profiles achieved a high precision with the maximum grip and load forces coinciding closely in time. For the temporal regulation of the grip force profile patients with impaired tactile sensibility maintained the close co-ordination between proximal arm muscles, responsible for the lifting movement and the fingers stabilising the grasp. Maximum grip force coincided with maximum acceleration of the lifting movement. However, patients employed greater maximum grip forces and greater grip forces to hold the object unsupported when compared with controls. Our results give further evidence to the suggestion that during manipulation of objects with known physical properties the anticipatory temporal regulation of the grip force profile is centrally processed and less under sensory feedback control. In contrast, sensory afferent information from the grasping fingers plays a dominant role for the efficient scaling of the grip force level according to actual loading requirements.
26. Detail, typical section of roof; note condition of slates, ...
26. Detail, typical section of roof; note condition of slates, missing slates replaced by sheet metal inserts, heavy moss growth on lower edges of slates and completely filling channel of remaining gutter section; view to southwest from lift-bed truck, 135mm lens. - Southern Pacific Depot, 559 El Camino Real, San Carlos, San Mateo County, CA
The Weight of Time: Affordances for an Integrated Magnitude System
ERIC Educational Resources Information Center
Lu, Aitao; Mo, Lei; Hodges, Bert H.
2011-01-01
In five experiments we explored the effects of weight on time in different action contexts to test the hypothesis that an integrated magnitude system is tuned to affordances. Larger magnitudes generally seem longer; however, Lu and colleagues (2009) found that if numbers were presented as weights in a range heavy enough to affect lifting, the…
NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 9: Entry technology panel
NASA Technical Reports Server (NTRS)
1975-01-01
An advanced space transportation system heavy lift orbiter, hypersonic atmospheric entry missions, development of an emergency astronaut life boat, and basic research in boundary layer transition are among the topics discussed. Emphasis is placed on the need for space testing and for better mathematical models describing the flow fields around complex structures.
Preliminary design document: Ground based testbed for avionics systems
NASA Technical Reports Server (NTRS)
1989-01-01
The design and interface requirements for an avionics Ground Based Test bed (GBT) to support Heavy Lift Cargo Vehicles (HLCV) is presented. It also contains data on the vehicle subsystem configurations that are to be supported during their early, pre-PDR developmental phases. Several emerging technologies are also identified for support. A Preliminary Specification Tree is also presented.
1980-01-01
reproduction cost of data furnished to the PRR team, and (3) travel cost of prime contractor personnel traveling to subcontractor PRRs, if any. The...got our first assignment - to conduct a PRR on the CH-53E Super Stallion , heavy lift helicopter being developed by Sikorsky Aircraft. The planning
Code of Federal Regulations, 2010 CFR
2010-10-01
... VESSEL USE Lifting § 173.010 Definitions. As used in this part— (a) Hook load means the weight of the object lifted by the crane. (b) Crane radius means the distance illustrated in Figure 173.010. EC01MR91...
Muniak, John E.
2001-01-01
A gripper that is designed to incorporate the functions of gripping, supporting and pressure tongs into one device. The gripper has two opposing finger sections with interlocking fingers that incline and taper to form a wedge. The interlocking fingers are vertically off-set so that the opposing finger sections may close together allowing the inclined, tapered tips of the fingers to extend beyond the plane defined by the opposing finger section's engagement surface. The range of motion defined by the interlocking relationship of the finger sections allows the gripper to grab, lift and support objects of varying size and shape. The gripper has one stationary and one moveable finger section. Power is provided to the moveable finger section by an actuating device enabling the gripper to close around an object to be lifted. A lifting bail is attached to the gripper and is supported by a crane that provides vertical lift.
SCORPIUS, A New Generation of Responsive, Low Cost Expendable Launch Vehicles
NASA Astrophysics Data System (ADS)
Conger, R. E.; Chakroborty, S. P.; Wertz, J. R.
2002-01-01
The Scorpius vehicle family extends from one and two stage sub-orbital vehicles for target and science applications to small, medium and heavy lift orbital vehicles. These new liquid fueled vehicles have LEO and GTO capabilities. Microcosm and the Scorpius Space Launch Company (SSLC) are well into the development of this all-new generation of expendable launch vehicles to support commercial and government missions. This paper presents the projected performance of the family of vehicles, status of the development program and projected launch service prices. The paper will discuss the new low cost ablative engines and low cost pressure-fed LOX/Jet-A propulsion systems. Schedules, payload volumes, dispensers, attach fittings, and planned dual manifest capabilities will be presented. The unique configuration of the wide base first stage allows fairings that may extend beyond the current 4-meters. The Scorpius family is designed to facilitate encapsulated payloads and launch-on-demand. The implications of these new operational procedures will be addressed, including the techniques that will be used to drive down the cost of access to space while improving reliability. The Scorpius family of low cost vehicles addresses the full range of payloads from 700 lbs. in the Sprite Mini-Lift to over 50,000 lbs. to LEO in the Heavy-Lift, and over 18,000 lbs. to GTO. Two sub-orbital vehicles have been developed and successfully launched, with the latest vehicle (SR-XM) launched in March of 2001 from White Sands Missile Range. Development of the family of vehicles commenced in 1993 under contracts with the Air Force Research Laboratory Space Vehicle Directorate after a number of years of independent studies and system engineering. The Sprite Mini-Lift Small Expendable Launch Vehicle (SELV) that utilizes the SR-XM technologies is planned for an initial launch in mid 2005 with larger, scaled-up vehicles to follow.
Moving Base Simulation of an ASTOVL Lift-Fan Aircraft
DOT National Transportation Integrated Search
1995-08-01
Using a generalized simulation model, a moving-base simulation of a lift-fan : short takeoff/vertical landing fighter aircraft was conducted on the Vertical : Motion Simulator at Ames Research Center. Objectives of the experiment were to : (1)assess ...
EMG Processing Based Measures of Fatigue Assessment during Manual Lifting.
Shair, E F; Ahmad, S A; Marhaban, M H; Mohd Tamrin, S B; Abdullah, A R
2017-01-01
Manual lifting is one of the common practices used in the industries to transport or move objects to a desired place. Nowadays, even though mechanized equipment is widely available, manual lifting is still considered as an essential way to perform material handling task. Improper lifting strategies may contribute to musculoskeletal disorders (MSDs), where overexertion contributes as the highest factor. To overcome this problem, electromyography (EMG) signal is used to monitor the workers' muscle condition and to find maximum lifting load, lifting height and number of repetitions that the workers are able to handle before experiencing fatigue to avoid overexertion. Past researchers have introduced several EMG processing techniques and different EMG features that represent fatigue indices in time, frequency, and time-frequency domain. The impact of EMG processing based measures in fatigue assessment during manual lifting are reviewed in this paper. It is believed that this paper will greatly benefit researchers who need a bird's eye view of the biosignal processing which are currently available, thus determining the best possible techniques for lifting applications.
Waters, Thomas; Occhipinti, Enrico; Colombini, Daniela; Alvarez-Casado, Enrique; Fox, Robert
2015-01-01
Objective: We seek to develop a new approach for analyzing the physical demands of highly variable lifting tasks through an adaptation of the Revised NIOSH (National Institute for Occupational Safety and Health) Lifting Equation (RNLE) into a Variable Lifting Index (VLI). Background: There are many jobs that contain individual lifts that vary from lift to lift due to the task requirements. The NIOSH Lifting Equation is not suitable in its present form to analyze variable lifting tasks. Method: In extending the prior work on the VLI, two procedures are presented to allow users to analyze variable lifting tasks. One approach involves the sampling of lifting tasks performed by a worker over a shift and the calculation of the Frequency Independent Lift Index (FILI) for each sampled lift and the aggregation of the FILI values into six categories. The Composite Lift Index (CLI) equation is used with lifting index (LI) category frequency data to calculate the VLI. The second approach employs a detailed systematic collection of lifting task data from production and/or organizational sources. The data are organized into simplified task parameter categories and further aggregated into six FILI categories, which also use the CLI equation to calculate the VLI. Results: The two procedures will allow practitioners to systematically employ the VLI method to a variety of work situations where highly variable lifting tasks are performed. Conclusions: The scientific basis for the VLI procedure is similar to that for the CLI originally presented by NIOSH; however, the VLI method remains to be validated. Application: The VLI method allows an analyst to assess highly variable manual lifting jobs in which the task characteristics vary from lift to lift during a shift. PMID:26646300
Future Roles for Autonomous Vertical Lift in Disaster Relief and Emergency Response
NASA Technical Reports Server (NTRS)
Young, Larry A.
2006-01-01
System analysis concepts are applied to the assessment of potential collaborative contributions of autonomous system and vertical lift (a.k.a. rotorcraft, VTOL, powered-lift, etc.) technologies to the important, and perhaps underemphasized, application domain of disaster relief and emergency response. In particular, an analytic framework is outlined whereby system design functional requirements for an application domain can be derived from defined societal good goals and objectives.
Force feedback requirements for efficient laparoscopic grasp control.
Westebring-van der Putten, Eleonora P; van den Dobbelsteen, John J; Goossens, Richard H M; Jakimowicz, Jack J; Dankelman, Jenny
2009-09-01
During laparoscopic grasping, tissue damage may occur due to use of excessive grasp forces and tissue slippage, whereas in barehanded grasping, humans control their grasp to prevent slippage and use of excessive force (safe grasp). This study investigates the differences in grasp control during barehanded and laparoscopic lifts. Ten novices performed lifts in order to compare pinch forces under four conditions: barehanded; using tweezers; a low-efficient grasper; and a high-efficient grasper. Results showed that participants increased their pinch force significantly later during a barehanded lift (at a pull-force level of 2.63 N) than when lifting laparoscopically (from pull-force levels of 0.77 to 1.08 N). In barehanded lifts all participants could accomplish a safe grasp, whereas in laparoscopic lifts excessive force (up to 7.9 N) and slippage (up to 38% of the trials) occurred frequently. For novices, it can be concluded that force feedback (additional to the hand-tool interface), as in skin-tissue contact, is a prerequisite to maintain a safe grasp. Much is known about grasp control during barehanded object manipulation, especially the control of pinch forces to changing loading, whereas little is known about force perception and grasp control during tool usage. This knowledge is a prerequisite for the ergonomic design of tools that are used to manipulate objects.
Size-weight illusion and anticipatory grip force scaling following unilateral cortical brain lesion.
Li, Yong; Randerath, Jennifer; Goldenberg, Georg; Hermsdörfer, Joachim
2011-04-01
The prediction of object weight from its size is an important prerequisite of skillful object manipulation. Grip and load forces anticipate object size during early phases of lifting an object. A mismatch between predicted and actual weight when two different sized objects have the same weight results in the size-weight illusion (SWI), the small object feeling heavier. This study explores whether lateralized brain lesions in patients with or without apraxia alter the size-weight illusion and impair anticipatory finger force scaling. Twenty patients with left brain damage (LBD, 10 with apraxia, 10 without apraxia), ten patients with right brain damage (RBD), and matched control subjects lifted two different-sized boxes in alternation. All subjects experienced a similar size-weight illusion. The anticipatory force scaling of all groups was in correspondence with the size cue: higher forces and force rates were applied to the big box and lower forces and force rates to the small box during the first lifts. Within few lifts, forces were scaled to actual object weight. Despite the lack of significant differences at group level, 5 out of 20 LBD patients showed abnormal predictive scaling of grip forces. They differed from the LBD patients with normal predictive scaling by a greater incidence of posterior occipito-parietal lesions but not by a greater incidence of apraxia. The findings do not support a more general role for the motor-dominant left hemisphere, or an influence of apraxia per se, in the scaling of finger force according to object properties. However, damage in the vicinity of the parietal-occipital junction may be critical for deriving predictions of weight from size. Copyright © 2011 Elsevier Ltd. All rights reserved.
Learned Manipulation at Unconstrained Contacts Does Not Transfer across Hands
Fu, Qiushi; Choi, Jason Y.; Gordon, Andrew M.; Jesunathadas, Mark; Santello, Marco
2014-01-01
Recent studies about sensorimotor control of the human hand have focused on how dexterous manipulation is learned and generalized. Here we address this question by testing the extent to which learned manipulation can be transferred when the contralateral hand is used and/or object orientation is reversed. We asked subjects to use a precision grip to lift a grip device with an asymmetrical mass distribution while minimizing object roll during lifting by generating a compensatory torque. Subjects were allowed to grasp anywhere on the object’s vertical surfaces, and were therefore able to modulate both digit positions and forces. After every block of eight trials performed in one manipulation context (i.e., using the right hand and at a given object orientation), subjects had to lift the same object in the second context for one trial (transfer trial). Context changes were made by asking subjects to switch the hand used to lift the object and/or rotate the object 180° about a vertical axis. Therefore, three transfer conditions, hand switch (HS), object rotation (OR), and both hand switch and object rotation (HS+OR), were tested and compared with hand matched control groups who did not experience context changes. We found that subjects in all transfer conditions adapted digit positions across multiple transfer trials similar to the learning of control groups, regardless of different changes of contexts. Moreover, subjects in both HS and HS+OR group also adapted digit forces similar to the control group, suggesting independent learning of the left hand. In contrast, the OR group showed significant negative transfer of the compensatory torque due to an inability to adapt digit forces. Our results indicate that internal representations of dexterous manipulation tasks may be primarily built through the hand used for learning and cannot be transferred across hands. PMID:25233091
Design and analytical study of a rotor airfoil
NASA Technical Reports Server (NTRS)
Dadone, L. U.
1978-01-01
An airfoil section for use on helicopter rotor blades was defined and analyzed by means of potential flow/boundary layer interaction and viscous transonic flow methods to meet as closely as possible a set of advanced airfoil design objectives. The design efforts showed that the first priority objectives, including selected low speed pitching moment, maximum lift and drag divergence requirements can be met, though marginally. The maximum lift requirement at M = 0.5 and most of the profile drag objectives cannot be met without some compromise of at least one of the higher order priorities.
