Science.gov

Sample records for ligand hydroxo complexes

  1. Assembly and properties of heterobimetallic Co(II/III)/Ca(II) complexes with aquo and hydroxo ligands.

    PubMed

    Lacy, David C; Park, Young Jun; Ziller, Joseph W; Yano, Junko; Borovik, A S

    2012-10-24

    The use of water as a reagent in redox-driven reactions is advantageous because it is abundant and environmentally compatible. The conversion of water to dioxygen in photosynthesis illustrates one example, in which a redox-inactive Ca(II) ion and four manganese ions are required for function. In this report we describe the stepwise formation of two new heterobimetallic complexes containing Co(II/III) and Ca(II) ions and either hydroxo or aquo ligands. The preparation of a four-coordinate Co(II) synthon was achieved with the tripodal ligand, N,N',N"-[2,2',2"-nitrilotris(ethane-2,1-diyl)]tris(2,4,6-trimethylbenzenesulfonamido, [MST](3-). Water binds to [Co(II)MST](-) to form the five-coordinate [Co(II)MST(OH(2))](-) complex that was used to prepare the Co(II)/Ca(II) complex [Co(II)MST(μ-OH(2))Ca(II)⊂15-crown-5(OH(2))](+) ([Co(II)(μ-OH(2))Ca(II)OH(2)](+)). [Co(II)(μ-OH(2))CaOH(2)](+) contained two aquo ligands, one bonded to the Ca(II) ion and one bridging between the two metal ions, and thus represents an unusual example of a heterobimetallic complex containing two aquo ligands spanning different metal ions. Both aquo ligands formed intramolecular hydrogen bonds with the [MST](3-) ligand. [Co(II)MST(OH(2))](-) was oxidized to form [Co(III)MST(OH(2))] that was further converted to [Co(III)MST(μ-OH)Ca(II)⊂15-crown-5](+) ([Co(III)(μ-OH)Ca(II)](+)) in the presence of base and Ca(II)OTf(2)/15-crown-5. [Co(III)(μ-OH)Ca(II)](+) was also synthesized from the oxidation of [Co(II)MST](-) with iodosylbenzene (PhIO) in the presence of Ca(II)OTf(2)/15-crown-5. Allowing [Co(III)(μ-OH)Ca(II)](+) to react with diphenylhydrazine afforded [Co(II)(μ-OH(2))Ca(II)OH(2)](+) and azobenzene. Additionally, the characterization of [Co(III)(μ-OH)Ca(II)](+) provides another formulation for the previously reported Co(IV)-oxo complex, [(TMG(3)tren)Co(IV)(μ-O)Sc(III)(OTf)(3)](2+) to one that instead could contain a Co(III)-OH unit.

  2. Phosphate ester hydrolysis by hydroxo complexes of trivalent lanthanides stabilized by 4-imidazolecarboxylate.

    PubMed

    Aguilar-Pérez, Francisco; Gómez-Tagle, Paola; Collado-Fregoso, Elisa; Yatsimirsky, Anatoly K

    2006-11-13

    The anion of 4-imidazolecarboxylic acid (HL) stabilizes hydroxo complexes of trivalent lanthanides of the type ML(OH)+ (M = La, Pr) and M2L(n)(OH)(6-n) (M = La, n = 2; M = Pr, n = 2, 3; M = Nd, Eu, Dy, n = 1-3). Compositions and stability constants of the complexes have been determined by potentiometric titrations. Spectrophotometric and (1)H NMR titrations with Nd(III) support the reaction model for the formation of hydroxo complexes proposed on the basis of potentiometric results. Kinetics of the hydrolysis of two phosphate diesters, bis(4-nitrophenyl) phosphate (BNPP) and 2-hydroxypropyl 4-nitrophenyl phosphate (HPNPP), and a triester, 4-nitrophenyl diphenyl phosphate (NPDPP), in the presence of hydroxo complexes of five lanthanides were studied as a function of pH and metal and ligand concentrations. With all lanthanides and all substrates, complexes with the smallest n, that is M2L2(OH)4 for La and Pr and M2L(OH)5 for Nd, Eu, and Dy, exhibited the highest catalytic activity. Strong inhibitory effects by simple anions (Cl-, NO3-, (EtO)2PO2-, AcO-) were observed indicating high affinity of neutral hydroxo complexes toward anionic species. The catalytic activity decreased in the order La > Pr > Nd > Eu > Dy for both diester substrates and was practically independent of the nature of cation for a triester substrate. The efficiency of catalysis, expressed as the ratio of the second-order rate constant for the ester cleavage by the hydroxo complex to the second-order rate constant for the alkaline hydrolysis of the respective substrate, varied from ca. 1 for NPDPP to 10(2) for HPNPP and to 10(5) for BNPP. The proposed mechanism of catalytic hydrolysis involves reversible bridging complexation of a phosphodiester to the binuclear active species followed by attack on the phosphoryl group by bridging hydroxide (BNPP) or by the alkoxide group of the deprotonated substrate (HPNPP).

  3. The role of hydroxo-bridged dinuclear species and the influence of "innocent" buffers in the reactivity of cis-[Co(III)(cyclen)(H₂O)₂]³⁺ and [Co(III)(tren)(H₂O)₂]³⁺ complexes with biologically relevant ligands at physiological pH.

    PubMed

    Basallote, Manuel G; Martínez, Manuel; Vázquez, Marta

    2014-07-28

    In view of the relevance of the reactivity of inert tetraamine Co(III) complexes having two substitutionally active cis positions capable of interact with biologically relevant ligands, the study of the reaction of cis-[Co(cyclen)(H2O)2](3+) and [Co(tren)(H2O)2](3+) with chlorides, inorganic phosphate and 5'-CMP (5'-cytidinemonophosphate) has been pursued at physiological pH. The results indicate that, in addition to the actuation of the expected labilising conjugate-base mechanism, the formation of mono and inert bis hydroxo-bridged species is relevant for understanding their speciation and reactivity. The reactivity pattern observed also indicates the key role played by the "innocent" buffers frequently used in most in vitro studies, which can make the results unreliable in many cases. The differences between the reactivity of inorganic and biologically relevant phosphates has also been found to be remarkable, with outer-sphere hydrogen bonding interactions being a dominant factor for the process. While for the inorganic phosphate substitution process the formation of μ-η(2)-OPO2O represents the termination of the reactivity monitored, for 5'-CMP only the formation of η(1)-OPO3 species is observed, which evolve with time to the final dead-end bis hydroxo-bridged complexes. The promoted hydrolysis of the 5'-CMP phosphate has not been observed in any of the processes studied.

  4. O2 activation by metal-ligand cooperation with Ir(I) PNP pincer complexes.

    PubMed

    Feller, Moran; Ben-Ari, Eyal; Diskin-Posner, Yael; Carmieli, Raanan; Weiner, Lev; Milstein, David

    2015-04-15

    A unique mode of molecular oxygen activation, involving metal-ligand cooperation, is described. Ir pincer complexes [((t)BuPNP)Ir(R)] (R = C6H5 (1), CH2COCH3 (2)) react with O2 to form the dearomatized hydroxo complexes [((t)BuPNP*)Ir(R)(OH)] ((t)BuPNP* = deprotonated (t)BuPNP ligand), in a process which utilizes both O-atoms. Experimental evidence, including NMR, EPR, and mass analyses, indicates a binuclear mechanism involving an O-atom transfer by a peroxo intermediate.

  5. Concerted proton-coupled electron transfers in aquo/hydroxo/oxo metal complexes: Electrochemistry of [OsII(bpy)2py(OH2)]2+ in water

    PubMed Central

    Costentin, Cyrille; Robert, Marc; Savéant, Jean-Michel; Teillout, Anne-Lucie

    2009-01-01

    Kinetic analysis of the successive oxidative cyclic voltammetric responses of [OsII(bpy)2py(OH2)]2+ in buffered water, together with determination of H/D isotope effects, has allowed the determination of the mechanisms of the successive proton-coupled electron transfers that convert the OsII-aquo complex into the OsIII-hydroxo complex and the later into the OsIV-oxo complex. The stepwise pathways prevail over the concerted pathway in the first case. However, very large concentrations of a base, such as acetate, trigger the beginning of a concerted reaction. The same trend appears, but to a much larger extent, when high local concentration of carboxylates are attached close to the Os complex. The OsIII-hydroxo/OsIV-oxo couple is globally much slower and concerted pathways predominate over the stepwise pathways. Water is, however, not an appropriate proton acceptor in this respect. Other bases, such as citrate or phosphate, are instead quite effective for triggering concerted pathways. Here, we suggest factors causing these contrasting behaviors, providing a practical illustration of the prediction that concerted processes are an efficient way of avoiding high-energy intermediates. Observation of a strong decelerating effect of inactive ions together with the positive role of high local concentrations of carboxylates to initiate a concerted route underscores the variety of structural and medium factors that may operate to modulate and control the occurrence of concerted pathways. These demonstrations and analyses of the occurrence of concerted pathways in an aquo–hydroxo–oxo series are expected to serve as guidelines for studies in term of methodology and factor analysis. PMID:19584254

  6. Synthesis, crystal structure and magnetic studies of tetranuclear hydroxo and ligand bridged [Co4(μ3-OH)2(μ2-dea)2(L-L)4]4Cl·8H2O [L-L = 2,2'-bipyridine or 1,10-phenanthroline] complexes with mixed valence defect dicubane core.

    PubMed

    Siddiqi, Zafar A; Siddique, Armeen; Shahid, M; Khalid, Mohd; Sharma, Prashant K; Anjuli; Ahmad, Musheer; Kumar, Sarvendra; Lan, Yanhua; Powell, Annie K

    2013-07-14

    X-ray crystallography of the title complexes indicates a discrete mixed valence (Co2(II)-Co2(III)) defect dicubane molecular unit where each cobalt nucleus attains a distorted octahedral geometry. The α-diimine (L-L) chelator coordinated to each cobalt ion stops further polymerization or nuclearization. The water molecules in the lattice play a crucial role in the formation of the supramolecular architectures. Magnetic data were analyzed using the effective spin-1/2 Hamiltonian approach and the parameters are, J = 115(6) K, ΔJ = -57.0(1.2) K, g(xy) = 3.001(25), and g(z) = 7.214(7) for 1 and J = 115(12) K, ΔJ = -58.5(2.5) K, g(xy) = 3.34(5), and g(z) = 6.599(12) for 2 suggesting that only the g matrices are prone to the change of α-diimine chelator.

  7. Iron(II) Complexes Supported by Sulfonamido Tripodal Ligands: Endogenous versus Exogenous Substrate Oxidation

    PubMed Central

    2015-01-01

    High-valent iron species are known to act as powerful oxidants in both natural and synthetic systems. While biological enzymes have evolved to prevent self-oxidation by these highly reactive species, development of organic ligand frameworks that are capable of supporting a high-valent iron center remains a challenge in synthetic chemistry. We describe here the reactivity of an Fe(II) complex that is supported by a tripodal sulfonamide ligand with both dioxygen and an oxygen-atom transfer reagent, 4-methylmorpholine-N-oxide (NMO). An Fe(III)–hydroxide complex is obtained from reaction with dioxygen, while NMO gives an Fe(III)–alkoxide product resulting from activation of a C–H bond of the ligand. Inclusion of Ca2+ ions in the reaction with NMO prevented this ligand activation and resulted in isolation of an Fe(III)–hydroxide complex in which the Ca2+ ion is coordinated to the tripodal sulfonamide ligand and the hydroxo ligand. Modification of the ligand allowed the Fe(III)–hydroxide complex to be isolated from NMO in the absence of Ca2+ ions, and a C–H bond of an external substrate could be activated during the reaction. This study highlights the importance of robust ligand design in the development of synthetic catalysts that utilize a high-valent iron center. PMID:25264932

  8. Binuclear copper(II) oxidation products from copper(I) complexes with tridentate ligands. Magnetostructural characterization.

    PubMed

    Rojas, Darío; García, Ana M; Vega, Andrés; Moreno, Yanko; Venegas-Yazigi, Diego; Garland, María T; Manzur, Jorge

    2004-10-04

    The bis-pyridine tridentate ligands (6-R-2-pyridylmethyl)-(2-pyridylmethyl) benzylamine (RDPMA, where R = CH(3), CF(3)), (6-R-2-pyridylmethyl)-(2-pyridylethyl) benzylamine (RPMPEA, where R = CH(3), CF(3)), and the bidentate ligand di-benzyl-(6-methyl-2-pyridylmethyl)amine (BiBzMePMA) have been synthesized and their copper(I) complexes oxidized in a methanol solution to afford self-assembled bis-micro-methoxo-binuclear copper(II) complexes (1, 2, 4, 6) or hydroxo- binuclear copper(II) complexes (3). Oxidation of the nonsubstituted DPMA (R = H) in dichloromethane gives a chloride-bridged complex (5). The crystal structures for [Cu(MeDPMA)(MeO)](2)(ClO(4))(2) (1), [Cu(RPMPEA)(MeO)](2)(ClO(4))(2) (for 2, R= Me, and for 4, R = CF(3)), [Cu(BiBzMePMA)(MeO)](2)(ClO(4))(2) (6), [Cu(FDPMA)(OH)](2)(ClO(4))(2) (3), and [Cu(DPMA)(Cl)](2)(ClO(4))(2) (5) have been determined, and their variable-temperature magnetic susceptibility has been measured in the temperature range of 10-300 K. The copper coordination geometries are best described as square pyramidal, except for 6, which is square planar, because of the lack of one pyridine ring in the bidentate ligand. In 1-4 and 6, the basal plane is formed by two pyridine N atoms and two O atoms from the bridging methoxo or hydroxo groups, whereas in 5, the bridging Cl atoms occupy axial-equatorial sites. Magnetic susceptibility measurements show that the Cu atoms are strongly coupled antiferromagnetically in the bis-methoxo complexes 1, 2, 4, and 6, with -2J > 600 cm(-)(1), whereas for the hydroxo complex 3, -2J = 195 cm(-)(1) and the chloride-bridged complex 5 shows a weak ferromagnetic coupling, with 2J = 21 cm(-)(1) (2J is an indicator of the magnetic interaction between the Cu centers).

  9. Analysis of macromolecules, ligands and macromolecule-ligand complexes

    DOEpatents

    Von Dreele, Robert B.

    2008-12-23

    A method for determining atomic level structures of macromolecule-ligand complexes through high-resolution powder diffraction analysis and a method for providing suitable microcrystalline powder for diffraction analysis are provided. In one embodiment, powder diffraction data is collected from samples of polycrystalline macromolecule and macromolecule-ligand complex and the refined structure of the macromolecule is used as an approximate model for a combined Rietveld and stereochemical restraint refinement of the macromolecule-ligand complex. A difference Fourier map is calculated and the ligand position and points of interaction between the atoms of the macromolecule and the atoms of the ligand can be deduced and visualized. A suitable polycrystalline sample of macromolecule-ligand complex can be produced by physically agitating a mixture of lyophilized macromolecule, ligand and a solvent.

  10. Magnetic exchange interaction in the μ-hydroxo bridged vanadium(IV) dimers: a density functional theory combined with broken-symmetry approach

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Chen, Zhida

    2001-09-01

    Magnetic exchange interaction for the μ-hydroxo bridged vanadium(IV) dimers is investigated based on calculations of density functional theory combined with the broken-symmetry approach. It is found that there is an exponential correlation between the V-O(hydroxo)-V angle, the V-O(hydroxo) distance and the exchange coupling constants J. Meanwhile, the calculated results reveal that the deprotonation of the bridging hydroxo ligand causes a sharp increase of the exchange coupling interaction, but the magnetic coupling constant J is insensitive to the deprotonation of the bridging aquo ligand. Moreover, simplifying each 1,2-bridging squarate ligand with two -OCH 2 groups almost does not influence magnetic exchange behavior between the two vanadium(IV) ions, and the principle of the shortest superexchange pathway is available for the multiplicity of the bridging ligand in the μ-hydroxo bridged vanadium(IV) dimers.

  11. X-Band Electron Paramagnetic Resonance Comparison of Mononuclear Mn(IV)-oxo and Mn(IV)-hydroxo Complexes and Quantum Chemical Investigation of Mn(IV) Zero-Field Splitting.

    PubMed

    Leto, Domenick F; Massie, Allyssa A; Colmer, Hannah E; Jackson, Timothy A

    2016-04-04

    X-band electron paramagnetic resonance (EPR) spectroscopy was used to probe the ground-state electronic structures of mononuclear Mn(IV) complexes [Mn(IV)(OH)2(Me2EBC)](2+) and [Mn(IV)(O)(OH)(Me2EBC)](+). These compounds are known to effect C-H bond oxidation reactions by a hydrogen-atom transfer mechanism. They provide an ideal system for comparing Mn(IV)-hydroxo versus Mn(IV)-oxo motifs, as they differ by only a proton. Simulations of 5 K EPR data, along with analysis of variable-temperature EPR signal intensities, allowed for the estimation of ground-state zero-field splitting (ZFS) and (55)Mn hyperfine parameters for both complexes. From this analysis, it was concluded that the Mn(IV)-oxo complex [Mn(IV)(O)(OH)(Me2EBC)](+) has an axial ZFS parameter D (D = +1.2(0.4) cm(-1)) and rhombicity (E/D = 0.22(1)) perturbed relative to the Mn(IV)-hydroxo analogue [Mn(IV)(OH)2(Me2EBC)](2+) (|D| = 0.75(0.25) cm(-1); E/D = 0.15(2)), although the complexes have similar (55)Mn values (a = 7.7 and 7.5 mT, respectively). The ZFS parameters for [Mn(IV)(OH)2(Me2EBC)](2+) were compared with values obtained previously through variable-temperature, variable-field magnetic circular dichroism (VTVH MCD) experiments. While the VTVH MCD analysis can provide a reasonable estimate of the magnitude of D, the E/D values were poorly defined. Using the ZFS parameters reported for these complexes and five other mononuclear Mn(IV) complexes, we employed coupled-perturbed density functional theory (CP-DFT) and complete active space self-consistent field (CASSCF) calculations with second-order n-electron valence-state perturbation theory (NEVPT2) correction, to compare the ability of these two quantum chemical methods for reproducing experimental ZFS parameters for Mn(IV) centers. The CP-DFT approach was found to provide reasonably acceptable values for D, whereas the CASSCF/NEVPT2 method fared worse, considerably overestimating the magnitude of D in several cases. Both methods were poor in

  12. Determination of formation constants of hydroxo and carbonate complexes of Pr(3+) in 2 M NaCl at 303 K.

    PubMed

    López-González, H; Jiménez-Reyes, M; Rojas-Hernández, A; Solache-Ríos, M

    1997-10-01

    The hydrolysis of praseodymium III in 2 M sodium chloride at 303 K was studied. Two methods were used: pH titration followed by a computational refinement and solvent extraction in the presence of a competitive ligand. The hydrolysis constants obtained by pH titration were: logbeta(1,H)=-7.68+/-0.07, logbeta(1,2H)=-15.10+/-0.03, and beta(1,3H)=-23.80+/-0.04. The stability constants of praseodymium carbonate complexes were determined by pH titration as well and were: logbeta(1,CO(2-)(3))=5.94+/-0.08 and logbeta(1,2CO(2-)(3))=11.15+/-0.15. Praseodymium carbonate species were taken into consideration for calculating the first hydrolysis constants by the solvent extraction method and the value obtained was: logbeta(1,H)=-7.69+/-0.27. The values for logbeta(1,H) attained by both methods are the same. The species-distribution diagram was obtained from the stability constants of praseodymium carbonate complexes and hydrolysis products in the conditions of the present work.

  13. Mn K-edge X-ray absorption studies of oxo- and hydroxo-manganese(IV) complexes: experimental and theoretical insights into pre-edge properties.

    PubMed

    Leto, Domenick F; Jackson, Timothy A

    2014-06-16

    Mn K-edge X-ray absorption spectroscopy (XAS) was used to gain insights into the geometric and electronic structures of [Mn(II)(Cl)2(Me2EBC)], [Mn(IV)(OH)2(Me2EBC)](2+), and [Mn(IV)(O)(OH)(Me2EBC)](+), which are all supported by the tetradentate, macrocyclic Me2EBC ligand (Me2EBC = 4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane). Analysis of extended X-ray absorption fine structure (EXAFS) data for [Mn(IV)(O)(OH)(Me2EBC)](+) revealed Mn-O scatterers at 1.71 and 1.84 Å and Mn-N scatterers at 2.11 Å, providing the first unambiguous support for the formulation of this species as an oxohydroxomanganese(IV) adduct. EXAFS-determined structural parameters for [Mn(II)(Cl)2(Me2EBC)] and [Mn(IV)(OH)2(Me2EBC)](2+) are consistent with previously reported crystal structures. The Mn pre-edge energies and intensities of these complexes were examined within the context of data for other oxo- and hydroxomanganese(IV) adducts, and time-dependent density functional theory (TD-DFT) computations were used to predict pre-edge properties for all compounds considered. This combined experimental and computational analysis revealed a correlation between the Mn-O(H) distances and pre-edge peak areas of Mn(IV)═O and Mn(IV)-OH complexes, but this trend was strongly modulated by the Mn(IV) coordination geometry. Mn 3d-4p mixing, which primarily accounts for the pre-edge intensities, is not solely a function of the Mn-O(H) bond length; the coordination geometry also has a large effect on the distribution of pre-edge intensity. For tetragonal Mn(IV)═O centers, more than 90% of the pre-edge intensity comes from excitations to the Mn═O σ* MO. Trigonal bipyramidal oxomanganese(IV) centers likewise feature excitations to the Mn═O σ* molecular orbital (MO) but also show intense transitions to 3dx(2)-y(2) and 3dxy MOs because of enhanced 3d-4px,y mixing. This gives rise to a broader pre-edge feature for trigonal Mn(IV)═O adducts. These results underscore the importance of

  14. Mn K-Edge X-ray Absorption Studies of Oxo- and Hydroxo-manganese(IV) Complexes: Experimental and Theoretical Insights into Pre-Edge Properties

    PubMed Central

    2015-01-01

    Mn K-edge X-ray absorption spectroscopy (XAS) was used to gain insights into the geometric and electronic structures of [MnII(Cl)2(Me2EBC)], [MnIV(OH)2(Me2EBC)]2+, and [MnIV(O)(OH)(Me2EBC)]+, which are all supported by the tetradentate, macrocyclic Me2EBC ligand (Me2EBC = 4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane). Analysis of extended X-ray absorption fine structure (EXAFS) data for [MnIV(O)(OH)(Me2EBC)]+ revealed Mn–O scatterers at 1.71 and 1.84 Å and Mn–N scatterers at 2.11 Å, providing the first unambiguous support for the formulation of this species as an oxohydroxomanganese(IV) adduct. EXAFS-determined structural parameters for [MnII(Cl)2(Me2EBC)] and [MnIV(OH)2(Me2EBC)]2+ are consistent with previously reported crystal structures. The Mn pre-edge energies and intensities of these complexes were examined within the context of data for other oxo- and hydroxomanganese(IV) adducts, and time-dependent density functional theory (TD-DFT) computations were used to predict pre-edge properties for all compounds considered. This combined experimental and computational analysis revealed a correlation between the Mn–O(H) distances and pre-edge peak areas of MnIV=O and MnIV–OH complexes, but this trend was strongly modulated by the MnIV coordination geometry. Mn 3d-4p mixing, which primarily accounts for the pre-edge intensities, is not solely a function of the Mn–O(H) bond length; the coordination geometry also has a large effect on the distribution of pre-edge intensity. For tetragonal MnIV=O centers, more than 90% of the pre-edge intensity comes from excitations to the Mn=O σ* MO. Trigonal bipyramidal oxomanganese(IV) centers likewise feature excitations to the Mn=O σ* molecular orbital (MO) but also show intense transitions to 3dx2–y2 and 3dxy MOs because of enhanced 3d-4px,y mixing. This gives rise to a broader pre-edge feature for trigonal MnIV=O adducts. These results underscore the importance of reporting experimental pre-edge areas

  15. Neodymium(III) complexation by amino-carbohydrates via a ligand-controlled hydrolysis mechanism.

    PubMed

    Levitskaia, Tatiana G; Chen, Yongsheng; Fulton, John L; Sinkov, Sergei I

    2011-07-28

    Chelation of Nd(3+) by D-glucosamine (DGA) and chitosan was investigated in solution at near-physiological pH and ionic strength. This research demonstrates the first example of the lanthanide ion heteroleptic hydroxo-carbohydrate complex in solution. Amino-carbohydrates DGA and chitosan suppressed formation of polynuclear Nd(3+) species at elevated pH.

  16. Crystallographic refinement of ligand complexes

    PubMed Central

    Kleywegt, Gerard J.

    2007-01-01

    Model building and refinement of complexes between biomacromolecules and small molecules requires sensible starting coordinates as well as the specification of restraint sets for all but the most common non-macromolecular entities. Here, it is described why this is necessary, how it can be accomplished and what pitfalls need to be avoided in order to produce chemically plausible models of the low-molecular-weight entities. A number of programs, servers, databases and other resources that can be of assistance in the process are also discussed. PMID:17164531

  17. DFT Study of Uranyl Peroxo Complexes with H₂O, F⁻, OH⁻, CO₃ ²⁻, and NO₃-

    SciTech Connect

    Odoh, Samuel O.; Schreckenbach, Georg

    2013-05-06

    The structural and electronic properties of monomeric uranyl peroxo complexes with aquo, hydroxo, fluoro, carbonate, and nitrate ligands have been studied using DFT calculations with relativistic pseudopotentials. The calculated affinity of the peroxo group for the actinyl moiety far exceeds that of the other ligands tested in this work.

  18. Copper(II) complexes of quinoline polyazamacrocyclic scorpiand-type ligands: X-ray, equilibrium and kinetic studies.

    PubMed

    Castillo, Carmen E; Angeles Máñez, M; Basallote, Manuel G; Paz Clares, M; Blasco, Salvador; García-España, Enrique

    2012-05-14

    The formation of Cu(II) complexes with two isomeric quinoline-containing scorpiand-type ligands has been studied. The ligands have a tetraazapyridinophane core appended with an ethylamino tail including 2-quinoline (L1) or 4-quinoline (L2) functionalities. Potentiometric studies indicate the formation of stable CuL(2+) species with both ligands, the L1 complex being 3-4 log units more stable than the L2 complex. The crystal structure of [Cu(L1)](ClO(4))(2)·H(2)O shows that the coordination geometry around the Cu(2+) ions is distorted octahedral with significant axial elongation; the four Cu-N distances in the equatorial plane vary from 1.976 to 2.183 Å, while the axial distances are of 2.276 and 2.309 Å. The lower stability of the CuL2(2+) complex and its capability of forming protonated and hydroxo complexes suggest a penta-dentate coordination of the ligand, in agreement with the type of substitution at the quinoline ring. Kinetic studies on complex formation can be interpreted by considering that initial coordination of L1 and L2 takes place through the nitrogen atom in the quinoline ring. This is followed by coordination of the remaining nitrogen atoms, in a process that is faster in the L1 complex probably because substitution at the quinoline ring facilitates the reorganization. Kinetic studies on complex decomposition provide clear evidence on the occurrence of the molecular motion typical of scorpiands in the case of the L2 complex, for which decomposition starts with a very fast process (sub-millisecond timescale) that involves a shift in the absorption band from 643 to 690 nm.

  19. Thermodynamics and high-pressure kinetics of a fast carbon dioxide fixation reaction by a (2,6-pyridinedicarboxamidato-hydroxo)nickel(II) complex.

    PubMed

    Troeppner, O; Huang, D; Holm, R H; Ivanović-Burmazović, I

    2014-04-14

    The previously reported carbon dioxide fixation reaction by the planar terminal hydroxide complex [Ni(pyN2(Me2))(OH)](1-) in DMF has been further characterized by determination of the equilibrium constants K(eq)²⁹⁸ = 2.4 ± 0.2 × 10(5) M(-1) and K(eq)²²³ = 1.3 ± 0.1 × 10(7) M(-1), as well as the volume of activation for the CO2 binding (ΔV(on)(≠223) = -21 ± 3 cm(3) mol(-1)) and back decarboxylation (ΔV(off)(≠223) = -13 ± 1 cm(3) mol(-1)) by high-pressure kinetics. The data are consistent with an earlier DFT computation, including the probable nature of the transition state, and support designating the reaction as one of the most completely investigated carbon dioxide fixation reactions of any type.

  20. Effect of Inter-Porphyrin Distance on Spin-State in Diiron(III) μ-Hydroxo Bisporphyrins.

    PubMed

    Sil, Debangsu; Khan, Firoz Shah Tuglak; Rath, Sankar Prasad

    2016-10-04

    The synthesis, structure, and properties of bischloro, μ-oxo, and a family of μ-hydroxo complexes (with BF4 (-) , SbF6 (-) , and PF6 (-) counteranions) of diethylpyrrole-bridged diiron(III) bisporphyrins are reported. Spectroscopic characterization has revealed that the iron centers of the bischloro and μ-oxo complexes are in the high-spin state (S=(5) /2 ). However, the two iron centers in the diiron(III) μ-hydroxo complexes are equivalent with high spin (S=(5) /2 ) in the solid state and an intermediate-spin state (S=(3) /2 ) in solution. The molecules have been compared with previously known diiron(III) μ-hydroxo complexes of ethane-bridged bisporphyrin, in which two different spin states of iron were stabilized under the influence of counteranions. The dimanganese(III) analogues were also synthesized and spectroscopically characterized. A comparison of the X-ray structural parameters between diethylpyrrole and ethane-bridged μ-hydroxo bisporphyrins suggest an increased separation, and hence, less interactions between the two heme units of the former. As a result, unlike the ethane-bridged μ-hydroxo complex, both iron centers become equivalent in the diethylpyrrole-bridged complex and their spin state remains unresponsive to the change in counteranion. The iron(III) centers of the diethylpyrrole-bridged diiron(III) μ-oxo bisporphyrin undergo very strong antiferromagnetic interactions (J=-137.7 cm(-1) ), although the coupling constant is reduced to only a weak value in the μ-hydroxo complexes (J=-42.2, -44.1, and -42.4 cm(-1) for the BF4 , SbF6 , and PF6 complexes, respectively).

  1. Neodymium(III) Complexation by Amino-Carbohydrates via a Ligand-Controlled Hydrolysis Mechanism

    SciTech Connect

    Levitskaia, Tatiana G.; Chen, Yongsheng; Fulton, John L.; Sinkov, Sergey I.

    2011-07-28

    Chelation of neodymium-III Nd(III) by D-glucosamine (DGA) and chitosan was investigated in solution at near-physiological pH and ionic strength. This research demonstrates the first example of the lanthanide ion heteroleptic hydroxo-carbohydrate complex in solution. It was demonstrated that DGA and chitosan suppressed formation of polynuclear Nd(III) species at elevated pH.

  2. Ligand-Controlled CO2 Activation Mediated by Cationic Titanium Hydride Complexes, [LTiH](+) (L=Cp2 , O).

    PubMed

    Tang, Shi-Ya; Rijs, Nicole J; Li, Jilai; Schlangen, Maria; Schwarz, Helmut

    2015-06-01

    CO2 activation mediated by [LTiH](+) (L=Cp2 , O) is observed in the gas phase at room temperature using electrospray-ionization mass spectrometry, and reaction details are derived from traveling wave ion-mobility mass spectrometry. Wheresas oxygen-atom transfer prevails in the reaction of the oxide complex [OTiH](+) with CO2 , generating [OTi(OH)](+) under the elimination of CO, insertion of CO2 into the metal-hydrogen bond of the cyclopentadienyl complex, [Cp2 TiH](+) , gives rise to the formate complex [Cp2 Ti(O2 CH)](+) . DFT-based methods were employed to understand how the ligand controls the observed variation in reactivity toward CO2 . Insertion of CO2 into the Ti-H bond constitutes the initial step for the reaction of both [Cp2 TiH](+) and [OTiH](+) , thus generating formate complexes as intermediates. In contrast to [Cp2 Ti(O2 CH)](+) which is kinetically stable, facile decarbonylation of [OTi(O2 CH)](+) results in the hydroxo complex [OTi(OH)](+) . The longer lifetime of [Cp2 Ti(O2 CH)](+) allows for secondary reactions with background water, as a result of which, [Cp2 Ti(OH)](+) is formed. Further, computational studies reveal a good linear correlation between the hydride affinity of [LTi](2+) and the barrier for CO2 insertion into various [LTiH](+) complexes. Understanding the intrinsic ligand effects may provide insight into the selective activation of CO2 .

  3. Undecametallic and hexadecametallic ferric oxo–hydroxo/ethoxo pivalate clusters

    DOE PAGES

    Baca, Svetlana G.; Speldrich, Manfred; van Leusen, Jan; ...

    2015-03-27

    The synthesis strategies for highly condensed {Fe11} and {Fe16} pivalate clusters have been developed based on archetypal geometrically frustrated triangular {Fe3(μ3-O)} motifs that are interlinked via oxo, hydroxo, ethoxo, and carboxylate groups.

  4. Measurement of protein-ligand complex formation.

    PubMed

    Lowe, Peter N; Vaughan, Cara K; Daviter, Tina

    2013-01-01

    Experimental approaches to detect, measure, and quantify protein-ligand binding, along with their theoretical bases, are described. A range of methods for detection of protein-ligand interactions is summarized. Specific protocols are provided for a nonequilibrium procedure pull-down assay, for an equilibrium direct binding method and its modification into a competition-based measurement and for steady-state measurements based on the effects of ligands on enzyme catalysis.

  5. Cationic aluminum alkyl complexes incorporating aminotroponiminate ligands.

    PubMed

    Korolev, A V; Ihara, E; Guzei, I A; Young, V G; Jordan, R F

    2001-08-29

    The synthesis, structures, and reactivity of cationic aluminum complexes containing the N,N'-diisopropylaminotroponiminate ligand ((i)Pr(2)-ATI(-)) are described. The reaction of ((i)Pr(2)-ATI)AlR(2) (1a-e,g,h; R = H (a), Me (b), Et (c), Pr (d), (i)Bu (e), Cy (g), CH(2)Ph (h)) with [Ph(3)C][B(C(6)F(5))(4)] yields ((i)()Pr(2)-ATI)AlR(+) species whose fate depends on the properties of the R ligand. 1a and 1b react with 0.5 equiv of [Ph(3)C][B(C(6)F(5))(4)] to produce dinuclear monocationic complexes [([(i)Pr(2)-ATI] AlR)(2)(mu-R)][(C(6)F(5))(4)] (2a,b). The cation of 2b contains two ((i)()Pr(2)-ATI)AlMe(+) units linked by an almost linear Al-Me-Al bridge; 2a is presumed to have an analogous structure. 2b does not react further with [Ph(3)C][B(C(6)F(5))(4)]. However, 1a reacts with 1 equiv of [Ph(3)C][B(C(6)F(5))(4)] to afford ((i Pr(2)-ATI)Al(C(6)F(5))(mu-H)(2)B(C(6)F(5))(2) (3) and other products, presumably via C(6)F(5)(-) transfer and ligand redistribution of a [((i)()Pr(2)-ATI)AlH][(C(6)F(5))(4)] intermediate. 1c-e react with 1 equiv of [Ph(3)C][B(C(6)F(5))(4)] to yield stable base-free [((i)Pr(2)-ATI)AlR][B(C(6)F(5))(4)] complexes (4c-e). 4c crystallizes from chlorobenzene as 4c(ClPh).0.5PhCl, which has been characterized by X-ray crystallography. In the solid state the PhCl ligand of 4c(ClPh) is coordinated by a dative PhCl-Al bond and an ATI/Ph pi-stacking interaction. 1g,h react with [Ph(3)C][B(C(6)F(5))(4)] to yield ((i)Pr(2)-ATI)Al(R)(C(6)F(5)) (5g,h) via C(6)F(5)(-) transfer of [((i)Pr(2)-ATI)AlR][(BC(6)F(5))(4)] intermediates. 1c,h react with B(C(6)F(5))(3) to yield ((i)Pr(2)-ATI)Al(R)(C(6)F(5)) (5c,h) via C(6)F(5)(-) transfer of [((i)Pr(2)-ATI)AlR][RB(C(6)F(5))(3)] intermediates. The reaction of 4c-e with MeCN or acetone yields [((i)Pr(2)-ATI)Al(R)(L)][B(C(6)F(5))(4)] adducts (L = MeCN (8c-e), acetone (9c-e)), which undergo associative intermolecular L exchange. 9c-e undergo slow beta-H transfer to afford the dinuclear dicationic alkoxide complex [(((i

  6. Dimolybdenum cyclopentadienyl complexes with bridging chalcogenophosphinidene ligands.

    PubMed

    Alvarez, Belén; Alvarez, M Angeles; Amor, Inmaculada; García, M Esther; García-Vivó, Daniel; Suárez, Jaime; Ruiz, Miguel A

    2012-07-16

    The reactions of the phosphinidene-bridged complex [Mo(2)Cp(2)(μ-PH)(η(6)-HMes*)(CO)(2)] (1), the arylphosphinidene complexes [Mo(2)Cp(2)(μ-κ(1):κ(1),η(6)-PMes*)(CO)(2)] (2), [Mo(2)Cp(2)(μ-κ(1):κ(1),η(4)-PMes*)(CO)(3)] (3), [Mo(2)Cp(2)(μ-κ(1):κ(1),η(4)-PMes*)(CO)(2)(CN(t)Bu)] (4), and the cyclopentadienylidene-phosphinidene complex [Mo(2)Cp(μ-κ(1):κ(1),η(5)-PC(5)H(4))(η(6)-HMes*)(CO)(2)] (5) toward different sources of chalcogen atoms were investigated (Mes* = 2,4,6-C(6)H(2)(t)Bu(3); Cp = η(5)-C(5)H(5)). The bare elements were appropriate sources in all cases except for oxygen, in which case dimethyldioxirane gave the best results. Complex 1 reacted with the mentioned chalcogen sources at low temperature, to give the corresponding chalcogenophosphinidene derivatives [Mo(2)Cp(2){μ-κ(2)(P,Z):κ(1)(P)-ZPH}(η(6)-HMes*)(CO)(2)] (Z = O, S, Se, Te; P-Se = 2.199(2) Å). The arylphosphinidene complex 2 was the least reactive substrate and gave only chalcogenophosphinidene derivatives [Mo(2)Cp(2)(μ-κ(2)(P,Z):κ(1)(P),η(6)-ZPMes*)(CO)(2)] for Z = O and S (P-O = 1.565(2) Å), along with small amounts of the dithiophosphorane complex [Mo(2)Cp(2)(μ-κ(2)(P,S):κ(1)(S'),η(6)-S(2)PMes*)(CO)(2)], in the reaction with sulfur. The η(4)-complexes 3 and 4 reacted with sulfur and gray selenium to give the corresponding derivatives [Mo(2)Cp(2)(μ-κ(2)(P,Z):κ(1)(P),η(4)-ZPMes*)(CO)(2)L] (L = CO, CN(t)Bu), obtained respectively as syn (Z = Se; P-Se = 2.190(1) Å for L = CO) or a mixture of syn and anti isomers (Z = S; P-S = 2.034(1)-2.043(1) Å), with these diastereoisomers differing in the relative positioning of the chalcogen atom and the terminal ligand at the metallocene fragment, relative to the Mo(2)P plane. The cyclopentadienylidene compound 5 reacted with all chalcogens, and gave with good yields the chalcogenophosphinidene derivatives [Mo(2)Cp(μ-κ(2)(P,Z):κ(1)(P),η(5)-ZPC(5)H(4))(η(6)-HMes*)(CO)(2)] (Z = S, Se, Te), these displaying in solution

  7. Unique advantages of organometallic supporting ligands for uranium complexes

    SciTech Connect

    Diaconescu, Paula L.; Garcia, Evan

    2014-05-31

    The objective of our research project was to study the reactivity of uranium complexes supported by ferrocene-based ligands. In addition, this research provides training of graduate students as the next generation of actinide scientists.

  8. Dinuclear cobalt(II) and copper(II) complexes with a Py2N4S2 macrocyclic ligand.

    PubMed

    Núñez, Cristina; Bastida, Rufina; Lezama, Luis; Macías, Alejandro; Pérez-Lourido, Paulo; Valencia, Laura

    2011-06-20

    The interaction between Co(II) and Cu(II) ions with a Py(2)N(4)S(2)-coordinating octadentate macrocyclic ligand (L) to afford dinuclear compounds has been investigated. The complexes were characterized by microanalysis, conductivity measurements, IR spectroscopy and liquid secondary ion mass spectrometry. The crystal structure of the compounds [H(4)L](NO(3))(4), [Cu(2)LCl(2)](NO(3))(2) (5), [Cu(2)L(NO(3))(2)](NO(3))(2) (6), and [Cu(2)L(μ-OH)](ClO(4))(3)·H(2)O (7) was also determined by single-crystal X-ray diffraction. The [H(4)L](4+) cation crystal structure presents two different conformations, planar and step, with intermolecular face-to-face π,π-stacking interactions between the pyridinic rings. Complexes 5 and 6 show the metal ions in a slightly distorted square-pyramidal coordination geometry. In the case of complex 7, the crystal structure presents the two metal ions joined by a μ-hydroxo bridge and the Cu(II) centers in a slightly distorted square plane or a tetragonally distorted octahedral geometry, taking into account weak interactions in axial positions. Electron paramagnetic resonance spectroscopy is in accordance with the dinuclear nature of the complexes, with an octahedral environment for the cobalt(II) compounds and square-pyramidal or tetragonally elongated octahedral geometries for the copper(II) compounds. The magnetic behavior is consistent with the existence of antiferromagnetic interactions between the ions for cobalt(II) and copper(II) complexes, while for the Co(II) ones, this behavior could also be explained by spin-orbit coupling.

  9. Rhodium complexes bearing tetradentate diamine-bis(phenolate) ligands

    SciTech Connect

    Liu, Xiang Y; Lokare, Kapil S; Ganesh, Somesh K; Gonzales, Jason M; Oxgaard, Jonas; Goddard, William A; Periana, Roy A

    2011-01-01

    Using tetradentate, dianionic ligands, several new rhodium complexes have been prepared. Some of these diamine-bis(phenolate) compounds, are active for C–H activation of benzene. These complexes are air and thermally stable. All four complexes were characterized by X-ray diffraction.

  10. Thermodynamics of complexation in an aqueous solution of Tb(III) nitrate at 298 K

    NASA Astrophysics Data System (ADS)

    Lobacheva, O. L.; Berlinskii, I. V.; Dzhevaga, N. V.

    2017-01-01

    The pH of the formation of hydroxo complexes and hydrates in an aqueous solution of terbium Tb(III) is determined using combined means of potentiometric and conductometric titration. The stability constants of the hydroxo complexes, the products of hydroxide solubility, and the Gibbs energy of terbium hydroxo complex formation are calculated.

  11. Dissociation of Multisubunit Protein-Ligand Complexes in the Gas Phase. Evidence for Ligand Migration

    NASA Astrophysics Data System (ADS)

    Zhang, Yixuan; Deng, Lu; Kitova, Elena N.; Klassen, John S.

    2013-10-01

    The results of collision-induced dissociation (CID) experiments performed on gaseous protonated and deprotonated ions of complexes of cholera toxin B subunit homopentamer (CTB5) with the pentasaccharide (β-D-Gal p-(1→3)-β-D-Gal pNAc-(1→4)[α-D-Neu5Ac-(2→3)]-β-D-Gal p-(1→4)-β-D-Glc p (GM1)) and corresponding glycosphingolipid (β-D-Gal p-(1→3)-β-D-Gal pNAc-(1→4)[α-D-Neu5Ac-(2→3)]-β-D-Gal p-(1→4)-β-D-Glc p-Cer (GM1-Cer)) ligands, and the homotetramer streptavidin (S4) with biotin (B) and 1,2-dipalmitoyl- sn-glycero-3-phosphoethanolamine-N-(biotinyl) (Btl), are reported. The protonated (CTB5 + 5GM1)n+ ions dissociated predominantly by the loss of a single subunit, with the concomitant migration of ligand to another subunit. The simultaneous loss of ligand and subunit was observed as a minor pathway. In contrast, the deprotonated (CTB5 + 5GM1)n- ions dissociated preferentially by the loss of deprotonated ligand; the loss of ligand-bound and ligand-free subunit were minor pathways. The presence of ceramide (Cer) promoted ligand migration and the loss of subunit. The main dissociation pathway for the protonated and deprotonated (S4 + 4B)n+/- ions, as well as for deprotonated (S4 + 4Btl)n- ions, was loss of the ligand. However, subunit loss from the (S4 + 4B)n+ ions was observed as a minor pathway. The (S4 + 4Btl)n+ ions dissociated predominantly by the loss of free and ligand-bound subunit. The charge state of the complex and the collision energy were found to have little effect on the relative contribution of the different dissociation channels. Thermally-driven ligand migration between subunits was captured in the results of molecular dynamics simulations performed on protonated (CTB5 + 5GM1)15+ ions (with a range of charge configurations) at 800 K. Notably, the migration pathway was found to be highly dependent on the charge configuration of the ion. The main conclusion of this study is that the dissociation pathways of multisubunit protein-ligand

  12. Luminescent cyclometallated iridium(III) complexes having acetylide ligands

    DOEpatents

    Thompson, Mark E.; Bossi, Alberto; Djurovich, Peter Ivan

    2014-09-02

    The present invention relates to phosphorescent (triplet-emitting) organometallic materials. The phosphorescent materials of the present invention comprise Ir(III)cyclometallated alkynyl complexes for use as triplet light-emitting materials. The Ir(III)cyclometallated alkynyl complexes comprise at least one cyclometallating ligand and at least one alkynyl ligand bonded to the iridium. Also provided is an organic light emitting device comprising an anode, a cathode and an emissive layer between the anode and the cathode, wherein the emissive layer comprises a Ir(III)cyclometallated alkynyl complex as a triplet emitting material.

  13. Undecametallic and hexadecametallic ferric oxo–hydroxo/ethoxo pivalate clusters

    SciTech Connect

    Baca, Svetlana G.; Speldrich, Manfred; van Leusen, Jan; Ellern, Arkady; Kögerler, Paul

    2015-03-27

    The synthesis strategies for highly condensed {Fe11} and {Fe16} pivalate clusters have been developed based on archetypal geometrically frustrated triangular {Fe33-O)} motifs that are interlinked via oxo, hydroxo, ethoxo, and carboxylate groups.

  14. CLiBE: a database of computed ligand binding energy for ligand-receptor complexes.

    PubMed

    Chen, X; Ji, Z L; Zhi, D G; Chen, Y Z

    2002-11-01

    Consideration of binding competitiveness of a drug candidate against natural ligands and other drugs that bind to the same receptor site may facilitate the rational development of a candidate into a potent drug. A strategy that can be applied to computer-aided drug design is to evaluate ligand-receptor interaction energy or other scoring functions of a designed drug with that of the relevant ligands known to bind to the same binding site. As a tool to facilitate such a strategy, a database of ligand-receptor interaction energy is developed from known ligand-receptor 3D structural entries in the Protein Databank (PDB). The Energy is computed based on a molecular mechanics force field that has been used in the prediction of therapeutic and toxicity targets of drugs. This database also contains information about ligand function and other properties and it can be accessed at http://xin.cz3.nus.edu.sg/group/CLiBE.asp. The computed energy components may facilitate the probing of the mode of action and other profiles of binding. A number of computed energies of some PDB ligand-receptor complexes in this database are studied and compared to experimental binding affinity. A certain degree of correlation between the computed energy and experimental binding affinity is found, which suggests that the computed energy may be useful in facilitating a qualitative analysis of drug binding competitiveness.

  15. Syntheses, spectral, electrochemical and thermal studies of mononuclear manganese(III) complexes with ligands derived from 1,2-propanediamine and 2-hydroxy-3 or 5-methoxybenzaldehyde: Self-assembled monolayer formation on nanostructure zinc oxide thin film

    NASA Astrophysics Data System (ADS)

    Habibi, Mohammad Hossein; Askari, Elham; Amirnasr, Mehdi; Amiri, Ahmad; Yamane, Yuki; Suzuki, Takayoshi

    2011-08-01

    Mononuclear Mn(III) complexes have been prepared via the Mn(II) reaction of an equimolar of Schiff-bases derived from reaction of 2-hydroxy-3-methoxybenzaldehyde or 2-hydroxy-5-methoxybenzaldehyde with 1,2-diaminopropane. Axial ligands L include: pyridine (py) and H 2O. The resulting complexes have been characterized by FT-IR and UV-vis spectroscopy. The crystal structures of the complexes were determined and indicate that in the solid state the complex adopts a slightly distorted octahedral environment of the imine N and hydroxo O with the two axial ligands. The electrochemical reduction of these complexes at a glassy carbon electrode in acetonitrile solution indicates that the first reduction process corresponding to Mn III-Mn II is electrochemically quasi-reversible. Thermal stability of these complexes was determined by TG and DTG. Layers of these complexes were formed on nanostructure zinc oxide thin film and a red shift was observed when zinc oxide thin film is modified by complex.

  16. Syntheses, spectral, electrochemical and thermal studies of mononuclear manganese(III) complexes with ligands derived from 1,2-propanediamine and 2-hydroxy-3 or 5-methoxybenzaldehyde: self-assembled monolayer formation on nanostructure zinc oxide thin film.

    PubMed

    Habibi, Mohammad Hossein; Askari, Elham; Amirnasr, Mehdi; Amiri, Ahmad; Yamane, Yuki; Suzuki, Takayoshi

    2011-08-01

    Mononuclear Mn(III) complexes have been prepared via the Mn(II) reaction of an equimolar of Schiff-bases derived from reaction of 2-hydroxy-3-methoxybenzaldehyde or 2-hydroxy-5-methoxybenzaldehyde with 1,2-diaminopropane. Axial ligands L include: pyridine (py) and H(2)O. The resulting complexes have been characterized by FT-IR and UV-vis spectroscopy. The crystal structures of the complexes were determined and indicate that in the solid state the complex adopts a slightly distorted octahedral environment of the imine N and hydroxo O with the two axial ligands. The electrochemical reduction of these complexes at a glassy carbon electrode in acetonitrile solution indicates that the first reduction process corresponding to Mn(III)-Mn(II) is electrochemically quasi-reversible. Thermal stability of these complexes was determined by TG and DTG. Layers of these complexes were formed on nanostructure zinc oxide thin film and a red shift was observed when zinc oxide thin film is modified by complex.

  17. Hydridoborylene complexes and di-, tri-, and tetranuclear borido complexes with hydride ligands.

    PubMed

    Bauer, Jürgen; Bertsch, Stefanie; Braunschweig, Holger; Dewhurst, Rian D; Ferkinghoff, Katharina; Hörl, Christian; Kraft, Katharina; Radacki, Krzysztof

    2013-12-16

    Mono- and dinuclear hydridoborylene complexes were prepared by intermetallic borylene transfer from Group VI borylene or metalloborylene reagents. The hydride and borylene ligands were found to interact with each other significantly, although the boron ligand retains much of its former borylene character. Zero-valent platinum fragments were successively added to the dinuclear hydridoborylene complexes, resulting in tri- and tetranuclear borido complexes, in which the B-H interaction has been lost, and the hydride ligands now bridge two metal centers. The complexes were studied spectroscopically, crystallographically, and by DFT methods, and the unusual bonding situation in the M-B-H triangles of hydridoborylene complexes were evaluated.

  18. Isothermal Titration Calorimetry: Assisted Crystallization of RNA-Ligand Complexes.

    PubMed

    Da Veiga, Cyrielle; Mezher, Joelle; Dumas, Philippe; Ennifar, Eric

    2016-01-01

    The success rate of nucleic acids/ligands co-crystallization can be significantly improved by performing preliminary biophysical analyses. Among suitable biophysical approaches, isothermal titration calorimetry (ITC) is certainly a method of choice. ITC can be used in a wide range of experimental conditions to monitor in real time the formation of the RNA- or DNA-ligand complex, with the advantage of providing in addition the complete binding profile of the interaction. Following the ITC experiment, the complex is ready to be concentrated for crystallization trials. This chapter describes a detailed experimental protocol for using ITC as a tool for monitoring RNA/small molecule binding, followed by co-crystallization.

  19. Ligand influences on homoleptic Group 12 m-terphenyl complexes.

    PubMed

    Blundell, Toby J; Hastings, Fiona R; Gridley, Benjamin M; Moxey, Graeme J; Lewis, William; Blake, Alexander J; Kays, Deborah L

    2014-10-14

    Three m-terphenyl ligands 2,6-Ar2C6H3(-) [Ar = 2,6-Me2C6H3 (2,6-Xyl); 3,5-Me2C6H3 (3,5-Xyl); 2,3,4,5,6-Me5C6 (Pmp)] have been used to stabilise three series of two-coordinate Group 12 diaryl complexes; (2,6-Ar2C6H3)2M [M = Zn, Cd, Hg, Ar = 2,6-Xyl 1-3, 3,5-Xyl 4-6, Pmp 7-9], where differing steric demands on the metal centres are imparted. These are the first homoleptic d-block complexes featuring any of these ligands. Complexes 1-9 have been characterised in solution and the solid state; the analysis of structural changes produced by differences in ligand properties is reported. In particular, complexes 4-6 show smaller C-M-C bond angles and contain secondary ligand interactions that are not seen in the analogous complexes 1-3 and 7-9.

  20. Designing simple tridentate ligands for highly luminescent europium complexes.

    PubMed

    Shavaleev, Nail M; Eliseeva, Svetlana V; Scopelliti, Rosario; Bünzli, Jean-Claude G

    2009-10-19

    A series of tridentate benzimidazole-substituted pyridine-2-carboxylic acids have been prepared with a halogen, methyl or alkoxy group in the 6-position of the benzimidazole ring, which additionally contains a solubilising N-alkyl chain. The ligands form neutral homoleptic nine-coordinate lanthanum, europium and terbium complexes as established from X-ray crystallographic analysis of eight structures. The coordination polyhedron around the lanthanide ion is close to a tricapped trigonal prism with ligands arranged in an up-up-down fashion. The coordinated ligands serve as light-harvesting chromophores in the complexes with absorption maxima in the range 321-341 nm (epsilon=(4.9-6.0)x10(4) M(-1) cm(-1)) and triplet-state energies between 21 300 and 18 800 cm(-1); the largest redshifts occur for bromine and electron-donor alkoxy substituents. The ligands efficiently sensitise europium luminescence with overall quantum yields (Q(L)(Eu)) and observed lifetimes (tau(obs)) reaching 71 % and 3.00 ms, respectively, in the solid state and 52 % and 2.81 ms, respectively, in CH(2)Cl(2) at room temperature. The radiative lifetimes of the Eu((5)D(0)) level amount to tau(rad)=3.6-4.6 ms and the sensitisation efficiency eta(sens)=Q(L)(Eu)(tau(rad)/tau(obs)) is close to unity for most of the complexes in the solid state and equal to approximately 80 % in solution. The photophysical parameters of the complexes correlate with the triplet energy of the ligands, which in turn is determined by the nature of the benzimidazole substituent. Facile modification of the ligands makes them promising for the development of brightly emissive europium-containing materials.

  1. Trinuclear manganese complexes of unsymmetrical polypodal diamino N3O3 ligands with an unusual [Mn3(μ-OR)4]5+ triangular core: synthesis, characterization, and catalase activity.

    PubMed

    Ledesma, Gabriela N; Anxolabéhère-Mallart, Elodie; Rivière, Eric; Mallet-Ladeira, Sonia; Hureau, Christelle; Signorella, Sandra R

    2014-03-03

    Two new tri-Mn(III) complexes of general formula [Mn3L2(μ-OH)(OAc)]ClO4 (H3L = 1-[N-(2-pyridylmethyl),N-(2-hydroxybenzyl)amino]-3-[N'-(2-hydroxybenzyl),N'-(4-X-benzyl)amino]propan-2-ol; 1ClO4, X = Me; 2ClO4, X = H) have been prepared and characterized. X-ray diffraction analysis of 1ClO4 reveals that the complex cation possesses a Mn3(μ-alkoxo)2(μ-hydroxo)(μ-phenoxo)(4+) core, with the three Mn atoms bound to two fully deprotonated N3O3 chelating L(3-), one exogenous acetato ligand, and one hydroxo bridge, the structure of which is retained upon dissolution in acetonitrile or methanol. The three Mn atoms occupy the vertices of a nearly isosceles triangle (Mn1···Mn3 = 3.6374(12) Å, Mn2···Mn3 3.5583(13) Å, and Mn1···Mn2 3.2400(12) Å), with one substitution-labile site on the apical Mn ion occupied by terminally bound monodentate acetate. Temperature-dependent magnetic susceptibility studies indicate the presence of predominant antiferromagnetic intramolecular interactions between Mn(III) ions in 1ClO4. Complexes 1ClO4 and 2ClO4 decompose H2O2 at comparable rates upon initial binding of peroxide through acetate substitution, with retention of core structure during catalysis. Kinetic and spectroscopic studies suggest that these complexes employ the [Mn-(μ-oxo/aquo)-Mn](4+) moiety to activate peroxide, with the additional (μ-alkoxo)(μ-phenoxo)Mn(μ-alkoxo) metallobridge carrying out a structural function.

  2. Synthesis, spectroscopic, thermogravimetric and antimicrobial studies of mixed ligands complexes

    NASA Astrophysics Data System (ADS)

    Mahmoud, Walaa H.; Mahmoud, Nessma F.; Mohamed, Gehad G.; El-Sonbati, Adel Z.; El-Bindary, Ashraf A.

    2015-09-01

    An interesting series of mixed ligand complexes have been synthesized by the reaction of metal chloride with guaifenesin (GFS) in the presence of 2-aminoacetic acid (HGly) (1:1:1 molar ratio). The elemental analysis, magnetic moments, molar conductance, spectral (UV-Vis, IR, 1H NMR and ESR) and thermal studies were used to characterize the isolated complexes. The molecular structure of GFS is optimized theoretically and the quantum chemical parameters are calculated. The IR showed that the ligand (GFS) acts as monobasic tridentate through the hydroxyl, phenoxy etheric and methoxy oxygen atoms and co-ligand (HGly) as monobasic bidentate through the deprotonated carboxylate oxygen atom and nitrogen atom of amino group. The molar conductivities showed that all the complexes are non-electrolytes except Cr(III) complex is electrolyte. Electronic and magnetic data proposed the octahedral structure for all complexes under investigation. ESR spectrum for Cu(II) revealed data which confirm the proposed structure. Antibacterial screening of the compounds were carried out in vitro on gram positive (Bacillus subtilis and Staphylococcus aureus), gram negative (Escherichia coli and Neisseria gonorrhoeae) bacteria and for in vitro antifungal activity against Candida albicans organism. However, some complexes showed more chemotherapeutic efficiency than the parent GFS drug. The complexes were also screened for their in vitro anticancer activity against the breast cell line (MFC7) and the results obtained showed that they exhibit a considerable anticancer activity.

  3. Gadolinium(III) complexes as MRI contrast agents: ligand design and properties of the complexes.

    PubMed

    Hermann, Petr; Kotek, Jan; Kubícek, Vojtech; Lukes, Ivan

    2008-06-21

    Magnetic resonance imaging is a commonly used diagnostic method in medicinal practice as well as in biological and preclinical research. Contrast agents (CAs), which are often applied are mostly based on Gd(III) complexes. In this paper, the ligand types and structures of their complexes on one side and a set of the physico-chemical parameters governing properties of the CAs on the other side are discussed. The solid-state structures of lanthanide(III) complexes of open-chain and macrocyclic ligands and their structural features are compared. Examples of tuning of ligand structures to alter the relaxometric properties of gadolinium(III) complexes as a number of coordinated water molecules, their residence time (exchange rate) or reorientation time of the complexes are given. Influence of the structural changes of the ligands on thermodynamic stability and kinetic inertness/lability of their lanthanide(III) complexes is discussed.

  4. Supramolecular coordination and antimicrobial activities of constructed mixed ligand complexes

    NASA Astrophysics Data System (ADS)

    El-Sonbati, A. Z.; Diab, M. A.; El-Bindary, A. A.; Abou-Dobara, M. I.; Seyam, H. A.

    2013-03-01

    A novel series of copper(II) and palladium(II) with 4-derivatives benzaldehyde pyrazolone (Ln) were synthesized. The mixed ligand complexes were prepared by using 1,10-phenanthroline (Phen) as second ligand. The structure of these complexes was identified and confirm by elemental analysis, molar conductivity, UV-Vis, IR and 1H NMR spectroscopy and magnetic moment measurements as well as thermal analysis. The ligand behaves as a neutral bidentate ligand through ON donor sites. ESR spectra show the simultaneous presence of a planar trans and a nearly planar cis isomers in the 1:2 ratio for all N,O complexes [Cu(Ln)2]Cl2ṡ2H2O. Schiff bases (Ln) were tested against bacterial species; namely two Gram positive bacteria (Staphylococcus aureus and Bacillus cereus) and two Gram negative bacteria (Escherichia coli and Klebsiella pneumoniae) and fungal species (Aspergillus niger, Fusarium oxysporium, Penicillium italicum and Alternaria alternata). The tested compounds have antibacterial activity against S. aureus, B. cereus and K. pneumoniae.

  5. Rediscovery of halogen bonds in protein-ligand complexes.

    PubMed

    Zhou, P; Tian, F; Zou, J; Shang, Z

    2010-04-01

    Although the halogen bond has attracted much interest in chemistry and material science communities, its implications for drug design are just now coming to light. The protein-ligand interactions through short halogen-oxygen/nitrogen/sulfur contacts have been observed in crystal structures for a long time, but only in recent years, with the experimental and theoretical progress in weak biological interactions, especially the pioneering works contributed by Ho and co-workers (Auffinger, P.; Hays, F. A.; Westhof, E.; Ho, P. S. Proc. Natl. Acad. Sci. USA 2004, 101, 16789-16794), these short contacts involving halogens in biomolecules were rediscovered and re-recognized as halogen bonds to stress their shared similarities with hydrogen bonds in strength and directionality. Crystal structure determinations of protein complexes with halogenated ligands preliminarily unveiled the functionality of halogen bonds in protein-ligand recogni-tion. Database surveys further revealed a considerable number of short halogen-oxygen contacts between proteins and halogenated ligands. Theoretical calculations on model and real systems eventually gave a quantitative pronouncement for the substantial contribution of halogen bonds to ligand binding. All of these works forebode that the halogen bond can be exploited as a new and versatile tool for rational drug design and bio-crystal engineering.

  6. Titanium and niobium imido complexes stabilized by heteroscorpionate ligands.

    PubMed

    Otero, A; Fernández-Baeza, J; Antiñolo, A; Tejeda, J; Lara-Sánchez, A; Sánchez-Barba, L; Rodríguez, A M

    2004-12-07

    The reaction of [Ti(NR)Cl(2)(py)(3)](R = (t)Bu, p-tolyl, 2,6-C(6)H(3)(i)Pr(2)) with [{Li(bdmpza)(H(2)O)}(4)][bdmpza = bis(3,5-dimethylpyrazol-1-yl)acetate] and [{Li(bdmpzdta)(H(2)O)}(4)][bdmpzdta = bis(3,5-dimethylpyrazol-1-yl)dithioacetate] affords the corresponding complexes [Ti(NR)Cl(kappa(3)-bdmpzx)(py)](x = a, R = (t)Bu 1, p-tolyl 2, 2,6-C(6)H(3)(i)Pr(2) 3; x = dta, R =(t)Bu 4, p-tolyl , 2,6-C(6)H(3)(i)Pr(2) 6), which are the first examples of imido Group 4 complexes stabilized by heteroscorpionate ligands. The solid-state X-ray crystal structure of 1 has been determined. The titanium centre is six-coordinate with three fac-sites occupied by the heteroscorpionate ligand and the remainder of the coordination sphere being completed by chloride, imido and pyridine ligands. The complexes are 1-6 fluxional at room temperature. The pyridine ortho- and meta-proton resonances show evidence of dynamic behaviour for this ligand and variable-temperature NMR studies were carried out in order to study their dynamic behaviour in solution. The complexes [Nb(NR)Cl(3)(py)(2)](R = (t)Bu, p-tolyl, 2,6-C(6)H(3)(i)Pr(2)) reacted with [{Li(bdmpza)(H(2)O)}(4)] and (Hbdmpze)[bdmpze = 2,2-bis(3,5-dimethylpyrazol-1-yl)ethoxide], the latter with prior addition of (n)BuLi, to give the complexes [Nb(NR)Cl(2)(kappa(3)-bdmpzx)](x = a, R =(t)Bu 7, p-tolyl 8, 2,6-C(6)H(3)(i)Pr(2) 9; x = e, R = (t)Bu 10, p-tolyl 11, 2,6-C(6)H(3)(i)Pr(2)) 12 and these are the first examples of imido Group 5 complexes with heteroscorpionate ligands. The structures of these complexes have been determined by spectroscopic methods.

  7. Computer simulation of supramolecular assembly by metal-ligand complexation

    NASA Astrophysics Data System (ADS)

    Wang, Shihu; Chen, Chun-Chung; Dormidontova, Elena E.

    2006-03-01

    Monte Carlo simulations were employed to study the supramolecular assembly of oligomers end-functionalized by ligands capable of complexation with metal ions. The properties of these metallo-supramolecular polymers strongly depend on the oligomer concentration, strength of complexation, and metal-to- ligand ratio. At high oligomer concentration the average molecular weight exhibits a maximum near the stoichiometric composition and decreases for higher or lower metal content. On the other hand, at low oligomer concentration the molecular weight shows a local minimum around the stoichiometric composition. This unusual behavior is attributed to the larger population of small rings around the stoichiometric composition, which make up a significant fraction of the overall molecular weight at low oligomer concentration. This effect is especially pronounced at low temperature, where the fraction of rings is higher. The fraction of chains and rings for different concentrations, temperatures and oligomer lengths were calculated and compared with experimental data.

  8. Ultrafast infrared studies of complex ligand rearrangements in solution

    SciTech Connect

    Payne, Christine K.

    2003-01-01

    The complete description of a chemical reaction in solution depends upon an understanding of the reactive molecule as well as its interactions with the surrounding solvent molecules. Using ultrafast infrared spectroscopy it is possible to observe both the solute-solvent interactions and the rearrangement steps which determine the overall course of a chemical reaction. The topics addressed in these studies focus on reaction mechanisms which require the rearrangement of complex ligands and the spectroscopic techniques necessary for the determination of these mechanisms. Ligand rearrangement is studied by considering two different reaction mechanisms for which the rearrangement of a complex ligand constitutes the most important step of the reaction. The first system concerns the rearrangement of a cyclopentadienyl ring as the response of an organometallic complex to a loss of electron density. This mechanism, commonly referred to as ''ring slip'', is frequently cited to explain reaction mechanisms. However, the ring slipped intermediate is too short-lived to be observed using conventional methods. Using a combination of ultrafast infrared spectroscopy and electronic structure calculations it has been shown that the intermediate exists, but does not form an eighteen-electron intermediate as suggested by traditional molecular orbital models. The second example examines the initial steps of alkyne polymerization. Group 6 (Cr, Mo, W) pentacarbonyl species are generated photolytically and used to catalyze the polymerization of unsaturated hydrocarbons through a series of coordination and rearrangement steps. Observing this reaction on the femto- to millisecond timescale indicates that the initial coordination of an alkyne solvent molecule to the metal center results in a stable intermediate that does not rearrange to form the polymer precursor. This suggests that polymerization requires the dissociation of additional carbonyl ligands before rearrangement can occur. Overall

  9. Synthesis, structure characterization and biological activity of selected metal complexes of sulfonamide Schiff base as a primary ligand and some mixed ligand complexes with glycine as a secondary ligand

    NASA Astrophysics Data System (ADS)

    Sharaby, Carmen M.; Amine, Mona F.; Hamed, Asmaa A.

    2017-04-01

    The current work reports synthesis of metal complexes and mixed ligand complexes of a novel sulfonamide Schiff base ligand (HL) resulted from the condensation of sulfametrole [N‧-(4-methoxy-1,2,5-thiadiazol-3-yl]sulfanilamide and acetyl-acetone as a primary ligand and glycine as a secondary ligand. The metal complexes and mixed ligand complexes of HL Schiff base ligand were synthesized and characterized using different physicochemical studies as elemental analyses, mass spectra, conductivity measurement, IR spectra, 1H NMR spectra, UV-vis Spectra, solid reflectance, magnetic susceptibility, thermal analyses (TGA and DTA) and their microbial and anticancer activities. The spectroscopic data of the complexes suggest their 1:2(L1:M) complex structures and 1:2:2(L1:L2:M) mixed ligand complex structures, where L1 = HL and L2 = glycine. Also, the spectroscopic studies suggested the octahedral structure for all complexes. The synthesized Schiff base, its metal and mixed ligand complexes were screened for their bacterial, antifungal and anticancer activity. The activity data show that the metal complexes and mixed ligand complexes exhibited promising microbial and anticancer activities than their parent HL Schiff base ligand, also the data show that the mixed ligand complexes more effective than the metal complexes.

  10. Developing the family of picolinate ligands for Mn(2+) complexation.

    PubMed

    Forgács, Attila; Pujales-Paradela, Rosa; Regueiro-Figueroa, Martín; Valencia, Laura; Esteban-Gómez, David; Botta, Mauro; Platas-Iglesias, Carlos

    2017-01-31

    We have reported here a series of ligands containing pentadentate 6,6'-(azanediylbis(methylene))dipicolinic acid units that differ in the substituent present at the amine nitrogen atom (acetate: H3DPAAA; phenyl: H2DPAPhA; dodecyl: H2DPAC12A; 4-hexylphenyl: H2DPAC6PhA). The protonation constants of the hexadentate DPAAA(3-) and pentadentate DPAPhA(2-) ligands and the stability constants of their Mn(2+) complexes were determined using pH-potentiometry (25 °C, 0.15 M NaCl). The mono-hydrated [Mn(DPAAA)](-) complex (log KMnL = 13.19(5)) was found to be considerably more stable than the bis-hydrated [Mn(DPAPhA)] analogue (log KMnL = 9.55(1)). A detailed (1)H and (17)O NMR relaxometric study was carried out to determine the parameters that govern the proton relaxivities of these complexes. The [Mn(DPAC12A)] complex, which contains a dodecyl lipophilic chain, forms micelles in solution characterized by a critical micellar concentration (cmc) of 96(9) μM. The lipophilic [Mn(DPAC6PhA)] and [Mn(DPAC12A)] derivatives form rather strong adducts with Human Serum Albumin (HSA) with association constants of 7.1 ± 0.1 × 10(3) and 1.3 ± 0.4 × 10(5) M(-1), respectively. The X-ray structure of the complex {K(H2O)4}{[Mn(DPAAA)(H2O)]}2 shows that the Mn(2+) ion in [Mn(DPAAA)](-) is coordinated to the six donor atoms of the ligand, a coordinated water molecule completing the pentagonal bipyramidal coordination environment.

  11. Catalytic hydrogenation using complexes of base metals with tridentate ligands

    DOEpatents

    Hanson, Susan K.; Zhang, Guoqi; Vasudevan, Kalyan V.

    2017-02-14

    Complexes of cobalt and nickel with tridentate ligand PNHP.sup.R are effective for hydrogenation of unsaturated compounds. Cobalt complex [(PNHP.sup.Cy)Co(CH.sub.2SiMe.sub.3)]BAr.sup.F.sub.4 (PNHP.sup.Cy=bis[2-(dicyclohexylphosphino)ethyl]amine, BAr.sup.F.sub.4=B(3,5-(CF.sub.3).sub.2C.sub.6H.sub.3).sub.4)) was prepared and used with hydrogen for hydrogenation of alkenes, aldehydes, ketones, and imines under mild conditions (25-60.degree. C., 1-4 atm H.sub.2). Nickel complex [(PNHP.sup.Cy)Ni(H)]BPh.sub.4 was used for hydrogenation of styrene and 1-octene under mild conditions. (PNP.sup.Cy)Ni(H) was used for hydrogenating alkenes.

  12. Catalytic hydrogenation using complexes of base metals with tridentate ligands

    DOEpatents

    Vasudevan, Kalyan V.; Zhang, Guoqi; Hanson, Susan K.

    2016-09-06

    Complexes of cobalt and nickel with tridentate ligand PNHP.sup.R are effective for hydrogenation of unsaturated compounds. Cobalt complex [(PNHP.sup.Cy)Co(CH.sub.2SiMe.sub.3)]BAr.sup.F.sub.4 (PNHP.sup.Cy=bis[2-(dicyclohexylphosphino)ethyl]amine, BAr.sup.F.sub.4=B(3,5-(CF.sub.3).sub.2C.sub.6H.sub.3).sub.4)) was prepared and used with hydrogen for hydrogenation of alkenes, aldehydes, ketones, and imines under mild conditions (25-60.degree. C., 1-4 atm H.sub.2). Nickel complex [(PNHP.sup.Cy)Ni(H)]BPh.sub.4 was used for hydrogenation of styrene and 1-octene under mild conditions. (PNP.sup.Cy)Ni(H) was used for hydrogenating alkenes.

  13. Yttrium Complexes of Arsine, Arsenide, and Arsinidene Ligands**

    PubMed Central

    Pugh, Thomas; Kerridge, Andrew; Layfield, Richard A

    2015-01-01

    Deprotonation of the yttrium–arsine complex [Cp′3Y{As(H)2Mes}] (1) (Cp′=η5-C5H4Me, Mes=mesityl) by nBuLi produces the μ-arsenide complex [{Cp′2Y[μ-As(H)Mes]}3] (2). Deprotonation of the As–H bonds in 2 by nBuLi produces [Li(thf)4]2[{Cp′2Y(μ3-AsMes)}3Li], [Li(thf)4]2[3], in which the dianion 3 contains the first example of an arsinidene ligand in rare-earth metal chemistry. The molecular structures of the arsine, arsenide, and arsinidene complexes are described, and the yttrium–arsenic bonding is analyzed by density functional theory. PMID:25655652

  14. Complexation of heterocyclic ligands with DNA in aqueous solution

    NASA Astrophysics Data System (ADS)

    Baranovskii, S. F.; Bolotin, P. A.; Evstigneev, M. P.; Chernyshev, D. N.

    2008-03-01

    We have used spectrophotometry to study self-association and complexation with DNA by organic heterocyclic compounds in the acridine and phenothiazine series: proflavin, thionine, and methylene blue. Based on the experimental concentration dependences of the molar absorption coefficient of the molecules in an aqueous buffer solution (0.01 M NaCl, 0.01 M Na2EDTA, 0.01 M Tris, pH 7.4, T = 298 K), we have determined the equilibrium dimerization constants for the dyes and the DNA complexation parameters using the Scatchard and McGhee-von Hippel models. The observed increase in the cooperativity parameters as the dimerization constants of the ligands increase allowed us to hypothesize that the same interactions occur between dye molecules adsorbed on DNA as in their self-association. The equilibrium DNA-binding constants for the ligands, obtained using the McGhee-von Hippel cooperative model, are (20.9 ± 2.7)·103 M-1 for proflavin and (33.8 ± 4.1)·103 M-1 for thionine. Using the Scatchard model, taking into account intercalation and “external” binding of ligands with DNA, we determined the DNA complexation constants for methylene blue: (26.4 ± 4.6)·103 and (96 ± 17)·103 M-1 respectively. Based on analysis of the data obtained, we hypothesized that the predominant type of binding with DNA is intercalation binding in the case of proflavin and thionine, and “external” binding with the DNA surface in the case of methylene blue.

  15. Controlling diabetes by chromium complexes: The role of the ligands.

    PubMed

    Peng, Mei; Yang, Xiaoping

    2015-05-01

    Diabetes, particularly type II diabetes, is a severe disease condition which affects human health worldwide, with a dramatically increasing trend in Asian countries including China. Currently, no efficient drugs other than those with observable side effects are available. Chromium complexes, with the most known representative chromium picolinate, have been listed as one of most attractive health supplements to attenuate this disease condition in western countries. Recent efforts have been made to develop new chromium complexes with novel ligands. Although fair amounts of reviews have been published to emphasize the biological activity, preclinical and clinical information of chromium picolinate, this mini-review is trying to cover the entire picture of updated research efforts on various chromium complexes highlighting the role of ligands. Chromium phenylalanine sensitizes insulin cell signaling pathway via the activation of phosphorylation of Akt (protein kinase B (PKB)) and/or AMPK (AMP-activated protein kinase). The biological activities, toxicity, pharmacological features and clinical implications, including the effect of anti-oxidative capacities, protective effect on obese-induced heart dysfunction, and efficacy and safety of chromium supplementation in diabetes are discussed as well.

  16. Two lanthanide-hydroxo clusters with different nuclearity: Synthesis, structures, luminescent and magnetic properties

    NASA Astrophysics Data System (ADS)

    Li, Xi-Li; Zhu, Cancan; Zhang, Xue-Li; Hu, Ming; Wang, Ai-Ling; Xiao, Hong-Ping

    2017-01-01

    Under the identical reaction conditions, two new TbIII and SmIII-hydroxo clusters with different nuclearity have been prepared and characterized by X-ray crystallography, spectroscopic methods and magnetic measurements. Solid-state structure analyses reveal that the TbIII cluster shows a pentanuclear square pyramidal shape of the composition [Tb5(μ3-OH)4(μ4-OH)(dbm)10]·2H2O (1, dbm- = dibenzoylmethanate) with the dbm ligands presenting two types of coordination modes [η2-and (μ-O)-η2-]. The SmIII species presents a tetranuclear parallelogram structure formulated as [Sm4(μ3-OH)2(dbm)10]·12H2O (2), and three types of coordination modes [η2-, (μ-O)-η2- and (μ-O)2-η2-] for dbm ligands are observed. The measurements of magnetic properties indicate that the direct-current (dc) magnetic behaviors of two clusters mainly result from the thermal depopulation of the Stark sublevels of the TbIII and SmIII ions, respectively. Meanwhile, alternating current (ac) magnetic susceptibility of 1 is also assessed. Investigations on luminescence properties show that 2 displays characteristic emission of the SmIII ion in visible range, while 1 does not exhibit any detectable emission. The interpretations of different emission behaviors for 1 and 2 are also presented in detail.

  17. A sandwich-type triple-decker lanthanide complex with mixed phthalocyanine and Schiff base ligands.

    PubMed

    Gao, Feng; Li, Yu-Yang; Liu, Cai-Ming; Li, Yi-Zhi; Zuo, Jing-Lin

    2013-08-21

    A new triple-decker dinuclear sandwich-type dysprosium complex based on both the phthalocyanine ligand and the tetradentate Schiff base ligand was synthesized, which is of interest for synthetic chemistry and also shows single-molecule magnetic behaviour.

  18. Reactivity of halide and pseudohalide ligands in transition-metal complexes

    SciTech Connect

    Kukushkin, Yu.N.; Kukushkin, V.Yu.

    1985-10-01

    The experimental material on the reactions of coordinated halide ligands, as well as cyanide, azido, thiocyanato, and cyanato ligands, in transition-metal complexes has been generalized in this review.

  19. Complexation of trivalent americium and lanthanides with terdentate 'N' donor ligands: the role of rigidity in the ligand structure.