Delevoye-Turrell, Yvonne Nathalie; Bobineau, Claudie
2012-01-01
Mindfulness-Based Stress Reduction meditation (MBSR) may offer optimal performance through heightened attention for increased body consciousness. To test this hypothesis, MBSR effects were assessed on the simple task of lifting an object. A dual task paradigm was included to assess the opposite effect of a limited amount of attention on motor consciousness. In a stimulus-based condition, the subjects’ task was to lift an object that was hefted with weights. In an intentional-based condition, subjects were required to lift a light object while imagining that the object was virtually heavier and thus, adjust their grip voluntarily. The degree of motor consciousness was evaluated by calculating correlation factors for each participant between the grip force level used during the lift trial (“lift the object”) and that used during its associated reproduce trial (“without lifting, indicate the force you think you used in the previous trial”). Under dual task condition, motor consciousness decreased for intention- and stimulus-based actions, revealing the importance of top-down attention for building the motor representation that guides action planning. For MBSR-experts, heightened attention provided stronger levels of motor consciousness; this was true for both intention and stimulus-based actions. For controls, heightened attention decreased the capacity to reproduce force levels, suggesting that voluntary top-down attention interfered with the automatic bottom-up emergence of body sensations. Our results provide strong arguments for involvement of two types of attention for the emergence of motor consciousness. Bottom-up attention would serve as an amplifier of motor-sensory afferences; top-down attention would help transfer the motor-sensory content from a preconscious to a conscious state of processing. MBSR would be a specific state for which both types of attention are optimally combined to provide experts with total experiences of their body in movement. PMID:22973242
HL-10 on lakebed with pilot Bill Dana
NASA Technical Reports Server (NTRS)
1969-01-01
This photo shows the HL-10 on Rogers Dry Lakebed with pilot Bill Dana in the foreground. Bill joined the HL-10 program in 1969 after flying the M2-F1 and the X-15, among other aircraft. His first glide flight was on April 25, 1969. Some months later, on September 3, 1969, he reached an altitude of 77,960 feet. This was one of a series of HL-10 flights to collect stability and control data at higher speeds and altitudes and at different angles of attack. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new and different lessons were learned through the successful flight testing of the HL-10. These lessons, when combined with information from it's sister ship, the M2-F2/F3, provided an excellent starting point for designers of future entry vehicles, including the Space Shuttle.
Mobile Launcher Crew Access Arm Transport from Cocoa FL to KSC
2017-10-17
Two heavy-lift cranes are used to lift the Orion crew access arm up from a flatbed truck in a storage location at NASA's Kennedy Space Center in Florida. The access arm was transported from Precision Fabricating and Cleaning in Cocoa, Florida. Later this month, the arm will be transported to the mobile launcher (ML) tower at the center. The crew access arm will be located at about the 274-foot level on the tower. It will rotate from its retracted position and interface with the Orion crew hatch location to provide entry to the Orion crew module. The Ground Systems Development and Operations Program is overseeing installation of umbilicals and launch accessories on the ML tower.
2016-11-10
A heavy-lift crane lifts the second half of the C-level work platforms, C north, for NASA’s Space Launch System (SLS) rocket, high up from the transfer aisle of the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The C platform will be moved into High Bay 3 for installation on the north side of High Bay 3. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.
NASA Technical Reports Server (NTRS)
Vittek, J. F., Jr.
1975-01-01
Papers are presented which review modern lighter-than-air (LTA) airship design concepts and LTA structures and materials technology, as well as perform economic and market analyses for assessment of the viability of future LTA development programs. Potential applications of LTA vehicles are examined. Some of the topics covered include preliminary estimates of operating costs for LTA transports, an economic comparison of three heavy lift airborn systems, boundary layer control for airships, computer aided flexible envelope designs, state-of-the-art of metalclad airships, aspects of hybrid-Zeppelins, the LTA vehicle as a total cargo system, unmanned powered balloons, and a practical concept for powered or tethered weight-lifting LTA vehicles. Individual items are announced in this issue.
NASA Technical Reports Server (NTRS)
Hornung, R.
1991-01-01
The design of a Mars Mission Vehicle that would have to be launched by two very heavy lift launch vehicles is described along with plans for a mission to Mars. The vehicle has three nuclear engine for rocket vehicle application (NERVA) boosters with a fourth in the center that acts as a dual mode system. The fourth generates electrical power while in route, but it also helps lift the vehicle out of earth orbit. A Mars Ascent Vehicle (MAV), a Mars transfer vehicle stage, and a Mars Excursion Vehicle (MEV) are located on the front end of this vehicle. Other aspects of this research including aerobraking, heat shielding, nuclear thermal rocket engines, a mars mission summary, closed Brayton cycle with and without regeneration, liquid hydrogen propellant storage, etc. are addressed.
ICPSU Install onto Mobile Launcher
2018-03-16
A heavy-lift crane slowly lifts the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) high up for installation on the tower of the mobile launcher (ML) at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.
ICPSU Install onto Mobile Launcher
2018-03-16
A heavy-lift crane slowly lifts the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) up for installation on the tower of the mobile launcher (ML) at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.
Vortex-flow aerodynamics - An emerging design capability
NASA Technical Reports Server (NTRS)
Campbell, J. F.
1981-01-01
Promising current theoretical and simulational developments in the field of leading edge vortex-generating delta, arrow ogival wings are reported, along with the history of theory and experiment leading to them. The effects of wing slenderness, leading edge nose radius, Mach number and incidence variations, and planform on the onset of vortex generation and redistribution of aerodynamic loads are considered. The range of design possibilities in this field are consequential for the future development of strategic aircraft, supersonic transports and commercial cargo aircraft which will possess low-speed, high-lift capability by virtue of leading edge vortex generation and control without recourse to heavy and expensive leading edge high-lift devices and compound airfoils. Attention is given to interactive graphics simulation devices recently developed.
Orion is Lifted for Mating with Delta IV
2014-11-12
At Cape Canaveral Air Force Station's Launch Complex 37, United Launch Alliance engineers and technicians prepare to mate the agency's Orion spacecraft to its Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
Linear dynamic coupling in geared rotor systems
NASA Technical Reports Server (NTRS)
David, J. W.; Mitchell, L. D.
1986-01-01
The effects of high frequency oscillations caused by the gear mesh, on components of a geared system that can be modeled as rigid discs are analyzed using linear dynamic coupling terms. The coupled, nonlinear equations of motion for a disc attached to a rotating shaft are presented. The results of a trial problem analysis show that the inclusion of the linear dynamic coupling terms can produce significant changes in the predicted response of geared rotor systems, and that the produced sideband responses are greater than the unbalanced response. The method is useful in designing gear drives for heavy-lift helicopters, industrial speed reducers, naval propulsion systems, and heavy off-road equipment.
Flight dynamics analysis and simulation of heavy lift airships. Volume 2: Technical manual
NASA Technical Reports Server (NTRS)
Ringland, R. F.; Tischler, M. B.; Jex, H. R.; Emmen, R. D.; Ashkenas, I. L.
1982-01-01
The mathematical models embodied in the simulation are described in considerable detail and with supporting evidence for the model forms chosen. In addition the trimming and linearization algorithms used in the simulation are described. Appendices to the manual identify reference material for estimating the needed coefficients for the input data and provide example simulation results.
NASA Space Rocket Logistics Challenges
NASA Technical Reports Server (NTRS)
Bramon, Chris; Neeley, James R.; Jones, James V.; Watson, Michael D.; Inman, Sharon K.; Tuttle, Loraine
2014-01-01
The Space Launch System (SLS) is the new NASA heavy lift launch vehicle in development and is scheduled for its first mission in 2017. SLS has many of the same logistics challenges as any other large scale program. However, SLS also faces unique challenges. This presentation will address the SLS challenges, along with the analysis and decisions to mitigate the threats posed by each.
NASA Technical Reports Server (NTRS)
1991-01-01
Topics addressed are: (1) an artificial gravity assessment study; (2) Mars mission transport vehicle (MTV)/Mars excursion vehicle (MEV) mission scenarios; (3) aerobrake issues; (4) equipment life and self-check; (5) earth-to-orbit (ETO) heavy lift launch vehicle (HLLV) definition trades; and (6) risk analysis.
Negative Work Done by a Person
ERIC Educational Resources Information Center
Mungan, Carl E.
2015-01-01
If I slowly raise a heavy book one meter up in the air, I do positive work. This work corresponds to an energy transfer. I lose chemical food energy that is consumed by my muscles to lift the book upward. Energy is gained by the book-Earth system in the form of gravitational potential energy that is stored in the gravitational field. But what…
2012-12-13
The J-2X powerpack assembly was fired up one last time on Dec. 13 at NASA's John C. Stennis Space Center in Mississippi, finishing a year of testing on an important component of America's next heavy-lift rocket. The powerpack assembly burned millions of pounds of propellants during a series of 13 tests during 2012 totaling more than an hour and a half.
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.
2003-01-01
This viewgraph presentation illustrates possible future strategies for solar system exploration supported by Nuclear Thermal Rocket (NTR) Propulsion. Topics addressed in the presentation include: lunar mining, Liquid Oxygen (LOX) augmented NTR (LANTR), 'Shuttle-Derived' Heavy Lift Vehicle (SDHLV) options for future human Lunar missions, and lunar-produced oxygen (LUNOX).
Project of Ariane 5 LV family advancement by use of reusable fly-back boosters (named “Bargouzine”)
NASA Astrophysics Data System (ADS)
Sumin, Yu.; Bonnal, Ch.; Kostromin, S.; Panichkin, N.
2007-12-01
The paper concerns possible concept variants of a partially reusable Heavy-Lift Launch Vehicle derived from the advanced basic launcher (Ariane-2010) by means of substitution of the EAP Solid Rocket Boosters for a Reusable Starting Stage consisting two Liquid-propellant Reusable Fly-Back Boosters called "Bargouzin". This paper describes the status of the presently studied RFBB concepts during its three phases. The first project phase was dedicated to feasibility expertise of liquid-rocket reusable fly-back boosters ("Baikal" type) utilization for heavy-lift space launch vehicle. The design features and main conclusions are presented. The second phase has been performed with the purpose of selection of preferable concept among the alternative ones for the future Ariane LV modernization by using RFBB instead of EAP Boosters. The main requirements, logic of work, possible configuration and conclusion are presented. Initial aerodynamic, ballistic, thermoloading, dynamic loading, trade-off and comparison analysis have been performed on these concepts. The third phase consists in performing a more detailed expertise of the chosen LV concept. This part summarizes some of the more detailed results related to flight performance, system mass, thermoprotection system, aspects of technologies, ground complex modification, comparison analyses and conclusion.
2011-10-04
CAPE CANAVERAL, Fla. -- NASA managers at NASA's Kennedy Space Center in Florida show off the Florida Project of the Year trophies that the crawlerway system evaluation team received from the American Society of Civil Engineers (ASCE). From left are Michael Benik, director of Center Operations; Pepper Phillips, manager of the 21st Century Ground Systems Program Office; and Russell Romanella, associate director for Engineering and Technical Operations. The Cape Canaveral branch of the ASCE nominated the team for its project, the Crawlerway Evaluation to Support a Heavy-Lift Program. The crawlerway is a 130-foot-wide, specialty-built roadway between Kennedy's Vehicle Assembly Building (VAB), where rockets and spacecraft are prepared for flight, and Launch Pad 39A and 39B. The team's more than two-year evaluation confirmed the crawlerway system would be able to support the weight of moving the agency's future heavy-lift rockets and potential commercial vehicles from the VAB to the launch pads. The award honors the team's outstanding engineering efforts in research, design, construction and management, recognizing the complexity of multi-agency coordination and cost-effective engineering advances. For more information on the American Society of Civil Engineers, visit: http://www.asce.org. Photo credit: NASA/Kim Shiflett
Strand, K; Wergeland, E; Bjerkedal, T
1997-09-01
Sickness absence in pregnancy has been shown to be associated with strenuous working conditions and parity. So far, few studies have made adjustments for possible interaction and confounding. Such adjustments are needed to more precisely identify targets for preventive measures. We have, therefore, in a representative population of pregnant employees in Norway 1989, computed adjusted odds ratios for leaving work by sickness absence more than three (LSC > 3) and eight (LSC > 8) weeks before delivery according to working conditions identified as risk factors in earlier studies; adjusted for job control, domestic conditions and sickness absence the year prior to pregnancy. The cumulative percentage of LSC > 8 and LSC > 3 was 26.4 and 51.1. Ergonomically strenuous postures and heavy lifting increased the risk of both outcomes. In addition, shift work and hectic work pace increased the risk of LSC > 3. Influence on breaks reduced risk. Only para experienced reduced risk of LSC when working part-time. Sicklisting the year prior to pregnancy had no confounding effect, which suggest that pregnancy represents a new incompatibility with work. Preventive measures should address work postures and heavy lifting, as well as conditions influencing the woman's control with her time.
Navier-Stokes Simulation of a Heavy Lift Slowed-Rotor Compound Helicopter Configuration
NASA Technical Reports Server (NTRS)
Allan, Brian G.; Jenkins, Luther N.; Yao, Chung-Sheng; Bartram, Scott M.; Hallissy, Jim B.; Harris, Jerome; Noonan, Kevin W.; Wong, Oliver D.; Jones, Henry E.; Malovrh, Brendon D.;
2009-01-01
Time accurate numerical simulations were performed using the Reynolds-averaged Navier-Stokes (RANS) flow solver OVERFLOW for a heavy lift, slowed-rotor, compound helicopter configuration, tested at the NASA Langley 14- by 22-Foot Subsonic Tunnel. The primary purpose of these simulations is to provide support for the development of a large field of view Particle Imaging Velocimetry (PIV) flow measurement technique supported by the Subsonic Rotary Wing (SRW) project under the NASA Fundamental Aeronautics program. These simulations provide a better understanding of the rotor and body wake flows and helped to define PIV measurement locations as well as requirements for validation of flow solver codes. The large field PIV system can measure the three-dimensional velocity flow field in a 0.914m by 1.83m plane. PIV measurements were performed upstream and downstream of the vertical tail section and are compared to simulation results. The simulations are also used to better understand the tunnel wall and body/rotor support effects by comparing simulations with and without tunnel floor/ceiling walls and supports. Comparisons are also made to the experimental force and moment data for the body and rotor.
Advanced grid-stiffened composite shells for applications in heavy-lift helicopter rotor blade spars
NASA Astrophysics Data System (ADS)
Narayanan Nampy, Sreenivas
Modern rotor blades are constructed using composite materials to exploit their superior structural performance compared to metals. Helicopter rotor blade spars are conventionally designed as monocoque structures. Blades of the proposed Heavy Lift Helicopter are envisioned to be as heavy as 800 lbs when designed using the monocoque spar design. A new and innovative design is proposed to replace the conventional spar designs with light weight grid-stiffened composite shell. Composite stiffened shells have been known to provide excellent strength to weight ratio and damage tolerance with an excellent potential to reduce weight. Conventional stringer--rib stiffened construction is not suitable for rotor blade spars since they are limited in generating high torsion stiffness that is required for aeroelastic stability of the rotor. As a result, off-axis (helical) stiffeners must be provided. This is a new design space where innovative modeling techniques are needed. The structural behavior of grid-stiffened structures under axial, bending, and torsion loads, typically experienced by rotor blades need to be accurately predicted. The overall objective of the present research is to develop and integrate the necessary design analysis tools to conduct a feasibility study in employing grid-stiffened shells for heavy-lift rotor blade spars. Upon evaluating the limitations in state-of-the-art analytical models in predicting the axial, bending, and torsion stiffness coefficients of grid and grid-stiffened structures, a new analytical model was developed. The new analytical model based on the smeared stiffness approach was developed employing the stiffness matrices of the constituent members of the grid structure such as an arch, helical, or straight beam representing circumferential, helical, and longitudinal stiffeners. This analysis has the capability to model various stiffening configurations such as angle-grid, ortho-grid, and general-grid. Analyses were performed using an existing state-of-the-art and newly developed model to predict the torsion, bending, and axial stiffness of grid and grid-stiffened structures with various stiffening configurations. These predictions were compared to results generated using finite element analysis (FEA) to observe excellent correlation (within 6%) for a range of parameters for grid and grid-stiffened structures such as grid density, stiffener angle, and aspect ratio of the stiffener cross-section. Experimental results from cylindrical grid specimen testing were compared with analytical prediction using the new analysis. The new analysis predicted stiffness coefficients with nearly 7% error compared to FEA results. From the parametric studies conducted, it was observed that the previous state-of-the-art analysis on the other hand exhibited errors of the order of 39% for certain designs. Stability evaluations were also conducted by integrating the new analysis with established stability formulations. A design study was conducted to evaluate the potential weight savings of a simple grid-stiffened rotor blade spar structure compared to a baseline monocoque design. Various design constraints such as stiffness, strength, and stability were imposed. A manual search was conducted for design parameters such as stiffener density, stiffener angle, shell laminate, and stiffener aspect ratio that provide lightweight grid-stiffened designs compared to the baseline. It was found that a weight saving of 9.1% compared to the baseline is possible without violating any of the design constraints.
Wagner, David W; Reed, Matthew P; Chaffin, Don B
2010-11-01
Accurate prediction of foot placements in relation to hand locations during manual materials handling tasks is critical for prospective biomechanical analysis. To address this need, the effects of lifting task conditions and anthropometric variables on foot placements were studied in a laboratory experiment. In total, 20 men and women performed two-handed object transfers that required them to walk to a shelf, lift an object from the shelf at waist height and carry the object to a variety of locations. Five different changes in the direction of progression following the object pickup were used, ranging from 45° to 180° relative to the approach direction. Object weights of 1.0 kg, 4.5 kg, 13.6 kg were used. Whole-body motions were recorded using a 3-D optical retro-reflective marker-based camera system. A new parametric system for describing foot placements, the Quantitative Transition Classification System, was developed to facilitate the parameterisation of foot placement data. Foot placements chosen by the subjects during the transfer tasks appeared to facilitate a change in the whole-body direction of progression, in addition to aiding in performing the lift. Further analysis revealed that five different stepping behaviours accounted for 71% of the stepping patterns observed. More specifically, the most frequently observed behaviour revealed that the orientation of the lead foot during the actual lifting task was primarily affected by the amount of turn angle required after the lift (R(2) = 0.53). One surprising result was that the object mass (scaled by participant body mass) was not found to significantly affect any of the individual step placement parameters. Regression models were developed to predict the most prevalent step placements and are included in this paper to facilitate more accurate human motion simulations and ergonomics analyses of manual material lifting tasks. STATEMENT OF RELEVANCE: This study proposes a method for parameterising the steps (foot placements) associated with manual material handling tasks. The influence of task conditions and subject anthropometry on the foot placements of the most frequently observed stepping pattern during a laboratory study is discussed. For prospective postural analyses conducted using digital human models, accurate prediction of the foot placements is critical to realistic postural analyses and improved biomechanical job evaluations.
Taxonomy based analysis of force exchanges during object grasping and manipulation
Martin-Brevet, Sandra; Jarrassé, Nathanaël; Burdet, Etienne
2017-01-01
The flexibility of the human hand in object manipulation is essential for daily life activities, but remains relatively little explored with quantitative methods. On the one hand, recent taxonomies describe qualitatively the classes of hand postures for object grasping and manipulation. On the other hand, the quantitative analysis of hand function has been generally restricted to precision grip (with thumb and index opposition) during lifting tasks. The aim of the present study is to fill the gap between these two kinds of descriptions, by investigating quantitatively the forces exerted by the hand on an instrumented object in a set of representative manipulation tasks. The object was a parallelepiped object able to measure the force exerted on the six faces and its acceleration. The grasping force was estimated from the lateral force and the unloading force from the bottom force. The protocol included eleven tasks with complementary constraints inspired by recent taxonomies: four tasks corresponding to lifting and holding the object with different grasp configurations, and seven to manipulating the object (rotation around each of its axis and translation). The grasping and unloading forces and object rotations were measured during the five phases of the actions: unloading, lifting, holding or manipulation, preparation to deposit, and deposit. The results confirm the tight regulation between grasping and unloading forces during lifting, and extend this to the deposit phase. In addition, they provide a precise description of the regulation of force exchanges during various manipulation tasks spanning representative actions of daily life. The timing of manipulation showed both sequential and overlapping organization of the different sub-actions, and micro-errors could be detected. This phenomenological study confirms the feasibility of using an instrumented object to investigate complex manipulative behavior in humans. This protocol will be used in the future to investigate upper-limb dexterity in patients with sensory-motor impairments. PMID:28562617
Nindl, Bradley C; Alvar, Brent A; R Dudley, Jason; Favre, Mike W; Martin, Gerard J; Sharp, Marilyn A; Warr, Brad J; Stephenson, Mark D; Kraemer, William J
2015-11-01
The National Strength and Conditioning Association's tactical strength and conditioning program sponsored the second Blue Ribbon Panel on military physical readiness: military physical performance testing, April 18-19, 2013, Norfolk, VA. This meeting brought together a total of 20 subject matter experts (SMEs) from the U.S. Air Force, Army, Marine Corps, Navy, and academia representing practitioners, operators, researchers, and policy advisors to discuss the current state of physical performance testing across the Armed Services. The SME panel initially rated 9 common military tasks (jumping over obstacles, moving with agility, carrying heavy loads, dragging heavy loads, running long distances, moving quickly over short distances, climbing over obstacles, lifting heavy objects, loading equipment) by the degree to which health-related fitness components (e.g., aerobic fitness, muscular strength, muscular endurance, flexibility, and body composition) and skill-related fitness components (e.g., muscular power, agility, balance, coordination, speed, and reaction time) were required to accomplish these tasks. A scale from 1 to 10 (10 being highest) was used. Muscular strength, power, and endurance received the highest rating scores. Panel consensus concluded that (a) selected fitness components (particularly for skill-related fitness components) are currently not being assessed by the military; (b) field-expedient options to measure both health-based and skill-based fitness components are currently available; and (c) 95% of the panel concurred that all services should consider a tier II test focused on both health-related and skill-related fitness components based on occupational, functional, and tactical military performance requirements.
Lift on side by side intruders of various geometries within a granular flow
NASA Astrophysics Data System (ADS)
Acevedo-Escalante, M. F.; Caballero-Robledo, G. A.
2017-06-01
Obstacles within fluids have been widely used in engineering and in physics to study hydrodynamic interactions. In granular matter, objects within a granular flow have helped to understand fundamental features of drag and lift forces. In our group, we have studied numerically the flow mediated interaction between two static disks within a vertical granular flow in a two-dimensional container where the flow velocity and the distance between obstacles were varied. Attractive and repulsive forces were found depending on flow velocity and separation between intruders. The simulations evidenced a relationship between the average flow velocity in a specific section ahead of the obstacles and the attractive-repulsive lift. On the other hand, it was showed that the lift force on an object dragged within a granular medium depends on the shape of the intruder. Here we present experimental results of the interaction between two side-by-side intruders of different shapes within a vertical granular flow. We built a quasi-two-dimensional container in which we placed the intruders and using load cells we measured lift and drag forces during the discharge process for different flow velocities.
EMG Processing Based Measures of Fatigue Assessment during Manual Lifting
Marhaban, M. H.; Abdullah, A. R.
2017-01-01
Manual lifting is one of the common practices used in the industries to transport or move objects to a desired place. Nowadays, even though mechanized equipment is widely available, manual lifting is still considered as an essential way to perform material handling task. Improper lifting strategies may contribute to musculoskeletal disorders (MSDs), where overexertion contributes as the highest factor. To overcome this problem, electromyography (EMG) signal is used to monitor the workers' muscle condition and to find maximum lifting load, lifting height and number of repetitions that the workers are able to handle before experiencing fatigue to avoid overexertion. Past researchers have introduced several EMG processing techniques and different EMG features that represent fatigue indices in time, frequency, and time-frequency domain. The impact of EMG processing based measures in fatigue assessment during manual lifting are reviewed in this paper. It is believed that this paper will greatly benefit researchers who need a bird's eye view of the biosignal processing which are currently available, thus determining the best possible techniques for lifting applications. PMID:28303251
2006-03-01
strained, unusually tired, weak or out of breadth (as cited in Townley , Hair, & Strong, 2005). The data used in these trials yielded tables of maximum...stress when lifting objects near the floor (Chaffin, Andersson, & Martin, 1999). Townley et al. (2005) quantified lifting hazards by using a two...Nachemson, A. (1986). Back injuries in industry: A retrospective study, I. Overview and cost analysis. SPINE, 11, 241-245. Townley , A.C., Hair
2014-12-05
A Delta IV Heavy rocket lifts off from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida carrying NASA's Orion spacecraft on an unpiloted flight test to Earth orbit. Liftoff was at 7:05 a.m. EST. During the two-orbit, four-and-a-half hour mission, engineers will evaluate the systems critical to crew safety, the launch abort system, the heat shield and the parachute system.
2014-12-05
A Delta IV Heavy rocket lifts off from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida carrying NASA's Orion spacecraft on an unpiloted flight test to Earth orbit. Liftoff was at 7:05 a.m. EST. During the two-orbit, four-and-a-half hour mission, engineers will evaluate the systems critical to crew safety, the launch abort system, the heat shield and the parachute system.
Missions and vehicle concepts for modern, propelled, lighter-than-air vehicles
NASA Technical Reports Server (NTRS)
Ardema, M. D.
1984-01-01
The results of studies conducted over the last 15 years to assess missions and vehicle concepts for modern, propelled, lighter-than-air vehicles (airships) were surveyed. Rigid and non-rigid airship concepts are considered. The use of airships for ocean patrol and surveillance is discussed along with vertical heavy lift airships. Military and civilian needs for high altitude platforms are addressed.
2016-08-11
A heavy-lift transport truck, carrying the Crew Access Arm for Space Launch Complex 41, arrives at Complex 41 at Cape Canaveral Air Force Station in Florida. The arm will be installed on the Complex 41 Crew Access Tower. It will be used as a bridge by astronauts to board Boeing's CST-100 Starliner spacecraft as it stands on the launch pad atop a United Launch Alliance Atlas V rocket.
NASA Space Flight Vehicle Fault Isolation Challenges
NASA Technical Reports Server (NTRS)
Neeley, James R.; Jones, James V.; Bramon, Christopher J.; Inman, Sharon K.; Tuttle, Loraine
2016-01-01
The Space Launch System (SLS) is the new NASA heavy lift launch vehicle in development and is scheduled for its first mission in 2018.SLS has many of the same logistics challenges as any other large scale program. However, SLS also faces unique challenges related to testability. This presentation will address the SLS challenges for diagnostics and fault isolation, along with the analyses and decisions to mitigate risk..
Pre-Test Assessment of the Use Envelope of the Normal Force of a Wind Tunnel Strain-Gage Balance
NASA Technical Reports Server (NTRS)
Ulbrich, N.
2016-01-01
The relationship between the aerodynamic lift force generated by a wind tunnel model, the model weight, and the measured normal force of a strain-gage balance is investigated to better understand the expected use envelope of the normal force during a wind tunnel test. First, the fundamental relationship between normal force, model weight, lift curve slope, model reference area, dynamic pressure, and angle of attack is derived. Then, based on this fundamental relationship, the use envelope of a balance is examined for four typical wind tunnel test cases. The first case looks at the use envelope of the normal force during the test of a light wind tunnel model at high subsonic Mach numbers. The second case examines the use envelope of the normal force during the test of a heavy wind tunnel model in an atmospheric low-speed facility. The third case reviews the use envelope of the normal force during the test of a floor-mounted semi-span model. The fourth case discusses the normal force characteristics during the test of a rotated full-span model. The wind tunnel model's lift-to-weight ratio is introduced as a new parameter that may be used for a quick pre-test assessment of the use envelope of the normal force of a balance. The parameter is derived as a function of the lift coefficient, the dimensionless dynamic pressure, and the dimensionless model weight. Lower and upper bounds of the use envelope of a balance are defined using the model's lift-to-weight ratio. Finally, data from a pressurized wind tunnel is used to illustrate both application and interpretation of the model's lift-to-weight ratio.
A New Heavy-Lift Capability for Space Exploration: NASA's Ares V Cargo Launch Vehicle
NASA Technical Reports Server (NTRS)
Sumrall, John P.
2006-01-01
The National Aeronautics and Space Administration (NASA) is developing new launch systems in preparation for the retirement of the Space Shuttle by 2010, as directed in the United States (U.S.) Vision for Space Exploration. The Ares I Crew Launch Vehicle (CLV) and the Ares V heavy-lift Cargo Launch Vehicle (CaLV) systems will build upon proven, reliable hardware derived from the Apollo Saturn (1961 to 1975) and Space Shuttle (1972 to 2010) programs to deliver safe, reliable, affordable space transportation solutions. This approach leverages existing aerospace talent and a unique infrastructure, as well as the vast amount of legacy knowledge gained from almost a half-century of hard-won experience in the space enterprise. Beginning early next decade, the Ares I will launch the new Crew Exploration Vehicle (CEV) to the International Space Station (ISS) or to low-Earth orbit for trips to the Moon and, ultimately, Mars. Late next decade, the Ares V's Earth Departure Stage will carry larger payloads such as the lunar lander into orbit, and the Crew Exploration Vehicle will dock with it for missions to the Moon, where astronauts will explore new territories and conduct science and technology experiments. Both the Ares I and Ares V systems are being designed to support longer future trips to Mars. The Exploration Launch Projects Office, located at NASA's Marshall Space Flight Center, is designing, developing, testing, and evaluating both launch vehicle systems in partnership with other NASA Centers, Government agencies, and industry contractors. This paper provides top-level information regarding the genesis and evolution of the baseline configuration for the Ares V heavy-lift system. It also touches on risk-based management strategies, such as building on powerful hardware and promoting common features between the Ares I and Ares V systems to reduce technical, schedule, and cost risks, as well as development and operations costs. Finally, it gives a summary of several notable accomplishments over the past year, since the Exploration Launch Projects effort officially kicked off in October 2005, and looks ahead at work planned for 2007 and beyond.