    PubMed

    Bhattacharyya, Arunasis; Gadly, Trilochan; Pathak, Priyanath; Ghosh, Sunil K; Mohapatra, Manoj; Ghanty, Tapan K; Mohapatra, Prasanta K

    2014-08-28

    A systematic study on the Ln(3+) complexation behaviour with two terdentate 'N' donor ligands of varying structural rigidity, viz. 5,6-dimethyl-(1,2,4)-triazinylbipyridine (Me2TBipy) and 5,6-dimethyl-(1,2,4)-triazinylphenanthroline (Me2TPhen), is performed in the present work by UV-Vis spectrophotometry, time resolved fluorescence spectroscopy (TRFS) and electrospray ionization mass spectrometric (ESI-MS) studies. These studies indicate the formation of a 1 : 1 complex of La(3+), 1 : 2 complexes of Eu(3+) and Er(3+) with both the ligands. Density functional theoretical (DFT) study is carried out to determine the solution phase structure of the Eu(3+) complex considering the species (from UV-Vis spectrophotometry) and C2v site symmetry around the Eu(3+) ion (from TRFS study). Me2TPhen is found to be a stronger complexing ligand as compared to Me2TBipy irrespective of the Ln(3+) ions. The solid state crystal structure of the La(3+) complex of Me2TPhen is determined using the single crystal X-ray diffraction (SCXRD) technique. The complexation of the trivalent Am(3+) ion is also studied with both these ligands using UV-Vis spectrophotometric titrations which show the formation of 1 : 2 complexes with higher complexation constant values as compared to all the Ln(3+) ions studied, indicating the selectivity of these ligands for the trivalent actinides over the lanthanides.

  20. Mass Spectrometry of Protein-Ligand Complexes: Enhanced Gas Phase Stability of Ribonuclease-Nucleotide Complexes

    PubMed Central

    Yin, Sheng; Xie, Yongming; Loo, Joseph A.

    2008-01-01

    Noncovalent protein-ligand complexes are readily detected by electrospray ionization mass spectrometry (ESI-MS). Ligand binding stoichiometry can be determined easily by the ESI-MS method. The ability to detect noncovalent protein-ligand complexes depends, however, on the stability of the complexes in the gas phase environment. Solution binding affinities may or may not be accurate predictors of their stability in vacuo. Complexes composed of cytidine nucleotides bound to ribonuclease A (RNase A) and ribonuclease S (RNase S) were detected by ESI-MS and were further analyzed by MS/MS. RNase A and RNase S share similar structures and biological activity. Subtilisin-cleavage of RNase A yields an S-peptide and an S-protein; the S-peptide and S-protein interact through hydrophobic interactions with a solution binding constant in the nanomolar range to generate an active RNase S. Cytidine nucleotides bind to the ribonucleases through electrostatic interactions with a solution binding constant in the micromolar range. Collisionally activated dissociation (CAD) of the 1:1 RNase A-CDP and CTP complexes yields cleavage of the covalent phosphate bonds of the nucleotide ligands, releasing CMP from the complex. CAD of the RNase S-CDP and CTP complexes dissociates the S-peptide from the remaining S-protein/nucleotide complex; further dissociation of the S-protein/nucleotide complex fragments a covalent phosphate bond of the nucleotide with subsequent release of CMP. Despite a solution binding constant favoring the S-protein/S-peptide complex, CDP/CTP remains electrostatically bound to the S-protein in the gas phase dissociation experiment. This study highlights the intrinsic stability of electrostatic interactions in the gas phase and the significant differences in solution and gas phase stabilities of noncovalent complexes that can result. PMID:18565758

  1. EXAFS Studies of Some Copper(II) Mixed-Ligand Complexes

    SciTech Connect

    Joshi, S. K.; Katare, R. K.; Shrivastava, B. D.

    2007-02-02

    X-ray K-absorption spectroscopic studies have been carried out on copper (II) mixed-ligand complexes with glutamic acid and aspartic acid as the primary ligands, where as water, pyridine, imidazole and benz-imidazole have been used as secondary ligands. Chemical shifts obtained from the X-ray absorption data have indicated that the glutamic acid complexes are more ionic as compared to their corresponding aspartic acid complexes having similar secondary ligands. Further, we have estimated the average metal-ligand bond distances from the from structure data. For the different complexes studied under the present investigation, the studies reveal that the bonding parameter {alpha}1 decreases with the increase in the percentage covalency of the metal-ligand bond. Thus, the bonding parameter {alpha}1 may be used for the estimation of percentage covalency of the metal-ligand bond in other similar complexes.

  2. Water oxidation by Ruthenium complexes incorporating multifunctional biipyridyl diphosphonate ligands

    DOE PAGES

    Xie, Yan; Shaffer, David W.; Lewandowska-Andralojc, Anna; ...

    2016-05-11

    Here, we describe herein the synthesis and characterization of ruthenium complexes with multifunctional bipyridyl diphosphonate ligands as well as initial water oxidation studies. In these complexes, the phosphonate groups provide redox-potential leveling through charge compensation and σ donation to allow facile access to high oxidation states. These complexes display unique pH-dependent electrochemistry associated with deprotonation of the phosphonic acid groups. The position of these groups allows them to shuttle protons in and out of the catalytic site and reduce activation barriers. A mechanism for water oxidation by these catalysts is proposed on the basis of experimental results and DFT calculations.more » The unprecedented attack of water at a neutral six-coordinate [RuIV] center to yield an anionic seven-coordinate [RuIV–OH]– intermediate is one of the key steps of a single-site mechanism in which all species are anionic or neutral. These complexes are among the fastest single-site catalysts reported to date.« less

  3. Water oxidation by Ruthenium complexes incorporating multifunctional biipyridyl diphosphonate ligands

    SciTech Connect

    Xie, Yan; Shaffer, David W.; Lewandowska-Andralojc, Anna; Szalda, David J.; Concepcion, Javier J.

    2016-05-11

    Here, we describe herein the synthesis and characterization of ruthenium complexes with multifunctional bipyridyl diphosphonate ligands as well as initial water oxidation studies. In these complexes, the phosphonate groups provide redox-potential leveling through charge compensation and σ donation to allow facile access to high oxidation states. These complexes display unique pH-dependent electrochemistry associated with deprotonation of the phosphonic acid groups. The position of these groups allows them to shuttle protons in and out of the catalytic site and reduce activation barriers. A mechanism for water oxidation by these catalysts is proposed on the basis of experimental results and DFT calculations. The unprecedented attack of water at a neutral six-coordinate [RuIV] center to yield an anionic seven-coordinate [RuIV–OH] intermediate is one of the key steps of a single-site mechanism in which all species are anionic or neutral. These complexes are among the fastest single-site catalysts reported to date.

  4. Electronic spectra and photophysics of platinum(II) complexes with alpha-diimine ligands - Solid-state effects. I - Monomers and ligand pi dimers

    NASA Technical Reports Server (NTRS)

    Miskowski, Vincent M.; Houlding, Virginia H.

    1989-01-01

    Two types of emission behavior for Pt(II) complexes containing alpha-diimine ligands have been observed in dilute solution. If the complex also has weak field ligands such as chloride, ligand field (d-d) excited states become the lowest energy excited states. If only strong field ligands are present, a diimine 3(pi-pi/asterisk/) state becomes the lowest. In none of the cases studied did metal-to-ligand charge transfer excited state lie lowest.

  5. Determination of mercury complexation in coastal and estuarine waters using competitive ligand exchange method.

    PubMed

    Han, Seunghee; Gill, Gary A

    2005-09-01

    While many studies have examined Hg(II) binding ligand in natural dissolved organic matter, determined ligand concentrations far exceed natural Hg(II) concentrations. This ligand class may not influence natural Hg(II) complexation, given the reverse relation between ligand concentration and metal-ligand binding strength. This study used a new competing ligand, thiosalicylic acid, in a competitive ligand exchange method in which water-toluene extraction was used to determine extremely strong Hg(II) binding sites in estuarine and coastal waters (dissolved [Hg] = 0.5-8 pM). Thiosalicylic acid competition lowered the detection limit of Hg(II) complexing ligand by 2 orders of magnitude from values found by previous studies; the determined Hg(II) complexing ligand ranged from 13 to 103 pM. The logarithmic conditional stability constants between Hg(II) and Hg(II) complexing ligand (Kcond' = [HgL]/([Hg2+][L']), [L'] = total [L] - [HgL]) ranged from 26.5 to 29.0. Applying the same method for chloride competition detected another class of ligand that is present from 0.5 to 9.6 nM with log conditional stability constants ranging from 23.1 to 24.4. A linear relationship was observed between the log conditional stability constant and log Hg(II) complexing ligand concentration, supporting the hypothesis that Hg(II) binding ligand should be characterized as a series or continuum of binding sites on natural dissolved organic matter. Calculating Hg(II) complexation using the conditional stability constants and ligand concentrations determined in this study indicates that >99% of the dissolved mercury is complexed by natural ligand associated with dissolved organic matter in estuarine and coastal waters of Galveston Bay, Texas.

  6. DNA Interactions with Ruthenium(ll) Polypyridine Complexes Containing Asymmetric Ligands

    PubMed Central

    Chao, Hui

    2005-01-01

    In an attempt to probe nucleic acid structures, numerous Ru(II) complexes with different ligands have been synthesized and investigated. In this contribution we focus on the DNA-binding properties of ruthenium(II) complexes containing asymmetric ligands that have attracted little attention in the past decades. The influences of the shape and size of the ligand on the binding modes, affinity, enantioselectivities and photocleavage of the complexes to DNA are described. PMID:18365086

  7. Synthesis, structure and reactivity of rare-earth metal complexes containing anionic phosphorus ligands.

    PubMed

    Li, Tianshu; Kaercher, Sabrina; Roesky, Peter W

    2014-01-07

    A comprehensive review of structurally characterized rare-earth metal complexes containing anionic phosphorus ligands is presented. Since rare-earth elements form hard ions and phosphorus is considered as a soft ligand, the rare-earth metal phosphorus coordination is regarded as a less favorite combination. Three classes of phosphorus ligands, (1) the monoanionic organophosphide ligands (PR2(-)) bearing one negative charge on the phosphorus atom; (2) the dianionic phosphinidene (PR(2-)) and P(3-) ligands; and (3) the pure inorganic polyphosphide ligands (Pn(x-)), are included here. Particular attention has been paid to the synthesis, structure, and reactivity of the rare-earth metal phosphides.

  8. Sulfur containing platinum(II) complexes with N-heterocyclic carbene ligands obtained by reactions of a hydrosulfido complex.

    PubMed

    Maeda, Yuri; Hashimoto, Hideki; Nishioka, Takanori

    2012-10-21

    A hydrosulfido platinum(ii) complex with a chelated N-heterocyclic carbene (NHC) ligand was oxidised with O(2) in the presence of excess hydrogen sulfide, to give a linear tetrasulfido complex, and without hydrogen sulfide, to give a thiosulfato-bridged dinuclear complex. The hydrosulfido complex also reacted with an acetato complex containing the chelating NHC platinum unit to afford a trinuclear platinum complex with two triply bridging sulfido ligands showing an equilibrium in solution between two isomers based on the arrangement of the chelating NHC ligands.

  9. Lithium, titanium, and zirconium complexes with novel amidinate scorpionate ligands.

    PubMed

    Otero, Antonio; Fernandez-Baeza, Juan; Antiñolo, Antonio; Tejeda, Juan; Lara-Sanchez, Agustín; Sanchez-Barba, Luis F; López-Solera, Isabel; Rodríguez, Ana M

    2007-03-05

    The reaction of bis(3,5-dimethylpyrazol-1-yl)methane (bdmpzm) with BunLi and carbodiimide derivatives, namely, N,N'-diisopropyl, dicyclohexyl, and 1-tert-butyl-3-ethyl carbodiimides, enables the preparation of new heteroscorpionate ligands in the form of the lithium derivatives [Li(NNN)(THF)] (NNN = pbpamd (1) (pbpamd = N,N'-diisopropylbis(3,5-dimethylpyrazol-1-yl)acetamidinate); cbpamd (2) (cbpamd = N,N'-dicyclohexylbis(3,5-dimethylpyrazol-1-yl)acetamidinate); and tbpamd (3) (tbpamd = N-ethyl-N'-tert-butylbis(3,5-dimethylpyrazol-1-yl)acetamidinate)), although a similar process with N,N'-dimethylcarbodiimide gave the dinuclear complex [Li(bpzii)(THF)]2 (4) (bpzii = N-(dimethylamino)-N'-[(dimethylamino)bis(3,5-dimethylpyrazol-1-yl)methylimino]imino). When this last reaction was carried out in an air atmosphere, the cluster complex [Li8(mu4-O)2(mu4-OH)2(mu4-pz)2(kappa2-bpziLi)2(bpzCN)2(THF)4] (5) (bpziLi = dimethylaminobis(3,5-dimethylpyrazol-1-yl)methyliminolithium, bpzCN = bis(3,5-dimethylpyrazol-1-yl)acetonitrile) was isolated and characterized by X-ray analysis. Finally, when the same process was carried out in the presence of water the amidine-scorpionate (bpzan) (6) (bpzan = N,N-dimethylbis(3,5-dimethylpyrazol-1-yl)acetamidine) was obtained. Compounds 1 and 3 reacted with [TiCl4(THF)2] or [ZrCl4] to give complexes of stoichiometry [MCl3((kappa3-NNN))] (M = Ti, Zr) (7-10). The structures of the different compounds were determined by spectroscopic methods and, in addition, the X-ray crystal structures of 1, 3, 4, 5, and 6 were also established.

  10. Catalytic dioxygen activation by Co(II) complexes employing a coordinatively versatile ligand scaffold.

    PubMed

    Sharma, Savita K; May, Philip S; Jones, Matthew B; Lense, Sheri; Hardcastle, Kenneth I; MacBeth, Cora E

    2011-02-14

    The ligand bis(2-isobutyrylamidophenyl)amine has been prepared and used to stabilize both mononuclear and dinuclear cobalt(II) complexes. The nuclearity of the cobalt product is regulated by the deprotonation state of the ligand. Both complexes catalytically oxidize triphenylphosphine to triphenylphosphine oxide in the presence of O(2).

  11. Luminescent solutions and films of new europium complexes with chelating ligands

    NASA Astrophysics Data System (ADS)

    Kharcheva, Anastasia V.; Ivanov, Alexey V.; Borisova, Nataliya E.; Kaminskaya, Tatiana P.; Patsaeva, Svetlana V.; Popov, Vladimir V.; Yuzhakov, Viktor I.

    2015-03-01

    The development of new complexes of rare earth elements (REE) with chelating organic ligands opens up the possibility of purposeful alteration in the composition and structure of the complexes, and therefore tuning their optical properties. New ligands possessing two pyridine rings in their structure were synthesized to improve coordination properties and photophysical characteristics of REE compounds. Complexes of trivalent europium with novel chelating ligands were investigated using luminescence and absorption spectroscopy, as well as atomic force microscopy. Luminescence properties of new compounds were studied both for solutions and films deposited on the solid support. All complexes exhibit the characteristic red luminescence of Eu (III) ion with the absolute lumenescence quantum yield in polar acetonitrile solution varying from 0.21 to 1.45 % and emission lifetime ranged from 0.1 to 1 ms. Excitation spectra of Eu coordination complexes correspond with absorption bands of chelating ligand. The energy levels of the triplet state of the new ligands were determined from the phosphorescence at 77 K of the corresponding Gd (III) complexes. The morphology of films of europium complexes with different substituents in the organic ligands was investigated by atomic force microscopy (AFM). It strongly depends both on the type of substituent in the organic ligand, and the rotation speed of the spin-coater. New europium complexes with chelating ligands containing additional pyridine fragments represent outstanding candidates for phosphors with improved luminescence properties.

  12. Non-aqueous chemistry of uranyl complexes with tripodal ligands

    NASA Astrophysics Data System (ADS)

    Burns, Carol J.; Clark, David L.; Duval, Paul B.; Scott, Brian L.

    2000-07-01

    The trans dioxo uranyl(VI) ion (UO22+) is remarkably stable with respect to the U=O bond, which dominates the stereochemistry of its coordination compounds in both aqueous and non-aqueous solutions. The linear O=U=O unit directs all other ligands to coordinate in an equatorial plane perpendicular to the O=U=O axis. In aqueous solution, uranyl coordination chemistry has been developed with a wide array of weak-field ligands that coordinate in the equatorial plane. In contrast, non-aqueous uranyl chemistry incorporating stronger donor ligands at equatorial sites has been less well developed. In this paper, the use of tripodal ligands with strong amide and alkoxide donors is employed, with an aim towards probing the electronic and steric effects of these cis-directing ligands on the structure and bonding of the trans dioxo unit.

  13. Effect of ligand denticity on the nitric oxide reactivity of cobalt(ii) complexes.

    PubMed

    Deka, Hemanta; Ghosh, Somnath; Saha, Soumen; Gogoi, Kuldeep; Mondal, Biplab

    2016-07-05

    The activation of nitric oxide (NO) by transition metal complexes has attracted a wide range of research activity. To study the role of ligand denticity on the NO reactivity of Co(ii) complexes, three complexes (, and ) were prepared with ligands , and [ = N(1),N(2)-bis(2,4,6-trimethylbenzyl)ethane-1,2-diamine; = N(1)-(2,4,6-trimethylbenzyl)-N(2)-(2-((2,4,6-trimethylbenzyl)amino)ethyl)ethane-1,2-diamine] and = N(1)-(2,4,6-trimethylbenzyl)-N(2),N(2)-bis(2-((2,4,6-trimethylbenzyl)amino)ethyl)ethane-1,2-diamine], respectively. The complexes differ from each other in terms of denticity and flexibility of the ligand frameworks. In degassed methanol solution, they were exposed to NO gas and their reactivity was studied using various spectroscopic techniques. In the case of complex with a bidentate ligand, reductive nitrosylation of the metal ion with concomitant dinitrosation of the ligand framework was observed. Complex with a tridentate ligand did not undergo reductive nitrosylation; rather, the formation of [Co(III)(NO(-))] was observed. The nitrosyl complexes were isolated and structurally characterized. On the other hand, complex with a tetradentate tripodal ligand did not react with NO. This can be attributed to the geometry of the complex as well as due to the accessibility of the corresponding redox potential.

  14. Aromatic versus heteroradialene character in extended thiophloroglucinol ligands and their trinuclear nickel(II) complexes.

    PubMed

    Feldscher, Bastian; Stammler, Anja; Bögge, Hartmut; Glaser, Thorsten

    2014-08-01

    Extended phloroglucinol ligands and complexes are best described as nonaromatic heteroradialenes. Herein, the electronic structures of extended thiophloroglucinol ligands and their Ni(II) 3 complexes are evaluated by comparison to their phloroglucinol analogs by means of NMR, FTIR, UV/Vis, and structural parameters. To provide a full set of compounds for this comparison of S versus O substitution, a new triplesalen ligand, its Ni(II) 3 complex, and a new thiophloroglucinol were synthesized. (1) H and (15) N NMR chemical shifts and coupling constants prove that the thiophloroglucinol ligands exist as the N-protonated and not the O-protonated tautomer. (13) C and (15) N NMR chemical shifts and structural parameters further demonstrated that the extended thiophloroglucinol ligands must be described with a predominant thione-enamine (heteroradialene) character despite the participation of a CS double bond. In the Ni(II) 3 complexes, this heteroradialene character is reduced but still predominant.

  15. Organic iron (III) complexing ligands during an iron enrichment experiment in the western subarctic North Pacific

    NASA Astrophysics Data System (ADS)

    Kondo, Yoshiko; Takeda, Shigenobu; Nishioka, Jun; Obata, Hajime; Furuya, Ken; Johnson, William Keith; Wong, C. S.

    2008-06-01

    Complexation of iron (III) with natural organic ligands was investigated during a mesoscale iron enrichment experiment in the western subarctic North Pacific (SEEDS II). After the iron infusions, ligand concentrations increased rapidly with subsequent decreases. While the increases of ligands might have been partly influenced by amorphous iron colloids formation (12-29%), most in-situ increases were attributable to the <200 kDa fraction. Dilution of the fertilized patch may have contributed to the rapid decreases of the ligands. During the bloom decline, ligand concentration increased again, and the high concentrations persisted for 10 days. The conditional stability constant was not different between inside and outside of the fertilized patch. These results suggest that the chemical speciation of the released iron was strongly affected by formation of the ligands; the production of ligands observed during the bloom decline will strongly impact the iron cycle and bioavailability in the surface water.

  16. Chromium(III) complexes of naturally occurring ligands

    NASA Astrophysics Data System (ADS)

    El-Shahawi, M. S.

    1995-02-01

    Chromium(III) complexes prepared from CrCl 3Py 3 and anhydrous CrCl 3 with L(-)-threonine, nicotinic acid, glycine, D(-)-penicillamine, L(-)-cysteine and L(-)-cystine have been characterized. The magnetic moments (3.4-4.05 B.M.) are close to the spin only value for a d3 chromium(III) ion in octahedral or pseudo octahedral symmetry. In the electronic spectra two sharp peaks are observed at (15.9-19.8) × 10 3 and (22.0-26.7) × 10 3 cm -1 and are assigned to d-d transitions in the pseudo octahedral configuration. The parameters ( Dq, B, β35) and the interelectronic repulsion parameter with the ionic charge, Z∗, are calculated and place the ligand in the middle of the spectrochemical series. In the circular dichroism spectra three Cotton effects are observed in the forbidden band of the optically active chelates and are assigned to the 2E( 2Eg), 2A 2( 2T 1g) and2E( 2T 1g) while that in the spin allowed band are a result of the splitting of the 4A 2g( 4T 2g) to 4A 1( 4T 2g) and4E( 4T 2g) transitions. The structure of threonine, cystine and cysteine chelates are likely to be fac since strong and well defined Cotton effects are observed. The Cotton effects of penicillamine chelates are weak suggesting formation of the mer structure. Prolonged heating or bubbling air through the solution of CrCl 3Py 3 containing L(-)-threonine, glycine or nicotinic acid for several hours enhances chromium(VI) formation.

  17. Iridium-catalyzed H/D exchange: ligand complexes with improved efficiency and scope.

    PubMed

    Parmentier, Michael; Hartung, Thomas; Pfaltz, Andreas; Muri, Dieter

    2014-09-01

    Hydrogen isotope exchange (HIE) is one of the most attractive tools for the introduction of deuterium or tritium to an organic compound. Herein, iridium complexes with N,P-ligands, highly active catalysts for asymmetric double bond reductions, have been tested for their HIE capabilities. Electron-rich ligands, containing dicyclohexylphosphines or phosphinites, have been identified as excellent ligands for efficient deuterium incorporation. Substrates with strong directing groups, that is, pyridines, ketones, and amides, as well as weak ligating units, such as, nitro, sulfones, and sulfonamides, could be labeled efficiently. With the addition of tris(pentafluorophenyl) borane to the reaction mixture, also highly deactivating nitrile substituents were well tolerated in the reaction. Based on the excellent results obtained with the chiral ThrePhox ligand, a structurally simpler, achiral ligand was developed. The iridium complex containing this ligand, proved to be a powerful catalyst for HIE reactions.

  18. De novo generation of singlet oxygen and ammine ligands by photoactivation of a platinum anticancer complex.

    PubMed

    Zhao, Yao; Farrer, Nicola J; Li, Huilin; Butler, Jennifer S; McQuitty, Ruth J; Habtemariam, Abraha; Wang, Fuyi; Sadler, Peter J

    2013-12-16

    Worth the excitement: Highly reactive oxygen and nitrogen species are generated by photoactivation of the anticancer platinum(IV) complex trans,trans,trans-[Pt(N3 )2 (OH)2 (MA)(Py)] (MA=methylamine, Py=pyridine). Singlet oxygen is formed from the hydroxido ligands and not from dissolved oxygen, and ammine ligands are products from the conversion of azido ligands to nitrenes. Both processes can induce oxidation of guanine.

  19. Predicting Electrophoretic Mobility of Protein-Ligand Complexes for Ligands from DNA-Encoded Libraries of Small Molecules.

    PubMed

    Bao, Jiayin; Krylova, Svetlana M; Cherney, Leonid T; Hale, Robert L; Belyanskaya, Svetlana L; Chiu, Cynthia H; Shaginian, Alex; Arico-Muendel, Christopher C; Krylov, Sergey N

    2016-05-17

    Selection of target-binding ligands from DNA-encoded libraries of small molecules (DELSMs) is a rapidly developing approach in drug-lead discovery. Methods of kinetic capillary electrophoresis (KCE) may facilitate highly efficient homogeneous selection of ligands from DELSMs. However, KCE methods require accurate prediction of electrophoretic mobilities of protein-ligand complexes. Such prediction, in turn, requires a theory that would be applicable to DNA tags of different structures used in different DELSMs. Here we present such a theory. It utilizes a model of a globular protein connected, through a single point (small molecule), to a linear DNA tag containing a combination of alternating double-stranded and single-stranded DNA (dsDNA and ssDNA) regions of varying lengths. The theory links the unknown electrophoretic mobility of protein-DNA complex with experimentally determined electrophoretic mobilities of the protein and DNA. Mobility prediction was initially tested by using a protein interacting with 18 ligands of various combinations of dsDNA and ssDNA regions, which mimicked different DELSMs. For all studied ligands, deviation of the predicted mobility from the experimentally determined value was within 11%. Finally, the prediction was tested for two proteins and two ligands with a DNA tag identical to those of DELSM manufactured by GlaxoSmithKline. Deviation between the predicted and experimentally determined mobilities did not exceed 5%. These results confirm the accuracy and robustness of our model, which makes KCE methods one step closer to their practical use in selection of drug leads, and diagnostic probes from DELSMs.

  20. From N-alkylimidazole ligands at a rhenium center: ring opening or formation of NHC complexes.

    PubMed

    Huertos, Miguel A; Pérez, Julio; Riera, Lucía; Menéndez-Velázquez, Amador

    2008-10-15

    Cationic rhenium tricarbonyl complexes with three N-alkylimidazole ligands undergo deprotonation of the central CH group upon reaction with 1 equiv of KN(SiMe3)2. For the tris(N-methylimidazole) complex, the metal fragment shifts from N to C, leaving an NHC complex with a nonsubstituted N atom. For compounds with at least one N-mesitylimidazole ligand, the intramolecular attack of the deprotonated carbon onto the central carbon of an N-mesitylimidazole ligand results in ring opening of the latter.

  1. Ligand substitution reactions of a phenolic quinolyl hydrazone; oxidovanadium (IV) complexes

    PubMed Central

    2011-01-01

    Background Quinoline ring has therapeutic and biological activities. Quinolyl hydrazones constitute a class of excellent chelating agents. Recently, the physiological and biological activities of quinolyl hydrazones arise from their tendency to form metal chelates with transition metal ions. In this context, we have aimed to study the competency effect of a phenolic quinolyl hydrazone (H2L; primary ligand) with some auxiliary ligands (Tmen, Phen or Oxine; secondary ligands) towards oxidovanadium (IV) ions. Results Mono- and binuclear oxidovanadium (IV) - complexes were obtained from the reaction of a phenolic quinolyl hydrazone with oxidovanadium (IV)- ion in absence and presence of N,N,N',N'- tetramethylethylenediamine (Tmen), 1,10-phenanthroline (Phen) or 8-hydroxyquinoline (Oxine). The phenolic quinolyl hydrazone ligand behaves as monobasic bidentate (NO- donor with O- bridging). All the obtained complexes have the preferable octahedral geometry except the oxinato complex (2) which has a square pyramid geometry with no axial interaction; the only homoleptic complex in this study. Conclusion The ligand exchange (substitution/replacement) reactions reflect the strong competency power of the auxiliary aromatic ligands (Phen/Oxine) compared to the phenolic quinolyl hydrazone (H2L) towards oxidovanadium (IV) ion; (complexes 2 and 3). By contrast, in case of the more flexible aliphatic competitor (Tmen), an adduct was obtained (4). The obtained complexes reflect the strength of the ligand field towards the oxidovanadium (IV)- ion; Oxine or Phen >> phenolic hydrazone (H2L) > Tmen. PMID:21846387

  2. Electric relaxation processes in chemodynamics of aqueous metal complexes: from simple ligands to soft nanoparticulate complexants.

    PubMed

    van Leeuwen, Herman P; Buffle, Jacques; Town, Raewyn M

    2012-01-10

    The chemodynamics of metal complexes with nanoparticulate complexants can differ significantly from that for simple ligands. The spatial confinement of charged sites and binding sites to the nanoparticulate body impacts on the time scales of various steps in the overall complex formation process. The greater the charge carried by the nanoparticle, the longer it takes to set up the counterion distribution equilibrium with the medium. A z+ metal ion (z > 1) in a 1:1 background electrolyte will accumulate in the counterionic atmosphere around negatively charged simple ions, as well as within/around the body of a soft nanoparticle with negative structural charge. The rate of accumulation is often governed by diffusion and proceeds until Boltzmann partition equilibrium between the charged entity and the ions in the medium is attained. The electrostatic accumulation proceeds simultaneously with outer-sphere and inner-sphere complex formation. The rate of the eventual inner-sphere complex formation is generally controlled by the rate constant of dehydration of the metal ion, k(w). For common transition metal ions with moderate to fast dehydration rates, e.g., Cu(2+), Pb(2+), and Cd(2+), it is shown that the ionic equilibration with the medium may be the slower step and thus rate-limiting in their overall complexation with nanoparticles.

  3. Structure of the Ni(II) complex of Escherichia coli peptide deformylase and suggestions on deformylase activities depending on different metal(II) centres.

    PubMed

    Yen, Ngo Thi Hai; Bogdanović, Xenia; Palm, Gottfried J; Kühl, Olaf; Hinrichs, Winfried

    2010-02-01

    Crystal structures of polypeptide deformylase (PDF) of Escherichia coli with nickel(II) replacing the native iron(II) have been solved with chloride and formate as metal ligands. The chloro complex is a model for the correct protonation state of the hydrolytic hydroxo ligand and the protonated status of the Glu133 side chain as part of the hydrolytic mechanism. The ambiguity that recently some PDFs have been identified with Zn(2+) ion as the active-site centre whereas others are only active with Fe(2+) (or Co(2+), Ni(2+) is discussed with respect to Lewis acid criteria of the metal ion and substrate activation by the CD loop.

  4. Synthesis and Characterization of Metal Complexes with Schiff Base Ligands

    ERIC Educational Resources Information Center

    Wilkinson, Shane M.; Sheedy, Timothy M.; New, Elizabeth J.

    2016-01-01

    In order for undergraduate laboratory experiments to reflect modern research practice, it is essential that they include a range of elements, and that synthetic tasks are accompanied by characterization and analysis. This intermediate general chemistry laboratory exercise runs over 2 weeks, and involves the preparation of a Schiff base ligand and…

  5. Studies on Cu(II) ternary complexes involving an aminopenicillin drug and imidazole containing ligands

    NASA Astrophysics Data System (ADS)

    Regupathy, Sthanumoorthy; Nair, Madhavan Sivasankaran

    2010-02-01

    Equilibrium studies on the ternary complex systems involving ampicillin (amp) as ligand (A) and imidazole containing ligands viz., imidazole (Him), benzimidazole (Hbim), histamine (Hist) and histidine (His) as ligands (B) at 37 °C and I = 0.15 mol dm -3 (NaClO 4) show the presence of CuABH, CuAB and CuAB 2. The proton in the CuABH species is attached to ligand A. In the ternary complexes the ligand, amp(A) binds the metal ion via amino nitrogen and carbonyl oxygen atom. The CuAB (B = Hist/His)/CuAB 2 (B = Him/Hbim) species have also been isolated and the analytical data confirmed its formation. Non-electrolytic behavior and monomeric type of chelates have been assessed from their low conductance and magnetic susceptibility values. The electronic and vibrational spectral results were interpreted to find the mode of binding of ligands to metal and geometry of the complexes. This is also supported by the g tensor values calculated from ESR spectra. The thermal behaviour of complexes were studied by TGA/DTA. The redox behavior of the complexes has been studied by cyclic voltammetry. The antimicrobial activity and CT DNA cleavage study of the complexes show higher activity for ternary complexes.

  6. Synthesis and antimalarial activity of metal complexes of cross-bridged tetraazamacrocyclic ligands

    PubMed Central

    Hubin, Timothy J.; Amoyaw, Prince N. -A.; Roewe, Kimberly D.; Simpson, Natalie C.; Maples, Randall D.; Carder Freeman, TaRynn N.; Cain, Amy N.; Le, Justin G.; Archibald, Stephen J.; Khan, Shabana I.; Tekwani, Babu L.; Khan, M. O. Faruk

    2014-01-01

    Using transition metals such as manganese(II), iron(II), cobalt(II), nickel(II), copper(II), and zinc(II), several new metal complexes of cross-bridged tetraazamacrocyclic chelators namely, cyclen- and cyclam-analogs with benzyl groups, were synthesized and screened for in vitro antimalarial activity against chloroquine-resistant (W2) and chloroquine-sensitive (D6) strains of Plasmodium falciparum. The metal-free chelators tested showed little or no antimalarial activity. All the metal complexes of the dibenzyl cross-bridged cyclam ligand exhibited potent antimalarial activity. The Mn2+ complex of this ligand was the most potent with IC50s of 0.127 and 0.157 µM against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) P. falciparum strains, respectively. In general, the dibenzyl hydrophobic ligands showed better antimalarial activity compared to the activity of monobenzyl ligands, potentially because of their higher lipophilicity and thus better cell penetration ability. The higher antimalarial activity displayed by the manganese complex for the cyclam ligand in comparison to that of the cyclen, correlates with the larger pocket of cyclam compared to that of cyclen which produces a more stable complex with the Mn2+. Few of the Cu2+ and Fe2+ complexes also showed improvement in activity but Ni2+, Co2+ and Zn2+ complexes did not show any improvement in activity upon the metal-free ligands for anti-malarial development. PMID:24857776

  7. Enthalpy of ligand substitution in cis organopalladium complexes with monodentate ligands.

    PubMed

    Salas, Gorka; Casares, Juan A; Espinet, Pablo

    2009-10-21

    The enthalpy for the substitution reaction cis-[PdRf(2)(THF)(2)] + 2 L -->cis-[PdRf(2)L(2)] + 2THF (THF = tetrahydrofuran) has been measured in THF by calorimetric methods for Rf = 3,5-dichloro-2,4,6-trifluorophenyl, L = PPh(3), AsPh(3), SbPh(3), PMePh(2), PCyPh(2), PMe(3), AsMePh(2), or L(2) = dppe (1,2-bis(diphenylphosphino)ethane), dppf (1,1'-bis(diphenylphosphino)ferrocene). The values determined show that the substitution enthalpy has a strong dependence on the electronic and steric properties of the ligand. The study of the consecutive substitution reactions cis-[PdRf(2)(THF)(2)] + L -->cis-[PdRf(2)L(THF)] + THF, and cis-[PdRf(2)L(THF)] + L -->cis-[PdRf(2)L(2)] + THF has been carried our for L = PPh(3) and L = PCyPh(2). The first substitution is clearly more favorable for the bulkier leaving ligand, but the second gives practically the same DeltaH value for both cases, indicating that the differences in steric hindrance happen to compensate the electronic differences for both ligands. The X-ray structures of cis-[PdRf(2)(PMePh(2))(2)], cis-[PdRf(2)(dppe)] and cis-[PdRf(2)(dppf)] are reported.

  8. Investigations into the synthesis and fluorescence properties of Tb(III) complexes of a novel bis-β-diketone-type ligand and a novel bispyrazole ligand

    NASA Astrophysics Data System (ADS)

    Xiao, Lin-Xiang; Luo, Yi-Ming; Chen, Zhe; Li, Jun; Tang, Rui-Ren

    2008-11-01

    A novel bis-β-diketone organic ligand, 1,1'-(2,6-bispyridyl)bis-3-( p-methoxyphenyl)-1,3-propanedione (L 1) and its derivatives, a novel bispyrazole ligand, 2,6-bis(5-(4-methoxyphenyl)-1H-pyrazol-3-yl)pyridine (L 2) were designed and synthesized and their complexes with Tb(III) ion were successfully prepared. The ligands and the corresponding metal complexes were characterized by elemental analysis, infrared, proton nuclear magnetic resonance spectroscopy and TG-DTA. Analysis of the IR spectra suggested that the lanthanide metal ion Tb(III) coordinated to the ligands via the nitrogen atom of the pyridine ring and the carbonyl oxygen atoms for ligand L 1 and the nitrogen atom of the pyrazole ring for ligand L 2. The fluorescence properties of the two complexes in solid state were investigated and it was discovered that the Tb(III) ions could be sensitized by both the ligand (L 1) and ligand (L 2) to some extent. In particular, the complex of ligand (L 2) is a better green luminescent material that could be used as a candidate material in organic light-emitting devices (OLEDs) since it could be much better sensitized by the ligand (L 2), and the fluorescence intensity of Tb(III) complex of L 2 are almost as twice strong as L 1's.

  9. Investigations into the synthesis and fluorescence properties of Tb(III) complexes of a novel bis-beta-diketone-type ligand and a novel bispyrazole ligand.

    PubMed

    Xiao, Lin-Xiang; Luo, Yi-Ming; Chen, Zhe; Li, Jun; Tang, Rui-Ren

    2008-11-15

    A novel bis-beta-diketone organic ligand, 1,1'-(2,6-bispyridyl)bis-3-(p-methoxyphenyl)-1,3-propanedione (L1) and its derivatives, a novel bispyrazole ligand, 2,6-bis(5-(4-methoxyphenyl)-1H-pyrazol-3-yl)pyridine (L2) were designed and synthesized and their complexes with Tb(III) ion were successfully prepared. The ligands and the corresponding metal complexes were characterized by elemental analysis, infrared, proton nuclear magnetic resonance spectroscopy and TG-DTA. Analysis of the IR spectra suggested that the lanthanide metal ion Tb(III) coordinated to the ligands via the nitrogen atom of the pyridine ring and the carbonyl oxygen atoms for ligand L1 and the nitrogen atom of the pyrazole ring for ligand L2. The fluorescence properties of the two complexes in solid state were investigated and it was discovered that the Tb(III) ions could be sensitized by both the ligand (L1) and ligand (L2) to some extent. In particular, the complex of ligand (L2) is a better green luminescent material that could be used as a candidate material in organic light-emitting devices (OLEDs) since it could be much better sensitized by the ligand (L2), and the fluorescence intensity of Tb(III) complex of L2 are almost as twice strong as L1's.

  10. Synthesis and Characterization of Heterodinuclear IrCo, RuCo, IrNi, and RuNi Complexes Containing Pyrazolate and Pyrazolylborate Ligands.

    PubMed

    Carmona, Daniel; Lahoz, Fernando J.; Atencio, Reinaldo; Edwards, Andrew J.; Oro, Luis A.; Lamata, M. Pilar; Esteban, Montserrat; Trofimenko, Swiatoslaw

    1996-04-24

    Treatment of the metallo ligands [ML(pz)(2)(Hpz)] (pz = pyrazolate; L = C(5)Me(5), M = Ir (1); L = mesitylene, M = Ru (3)) with [M'Cl{HB(3-i-Pr-4-Br-pz)(3)}] (M' = Co (4), Ni (5)) yields heterodinuclear complexes of formula [LM(&mgr;-pz)(2)(&mgr;-Cl)M'{HB(3-i-Pr-4-Br-pz)(3)}] (L = C(5)Me(5); M = Ir; M' = Co (6), Ni (7). L = mesitylene; M = Ru; M' = Co (8)). The related complex [Ru(eta(6)-p-cymene)(pz)(2)(Hpz)] (2) reacts with equimolar amounts of 4 or 5 to give mixtures of the corresponding bis(&mgr;-pyrazolato) &mgr;-chloro complexes [(eta(6)-p-cymene)Ru(&mgr;-pz)(2)(&mgr;-Cl)M'{HB(3-i-Pr-4-Br-pz)(3)}] (M' = Co (9), Ni (10)) and the triply pyrazolato-bridged complexes [(eta(6)-p-cymene)Ru(&mgr;-pz)(3)M'{HB(3-i-Pr-4-Br-pz)(3)}] (M' = Co (11), Ni (12)). Complex 1 reacts with 5 in the presence of KOH to give the IrNi complex [(eta(5)-C(5)Me(5))Ir(&mgr;-pz)(3)Ni{HB(3-i-Pr-4-Br-pz)(3)}] (13) whereas its reaction with 4 and KOH rendered the bis(&mgr;-pyrazolato) &mgr;-hydroxo complex [(eta(5)-C(5)Me(5))Ir(&mgr;-pz)(2)(&mgr;-OH)Co{HB(3-i-Pr-4-Br-pz)(3)}] (14). The molecular structure of the heterobridged IrCo complex (6) and those of the homobridged RuNi (12) and IrNi (13) complexes have been determined by X-ray analyses. Compound 6 crystallizes in the monoclinic space group P2(1)/n, with a = 10.146(5) Å, b = 18.435(4) Å, c = 22.187(13) Å, beta = 97.28(4) degrees, and Z = 4. Complex 12 is monoclinic, space group P2(1), with a = 10.1169(7) Å, b = 21.692(2) Å, c = 11.419(1) Å, beta = 112.179(7) degrees, and Z = 2. Compound 13 crystallizes in the monoclinic space group Cc, with a = 13.695(2) Å, b = 27.929(6) Å, c = 13.329(2) Å, beta = 94.11(4) degrees, and Z = 4. All the neutral complexes 6, 12, and 13 consist of linear M.M'.B backbones with two (6) or three (12, 13) pyrazolate ligands bridging the dimetallic M.M' units and three substituted 3-i-Pr-4-Br-pz groups joining M' to the boron atoms. The presence in the proximity of the first-row metal M' of the three

  11. (S)-5-(p-Nitrobenzyl)-PCTA, a Promising Bifunctional Ligand with Advantageous Metal Ion Complexation Kinetics

    PubMed Central

    Tircsó, Gyula; Benyó, Enikő Tircsóné; Suh, Eul Hyun; Jurek, Paul; Kiefer, Garry E.; Sherry, A. Dean; Kovács, Zoltán

    2009-01-01

    A bifunctional version of PCTA (3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-3,6,9,-triacetic acid) that exhibits fast complexation kinetics with the trivalent lanthanide(III) ions was synthesized in reasonable yields starting from N, N′, N″-tristosyl-(S)-2-(p-nitrobenzyl)-diethylenetriamine. pH-potentiometric studies showed that the basicities of p-nitrobenzyl-PCTA and the parent ligand PCTA were similar. The stability of M(NO2-Bn-PCTA) (M = Mg2+, Ca2+, Cu2+, Zn2+) complexes was similar to that of the corresponding PCTA complexes while the stability of Ln3+ complexes of the bifunctional ligand is somewhat lower than that of PCTA chelates. The rate of complex formation of Ln(NO2-Bn-PCTA) complexes was found to be quite similar to that of PCTA, a ligand known to exhibit the fastest formation rates among all lanthanide macrocyclic ligand complexes studied to date. The acid catalyzed decomplexation kinetic studies of the selected Ln(NO2-Bn-PCTA) complexes showed that the kinetic inertness of the complexes was comparable to that of Ln(DOTA) chelates making the bifunctional ligand NO2-Bn-PCTA suitable for labeling biological vectors with radioisotopes for nuclear medicine applications. PMID:19220012

  12. (S)-5-(p-nitrobenzyl)-PCTA, a promising bifunctional ligand with advantageous metal ion complexation kinetics.

    PubMed

    Tircsó, Gyula; Benyó, Eniko Tircsóné; Suh, Eul Hyun; Jurek, Paul; Kiefer, Garry E; Sherry, A Dean; Kovács, Zoltán

    2009-03-18

    A bifunctional version of PCTA (3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-3,6,9,-triacetic acid) that exhibits fast complexation kinetics with the trivalent lanthanide(III) ions was synthesized in reasonable yields starting from N,N',N''-tristosyl-(S)-2-(p-nitrobenzyl)-diethylenetriamine. pH-potentiometric studies showed that the basicities of p-nitrobenzyl-PCTA and the parent ligand PCTA were similar. The stability of M(NO(2)-Bn-PCTA) (M = Mg(2+), Ca(2+), Cu(2+), Zn(2+)) complexes was similar to that of the corresponding PCTA complexes, while the stability of Ln(3+) complexes of the bifunctional ligand is somewhat lower than that of PCTA chelates. The rate of complex formation of Ln(NO(2)-Bn-PCTA) complexes was found to be quite similar to that of PCTA, a ligand known to exhibit the fastest formation rates among all lanthanide macrocyclic ligand complexes studied to date. The acid-catalyzed decomplexation kinetic studies of the selected Ln(NO(2)-Bn-PCTA) complexes showed that the kinetic inertness of the complexes was comparable to that of Ln(DOTA) chelates making the bifunctional ligand NO(2)-Bn-PCTA suitable for labeling biological vectors with radioisotopes for nuclear medicine applications.

  13. Tripodal phenylamine-based ligands and their CoII complexes.

    PubMed

    Jones, Matthew B; MacBeth, Cora E

    2007-10-01

    The syntheses of two phenylamine-based ligand systems, N(o-PhNH(2))(3) and N(o-PhNHC(O)(i)Pr)(3), are reported. These ligands readily coordinate to Co(II) to form monomeric complexes. X-ray diffraction studies establish that the [N(o-PhNC(O)(i)Pr)(3)](3-) ligand stabilizes the Co(II) ion in a trigonal-monopyramidal coordination environment. The axial coordination site in this complex is accessible and, upon cyanide coordination, generates an electrochemically active species.

  14. Selective transformations of cyclopentadienyl ligands of transition-metal and rare-earth metal complexes.

    PubMed

    Liu, Ruiting; Zhou, Xigeng

    2013-04-21

    Cyclopentadienyl and substituted cyclopentadienyl ligands are observed in a wide range of organometallic complexes. In addition to serving as ancillary ligands, these ligands have come into their own as intermediates in organometallic reactions, and shown many unique reaction modes involving ring C-H, C-C and C=C bond cleavages. This feature article summarizes the progressive development of cyclopentadienyl-based reactions of metallocene complexes of transition metals and rare-earth metals, with the aim of further developing the fundamental modes of reactivity of such systems together with their synthetic applications.

  15. Modeling RNA-ligand interactions: the Rev-binding element RNA-aminoglycoside complex.

    PubMed

    Leclerc, F; Cedergren, R

    1998-01-15

    An approach to the modeling of ligand-RNA complexes has been developed by combining three-dimensional structure-activity relationship (3D-SAR) computations with a docking protocol. The ability of 3D-SAR to predict bound conformations of flexible ligands was first assessed by attempting to reconstruct the known, bound conformations of phenyloxazolines complexed with human rhinovirus 14 (HRV14) RNA. Subsequently, the same 3D-SAR analysis was applied to the identification of bound conformations of aminoglycosides which associate with the Rev-binding element (RBE) RNA. Bound conformations were identified by parsing ligand conformational data sets with pharmacophores determined by the 3D-SAR analysis. These "bioactive" structures were docked to the receptor RNA, and optimization of the complex was undertaken by extensive searching of ligand conformational space coupled with molecular dynamics computations. The similarity between the bound conformations of the ligand from the 3D-SAR analysis and those found in the docking protocol suggests that this methodology is valid for the prediction of bound ligand conformations and the modeling of the structure of the ligand-RNA complexes.

  16. Photo- and electroluminescence of mixed-ligand Eu(III) complexes

    NASA Astrophysics Data System (ADS)

    Eremina, N. S.; Meshkova, S. B.; Degtyarenko, K. M.; Kopylova, T. N.; Topilova, Z. M.; Gadirov, R. M.; Samsonova, L. G.

    2012-05-01

    Spectral and luminescent properties of mixed-ligand Eu(III) complexes were studied in solutions and in polyvinylcarbazole (PVC) thin films. Trends in their variations were found depending on the complex structure and excitation mode. The electroluminescence was observed in ITO/PEDOT/Eu complex:PVC/CaMg/Al devices. Their current-voltage and voltage-brightness characteristics were investigated.

  17. DNA-interaction and in vitro antimicrobial studies of some mixed-ligand complexes of cobalt(II) with fluoroquinolone antibacterial agent ciprofloxacin and some neutral bidentate ligands.

    PubMed

    Patel, M N; Chhasatia, M R; Gandhi, D S

    2009-05-15

    Six new mixed-ligand complexes of Co(II) with ciprofloxacin (Cip) and neutral bidentate ligands have been synthesized and characterized. Binding and cleavage of DNA with the complex were investigated using spectroscopic method, viscosity measurements and gel electrophoresis techniques. Antibacterial activity has been assayed against two Gram((-ve)) and three Gram((+ve)) microorganisms using the doubling dilution technique.

  18. Ruthenium(II) polypyridyl complexes with hydrophobic ancillary ligand as Aβ aggregation inhibitors.

    PubMed

    Vyas, Nilima A; Ramteke, Shefali N; Kumbhar, Avinash S; Kulkarni, Prasad P; Jani, Vinod; Sonawane, Uddhavesh B; Joshi, Rajendra R; Joshi, Bimba; Erxleben, Andrea

    2016-10-04

    The synthesis, spectral and electrochemical characterization of the complexes of the type [Ru(NN)2(txbg)](2+) where NN is 2,2'-bipyridine (bpy) (1), 1,10-phenanthroline (phen) (2), dipyrido [3,2-d:2',3f] quinoxaline (dpq) (3), and dipyrido[3,2-a:2',3'-c]phenazine (dppz) (4) which incorporate the tetra-xylene bipyridine glycoluril (txbg) as the ancillary ligand are described in detail. Crystal structures of ligand txbg and complex 2 were solved by single crystal X-ray diffraction. Thioflavin T (ThT) fluorescence and Transmission Electron Microscopy (TEM) results indicated that at micromolar concentration all complexes exhibit significant potential of Aβ aggregation inhibition, while the ligand txbg displayed weak activity towards Aβ aggregation. Complex 1 showed relatively low inhibition (70%) while complexes 2-4 inhibited nearly 100% Aβ aggregation after 240 h of incubation. The similar potential of complexes 2-4 and absence of any trend in their activity with the planarity of polypyridyl ligands suggests there is no marked effect of planarity of coligands on their inhibitory potential. Further studies on acetylcholinesterase (AChE) inhibition indicated very weak activity of these complexes against AChE. Detailed interactions of Aβ with both ligand and complex 2 have been studied by molecular modeling. Complex 2 showed interactions involving all three polypyridyl ligands with hydrophobic region of Aβ. Furthermore, the toxicity of these complexes towards human neuroblastoma cells was evaluated by MTT assay and except complex 4, the complexes displayed very low toxicity.

  19. Synthesis and characterization of cerium and yttrium alkoxide complexes supported by ferrocene-based chelating ligands.

    PubMed

    Broderick, Erin M; Thuy-Boun, Peter S; Guo, Neng; Vogel, Carola S; Sutter, Jörg; Miller, Jeffrey T; Meyer, Karsten; Diaconescu, Paula L

    2011-04-04

    Two series of Schiff base metal complexes were investigated, where each series was supported by an ancillary ligand incorporating a ferrocene backbone and different N=X functionalities. One ligand is based on an imine, while the other is based on an iminophosphorane group. Cerium(IV), cerium(III), and yttrium(III) alkoxide complexes supported by the two ligands were synthesized. All metal complexes were characterized by cyclic voltammetry. Additionally, NMR, Mössbauer, X-ray absorption near-edge structure (XANES), and absorption spectroscopies were used. The experimental data indicate that iron remains in the +2 oxidation state and that cerium(IV) does not engage in a redox behavior with the ancillary ligand.

  20. Understanding M-ligand bonding and mer-/fac-isomerism in tris(8-hydroxyquinolinate) metallic complexes.

    PubMed

    Lima, Carlos F R A C; Taveira, Ricardo J S; Costa, José C S; Fernandes, Ana M; Melo, André; Silva, Artur M S; Santos, Luís M N B F

    2016-06-28

    Tris(8-hydroxyquinolinate) metallic complexes, Mq3, are one of the most important classes of organic semiconductor materials. Herein, the nature of the chemical bond in Mq3 complexes and its implications on their molecular properties were investigated by a combined experimental and computational approach. Various Mq3 complexes, resulting from the alteration of the metal and substitution of the 8-hydroxyquinoline ligand in different positions, were prepared. The mer-/fac-isomerism in Mq3 was explored by FTIR and NMR spectroscopy, evidencing that, irrespective of the substituent, mer- and fac-are the most stable molecular configurations of Al(iii) and In(iii) complexes, respectively. The relative M-ligand bond dissociation energies were evaluated experimentally by electrospray ionization tandem mass spectrometry (ESI-MS-MS), showing a non-monotonous variation along the group (Al > In > Ga). The results reveal a strong covalent character in M-ligand bonding, which allows for through-ligand electron delocalization, and explain the preferred molecular structures of Mq3 complexes as resulting from the interplay between bonding and steric factors. The mer-isomer reduces intraligand repulsions, being preferred for smaller metals, while the fac-isomer is favoured for larger metals where stronger covalent M-ligand bonds can be formed due to more extensive through-ligand conjugation mediated by metal "d" orbitals.

  1. Luminescent solutions and powders of new samarium complexes with N,N',O,O'-chelating ligands

    NASA Astrophysics Data System (ADS)

    Kharcheva, Anastasia V.; Nikolskiy, Kirill S.; Borisova, Nataliya E.; Ivanov, Alexey V.; Reshetova, Marina D.; Yuzhakov, Viktor I.; Patsaeva, Svetlana V.

    2016-04-01

    Imaging techniques in biology and medicine are crucial tools to obtain information on structural and functional properties of living cells and organisms. To fulfill the requirements associated with application of these techniques it appears necessary to design markers with specific characteristics. Luminescent complexes of trivalent lanthanide ions with chelating ligands are of increasing importance in biomedical applications because of their millisecond luminescence lifetime, narrow emission band, high signal-to-noise ratio and minimal photodamage to biological samples. In order to extend the available emission wavelength range the luminescent samarium chelates are highly desirable. In this study the ligands with diamides of 2,2'-bipyridin-6,6'-dicarboxylic acid were used to improve photophysical characteristics of samarium complexes. We report the luminescence characteristics of samarium complexes with novel ligands. All complexes exhibited the characteristic emission of Sm (III) ion with the lines at 565, 597, 605, 645 and 654 nm, the intensity strongly depended on the ligand. Absorption and luminescence excitation spectra of Sm (III) complexes showed main peaks in the UV range demonstrating lanthanide coordination to the ligand. The absolute lumenescence quantum yield was measured for solutions in acetonitrile with excitation at 350 nm. The largest luminescence quantum yield was found for the samarium complex Bipy 6MePy Sm (3%) being much higher that for samarium complexes reported in the literature earlier. These results prove as well that samarium chelates are potential markers for multiparametric imaging techniques.

  2. Conversion of a monodentate amidinate-germylene ligand into chelating imine-germanate ligands (on mononuclear manganese complexes).

    PubMed

    Cabeza, Javier A; García-Álvarez, Pablo; Pérez-Carreño, Enrique; Polo, Diego

    2014-08-18

    The unprecedented transformation of a terminal two-electron-donor amidinate-germylene ligand into a chelating three-electron-donor κ(2)-N,Ge-imine-germanate ligand has been achieved by treating the manganese amidinate-germylene complex [MnBr{Ge((i)Pr2bzam)(t)Bu}(CO)4] (1; (i)Pr2bzam = N,N'-bis(isopropyl)benzamidinate) with LiMe or Ag[BF4]. In these reactions, which afford [Mn{κ(2)Ge,N-GeMe((i)Pr2bzam)(t)Bu}(CO)4] (2) and [Mn{κ(2)Ge,N-GeF((i)Pr2bzam)(t)Bu}(CO)4] (3), respectively, the anionic nucleophile, Me(-) or F(-), ends on the Ge atom while an arm of the amidinate fragment migrates from the Ge atom to the Mn atom. In contrast, the reaction of 1 with AgOTf (OTf = triflate) leads to [Mn(OTf){Ge((i)Pr2bzam)(t)Bu}(CO)4] (4), which maintains intact the amidinate-germylene ligand. Complex 4 is very moisture-sensitive, leading to [Mn2{μ-κ(4)Ge2,O2-Ge2(t)Bu2(OH)2O}(CO)8] (5) and [(i)Pr2bzamH2]OTf (6) in wet solvents. In 5, a novel digermanate(II) ligand, [(t)Bu(OH)GeOGe(OH)(t)Bu](2-), doubly bridges two Mn(CO)4 units. The structures of 1-6 have been characterized by spectroscopic (IR, NMR) and single-crystal X-ray diffraction methods.

  3. Synthesis and Characterization of a Triphos Ligand Derivative and the Corresponding Pd II Complexes: Triphos Ligand Derivative and Corresponding Pd II Complexes

    SciTech Connect

    Miller, Deanna L.; Boro, Brian J.; Grubel, Katarzyna; Helm, Monte L.; Appel, Aaron M.

    2015-11-16

    The synthesis of the new bis(2-(diphenylphosphino)ethyl)methylhydroxyphosphine tridentate phosphine ligand, LCH2OH/Ph, is reported. The ligand reacts with [Pd(Cl)2(PhCN)2 to form [Pd(LCH2OH/Ph)Cl]Cl. Exchange of the chloride ions for triflate (OTf–) using AgOTf yielded pure [Pd(LCH2OH/Ph)OTf]OTf. In addition to spectral characterization the free ligand, LCH2OH/Ph, and Pd(II) complex, [Pd(LCH2OH/Ph)OTf]OTf, are structurally characterized. This research was supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences, and Geosciences. Pacific Northwest National Laboratory is a multiprogram national laboratory operated by Battelle for DOE.

  4. Quantitative Analysis of STD-NMR Spectra of Reversibly Forming Ligand-Receptor Complexes

    NASA Astrophysics Data System (ADS)

    Krishna, N. Rama; Jayalakshmi, V.

    We describe our work on the quantitative analysis of STD-NMR spectra of reversibly forming ligand-receptor complexes. This analysis is based on the theory of complete relaxation and conformational exchange matrix analysis of saturation transfer (CORCEMA-ST) effects. As part of this work, we have developed two separate versions of the CORCEMA-ST program. The first version predicts the expected STD intensities for a given model of a ligand-protein complex, and compares them quantitatively with the experimental data. This version is very useful for rapidly determining if a model for a given ligand-protein complex is compatible with the STD-NMR data obtained in solution. It is also useful in determining the optimal experimental conditions for undertaking the STD-NMR measurements on a given complex by computer simulations. In the second version of the CORCEMA-ST program, we have implemented a torsion angle refinement feature for the bound ligand within the protein binding pocket. In this approach, the global minimum for the bound ligand conformation is obtained by a hybrid structure refinement protocol involving CORCEMA-ST calculation of intensities and simulated annealing refinement of torsion angles of the bound ligand using STD-NMR intensities as experimental constraints to minimize a pseudo-energy function. This procedure is useful in refining and improving the initial models based on crystallography, computer docking, or other procedures to generate models for the bound ligand within the protein binding pocket compatible with solution STD-NMR data. In this chapter we describe the properties of the STD-NMR spectra, including the dependence of the intensities on various parameters. We also describe the results of the CORCEMA-ST analyses of experimental STD-NMR data on some ligand-protein complexes to illustrate the quantitative analysis of the data using this method. This CORCEMA-ST program is likely to be useful in structure-based drug design efforts.

  5. Highly luminescent lanthanide complexes with novel bis-β-diketone ligand: Synthesis, characterization and photoluminescent properties

    NASA Astrophysics Data System (ADS)

    Li, Hong-Feng; Li, Guang-Ming; Chen, Peng; Sun, Wen-Bin; Yan, Peng-Fei

    2012-11-01

    A biphenyl-linked bis-β-diketone ligand, 3,3'-bis(3-phenyl-3-oxopropanol)biphenyl (BPB) has been prepared for the syntheses of a series of dinuclear lanthanide complexes. The ligand bears two benzoyl β-diketonate sites linked by a 3,3'-biphenyl spacer. Reaction of the doubly negatively charged bis-bidenate ligand with lanthanide ions forms triple-stranded dinuclear complexes Ln2(BPB)3 (Ln = Nd (1), Sm (2), Eu (3), Yb (4) and Gd (5)). Electrospray mass spectrometry is used to identify the formation of the triple-stranded dinuclear complexes 1-5, which have been further characterized by various spectroscopic techniques. The complexes display strong visible and NIR luminescence upon excitation at ligands bands around 360 nm, depending on the choice of the lanthanides, and the emission quantum yields and luminescence lifetimes of 2-3 have been determined. It shows that the biphenyl-linked ligand BPB is a more efficient sensitizer than the monodiketone ligand DBM (dibenzoylmethane), through the comparisons of Ln2(BPB)3 and Ln(DBM)3 on their photoluminescent properties.

  6. Highly luminescent lanthanide complexes with novel bis-β-diketone ligand: synthesis, characterization and photoluminescent properties.

    PubMed

    Li, Hong-Feng; Li, Guang-Ming; Chen, Peng; Sun, Wen-Bin; Yan, Peng-Fei

    2012-11-01

    A biphenyl-linked bis-β-diketone ligand, 3,3'-bis(3-phenyl-3-oxopropanol)biphenyl (BPB) has been prepared for the syntheses of a series of dinuclear lanthanide complexes. The ligand bears two benzoyl β-diketonate sites linked by a 3,3'-biphenyl spacer. Reaction of the doubly negatively charged bis-bidenate ligand with lanthanide ions forms triple-stranded dinuclear complexes Ln(2)(BPB)(3) (Ln=Nd (1), Sm (2), Eu (3), Yb (4) and Gd (5)). Electrospray mass spectrometry is used to identify the formation of the triple-stranded dinuclear complexes 1-5, which have been further characterized by various spectroscopic techniques. The complexes display strong visible and NIR luminescence upon excitation at ligands bands around 360 nm, depending on the choice of the lanthanides, and the emission quantum yields and luminescence lifetimes of 2-3 have been determined. It shows that the biphenyl-linked ligand BPB is a more efficient sensitizer than the monodiketone ligand DBM (dibenzoylmethane), through the comparisons of Ln(2)(BPB)(3) and Ln(DBM)(3) on their photoluminescent properties.

  7. Noncovalent ligand-to-ligand interactions alter sense of optical chirality in luminescent tris(β-diketonate) lanthanide(III) complexes containing a chiral bis(oxazolinyl) pyridine ligand.

    PubMed

    Yuasa, Junpei; Ohno, Tomoko; Miyata, Kohei; Tsumatori, Hiroyuki; Hasegawa, Yasuchika; Kawai, Tsuyoshi

    2011-06-29

    Highly luminescent tris[β-diketonate (HFA, 1,1,1,5,5,5-hexafluoropentane-2,4-dione)] europium(III) complexes containing a chiral bis(oxazolinyl) pyridine (pybox) ligand--[(Eu(III)(R)-Ph-pybox)(HFA)(3)], [(Eu(III)(R)-i-Pr-pybox)(HFA)(3)], and [(Eu(III)(R)-Me-Ph-pybox)(HFA)(3)])--exhibit strong circularly polarized luminescence (CPL) at the magnetic-dipole ((5)D(0) → (7)F(1)) transition, where the [(Eu(III)(R)-Ph-pybox)(HFA)(3)] complexes show virtually opposite CPL spectra as compared to those with the same chirality of [(Eu(III)(R)-i-Pr-pybox)(HFA)(3)] and [(Eu(III)(R)-Me-Ph-pybox)(HFA)(3)]. Similarly, the [(Tb(III)(R)-Ph-pybox)(HFA)(3)] complexes were found to exhibit CPL signals almost opposite to those of [(Tb(III)(R)-i-Pr-pybox)(HFA)(3)] and [(Tb(III)(R)-Me-Ph-pybox)(HFA)(3)] complexes with the same pybox chirality. Single-crystal X-ray structural analysis revealed ligand-ligand interactions between the pybox ligand and the HFA ligand in each lanthanide(III) complex: π-π stacking interactions in the Eu(III) and Tb(III) complexes with the Ph-pybox ligand, CH/F interactions in those with the i-Pr-pybox ligand, and CH/π interactions in those with the Me-Ph-pybox ligand. The ligand-ligand interactions between the achiral HFA ligands and the chiral pybox results in an asymmetric arrangement of three HFA ligands around the metal center. The metal center geometry varies depending on the types of ligand-ligand interaction.

  8. Impact of protein binding cavity volume (PCV) and ligand volume (LV) in rigid and flexible docking of protein-ligand complexes.

    PubMed

    Saranya, N; Jeyakanthan, J; Selvaraj, S

    2012-12-15

    The importance of protein binding cavity volume (PCV) and ligand volume (LV) in rigid and flexible docking has been studied in 48 protein-ligand complexes belonging to eight protein families. In continuation of our earlier study on protein flexibility in relationship to PCV and LV, this study analyzes the importance of PCV and LV in the scoring and ranking of ligands in docking experiments. Crystal structures of protein-ligand complexes with varied PCV were chosen for docking ligands of varied volume in each protein family. Docking and scoring accuracy have been evaluated by self and cross docking of ligands to the given protein conformation. Effect of PCV and LV in rigid and flexible docking has been studied both in apo and holo proteins. Rigid docking has performed well when appropriate protein conformation is used. Selecting the proteins with appropriate PCV based on the LV information is suggested for better results in ensemble docking.

  9. VS-APPLE: A Virtual Screening Algorithm Using Promiscuous Protein-Ligand Complexes.

    PubMed

    Okuno, Tatsuya; Kato, Koya; Terada, Tomoki P; Sasai, Masaki; Chikenji, George

    2015-06-22

    As the number of structurally resolved protein-ligand complexes increases, the ligand-binding pockets of many proteins have been found to accommodate multiple different compounds. Effective use of these structural data is important for developing virtual screening (VS) methods that identify bioactive compounds. Here, we introduce a VS method, VS-APPLE (Virtual Screening Algorithm using Promiscuous Protein-Ligand complExes), based on promiscuous protein-ligand binding structures. In VS-APPLE, multiple ligands bound to a pocket are combined into a query template for screening. Both the structural match between a test compound and the multiple-ligand template and the possible collisions between the test compound and the target protein are evaluated by an efficient geometric hashing method. The performance of VS-APPLE was examined on a filtered, clustered version of the Directory of Useful Decoys data set. In Area Under the Curve analyses of this data set, VS-APPLE outperformed several popular screening programs. Judging from the performance of VS-APPLE, the structural data of promiscuous protein-ligand bindings could be further analyzed and exploited for developing VS methods.

  10. Selective Structural Transformation of Supramolecules to Multinuclear Heterosubstituted Pt Complexes via Ligand Exchange.

    PubMed

    Molev, Gregory; Arif, Atta; Stang, Peter J

    2011-11-16

    Selective triflate to chlorine ligand exchange reaction between ditriflate and dichloride Pt complexes producing pure heterosubstituted complexes is demonstrated. We show that this reaction can be applied for selective chlorination of supramolecules leading to their structural transformation into multinuclear mono-chlorinated Pt(II) complexes. The X-ray structure of complex of 4,4'-bipyridine with two molecules of (Et(3)P)(2)Pt(Cl)OTf is reported.

  11. A Stable Monomeric SiO2 Complex with Donor-Acceptor Ligands.

    PubMed

    Rodriguez, Ricardo; Gau, David; Saouli, Jérémy; Baceiredo, Antoine; Saffon-Merceron, Nathalie; Branchadell, Vicenç; Kato, Tsuyoshi

    2017-03-27

    Isolation of a monomeric SiO2 compound 3 as a stable donor-acceptor complex with two different ligands -a σ-donating ligand (pyridine, dimethylaminopyridine, N-heterocyclic carbene) and a donor-acceptor ligand (iminophosphorane)-is presented. The SiO2 complex 3 is soluble in ordinary organic solvents and is stable at room temperature in solution and in the solid state. Of particular interest, 3 remains reactive and can be used as a stable and soluble unimolecular SiO2 reagent.

  12. Synthesis and luminescence properties of lanthanide complexes with a new tripodal ligands featuring salicylamide arms.

    PubMed

    Song, Xue-Qin; Dong, Wen-Kui; Zhang, Yu-Jie; Liu, Wei-Sheng

    2010-01-01

    A series of luminescent lanthanide complexes with a new tripodal ligand featuring salicylamide arms, 2,2',2''-nitrilotris(2-furfurylaminoformylphenoxy)triethylamine (L), were synthesized and characterized by elemental analysis, IR and molar conductivity measurements. Photophysical properties of the complexes were studied by means of UV-vis absorption and steady-state luminescence spectroscopy. Excited-state luminescence lifetimes and quantum yield of the complexes were determined. Luminescence studies demonstrated that the tripodal ligand featuring salicylamide arms exhibits a good antennae effect with respect to the Tb(III) and Dy(III) ion due to efficient intersystem crossing and ligand to metal energy transfer. From a more general perspective, this work offers interesting perspectives for the development of efficient luminescent stains and enlarges the arsenal for developing novel luminescent lanthanide complexes of salicylamide derivatives.

  13. Incorporation of trinuclear lanthanide(III) hydroxo bridged clusters in macrocyclic frameworks.

    PubMed

    Kobyłka, Michał J; Ślepokura, Katarzyna; Acebrón Rodicio, Maria; Paluch, Marta; Lisowski, Jerzy

    2013-11-18

    A cluster of lanthanide(III) or yttrium(III) ions, Ln3(μ3-OH)2, (Ln(III) = Nd(III), Sm(III), Eu(III), Gd(III), Tb(III), Dy(III), Yb(III), or Y(III)) can be bound in the center of a chiral macrocyclic amines H3L1(R), H3L1(S), and H3L2(S) obtained in a reduction of a 3 + 3 condensation product of (1R,2R)- or (1S,2S)-1,2-diaminocyclohexane and 2,6-diformyl-4-methylphenol or 2,6-diformyl-4-tertbutylphenol. X-ray crystal structures of the Nd(III), Sm(III), Gd(III), Dy(III), and Y(III) complexes reveal trinuclear complexes with Ln(III) ions bridged by the phenolate oxygen atoms of the macrocycle as well as by μ3-hydroxo bridges. In the case of the Nd(III) ion, another complex form can be obtained, whose X-ray crystal structure reveals two trinuclear macrocyclic units additionally bridged by hydroxide anions, corresponding to a [Ln3(μ3-OH)]2(μ2-OH)2 cluster encapsulated by two macrocycles. The formation of trinuclear complexes is confirmed additionally by (1)H NMR, electrospray ionization mass spectrometry (ESI MS), and elemental analyses. Titrations of free macrocycles with Sm(III) or Y(III) salts and KOH also indicate that a trinuclear complex is formed in solution. On the other hand, analogous titrations with La(III) salt indicate that this kind of complex is not formed even with the excess of La(III) salt. The magnetic data for the trinuclear Gd(III) indicate weak antiferromagnetic coupling (J = -0.17 cm(-1)) between the Gd(III) ions. For the trinuclear Dy(III) and Tb(III) complexes the χ(M)T vs T plots indicate a more complicated dependence, resulting from the combination of thermal depopulation of mJ sublevels, magnetic anisotropy, and possibly weak antiferromagnetic and ferromagnetic interactions.

  14. Abiotic reduction of nitroaromatic contaminants by iron(II) complexes with organothiol ligands.

    PubMed

    Naka, Daisuke; Kim, Dongwook; Carbonaro, Richard F; Strathmann, Timothy J

    2008-06-01

    Complexation of Fe(II) by dissolved and surface-bound ligands can significantly modify the metal's redox reactivity, and recent work reveals that Fe(II) complexes with selected classes of organic ligands are potent reductants that may contribute to the natural attenuation of subsurface contaminants. In the present study, we investigated the reactivity of Fe(II)-organothiol ligand complexes with nitroaromatic contaminants (NACs; ArNO(2)). Experimental results show that NACs are unreactive in Fe(2+)-only and ligand-only solutions but are reduced to the corresponding aniline compounds (ArNH(2)) in solutions containing both Fe(II) and a number of organothiol ligands. Observed reaction rates are highly dependent on the structure of the Fe(II)-complexing ligand, solution composition, Fe(II) speciation, and NAC structure. For two model ligands, cysteine and thioglycolic acid, observed pseudo-first order rate constants for 4-chloronitrobenzene reduction (k(obs); 1/s) are linearly correlated with the concentration of the respective 1:2 Fe(II)- organothiol complexes (FeL(2)(2-)), and k(obs) measurements are accurately predicted by k(obs) = k(FeL(2-)(2))[FeL(2-)(2)], where k(FeL(2-)(2)) = 1.70 (+/-0.59) 1/M/s and 26.0 (+/-4.8) 1/M/s for cysteine and thioglycolic acid, respectively. The high reactivity of these Fe(II) complexes is attributed to a lowering of the standard one-electron reduction potential of the Fe(III)/Fe(II) redox couple on complexation by organothiol ligands. The relative reactivity of a series of substituted NACs with individual Fe(II) complexes can be described by linear free-energy relationships with the apparent one-electron reduction potentials of the NACs. Tests also show that organothiol ligands can further promote NAC reduction indirectly by re-reducing the Fe(III) that forms when Fe(II) complexes are oxidized by reactions with the NACs.

  15. Enthused research on DNA-binding and DNA-cleavage aptitude of mixed ligand metal complexes

    NASA Astrophysics Data System (ADS)

    Mahalakshmi, Rajkumar; Raman, Natarajan

    2013-08-01

    Five new Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) mixed ligand complexes have been synthesized using a Schiff base precursor (obtained by the condensation of N-(4-aminophenyl)acetamide and 4-chlorobenzaldehyde) as main ligand and 1,10-phenanthroline as co-ligand. They have been characterized by microanalytical data, IR, UV-Vis, magnetic moment values, conductivity and electrochemical measurements. The spectral data reveal that all the complexes exhibit octahedral geometry. The high electrical conductance of the complexes supports their electrolytic nature. The monomeric nature of the complexes has been assessed from their magnetic susceptibility values. These complexes are better antimicrobial active agents than the free ligands. DNA (CT) binding properties of these complexes have been explored by UV-Vis., viscosity measurements, cyclic voltammetry, and differential pulse voltammetry measurements. The oxidative cleavage activity of the complexes has been studied using supercoiled pUC19 DNA by gel electrophoresis. The experimental results show that the complexes are good intercalators.

  16. Four transition metal complexes with a semicarbazone ligand bearing pyrazine unit

    NASA Astrophysics Data System (ADS)

    Chen, Hong; Ma, Xiu-qin; Lv, Yan-yun; Jia, Lei; Xu, Jun; Wang, Yuan; Ge, Zhi-jun

    2016-04-01

    Four new complexes based on L (where L = 3-ethyl-2-acetylpyrazine semicarbazone), namely [CoL2]Cl2·0.5H2O (1), [CoL2](NO3)2 (2), [CdL(H2O)2(NO3)](NO3)·H2O (3) and [CuL(CH3OH)Cl2]·[CuLCl2] (4) have been synthesized and characterized by X-ray diffraction analyses. The results show that the semicarbazone acts as a tridentate neutral ligand in all complexes. Each of complex 1 and 2 reveals a distorted octahedral geometry around the metal ion provided by two units of the ligand, while the ratio of the ligand and metal is 1:1 in complexes 3 and 4. The effect of complexes 1-4 on cell proliferation, apoptosis of human pancreatic cancer (Patu8988), human gastric cancer (SGC7901) and human hepatic cancer (SMMC7721) cell lines have been detected by MTT assay, Annexin V/PI double staining flow cytometry and TUNEL assay. The results show that complexes 1-4 can inhibit cell proliferation of Patu8988, SGC7901 and SMMC7721 cells, significantly higher than the effect of the ligand. However, the complex 4 reveals higher apoptosis rate, and displays up-regulated expression level of caspase 3, detected by western blotting, which also indicates the complex 4 can induce caspase-dependent cell apoptosis in SMMC7721.

  17. Enthused research on DNA-binding and DNA-cleavage aptitude of mixed ligand metal complexes.

    PubMed

    Mahalakshmi, Rajkumar; Raman, Natarajan

    2013-08-01

    Five new Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) mixed ligand complexes have been synthesized using a Schiff base precursor (obtained by the condensation of N-(4-aminophenyl)acetamide and 4-chlorobenzaldehyde) as main ligand and 1,10-phenanthroline as co-ligand. They have been characterized by microanalytical data, IR, UV-Vis, magnetic moment values, conductivity and electrochemical measurements. The spectral data reveal that all the complexes exhibit octahedral geometry. The high electrical conductance of the complexes supports their electrolytic nature. The monomeric nature of the complexes has been assessed from their magnetic susceptibility values. These complexes are better antimicrobial active agents than the free ligands. DNA (CT) binding properties of these complexes have been explored by UV-Vis., viscosity measurements, cyclic voltammetry, and differential pulse voltammetry measurements. The oxidative cleavage activity of the complexes has been studied using supercoiled pUC19 DNA by gel electrophoresis. The experimental results show that the complexes are good intercalators.

  18. Synthesis, spectral and electrochemical studies of binuclear Ru(III) complexes containing dithiosemicarbazone ligand.

    PubMed

    Kanchana Devi, A; Ramesh, R

    2014-01-03

    Synthesis of several new octahedral binuclear ruthenium(III) complexes of the general composition [(EPh3)2(X)Ru-L-Ru(X)(EPh3)2] containing benzene dithiosemicarbazone ligands (where E=P or As; X=Cl or Br; L=binucleating ligands) is presented. All the complexes have been fully characterized by elemental analysis, FT-IR, UV-vis and EPR spectroscopy together with magnetic susceptibility measurements. IR study shows that the dithiosemicarbazone ligands behave as dianionic tridentate ligands coordinating through the oxygen atom of the deprotonated phenolic group, nitrogen atom of the azomethine group and thiolate sulphur. In DMF solution, all the complexes exhibit intense d-d transition and ligand-to-metal charge transfer (LMCT) transition in the visible region. The magnetic moment values of the complexes are in the range 1.78-1.82 BM, which reveals the presence of one unpaired electron on each metal ion. The EPR spectra of the liquid samples at LNT show the presence of three different 'g' values (gx≠gy≠gz) indicate a rhombic distortion around the ruthenium ion. All the complexes exhibit two quasi-reversible one electron oxidation responses (Ru(III)-Ru(III)/Ru(III)-Ru(IV); Ru(III)-Ru(IV)/Ru(IV)-Ru(IV)) within the E1/2 range of 0.61-0.74 V and 0.93-0.98 V respectively, versus Ag/AgCl.

  19. Ligand Rearrangements of Organometallic Complexes inSolution

    SciTech Connect

    Shanoski, Jennifer E.

    2006-01-01

    Many chemical reactions utilize organometallic complexes as catalysts. These complexes find use in reactions as varied as bond activation, polymerization, and isomerization. This thesis outlines the construction of a new ultrafast laser system with an emphasis on the generation of tunable mid-infrared pulses, data collection, and data analysis.

  20. Stereochemical Properties of Multidentate Nitrogen Donor Ligands and Their Copper Complexes by Electronic CD and DFT.

    PubMed

    Poopari, Mohammad Reza; Dezhahang, Zahra; Xu, Yunjie

    2016-07-01

    UV-Vis and electronic circular dichroism (ECD) spectroscopy, complemented with Density Functional Theory (DFT) calculations, were used to elucidate the structural diversities of three multidentate nitrogen donor ligands and two associated copper complexes in solution directly. The three chiral salen ligands all consist of trans-cyclohexane-1,2-diamine as a chiral scaffold and also of pyridine rings as chromophores, differing only in the linking groups between the two functional groups mentioned above. Very different ECD intensities and somewhat different ECD patterns were observed for these ligands and satisfactorily interpreted theoretically. For the geometry optimization and spectral simulation of the open-shell metal complexes, the LANL2DZ basis set with effective core potential for the Cu and Cl atoms and pure cc-pVTZ for the rest of the atoms was utilized. The performance of the same calculations with the polarization functions (f,g) from the cc-pVTZ basis added to the LANL2DZ basis was compared. While the three ligands exhibit different conformational flexibility, the associated copper complexes show great rigidity imposed by the metal-ligand coordination, taking on a single structure in each case. In addition, dispersion interactions were shown to change the conformational stability ordering of the ligands noticeably and to exert considerable influence on the simulated UV-Vis and ECD spectra. Chirality 28:545-555, 2016. © 2016 Wiley Periodicals, Inc.

  1. Reductive Cleavage of CO2 by Metal-Ligand-Cooperation Mediated by an Iridium Pincer Complex.

    PubMed

    Feller, Moran; Gellrich, Urs; Anaby, Aviel; Diskin-Posner, Yael; Milstein, David

    2016-05-25

    A unique mode of stoichiometric CO2 activation and reductive splitting based on metal-ligand-cooperation is described. The novel Ir hydride complexes [((t)Bu-PNP*)Ir(H)2] (2) ((t)Bu-PNP*, deprotonated (t)Bu-PNP ligand) and [((t)Bu-PNP)Ir(H)] (3) react with CO2 to give the dearomatized complex [((t)Bu-PNP*)Ir(CO)] (4) and water. Mechanistic studies have identified an adduct in which CO2 is bound to the ligand and metal, [((t)Bu-PNP-COO)Ir(H)2] (5), and a di-CO2 iridacycle [((t)Bu-PNP)Ir(H)(C2O4-κC,O)] (6). DFT calculations confirm the formation of 5 and 6 as reversibly formed side products, and suggest an η(1)-CO2 intermediate leading to the thermodynamic product 4. The calculations support a metal-ligand-cooperation pathway in which an internal deprotonation of the benzylic position by the η(1)-CO2 ligand leads to a carboxylate intermediate, which further reacts with the hydride ligand to give complex 4 and water.

  2. Affinity of An(VI) for N4-Tetradentate Donor Ligands: Complexation of the Actinyl(VI) Ions with N4-Tetradentate Ligands

    SciTech Connect

    Ogden, Mark; Sinkov, Sergey I.; Lumetta, Gregg J.; Nash, Kenneth L.

    2012-05-01

    In this report the affinity of four N4-tetradentate ligands that incorporate the 2- methylpyridyl functionality with hexavalent actinides (AnO2+2 ) has been investigated in methanol solution. The ligands studied include N,N*-bis(2-methylpyridyl)diaminoethane (BPMDAE), N,N-bis(2-methylpyridyl)-1,3-diaminopropane (BPMDAP), N,N*-bis(2-pyridylmethyl) piperazine (BPMPIP), and trans-N,N-bis(2-pyridylmethyl)-1,2-diaminocyclohexane (BPMDAC). Conditional stability constants describing the strength of the interaction were determined by UV-visible spectrophotometry. The log10K101 values for both U(VI) and Pu(VI) are comparable and show the same trend of stability with ligand structure. Dinuclear complexes are also indicated as being important. The log10K201 values for Pu(VI) complexation with the N4-ligands are identical for the four ligands (within experimental error), indicating that the structure of the ligand backbone has little effect on the stability of the (PuO2)2L2+ complex. The exception to this trend is the behavior of N,N*- bis(2-pyridylmethyl)piperazine (BPMPIP) with Pu(VI). This ligand displays a tendency to reduce Pu(VI) within the experimental time frame of 45 minutes. BPMPIP is the only ligand tested that contains tertiary amines in the ligand backbone. The decomposition of BPMPIP by Pu(VI) suggests a susceptibility of tertiary amines to oxidative degradation.

  3. Synthesis and luminescence properties of iridium complexes chelated with coumarin ligands.

    PubMed

    Park, Hye Rim; Kim, Bo Young; Kim, Young Kwan; Ha, Yunkyoung

    2013-05-01

    According to a recent report, the organic light-emitting diodes (OLEDs) using the iridium complexes of coumarin derivatives as emissive dopants are highly efficient and stable. Unlike the other Ir(III) phopsphorescent dopants, these coumarin-based Ir(III) complexes can effectively trap and transport electrons in the emissive layer. We have prepared a series of phosphorescent cyclometalated Ir(III) complexes containing 3-(2-pyridinyl)coumarin (pc) as an ancillary ligand. The new heteroleptic iridium complexes, Ir(C--N)2(pc) (CAN = 2-(2,4-difluorophenyl)pyridine (F2-ppy), 2-phenylpyridine (ppy) and 2-phenylquinoline (pq)) were characterized by 1H NMR and mass spectrometer. As main ligands, F2-ppy, ppy and pq were employed, which should have the drastically different ligand molecular orbital energy levels. The iridium complexes showed various emission ranges from 560 to 610 nm, depending upon the relative energy levels of their main and ancillary ligands. The photoabsorption, photoluminescence and electroluminescence of the complexes were studied. We also investigated the electrochemical properties of the iridium complexes to compare the HOMO and LUMO energy levels of these phosphorescent materials.

  4. Macrocyclic bis(ureas) as ligands for anion complexation

    PubMed Central

    Kretschmer, Claudia; Dittmann, Gertrud

    2014-01-01

    Summary Two macrocyclic bis(ureas) 1 and 2, both based on diphenylurea, have been synthesized. Compound 1 represents the smaller ring with two ethynylene groups as linkers and 2 the larger ring with two butadiynylene groups. On thermal treatment to 130 °C molecule 1 splits up into two dihydroindoloquinolinone (3) molecules. Both compounds 1 and 2 form adducts with polar molecules such as dimethyl sulfoxide (DMSO) and dimethylformamide (DMF) and act as complexing agents towards a series of anions (Cl−, Br−, I−, NO3 −, HSO4 −). The crystal structures of 3, 2·2DMSO, 2·2DMF, and of the complex NEt4[Br·2] have been determined. Quantitative investigations of the complexation equilibria were performed via 1H NMR titrations. While 1 is a rather weak complexing agent, the large ring of 2 binds anions with association constants up to log K = 7.93 for chloride ions. PMID:25161744

  5. Copper(II) complexes with heterocyclic hydroxyimino-containing ligands

    SciTech Connect

    Kogan, V.A.; Burlov, A.S.; Popov, L.D.; Lukov, V.V.; Koshchienko, Yu.V.; Tsupak, E.B.; Barchan, G.P.; Chigarenko, G.G.; Bolotnikov, V.S.

    1988-05-01

    The reaction of oximes (R = Ph (L'), C=N (L'')) with the copper(II) salts CuA/sub 2/ in methanol has given the complexes CuL/sub 2/ ' x H/sub 2/O and CuL/sub 2//sup ''/ x 2H/sub 2/O (I) (A = Acet/sup -/), CuHLCl/sub 2/ x H/sub 2/O (II) (A = Cl/sup -/), CuLOH(ClO/sub 4/)/sub 2/ x 2H/sub 2/O (III) (A = ClO/sub 4//sup -/) and the complexes Cu/sub 3/L/sub 3//sup '/OH(NO/sub 3/)/sub 2/ and Cu/sub 3/L/sub 3//sup ''/(OH)/sub 2/NO/sub 3/ (IV) (A = NO/sub 3//sup -/). Their physicochemical properties have been studied by the methods of IR spectroscopy and magnetochemistry. It has been shown that complexes I have a chelate structure and that their magnetic moments are not dependent on the temperature. An anti-ferromagnetic exchange interaction takes place in complexes II-IV. On the basis of magnetochemical measurements over a broad temperature range and data calculated in the framework of the Heisenberg-Dirac-Van Vleck model of isotropic exchange interactions, a dimeric structure has been proposed for the complexes of type II, and a trinuclear cluster structure has been proposed for complexes III and IV.

  6. CO2 hydrogenation catalyzed by iridium complexes with a proton-responsive ligand

    SciTech Connect

    Onishi, Naoya; Xu, Shaoan; Manaka, Yuichi; Suna, Yuki; Wang, Wan -Hui; Muckerman, James T.; Fujita, Etsuko; Himeda, Yuichiro

    2015-02-18

    In this study, the catalytic cycle for the production of formic acid by CO₂ hydrogenation and the reverse reaction has received renewed attention because they are viewed as offering a viable scheme for hydrogen storage and release. In this Forum Article, CO₂ hydrogenation catalyzed by iridium complexes bearing N^N-bidentate ligands is reported. We describe how a ligand containing hydroxyl groups as proton-responsive substituents enhances catalytic performance by an electronic effect of the oxyanions and a pendent-base effect through secondary coordination sphere interaction. In particular, [(Cp*IrCl)₂(TH2BPM)]Cl₂ (Cp* = pentamethyl cyclopentadienyl, TH2BPM = 4,4',6,6'-tetrahydroxy-2,2'-bipyrimidine) promotes enormously the catalytic hydrogenation of CO₂ by these synergistic effects under atmospheric pressure and at room temperature. Additionally, newly designed complexes with azole-type ligands are applied to CO₂ hydrogenation. The catalytic efficiencies of the azole-type complexes are much higher than that of the unsubstituted bipyridine complex [Cp*Ir(bpy)(OH₂)]SO₄. Furthermore, the introduction of one or more hydroxyl groups into ligands such as 2-pyrazolyl-6-hydroxypyridine, 2-pyrazolyl-4,6-dihydroxyl pyrimidine, and 4-pyrazolyl-2,6-dihydroxyl pyrimidine enhanced catalytic activity. It is clear that the incorporation of electron-donating hydroxyl groups into proton-responsive ligands is effective for promoting the hydrogenation of CO₂.

  7. Formal Estimation of Errors in Computed Absolute Interaction Energies of Protein-ligand Complexes

    PubMed Central

    Faver, John C.; Benson, Mark L.; He, Xiao; Roberts, Benjamin P.; Wang, Bing; Marshall, Michael S.; Kennedy, Matthew R.; Sherrill, C. David; Merz, Kenneth M.

    2011-01-01

    A largely unsolved problem in computational biochemistry is the accurate prediction of binding affinities of small ligands to protein receptors. We present a detailed analysis of the systematic and random errors present in computational methods through the use of error probability density functions, specifically for computed interaction energies between chemical fragments comprising a protein-ligand complex. An HIV-II protease crystal structure with a bound ligand (indinavir) was chosen as a model protein-ligand complex. The complex was decomposed into twenty-one (21) interacting fragment pairs, which were studied using a number of computational methods. The chemically accurate complete basis set coupled cluster theory (CCSD(T)/CBS) interaction energies were used as reference values to generate our error estimates. In our analysis we observed significant systematic and random errors in most methods, which was surprising especially for parameterized classical and semiempirical quantum mechanical calculations. After propagating these fragment-based error estimates over the entire protein-ligand complex, our total error estimates for many methods are large compared to the experimentally determined free energy of binding. Thus, we conclude that statistical error analysis is a necessary addition to any scoring function attempting to produce reliable binding affinity predictions. PMID:21666841

  8. CO2 hydrogenation catalyzed by iridium complexes with a proton-responsive ligand

    DOE PAGES

    Onishi, Naoya; Xu, Shaoan; Manaka, Yuichi; ...

    2015-02-18

    In this study, the catalytic cycle for the production of formic acid by CO₂ hydrogenation and the reverse reaction has received renewed attention because they are viewed as offering a viable scheme for hydrogen storage and release. In this Forum Article, CO₂ hydrogenation catalyzed by iridium complexes bearing N^N-bidentate ligands is reported. We describe how a ligand containing hydroxyl groups as proton-responsive substituents enhances catalytic performance by an electronic effect of the oxyanions and a pendent-base effect through secondary coordination sphere interaction. In particular, [(Cp*IrCl)₂(TH2BPM)]Cl₂ (Cp* = pentamethyl cyclopentadienyl, TH2BPM = 4,4',6,6'-tetrahydroxy-2,2'-bipyrimidine) promotes enormously the catalytic hydrogenation of CO₂ bymore » these synergistic effects under atmospheric pressure and at room temperature. Additionally, newly designed complexes with azole-type ligands are applied to CO₂ hydrogenation. The catalytic efficiencies of the azole-type complexes are much higher than that of the unsubstituted bipyridine complex [Cp*Ir(bpy)(OH₂)]SO₄. Furthermore, the introduction of one or more hydroxyl groups into ligands such as 2-pyrazolyl-6-hydroxypyridine, 2-pyrazolyl-4,6-dihydroxyl pyrimidine, and 4-pyrazolyl-2,6-dihydroxyl pyrimidine enhanced catalytic activity. It is clear that the incorporation of electron-donating hydroxyl groups into proton-responsive ligands is effective for promoting the hydrogenation of CO₂.« less

  9. Complexation of N4-Tetradentate Ligands with Nd(III) and Am(III)

    SciTech Connect

    Ogden, Mark D.; Sinkov, Sergey I.; Meier, G. Patrick; Lumetta, Gregg J.; Nash, Kenneth L.

    2012-12-06

    To improve understanding of aza-complexants in trivalent actinide–lanthanide separations, a series of tetradentate N-donor ligands have been synthesized and their complexation of americium(III) and neodymium(III) investigated by UV–visible spectrophotometry in methanolic solutions. The six pyridine/alkyl amine/imine ligands are N,N0-bis(2-methylpyridyl)-1,2-diaminoethane, N,N0-bis(2-methylpyridyl)-1,3-diaminopropane, trans-N,N-bis(2-pyridylmethyl)-1,2-diaminocyclohexane (BPMDAC), N,N’-bis(2-pyridylmethyl)piperazine, N,N’-bis-[pyridin-2-ylmethylene]ethane-1,2-diamine, and trans-N,Nbis-([pyridin-2-ylmethylene]-cyclohexane-1,2-diamine. Each ligand has two pyridine groups and two aliphatic amine/imine N-donor atoms arranged with different degrees of preorganization and structural backbone rigidity. Conditional stability constants for the complexes of Am(III) and Nd(III) by these ligands establish the selectivity patterns. The overall selectivity of Am(III) over Nd(III) is similar to that reported for the terdentate bis(dialkyltriazinyl)pyridine molecules. The cyclohexane amine derivative (BPMDAC) is the strongest complexant and shows the highest selectivity for Am(III) over Nd(III) while the imines appear to prefer a bridging arrangement between two cations. These results suggest that this series of ligands could be employed to develop an enhanced actinide(III)– lanthanide(III) separation system.

  10. Generating "fragment-based virtual library" using pocket similarity search of ligand-receptor complexes.

    PubMed

    Khashan, Raed S

    2015-01-01

    As the number of available ligand-receptor complexes is increasing, researchers are becoming more dedicated to mine these complexes to aid in the drug design and development process. We present free software which is developed as a tool for performing similarity search across ligand-receptor complexes for identifying binding pockets which are similar to that of a target receptor. The search is based on 3D-geometric and chemical similarity of the atoms forming the binding pocket. For each match identified, the ligand's fragment(s) corresponding to that binding pocket are extracted, thus forming a virtual library of fragments (FragVLib) that is useful for structure-based drug design. The program provides a very useful tool to explore available databases.

  11. Titanium(IV) imido complexes of imine imidazol-2-imine ligands.

    PubMed

    Dastgir, Sarim; Lavoie, Gino G

    2012-08-28

    Free imine imidazol-2-imine ligands with two different substitution patterns have been isolated for the first time and they were found to exist as an equilibrium mixture of geometric and mesomeric isomers. The relative ratios of these isomers are dependent on both the nature of the substituents and of the solvent. The synthesis of the titanium(IV) alkyl and arylimido complexes of these ligands was unexpectedly found to be very selective and was successfully achieved only with the lesser sterically-demanding 2,4,6-trimethylphenyl derivative IMesN^Imine 2a. The solid-state structure of the alkylimido complex further confirms the zwitterionic character of the ligand. The isolated titanium imido complexes were found to be active catalysts for the polymerisation of ethylene.

  12. Synthesis, characterization and luminescent properties of lanthanide complexes with a novel multipodal ligand.

    PubMed

    Yan, Zhen-Zhong; Hou, Na; Wang, Cong-Min

    2015-02-25

    Solid complexes of lanthanide nitrates with an novel multipodal ligand, 1,2,4,5-tetramethyl-3,6-bis{N,N-bis[((2'-furfurylaminoformyl)phenoxyl)ethyl]-aminomethyl}-benzene (L) have been synthesized and characterized by elemental analysis, infrared spectra and molar conductivity measurements. At the same time, the luminescent properties of the Sm(III), Eu(III), Tb(III) and Dy(III) nitrate complexes in solid state were investigated. Under the excitation of UV light, these complexes exhibited characteristic emission of central metal ions. The lowest triplet state energy level of the ligand indicates that the triplet state energy level (T1) of the ligand matches better the resonance level of Tb(III) than other lanthanide ions.

  13. Rhenium complexes of bidentate, bis-bidentate and tridentate N-heterocyclic carbene ligands.

    PubMed

    Chan, Chung Ying; Barnard, Peter J

    2015-11-28

    A series of eight Rhenium(I)-N-heterocyclic carbene (NHC) complexes of the general form [ReCl(CO)3(C^C)] (where C^C is a bis(NHC) bidentate ligand), [ReCl(CO)3(C^C)]2 (where C^C is a bis-bidentate tetra-NHC ligand) and [Re(CO)3(C^N^C)](+)[X](-) (where C^N^C is a bis(NHC)-amine ligand and the counter ion X is either the ReO4(-) or PF6(-)) have been synthesised using a Ag2O transmetallation protocol. The novel precursor imidazolium salts and Re(I) complexes were characterized by elemental analysis, (1)H and (13)C NMR spectroscopy and the molecular structures for two imidazolium salt and six Re(I) complexes were determined by single crystal X-ray diffraction. These NHC ligand systems are of interest for possible applications in the development of Tc-99m or Re-186/188 radiopharmaceuticals and as such the stability of two complexes of the form [ReCl(CO)3(C^C)] and [Re(CO)3(C^N^C)][ReO4] were evaluated in ligand challenge experiments using the metal binding amino acids L-histidine or L-cysteine. These studies showed that the former was unstable, with the chloride ligand being replaced by either cysteine or histidine, while no evidence for transchelation was observed for the latter suggesting that bis(NHC)-amine ligands of this type may be suitable for biological applications.

  14. Synthesis, Characterization and Biological Evaluation of Transition Metal Complexes Derived from N, S Bidentate Ligands

    PubMed Central

    Md Yusof, Enis Nadia; Ravoof, Thahira Begum S. A.; Tiekink, Edward R. T.; Veerakumarasivam, Abhimanyu; Crouse, Karen Anne; Mohamed Tahir, Mohamed Ibrahim; Ahmad, Haslina

    2015-01-01

    Two bidentate NS ligands were synthesized by the condensation reaction of S-2-methylbenzyldithiocarbazate (S2MBDTC) with 2-methoxybenzaldehyde (2MB) and 3-methoxybenzaldehyde (3MB). The ligands were reacted separately with acetates of Cu(II), Ni(II) and Zn(II) yielding 1:2 (metal:ligand) complexes. The metal complexes formed were expected to have a general formula of [M(NS)2] where M = Cu2+, Ni2+, and Zn2+. These compounds were characterized by elemental analysis, molar conductivity, magnetic susceptibility and various spectroscopic techniques. The magnetic susceptibility measurements and spectral results supported the predicted coordination geometry in which the Schiff bases behaved as bidentate NS donor ligands coordinating via the azomethine nitrogen and thiolate sulfur. The molecular structures of the isomeric S2M2MBH (1) and S2M3MBH (2) were established by X-ray crystallography to have very similar l-shaped structures. The Schiff bases and their metal complexes were evaluated for their biological activities against estrogen receptor-positive (MCF-7) and estrogen receptor-negative (MDA-MB-231) breast cancer cell lines. Only the Cu(II) complexes showed marked cytotoxicity against the cancer cell lines. Both Schiff bases and other metal complexes were found to be inactive. In concordance with the cytotoxicity studies, the DNA binding studies indicated that Cu(II) complexes have a strong DNA binding affinity. PMID:25988384

  15. Macrocyclic ligands for uranium complexation. Final report, August 1, 1986--March 31, 1993

    SciTech Connect

    Potts, K.T.

    1993-12-31

    Macrocycles, designed for complexation of the uranyl ion by computer modeling studies and utilizing six ligating atoms in the equatorial plane of the uranyl ions, have been prepared and their complexation of the uranyl ions evaluated. The ligating atoms, either oxygen or sulfur, were part of acylurea, biuret or thiobiuret subunits with alkane chains or pyridine units completing the macrocyclic periphery. These macrocycles with only partial preorganization formed uranyl complexes in solution but no crystalline complexes were isolated. Refinement of the cavity diameter by variation of the peripheral functional groups is currently studied to achieve an optimized cavity diameter of 4.7--5.2 {angstrom}. Acyclic ligands containing the same ligating atoms in equivalent functional entities were found to form a crystalline 1:1 uranyl-ligand complex (stability constant log K = 10.7) whose structure was established by X-ray data. This complex underwent a facile, DMSO-induced rearrangement to a 2:1 uranyl-ligand complex whose structure was also established by X-ray data. The intermediates to the macrocycles all behaved as excellent ligands for the complexation of transition metals. Acylthiourea complexes of copper and nickel as well as intermolecular, binuclear copper and nickel complexes of bidentate carbonyl thioureas formed readily and their structures were established in several representative instances by X-ray structural determinations. Tetradentate bis(carbonylthioureas) were found to be very efficient selective reagents for the complexation of copper in the presence of nickel ions. Several preorganized macrocycles were also prepared but in most instances these macrocycles underwent ring-opening under complexation conditions.

  16. Synthesis and resolution of planar-chiral ruthenium-palladium complexes with ECE' pincer ligands.

    PubMed

    Bonnet, Sylvestre; Li, Jie; Siegler, Maxime A; von Chrzanowski, Lars S; Spek, Anthony L; van Koten, Gerard; Klein Gebbink, Robertus J M

    2009-01-01

    Feel the pinch! Planar-chiral, cationic, ruthenium-palladium complexes based on eta(6),eta(1)-coordinated ECE' pincer ligands are synthesized as racemic mixtures by reacting ECE'-palladium complexes and [Ru(C(5)R(5))(MeCN)(3)](+) arenophiles (R=H or Me). Chiral resolution of the cationic complexes was achieved by using the chiral counterion [Delta-TRISPHAT](-), and solving the X-ray crystal structure of one diastereoisomer (shown here).

  17. Modelling of trace metal uptake by roots taking into account complexation by exogenous organic ligands

    NASA Astrophysics Data System (ADS)

    Jean-Marc, Custos; Christian, Moyne; Sterckeman, Thibault

    2010-05-01

    The context of this study is phytoextraction of soil trace metals such as Cd, Pb or Zn. Trace metal transfer from soil to plant depends on physical and chemical processes such as minerals alteration, transport, adsorption/desorption, reactions in solution and biological processes including the action of plant roots and of associated micro-flora. Complexation of metal ions by organic ligands is considered to play a role on the availability of trace metals for roots in particular in the event that synthetic ligands (EDTA, NTA, etc.) are added to the soil to increase the solubility of the contaminants. As this role is not clearly understood, we wanted to simulate it in order to quantify the effect of organic ligands on root uptake of trace metals and produce a tool which could help in optimizing the conditions of phytoextraction.We studied the effect of an aminocarboxilate ligand on the absorption of the metal ion by roots, both in hydroponic solution and in soil solution, for which we had to formalize the buffer power for the metal. We assumed that the hydrated metal ion is the only form which can be absorbed by the plants. Transport and reaction processes were modelled for a system made up of the metal M, a ligand L and the metal complex ML. The Tinker-Nye-Barber model was adapted to describe the transport of solutes M, L and ML in the soil and absorption of M by the roots. This allowed to represent the interactions between transport, chelating reactions, absorption of the solutes at the root surface, root growth with time, in order to simulate metal uptake by a whole root system.Several assumptions were tested such as i) absorption of the metal by an infinite sink and according to a Michaelis-Menten kinetics, solutes transport by diffusion with and without ii) mass flow and iii) soil buffer power for the ligand L. In hydroponic solution (without soil buffer power), ligands decreased the trace metal flux towards roots, as they reduced the concentration of hydrated

  18. Voltage clustering in redox-active ligand complexes: mitigating electronic communication through choice of metal ion

    SciTech Connect

    Zarkesh, Ryan A.; Ichimura, Andrew S.; Monson, Todd C.; Tomson, Neil C.; Anstey, Mitchell R.

    2016-02-01

    We used the redox-active bis(imino)acenapthene (BIAN) ligand to synthesize homoleptic aluminum, chromium, and gallium complexes of the general formula (BIAN)3M. The resulting compounds were characterized using X-ray crystallography, NMR, EPR, magnetic susceptibility and cyclic voltammetry measurements and modeled using both DFT and ab initio wavefunction calculations to compare the orbital contributions of main group elements and transition metals in ligand-based redox events. Ultimately, complexes of this type have the potential to improve the energy density and electrolyte stability of grid-scale energy storage technologies, such as redox flow batteries, through thermodynamically-clustered redox events.

  19. Synthesis, structure, and photophysical characterization of blue-green luminescent zinc complexes containing 2-iminophenanthropyrrolyl ligands.

    PubMed

    Gomes, Clara S B; Gomes, Pedro T; Duarte, M Teresa; Di Paolo, Roberto E; Maçanita, António L; Calhorda, Maria José

    2009-12-07

    New 2-iminophenanthro[9,10-c]pyrrole ligand precursors containing phenyl or 2,6-diisopropylphenyl groups at the imine nitrogen substituent, 2-arylformiminophenanthro[9,10-c]pyrroles (aryl = phenyl IIa, 2,6-diisopropylphenyl IIb) were synthesized and deprotonated in situ with NaH, originating solutions of the corresponding sodium salts (IVa, IVb). The reaction of these salts with zinc chloride gave the homoleptic bis-ligand Zn(II) complexes [Zn(kappa(2)N,N'-2-arylformiminophenanthro[9,10-c]pyrrolyl)(2)] (aryl = phenyl 2a, 2,6-diisopropylphenyl 2b). The new ligand precursors and complexes were characterized by NMR, elemental analysis, UV/vis spectroscopy, and X-ray crystallography, when possible. The photophysical characterization was carried out using steady-state and picosecond time-resolved luminescence techniques in solution. The influence of the pi-extended conjugation of the condensed phenanthro group on the deprotonated iminopyrrolyl ligands coordinated to Zn(2+) greatly enhances fluorescence quantum yields of the complexes (2a, 2b) in relation to those of their ligand precursors (IIa, IIb). Complex 2a shows emission in the green spectral region (lambda(max) = 494 nm), presenting the highest fluorescence quantum yield (phi(f) = 8.8%). In the case of the complex 2b (phi(f) = 3.9%), the bulkiness of the 2,6-diisopropyl substituents of the arylimino group highly restricts the aryl ring rotation toward coplanarity with the ligand framework, inducing a shift in the emission to the blue region (lambda(max) = 459 nm). The values of the radiative (k(f)) and radiationless rate constants (k(nr)) show that the fluorescence quantum yield enhancement in the complexes results from a 50-fold increase in k(f) values, indicating much more allowed pi-pi* transitions in complexes 2a and 2b than those occurring in the ligand precursors IIa and IIb, with an essentially n-pi* character. These assignments were confirmed by density-functional theory (DFT) and time-dependent DFT (TD

  20. Electronic and magnetic properties of bimetallic ytterbocene complexes: the impact of bridging ligand geometry.

    PubMed

    Carlson, Christin N; Veauthier, Jacqueline M; John, Kevin D; Morris, David E

    2008-01-01

    Bimetallic ytterbocene complexes with bridging N-heterocylic ligands have been studied extensively in recent years due to their potential applications ranging from molecular wires to single-molecule magnets. Herein, we review our recent results for a series of ytterbocene polypyridyl bimetallic complexes to highlight the versatility and tunability of these systems based on simple changes in bridging ligand geometry. Our work has involved structural, electrochemical, optical, and magnetic measurements with the goal of better understanding the electronic and magnetic communication between the two ytterbium metal centers in this new class of bimetallics.

  1. Voltage clustering in redox-active ligand complexes: mitigating electronic communication through choice of metal ion

    DOE PAGES

    Zarkesh, Ryan A.; Ichimura, Andrew S.; Monson, Todd C.; ...

    2016-02-01

    We used the redox-active bis(imino)acenapthene (BIAN) ligand to synthesize homoleptic aluminum, chromium, and gallium complexes of the general formula (BIAN)3M. The resulting compounds were characterized using X-ray crystallography, NMR, EPR, magnetic susceptibility and cyclic voltammetry measurements and modeled using both DFT and ab initio wavefunction calculations to compare the orbital contributions of main group elements and transition metals in ligand-based redox events. Ultimately, complexes of this type have the potential to improve the energy density and electrolyte stability of grid-scale energy storage technologies, such as redox flow batteries, through thermodynamically-clustered redox events.

  2. Pyridazine- versus pyridine-based tridentate ligands in first-row transition metal complexes.

    PubMed

    Grünwald, Katrin R; Volpe, Manuel; Cias, Pawel; Gescheidt, Georg; Mösch-Zanetti, Nadia C

    2011-08-15

    A series of first-row transition metal complexes with the unsymmetrically disubstituted pyridazine ligand picolinaldehyde (6-chloro-3-pyridazinyl)hydrazone (PIPYH), featuring an easily abstractable proton in the backbone, was prepared. Ligand design was inspired by literature-known picolinaldehyde 2-pyridylhydrazone (PAPYH). Reaction of PIPYH with divalent nickel, copper, and zinc nitrates in ethanol led to complexes of the type [Cu(II)(PIPYH)(NO(3))(2)] (1) or [M(PIPYH)(2)](NO(3))(2) [M = Ni(II) (2) or Zn(II) (3)]. Complex synthesis in the presence of triethylamine yielded fully- or semideprotonated complexes [Cu(II)(PIPY)(NO(3))] (4), [Ni(II)(PIPYH)(PIPY)](NO(3)) (5), and [Zn(II)(PIPY)(2)] (6), respectively. Cobalt(II) nitrate is quantitatively oxidized under the reaction conditions to [Co(III)(PIPY)(2)](NO(3)) (7) in both neutral and basic media. X-ray diffraction analyses reveal a penta- (1) or hexa-coordinated (2, 3, and 7) metal center surrounded by one or two tridentate ligands and, eventually, κ-O,O' nitrate ions. The solid-state stoichiometry was confirmed by electron impact (EI) and electrospray ionization (ESI) mass spectrometry. The diamagnetic complexes 5 and 6 were subjected to (1)H NMR spectroscopy, suggesting that the ligand to metal ratio remains constant in solution. Electronic properties were analyzed by means of cyclic voltammetry and, in case of copper complexes 1 and 4, also by electron paramagnetic resonance (EPR) spectroscopy, showing increased symmetry upon deprotonation for the latter, which is in accordance with the proposed stoichiometry [Cu(II)(PIPY)(NO(3))]. Protic behavior of the nickel complexes 2 and 5 was investigated by UV/vis spectroscopy, revealing high π-backbonding ability of the PIPYH ligand resulting in an unexpected low acidity of the hydrazone proton in nickel complex 2.

  3. Rare Earth Metal Complexes of Bidentate Nitroxide Ligands: Synthesis and Electrochemistry.

    PubMed

    Kim, Jee Eon; Bogart, Justin A; Carroll, Patrick J; Schelter, Eric J

    2016-01-19

    We report rare earth metal complexes with tri- and bidentate ligands including strongly electron-donating nitroxide groups. The tridentate ligand 1,3,5-tris(2'-tert-butylhydroxylaminoaryl)benzene (H3arene-triNOx) was complexed to cerium(IV) in a 2:1 ligand-to-metal stoichiometry as Ce(Harene-triNOx)2 (1). Cyclic voltammetry of this compound showed stabilization of the tetravalent cerium cation with a Ce(IV/III) couple at E1/2 = -1.82 V versus Fc/Fc(+). On the basis of the uninvolvement of the third nitroxide group in the coordination chemistry with the cerium(IV) cation, the ligand system was redesigned toward a simpler bidentate mode, and a series of rare earth metal-arene-diNOx complexes were prepared with La(III), Ce(IV), Pr(III), Tb(III), and Y(III), [RE(arene-diNOx)2](-) ([2-RE](-), RE = La, Pr, Y, Tb) and Ce(IV)(arene-diNOx)2, where H2arene-diNOx = 1,3-bis(2'-tert-butylhydroxylaminoaryl)benzene. The core structures were isostructural throughout the series, with three nitroxide groups in η(2) binding modes and one κ(1) nitroxide group coordinated to the metal center in the solid state. In all cases except Ce(IV)(arene-diNOx)2, electrochemical analysis described two subsequent, ligand-based, quasi-reversible redox waves, indicating that a stable [N-O•] group was generated on the electrochemical time scale. Chemical oxidation of the terbium complex was performed, and isolation of the resulting complex, Tb(arene-diNOx)2·CH2Cl2 (3·CH2Cl2), confirmed the assignment of the cyclic voltammograms. Magnetic data showed no evidence of mixing between the Tb(III) states and the states of the open-shell ligand.

  4. Palladium complexes of 6-aminofulvene-2-aldiminate (AFA) ligands.

    PubMed

    Bailey, Philip J; Collins, Anna; Haack, Peter; Parsons, Simon; Rahman, Mahmudur; Smith, Damian; White, Fraser J

    2010-02-14

    Bis(N,N'-2,6-diisopropylphenyl)-6-aminofulvene-2-aldimine (4) has been synthesised and characterised. The synthesis and characterisation of two zwitterionic Pd(ii) complexes [(Ph(2)AFA)Pd(Me)DMAP] (1) and [(Ph(2)AFA)Pd(N,N-dimethylbenzylamine-2-C,N)] (2) are reported. Activation of 1 and 2 for ethene polymerisation with Lewis acids such as BF(3) and B(C(6)F(5))(3) were not successful. Attempted synthesis of halide-bridged dimers of the form [(Ph(2)AFA)Pd(mu-X)](2) resulted in formation of bis-chelated complexes [(Cy(2)AFA)(2)Pd] (3) and [((t)Bu(2)AFA)(2)Pd] (5).

  5. Synthesis of new microbial pesticide metal complexes derived from coumarin-imine ligand

    NASA Astrophysics Data System (ADS)

    Elhusseiny, Amel F.; Aazam, Elham S.; Al-Amri, Huda M.

    2014-07-01

    A series of metal complexes of zinc(II), cadmium(II), copper(II), nickel(II) and palladium(II) have been synthesized from coumarin-imine ligand, 8-[(1E)-1-(2-aminophenyliminio)ethyl]-2-oxo-2H-chromen-7-olate, [HL]. The structures of the complexes were proposed in the light of their spectroscopic, molar conductance, magnetic and thermal studies. The ligand coordinated in a tridentate manner through the azomethine nitrogen, the phenolic oxygen and the amine nitrogen and all complexes were non-electrolytes with different geometrical arrangements around the central metal ion. Photoluminescence data unambiguously showed remarkable fluorescence enhancement to Zn2+ over other cations. The antimicrobial screening tests revealed that copper(II) complex exhibited the highest potency and its minimum inhibitory concentration on the enzymatic activities of the tested microbial species was determined. No toxin productivity was detected for all tested toxigenic species upon the exposure of copper complex.

  6. Ligand Exchange Reaction of Au(I) R-N-Heterocyclic Carbene Complexes with Cysteine.

    PubMed

    Dos Santos, H F; Vieira, M A; Sánchez Delgado, G Y; Paschoal, D

    2016-04-14

    The chemotherapy with gold complexes has been attempted since the 90s after the clinical success of auranofin, a gold(I) coordination complex. Currently, the organometallics compounds have shown promise in cancer therapy, mainly in those complexes containing N-heterocylic carbenes (NHC) as a ligand. The present study shows a kinetic analysis of the reaction of six alkyl-substituted NHC with cysteine (Cys), which is taken as an important bionucleophile representative. The first and second ligand exchange processes were analyzed with the complete description of the mechanism and energy profiles. For the first reaction step, which is the rate-limiting step of the whole substitution reaction, the activation enthalpy follows the order 1/Me2 < 2/Me,Et < 4/n-Bu2 < 3/i-Pr2 < 6/Cy2 < 5/t-Bu2, which is fully explained by steric and electronic features. From a steric point of view, the previous reactivity order is correlated with the r(Au-S) calculated for the transition state structures where S is the sulfur ligand from the Cys entering group. This means that longer r(Au-S) leads to higher activation enthalpy and is consistent with the effectiveness of gold shielding from nucleophile attack by bulkier alkyl-substituted NHC ligand. When electronic effect was addressed we found that higher activation barrier was predicted for strongly electron-donating NHC ligand, represented by the eigenvalue of σ-HOMO orbital of the free ligands. The molecular interpretation of the electronic effects is that strong donating NHC forms strong metal-ligand bond. For the second reaction step, similar structure-reactivity relationships were obtained, however the activation energies are less sensitive to the structure.

  7. Syntheses, characterization, biological activities and photophysical properties of lanthanides complexes with a tetradentate Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Taha, Ziyad A.; Ajlouni, Abdulaziz M.; Al Momani, Waleed; Al-Ghzawi, Abeer A.

    2011-10-01

    A tetradentate Schiff base ligand L (N,N'-bis(1-naphthaldimine)-o-phenylenediamine) was prepared from the condensation of 2-hydroxy-1-naphthaldehyde with o-phenylenediamine in a molar ratio of 2:1. New eight lanthanide metal complexes [Ln L(NO 3) 2(H 2O) x](NO 3) {Ln(III) = Nd, Dy, Sm, Pr, Gd, Tb, La and Er, x = 0 for Nd, Sm, 1 for La, Gd, Pr, Nd, Dy, and 2 for Tb} were prepared. The characterization and nature of bonding of these complexes were elucidated by elemental analysis, spectral analysis ( 1H NMR, FT-IR, UV-vis), molar conductivity measurements, luminescence spectra and thermogravimetric studies. Analytical and spectral data revealed that the ligand L coordinates to the central Ln(III) ions by its two imine nitrogen atoms and two phenolic oxygen atoms with 1:1 stoichiometry. Under the excitation with 329 nm at room temperature, Tb and Dy complexes exhibited characteristic luminescence of the central metal ions attributed to efficient energy transfer from the ligand to the metal center. Most of Ln(III) complexes found to exhibit antibacterial activities against a number of pathogenic bacteria. We found that the antioxident activity of Ln(III) complexes on DPPH rad is concentration dependent and higher than that of the free ligand L.

  8. Uranyl complexes of alkyl-bridged ditopic diaminotetraphenol ligands and their use as uranyl ion extractors.

    PubMed

    Riisiö, Antti; Väisänen, Ari; Sillanpää, Reijo

    2013-08-05

    The coordination chemistry of uranyl ions was studied using long n-alkyl chain (n = 5-8) bridged by N,N,N',N'-tetrakis(2-hydroxy-3-methyl-5-tert-butylbenzyl)diaminoalkanes (H4L1-H4L4) as ligands. All ligands formed 2:1 (U-to-L ratio) complexes with uranyl ions, but in addition 1:1 complexes could be characterized using ligands H4L2 and H4L3. The complexes were characterized by elemental analysis, spectroscopy (IR and NMR), and X-ray diffraction. The 2:1 complexes are of two types: [(UO2)2(H2Lm)(NO3)2(solvent)2] (m = 1 and 2; solvent = ethanol or propanol) or (cation)2[(UO2)2(H2Lm)(NO3)2(anion)2]·xsolvent (m = 2 and 4; cation = triethylammonium, anion = nitrate or thiocyanate, and solvent = dichloromethane and acetonitrile; x = 1 or 2). The 1:1 complexes have the formula [(UO2)2(H2Lm)2] (m = 2 and 3). In the solid state, 2:1 complexes are almost in a linear conformation with the uranyl ion at both ends of the ligand. The 1:1 complexes are cyclic dinuclear molecules. Preliminary studies of the ligands as uranyl ion extractors from water to dichloromethane were also performed. A high extraction efficiency was observed with H4L3 for uranyl ions, and in the presence of Cu(II), Ni(II), Co(II), and Zn(II) ions, a good extraction selectivity for uranyl ions was found with H4L1.

  9. Estimating the acidity of transition metal hydride and dihydrogen complexes by adding ligand acidity constants.

    PubMed

    Morris, Robert H

    2014-02-05

    A simple equation (pKa(THF) = ∑AL + Ccharge + Cnd + Cd6) can be used to obtain an estimate of the pKa of diamagnetic transition metal hydride and dihydrogen complexes in tetrahydrofuran, and, by use of conversion equations, in other solvents. It involves adding acidity constants AL for each of the ligands in the 5-, 6-, 7-, or 8-coordinate conjugate base complex of the hydride or dihydrogen complex along with a correction for the charge (Ccharge = -15, 0 or 30 for x = +1, 0 or -1 charge, respectively) and the periodic row of the transition metal (Cnd = 0 for 3d or 4d metal, 2 for 5d metal) as well as a correction for d(6) octahedral acids (Cd6 = 6 for d(6) metal ion in the acid, 0 for others) that are not dihydrogen complexes. Constants AL are provided for 13 commonly occurring ligand types; of these, nine neutral ligands are correlated with Lever's electrochemical ligand parameters EL. This method gives good estimates of the over 170 literature pKa values that range from less than zero to 50 with a standard deviation of 3 pKa units for complexes of the metals chromium to nickel, molybdenum, ruthenium to palladium, and tungsten to platinum in the periodic table. This approach allows a quick assessment of the acidity of hydride complexes found in nature (e.g., hydrogenases) and in industry (e.g., catalysis and hydrogen energy applications). The pKa values calculated for acids that have bulky or large bite angle chelating ligands deviate the most from this correlation. The method also provides an estimate of the base strength of the deprotonated form of the complex.

  10. Syntheses, crystal structures, anticancer activities of three reduce Schiff base ligand based transition metal complexes

    NASA Astrophysics Data System (ADS)

    Chang, Hui-Qin; Jia, Lei; Xu, Jun; Zhu, Tao-Feng; Xu, Zhou-Qing; Chen, Ru-Hua; Ma, Tie-Liang; Wang, Yuan; Wu, Wei-Na

    2016-02-01

    Three nickel(II) complexes, [Ni2(L1)2(tren)2(H2O)](ClO4)3 (1), [NiL2(tren)2](ClO4)·2.5H2O (2), [NiL2(tren)2]I·1.5H2O·CH3OH (3) based on amino acid reduced Schiff ligands are synthesized and characterized by physico-chemical and spectroscopic methods. The results show that in all complexes, the amino acid ligand is deprotonated and acts as an anionic ligand. In the dinuclear complex 1, each Ni(II) atom has a distorted octahedron geometry while with different coordination environment. However, the complexes 2 and 3 are mononuclear, almost with the same coordination environment. Furthermore, in vitro experiments are carried out, including MTT assay, Annexin V/PI flow cytometry and western blotting, to assess whether the complexes have antitumor effect. And the results show that all the three complexes have moderate anticancer activity towards human hepatic cancer (HepG2), human cervical cancer (HeLa) and human prostate (PC3) cell lines, in a concentration dependent way. The complex 1 exhibit higher cytotoxicity than the other two complexes and can induce human hepatic cancer cell (HepG2) to cell apoptosis by activating caspase 3.

  11. Zinc (II) complex with a cationic Schiff base ligand: Synthesis, characterization, and biological studies

    NASA Astrophysics Data System (ADS)

    Lee, Sze Koon; Tan, Kong Wai; Ng, Seik Weng; Ooi, Kah Kooi; Ang, Kok Pian; Abdah, Md Akim

    2014-03-01

    A cationic Schiff base ligand, TSB (L) and its Zn (II) complex (1) were synthesized and characterized by using CHN, 1H-NMR, FT-IR, UV, LC-MS, and X-ray methods. Their ability to inhibit topoisomerase I, DNA cleavage activities, and cytotoxicity were studied. X-ray diffraction study shows that the mononuclear complex 1 is four coordinated with distorted tetrahedral geometry. The singly deprotonated Schiff base ligand L acts as a bidentate ON-donor ligand. Complexation of L increases the inhibitory strength on topoisomerase I activity. Complex 1 could fully inhibit topoisomerase I activity at 250 μM, while L did not show any inhibitory effect on topoisomerase I activity. In addition, L and complex 1 could cleave pBR322 DNA in a concentration and time dependent profile. Surprisingly, L has better DNA cleavage activity than complex 1. The cleavage of DNA by complex 1 is altered in the presence of hydrogen peroxide. Furthermore, L and complex 1 are mildly cytotoxic towards human ovarian cancer A2780 and hepatocellular carcinoma HepG2.

  12. Synthesis and infrared and fluorescent spectra of rare earth complexes with a new amide ligand.

    PubMed

    Cui, Haixia; Chen, Jianmin; Zhou, Huidi; Lu, Yanhua

    2007-11-01

    Solid complexes of rare earth nitrates and picrates with a new amide ligand, 1,6-bis[(2'-benzylaminoformyl)phenoxyl]hexane (L) have been prepared. These complexes are characterized by elemental analysis, UV-vis spectra and IR spectra. The fluorescent and luminescent properties of the Eu(III) and Tb(III) nitrates and picrates complexes in solid state are also investigated. Under the excitation of UV light, these complexes except Tb(III) picrate complex exhibit characteristic emission of europium and terbium ions. The influence of the counter anion on the fluorescent intensity is also discussed.

  13. Gas Phase Computational Studies on the Competition Between Nitrile and Water Ligands in Uranyl Complexes

    SciTech Connect

    Schoendorff, George E.; De Jong, Wibe A.; Gordon, Mark S.; Windus, Theresa L.

    2010-08-26

    The formation of uranyl dicationic complexes containing water and nitrile (acetonitrile, propionitrile, and benzonitrile) ligands, [UO2(H2O)n(RCN)m]2+, has been studied using density functional theory (DFT) with a relativistic effective core potential (RECP) to account for scalar relativistic effects on uranium. It is shown that nitrile addition is favored over the addition of water ligands. Decomposition of these complexes to [UO2OH(H2O)n(RCN)m]+ by the loss of either H3O+ or (RCN+H)+ is also examined. It is found that this reaction occurs when the coordination sphere of uranyl is unsaturated. Additionally, this reaction is influenced by the size of the nitrile ligand with reactions involving acetonitrile being the most prevalent.

  14. Synthesis, characterization and anti-proliferative activity of Cd(II) complexes with NNN type pyrazole-based ligand and pseudohalide ligands as coligand.

    PubMed

    Hopa, Cigdem; Yildirim, Hatice; Kara, Hulya; Kurtaran, Raif; Alkan, Mahir

    2014-01-01

    Cd(II) complexes of tridentate nitrogen donor ligand, 2,6-bis(3,4,5-trimethylpyrazolyl)pyridine (btmpp), Cd(btmpp)X2 (X:Cl, ONO or N(CN)2) have been synthesized and characterized by elemental and spectral (FT-IR, (1)H NMR, (13)C NMR, UV-Vis) analyses, differential thermal analysis and single crystal X-ray diffraction studies. The molecular structure of reported complex 1, revealed distorted square-pyramidal geometry around Cadmium. Complexes 1-3 and corresponding ligand were tested for cytotoxic activity against the human carcinoma cell lines HEP3B (hepatocellular carcinoma), PC3 (prostate adenocarcinoma), MCF7 (breast adenocarcinoma) and Saos2 (osteosarcoma). The results show that, complexes are more cytotoxic than the free ligand and complex 2 is the most cytotoxic complex for PC3.

  15. Synthesis, characterization and anti-proliferative activity of Cd(II) complexes with NNN type pyrazole-based ligand and pseudohalide ligands as coligand

    NASA Astrophysics Data System (ADS)

    Hopa, Cigdem; Yildirim, Hatice; Kara, Hulya; Kurtaran, Raif; Alkan, Mahir

    2014-03-01

    Cd(II) complexes of tridentate nitrogen donor ligand, 2,6-bis(3,4,5-trimethylpyrazolyl)pyridine (btmpp), Cd(btmpp)X2 (X:Cl, ONO or N(CN)2) have been synthesized and characterized by elemental and spectral (FT-IR, 1H NMR, 13C NMR, UV-Vis) analyses, differential thermal analysis and single crystal X-ray diffraction studies. The molecular structure of reported complex 1, revealed distorted square-pyramidal geometry around Cadmium. Complexes 1-3 and corresponding ligand were tested for cytotoxic activity against the human carcinoma cell lines HEP3B (hepatocellular carcinoma), PC3 (prostate adenocarcinoma), MCF7 (breast adenocarcinoma) and Saos2 (osteosarcoma). The results show that, complexes are more cytotoxic than the free ligand and complex 2 is the most cytotoxic complex for PC3.

  16. Synthesis and thermal studies of tetraaza macrocylic ligand and its transition metal complexes. DNA binding affinity of copper complex.

    PubMed

    Saif, M; Mashaly, Mahmoud M; Eid, Mohamed F; Fouad, R

    2011-09-01

    A Tetraaza Macrocylic Ligand (H2L) and its complexes, [Cd(H2L)(OH2)2](NO3)(2)·1/2OH2 (I), [Co(H2L)(OH2)](NO3)(2)·1/2OH2 (II), [Cu(H2L)(NO3)2]·3/2OH2 (III) and [Ni(H2L)(NO3)(OH2)]NO3·OH2 (IV), have been synthesized and characterized on the basis of elemental analysis, molar conductivity, 1H NMR, UV-vis, FT-IR and mass spectroscopy. All results confirm that the prepared compounds have 1:1 metal-to-ligand stoichiometry, octahedral configuration and the ligand behaves as a neutral tetradendate towards the metal ions. [CdL(OH2)2] (V), [CoL(OH2)2] (VI), [CuL(OH2)2] (VII) and [Ni(H2L)(NO3)2] (VIII) were synthesized pyrolytically in solid state from corresponding compounds (I-IV). Analytical results of complexes (V-VIII) show that the ligand behaves either as a neutral tetradendate or dianionic tetradentate ligand towards the metal ions. The binding of H2L and its copper complex (III) to DNA has been investigated by ultraviolet absorption spectroscopy. The experiments indicate that H2L and its copper complex (III) can bind to DNA through an intercalative mode. The H2L and its copper complex (III) exhibited anti-tumor activity against Ehrlich Acites Carcinoma (E.A.C) at the concentration of 100 μg/ml.

  17. Copper and silver complexes bearing flexible hybrid scorpionate ligand mpBm.

    PubMed

    Owen, Gareth R; Gould, P Hugh; Moore, Alexandra; Dyson, Gavin; Haddow, Mairi F; Hamilton, Alex

    2013-08-21

    The addition of flexible scorpionate ligand, [mpBm]⁻{i.e. HB(mt)2(mp), where mt = methyl-2-mercaptoimidazole and mp = 2-mercaptopyridine} to group eleven centres is reported for the first time. The coordination of this hybrid ligand to copper(I) and silver(I) centres in the presence of triphenylphosphine and trialkylphosphine co-ligands has been investigated. The trialkylphosphines coordinates to both copper and silver centres while the less basic triarylphosphine only successfully coordinates to the copper centre. Structural characterisation of [Cu{HB(mt)₂(mp)}(PPh₃)], [Cu{HB(mt)₂(mp)}(PCy₃)] and [Ag{HB(mt)₂(mp)}(PCy₃)] confirm κ³-SSH coordination modes for ligand where one of the mt 'arms' and the mp 'arm' of the scorpionate ligand are coordinated to the metal centre. The second mt 'arm' remains uncoordinated in all three complexes. A comparison has been made with the parent sulfur based scorpionate ligand, [Tm]⁻{HB(mt)₃}.

  18. NMR and theoretical study on interactions between diperoxovanadate complex and pyrazole-like ligands.

    PubMed

    Yu, Xianyong; Liu, Ronghua; Peng, Hongliang; Huang, Haowen; Li, Xiaofang; Zheng, Baishu; Yi, Pinggui; Chen, Zhong

    2010-03-01

    To understand the effects of pyrazole substitution on reaction equilibrium, the interactions between a series of pyrazole-like ligands and [OV(O(2))(2)(D(2)O)](-)/[OV(O(2))(2)(HOD)](-) were explored by using multinuclear ((1)H, (13)C, and (51)V) magnetic resonance, HSQC, and variable temperature NMR in 0.15 mol/L NaCl ionic medium mimicking physiological conditions. These results show that the relative reactivities among the pyrazole-like ligands are 3-methyl-1H-pyrazole approximately 4-methyl-1H-pyrazole approximately 1H-pyrazole>1-methyl-1H-pyrazole. As a result, the main factor which affects the reaction equilibrium is the steric effect instead of the electronic effect of the methyl group of these ligands. A pair of isomers has been formed resulting from the coordination of 3-methyl-1H-pyrazole and a vanadium complex, which is attributed to different types of coordination between the vanadium atom and the ligands. Thus, the competitive coordination leads to the formation of a series of six-coordinate peroxovanadate species [OV(O(2))(2)L](-) (L, pyrazole-like ligands). Moreover, the results of density functional calculations provided a reasonable explanation on the relative reactivity of the pyrazole-like ligands as well as the important role of solvation in these reactions.

  19. Syntheses, structures and luminescence of silver(I) sulfonate complexes with nitrogen-containing ligands

    NASA Astrophysics Data System (ADS)

    Dong, Xian-Wu; Wu, Hua; Feng, Yang; Ma, Chao-Hong; Wang, Xiu-Yan; Li, Yu-Jie

    2014-09-01

    In this paper, three new Ag(I) coordination compounds, namely, AgL(3-iso)2 (1), [Ag4L4(bipy)4]·bipy·CH3CN·6H2O (2) and [Ag10L8(hmt)10(H2O)4]·(L)2·15H2O (3) (where 3-iso = 3-methylisoquinoline, bipy = 4,4‧-bipyridine, hmt = hexamethylenetetramine and L = 4-chloro-benzenesulfonate anion), have been synthesized by varying the nitrogen-containing secondary ligands. In compound 1, Ag(I) atoms are coordinated by 3-iso ligands and L anion to generate a discrete molecular structure. For compound 2, when the 3-iso ligand was replaced by bipy, Ag(I) atoms of 2 are linked by bipy ligands to generate a 1D polymeric chain, which are further expanded to a double chain through Ag⋯Ag interaction. In 3, the hmt ligands connect Ag(I) atoms to give a undulate 2D layer. These results indicate that the nitrogen-containing secondary ligands play important roles in the structural formation of the Ag(I) complexes. Moreover, the luminescent properties, elemental analyses and IR spectroscopy of these compounds were also studied.

  20. Ru(II) complexes of new tridentate ligands: unexpected high yield of sensitized 1O2.

    PubMed

    Liu, Yao; Hammitt, Richard; Lutterman, Daniel A; Joyce, Lauren E; Thummel, Randolph P; Turro, Claudia

    2009-01-05

    Ru(II) complexes possessing new tridentate ligands with extended pi systems, pydppx (3-(pyrid-2'-yl)-11,12-dimethyl-dipyrido[3,2-a:2',3'-c]phenazine) and pydppn (3-(pyrid-2'-yl)-4,5,9,16-tetraaza-dibenzo[a,c]naphthacene), were synthesized and characterized. The investigation of the photophysical properties of the series [Ru(tpy)(n)(L)(2-n)](2+) (L = pydppx, pydppn, n = 0-2) reveals markedly different excited state behavior among the complexes. The Ru(II) complexes possessing the pydppx ligand are similar to the pydppz (3-(pyrid-2'-yl)dipyrido[3,2-a:2',3'-c]phenazine) systems, with a lowest energy metal-to-ligand charge transfer excited state with lifetimes of 1-4 ns. In contrast, the lowest energy excited state in the [Ru(tpy)(n)(pydppn)(2-n)](2+) (n = 0, 1) complexes is a ligand-centered (3)pipi* localized on the pydppn ligand with lifetimes of approximately 20 mus. The [Ru(tpy)(n)(pydppn)(2-n)](2+) (n = 0, 1) complexes are able to generate (1)O(2) with approximately 100% efficiency. Both [Ru(tpy)(pydppn)](2+) and [Ru(pydppn)(2)](2+) bind to DNA, however, the former exhibits a approximately 10-fold greater DNA binding constant than the latter. Efficient DNA photocleavage is observed for [Ru(tpy)(pydppn)](2+), owing to its ability to photosensitize the production of (1)O(2), which can mediate the reactivity. Such high quantum yields of (1)O(2) photosensitization of transition metal complexes may be useful in the design of new systems with long-lived excited states for photodynamic therapy.

  1. Rhenium and technetium tricarbonyl complexes of N-heterocyclic carbene ligands.

    PubMed

    Chan, Chung Ying; Pellegrini, Paul A; Greguric, Ivan; Barnard, Peter J

    2014-10-20

    A strategy for the conjugation of N-heterocyclic carbene (NHC) ligands to biomolecules via amide bond formation is described. Both 1-(2-pyridyl)imidazolium or 1-(2-pyridyl)benzimidazolium salts functionalized with a pendant carboxylic acid group were prepared and coupled to glycine benzyl ester using 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide. A series of 10 rhenium(I) tricarbonyl complexes of the form [ReX(CO)3(ĈN)] (ĈN is a bidentate NHC ligand, and X is a monodentate anionic ligand: Cl(-), RCO2(-)) were synthesized via a Ag2O transmetalation protocol from the Re(I) precursor compound Re(CO)5Cl. The synthesized azolium salts and Re(I) complexes were characterized by elemental analysis and by (1)H and (13)C NMR spectroscopy, and the molecular structures for one imidazolium salt and seven Re(I) complexes were determined by single-crystal X-ray diffraction. (1)H NMR and mass spectrometry studies for an acetonitrile-d3 solution of [ReCl(CO)3(1-(2-pyridyl)-3-methylimidazolylidene)] show that the monodentate chloride ligand is labile and exchanges with this solvent yielding a cationic acetonitrile adduct. For the first time the labeling of an NHC ligand with technetium-99m is reported. Rapid Tc-99m labeling was achieved by heating the imidazolium salt 1-(2-pyridyl)-3-methylimidazolium iodide and Ag2O in methanol, followed by the addition of fac-[(99m)Tc(OH2)3(CO)3](+). To confirm the structure of the (99m)Tc-labeled complex, the equivalent (99)Tc complex was prepared, and mass spectrometric studies showed that the formed Tc complexes are of the form [(99m/99)Tc(CH3CN)(CO)3(1-(2-pyridyl)-3-methylimidazolylidene)](+) with an acetonitrile molecule coordinated to the metal center.

  2. The ligand effect on the hydrolytic reactivity of Zn(II) complexes toward phosphate diesters.

    PubMed

    Bonfá, Lodovico; Gatos, Maddalena; Mancin, Fabrizio; Tecilla, Paolo; Tonellato, Umberto

    2003-06-16

    The catalytic effects of the Zn(II) complexes of a series of poliaminic ligands in the hydrolysis of the activated phosphodiesters bis-p-nitrophenyl phosphate (BNP) and 2-hydroxypropyl-p-nitrophenyl phosphate (HPNP) have been investigated. The reactions show first-order rate dependency on both substrate and metal ion complex and a pH dependence which is diagnostic of the acid dissociation of the reactive species. The mechanism of the metal catalyzed transesterification of HPNP has been assessed by solvent isotopic kinetic effect studies and involves the intramolecular nucleophilic attack of the substrate alcoholic group, activated by metal ion coordination. The intrinsic reactivity of the different complexes is controlled by the nature and structure of the ligand: complexes of tridentate ligands, particularly if characterized by a facial coordination mode, are more reactive than those of tetradentate ligands which can hardly allow binding sites for the substrate. In the case of tridentate ligands that form complexes with a facial coordination mode, a linear Brønsted correlation between the reaction rate (log k) and the pK(a) of the active nucleophile is obtained. The beta(nuc) values are 0.75 for the HPNP transesterification and 0.20 for the BNP hydrolysis. These values are indicated as the result of the combination of two opposite Lewis acid effects of the Zn(II) ion: the activation of the substrate and the efficiency of the metal coordinated nucleophile. The latter factor apparently prevails in determining the intrinsic reactivity of the Zn(II) complexes.

  3. Spectral, XRD, SEM and biological activities of transition metal complexes of polydentate ligands containing thiazole moiety

    NASA Astrophysics Data System (ADS)

    Neelakantan, M. A.; Marriappan, S. S.; Dharmaraja, J.; Jeyakumar, T.; Muthukumaran, K.

    2008-11-01

    Metal complexes of o-vanillidene-2-aminobenzothiazole have been prepared and characterized by elemental and spectral (vibrational, electronic, 1H NMR and EPR) data as well as magnetic susceptibility measurements and thermo gravimetric analysis (TG/DTA). The low molar conductance values reveal the non-electrolytic nature of these complexes. The elemental analysis suggests that the stoichiometry to be 1:2 (metal:ligand). Magnetic susceptibility data coupled with electronic spectra suggest that two ligands coordinate to each metal atom by phenolic oxygen and imino nitrogen to form high spin octahedral complex with Co(II), Mn(II) and Ni(II). The fifth and sixth position of metal ion is satisfied with water molecules. The thermal behaviour (TG/DTA) of the synthesised complexes shows that the complexes loss water molecules in the first step followed by decomposition of the ligand. Spin Hamiltonian parameters predict a distorted tetrahedral geometry for the copper complex. XRD and SEM analysis provide the crystalline nature and the morphology of the metal complexes. The in vitro biological activity of the metal chelates is tested against the Gram positive bacteria ( Bacillus amyloliquifacians) and gram negative bacteria ( Pseudomonas species), fungus ( Aspergillus niger) and yeast ( Sacchromyces cereviaceae). Most of the metal chelates exhibited higher biological activities.

  4. Lanthanide complexes derived from hexadentate macrocyclic ligand: synthesis, spectroscopic and thermal investigation.

    PubMed

    Chandra, Sulekh; Tyagi, Monika; Rani, Soni; Kumar, Sumit

    2010-02-01

    The lanthanide complexes derived from (3,5,13,15-tetramethyl 2,6,12,16,21-22-hexaazatricyclo[15.3.I(1-17)I(7-11)]cosa-1(21),2,5,7,9,11(22),12,15,17,19-decane) were synthesized. The complexes were found to have general composition [Ln(L)X(2).H(2)O]X, where Ln=La(3+), Ce(3+), Nd(3+), Sm(3+) and Eu(3+) and X=NO(3)(-) and Cl(-). The ligand was characterized by elemental analyses, IR, Mass, and (1)H NMR spectral studies. All the complexes were characterized by elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, Mass, electronic spectral techniques and thermal studies. The ligand acts as a hexadentate and coordinates through four nitrogen atoms of azomethine groups and two nitrogen of pyridine ring. The lanthanum complexes are diamagnetic while the other Ln(III) complexes are paramagnetic. The spectral parameters i.e. nephelauxetic ratio (beta), covalency factor (b(1/2)), Sinha parameter (delta%) and covalency angular overlap parameter (eta) have been calculated from absorption spectra of Nd(III) and Sm(III) complexes. These parameters suggest the metal-ligand covalent bonding. In the present study, the complexes were found to have coordination number nine.

  5. Lanthanide complexes derived from hexadentate macrocyclic ligand: Synthesis, spectroscopic and thermal investigation

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Tyagi, Monika; Rani, Soni; Kumar, Sumit

    2010-02-01

    The lanthanide complexes derived from (3,5,13,15-tetramethyl 2,6,12,16,21-22-hexaazatricyclo[15.3.I 1-17I 7-11]cosa-1(21),2,5,7,9,11(22),12,15,17,19-decane) were synthesized. The complexes were found to have general composition [Ln(L)X 2·H 2O]X, where Ln = La 3+, Ce 3+, Nd 3+, Sm 3+ and Eu 3+ and X = NO 3- and Cl -. The ligand was characterized by elemental analyses, IR, Mass, and 1H NMR spectral studies. All the complexes were characterized by elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, Mass, electronic spectral techniques and thermal studies. The ligand acts as a hexadentate and coordinates through four nitrogen atoms of azomethine groups and two nitrogen of pyridine ring. The lanthanum complexes are diamagnetic while the other Ln(III) complexes are paramagnetic. The spectral parameters i.e. nephelauxetic ratio ( β), covalency factor ( b1/2), Sinha parameter ( δ%) and covalency angular overlap parameter ( η) have been calculated from absorption spectra of Nd(III) and Sm(III) complexes. These parameters suggest the metal-ligand covalent bonding. In the present study, the complexes were found to have coordination number nine.

  6. Tuning the olefin epoxidation by manganese(III) complexes of bisphenolate ligands: effect of Lewis basicity of ligands on reactivity.

    PubMed

    Sankaralingam, Muniyandi; Palaniandavar, Mallayan

    2014-01-14

    A new family of manganese(iii) complexes of the type [Mn(L)Cl], where H2L is 1,4-bis(2-hydroxy-benzyl)-1,4-diazepane (), 1,4-bis(2-hydroxy-4-methylbenzyl)-1,4-diazepane (), 1,4-bis(2-hydroxy-3,5-dimethylbenzyl)-1,4-diazepane () and 1,4-bis(2-hydroxy-3,5-di-tert-butylbenzyl)-1,4-diazepane (), has been isolated and studied as a catalyst for epoxidation reaction. Complexes have been characterized using elemental analysis, electronic spectral and electrochemical methods and ESI-MS. The single crystal X-ray structures of and contain the MnN2O2Cl chromophore with a novel square pyramidal coordination geometry (τ: , 0.11; , 0.00). All the complexes possess a distorted square pyramidal coordination geometry in solution, as revealed by the characteristic bands observed in the electronic spectra. A time dependent density functional theory (TD-DFT) calculation has been performed to assist in the assignment of the electronic absorption spectral bands of the complexes. The Mn(iii)/Mn(ii) redox potentials (E1/2) of fall within the narrow range of 0.279-0.320 V. The catalytic ability of the complexes towards olefin epoxidation has been investigated using PhIO as the oxygen source at room temperature under an N2 atmosphere. Addition of N-methylimidazole to the reaction mixture leads to an increase in the epoxide yield. A correlation between the Lewis acidity of the Mn(iii) center as tuned by the substituents on the phenolate ligand, and the epoxide yield and product selectivity has been observed. The present complexes act as better chemoselective catalysts for epoxidation of cyclohexene and styrene rather than cyclooctene.

  7. Circularly Polarized Luminescence in Enantiopure Europium and Terbium Complexes with Modular, All-Oxygen Donor Ligands

    SciTech Connect

    Seitz, Michael; Do, King; Ingram, Andrew; Moore, Evan; Muller, Gilles; Raymond, Kenneth

    2009-06-04

    The modular syntheses of three new octadentate, enantiopure ligands are reported, one with the bidentate chelating unit 2-hydroxyisophthalamide (IAM) and two with bidentate 1-hydroxy-2-pyridinone (1,2-HOPO) units. A new design principle is introduced for the chiral, non-racemic hexamines which constitute the central backbones for the presented class of ligands. The terbium(III) complex of the IAM ligand, as well as the europium(III) complexes of the 1,2-HOPO ligands, are synthesized and characterized by various techniques (NMR, UV, CD, luminescence spectroscopy). All species exhibit excellent stability and moderate to high luminescence efficiency (quantum yields {phi}{sub Eu} = 0.05-0.08 and {phi}{sub Tb} = 0.30-0.57) in aqueous solution at physiological pH. Special focus is put onto the properties of the complexes in regard to circularly polarized luminescence (CPL). The maximum luminescence dissymmetry factors (glum) in aqueous solution are high with |glum|max = 0.08-0.40. Together with the very favorable general properties (good stability, high quantum yields, long lifetimes), the presented lanthanide complexes can be considered as good candidates for analytical probes based on CPL in biologically relevant environments.

  8. Synthesis and antitumor activity of a series of osmium(VI) nitrido complexes bearing quinolinolato ligands.

    PubMed

    Tang, Quan; Ni, Wen-Xiu; Leung, Chi-Fai; Man, Wai-Lun; Lau, Kenneth King-Kwan; Liang, Yimin; Lam, Yun-Wah; Wong, Wai-Yeung; Peng, Shie-Ming; Liu, Gui-Jian; Lau, Tai-Chu

    2013-11-04

    A series of osmium(VI) nitrido complexes supported by quinolinolato ligands have been prepared and they exhibit promising in vitro anti-cancer activities. These results establish that Os(VI)≡N is a potentially versatile and promising platform for the design of a variety of high-valent anti-cancer drugs.

  9. Group 13 and lanthanide complexes with mixed O,S anionic ligands derived from maltol.

    PubMed

    Monga, Vishakha; Patrick, Brian O; Orvig, Chris

    2005-04-18

    Four mixed O,S binding ligand precursors derived from maltol (3-hydroxy-2-methyl-4-pyrone) have been chelated to gallium(III), indium(III), and lanthanide(III) ions to yield a series of metal complexes. The four ligand precursors include two pyranthiones, 3-hydroxy-2-methyl-4-pyranthione, commonly known as thiomaltol (Htma), and 2-ethyl-3-hydroxy-4-pyranthione, commonly known as ethylthiomaltol (Hetma), and two pyridinethiones, 3-hydroxy-2-methyl-4(H)-pyridinethione (Hmppt) and 3-hydroxy-1,2-dimethyl-4-pyridinethione (Hdppt). Dimeric forms of the pyridinethiones, Hmppt dimer and Hdppt dimer, were also isolated and characterized. Complete characterization of the monomeric organic compounds is reported including acidity constants and crystal structures of Htma, Hetma, and Hdppt dimer. Reacting the four monomeric ligand precursors with Ga(3+) and In(3+) ions yielded new tris(bidentate ligand) complexes. X-ray-quality crystals of the fac isomer of Ga(tma)(3) were also obtained. New complexes with a range of lanthanides (Ln(3+)) were also synthesized with the two pyranthiones, Htma and Hetma. The synthesis reactions yielded complexes of the type LnL(3).xH(2)O and LnL(2)(OH).xH(2)O, as indicated by elemental analysis and spectroscopic evidence such as mass spectral data and IR and NMR spectra.

  10. Synthesis of triple-stranded complexes using bis(dipyrromethene) ligands.

    PubMed

    Zhang, Zhan; Dolphin, David

    2010-12-20

    The reaction of an α-free, β,β'-linked bis(dipyrromethene) ligand with Fe(3+) or Co(3+) led to noninterconvertible triple-stranded helicates and mesocates. In the present context, a stable α-free ligand 2 has been developed and complexation of ligands 1 and 2 with diamagnetic Co(3+), Ga(3+), and In(3+) has been studied. The triple-stranded M(2)1(3) (M = Ga, In) and M(2)2(3) (M = Co, Ga, In) complexes were characterized using matrix-assisted laser desorption ionization time-of-flight spectrometry, (1)H NMR and UV-vis spectroscopy, and X-ray crystallography. Again, the (1)H NMR analysis showed that both the triple-stranded helicates and mesocates were generated in this metal-directed assembly. Consistent with our previous finding on coordinatively inert Co(3+) complexes, variable-temperature NMR spectroscopy indicated that the triple-stranded helicate and mesocate of labile In(3+) did not interconvert in solution, either. However, the diastereoselectivity of the M(2)2(3) complexes was found to improve with an increase in the reaction temperature. Taken together, this study complements the coordination chemistry of poly(dipyrromethene) ligands and provides further insight into the formation of helicates versus mesocates.

  11. Amylose inclusion complexes produced by combining various ligands with jet-cooked amylose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our research on starch-lipid composites obtained by steam jet cooking showed the involvement of amylose/fatty acid complexes in both spherulite formation and the coatings that form on oil droplets, imparting composite stability. Native fatty acids present in cornstarch granules serve as ligands for...

  12. A novel chiral yttrium complex with a tridentate linked amido-indenyl ligand for intramolecular hydroamination.

    PubMed

    Chai, Zhuo; Hua, Dezhi; Li, Kui; Chu, Jiang; Yang, Gaosheng

    2014-01-07

    A new chiral silicon-linked tridentate amido-indenyl ligand was developed from indene and enantiopure 1,2-cyclohexanediamine. Its yttrium complex was synthesized, characterized and applied to efficiently catalyze the intramolecular hydroamination of non-activated olefins with up to 97% ee.

  13. Synthesis and Base Hydrolysis of a Cobalt(III) Complex Coordinated by a Thioether Ligand

    ERIC Educational Resources Information Center

    Roecker, Lee

    2008-01-01

    A two-week laboratory experiment for students in advanced inorganic chemistry is described. Students prepare and characterize a cobalt(III) complex coordinated by a thioether ligand during the first week of the experiment and then study the kinetics of Co-S bond cleavage in basic solution during the second week. The synthetic portion of the…

  14. Metalloradical Complexes of Manganese and Chromium Featuring an Oxidatively Rearranged Ligand

    PubMed Central

    Çelenligil-Çetin, Remle; Paraskevopoulou, Patrina; Lalioti, Nikolia; Sanakis, Yiannis; Staples, Richard J.; Rath, Nigam P.; Stavropoulos, Pericles

    2009-01-01

    Redox events involving both metal and ligand sites are receiving increased attention since a number of biological processes direct redox equivalents toward functional residues. Metalloradical synthetic analogs remain scarce and require better definition of their mode of formation and subsequent operation. The trisamido-amine ligand [(RNC6H4)3N]3−, where R is the electron-rich 4-t-BuPh, is employed in this study to generate redox active residues in manganese and chromium complexes. Solutions of [(L1)Mn(II)–THF]− in THF are oxidized by dioxygen to afford [(L1re–1)Mn(III)–(O)2–Mn(III)(L1re–1)]2− as the major product. The rare dinuclear manganese (III,III) core is stabilized by a rearranged ligand that has undergone an one-electron oxidative transformation, followed by retention of the oxidation equivalent as a π radical in an o-diiminobenzosemiquinonate moiety. Magnetic studies indicate that the ligand-centered radical is stabilized by means of extended antiferromagnetic coupling between the S = ½ radical and the adjacent S = 2 Mn(III) site, as well as between the two Mn(III) centers via the dioxo bridge. Electrochemical and EPR data suggest that this system can store higher levels of oxidation potency. Entry to the corresponding Cr(III) chemistry is achieved by employing CrCl3 to access both [(L1)Cr(III)–THF] and [(L1re–1)Cr(III)–THF(Cl)], featuring the intact and the oxidatively rearranged ligands, respectively. The latter is generated by ligand-centered oxidation of the former compound. The rearranged ligand is perceived to be the product of an one-electron oxidation of the intact ligand to afford a metal-bound aminyl radical that subsequently mediates a radical 1,4-(N-to-N) aryl migration. PMID:18937446

  15. Synthesis, characterization and antimicrobial activities of mixed ligand transition metal complexes with isatin monohydrazone Schiff base ligands and heterocyclic nitrogen base

    NASA Astrophysics Data System (ADS)

    Devi, Jai; Batra, Nisha

    2015-01-01

    Mixed ligand complexes of Co(II), Ni(II), Cu(II) and Zn(II) with various uninegative tridentate ligands derived from isatin monohydrazone with 2-hydroxynapthaldehyde/substituted salicylaldehyde and heterocyclic nitrogen base 8-hydroxyquinoline have been synthesized and characterized by elemental analysis, conductometric studies, magnetic susceptibility and spectroscopic techniques (IR, UV-VIS, NMR, mass and ESR). On the basis of these characterizations, it was revealed that Schiff base ligands existed as monobasic tridentate ONO bonded to metal ion through oxygen of carbonyl group, azomethine nitrogen and deprotonated hydroxyl oxygen and heterocyclic nitrogen base 8-hydroxyquinoline existed as monobasic bidentate ON bonded through oxygen of hydroxyl group and nitrogen of quinoline ring with octahedral or distorted octahedral geometry around metal ion. All the compounds have been tested in vitro against various pathogenic Gram positive bacteria, Gram negative bacteria and fungi using different concentrations (25, 50, 100, 200 μg/mL) of ligands and their complexes. Comparative study of antimicrobial activity of ligands, and their mixed complexes indicated that complexes exhibit enhanced activity as compared to free ligands and copper(II) Cu(LIV)(Q)ṡH2O complex was found to be most potent antimicrobial agent.

  16. Catalytic water oxidation by mononuclear Ru complexes with an anionic ancillary ligand.

    PubMed

    Tong, Lianpeng; Inge, A Ken; Duan, Lele; Wang, Lei; Zou, Xiaodong; Sun, Licheng

    2013-03-04

    Mononuclear Ru-based water oxidation catalysts containing anionic ancillary ligands have shown promising catalytic efficiency and intriguing properties. However, their insolubility in water restricts a detailed mechanism investigation. In order to overcome this disadvantage, complexes [Ru(II)(bpc)(bpy)OH2](+) (1(+), bpc = 2,2'-bipyridine-6-carboxylate, bpy = 2,2'-bipyridine) and [Ru(II)(bpc)(pic)3](+) (2(+), pic = 4-picoline) were prepared and fully characterized, which features an anionic tridentate ligand and has enough solubility for spectroscopic study in water. Using Ce(IV) as an electron acceptor, both complexes are able to catalyze O2-evolving reaction with an impressive rate constant. On the basis of the electrochemical and kinetic studies, a water nucleophilic attack pathway was proposed as the dominant catalytic cycle of the catalytic water oxidation by 1(+), within which several intermediates were detected by MS. Meanwhile, an auxiliary pathway that is related to the concentration of Ce(IV) was also revealed. The effect of anionic ligand regarding catalytic water oxidation was discussed explicitly in comparison with previously reported mononuclear Ru catalysts carrying neutral tridentate ligands, for example, 2,2':6',2″-terpyridine (tpy). When 2(+) was oxidized to the trivalent state, one of its picoline ligands dissociated from the Ru center. The rate constant of picoline dissociation was evaluated from time-resolved UV-vis spectra.

  17. Anticancer Activity and Modes of Action of (arene) ruthenium(II) Complexes Coordinated to C-, N-, and O-ligands.

    PubMed

    Biersack, Bernhard

    2016-01-01

    An overview of anticancer active (arene)ruthenium(II) complexes coordinated to period 2 element-based ligand systems, i.e., carbon-, nitrogen-, and oxygen-coordinated ligands, is provided in this mini-review. A bridge is forged from the large group of anticancer active ruthenium compounds with monodentate and chelating nitrogen ligands via complexes of O,O-chelating ligands to organometallic ruthenium derivatives coordinated to carbon. (Arene)ruthenium(II) complexes with reduced side-effects and enhanced efficacy against cancer are highlighted. Pertinent literature is covered up to 2014.

  18. DFT study of uranyl peroxo complexes with H2O, F-, OH-, CO3(2-), and NO3(-).

    PubMed

    Odoh, Samuel O; Schreckenbach, Georg

    2013-05-06

    The structural and electronic properties of monoperoxo and diperoxo uranyl complexes with aquo, fluoride, hydroxo, carbonate, and nitrate ligands have been studied using scalar relativistic density functional theory (DFT). Only the complexes in which the peroxo ligands are coordinated to the uranyl moiety in a bidentate mode were considered. The calculated binding energies confirm that the affinity of the peroxo ligand for the uranyl group far exceeds that of the F(-), OH(-), CO3(2-), NO3(-), and H2O ligands. The formation of the monoperoxo complexes from UO2(H2O)5(2+) and HO2(-) were found to be exothermic in solution. In contrast, the formation of the monouranyl-diperoxo, UO2(O2)2X2(4-) or UO2(O2)2X(4-/3-) (where X is any of F(-), OH(-), CO3(2-), or NO3(-)), complexes were all found to be endothermic in aqueous solution. This suggests that the monoperoxo species are the terminal monouranyl peroxo complexes in solution, in agreement with recent experimental work. Overall, we find that the properties of the uranyl-peroxo complexes conform to well-known trends: the coordination of the peroxo ligand weakens the U-O(yl) bonds, stabilizes the σ(d) orbitals and causes a mixing between the uranyl π- and peroxo σ- and π-orbitals. The weakening of the U-O(yl) bonds upon peroxide coordination results in uranyl stretching vibrational frequencies that are much lower than those obtained after the coordination of carbonato or hydroxo ligands.

  19. Transient association of the DNA-ligand complex during gel electrophoresis.

    PubMed

    Protozanova, E; Macgregor, R B

    1999-07-01

    DNA frayed wires are extremely stable multistranded complexes arising from the association of oligonucleotides with long terminal runs of consecutive guanines. Frayed wires originating from d(A15G15) have multiple binding sites for short complementary oligonucleotides such as dT10. We examine unusual band patterns obtained when complexes formed between dT10 and DNA frayed wires are resolved on nondenaturing polyacrylamide gels. Since the lifetime of the dT10-frayed wire complexes is shorter than the time of the gel run, the interaction between the components during the gel electrophoresis affects their band patterns. We have conducted chasing experiments to show that (i) the binding of dT10 to the frayed wires can occur during gel electrophoresis, and (ii) dissociation of the complexes occurs during the gel run. Rapid repetitive dissociation-reassociation of the complexes leads to a constant partitioning of dT10 between their binding sites within frayed wires. Consequently, complexes composed of frayed wires and various numbers of bound ligands appear on the gel as a single well-defined band. The mobilities of these bands decrease continuously with the concentration of the ligand reaching saturation when all the binding sites are occupied. This characteristic pattern is observed only for relatively unstable interactions. Longer ligands, i.e., oligonucleotides with higher affinity towards the binding sites, cease to exhibit the dynamic character of interaction during gel electrophoresis. These ligands form long-lived complexes with the frayed wires that appear on the gel as faint smeared bands reflecting the presence of multiple stable complexes.