Time course of action representations evoked during sentence comprehension.
Heard, Alison W; Masson, Michael E J; Bub, Daniel N
2015-03-01
The nature of hand-action representations evoked during language comprehension was investigated using a variant of the visual-world paradigm in which eye fixations were monitored while subjects viewed a screen displaying four hand postures and listened to sentences describing an actor using or lifting a manipulable object. Displayed postures were related to either a functional (using) or volumetric (lifting) interaction with an object that matched or did not match the object mentioned in the sentence. Subjects were instructed to select the hand posture that matched the action described in the sentence. Even before the manipulable object was mentioned in the sentence, some sentence contexts allowed subjects to infer the object's identity and the type of action performed with it and eye fixations immediately favored the corresponding hand posture. This effect was assumed to be the result of ongoing motor or perceptual imagery in which the action described in the sentence was mentally simulated. In addition, the hand posture related to the manipulable object mentioned in a sentence, but not related to the described action (e.g., a writing posture in the context of a sentence that describes lifting, but not using, a pencil), was favored over other hand postures not related to the object. This effect was attributed to motor resonance arising from conceptual processing of the manipulable object, without regard to the remainder of the sentence context. Copyright © 2014 Elsevier B.V. All rights reserved.
Tolerability to prolonged lifting tasks. A validation of the recommended limits.
Capodaglio, P; Bazzini, G
1997-01-01
Prolonged physical exertion is subjectively regulated by the perception of effort. This preliminary study was conducted to validate the use of subjective perceptions of effort in assessing objectively tolerable workloads for prolonged lifting tasks. Ten healthy male subjects tested their maximal lifting capacity (MLC) on a lift dynamometer (LidoLift, Loredan Biomed., West Sacramento, CA) and underwent incremental and 30-minute endurance lifting tests. Cardiorespiratory parameters were monitored with an oxygen uptake analyzer, mechanical parameters were calculated using a computerized dynamometer. Ratings of perceived exertion were given on Borg's 10-point scale. Physiological responses to repetitive lifting were matched with subjective perceptions. A single-variable statistical regression for power functions was performed to obtain the individual "iso-perception" curves as functions of the mechanical work exerted. We found that the "iso-perception" curve corresponding to a "moderate" perception of effort may represent the individual "tolerance threshold" for prolonged lifting tasks, since physiological responses at this level of intensity did not change significantly and the respiratory exchange ratio was less than one. The individually tolerable weight for lifting tasks lasting 30 min has been expressed as a percentage of the isoinertial MLC value and compared with the currently recommended limits for prolonged lifting tasks (Italian legislation D.L. 626/94). On the basis of our preliminary results a "tolerance threshold" of 20% MLC has been proposed for prolonged lifting tasks.
NASA Astrophysics Data System (ADS)
Tuan, Le Anh; Lee, Soon-Geul
2018-03-01
In this study, a new mathematical model of crawler cranes is developed for heavy working conditions, with payload-lifting and boom-hoisting motions simultaneously activated. The system model is built with full consideration of wind disturbances, geometrical nonlinearities, and cable elasticities of cargo lifting and boom luffing. On the basis of this dynamic model, three versions of sliding mode control are analyzed and designed to control five system outputs with only two inputs. When used in complicated operations, the effectiveness of the controllers is analyzed using analytical investigation and numerical simulation. Results indicate the effectiveness of the control algorithms and the proposed dynamic model. The control algorithms asymptotically stabilize the system with finite-time convergences, remaining robust amid disturbances and parametric uncertainties.
Vehicle Support Posts Installation onto Mobile Launcher
2017-05-11
Several heavy lift cranes surround the mobile launcher at NASA's Kennedy Space Center in Florida. Preparations are underway to lift a vehicle support post up and onto the mobile launcher for installation on the deck. A total of eight support posts will be installed to support the load of the Space Launch System's (SLS) solid rocket boosters, with four posts for each of the boosters. The support posts are about five feet tall and each weigh about 10,000 pounds. The posts will structurally support the SLS rocket through T-0 and liftoff, and will drop down before vehicle liftoff to avoid contact with the flight hardware. The Ground Systems Development and Operations Program is overseeing installation of the support posts to prepare for the launch of the Orion spacecraft atop the SLS rocket.
A toy model that predicts the qualitative role of bar bend in a push jerk.
Santos, Aaron; Meltzer, Norman E
2009-11-01
In this work, we describe a simple coarse-grained model of a barbell that can be used to determine the qualitative role of bar bend during a jerk. In simulations of this model, we observed a narrow time window during which the lifter can leverage the elasticity of the bar in order to lift the weight to a maximal height. This time window shifted to later times as the weight was increased. In addition, we found that the optimal time to initiate the drive was strongly correlated with the time at which the bar had reached a maximum upward velocity after recoiling. By isolating the effect of the bar, we obtained a generalized strategy for lifting heavy weight in the jerk.
2016-11-10
A heavy-lift crane lifts the second half of the C-level work platforms, C north, for NASA’s Space Launch System (SLS) rocket, high up from the transfer aisle of the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The C platform will be moved into High Bay 3 for installation on the north side of High Bay 3. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. In view below Platform C are several of the previously installed platforms. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.
Next Generation Munitions Handler: Human-Machine Interface and Preliminary Performance Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draper, J.V.; Jansen, J.F.; Pin, F.G.
1999-04-25
The Next Generation Munitions Handler/Advanced Technology Demonstrator (NGMI-VATTD) is a technology demonstrator for the application of an advanced robotic device for re-arming U.S. Air Force (USAF) and U.S. Navy (USN) tactical fighters. It comprises two key hardware components: a heavy-lift dexterous manipulator (HDM) and a nonholonomic mobility platform. The NGMWATTD is capable of lifting weapons up to 4400 kg (2000 lb) and placing them on any weapons rack on existing fighters (including the F-22 Raptor). This report describes the NGMH mission with particular reference to human-machine interfaces. It also describes preliminary testing to garner feedback about the heavy-lift manipulator armmore » from experienced fighter load crewmen. The purpose of the testing was to provide preliminary information about control system parameters and to gather feed- back from users about manipulator arm functionality. To that end, the Air Force load crewmen interacted with the NGMWATTD in an informal testing session and provided feedback about the performance of the system. Certain con- trol system parameters were changed during the course of the testing and feedback from the participants was used to make a rough estimate of "good" initial operating parameters. Later, formal testing will concentrate within this range to identify optimal operating parameters. User reactions to the HDM were generally positive, All of the USAF personnel were favorably impressed with the capabilities of the system. Fine-tuning operating parameters created a system even more favorably regarded by the load crews. Further adjustment to control system parameters will result in a system that is operationally efficient, easy to use, and well accepted by users.« less
2014-11-11
At NASA's Kennedy Space Center in Florida, the agency's Orion is transported to Launch Complex 37 at Cape Canaveral Air Force Station. After arrival at the launch pad, United Launch Alliance engineers and technicians will lift Orion and mount it atop its Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
[Intervertebral disk disease among oil drilling workers].
Fernandes, R C; Carvalho, F M
2000-01-01
A cross-sectional study among 1,026 oil drilling workers in Northeast Brazil found a prevalence rate of 5% for intervertebral disk disease, varying from 1.8% (activities without heavy lifting) and 4.5% (occasional lifting) to 7.2% (routine lifting). Disease prevalence was 10.5% among drilling workers with more than 15 years in the industry and 11.3% among those over 40 years of age. Prevalence ratio (PR) for the association between working in oil drilling operations and intervertebral disk disease was 2.3 (95% CI: 1.3-4.0). Retrospective information about exposure was collected to minimize the healthy worker survival effect. Using information on current occupation instead of occupational life history would cause an underestimated PR of 1.1 (95% CI: 0.6-1.9). Logistic regression showed results similar to the tabular analysis. Neither confounding nor interaction was evident. Growth of the Brazilian oil industry and recent changes in the work force contract and management, involving changes in risk management and health control, indicate a need for prompt ergonomic intervention in order to control intervertebral disk disease among oil drilling workers.
Zhang, Wei; Gordon, Andrew M; Fu, Qiushi; Santello, Marco
2010-06-01
Planning of object manipulations is dependent on the ability to generate, store, and retrieve sensorimotor memories of previous actions associated with grasped objects. However, the sensorimotor memory representations linking object properties to the planning of grasp are not well understood. Here we use an object rotation task to gain insight into the mechanisms underlying the nature of these sensorimotor memories. We asked subjects to grasp a grip device with an asymmetrical center of mass (CM) anywhere on its vertical surfaces and lift it while minimizing object roll. After subjects learned to minimize object roll by generating a compensatory moment, they were asked to rotate the object 180 degrees about a vertical axis and lift it again. The rotation resulted in changing the direction of external moment opposite to that experienced during the prerotation block. Anticipatory grasp control was quantified by measuring the compensatory moment generated at object lift onset by thumb and index finger forces through their respective application points. On the first postrotation trial, subjects failed to generate a compensatory moment to counter the external moment caused by the new CM location, thus resulting in a large object roll. Nevertheless, after several object rotations subjects reduced object roll on the initial postrotation trials by anticipating the new CM location through the modulation of digit placement but not tangential forces. The differential improvement in modulating these two variables supports the notion of independent memory representations of kinematics and kinetics and is discussed in relation to neural mechanisms underlying visuomotor transformations.
Zhang, Wei; Gordon, Andrew M.; Fu, Qiushi
2010-01-01
Planning of object manipulations is dependent on the ability to generate, store, and retrieve sensorimotor memories of previous actions associated with grasped objects. However, the sensorimotor memory representations linking object properties to the planning of grasp are not well understood. Here we use an object rotation task to gain insight into the mechanisms underlying the nature of these sensorimotor memories. We asked subjects to grasp a grip device with an asymmetrical center of mass (CM) anywhere on its vertical surfaces and lift it while minimizing object roll. After subjects learned to minimize object roll by generating a compensatory moment, they were asked to rotate the object 180° about a vertical axis and lift it again. The rotation resulted in changing the direction of external moment opposite to that experienced during the prerotation block. Anticipatory grasp control was quantified by measuring the compensatory moment generated at object lift onset by thumb and index finger forces through their respective application points. On the first postrotation trial, subjects failed to generate a compensatory moment to counter the external moment caused by the new CM location, thus resulting in a large object roll. Nevertheless, after several object rotations subjects reduced object roll on the initial postrotation trials by anticipating the new CM location through the modulation of digit placement but not tangential forces. The differential improvement in modulating these two variables supports the notion of independent memory representations of kinematics and kinetics and is discussed in relation to neural mechanisms underlying visuomotor transformations. PMID:20357064
Harris, E Clare; Coggon, David
2016-01-01
Epidemiological evidence points strongly to a hazard of hip osteoarthritis from heavy manual work. Harmful exposures may be reduced by elimination or redesign of processes and use of mechanical aids. Reducing obesity might help to protect workers whose need to perform heavy lifting cannot be eliminated. Particularly high relative risks have been reported in farmers, and hip osteoarthritis is a prescribed occupational disease in the UK for long-term employees in agriculture. Even where it is not attributable to employment, hip osteoarthritis impacts importantly on capacity to work. Factors that may influence work participation include the severity of disease, the physical demands of the job, age, and the size of the employer. Published research does not provide a strong guide to the timing of return to work following hip arthroplasty for osteoarthritis, and it is unclear whether patients should avoid heavy manual tasks in their future employment. PMID:26612242
NASA Technical Reports Server (NTRS)
Dumbacher, Daniel L.
2006-01-01
The U.S. Vision for Space Exploration directs NASA to design and develop a new generation of safe, reliable, and cost-effective transportation systems to hlfill the Nation s strategic goals and objectives. These launch vehicles will provide the capability for astronauts to conduct scientific exploration that yields new knowledge from the unique vantage point of space. American leadership in opening new fi-ontiers will improve the quality of life on Earth for generations to come. The Exploration Launch Projects office is responsible for delivering the Crew Launch Vehicle (CLV) that will loft the Crew Exploration Vehicle (CEV) into low-Earth orbit (LEO) early next decade, and for the heavy lift Cargo Launch Vehicle (CaLV) that will deliver the Lunar Surface Access Module (LSAM) to LEO for astronaut return trips to the Moon by 2020 in preparation for the eventual first human footprint on Mars. Crew travel to the International Space Station will be made available as soon possible after the Space Shuttle retires in 2010.
Astrobiological benefits of human space exploration.
Crawford, Ian A
2010-01-01
An ambitious program of human space exploration, such as that envisaged in the Global Exploration Strategy and considered in the Augustine Commission report, will help advance the core aims of astrobiology in multiple ways. In particular, a human exploration program will confer significant benefits in the following areas: (i) the exploitation of the lunar geological record to elucidate conditions on early Earth; (ii) the detailed study of near-Earth objects for clues relating to the formation of the Solar System; (iii) the search for evidence of past or present life on Mars; (iv) the provision of a heavy-lift launch capacity that will facilitate exploration of the outer Solar System; and (v) the construction and maintenance of sophisticated space-based astronomical tools for the study of extrasolar planetary systems. In all these areas a human presence in space, and especially on planetary surfaces, will yield a net scientific benefit over what can plausibly be achieved by autonomous robotic systems. A number of policy implications follow from these conclusions, which are also briefly considered.