  20. Determination of equilibrium association constants of ligand-DNA complexes by electrospray mass spectrometry.

    PubMed

    Gabelica, Valérie

    2010-01-01

    Electrospray mass spectrometry can be used to detect ligand-DNA noncovalent complexes formed in solution. This chapter describes how to determine equilibrium association constants of the complexes. Particular attention is devoted to describing how to tune an electrospray mass spectrometer using a 12-mer oligodeoxynucleotides duplex in order to perform these experiments. This protocol can then be applied to any nucleic acid structure that can be ionized with electrospray mass spectrometry.

  1. Method for preparing radionuclide-labeled chelating agent-ligand complexes

    DOEpatents

    Meares, Claude F.; Li, Min; DeNardo, Sally J.

    1999-01-01

    Radionuclide-labeled chelating agent-ligand complexes that are useful in medical diagnosis or therapy are prepared by reacting a radionuclide, such as .sup.90 Y or .sup.111 In, with a polyfunctional chelating agent to form a radionuclide chelate that is electrically neutral; purifying the chelate by anion exchange chromatography; and reacting the purified chelate with a targeting molecule, such as a monoclonal antibody, to form the complex.

  2. New perspective on iron-ligand vibrations of oxyheme complexes.

    SciTech Connect

    Li, J.; Peng, Q.; Barabanschikov, A.; Pavlik, J.W.; Alp, E.E.; Sturhahn, W.; Zhao, J.; Schulz, C.E.; Sage, J.T.; Scheidt, W.R.

    2011-09-26

    We report our studies of the vibrational dynamics of iron for three imidazole-ligated oxyheme derivatives that mimic the active sites of histidine-ligated heme proteins complexed with dioxygen. The experimental vibrational data are obtained from nuclear resonance vibrational spectroscopy (NRVS) measurements conducted on both powder samples and oriented single crystals, and which includes several in-plane (ip) and out-of-plane (oop) measurements. Vibrational spectral assignments have been made through a combination of the oriented sample spectra and predictions based on density functional theory (DFT) calculations. The two Fe-O{sub 2} modes that have been previously observed by resonance Raman spectroscopy in heme proteins are clearly shown to be very strongly mixed and are not simply either a bending or stretching mode. In addition, a third Fe-O{sub 2} mode, not previously reported, has been identified. The long-sought Fe-Im stretch, not observed in resonance Raman spectra, has been identified and compared with the frequencies observed for the analogous CO and NO species. The studies also suggest that the in-plane iron motion is anisotropic and is controlled by the orientation of the Fe-O{sub 2} group and not sensitive to the in-plane Fe-N{sub p} bonds and/or imidazole orientations.

  3. Vertical distributions of iron-(III) complexing ligands in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Ibisanmi, Enitan; Sander, Sylvia G.; Boyd, Philip W.; Bowie, Andrew R.; Hunter, Keith A.

    2011-11-01

    Electrochemically derived iron speciation data from four vertical profiles to 1000 m depth were obtained during the SAZ-Sense voyage to offshore waters south of Australia in summer (January/February, 2007). The dual aims of this study were firstly to devise a new operational definition to represent the 'complexing capacity', or total concentration of iron-complexing ligands, and subsequently derive vertical profiles of these ligand classes. Secondly, to compare the vertical trends for each ligand class with vertical distributions in oceanic properties thought to control ligand production (i.e. siderophores produced by bacteria and particle remineralisation). Based on simulated ligand titrations, we operationally defined Σ L as the overall class of ligands, which represents all iron-complexing ligands detectable under the analytical conditions chosen. The stability constant of ΣL is a weighted average for these ligands. The ligand titration data suggests the presence of an excess of iron-complexing ligands throughout the water column with an average concentration of [Σ L]=0.75±0.20 nM ( n=47), and an average stability constant of logK=21.50±0.24 ( n=47). Here, based on the range of observed stability constants we define a distinctly different class of extremely strong ligands ( L1) to be the ligand class with a stability constant of logK≥22 , whereas Σ L ranged from 21.00 to 21.95 for logK. L1 had an average concentration and stability constant of 0.42±0.10 nM ( n=14) and 22.97±0.48 ( n=14), respectively. L1 was only found in three of the four depth profiles, and was restricted to the upper ocean (i.e. <200 m depth), whereas Σ L was observed at all sampling depths down to 1000 m. Heterotrophic bacterial abundances (a proxy for siderophore production) were always the highest in the surface mixed layer (50-72 m depth for the 4 stations) then decreased sharply, whereas POC downward flux (a proxy for remineralisation) was greatest below the surface mixed

  4. Methylpalladium complexes with pyrimidine-functionalized N-heterocyclic carbene ligands

    PubMed Central

    Meyer, Dirk

    2016-01-01

    Summary A series of methylpalladium(II) complexes with pyrimidine-NHC ligands carrying different aryl- and alkyl substituents R ([((pym)^(NHC-R))PdII(CH3)X] with X = Cl, CF3COO, CH3) has been prepared by transmetalation reactions from the corresponding silver complexes and chloro(methyl)(cyclooctadiene)palladium(II). The dimethyl(1-(2-pyrimidyl)-3-(2,6-diisopropylphenyl)imidazolin-2-ylidene)palladium(II) complex was synthesized via the free carbene route. All complexes were fully characterized by standard methods and in three cases also by a solid state structure. PMID:27559406

  5. The formation of a covalent complex between a dipeptide ligand and the src SH2 domain.

    PubMed

    Alligood, K J; Charifson, P S; Crosby, R; Consler, T G; Feldman, P L; Gampe, R T; Gilmer, T M; Jordan, S R; Milstead, M W; Mohr, C; Peel, M R; Rocque, W; Rodriguez, M; Rusnak, D W; Shewchuk, L M; Sternbach, D D

    1998-05-19

    The X-ray crystal structure of the src SH2 domain revealed the presence of a thiol residue (Cys 188) located proximal to the phosphotyrosine portion of a dipeptide ligand. An aldehyde bearing ligand (1) was designed to position an electrophilic carbonyl group in the vicinity of the thiol. X-ray crystallographic and NMR examination of the complex formed between (1) and the src SH2 domain revealed a hemithioacetal formed by addition of the thiol to the aldehyde group with an additional stabilizing hydrogen bond between the acetal hydroxyl and a backbone carbonyl.

  6. Isotopic studies of the metal-ligand vibrations in histamine complexes with Copper(II)

    NASA Astrophysics Data System (ADS)

    Drożdżewski, Piotr; Kordon, Ewa

    2000-06-01

    Two known copper complexes of the formulae Cu(hm) 2(ClO 4) 2, Cu(hm)Cl 2 and new, Cu(hm)Br 2 (hm=histamine) have been investigated in the 600-50 cm -1 far-infrared region. Assignments of vibrations related to metal-ligand bonds have been made based on metal isotope substitution, partial deuteration and halogen sensitivity. Copper-hm stretching vibrations have been localised at 420, 417 and 411 cm -1 for modes involving amine nitrogen and at 282, 270, 259 cm -1 for those of imidazole nitrogen. Vibrational coupling between some metal-ligand modes has been postulated.

  7. Metal complexes of ONO donor Schiff base ligand as a new class of bioactive compounds; Synthesis, characterization and biological evolution

    NASA Astrophysics Data System (ADS)

    Kumar Naik, K. H.; Selvaraj, S.; Naik, Nagaraja

    2014-10-01

    Present work reviews that, the synthesis of (E)-N";-((7-hydroxy-4-methyl-2-oxo-2H-chromen-8-yl)methylene)benzohydrazide [L] ligand and their metal complexes. The colored complexes were prepared of type [M2+L]X2, where M2+ = Mn, Co, Ni, Cu, Sr and Cd, L = (7-hydroxy-4-methyl-2-oxo-2H-chromen-8-yl)methylene)benzohydrazide, X = Cl-. Ligand derived from the condensation of 8-formyl-7-hydroxy-4-methylcoumarin and benzohydrazide in the molar ratio 1:1 and in the molar ratio 1:2 for metal complexes have been prepared. The chelation of the ligand to metal ions occurs through the both oxygen groups, as well as the nitrogen atoms of the azomethine group of the ligand. Reactions of the Schiff base ligand with Manganese(II), Cobalt(II), Nickel(II), Copper(II), Strontium(II), and Cadmium(II) afforded the corresponding metal complexes. The structures of the obtained ligand and their respective metal complexes were elucidated by infra-red, elemental analysis, Double beam UV-visible spectra, conductometric measurements, magnetic susceptibility measurements and also thermochemical studies. The metal complex exhibits octahedral coordination geometrical arrangement. Schiff base ligand and their metal complexes were tested against antioxidants, antidiabetic and antimicrobial activities have been studied. The Schiff base metal complexes emerges effective α-glucosidase inhibitory activity than free Schiff base ligand.

  8. Nonheme Oxoiron(IV) Complexes of Pentadentate N5 Ligands: Spectroscopy, Electrochemistry, and Oxidative Reactivity

    PubMed Central

    Wang, Dong; Ray, Kallol; Collins, Michael J.; Farquhar, Erik R.; Frisch, Jonathan R.; Gómez, Laura; Jackson, Timothy A.; Kerscher, Marion; Waleska, Arkadius; Comba, Peter; Costas, Miquel; Que, Lawrence

    2012-01-01

    Oxoiron(IV) species have been found to act as the oxidants in the catalytic cycles of several mononuclear nonheme iron enzymes that activate dioxygen. To gain insight into the factors that govern the oxidative reactivity of such complexes, a series of five synthetic S = 1 [FeIV(O)(LN5)]2+ complexes has been characterized with respect to their spectroscopic and electrochemical properties as well as their relative abilities to carry out oxo transfer and hydrogen atom abstraction. The Fe=O units in these five complexes are supported by neutral pentadentate ligands having a combination of pyridine and tertiary amine donors but with different ligand frameworks. Characterization of the five complexes by X-ray absorption spectroscopy reveals Fe=O bonds of ca. 1.65 Å in length that give rise to the intense 1s→3d pre-edge features indicative of iron centers with substantial deviation from centrosymmetry. Resonance Raman studies show that the five complexes exhibit ν(Fe=O) modes at 825–841 cm−1. Spectropotentiometric experiments in acetonitrile with 0.1 M water reveal that the supporting pentadentate ligands modulate the E1/2(IV/III) redox potentials with values ranging from 0.83 to 1.23 V vs. Fc, providing the first electrochemical determination of the E1/2(IV/III) redox potentials for a series of oxoiron(IV) complexes. The 0.4-V difference in potential may arise from differences in the relative number of pyridine and tertiary amine donors on the LN5 ligand and in the orientations of the pyridine donors relative to the Fe=O bond that are enforced by the ligand architecture. The rates of oxo-atom transfer (OAT) to thioanisole correlate linearly with the increase in the redox potentials, reflecting the relative electrophilicities of the oxoiron(IV) units. However this linear relationship does not extend to the rates of hydrogen-atom transfer (HAT) from 1,3-cyclohexadiene (CHD), 9,10-dihydroanthracene (DHA), and benzyl alcohol, suggesting that the HAT reactions are not

  9. Hypercoordinate silicon complexes based on hydrazide ligands. A remarkably flexible molecular system.

    PubMed

    Kost, Daniel; Kalikhman, Inna

    2009-02-17

    Though only one row apart on the periodic table, silicon greatly differs from carbon in its ability to readily form five- and six-coordinate complexes, termed "hypercoordinate silicon compounds". The assorted chemistry of these compounds is varied in both structures and reactivity and has generated a flurry of innovative research endeavors in recent years. This Account summarizes the latest work done on a specific class of hypercoordinate silicon compounds, specifically those with two hydrazide-derived chelate rings. This family is especially interesting due to the ability to form multiple penta- and hexacoordinate complexes, the chemical reactivity of pentacoordinate complexes, and the observation of intermolecular ligand crossovers in hexacoordinate complexes. Pentacoordinate complexes in this family exhibit marked structural flexibility, as demonstrated by the construction of a complete hypothetical Berry-pseudorotation reaction coordinate generated from individual crystallographic molecular structures. Although hexacoordinate complexes generally crystallize as octahedra, with a decrease in the ligand donor strength the complexes can crystallize as bicapped tetrahedra. Hexacoordinate complexes bearing a halogen ligand undergo a solvent-driven equilibrium ionic dissociation, which is controlled by solvent, temperature, counterion, and chelate structure and has been directly demonstrated by conductivity measurements and temperature-dependent (29)Si NMR. Hexacoordinate silicon complexes can also undergo reversible neutral nonionic dissociation of the N-Si dative bond. Ionic pentacoordinate siliconium salts react readily via methyl halide elimination, initiated by their own counterion acting as a base. Pentacoordinate complexes can also undergo intramolecular aldol condensations of imines, which may find potential as a template for organic synthesis. In addition, these complexes are capable of performing an uncatalyzed intramolecular hydrosilylation of imine double

  10. Spectroscopic characterization of Lanthanoid derived from a hexadentate macrocyclic ligand: study on antifungal capacity of complexes.

    PubMed

    Chandra, Sulekh; Agrawal, Swati

    2014-04-24

    Complexes of Ce(III), Nd(III), Sm(III) and Eu(III) were synthesized with NO-donor macrocyclic ligand, i.e. 3,5,13,15,21,22-hexaaza-2,6,12,16-tetramethyl-4,14-dithia-tricyclo[15.3.1.1(7-11)]docosane-1(21),2,5,7,9,11(22),12,15,17,19-decaene. The ligand was obtained by the condensation of 2,6-diacetylpyridine with thiourea and characterized by elemental analysis, mass, IR and (1)H NMR spectral studies. All the complexes were characterized by elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, mass, electronic spectral techniques and thermal studies. The ligand acts as a hexadentate and coordinated through four nitrogen atoms of azomethine groups and two nitrogen atoms of pyridine ring. The value of spectral parameters i.e. nephelauxetic effect (b), covalency factor (b(1/2)), Sinha parameter (δ%) and covalency angular overlap parameter (η) account for the covalent nature of the complexes. The macrocyclic ligand and its Lanthanoid were tested in vitro against two plant pathogenic fungi in order to assess their antifungal capacity.

  11. Synthesis and structure of a Zwitterionic Nd complex containing aminophenoxide ligands

    NASA Astrophysics Data System (ADS)

    Wei, Pingrong; Atwood, David A.

    1999-03-01

    In the course of attempting to prepare molecular precursors to lanthanide-aluminum oxide materials the unique Zwitterionic complex, Nd(H 2L) 3(CF 3SO 3) 3 ( 1), was discovered (L = [2,4-( tBu) 2-6-(CH 2N iPr)PhO]). In the crystal structure of ( 1) the three-triflate groups and the three oxygens of the aminophenoxide ligand (H 2L) coordinate the Nd atom. To maintain charge balance the three ligands are protonated at the amine nitrogens. This explains the fact that the ligand is monodentate and does not displace one (or more) of the triflate groups to form a chelated cation. Both hydrogens of the ammonium groups are hydrogen-bonded to oxygens of the triflates.

  12. RutheniumII complexes bearing fused polycyclic ligands: from fundamental aspects to potential applications.

    PubMed

    Troian-Gautier, Ludovic; Moucheron, Cécile

    2014-04-22

    In this review, we first discuss the photophysics reported in the literature for mononuclear ruthenium complexes bearing ligands with extended aromaticity such as dipyrido[3,2-a:2',3'-c]phenazine (DPPZ), tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]-phenazine (TPPHZ),  tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]acridine (TPAC), 1,10-phenanthrolino[5,6-b]1,4,5,8,9,12-hexaazatriphenylene (PHEHAT) 9,11,20,22-tetraaza- tetrapyrido[3,2-a:2',3'-c:3'',2''-l:2''',3'''-n]pentacene (TATPP), etc. Photophysical properties of binuclear and polynuclear complexes based on these extended ligands are then reported. We finally develop the use of binuclear complexes with extended π-systems for applications such as photocatalysis.

  13. Dinuclear Calcium Complexes with Intramolecularly NH.O Hydrogen-Bonded Dicarboxylate Ligands.

    PubMed

    Ueyama, Norikazu; Takeda, Jiro; Yamada, Yusuke; Onoda, Akira; Okamura Ta, Taka-aki; Nakamura, Akira

    1999-02-08

    A novel dinuclear calcium complex, [Ca(2){(2-OCO-3-CH(3)C(6)H(3)NHCO)(2)C(CH(3))(2)}(2)(CH(3)OH)(6)] (1), was synthesized as a structural model of 8-coordinated Ca(II) ions in the double calcium-binding site of thermolysin. The complex has four NH.O hydrogen bonds between the amide NH and the carboxylate oxygen anion. Two types of bridging coordination of the carboxylate ligand to Ca(II) were found in 1. The amide NH forms a strong NH.O hydrogen bond with the anionic oxygen of the two carboxylate oxygens. A ligand-exchange reaction between the dinuclear calcium complex and eight equimolar amounts of 2,4,6-trimethylbenzoic acid or 2-CH(3)-6-t-BuCONHC(6)H(3)COOH indicates that the NH.O hydrogen bond prevents the dissociation of the Ca-O bond.

  14. Ligand effects on nitrate reduction by zero-valent iron: Role of surface complexation.

    PubMed

    Song, Xiaojie; Chen, Zhihao; Wang, Xiaomeng; Zhang, Shujuan

    2017-05-01

    Surface passivation is a key limiting factor in the application of zero-valent iron (ZVI) for water remediation. Addition of ligands is a useful approach to overcome this issue. In this work, a small amount of acetylacetone (AA) (0.5 mM) was found highly efficient to enhance the reduction of nitrate by ZVI at near neutral conditions (pH 6.0) with the formation of considerable black coating on ZVI. At an initial nitrate concentration of 20 mg N/L, the pseudo first-order reduction rate constant of nitrate in the ZVI-AA-NO3(-) system was 0.0991 h(-1), which was 52 times higher than that in the ZVI-NO3(-) system. Under otherwise identical conditions, the other five ligands, including EDTA, formate, acetate, oxalate, and phosphate, had negligible effects. Based on the pKa values of these ligands and the final species of iron, the ligand effects on nitrate reduction by ZVI were summarized from three aspects: (1) the ability to offer potentially dissociable protons from the ligands; (2) the complexation ability to eliminate iron (hydr)oxide precipitates from the surface of ZVI; and (3) the ability to lower down the redox potentials of iron species. The good performance of AA in these three aspects makes it advantage over the other ligands. A cycle test up to six runs demonstrates that AA could continuously take effect in the ZVI system. The results here point out the potential of AA as an effective ligand in ZVI system for enhanced contaminant transformation.

  15. Ligand-dependent localization and function of ORP-VAP complexes at membrane contact sites.

    PubMed

    Weber-Boyvat, Marion; Kentala, Henriikka; Peränen, Johan; Olkkonen, Vesa M

    2015-05-01

    Oxysterol-binding protein/OSBP-related proteins (ORPs) constitute a conserved family of sterol/phospholipid-binding proteins with lipid transporter or sensor functions. We investigated the spatial occurrence and regulation of the interactions of human OSBP/ORPs or the S. cerevisiae orthologs, the Osh (OSBP homolog) proteins, with their endoplasmic reticulum (ER) anchors, the VAMP-associated proteins (VAPs), by employing bimolecular fluorescence complementation and pull-down set-ups. The ORP-VAP interactions localize frequently at distinct subcellular sites, shown in several cases to represent membrane contact sites (MCSs). Using established ORP ligand-binding domain mutants and pull-down assays with recombinant proteins, we show that ORP liganding regulates the ORP-VAP association, alters the subcellular targeting of ORP-VAP complexes, or modifies organelle morphology. There is distinct protein specificity in the effects of the mutants on subcellular targeting of ORP-VAP complexes. We provide evidence that complexes of human ORP2 and VAPs at ER-lipid droplet interfaces regulate the hydrolysis of triglycerides and lipid droplet turnover. The data suggest evolutionarily conserved, complex ligand-dependent functions of ORP-VAP complexes at MCSs, with implications for cellular lipid homeostasis and signaling.

  16. Transition metal complexes supported by a neutral tetraamine ligand containing N,N-dimethylaniline units.

    PubMed

    Chu, Lei; Hardcastle, Kenneth I; MacBeth, Cora E

    2010-08-16

    First-row transition metal-halide complexes of tris(2-dimethylaminophenyl)amine, L(Me), have been synthesized and characterized. X-ray crystallographic studies on [Co(L(Me))Br]BPh(4), [Ni(L(Me))Cl]BPh(4), [Fe(L(Me))Cl]BPh(4), and [Cu(L(Me))Cl]BF(4) have been performed, and in all cases the ligand produces five-coordinate complexes with distorted trigonal bipyramidal coordination geometries. Where possible, comparisons have been made to the structures of related neutral tripodal ligands. Spectroscopic and magnetic studies of these complexes are also described. The Cu(I)-carbonyl complexes [Cu(L(Me))(CO)]PF(6) and [Cu(Me(6)tren)(CO)]PF(6) (Me(6)tren = tris(N,N-dimethylaminoethyl)amine) have also been prepared. Infrared spectroscopic investigations of these carbonyl complexes confirm that L(Me) is a less electron donating ligand than Me(6)tren and indicate that L(Me) can impart a different coordination number in the solid-state.

  17. Novel Zinc(II) Complexes of Heterocyclic Ligands as Antimicrobial Agents: Synthesis, Characterisation, and Antimicrobial Studies

    PubMed Central

    Yamgar, Ramesh S.; Nivid, Y.; Nalawade, Satish; Mandewale, Mustapha; Atram, R. G.; Sawant, Sudhir S.

    2014-01-01

    The synthesis and antimicrobial activity of novel Zn(II) metal complexes derived from three novel heterocyclic Schiff base ligands 8-[(Z)-{[3-(N-methylamino)propyl]imino}methyl]-7-hydroxy-4-methyl-2H-chromen-2-one, 2-[(E)-{[4-(1H-1,2,4-triazol-1-ylmethyl)phenyl]imino}methyl]phenol, and (4S)-4-{4-[(E)-(2-hydroxybenzylidene)amino]benzyl}-1,3-oxazolidin-2-one have been described. These Schiff base ligands and metal complexes are characterised by spectroscopic techniques. According to these data, we propose an octahedral geometry to all the metal complexes. Antimicrobial activity of the Schiff base ligand and its metal complexes was studied against Gram negative bacteria: E. coli and Pseudomonas fluorescens, Gram positive bacteria: Staphylococcus aureus, and also against fungi, that is, C. albicans and A. niger. Some of the metal complexes show significant antifungal activity (MIC < 0.2 μg/mL). The “in vitro” data has identified [Zn(NMAPIMHMC)2]·2H2O, [Zn(TMPIMP)2]·2H2O, and [Zn(HBABO)2]·2H2O as potential therapeutic antifungal agents against C. albicans and A. niger. PMID:24707242

  18. Pyridylalkylamine ligands and their palladium complexes: structure and reactivity revisited by NMR.

    PubMed

    Requet, Alexandre; Colin, Olivier; Bourdreux, Flavien; Salim, Salim M; Marque, Sylvain; Thomassigny, Christine; Greck, Christine; Farjon, Jonathan; Prim, Damien

    2014-06-01

    Pyridylmethylamines or pma are versatile platforms for different catalytic transformations. Five pma-ligands and their respective Pd complexes have been studied by liquid state NMR. By comparing (1)H, (13)C and (15)N chemical shifts for each pma/pma-Pd couple, a general trend for the metallacycle atoms concerns variations of the electronic distribution at the pendant arm, especially at the nitrogen atom of the ligand. Moreover, the increase of the chemical shift of the pendant arm nitrogen atom from primary to tertiary amine is also related to the increase of crowding within the complex. This statement is in good agreement with X-ray data collected for several complexes. Catalytic results for the Suzuki-Miyaura reaction involving the pma-Pd complexes showed within this series that a sterically crowded and electron-rich ligand in the metallacycle was essential to reach the coupling product with a good selectivity. In this context, NMR study of chemical shifts of all active nuclei especially in the metallacycle could give a trend of reactivity in the studied family of pma-Pd complexes.

  19. Synthesis, characterization and biological activities of mixed ligand Zr(IV) complexes.

    PubMed

    Malghe, Yuvraj S; Prabhu, Rakesh C; Raut, Rajesh W

    2009-01-01

    Mixed ligand ternary Zr(IV) complexes of type [M(Q)2LNO3xH2O] have been synthesized using 8-hydroxyquinoline (HQ) as a primary ligand and N- and/O-donor amino acids (HL) such as L-serine, L-alanine and glycine as secondary ligands. These complexes were characterized on the basis of elemental analysis, conductance measurement, spectral and thermal studies. The molar conductance study of the complexes in DMF solvent signifies their non-electrolytic nature whereas the thermal analyses specify presence of a coordinated water molecule. The complexes were tested for antifungal and antibacterial activity by using agar well diffusion bioassay. The antibacterial activity was tested against the pathogenic bacteria Staphylococcus aureus and Enterococcus faecium. The results obtained were evaluated with antibacterial standard vancomycin. The antifungal activity was tested against Candida albicans, Candida krusei, Aspergillus fumigatus and the results obtained were compared with antifungal standard amphotericin B. The complexes were also screened for cytotoxicity studies against Ehrlich ascites cells and Daltons lymphoma ascites cells and show very low cytotoxicity.

  20. Copper (II) complexes possessing alkyl-substituted polypyridyl ligands: Structural characterization and in vitro antitumor activity.

    PubMed

    Angel, Noah R; Khatib, Raneen M; Jenkins, Julia; Smith, Michelle; Rubalcava, Justin M; Le, Brian Khoa; Lussier, Daniel; Chen, Zhuo Georgia; Tham, Fook S; Wilson, Emma H; Eichler, Jack F

    2017-01-01

    In an effort to find alternatives to the antitumor drug cisplatin, a series of copper (II) complexes possessing alkyl-substituted polypyridyl ligands have been synthesized. Eight new complexes are reported herein: μ-dichloro-bis{2,9-di-sec-butyl-1,10-phenanthrolinechlorocopper(II)} {[((di-sec-butyl)phen)ClCu(μ-Cl)2CuCl((di-sec-butyl)phen)]}(1), 2-sec-butyl-1,10-phenanthrolinedichlorocopper(II) {([mono-sec-butyl)phen) CuCl2} (2), 2,9-di-n-butyl-1,10-phenanthrolinedichlorocopper(II) {[(di-n-butyl)phen) CuCl2}(3), 2-n-butyl-1,10-phenanthrolinedichlorocopper(II) {[(mono-n-butyl)phen) CuCl2} (4), 2,9-di-methyl-1,10-phenanthrolineaquadichlorocopper(II) {[(di-methyl)phen) Cu(H2O)Cl2}(5), μ-dichloro-bis{6-sec-butyl-2,2'-bipyridinedichlorocopper(II)} {((mono-sec-butyl)bipy) ClCu(μ-Cl)2CuCl((mono-sec-butyl)bipy)} (6), 6,6'-di-methyl-2,2'-bipyridinedichlorocopper(II) {(6,6'-di-methyl)bipy) CuCl2} (7), and 4,4'-dimethyl-2,2'-bipyridinedichlorocopper(II) {(4,4'-di-methyl)bipy) CuCl2} (8). These complexes have been characterized via elemental analysis, UV-vis spectroscopy, and mass spectrometry. Single crystal X-ray diffraction experiments revealed the complexes synthesized with the (di-sec-butyl)phen ligand (1) and (mono-sec-butyl)bipy ligand (6) crystallized as dimers in which two copper(II) centers are bridged by two chloride ligands. Conversely, complexes 2, 7, and 8 were isolated as monomeric species possessing distorted tetrahedral geometries, and the [((di-methyl)phen)Cu(H2O)Cl2] (5) complex was isolated as a distorted square pyramidal monomer possessing a coordinating aqua ligand. Compounds 1-8 were evaluated for their in vitro antitumor efficacy. Compounds 1, 5, and 7 in particular were found to exhibit remarkable activity against human derived lung cancer cells, yet this class of copper(II) compounds had minimal cytotoxic effect on non-cancerous cells. In vitro control experiments indicate the activity of the copper(II) complexes most likely does not arise from the

  1. Oxoiron(IV) Tetramethylcyclam Complexes with Axial Carboxylate Ligands: Effect of Tethering the Carboxylate on Reactivity.

    PubMed

    Bigelow, Jennifer O; England, Jason; Klein, Johannes E M N; Farquhar, Erik R; Frisch, Jonathan R; Martinho, Marlène; Mandal, Debasish; Münck, Eckard; Shaik, Sason; Que, Lawrence

    2017-03-20

    Oxoiron(IV) species are implicated as reactive intermediates in nonheme monoiron oxygenases, often acting as the agent for hydrogen-atom transfer from substrate. A histidine is the most likely ligand trans to the oxo unit in most enzymes characterized thus far but is replaced by a carboxylate in the case of isopenicillin N synthase. As the effect of a trans carboxylate ligand on the properties of the oxoiron(IV) unit has not been systematically studied, we have synthesized and characterized four oxoiron(IV) complexes supported by the tetramethylcyclam (TMC) macrocycle and having a carboxylate ligand trans to the oxo unit. Two complexes have acetate or propionate axial ligands, while the other two have the carboxylate functionality tethered to the macrocyclic ligand framework by one or two methylene units. Interestingly, these four complexes exhibit substrate oxidation rates that differ by more than 100-fold, despite having Ep,c values for the reduction of the Fe═O unit that span a range of only 130 mV. Eyring parameters for 1,4-cyclohexadiene oxidation show that reactivity differences originate from differences in activation enthalpy between complexes with tethered carboxylates and those with untethered carboxylates, in agreement with computational results. As noted previously for the initial subset of four complexes, the logarithms of the oxygen atom transfer rates of 11 complexes of the Fe(IV)(O)TMC(X) series increase linearly with the observed Ep,c values, reflecting the electrophilicity of the Fe═O unit. In contrast, no correlation with Ep,c values is observed for the corresponding hydrogen atom transfer (HAT) reaction rates; instead, the HAT rates increase as the computed triplet-quintet spin state gap narrows, consistent with Shaik's two-state-reactivity model. In fact, the two complexes with untethered carboxylates are among the most reactive HAT agents in this series, demonstrating that the axial ligand can play a key role in tuning the HAT reactivity

  2. Fluorescence of 5-arylvinyl-5'-methyl-2,2'-bipyridyl ligands and their zinc complexes.

    PubMed

    Younes, Ali H; Zhang, Lu; Clark, Ronald J; Zhu, Lei

    2009-11-20

    The photophysical properties of 5-arylvinyl-5'-methyl-2,2'-bipyridyls (AVMBs, 1-9, 11) and their zinc complexes were studied. Similar 2,2'-bipyridyl-based ligands have been applied as optical sensors for metal ions and sensitizers for solar energy conversion. The goal of this investigation is to reveal the factors that determine the emission band shift and fluorescence quantum yield change of the title ligand system upon zinc binding. The outcome of this study will not only advance the fundamental understanding of the coordination-driven photophysical processes embodied in the AVMB platform but facilitate the rational design of fluorescent probes for metal ions, particularly zinc. The AVMB ligands were synthesized using the Horner-Wadsworth-Emmons reaction. AVMBs containing electron-donating aryl groups show absorption and emission in the visible region, which can be assigned to charge-transfer transitions as supported by solvent-dependency and computational studies. The binding between AVMB ligands and zinc ion in acetonitrile was studied using isothermal titration calorimetry (ITC). A multicomponent equilibrium model is suggested that explains the multiple transitions evidenced in fluorescence titration isotherms. Coordination to zinc ion stabilizes the charge-transfer excited state of an AVMB ligand with an electron-donating aryl substituent, consequently results in bathochromic shifts in both absorption and emission. However, unlike the emission band shift, the fluorescence quantum yield change upon zinc complex formation does not have an intuitive correlation with the electronic nature of the aryl group. Lifetime measurements using the Time-Correlated Single Photon Counting method enabled the determination of nonradiative and radiative decay rate constants. Both rates of an AVMB ligand decrease upon zinc binding. The collective effect gives rise to the change in fluorescence quantum yield with the apparent lack of correlation with the electronic property of

  3. Geometric and Electronic Structure of a Peroxomanganese(III) Complex Supported by a Scorpionate Ligand

    PubMed Central

    Colmer, Hannah E.; Geiger, Robert A.; Leto, Domenick F.; Wijeratne, Gayan B.; Day, Victor W.; Jackson, Timothy A.

    2014-01-01

    A monomeric MnII complex has been prepared with the facially-coordinating TpPh2 ligand, (TpPh2 = hydrotris(3,5-diphenylpyrazol-1-yl)borate). The X-ray crystal structure shows three coordinating solvent molecules resulting in a six-coordinate complex with Mn-ligand bond lengths that are consistent with a high-spin MnII ion. Treatment of this MnII complex with excess KO2 at room temperature resulted in the formation of a MnIII-O2 complex that is stable for several days at ambient conditions, allowing for the determination of the X-ray crystal structure of this intermediate. The electronic structure of this peroxomanganese(III) adduct was examined by using electronic absorption, electron paramagnetic resonance (EPR), low-temperature magnetic circular dichroism (MCD), and variable-temperature variable-field (VTVH) MCD spectroscopies. Density functional theory (DFT), time-dependent (TD)-DFT, and multireference ab initio CASSCF/NEVPT2 calculations were used to assign the electronic transitions and further investigate the electronic structure of the peroxomanganese(III) species. The lowest ligand-field transition in the electronic absorption spectrum of the MnIII-O2 complex exhibits a blue shift in energy compared to other previously characterized peroxomanganese(III) complexes that results from a large axial bond elongation, reducing the metal-ligand covalency and stabilizing the σ-antibonding Mn dz2 MO that is the donor MO for this transition. PMID:25312785

  4. Metal complexes with oxygen-functionalized NHC ligands: synthesis and applications.

    PubMed

    Hameury, Sophie; de Frémont, Pierre; Braunstein, Pierre

    2017-02-06

    Ligand design has met with considerable success with both categories of hybrid ligands, which are characterized by chemically different donor groups, and of N-heterocyclic carbenes (NHCs). Their spectacular development and diversity are attracting worldwide interest and offers almost unlimited diversity and potential in e.g. coordination/organometallic main group and transition metal chemistry, catalysis, medicinal chemistry and materials science. This review aims at providing a comprehensive update on a specific class of ligands that has enjoyed much attention in the past few years, at the intersection between the two categories mentioned above, that of hybrid NHC ligands in which the functionality associated with the carbene donor is of the oxygen-donor type. For each type of oxygen-donor present in such chelating (Section 1) or bridging (Section 2) hybrid ligands, we will examine the synthesis, structures and reactivity of their metal complexes and their applications, with a special focus on homogeneous catalysis (Section 3). Thus, hydrogenation, C-H bond activation, C-C, C-N, C-O bond formation, hydrolysis of silanes, oligomerization, polymerization, metathesis, hydrosilylation, C-C bond cleavage, acceptorless dehydrogenation, dehalogenation/hydrogen transfer, oxidation and reduction reactions will be successively presented in a tabular manner, to facilitate an overview and a rapid identification of the relevant publications describing which metals associated with a given oxygen functionality are most suitable. The literature coverage includes the year 2015.

  5. Simulation of metal-ligand self-assembly into spherical complex M6L8.

    PubMed

    Yoneya, Makoto; Yamaguchi, Tomohiko; Sato, Sota; Fujita, Makoto

    2012-09-05

    Molecular dynamics simulations were performed to study the self-assembly of a spherical complex through metal-ligand coordination interactions. M(6)L(8), a nanosphere with six palladium ions and eight pyridine-capped tridentate ligands, was selected as a target system. We successfully observed the spontaneous formation of spherical shaped M(6)L(8) cages over the course of our simulations, starting from random initial placement of the metals and ligands. To simulate spontaneous coordination bond formations and breaks, the cationic dummy atom method was employed to model nonbonded metal-ligand interactions. A coarse-grained solvent model was used to fill the gap between the time scale of the supramolecular self-assembly and that accessible by common molecular dynamics simulation. The simulated formation process occurred in the distinct three-stage (assembly, evolution, fixation) process that is well correlated with the experimental results. We found that the difference of the lifetime (or the ligand exchange rate) between the smaller-sized incomplete clusters and the completed M(6)L(8) nanospheres is crucially important in their supramolecular self-assembly.

  6. Soluble Mn(III)-L complexes are abundant in oxygenated waters and stabilized by humic ligands

    NASA Astrophysics Data System (ADS)

    Oldham, Véronique E.; Mucci, Alfonso; Tebo, Bradley M.; Luther, George W.

    2017-02-01

    Dissolved Mn (dMnT) is thought to be dominated by metastable Mn(II) in the presence of oxygen, as the stable form is insoluble Mn(IV). We show, for the first time, that Mn(III) is also stable as a soluble species in the oxygenated water column, when stabilized by organic ligands as Mn(III)-L complexes. We measured Mn(III)-L complexes in the oxygenated waters of a coastal fjord and a hemipelagic system where they make up to 86% of the dMnT. Although Mn(III) forms similar complexes to Fe(III), unlike most of the analogous Fe(III)-L complexes, the Mn(III)-L complexes are not colloidal, as they pass through both 0.20 μm and 0.02 μm filters. Depending on the kinetic stability of the Mn(III) complexes and the microbial community of a given system, these Mn(III)-L complexes are capable of donating or accepting electrons and may therefore serve as both reductants or oxidants, can be biologically available, and can thus participate in a multitude of redox reactions and biogeochemical processes. Furthermore, sample acidification experiments revealed that Mn(III) binding to humic ligands is responsible for up to 100% of this complexation, which can influence the formation of other metal complexes including Fe(III) and thus impact nutrient availability and uptake. Hence, humic ligands may play a greater role in dissolved Mn transport from coastal areas to the ocean than previously thought.

  7. Homoleptic nickel(II) complexes of redox-tunable pincer-type ligands.

    PubMed

    Hewage, Jeewantha S; Wanniarachchi, Sarath; Morin, Tyler J; Liddle, Brendan J; Banaszynski, Megan; Lindeman, Sergey V; Bennett, Brian; Gardinier, James R

    2014-10-06

    Different synthetic methods have been developed to prepare eight new redox-active pincer-type ligands, H(X,Y), that have pyrazol-1-yl flanking donors attached to an ortho-position of each ring of a diarylamine anchor and that have different groups, X and Y, at the para-aryl positions. Together with four previously known H(X,Y) ligands, a series of 12 Ni(X,Y)2 complexes were prepared in high yields by a simple one-pot reaction. Six of the 12 derivatives were characterized by single-crystal X-ray diffraction, which showed tetragonally distorted hexacoordinate nickel(II) centers. The nickel(II) complexes exhibit two quasi-reversible one-electron oxidation waves in their cyclic voltammograms, with half-wave potentials that varied over a remarkable 700 mV range with the average of the Hammett σ(p) parameters of the para-aryl X, Y groups. The one- and two-electron oxidized derivatives [Ni(Me,Me)2](BF4)n (n = 1, 2) were prepared synthetically, were characterized by X-band EPR, electronic spectroscopy, and single-crystal X-ray diffraction (for n = 2), and were studied computationally by DFT methods. The dioxidized complex, [Ni(Me,Me)2](BF4)2, is an S = 2 species, with nickel(II) bound to two ligand radicals. The mono-oxidized complex [Ni(Me,Me)2](BF4), prepared by comproportionation, is best described as nickel(II) with one ligand centered radical. Neither the mono- nor the dioxidized derivative shows any substantial electronic coupling between the metal and their bound ligand radicals because of the orthogonal nature of their magnetic orbitals. On the other hand, weak electronic communication occurs between ligands in the mono-oxidized complex as evident from the intervalence charge transfer (IVCT) transition found in the near-IR absorption spectrum. Band shape analysis of the IVCT transition allowed comparisons of the strength of the electronic interaction with that in the related, previously known, Robin-Day class II mixed valence complex, [Ga(Me,Me)2](2+).

  8. Luminescent Cyclometalated Platinum Complexes with π-Bonded Catecholate Organometallic Ligands.

    PubMed

    Moussa, Jamal; Loch, Aruny; Chamoreau, Lise-Marie; Degli Esposti, Alessandra; Bandini, Elisa; Barbieri, Andrea; Amouri, Hani

    2017-02-20

    A series of cyclometalated platinum(II) complexes of the type [(ppy)Pt(LM)](n+) (n = 0, 1) with π-bonded catecholates acting as organometallic ligands (LM) have been prepared and characterized by analytical techniques. In addition, the structures of two complexes of the series were determined by single-crystal X-ray diffraction. The packing shows the formation of a 1D supramolecular assembly generated by dPt-πCp* interactions among individual units. All complexes are luminescent in the solid state and in solution media. The results of photophysics have been rationalized by means of density functional theory (DFT) and time-dependent DFT investigations.

  9. Mössbauer effect study of iron(III) inidazolidine nitroxyl-free radical ligand complex

    NASA Astrophysics Data System (ADS)

    Mulaba, A.; Kiremire, E.; Pollak, H.; Boeyens, J.

    1999-09-01

    A new complex, [Fe(acac)L2], bearing inidazolidine nitroxyl-free radical ligand (L-) was recently synthesised for biological studies. It proved to be biologically active against African sleeping sickness, plasmodium falciparum (malaria), leishmaniasis and chaga disease causative agents. Three ESR well resolved peaks indicated the presence of a free (unpaired) and chemically active electron in the complex. The structural complex ferric iron was found at the centre of two electric gradient whose the biggest is suggested to be initiated by the unpaired charge. No distinction between different cis isomers could be made.

  10. Cytotoxicity and DNA interactions of some platinum(II) complexes with substituted benzimidazole ligands.

    PubMed

    Ozçelik, Azime Berna; Utku, Semra; Gümüş, Fatma; Keskin, Ayten Çelebi; Açık, Leyla; Yılmaz, Sükran; Ozgüngör, Adeviye

    2012-06-01

    In the present study, four Pt(II) complexes with 2-ethyl (1)/or benzyl (2)/or p-chlorobenzyl (3)/or 2-phenoxymethyl (4) benzimidazole carrier ligands were evaluated for their in vitro cytotoxic activities against the human HeLa cervix, oestrogen receptor-positive MCF-7 breast, and oestrogen receptor-negative MDA-MB 231 breast cancer cell lines. The plasmid DNA interactions and inhibition of the BamHI restriction enzyme activities of the complexes were also studied. Complex 3 was found to be more active than carboplatin for all examined cell lines and comparable with cisplatin, except for the HeLa cell line.

  11. Synthesis, Characterization, and Antifungal Studies of Cr(III) Complex of Norfloxacin and Bipiridyl Ligand

    PubMed Central

    Debnath, Anamika; Hussain, Firasat; Masram, Dhanraj T.

    2014-01-01

    A novel slightly distorted octahedral complex of Cr(III) of norfloxacin (Nor) with the formula [CrIII(Nor)(Bipy)Cl2]Cl·2CH3OH has been synthesized hydrothermally in the presence of a N-containing heterocyclic compound 2,2′-bipyridyl (Bipy). The complex was characterized with FT-IR, elemental analysis, UV-visible spectroscopy, and X-ray crystallography. Spectral studies suggest that the Nor acts as a deprotonated bidentate ligand. Thermal studies were also carried out. The synthesised complex was screened against four fungi Pythium aphanidermatum (PA), Sclerotinia rolfsii (SR), Rhizoctonia solani (RS), and Rhizoctonia bataticola (RB). PMID:25276111

  12. Tropolone Complexes Formed with Amphoteric Ligands: Structure and Dynamics as Viewed across the Vibronic Landscape

    NASA Astrophysics Data System (ADS)

    Nemchick, Deacon J.; Chew, Kathryn; Vaccaro, Patrick H.

    2013-06-01

    Owing to the presence of a finite potential barrier that adjoins hydroxylic (proton-donating) and ketonic (proton-accepting) oxygen atom centers, tropolone (TrOH) long has served as a model system for the investigation of coherent (symmetrical) proton-transfer events. Hydrogen-bound complexes formed by docking amphoteric species onto the TrOH substrate, such as those involving formic acid [TrOH-(FA)_n] and other simultaneous donor-acceptor ligands, have been generated under supersonic free-jet expansion conditions. For binary adducts (n=1), quantum-chemical calculations predict two nearly degenerate isomers that can be labeled as external (ligand attached to the seven-membered aromatic ring) and internal (ligand bound to the O-H \\cdot\\cdot\\cdot O reaction site), where the latter cleft-bound form offers the tantalizing possibility of undergoing a double proton-transfer process. A variety of spectroscopic probes build around the intense ˜{A}^{1}{B}_{2}-˜{X}^{1}{A}_{1} (π ^{*}←π) near-ultraviolet absorption feature of bare tropolone have been enlisted to elucidate the binding motifs and reaction pathways in complexes containing one or more amphoteric ligands, including vibrationally resolved schemes based upon laser-induced fluorescence (LIF), dispersed fluorescence (DF), and fluorescence hole-burning (FHB) methods. Structural and dynamical information gleaned from these experiments will be discussed in light of complementary ab initio calculations.

  13. Manipulating charge transfer excited state relaxation and spin crossover in iron coordination complexes with ligand substitution

    DOE PAGES

    Zhang, Wenkai; Kjaer, Kasper S.; Alonso-Mori, Roberto; ...

    2016-08-25

    Developing light-harvesting and photocatalytic molecules made with iron could provide a cost effective, scalable, and environmentally benign path for solar energy conversion. To date these developments have been limited by the sub-picosecond metal-to-ligand charge transfer (MLCT) electronic excited state lifetime of iron based complexes due to spin crossover – the extremely fast intersystem crossing and internal conversion to high spin metal-centered excited states. We revitalize a 30 year old synthetic strategy for extending the MLCT excited state lifetimes of iron complexes by making mixed ligand iron complexes with four cyanide (CN–) ligands and one 2,2'-bipyridine (bpy) ligand. This enables MLCTmore » excited state and metal-centered excited state energies to be manipulated with partial independence and provides a path to suppressing spin crossover. We have combined X-ray Free-Electron Laser (XFEL) Kβ hard X-ray fluorescence spectroscopy with femtosecond time-resolved UV-visible absorption spectroscopy to characterize the electronic excited state dynamics initiated by MLCT excitation of [Fe(CN)4(bpy)]2–. The two experimental techniques are highly complementary; the time-resolved UV-visible measurement probes allowed electronic transitions between valence states making it sensitive to ligand-centered electronic states such as MLCT states, whereas the Kβ fluorescence spectroscopy provides a sensitive measure of changes in the Fe spin state characteristic of metal-centered excited states. Here, we conclude that the MLCT excited state of [Fe(CN)4(bpy)]2– decays with roughly a 20 ps lifetime without undergoing spin crossover, exceeding the MLCT excited state lifetime of [Fe(2,2'-bipyridine)3]2+ by more than two orders of magnitude.« less

  14. Manipulating charge transfer excited state relaxation and spin crossover in iron coordination complexes with ligand substitution

    SciTech Connect

    Zhang, Wenkai; Kjaer, Kasper S.; Alonso-Mori, Roberto; Bergmann, Uwe; Chollet, Matthieu; Fredin, Lisa A.; Hadt, Ryan G.; Hartsock, Robert W.; Harlang, Tobias; Kroll, Thomas; Kubicek, Katharina; Lemke, Henrik T.; Liang, Huiyang W.; Liu, Yizhu; Nielsen, Martin M.; Persson, Petter; Robinson, Joseph S.; Solomon, Edward I.; Sun, Zheng; Sokaras, Dimosthenis; van Driel, Tim B.; Weng, Tsu -Chien; Zhu, Diling; Warnmark, Kenneth; Sundstrom, Villy; Gaffney, Kelly J.

    2016-08-25

    Developing light-harvesting and photocatalytic molecules made with iron could provide a cost effective, scalable, and environmentally benign path for solar energy conversion. To date these developments have been limited by the sub-picosecond metal-to-ligand charge transfer (MLCT) electronic excited state lifetime of iron based complexes due to spin crossover – the extremely fast intersystem crossing and internal conversion to high spin metal-centered excited states. We revitalize a 30 year old synthetic strategy for extending the MLCT excited state lifetimes of iron complexes by making mixed ligand iron complexes with four cyanide (CN) ligands and one 2,2'-bipyridine (bpy) ligand. This enables MLCT excited state and metal-centered excited state energies to be manipulated with partial independence and provides a path to suppressing spin crossover. We have combined X-ray Free-Electron Laser (XFEL) Kβ hard X-ray fluorescence spectroscopy with femtosecond time-resolved UV-visible absorption spectroscopy to characterize the electronic excited state dynamics initiated by MLCT excitation of [Fe(CN)4(bpy)]2–. The two experimental techniques are highly complementary; the time-resolved UV-visible measurement probes allowed electronic transitions between valence states making it sensitive to ligand-centered electronic states such as MLCT states, whereas the Kβ fluorescence spectroscopy provides a sensitive measure of changes in the Fe spin state characteristic of metal-centered excited states. Here, we conclude that the MLCT excited state of [Fe(CN)4(bpy)]2– decays with roughly a 20 ps lifetime without undergoing spin crossover, exceeding the MLCT excited state lifetime of [Fe(2,2'-bipyridine)3]2+ by more than two orders of magnitude.

  15. [Classification and Contribution Analysis of Aromatic Clusters in Protein-Ligand Complexes].

    PubMed

    Yamasaki, Hiroyuki; Koseki, Jun; Nishibata, Yoshihiko; Hirono, Shuichi

    2016-01-01

      Intermolecular interactions are key features in the stabilization or destabilization of complexes. In particular, interactions involving aromatic rings have been extensively studied both theoretically and experimentally. Studies have shown that aromatic-aromatic interactions can be categorized by ring-ring orientation into a variety of different types, such as stacking interactions and T-shaped interactions. Because these different orientations affect stabilization, analyses of such interactions, for example ab initio molecular orbital calculations, are applied to pairs of aromatic rings, both in model systems and real systems. An important series of aromatic-aromatic interactions include those between pairs of aromatic residues in proteins. These residues have been studied computationally using both a theoretical chemistry approach and a knowledge-based analys. Protein 3D structural information is essential for knowledge-based studies of aromatic-aromatic interactions in protein-ligand complexes. Some databases filter entries from the Protein Data Bank (PDB) using criteria that make them suitable for computational approaches involving specific research targets. Lanzarotti et al. have shown that aromatic clusters in which three or more aromatic residues are in close proximity to each other are found in many protein structures, expanding pairwise aromatic-aromatic interactions. Moreover, these clusters are thought to be important in terms of protein function, structural stability and ligand recognition. Here, we show that aromatic clusters, as well as individual proteins, are found in a variety of protein-ligand complexes. As such, we anticipate that these clusters might have a significant role in ligand binding and could help in efficient ligand design.

  16. Copper(II/I) Complexes of a Hexakis(bipyridyl)cyclotriveratrylene Ligand: A Redox-Induced Conformational Switch.

    PubMed

    Wytko, Jennifer A.; Boudon, Corinne; Weiss, Jean; Gross, Maurice

    1996-07-17

    A series of copper(II) and copper(I) complexes have been synthesized with ligands combining 6-methyl-2,2'-bipyridines with cyclotriveratrylene (CTV) (1) and with catechol (2). The electrochemical, (1)H NMR, and mass spectrometry characterizations of these complexes are described and discussed. The six pendant bipyridines of ligand 1 allow for the formation of two trinuclear copper(I) complexes [(1)Cu(3)](BF(4))(3) differing only in the conformation "vic" or "int" adopted by the ligand to fit the tetrahedral cuprous ions. Similarly, 1 generates two trinuclear copper(II) complexes in which the conformation of the ligand fits the square planar geometry of cupric ions. In both the cuprous and cupric complexes, a conformational equilibrium exists. Ligand 2 bearing two methylbipyridines has proven to be a useful model of the coordinating sites of ligand 1. In this case, two homologous copper(I) complexes are obtained, [(2)Cu]BF(4) and [(2)(2)Cu(2)](BF(4))(2), modeling respectively two possible coordination conformations of ligand 1. With copper(II), ligand 2 yields only one complex [(2)Cu](CF(3)SO(3))(2), which allows for the unambiguous identification of the conformations observed for ligand 1 complexes. The different coordinating modes of ligand 1 in the complexes mentioned are in exchange but exhibit different physical properties, thus representing a new bistable system based on conformational isomerism which exhibits an electrochemical potential hysteresis. An equilibrium constant and thermodynamic data were obtained for this system by variable-temperature cyclic voltammetry. The influence of coordinating vs noncoordinating solvents was also studied.

  17. Synthesis and Antiproliferative Activity of New Ruthenium Complexes with Ethacrynic-Acid-Modified Pyridine and Triphenylphosphine Ligands.

    PubMed

    Agonigi, Gabriele; Riedel, Tina; Zacchini, Stefano; Păunescu, Emilia; Pampaloni, Guido; Bartalucci, Niccolò; Dyson, Paul J; Marchetti, Fabio

    2015-07-06

    Pyridine- and phosphine-based ligands modified with ethacrynic acid (a broad acting glutathione transferase inhibitor) were prepared and coordinated to ruthenium(II)-arene complexes and to a ruthenium(III) NAMI-A type complex. All the compounds (ligands and complexes) were fully characterized by analytical and spectroscopic methods and, in one case, by single-crystal X-ray diffraction. The in vitro anticancer activity of the compounds was studied, with the compounds displaying moderate cytotoxicity toward the human ovarian cancer cell lines. All the complexes led to similar levels of residual GST activity in the different cell lines, irrespective of the stability of the Ru-ligand bond.

  18. Design of vanadium mixed-ligand complexes as potential anti-protozoa agents.

    PubMed

    Benítez, Julio; Guggeri, Lucía; Tomaz, Isabel; Arrambide, Gabriel; Navarro, Maribel; Pessoa, João Costa; Garat, Beatriz; Gambino, Dinorah

    2009-04-01

    In the search for new therapeutic tools against Chagas' disease (American Trypanosomiasis) four novel mixed-ligand vanadyl complexes, [V(IV)O(L(2)-2H)(L(1))], including a bidentate polypyridyl DNA intercalator (L(1)) and a tridentate salycylaldehyde semicarbazone derivative (L(2)) as ligands were synthesized, characterized by a combination of techniques, and in vitro evaluated. EPR suggest a distorted octahedral geometry with the tridentate semicarbazone occupying three equatorial positions and the polypyridyl ligand coordinated in an equatorial/axial mode. Both complexes including dipyrido[3,2-a: 2',3'-c]phenazine (dppz) as polypyridyl coligand showed IC(50) values in the muM range against Dm28c strain (epimastigotes) of Trypanosoma cruzi, causative agent of the disease, being as active as the anti-trypanosomal reference drug Nifurtimox. To get an insight into the trypanocidal mechanism of action of these compounds, DNA was evaluated as a potential parasite target and EPR, and (51)V NMR experiments were also carried out upon aging aerated solutions of the complexes. Data obtained by electrophoretic analysis suggest that the mechanism of action of these complexes could include DNA interactions.

  19. Square-planar ruthenium(II) complexes: control of spin state by pincer ligand functionalization.

    PubMed

    Askevold, Bjorn; Khusniyarov, Marat M; Kroener, Wolfgang; Gieb, Klaus; Müller, Paul; Herdtweck, Eberhardt; Heinemann, Frank W; Diefenbach, Martin; Holthausen, Max C; Vieru, Veacheslav; Chibotaru, Liviu F; Schneider, Sven

    2015-01-07

    Functionalization of the PNP pincer ligand backbone allows for a comparison of the dialkyl amido, vinyl alkyl amido, and divinyl amido ruthenium(II) pincer complex series [RuCl{N(CH2 CH2 PtBu2 )2 }], [RuCl{N(CHCHPtBu2 )(CH2 CH2 PtBu2 )}], and [RuCl{N(CHCHPtBu2 )2 }], in which the ruthenium(II) ions are in the extremely rare square-planar coordination geometry. Whereas the dialkylamido complex adopts an electronic singlet (S=0) ground state and energetically low-lying triplet (S=1) state, the vinyl alkyl amido and the divinyl amido complexes exhibit unusual triplet (S=1) ground states as confirmed by experimental and computational examination. However, essentially non-magnetic ground states arise for the two intermediate-spin complexes owing to unusually large zero-field splitting (D>+200 cm(-1) ). The change in ground state electronic configuration is attributed to tailored pincer ligand-to-metal π-donation within the PNP ligand series.

  20. Ruthenium complexes with chiral tetradentate PNNP ligands: asymmetric catalysis from the viewpoint of inorganic chemistry.

    PubMed

    Mezzetti, Antonio

    2010-09-14

    This is a personal account of the application of ruthenium complexes containing chiral tetradentate ligands with a P(2)N(2) ligand set (PNNP) as catalyst precursors for enantioselective "atom transfer" reactions. Therewith are meant reactions that involve bond formation between a metal-coordinated molecule and a free reagent. The reactive fragment (e.g. carbene) is transferred either from the metal to the non-coordinated substrate (e.g. olefin) or from the free reagent (e.g. F(+)) to the metal-bound substrate (e.g.beta-ketoester), depending on the class of catalyst (monocationic, Class A; or dicationic, Class B). The monocationic five-coordinate species [RuCl(PNNP)](+) and the six-coordinate complexes [RuCl(L)(PNNP)](+) (L = Et(2)O, H(2)O) of Class A catalyse asymmetric epoxidation, cyclopropanation (carbene transfer from the metal to the free olefin), and imine aziridination. Alternatively, the dicationic complexes [Ru(L-L)(PNNP)](2+) (Class B), which contain substrates that act as neutral bidentate ligands L-L (e.g., beta-ketoesters), catalyse Michael addition, electrophilic fluorination, and hydroxylation reactions. Additionally, unsaturated beta-ketoesters form dicationic complexes of Class B that catalyse Diels-Alder reactions with acyclic dienes to produce tetrahydro-1-indanones and estrone derivatives. Excellent enantioselectivity has been achieved in several of the catalytic reactions mentioned above. The study of key reaction intermediates (both in the solid state and in solution) has revealed significant mechanistic aspects of the catalytic reactions.

  1. Vibrational Spectroscopy of Mass Selected [UO2(ligand)n]2+ Complexes in the Gas Phase

    SciTech Connect

    Gary S. Groenewold; Anita Gianotto; Michael Vanstipdonk; Kevin C. Cossel; David T. Moore,; Nick Polfer; Jos Oomens

    2006-03-01

    The gas-phase infrared spectra of discrete uranyl ([UO2]2+) complexes ligated with acetone and/or acetonitrile were used to evaluate systematic trends of ligation on the position of the O=U=O stretch, and to enable rigorous comparison with the results of computational studies. Ionic uranyl complexes isolated in a Fourier transform ion cyclotron resonance mass spectrometer were fragmented via infrared multiphoton dissociation using a free electron laser scanned over the mid-IR wavelengths. The asymmetric O=U=O stretching frequency was measured at 1017 cm-1 for [UO2(CH3COCH3)2]2+, and was systematically red shifted to 1000 and 988 cm-1 by the addition of a third and fourth acetone ligands, respectively, which was consistent with more donation of electron density to the uranium center in complexes with higher coordination number. The experimental measurements were in good agreement with values generated computationally using LDA, B3LYP, and ZORA-PW91 approaches. In contrast to the uranyl frequency shifts, the carbonyl frequencies of the acetone ligands were progressively blue shifted as the number of ligands increased from 2 to 4, and approached that of free acetone. This observation was consistent with the formation of weaker noncovalent bonds between uranium and the carbonyl oxygen as the extent of ligation increases. Similar trends were observed for [UO2(CH3CN)n]2+ complexes although the magnitude of the red shift in the uranyl frequency upon addition more acetonitrile ligands was smaller than for acetone, consistent with the more modest nucleophilic nature of acetonitrile. This conclusion was amplified by the uranyl stretching frequencies measured for mixed acetone/acetonitrile complexes, which showed that substitution of one acetone for one acetonitrile produced a modest red shift of 3 to 6 cm-1.

  2. Synthesis, spectroscopic, coordination and biological activities of some organometallic complexes derived from thio-Schiff base ligands

    PubMed Central

    Abou-Hussein, Azza A.; Linert, Wolfgang

    2014-01-01

    Two series of mono- and binuclear complexes cyclic or acyclic thio-ferocine Schiff base ligands, derived from the condensation of 2-aminobenzenthiol (L) with monoacetyl ferrocene in the molar ratio 1:1 or in the molar ratio 1:2 for diacetyl ferocine have been prepared. The condensation reactions yield the corresponding Schiff Base ligands, HLa-Maf and H2Lb-Daf. The chelation of the ligands to metal ions occurs through the sulfur of the thiol group as well as the nitrogen atoms of the azomethine group of the ligands. HLa-Maf acts as monobasic bidentate or dibasic tetradentate, while H2Lb-Daf behaves as twice negatively cargend tetradentate ligand. The structures of these ligands were elucidated by elemental analysis, infrared, ultraviolet–visible spectra, as well as 1H NMR spectra. Reactions of the Schiff bases ligands with ruthenium(III), oxovanadium(IV) and dioxouranium(VI) afforded the corresponding transition metal complexes. The properties of the newly prepared complexes were analyse by elemental analyses, infrared, electronic spectra, 1H NMR as well as the magnetic susceptibility and conductivity measurement. The metal complexes exhibits different geometrical arrangements such as octahedral and square pyramidal coordination. Schiff base ligands and their metal complexes were tested against two pathogenic bacteria as Gram-positive and Gram-negative bacteria as well as one kind of fungi to study their biological activity. All the complexes exhibit antibacterial and antifungal activities against these organisms. PMID:24070648

  3. Synthesis, spectroscopic, coordination and biological activities of some organometallic complexes derived from thio-Schiff base ligands

    NASA Astrophysics Data System (ADS)

    Abou-Hussein, Azza A.; Linert, Wolfgang

    2014-01-01

    Two series of mono- and binuclear complexes cyclic or acyclic thio-ferocine Schiff base ligands, derived from the condensation of 2-aminobenzenthiol (L) with monoacetyl ferrocene in the molar ratio 1:1 or in the molar ratio 1:2 for diacetyl ferocine have been prepared. The condensation reactions yield the corresponding Schiff Base ligands, HLa-Maf and H2Lb-Daf. The chelation of the ligands to metal ions occurs through the sulfur of the thiol group as well as the nitrogen atoms of the azomethine group of the ligands. HLa-Maf acts as monobasic bidentate or dibasic tetradentate, while H2Lb-Daf behaves as twice negatively cargend tetradentate ligand. The structures of these ligands were elucidated by elemental analysis, infrared, ultraviolet-visible spectra, as well as 1H NMR spectra. Reactions of the Schiff bases ligands with ruthenium(III), oxovanadium(IV) and dioxouranium(VI) afforded the corresponding transition metal complexes. The properties of the newly prepared complexes were analyse by elemental analyses, infrared, electronic spectra, 1H NMR as well as the magnetic susceptibility and conductivity measurement. The metal complexes exhibits different geometrical arrangements such as octahedral and square pyramidal coordination. Schiff base ligands and their metal complexes were tested against two pathogenic bacteria as Gram-positive and Gram-negative bacteria as well as one kind of fungi to study their biological activity. All the complexes exhibit antibacterial and antifungal activities against these organisms.

  4. Unusually Efficient Pyridine Photodissociation from Ru(II) Complexes with Sterically Bulky Bidentate Ancillary Ligands

    PubMed Central

    2015-01-01

    The introduction of steric bulk to the bidentate ligand in [Ru(tpy)(bpy)(py)]2+ (1; tpy = 2,2′:2′,6″-terpyridine; bpy = 2,2′-bipyridine; py = pyridine) to provide [Ru(tpy)(Me2bpy)(py)]2+ (2; Me2bpy = 6,6′-dimethyl-2,2′-bipyridine) and [Ru(tpy)(biq)(py)]2+ (3; biq = 2,2′-biquinoline) facilitates photoinduced dissociation of pyridine with visible light. Upon irradiation of 2 and 3 in CH3CN (λirr = 500 nm), ligand exchange occurs to produce the corresponding [Ru(tpy)(NN)(NCCH3)]2+ (NN = Me2bpy, biq) complex with quantum yields, Φ500, of 0.16(1) and 0.033(1) for 2 and 3, respectively. These values represent an increase in efficiency of the reaction by 2–3 orders of magnitude as compared to that of 1, Φ500 < 0.0001, under similar experimental conditions. The photolysis of 2 and 3 in H2O with low energy light to produce [Ru(tpy)(NN)(OH2)]2+ (NN = Me2bpy, biq) also proceeds rapidly (λirr > 590 nm). Complexes 1–3 are stable in the dark in both CH3CN and H2O under similar experimental conditions. X-ray crystal structures and theoretical calculations highlight significant distortion of the planes of the bidentate ligands in 2 and 3 relative to that of 1. The crystallographic dihedral angles defined by the bidentate ligand, Me2bpy in 2 and biq in 3, and the tpy ligand were determined to be 67.87° and 61.89°, respectively, whereas only a small distortion from the octahedral geometry is observed between bpy and tpy in 1, 83.34°. The steric bulk afforded by Me2bpy and biq also result in major distortions of the pyridine ligand in 2 and 3, respectively, relative to 1, which are believed to weaken its σ-bonding and π-back-bonding to the metal and play a crucial role in the efficiency of the photoinduced ligand exchange. The ability of 2 and 3 to undergo ligand exchange with λirr > 590 nm makes them potential candidates to build photochemotherapeutic agents for the delivery of drugs with pyridine binding groups. PMID:25027458

  5. Unusually efficient pyridine photodissociation from Ru(II) complexes with sterically bulky bidentate ancillary ligands.

    PubMed

    Knoll, Jessica D; Albani, Bryan A; Durr, Christopher B; Turro, Claudia

    2014-11-13

    The introduction of steric bulk to the bidentate ligand in [Ru(tpy)(bpy)(py)](2+) (1; tpy = 2,2':2',6″-terpyridine; bpy = 2,2'-bipyridine; py = pyridine) to provide [Ru(tpy)(Me2bpy)(py)](2+) (2; Me2bpy = 6,6'-dimethyl-2,2'-bipyridine) and [Ru(tpy)(biq)(py)](2+) (3; biq = 2,2'-biquinoline) facilitates photoinduced dissociation of pyridine with visible light. Upon irradiation of 2 and 3 in CH3CN (λirr = 500 nm), ligand exchange occurs to produce the corresponding [Ru(tpy)(NN)(NCCH3)](2+) (NN = Me2bpy, biq) complex with quantum yields, Φ500, of 0.16(1) and 0.033(1) for 2 and 3, respectively. These values represent an increase in efficiency of the reaction by 2-3 orders of magnitude as compared to that of 1, Φ500 < 0.0001, under similar experimental conditions. The photolysis of 2 and 3 in H2O with low energy light to produce [Ru(tpy)(NN)(OH2)](2+) (NN = Me2bpy, biq) also proceeds rapidly (λirr > 590 nm). Complexes 1-3 are stable in the dark in both CH3CN and H2O under similar experimental conditions. X-ray crystal structures and theoretical calculations highlight significant distortion of the planes of the bidentate ligands in 2 and 3 relative to that of 1. The crystallographic dihedral angles defined by the bidentate ligand, Me2bpy in 2 and biq in 3, and the tpy ligand were determined to be 67.87° and 61.89°, respectively, whereas only a small distortion from the octahedral geometry is observed between bpy and tpy in 1, 83.34°. The steric bulk afforded by Me2bpy and biq also result in major distortions of the pyridine ligand in 2 and 3, respectively, relative to 1, which are believed to weaken its σ-bonding and π-back-bonding to the metal and play a crucial role in the efficiency of the photoinduced ligand exchange. The ability of 2 and 3 to undergo ligand exchange with λirr > 590 nm makes them potential candidates to build photochemotherapeutic agents for the delivery of drugs with pyridine binding groups.

  6. New metal complexes of N3 tridentate ligand: Synthesis, spectral studies and biological activity

    NASA Astrophysics Data System (ADS)

    Al-Hamdani, Abbas Ali Salih; Al Zoubi, Wail

    2015-02-01

    New tridentate ligand 3-amino-4-{1,5-dimethyl-3-[2-(5-methyl-1H-indol-3-yl)-ethylimino]-2phenyl-2,3-dihydro-1H-pyrazol-4-ylazo}-phenol L was synthesized from the reaction of 1,5-dimethyl-3-[2-(5-methyl-1H-indol-3-yl)-ethylimino]-2-phenyl-2,3-dihydro-1H-pyrazol-4-ylamine and 3.4-amino phenol. A complexes of these ligand [Ni(II)(L)(H2O)2 Cl]Cl, [pt(IV)(L)Cl3]Cl and [M(II)(L)Cl]Cl (M = Pd (II), Zn (II), Cd (II) and Hg (II) were synthesized. The complexes were characterized by spectroscopic methods and magnetic moment measurements, elemental analysis, metal content, Chloride containing and conductance. These studies revealed octahedral geometries for the Ni (II), pt (IV) complexes, square planar for Pd (II) complex and tetrahedral for the Zn (II), Cd(II) and Hg (II) complexes. The study of complexes formation via molar ratio and job method in DMF solution has been investigated and results were consistent to those found in the solid complexes with a ratio of (M:L) as (1:1). The thermodynamic parameters, such as ΔE*, ΔH*, ΔS* ΔG* and K are calculated from the TGA curve using Coats-Redfern method. Hyper Chem-8 program has been used to predict structural geometries of compounds in gas phase. The synthesized ligand and its metal complexes were screened for their biological activity against bacterial species, two Gram positive bacteria (Bacillus subtilis and Staphylococcus aureus) and two Gram negative bacteria (Escherichia coli and Pseudomonasaeruginosa).

  7. Effect of doping of calcium fluoride nanoparticles on the photoluminescence properties of europium complexes with benzoic acid derivatives as secondary ligands and 2-aminopyridine as primary ligand

    NASA Astrophysics Data System (ADS)

    Sharma, Garima; Narula, Anudeep Kumar

    2015-08-01

    The present article reports the synthesis of three Eu(III) complexes [Eu(BA)3(2-ap)] (1), [Eu(HBA)3(2-ap)] (2) and [Eu(ABA)3(2-ap)] (3) (BA = benzoic acid, HBA = 2-hydroxy benzoic acid, ABA = 2-amino benzoic acid and 2-ap = 2-aminopyridine) carried out in ethanol solution. The complexes were further doped with CaF2 nanoparticles and a change in the photoluminescence properties was observed. The compositions and structural investigation of the complexes were determined by elemental analysis and Fourier transform infrared spectroscopy (FTIR) which suggest the coordination of ligands with the central Eu(III) ion. The optical properties of the complexes were studied by Ultraviolet Visible absorption spectroscopy (UV-Vis) and photoluminescence studies (PL). The relative PL intensity was enhanced in the Eu(III) complexes doped with CaF2 nanoparticles as compared to the pure Eu(III) complexes, however the increase in intensity varied in the order of ligands ABA > HBA > BA. The photoluminescence lifetime decay curves also revealed the longer lifetime (τ) and higher quantum efficiency (η) for europium complexes with ABA ligands suggesting the efficient energy transfer and better sensitizing ability of the ligand to europium ion. The morphology of the synthesized compounds were studied by Scanning Electron Microscopy (SEM) revealing spherical morphology with agglomeration of the nanoparticles.

  8. NMR resonance assignments for the tetramethylrhodamine binding RNA aptamer 3 in complex with the ligand 5-carboxy-tetramethylrhodamine.

    PubMed

    Duchardt-Ferner, Elke; Juen, Michael; Kreutz, Christoph; Wöhnert, Jens

    2017-04-01

    RNA aptamers are used in a wide range of biotechnological or biomedical applications. In many cases the high resolution structures of these aptamers in their ligand-complexes have revealed fundamental aspects of RNA folding and RNA small molecule interactions. Fluorescent RNA-ligand complexes in particular find applications as optical sensors or as endogenous fluorescent tags for RNA tracking in vivo. Structures of RNA aptamers and aptamer ligand complexes constitute the starting point for rational function directed optimization approaches. Here, we present the NMR resonance assignment of an RNA aptamer binding to the fluorescent ligand tetramethylrhodamine (TMR) in complex with the ligand 5-carboxy-tetramethylrhodamine (5-TAMRA) as a starting point for a high-resolution structure determination using NMR spectroscopy in solution.

  9. Synthesis, characterization and luminescent properties of new highly luminescent organic ligand and complexes of trivalent rare earth.

    PubMed

    Xi, Peng; Gu, XiaoHua; Chen, CaoFeng; He, YuXian; Huang, XiangAn

    2007-03-01

    A novel ligand with two carboxylic groups has been synthesized. The composition and structure of the ligand were characterized by IR, (1)H NMR and MS spectrometry. The highly luminescent intensity complexes were prepared with the ligand and phen. The IR, solid state (13)C NMR and fluorescent spectra of the complex were studied. IR absorption spectra indicate that the ligand is coordinated to the Eu(3+) ion, and chemical bonds are formed between Eu(3+) ion and nitrogen atoms of phen. The fluorescent spectra illustrate that the complex has an excellent luminescence, indicating the ligand favors energy transfer to the emitting energy level of Eu(3+). The influences of pH and reaction solvent on the fluorescence intensity of the complex were also discussed.

  10. New ruthenium nitrosyl pincer complexes bearing an O2 ligand. Mono-oxygen transfer.

    PubMed

    Fogler, Eran; Efremenko, Irena; Gargir, Moti; Leitus, Gregory; Diskin-Posner, Yael; Ben-David, Yehoshoa; Martin, Jan M L; Milstein, David

    2015-03-02

    We report on Ru((II))(μ(2)-O2) nitrosyl pincer complexes that can return to their original Ru(0) state by reaction with mono-oxygen scavengers. Potential intermediates were calculated by density functional theory (DFT) and a mechanism is proposed, revealing a new type of metal-ligand cooperation consisting of activation of the O2 moiety by both the metal center and the NO ligand. Reaction of the Ru(0) nitrosyl complex 1 with O2 quantitatively yielded the crystallographically characterized Ru((II)) (μ(2)-O2) nitrosyl complex 2. Reaction of 2 with the mono-oxygen scavengers phosphines or CO gave the Ru(0) complex 1 and phosphine oxides, or the carbonyl complex 3 (1 trapped by CO) and CO2, respectively. Reaction of 2 with 1 equiv of phosphine at room temperature or -40 °C resulted in immediate formation of half an equivalent of 1 and 1 equiv of phosphine oxide, while half an equivalent of 2 remained unchanged. Overnight reaction at room temperature of 2 with excess CO (≥3 equiv) resulted in 3 and CO2 gas as the only products. Reaction of 1 with 1 equiv of mono-oxygen source (dioxirane) at -78 °C yielded the Ru((II))(μ(2)-O2) complex 2. Similarly, reaction of the Ru(0) dearomatized complex 4 with O2 led to the crystallographicaly characterized Ru((II))(μ(2)-O2) complex 5. Further reaction of 5 with mono-oxygen scavengers (phosphines or CO) led to the Ru(0) complex 4 and phosphine oxides or complex 6 (4 trapped by CO) and CO2. When instead only 1 equiv of 5 was reacted with 1 equiv of phosphine at room temperature, immediate formation of half an equivalent of 4 and 1 equiv of phosphine oxide took place, while half an equivalent of 5 remained unchanged. When 5 reacted with an excess of CO (≥3 equiv), complex 6 and CO2 gas were the only products obtained. DFT studies indicate a new mode of metal-ligand cooperation involving the nitrosyl ligand in the oxygen transfer process.

  11. Synthesis of vanadium(V) hydrazido complexes with tris(2-hydroxyphenyl)amine ligands.

    PubMed

    Moriuchi, Toshiyuki; Ikeuchi, Kousuke; Hirao, Toshikazu

    2013-09-07

    The reaction of the oxidovanadium(V) complexes with N,N-dimethylhydrazine was demonstrated to afford the corresponding vanadium(V) dimethylhydrazido complexes. The substituent at the 3-position of the tris(2-hydroxyphenyl)amine ligand was found to influence the electronic environment of the vanadium center. The crystal structure of the non-substituted vanadium(V) dimethylhydrazido complex exhibited a distorted trigonal bipyramidal geometry with phenolate oxygen atoms in equatorial positions and the near-linear V(1)-N(2)-N(3) angle. The vanadium(V) diphenylhydrazido complexes could be obtained by the reaction of the oxidovanadium(V) complexes with N,N-diphenylhydrazine. A distorted trigonal bipyramidal geometry with phenolate oxygen atoms in equatorial positions was also observed in the crystal structure of the non-substituted vanadium(V) diphenylhydrazido complex.

  12. Synthesis and reactivity of palladium(II) fluoride complexes containing nitrogen-donor ligands.

    PubMed

    Ball, Nicholas D; Kampf, Jeff W; Sanford, Melanie S

    2010-01-14

    This article describes the synthesis, characterization, and reactivity of palladium(II) fluoride complexes containing sp(2) and sp(3) nitrogen-containing supporting ligands. Both cis and trans complexes of general structure (N)(N')Pd(II)(R)(F) (R = Ar or CH(3)) as well as cis-(N)(2)Pd(II)(F)(2) are reported. Crystallographic characterization of these molecules has allowed structural comparisons to related phosphine-ligated species. Furthermore, these studies have revealed that nitrogen-donor ligands support some of the longest and the shortest Pd-F bonds reported to date. The thermal decomposition of (N)(N')Pd(II)(R)(F) has also been examined, and no products of C-F bond-forming reductive elimination were obtained in any case.

  13. Unique behaviour of dinitrogen-bridged dimolybdenum complexes bearing pincer ligand towards catalytic formation of ammonia

    PubMed Central

    Tanaka, Hiromasa; Arashiba, Kazuya; Kuriyama, Shogo; Sasada, Akira; Nakajima, Kazunari; Yoshizawa, Kazunari; Nishibayashi, Yoshiaki

    2014-01-01

    It is vital to design effective nitrogen fixation systems that operate under mild conditions, and to this end we recently reported an example of the catalytic formation of ammonia using a dinitrogen-bridged dimolybdenum complex bearing a pincer ligand, where up to twenty three equivalents of ammonia were produced based on the catalyst. Here we study the origin of the catalytic behaviour of the dinitrogen-bridged dimolybdenum complex bearing the pincer ligand with density functional theory calculations, based on stoichiometric and catalytic formation of ammonia from molecular dinitrogen under ambient conditions. Comparison of di- and mono-molybdenum systems shows that the dinitrogen-bridged dimolybdenum core structure plays a critical role in the protonation of the coordinated molecular dinitrogen in the catalytic cycle. PMID:24769530

  14. [Energetics of complex formation of the DNA hairpin structure d(GCGAAGC) with aromatic ligands].

    PubMed

    Kostiukov, V V

    2011-01-01

    The energy contributions of various physical interactions to the total Gibbs energy of complex formation of the biologically important DNA hairpin d(GCGAAGC) with aromatic antitumor antibiotics daunomycin and novantron and the mutagens ethidium and proflavine have been calculated. It has been shown that the relatively small value of the total energy of binding of the ligands to the hairpin is the sum of components great in absolute value and different in sign. The contributions of van der Waals interactions and both intra- and intermolecular hydrogen bonds and bonds with aqueous environment have been studied. According to the calculations, the hydrophobic and van der Waals components are energetically favorable in complex formation of the ligands with the DNA pairpin d(GCGAAGC), whereas the electrostatic (with consideration of hydrogen bonds) and entropic components are unfavorable.

  15. Communication: Free energy of ligand-receptor systems forming multimeric complexes

    NASA Astrophysics Data System (ADS)

    Di Michele, Lorenzo; Bachmann, Stephan J.; Parolini, Lucia; Mognetti, Bortolo M.

    2016-04-01

    Ligand-receptor interactions are ubiquitous in biology and have become popular in materials in view of their applications to programmable self-assembly. Although complex functionalities often emerge from the simultaneous interaction of more than just two linker molecules, state of the art theoretical frameworks enable the calculation of the free energy only in systems featuring one-to-one ligand/receptor binding. In this Communication, we derive a general formula to calculate the free energy of systems featuring simultaneous direct interaction between an arbitrary number of linkers. To exemplify the potential and generality of our approach, we apply it to the systems recently introduced by Parolini et al. [ACS Nano 10, 2392 (2016)] and Halverson and Tkachenko [J. Chem. Phys. 144, 094903 (2016)], both featuring functionalized Brownian particles interacting via three-linker complexes.

  16. Communication: Free energy of ligand-receptor systems forming multimeric complexes.

    PubMed

    Di Michele, Lorenzo; Bachmann, Stephan J; Parolini, Lucia; Mognetti, Bortolo M

    2016-04-28

    Ligand-receptor interactions are ubiquitous in biology and have become popular in materials in view of their applications to programmable self-assembly. Although complex functionalities often emerge from the simultaneous interaction of more than just two linker molecules, state of the art theoretical frameworks enable the calculation of the free energy only in systems featuring one-to-one ligand/receptor binding. In this Communication, we derive a general formula to calculate the free energy of systems featuring simultaneous direct interaction between an arbitrary number of linkers. To exemplify the potential and generality of our approach, we apply it to the systems recently introduced by Parolini et al. [ACS Nano 10, 2392 (2016)] and Halverson and Tkachenko [J. Chem. Phys. 144, 094903 (2016)], both featuring functionalized Brownian particles interacting via three-linker complexes.

  17. Synthesis and luminescence properties of lanthanide complexes with a new tripodal ligand featuring N-thenylsalicylamide arms.

    PubMed

    Song, Xue-Qin; Zheng, Qing-Fang; Wang, Li; Liu, Wei-Sheng

    2012-01-01

    To explore the relationship between the structure of the ligands and the luminescent properties of the lanthanide complexes, luminescent lanthanide complexes of a new tripodal ligand, featuring N-thenylsalicylamide arms, were synthesized and characterized by elemental analysis, IR and TGA measurements. Photophysical properties of the complexes were studied by means of UV - visible absorption and steady-state luminescence spectroscopy. The results of UV - vis spectra indicate that metal binding does not disturb the electronic structure of the ligand. Excited-state luminescence lifetimes and quantum yields of the complexes were determined. The photoluminescence analysis suggested that there is an efficient ligand - Ln(III) energy transfer for the Tb(III) complex, and the ligand is an efficient 'antenna' for Tb(III). From a more general perspective, the results demonstrated the potential application of the lanthanide complex as luminescent materials in material chemistry.

  18. New Ru(II) complexes for dual photoreactivity: ligand exchange and (1)O2 generation.

    PubMed

    Knoll, Jessica D; Albani, Bryan A; Turro, Claudia

    2015-08-18

    Uncovering the factors that govern the electronic structure of Ru(II)-polypyridyl complexes is critical in designing new compounds for desired photochemical reactions, and strategies to tune excited states for ligand dissociation and (1)O2 production are discussed herein. The generally accepted mechanism for photoinduced ligand dissociation proposes that population of the dissociative triplet ligand field ((3)LF) state proceeds through thermal population from the vibrationally cooled triplet metal-to-ligand charge transfer ((3)MLCT) state; however, temperature-dependent emission spectroscopy provides varied activation energies using the emission and ligand exchange quantum yields for [Ru(bpy)2(L)2](2+) (bpy = 2,2'-bipyridine; L = CH3CN or py). This suggests that population of the (3)LF state proceeds from the vibrationally excited (3)MLCT state. Because the quantum yield of ligand dissociation for nitriles is much more efficient than that for py, steric bulk was introduced into the ligand set to distort the pseudo-octahedral geometry and lower the energy of the (3)LF state. The py dissociation quantum yield with 500 nm irradiation in a series of [Ru(tpy)(NN)(py)](2+) complexes (tpy = 2,2':6',2″-terpyridine; NN = bpy, 6,6'-dimethyl-2,2'-bipyridine (Me2bpy), 2,2'-biquinoline (biq)) increases by 2-3 orders of magnitude with the sterically bulky Me2bpy and biq ligands relative to bpy. Ultrafast transient absorption spectroscopy reveals population of the (3)LF state within 3-7 ps when NN is bulky, and density functional theory calculations support stabilized (3)LF states. Dual activity via ligand dissociation and (1)O2 production can be achieved by careful selection of the ligand set to tune the excited-state dynamics. Incorporation of an extended π system in Ru(II) complexes such as [Ru(bpy)(dppn)(CH3CN)2](2+) (dppn = benzo[i]dipyrido[3,2-a:2',3'-c]phenazine) and [Ru(tpy)(Me2dppn)(py)](2+) (Me2dppn = 3,6-dimethylbenzo[i]dipyrido[3,2-a:2',3'-c]phenazine) introduces

  19. New Ru(II) Complexes for Dual Photoreactivity: Ligand Exchange and 1O2 Generation

    PubMed Central

    Knoll, Jessica D.; Albani, Bryan A.; Turro, Claudia

    2016-01-01

    CONSPECTUS Uncovering the factors that govern the electronic structure of Ru(II)–polypyridyl complexes is critical in designing new compounds for desired photochemical reactions, and strategies to tune excited states for ligand dissociation and 1O2 production are discussed herein. The generally accepted mechanism for photoinduced ligand dissociation proposes that population of the dissociative triplet ligand field (3LF) state proceeds through thermal population from the vibrationally cooled triplet metal-to-ligand charge transfer (3MLCT) state; however, temperature-dependent emission spectroscopy provides varied activation energies using the emission and ligand exchange quantum yields for [Ru(bpy)2(L)2]2+ (bpy = 2,2′-bipyridine; L = CH3CN or py). This suggests that population of the 3LF state proceeds from the vibrationally excited 3MLCT state. Because the quantum yield of ligand dissociation for nitriles is much more efficient than that for py, steric bulk was introduced into the ligand set to distort the pseudo-octahedral geometry and lower the energy of the 3LF state. The py dissociation quantum yield with 500 nm irradiation in a series of [Ru(tpy)(NN)(py)]2+ complexes (tpy = 2,2′:6′,2″-terpyridine; NN = bpy, 6,6′-dimethyl-2,2′-bipyridine (Me2bpy), 2,2′-biquinoline (biq)) increases by 2–3 orders of magnitude with the sterically bulky Me2bpy and biq ligands relative to bpy. Ultrafast transient absorption spectroscopy reveals population of the 3LF state within 3–7 ps when NN is bulky, and density functional theory calculations support stabilized 3LF states. Dual activity via ligand dissociation and 1O2 production can be achieved by careful selection of the ligand set to tune the excited-state dynamics. Incorporation of an extended π system in Ru(II) complexes such as [Ru(bpy)(dppn)(CH3CN)2]2+ (dppn = benzo[i]dipyrido[3,2-a:2′,3′-c]phenazine) and [Ru(tpy)(Me2dppn)(py)]2+ (Me2dppn = 3,6-dimethylbenzo[i]dipyrido[3,2-a:2′,3

  20. Step by Step Assembly of Polynuclear Lanthanide Complexes with a Phosphonated Bipyridine Ligand.

    PubMed

    Souri, Nabila; Tian, Pingping; Lecointre, Alexandre; Lemaire, Zoé; Chafaa, Salah; Strub, Jean-Marc; Cianférani, Sarah; Elhabiri, Mourad; Platas-Iglesias, Carlos; Charbonnière, Loïc J

    2016-12-19

    The synthesis of the octadentate ligand L (LH8 = ((([2,2'-bipyridine]-6,6'-diylbis(methylene))bis(azanetriyl))tetrakis(methylene))tetrakis(phosphonic acid)) is reported. The coordination of L with various lanthanide cations was monitored by absorption and luminescence spectrophotometric titration experiments (Ln = Tb, Yb), potentiometry (Ln = La, Eu, Lu), and mass spectrometry (Ln = Tb). It was found that L forms very stable mononuclear (LnL) species in aqueous solutions (log K = 19.80(5), 19.5(2), and 19.56(5) for La, Eu, and Lu, respectively) with no particular trend along the series. Spectroscopic data showed the Ln cations to be enclosed in the cavity formed by the octadentate ligand, thereby shielding the metal from interactions with water molecules in the first coordination sphere. When more than one equivalent of cations is added, the formation of polynuclear [(LnL)2Lnx] complexes (x = 1-3) can be observed, the presence of which could be confirmed by electrospray and MALDI mass spectrometry experiments. DFT modeling of the mononuclear (LnL) complexes indicated that the coordination of the cation in the cavity of the ligand results in a very asymmetric charge distribution, with a region of small negative electrostatic potential on the hemisphere composed of the chromophoric bipyridyl moiety and an electron-rich domain at the opposite hemisphere around the four phosphonate functions. DFT further showed that this polarization is most likely at the origin of the strong interactions between the (LnL) complexes and the incoming additional cations, leading to the formation of the polynuclear species. (1)H and (31)P NMR were used to probe the possible exchange of the lanthanide complexed in the cavity of the ligand in D2O, revealing no detectable exchange after 4 weeks at 80 °C and neutral pD, therefore pointing out an excellent kinetic inertness.

  1. Emissive bis-salicylaldiminato Schiff base ligands and their zinc(II) complexes: Synthesis, photophysical properties, mesomorphism and DFT studies

    NASA Astrophysics Data System (ADS)

    Paul, Manoj Kr.; Dilipkumar Singh, Y.; Bedamani Singh, N.; Sarkar, Utpal

    2015-02-01

    Bis-salicylaldiminato Schiff base ligands and their Zn(II) complexes derived from 2,3-Diaminomaleonitrile (DAMN) were synthesized. Their molecular structures, photophysical properties and mesogenic behaviors were investigated. The ligands and their Zn(II) complexes were characterized by using elemental analysis, FT-IR, 1H NMR and molar conductivity measurements. Photophysical properties of ligands and their Zn(II) complexes were investigated in different polar solvents by using UV-visible and fluorescence spectroscopic studies. Ligands emit green light whereas complexes emit orange light upon irradiation with UV-visible light. The liquid crystalline phases of ligands and their Zn(II) complexes were characterized by polarizing optical microscopy and differential scanning calorimetry. The ligand having longer 4-n-octadecyloxy chain (n = 18) displays columnar phase whereas the lower homologues (n = 16, 12) did not show mesophase. The Zn(II) complexes having 4-n-octadecyloxy end chain display smectic B like phase whereas other lower homologues are non mesogenic in nature. The thermal stability of the compounds were studied by using thermo gravimetric analysis. The density functional theory was carried out to obtain the stable molecular conformation, dipole moment, molecular orbitals and polarizability of the ligands and their Zn(II) complexes.

  2. Synthesis, structure, photophysical and catalytic properties of CuI-Iodide complexes of di-imine ligands

    NASA Astrophysics Data System (ADS)

    Mondal, Jahangir; Ghorai, Anupam; Singh, Sunil K.; Saha, Rajat; Patra, Goutam K.

    2016-03-01

    Two new multifunctional CuII based complexes [CuI(L1)] (1) and [Cu2(μ-I)2(L2)] (2) with bidentate N-N donor ligands L1 and imino-pyridyl ligand L2 have been synthesized and characterized by elemental analysis, IR, UV-Vis, NMR and single crystal X-ray crystallography. The bidentate di-imine ligand (L1) forms monomeric CuI complex (1) whereas the bis-bidentate di-imine ligand (L2) favours the formation of dimeric CuI complex (2) in association with two bridging iodides. Structural analysis reveals that in complex 1 each monomeric units are connected by π⋯π and C-H⋯π interactions to form 3D supramolecular structure whereas in complex 2 each molecules are connected by only π⋯π interactions to form 3D supramolecular structure. The photoluminescence properties of the complexes have been studied at room temperature. Theoretical analysis shows that HOMO is focused on the Cu and iodides while LUMO is focused on di-imine ligands and the luminescence behaviour arises due to metal to ligand charge transfer (MLCT) and halide to ligand charge transfer (XLCT). The complexes 1 and 2 are effective catalysts for the synthesis of 2-substituted benzoxazoles.

  3. Tuning tetranuclear manganese-oxo core electronic properties: adamantane-shaped complexes synthesized by ligand exchange.

    PubMed

    Dubé, Christopher E; Mukhopadhyay, Sumitra; Bonitatebus, Peter J; Staples, Richard J; Armstrong, William H

    2005-07-11

    A series of adamantane-shaped [Mn4O6]4+ aggregates has been prepared. Ligand substitution reactions of [Mn4O6(bpea)4](ClO4)4 (1) with tridentate amine and iminodicarboxylate ligands in acetonitrile affords derivative clusters [Mn4O6(tacn)4](ClO4)4 (4), [Mn4O6(bpea)2(dien)2](ClO4)4)(5), [Mn4O6(Medien)4](ClO4)4 (6), [Mn4O6(tach)4](ClO4)4 (7), [Mn4O6(bpea)2(me-ida)2] (8), [Mn4O6(bpea)2(bz-ida)2] (9), [Mn4O6(bpea)2((t)bu-ida)2] (10), and [Mn4O6(bpea)2((c)pent-ida)2] (11) generally on the order of 10 min with retention of core nuclearity and oxidation state. Of these complexes, only 4 had been synthesized previously. Characterization of two members of this series by X-ray crystallography reveals that compound 7 crystallizes as [Mn4O6(tach)4](ClO4)4 x 3CH3CN x 4.5H2O in the cubic space group Fmm and compound 11 crystallizes as [Mn4O6(bpea)2((c)pent-ida)2].7MeOH in the monoclinic space group C2/c. The unique substitution chemistry of 1 with iminodicarboxylate ligands afforded asymmetrically ligated complexes 8-11, the mixed ligand nature of which is most likely unachievable using self-assembly synthetic methods. A special feature of the iminodicarboxylate ligand complexes 8-11 is the substantial site differentiation of the oxo bridges of the [Mn4O6]4+ cores. While there are four site-differentiated oxo bridges in 8, the solution structural symmetry of 8H+ reveals essentially a single protonation isomer, in contrast to the observation of two protonation isomers for 1H+, one for each of the site-differentiated oxo bridges in 1. Magnetic susceptibility measurements on 4, 7, 8, and 9 indicate that each complex is overall ferromagnetically coupled, and variable-field magnetization data for 7 and 9 are consistent with an S = 6 ground state. Electrochemical analysis demonstrates that ligand substitution of bpea affords accessibility to the Mn(V)(Mn(IV))3 oxidation state.

  4. New Ru(II) Complex for Dual Activity: Photoinduced Ligand Release and (1)O2 Production.

    PubMed

    Loftus, Lauren M; White, Jessica K; Albani, Bryan A; Kohler, Lars; Kodanko, Jeremy J; Thummel, Randolph P; Dunbar, Kim R; Turro, Claudia

    2016-03-07

    The new complex [Ru(pydppn)(biq)(py)](2+) (1) undergoes both py photodissociation in CH3CN with Φ500 =0.0070(4) and (1)O2 production with ΦΔ =0.75(7) in CH3 OH from a long-lived (3) ππ* state centered on the pydppn ligand (pydppn=3-(pyrid-2-yl)benzo[i]dipyrido[3,2-a:2',3'-c]phenazine; biq = 2,2'-biquinoline; py=pyridine). This represents an order of magnitude decrease in the Φ500 compared to the previously reported model compound [Ru(tpy)(biq)(py)](2+) (3) (tpy=2,2':6',2''-terpyridine) that undergoes only ligand exchange. The effect on the quantum yields by the addition of a second deactivation pathway through the low-lying (3) ππ* state necessary for dual reactivity was investigated using ultrafast and nanosecond transient absorption spectroscopy, revealing a significantly shorter (3) MLCT lifetime in 1 relative to that of the model complex 3. Due to the structural similarities between the two compounds, the lower values of Φ500 and ΦΔ compared to that of [Ru(pydppn)(bpy)(py)](2+) (2) (bpy=2,2'-bipyridine) are attributed to a competitive excited state population between the (3) LF states involved in ligand dissociation and the long-lived (3) ππ* state in 1. Complex 1 represents a model compound for dual activity that may be applied to photochemotherapy.

  5. Mechanistic insights into the chemistry of RuII complexes containing Cl and DMSO ligands.

    PubMed

    Mola, Joaquim; Romero, Isabel; Rodríguez, Montserrat; Bozoglian, Fernando; Poater, Albert; Solà, Miquel; Parella, Teodor; Benet-Buchholz, Jordi; Fontrodona, Xavier; Llobet, Antoni

    2007-12-10

    Two new isomers trans,mer-[RuIICl2(bpea)(DMSO)], 2a, and cis,fac-[RuIICl2(bpea)(DMSO)], 2b, (bpea = N,N-bis(2-pyridylmethyl)ethylamine), as well as the bis-DMSO complex trans,fac-[RuIICl(bpea)(DMSO)2]Cl, 3, have been synthesized and characterized by cyclic voltammetry and UV-vis and 1D and 2D NMR spectroscopy in solution. Their solid-state structure has also been solved by means of single-crystal X-ray diffraction analysis. All the three complexes display a ruthenium metal center possessing a distorted-octahedral type of coordination, where the bpea ligand is coordinated in a meridional fashion in 2a and in a facial fashion in 2b and 3. The isomer 2a is the kinetically favored and thus can be thermally converted into 2b, that is the thermodynamically favored one. A thorough kinetic analysis strongly points toward a dissociative mechanism, where in the first step a chloro ligand is removed from the metal coordination sphere, followed by a geometric rearrangement before the chloro ligand coordinates again, generating the final complex. DFT calculations agree with the experimental data for the proposed mechanism and allow us to further characterize the mechanism of the 2a --> 2b rearrangement by obtaining the intermediates and transition state.

  6. A ligand field model for MCD spectra of biological cupric complexes.

    PubMed Central

    Landrum, G A; Ekberg, C A; Whittaker, J W

    1995-01-01

    A ligand field calculation of magnetic circular dichroism (MCD) spectra is described that provides new insights into the information contained in electronic spectra of copper sites in metalloenzymes and synthetic analogs. The ligand field model uses metal-centered p- and f-orbitals to model sigma, pi LMCT mixing mechanism for intensity, allowing the basic features of optical absorption, MCD, and electron paramagnetic resonance spectra to be simultaneously computed from a single set of parameters and the crystallographically determined ligand coordinates. We have used the model to predict changes in spectra resulting from the transformation of electronic wavefunctions under systematic variation in geometry in pentacoordinate ML5 complexes. The effectiveness of the calculation is demonstrated for two synthetic copper model compounds and a galactose oxidase enzyme complex representing limiting coordination geometries. This analysis permits immediate recognition of characteristic patterns of MCD intensity and correlation with geometry. A complementarity principle between MCD and CD spectra of transition metal complexes is discussed. Images Scheme 3 PMID:8527681

  7. Synthesis, structural and electrochemical properties of nickel(II) sulfamethazine complex with diethylenetriamine ligand.

    PubMed

    Bulut, İclal; Öztürk, Filiz; Bulut, Ahmet

    2015-03-05

    In this study, [Ni(dien)2]⋅smz2⋅(Hsmz: sulfamethazine and dien: diethylenetriamine) complex has been synthesized and its crystal structure has been determined by X-ray diffraction technique. The title complex crystallizes in orthorhombic system with space group Pbnb [a=8.556(5), b=16.228(5), c=28.209(5)Å, V=3917(3)Å(3) and Z=4]. The nickel(II) ion has distorted octahedral coordination geometry. The metal atom, which rides on a crystallographic center of symmetry, is coordinated by six nitrogen atoms of two dien ligands to form a discrete [Ni(dien)2](2+) unit, which captures two sulfamethazine ions, each through intermolecular hydrogen bonds. The powder EPR spectrum of Cu(2+) doped Ni(II) complex was recorded at room temperature. The vibrational investigation has been carried out by considering the characteristic bands related to the functional groups of the complex. The electrochemical behavior of Ni(II) ions in the presence and in the absence of smz and dien were studied by square wave and cyclic voltammetry. A well-defined irreversible peak at -1.112V different from those of the Ni(II)-smz (-0.876V) and the Ni(II)-dien complex (-1.064V) was observed in the solution containing Ni(II) ions, which was attributed to the formation of the new mixed ligand complex of Ni(II) with smz and dien.

  8. Segregation of receptor-ligand complexes in cell adhesion zones: phase diagrams and the role of thermal membrane roughness

    NASA Astrophysics Data System (ADS)

    Różycki, B.; Lipowsky, R.; Weikl, T. R.

    2010-09-01

    The adhesion zone of immune cells, the 'immunological synapse', exhibits characteristic domains of receptor-ligand complexes. The domain formation is probably caused by a length difference of the receptor-ligand complexes, and has been investigated in experiments in which T cells adhere to supported membranes with anchored ligands. For supported membranes with two types of anchored ligands, MHCp and ICAM1, which bind to the T-cell receptor (TCR) and the receptor LFA1 in the cell membrane, the coexistence of domains of the TCR-MHCp and LFA1-ICAM1 complexes in the cell adhesion zone has been observed for a wide range of ligand concentrations and affinities. For supported membranes with long and short ligands that bind to the same cell receptor CD2, in contrast, domain coexistence has been observed for a quite narrow ratio of ligand concentrations. In this paper, we determine detailed phase diagrams for cells adhering to supported membranes with a statistical-physical model of cell adhesion. We find a characteristic difference between the adhesion scenarios in which two types of ligands in a supported membrane bind (i) to the same cell receptor or (ii) to two different cell receptors, which helps us to explain the experimental observations. Our phase diagrams fully include thermal shape fluctuations of the cell membranes on nanometer scales, which lead to a critical point for the domain formation and to a cooperative binding of the receptors and ligands.

  9. Hybrid NS ligands supported Cu(I)/(II) complexes for azide-alkyne cycloaddition reactions.

    PubMed

    Bai, Shi-Qiang; Jiang, Lu; Zuo, Jing-Lin; Hor, T S Andy

    2013-08-21

    Three copper complexes of nitrogen-sulfur donor ligands, [CuBr₂(L1)] (1), [CuCl₂(L2)₂] (2) and [Cu₂I₂(L3)]n (3) (L1 = bis(2-cyclohexylsulfanylethyl)amine, L2 = 2-(benzylsulfanylmethyl)pyridine and L3 = 2-(4-pyridylsulfanylmethyl)pyridine), have been synthesized and characterized by single-crystal X-ray diffraction (XRD), powder XRD and TGA analysis. Complexes 1 and 2 are mononuclear Cu(II) complexes and are EPR active with distorted square-pyramidal and octahedral geometry, respectively. Complex 3 is a two-dimensional tetrahedral Cu(I) coordination polymer with 16- and 20-membered metallocycles. These complexes show good catalytic activities for one-pot azide-alkyne cycloaddition reactions in CH₃OH-H₂O.

  10. Chemical consequences of pyrazole orientation in Ru(II) complexes of unsymmetric quinoline-pyrazole ligands.

    PubMed

    Hedberg Wallenstein, Joachim; Fredin, Lisa A; Jarenmark, Martin; Abrahamsson, Maria; Persson, Petter

    2016-08-07

    A series of homoleptic Ru(II) complexes including the tris-bidentate complexes of a new bidentate ligand 8-(1-pyrazol)-quinoline (Q1Pz) and bidentate 8-(3-pyrazol)-quinoline (Q3PzH), as well as the bis-tridentate complex of bis(quinolinyl)-1,3-pyrazole (DQPz) was studied. Together these complexes explore the orientation of the pyrazole relative to the quinoline. By examining the complexes structurally, photophysically, photochemically, electrochemically, and computationally by DFT and TD-DFT, it is shown that the pyrazole orientation has a significant influence on key properties. In particular, its orientation has noticeable effects on oxidation and reduction potentials, photostability and proton sensitivity, indicating that [Ru(Q3PzH)3](2+) is a particularly good local environment acidity-probe candidate.

  11. Preparation and Structural Properties of InIII–H Complexes

    PubMed Central

    Sickerman, Nathaniel S.; Henry, Renée M.; Ziller, Joseph W.

    2013-01-01

    The use of the tripodal ligands tris[(N'-tert-butylureaylato)-N-ethyl]aminato ([H3buea]3−) and the sulfonamide-based N,N',N"-[2,2',2"-nitrilotris(ethane-2,1-diyl)]tris(2,4,6-trimethylbenzene-sulfonamidato) ([MST]3−) has led to the synthesis of two structurally distinct In(III)–OH complexes. The first example of a five-coordinate indium(III) complex with a terminal hydroxide ligand, K[InIIIH3buea(OH)], was prepared by addition of In(OAc)3 and water to a deprotonated solution of H6buea. X-ray diffraction analysis, as well as FTIR and 1H NMR spectroscopic methods, provided evidence for the formation of a monomeric In(III)–OH complex. The complex contains an intramolecular hydrogen bonding (H-bonding) network involving the In(III)–OH unit and [H3buea]3− ligand, which aided in isolation of the complex. Isotope labeling studies verified the source of the hydroxo ligand as water. Treatment of the [InIIIMST] complex with a mixture of 15-crown-5 ether and NaOH led to isolation of the complex [15-crown-5⊃NaI-(μ-OH)-InIIIMST], whose solid-state structure was confirmed using X-ray diffraction methods. Nuclear magnetic resonance studies on this complex suggest it retains its heterobimetallic structure in solution. PMID:25309019

  12. A multi-protein receptor-ligand complex underlies combinatorial dendrite guidance choices in C. elegans

    PubMed Central

    Zou, Wei; Shen, Ao; Dong, Xintong; Tugizova, Madina; Xiang, Yang K; Shen, Kang

    2016-01-01

    Ligand receptor interactions instruct axon guidance during development. How dendrites are guided to specific targets is less understood. The C. elegans PVD sensory neuron innervates muscle-skin interface with its elaborate dendritic branches. Here, we found that LECT-2, the ortholog of leukocyte cell-derived chemotaxin-2 (LECT2), is secreted from the muscles and required for muscle innervation by PVD. Mosaic analyses showed that LECT-2 acted locally to guide the growth of terminal branches. Ectopic expression of LECT-2 from seam cells is sufficient to redirect the PVD dendrites onto seam cells. LECT-2 functions in a multi-protein receptor-ligand complex that also contains two transmembrane ligands on the skin, SAX-7/L1CAM and MNR-1, and the neuronal transmembrane receptor DMA-1. LECT-2 greatly enhances the binding between SAX-7, MNR-1 and DMA-1. The activation of DMA-1 strictly requires all three ligands, which establishes a combinatorial code to precisely target and pattern dendritic arbors. DOI: http://dx.doi.org/10.7554/eLife.18345.001 PMID:27705746

  13. Influence of the ligand alkyl chain length on the solubility, aqueous speciation, and kinetics of substitution reactions of water-soluble M3S4 (M = Mo, W) clusters bearing hydroxyalkyl diphosphines.

    PubMed

    Beltrán, Tomás F; Llusar, Rosa; Sokolov, Maxim; Basallote, Manuel G; Fernández-Trujillo, M Jesús; Pino-Chamorro, Jose Ángel

    2013-08-05

    Water-soluble [M3S4X3(dhbupe)3](+) diphosphino complexes (dhbupe = 1,2-bis(bis(hydroxybutyl)phosphino)ethane), 1(+) (M = Mo, X = Cl) and 2(+) (M = W; X = Br), have been synthesized by extending the procedure used for the preparation of their hydroxypropyl analogues by reaction of the M3S4(PPh3)3X4(solvent)x molecular clusters with the corresponding 1,2-bis(bishydroxyalkyl)diphosphine. The solid state structure of the [M3S4X3(dhbupe)3](+) cation possesses a C3 symmetry with a cuboidal M3S4 unit, and the outer positions are occupied by one halogen and two phosphorus atoms of the diphosphine ligand. At a basic pH, the halide ligands are substituted by hydroxo groups to afford the corresponding [Mo3S4(OH)3(dhbupe)3](+) (1OH(+)) and [W3S4(OH)3(dhbupe)3](+) (2OH(+)) complexes. This behavior is similar to that found in 1,2-bis(bis(hydroxymethyl)phosphino)ethane (dhmpe) complexes and differs from that observed for 1,2-bis(bis(hydroxypropyl)phosphino)ethane (dhprpe) derivatives. In the latter case, an alkylhydroxo group of the functionalized diphosphine replaces the chlorine ligands to afford Mo3S4 complexes in which the deprotonated dhprpe acts in a tridentate fashion. Detailed studies based on stopped-flow, (31)P{(1)H} NMR, and electrospray ionization mass spectrometry techniques have been carried out in order to understand the solution behavior and kinetics of interconversion between the different species formed in solution: 1 and 1OH(+) or 2 and 2OH(+). On the basis of the kinetic results, a mechanism with two parallel reaction pathways involving water and OH(-) attacks is proposed for the formal substitution of halides by hydroxo ligands. On the other hand, reaction of the hydroxo clusters with HX acids occurs with protonation of the OH(-) ligands followed by substitution of coordinated water by X(-).

  14. Flexible and Asymmetric Ligand in Constructing Coordinated Complexes: Synthesis, Crystal Structures and Fluorescent Characterization

    PubMed Central

    Chen, Peng; Lin, Jianhua

    2011-01-01

    Flexible and asymmetric ligand L [L = 1-((pyridin-3-yl)methyl)-1H-benzotriazole], is used as a basic backbone to construct complicated metal-organic frameworks. Two new polymers, namely, [Ag2(L)2(NO3)2]n (1) and [Ag(L)(ClO4)]n (2), were synthesized and characterized by X-ray structure analysis and fluorescent spectroscopy. The complex 1 gives an “S” type double helical conformation, whereas complex 2 exhibits a 1D zigzag configuration. Different anions affect the silver coordination geometry and crystal packing topology. PMID:21339976

  15. Unexpected formation of a novel pyridinium-containing catecholate ligand and its manganese(III) complex.

    PubMed

    Sheriff, Tippu S; Watkinson, Michael; Motevalli, Majid; Lesin, Jocelyne F

    2010-01-07

    Nucleophilic aromatic substitution of tetrachloro-o-benzoquinone by pyridine and reduction of the o-quinone to the catechol by hydroxylamine forms 1,2-dihydroxy-3,5,6-trichlorobenzene-4-pyridinium chloride. This compound reacts with manganese(II) acetate in air to form chlorobis(3,5,6-trichlorobenzene 4-pyridinium catecholate)manganese(III), which represents the first complex of this ligand class to be structurally characterized by X-ray diffraction; this complex is active in the catalytic reduction of dioxygen to hydrogen peroxide under ambient conditions and turnover frequencies (TOFs) >10,000 h(-1) can be obtained.

  16. New Iridium Complex Coordinated with Tetrathiafulvalene Substituted Triazole-pyridine Ligand: Synthesis, Photophysical and Electrochemical Properties.

    PubMed

    Niu, Zhi-Gang; Xie, Hui; He, Li-Rong; Li, Kai-Xiu; Xia, Qing; Wu, Dong-Min; Li, Gao-Nan

    2016-01-01

    A new iridium(III) complex based on the triazole-pyridine ligand with tetrathiafulvalene unit, [Ir(ppy)2(L)]PF6 (1), has been synthesized and structurally characterized. The absorption spectra, luminescent spectra and electrochemical behaviors of L and 1 have been investigated. Complex 1 is found to be emissive at room temperature with maxima at 481 and 510 nm. The broad and structured emission bands are suggested a mixing of 3LC (3π-π*) and 3CT (3MLCT) excited states. The influence of iridium ion coordination on the redox properties of the TTF has also been investigated by cyclic voltammetry.

  17. Arene-ruthenium(II) complexes with hydrophilic P-donor ligands: versatile catalysts in aqueous media.

    PubMed

    Crochet, Pascale; Cadierno, Victorio

    2014-09-07

    In the last few years there has been increasing interest in the use of water as a reaction medium for catalysis, and therefore in designing water-soluble transition-metal catalysts. Half-sandwich (η(6)-arene)-ruthenium(ii) complexes are a versatile and well-known family of ruthenium compounds that exhibit a rich catalytic and coordination chemistry. This Perspective article focuses on the catalytic applications in aqueous media of (η(6)-arene)-ruthenium(ii) complexes containing water-soluble phosphines, and related hydrophilic P-donor ligands.

  18. XRD, IR and XAFS studies of cobalt complexes having amino pyrazole dicarboxylate (APD) as ligand

    NASA Astrophysics Data System (ADS)

    Mishra, Ashutosh; Jain, Garima; Patil, H.

    2014-09-01

    X-ray absorption fine structure spectroscopic (XAFS) studies have been done on two cobalt complexes using APD (diethyl 4-amino-1-phenyl-1H-pyrazole-3,5 dicarboxylate) as ligand. The X-ray absorption spectra of the complexes have been recorded on beam line of synchrotron at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore (India). The X-ray diffraction of the samples has also been carried out. FTIR studies of two samples were also reported in the present communication.

  19. LigEvolutioner, a new strategy for modification and optimization of lead compounds in receptor/ligand complexes.

    PubMed

    Zhou, Peng; Tian, Feifei; Shang, Zhicai

    2008-12-01

    With the number of solved protein/ligand complex 3D structures growing up rapidly in recent years, lead modification and optimization based on the complex structure have received much attention in drug design community. In this study, we propose a novel method LigEvolutioner for the purpose of lead optimization in protein/ligand complexes. Using a fragment substitution strategy in the context of evolutionary algorithm, LigEvolutioner can analyze the complex structures automatically and derive several modification projects that could possibly improve the binding affinity of ligands. For instance, LigEvolutioner was employed to analyze and modify antigenic peptide ligand in human HLA-A*0201/peptide complexes and, as a result, a peptide analogue with potential high affinity was designed. The structure configuration of this modified peptide is consistent with crystal profile and antigen presenting theory. In addition, we have confirmed the validity of LigEvolutioner by systematically comparing it with several widely used scoring methods.

  20. Reversible dissociation and ligand-glutathione exchange reaction in binuclear cationic tetranitrosyl iron complex with penicillamine.

    PubMed

    Syrtsova, Lidia; Sanina, Natalia; Lyssenko, Konstantin; Kabachkov, Evgeniy; Psikha, Boris; Shkondina, Natal'ja; Pokidova, Olesia; Kotelnikov, Alexander; Aldoshin, Sergey

    2014-01-01

    This paper describes a comparative study of the decomposition of two nitrosyl iron complexes (NICs) with penicillamine thiolic ligands [Fe2(SC5H11NO2)2(NO)4]SO4 ·5H2O (I) and glutathione- (GSH-) ligands [Fe2(SC10H17N3O6)2(NO)4]SO4 ·2H2O (II), which spontaneously evolve to NO in aqueous medium. NO formation was measured by a sensor electrode and by spectrophotometric methods by measuring the formation of a hemoglobin- (Hb-) NO complex. The NO evolution reaction rate from (I)  k 1 = (4.6 ± 0.1)·10(-3) s(-1) and the elimination rate constant of the penicillamine ligand k 2 = (1.8 ± 0.2)·10(-3) s(-1) at 25°C in 0.05 M phosphate buffer,  pH 7.0, was calculated using kinetic modeling based on the experimental data. Both reactions are reversible. Spectrophotometry and mass-spectrometry methods have firmly shown that the penicillamine ligand is exchanged for GS(-) during decomposition of 1.5·10(-4) M (I) in the presence of 10(-3) M GSH, with 76% yield in 24 h. As has been established, such behaviour is caused by the resistance of (II) to decomposition due to the higher affinity of iron to GSH in the complex. The discovered reaction may impede S-glutathionylation of the essential enzyme systems in the presence of (I) and is important for metabolism of NIC, connected with its antitumor activity.

  1. Synthesis, Structures, and Reactions of Manganese Complexes Containing Diphosphine Ligands With Pendant Amines

    SciTech Connect

    Welch, Kevin D.; Dougherty, William G.; Kassel, W. S.; DuBois, Daniel L.; Bullock, R. Morris

    2010-10-01

    Addition of the pendant amine ligand PNRP (PNRP = Et2PCH2NRCH2PEt2; R = Me, Ph, n-Bu) to Mn(CO)5Br gives fac-Mn(PNRP)(CO)3Br. Photolysis of fac-Mn(PNRP)(CO)3Br with dppm [dppm = 1,2-bis(diphenylphosphino)methane] provides mixed bis(diphosphine) complexes, trans-Mn(PNRP)(dppm)(CO)(Br). Reaction of trans-Mn(PNRP)(dppm)(CO)(Br) with LiAlH4 leads to trans-Mn(PNRP)(dppm)(CO)(H). The crystal structure of trans-Mn(PNMeP)(dppm)(CO)(H) determined by x-ray diffraction shows an unusual distortion of the Mn-H towards one C-H of the dppm ligand, resulting in an H Mn CO angle of 155(1)° and C H • • • H Mn distance of 2.10(3) Å. Mn(P2PhN2Bn)(dppm)(CO)(H) [P2PhN2Bn = 1, 5-diphenyl-3,7-dibenzyl-1,5-diaza-3,7-diphosphacyclooctane] can be prepared in a similar manner; its structure has one chelate ring in a chair conformation and the second in a boat conformation. The boat-conformer ring directs the nitrogen of the ring towards the carbonyl ligand, and the N • • • C distance between one N of the P2PhN2Bn ligand and CO is 3.171(4) Å, indicating a weak interaction between the N of the pendant amine and the CO ligand. Reaction of NaBArF4 (ArF = = 3,5-bis(trifluoromethyl)phenyl) with Mn(P P)(dppm)(CO)(Br) produces the cations [Mn(P P)(dppm)(CO)]+. The crystal structure of [Mn(PNMeP)(dppm)(CO)][BArF4] shows two very weak agostic interactions between C-H bonds on the phenyl ring and the Mn. The cationic complexes [Mn(P P)(dppm)(CO)]+ react with H2 to form dihydrogen complexes [Mn(H2)(P P)(dppm)(CO)]+ (Keq = 1 - 90 atm-1 in fluorobenzene, for a series of different P P ligands). Similar equilibria with N2 produce [Mn(N2)(P P)(dppm)(CO)]+ (Keq generally 1-3.5 atm-1 in fluorobenzene). This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  2. Ab initio study of phosphorescent emitters based on rare-earth complexes with organic ligands for organic electroluminescent devices.

    PubMed

    Freidzon, Alexandra Ya; Scherbinin, Andrei V; Bagaturyants, Alexander A; Alfimov, Michael V

    2011-05-12

    An ab initio approach is developed for calculation of low-lying excited states in Ln(3+) complexes with organic ligands. The energies of the ground and excited states are calculated using the XMCQDPT2/CASSCF approximation; the 4f electrons of the Ln(3+) ion are included in the core, and the effects of the core electrons are described by scalar quasirelativistic 4f-in-core pseudopotentials. The geometries of the complexes in the ground and triplet excited states are fully optimized at the CASSCF level, and the resulting excited states have been found to be localized on one of the ligands. The efficiency of ligand-to-lanthanide energy transfer is assessed based on the relative energies of the triplet excited states localized on the organic ligands with respect to the receiving and emitting levels of the Ln(3+) ion. It is shown that ligand relaxation in the excited state should be properly taken into account in order to adequately describe energy transfer in the complexes. It is demonstrated that the efficiency of antenna ligands for lanthanide complexes used as phosphorescent emitters in organic light-emitting devices can be reasonably predicted using the procedure suggested in this work. Hence, the best antenna ligands can be selected in silico based on theoretical calculations of ligand-localized excited energy levels.

  3. Reactive N-protonated isocyanate species stabilized by bis(μ-hydroxo)divanadium(IV)-substituted polyoxometalate.

    PubMed

    Uehara, Kazuhiro; Fukaya, Keisuke; Mizuno, Noritaka

    2012-07-27

    O- or N-protonated? The bis(μ-hydroxo)divanadium(IV)-substituted γ-Keggin-type polyoxometalate (see picture, left) (TBA)(4)[γ-SiV(IV)(2)W(10)O(36)(μ-OH)(4)] (TBA = tetra(n-butyl)ammonium) was synthesized and characterized by X-ray crystallography. Its reaction with phenyl isocyanate gave (TBA)(4)[γ-SiV(IV)(2)W(10)O(38)(μ-OH)(2)(PhNHCO)(2)], which contains two N-protonated phenyl isocyanate species and catalyzes the cyclotrimerization of phenyl isocyanate.

  4. Nickel Complexes of a Binucleating Ligand Derived from an SCS Pincer

    SciTech Connect

    Peterson, Sonja M.; Helm, Monte L.; Appel, Aaron M.

    2015-01-01

    A binucleating ligand has been prepared that contains an SCS pincer and three oxygen donor ligands in a partial crown ether loop. To enable metalation with Ni0, a bromoarene precursor was used and resulted in the formation of a nickel-bromide complex in the SCS pincer. Reaction of the nickel complex with a lithium salt yielded a heterobimetallic complex with bromide bridging the two metal centers. The solid-state structures were determined for this heterobimetallic complex and the nickel-bromide precursor, and the two complexes were characterized electrochemically to determine the influence of coordinating the second metal. This research was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. MLH was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.

  5. First fluorescence spectroscopic investigation of Am(III) complexation with an organic carboxylic ligand, pyromellitic acid

    NASA Astrophysics Data System (ADS)

    Barkleit, Astrid; Geipel, Gerhard; Acker, Margret; Taut, Steffen; Bernhard, Gert

    2011-01-01

    For the first time Am(III) complexation with a small organic ligand could be identified and characterized with time-resolved laser-induced fluorescence spectroscopy (TRLFS) at room temperature and trace metal concentration. With pyromellitic acid (1,2,4,5-benzene-tetracarboxylic acid, BTC) as ligand spectroscopic characteristics for the Am-BTC complex system were determined at pH 5.0, an ionic strength of 0.1 M (NaClO 4) and room temperature. The fluorescence lifetimes were determined to be 23.2 ± 2.2 ns for Am 3+(aq) and 27.2 ± 1.2 ns for the Am-BTC 1:1 complex; the emission maximum for the 5D 1- 7F 1 transition is 691 nm for both species. The complex stability constant for the Am-BTC 1:1 complex was calculated to be log β110 = 5.42 ± 0.16.

  6. First fluorescence spectroscopic investigation of Am(III) complexation with an organic carboxylic ligand, pyromellitic acid.

    PubMed

    Barkleit, Astrid; Geipel, Gerhard; Acker, Margret; Taut, Steffen; Bernhard, Gert

    2011-01-01

    For the first time Am(III) complexation with a small organic ligand could be identified and characterized with time-resolved laser-induced fluorescence spectroscopy (TRLFS) at room temperature and trace metal concentration. With pyromellitic acid (1,2,4,5-benzene-tetracarboxylic acid, BTC) as ligand spectroscopic characteristics for the Am-BTC complex system were determined at pH 5.0, an ionic strength of 0.1 M (NaClO4) and room temperature. The fluorescence lifetimes were determined to be 23.2±2.2 ns for Am3+(aq) and 27.2±1.2 ns for the Am-BTC 1:1 complex; the emission maximum for the 5D1-(7)F1 transition is 691 nm for both species. The complex stability constant for the Am-BTC 1:1 complex was calculated to be logβ110=5.42±0.16.

  7. Multiple complexation of CO and related ligands to a main-group element

    NASA Astrophysics Data System (ADS)

    Braunschweig, Holger; Dewhurst, Rian D.; Hupp, Florian; Nutz, Marco; Radacki, Krzysztof; Tate, Christopher W.; Vargas, Alfredo; Ye, Qing

    2015-06-01

    The ability of an atom or molecular fragment to bind multiple carbon monoxide (CO) molecules to form multicarbonyl adducts is a fundamental trait of transition metals. Transition-metal carbonyl complexes are vital to industry, appear naturally in the active sites of a number of enzymes (such as hydrogenases), are promising therapeutic agents, and have even been observed in interstellar dust clouds. Despite the wealth of established transition-metal multicarbonyl complexes, no elements outside groups 4 to 12 of the periodic table have yet been shown to react directly with two or more CO units to form stable multicarbonyl adducts. Here we present the synthesis of a borylene dicarbonyl complex, the first multicarbonyl complex of a main-group element prepared using CO. The compound is additionally stable towards ambient air and moisture. The synthetic strategy used--liberation of a borylene ligand from a transition metal using donor ligands--is broadly applicable, leading to a number of unprecedented monovalent boron species with different Lewis basic groups. The similarity of these compounds to conventional transition-metal carbonyl complexes is demonstrated by photolytic liberation of CO and subsequent intramolecular carbon-carbon bond activation.

  8. Synthesis, structure and luminescence properties of lanthanide complex with a new tetrapodal ligand featuring salicylamide arms

    SciTech Connect

    Song Xueqin; Wen Xiaoguang; Liu Weisheng; Wang Daqi

    2010-01-15

    A new tetrapodal ligand 1,1,1-tetrakis{l_brace}[(2'-(2-furfurylaminoformyl))phenoxyl]methyl{r_brace}methane (L) has been prepared and their coordination chemistry with Ln{sup III} ions has been investigated. The structure of {l_brace}[Ln{sub 4}L{sub 3}(NO{sub 3}){sub 12}].H{sub 2}O{r_brace}{sub i}nfinity (Ln=Nd, Eu)] shows the binodal 4,3-connected three-dimensional interpenetration coordination polymers with topology of a (8{sup 6}){sub 3}(8{sup 3}){sub 4} notation. [DyL(NO{sub 3}){sub 3}(H{sub 2}O){sub 2}].0.5CH{sub 3}OH and [ErL(NO{sub 3}){sub 3}(H{sub 2}O) (CH{sub 3}OH)].CH{sub 3}COCH{sub 3} is a 1:1 mononuclear complex with interesting supramolecular features. The structure of [NdL(H{sub 2}O){sub 6}].3ClO{sub 4}.3H{sub 2}O is a 2:1 mononuclear complex which further self-assembled through hydrogen bond to form a three-dimensional supramolecular structures. The result presented here indicates that both subtle variation of the terminal group and counter anions can be applied in the modulation of the overall molecular structures of lanthanide complex of salicylamide derivatives due to the structure specialties of this type of ligand. The luminescence properties of the Eu{sup III} complex are also studied in detail. - Grapical Abstract: We present here a series of zero- to three-dimensional lanthanide coordination structures and luminescence properties of Eu(III) complex of a new tetrapodal ligand.

  9. Coordination chemistry and reactivity of zinc complexes supported by a phosphido pincer ligand.

    PubMed

    D'Auria, Ilaria; Lamberti, Marina; Mazzeo, Mina; Milione, Stefano; Roviello, Giuseppina; Pellecchia, Claudio

    2012-02-20

    The preparation and characterization of new Zn(II) complexes of the type [(PPP)ZnR] in which R = Et (1) or N(SiMe(3))(2) (2) and PPP is a tridentate monoanionic phosphido ligand (PPP-H = bis(2-diphenylphosphinophenyl)phosphine) are reported. Reaction of ZnEt(2) and Zn[N(SiMe(3))(2)](2) with one equivalent of proligand PPP-H produced the corresponding tetrahedral zinc ethyl (1) and zinc amido (2) complexes in high yield. Homoleptic (PPP)(2) Zn complex 3 was obtained by reaction of the precursors with two equivalents of the proligand. Structural characterization of 1-3 was achieved by multinuclear NMR spectroscopy ((1)H, (13)C, and (31)P) and X-ray crystallography (3). Variable-temperature (1)H and (31)P NMR studies highlighted marked flexibility of the phosphido pincer ligand in coordination at the metal center. A DFT calculation on the compounds provided theoretical support for this behavior. The activities of 1 and 2 toward the ring-opening polymerization of ε-caprolactone and of L- and rac-lactide were investigated, also in combination with an alcohol as external chain-transfer agent. Polyesters with controlled molecular parameters (M(n), end groups) and low polydispersities were obtained. A DFT study on ring-opening polymerization promoted by these complexes highlighted the importance of the coordinative flexibility of the ancillary ligand to promote monomer coordination at the reactive zinc center. Preliminary investigations showed the ability of these complexes to promote copolymerization of L-lactide and ε-caprolactone to achieve random copolymers whose microstructure reproduces the composition of the monomer feed.

  10. The Role of Ligand Topology in the Decomplexation of Luminescent Lanthanide Complexes by Dipicolinic Acid.

    PubMed

    Mian, Federica; Bottaro, Gregorio; Seraglia, Roberta; Cavazzini, Marco; Quici, Silvio; Armelao, Lidia

    2016-10-18

    In this study, we present the aqueous solution behavior of two luminescent lanthanide antenna complexes (Eu(3+) ⊂1, Dy(3+) ⊂9) with different ligand topologies in the presence of dipicolinic acid (DPA, pyridine-2,6-dicarboxylic acid). Macrocyclic (1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid, DO3A, 9) and acyclic (1,4,7-triazaheptane-1,1,7,7-tetraacetic acid, DTTA, 1) ligands have been selected to form a ratiometric pair in which Dy(3+) ⊂9 acts as a reference and Eu(3+) ⊂1 acts as a probe for the recognition of DPA. The pair of luminescent complexes in water reveals the capability to work as a DPA luminescent sensor. The change of emission intensity of Eu(3+) indicates the occurrence of a new sensitization path for the lanthanide cation through excitation of DPA. NMR evidence implies the presence of free 1 and mass spectrometry shows the formation of emitting [EuDPA2 ](-) as a result of a ligand exchange reaction.

  11. Effect of ionic strength on ligand exchange kinetics between a mononuclear ferric citrate complex and siderophore desferrioxamine B

    NASA Astrophysics Data System (ADS)

    Ito, Hiroaki; Fujii, Manabu; Masago, Yoshifumi; Waite, T. David; Omura, Tatsuo

    2015-04-01

    The effect of ionic strength (I) on the ligand exchange reaction between a mononuclear ferric citrate complex and the siderophore, desferrioxamine B (DFB), was examined in the NaCl concentration range of 0.01-0.5 M, particularly focusing on the kinetics and mechanism of ligand exchange under environmentally relevant conditions. Overall ligand exchange rate constants were determined by spectrophotometrically measuring the time course of ferrioxamine B formation at a water temperature of 25 °C, pH 8.0, and citrate/Fe molar ratios of 500-5000. The overall ligand exchange rate decreased by 2-11-fold (depending on the citrate/Fe molar ratios) as I increased from approximately 0.01 to 0.5 M. In particular, a relatively large decrease was observed at lower I (<0.1 M). A ligand exchange model describing the effect of I on the ligand exchange rate via disjunctive and adjunctive pathways was developed by considering the pseudo-equilibration of ferric citrate complexes and subsequent ferrioxamine formation on the basis of the Eigen-Wilkins metal-ligand complexation theory. The model and experimental data consistently suggest that the adjunctive pathway (i.e., direct association of DFB with ferric mono- and di-citrate complexes following dissociation of citrate from the parent complexes) dominates in ferrioxamine formation under the experimental conditions used. The model also predicts that the higher rate of ligand exchange at lower I is associated with the decrease in the ferric dicitrate complex stability because of the relatively high electrical repulsion between ferric monocitrate and free citrate at lower I (note that the reactivity of ferric dicitrate with DFB is smaller than that for the monocitrate complex). Overall, the findings of this study contribute to the understanding of the potential effect of I on ligand exchange kinetics in natural waters and provide fundamental knowledge on iron transformation and bioavailability.

  12. [Contribution of enthalpy to the energetics of complex formation of aromatic ligands with DNA].

    PubMed

    Kostiukov, V V; Khomutova, N M; Evstigneev, M P

    2011-01-01

    The energy contributions of electrostatic, van der Waals interactions, hydrogen bonds, and interactions of charge transfer type to the enthalpy of complex formation of the double-stand DNA with the antitumor antibiotics daunomycin, nogalamycin, and novantron, as well as the mutagens ethidium bromide and proflavine have been calculated. According to the calculations, the van der Waals component (except for nogalamycin) is energetically favorable during complex formation of the antibiotics with DNA, and the contributions of H bonds and electrostatic interactions are unfavorable, with the probability of charge transfer in the complexes being low. It has been shown that the relatively low value of the experimental enthalpy of binding is the sum of components greater in absolute value and different in the sign, which is the cause of large errors in estimating the total enthalpy of complex formation of aromatic ligands with DNA.

  13. Vanadium(iv and v) complexes of pyrazolone based ligands: Synthesis, structural characterization and catalytic applications.

    PubMed

    Maurya, Mannar R; Sarkar, Bithika; Avecilla, Fernando; Correia, Isabel

    2016-11-01

    The ONO donor ligands obtained from the condensation of 4-benzoyl-3-methyl-1-phenyl-2-pyrazoline-5-one (Hbp) with benzoylhydrazide (H2bp-bhz I), furoylhydrazide (H2bp-fah II), nicotinoylhydrazide (H2bp-nah III) and isonicotinoylhydrazide (H2bp-inh IV), upon treatment with [V(IV)O(acac)2], lead to the formation of [V(IV)O(bp-bhz)(H2O)] 1, [V(IV)O(bp-fah)(H2O)] 2, [V(IV)O(bp-nah)(H2O)] 3 and [V(IV)O(bp-inh)(H2O)] 4, respectively. At neutral pH the in situ generated aqueous K[H2V(V)O4] reacts with ligands I and II, forming potassium salts, K(H2O)2[V(V)O2(bp-bhz)] 5 and K(H2O)2[V(V)O2(bp-fah)] 6, while ligands III and IV give neutral complexes, [V(V)O2(Hbp-nah)] 9 and [V(V)O2(Hbp-inh)] 10, respectively. Acidification of aqueous solutions of 5 and 6 with HCl also gives neutral complexes [V(V)O2(Hbp-bhz)] 7 and [V(V)O2(Hbp-fah)] 8, respectively. Complexes 1-4, upon slow aerial oxidation in methanol, convert into monooxidovanadium(v) complexes, [V(V)O(bp-bhz)(OMe)] 11, [V(V)O(bp-fah)(OMe)] 12, [V(V)O(bp-nah)(OMe)] 13 and [V(V)O(bp-inh)(OMe)] 14, respectively. All complexes were characterized by various spectroscopic techniques like FT-IR, UV-visible, EPR (for complexes 1-4) and NMR ((1)H, (13)C and (51)V), elemental analysis, thermogravimetry and single crystal X-ray diffraction (for complexes 5-10 and 12). In the solid state, all complexes characterized by X-ray diffraction show the metal ion 5-coordinated in a distorted square pyramidal geometry. Complexes 11-14 were tested as catalysts for the one-pot three-component (ethylacetoacetate, benzaldehyde and ammonium acetate) dynamic covalent assembly, via Hantzsch reaction, using hydrogen peroxide as oxidant in solution and under solvent-free conditions. The complexes are also active catalysts for the oxidation of tetralin to tetralone with H2O2 as oxidant. The influence of the amounts of catalyst and oxidant, and solvent, temperature and time on the catalyzed reactions was investigated.

  14. Synthesis and luminescence properties of polymer-rare earth complexes containing salicylaldehyde-type bidentate Schiff base ligand.

    PubMed

    Zhang, Dandan; Gao, Baojiao; Li, Yanbin

    2017-01-24

    Using molecular design and polymer reactions, two types of bidentate Schiff base ligands, salicylaldehyde-aniline (SAN) and salicylaldehyde-cyclohexylamine (SCA), were synchronously synthesized and bonded onto the side chain of polysulfone (PSF), giving two bidentate Schiff base ligand-functionalized PSFs, PSF-SAN and PSF-SCA, referred to as macromolecular ligands. Following coordination reactions between the macromolecular ligands and Eu(III) and Tb(III) ions (the reaction occurred between the bonded ligands SAN or SCA and the lanthanide ion), two series of luminescent polymer-rare earth complexes, PSF-SAN-Eu(III) and PSF-SCA-Tb(III), were obtained. The two macromolecular ligands were fully characterized by Fourier transform infrared (FTIR), (1) H NMR and UV absorption spectroscopy, and the prepared complexes were also characterized by FTIR, UV absorption spectroscopy and thermo-gravity analysis. On this basis, the photoluminescence properties of these complexes and the relationships between their structure and luminescence were investigated in depth. The results show that the bonded bidentate Schiff base ligands, SAN and SCA, can effectively sensitize the fluorescence emission of Eu(III) and Tb(III) ions, respectively. PSF-SAN-Eu(III) series complexes, namely the binary complex PSF-(SAN)3 -Eu(III) and the ternary complex PSF-(SAN)3 -Eu(III)-(Phen)1 (Phen is the small-molecule ligand 1,10-phenanthroline), produce strong red luminescence, suggesting that the triplet state energy level of SAN is lower and well matched with the resonant energy level of the Eu(III) ion. By contrast, PSF-SAN-Eu(III) series complexes, namely the binary complex PSF-(SCA)3 -Tb(III) and the ternary complex PSF-(SCA)3 -Tb(III)-(Phen)1 , display strong green luminescence, suggesting that the triplet state energy level of SCA is higher and is well matched with the resonant energy level of Tb(III).

  15. A ligand-independent integrin β1 mechanosensory complex guides spindle orientation

    PubMed Central

    Petridou, Nicoletta I.; Skourides, Paris A.

    2016-01-01

    Control of spindle orientation is a fundamental process for embryonic development, morphogenesis and tissue homeostasis, while defects are associated with tumorigenesis and other diseases. Force sensing is one of the mechanisms through which division orientation is determined. Here we show that integrin β1 plays a critical role in this process, becoming activated at the lateral regions of the cell cortex in a ligand-independent manner. This activation is force dependent and polar, correlating with the spindle capture sites. Inhibition of integrin β1 activation on the cortex and disruption of its asymmetric distribution leads to spindle misorientation, even when cell adhesion is β1 independent. Examining downstream targets reveals that a cortical mechanosensory complex forms on active β1, and regulates spindle orientation irrespective of cell context. We propose that ligand-independent integrin β1 activation is a conserved mechanism that allows cell responses to external stimuli. PMID:26952307

  16. Synthesis and Reactivity of a Bio-inspired Dithiolene Ligand and its Mo Oxo Complex.

    PubMed

    Porcher, Jean-Philippe; Fogeron, Thibault; Gomez-Mingot, Maria; Chamoreau, Lise-Marie; Li, Yun; Fontecave, Marc

    2016-03-18

    An original synthesis of the fused pyranoquinoxaline dithiolene ligand qpdt(2-) is discussed in detail. The most intriguing step is the introduction of the dithiolene moiety by Pd-catalyzed carbon-sulfur coupling. The corresponding Mo(IV)O complex (Bu4N)2 [MoO(qpdt)2] (2) underwent reversible protonation in a strongly acidic medium and remained stable under anaerobic conditions. Besides, 2 was found to be very sensitive towards oxygen, as upon oxidation it formed a planar dithiin derivative. Moreover, the qpdt(2-) ligand in the presence of [MoCl4 (tBuNC)2] formed a tetracyclic structure. The products resulting from the unique reactivity of qpdt(2-) were characterized by X-ray diffraction, mass spectrometry, NMR spectroscopy, UV/Vis spectroscopy, and electrochemistry. Plausible mechanisms for the formation of these products are also proposed.

  17. Optoelectronic Properties of Color-Tunable Mixed Ligand-Based Light-Emitting Zinc Complexes

    NASA Astrophysics Data System (ADS)

    Singh, Devender; Bhagwan, Shri; Saini, Raman Kumar; Tanwar, Vijeta; Nishal, Vandna

    2016-10-01

    A series of mixed ligand-based zinc complexes (Zn1-Zn5); [(8-hydroxyquinolinato)(2-(2-hydroxyphenyl)benzimidazolato)zinc(II)] (Zn1), [(5-chloro-8-hydroxyquinolinato)(2-(2-hydroxyphenyl)benzimidazolato)zinc(II)] (Zn2), [(5,7-dichloro-8-hydroxyquinolinato)(2-(2-hydroxyphenyl)benzimidazolato)zinc(II)] (Zn3), [(2-methyl-8-hydroxyquinolinato)(2-(2-hydroxyphenyl)benzimidazolato)zinc(II)] (Zn4) and [(5,7-dimethyl-8-hydroxyquinolinato)(2-(2-hydroxyphenyl)benzimidazolato)zinc(II)] (Zn5) were synthesized and characterized. The photophysical properties of zinc complexes were examined by ultraviolet-visible absorption and photoluminescence emission spectroscopy. All prepared metal complexes produced intense luminescence on excitation with a UV light source. In this study, the color-tunable characteristics of metal complexes were investigated by introducing the electron-donating and electron-withdrawing groups on the 8-hydroxyquinoline ligand. The emission spectra of metal complexes showed emission wavelength at 500 nm for [ZnHBI(q)], 509 nm for [ZnHBI(Clq)], 504 nm for [Zn(HBI)(Cl2q)], 496 nm for [ZnHBI (Meq)] and 573 nm for [ZnHBI(Me2Q)] materials. A temperature-dependent PL spectrum was used to study the emission profile of zinc complex and observed that variation in the temperature altered the position and the intensity of emission peak. The synthesized metal complex also exhibited good thermal stability (>300°C). Photophysical characteristics of color-tunable light-emitting zinc complexes suggested that these materials could be efficiently used for emissive display device applications.

  18. Control of electronic and magnetic coupling via bridging ligand geometry in a bimetallic ytterbocene complex.

    PubMed

    Carlson, Christin N; Scott, Brian L; Martin, Richard L; Thompson, Joe D; Morris, David E; John, Kevin D

    2007-06-11

    The ligand 1-methyl-3,5-bis(2,2':6',2' '-terpyridin-4'-yl)benzene has been employed in the synthesis of a new bimetallic ytterbocene complex [(Cp*)2Yb](1-methyl-3,5-bis(2,2':6',2' '-terpyridin-4'-yl)benzene)[Yb(Cp*)2] (1) and the doubly oxidized congener [1]2+ in an attempt to determine the impact of the bridging ligand geometry on the magnetic/electronic properties as compared to the previously reported 1,4-analog [(Cp*)2Yb](1,4-di(terpyridyl)benzene)[Yb(Cp*)2] (2). Electrochemical, electronic, and magnetic data provide compelling evidence that the 1,3-geometry associated with the bridging ligand of 1 has done an effective job of inhibiting electronic communication between metal centers and magnetic coupling of spin carriers at room temperature as compared to 2. In fact, the physical data associated with 1 are quite similar to those reported for the monometallic analog (Cp*)2Yb(tpy) (3). In particular, the f-f profile of [1]2+ is nearly identical to that of [3]+ in its spectral features but with an almost exact doubling of the intensities. Further, the electronic coupling between metal centers as manifested in the potential separation between metal-based reduction waves has for the first time in these bimetallic ytterbocene complexes been found to go to zero for 1. Thus, the linkage isomerism at the phenyl coupling unit has induced a change in the ground-state electronic configuration from the singlet dianion-bridged (4f)13(pi*)2(4f)13 state found in 2 to the diradical-bridged (4f)13(piA*)1(piB*)1(4f)13 state in 1. This diradical formulation on the bridging ligand in 1 is supported by DFT calculations for the uncomplexed doubly reduced ligand that indicate the ground-state configuration is a singlet diradical state with the triplet-diradical state lying to slightly higher energy. Magnetic characterization of 1 is most consistent with the behavior previously observed for monometallic analogs such as 3, and there is no evidence of long-range magnetic ordering such

  19. Synthesis, Characterization, DNA Interaction, and Antitumor Activities of La (III) Complex with Schiff Base Ligand Derived from Kaempferol and Diethylenetriamine

    PubMed Central

    Wang, Qin; Huang, Yu; Zhang, Jin-Sheng; Yang, Xin-Bin

    2014-01-01

    A novel La (III) complex, [LaL(H2O)3]NO3·3H2O, with Schiff base ligand L derived from kaempferol and diethylenetriamine, has been synthesized and characterized by elemental analysis, IR, UV-visible, 1H NMR, thermogravimetric analysis, and molar conductance measurements. The fluorescence spectra, circular dichroism spectra, and viscosity measurements and gel electrophoresis experiments indicated that the ligand L and La (III) complex could bind to CT-DNA presumably via intercalative mode and the La (III) complex showed a stronger ability to bind and cleave DNA than the ligand L alone. The binding constants (Kb) were evaluated from fluorescence data and the values ranged from 0.454 to 0.659 × 105 L mol−1 and 1.71 to 17.3 × 105 L mol−1 for the ligand L and La (III) complex, respectively, in the temperature range of 298–310 K. It was also found that the fluorescence quenching mechanism of EB-DNA by ligand L and La (III) complex was a static quenching process. In comparison to free ligand L, La (III) complex exhibited enhanced cytotoxic activities against tested tumor cell lines HL-60 and HepG-2, which may correlate with the enhanced DNA binding and cleaving abilities of the La (III) complex. PMID:25371657

  20. Synthesis, crystal structure and luminescence properties of acenaphthene benzohydrazide based ligand and its zinc(II) complex

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Roy, Soumyabrata; Faizi, Md. Serajul Haque; Kumar, Santosh; Singh, Mantu Kumar; Kishor, Shyam; Peter, Sebastian C.; John, Rohith P.

    2017-01-01

    The complex compound of zinc(II) supported by (Z)-2-hydroxy-N‧-(1-oxoacenaphthylen-2(1H) ylidene)benzohydrazide ligand (H2L1) has been reported and discussed. The reaction of zinc acetate with H2L1 ligand leads to the formation of a mononuclear zinc(ii) complex, [Zn(HL1)2H2O]. The ligand, H2L1 has been characterized by elemental analysis, 1H, 13C and 1Hsbnd COSY -NMR, IR and ESI-MS, while the complex was characterized by elemental analysis, IR, and ESI-MS. The crystal structures of the free ligand H2L1 and the complex have also been determined by single crystal X-ray diffraction. The ligand chelates with metal centre with a nitrogen atom of imino moiety and an oxygen atom of enolic group. The complex shows distorted trigonal bipyramidal geometry around the metal centre with oxygen atoms lying in the equatorial plane and imino nitrogen atoms along the axial direction. The DFT/TD-DFT calculations were performed on both the ligand and its zinc complex to get insight into the structural, electronic and optical properties. The photoluminescence, fluorescence properties of the complex have been investigated.

  1. Multifunctional DNA interactions of Ru-Pt mixed metal supramolecular complexes with substituted terpyridine ligands.

    PubMed

    Jain, Avijita; Wang, Jing; Mashack, Emily R; Winkel, Brenda S J; Brewer, Karen J

    2009-10-05

    The coupling of a light absorbing unit to a bioactive site allows for the development of supramolecules with multifunctional interactions with DNA. A series of mixed metal supramolecular complexes that couple a DNA-binding cis-Pt(II)Cl(2) center to a ruthenium chromophore via a polyazine bridging ligand have been prepared, and their DNA interactions have been studied, [(TL)RuCl(dpp)PtCl(2)](PF(6)) (TL = tpy (2,2':6',2''-terpyridine), MePhtpy (4'-(4-methylphenyl)-2,2':6',2''-terpyridine), or (t)Bu(3)tpy (4,4',4''-tri-tert-butyl-2,2':6',2''-terpyridine and dpp = 2,3-bis(2-pyridyl)pyrazine). This series provides for unique tridentate coordinated Ru(II) systems to photocleave DNA with preassociation with the DNA target via coordination of the Pt(II) center. Electronic absorption spectroscopy of the complexes displays intense ligand-based pi-->pi* transitions in the UV region and metal to ligand charge transfer (MLCT) transitions in the visible region. The Ru(dpi)-->dpp(pi*) MLCT transitions occur at 545 nm, red-shifted relative to the 520 nm maxima for the monometallic synthons, [(TL)RuCl(dpp)](PF(6)). The title RuPt complexes display reversible Ru(II/III) oxidative couples at 1.10, 1.10, and 1.01 V vs Ag/AgCl for TL = tpy, MePhtpy, and (t)Bu(3)tpy, respectively. The TL(0/-) reduction occurred at -1.43, -1.44, and -1.59 V vs Ag/AgCl for TL = tpy, MePhtpy, and (t)Bu(3)tpy, respectively. These complexes display a dpp(0/-) couple (-0.50 -0.55, and -0.59 V) significantly shifted to positive potential relative to their monometallic synthons (-1.15, -1.16, and -1.22 V), consistent with the bridging coordination of the dpp ligand. Coupling of (TL)Ru(II)Cl(BL) subunit to a cis-Pt(II)Cl(2) site provides for the application of photochemically inactive Ru(II)(tpy)-based chromophores in DNA photocleavage applications. The [(TL)RuCl(dpp)PtCl(2)](+) complexes display covalent binding to DNA and photocleavage upon irradiation with visible light modulated by TL identity. The redox

  2. Synthesis, characterization and properties of copper(I) complexes with bis(diphenylphosphino)-ferrocene ancillary ligand

    NASA Astrophysics Data System (ADS)

    Liu, Xinfang; Zhang, Songlin; Ding, Yuqiang

    2012-06-01

    Three copper(I) complexes (2-4) containing dppf ancillary ligand (dppf = bis(diphenylphosphino)-ferrocene) were synthesized when chloride-bridged copper(I) complex 1 reacted with acetanilide and characterized by IR, element analysis and NMR spectrum. And the crystal structures of complexes 2 and 4 have been determined by X-ray diffraction method. Complex 2, an acetate-bridged copper(I) complex, was obtained under N2 atmosphere in un-dried solvent; the acetate ion came from the hydrolysis reaction of acetanilide due to residual water in solvent. Acetanilide was deprotonated and coordinated with the copper(I) centre to form a copper(I) amidate complex 3 when reacted in pre-dried solvent. In addition, a known complex 4, the oxidation product of dppf, was isolated from the same reaction system when reacted in air atmosphere. CV and TG experiments were carried out to check the electron transfer properties and thermal stabilities of complexes 2-3. Finally, the arylation reaction of complex 3 with iodobenzene was performed to study the reaction mechanism of copper(I) catalyzed Goldberg reaction.

  3. Two tridentate Schiff base ligands and their mononuclear cobalt (III) complexes: Synthesis, characterization, antibacterial and antifungal activities.

    PubMed

    Gungor, Elif; Celen, Selma; Azaz, Dilek; Kara, Hulya

    2012-08-01

    Two Schiff base ligands (HL1, HL2) and their Co(III) complexes, [Co(HL1)(L1)] (1) and [Co(HL2)(L2)] (2) [where HL1=2-((E)-(2-hydroxyethylimino)methyl)-4-chlorophenol and HL2=2-((E)-(2-hydroxyethylimino)methyl)-4-bromophenol] were synthesized and characterized using spectroscopic methods. The crystal structures of 1 and 2 have been re-determined by single crystal diffraction at 100K. The ligands and their Co(III) complexes were screened for antibacterial and antifungal activities by the disc diffusion, microdilution broth and single spore culture techniques. The antimicrobial activity of the Co(III) complexes and the free ligands exhibit antimicrobial properties and the Co(III) complexes show enhanced inhibitory activity compared with their parent ligand.

  4. Synthesis, structures and fluorescent properties of metal complexes based on polyphosphine ligands

    NASA Astrophysics Data System (ADS)

    Huang, Ting-Hong; Yang, Hu; Zhu, Sheng-Lan; Zhao, Bin; Yang, Yan

    2017-01-01

    Based on polyphosphine ligands, four complexes, [Cu2(pba)2(pipzdtc)]·2DMF (1), [Cu2(pbaa) (Et-dtc)2]·2DMF (2), [Cu2(pnaa) (Et-dtc)2] (3) and [Ag2(pnaa) (Et-dtc)2] ·2CH3CN (4) (pba = N,N-bis((diphenylphosphino)methyl)benzenamine, pbaa = N,N,N‧,N'-tetrakis((di-phenylphosphino)methyl)benzene-1,4-diamine, pnaa = N,N,N‧,N'-tetrakis((diphenylphosphino)- methyl)naphthalene-1,5-diamine, Et-dtc = N-ethyldithiocarbamate and pipzdtc = piperazine- 1,4-dicarbodithiolate), have been synthesized and characterized by IR, ESI-MS and X-ray crystal structure analysis. The structural analysis shows that each Cu+/Ag+ in complexes 1-4 is four coordinate P2S2, and adopts a distorted-tetrahedral geometry, and 1D infinite chain of complexes 2 and 4 is built by Csbnd H⋯π interaction of phenyl rings from pbaa and pnaa. All these indicate that the change of polyphosphine ligands and metal ions might be the key of construction of 1D infinite chain. Moreover, the emission spectra of complexes 2-4 in DMF solvent are also observed.

  5. X-ray absorption spectral studies of copper (II) mixed ligand complexes

    NASA Astrophysics Data System (ADS)

    Soni, B.; Dar, Davood Ah; Shrivastava, B. D.; Prasad, J.; Srivastava, K.

    2014-09-01

    X-ray absorption spectra at the K-edge of copper have been studied in two copper mixed ligand complexes, one having tetramethyethylenediamine (tmen) and the other having tetraethyethylenediamine (teen) as one of the ligands. The spectra have been recorded at BL-8 dispersive extended X-ray absorption fine structure (EXAFS) beamline at the 2.5 GeV INDUS- 2 synchrotron, RRCAT, Indore, India. The data obtained has been processed using the data analysis program Athena. The energy of the K-absorption edge, chemical shift, edge-width and shift of the principal absorption maximum in the complexes have been determined and discussed. The values of these parameters have been found to be approximately the same in both the complexes indicating that the two complexes possess similar chemical environment around the copper metal atom. The chemical shift has been utilized to estimate effective nuclear charge on the absorbing atom. The normalized EXAFS spectra have been Fourier transformed. The position of the first peak in the Fourier transform gives the value of first shell bond length, which is shorter than the actual bond length because of energy dependence of the phase factors in the sine function of the EXAFS equation. This distance is thus the phase- uncorrected bond length. Bond length has also been determined by Levy's, Lytle's and Lytle, Sayers and Stern's (LSS) methods. The results obtained from LSS and the Fourier transformation methods are comparable with each other, since both are phase uncorrected bond lengths.

  6. Synthetic, crystallographic, and computational study of copper(II) complexes of ethylenediaminetetracarboxylate ligands.

    PubMed

    Matović, Zoran D; Miletić, Vesna D; Ćendić, Marina; Meetsma, Auke; van Koningsbruggen, Petra J; Deeth, Robert J

    2013-02-04

    Copper(II) complexes of hexadentate ethylenediaminetetracarboxylic acid type ligands H(4)eda3p and H(4)eddadp (H(4)eda3p = ethylenediamine-N-acetic-N,N',N'-tri-3-propionic acid; H(4)eddadp = ethylenediamine-N,N'-diacetic-N,N'-di-3-propionic acid) have been prepared. An octahedral trans(O(6)) geometry (two propionate ligands coordinated in axial positions) has been established crystallographically for the Ba[Cu(eda3p)]·8H(2)O compound, while Ba[Cu(eddadp)]·8H(2)O is proposed to adopt a trans(O(5)) geometry (two axial acetates) on the basis of density functional theory calculations and comparisons of IR and UV-vis spectral data. Experimental and computed structural data correlating similar copper(II) chelate complexes have been used to better understand the isomerism and departure from regular octahedral geometry within the series. The in-plane O-Cu-N chelate angles show the smallest deviation from the ideal octahedral value of 90°, and hence the lowest strain, for the eddadp complex with two equatorial β-propionate rings. A linear dependence between tetragonality and the number of five-membered rings has been established. A natural bonding orbital analysis of the series of complexes is also presented.

  7. Rational Design of Orthogonal Multipolar Interactions with Fluorine in Protein-Ligand Complexes.

    PubMed

    Pollock, Jonathan; Borkin, Dmitry; Lund, George; Purohit, Trupta; Dyguda-Kazimierowicz, Edyta; Grembecka, Jolanta; Cierpicki, Tomasz

    2015-09-24

    Multipolar interactions involving fluorine and the protein backbone have been frequently observed in protein-ligand complexes. Such fluorine-backbone interactions may substantially contribute to the high affinity of small molecule inhibitors. Here we found that introduction of trifluoromethyl groups into two different sites in the thienopyrimidine class of menin-MLL inhibitors considerably improved their inhibitory activity. In both cases, trifluoromethyl groups are engaged in short interactions with the backbone of menin. In order to understand the effect of fluorine, we synthesized a series of analogues by systematically changing the number of fluorine atoms, and we determined high-resolution crystal structures of the complexes with menin. We found that introduction of fluorine at favorable geometry for interactions with backbone carbonyls may improve the activity of menin-MLL inhibitors as much as 5- to 10-fold. In order to facilitate the design of multipolar fluorine-backbone interactions in protein-ligand complexes, we developed a computational algorithm named FMAP, which calculates fluorophilic sites in proximity to the protein backbone. We demonstrated that FMAP could be used to rationalize improvement in the activity of known protein inhibitors upon introduction of fluorine. Furthermore, FMAP may also represent a valuable tool for designing new fluorine substitutions and support ligand optimization in drug discovery projects. Analysis of the menin-MLL inhibitor complexes revealed that the backbone in secondary structures is particularly accessible to the interactions with fluorine. Considering that secondary structure elements are frequently exposed at protein interfaces, we postulate that multipolar fluorine-backbone interactions may represent a particularly attractive approach to improve inhibitors of protein-protein interactions.

  8. Magnetism and electronic structure of triplet binuclear niobium complexes in inorganic glasses, organic ligand environment, and polymers

    NASA Astrophysics Data System (ADS)

    Rakhimov, R. R.; Arrington, S. A.; Jackson, E. M.; Hwang, J. S.; Prokof'ev, A. I.; Alexandrov, I. A.; Aleksandrov, A. I.

    2005-05-01

    We investigated paramagnetic properties of binuclear niobium complexes Nb-O-Nb with two nonequivalent Nb4+ ions in lithium-niobium phosphate glasses (LNPG), in the environment of catechol/ortho-quinone ligands and in polyethylene. Experimental electron paramagnetic resonance spectrum analysis revealed nonequivalent distribution of the charge and electron spin density between two Nb atoms. Mechanochemical interaction of LNPG with an organic donor-acceptor mixture catechol/ortho-quinone followed by organic solvent extraction leads to the formation of a new binuclear complex with catechol/ortho-quinone ligands. This complex can be further incorporated into polyethylene matrix to form the complex with properties close to the complex in LNPG.

  9. Novel dinuclear platinum(II) complexes containing mixed nitrogen-sulfur donor ligands.

    PubMed

    Hochreuther, Stephanie; Puchta, Ralph; van Eldik, Rudi

    2011-12-19

    A series of novel dinuclear platinum(II) complexes were synthesized containing a mixed nitrogen-sulfur donor bidentate chelate system in which the two platinum centers are connected by an aliphatic chain of variable length. The bidentate chelating ligands were selected to stabilize the complex toward decomposition. The pK(a) values and reactivity of the four synthesized complexes, namely, [Pt(2)(S(1),S(4)-bis(2-pyridylmethyl)-1,4-butanedithioether)(OH(2))(4)](4+) (4NSpy), [Pt(2)(S(1),S(6)-bis(2-pyridylmethyl)-1,6-hexanedithioether)(OH(2))(4)](4+) (6NSpy), [Pt(2)(S(1),S(8)-bis(2-pyridylmethyl)-1,8-octanedithioether)(OH(2))(4)](4+) (8NSpy), and [Pt(2)(S(1),S(10)-bis(2-pyridylmethyl)-1,10-decanedithioether)(OH(2))(4)](4+) (10NSpy), were investigated. This system is of special interest because only little is known about the substitution behavior of dinuclear platinum complexes that contain a bidentate chelate that forms part of the aliphatic bridging ligand. Moreover, the ligands as well as the dinuclear complexes were examined in terms of their cytotoxic activity, and the 10NSpy complex was found to be active. Spectrophotometric acid-base titrations were performed to determine the pK(a) values of all the coordinated water molecules. The substitution of coordinated water by thiourea was studied under pseudo-first-order conditions as a function of nucleophile concentration, temperature, and pressure, using stopped-flow techniques and UV-vis spectroscopy. The results for the dinuclear complexes were compared to those for the corresponding mononuclear reference complex [Pt(methylthiomethylpyridine)(OH(2))(2)](2+) (Pt(mtp)), by which the effect of the increasing aliphatic chain length of the bridged complexes could be investigated. The results indicate that there is a clear interaction between the two platinum centers, which becomes weaker as the chain length between the metal centers increases. Furthermore, differences and similarities of the N,S-system were compared to

  10. Determining the magnitude and direction of photoinduced ligand field switching in photochromic metal-organic complexes: molybdenum-tetracarbonyl spirooxazine complexes.