Chen, Bing; Aruin, Alexander S
2013-11-27
The magnitude of grip force used to lift and transport a hand-held object is decreased if a light finger touch from the contralateral arm is provided to the wrist of the target arm. We investigated whether the type of contralateral arm sensory input that became available with the finger touch to the target arm affects the way grip force is reduced. Nine healthy subjects performed the same task of lifting and transporting an instrumented object with no involvement of the contralateral arm and when an index finger touch of the contralateral arm was provided to the wrist, elbow, and shoulder. Touching the wrist and elbow involved movements of the contralateral arm; no movements were produced while touching the shoulder. Grip force was reduced by approximately the same amount in all conditions with the finger touch compared to the no touch condition. This suggests that information from the muscle and joint receptors of the contralateral arm is used in control of grip force when a finger touch is provided to the wrist and elbow, and cutaneous information is utilized when lifting an object while touching the shoulder. The results of the study provide additional evidence to support the use of a second arm in the performance of activities of daily living and stress the importance of future studies investigating contralateral arm sensory input in grip force control. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Crajé, Céline; Santello, Marco; Gordon, Andrew M
2013-01-01
Anticipatory force planning during grasping is based on visual cues about the object's physical properties and sensorimotor memories of previous actions with grasped objects. Vision can be used to estimate object mass based on the object size to identify and recall sensorimotor memories of previously manipulated objects. It is not known whether subjects can use density cues to identify the object's center of mass (CM) and create compensatory moments in an anticipatory fashion during initial object lifts to prevent tilt. We asked subjects (n = 8) to estimate CM location of visually symmetric objects of uniform densities (plastic or brass, symmetric CM) and non-uniform densities (mixture of plastic and brass, asymmetric CM). We then asked whether subjects can use density cues to scale fingertip forces when lifting the visually symmetric objects of uniform and non-uniform densities. Subjects were able to accurately estimate an object's center of mass based on visual density cues. When the mass distribution was uniform, subjects could scale their fingertip forces in an anticipatory fashion based on the estimation. However, despite their ability to explicitly estimate CM location when object density was non-uniform, subjects were unable to scale their fingertip forces to create a compensatory moment and prevent tilt on initial lifts. Hefting object parts in the hand before the experiment did not affect this ability. This suggests a dichotomy between the ability to accurately identify the object's CM location for objects with non-uniform density cues and the ability to utilize this information to correctly scale their fingertip forces. These results are discussed in the context of possible neural mechanisms underlying sensorimotor integration linking visual cues and anticipatory control of grasping.
Tool for use in lifting pin supported objects
NASA Technical Reports Server (NTRS)
Marzek, R. A.; Read, W. S. (Inventor)
1974-01-01
A tool for use in lifting a pin-supported, electronic package mounted in juxtaposition with the surface of an electronic circuit board is described. The tool is configured to be received beneath a pin-supported package and is characterized by a manually operable linkage, including an elongated, rigid link is supported for axial reciprocation and a pivotal link pinned to the body and supported for oscillation induced in response to axial motion imparted to the rigid link. A lifting plate is pivotally coupled to the distal end of the pivotal link so that oscillatory motion imparted to the pivotal link serves to move the plate vertically for elevating the plate into lifting engagement with the electronic package positioned thereabove.
Visser, Steven; van der Molen, Henk F; Kuijer, P Paul F M; Hoozemans, Marco J M; Frings-Dresen, Monique H W
2014-11-01
The objective of this study was to assess differences in work demands, energetic workload and workers' discomfort and physical effort in two regularly observable workdays in ironwork; one where loads up to 50kg were handled with two persons manually (T50) and one where loads up to 100kg were handled manually with four persons (T100). Differences between these typical workdays were assessed with an observational within-subject field study of 10 ironworkers. No significant differences were found for work demands, energetic workload or discomfort between T50 and T100 workdays. During team lifts, load mass exceeded 25kg per person in 57% (T50 workday) and 68% (T100 workday) of the lifts. Seven ironworkers rated team lifting with two persons as less physically demanding compared with lifting with four persons. When loads heavier than 25kg are lifted manually with a team, regulations of the maximum mass weight are frequently violated. Loads heavier than 25kg are frequently lifted during concrete reinforcement work and should be lifted by a team of persons. However, the field study showed that loads above 25kg are most of the time not lifted with the appropriate number of workers. Therefore, loads heavier than 25kg should be lifted mechanically. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Computational Design of a Krueger Flap Targeting Conventional Slat Aerodynamics
NASA Technical Reports Server (NTRS)
Akaydin, H. Dogus; Housman, Jeffrey A.; Kiris, Cetin C.; Bahr, Christopher J.; Hutcheson, Florence V.
2016-01-01
In this study, we demonstrate the design of a Krueger flap as a substitute for a conventional slat in a high-lift system. This notional design, with the objective of matching equivalent-mission performance on aircraft approach, was required for a comparative aeroacoustic study with computational and experimental components. We generated a family of high-lift systems with Krueger flaps based on a set of design parameters. Then, we evaluated the high-lift systems using steady 2D RANS simulations to find a good match for the conventional slat, based on total lift coefficients in free-air. Finally, we evaluated the mean aerodynamics of the high-lift systems with Krueger flap and conventional slat as they were installed in an open-jet wind tunnel flow. The surface pressures predicted with the simulations agreed well with experimental results.
Lift-(gasless) laparoscopic surgery under regional anesthesia.
Kruschinski, Daniel; Homburg, Shirli
2005-01-01
The objective of this Chapter was to investigate the feasibility and outcome of gasless laparoscopy under regional anesthesia. A prospective evaluation of Lift-(gasless) laparoscopic procedures under regional anesthesia (Canadian Task Force classification II-1) was done at three endoscopic gynecology centers (franchise system of EndGyn(r)). Sixty-three patients with gynecological diseases comprised the cohort. All patients underwent Lift-laparoscopic surgery under regional anesthesia: 10 patients for diagnostic purposes, 17 for surgery of ovarian tumors, 14 to remove fibroids, and 22 for hysterectomies. All patients were operated without conversion to general anesthesia and without perioperative or anesthesiologic complications. Lift-laparoscopy under regional anesthesia can be recommended to all patients who desire laparoscopic intervention without general anesthesia. For elderly patients, those with cardiopulmonary risks, during pregnancy, or with contraindications for general anesthesia, Lift-laparoscopy under regional anesthesia should be the procedure of choice.
Matter antimatter domains: A possible solution to the CP domain wall problem in the early universe
NASA Technical Reports Server (NTRS)
Mohanty, A. K.; Stecker, F. W.
1984-01-01
An SU(5) grand unified theory model is used to show how the degeneracy between vacua with different spontaneously broken charge parity can be dynamically lifted by a condensate of heavy fermion pairs. This drives a phase transition to a unique vacuum state with definite charge parity. The transition eliminates the domain walls in a matter antimatter symmetric domain cosmology.
Study of the Army Helicopter Design Hover Criterion Using Temperature and Pressure Altitude
2017-09-01
the Advanced Scout Helicopter Special Study Group reexamined the design point requirement. They recommended increasing the design point pressure...other combinations group between these two extremes. Ultimately, the design point for a helicopter has to be determined by the user of the...helicopter designs . 6. References Aviation Agency. 1972. “Heavy Lift Helicopter (HLH) Concept Formulation Study (U)”, Action Control Number 2958
Orion EFT-1 Launch from NASA Causeway
2014-12-05
A Delta IV Heavy rocket lifts off from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida carrying NASA's Orion spacecraft on an unpiloted flight test to Earth orbit. Liftoff was at 7:05 a.m. EST. During the two-orbit, four-and-a-half hour mission, engineers will evaluate the systems critical to crew safety, the launch abort system, the heat shield and the parachute system.
NASA Technical Reports Server (NTRS)
Fidell, Sanford; Horonieff, Richard D.; Schmitz, Fredric H.
2010-01-01
This report reviews the English-language technical literature on infrasonic and low-frequency noise effects; identifies the most salient effects of noise produced by a future large civil tiltrotor aircraft on crew, passengers, and communities near landing areas; and recommends research needed to improve understanding of the effects of such noise on passengers, crew, and residents of areas near landing pads.
NASA Technical Reports Server (NTRS)
2008-01-01
THIS CONCEPT IMAGE SHOWS THE ARES V CARGO LAUNCH VEHICLE. THE HEAVY LIFTING ARES V IS NASA'S PRIMARY VEHICLE FOR SAFE AND RELIABLE DELIVERY OF LARGE SCALE HARDWARE TO SPACE. THIS INCLUDES THE LUNAR LANDER, MATERIALS FOR ESTABLISHING A PERMANENT MOON BASE, AND THE VEHICLES AND HARDWARE NEEDED TO EXTEND A HUMAN PRESENCE BEYOND EARTH ORBIT. ARES V CAN CARRY APPROXIMATELY 290,000 POUNDS TO LOW EARTH ORBIT AND 144,000 POUNDS TO LUNAR ORBIT.
2016-08-11
A heavy-lift transport truck, carrying the Crew Access Arm for Space Launch Complex 41, travels along the road toward Complex 41 at Cape Canaveral Air Force Station in Florida. The arm will be installed on the Complex 41 Crew Access Tower. It will be used as a bridge by astronauts to board Boeing's CST-100 Starliner spacecraft as it stands on the launch pad atop a United Launch Alliance Atlas V rocket.
2016-08-11
A heavy-lift transport truck, carrying the Crew Access Arm for Space Launch Complex 41, backs up toward Complex 41 at Cape Canaveral Air Force Station in Florida. The arm will be installed on the Complex 41 Crew Access Tower. It will be used as a bridge by astronauts to board Boeing's CST-100 Starliner spacecraft as it stands on the launch pad atop a United Launch Alliance Atlas V rocket.
Aircraft Survivability: Rotorcraft Survivability. Summer 2010
2010-01-01
Loading of the shafts was conducted using two techniques. The first tech- nique applied a torsion load up to the design limit load after the article...show the ballistic impact and impact damage. Figure 11 shows a 45-degree shaft failure, a common failure type, when loaded to design limit after...SUMMER 2010 ROTORCRAFT Survivability STUDY ON ROTORCRAFT SURVIVABILITY V-22 INTEGRATED SURVIVABILITY DESIGN CH-53K HEAVY LIFT HELICOPTER 9 20 25
29 CFR 1917.43 - Powered industrial trucks.
Code of Federal Regulations, 2011 CFR
2011-07-01
... engagement hidden from the operator, a means shall be provided to enable the operator to determine that the... employees. Employees may be elevated by fork lift trucks only when a platform is secured to the lifting...) if tools or other objects could fall on employees below. (iii) An employee shall be at the truck's...
29 CFR 1917.43 - Powered industrial trucks.
Code of Federal Regulations, 2010 CFR
2010-07-01
... engagement hidden from the operator, a means shall be provided to enable the operator to determine that the... employees. Employees may be elevated by fork lift trucks only when a platform is secured to the lifting...) if tools or other objects could fall on employees below. (iii) An employee shall be at the truck's...
AFC-Enabled Simplified High-Lift System Integration Study
NASA Technical Reports Server (NTRS)
Hartwich, Peter M.; Dickey, Eric D.; Sclafani, Anthony J.; Camacho, Peter; Gonzales, Antonio B.; Lawson, Edward L.; Mairs, Ron Y.; Shmilovich, Arvin
2014-01-01
The primary objective of this trade study report is to explore the potential of using Active Flow Control (AFC) for achieving lighter and mechanically simpler high-lift systems for transonic commercial transport aircraft. This assessment was conducted in four steps. First, based on the Common Research Model (CRM) outer mold line (OML) definition, two high-lift concepts were developed. One concept, representative of current production-type commercial transonic transports, features leading edge slats and slotted trailing edge flaps with Fowler motion. The other CRM-based design relies on drooped leading edges and simply hinged trailing edge flaps for high-lift generation. The relative high-lift performance of these two high-lift CRM variants is established using Computational Fluid Dynamics (CFD) solutions to the Reynolds-Averaged Navier-Stokes (RANS) equations for steady flow. These CFD assessments identify the high-lift performance that needs to be recovered through AFC to have the CRM variant with the lighter and mechanically simpler high-lift system match the performance of the conventional high-lift system. Conceptual design integration studies for the AFC-enhanced high-lift systems were conducted with a NASA Environmentally Responsible Aircraft (ERA) reference configuration, the so-called ERA-0003 concept. These design trades identify AFC performance targets that need to be met to produce economically feasible ERA-0003-like concepts with lighter and mechanically simpler high-lift designs that match the performance of conventional high-lift systems. Finally, technical challenges are identified associated with the application of AFC-enabled highlift systems to modern transonic commercial transports for future technology maturation efforts.
The Space Launch System and the Proving Ground: Pathways to Mars
NASA Astrophysics Data System (ADS)
Klaus, Kurt K.
2014-11-01
Introduction: The Space Launch System (SLS) is the most powerful rocket ever built and provides a critical heavy-lift launch capability. We focus on mission concepts relevant to NASA’s Cislunar Proving Ground and the Global Exploration Roadmap (GER).Asteroid Redirect Mission (ARM): ARM in part is a mission to the lunar vicinity. The ARM mission requirements result in system design based on a modified version of our 702 spacecraft. Including a NASA Docking System (NDS) on the Asteroid Redirect Vehicle allows for easier crewed exploration integration and execution. Exploration Augmentation Module (EAM): Crew operations at a redirected asteroid could be significantly enhanced by providing additional systems and EVA capabilities beyond those available from the Orion only. An EAM located with the asteroid would improve the science and technical return of the mission while also increasing Orion capability through resource provision, abort location and safe haven for contingencies. The EAM could be repurposed as a cislunar exploration platform that advances scientific research, enables lunar surface exploration and provides a deep space vehicle assembly and servicing site. International Space Station (ISS) industry partners have been working for the past several years on concepts for using ISS development methods and assets to support a broad range of exploration missions.Lunar Surface: The mission objectives are to provide lunar surface access for crew and cargo and to provide as much system reuse as possible. Subsequent missions to the surface can reuse the same lander and Lunar Transfer Vehicle.Mars Vicinity: The International space community has declared that our unified horizon goal is for a human mission to Mars. Translunar infrastructure and heavy lift capability are key to this approach. The moons of Mars would provide an excellent stepping stone to the surface. As a “shake-down” cruise before landing, a mission to Deimos or Phobos would test all of the systems except those needed to get to the surface and back. This test would provide confidence for the in-space transportations and crew habitat systems.
The Space Launch System and the Proving Ground: Pathways to Mars
NASA Astrophysics Data System (ADS)
Klaus, K.
2014-12-01
Introduction: The Space Launch System (SLS) is the most powerful rocket ever built and provides a critical heavy-lift launch capability. We present mission concepts relevant to NASA's Cislunar Proving Ground and the Global Exploration Roadmap (GER).Asteroid Redirect Mission (ARM): ARM in part is a mission to the lunar vicinity. The ARM mission requirements result in system design based on a modified version of our 702 spacecraft. Including a NASA Docking System (NDS) on the Asteroid Redirect Vehicle allows for easier crewed exploration integration and execution. Exploration Augmentation Module (EAM): Crew operations at a redirected asteroid could be significantly enhanced by providing additional systems and EVA capabilities beyond those available from the Orion only. An EAM located with the asteroid would improve the science and technical return of the asteroid mission while also increasing Orion capability through resource provision and providing an abort location and safe haven for contingencies. The EAM could be repurposed as a cislunar exploration platform that advances scientific research, enables lunar surface exploration and provides a deep space vehicle assembly and servicing site. International Space Station (ISS) industry partners have been working for the past several years on concepts for using ISS development methods and assets to support a broad range of missions. These concepts have matured along with planning details for NASA's SLS and Orion for a platform located in the Earth-Moon Libration (EML) system or Distant Retrograde Orbit (DRO).Lunar Surface: The mission objectives are to provide lunar surface access for crew and cargo and to provide as much reuse as possible. Subsequent missions to the surface can reuse the same lander and Lunar Transfer Vehicle.Mars Vicinity: The International space community has declared that our unified horizon goal is for a human mission to Mars. Translunar infrastructure and heavy lift capability are key to this approach. The moons of Mars would provide an excellent stepping stone to the surface. As a "shake-down" cruise before landing, a mission to Deimos or Phobos would test all of the systems except those needed to get to the surface and back. This test would provide confidence for the in-space transportations and crew habitat systems.