    PubMed

    Paquette, Michelle M; Patrick, Brian O; Frank, Natia L

    2011-07-06

    The ability to optically switch or tune the intrinsic properties of transition metals (e.g., redox potentials, emission/absorption energies, and spin states) with photochromic metal-ligand complexes is an important strategy for developing "smart" materials. We have described a methodology for using metal-carbonyl complexes as spectroscopic probes of ligand field changes associated with light-induced isomerization of photochromic ligands. Changes in ligand field between the ring-closed spirooxazine (SO) and ring-opened photomerocyanine (PMC) forms of photochromic azahomoadamantyl and indolyl phenanthroline-spirooxazine ligands are demonstrated through FT-IR, (13)C NMR, and computational studies of their molybdenum-tetracarbonyl complexes. The frontier molecular orbitals (MOs) of the SO and PMC forms differ considerably in both electron density distributions and energies. Of the multiple π* MOs in the SO and PMC forms of the ligands, the LUMO+1, a pseudo-b(1)-symmetry phenanthroline-based MO, mixes primarily with the Mo(CO)(4) fragment and provides the major pathway for Mo(d)→phen(π*) backbonding. The LUMO+1 is found to be 0.2-0.3 eV lower in energy in the SO form relative to the PMC form, suggesting that the SO form is a better π-acceptor. Light-induced isomerization of the photochromic ligands was therefore found to lead to changes in the energies of their frontier MOs, which in turn leads to changes in π-acceptor ability and ligand field strength. Ligand field changes associated with photoisomerizable ligands allow tuning of excited-state and ground-state energies that dictate energy/electron transfer, optical/electrical properties, and spin states of a metal center upon photoisomerization, positioning photochromic ligand-metal complexes as promising targets for smart materials.

  11. Synthesis and conformational study of a novel macrocyclic chiral(salen) ligand and its uranyl and Mn complexes.

    PubMed

    Amato, Maria E; Ballistreri, Francesco P; Pappalardo, Andrea; Tomaselli, Gaetano A; Toscano, Rosa M

    2010-03-09

    A novel chiral macrocyclic ligand incorporating a chiral salen moiety into a framework containing two biphenyl units was synthesized. Structural properties and conformational aspects of the free ligand and an UO2 complex were studied by using NMR spectroscopy in solution and MM calculations. The Mn(III) complex was tested as catalyst in enantioselective oxidation of prochiral unfunctionalized olefins to the corresponding optically active epoxides under very mild conditions.

  12. Controlling the binding of dihydrogen using ruthenium complexes containing N-mono-functionalised 1,4,7-triazacyclononane ligand systems.

    PubMed

    Gott, Andrew L; McGowan, Patrick C; Podesta, Thomas J

    2008-07-28

    Pendant arm macrocycles derived from 1,4,7-triazacyclononane were reacted with RuHCl(CO)(PPh(3))(3) and RuHCl(PPh(3))(3) to yield air-stable cationic ruthenium hydrides that were characterised by a variety of techniques, including X-ray crystallography. Protonation of the metal hydride complexes with a proton source yielded eta(2)-dihydrogen complexes. The lifetime of the dihydrogen ligand was effected by a judicious choice of ancillary ligands.

  13. Synthesis and electronic structure determination of uranium(vi) ligand radical complexes.

    PubMed

    Herasymchuk, Khrystyna; Chiang, Linus; Hayes, Cassandra E; Brown, Matthew L; Ovens, Jeffrey S; Patrick, Brian O; Leznoff, Daniel B; Storr, Tim

    2016-08-02

    Pentagonal bipyramidal uranyl (UO2(2+)) complexes of salen ligands, N,N'-bis(3-tert-butyl-(5R)-salicylidene)-1,2-phenylenediamine, in which R = (t)Bu (1a), OMe (1b), and NMe2 (1c), were prepared and the electronic structure of the one-electron oxidized species [1a-c]+ were investigated in solution. The solid-state structures of 1a and 1b were solved by X-ray crystallography, and in the case of 1b an asymmetric UO2(2+) unit was found due to an intermolecular hydrogen bonding interaction. Electrochemical investigation of 1a-c by cyclic voltammetry showed that each complex exhibited at least one quasi-reversible redox process assigned to the oxidation of the phenolate moieties to phenoxyl radicals. The trend in redox potentials matches the electron-donating ability of the para-phenolate substituents. The electron paramagnetic resonance spectra of cations [1a-c]+ exhibited gav values of 1.997, 1.999, and 1.995, respectively, reflecting the ligand radical character of the oxidized forms, and in addition, spin-orbit coupling to the uranium centre. Chemical oxidation as monitored by ultraviolet-visible-near-infrared (UV-vis-NIR) spectroscopy afforded the one-electron oxidized species. Weak low energy intra-ligand charge transfer (CT) transitions were observed for [1a-c]+ indicating localization of the ligand radical to form a phenolate/phenoxyl radical species. Further analysis using density functional theory (DFT) calculations predicted a localized phenoxyl radical for [1a-c]+ with a small but significant contribution of the phenylenediamine unit to the spin density. Time-dependent DFT (TD-DFT) calculations provided further insight into the nature of the low energy transitions, predicting both phenolate to phenoxyl intervalence charge transfer (IVCT) and phenylenediamine to phenoxyl CT character. Overall, [1a-c]+ are determined to be relatively localized ligand radical complexes, in which localization is enhanced as the electron donating ability of the para

  14. Impaired ergosterol biosynthesis mediated fungicidal activity of Co(II) complex with ligand derived from cinnamaldehyde.

    PubMed

    Shreaz, Sheikh; Shiekh, Rayees A; Raja, Vaseem; Wani, Waseem A; Behbehani, Jawad M

    2016-03-05

    In this study, we have used aldehyde function of cinnamaldehyde to synthesize N, N'-Bis (cinnamaldehyde) ethylenediimine [C20H20N2] and Co(II) complex of the type [Co(C40H40N4)Cl2]. The structures of the synthesized compounds were determined on the basis of physiochemical analysis and spectroscopic data ((1)H NMR, FTIR, UV-visible and mass spectra) along with molar conductivity measurements. Anticandidal activity of cinnamaldehyde its ligand [L] and Co(II) complex was investigated by determining MIC80, time-kill kinetics, disc diffusion assay and ergosterol extraction and estimation assay. Ligand [L] and Co(II) complex are found to be 4.55 and 21.0 folds more efficient than cinnamaldehyde in a liquid medium. MIC80 of Co(II) complex correlated well with ergosterol inhibition suggesting ergosterol biosynthesis to be the primary site of action. In comparison to fluconazole, the test compounds showed limited toxicity against H9c2 rat cardiac myoblasts. In confocal microscopy propidium iodide (PI) penetrates the yeast cells when treated with MIC of metal complex, indicating a disruption of cell membrane that results in imbibition of dye. TEM analysis of metal complex treated cells exhibited notable alterations or damage to the cell membrane and the cell wall. The structural disorganization within the cell cytoplasm was noted. It was concluded that fungicidal activity of Co(II) complex originated from loss of membrane integrity and a decrease in ergosterol content is only one consequence of this.

  15. Luminescent rhenium(I) tricarbonyl complexes with pyrazolylamidino ligands: photophysical, electrochemical, and computational studies.

    PubMed

    Gómez-Iglesias, Patricia; Guyon, Fabrice; Khatyr, Abderrahim; Ulrich, Gilles; Knorr, Michael; Martín-Alvarez, Jose Miguel; Miguel, Daniel; Villafañe, Fernando

    2015-10-28

    New pyrazolylamidino complexes fac-[ReCl(CO)3(NH[double bond, length as m-dash]C(Me)pz*-κ(2)N,N)] (pz*H = pyrazole, pzH; 3,5-dimethylpyrazole, dmpzH; indazole, indzH) and fac-[ReBr(CO)3(NH[double bond, length as m-dash]C(Ph)pz*-κ(2)N,N)] are synthesized via base-catalyzed coupling of the appropriate nitrile with pyrazole, or via metathesis by halide abstraction with AgBF4 from a bromido pyrazolylamidino complex and the subsequent addition of LiCl. In order to study both the influence of the substituents present at the pyrazolylamidino ligand, and that of the "sixth" ligand in the complex, photophysical, electrochemical, and computational studies have been carried out on this series and other complexes previously described by us, of the general formula fac-[ReL(CO)3(NH[double bond, length as m-dash]C(R')pz*-κ(2)N,N)](n+) (L = Cl, Br; R' = Me, Ph, n = 0; or L = NCMe, dmpzH, indzH, R' = Me, n = 1). All complexes exhibit phosphorescent decays from a prevalently (3)MLCT excited state with quantum yields (Φ) in the range between 0.007 and 0.039, and long lifetimes (τ∼ 8-1900 ns). The electrochemical study reveals irreversible reduction for all complexes. The oxidation of the neutral complexes was found to be irreversible due to halido-dissociation, whereas the cationic species display a reversible process implying the ReI/ReII couple. Density functional and time-dependent density functional theory (TD-DFT) calculations provide a reasonable trend for the values of emission energies in line with the experimental photophysical data, supporting the (3)MLCT based character of the emissions.

  16. Thermal, spectroscopic, and solvent influence studies on mixed-ligand copper(II) complexes containing the bulky ligand: Bis[N-(p-tolyl)imino]acenaphthene.

    PubMed

    El-Ayaan, Usama; Gabr, I M

    2007-05-01

    Four mixed-ligand copper(II) complexes containing the rigid bidentate nitrogen ligand bis[N-(p-tolyl)imino]acenaphthene (abb. p-Tol-BIAN) ligand are reported. These complexes, namely [Cu(p-Tol-BIAN)(2)](ClO(4))(2)1, [Cu(p-Tol-BIAN)(acac)](ClO(4)) 2, [Cu(p-Tol-BIAN)Cl(2)] 3 and [Cu(p-Tol-BIAN)(AcOH)(2)](ClO(4))(2)4 (where acac, acetylacetonate and AcOH, acetic acid) have been prepared and characterized by elemental analysis, spectroscopic, magnetic and molar conductance measurements. ESR spectra suggest a square planar geometry for complexes 1 and 2. In complexes 3 and 4, a distorted tetrahedral arrangement around copper(II) centre was suggested. Solvatochromic behavior of all studied complexes indicates strong solvatochromism of their solutions. The observed solvatochromism is mainly due to the solute-solvent interaction between the chelate cation and the solvent molecules. Thermal properties and decomposition kinetics of all complexes are investigated. The kinetic parameters (E, A, Delta H, Delta S and Delta G) of all thermal decomposition stages have been calculated using the Coats-Redfern and other standard equations.

  17. Syntheses, crystal structures, and properties of four complexes based on polycarboxylate and imidazole ligands

    SciTech Connect

    Qiao, Rui; Chen, Shui-Sheng; Sheng, Liang-Quan; Yang, Song; Li, Wei-Dong

    2015-08-15

    Four metal–organic coordination polymers [Zn(HL)(H{sub 2}O)]·4H{sub 2}O (1), [Zn(HL)(L{sub 1})]·4H{sub 2}O (2), [Cu(HL)(H{sub 2}O)]·3H{sub 2}O (3) and [Cu(HL)(L{sub 1})]·5H{sub 2}O (4) were synthesized by reactions of the corresponding metal(II) salts with semirigid polycarboxylate ligand (5-((4-carboxypiperidin-1-yl)methyl)isophthalic acid hydrochloride, H{sub 3}L·HCl) or auxiliary ligand (1,4-di(1H-imidazol-4-yl)benzene, L{sub 1}). The structures of the compounds were characterized by elemental analysis, FT-IR spectroscopy and single-crystal X-ray diffraction. The use of auxiliary ligand L{sub 1} has great influence on the structures of two pairs of complexes 1, 2 and 3, 4. Complex 1 is a uninodal 3-connected rare 2-fold interpenetrating ZnSc net with a Point (Schlafli) symbol of (10{sup 3}) while 2 is a one-dimensional (1D) ladder structure. Compound 3 features a two-dimensional (2D) honeycomb network with typical 6{sup 3}-hcb topology, while 4 is 2D network with (4, 4) sql topology based on binuclear Cu{sup II} subunits. The non-covalent bonding interactions such as hydrogen bonds, π···π stacking and C–H···π exist in complexes 1–4, which contributes to stabilize crystal structure and extend the low-dimensional entities into high-dimensional frameworks. And the photoluminescent property of 1 and 2 and gas sorption property of 4 have been investigated. - Graphical abstract: Four new coordination polymers have been obtained and their photoluminescent and gas sorption properties have also been investigated. - Highlights: • Two pairs of Zn{sup II}/ Cu{sup II} compounds have been synthesized. • Auxiliary ligand-controlled assembly of the complexes is reported. • The luminescent properties of complexes 1–2 were investigated. • The gas sorption property of 4 has been investigated.

  18. Rare-Earth complexes of ferrocene-containing ligands: visible-light excitable luminescent materials.

    PubMed

    Yuan, Yao-Feng; Cardinaels, Thomas; Lunstroot, Kyra; Hecke, Kristof Van; Meervelt, Luc Van; Görller-Walrand, Christiane; Binnemans, Koen; Nockemann, Peter

    2007-06-25

    The ferrocene-derivatives bis(ferrocenyl-ethynyl)-1,10-phenanthroline (Fc(2)phen) and ferrocenoyltrifluoroacetone (Hfta) have been used to synthesize ferrocene-containing rare-earth beta-diketonate complexes. The complexes [Ln(tta)(3)(Fc(2)phen)] and [Ln(fta)(3)(phen)] (where Ln = La, Nd, Eu, Yb) show structural similarities to the tris(2-thenoyltrifluoroacetonate)(1,10-phenanthroline)lanthanide(III) complexes, [Ln(tta)(3)(phen)]. The coordination number of the lanthanide ion is 8, and the coordination sphere can be described as a distorted dodecahedron. However, the presence of the ferrocene moieties shifts the ligand absorption bands of the rare-earth complexes to longer wavelengths so that the complexes can be excited not only by ultraviolet radiation but also by visible light of wavelengths up to 420 nm. Red photoluminescence is observed for the europium(III) complexes and near-infrared photoluminescence for the neodymium(III) and ytterbium(III) complexes. The presence of the ferrocene groups makes the rare-earth complexes hydrophobic and well-soluble in apolar organic solvents.

  19. Copper Complexes of Anionic Nitrogen Ligands in the Amidation and Imidation of Aryl Halides

    PubMed Central

    Tye, Jesse W.; Weng, Zhiqiang; Johns, Adam M.; Incarvito, Christopher D.; Hartwig, John F.

    2010-01-01

    Copper(I) imidate and amidate complexes of chelating N,N-donor ligands, which are proposed intermediates in copper-catalyzed amidations of aryl halides, have been synthesized and characterized by X-ray diffraction and detailed solution-phase methods. In some cases, the complexes adopt neutral, three-coordinate trigonal planar structures in the solid state, but in other cases they adopt an ionic form consisting of an L2Cu+ cation and a CuX2− anion. A tetraalkylammonium salt of the CuX2− anion in which X = phthalimidate was also isolated. Conductivity measurements and 1H NMR spectra of mixtures of two complexes all indicate that the complexes exist predominantly in the ionic form in DMSO and DMF solutions. One complex was sufficiently soluble for conductance measurements in less polar solvents and was shown to adopt some degree of the ionic form in THF and predominantly the neutral form in benzene. The complexes containing dative nitrogen ligands reacted with iodoarenes and bromoarenes to form products from C–N coupling, but the ammonium salt of [Cu(phth)2]− did not. Similar selectivities for stoichiometric and catalytic reactions with two different iodoarenes and faster rates for the stoichiometric reactions implied that the isolated amidate and imidate complexes are intermediates in the reactions of amides and imides with haloarenes catalyzed by copper complexes containing dative N,N ligands. These amidates and imidates reacted much more slowly with chloroarenes, including chloroarenes that possess more favorable reduction potentials than some bromoarenes and that are known to undergo fast dissociation of chloride from the chloroarene radical anion. The reaction of o-(allyloxy)iodobenzene with [(phen)2Cu][Cu(pyrr)2] results in formation of the C-N coupled product in high yield and no detectable amount of the 3-methyl-2,3-dihydrobenzofuran or 3-methylene-2,3-dihydrobenzofuran products that would be expected from a reaction that generated free radicals. These

  20. Synthesis, structural elucidation, biological, antioxidant and nuclease activities of some 5-Fluorouracil-amino acid mixed ligand complexes

    NASA Astrophysics Data System (ADS)

    Shobana, Sutha; Subramaniam, Perumal; Mitu, Liviu; Dharmaraja, Jeyaprakash; Arvind Narayan, Sundaram

    2015-01-01

    Some biologically active mixed ligand complexes (1-9) have been synthesized from 5-Fluorouracil (5-FU; A) and amino acids (B) such as glycine (gly), L-alanine (ala) and L-valine (val) with Ni(II), Cu(II) and Zn(II) ions. The synthesized mixed ligand complexes (1-9) were characterized by various physico-chemical, spectral, thermal and morphological studies. 5-Fluorouracil and its mixed ligand complexes have been tested for their in vitro biological activities against some pathogenic bacterial and fungal species by the agar well diffusion method. The in vitro antioxidant activities of 5-Fluorouracil and its complexes have also been investigated by using the DPPH assay method. The results demonstrate that Cu(II) mixed ligand complexes (4-6) exhibit potent biological as well as antioxidant activities compared to 5-Fluorouracil and Ni(II) (1-3) and Zn(II) (7-9) mixed ligand complexes. Further, the cleaving activities of CT DNA under aerobic conditions show moderate activity with the synthesized Cu(II) and Ni(II) mixed ligand complexes (1-6) while no activity is seen with Zn(II) complexes (7-9). Binding studies of CT DNA with these complexes show a decrease in intensity of the charge transfer band to the extent of 5-15% along with a minor red shift. The free energy change values (Δ‡G) calculated from intrinsic binding constants indicate that the interaction between mixed ligand complex and DNA is spontaneous.

  1. Synthesis, structural elucidation, biological, antioxidant and nuclease activities of some 5-Fluorouracil-amino acid mixed ligand complexes.

    PubMed

    Shobana, Sutha; Subramaniam, Perumal; Mitu, Liviu; Dharmaraja, Jeyaprakash; Arvind Narayan, Sundaram

    2015-01-05

    Some biologically active mixed ligand complexes (1-9) have been synthesized from 5-Fluorouracil (5-FU; A) and amino acids (B) such as glycine (gly), L-alanine (ala) and L-valine (val) with Ni(II), Cu(II) and Zn(II) ions. The synthesized mixed ligand complexes (1-9) were characterized by various physico-chemical, spectral, thermal and morphological studies. 5-Fluorouracil and its mixed ligand complexes have been tested for their in vitro biological activities against some pathogenic bacterial and fungal species by the agar well diffusion method. The in vitro antioxidant activities of 5-Fluorouracil and its complexes have also been investigated by using the DPPH assay method. The results demonstrate that Cu(II) mixed ligand complexes (4-6) exhibit potent biological as well as antioxidant activities compared to 5-Fluorouracil and Ni(II) (1-3) and Zn(II) (7-9) mixed ligand complexes. Further, the cleaving activities of CT DNA under aerobic conditions show moderate activity with the synthesized Cu(II) and Ni(II) mixed ligand complexes (1-6) while no activity is seen with Zn(II) complexes (7-9). Binding studies of CT DNA with these complexes show a decrease in intensity of the charge transfer band to the extent of 5-15% along with a minor red shift. The free energy change values (Δ(‡)G) calculated from intrinsic binding constants indicate that the interaction between mixed ligand complex and DNA is spontaneous.

  2. Switchable antenna: a star-shaped ruthenium/osmium tetranuclear complex with azobis(bipyridine) bridging ligands.

    PubMed

    Otsuki, Joe; Imai, Arata; Sato, Katsuhiko; Li, Dong-Mei; Hosoda, Mayumi; Owa, Masao; Akasaka, Tetsuo; Yoshikawa, Isao; Araki, Koji; Suenobu, Tomoyoshi; Fukuzumi, Shunichi

    2008-01-01

    A star-shaped Ru/Os tetranuclear complex, in which a central Os unit is linked to three peripheral Ru units by 4,4''-azobis(2,2'-bipyridine) (azobpy) bridging ligands, was prepared to examine the unique photodynamics regulated by its redox state. The Ru/Os tetranuclear complex exhibits Ru-based luminescence at 77 K, whereas the three-electron reduction (one for each azobpy) of the Ru/Os complex results in luminescence from the Os unit. The photoexcited state of the Ru/Os complex rapidly decays into low energy metal-to-ligand charge-transfer states, in which the excited electron is localized in the azobpy ligand in the form of azobpy(.-). Upon the one-electron reduction of the azobpy ligands, the above-mentioned low-energy states become unavailable to the photoexcited complex. As a result, an energy transfer from the Ru-based excited state to the Os-based excited state becomes possible. Ultrafast transient absorption measurements revealed that the energy transfer process consists of two steps; intramolecular electron transfer from the terminal bipyridine ligand (bpy(.-)) to form azobpy(2-) followed by a metal-to-metal electron transfer. Thus, the Ru/Os tetranuclear complex collects light energy into the central Os unit depending on the redox state of the bridging ligands, qualifying as a switchable antenna.

  3. Cationic lanthanide complexes of neutral tripodal N,O ligands: enthalpy versus entropy-driven podate formation in water.

    PubMed

    Bravard, Florence; Rosset, Caroline; Delangle, Pascale

    2004-07-07

    The cationic lanthanide complexes of two neutral tripodal N,O ligands, tpa (tris[(2-pyridyl)methyl]amine) and tpaam (tris[6-((2-N,N-diethylcarbamoyl)pyridyl)methyl]amine) are studied in water. The analysis of the proton lanthanide induced NMR shifts indicate that there is no abrupt structural change in the middle of the rare-earth series. Unexpectedly, the formation constant values of the lanthanide podates of tpaam and tpa in D2O at 298 K are similar, suggesting that the addition of the three amide groups to the ligand tpa does not lead to any increase in stability of the lanthanide complexes of tpaam in respect to tpa, even though the amide groups are coordinated to the metal in aqueous solution. The measurement of the enthalpy and entropy changes of the complexation reactions shows that the two similar ligands tpa and tpaam have different driving forces for lanthanide complexation. Indeed, the formation of tpa podates benefits from an exothermic enthalpy change associated with a small entropy change, whereas the complexation reaction with tpaam is clearly entropy-driven though opposed by a positive enthalpy change. The hydration states of the europium complexes were measured by luminescence and show the coordination of 4-5 water ligands in [Eu(tpa)]3+ whereas there are only 2 in [Eu(tpaam)]3+. Therefore the heptadentate ligand tpaam releases the translational entropy of more water molecules than does the tetradentate ligand tpa.

  4. Luminescent complexes of iridium(III) containing N/\\C/\\N-coordinating terdentate ligands.

    PubMed

    Wilkinson, Andrew J; Puschmann, Horst; Howard, Judith A K; Foster, Clive E; Williams, J A Gareth

    2006-10-16

    A family of bis-terdentate iridium(III) complexes is reported which contain a cyclometalated, N/\\C[wedge]N-coordinating 1,3-di(2-pyridyl)benzene derivative. This coordination mode is favored by blocking competitive cyclometalation at the C4 and C6 positions of the ligand. Thus, 1,3-di(2-pyridyl)-4,6-dimethylbenzene (dpyxH) reacts with IrCl3 x 3H2O to generate a dichlorobridged dimer [Ir(dpyx-N,C,N)Cl(mu-Cl)]2, 1. This dimer is cleaved by DMSO to give [Ir(dpyx)(DMSO)Cl2], the X-ray crystal structure of which is reported here, confirming the N/\\C/\\N coordination mode of dpyx. The dimer 1 can also be cleaved by a variety of other ligands to generate novel classes of mononuclear complexes. These include charge-neutral bis-terdentate complexes of the form [Ir(N/\\C/\\N)(C/\\N/\\C)] and [Ir(N/\\C/\\N)(C/\\N/\\O)], by reaction of 1 with C/\\N/\\C-coordinating ligands (e.g., 2,6-diphenylpyridine and derivatives) and C/\\N/\\O-coordinating ligands (based on 6-phenylpicolinate), respectively. Treatment of 1 with terpyridines leads to dicationic complexes of the type [Ir(N/\\C/\\N)(N/\\N/\\N)]2+, while 2-phenylpyridine gives [Ir(dpyx-N/\\C/\\N)(ppy-C,N)Cl]. All of the charge-neutral complexes are luminescent in fluid solution at room temperature. Assignment of the emission to charge-transfer excited states with significant MLCT character is supported by DFT calculations. In the [Ir(N/\\C/\\N)(C/\\N/\\C)] class, fluorination of the C/\\N/\\C ligand at the phenyl 2' and 4' positions leads to a blue-shift in the emission and to an increase in the quantum yield (lambda(max) = 547 nm, phi = 0.41 in degassed CH(3)CN at 295 K) compared to the nonfluorinated parent complex (lambda(max) = 585 nm, phi = 0.21), as well as to a stabilization of the compound with respect to photodissociation through cleavage of mutually trans Ir-C bonds. [Ir(dpyx-N/\\C/\\N)(ppy-C,N)Cl] is an exceptionally bright emitter: phi = 0.76, lambda(max) = 508 nm, in CH(3)CN at 295 K. In contrast, the [Ir

  5. Antibacterial activity of Pd(II) complexes with salicylaldehyde-amino acids Schiff bases ligands.

    PubMed

    Rîmbu, Cristina; Danac, Ramona; Pui, Aurel

    2014-01-01

    Palladium(II) complexes with Schiff bases ligands derived from salicylaldehyde and amino acids (Ala, Gly, Met, Ser, Val) have been synthesized and characterized by Fourier transform (FT)-IR, UV-Vis and (1)H-NMR spectroscopy. The electrospray mass spectrometry (ES-MS) spectrometry confirms the formation of palladium(II) complexes in 1/2 (M/L) molar ratio. All the Pd(II) complexes 1, [Pd(SalAla)2]Cl2; 2, [Pd(SalGly)2]Cl2; 3, [Pd(SalMet)2]Cl2; 4, [Pd(SalSer)2]Cl2; 5, [Pd(SalVal)2]Cl2; have shown antibacterial activity against Gram-positive bacteria Staphylococcus aureus and Gram-negative bacteria Escherichia coli.

  6. Catalytic transformation of dinitrogen into ammonia and hydrazine by iron-dinitrogen complexes bearing pincer ligand

    PubMed Central

    Kuriyama, Shogo; Arashiba, Kazuya; Nakajima, Kazunari; Matsuo, Yuki; Tanaka, Hiromasa; Ishii, Kazuyuki; Yoshizawa, Kazunari; Nishibayashi, Yoshiaki

    2016-01-01

    Synthesis and reactivity of iron-dinitrogen complexes have been extensively studied, because the iron atom plays an important role in the industrial and biological nitrogen fixation. As a result, iron-catalyzed reduction of molecular dinitrogen into ammonia has recently been achieved. Here we show that an iron-dinitrogen complex bearing an anionic PNP-pincer ligand works as an effective catalyst towards the catalytic nitrogen fixation, where a mixture of ammonia and hydrazine is produced. In the present reaction system, molecular dinitrogen is catalytically and directly converted into hydrazine by using transition metal-dinitrogen complexes as catalysts. Because hydrazine is considered as a key intermediate in the nitrogen fixation in nitrogenase, the findings described in this paper provide an opportunity to elucidate the reaction mechanism in nitrogenase. PMID:27435503

  7. [Introduction of dinitrosyl iron complexes with thiol-containing ligands into animal organism by inhalation method].

    PubMed

    Vanin, A F; Mozhokina, G N; Tkachev, N A; Mikoian, V D; Borodulin, R R; Elistratova, N A

    2013-01-01

    The possibility of water-soluble dinitrosyl iron complexes (DNIC) with thiol-containing ligands introduction into lungs and other tissues of mice by free inhalation of little drops (2-3 microns diameter) of the solutions of these complexes was investigated. Little drops of 2-20 mM solutions of the complexes were obtained by using an inhalation apparatus (compressor nebulizer). A cloud of these little drops was then inhaled by animals in a closed chamber. A maximal amount of protein-bound DNICs formed in mouse lungs was 0.6 micromoles per kilogram of tissue weight. The amount of DNIC in lungs, liver and blood decreased to the undetected level within 2-3 hours after inhalation. No cytotoxic effect of DNIC formed in lungs on Mycobacterium tuberculosis was found in mice infected with these mycobacteria.

  8. Structure, Spectra, and DFT Simulation of Nickel Benzazolate Complexes with Tris(2-aminoethyl)amine Ligand.

    PubMed

    Cerezo, Javier; Requena, Alberto; Zúñiga, José; Piernas, María José; Santana, M Dolores; Pérez, José; García, Luís

    2017-03-20

    Benzazolate complexes of Ni(II), [Ni(pbz)(tren)]ClO4 (pbz = 2-(2'-hydroxyphenyl)-benzimidazole (pbm), 1, 2-(2'-hydroxyphenyl)-benzoxazole (pbx), 2, 2-(2'-hydroxyphenyl)-benzothiazole (pbt), 3; tren = tris(2-aminoethyl)amine), are prepared by self-assembly reaction and structurally characterized. Theoretical DFT simulations are carried out to reproduce the features of their crystal structures and their spectroscopic and photophysic properties. The three complexes are moderately luminescent at room temperature both in acetonitrile solution and in the solid state. The simulations indicate that the absorption spectrum is dominated by two well-defined transitions, and the electronic density concentrates in three MOs around the benzazole ligands. The Stokes shifts of the emission spectra of complexes 1-3 are determined by optimizing the electronic excited state.

  9. Ruthenium Bis-diimine Complexes with a Chelating Thioether Ligand: Delineating 1,10-Phenanthrolinyl and 2,2'-Bipyridyl Ligand Substituent Effects

    SciTech Connect

    Al-Rawashdeh, Nathir A. F.; Chatterjee, Sayandev; Krause, Jeanette A.; Connick, William B.

    2014-01-06

    A new series of ruthenium(II) bis-diimine complexes with a chelating thioether donor ligand has been prepared: Ru(diimine)2(dpte)2+ (diimine=1,10-phenanthroline (phen) (1); 5-CH3-phen (2), 5-Cl-phen (3); 5-Br-phen (4); 5-NO2-phen (5); 3,4,7,8-tetramethyl-phen (6); 4,7-diphenyl-phen (7); 5,5'-dimethyl-2,2'-bipyridine (8); 4,4'-di-tert-butyl-2,2'-bipyridine (9)). Crystal structures of 2, 5, 7 and 9 show that the complexes form 2 of the 12 possible conformational/configurational isomers, adopting compact C2-symmetric structures with short intramolecular transannular interactions between the diimine ligands and dpte phenyl groups; crystals of 2 and 5 contain non-statistical distributions of geometric isomers. In keeping with the π-acidity of the dpte, the Ru(III/II) couple, E°'(Ru3+/2+), occurs at relatively high potentials (1.4-1.7 V vs Ag/AgCl), and the lowest spin-allowed MLCT absorption band occurs near 400 nm. Surprisingly, the complexes also exhibit fluid-solution luminescence originating from a lowest MLCT excited state with lifetimes in the 140-750 ns time range; in acetonitrile, compound 8 undergoes photo-induced solvolysis. Variations in the MLCT energies and redox potentials are quantitatively described using a summative Hammett parameter (σT), as well as using Lever's electrochemical parameters (EL). Recommended parameterizations for 2,2'-bipyridyl and 1,10-phenanthrolinyl ligands were derived from analysis of correlations based on 199 measurements of E°'(Ru3+/2+) for 99 homo- and heteroleptic ruthenium(II) tris-diimine complexes. Variations in E°'(Ru3+/2+) due to substituents at the 4- and 4'-positions of bipyridyl ligands and 4- and 7-positions of phenanthrolinyl ligands are significantly more strongly correlated with σp+ than either σm or σp. Substituents at the 5- and 6-positions of phenanthrolinyl ligands are best described by σm and have effects comparable to those of substituents at the 3- and 8-positions. Correlations of EL with σT for 20

  10. New RuII Complex for Dual Activity: Photoinduced Ligand Release and 1O2 Production

    PubMed Central

    Loftus, Lauren M.; White, Jessica K.; Albani, Bryan A.; Kohler, Lars; Kodanko, Jeremy J.; Thummel, Randolph P.

    2016-01-01

    The new complex [Ru(pydppn)(biq)(py)]2+ (1) undergoes both py photodissociation in CH3CN with Φ500=0.0070(4) and 1O2 production with ΦΔ=0.75(7) in CH3OH from a long-lived 3ππ* state centered on the pydppn ligand (pydppn=3-(pyrid-2-yl)benzo[i]dipyrido[3,2-a:2′,3′-c]phenazine; biq = 2,2′-biquinoline; py= pyridine). This represents an order of magnitude decrease in the Φ500 compared to the previously reported model compound [Ru(tpy)(biq)(py)]2+ (3) (tpy=2,2′:6′,2″-terpyridine) that undergoes only ligand exchange. The effect on the quantum yields by the addition of a second deactivation pathway through the low-lying 3ππ* state necessary for dual reactivity was investigated using ultrafast and nanosecond transient absorption spectroscopy, revealing a significantly shorter 3MLCT lifetime in 1 relative to that of the model complex 3. Due to the structural similarities between the two compounds, the lower values of Φ500 and ΦΔ compared to that of [Ru(pydppn)(bpy)(py)]2+ (2) (bpy=2,2′-bipyridine) are attributed to a competitive excited state population between the 3LF states involved in ligand dissociation and the long-lived 3ππ* state in 1. Complex 1 represents a model compound for dual activity that may be applied to photochemotherapy. PMID:26715085

  11. Syntheses, crystal structures, and properties of four complexes based on polycarboxylate and imidazole ligands

    NASA Astrophysics Data System (ADS)

    Qiao, Rui; Chen, Shui-Sheng; Sheng, Liang-Quan; Yang, Song; Li, Wei-Dong

    2015-08-01

    Four metal-organic coordination polymers [Zn(HL)(H2O)]·4H2O (1), [Zn(HL)(L1)]·4H2O (2), [Cu(HL)(H2O)]·3H2O (3) and [Cu(HL)(L1)]·5H2O (4) were synthesized by reactions of the corresponding metal(II) salts with semirigid polycarboxylate ligand (5-((4-carboxypiperidin-1-yl)methyl)isophthalic acid hydrochloride, H3L·HCl) or auxiliary ligand (1,4-di(1H-imidazol-4-yl)benzene, L1). The structures of the compounds were characterized by elemental analysis, FT-IR spectroscopy and single-crystal X-ray diffraction. The use of auxiliary ligand L1 has great influence on the structures of two pairs of complexes 1, 2 and 3, 4. Complex 1 is a uninodal 3-connected rare 2-fold interpenetrating ZnSc net with a Point (Schlafli) symbol of (103) while 2 is a one-dimensional (1D) ladder structure. Compound 3 features a two-dimensional (2D) honeycomb network with typical 63-hcb topology, while 4 is 2D network with (4, 4) sql topology based on binuclear CuII subunits. The non-covalent bonding interactions such as hydrogen bonds, π···π stacking and C-H···π exist in complexes 1-4, which contributes to stabilize crystal structure and extend the low-dimensional entities into high-dimensional frameworks. And the photoluminescent property of 1 and 2 and gas sorption property of 4 have been investigated.

  12. Formation and structure of the first metal complexes comprising amidino­guanidinate ligands

    PubMed Central

    Sroor, Farid M.; Liebing, Phil; Hrib, Cristian G.; Gräsing, Daniel; Hilfert, Liane; Edelmann, Frank T.

    2016-01-01

    The first metal complexes comprising amidino­guanidinate ligands have been prepared and structurally characterized, namely bis­[μ-N,N′,N′′,N′′′-tetraisopropyl-1-(1-butyl­amidinato)guanidinato-κ3 N 1,N 2:N 2]bis­[(tetra­hydro­furan)lithium], [Li2(C18H37N4)2(C4H8O)2], (2), and [bis­(tetra­hydro­furan)­lithium]-di-μ-chlorido-{(N,N′-di­cyclo­hexyl-1-butyl­amidinato-κ2 N 1,N 2)[N,N′,N′′,N′′′-tetra­cyclo­hexyl-1-(1-butyl­amidinato)guanidinato-κ2 N 1,N 2]holmate(III)}, [HoLiCl2(C4H8O)2(C17H31N2)(C30H53N4)], (3). The novel lithium amidino­guanidinate precursors Li[nBuC(=NR)(NR)C(NR)2] [1: R = Cy (cyclo­hex­yl), 2: R = iPr) were obtained by treatment of N,N′-diorganocarbodi­imides, R—N=C=N—R (R = iPr, Cy), with 0.5 equivalents of n-butyl­lithium under well-defined reaction conditions. An X-ray diffraction study of 2 revealed a ladder-type dimeric structure in the solid state. Reaction of anhydrous holmium(III) chloride with in situ-prepared 2 afforded the unexpected holmium ‘ate’ complex [nBuC(=NCy)(NCy)C(NCy)2]Ho[nBuC(NCy)2](μ-Cl)2Li(THF)2 (3) in 71% yield. An X-ray crystal structure determination of 3 showed that this complex contains both an amidinate ligand and the new amidino­guanidinate ligand. PMID:27840700

  13. Formation and structure of the first metal complexes comprising amidino-guanidinate ligands.

    PubMed

    Sroor, Farid M; Liebing, Phil; Hrib, Cristian G; Gräsing, Daniel; Hilfert, Liane; Edelmann, Frank T

    2016-11-01

    The first metal complexes comprising amidino-guanidinate ligands have been prepared and structurally characterized, namely bis-[μ-N,N',N'',N'''-tetraisopropyl-1-(1-butyl-amidinato)guanidinato-κ(3)N(1),N(2):N(2)]bis-[(tetra-hydro-furan)lithium], [Li2(C18H37N4)2(C4H8O)2], (2), and [bis-(tetra-hydro-furan)-lithium]-di-μ-chlorido-{(N,N'-di-cyclo-hexyl-1-butyl-amidinato-κ(2)N(1),N(2))[N,N',N'',N'''-tetra-cyclo-hexyl-1-(1-butyl-amidinato)guanidinato-κ(2)N(1),N(2)]holmate(III)}, [HoLiCl2(C4H8O)2(C17H31N2)(C30H53N4)], (3). The novel lithium amidino-guanidinate precursors Li[ (n) BuC(=NR)(NR)C(NR)2] [1: R = Cy (cyclo-hex-yl), 2: R = (i) Pr) were obtained by treatment of N,N'-diorganocarbodi-imides, R-N=C=N-R (R = (i) Pr, Cy), with 0.5 equivalents of n-butyl-lithium under well-defined reaction conditions. An X-ray diffraction study of 2 revealed a ladder-type dimeric structure in the solid state. Reaction of anhydrous holmium(III) chloride with in situ-prepared 2 afforded the unexpected holmium 'ate' complex [ (n) BuC(=NCy)(NCy)C(NCy)2]Ho[ (n) BuC(NCy)2](μ-Cl)2Li(THF)2 (3) in 71% yield. An X-ray crystal structure determination of 3 showed that this complex contains both an amidinate ligand and the new amidino-guanidinate ligand.

  14. Recognition forces in ligand-protein complexes: blending information from different sources.

    PubMed

    Ermondi, Giuseppe; Caron, Giulia

    2006-12-15

    A variety of ligands interact with proteins in many biological processes; shape complementarity, electrostatic forces and hydrophobicity are the main factors governing these interactions. Although this is accepted by the scientific community, confusion about the significance of certain terms (e.g. hydrophobicity, salt bridge) and the difficulty of discussing the balance of acting forces rather than their single contributions, are two of the main problems encountered by researchers working in the field. These difficulties are sometimes enhanced by the unskilled use of informatics tools, which give great help in understanding the topic (especially from the visual standpoint), but only if used critically. After explaining some general chemical concepts, the commentary discusses the main forces governing ligand-protein interactions, focusing on those generating confusion among scientists with different backgrounds. Three examples of ligand-protein interactions are then discussed to illustrate the advantages and drawbacks of some in silico tools, highlighting the main interactions responsible for complex formation. The same examples are used to point out the limits in separating forces that are mandatory for occurrence of a given interaction and additional forces.

  15. Photophysics of self-assembled zinc porphyrin-bidentate diamine ligand complexes.

    PubMed

    Danger, Brook R; Bedient, Krysta; Maiti, Manisankar; Burgess, Ian J; Steer, Ronald P

    2010-10-21

    The effects of complexation--by bidentate nitrogen-containing ligands such as pyrazine and 4,4'-bipyridine commonly used for porphyrin self-assembly--on the photophysics of the model metalloporphyrin, ZnTPP, are reported. Ligation to form the 5-coordinate species introduces an intramolecular charge transfer (ITC) state that, depending on the oxidation and reduction potentials of the electron donor and acceptor, can become involved in the excited state relaxation processes. For ZnTPP, ligation with pyridine has little effect on excited state relaxation following either Q-band or Soret band excitation. However, coordination of ZnTPP with pyrazine and bipyridine causes the S(2) (Soret) state of the ligated species to decay almost exclusively via an S(2)-ICT-S(1) pathway, while affecting the S(1) decay route only slightly. In these 5-coordinate species the S(2)-ICT-S(1) decay route is ultrafast and nearly quantitative. Literature redox data for other bidentate ligands such as DABCO and multidentate ligands commonly used for pophyrin assembly suggest that the ITC states introduced by them could also modify the excited state relaxation dynamics of a wide variety of multiporphyrin arrays.

  16. Guidelines for the successful generation of protein–ligand complex crystals

    PubMed Central

    Müller, Ilka

    2017-01-01

    With continuous technical improvements at synchrotron facilities, data-collection rates have increased dramatically. This makes it possible to collect diffraction data for hundreds of protein–ligand complexes within a day, provided that a suitable crystal system is at hand. However, developing a suitable crystal system can prove challenging, exceeding the timescale of data collection by several orders of magnitude. Firstly, a useful crystallization construct of the protein of interest needs to be chosen and its expression and purification optimized, before screening for suitable crystallization and soaking conditions can start. This article reviews recent publications analysing large data sets of crystallization trials, with the aim of identifying factors that do or do not make a good crystallization construct, and gives guidance in the design of an expression construct. It provides an overview of common protein-expression systems, addresses how ligand binding can be both help and hindrance for protein purification, and describes ligand co-crystallization and soaking, with an emphasis on troubleshooting. PMID:28177304

  17. Lead Halide Perovskites and Other Metal Halide Complexes As Inorganic Capping Ligands for Colloidal Nanocrystals

    PubMed Central

    2014-01-01

    Lead halide perovskites (CH3NH3PbX3, where X = I, Br) and other metal halide complexes (MXn, where M = Pb, Cd, In, Zn, Fe, Bi, Sb) have been studied as inorganic capping ligands for colloidal nanocrystals. We present the methodology for the surface functionalization via ligand-exchange reactions and the effect on the optical properties of IV–VI, II–VI, and III–V semiconductor nanocrystals. In particular, we show that the Lewis acid–base properties of the solvents, in addition to the solvent dielectric constant, must be properly adjusted for successful ligand exchange and colloidal stability. High luminescence quantum efficiencies of 20–30% for near-infrared emitting CH3NH3PbI3-functionalized PbS nanocrystals and 50–65% for red-emitting CH3NH3CdBr3- and (NH4)2ZnCl4-capped CdSe/CdS nanocrystals point to highly efficient electronic passivation of the nanocrystal surface. PMID:24746226

  18. Transition metal complexes of the pyridylphosphine ligand o-C6H4(CH2PPy2)2.

    PubMed

    Vaughan, Teresa F; Spencer, John L

    2016-11-14

    The synthesis and coordination behaviour of the pyridylphosphine ligand o-C6H4(CH2PPy2)2 (Py = 2-pyridyl) are reported. The phosphine selenide was synthesised and the (1)JPSe value of 738 Hz indicates the phosphorus atoms have a similar basicity to PPh3. The ligand reacts with platinum(ii) and palladium(ii) complexes to give simple diphosphine complexes of the type [MX2(PP)] (M = Pt, X = Cl, I, Me, Et; M = Pd, X = Cl, Me). When the ligand is reacted with chloromethyl(hexa-1,5-diene)platinum the [PtClMe(PP)] complex results, from which a series of unsymmetrical platinum complexes of the type [PtMeL(PP)](+) (L = PPh3, PTA, SEt2 and pyridine) can be made. This enabled the comparison of the cis and trans influences of a range of ligands. The following cis influence series was compiled based on (31)P NMR data of these complexes: Py ≈ Cl > SEt2 > PTA > PPh3. Reaction of [PtClMe(PP)] with NaCH(SO2CF3)2 and carbon monoxide slowly formed an acyl complex, where the CO had inserted in the Pt-Me bond. Attempts to achieve P,P,N chelation, through abstracting the chloride ligand in [PtClMe(PP)], were unsuccessful. When the ligand reacted with platinum(0), palladium(0) and silver(i) complexes the bis-chelated complexes [M(PP)2] (M = Pt, Pd) and [Ag(PP)2](+) were formed respectively. Reaction of the ligand with [Ir(COD)(μ-Cl)]2 formed [IrCl(PP)(COD)]. When the chloride ligand was abstracted, the pyridyl nitrogens were able to interact with the iridium centre facilitating the isomerisation of the 1,2,5,6-η(4)-COD ligand to a 1-κ-4,5,6-η(3)-C8H12 ligand. The X-ray crystal structure of [Ir(1-κ-4,5,6-η(3)-C8H12)(PPN)]BPh4 confirmed the P,P,N chelation mode of the ligand. In solution, this complex displayed hemilabile behaviour, with the pyridyl nitrogens exchanging at a rate faster than the NMR time scale at room temperature.

  19. Metalloligands containing aminofulvene-aldiminate (AFA) ligands and their bimetallic complexes.

    PubMed

    Bailey, Philip J; Rahman, Mahmudur; Parsons, Simon; Azhar, Muhammad R; White, Fraser J

    2013-02-28

    A simple and convenient route to η(5)-coordinated Ru and Rh aminofulvene-aldiminate (AFA) complexes is described. The metalloligands [Cp*Ru{η(5)-(Ph(2)AFAH)}][BF(4)] (3), [Cp*Ru{η(5)-(benzyl(2)AFAH)}][OTf] (7), [Cp*Rh{η(5)-(Cy(2)AFA)H}][BF(4)](2) (8) and [Cp*Rh{η(5)-(Cy(2)AFA)}][BF(4)] (9) have been synthesised and characterised. The basicity of 9 has been found to be significantly less than its neutral analogue and thus eliminates the need for a deprotonation step to ligate to a second metal in the κ(2)-N,N'-coordination mode. The reaction of 9 with a palladium precursor provides a mixed-metal complex [Cp*Rh(η(5)/κ(2)-Cy(2)AFA)PdCl(2)][BF(4)] (12). Cyclic voltammetry studies of the Ph(2)AFAH ligand shows an irreversible one electron oxidation peak at +1.0 V (vs. Fc/Fc(+)). Complex 3 shows an irreversible oxidation at +1.5 V and a reduction peak at -1.0 V. The oxidation of 3 occurs on the AFA ligand backbone whereas the structurally analogous neutral 1,2-bis(imidoyl)pentamethyl-ruthenocene shows reversible oxidation at the Ru center.

  20. Uranyl Sequestration: Synthesis and Structural Characterization of Uranyl Complexes with a Tetradentate Methylterephthalamide Ligand

    SciTech Connect

    Ni, Chengbao; Shuh, David; Raymond, Kenneth

    2011-03-07

    Uranyl complexes of a bis(methylterephthalamide) ligand (LH{sub 4}) have been synthesized and characterized by X-ray crystallography. The structure is an unexpected [Me{sub 4}N]{sub 8}[L(UO{sub 2})]{sub 4} tetramer, formed via coordination of the two MeTAM units of L to two uranyl moieties. Addition of KOH to the tetramer gave the corresponding monomeric uranyl methoxide species [Me{sub 4}N]K{sub 2}[LUO{sub 2}(OMe)].

  1. Asymmetric cyclopropanation of olefins catalysed by Cu(I) complexes of chiral pyridine-containing macrocyclic ligands (Pc-L*).

    PubMed

    Castano, Brunilde; Guidone, Stefano; Gallo, Emma; Ragaini, Fabio; Casati, Nicola; Macchi, Piero; Sisti, Massimo; Caselli, Alessandro

    2013-02-21

    The synthesis and characterisation of copper(I) complexes of chiral pyridine-containing macrocyclic ligands (Pc-L*) and their use as catalysts in asymmetric cyclopropanation reactions are reported. All ligands and metal complexes were fully characterised, including crystal structures of some species determined by X-ray diffraction on single crystals. This allowed characterising the very different conformations of the macrocycles which could be induced by different substituents or by metal complexation. The strategy adopted for the ligand synthesis is very flexible allowing several structural modifications. A small library of macrocyclic ligands possessing the same donor properties but with either C(1) or C(2) symmetry was synthesized. Cyclopropane products with both aromatic and aliphatic olefins were obtained in good yields and enantiomeric excesses up to 99%.

  2. Cytotoxic behavior and spectroscopic characterization of metal complexes of ethylacetoacetate bis(thiosemicarbazone) ligand

    NASA Astrophysics Data System (ADS)

    El-Tabl, Abdou Saad; El-wahed, Moshira Mohamed Abd; Rezk, Ahmed Mahmoud Salah Mahmoud

    2014-01-01

    Reaction of Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) ion with 2,4-dihydrazino-thioamido-1-ethoxybutane led to the formation of mono and binuclear complexes. These complexes have been characterized by elemental analyses, IR, UV-Vis spectra, magnetic moments, molar conductances, 1H NMR and mass spectra (ligand and its Zn(II) complex), thermal analyses (DTA and TGA) and ESR measurements. The IR data suggest the involvement of sulfur and azomethane nitrogen atoms in coordination to the central metal ion .The Molar conductances of the complexes in DMF are commensurate with their non-ionic character. The ESR spectra of Cu(II) complexes show axial type symmetry (d(x2-y2)) ground state with covalent bond character. On the basis of spectral studies, octahedral or tetrahedral geometry has been assigned to the metal complexes. Complexes have been tested invitro against tumor cells and number of microorganisms in order to assess their antitumor and antimicrobial properties.

  3. Ligand-based reduction of CO(2) to CO mediated by an anionic niobium nitride complex.

    PubMed

    Silvia, Jared S; Cummins, Christopher C

    2010-02-24

    The terminal nitride anion complex [Na][N[triple bond]Nb(N[(t)Bu]Ar)(3)] ([Na][1], Ar = 3,5-Me(2)C(6)H(3)) reacts quantitatively with CO(2) to give the carbamate complex [Na][O(2)CN[triple bond]Nb(N[(t)Bu]Ar)(3)] ([Na][O(2)C-1]). The structure of [Na][O(2)C-1] as the bis-12-crown-4 solvate, as determined by X-ray crystallography, displays a unique N-bound carbamate ligand without any metal-oxygen interactions. When treated with organic acid anhydrides or acid chlorides, complex [Na][O(2)C-1] reacts via salt elimination to give the five-coordinate complexes (RC(O)O)(OCN)Nb(N[(t)Bu]Ar)(3) (R-2, R = Me, (t)Bu, F(3)C). We show that complexes R-2 yield the starting complex [Na][1] with concomitant release of CO upon two-electron reduction. This series of reactions constitutes a closed cycle for the conversion of CO(2) to CO mediated by a terminal nitride anion complex.

  4. Nucleophilic ring opening of bridging thietane ligands in trirhenium carbonyl cluster complexes

    SciTech Connect

    Adams, R.D.; Cortopassi, J.E.; Falloon, S.B.

    1992-11-01

    The reactions of 3,3-dimethylthietane, SCH{sub 2}CMe{sub 2}CH{sub 2} (3,3-DMT), and thietane, SCH{sub 2}CH{sub 2}CH{sub 2}, with Re{sub 3}(CO){sub 10}[{mu}-SCH{sub 2}CH{sub 2}CH{sub 2}]({mu}-H){sub 3}, 2b. Compound 2a was characterized crystallographically and was found to consist of a trirhenium cluster with three bridging hydride ligands and a bridging thietane ligand coordinated through its sulfur atom. 2a and 2b react with halide ions by ring-opening additions to the 3,3-DMT ligand to yield the complex anions [Re{sub 3}(CO){sub 10}({mu}-SCH{sub 2}CMe{sub 2}CH{sub 2}x)({mu}-h){sub 3}]{sup -} 3A-6A, X = F (71%), Cl(71%), Br(84%), I(87%) and [Re{sub 3}(CO){sub 10}({mu}-SCH{sub 2}CH{sub 2}CH{sub 2}Cl)({mu}-H){sub 3}]{sup -}, 4b (67%). Similarly, addition of NMe{sub 3} to 2a and 2b yielded the ring-opened zwitterions Re{sub 3}(CO){sub 10}({mu}-SCH{sub 2}CMe{sub 2}CH{sub 2}NMe{sub 3})({mu}-H){sub 3}, 7 a crystographically. They are zwitterions positively charged at the nitrogen atoms and negatively charged on the trirhenium clusters. Complex 7b was also obtained in a 48% yield from the reaction of Re{sub 3}(C){sub 12}({mu}-H){sub 3} with Me{sub 3}NO in the presence of thietane, but the corresponding reaction using 3,3-DMT yielded only 2a and Re{sub 3}(CO){sub 11}(SCH{sub 2}CMe{sub 2}CH{sub 2})({mu}-H){sub 3}, 8. Attempts to obtain a ring-opening addition to 2a by reaction with PMe{sub 2}Ph yielded only Re{sub 3}(CO){sub 10}(PMe{sub 2}PH){sub 2}({mu}-H){sub 3} by ligand substitution. Attempts to obtain ring opening addition to 8 by reaction with I{sup -} yielded only [Re{sub 3}(CO){sub 11}I({mu}-H){sub 3}]{sup -} by ligand substitution. 20 refs., 3 figs., 10 tabs.

  5. Mixed Ligand Complexes of N-Methyl-N-phenyl Dithiocarbamate: Synthesis, Characterisation, Antifungal Activity, and Solvent Extraction Studies of the Ligand

    PubMed Central

    Ekennia, Anthony C.; Onwudiwe, Damian C.; Ume, Cyril; Ebenso, Eno E.

    2015-01-01

    A series of mixed ligand dithiocarbamate complexes with a general formula [ML2(py)2], where M = Mn(II), Co(II), Ni(II), and Cu(II), py = pyridine, and L = N-methyl-N-phenyl dithiocarbamate have been prepared and characterised by elemental analysis, FTIR and Uv spectroscopy, magnetic moment, and thermogravimetric and conductance analysis. The infrared spectra showed that symmetrical bidentate coordination occurred with the dithiocarbamate moiety through the sulfur atoms, while neutral monodentate coordination occurred through the nitrogen atom for the pyridine molecule in the complexes. The electronic spectra, elemental analysis, and magnetic moment results proved that the complexes adopted octahedral geometry. The conductance measurement showed that the complexes are nonelectrolytes proving their nonionic nature. The compounds were screened for three human pathogenic fungi: Aspergillus flavus, Aspergillus niger, and Candida albicans. The cobalt complex showed the best antifungal activity among the test compounds. Liquid-liquid extractive abilities of the ligand towards copper and nickel ions in different solvent media were investigated. The ligand showed a strong binding affinity towards the metals ions with an extractive efficiency of about 99%. PMID:26543441

  6. Benzimidazole-functionalized ancillary ligands for heteroleptic Ru(II) complexes: synthesis, characterization and dye-sensitized solar cell applications.

    PubMed

    Jella, Tejaswi; Srikanth, Malladi; Bolligarla, Rambabu; Soujanya, Yarasi; Singh, Surya Prakash; Giribabu, Lingamallu

    2015-09-07

    We have designed and synthesized heteroleptic Ru(ii) complexes with a pyridine-benzimidazole ligand (PYBI) for dye-sensitized solar cell (DSSC) applications. The PYBI ligand has major advantages by having the flexibility to introduce appropriate substituents at the four readily available positions through molecular engineering () compared to other ancillary bipyridyl-based ligands. We have substituted position A of the PYBI ligand with either electron-releasing triphenylamine () or pyrene (). We have also introduced 2-hexylthiophene at position A and 3,5-di tert-butyl phenyl group at position B of the PYBI ligand (). All three heteroleptic Ru(ii) complexes have been characterized by mass spectrometry, (1)H NMR, and absorption and emission spectroscopies as well as electrochemical methods. The absorption spectrum of complex is red-shifted and the emission spectrum is blue-shifted, when compared to the standard sensitizer. Testing of these newly designed heteroleptic Ru(ii) sensitizers has revealed that complex exhibits an efficiency of 7.88% using an I(-)/I3(-) redox electrolyte. Experimental observations corroborated by computational calculations have elucidated the high efficiency of complex , primarily due to the fact that the substituents at position A are more influential than those at position of B of the PYBI ligand.

  7. Synthesis and characterization of Pd(II)-methyl complexes with N-heterocyclic carbene-amine ligands.

    PubMed

    Warsink, Stefan; de Boer, Sandra Y; Jongens, Lianne M; Fu, Ching-Feng; Liu, Shiuh-Tzung; Chen, Jwu-Ting; Lutz, Martin; Spek, Anthony L; Elsevier, Cornelis J

    2009-09-21

    A number of palladium(ii) complexes with a heteroditopic NHC-amine ligand and their precursor silver(i) carbene complexes have been efficiently prepared and their structural features have been investigated. The heteroditopic coordination of this ligand class was unequivocally shown by NMR-spectroscopy and X-ray crystallographic analysis. The neutral and cationic cis-methyl-palladium(NHC) complexes are not prone to reductive elimination, which is normally a major degenerative pathway for this type of complex. In contrast, under carbon monoxide atmosphere rapid reductive elimination of the acyl-imidazolium salt was observed.

  8. Determination of the solubility of Np(IV), Pu(III) - (VI),Am(III) - (VI), and Te(IV), (V) hydroxo compounds in 0.5 - 14 M NaOH solutions

    SciTech Connect

    Delegard, C.H.

    1996-09-24

    The solubilities of Am(III), Np(IV), Pu(IV), Tc(IV), Np(V), Pu(V), Am(V), and Tc(V) hydroxo compounds were studied in 0.5 to 14 M NaOH solutions at 25{+-}2 {degrees}C. The effects of fluoride, phosphate, carbonate, oxalate, and some other organic complexing agents on the solubilities of Np(IV), Pu(IV), and TC(IV) hydroxides were investigated at 1.0 and 4.0 M NAOH. Some predictions were made on the dissolved (I.V) and (V) species present in alkali solutions.

  9. Reactions of ruthenium complexes having pyridyl-containing ligands, 2-pyridinecarboxylato and 2,2'-bipyridine, with an azide ion: formation of nitrido-bridged diruthenium complexes.

    PubMed

    Matsumura, Sayuri; Shikano, Kazunori; Oi, Takao; Suzuki, Noriyuki; Nagao, Hirotaka

    2008-10-20

    Reactions of ruthenium complexes having 2-pyridinecarboxylato and 2,2'-bipyridine ligands with sodium azide in alcohol afforded nitrido-bridged diruthenium complexes, [{Ru(OR)(pyca)(bpy)}2(mu-N)](+) (R = CH3, C2H5). Diruthenium complexes showed diamagnetic properties, a linear Ru-N-Ru coordination configuration, and two irreversible oxidation waves and two reversible reduction waves.

  10. Effect of complexing ligands on the adsorption of Cu(II) onto the silica gel surface. 1: Adsorption of ligands

    SciTech Connect

    Park, Y.J.; Jung, K.H.; Park, K.K.; Park, K.K.

    1995-04-01

    The adsorption of several ligands on silica gel was investigated in aqueous solutions. The ligands used were 2,2{prime},6{prime},2{double_prime}-terpyridine, pyridine, 3,4-lutidine, 2-aminomethyl pyridine, 2-pyridine methanol, picolinic acid, salicylic acid, and 5-sulfosalicylic acid. The adsorption behaviors of these ligands were interpreted by means of three adsorption modes: ion exchange, hydrogen bonding, and hydrophobic interaction. For 2,2{prime},6{prime},2{double_prime}-terpyridine, pyridine, and 3,4-lutidine, the adsorption maxima appeared near their respective pK{sub a} values and were found to be due mainly to ion exchange, whereas the adsorption of these ligands at low pH was strongly attributed to hydrophobic interaction. The adsorption of 2-aminomethyl pyridine increased with increasing pH over the entire pH range investigated and was due mainly to ion exchange. Picolinic acid was adsorbed mainly by hydrogen bonding either via pyridine N atoms at low pH or via carboxylic O atoms at high pH. 2-Pyridine methanol was adsorbed by hydrophobic interaction at low pH and by hydrogen bonding at high pH. The adsorptions of salicylic and 5-sulfosalicylic acid were very small over the entire pH ranges investigated. For the adsorption mechanism, the Stern model was used to fit adsorption data.

  11. Cyano-decorated ligands: a powerful alternative to fluorination for tuning the photochemical properties of cyclometalated Ir(iii) complexes.

    PubMed

    Mills, Isaac N; Kagalwala, Husain N; Bernhard, Stefan

    2016-06-21

    A new cyclometalating ligand, featuring nitrile moieties to enhance the photophysical and consequently photocatalytic properties of bis-cyclometalated Ir(iii) complexes, was synthesized. Nitrile moieties were selected to replace expensive and environmentally problematic fluoride moieties commonly employed for synthetic tuning of chromophores. Two new chromophores bearing the new nitrile-decorated ligand were synthesized with strong electron-donating and electron-withdrawing ancillary ligands to probe extremes of the complexes' tunability. These complexes possessed rich and drastically different electrochemical and photophysical properties. One chromophore possessed a particularly long lifetime of approximately 8 μs; it was also a remarkably efficient triplet emitter with a quantum yield of 63%. The complexes were finally assessed as photosensitizers of water reduction with Pt colloids, where both complexes produced hydrogen with optimized conditions reaching 2000 and 1400 turnovers.

  12. Synthesis, characterization and biological activity of ferrocene-based Schiff base ligands and their metal (II) complexes

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Ting; Lian, Gui-Dan; Yin, Da-Wei; Su, Bao-Jun

    Metal (II) complexes derived from S-benzyl-N-(1-ferrocenyl-3-(4-methylbenzene)acrylketone) dithiocarbazate; HL1, S-benzyl-N-(1-ferrocenyl-3-(4-chlorobenzene)acrylketone)dithiocarbazate; HL2, all the compounds were characterized using various spectroscopic techniques. The molar conductance data revealed that the chelates were non-electrolytes. IR spectra showed that the Schiff bases were coordinated to the metal ions in a bidentate manner with N, S donor sites. The ligands and their metal complexes have been screened for in vitro antibacterial, antifungal properties. The result of these studies have revealed that zinc (II) complexes 6 and 13 of both the ligands and copper (II) complexes 9 of the HL2 were observed to be the most active against all bacterial strains, antifungal activity was overall enhanced after complexation of the ligands.

  13. Synthesis, characterization and biological activity of ferrocene-based Schiff base ligands and their metal (II) complexes.

    PubMed

    Liu, Yu-Ting; Lian, Gui-Dan; Yin, Da-Wei; Su, Bao-Jun

    2013-01-01

    Metal (II) complexes derived from S-benzyl-N-(1-ferrocenyl-3-(4-methylbenzene)acrylketone) dithiocarbazate; HL(1), S-benzyl-N-(1-ferrocenyl-3-(4-chlorobenzene)acrylketone)dithiocarbazate; HL(2), all the compounds were characterized using various spectroscopic techniques. The molar conductance data revealed that the chelates were non-electrolytes. IR spectra showed that the Schiff bases were coordinated to the metal ions in a bidentate manner with N, S donor sites. The ligands and their metal complexes have been screened for in vitro antibacterial, antifungal properties. The result of these studies have revealed that zinc (II) complexes 6 and 13 of both the ligands and copper (II) complexes 9 of the HL(2) were observed to be the most active against all bacterial strains, antifungal activity was overall enhanced after complexation of the ligands.

  14. Synthesis, structure, and reactivity of lanthanide complexes incorporating indolyl ligands in novel hapticities.

    PubMed

    Feng, Zhijun; Zhu, Xiancui; Wang, Shaoyin; Wang, Shaowu; Zhou, Shuangliu; Wei, Yun; Zhang, Guangchao; Deng, Baojia; Mu, Xiaolong

    2013-08-19

    The chemistry of interactions of 2-(2,6-diisopropylphenylaminomethylene)indole ligand (1) with europium and ytterbium amides is described. Reaction of 2-(2,6-diisopropylphenylaminomethylene)indole 2-(2,6-i-Pr2C6H3NHCH2)C8H5NH (1) with europium amide [(Me3Si)2N]3Eu(III)(μ-Cl)Li(THF)3 afforded a novel europium(II) complex formulated as {[μ-η(6):η(1):η(1)-2-(2,6-i-Pr2C6H3N═CH)C8H5N]Eu[2-(2,6-i-Pr2C6H3N═CH)C8H5N]}2 (2), having a bridged indolyl ligand in the novel μ-η(6):η(1):η(1) hapticities with the reduction of europium(III) to europium(II) and the oxidation of amino to imino group. Reaction of 2-(2,6-diisopropylphenylaminomethylene)indole 2-(2,6-i-Pr2C6H3NHCH2)C8H5NH (1) with ytterbium(III) amide [(Me3Si)2N]3Yb(III)(μ-Cl)Li(THF)3 produced the only deprotonated ytterbium(III) complex formulated as [2-(2,6-i-Pr2C6H3NCH2)C8H5N]Yb[N(SiMe3)2](THF)2 (3), having an η(1) hapticity indolyl ligand. Reaction of 2 with formamidine [(2,6-Me2C6H3)NCHNH(C6H3Me2-2,6)] produced {[μ-η(3):η(1):η(1)-2-(2,6-i-Pr2C6H3N═CH)C8H5N]Eu[(2,6-Me2C6H3)NCHN(C6H3Me2-2,6)](THF)}2 (4), which has a bridged indolyl ligand in the novel μ-η(3):η(1):η(1) hapticities, whereas the reaction of 2 with the more sterically bulky formamidine [(2,6-i-Pr2C6H3)NCHNH(C6H3i-Pr2-2,6)] afforded complex {[μ-η(2):η(1):η(1)-2-(2,6-i-Pr2C6H3N═CH)C8H5N]Eu[(2,6-i-Pr2C6H3)N═CHN(C6H3i-Pr2-2,6)](THF)}2 (5), having the indolyl ligand in the novel μ-η(2):η(1):η(1) hapticities. The results represent the first example of organometallic complexes having indolyl ligands in the novel μ-η(6):η(1):η(1), μ-η(3):η(1):η(1), and μ-η(2):η(1):η(1) bonding modes with metal.

  15. Zinc(II) Thiosemicarbazone Complex As a Ligand Towards Some Transition Metal Ions: Synthesis, Spectroscopic and Antimicrobial Studies.

    PubMed

    Khalil, Saied M E; Shebl, Magdy; Al-Gohani, Faizah S

    2010-09-01

    Heterobinuclear complexes have been synthesized by stepwise reactions using the mononuclear complex, [Zn(Tsc)2] • H2O, as a complex ligand towards the metal ions, vanadyl(IV), manganese(II), iron(III), cobalt(II), nickel(II) and copper(II). The complex ligand was synthesized by the reaction of zinc acetate dihydrate with salicylaldehyde followed by the condensation with thiosemicarbazide. The structures of the complex ligand and the prepared complexes were elucidated by elemental analyses, IR, electronic, mass, 1H and 13C NMR spectra as well as molar conductivity and magnetic susceptibility measurements. All the complexes exhibited octahedral geometrical arrangements formulated as [Zn(Tsc)2VO(SO4)(H2O)], [Zn(Tsc)2MCl2(H2O)2] (M = Mn, Fe and Co) and [Zn(Tsc)2Fe(ox)Cl2] except the nickel(II) and copper(II) complexes, [Zn(Tsc)2CuCl(H2O)], [Zn(Tsc)2NiCl2], which have square planar geometries. The complex ligand and some of its heterobinuclear complexes showed antibacterial activity against the sensitive organisms Staphylococcus aureus as Gram-positive bacteria, Escherichia coli as Gram-negative bacteria and antifungal activity against the fungi Candida albicans and Aspergillus flavus.

  16. Relative strengths of axial and equatorial bonds and site preferences for ligand substitution on σ complexes

    NASA Astrophysics Data System (ADS)

    Su, Ming-Der

    An analytical LCAO MO perturbation approach has been developed for treating the electronic structure and some properties of Y-shaped EL3 compounds where E is a main group element A or a transition metal M. Three problems have been considered: (i) the relative strengths of E-L(1,2) (1 and 2 stand for the paired ligands) and E-L(3) (3 stands for the unique ligand) bonds; (ii) the mutual influence of ligands in substituted complexes EL2L'; (iii) the site preference of the stronger donor (or acceptor) of substituents L', L''. Ratios of overlap populations T=NE-L(3)/NE-L(1) were estimated for ns, np and (n-1)d contributions. For 6-10 valence electron AL3 we found T(s)>1, T(p)>1. These contributions all reinforce to make the A-L(3) bond relatively stronger than A-L(1,2) bonds. The ML3 d0-d8 case was also examined and it was found that T(s+p+d)>1, while the T(p) contribution dominates in ML3 (d10) complexes to make M-L(3)>M-L(1,2). The perturbing influence on ligand σ orbital energies δα'=α(L')-α(L), where δα'>0(<0) corresponds to a better donor (acceptor) substituent L', and all changes in overlap populations of different E-L bonds, δN(E-L)/δα', were obtained in terms of the ns, np and (n-1)d contributions. In addition, there are three kinds of substitution type: sub-L(3)-cis-L(1), sub-L(1)-cis-L(2) and sub-L(1)-cis-L(3) effects. It was found that both the nature of E, L', L and steric factors may play important roles in determining the relative bond strengthening of E-L(1,2) and E-L(3) for unsubstituted and substituted EL3 compounds. Y-shaped substituents were examined using first-order perturbation theory, with the finding that the most electronegative atom prefers to substitute at the L(3) site in AL3 and d0-d10 ML3 complexes. The role of π bonding effects is briefly discussed. The results obtained agree with the available experimental and computational data and permit a number of predictions to be made.

  17. Octanuclear and nonanuclear supramolecular copper(II) complexes with linear "tritopic" ligands: structural and magnetic studies.

    PubMed

    Milway, Victoria A; Niel, Virginie; Abedin, Tareque S M; Xu, Zhiqiang; Thompson, Laurence K; Grove, Hilde; Miller, David O; Parsons, Stewart R

    2004-03-22

    The structures and magnetic properties of self-assembled copper(II) clusters and grids with the "tritopic" ligands 2poap (a), Cl2poap (b), m2poap (c), Cl2pomp (d), and 2pomp (e) are described [ligands derived by reaction of 4-R-2,6-pyridinedicarboxylic hydrazide (R = H, Cl, MeO) with 2-pyridinemethylimidate (a-c, respectively) or 2-acetylpyridine (d, R = Cl; e, R = H)]. Cl2poap and Cl2pomp self-assemble with Cu(NO(3))(2) to form octanuclear "pinwheel" cluster complexes [Cu(8)(Cl2poap-2H)(4)(NO(3))(8)].20H(2)O (1) and [Cu(8)(Cl2pomp-2H)(4)(NO(3))(8)].15H(2)O (2), built on a square [2 x 2] grid with four pendant copper arms, using "mild" reaction conditions. Similar reactions of Cl2pomp and 2pomp with Cu(ClO(4))(2) produce pinwheel clusters [Cu(8)(Cl2pomp-2H)(4)(H(2)O)(8)](ClO(4))(8).7H(2)O (3) and [Cu(8)(2pomp-2H)(4)(H(2)O)(8)](ClO(4))(8) (4), respectively. Heating a solution of 1 in MeOH/H(2)O produces a [3 x 3] nonanuclear square grid complex, [Cu(9)(Cl2poap-H)(3)(Cl2poap-2H)(3)](NO(3))(9).18H(2)O (5), which is also produced by direct reaction of the ligand and metal salt under similar conditions. Reaction of m2poap with Cu(NO(3))(2) produces only the [3 x 3] grid [Cu(9)(m2poap-H)(2)(m2poap-2H)(4)](NO(3))(8).17H(2)O (6) under similar conditions. Mixing the tritopic ligand 2poap with pyridine-2,6-dicarboxylic acid (picd) in the presence of Cu(NO(3))(2) produces a remarkable mixed ligand, nonanuclear grid complex [Cu(9)(2poap-H)(4)(picd-H)(3)(picd-2H)](NO(3))(9).9H(2)O (7), in which aromatic pi-stacking interactions are important in stabilizing the structure. Complexes 1-3 and 5-7 involve single oxygen atom (alkoxide) bridging connections between adjacent copper centers, while complex 4 has an unprecedented mixed micro-(N-N) and micro-O metal ion connectivity. Compound 1 (C(76)H(92)N(44)Cu(8)O(50)Cl(4)) crystallizes in the tetragonal system, space group I, with a = 21.645(1) A, c = 12.950(1) A, and Z = 2. Compound 2 (C(84)H(88)N(36)O(44)Cl(4)Cu(8)) crystallizes in

  18. Copper-, palladium-, and platinum-containing complexes of an asymmetric dinucleating ligand.

    PubMed

    Halvagar, Mohammad Reza; Neisen, Benjamin; Tolman, William B

    2013-01-18

    The coordination chemistry of an asymmetric dinucleating hexadentate ligand LH(2) comprising neutral alkyltriamine and potentially dianionic dicarboxamido-pyridyl donor sets with copper, palladium, and platinum has been explored. Monometallic, dicopper, and heterodinuclear Cu-Pd and -Pt complexes have been prepared and characterized, including by NMR, EPR, UV-vis, and IR spectroscopy and X-ray crystallography. For example, the monometallic complexes [(LH(2))MCl]X (M = Cu, X = OTf; M = Pd or Pt, X = Cl) were prepared, wherein the metal(II) ions are coordinated to the triamine portion and the pyridyldicarboxamide is unperturbed. Treatment of LH(2) with [MesCu](x) (Mes = mesityl) provided a monocopper(I) complex, again with the metal coordinated only to the trialkylamine donor set. Reaction of [(LH(2))CuCl]OTf with NaOMe resulted in an unexpected migration of the copper(II)-chloride fragment to the pyridyldicarboxamide site to yield Na[LCuCl], from which a dicopper complex LCu(2)Cl(2) and mixed-metal complexes LCu(Cl)M(Cl) (M = Pd, Pt) were prepared by addition of CuCl(2) or MCl(2), respectively. The heterodinuclear complexes were also prepared by addition of CuCl(2) to [(LH(2))MCl]Cl.

  19. Studies on Photocleavage, DNA Binding, Cytotoxicity, and Docking Studies of Ruthenium(II) Mixed Ligand Complexes.

    PubMed

    Kumar, Yata Praveen; Devi, C Shobha; Srishailam, A; Deepika, N; Kumar, V Ravi; Reddy, P Venkat; Nagasuryaprasad, K; Singh, Surya S; Nagababu, Penumaka; Satyanarayana, S

    2016-11-01

    This article describes the synthesis and characterization of three new Ru(II) polypyridyl complexes including [Ru(phen)2(dpphz)](2+) (1), [Ru(bpy)2(dpphz)](2+) (2) and [Ru(dmb)2(dpphz)](2+) (3) where dpphz = dipyrido[3,2-a:2',3'-c] phenazine-11-hydrazide, phen =1,10-phenanthroline, bpy = 2,2'-bipyridine and dmb = 4,4'-dimethyl2,2'-bipyridine. The binding behaviors of these complexes to calf thymus DNA (CT-DNA) were explored by spectroscopic titrations, viscosity measurements. Results suggest that these complexes can bind to CT-DNA through intercalation. However, their binding strength differs from each other; this may be attributed to difference in the ancillary ligand. The cytotoxicity of 1-3 was evaluated by MTT assay; results indicated that all complexes have significant dose dependent cytotoxicity with HeLa tumor cell line. All complexes exhibited efficient photocleavage of pBR322 DNA upon irradiation. The DNA binding ability of 1-3 was also studied by docking the complexes into B-DNA using docking program.

  20. Fluorescence-based strategies to investigate the structure and dynamics of aptamer-ligand complexes

    NASA Astrophysics Data System (ADS)

    Perez-Gonzalez, Cibran; Lafontaine, Daniel; Penedo, J.

    2016-08-01

    In addition to the helical nature of double-stranded DNA and RNA, single-stranded oligonucleotides can arrange themselves into tridimensional structures containing loops, bulges, internal hairpins and many other motifs. This ability has been used for more than two decades to generate oligonucleotide sequences, so-called aptamers, that can recognize certain metabolites with high affinity and specificity. More recently, this library of artificially-generated nucleic acid aptamers has been expanded by the discovery that naturally occurring RNA sequences control bacterial gene expression in response to cellular concentration of a given metabolite. The application of fluorescence methods has been pivotal to characterize in detail the structure and dynamics of these aptamer-ligand complexes in solution. This is mostly due to the intrinsic high sensitivity of fluorescence methods and also to significant improvements in solid-phase synthesis, post-synthetic labelling strategies and optical instrumentation that took place during the last decade. In this work, we provide an overview of the most widely employed fluorescence methods to investigate aptamer structure and function by describing the use of aptamers labelled with a single dye in fluorescence quenching and anisotropy assays. The use of 2-aminopurine as a fluorescent analog of adenine to monitor local changes in structure and fluorescence resonance energy transfer (FRET) to follow long-range conformational changes is also covered in detail. The last part of the review is dedicated to the application of fluorescence techniques based on single-molecule microscopy, a technique that has revolutionized our understanding of nucleic acid structure and dynamics. We finally describe the advantages of monitoring ligand-binding and conformational changes, one molecule at a time, to decipher the complexity of regulatory aptamers and summarize the emerging folding and ligand-binding models arising from the application of these

  1. Fluorescence-Based Strategies to Investigate the Structure and Dynamics of Aptamer-Ligand Complexes

    PubMed Central

    Perez-Gonzalez, Cibran; Lafontaine, Daniel A.; Penedo, J. Carlos

    2016-01-01

    In addition to the helical nature of double-stranded DNA and RNA, single-stranded oligonucleotides can arrange themselves into tridimensional structures containing loops, bulges, internal hairpins and many other motifs. This ability has been used for more than two decades to generate oligonucleotide sequences, so-called aptamers, that can recognize certain metabolites with high affinity and specificity. More recently, this library of artificially-generated nucleic acid aptamers has been expanded by the discovery that naturally occurring RNA sequences control bacterial gene expression in response to cellular concentration of a given metabolite. The application of fluorescence methods has been pivotal to characterize in detail the structure and dynamics of these aptamer-ligand complexes in solution. This is mostly due to the intrinsic high sensitivity of fluorescence methods and also to significant improvements in solid-phase synthesis, post-synthetic labeling strategies and optical instrumentation that took place during the last decade. In this work, we provide an overview of the most widely employed fluorescence methods to investigate aptamer structure and function by describing the use of aptamers labeled with a single dye in fluorescence quenching and anisotropy assays. The use of 2-aminopurine as a fluorescent analog of adenine to monitor local changes in structure and fluorescence resonance energy transfer (FRET) to follow long-range conformational changes is also covered in detail. The last part of the review is dedicated to the application of fluorescence techniques based on single-molecule microscopy, a technique that has revolutionized our understanding of nucleic acid structure and dynamics. We finally describe the advantages of monitoring ligand-binding and conformational changes, one molecule at a time, to decipher the complexity of regulatory aptamers and summarize the emerging folding and ligand-binding models arising from the application of these

  2. 1 : 1 complexes of silver(I) thiocyanate with (substituted) thiourea ligands.

    PubMed

    Bowmaker, Graham A; Pakawatchai, Chaveng; Saithong, Saowanit; Skelton, Brian W; White, Allan H

    2009-04-14

    Syntheses and single crystal X-ray structural characterizations, together with infrared spectroscopic studies, are recorded for 1 : 1 adducts of silver(I) thiocyanate with thiourea ('tu') and N,N'-diethylthiourea ('detu' identical with (EtNH)(2)CS). The two complexes display novel and different polymeric forms. That formed with tu is a double-stranded form, comprising a pair of Ag(mu-S-tu)Ag(mu-... strands linked by pairs of mu-SCN anions, the whole array having quasi-2 symmetry about the polymer axis. The detu adduct takes the ionic form [Ag(detu)2](infinity|infinity)[Ag(SCN)2](infinity|infinity), both cation and anion being one-dimensional polymers lying in parallel, and both of the form ...Ag(mu-S-L)2Ag(mu-... (L = SCN or detu), disposed about crystallographic 4 axes. Redeterminations of the structures of AgSCN : tu, etu (1 : 2) ('etu' = ethylenethiourea, (CH2NH)2CS)) with quasi-trigonal silver atom environments (the etu adduct the more closely so), are also recorded as a basis for an IR spectroscopic characterization of the [(NCS)Ag(S-xtu)2] array. A mechanochemical/infrared study of the AgSCN:etu (1 : 1) system showed that no 1 : 1 complex exists in this case, the product being a mixture of the 1 : 2 complex and a novel 1 : 0.5 complex. The latter complex was prepared both mechanochemically and from solution, and characterized by infrared spectroscopy. Diagnostic ligand and metal-ligand bands in the IR and far-IR spectra are assigned for all of the complexes studied and for AgSCN and are discussed in relation to the structures of the complexes. The double degeneracy of the delta(SCN) mode of the coordinated thiocyanate is lifted and the first overtone of this band at gains intensity in the IR in the 1 : 1 complexes, behaviour that is not observed for the terminal bonding mode that is present in the 1 : 2 complexes.

  3. Influence of ligand substitution on excited state structural dynamics in Cu(I) bisphenanthroline complexes.

    PubMed

    Lockard, Jenny V; Kabehie, Sanaz; Zink, Jeffrey I; Smolentsev, Grigory; Soldatov, Alexander; Chen, Lin X

    2010-11-18

    This study explores the influences of steric hindrance and excited state solvent ligation on the excited state dynamics of Cu(I) diimine complexes. Ultrafast excited state dynamics of Cu(I)bis(3,8-di(ethynyltrityl)-1,10-phenanthroline) [Cu(I)(detp)(2)](+) are measured using femtosecond transient absorption spectroscopy. The steady state electronic absorption spectra and measured lifetimes are compared to those of Cu(I)bis(1,10-phenanthroline), [Cu(I)(phen)(2)](+), and Cu(I)bis(2-9-dimethyl-1,10-phenanthroline), [Cu(I)(dmp)(2)](+), model complexes to determine the influence of different substitution patterns of the phenanthroline ligand on the structural dynamics associated with the metal to ligand charge transfer excited states. Similarities between the [Cu(I)(detp)(2)](+) and [Cu(I)(phen)(2)](+) excited state lifetimes were observed in both coordinating and noncoordinating solvents and attributed to the lack of steric hindrance from substitution at the 2- and 9-positions. The solution-phase X-ray absorption spectra of [Cu(I)(detp)(2)](+), [Cu(I)(phen)(2)](+), and [Cu(I)(dmp)(2)](+) are reported along with finite difference method calculations that are used to determine the degree of ground state dihedral angle distortion in solution and to account for the pre-edge features observed in the XANES region.

  4. Transition metal(II) complexes of vitamin B13 with monodentate orotate(1-) ligands

    NASA Astrophysics Data System (ADS)

    Köse, Dursun Ali; Zümreoglu-Karan, Birgül; Şahin, Onur; Büyükgüngör, Orhan

    2006-05-01

    The formation of bisorotate(1-) complexes of the type [M(C 5H 3N 2O 4) 2(H 2O) 4]· nH 2O (M=Co, Ni, Zn and n=2, 4) was achieved by the reaction of ammonium orotate with the corresponding M(II) ions. The crystal structure of [Co(C 5H 3N 2O 4) 2(H 2O) 4]·2H 2O was determined by single crystal X-ray diffraction analysis. Each Co(II) ion in the monomeric Co(C 5H 3N 2O 4) 2(H 2O) 4 units adapts a slightly distorted octahedral geometry comprised of two monodentate orotate anions and four H 2O ligands. Columnar packing of pyrimidine rings along the c axis leads to the formation of layers that propagate parallel to the b axis and the adjacent layers are linked by hydrogen bonds forming a 3D lattice. Complexes of nickel and zinc were assumed to contain monodentate bound orotate ligands as well on the basis of physical and spectroscopic data.

  5. A Photoactivatable Platinum(IV) Anticancer Complex Conjugated to the RNA Ligand Guanidinoneomycin.

    PubMed

    Shaili, Evyenia; Fernández-Giménez, Marta; Rodríguez-Astor, Savina; Gandioso, Albert; Sandín, Lluís; García-Vélez, Carlos; Massaguer, Anna; Clarkson, Guy J; Woods, Julie A; Sadler, Peter J; Marchán, Vicente

    2015-12-07

    A photoactivatable platinum(IV) complex, trans,trans,trans-[Pt(N3 )2 (OH)(succ)(py)2 ] (succ=succinylate, py=pyridine), has been conjugated to guanidinoneomycin to study the effect of this guanidinum-rich compound on the photoactivation, intracellular accumulation and phototoxicity of the pro-drug. Surprisingly, trifluoroacetic acid treatment causes the replacement of an azido ligand and the axial hydroxide ligand by trifluoroacetate, as shown by NMR spectroscopy, MS and X-ray crystallography. Photoactivation of the platinum-guanidinoneomycin conjugate in the presence of 5'-guanosine monophosphate (5'-GMP) led to the formation of trans-[Pt(N3 )(py)2 (5'-GMP)](+) , as does the parent platinum(IV) complex. Binding of the platinum(II) photoproduct {PtN3 (py)2 }(+) to guanine nucleobases in a short single-stranded oligonucleotide was also observed. Finally, cellular uptake studies showed that guanidinoneomycin conjugation improved the intracellular accumulation of the platinum(IV) pro-drug in two cancer cell lines, particularly in SK-MEL-28 cells. Notably, the higher phototoxicity of the conjugate in SK-MEL-28 cells than in DU-145 cells suggests a degree of selectivity towards the malignant melanoma cell line.

  6. Ruthenium complexes with chiral bis-pinene ligands: an array of subtle structural diversity.

    PubMed

    Vaquer, Lydia; Poater, Albert; De Tovar, Jonathan; García-Antón, Jordi; Solà, Miquel; Llobet, Antoni; Sala, Xavier

    2013-05-06

    A new chiral derivative of the N,N-bis(2-pyridylmethyl)ethylamine (bpea) ligand, Me-pinene[5,6]bpea [(-)-L1], has been prepared from a new aldehyde building block [Me-pinene-aldehyde, (-)-4] arising from the monoterpene chiral pool. The tridentate (-)-L1 ligand has been employed to prepare a new set of Ru-Cl complexes in combination with didentate 2,2'-bipyridine (bpy) with the general formula [RuCl((-)-L1)(bpy)](+). These complexes have been characterized in solution by cyclic voltammetry, UV-vis, and 1D and 2D NMR spectroscopy. Isomeric mixtures of trans,fac-C1a and anti,mer-C1c compounds are formed when (-)-L1 is reacted with a [Ru(bpy)(MeOH)Cl3] precursor. Density functional theory calculations of all of the potential isomers of this reaction have been performed in order to interpret the experimental results in terms of electronic and steric effects and also to unravel the observed isomerization pathway between anti,mer-C1c and trans,fac-C1a.

  7. Structural effects of soft nanoparticulate ligands on trace metal complexation thermodynamics.

    PubMed

    Rotureau, Elise; Waldvogel, Yves; Pinheiro, José P; Farinha, José Paulo S; Bihannic, Isabelle; Présent, Romain M; Duval, Jérôme F L

    2016-11-23

    Metal binding to natural soft colloids is difficult to address due to the inherent heterogeneity of their reactive polyelectrolytic volume and the modifications of their shell structure following changes in e.g. solution pH, salinity or temperature. In this work, we investigate the impacts of temperature- and salinity-mediated modifications of the shell structure of polymeric ligand nanoparticles on the thermodynamics of divalent metal ions Cd(ii)-complexation. The adopted particles consist of a glassy core decorated by a fine-tunable poly(N-isopropylacrylamide) anionic corona. According to synthesis, the charges originating from the metal binding carboxylic moieties supported by the corona chains are located preferentially either in the vicinity of the core or at the outer shell periphery (p(MA-N) and p(N-AA) particles, respectively). Stability constants (KML) of cadmium-nanoparticle complexes are measured under different temperature and salinity conditions using electroanalytical techniques. The obtained KML is clearly impacted by the location of the carboxylic functional groups within the shell as p(MA-N) leads to stronger nanoparticulate Cd complexes than p(N-AA). The dependence of KML on solution salinity for p(N-AA) is shown to be consistent with a binding of Cd to peripheral carboxylic groups driven by Coulombic interactions (Eigen-Fuoss mechanism for ions-pairing) or with particle electrostatic features operating at the edge of the shell Donnan volume. For p(MA-N) particulate ligands, a scenario where metal binding occurs within the intraparticulate Donnan phase correctly reproduces the experimental findings. Careful analysis of electroanalytical data further evidences that complexation of metal ions by core-shell particles significantly differ according to the location and distribution of the metal-binding sites throughout the reactive shell. This complexation heterogeneity is basically enhanced with increasing temperature i.e. upon significant increase of

  8. Vanadium complexes with mixed O,S anionic ligands derived from maltol: synthesis, characterization, and biological studies.

    PubMed

    Monga, Vishakha; Thompson, Katherine H; Yuen, Violet G; Sharma, Vijay; Patrick, Brian O; McNeill, John H; Orvig, Chris

    2005-04-18

    Four mixed O,S binding bidentate ligand precursors derived from maltol (3-hydroxy-2-methyl-4-pyrone) have been chelated to vanadium to yield new bis(ligand)oxovanadium(IV) and tris(ligand)vanadium(III) complexes. The four ligand precursors include two pyranthiones, 3-hydroxy-2-methyl-4-pyranthione, commonly known as thiomaltol (Htma), and 2-ethyl-3-hydroxy-4-pyranthione, commonly known as ethylthiomaltol (Hetma), as well as two pyridinethiones, 3-hydroxy-2-methyl-4(H)-pyridinethione (Hmppt) and 3-hydroxy-1,2-dimethyl-4-pyridinethione (Hdppt). Vanadium complex formation was confirmed by elemental analysis, mass spectrometry, and IR and EPR (where possible) spectroscopies. The X-ray structure of oxobis(thiomaltolato)vanadium(IV),VO(tma)(2), was also determined; both cis and trans isomers were isolated in the same asymmetric unit. In both isomers, the two thiomaltolato ligands are arranged around the base of the square pyramid with the V=O linkage perpendicular; the vanadium atom is slightly displaced from the basal plane [V(1) = 0.656(3) A, V(2) = 0.664(2) A]. All of the new complexes were screened for insulin-enhancing effectiveness in streptozotocin-induced diabetes in rats, and VO(tma)(2) was profiled metabolically for urinary vanadium and ligand clearance by GFAAS and ESIMS, respectively. The new vanadium complexes did not lower blood glucose levels acutely, possibly because of rapid dissociation and excretion.

  9. New organoruthenium complexes with bioactive thiosemicarbazones as co-ligands: potential anti-trypanosomal agents†

    PubMed Central

    Demoro, Bruno; Sarniguet, Cynthia; Sánchez-Delgado, Roberto; Rossi, Miriam; Liebowitz, Daniel; Caruso, Francesco; Olea-Azar, Claudio; Moreno, Virtudes; Medeiros, Andrea; Comini, Marcelo A.; Otero, Lucía; Gambino, Dinorah

    2012-01-01

    In the search for new therapeutic tools against neglected diseases produced by trypanosomatid parasites, and particularly against African Trypanosomiasis, whose etiological agent is Trypanosoma brucei, organoruthenium compounds with bioactive nitrofuran containing thiosemicarbazones (L) as co-ligands were obtained. Four ruthenium(ii) complexes with the formula [Ru2(p-cymene)2(L)2]X2, where X = Cl or PF6, were synthesized and the crystal structures of two of them were solved by X-ray diffraction methods. Two of the complexes show significant in vitro growth inhibition activity against Trypanosoma brucei brucei and are highly selective towards trypanosomal cells with respect to mammalian cells (J774 murine macrophages). These promising results make the title organoruthenium compounds good lead candidates for further developments towards potential antitrypanosomal organometallic drugs. PMID:22138896

  10. Synthesis, structural studies and ligand influence on the stability of aryl-NHC stabilised trimethylaluminium complexes.

    PubMed

    M, Melissa Wu; Gill, Arran M; Yunpeng, Lu; Falivene, Laura; Yongxin, Li; Ganguly, Rakesh; Cavallo, Luigi; García, Felipe

    2015-09-14

    Treatment of a series of aromatic NHCs (IMes, SIMes, IPr and SIPr) with trimethylaluminium produced their corresponding Lewis acid-base adducts: IMes·AlMe3 (1), SIMes·AlMe3 (2), IPr·AlMe3 (3), and SIPr·AlMe3 (4). These complexes expand the few known examples of saturated NHC stabilised Group 13 complexes. Furthermore, compounds 1-4 show differential stability depending on the nature of the NHC ligand. Analyses of topographic steric maps and NHC %V(Bur) were used to explain these differences. All the compounds have been fully characterised by multinuclear NMR spectroscopy, IR and single crystal X-ray analysis together with computational studies.

  11. Converting between the oxides of nitrogen using metal-ligand coordination complexes.

    PubMed

    Timmons, Andrew J; Symes, Mark D

    2015-10-07

    The oxides of nitrogen (chiefly NO, NO3(-), NO2(-) and N2O) are key components of the natural nitrogen cycle and are intermediates in a range of processes of enormous biological, environmental and industrial importance. Nature has evolved numerous enzymes which handle the conversion of these oxides to/from other small nitrogen-containing species and there also exist a number of heterogeneous catalysts that can mediate similar reactions. In the chemical space between these two extremes exist metal-ligand coordination complexes that are easier to interrogate than heterogeneous systems and simpler in structure than enzymes. In this Tutorial Review, we will examine catalysts for the inter-conversions of the various nitrogen oxides that are based on such complexes, looking in particular at more recent examples that take inspiration from the natural systems.

  12. Borinium cations as sigma-B-H ligands in osmium complexes.

    PubMed

    Esteruelas, Miguel A; Fernández-Alvarez, Francisco J; López, Ana M; Mora, Malka; Oñate, Enrique

    2010-04-28

    The complex OsH(2)Cl(2)(P(i)Pr(3))(2) reacts with pinacolborane, Me(2)NH-BH(3), and (t)BuNH(2)-BH(3) to give the complexes OsH(2)Cl{eta(2)-HBOC(CH(3))(2)C(CH(3))(2)OBpin}(P(i)Pr(3))(2) and OsH(2)Cl(eta(2)-HBNR(1)R(2))(P(i)Pr(3))(2) (R(1) = R(2) = Me; R(1) = H, R(2) = (t)Bu) containing monosubstituted alkoxy- and amidoborinium cations coordinated as sigma-B-H ligands. The process is proposed to take place via the electrophilic 14-valence-electron fragment OsHCl(P(i)Pr(3))(2), which promotes hydride transfer from the corresponding borane to the osmium atom.

  13. Theoretical spectroscopic study of seven zinc(II) complex with macrocyclic Schiff-base ligand.

    PubMed

    Sayin, Koray; Kariper, Sultan Erkan; Sayin, Tuba Alagöz; Karakaş, Duran

    2014-12-10

    Seven zinc complexes, which are [ZnL(1)](2+), [ZnL(2)](2+), [ZnL(3)](2+), [ZnL(4)](2+), [ZnL(5)](2+), [ZnL(6)](2+) and [ZnL(7)](2+), are studied as theoretically. Structural parameters, vibration frequencies, electronic absorption spectra and (1)H and (13)C NMR spectra are obtained for Zn(II) complexes of macrocyclic penta and heptaaza Schiff-base ligand. Vibration spectra of Zn(II) complexes are studied by using Density Functional Theory (DFT) calculations at the B3LYP/LANL2DZ. The UV-VIS and NMR spectra of the zinc complexes are obtained by using Time Dependent-Density Functional Theory (TD-DFT) method and Giao method, respectively. The agreements are found between experimental data of [ZnL(5)](2+), [ZnL(6)](2+) and [ZnL(7)](2+) complex ions and their calculated results. The geometries of complexes are found as distorted pentagonal planar for [ZnL(1)](2+), [ZnL(2)](2+) and [ZnL(3)](2+) complex ions, distorted tetrahedral for [ZnL(4)](2+) complex ion and distorted pentagonal bipyramidal for [ZnL(5)](2+), [ZnL(6)](2+) and [ZnL(7)](2+) complex ions. Ranking of biological activity is determined by using quantum chemical parameters and this ranking is found as: [ZnL(7)](2+)>[ZnL(6)](2+)>[ZnL(5)](2+)>[ZnL(3)](2+)>[ZnL(2)](2+)>[ZnL(1)](2+).

  14. Unsymmetrical tren-based ligands: synthesis and reactivity of rhenium complexes.

    PubMed

    Mösch-Zanetti, Nadia C; Köpke, Sinje; Herbst-Irmer, Regine; Hewitt, Manuel

    2002-07-01

    Reaction of bis(2-aminoethyl)(3-aminopropyl)amine with C(6)F(6) and K(2)CO(3) in DMSO yields unsymmetrical [(C(6)F(5))HNCH(2)CH(2)](2)NCH(2)CH(2)CH(2)NH(C(6)F(5)) ([N(3)N]H(3)). The tetraamine acts as a tridentate ligand in complexes of the type H[N(3)N]Re(O)X (X = Cl 1, Br 2) prepared by reacting Re(O)X(3)(PPh(3))(2) with [N(3)N]H(3) and an excess of NEt(3) in THF. Addition of 1 equiv of TaCH(CMe(2)Ph)Br(3)(THF)(2) to 1 gives the dimeric compound H[N(3)N]ClReOReBrCl[N(3)N]H (3) in quantitative yield that contains a Re(V)[double bond]O[bond]Re(IV) core with uncoordinated aminopropyl groups in each ligand. Addition of 2 equiv of TaCH(CMe(2)Ph)Cl(3)(THF)(2) to 1 leads to the chloro complex [N(3)N]ReCl (4) with all three amido groups coordinated to the metal, whereas by addition of 2 equiv of TaCH(CMe(2)Ph)Br(3)(THF)(2) to 2 the dibromo species H[N(3)N]ReBr(2) (5) with one uncoordinated amino group is isolated. Reduction of 4 under an atmosphere of dinitrogen with sodium amalgam gives the dinitrogen complex [N(3)N]Re(N(2)) (6). Single-crystal X-ray structure determinations have been carried out on complexes 1, 3, 5, and 6.

  15. A long-tethered (P-B-P)-pincer ligand: synthesis, complexation, and application to catalytic dehydrogenation of alkanes.

    PubMed

    Kwan, Enrique Huang; Kawai, Yasushi Jack; Kamakura, Sei; Yamashita, Makoto

    2016-10-12

    A new long-tethered boron-containing (P-B-P)-pincer ligand 8 has been synthesized. Complexation of 8 with [Ir(coe)2Cl]2 (coe = cyclooctene) resulted in (P-B-P)(hydrido)chloroiridium complex (P-B-P)Ir(H)Cl 9. Subsequent reaction with (n)BuLi led to the formation of dihydride complex (P-B-P)Ir(H)210. Both complexes were found to be moderately active for the catalytic dehydrogenation of alkanes.

  16. Spectroscopic studies of lanthanide complexes of varying nuclearity based on a compartmentalised ligand.

    PubMed

    Olea-Román, Daniela; Bélanger-Desmarais, Nicolas; Flores-Álamo, Marcos; Bazán, Claudia; Thouin, Félix; Reber, Christian; Castillo-Blum, Silvia E

    2015-10-21

    The synthesis, characterization and solid-state luminescence spectroscopy of mononuclear (f), heterodinuclear (d-f) and heterotrinuclear (d-f-d) coordination compounds with the compartmental ligand N,N'-bis(3-hydroxyl salicylidene)benzene-1,2-diamine (H2L) are reported. The trivalent lanthanide ions Nd(III), Sm(III), Eu(III), Gd(III), Tb(III) and Dy(III) as single metal centres or in combination with either Zn(II) or Ni(II) were coordinated. Compounds are characterised by elemental analyses, IR, 1D and 2D solution (1)H and (13)C NMR spectroscopy, measurements of magnetic moments and solid state UV-Vis-NIR reflectance, luminescence and Raman spectroscopy techniques. Crystal structures of the dinuclear compounds [SmZn(O2NO)3(L)(OH2)]·EtOH and [DyZn(O2NO)2(Cl)(L)(EtOH)]·3EtOH and the trinuclear compound [TbZn2(L)2(Cl)2(OH2)](NO3)·EtOH are presented, where samarium(iii) displays a coordination number of ten, with a bicapped cubic geometry, while for the dysprosium compound a nine-coordinated environment with a tricapped trigonal prismatic geometry is shown. Their crystals belong to the triclinic system and the P1[combining macron] space group. The coordination number for terbium(iii) in the trinuclear complex is nine, with a tricapped trigonal prismatic geometry, and its crystal belongs to the monoclinic system, space group C2/c. For these three compounds, the zinc ion stabilises a penta-coordinated environment with square pyramid geometry. All mononuclear and dinuclear compounds are neutral, whereas the trinuclear complexes are ionic. The results of DFT theoretical calculations for the ligand (H2L) are used to assign the ligand singlet and triplet excited state energy levels. Luminescence studies of the neodymium compounds indicate that the ligand is a sensitizer for NIR emitters.

  17. Synthesis and structural characterization of Pd(II) complexes derived from perimidine ligand and their in vitro antimicrobial studies

    NASA Astrophysics Data System (ADS)

    Azam, Mohammad; Warad, Ismail; Al-Resayes, Saud I.; Alzaqri, Nabil; Khan, Mohammad Rizwan; Pallepogu, Raghavaiah; Dwivedi, Sourabh; Musarrat, Javed; Shakir, Mohammad

    2013-09-01

    A novel series of Pd(II) complexes derived from 2-thiophenecarboxaldehyde and 1,8-diaminonaphthalene has been synthesized and characterized by various physico-chemical and spectroscopic techniques viz., elemental analyses, IR, UV-vis, 1H and 13C NMR spectroscopy, and ESI-mass spectrometry. The structure of ligand, 2-(2-thienyl)-2,3-dihydro-1H-perimidine has been ascertained on the basis of single crystal X-ray diffraction. All Pd(II) complexes together with the corresponding ligand have been evaluated for their ability to suppress the in vitro growth of microbes, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Citrobacter sp., Bacillus subtilis and Stenotrophomonas acidaminiphila and results show that Pd(II) complexes have more significant antimicrobial activity than their corresponding ligand. Fluorescence spectroscopic measurements clearly support that both of the Pd(II) complexes show significant DNA binding with calf thymus DNA.

  18. Synthesis and structural characterization of two half-sandwich nickel(II) complexes with the scorpionate ligands

    SciTech Connect

    Wang, G.-F. E-mail: s-shuwen@163.com; Zhang, X.; Sun, S.-W.; Sun, H.; Ma, H.-X.

    2015-12-15

    The synthesis and characterization of two new halfsandwich mononuclear nickel(II) complexes with the scorpionate ligands, [k{sup 3}-N, N',N''-Tp{sup t-Bu}, {sup Me}NiI] (1) and [k{sup 3}-N,N',N''-Tp{sup t-Bu}, {sup Me}NiNO{sub 3}] (2), are reported. These complexes have been fully characterized by elemental analyses and infrared spectra. Their molecular structures were determined by single crystal X-ray diffraction. The nickel(II) ion of complex 1 is in a four-coordinate environment, in which the donor atoms are provided by three nitrogen atoms of a hydrotris(pyrazolyl) borate ligand and one iodide atom, while that of complex 2 is in a five-coordinate environment with three nitrogen atoms from a hydrotris(pyrazolyl)borate ligand and two oxygen atoms from a nitrate ion.

  19. Vanadium(V) complexes of a tripodal ligand, their characterisation and biological implications.

    PubMed

    Maurya, Mannar R; Uprety, Bhawna; Avecilla, Fernando; Adão, Pedro; Costa Pessoa, J

    2015-10-28

    The reaction of the tripodal tetradentate dibasic ligand 6,6'-(2-(pyridin-2-yl)ethylazanediyl)bis(methylene)bis(2,4-di-tert-butylphenol), H2L(1)I, with [V(IV)O(acac)2] in CH3CN gives the V(V)O-complex, [V(V)O(acac)(L(1))] 1. Crystallisation of 1 in CH3CN at ∼0 °C gives dark blue crystals of 1, while at room temperature it affords dark green crystals of [{V(V)O(L(1))}2μ-O] 3. Upon prolonged treatment of 1 in MeOH, [V(V)O(OMe)(MeOH)(L(1))] 2 is obtained. All three complexes were analysed by single-crystal X-ray diffraction, depicting a distorted octahedral geometry around vanadium. In the reaction of H2L(1) with V(IV)OSO4 partial hydrolysis of the tripodal ligand results in the elimination of the pyridyl fragment of L(1) and the formation of H[V(V)O2(L(2))] 4 containing the ONO tridentate ligand 6,6'-azanediylbis(methylene)bis(2,4-di-tert-butylphenol), H2L(2)II. Compound 4, which was not fully characterised, undergoes dimerization in acetone yielding the hydroxido-bridged [{V(V)O(L(2))}2μ-(OH)2] 5 having a distorted octahedral geometry around each vanadium. In contrast, from a solution of 4 in acetonitrile, the dinuclear compound [{V(V)O(L(2))}2μ-O] 6 is obtained, with a trigonal bipyramidal geometry around each vanadium. The methoxido complex 2 is successfully employed as a functional catechol-oxidase mimic in the oxidation of catechol to o-quinone under air. The process was confirmed to follow a Michaelis-Menten type kinetics with respect to catechol, the Vmax and KM values obtained being 7.66 × 10(-6) M min(-1) and 0.0557 M, respectively, and the turnover frequency is 0.0541 min(-1). A similar reaction with the bulkier 3,5-di-tert-butylcatechol proceeded at a much slower rate. Complex 2 was also used as a catalyst precursor for the oxidative bromination of thymol in aqueous medium. The selectivity shows quite interesting trends, namely when not using excess of the primary oxidizing agent, H2O2, the para mono-brominated product corresponds to ∼93% of the

  20. Chemiluminescence detection with water-soluble iridium(III) complexes containing a sulfonate-functionalised ancillary ligand.

    PubMed

    Truong, Josephine; Spilstead, Kara B; Barbante, Gregory J; Doeven, Egan H; Wilson, David J D; Barnett, Neil W; Henderson, Luke C; Altimari, Jarrad M; Hockey, Samantha C; Zhou, Ming; Francis, Paul S

    2014-11-21

    The chemiluminescence from four cyclometalated iridium(III) complexes containing an ancillary bathophenanthroline-disulfonate ligand exhibited a wide range of emission colours (green to red), and in some cases intensities that are far greater than the commonly employed benchmark reagent, [Ru(bpy)3](2+). A similar complex incorporating a sulfonated triazolylpyridine-based ligand enabled the emission to be shifted into the blue region of the spectrum, but the responses with this complex were relatively poor. DFT calculations of electronic structure and emission spectra support the experimental findings.

  1. The mechanism, electronic and ligand effects for reductive elimination from arylPd(II) trifluoromethyl complexes: a systematic DFT study.

    PubMed

    Zhang, Song-Lin; Huang, Lu; Sun, Li-Jun

    2015-03-14

    A systematic theoretical study is reported on the mechanisms of reductive elimination from arylPd(II) trifluoromethyl complexes, an important elementary reaction for Pd-catalyzed trifluoromethylation reactions. Various mechanisms leading to the formation of trifluoromethylated products and also competing side pathways have been evaluated. Furthermore, ligand effects are systematically evaluated which provide valuable information about the favourable properties of the ancillary ligands for promoting reductive elimination of trifluoromethylated products from Pd(II) centers.

  2. Spectral, Magnetic and Biological Studie on Some Bivalent 3d Metal Complexes of Hydrazine Derived Schiff-Base Ligands

    PubMed Central

    Sherazi, Syed K. A.

    1997-01-01

    Metal(II) complexes of hydrazine derived Schiff-base ligands of the type M(L)2Cl2 where M = Co, Cu, Ni and Zn and L = L1 and L2 have been prepared and characterised by molar conductance, magnetic moment, elemental analysis and electronic, IR, H-NMR and 13C spectral data.The different modes of chelation of the ligands and their comparative biological properties against different bacterial species are reported. PMID:18475770

  3. A Series of Diamagnetic Pyridine Monoimine Rhenium Complexes with Different Degrees of Metal-to-Ligand Charge Transfer: Correlating (13) C NMR Chemical Shifts with Bond Lengths in Redox-Active Ligands.

    PubMed

    Sieh, Daniel; Kubiak, Clifford P

    2016-07-18

    A set of pyridine monoimine (PMI) rhenium(I) tricarbonyl chlorido complexes with substituents of different steric and electronic properties was synthesized and fully characterized. Spectroscopic (NMR and IR) and single-crystal X-ray diffraction analyses of these complexes showed that the redox-active PMI ligands are neutral and that the overall electronic structure is little affected by the choices of the substituent at the ligand backbone. One- and two-electron reduction products were prepared from selected starting compounds and could also be characterized by multiple spectroscopic methods and X-ray diffraction. The final product of a one-electron reduction in THF is a diamagnetic metal-metal-bonded dimer after loss of the chlorido ligand. Bond lengths in and NMR chemical shifts of the PMI ligand backbone indicate partial electron transfer to the ligand. Two-electron reduction in THF also leads to the loss of the chlorido ligand and a pentacoordinate complex is obtained. The comparison with reported bond lengths and (13) C NMR chemical shifts of doubly reduced free pyridine monoaldimine ligands indicates that both redox equivalents in the doubly reduced rhenium complex investigated here are located in the PMI ligand. With diamagnetic complexes varying over three formal reduction stages at the PMI ligand we were, for the first time, able to establish correlations of the (13) C NMR chemical shifts with the relevant bond lengths in redox-active ligands over a full redox series.

  4. Synthesis, spectral characterization, molecular modeling, thermal study and biological evaluation of transition metal complexes of a bidentate Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Bargujar, Savita; Nirwal, Rita; Qanungo, Kushal; Sharma, Saroj K.

    2013-09-01

    Complexes of copper(II) and nickel(II) of general composition M(L)2X2, have been synthesized [where L = 3-Bromoacetophenone thiosemicarbazone and X = CH3COO-, Cl- and NO3-]. All the complexes were characterized by elemental analysis, magnetic moments, IR, electronic and EPR spectral studies. The ligand behaved as bidentate and coordinated through sulfur of sbnd Cdbnd S group and nitrogen atoms of sbnd Cdbnd N group. The copper(II) and nickel(II) complexes were found to have magnetic moments 1.94-2.02 BM, 2.96-3.02 BM respectively which was corresponding to one and two unpaired electrons respectively. The molar conductance of the complexes in solution of DMSO lies in the range of 10-20 Ω-1 cm2 mol-1 indicating their non-electrolytic behavior. On the basis of EPR, electronic and infrared spectral studies, tetragonal geometry has been assigned for copper(II) complexes and an octahedral geometry for nickel(II) complexes. The values of Nephelauxetic parameter β lie in the range 0.19-0.37 which indicated the covalent character in metal ligand ‘σ' bond. Synthesized ligand and its copper(II) and nickel(II) complexes have also been screened against different bacterial and fungal species which suggested that complexes are more active than the ligands in antimicrobial activities.

  5. Highly luminescent charge-neutral europium(iii) and terbium(iii) complexes with tridentate nitrogen ligands.

    PubMed

    Senthil Kumar, Kuppusamy; Schäfer, Bernhard; Lebedkin, Sergei; Karmazin, Lydia; Kappes, Manfred M; Ruben, Mario

    2015-09-21

    We report on the synthesis of tridentate-nitrogen pyrazole-pyridine-tetrazole (L(1)H) and pyrazole-pyridine-triazole (L(2)H) ligands and their complexation with lanthanides (Ln = Gd(iii), Eu(iii) and Tb(iii)) resulting in stable, charge-neutral complexes Ln(L(1))3 and Ln(L(2))3, respectively. X-ray crystallographic analysis of the complexes with L(1) ligands revealed tricapped trigonal coordination geometry around the lanthanide ions. All complexes show bright photoluminescence (PL) in the solid state, indicating efficient sensitization of the lanthanide emission via the triplet states of the ligands. In particular, the terbium complexes show high PL quantum yields of 65 and 59% for L(1) and L(2), respectively. Lower PL efficiencies of the europium complexes (7.5 and 9%, respectively) are attributed to large energy gaps between the triplet states of the ligands and accepting levels of Eu(iii). The triplet state energy can be reduced by introducing an electron withdrawing (EW) group at the 4 position of the pyridine ring. Such substitution of L(1)H with a carboxylic ester (COOMe) EW group leads to a europium complex with increased PL quantum yield of 31%. A comparatively efficient PL of the complexes dissolved in ethanol indicates that the lanthanide ions are shielded against nonradiative deactivation via solvent molecules.

  6. Dinuclear Zinc (II) Complexes of Macrocyclic Polyamine Ligands Containing an Imidazolium Bridge: Synthesis, Characterization, and Their Interaction with Plasmid DNA

    PubMed Central

    Huang, Jun; Huang, Qing-Dong; Zhang, Ji; Zhou, Li-Hong; Li, Qiang-Lin; Li, Kun; Jiang, Ning; Lin, Hong-Hui; Wu, Jiang; Yu, Xiao-Qi

    2007-01-01

    Two novel macrocyclic polyamine ligands and their dinuclear zinc (II) complexes were synthesized and characterized. Their interaction with plasmid DNA was studied by gel electrophoresis and fluorescence quenching experiment. The result showed that these complexes could bind DNA efficiently under physiological conditions.

  7. Plutonium(IV) complexation by diglycolamide ligands--coordination chemistry insight into TODGA-based actinide separations.

    PubMed

    Reilly, Sean D; Gaunt, Andrew J; Scott, Brian L; Modolo, Giuseppe; Iqbal, Mudassir; Verboom, Willem; Sarsfield, Mark J

    2012-10-09

    Complexation of Pu(IV) with TMDGA, TEDGA, and TODGA diglycolamide ligands was followed by vis-NIR spectroscopy. A crystal structure determination reveals that TMDGA forms a 1 : 3 homoleptic Pu(IV) complex with the nitrate anions forced into the outer coordination sphere.

  8. Identification of the first small-molecule ligand of the neuronal receptor sortilin and structure determination of the receptor–ligand complex

    SciTech Connect

    Andersen, Jacob Lauwring; Schrøder, Tenna Juul; Christensen, Søren; Pallesen, Lone Tjener; García-Alai, Maria Marta; Lindberg, Samsa; Langgård, Morten; Eskildsen, Jørgen Calí; David, Laurent; Tagmose, Lena; Simonsen, Klaus Baek; Maltas, Philip James; Rønn, Lars Christian Biilmann; Jong, Inge E. M. de; Malik, Ibrahim John; Egebjerg, Jan; Karlsson, Jens-Jacob; Watson, Steven P.

    2014-02-01

    The identification of the first small-molecule ligand of the neuronal receptor sortilin and structure determination of the receptor–ligand complex are reported. Sortilin is a type I membrane glycoprotein belonging to the vacuolar protein sorting 10 protein (Vps10p) family of sorting receptors and is most abundantly expressed in the central nervous system. Sortilin has emerged as a key player in the regulation of neuronal viability and has been implicated as a possible therapeutic target in a range of disorders. Here, the identification of AF40431, the first reported small-molecule ligand of sortilin, is reported. Crystals of the sortilin–AF40431 complex were obtained by co-crystallization and the structure of the complex was solved to 2.7 Å resolution. AF40431 is bound in the neurotensin-binding site of sortilin, with the leucine moiety of AF40431 mimicking the binding mode of the C-terminal leucine of neurotensin and the 4-methylumbelliferone moiety of AF40431 forming π-stacking with a phenylalanine.

  9. Lanthanide dinuclear complexes constructed from mixed oxygen-donor ligands: the effect of substituent positions of the neutral ligand on the magnetic dynamics in Dy analogues.

    PubMed

    Zhu, Wen-Hua; Li, Shan; Gao, Chen; Xiong, Xia; Zhang, Yan; Liu, Li; Powell, Annie K; Gao, Song

    2016-03-21

    Two series of lanthanide dinuclear complexes with the general formulae, [Ln(n-PNO)(Bza)3(H2O)] {Bza = benzoic acid; n = 3, n-PNO = 3-picoline N-oxide, Dy(1) and Er(2); and n = 4, n-PNO = 4-picoline N-oxide, Nd(3), Eu(4), Gd(5), Tb(6), Dy(7), Er(8) and Y(9)} have been successfully synthesized by the hydrothermal method. Single-crystal X-ray diffraction experiments illustrate that the two series of compounds possess similar carboxylic ligand-bridged dinuclear structure and coordination geometry around the lanthanide ions despite the different methyl-substituent positions on the neutral ligand. Comparative studies of the Dy analogues in the static-field measurements reveal only a little difference with a small butterfly-shaped opening for complex 1 and a close hysteresis loop for 7 at 2.0 K. However, systematic investigations of the alternating-current (ac) measurements indicate that the different substituent positions of the picoline N-oxide ligand have a significant effect on the magnetic relaxation dynamics. A more substantial suppression of the quantum tunnelling of magnetization (QTM) effect and pronounced slow magnetic relaxation were observed in complex 7 as compared to 1 under both zero and a 1 kOe static field.

  10. Synthesis, characterization, dynamics and reactivity toward amination of η3-allyl palladium complexes bearing mixed ancillary ligands. Evaluation of the electronic characteristics of the ligands from kinetic data.

    PubMed

    Canovese, Luciano; Visentin, Fabiano; Levi, Carlo; Dolmella, Alessandro

    2011-01-28

    On the basis of an original protocol, we have synthesized several complexes of the type [Pd(η(3)-C(3)H(3)R(2))(LL')]ClO(4) (R = H, Me; L, L' = PPh(3), P(OEt)(3), 2,6-dimethylphenylisocyanide, t-butylisocyanide, 1,3-dimesitylimidazolidine, 1,3-dimesitylimidazol-2-ylidene). The complexes, some of which are completely new species, were fully characterized and their behaviour in solution was studied by means of (1)H NMR. The reactions of the complexes bearing the symmetric allyl moiety [Pd(η(3)-C(3)H(5))(LL')]ClO(4) with piperidine in the presence of the olefin dimethylfumarate were followed under kinetically controlled conditions. Formation of allyl-amine and of the palladium(0) derivatives [Pd(η(2)-dmfu)(LL'] was observed. The reaction rates k(2) proved to be strongly dependent on the ancillary ligand nature and allowed a direct comparison among the electronic characteristics of the ligands. The reactivity trend determined appears to be mainly influenced by the capability of the ancillary ligands in transferring electron density to the metal centre and consequently on the allyl fragment.

  11. Photoluminescent mixed ligand complexes of CuX (X = Cl, Br, I) with PPh3 and a polydentate imino-pyridyl ligand - Syntheses, structural variations and catalytic property

    NASA Astrophysics Data System (ADS)

    Ghorai, Anupam; Mondal, Jahangir; Patra, Goutam K.

    2015-10-01

    Three ternary copper(I) complexes [CuI2Cl2(L1)(PPh3)4] (1), [CuI2Br2(L1) (PPh3)4] (2) and [CuI2(μ-I)2 (μ-L1) (PPh3)2]n (3) have been prepared by reactions of CuX (X = Cl, Br and I) with PPh3 and the polydentate imino-pyridyl ligand L1. These complexes have been characterized by elemental analysis, IR, UV-Vis, NMR and X-ray crystallography. From single crystal structural analysis it has been found that complexes 1 and 2 are homo-dinuclear having non-bridging halide ions whereas complex 3 is a 1-D zig-zag co-ordination polymer containing bridged iodide ions. Complexes 1, 2 and 3 are photoluminescent at room temperature in chloroform whereas ligand L1 is non-emissive. The E½ values of the CuIsbnd CuII couple of 1, 2 and 3 are 0.98 V, 0.92 V and 0.42 V respectively (vs Ag/AgCl in 1 M KCl, scan rate 100 mV s-1). All three complexes function as effective catalysts for the synthesis of 2-substituted benzoxazoles.

  12. Anticandidal activity of cinnamaldehyde, its ligand and Ni(II) complex: effect of increase in ring and side chain.

    PubMed

    Shreaz, Sheikh; Sheikh, Rayees A; Rimple, Bhatia; Hashmi, Athar Adil; Nikhat, Manzoor; Khan, Luqman A

    2010-09-01

    To increase efficacy of cinnamaldehyde as an antimycotic agent, N, N'- Bis (trans-cinnamadehyde) ethylenediimine [C(20)H(20)N(2)] and Ni(II) complex of the type [Ni(C(40)H(40)N(4))Cl(2)] have been synthesized. The ligand [P] and Ni(II) complex have been characterized on the basis of elemental analysis, FTIR, ESI- MS, IR, (1)H NMR, UV-Vis spectroscopic techniques, conductivity and magnetic measurements. MIC of cinnamaldehyde against clinical isolate of Candida albicans and Candida tropicalis was 400 microg/ml and 500 microg/ml, respectively. Synthesized ligand has markedly reduced MIC; 200 microg/ml and 300 microg/ml whereas Ni(II) complex of ligand displayed MIC of 90 microg/ml and 120 microg/ml. Growth and sensitivity of the organisms were effected by ligand & complex at significantly reduced concentration. Plasma membrane ATPase activity and ergosterol content have been investigated as site of action. Result obtained indicates ergosterol biosynthesis pathway as site of action of cinnamaldehyde, synthesized ligand and its Ni(II) complex.

  13. Synthesis, spectroscopic and theoretical studies of two novel tripodal imine-phenol ligands and their complexation with Fe(III)

    NASA Astrophysics Data System (ADS)

    Kanungo, B. K.; Baral, Minati; Sahoo, Suban K.; Muthu, S. E.

    2009-10-01

    Two novel tripodal imine-phenol ligands, cis, cis-1,3,5-tris{(2-hydroxybenzilidene)aminomethyl}cyclohexane (TMACHSAL, L 1) and of cis, cis-1,3,5-tris{[(2-hydroxyphenyl)ethylidene]aminomethyl}cyclohexane (Me 3-TMACHSAL, L 2) have been synthesized and characterized by elemental analyses and various spectral (UV-vis, IR and 1H and 13C NMR) data. The complexation reactions of the ligands with H + and Fe(III) were investigated by potentiometric and spectrophotometric methods at an ionic strength of 0.1 M KCl and 25 ± 1 °C in aqueous medium. Three protonation constants each for ligands L 1 and L 2 were determined and were used as input data to evaluate the formation constants of the metal complexes. Formations of metal complexes of the types FeLH 3, FeLH 2, FeLH, FeL and FeLH -1 were depicted in solution. Experimental evidences suggested for a formation of tris(iminophenolate) type metal complex by the ligands. The ligand L 1 showed higher affinity towards iron(III) than L 2. The pFe value related to L 1 (pFe = 20.14) is approximately four units higher than L 2 (pFe = 16.41) at pH = 7.4. The structures of the metal complexes were proposed through the molecular mechanics calculation using MM3 force field followed by semi-empirical PM3 method.

  14. A well-defined terminal vanadium(III) oxo complex.

    PubMed

    King, Amanda E; Nippe, Michael; Atanasov, Mihail; Chantarojsiri, Teera; Wray, Curtis A; Bill, Eckhard; Neese, Frank; Long, Jeffrey R; Chang, Christopher J

    2014-11-03

    The ubiquity of vanadium oxo complexes in the V+ and IV+ oxidation states has contributed to a comprehensive understanding of their electronic structure and reactivity. However, despite being predicted to be stable by ligand-field theory, the isolation and characterization of a well-defined terminal mononuclear vanadium(III) oxo complex has remained elusive. We present the synthesis and characterization of a unique terminal mononuclear vanadium(III) oxo species supported by the pentadentate polypyridyl ligand 2,6-bis[1,1-bis(2-pyridyl)ethyl]pyridine (PY5Me2). Exposure of [V(II)(NCCH3)(PY5Me2)](2+) (1) to either dioxygen or selected O-atom-transfer reagents yields [V(IV)(O)(PY5Me2)](2+) (2). The metal-centered one-electron reduction of this vanadium(IV) oxo complex furnishes a stable, diamagnetic [V(III)(O)(PY5Me2)](+) (3) species. The vanadium(III) oxo species is unreactive toward H- and O-atom transfer but readily reacts with protons to form a putative vanadium hydroxo complex. Computational results predict that further one-electron reduction of the vanadium(III) oxo species will result in ligand-based reduction, even though pyridine is generally considered to be a poor π-accepting ligand. These results have implications for future efforts toward low-valent vanadyl chemistry, particularly with regard to the isolation and study of formal vanadium(II) oxo species.

  15. Structural studies of P-type ATPase–ligand complexes using an X-ray free-electron laser

    DOE PAGES

    Bublitz, Maike; Nass, Karol; Drachmann, Nikolaj D.; ...

    2015-06-11

    Membrane proteins are key players in biological systems, mediating signalling events and the specific transport ofe.g.ions and metabolites. Consequently, membrane proteins are targeted by a large number of currently approved drugs. Understanding their functions and molecular mechanisms is greatly dependent on structural information, not least on complexes with functionally or medically important ligands. Structure determination, however, is hampered by the difficulty of obtaining well diffracting, macroscopic crystals. Here, the feasibility of X-ray free-electron-laser-based serial femtosecond crystallography (SFX) for the structure determination of membrane protein–ligand complexes using microcrystals of various native-source and recombinant P-type ATPase complexes is demonstrated. The data revealmore » the binding sites of a variety of ligands, including lipids and inhibitors such as the hallmark P-type ATPase inhibitor orthovanadate. By analyzing the resolution dependence of ligand densities and overall model qualities, SFX data quality metrics as well as suitable refinement procedures are discussed. Even at relatively low resolution and multiplicity, the identification of ligands can be demonstrated. This makes SFX a useful tool for ligand screening and thus for unravelling the molecular mechanisms of biologically active proteins.« less

  16. Structural studies of P-type ATPase–ligand complexes using an X-ray free-electron laser

    SciTech Connect

    Bublitz, Maike; Nass, Karol; Drachmann, Nikolaj D.; Markvardsen, Anders J.; Gutmann, Matthias J.; Barends, Thomas R. M.; Mattle, Daniel; Shoeman, Robert L.; Doak, R. Bruce; Boutet, Sébastien; Messerschmidt, Marc; Seibert, Marvin M.; Williams, Garth J.; Foucar, Lutz; Reinhard, Linda; Sitsel, Oleg; Gregersen, Jonas L.; Clausen, Johannes D.; Boesen, Thomas; Gotfryd, Kamil; Wang, Kai -Tuo; Olesen, Claus; Møller, Jesper V.; Nissen, Poul; Schlichting, Ilme

    2015-06-11

    Membrane proteins are key players in biological systems, mediating signalling events and the specific transport ofe.g.ions and metabolites. Consequently, membrane proteins are targeted by a large number of currently approved drugs. Understanding their functions and molecular mechanisms is greatly dependent on structural information, not least on complexes with functionally or medically important ligands. Structure determination, however, is hampered by the difficulty of obtaining well diffracting, macroscopic crystals. Here, the feasibility of X-ray free-electron-laser-based serial femtosecond crystallography (SFX) for the structure determination of membrane protein–ligand complexes using microcrystals of various native-source and recombinant P-type ATPase complexes is demonstrated. The data reveal the binding sites of a variety of ligands, including lipids and inhibitors such as the hallmark P-type ATPase inhibitor orthovanadate. By analyzing the resolution dependence of ligand densities and overall model qualities, SFX data quality metrics as well as suitable refinement procedures are discussed. Even at relatively low resolution and multiplicity, the identification of ligands can be demonstrated. This makes SFX a useful tool for ligand screening and thus for unravelling the molecular mechanisms of biologically active proteins.

  17. Structural studies of P-type ATPase–ligand complexes using an X-ray free-electron laser

    PubMed Central

    Bublitz, Maike; Nass, Karol; Drachmann, Nikolaj D.; Markvardsen, Anders J.; Gutmann, Matthias J.; Barends, Thomas R. M.; Mattle, Daniel; Shoeman, Robert L.; Doak, R. Bruce; Boutet, Sébastien; Messerschmidt, Marc; Seibert, Marvin M.; Williams, Garth J.; Foucar, Lutz; Reinhard, Linda; Sitsel, Oleg; Gregersen, Jonas L.; Clausen, Johannes D.; Boesen, Thomas; Gotfryd, Kamil; Wang, Kai-Tuo; Olesen, Claus; Møller, Jesper V.; Nissen, Poul; Schlichting, Ilme

    2015-01-01

    Membrane proteins are key players in biological systems, mediating signalling events and the specific transport of e.g. ions and metabolites. Consequently, membrane proteins are targeted by a large number of currently approved drugs. Understanding their functions and molecular mechanisms is greatly dependent on structural information, not least on complexes with functionally or medically important ligands. Structure determination, however, is hampered by the difficulty of obtaining well diffracting, macroscopic crystals. Here, the feasibility of X-ray free-electron-laser-based serial femtosecond crystallography (SFX) for the structure determination of membrane protein–ligand complexes using microcrystals of various native-source and recombinant P-type ATPase complexes is demonstrated. The data reveal the binding sites of a variety of ligands, including lipids and inhibitors such as the hallmark P-type ATPase inhibitor orthovanadate. By analyzing the resolution dependence of ligand densities and overall model qualities, SFX data quality metrics as well as suitable refinement procedures are discussed. Even at relatively low resolution and multiplicity, the identification of ligands can be demonstrated. This makes SFX a useful tool for ligand screening and thus for unravelling the molecular mechanisms of biologically active proteins. PMID:26175901

  18. Supramolecular structure and spectral studies on mixed-ligand complexes derived from β-diketone with azodye rhodanine derivatives.

    PubMed

    El-Sonbati, A Z; Diab, M A; Belal, A A M; Morgan, Sh M

    2012-12-01

    A novel method to synthesize some mononuclear ternary palladium(II) complexes of the general formula [Pd(L(n))L] (where LH=diketone=acetylacetone, HL(n)=azorhodanine) has been synthesize. The structure of the new mononuclear ternary palladium(II) complexes was characterized using elemental analysis, spectral (electronic, infrared and (1)H &(13)C NMR) studies, magnetic susceptibility measurements and thermal studies. The IR showed that the ligands (HL(n) & LH) act as monobasic bidentate through the azodye nitrogen, oxygen keto moiety and two enolato oxygen atoms. The molar conductivities show that all the complexes are non-electrolytes. Bidentate chelating nature of β-diketone and azorhodanine anions in the complexes was characterized by (electronic, infrared and (1)H &(13)C NMR) spectra. Square planar geometry around palladium has been assigned in all complexes. Various ligand and nephelouxetic parameter have been calculated for the complexes. The thermal decomposition for complexes was studied.

  19. Supramolecular structure and spectral studies on mixed-ligand complexes derived from β-diketone with azodye rhodanine derivatives

    NASA Astrophysics Data System (ADS)

    El-Sonbati, A. Z.; Diab, M. A.; Belal, A. A. M.; Morgan, Sh. M.

    2012-12-01

    A novel method to synthesize some mononuclear ternary palladium(II) complexes of the general formula [Pd(Ln)L] (where LH = diketone = acetylacetone, HLn = azorhodanine) has been synthesize. The structure of the new mononuclear ternary palladium(II) complexes was characterized using elemental analysis, spectral (electronic, infrared and 1H &13C NMR) studies, magnetic susceptibility measurements and thermal studies. The IR showed that the ligands (HLn & LH) act as monobasic bidentate through the azodye nitrogen, oxygen keto moiety and two enolato oxygen atoms. The molar conductivities show that all the complexes are non-electrolytes. Bidentate chelating nature of β-diketone and azorhodanine anions in the complexes was characterized by (electronic, infrared and 1H &13C NMR) spectra. Square planar geometry around palladium has been assigned in all complexes. Various ligand and nephelouxetic parameter have been calculated for the complexes. The thermal decomposition for complexes was studied.

  20. Ligand-induced haptotropic rearrangements in bis(indenyl)zirconium sandwich complexes.

    PubMed

    Bradley, Christopher A; Lobkovsky, Emil; Keresztes, Ivan; Chirik, Paul J

    2005-07-27

    Addition of principally sigma-donating ligands such as THF, chelating diethers, or 1,2-bis(dimethyl)phosphinoethane to eta(9),eta(5)-bis(indenyl)zirconium sandwich complexes, (eta(9)-C(9)H(5)-1,3-R(2))(eta(5)-C(9)H(5)-1,3-R(2))Zr (R = alkyl or silyl), induces haptotropic rearrangement to afford (eta(6)-C(9)H(5)-1,3-R(2))(eta(5)-C(9)H(5)-1,3-R(2))ZrL adducts. Examples where L = THF and DME have been characterized by X-ray diffraction and revealed significant buckling of the eta(6) benzo ring, consistent with reduction of the arene, and highlight the importance of the zirconium(IV) canonical form. For the THF-induced haptotropic rearrangements, the thermodynamic driving force for ring migration has been measured as a function of indenyl substituent and demonstrates silylated sandwiches favor THF coordination and the eta(6),eta(5) bonding motif over their alkylated counterparts. In the case of chelating diethers, measurement of the corresponding equilibrium constants establish more stable eta(6),eta(5) adducts with five- over four-membered chelates and with smaller oxygen and carbon backbone substituents. Kinetic studies on both THF and DME addition to (eta(9)-C(9)H(5)-1,3-(SiMe(3))(2))(eta(5)-C(9)H(5)-1,3-(SiMe(3))(2))Zr established a first-order dependence on the incoming ligand, consistent with a mechanism involving direct attack of the incoming nucleophile on the eta(9),eta(5) sandwich. These results further highlight the ability of the indenyl ligand to smoothly adjust hapticity to meet the electronic requirements of the metal center.

  1. In vitro stoichiometry of complexes between the soluble RANK ligand and the monoclonal antibody denosumab.

    PubMed

    Arthur, Kelly K; Gabrielson, John P; Hawkins, Nessa; Anafi, Dan; Wypych, Jette; Nagi, Athena; Sullivan, John K; Bondarenko, Pavel V

    2012-01-24

    The in vitro binding stoichiometry of denosumab, an IgG2 fully human monoclonal therapeutic antibody, to RANK ligand was determined by multiple complementary size separation techniques with mass measuring detectors, including two solution-based techniques (size-exclusion chromatography with static light scattering detection and sedimentation velocity analytical ultracentrifugation) and a gas-phase analysis by electrospray ionization time-of-flight mass spectrometry from aqueous nondenaturing solutions. The stoichiometry was determined under defined conditions ranging from small excess RANK ligand to large excess denosumab (up to 40:1). High concentrations of denosumab relative to RANK ligand were studied because of their physiological relevance; a large excess of denosumab is anticipated in circulation for extended periods relative to much lower concentrations of free soluble RANKL. The studies revealed that an assembly including 3 denosumab antibody molecules bound to 2 RANKL trimers (3D2R) is the most stable complex in DPBS at 37 °C. This differs from the 1:1 binding stoichiometry reported for RANKL and osteoprotegerin (OPG), a soluble homodimeric decoy receptor which binds RANKL with high affinity. Denosumab and RANKL also formed smaller assemblies including 1 denosumab and 2 RANKL trimer molecules (1D2R) under conditions of excess RANKL, 3 denosumab molecules and 1 RANKL trimer (3D1R) under conditions of excess denosumab, and larger assemblies, but these intermediate species were only present at lower temperatures (4 °C), shortly after mixing denosumab and RANKL, and converted over time to the more stable 3D2R assembly.

  2. X-ray Emission Spectroscopy to Study Ligand Valence Orbitals in Mn Coordination Complexes

    SciTech Connect

    Smolentsev, Grigory; Soldatov, Alexander V; Messinger, Johannes; Merz, Kathrin; Weyhermuller, Thomas; Bergmann, Uwe; Pushkar, Yulia; Yano, Junko; Yachandra, Vittal K.; Glatzel, Pieter

    2009-03-02

    We discuss a spectroscopic method to determine the character of chemical bonding and for the identification of metal ligands in coordination and bioinorganic chemistry. It is based on the analysis of satellite lines in X-ray emission spectra that arise from transitions between valence orbitals and the metal ion 1s level (valence-to-core XES). The spectra, in connection with calculations based on density functional theory (DFT), provide information that is complementary to other spectroscopic techniques, in particular X-ray absorption (XANES and EXAFS). The spectral shape is sensitive to protonation of ligands and allows ligands, which differ only slightly in atomic number (e.g., C, N, O...), to be distinguished. A theoretical discussion of the main spectral features is presented in terms of molecular orbitals for a series of Mn model systems: [Mn(H2O)6]2+, [Mn(H2O)5OH]+, [Mn(H2O)5NH2]+, and [Mn(H2O)5NH3]2+. An application of the method, with comparison between theory and experiment, is presented for the solvated Mn2+ ion in water and three Mn coordination complexes, namely [LMn(acac)N3]BPh4, [LMn(B2O3Ph2)(ClO4)], and [LMn(acac)N]BPh4, where L represents 1,4,7-trimethyl-1,4,7-triazacyclononane, acac stands for the 2,4-pentanedionate anion, and B2O3Ph2 represents the 1,3-diphenyl-1,3-dibora-2-oxapropane-1,3-diolato dianion.

  3. Sulfate-bridged dimeric trinuclear copper(II)–pyrazolate complex with three different terminal ligands

    PubMed Central

    Mezei, Gellert

    2016-01-01

    The reaction of CuSO4·5H2O, 4-chloro­pyrazole (4-Cl-pzH) and tri­ethyl­amine (Et3N) in di­methyl­formamide (DMF) produced crystals of di­aqua­hexa­kis­(μ-4-chloro­pyrazolato-κ2 N:N′)bis­(N,N-di­methyl­formamide)di-μ3-hydroxido-bis­(μ4-sulfato-κ4 O:O′:O′′:O′′)hexa­copper(II) N,N-di­methyl­formamide tetra­solvate dihydrate, [Cu3(OH)(SO4)(C3H2ClN2)3(C3H7NO)(H2O)]2·4C3H7NO·2H2O. The centrosymmetric dimeric molecule consists of two trinuclear copper–pyrazolate units bridged by two sulfate ions. The title compound provides the first example of a trinuclear copper–pyrazolate complex with three different terminal ligands on the Cu atoms, and also the first example of such complex with a strongly binding basal sulfate ion. Within each trinuclear unit, the CuII atoms are bridged by μ-pyrazolate groups and a central μ3-OH group, and are coordinated by terminal sulfate, H2O and DMF ligands, respectively. Moreover, the sulfate O atoms coordinate at the apical position to the Cu atoms of the symmetry-related unit, providing square–pyramidal coordination geometry around each copper cation. The metal complex and solvent mol­ecules are involved in O—H⋯O hydrogen bonds, leading to a two-dimensional network parallel to (10-1). PMID:27536383

  4. Disruption of integrin-fibronectin complexes by allosteric but not ligand-mimetic inhibitors.

    PubMed

    Mould, A Paul; Craig, Susan E; Byron, Sarah K; Humphries, Martin J; Jowitt, Thomas A

    2014-12-15

    Failure of Arg-Gly-Asp (RGD)-based inhibitors to reverse integrin-ligand binding has been reported, but the prevalence of this phenomenon among integrin heterodimers is currently unknown. In the present study we have investigated the interaction of four different RGD-binding integrins (α5β1, αVβ1, αVβ3 and αVβ6) with fibronectin (FN) using surface plasmon resonance. The ability of inhibitors to reverse ligand binding was assessed by their capacity to increase the dissociation rate of pre-formed integrin-FN complexes. For all four receptors we showed that RGD-based inhibitors (such as cilengitide) were completely unable to increase the dissociation rate. Formation of the non-reversible state occurred very rapidly and did not rely on the time-dependent formation of a high-affinity state of the integrin, or the integrin leg regions. In contrast with RGD-based inhibitors, Ca2+ (but not Mg2+) was able to greatly increase the dissociation rate of integrin-FN complexes, with a half-maximal response at ~0.4 mM Ca2+ for αVβ3-FN. The effect of Ca2+ was overcome by co-addition of Mn2+, but not Mg2+. A stimulatory anti-β1 monoclonal antibody (mAb) abrogated the effect of Ca2+ on α5β1-FN complexes; conversely, a function-blocking mAb mimicked the effect of Ca2+. These results imply that Ca2+ acts allosterically, probably through binding to the adjacent metal-ion-dependent adhesion site (ADMIDAS), and that the α1 helix in the β subunit I domain is the key element affected by allosteric modulators. The data suggest an explanation for the limited clinical efficacy of RGD-based integrin antagonists, and we propose that allosteric antagonists could prove to be of greater therapeutic benefit.

  5. Sulfate-bridged dimeric trinuclear copper(II)-pyrazolate complex with three different terminal ligands.

    PubMed

    Mezei, Gellert

    2016-08-01

    The reaction of CuSO4·5H2O, 4-chloro-pyrazole (4-Cl-pzH) and tri-ethyl-amine (Et3N) in di-methyl-formamide (DMF) produced crystals of di-aqua-hexa-kis-(μ-4-chloro-pyrazolato-κ(2) N:N')bis-(N,N-di-methyl-formamide)di-μ3-hydroxido-bis-(μ4-sulfato-κ(4) O:O':O'':O'')hexa-copper(II) N,N-di-methyl-formamide tetra-solvate dihydrate, [Cu3(OH)(SO4)(C3H2ClN2)3(C3H7NO)(H2O)]2·4C3H7NO·2H2O. The centrosymmetric dimeric molecule consists of two trinuclear copper-pyrazolate units bridged by two sulfate ions. The title compound provides the first example of a trinuclear copper-pyrazolate complex with three different terminal ligands on the Cu atoms, and also the first example of such complex with a strongly binding basal sulfate ion. Within each trinuclear unit, the Cu(II) atoms are bridged by μ-pyrazolate groups and a central μ3-OH group, and are coordinated by terminal sulfate, H2O and DMF ligands, respectively. Moreover, the sulfate O atoms coordinate at the apical position to the Cu atoms of the symmetry-related unit, providing square-pyramidal coordination geometry around each copper cation. The metal complex and solvent mol-ecules are involved in O-H⋯O hydrogen bonds, leading to a two-dimensional network parallel to (10-1).

  6. New platinum(II) complexes with benzo­thia­zole ligands

    PubMed Central

    Carmona-Negrón, José A.; Cádiz, Mayra E.; Moore, Curtis E.; Rheingold, Arnold L.; Meléndez, Enrique

    2016-01-01

    Four new platinum(II) complexes, namely tetra­ethyl­ammonium tri­bromido­(2-methyl-1,3-benzo­thia­zole-κN)platinate(II), [NEt4][PtBr3(C8H7NS)] (1), tetra­ethyl­ammonium tri­bromido­(6-meth­oxy-2-methyl-1,3-benzo­thia­zole-κN)platinate(II), [NEt4][PtBr3(C9H9NOS)] (2), tetra­ethyl­ammonium tri­bromido­(2,5,6-trimethyl-1,3-benzo­thia­zole-κN)platinate(II), [NEt4][PtBr3(C10H11NS)] (3), and tetra­ethyl­ammonium tri­bromido­(2-methyl-5-nitro-1,3-benzo­thia­zole-κN)platinate(II), [NEt4][PtBr3(C8H6N2O2S)] (4), have been synthesized and structurally characterized by single-crystal X-ray diffraction techniques. These species are precursors of compounds with potential application in cancer chemotherapy. All four platinum(II) complexes adopt the expected square-planar coordination geometry, and the benzo­thia­zole ligand is engaged in bonding to the metal atom through the imine N atom (Pt—N). The Pt—N bond lengths are normal: 2.035 (5), 2.025 (4), 2.027 (5) and 2.041 (4) Å for complexes 1, 2, 3 and 4, respectively. The benzo­thia­zole ligands are positioned out of the square plane, with dihedral angles ranging from 76.4 (4) to 88.1 (4)°. The NEt4 cation in 3 is disordered with 0.57/0.43 occupancies. PMID:27006819

  7. Discrete and polymeric Cu(II) complexes featuring substituted indazole ligands: their synthesis and structural chemistry.

    PubMed

    Hawes, Chris S; Kruger, Paul E

    2014-11-21

    Reported here are the syntheses of four indazole-based ligands and the structural characterisation of four Cu(II) complexes derived from them. The ligands 1-(2-pyridyl)-1H-indazole, L1, and 2-(2-pyridyl)-2H-indazole, L2, have been characterised by single crystal X-ray diffraction methods for the first time. The intramolecular structural changes within L1 and L2 that result from the transition from the 1H to the 2H electronic configuration have been delineated. The synthesis of 1H-indazole-6-carboxylic acid, H2L3, and 1H-indazole-7-carboxylic acid, H2L4, is fully described and the structure of H2L4·H2O determined. The structures of two discrete mononuclear complexes {[Cu(L1)2(NO3)]·NO3·1.5H2O}, 1, and {[Cu(L2)2(NO3)]·NO3}, 2, have been determined and their molecular compositions corroborated by solution-based methods. Reaction of Cu(II) with H2L3 generates a 2D coordination polymer, [Cu3(HL3)4(NO3)2(EtOH)2]·3(C6H6)·2(H2O), 3, that features the archetypal [Cu2(OAc)4] paddlewheel motif and 1D channels; whereas reaction with H2L4 gives a discrete complex [Cu(HL4)2]·H2O·MeOH, 4, in which hydrogen bonding interactions link indazole dimers via a water molecule to yield a 1D network.

  8. Probing the energetics of dissociation of carbonic anhydrase-ligand complexes in the gas phase.

    PubMed Central

    Gao, J; Wu, Q; Carbeck, J; Lei, Q P; Smith, R D; Whitesides, G M

    1999-01-01

    This paper describes the use of electrospray ionization-Fourier transform ion cyclotron mass spectrometry (ESI-FTICR-MS) to study the relative stabilities of noncovalent complexes of carbonic anhydrase II (CAII, EC 4.2.1.1) and benzenesulfonamide inhibitors in the gas phase. Sustained off-resonance irradiation collision-induced dissociation (SORI-CID) was used to determine the energetics of dissociation of these CAII-sulfonamide complexes in the gas phase. When two molecules of a benzenesulfonamide (1) were bound simultaneously to one molecule of CAII, one of them was found to exhibit significantly weaker binding (DeltaE50 = 0.4 V, where E50 is defined as the amplitude of sustained off-resonance irradiation when 50% of the protein-ligand complexes are dissociated). In solution, the benzenesulfonamide group coordinates as an anion to a Zn(II) ion bound at the active site of the enzyme. The gas phase stability of the complex with the weakly bound inhibitor was the same as that of the inhibitor complexed with apoCAII (i.e., CAII with the Zn(II) ion removed from the binding site). These results indicate that specific interactions between the sulfonamide group on the inhibitor and the Zn(II) ion on CAII were preserved in the gas phase. Experiments also showed a higher gas phase stability for the complex of para-NO2-benzenesulfonamide-CAII than that for ortho-NO2-benzenesulfonamide-CAII complex. This result further suggests that steric interactions of the inhibitors with the binding pocket of CAII parallel those in solution. Overall, these results are consistent with the hypothesis that CAII retains, at least partially, the structure of its binding pocket in the gas phase on the time scale (seconds to minutes) of the ESI-FTICR measurements. PMID:10354450

  9. Structural, DFT and biological studies on Co(II) complexes of semi and thiosemicarbazide ligands derived from diketo hydrazide

    NASA Astrophysics Data System (ADS)

    Yousef, T. A.; El-Gammal, O. A.; Ahmed, Sara F.; Abu El-Reash, G. M.

    2014-11-01

    Three ligands have been prepared by addition ethanolic suspension of 2-hydrazino-2-oxo-N-phenyl-acetamide to phenyl isocyanate (H2PAPS), phenyl isothiocyanate (H2PAPT) and benzoyl isothiocyanate (H2PABT). The Co(II) chloride complexes were prepared and characterized by conventional techniques. The isolated complexes were assigned the formulaes, [Co(HPAPS)Cl(H2O)2]H2O, [Co(HPAPT)Cl]H2O and [Co(H2PABT)Cl2], respectively. The IR spectra of complexes shows that H2PAPS behaves as a mononegative tridentate via CO of hydrazide moiety and enolized CO of hydrazide moiety and CN (azomethine) group due to enolization of CO isocyanate moiety. H2PAPT behaves as mononegative tridentate via one CO of hydrazide moiety and thiol CS and NH groups and finally H2PABT behaves as neutral tetradentate via one CO of hydrazide moiety, CO of benzoyl moiety, Cdbnd S due to enolization of the second CO of hydrazide moiety and new CN (azomethine) groups. The vibrational frequencies of the IR spectra of ligands which were determined experimentally are compared with those obtained theoretically from DFT calculations. Also, the bond lengths, bond angles, HOMO, LUMO and dipole moments have been calculated. The calculated HOMO-LUMO energy gap reveals that charge transfer occurs within the ligand molecules. The calculated values of binding energies indicates the stability of metal complexes is higher that of ligand. Also, the kinetic and thermodynamic parameters for the different thermal degradation steps of the complexes were determined by Coats-Redfern and Horowitz-Metzger methods. The antibacterial activities were also tested against Bacillus subtilis and Escherichia coli bacteria. The free ligands showed a higher antibacterial effect than their Co(II) complexes except [Co(HPAPS)Cl(H2O)2]H2O which shows higher activity than corresponding ligand. The antitumor activities of the Ligands and their Co(II) complexes have been evaluated against liver (HePG2) and breast (MCF-7) cancer cells. All ligands

  10. Influence of Primary Ligands (ODA, TDA) on Physicochemical and Biological Properties of Oxidovanadium (IV) Complexes with Bipy and Phen as Auxiliary Ligands.

    PubMed

    Pranczk, Joanna; Tesmar, Aleksandra; Wyrzykowski, Dariusz; Inkielewicz-Stępniak, Iwona; Jacewicz, Dagmara; Chmurzyński, Lech

    2016-11-01

    The influence of the oxydiacetate (ODA) and thiodiacetate (TDA) ligands on the physicochemical and biological properties of the oxidovanadium(IV) ternary complexes of the VO(L)(B) type, where L denotes ODA or TDA and B denotes 2,2'-bipyridine (bipy) or 1,10-phenanthroline (phen), has been investigated. The stability of the complexes in aqueous solutions, assessed based on the potentiometric titration method, increases in the following direction: VO(TDA)(bipy) < VO(ODA)(bipy) < VO(TDA)(phen) < VO(ODA)(phen). Furthermore, the influence of the TDA and ODA ligands on the antioxidant activity of the oxidovanadium(IV) complexes toward superoxide free radical (O2(•-)), 2,2'-azinobis(3-ethylbenzothiazoline-6 sulfonic acid) cation radical (ABTS(+•)) and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH(•)) has been examined and discussed. The reactivity of the complexes toward O2(•-) increases in the following direction: VO(TDA)(phen) < VO(TDA)(bipy) ≈ VO(ODA)(bipy) < VO(ODA)(phen). The antioxidant activity against ABTS(+•) and DPPH(•) free radicals is higher for phen complexes, whereas the thiodiacetate complexes are more reactive than are the corresponding oxydiacetate ones. Finally, herein, the cytoprotective activity of the complexes against the oxidative damage generated exogenously by hydrogen peroxide in the hippocampal neuronal HT22 cell line (the MTT and LDH tests) is reported. In a low concentration (1 μM), the cytoprotective action of thiodiacetate complexes is much higher than that of the corresponding oxydiacetate complexes. However, in the higher concentration range (10 and 100 μM), the antioxidant activity of the complexes is overcompensated by their cytotoxic effect.

  11. Structure and spectral properties of dinuclear zinc complex containing semicarbazonate ligands

    NASA Astrophysics Data System (ADS)

    Jing-Lin, Wang; Jiao, Feng; Mei-Ping, Xu; Bin-Sheng, Yang

    2011-04-01

    The dinuclear Zn 2+ complex [Zn(HSSC)OAc] 2·2DMF (H 2SSC = salicylaldehyde semicarbazone; HOAc = acetic acid; DMF = N,N-dimethylfomamide) was prepared and structurally characterized by single crystal X-ray. The basic structural unit of the complex is a dinuclear complex [Zn(HSSC)OAc] 2 in which the semicarbazone ligand adopts the phenol-imine form. The deprotonated phenol group forms a one-atom bridge between the two zinc centers, and both of the zinc centers are five-coordinated. The local coordination environment of Zn 2+ can be approximately considered as square pyramidal. UV spectral studies show that the H 2SSC provides strong binding of Zn 2+ in a 1:1 ratio in solution. The conditional binding constant of the complex is lg KZn-L = 12.89 ± 0.76 in 0.05 M Tris-HCl buffer at pH 7.4. The H 2SSC exhibits an enhanced fluorescence effect by the addition of Zn 2+, and affords an excellent selectivity for Zn 2+ under physiological conditions.

  12. Group 10 complexes containing phosphinomethylamine ligands: Synthesis, structural analysis and electrochemical studies

    SciTech Connect

    Waggoner, Nolan W.; Spreer, Lindsay S.; Boro, Brian J.; DuBois, Daniel L.; Helm, Monte L.

    2012-01-15

    The reaction of [M(triphos)OTf](OTf) (M = Pd, Pt; triphos = (Ph2PCH2CH2)2PPh; OTf = triflate) with one equivalent of a diphenylphosphinomethylamine ligand (PPh2NPh(R), R = Ph or Me) leads to the formation of the M(II) complexes [Pd(triphos)PPh2NPh(R)](OTf)2 (1a, R = Ph; 1b, R = Me) and [Pt(triphos)PPh2NPh(R)]- (OTf)2 (2a, R = Ph; 2b, R = Me). Complexes 1a, 1b, 2a and 2b were obtained in moderate yields and characterized by elemental analysis, 1H, 13C, 31P NMR and X-ray diffraction. The redox behavior of these complexes shows a reversible reduction wave with half-wave potentials ranging from -1.04 to -1.23 V. Electrocatalytic proton reduction studies demonstrate these complexes function as hydrogen production catalysts with turn over frequencies ranging from 120 to 200 s-1. We thank Research Corporation Cottrell Science Award (7293) and Fort Lewis College for financial support of this project. Pacific Northwest National Laboratory collaborators would like to acknowledge the support of the US Department of Energy Basic Energy Sciences’ Chemical Sciences, Geosciences, and Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  13. Copper(II) complexes with phenoxyalkanoic acids and nitrogen donor heterocyclic ligands: structure and bioactivity.

    PubMed

    Dendrinou-Samara, C; Psomas, G; Raptopoulou, C P; Kessissoglou, D P

    2001-01-01

    The copper complexes with the phenoxyalkanoic acids MCPA, 2,4-D, 2,4,5-T and 2,4-DP in the presence of a nitrogen donor heterocyclic ligand, phen or bipyam, were prepared and characterized. Interaction of Cu(II) with phenoxyalkanoic acids and bipyam leads to dinuclear or uninuclear neutral complexes while in the presence of phen uninuclear neutral or cationic forms have been isolated. The crystal structure of bis(1,10-phenanthroline)(2-methyl-4-chloro-phenoxyacetato)copper(ll) chloride-methanol(1/1)-water(1/0.6), 1 has been determined and refined by least-squares methods using three-dimensional MoK, data. 1 crystallizes in space group P1, in a cell of dimensions a = 14.577(6)A, b = 1 1.665(5) A, c = 12.249(6) A, alpha = 98.38( 1)degrees, beta = 112.18( 1) degrees, gamma = 104.56(1 ) degrees, V= 1,798( 1) A3 and Z= 2. The cyclic voltammograms of uninuclear cationic complexes in dmf exhibit an extra cathodic wave due to the chloride ion. The available evidence supports an increasing antimicrobial effeciency for the cationic complexes.

  14. Mono-, di-, tri- and tetranuclear rare earth complexes obtained using a moderately bulky aryloxide ligand.

    PubMed

    Deacon, Glen B; Junk, Peter C; Moxey, Graeme J

    2009-11-02

    Redox transmetallation ligand exchange reactions involving a rare earth metal, 2,4,6-trimethylphenol (HOmes), and a diarylmercurial afford rare earth aryloxo complexes, which are structurally characterized. Both the lanthanoid contraction and the identity of the reaction solvent are found to influence the outcome of the reactions. Using THF in the reaction affords a dinuclear species [Ln2(Omes)6(thf)4].2THF (Ln=La 1, Nd 2) for the lighter rare earth metals, while a mononuclear species [Ln(Omes)3(thf)3] (Ln=Sm 3, Tb 5, Er 6, Yb 7, Y 8) is obtained for the heavier rare earth elements. Surprisingly, there is no change in metal coordination number between the two structural motifs. A divalent trinuclear linear complex [Eu3(Omes)6(thf)6] 4 is obtained for Eu, and features solely bridging aryloxide ligands. Using DME as the reaction solvent affords [La(Omes)3(dme)2] 9 from the reaction mixture, and [Ln2(Omes)6(dme)2].PhMe (La 10, Nd 11) and [Y(Omes)3(dme)2] 14 following crystallization of the crude product from toluene. The dinuclear species [Eu2(Omes)4(dme)4] 12 contains two unidentate and two chelating DME ligands, and contrasts the linear structure of 4. Treatment of HOmes and HgPh2 with Yb metal in DME affords the mixed valent Yb(II/III) complex [Yb2(Omes)5(dme)2] 13, which is stabilized by an intramolecular pi-Ph-Yb interaction, and is a rare example of a mixed valent rare earth aryloxide. Treatment of Er metal with HOmes at elevated temperature (solvent free) affords the homoleptic [Er4(Omes)12] 15, which consists of a tetranuclear array of Er atoms arranged in a 'herringbone' fashion; the structure is stabilized by intramolecular pi-Ph-Er interactions. Reaction of La metal with HOmes under similar conditions yields toluene insoluble "La(Omes)3", which affords 1 following extraction with THF.