Use of ILTV Control Laws for LaNCETS Flight Research
NASA Technical Reports Server (NTRS)
Moua, Cheng
2010-01-01
A report discusses the Lift and Nozzle Change Effects on Tail Shock (LaNCETS) test to investigate the effects of lift distribution and nozzle-area ratio changes on tail shock strength of an F-15 aircraft. Specific research objectives are to obtain inflight shock strength for multiple combinations of nozzle-area ratio and lift distribution; compare results with preflight prediction tools; and update predictive tools with flight results. The objectives from a stability and control perspective are to ensure adequate aircraft stability for the changes in lift distribution and plume shape, and ensure manageable transient from engaging and disengaging the ILTV research control laws. In order to change the lift distribution and plume shape of the F-15 aircraft, a decade-old Inner Loop Thrust Vectoring (ILTV) research control law was used. Flight envelope expansion was performed for the test configuration and flight conditions prior to the probing test points. The approach for achieving the research objectives was to utilize the unique capabilities of NASA's NF-15B-837 aircraft to allow the adjustment of the nozzle-area ratio and/or canard positions by engaging the ILTV research control laws. The ILTV control laws provide the ability to add trim command biases to canard positions, nozzle area ratios, and thrust vectoring through the use of datasets. Datasets consist of programmed test inputs (PTIs) that define trims to change the nozzle-area ratio and/or canard positions. The trims are applied as increments to the normally commanded positions. A LaNCETS non-linear, six-degrees-of-freedom simulation capable of realtime pilot-in-the-loop, hardware-in-the-loop, and non-real-time batch support was developed and validated. Prior to first flight, extensive simulation analyses were performed to show adequate stability margins with the changes in lift distribution and plume shape. Additionally, engagement/disengagement transient analysis was also performed to show manageable transients.
Yeung, S; Genaidy, A; Deddens, J; Shoaf, C; Leung, P
2003-01-01
Aims: To investigate the use of a worker based methodology to assess the physical stresses of lifting tasks on effort expended, and to associate this loading with musculoskeletal outcomes (MO). Methods: A cross sectional study was conducted on 217 male manual handling workers from the Hong Kong area. The effects of four lifting variables (weight of load, horizontal distance, twisting angle, and vertical travel distance) on effort were examined using a linguistic approach (that is, characterising variables in descriptors such as "heavy" for weight of load). The numerical interpretations of linguistic descriptors were established. In addition, the associations between on the job effort and MO were investigated for 10 body regions including the spine, and both upper and lower extremities. Results: MO were prevalent in multiple body regions (range 12–58%); effort was significantly associated with MO in 8 of 10 body regions (odds ratios with age adjusted ranged from 1.31 for low back to 1.71 for elbows and forearm). The lifting task variables had significant effects on effort, with the weight of load having twice the effect of other variables; each linguistic descriptor was better described by a range of numerical values rather than a single numerical value. Conclusions: The participatory worker based approach on musculoskeletal outcomes is a promising methodology. Further testing of this approach is recommended. PMID:14504360
2012-11-05
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the mobile launcher is being prepared to support the space agency's Space Launch System heavy-lift rocket and Orion spacecraft. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Jim Grossmann
2012-11-05
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida the mobile launcher is being prepared to support the space agency's Space Launch System heavy-lift rocket and Orion spacecraft. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Jim Grossmann
The microburst - Hazard to aircraft
NASA Technical Reports Server (NTRS)
Mccarthy, J.; Serafin, R.
1984-01-01
In encounters with microbursts, low altitude aircraft first encounter a strong headwind which increases their wing lift and altitude; this phenomenon is followed in short succession by a decreasing headwind component, a downdraft, and finally a strong tailwind that catastrophically reduces wing lift and precipitates a crash dive. It is noted that the potentially lethal low altitude wind shear of a microburst may lie in apparently harmless, rain-free air beneath a cloud base. Occasionally, such tell-tale signs as localized blowing of ground dust may be sighted in time. Microbursts may, however, occur in the heavy rain of a thunderstorm, where they will be totally obscured from view. Wind shear may be detected by an array of six anemometers and vanes situated in the vicinity of an airport, and by Doppler radar equipment at the airport or aboard aircraft.
Impact of spinal pain on daily living activities in postmenopausal women working in agriculture.
Raczkiewicz, Dorota; Owoc, Alfred; Sarecka-Hujar, Beata; Saran, Tomasz; Bojar, Iwona
2017-03-22
Postmenopausal women working in agriculture suffer from spinal pain for two overlapping reasons, the first is related to the menopause and the second to the specificity of rural work, which includes lifting heavy objects and changing weather conditions. Spinal pain affects the daily life of women as well as their ability to work. The objective of the study was to analyse the impact of spinal pain on activities of daily life in Polish postmenopausal women performing agricultural work. The study was conducted in 2016 in Poland and included 1,119 post-menopausal women living in rural areas and working in agriculture. The women assessed the severity of spinal pain in 3 sections: neck, thorax and lumbar. Neck Disability Index (NDI) and Oswestry Low Back Disability Index (ODI) questionnaires were used to assess the impact of spinal pain on daily life activities. Generalized linear models were estimated in statistical analyses. Postmenopausal women working in agriculture suffered most often from pain in the lumbar spine, less frequently in the neck, and the least in the thoracic. The most common was an isolated pain in only one section of the spine. Spinal pain disturbed the most the women's rest, standing, lifting objects, while sleep, concentration, and walking the least. The impact of spinal pain on the activities of daily life, on average, was moderate, and increased with greater pain severity, the earlier the age the pain started, the higher the body weight, the lower education level and if there was a co-existing pain in any of the other spine sections. The impact of spinal pain on daily life activities did not depend on age between 45-65, WHR, age at last menstruation, parity, and number and types of births. The impact of spinal pain on daily life activities in postmenopausal women working in agriculture was assessed as moderate, on average, and depended mainly on spinal pain-related characteristics, such as severity, age at onset and co-existence of pain in any other spinal sections.
Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas
2011-09-13
An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.
NASA Technical Reports Server (NTRS)
Youngquist, Robert; Mata, Carlos; Cox, Robert
2005-01-01
An electronic instrument has been developed as a prototype of a portable crane-load contact sensor. Such a sensor could be helpful in an application in which the load rests on a base in a horizontal position determined by vertical alignment pins (see Figure 1). If the crane is not positioned to lift the load precisely vertically, then the load can be expected to swing once it has been lifted clear of the pins. If the load is especially heavy, large, and/or fragile, it could hurt workers and/or damage itself and nearby objects. By indicating whether the load remains in contact with the pins when it has been lifted a fraction of the length of the pins, the crane-load contact sensor helps the crane operator determine whether it is safe to lift the load clear of the pins: If there is contact, then the load is resting against the sides of the pins and, hence, it may not be safe to lift; if contact is occasionally broken, then the load is probably not resting against the pins, so it should be safe to lift. It is assumed that the load and base, or at least the pins and the surfaces of the alignment holes in the load, are electrically conductive, so the instrument can use electrical contact to indicate mechanical contact. However, DC resistance cannot be used as an indicator of contact for the following reasons: The load and the base are both electrically grounded through cables (the load is grounded through the lifting cable of the crane) to prevent discharge of static electricity. In other words, the DC resistance between the load and the pins is always low, as though they were always in direct contact. Therefore, instead of DC resistance, the instrument utilizes the AC electrical impedance between the pins and the load. The signal frequency used in the measurement is high enough (.1 MHz) that the impedance contributed by the cables and the electrical ground network of the building in which the crane and the base are situated is significantly greater than the contact impedance between the pins and the load. The instrument includes a signal generator and voltage-measuring circuitry, and is connected to the load and the base as shown in Figure 2. The output of the signal generator (typically having amplitude of the order of a volt) is applied to the load via a 50-resistor, and the voltage between the load and the pins is measured. When the load and the pins are not in contact, the impedance between them is relatively high, causing the measured voltage to exceed a threshold value. When the load and the pins are in contact, the impedance between them falls to a much lower value, causing the voltage to fall below the threshold value. The voltage-measuring circuitry turns on a red light-emitting diode (LED) to indicate the lower-voltage/ contact condition. Whenever the contact has been broken and the non-contact/higher-voltage condition has lasted for more than 2 ms, the voltage-measuring circuitry indicates this condition by blinking a green LED.
Soft shape-adaptive gripping device made from artificial muscle
NASA Astrophysics Data System (ADS)
Hamburg, E.; Vunder, V.; Johanson, U.; Kaasik, F.; Aabloo, A.
2016-04-01
We report on a multifunctional four-finger gripper for soft robotics, suitable for performing delicate manipulation tasks. The gripping device is comprised of separately driven gripping and lifting mechanisms, both made from a separate single piece of smart material - ionic capacitive laminate (ICL) also known as artificial muscle. Compared to other similar devices the relatively high force output of the ICL material allows one to construct a device able to grab and lift objects exceeding multiple times its own weight. Due to flexible design of ICL grips, the device is able to adapt the complex shapes of different objects and allows grasping single or multiple objects simultaneously without damage. The performance of the gripper is evaluated in two different configurations: a) the ultimate grasping strength of the gripping hand; and b) the maximum lifting force of the lifting actuator. The ICL is composed of three main layers: a porous membrane consisting of non-ionic polymer poly(vinylidene fluoride-co-hexafluoropropene) (PVdF-HFP), ionic liquid 1-ethyl-3-methylimidazolium trifluoromethane-sulfonate (EMITFS), and a reinforcing layer of woven fiberglass cloth. Both sides of the membrane are coated with a carbonaceous electrode. The electrodes are additionally covered with thin gold layers, serving as current collectors. Device made of this material operates silently, requires low driving voltage (<3 V), and is suitable for performing tasks in open air environment.
DOT National Transportation Integrated Search
2012-09-01
The main objective of this study was to develop thin lift overlay mixtures with polymer modified asphalt for use in New England. As part of this : research a comprehensive literature review and internet survey was conducted. Moreover, laboratory test...
2014-10-01
CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 is being lifted to the vertical position at the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Daniel Casper
2014-10-01
CAPE CANAVERAL, Fla. – The United Launch Alliance Delta IV Heavy rocket for Exploration Flight Test-1 is being lifted to the vertical position at the pad at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy is being readied to launch Orion on its first flight test. During its first flight test, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on the first flight test is planned for December 2014. Photo credit: NASA/Daniel Casper
2016-08-04
A heavy load transport truck from Tillett Heavy Hauling in Titusville, Florida, arrives at the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida, carrying a section of the first half of the C-level work platforms, C South, for the agency’s Space Launch System (SLS) rocket. The platform is being lifted and transferred onto support stands in the VAB staging area in the west parking lot. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3 to support processing of the SLS and Orion spacecraft. A total of 10 levels of new platforms, 20 platform halves altogether, will surround the SLS rocket and Orion spacecraft and provide access for testing and processing.
Orion is on Pad 37 Prior to Hoist & Mate
2014-11-12
The Orion spacecraft and its transporter stand at the base of the service structure at Space Launch Complex 37. A crane inside the structure will lift Orion off its transporter to hoist it into place atop the Delta IV Heavy rocket that is already assembled at the pad. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014, atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
Space Launch System for Exploration and Science
NASA Astrophysics Data System (ADS)
Klaus, K.
2013-12-01
Introduction: The Space Launch System (SLS) is the most powerful rocket ever built and provides a critical heavy-lift launch capability enabling diverse deep space missions. The exploration class vehicle launches larger payloads farther in our solar system and faster than ever before. The vehicle's 5 m to 10 m fairing allows utilization of existing systems which reduces development risks, size limitations and cost. SLS lift capacity and superior performance shortens mission travel time. Enhanced capabilities enable a myriad of missions including human exploration, planetary science, astrophysics, heliophysics, planetary defense and commercial space exploration endeavors. Human Exploration: SLS is the first heavy-lift launch vehicle capable of transporting crews beyond low Earth orbit in over four decades. Its design maximizes use of common elements and heritage hardware to provide a low-risk, affordable system that meets Orion mission requirements. SLS provides a safe and sustainable deep space pathway to Mars in support of NASA's human spaceflight mission objectives. The SLS enables the launch of large gateway elements beyond the moon. Leveraging a low-energy transfer that reduces required propellant mass, components are then brought back to a desired cislunar destination. SLS provides a significant mass margin that can be used for additional consumables or a secondary payloads. SLS lowers risks for the Asteroid Retrieval Mission by reducing mission time and improving mass margin. SLS lift capacity allows for additional propellant enabling a shorter return or the delivery of a secondary payload, such as gateway component to cislunar space. SLS enables human return to the moon. The intermediate SLS capability allows both crew and cargo to fly to translunar orbit at the same time which will simplify mission design and reduce launch costs. Science Missions: A single SLS launch to Mars will enable sample collection at multiple, geographically dispersed locations and a low-risk, direct return of Martian material. For the Europa Clipper mission the SLS eliminates Venus and Earth flybys, providing a direct launch to the Jovian system, arriving four years earlier than missions utilizing existing launch vehicles. This architecture allows increased mass for radiation shielding, expansion of the science payload and provides a model for other outer planet missions. SLS provides a direct launch to the Uranus system, reducing travel time by two years when compared to existing launch capabilities. SLS can launch the Advanced Technology Large-Aperture Space Telescope (ATLAST 16 m) to SEL2, providing researchers 10 times the resolution of the James Webb Space Telescope and up to 300 times the sensitivity of the Hubble Space Telescope. SLS is the only vehicle capable of deploying telescopes of this mass and size in a single launch. It simplifies mission design and reduces risks by eliminating the need for multiple launches and in-space assembly. SLS greatly shortens interstellar travel time, delivering the Interstellar Explorer to 200 AU in about 15 years with a maximum speed of 63 km/sec--13.3 AU per year (Neptune orbits the sun at an approximate distance of 30 AU ).
Development of the Strength Level on Arm for Indonesian People in Lifting Activity
NASA Astrophysics Data System (ADS)
Soewardi, H.; Prabaswari, A. D.; Muzakiroh, H. A.
2017-12-01
Lifting is one of manual material handling activity that involves the whole part of a body. This activity is significant to contribute musculoskeletal disorder specifically on arms. It is because the arms are a major strength to lift objects. However, many people do not know the capability of their arm so that the task designed does not comply with the limitation of workers. Thus, it is required to determine a level of strength on arms. The objective of this study is to develop the strength level of arms for Indonesian people based on musculoskeletal contraction. An experimental study is conducted in the ergonomics laboratory. 24 males and 24 females was participated in this study which consists of three different ethnics. They are sixteen participants of Ethnic A, sixteen participants of Ethnic B and sixteen participants of Ethnic C. A case study of lifting consists of 4 positions of object. They are 38 cm in height, 50 cm in height, 85 - 115 cm in height for forming 90 degrees of the elbow and 100 cm in height. Back lift technique was implemented. An Electromyography is used to investigate muscle contraction on arms. Statistical analysis is done to test the hypothesis. The result of this study shows that the arm strength level for Indonesian workers has significant differences between males and females among difference Ethnic. For male, Ethnic A has 28.82% - 79.28% of MVC, Ethnic B has 17.74% - 58.67% of MVC, and Ethnic C has 22.13% - 68.67% of MVC. For female, Ethnic A has 28.28% - 84.63% of MVC, Ethnic B has 24.47% - 70.98% of MVC, and Ethnic C has 24.24% - 75.67% of MVC.
Obama sets out NASA's new mission to Mars
NASA Astrophysics Data System (ADS)
Gwynne, Peter
2010-05-01
US President Barack Obama has announced a new direction for NASA that includes plans to send astronauts to an asteroid by 2025. Speaking last month at Florida's Kennedy Space Center, the launching location for US manned spaceflights, Obama also called for a new "heavy-lift" rocket design to take astronauts on a mission to orbit Mars by the mid-2030s that will "eventually" be used to transport humans to the Martian surface.
Leveraging the Reserve Component: Associating Active and Reserve Aviation Units
2013-03-01
hour per response, including the time for reviewing instructions, searching existing data sources , gathering and maintaining the data needed, and...than the way they painted their equipment.”39 The ARC proved its metal and demonstrated front-line unit readiness, capabilities, and performance...airlift assets (long range, heavy lift aircraft such as the C-17 and C-5). Three wings are classified Air Mobility Wings as they execute both aerial
Affordable Heavy Lift Capability: 2000-2004
NASA Technical Reports Server (NTRS)
2004-01-01
This custom bibliography from the NASA Scientific and Technical Information Program lists a sampling of records found in the NASA Aeronautics and Space Database. The scope of this topic includes technologies to allow robust, affordable access of cargo, particularly to low-Earth orbit. This area of focus is one of the enabling technologies as defined by NASA s Report of the President s Commission on Implementation of United States Space Exploration Policy, published in June 2004.
Collection and Analysis of Crowd Data with Aerial, Rooftop, and Ground Views
2014-11-10
collected these datasets using different aircrafts. Erista 8 HL OctaCopter is a heavy-lift aerial platform capable of using high-resolution cinema ...is another high-resolution camera that is cinema grade and high quality, with the capability of capturing videos with 4K resolution at 30 frames per...292.58 Imaging Systems and Accessories Blackmagic Production Camera 4 Crowd Counting using 4K Cameras High resolution cinema grade digital video
Retrorocket Soft Landing of Airdropped Cargo
1979-12-01
need to lift vehicle onto the carefully cut and placed honeycomb before airdrop, and often off it after impact. (e) Tendency of loads to overturn in...system. In 1967, the Air Force published a report on a study of aerial delivery of heavy equipment which investigated twelve descent and recovery...Retrieval Techniques; Lockheed Georgia Co., Contract No. AF33(615)-2989, Air Force Flight Dynamics Laboratory, Wright Patterson AFB, Ohio, AFFDL-TR-66-97
2016-08-11
A heavy-lift transport truck, carrying the Crew Access Arm for Space Launch Complex 41, passes through the entrance to NASA’s Kennedy Space Center in Florida. The arm will be installed on the Complex 41 Crew Access Tower at Cape Canaveral Air Force Station. It will be used as a bridge by astronauts to board Boeing's CST-100 Starliner spacecraft as it stands on the launch pad atop a United Launch Alliance Atlas V rocket.
Hybrid Aircraft for Heavy Lift / High Speed Strategic Mobility
2011-04-01
Those advancements that reduce onboard power requirements are beneficial, whether high efficiency lighting or computing, innovative cargo management ...of operations projected to become more common in the 2035 time frame. This paper proposes that the US military procure a new class of vehicle to...first attempt to fly a HA was made by Alberto Santos-Dumont, a Brazilian living in France and a pioneer in the controlled flight of airships. In 1905
Satellite power system: Engineering and economic analysis summary
NASA Technical Reports Server (NTRS)
1976-01-01
A system engineering and economic analysis was conducted to establish typical reference baselines for the photovoltaic, solar thermal, and nuclear satellite power systems. Tentative conclusions indicate that feasibility and economic viability are characteristic of the Satellite Power System. Anticipated technology related to manufacturing, construction, and maintenance operations is described. Fuel consumption, environmental effects, and orbital transfer are investigated. Space shuttles, local space transportation, and the heavy lift launch vehicle required are also discussed.
WebBee: A Platform for Secure Coordination and Communication in Crisis Scenarios
2008-04-16
implemented through database triggers. The Webbee Database Server contains an Information Server, which is a Postgres database with PostGIS [5] extension...sends it to the target user. The heavy lifting for this mechanism is done through an extension of Postgres triggers (Figures 6.1 and 6.2), resulting...in fewer queries and better performance. Trigger support in Postgres is table-based and comparatively primitive: with n table triggers, an update
Noise Transmission Studies of an Advanced Grid-Stiffened Composite Fairing
2007-10-01
increase in blanket thickness and weight [7]. The evolved expendable launch vehicle (EELV) programs have conducted research to ensure that their launch...uses an aluminum fairing that is 4 to 5 m in diameter. The Atlas V 500 and heavy lift vehicles use a fairing designed and built by Contraves , which...builds the Ariane V launch vehicle for the European Space Agency. Contraves developed an innovative acoustic blanket for fairing noise reduction that
Schoenfisch, Ashley L; Pompeii, Lisa A; Myers, Douglas J; James, Tamara; Yeung, Yeu-Li; Fricklas, Ethan; Pentico, Marissa; Lipscomb, Hester J
2011-12-01
Interventions to reduce patient-handling injuries in the hospital setting are often evaluated based on their effect on outcomes such as injury rates. Measuring intervention adoption could address how and why observed trends in the outcome occurred. Unit-level data related to adoption of patient lift equipment were systematically collected at several points in time over 5 years on nursing units at two hospitals, including hours of lift equipment use, equipment accessibility, and supply purchases and availability. Various measures of adoption highlighted the adoption process' gradual nature and variability by hospital and between units. No single measure adequately assessed adoption. Certain measures appear well-correlated. Future evaluation of primary preventive efforts designed to prevent patient-handling injuries would be strengthened by objective data on intermediate measures that reflect intervention implementation and adoption. Copyright © 2011 Wiley Periodicals, Inc.
Blowing snow detection from ground-based ceilometers: application to East Antarctica
NASA Astrophysics Data System (ADS)
Gossart, Alexandra; Souverijns, Niels; Gorodetskaya, Irina V.; Lhermitte, Stef; Lenaerts, Jan T. M.; Schween, Jan H.; Mangold, Alexander; Laffineur, Quentin; van Lipzig, Nicole P. M.
2017-12-01
Blowing snow impacts Antarctic ice sheet surface mass balance by snow redistribution and sublimation. However, numerical models poorly represent blowing snow processes, while direct observations are limited in space and time. Satellite retrieval of blowing snow is hindered by clouds and only the strongest events are considered. Here, we develop a blowing snow detection (BSD) algorithm for ground-based remote-sensing ceilometers in polar regions and apply it to ceilometers at Neumayer III and Princess Elisabeth (PE) stations, East Antarctica. The algorithm is able to detect (heavy) blowing snow layers reaching 30 m height. Results show that 78 % of the detected events are in agreement with visual observations at Neumayer III station. The BSD algorithm detects heavy blowing snow 36 % of the time at Neumayer (2011-2015) and 13 % at PE station (2010-2016). Blowing snow occurrence peaks during the austral winter and shows around 5 % interannual variability. The BSD algorithm is capable of detecting blowing snow both lifted from the ground and occurring during precipitation, which is an added value since results indicate that 92 % of the blowing snow is during synoptic events, often combined with precipitation. Analysis of atmospheric meteorological variables shows that blowing snow occurrence strongly depends on fresh snow availability in addition to wind speed. This finding challenges the commonly used parametrizations, where the threshold for snow particles to be lifted is a function of wind speed only. Blowing snow occurs predominantly during storms and overcast conditions, shortly after precipitation events, and can reach up to 1300 m a. g. l. in the case of heavy mixed events (precipitation and blowing snow together). These results suggest that synoptic conditions play an important role in generating blowing snow events and that fresh snow availability should be considered in determining the blowing snow onset.
NASA Technical Reports Server (NTRS)
Morris,Bruce; Sullivan, Greg; Burkey, Martin
2010-01-01
It's a cliche that rocket engineers and space scientists don t see eye-to-eye. That goes double for rocket engineers working on human spaceflight and scientists working on space telescopes and planetary probes. They work fundamentally different problems but often feel that they are competing for the same pot of money. Put the two groups together for a weekend, and the results could be unscientific or perhaps combustible. Fortunately, that wasn't the case when NASA put heavy lift launch vehicle designers together with astronomers and planetary scientists for two weekend workshops in 2008. The goal was to bring the top people from both groups together to see how the mass and volume capabilities of NASA's Ares V heavy lift launch vehicle could benefit the science community. Ares V is part of NASA's Constellation Program for resuming human exploration beyond low Earth orbit, starting with missions to the Moon. In the current mission scenario, Ares V launches a lunar lander into Earth orbit. A smaller Ares I rocket launches the Orion crew vehicle with up to four astronauts. Orion docks with the lander, attached to the Ares V Earth departure stage. The stage fires its engine to send the mated spacecraft to the Moon. Standing 360 feet high and weighing 7.4 million pounds, NASA's new heavy lifter will be bigger than the 1960s-era Saturn V. It can launch almost 60 percent more payload to translunar insertion together with the Ares I and 35 percent more mass to low Earth orbit than the Saturn V. This super-sized capability is, in short, designed to send more people to more places to do more things than the six Apollo missions.
Eidenmüller, S; Randerath, J; Goldenberg, G; Li, Y; Hermsdörfer, J
2014-08-01
The scaling of our finger forces according to the properties of manipulated objects is an elementary prerequisite of skilled motor behavior. Lesions of the motor-dominant left brain may impair several aspects of motor planning. For example, limb-apraxia, a tool-use disorder after left brain damage is thought to be caused by deficient recall or integration of tool-use knowledge into an action plan. The aim of the present study was to investigate whether left brain damage affects anticipatory force scaling when lifting everyday objects. We examined 26 stroke patients with unilateral brain damage (16 with left brain damage, ten with right brain damage) and 21 healthy control subjects. Limb apraxia was assessed by testing pantomime of familiar tool-use and imitation of meaningless hand postures. Participants grasped and lifted twelve randomly presented everyday objects. Grip force was measured with help of sensors fixed on thumb, index and middle-finger. The maximum rate of grip force was determined to quantify the precision of anticipation of object properties. Regression analysis yielded clear deficits of anticipation in the group of patients with left brain damage, while the comparison of patient with right brain damage with their respective control group did not reveal comparable deficits. Lesion-analyses indicate that brain structures typically associated with a tool-use network in the left hemisphere play an essential role for anticipatory grip force scaling, especially the left inferior frontal gyrus (IFG) and the premotor cortex (PMC). Furthermore, significant correlations of impaired anticipation with limb apraxia scores suggest shared representations. However, the presence of dissociations, implicates also independent processes. Overall, our findings suggest that the left hemisphere is engaged in anticipatory grip force scaling for lifting everyday objects. The underlying neural substrate is not restricted to a single region or stream; instead it may rely on the intact functioning of a left hemisphere network that may overlap with the left hemisphere dominant tool-use network. Copyright © 2014 Elsevier Ltd. All rights reserved.
30 CFR 56.14106 - Falling object protection.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Falling object protection. 56.14106 Section 56... Equipment Safety Devices and Maintenance Requirements § 56.14106 Falling object protection. (a) Fork-lift trucks, front-end loaders, and bulldozers shall be provided with falling object protective structures if...
30 CFR 57.14106 - Falling object protection.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Falling object protection. 57.14106 Section 57... Equipment Safety Devices and Maintenance Requirements § 57.14106 Falling object protection. (a) Fork-lift trucks, front-end loaders, and bulldozers shall be provided with falling object protective structures if...
30 CFR 56.14106 - Falling object protection.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Falling object protection. 56.14106 Section 56... Equipment Safety Devices and Maintenance Requirements § 56.14106 Falling object protection. (a) Fork-lift trucks, front-end loaders, and bulldozers shall be provided with falling object protective structures if...
30 CFR 57.14106 - Falling object protection.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Falling object protection. 57.14106 Section 57... Equipment Safety Devices and Maintenance Requirements § 57.14106 Falling object protection. (a) Fork-lift trucks, front-end loaders, and bulldozers shall be provided with falling object protective structures if...
30 CFR 56.14106 - Falling object protection.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Falling object protection. 56.14106 Section 56... Equipment Safety Devices and Maintenance Requirements § 56.14106 Falling object protection. (a) Fork-lift trucks, front-end loaders, and bulldozers shall be provided with falling object protective structures if...
30 CFR 57.14106 - Falling object protection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Falling object protection. 57.14106 Section 57... Equipment Safety Devices and Maintenance Requirements § 57.14106 Falling object protection. (a) Fork-lift trucks, front-end loaders, and bulldozers shall be provided with falling object protective structures if...
30 CFR 57.14106 - Falling object protection.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Falling object protection. 57.14106 Section 57... Equipment Safety Devices and Maintenance Requirements § 57.14106 Falling object protection. (a) Fork-lift trucks, front-end loaders, and bulldozers shall be provided with falling object protective structures if...
30 CFR 57.14106 - Falling object protection.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Falling object protection. 57.14106 Section 57... Equipment Safety Devices and Maintenance Requirements § 57.14106 Falling object protection. (a) Fork-lift trucks, front-end loaders, and bulldozers shall be provided with falling object protective structures if...
30 CFR 56.14106 - Falling object protection.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Falling object protection. 56.14106 Section 56... Equipment Safety Devices and Maintenance Requirements § 56.14106 Falling object protection. (a) Fork-lift trucks, front-end loaders, and bulldozers shall be provided with falling object protective structures if...
30 CFR 56.14106 - Falling object protection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Falling object protection. 56.14106 Section 56... Equipment Safety Devices and Maintenance Requirements § 56.14106 Falling object protection. (a) Fork-lift trucks, front-end loaders, and bulldozers shall be provided with falling object protective structures if...
Zhang, Hua; Merrett, Deborah C; Jing, Zhichun; Tang, Jigen; He, Yuling; Yue, Hongbin; Yue, Zhanwei; Yang, Dongya Y
2017-01-01
This research investigates the prevalence of human osteoarthritis at Yinxu, the last capital of the Late Shang dynasty (ca. 1250-1046 B.C.), to gain insights about lifeways of early urban populations in ancient China. A total of 167 skeletal remains from two sites (Xiaomintun and Xin'anzhuang) were analyzed to examine osteoarthritis at eight appendicular joints and through three spinal osseous indicators. High osteoarthritis frequencies were found in the remains with males showing significantly higher osteoarthritis on the upper body (compared to that of the females). This distinctive pattern becomes more obvious for males from Xiaomintun. Furthermore, Xiaomintun people showed significantly higher osteoarthritis in both sexes than those from Xin'anzhuang. Higher upper body osteoarthritis is speculated to be caused by repetitive lifting and carrying heavy-weight objects, disproportionately adding more stress and thus more osseous changes to the upper than the lower body. Such lifting-carrying could be derived from intensified physical activities in general and specialized occupations in particular. Higher osteoarthritis in males may reveal a gendered division of labour, with higher osteoarthritis in Xiaomintun strongly indicating an occupational difference between the two sites. The latter speculation can be supported by the recovery of substantially more bronze-casting artifacts in Xiaomintun. It is also intriguing that relatively higher osteoarthritis was noticed in Xiaomintun females, which seems to suggest that those women might have also participated in bronze-casting activities as a "family business." Such a family-involved occupation, if it existed, may have contributed to establishment of occupation-oriented neighborhoods as proposed by many Shang archaeologists.
Chirality-specific lift forces of helix under shear flows: Helix perpendicular to shear plane.
Zhang, Qi-Yi
2017-02-01
Chiral objects in shear flow experience a chirality-specific lift force. Shear flows past helices in a low Reynolds number regime were studied using slender-body theory. The chirality-specific lift forces in the vorticity direction experienced by helices are dominated by a set of helix geometry parameters: helix radius, pitch length, number of turns, and helix phase angle. Its analytical formula is given. The chirality-specific forces are the physical reasons for the chiral separation of helices in shear flow. Our results are well supported by the latest experimental observations. © 2016 Wiley Periodicals, Inc.
Alignment and position visualization methods for the biomedical imaging and therapy (BMIT) MRT lift
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bree, Michael, E-mail: michael.bree@lightsource.ca; Miller, Denise; Kerr, Graham
The Microbeam Radiation Therapy (MRT) Lift is an eight stage positioning and scanning system at the Canadian Light Source’s BMIT Facility. Alignment of the sample with the beam using the MRT Lift is a time consuming and challenging task. The BMIT Group has developed a Python-based MRT Lift positioning and control program that uses a combination of computational and iterative methods to independently adjust the sample’s X, Y, Z, pitch and roll positions. The program offers “1-Click” alignment of the sample to the beam. Use of a wireframe visualization technique enables even minute movements to be illustrated. Proposed movements andmore » the resulting MRT Lift position can be manually verified before being applied. Optional integration with the SolidWorks modelling platform allows high quality renderings of the MRT Lift in its current or proposed position to be displayed in real time. Human factors principles are incorporated into the program with the objective of delivering easy to use controls for this complex device.« less
Deconstructing Hub Drag. Part 2. Computational Development and Anaysis
2013-09-30
leveraged a Vertical Lift Consortium ( VLC )-funded hub drag scaling research effort. To confirm this objective, correlations are performed with the...Technology™ Demonstrator aircraft using an unstructured computational solver. These simpler faired elliptical geome- tries can prove to be challenging ...possible. However, additional funding was obtained from the Vertical Lift Consortium ( VLC ) to perform this study. This analysis is documented in
Work activities and musculoskeletal complaints among preschool workers.
Grant, K A; Habes, D J; Tepper, A L
1995-12-01
The potential for musculoskeletal trauma among preschool workers has been largely unexplored in the United States. This case report describes an investigation conducted to identify and evaluate possible causes of back and lower extremity pain among 22 workers at a Montessori day care facility. Investigators met with and distributed a questionnaire to school employees, and made measurements of workstation and furniture dimensions. Investigators also recorded the normal work activities of school employees on videotape, and performed a work sampling study to estimate the percentage of time employees spend performing various tasks and in certain postures. Questionnaire results from 18 employees indicated that back pain/discomfort was a common musculoskeletal complaint, reported by 61% of respondents. Neck/shoulder pain, lower extremity pain and hand/wrist pain were reported by 33, 33 and 11% of respondents, respectively. Observation and analysis of work activities indicated that employees spend significant periods of time kneeling, sitting on the floor, squatting, or bending at the waist. Furthermore, staff members who work with smaller children (i.e. six weeks to 18 months of age) performed more lifts and assumed more awkward lower extremity postures than employees who work with older children (3-4 years of age). Analysis of two lifting tasks using the revised NIOSH lifting equation indicated that employees who handle small children may be at increased risk of lifting-related low back pain. Investigators concluded that day care employees at this facility are at increased risk of low back pain and lower extremity (i.e. knee) injury due to work activities that require awkward or heavy lifts, and static working postures. Recommendations for reducing or eliminating these risks by modifying the workplace and changing the organization and methods of work are presented.
Velasco Garrido, Marcial; Mette, Janika; Mache, Stefanie; Harth, Volker; Preisser, Alexandra M
2018-03-30
To assess the physical strains of employees in the German offshore wind industry, according to job type and phase of the wind farm (under construction or operation). Web-based cross-sectional survey. Offshore wind farm companies operating within the German exclusive economic zone. Male workers with regular offshore commitments and at least 28 days spent offshore in the past year (n=268). Physical strains (eg, climbing, noise, working overhead, with twisted upper body or in confined spaces, vibration, heavy lifting, humidity, odours). The most frequently mentioned physical strain was 'climbing' with 63.8% of the respondents reporting to be always or frequently confronted with climbing and ascending stairs during offshore work. Work as a technician was associated with a greater exposition to noise, vibrations, humidity, cold, heat, chemical substances, lifting/carrying heavy loads, transport of equipment, working in non-ergonomic positions and in cramped spaces, as well as climbing.Indeed, statistical analyses showed that, after adjusting for phase of the wind farm, age, nationality, offshore experience, work schedule and type of shift, compared with non-technicians, working as a technician was associated with more frequently lifting/carrying of heavy loads (OR 2.58, 95% CI 1.58 to 4.23), transport of equipment (OR 2.06 95% CI 1.27 to 3.33), working with a twisted upper body (OR 2.85 95% CI 1.74 to 4.69), working overhead (OR 2.77 95% CI 1.67 to 4.58) and climbing (OR 2.30 95% CI 1.40 to 3.77). Working in wind farms under construction was strongly associated with increased and decreased exposure to humidity (OR 2.32 95% CI 1.38 to 3.92) and poor air quality (OR 0.58 95% CI 0.35 to 0.95), respectively. Workers on offshore wind farms constitute a heterogeneous group, including a wide variety of occupations. The degree of exposure to detrimental physical strains varies depending on the type of job. Technicians are more exposed to ergonomic challenges than other offshore workers. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
3-D High-Lift Flow-Physics Experiment - Transition Measurements
NASA Technical Reports Server (NTRS)
McGinley, Catherine B.; Jenkins, Luther N.; Watson, Ralph D.; Bertelrud, Arild
2005-01-01
An analysis of the flow state on a trapezoidal wing model from the NASA 3-D High Lift Flow Physics Experiment is presented. The objective of the experiment was to characterize the flow over a non-proprietary semi-span three-element high-lift configuration to aid in assessing the state of the art in the computation of three-dimensional high-lift flows. Surface pressures and hot-film sensors are used to determine the flow conditions on the slat, main, and flap. The locations of the attachments lines and the values of the attachment line Reynolds number are estimated based on the model surface pressures. Data from the hot-films are used to determine if the flow is laminar, transitional, or turbulent by examining the hot-film time histories, statistics, and frequency spectra.
Moving base simulation of an ASTOVL lift-fan aircraft
NASA Technical Reports Server (NTRS)
Chung, William W. Y.; Borchers, Paul F.; Franklin, James A.
1995-01-01
Using a generalized simulation model, a moving-base simulation of a lift-fan short takeoff/vertical landing fighter aircraft was conducted on the Vertical Motion Simulator at Ames Research Center. Objectives of the experiment were to (1) assess the effects of lift-fan propulsion system design features on aircraft control during transition and vertical flight including integration of lift fan/lift/cruise engine/aerodynamic controls and lift fan/lift/cruise engine dynamic response, (2) evaluate pilot-vehicle interface with the control system and head-up display including control modes for low-speed operational tasks and control mode/display integration, and (3) conduct operational evaluations of this configuration during takeoff, transition, and landing similar to those carried out previously by the Ames team for the mixed-flow, vectored thrust, and augmentor-ejector concepts. Based on results of the simulation, preliminary assessments of acceptable and borderline lift-fan and lift/cruise engine thrust response characteristics were obtained. Maximum pitch, roll, and yaw control power used during transition, hover, and vertical landing were documented. Control and display mode options were assessed for their compatibility with a range of land-based and shipboard operations from takeoff to cruise through transition back to hover and vertical landing. Flying qualities were established for candidate control modes and displays for instrument approaches and vertical landings aboard an LPH assault ship and DD-963 destroyer. Test pilot and engineer teams from the Naval Air Warfare Center, Boeing, Lockheed, McDonnell Douglas, and the British Defence Research Agency participated in the program.
2012-11-05
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a space shuttle era mobile launcher platform, on the left, sits on pedestals outside the Vehicle Assembly Building. To the right is the mobile launcher that will support the space agency's Space Launch System heavy-lift rocket and Orion spacecraft. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Jim Grossmann
2012-11-05
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 has been undergoing modifications inside high bay 2 of the Vehicle Assembly Building in preparation to carry the space agency's Space Launch System heavy-lift rocket to the launch pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Jim Grossmann
2012-11-05
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 is parked outside of the Vehicle Assembly Building. The Crawler-transporter has been undergoing modifications to ensure its ability to carry the space agency's Space Launch System heavy-lift rocket to the launch pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Jim Grossmann
2012-11-08
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis
2012-11-06
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 moves along the crawler way toward Launch Pad 39A following modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the launch pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Jim Grossmann
2012-11-06
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Ben Smegelsky
2012-11-08
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis
2012-11-08
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis
2012-11-08
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis
2012-11-08
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis
2012-11-08
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis
2012-11-06
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Ben Smegelsky
2012-11-08
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis
2012-11-06
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Ben Smegelsky
2012-11-08
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis
2012-11-08
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis
2012-11-08
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis
2012-11-08
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis
Optimal Vehicle Design Using the Integrated System and Cost Modeling Tool Suite
2010-08-01
REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 ...currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1 . REPORT DATE (DD-MM-YYYY) 05-08-2010 2. REPORT TYPE...the heavy-lift vehicle Ares V, the Orion capsule, and the Altair lunar lander for manned missions to the moon, was recently cancelled by the Obama
External Payload Carrier (XPC) - A Novel Platform for Suborbital Research
NASA Technical Reports Server (NTRS)
Schallhorn, Paul; Groves, Curtis; Tatro, Charles; Kutter, Bernard; Szatkowski, Gerald; Bulk, Tim; Pitchford, Brian
2010-01-01
ULA, SAS, and NASA LSP are examining a new platform for suborbital research utilizing the Atlas V Launch Vehicle. The new platform, XPC, fills a new niche within the suborbital realm Large Heavy Lift (approximately 1200 cubic feet, 5000 lb payload). It will not compete with the commercial suborbital launch sector. The XPC will utilize excess performance on Atlas V missions. The Preliminary Design phase is recently underway. The XPC team is soliciting input from potential users.
The Ares Launch Vehicles: Critical Capabilities for America's Continued Leadership in Space
NASA Technical Reports Server (NTRS)
Cook, Stephen A.
2009-01-01
The Constellation Program renews the nation's commitment to human space exploration a) Access to ISS. b) Human explorers to the Moon and beyond. c) Large telescopes and other hardware to LEO . Hardware is being built today. Development made easier by applying lessons learned from 50 years of spaceflight experience. Ares V heavy-lift capability will be a strategic asset for the nation. Constellation provides a means for world leadership through inspiration and strategic capability.
Thunderstorms: Thermodynamics and Organization
NASA Astrophysics Data System (ADS)
Zinner, Tobias; Groenemeijer, Pieter
Thunderstorm research is strongly motivated by the wish to reduce the harm they do to people and their property. Thunderstorms are a global phenomenon, although some areas in the mid-latitudes and tropics are particularly at risk. They form where and whenever the ingredients for their formation come together: instability, moisture and lift. Especially upon interaction with vertical wind shear, they may develop into well-organized systems that produce hazards such as large hail, severe winds, heavy precipitation, and tornadoes.
Going Boldly Beyond: Progress on NASA's Space Launch System
NASA Technical Reports Server (NTRS)
Singer, Jody; Crumbly, Chris
2013-01-01
NASA's Space Launch System is implementing an evolvable configuration approach to system development in a resource-constrained era. Legacy systems enable non-traditional development funding and contribute to sustainability and affordability. Limited simultaneous developments reduce cost and schedule risk. Phased approach to advanced booster development enables innovation and competition, incrementally demonstrating affordability and performance enhancements. Advanced boosters will provide performance for the most capable heavy lift launcher in history, enabling unprecedented space exploration benefiting all of humanity.
Solar power satellite system definition study, volume 4, phase 2
NASA Technical Reports Server (NTRS)
1979-01-01
Results of an overall evaluation of the solar power satellite concept are reported. Specific topics covered include: solid state sandwich configuration; parametric development of reliability design; power distribution system for solid state solar power satellites; multibeam transmission; GEO base system configuration; suppression of the heavy lift launch vehicle trajectory; conceptual design of an offshore space center facility; solar power satellite development and operations scenario; and microwave power transmission technology, advancement, development, and facility requirements.