  15. Metal complexes containing allenylidene and higher cumulenylidene ligands: a theoretical perspective.

    PubMed

    Coletti, Cecilia; Marrone, Alessandro; Re, Nazzareno

    2012-02-21

    Transition metal complexes containing unsaturated carbenes have enjoyed a recent surge in research interest. In addition to showing potential as molecular wires and as components of opto-electronic materials, they provide multifaceted reactive sites for organic synthesis. In this Account, we describe results of recent theoretical studies that delineate the main features of electronic structure and bonding in allenylidenes and higher cumulenylidene complexes, [L(m)M]═C(═C)(n)═CR(1)R(2) (where L represents the ligand, M the metal, and n ≥ 1). Although free cumulenylidene ligands, :C(═C)(n)═CR(1)R(2), are extremely unstable and reactive species, they can be stabilized by coordination to a transition metal. The σ-donation of the electron lone pair on the terminal carbon atom to an empty metal d-orbital, together with the simultaneous π back-donation from filled metal d(π)-orbitals to empty cumulene π* system orbitals, leads to the formation of a strong M═C bond with multiple character. Density functional theory studies on the model systems [(CO)(5)Cr(═C)(n)CH(2)] and [trans-Cl(PH(3))(4)Ru(═C)(n)CH(2)](+) (where n = 1-9) have been useful in interpreting the structural and spectroscopic properties and the reactivity of this class of complexes. Geometry optimizations significantly contributed to the generalization of the sparse structural data available for allenylidene, butatrienylidene, and pentatetraenylidene complexes to higher cumulenylidene complexes (with up to eight carbon atoms in the chain), which show a clear structural trend. In particular, the geometries of all even-chain cumulenes are consistent with an almost purely cumulenic structure, whereas the geometries of odd-chain cumulenes present a significant polyyne-like carbon-carbon bond length alternation. The calculated bond dissociation energies (BDEs) of the cumulenylidene ligand remain almost constant on lengthening the cumulene chain. These BDEs indicate that there is no

  16. Synthesis, characterisation, spectral, thermal, XRD, molecular modelling and potential antibacterial study of metal complexes containing octadentate azodye ligands

    NASA Astrophysics Data System (ADS)

    Mahapatra, Bipin Bihari; Chaulia, Satyanarayan; Sarangi, Ashish Kumar; Dehury, Satyanarayan; Panda, Jnyanaranjan

    2015-05-01

    Twelve tetrametallic complexes of Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) with two new octadentate azodye ligands, 4,4‧-bis(2‧,4‧-dihydroxy-5‧carboxyphenylazo) diphenylether (LH6) and 4,4‧-bis(2‧,4‧-dihydroxy-5‧-acylphenylazo) diphenylether (L‧H4) have been synthesised. The structural elucidation of the complexes was made basing upon analytical, conductance, magnetic susceptibility, IR, electronic spectra, ESR, NMR, ESI-MS, TG, DTG, DTA and X-ray diffraction (powder pattern) data. The cobalt (II) and nickel (II) complexes are found to be octahedral, copper (II) complexes are distorted octahedral and a tetrahedral stereochemistry has been suggested to zinc (II), cadmium (II) and mercury (II) complexes. The thermal analysis data provided the kinetic parameters as order of decomposition reaction, activation energy and frequency factor. The geometry of the ligands and their Co(II), Ni(II), Cu(II) and Zn(II) complexes were optimised and their physicochemical properties were calculated by using molecular modelling procedure. The ESI-MS determination supports the molecular formula and molecular weight of the ligands and the complexes. The Ni(II) complex is found to have a triclinic crystal system. The potential antibacterial study of the two ligands and eight metal complexes was made by cup-plate method against one gram positive and one gram negative bacteria. The results showed increase in the activity of some metal complexes as compare with azodye ligands.

  17. Modification of binuclear Pt-Tl bonded complexes by attaching bipyridine ligands to the thallium site.

    PubMed

    Ma, Guibin; Kritikos, Mikael; Maliarik, Mikhail; Glaser, Julius

    2004-07-12

    Complex formation of monomeric thallium(III) species with 2,2'-bipyridine (bipy) in dimethyl sulfoxide (dmso) and acetonitrile solutions was studied by means of multinuclear ((1)H, (13)C, and (205)Tl) NMR spectroscopy. For the first time, NMR signals of the individual species [Tl(bipy)(m)(solv)](3+) (m = 1-3) were observed despite intensive ligand and solvent exchange processes. The tris(bipy) complex was crystallized as [Tl(bipy)(3)(dmso)](ClO(4))(3)(dmso)(2) (1), and its crystal structure determined. In this compound, thallium is seven-coordinated; it is bonded to six nitrogen atoms of the three bipy molecules and to an oxygen atom of dmso. Metal-metal bonded binuclear complexes [(NC)(5)Pt-Tl(CN)(n)(solv)](n)(-) (n = 0-3) have been modified by attaching bipy molecules to the thallium atom. A reaction between [(NC)(5)Pt-Tl(dmso)(4)](s) and 2,2'-bipyridine in dimethyl sulfoxide solution results in the formation of a new complex, [(NC)(5)Pt-Tl(bipy)(solv)]. The presence of a direct Pt-Tl bond in the complex is convincingly confirmed by a very strong one-bond (195)Pt-(205)Tl spin-spin coupling ((1)J((195)Pt-(205)Tl) = 64.9 kHz) detected in both (195)Pt and (205)Tl NMR spectra. In solutions containing free cyanide, coordination of CN(-) to the thallium atom occurs, and the complex [(NC)(5)Pt-Tl(bipy)(CN)(solv)](-) ((1)J((195)Pt-(205)Tl) = 50.1 kHz) is formed as well. Two metal-metal bonded compounds containing bipy as a ligand were crystallized and their structures determined by X-ray diffractometry: [(NC)(5)Pt-Tl(bipy)(dmso)(3)] (2) and [(NC)(5)Pt-Tl(bipy)(2)] (3). The Pt-Tl bonding distances in the compounds, 2.6187(7) and 2.6117(5) A, respectively, are among the shortest reported separations between these two metals. The corresponding force constants in the molecules, 1.38 and 1.68 N/cm, respectively, were calculated using Raman stretching frequencies of the Pt-Tl vibrations and are characteristic for a single metal-metal bond. Electronic absorption spectra were

  18. Sorption of Cu(II) complexes with ligands tartrate, glycine and quadrol by chitosan.

    PubMed

    Gyliene, Ona; Binkiene, Rima; Butkiene, Rita

    2009-11-15

    The sorption by chitosan in Cu(II) solutions containing tartrate, glycine (amino acetic acid) and quadrol (N,N,N',N'-tetrakis(2-hydroxypropyl)ethylenediamine) as ligands has been investigated. The degree of sorbate removal strongly depends on pH. In solutions containing tartrate almost complete sorption of both Cu(II) and tartrate proceeds in mildly acidic and neutral solutions. The sorption of Cu(II) is also complete in alkaline solutions containing glycine; meanwhile a substantial sorption of glycine proceeds at pH approximately 6. The Cu(II) sorption in solutions containing quadrol is insignificant. Any sorption of quadrol does not proceed in the whole range of pH investigated. The investigations under equilibrium conditions showed that the Cu(II) sorption from tartrate containing solutions obeys Freundlich equation and in solutions containing glycine and quadrol it fits Langmuir equation. Supposedly, Cu(II) sorption onto chitosan proceeds with formation of amino complexes onto the surface of chitosan; the sorption of tartrate proceeds as electrostatic as well as with formation of amide bonds. Applying of electrolysis enables a complete removal of sorbed Cu(II) and ligands without changes in physical and chemical properties of chitosan. This is confirmed by sorption ability of regenerated chitosan, measurements of its molecular weight, the deacetylation degree and FT-IR spectra.

  19. A tetranuclear cadmium(II) complex based on the 2-(quinolin-8-yloxy)acetonitrile ligand.

    PubMed

    Liu, Ming-Liang; Ye, Qiong

    2013-01-01

    The hydrothermal reaction of 2-(quinolin-8-yloxy)acetonitrile and Cd(ClO(4))(2) yielded the noncentrosymmetric coordination complex tetrakis[μ-2-(quinolin-8-yloxy)acetato]tetrakis[μ-2-(quinolin-8-yloxy)acetonitrile]tetracadmium tetrakis(perchlorate) dihydrate, [Cd(4)(C(11)H(8)NO(3))(4)(C(11)H(8)N(2)O)(4)](ClO(4))(4)·2H(2)O. The local coordination environment around the Cd(II) cation can be best described as a capped octahedron defined by two N atoms and five O atoms from three ligands. The Cd(II) cations are linked by the ligands with Cd-O-Cd and Cd-O-C-C-O-Cd bridges, forming tetranuclear units, there being two independent tertranuclear units in the structure. The fourfold rotoinversion centre sits at the centre of each Cd(4) core. The two perchlorate anions in the asymmetric unit are linked by the water molecule through O-H...O hydrogen bonds.

  20. Synthesis of zirconium, hafnium, and tantalum complexes with sterically demanding hydrazide ligands.

    PubMed

    Lehn, Jean-Sébastien M; Javed, Saba; Hoffman, David M

    2007-02-05

    The bulky hydrazine t-BuN(H)NMe2 was synthesized via hydrazone and t-BuN(H)N(H)Me intermediates as the major component in a 90:5:5 mixture consisting of t-BuN(H)NMe2, t-BuN(Me)N(H)Me, and t-BuN(Me)NMe2. Reacting the mixture with n-BuLi followed by distillation and fractional crystallization led to the isolation of the ligand precursor LiN(t-Bu)NMe2. Lithium hydrazides, LiN(R)NMe2, were reacted with metal chlorides to afford the hydrazide complexes M(N(Et)NMe2)4 (M = Zr or Hf), MCl(N(R)NMe2)3 (M = Zr, R = i-Pr or t-Bu; M = Hf, R = t-Bu), and TaCl3(N(i-Pr)NMe2)2. The X-ray crystal structures of [LiN(i-Pr)NMe2]4, [LiN(t-Bu)NMe2.THF]2, ZrCl(N(R)NMe2)3 (R = i-Pr or t-Bu), and TaCl3(N(i-Pr)NMe2)2 were determined. The structural analyses revealed that the hydrazide ligands in ZrCl(N(R)NMe2)3 (R = i-Pr or t-Bu) and TaCl3(N(i-Pr)NMe2)2 are eta2 coordinated.

  1. A square-planar tellurium(II) complex with Te,Te'-chelating ligands.

    PubMed

    Chivers, Tristram; Ritch, Jamie S

    2015-05-01

    While exploring the chemistry of tellurium-containing dichalcogenidoimidodiphosphinate ligands, the first all-tellurium member of a series of related square-planar E(II)(E')4 complexes (E and E' are group 16 elements), namely bis(P,P,P',P'-tetraphenylditelluridoimidodiphosphinato-κ(2)Te,Te')tellurium(II) (systematic name: 2,2,4,4,8,8,10,10-octaphenyl-1λ(3),5,6λ(4),7λ(3),11-pentatellura-3,9-diaza-2λ(5),4λ(5),8λ(5),10λ(5)-tetraphosphaspiro[5.5]undeca-1,3,7,9-tetraene), C48H40N2P4Te5, was obtained unexpectedly. The formally Te(II) centre is situated on a crystallographic inversion centre and is Te,Te'-chelated to two anionic [(TePPh2)2N](-) ligands in an anti conformation. The central Te(II)(Te)4 unit is approximately square planar [Te-Te-Te = 93.51 (3) and 86.49 (3)°], with Te-Te bond lengths of 2.9806 (6) and 2.9978 (9) Å.

  2. Russian Nesting Doll Complexes of Molecular Baskets and Zinc Containing TPA Ligands.

    PubMed

    Zhiquan, Lei; Polen, Shane; Hadad, Christopher M; RajanBabu, T V; Badjić, Jovica D

    2016-07-06

    In this study, we examined the structural and electronic complementarities of convex 1-Zn(II), comprising functionalized tris(2-pyridylmethyl)amine (TPA) ligand, and concave baskets 2 and 3, having glycine and (S)-alanine amino acids at the rim. With the assistance of (1)H NMR spectroscopy and mass spectrometry, we found that basket 2 would entrap 1-Zn(II) in water to give equimolar 1-Zn⊂2in complex (K = (2.0 ± 0.2) × 10(3) M(-1)) resembling Russian nesting dolls. Moreover, C3 symmetric and enantiopure basket 3, containing (S)-alanine groups at the rim, was found to transfer its static chirality to entrapped 1-Zn(II) and, via intermolecular ionic contacts, twist the ligand's pyridine rings into a left-handed (M) propeller (circular dichroism spectroscopy). With molecular baskets embodying the second coordination sphere about metal-containing TPAs, the here described findings should be useful for extending the catalytic function and chiral discrimination capability of TPAs.

  3. Tungsten carbonyl σ-complexes with charge-compensated nido-carboranyl thioether ligands.

    PubMed

    Timofeev, Sergey V; Zhidkova, Olga B; Mosolova, Elena M; Sivaev, Igor B; Godovikov, Ivan A; Suponitsky, Kyrill Yu; Starikova, Zoya A; Bregadze, Vladimir I

    2015-04-14

    Charge-compensated nido-carboranyl thioether ligands [7-MeS-10-Me2S-7,8-C2B9H10] and [7,8-(MeS)2-10-Me2S-7,8-C2B9H9] were prepared and fully characterized. They readily react with labile tungsten carbonyls to give σ-complexes - mono-substituted (CO)5W[7-MeS-10-Me2S-7,8-C2B9H10-κ(1)-S(1)] and (CO)5W[7,8-(MeS)2-10-Me2S-7,8-C2B9H9-κ(1)-S(1)] and chelate (CO)4W[7,8-(MeS)2-10-Me2S-7,8-C2B9H9-κ(2)-S(1),S(2)]. The synthesized metallocomplexes were characterized by multinuclear NMR spectroscopy and single crystal X-ray diffraction. The donor ability of the 7-methylsulfide-nido-carborane ligand is not sensitive to introduction of the charge-compensating dimethylsulfonium group.

  4. A hexadentate bis(thiosemicarbazonato) ligand: rhenium(V), iron(III) and cobalt(III) complexes.

    PubMed

    Paterson, Brett M; White, Jonathan M; Donnelly, Paul S

    2010-03-21

    A new 1,3-diaminopropane bridged bis(thiosemicarbazone) ligand (H(4)L) has been synthesised. The new hexadentate ligand is capable of forming six coordinate complexes with rhenium(V), iron(III) and cobalt(III). In the case of the iron(III) and cobalt(III) complexes the ligand doubly deprotonates to give the monocations [Fe(III)(H(2)L)](+) and [Co(III)(H(2)L)](+) in which the metal ion is in a distorted octahedral environment. In the rhenium(V) complex the ligand loses four protons by deprotonation of both secondary amine nitrogen atoms to give [Re(V)(L)](+) with the metal ion in a distorted trigonal prismatic coordination environment. [Re(V)(L)](+) represents a rare example of a rhenium(V) complex that does not contain one of the ReO(3+), ReN(2+) or Re(NPh)(2+) cores. The new ligand and metal complexes have been characterised by a combination of NMR spectroscopy, X-ray crystallography, mass spectrometry and microanalysis. The electrochemistry of [Fe(III)(H(2)L)](+), [Co(III)(H(2)L)](+) and [Re(V)(L)](+) has been investigated by cyclic voltammetry with each complex undergoing a single electron reduction event. It is possible to prepare the rhenium(V) complex from ReOCl(3)(PPh(3))(2) or directly from [ReO(4)](-) with the addition of a reductant, which suggests the new ligand may be of interest in the development of rhenium radiopharmaceuticals.

  5. Antifungal activity of α-methyl trans cinnamaldehyde, its ligand and metal complexes: promising growth and ergosterol inhibitors.

    PubMed

    Shreaz, Sheikh; Sheikh, Rayees A; Bhatia, Rimple; Neelofar, Khan; Imran, Sheikh; Hashmi, Athar A; Manzoor, Nikhat; Basir, Seemi F; Khan, Luqman A

    2011-10-01

    Antifungal effectivity and utility of cinnamaldehyde is limited because of its high MIC and skin sensitivity. In this study, α-methyl trans cinnamaldehyde, a less irritating derivative, have been self coupled and complexed with Co(II) and Ni(II) to generate N, N'-Bis (α-methyl trans cinnamadehyde) ethylenediimine [C(22)H(24)N(2)], [Co(C(44)H(48)N(4))Cl(2)] and [Ni(C(44)H(48)N(4))Cl(2)]. Ligand and complexes were characterized on the basis of FTIR, ESI-MS, IR and (1)HNMR techniques. Synthesized ligand [L] and complexes were investigated for their MICs, inhibition of ergosterol biosynthesis and H(+) extrusion against three strains of Candida: C. albicans 44829, C. tropicalis 750 and C. krusei 6258. Average of three species MIC of methyl cinnamaldehyde is 317 μg/ml (2168 μM). Compared to methyl cinnamaldehyde ligand [L], Co(II) and Ni(II) complex are found to be 4.48, 17.78 and 21.46 times more effective in liquid medium and 2.73, 8.93 and 10.38 times more effective in solid medium. At their respective MIC(90) average inhibition of ergosterol biosynthesis caused by methyl cinnamaldehyde, ligand [L], Co(II) and Ni(II) complex, respectively was 80, 78, 90 and 93%. H(+) extrusion was also significantly inhibited but did not co-relate well with MIC(90). Results indicate ergosterol biosynthesis as site of action of α-methyl cinnamaldehyde, synthesized ligand and complexes. α-methyl cinnamaldehyde and ligand did not show any toxicity against H9c2 rat cardiac myoblast cell, whereas Co(II) and Ni(II) complexes on an average produced 19% cellular toxicity.

  6. Synthesis, characterization and cytotoxic activity of gallium(III) complexes anchored by tridentate pyrazole-based ligands.

    PubMed

    Silva, Francisco; Marques, Fernanda; Santos, I C; Paulo, António; Rodrigues, António Sebastião; Rueff, José; Santos, Isabel

    2010-05-01

    Reactions of GaCl(3) with pyrazole-containing ligands of the pyrazole-imine-phenol (HL(1)-HL(3)) or pyrazole-amine-phenol (HL(4)-HL(6)) types led to the synthesis of well-defined [GaL(2)](+) homoleptic complexes (1-6). Complexes 1-6 were characterized by elemental analysis, ESI-MS (electrospray ionization-mass spectrometry), IR and NMR spectroscopies, and in the case of Complex 1 also by X-ray diffraction analysis. In complexes 1-3, the pyrazole-imine-phenolate ligands act as monoanionic chelators that coordinate to the metal in a meridional fashion, while 4-6 contain monoanionic and facially coordinated pyrazole-amine-phenolate ligands. Complexes 1-3 have a greater stability in solution compared to 4-6, which have shown a more pronounced tendency to release the respective ancillary ligands. The cytotoxicity of 1-6 and of the respective ligands (HL(1)-HL(6)) was evaluated against human prostate cancer cells PC-3 and human breast cancer cells MCF-7. The substituents of the phenolate rings strongly influenced the cytotoxicity of the compounds. Complexes 3 and 6 that contain chloride substituents at the phenolate rings have shown the highest cytotoxicity, including in the cisplatin-resistant PC-3 cell line. The cytotoxic profile of 3 and 6 is very similar to the one displayed by the respective anchor ligands, respectively HL(1) and HL(6). The cytotoxic activity of 3 and 6 is slightly increased by the presence of transferrin, and both complexes provoke cell death mainly by induction of apoptotic pathways.

  7. Synthesis and studies on Cu(II), Co(II), Ni(II) complexes of Knoevenagel β-diketone ligands.

    PubMed

    Sumathi, S; Tharmaraj, P; Sheela, C D; Anitha, C

    2012-11-01

    Transition metal complexes of various acetylacetone based ligands of the type ML [where M=Cu(II), Ni(II), Co(II); L=3-(aryl)-pentane-2,4-dione] have been synthesized. The structural features have been derived from their elemental analysis, magnetic susceptibility, molar conductance, IR, UV-Vis, (1)H NMR, Mass and ESR spectral studies. Conductivity measurements reveal that all the complexes are non-electrolytic in nature. Spectroscopic and other analytical data of the complexes suggest octahedral geometry for other metal(II) complexes. The redox behavior of the copper(II) complexes have been studied by cyclic voltammetry. The free ligands and their metal complexes have been screened for their in vitro biological activities against the bacteria Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus as well as the fungus Candida albicans by well diffusion method. The zone of inhibition value indicates that the most of the metal(II) complexes are found to possess increased activities compared to those of the free ligands. All synthesized compounds may serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The second harmonic generation (SHG) efficiency of the ligands (L1-L3) was found to be considerable effect than that of urea and KDP (potassium dihydrogen phosphate).

  8. Synthesis, spectral, thermal and antimicrobial studies of transition metal complexes of 14-membered tetraaza[N₄] macrocyclic ligand.

    PubMed

    Shankarwar, Sunil G; Nagolkar, Bhagwat B; Shelke, Vinod A; Chondhekar, Trimbak K

    2015-06-15

    A series of metal complexes of Mn(II), Co(II), Ni(II), Cu(II), have been synthesized with newly synthesized biologically active macrocyclic ligand. The ligand was synthesized by condensation of β-diketone 1-(4-chlorophenyl)-3-(2-hydroxyphenyl)propane-1,3-dione and o-phenylene diamine. All the complexes were characterized by elemental analysis, molar conductivity, magnetic susceptibility, thermal analysis, X-ray diffraction, IR, (1)H-NMR, UV-Vis spectroscopy and mass spectroscopy. From the analytical data, stoichiometry of the complexes was found to be 1:2 (metal:ligand). Thermal behavior (TG/DTA) and kinetic parameters suggest more ordered activated state in complex formation. All the complexes are of high spin type and six coordinated. On the basis of IR, electronic spectral studies and magnetic behavior, an octahedral geometry has been assigned to these complexes. The antibacterial and antifungal activities of the ligand and its metal complexes, has been screened in vitro against Staphylococcus aureus, Escherichia coli and Aspergillus niger, Trichoderma respectively.

  9. Synthesis and studies on Cu(II), Co(II), Ni(II) complexes of Knoevenagel β-diketone ligands

    NASA Astrophysics Data System (ADS)

    Sumathi, S.; Tharmaraj, P.; Sheela, C. D.; Anitha, C.

    2012-11-01

    Transition metal complexes of various acetylacetone based ligands of the type ML [where M = Cu(II), Ni(II), Co(II); L = 3-(aryl)-pentane-2,4-dione] have been synthesized. The structural features have been derived from their elemental analysis, magnetic susceptibility, molar conductance, IR, UV-Vis, 1H NMR, Mass and ESR spectral studies. Conductivity measurements reveal that all the complexes are non-electrolytic in nature. Spectroscopic and other analytical data of the complexes suggest octahedral geometry for other metal(II) complexes. The redox behavior of the copper(II) complexes have been studied by cyclic voltammetry. The free ligands and their metal complexes have been screened for their in vitro biological activities against the bacteria Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus as well as the fungus Candida albicans by well diffusion method. The zone of inhibition value indicates that the most of the metal(II) complexes are found to possess increased activities compared to those of the free ligands. All synthesized compounds may serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The second harmonic generation (SHG) efficiency of the ligands (L1-L3) was found to be considerable effect than that of urea and KDP (potassium dihydrogen phosphate).

  10. Synthesis, spectral, thermal and antimicrobial studies of transition metal complexes of 14-membered tetraaza[N4] macrocyclic ligand

    NASA Astrophysics Data System (ADS)

    Shankarwar, Sunil G.; Nagolkar, Bhagwat B.; Shelke, Vinod A.; Chondhekar, Trimbak K.

    2015-06-01

    A series of metal complexes of Mn(II), Co(II), Ni(II), Cu(II), have been synthesized with newly synthesized biologically active macrocyclic ligand. The ligand was synthesized by condensation of β-diketone 1-(4-chlorophenyl)-3-(2-hydroxyphenyl)propane-1,3-dione and o-phenylene diamine. All the complexes were characterized by elemental analysis, molar conductivity, magnetic susceptibility, thermal analysis, X-ray diffraction, IR, 1H-NMR, UV-Vis spectroscopy and mass spectroscopy. From the analytical data, stoichiometry of the complexes was found to be 1:2 (metal:ligand). Thermal behavior (TG/DTA) and kinetic parameters suggest more ordered activated state in complex formation. All the complexes are of high spin type and six coordinated. On the basis of IR, electronic spectral studies and magnetic behavior, an octahedral geometry has been assigned to these complexes. The antibacterial and antifungal activities of the ligand and its metal complexes, has been screened in vitro against Staphylococcus aureus, Escherichia coli and Aspergillus niger, Trichoderma respectively.

  11. Synthesis, structure, and electrochemical characterization of a mixed-ligand diruthenium(III,II) complex with an unusual arrangement of the bridging ligands.

    PubMed

    Ngubane, Siyabonga; Kadish, Karl M; Bear, John L; Van Caemelbecke, Eric; Thuriere, Antoine; Ramirez, Kevin P

    2013-03-14

    A mixed-ligand metal-metal bonded diruthenium complex having the formula Ru(2)(2,4,6-(CH(3))(3)ap)(3)(O(2)CCH(3))Cl where ap is the anilinopyridinate anion was synthesized from the reaction of Ru(2)(O(2)CCH(3))(4)Cl and H(2,4,6-(CH(3))(3)ap), after which the isolated product was structurally, spectroscopically and electrochemically characterized. The crystal structure reveals an unusual arrangement of the bridging ligands around the dimetal unit where one ruthenium atom is coordinated to one anilino and two pyridyl nitrogen atoms while the other ruthenium atom is coordinated to one pyridyl and two anilino nitrogen atoms. To our knowledge, Ru(2)(2,4,6-(CH(3))(3)ap)(3)(O(2)CCH(3))Cl is the only example of a mixed-ligand diruthenium complex of the type [Ru(2)L(3)(O(2)CCH(3))](+), where L is an unsymmetrical anionic bridging ligand that has been structurally characterized with a "(2,1)" geometric conformation of the bridging ligands, all others being "(3,0)". The initial Ru(2)(5+) compound in CH(2)Cl(2) or CH(3)CN containing 0.1 M tetra-n-butylammonium perchlorate (TBAP) undergoes up to four one-electron redox processes involving the dimetal unit. The Ru(2)(5+/4+) and Ru(2)(5+/6+) processes were characterized under N(2) using thin-layer UV-visible spectroelectrochemistry and this data is compared to UV-visible spectral changes obtained during similar electrode reactions for related diruthenium compounds having the formula Ru(2)L(4)Cl or Ru(2)L(3)(O(2)CCH(3))Cl where L is an anionic bridging ligand. Ru(2)(2,4,6-(CH(3))(3)ap)(3)(O(2)CCH(3))Cl was also examined by UV-visible and FTIR spectroelectrochemistry under a CO atmosphere and two singly reduced Ru(2)(4+) species, [Ru(2)(2,4,6-(CH(3))(3)ap)(3)(O(2)CCH(3))(CO)Cl](-) and Ru(2)(2,4,6-(CH(3))(3)ap)(3)(O(2)CCH(3))(CO) were in situ generated for further characterization. The CO-bound complexes could be further reduced and exhibited additional reductions to their Ru(2)(3+) and Ru(2)(2+) oxidation states.

  12. Web application for studying the free energy of binding and protonation states of protein-ligand complexes based on HINT

    NASA Astrophysics Data System (ADS)

    Bayden, Alexander S.; Fornabaio, Micaela; Scarsdale, J. Neel; Kellogg, Glen E.

    2009-09-01

    A public web server performing computational titration at the active site in a protein-ligand complex has been implemented. This calculation is based on the Hydropathic interaction noncovalent force field. From 3D coordinate data for the protein, ligand and bridging waters (if available), the server predicts the best combination of protonation states for each ionizable residue and/or ligand functional group as well as the Gibbs free energy of binding for the ionization-optimized protein-ligand complex. The 3D structure for the modified molecules is available as output. In addition, a graph depicting how this energy changes with acidity, i.e., as a function of added protons, can be obtained. This data may prove to be of use in preparing models for virtual screening and molecular docking. A few illustrative examples are presented. In β secretase (2va7) computational titration flipped the amide groups of Gln12 and Asn37 and protonated a ligand amine yielding an improvement of 6.37 kcal mol-1 in the protein-ligand binding score. Protonation of Glu139 in mutant HIV-1 reverse transcriptase (2opq) allows a water bridge between the protein and inhibitor that increases the protein-ligand interaction score by 0.16 kcal mol-1. In human sialidase NEU2 complexed with an isobutyl ether mimetic inhibitor (2f11) computational titration suggested that protonating Glu218, deprotonating Arg237, flipping the amide bond on Tyr334, and optimizing the positions of several other polar protons would increase the protein-ligand interaction score by 0.71 kcal mol-1.

  13. Slow magnetic relaxation in four square-based pyramidal dysprosium hydroxo clusters ligated by chiral amino acid anions - a comparative study.

    PubMed

    Thielemann, Dominique T; Wagner, Anna T; Lan, Yanhua; Anson, Christopher E; Gamer, Michael T; Powell, Annie K; Roesky, Peter W

    2013-10-01

    The synthesis and characterization of three chiral and one achiral amino acid anion ligated dysprosium hydroxo clusters [Dy5(OH)5(α-AA)4(Ph2acac)6] (α-AA = d-PhGly, l-Pro, l-Trp, Ph2Gly; Ph2acac = dibenzoylmethanide) are reported. The solid state structures were determined using single crystal X-ray diffraction and show that five Dy(iii) ions are arranged in a square-based pyramidal geometry with NO7-donor-sets for the basal and O8-donor-sets for the apical Dy atom. Both static (dc) and dynamic (ac) magnetic properties were investigated for all four compounds and show a slow relaxation of magnetization, indicative of single molecule magnet (SMM) behaviour below 10 K in all cases. The similar SMM behaviour observed for all four compounds suggests that the very similar coordination geometries seen for the dysprosium atoms in all members of this family, which are independent of the amino acid ligand used, play a decisive role in steering the contribution of the single ion anisotropies to the observed magnetic relaxation.

  14. New mixed ligand zinc(II) complexes based on the antiepileptic drug sodium valproate and bioactive nitrogen-donor ligands. Synthesis, structure and biological properties.

    PubMed

    Darawsheh, Mohanad; Abu Ali, Hijazi; Abuhijleh, A Latif; Rappocciolo, Emilia; Akkawi, Mutaz; Jaber, Suhair; Maloul, Salam; Hussein, Yasmeen

    2014-07-23

    Starting from the precursor [Zinc Valproate complex] (1), new mixed ligand zinc(II) complexes of valproic acid and nitrogen-based ligands, formulating as, [Zn(valp)22,9-dmphen] (2), [Zn2(valp)4(quin)2] (3), [Zn(valp)2(2-ampy)2] (4), and [Zn(valp)2(2-ampic)2] (5) (valp = valproate, 2,9-dmphen = 2,9-dimethyl-1,10-phenanthroline, quin = quinoline, 2-ampy = 2-aminopyridine, 2-ampic = 2-amino-6-picoline) were synthesized and characterized using IR, (1)H NMR, (13)C{(1)H} NMR and UV-Vis spectrometry. The crystal structures of complexes 2, 3 and 4 were determined using single-crystal X-ray diffraction. The complexes were also evaluated for their anti-bacterial activity using in-vitro agar diffusion method against three Gram-positive (Micrococcus luteus, Staphylococcus aureus, and Bacillus subtilis) and three Gram-negative (Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis) species. Complex 2 showed considerable activity against all tested microorganisms and the effect of complexation on the anti-bacterial activity of the parent ligand of 2 was also investigated. The anti-bacterial activity of 2,9-dmphen against Gram-negative bacteria was enhanced upon complexation with zinc valproate. On the other hand, complexes 1 and 3 showed weak inhibition activity against the tested species and complexes 4 and 5 didn't show any activity at all. Two methods were used for testing the inhibition of ferriprotoporphyrinIX bio-mineralization: a semi-quantitative micro-assay and a previously self-developed quantitative in-vitro method. Both were used to study the efficiency of these complexes in inhibiting the formation of the Malaria pigment which considered being the target of many known anti-malarial drugs such as Chloroquine and Amodiaquine. Results showed that the efficiency of complex 2 in preventing the formation of β-Hematin was 80%. The efficiency of Amodiaquine as a standard drug was reported to give 91%.

  15. Computation of binding energies including their enthalpy and entropy components for protein-ligand complexes using support vector machines.

    PubMed

    Koppisetty, Chaitanya A K; Frank, Martin; Kemp, Graham J L; Nyholm, Per-Georg

    2013-10-28

    Computing binding energies of protein-ligand complexes including their enthalpy and entropy terms by means of computational methods is an appealing approach for selecting initial hits and for further optimization in early stages of drug discovery. Despite the importance, computational predictions of thermodynamic components have evaded attention and reasonable solutions. In this study, support vector machines are used for developing scoring functions to compute binding energies and their enthalpy and entropy components of protein-ligand complexes. The binding energies computed from our newly derived scoring functions have better Pearson's correlation coefficients with experimental data than previously reported scoring functions in benchmarks for protein-ligand complexes from the PDBBind database. The protein-ligand complexes with binding energies dominated by enthalpy or entropy term could be qualitatively classified by the newly derived scoring functions with high accuracy. Furthermore, it is found that the inclusion of comprehensive descriptors based on ligand properties in the scoring functions improved the accuracy of classification as well as the prediction of binding energies including their thermodynamic components. The prediction of binding energies including the enthalpy and entropy components using the support vector machine based scoring functions should be of value in the drug discovery process.

  16. Amide Coupling Reaction for the Synthesis of Bispyridine-based Ligands and Their Complexation to Platinum as Dinuclear Anticancer Agents

    PubMed Central

    Apps, Michael G.; Johnson, Ben W.; Sutcliffe, Oliver B.; Brown, Sarah D.; Wheate, Nial J.

    2014-01-01

    Amide coupling reactions can be used to synthesize bispyridine-based ligands for use as bridging linkers in multinuclear platinum anticancer drugs. Isonicotinic acid, or its derivatives, are coupled to variable length diaminoalkane chains under an inert atmosphere in anhydrous DMF or DMSO with the use of a weak base, triethylamine, and a coupling agent, 1-propylphosphonic anhydride. The products precipitate from solution upon formation or can be precipitated by the addition of water. If desired, the ligands can be further purified by recrystallization from hot water. Dinuclear platinum complex synthesis using the bispyridine ligands is done in hot water using transplatin. The most informative of the chemical characterization techniques to determine the structure and gross purity of both the bispyridine ligands and the final platinum complexes is 1H NMR with particular analysis of the aromatic region of the spectra (7-9 ppm). The platinum complexes have potential application as anticancer agents and the synthesis method can be modified to produce trinuclear and other multinuclear complexes with different hydrogen bonding functionality in the bridging ligand. PMID:24893964

  17. DFT modeling and spectroscopic study of metal ligand bonding in La(III) complex of coumarin-3-carboxylic acid

    NASA Astrophysics Data System (ADS)

    Mihaylov, Tz.; Trendafilova, N.; Kostova, I.; Georgieva, I.; Bauer, G.

    2006-09-01

    The binding mode of coumarin-3-carboxylic acid (HCCA) to La(III) is elucidated at experimental and theoretical level. The complexation ability of the deprotonated ligand (CCA -) to La(III) is studied using elemental analysis, DTA and TGA data as well as FTIR, 1H NMR and 13C NMR spectra. The experimental data suggest the complex formula La(CCA) 2(NO 3)(H 2O) 2. B3LYP, BHLYP, B3P86, B3PW91, PW91P86 and MPW1PW91 functionals are tested for geometry and frequency calculations of the neutral ligand and all of them show bond length deviations bellow 1%. B3LYP/6-31G(d) level combined with large quasi-relativistic effective core potential for lanthanum is selected to describe the molecular, electronic and vibrational structures as well as the conformational behavior of HCCA, CCA - and La-CCA complex. The metal-ligand binding mode is predicted through molecular modeling and energy estimation of different La-CCA structures. The calculated atomic charges and the bonding orbital polarizations point to strong ionic metal-ligand bonding in La-CCA complex and insignificant donor acceptor interaction. Detailed vibrational analysis of HCCA, CCA - and La(CCA) 2(NO 3)(H 2O) 2 systems based on both calculated and experimental frequencies confirms the suggested metal-ligand binding mode.

  18. Ligand field photofragmentation spectroscopy of [Ag(L)N]2+ complexes in the gas phase: experiment and theory.

    PubMed

    Guan, Jingang; Puskar, Ljiljana; Esplugas, Ricardo O; Cox, Hazel; Stace, Anthony J

    2007-08-14

    Experiments have been undertaken to record photofragmentation spectra from a series of [Ag(L)N]2+ complexes in the gas phase. Spectra have been obtained for silver(II) complexed with the ligands (L): acetone, 2-pentanone, methyl-vinyl ketone, pyridine, and 4-methyl pyridine (4-picoline) with N in the range of 4-7. A second series of experiments using 1,1,1,3-fluoroacetone, acetonitrile, and CO2 as ligands failed to show any evidence of photofragmentation. Interpretation of the experimental data has come from time-dependent density functional theory (TDDFT), which very successfully accounts for trends in the spectra in terms of subtle differences in the properties of the ligands. Taking a sample of three ligands, acetone, pyridine, and acetonitrile, the calculations show all the spectral transitions to involve ligand-to-metal charge transfer, and that wavelength differences (or lack of spectra) arise from small changes in the energies of the molecular orbitals concerned. The calculations account for an absence in the spectra of any effects due to Jahn-Teller distortion, and they also reveal structural differences between complexes where the coordinating atom is either oxygen or nitrogen that have implications for the stability of silver(II) compounds. Where possible, comparisons have also been made with the physical properties of condensed phase silver(II) complexes.

  19. Unmasking the Action of Phosphinous Acid Ligands in Nitrile Hydration Reactions Catalyzed by Arene-Ruthenium(II) Complexes.

    PubMed

    Tomás-Mendivil, Eder; Cadierno, Victorio; Menéndez, María I; López, Ramón

    2015-11-16

    The catalytic hydration of benzonitrile and acetonitrile has been studied by employing different arene-ruthenium(II) complexes with phosphinous (PR2OH) and phosphorous acid (P(OR)2OH) ligands as catalysts. Marked differences in activity were found, depending on the nature of both the P-donor and η(6)-coordinated arene ligand. Faster transformations were always observed with the phosphinous acids. DFT computations unveiled the intriguing mechanism of acetonitrile hydration catalyzed by these arene-ruthenium(II) complexes. The process starts with attack on the nitrile carbon atom of the hydroxyl group of the P-donor ligand instead of on a solvent water molecule, as previously suggested. The experimental results presented herein for acetonitrile and benzonitrile hydration catalyzed by different arene-ruthenium(II) complexes could be rationalized in terms of such a mechanism.

  20. Antioxidant, electrochemical, thermal, antimicrobial and alkane oxidation properties of tridentate Schiff base ligands and their metal complexes

    NASA Astrophysics Data System (ADS)

    Ceyhan, Gökhan; Çelik, Cumali; Uruş, Serhan; Demirtaş, İbrahim; Elmastaş, Mahfuz; Tümer, Mehmet

    2011-10-01

    In this study, two Schiff base ligands (HL 1 and HL 2) and their Cu(II), Co(II), Ni(II), Pd(II) and Ru(III) metal complexes were synthesized and characterized by the analytical and spectroscopic methods. Alkane oxidation activities of the metal complexes were studied on cyclohexane as substrate. The ligands and their metal complexes were evaluated for their antimicrobial activity against Corynebacterium xerosis, Bacillus brevis, Bacillus megaterium, Bacillus cereus, Mycobacterium smegmatis, Staphylococcus aureus, Micrococcus luteus and Enterococcus faecalis (as Gram-positive bacteria) and Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Yersinia enterocolitica, Klebsiella fragilis, Saccharomyces cerevisiae, and Candida albicans (as Gram-negative bacteria). The antioxidant properties of the Schiff base ligands were evaluated in a series of in vitro tests: 1,1-diphenyl-2-picrylhydrazyl (DPPH rad ) free radical scavenging and reducing power activity of superoxide anion radical generated non-enzymatic systems. Electrochemical and thermal properties of the compounds were investigated.

  1. Indicator ligands in metal complexation studies: role of 4-(2-pyridylazo)resorcinol in europium carbonate equilibrium investigations

    SciTech Connect

    Thompson, S.W.; Byrne, R.H.

    1988-01-01

    Spectrophotometric procedures utilizing the strongly complexing indicator 4-(2-pyridylazo)resorcinol (PAR) permit determination of 1:2 metal-ligand formation constants while substantially promoting metal solubility. The intricacies inherent in competitive equilibria involving PAR can be well-managed through use of low total metal-total indicator (PAR) ratios and observations of comparative complexation at constant pH. The influences of carbonate and oxalate complexation on the adsorbance of Eu-PAR complexes are quantitatively described in terms of Eu(CO/sub 3/)/sub 2//sup -/, Eu(OX)/sub 2//sup -/, and ternary (Eu-PAR-ligand) complexes. Since PAR is a nonspecific colorimetric complexant, the spectrophotometric procedures outlined in this work are applicable to a wide variety of metals.

  2. Bidentate ligands on osmium(VI) nitrido complexes control intracellular targeting and cell death pathways.

    PubMed

    Suntharalingam, Kogularamanan; Johnstone, Timothy C; Bruno, Peter M; Lin, Wei; Hemann, Michael T; Lippard, Stephen J

    2013-09-25

    The cellular response evoked by antiproliferating osmium(VI) nitrido compounds of general formula OsN(N^N)Cl3 (N^N = 2,2'-bipyridine 1, 1,10-phenanthroline 2, 3,4,7,8-tetramethyl-1,10-phenanthroline 3, or 4,7-diphenyl-1,10-phenanthroline 4) can be tuned by subtle ligand modifications. Complex 2 induces DNA damage, resulting in activation of the p53 pathway, cell cycle arrest at the G2/M phase, and caspase-dependent apoptotic cell death. In contrast, 4 evokes endoplasmic reticulum (ER) stress leading to the upregulation of proteins of the unfolded protein response pathway, increase in ER size, and p53-independent apoptotic cell death. To the best of our knowledge, 4 is the first osmium compound to induce ER stress in cancer cells.

  3. Dehydrogenation of Formic Acid Catalyzed by a Ruthenium Complex with an N,N'-Diimine Ligand.

    PubMed

    Guan, Chao; Zhang, Dan-Dan; Pan, Yupeng; Iguchi, Masayuki; Ajitha, Manjaly J; Hu, Jinsong; Li, Huaifeng; Yao, Changguang; Huang, Mei-Hui; Min, Shixiong; Zheng, Junrong; Himeda, Yuichiro; Kawanami, Hajime; Huang, Kuo-Wei

    2017-01-03

    We report a ruthenium complex containing an N,N'-diimine ligand for the selective decomposition of formic acid to H2 and CO2 in water in the absence of any organic additives. A turnover frequency of 12 000 h(-1) and a turnover number of 350 000 at 90 °C were achieved in the HCOOH/HCOONa aqueous solution. Efficient production of high-pressure H2 and CO2 (24.0 MPa (3480 psi)) was achieved through the decomposition of formic acid with no formation of CO. Mechanistic studies by NMR and DFT calculations indicate that there may be two competitive pathways for the key hydride transfer rate-determining step in the catalytic process.

  4. Diversification of complex butterfly wing patterns by repeated regulatory evolution of a Wnt ligand

    PubMed Central

    Martin, Arnaud; Papa, Riccardo; Nadeau, Nicola J.; Hill, Ryan I.; Counterman, Brian A.; Halder, Georg; Jiggins, Chris D.; Kronforst, Marcus R.; Long, Anthony D.; McMillan, W. Owen; Reed, Robert D.

    2012-01-01

    Although animals display a rich variety of shapes and patterns, the genetic changes that explain how complex forms arise are still unclear. Here we take advantage of the extensive diversity of Heliconius butterflies to identify a gene that causes adaptive variation of black wing patterns within and between species. Linkage mapping in two species groups, gene-expression analysis in seven species, and pharmacological treatments all indicate that cis-regulatory evolution of the WntA ligand underpins discrete changes in color pattern features across the Heliconius genus. These results illustrate how the direct modulation of morphogen sources can generate a wide array of unique morphologies, thus providing a link between natural genetic variation, pattern formation, and adaptation. PMID:22802635

  5. Fe-complex of a tetraamido macrocyclic ligand: Spectroscopic characterization and catalytic oxidation studies

    NASA Astrophysics Data System (ADS)

    Sullivan, Shane Z.; Ghosh, Anindya; Biris, Alexandru S.; Pulla, Sharon; Brezden, Anna M.; Collom, Samulel L.; Woods, Ross M.; Munshi, Pradip; Schnackenberg, Laura; Pierce, Brad S.; Kannarpady, Ganesh K.

    2010-10-01

    This work presents the spectroscopic characterization and reaction studies of a Fe III-complex (2) of a tetraamido macrocyclic ligand (1, 15,15-dimethyl-5,8,13,17-tetrahydro-5,8,13,17-tetraaza-dibenzo[a,g]cyclotridecene-6,7,14,16-tetraone). 2 was characterized primarily by means of EPR. In agreement with the magnetic moment ( μeff = 3.87 BM), EPR spectroscopy of 2 shows signals consistent with S = 3/2 intermediate-spin ferric-iron. Besides EPR, mass spectrometry, UV/vis spectroscopy and cyclic voltammetry were used to further characterize 2. 2 is soluble in water and activates hydrogen peroxide under ambient conditions. 2 catalytically bleaches dyes, pulp and paper effluents and oxidizes several amines to their corresponding N-oxides with high turnover number and good yields.

  6. Mechanism of cellular accumulation of an iridium(III) pentamethylcyclopentadienyl anticancer complex containing a C,N-chelating ligand.

    PubMed

    Novohradsky, Vojtech; Liu, Zhe; Vojtiskova, Marie; Sadler, Peter J; Brabec, Viktor; Kasparkova, Jana

    2014-03-01

    The effect of replacement of the N,N-chelating ligand 1,10-phenanthroline (phen) in the Ir(III) pentamethylcyclopentadienyl (Cp*) complex [(η(5)-Cp*)(Ir)(phen)Cl](+) (2) with the C,N-chelating ligand 7,8-benzoquinoline (bq) to give [(η(5)-Cp*)(Ir)(bq)Cl] (1) on the cytotoxicity of these Cp*Ir(III) complexes toward cancer cell lines was investigated. Complex 2 is inactive, similar to other Cp*Ir(III) complexes containing the N,N-chelating ligands. In contrast, a single atom change (C(-) for N) in the chelating N,N ligand resulted in potency in human ovarian carcinoma cisplatin-sensitive A2780 cells, and, strikingly, 1 is active in the cisplatin-resistant human breast cancer MCF-7 and A2780/cisR cells. Replacement of the N,N-chelating ligand with the C,N-chelating ligand gives rise to increased hydrophobicity, leading to higher cellular accumulation, higher DNA-bound iridium in cells and higher cytotoxicity. The pathways involved in cellular accumulation of 1 have been further explored and compared with conventional cisplatin. The results show that both energy-independent passive diffusion and energy-dependent transport play a role in accumulation of 1. Further results were consistent with involvement of p-glycoprotein, multidrug resistance-associated protein 1 and glutathione metabolism in the efflux of 1. In contrast, the internalization of 1 mediated by the endocytotic uptake pathway(s) seems less likely. Understanding the factors which contribute to the mechanism of cellular accumulation of this Ir(III) complex can now lead to the design of structurally similar metal complexes for antitumor chemotherapy.

  7. Can Förster Theory Describe Stereoselective Energy Transfer Dynamics in a Protein-Ligand Complex?

    PubMed

    Pinheiro, Silvana; Curutchet, Carles

    2017-03-16

    Förster resonance energy transfer (FRET) reactions involving ligands and aromatic amino acids can substantially impact the fluorescence properties of a protein-ligand complex, an impact intimately related to the corresponding binding mode. Structural characterization of such binding events in terms of intermolecular distances can be done through the well-known R(-6) distance-dependent Förster rate expression. However, such an interpretation suffers from uncertainties underlying Förster theory in the description of the electronic coupling that promotes FRET, mostly related to the dipole-dipole orientation factor, dielectric screening effects, and deviations from the ideal dipole approximation. Here, we investigate how Förster approximations impact the prediction of energy transfer dynamics in the complex between flurbiprofen (FBP) and human serum albumin (HSA), as well as a model FBP-Trp dyad, in which recent observation of enantioselective fluorescence quenching has been ascribed to energy transfer from FBP to Trp. To this end, we combine classical molecular dynamics simulations with polarizable quantum mechanics/molecular mechanics calculations that allow overcoming Förster approximations. On the basis of our results, we discuss the potential of structure-based simulations in the characterization of drug-binding events through fluorescence techniques. Overall, we find an excellent agreement between theory and experiment both in terms of enantioselectivity and FRET times, thus strongly supporting the reliability of the binding modes proposed for the (S) and (R) enantiomers of FBP. In particular, we show that the dynamic quenching arises from a small fraction of drug bound to the secondary site of HSA at the interface between subdomains IIA and IIB, whereas the enantioselectivity arises from the larger flexibility of the (S)-FBP enantiomer in the binding pocket.

  8. Blind docking of 260 protein-ligand complexes with EADock 2.0.

    PubMed

    Grosdidier, Aurélien; Zoete, Vincent; Michielin, Olivier

    2009-10-01

    Molecular docking softwares are one of the important tools of modern drug development pipelines. The promising achievements of the last 10 years emphasize the need for further improvement, as reflected by several recent publications (Leach et al., J Med Chem 2006, 49, 5851; Warren et al., J Med Chem 2006, 49, 5912). Our initial approach, EADock, showed a good performance in reproducing the experimental binding modes for a set of 37 different ligand-protein complexes (Grosdidier et al., Proteins 2007, 67, 1010). This article presents recent improvements regarding the scoring and sampling aspects over the initial implementation, as well as a new seeding procedure based on the detection of cavities, opening the door to blind docking with EADock. These enhancements were validated on 260 complexes taken from the high quality Ligand Protein Database [LPDB, (Roche et al., J Med Chem 2001, 44, 3592)]. Two issues were identified: first, the quality of the initial structures cannot be assumed and a manual inspection and/or a search in the literature are likely to be required to achieve the best performance. Second the description of interactions involving metal ions still has to be improved. Nonetheless, a remarkable success rate of 65% was achieved for a large scale blind docking assay, when considering only the top ranked binding mode and a success threshold of 2 A RMSD to the crystal structure. When looking at the five-top ranked binding modes, the success rate increases up to 76%. In a standard local docking assay, success rates of 75 and 83% were obtained, considering only the top ranked binding mode, or the five top binding modes, respectively.

  9. Theoretical characterization and design of highly efficient iridium (III) complexes bearing guanidinate ancillary ligand.

    PubMed

    Ren, Xin-Yao; Wu, Yong; Wang, Li; Zhao, Liang; Zhang, Min; Geng, Yun; Su, Zhong-Min

    2014-06-01

    A density functional theory/time-depended density functional theory was used to investigate the synthesized guanidinate-based iridium(III) complex [(ppy)2Ir{(N(i)Pr)2C(NPh2)}] (1) and two designed derivatives (2 and 3) to determine the influences of different cyclometalated ligands on photophysical properties. Except the conventional discussions on geometric relaxations, absorption and emission properties, many relevant parameters, including spin-orbital coupling (SOC) matrix elements, zero-field-splitting parameters, radiative rate constants (kr) and so on were quantitatively evaluated. The results reveal that the replacement of the pyridine ring in the 2-phenylpyridine ligand with different diazole rings cannot only enlarge the frontier molecular orbital energy gaps, resulting in a blue-shift of the absorption spectra for 2 and 3, but also enhance the absorption intensity of 3 in the lower-energy region. Furthermore, it is intriguing to note that the photoluminescence quantum efficiency (ΦPL) of 3 is significantly higher than that of 1. This can be explained by its large SOC value(n=3-4) and large transition electric dipole moment (μS3), which could significantly contribute to a larger kr. Besides, compared with 1, the higher emitting energy (ET1) and smaller (2) value for 3 may lead to a smaller non-radiative decay rate. Additionally, the detailed results also indicate that compared to 1 with pyridine ring, 3 with imidazole ring performs a better hole injection ability. Therefore, the designed complex 3 can be expected as a promising candidate for highly efficient guanidinate-based phosphorescence emitter for OLEDs applications.

  10. Transition metal complexes of a new 15-membered [N5] penta-azamacrocyclic ligand with their spectral and anticancer studies

    NASA Astrophysics Data System (ADS)

    El-Boraey, Hanaa A.; Serag El-Din, Azza A.

    2014-11-01

    Novel penta-azamacrocyclic 15-membered [N5] ligand [L] i.e. 1,5,8,12-tetetraaza-3,4: 9,10-dibenzo-6-ethyl-7-methyl-1,12-(2,6-pyrido)cyclopentadecan-5,7 diene-2,11-dione and its transition metal complexes with Co(II), Ni(II), Cu(II), Ru(III) and Pd(II) have been synthesized and structurally characterized by elemental analysis, spectral, thermal as well as magnetic and molar conductivity measurements. On basis of IR, MS, UV-Vis 1H NMR and EPR spectral studies an octahedral geometry has been proposed for all complexes except Co(II), Cu(II) nitrate complexes and Pd(II) chloride complex that adopt tetrahedral, square pyramidal and square planar geometries, respectively. The antitumor activity of the synthesized ligand and some complexes against human breast cancer cell lines (MCF-7) and human hepatocarcinoma cell lines (HepG2) has been studied. The complexes (IC50 = 2.04-9.7, 2.5-3.7 μg/mL) showed potent antitumor activity comparable with their ligand (IC50 = 11.7, 3.45 μg/mL) against the above mentioned cell lines, respectively. The results evidently show that the activity of the ligand becomes more pronounced and significant when coordinated to the metal ion.

  11. Synthesis, characterization, biological activity and equilibrium studies of metal(II) ion complexes with tridentate hydrazone ligand derived from hydralazine

    NASA Astrophysics Data System (ADS)

    El-Sherif, Ahmed A.; Shoukry, Mohamed M.; Abd-Elgawad, Mohamed M. A.

    2012-12-01

    In the present study, a new hydrazone ligand (2-((2-phthalazin-1-yl)hydrazono)methyl)phenol) prepared by condensation of hydralazine (1-Hydralazinophthalazine) with salicylaldehyde (SAH). The synthesized SAH-hydrazone and its metal complexes have been characterized by elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, mass spectra, UV-vis and thermal analysis (TGA). The analytical data of the complexes show the formation of 1:1 [M:L] ratio, where M represents Ni(II), Co(II) and Cu(II) ions, while L represents the deprotonated hydrazone ligand. IR spectra show that SAH is coordinated to the metal ions in a tridentate manner through phthalazine-N, azomethine-N and phenolic-oxygen groups. The ligand and their metal chelates have been screened for their antimicrobial activities using the disc diffusion method against the selected bacteria and fungi. Proton-ligand association constants of (SAH) and the stepwise stability constants of its metal complexes are determined potentiometrically in 0.1 M NaNO3 at different temperatures and the corresponding thermodynamic parameters were derived and discussed. The order of -ΔG° and -ΔH° were found to obey Mn2+ < Co2+ < Ni2+ < Cu2+, in accordance with the Irving-Williams order. The complexes were stabilized by enthalpy changes and the results suggest that the complexation is an enthalpy-driven process. The concentration distribution diagrams of the complexes are evaluated.

  12. A rhenium complex with diamine ligand containing oxadiazole group and fluorine atom: Synthesis, characterization, photoluminescence and electroluminescence performances

    NASA Astrophysics Data System (ADS)

    Yang, Wensheng; Yang, Wan; Liu, Weisheng; Qin, Wenwu

    2013-03-01

    In this paper, a diamine ligand of 2-(4-fluorophenyl)-5-(pyridin-2-yl)-1,3,4-oxadiazole (FPYOZ), which owned both enlarged conjugation chain with electron-pulling group and fluorine atom, was synthesized. Its corresponding Re(I) complex was also synthesized and studied in detail, including single crystal analysis, electronic structure, photophysical performance, thermal stability and electrochemical property. Single crystal analysis suggested that there was a coordination ability difference between the N atom from pyridine ring and the one from oxadiazole moiety. Theoretical calculation on the complex suggested that the onset electronic transition owned a mixed character of metal-to-ligand-charge-transfer and ligand-to-ligand-charge-transfer. Upon photoexcitation of 375 nm, this complex showed a yellow emission peaking at 537 nm with excited state lifetime of 8.35 μs. Cyclic voltammetry result suggested that this complex owned HOMO and LUMO energy levels of -5.37 eV and -3.04 eV. The decomposition temperature of this complex was as high as 300 °C, as revealed by thermogravimetric analysis data. The optimal electroluminescence device using this complex as the emitting dopant showed an electroluminescence peaking at 562 nm, with a maximum luminance of 6250 cd/m2 and a maximum current efficiency of 7.3 cd/A.

  13. Synthesis, characterization, and reactivity of a side-on manganese(iii)-peroxo complex bearing a pentadentate aminopyridine ligand.

    PubMed

    Du, Junyi; Xu, Daqian; Zhang, Chunxi; Xia, Chungu; Wang, Yong; Sun, Wei

    2016-06-21

    A manganese(ii) complex has been prepared with a proline-derived pentadentate ligand (Pro3Py), and it can be converted to a peroxomanganese(iii) complex in the presence of H2O2 and triethylamine. The resulting peroxomanganese(iii) complex was well characterised by UV-vis, EPR and ESI-MS techniques, and the geometric structure was discussed based on DFT calculations.

  14. Palladium(II) complex with thiazole containing tridentate ONN donor ligand: Synthesis, X-ray structure and DFT computation

    NASA Astrophysics Data System (ADS)

    Biswas, Sujan; Pramanik, Ajoy Kumar; Mondal, Tapan Kumar

    2015-05-01

    New palladium(II) complex with 2-(2-thiazolyl)-4-methylphenol (TAC) having general formula [Pd(TAC)Cl) (1) has been synthesized and characterized. The complex has been characterized by various spectroscopic techniques. Single crystal X-ray structure shows distorted square planar geometry around palladium(II). Cyclic voltammetric studies shows ligand based irreversible oxidation and reduction peaks. The electronic structure, redox properties and electronic excitations in the complex are interpreted by DFT and TDDFT calculations.

  15. Selective Photodissociation of Acetonitrile Ligands in Ruthenium Polypyridyl Complexes Studied by Density Functional Theory.

    PubMed

    Tu, Yi-Jung; Mazumder, Shivnath; Endicott, John F; Turro, Claudia; Kodanko, Jeremy J; Schlegel, H Bernhard

    2015-08-17

    Metal complexes that release ligands upon photoexcitation are important tools for biological research and show great potential as highly specific therapeutics. Upon excitation with visible light, [Ru(TQA)(MeCN)2](2+) [TQA = tris(2-quinolinylmethyl)amine] exchanges one of the two acetonitriles (MeCNs), whereas [Ru(DPAbpy)MeCN](2+) [DPAbpy = N-(2,2'-bipyridin-6-yl)-N,N-bis(pyridin-2-ylmethyl)amine] does not release MeCN. Furthermore, [Ru(TQA)(MeCN)2](2+) is highly selective for release of the MeCN that is perpendicular to the plane of the two axial quinolines. Density functional theory calculations provide a clear explanation for the photodissociation behavior of these two complexes. Excitation by visible light and intersystem crossing leads to a six-coordinate (3)MLCT state. Dissociation of acetonitrile can occur after internal conversion to a dissociative (3)MC state, which has an occupied dσ* orbital that interacts in an antibonding fashion with acetonitrile. For [Ru(TQA)(MeCN)2](2+), the dissociative (3)MC state is lower than the (3)MLCT state. In contrast, the (3)MC state of [Ru(DPAbpy)MeCN](2+) that releases acetonitrile has an energy higher than that of the (3)MLCT state, indicating dissociation is unfavorable. These results are consistent with the experimental observations that efficient photodissociation of acetonitrile occurs for [Ru(TQA)(MeCN)2](2+) but not for [Ru(DPAbpy)MeCN](2+). For the release of the MeCN ligand in [Ru(TQA)(MeCN)2](2+) that is perpendicular to the axial quinoline rings, the (3)MLCT state has an occupied quinoline π* orbital that can interact with a dσ* Ru-NCCH3 antibonding orbital as the Ru-NCCH3 bond is stretched and the quinolines bend toward the departing acetonitrile. This reduces the barrier for the formation of the dissociative (3)MC state, leading to the selective photodissociation of this acetonitrile. By contrast, when the acetonitrile is in the plane of the quinolines or bpy, no interaction occurs between the ligand

  16. Organometallic Palladium Complexes with a Water-Soluble Iminophosphorane Ligand as Potential Anticancer Agents

    PubMed Central

    Carreira, Monica; Calvo-Sanjuán, Rubén; Sanaú, Mercedes; Marzo, Isabel; Contel, María

    2012-01-01

    The synthesis and characterization of a new water-soluble iminophosphorane ligand TPA=N-C(O)-2BrC6H4 (C,N-IM; TPA = 1,3,5-triaza-7-phosphaadamantane) 1 is reported. Oxidative addition of 1 to Pd2(dba)3 affords the orthopalladated dimer [Pd(μ-Br){C6H4(C(O)N=TPA-kC,N)-2}]2 (2) as a mixture of cis and trans isomers (1:1 molar ratio) where the iminophosphorane moeity behaves as a C,N-pincer ligand. By addition of different neutral or monoanionic ligands to 2, the bridging bromide can be cleaved and a variety of hydrophilic or water-soluble mononuclear organometallic palladium(II) complexes of the type [Pd{C6H4(C(O)N=TPA-kC,N)-2}(L-L)] (L-L = acac (3); S2CNMe2 (4); 4,7-Diphenyl-1,10-phenanthrolinedisulfonic acid disodium salt C12H6N2(C6H4SO3Na)2 (5)); [Pd{C6H4(C(O)N=TPA-kC,N)-2}(L)Br] (L = P(mC6H4SO3Na)3 (6); P(3-Pyridyl)3 (7)) and, [Pd(C6H4(C(O)N=TPA)-2}(TPA)2Br] (8) are obtained as single isomers. All new complexes were tested as potential anticancer agents and their cytotoxicity properties were evaluated in vitro against human Jurkat-T acute lymphoblastic leukemia cells, normal T-lymphocytes (PBMC) and DU-145 human prostate cancer cells. Compounds [Pd(μ-Br){C6H4(C(O)N=TPA-kC,N)-2}]2 (2) and [Pd{C6H4(C(O)N=TPA-kC,N)-2}(acac)] 3 (which has been crystallographically characterized) display the higher cytotoxicity against the above mentioned cancer cell lines while being less toxic to normal T-lymphocytes (peripheral blood mononuclear cells: PBMC). In addition, 3 is very toxic to cisplatin resistant Jurkat shBak indicating a cell death pathway that may be different to that of cisplatin. The interaction of 2 and 3 with plasmid (pBR322) DNA is much weaker than that of cisplatin pointing to an alternative biomolecular target for these cytotoxic compounds. All the compounds show an interaction with human serum albumin (HSA) faster than that of cisplatin. PMID:23066172

  17. Cesium complexes of naphthalimide substituted carboxylate ligands: Unusual geometries and extensive cation-π interactions

    NASA Astrophysics Data System (ADS)

    Reger, Daniel L.; Leitner, Andrew; Smith, Mark D.

    2015-07-01

    The reactions of (1,8-naphthalimido)ethanoic acid (HLgly), and (S)-2-(1,8-naphthalimido)-3-hydroxypropanoic acid (HLser), protonated forms of ligands that contain a carboxylate donor group and a 1,8-naphthalimide π⋯π stacking supramolecular tecton, with cesium hydroxide followed by solvothermal treatment in ethanol led to the formation of crystalline Cs(Lgly) (1) and Cs(Lene) (2), where the Lene- ligand, 2-(1,8-naphthalimido)acrylate, is formed from the dehydration of the HLser starting material. The X-ray studies show that 1 crystallizes in the monoclinic space group C2/c with unit cell dimensions a = 30.430(7) Å, b = 4.9820(12) Å, c = 16.566(4) Å, β = 101.951(4)° and 2 in the monoclinic space group P21/n with unit cell dimensions a = 13.6049(15) Å, b = 6.8100(8) Å, c = 14.4187(16) Å, β = 105.345(2)°. The solid state structure of 1 contains two types of 6-coordinate cesium cations linked into sheets by bridging carboxylate oxygen atoms. One cation has a distorted octahedral environment, while the other is in an unusual planar, hexagonal O6-coordination geometry. The latter geometry is stabilized on both sides of the plane by η2-coordination of naphthalimide rings. The 1,8-naphthalimide rings are involved in intra-sheet π⋯π stacking interactions. The O6 coordination sphere of complex 2 is distorted and only half-filled with the oxygen atoms, which link the cations into rods that are further linked into sheets by bridging interactions of naphthalimide carbonyls with cesium cations from adjacent rods. The open face on the cation has unique η2:η1 interactions with two methylene groups in the ligands. These sheets are linked into a 3D supramolecular structure by interdigitated 1,8-naphthalimide rings involved in strong π⋯π interactions. Both complexes show naphthalimide based fluorescence.

  18. Calix[4]pyrrole Schiff base macrocycles. Novel binucleating ligands for mu-oxo iron complexes.

    PubMed

    Veauthier, Jacqueline M; Cho, Won-Seob; Lynch, Vincent M; Sessler, Jonathan L

    2004-02-23

    New bimetallic mu-oxo diferric complexes of several previously reported calix[4]pyrrole Schiff base macrocycles are described. The synthesis of a new member of this class of macrocycles is also reported; it was prepared via an acid-catalyzed condensation between 1,9-bisformyl-5,5-dipropyldipyrromethane and o-phenylenediamine. Reactions of the free base macrocycles or their bis-HCl salts with Fe(II) mesitylene, followed by air oxidation, gave the binuclear mu-oxo bis-Fe(III) compounds 6-10 in moderate yield. X-ray crystallography data reveal two different coordination environments for the Fe-O-Fe subunit in 6-10 that it is suggested can be controlled by altering the reaction conditions. Structural properties of these metalated pyrrolic macrocycles are also compared to those of mu-oxo diferric porphyrins and mu-oxo diferric texaphyrin. Complexes 6-10 exhibit two distinct types of M-N bonds that are similar in length to the bonds observed in metallotexaphyrin complexes. However, the electronics of the present systems are very different from those of texaphyrins and porphyrins in that no delocalized bonding patterns are observed within the ligands as a whole.

  19. Crystal structures of two ytterbium(III) complexes comprising alkynylamidinate ligands

    PubMed Central

    Wang, Sida; Sroor, Farid M.; Liebing, Phil; Lorenz, Volker; Hilfert, Liane; Edelmann, Frank T.

    2016-01-01

    Two ytterbium(III) complexes comprising alkynylamidinate ligands, namely bis­(η5-cyclo­penta­dien­yl)(3-cyclo­propyl-N,N′-diiso­propyl­propynamidinato-κ2 N,N′)ytterbium(III), [Yb(C5H5)2(C12H19N2)] or Cp2Yb[(iPr2N)2C—C≡C—c-C3H5] (1) and tris­(3-phenyl-N,N′-di­cyclo­hexyl­propynamidinato-κ2 N,N′)ytterbium(III), [Yb(C21H27N2)3] or Yb[(CyN)2C—C≡C—Ph]3 (Cy = cyclo­hex­yl) (2) have been synthesized and structurally characterized. Both complexes are monomers; for complex 2, the contribution to the scattering from highly disordered toluene solvent molecules in these voids was removed with the SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9–18] in PLATON. The stated crystal data for Mr, μ etc. do not take these into account. PMID:27920904

  20. Bis(allyl)-ruthenium(iv) complexes with phosphinous acid ligands as catalysts for nitrile hydration reactions.

    PubMed

    Tomás-Mendivil, Eder; Francos, Javier; González-Fernández, Rebeca; González-Liste, Pedro J; Borge, Javier; Cadierno, Victorio

    2016-09-14

    Several mononuclear ruthenium(iv) complexes with phosphinous acid ligands [RuCl2(η(3):η(3)-C10H16)(PR2OH)] have been synthesized (78-86% yield) by treatment of the dimeric precursor [{RuCl(μ-Cl)(η(3):η(3)-C10H16)}2] (C10H16 = 2,7-dimethylocta-2,6-diene-1,8-diyl) with 2 equivalents of different aromatic, heteroaromatic and aliphatic secondary phosphine oxides R2P([double bond, length as m-dash]O)H. The compounds [RuCl2(η(3):η(3)-C10H16)(PR2OH)] could also be prepared, in similar yields, by hydrolysis of the P-Cl bond in the corresponding chlorophosphine-Ru(iv) derivatives [RuCl2(η(3):η(3)-C10H16)(PR2Cl)]. In addition to NMR and IR data, the X-ray crystal structures of representative examples are discussed. Moreover, the catalytic behaviour of complexes [RuCl2(η(3):η(3)-C10H16)(PR2OH)] has been investigated for the selective hydration of organonitriles in water. The best results were achieved with the complex [RuCl2(η(3):η(3)-C10H16)(PMe2OH)], which proved to be active under mild conditions (60 °C), with low metal loadings (1 mol%), and showing good functional group tolerance.

  1. Synthesis, characterization and biological activity of ternary copper(II) complexes containing polypyridyl ligands

    NASA Astrophysics Data System (ADS)

    Patel, R. N.; Singh, Nripendra; Shukla, K. K.; Gundla, V. L. N.; Chauhan, U. K.

    2006-01-01

    Ternary copper(II) complexes involving polypyridyl ligands in the coordination sphere of composition [Cu(tpy)(phen)](ClO4)2 (1), [Cu(tpy)(bipy)](ClO4)2 (2), [Cu(tptz)(phen)](ClO4)2 (3) and [Cu(tptz)(bipy)](BF4)2 (4) where tpy = 2,2‧:6‧,2″-terpyridine, tptz = 2,4,6-tri(2-pyridyl)-1,3,5-triazine, phen = 1,10-phenanthroline and bipy = 2,2‧-bipyridine have been synthesized and characterized by elemental analysis, magnetic susceptibility, X-band e.p.r. spectroscopy and electronic spectroscopy. Single crystal X-ray of (1) has revealed the presence of a distorted square pyramidal geometry in the complex. Magnetic susceptibility measurements at room temperature were in the range of 1.77-1.81 BM. SOD and antimicrobial activities of these complexes were also measured. Crystal data of (1): P-1, a = 9.3010(7) Å, b = 9.7900(6) Å, c = 16.4620(6) Å, Vc = 1342.73(14) Å3, Z = 4. The bond distance of Cusbnd N in square base is 2 ± 0.04 Å.

  2. Sandwich transitional metal complexes with tungstobismuthates and 1-methylimidazole ligands: Syntheses, structures and magnetic properties

    NASA Astrophysics Data System (ADS)

    Liu, Hong; Xu, Lin; Gao, Guanggang; Li, Fengyan; Jiang, Ning

    2008-04-01

    Two novel sandwich-type coordination compounds of tungstobismuthate Na 9[{Na(H 2O) 2} 3{Co II(mim)} 3(Bi IIIW VI9O 33) 2]·36H 2O ( 1) and Na 7H 2[{Na(H 2O) 2} 3{Mn II(mim)} 3(Bi IIIW VI9O 33) 2]·21H 2O ( 2) (mim = 1-methylimidazole) have been synthesized in alkaline aqueous solution. Their composition and structures were established by elemental analyses, IR spectra, and single crystal X-ray diffraction. These two complexes consist of two tri-vacant [α-B-Bi IIIW VI9O 33] 9- moieties linked through three Cu II or Mn II and three Na + ions. These Na + cations around the complex anion were bonded with some terminal and bridging oxo atoms from the complex anion and water molecules. In addition to tungstobismuthate ligands, 1-methylimidazoles also coordinate to sandwich transitional metal ions. Magnetic measurement indicates the existence of antiferromagnetic interaction between the trimeric transitional metal ions for 1 and 2.

  3. Homoleptic versus Heteroleptic Formation of Mononuclear Fe(II) Complexes with Tris-Imine Ligands.

    PubMed

    Barrios, Leoní A; Bartual-Murgui, Carlos; Peyrecave-Lleixà, Eugènia; Le Guennic, Boris; Teat, Simon J; Roubeau, Olivier; Aromí, Guillem

    2016-05-02

    We show a marked tendency of Fe(II) to form heteroleptic [Fe(L)(L')](ClO4)2 complexes from pairs of chelating tris-imine 3bpp, tpy, or 2bbp ligands. New synthetic avenues for spin crossover research become thus available, here illustrated with three new heteroleptic compounds with differing magnetic behaviors: [Fe(H4L1)(Cl-tpy)](ClO4)2·C3H6O (1), [Fe(H2L3)(Me3bpp)](ClO4)2·C3H6O (2), [Fe(H4L1)(2bbp)](ClO4)2·3C3H6O (3). Structural studies demonstrate that 1 is in the low-spin (LS) state up to 350 K, while complexes 2 and 3 are, by contrast, in the high-spin (HS) state down to 2 K, as corroborated through magnetic susceptibility measurements. Upon exposure to the atmosphere, the latter exhibits the release of three molecules of acetone per complex, turning into the solvent-free analogue [Fe(H4L1)(2bbp)](ClO4)2 (3a), through a single-crystal-to-single-crystal transformation. This guest extrusion process is accompanied by a spin switch, from HS to LS.

  4. Electronic Structure Determination of Pyridine N-Heterocyclic Carbene Iron Dinitrogen Complexes and Neutral Ligand Derivatives

    PubMed Central

    2015-01-01

    The electronic structures of pyridine N-heterocyclic dicarbene (iPrCNC) iron complexes have been studied by a combination of spectroscopic and computational methods. The goal of these studies was to determine if this chelate engages in radical chemistry in reduced base metal compounds. The iron dinitrogen example (iPrCNC)Fe(N2)2 and the related pyridine derivative (iPrCNC)Fe(DMAP)(N2) were studied by NMR, Mössbauer, and X-ray absorption spectroscopy and are best described as redox non-innocent compounds with the iPrCNC chelate functioning as a classical π acceptor and the iron being viewed as a hybrid between low-spin Fe(0) and Fe(II) oxidation states. This electronic description has been supported by spectroscopic data and DFT calculations. Addition of N,N-diallyl-tert-butylamine to (iPrCNC)Fe(N2)2 yielded the corresponding iron diene complex. Elucidation of the electronic structure again revealed the CNC chelate acting as a π acceptor with no evidence for ligand-centered radicals. This ground state is in contrast with the case for the analogous bis(imino)pyridine iron complexes and may account for the lack of catalytic [2π + 2π] cycloaddition reactivity. PMID:25328270

  5. Dipyridylamide ligand dependent dimensionality in luminescent zinc 2,4-pyridinedicarboxylate coordination complexes

    NASA Astrophysics Data System (ADS)

    Wudkewych, Megan J.; LaDuca, Robert L.

    2016-09-01

    Zinc nitrate, 2,4-pyridinedicarboxylic acid (2,4-pdcH2), and a hydrogen-bonding capable dipyridylamide ligand were combined in aqueous solution and subjected to hydrothermal reaction conditions. Three new crystalline coordination complexes were generated; their dimensionality depends crucially on the dipyridylamide length and geometric disposition of the pyridyl nitrogen donors. The three new phases were structurally characterized via single-crystal X-ray diffraction. {[H23-pina][Zn(2,4-pdc)2(H2O)2]·H2O} (1, 3-pina = 3-pyridylisonicotinamide) is a salt with protonated dipyridylamide cations and coordination complex anions. {[Zn2(2,4-pdc)2(H2O)4(3-pna)]·3H2O}n (2, 3-pna = 3-pyridylnicotinamide) shows a system of two-fold interpenetrated ruffled (6,3) coordination polymer layers. {[Zn(2,4-pdc)(H2O)2(3-pmna)]n (3, 3-pmna = 3-pyridylmethylnicotinamide) manifests a simple 1D chain topology. Luminescence was observed for two of the zinc complexes; this behavior is attributed to π-π* or π-n molecular orbital transitions. Thermal decomposition properties of the new phases are also probed.

  6. Crystal structures of two ytterbium(III) complexes comprising alkynylamidinate ligands.

    PubMed

    Wang, Sida; Sroor, Farid M; Liebing, Phil; Lorenz, Volker; Hilfert, Liane; Edelmann, Frank T

    2016-09-01

    Two ytterbium(III) complexes comprising alkynylamidinate ligands, namely bis-(η(5)-cyclo-penta-dien-yl)(3-cyclo-propyl-N,N'-diiso-propyl-propynamidinato-κ(2)N,N')ytterbium(III), [Yb(C5H5)2(C12H19N2)] or Cp2Yb[( (i) Pr2N)2C-C≡C-c-C3H5] (1) and tris-(3-phenyl-N,N'-di-cyclo-hexyl-propynamidinato-κ(2)N,N')ytterbium(III), [Yb(C21H27N2)3] or Yb[(CyN)2C-C≡C-Ph]3 (Cy = cyclo-hex-yl) (2) have been synthesized and structurally characterized. Both complexes are monomers; for complex 2, the contribution to the scattering from highly disordered toluene solvent molecules in these voids was removed with the SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9-18] in PLATON. The stated crystal data for Mr, μ etc. do not take these into account.

  7. Synthesis, spectral, and thermal characterizations of Ni(II) and Cu(II) β-diketone complexes with thenoyltrifluoroacetone ligand

    NASA Astrophysics Data System (ADS)

    Chen, Zhimin; Wu, Yiqun; Huang, Fuxin; Gu, Donghong; Gan, Fuxi

    2007-04-01

    Two kinds of nickel(II) and copper(II) β-diketone complexes derived from thenoyltrifluoroacetone ligand with blue-violet light absorption were synthesized by reacting free ligand and different metal(II) ions in sodium methoxide solution. Their structures were postulated based on elemental analysis, ESI-MS, FT-IR spectra and UV-vis electronic absorption spectra. Smooth films on K9 glass substrates were prepared using the spin-coating method. Their solubility in organic solvents, absorption properties of thin film and thermal stability of these complexes were evaluated.

  8. Synthesis, spectral, and thermal characterizations of Ni(II) and Cu(II) beta-diketone complexes with thenoyltrifluoroacetone ligand.

    PubMed

    Chen, Zhimin; Wu, Yiqun; Huang, Fuxin; Gu, Donghong; Gan, Fuxi

    2007-04-01

    Two kinds of nickel(II) and copper(II) beta-diketone complexes derived from thenoyltrifluoroacetone ligand with blue-violet light absorption were synthesized by reacting free ligand and different metal(II) ions in sodium methoxide solution. Their structures were postulated based on elemental analysis, ESI-MS, FT-IR spectra and UV-vis electronic absorption spectra. Smooth films on K9 glass substrates were prepared using the spin-coating method. Their solubility in organic solvents, absorption properties of thin film and thermal stability of these complexes were evaluated.

  9. Molybdenum Hydride and Dihydride Complexes Bearing Diphosphine Ligands with a Pendant Amine: Formation of Complexes With Bound Amines

    SciTech Connect

    Zhang, Shaoguang; Bullock, R. Morris

    2015-07-06

    CpMo(CO)(PNP)H complexes (PNP = (R2PCH2)2NMe, R = Et or Ph) were synthesized by displacement of two CO ligands of CpMo(CO)3H by the PNP ligand; these complexes were characterized by IR and variable temperature 1H and 31P NMR spectroscopy. CpMo(CO)(PNP)H complexes are formed as mixture of cis and trans-isomers. Both cis-CpMo(CO)(PEtNMePEt)H and trans-CpMo(CO)(PPhNMePPh)H were analyzed by single crystal X-ray diffraction. Electrochemical oxidation of CpMo(CO)(PEtNMePEt)H and CpMo(CO)(PPhNMePPh)H in CH3CN are both irreversible at slow scan rates and quasi-reversible at higher scan rates, with E1/2 = -0.36 V (vs. Cp2Fe+/0) for CpMo(CO)(PEtNMePEt)H and E1/2 = -0.18 V for CpMo(CO)(PPhNMePPh)H. Hydride abstraction from CpMo(CO)(PNP)H with [Ph3C]+[A]- (A = B(C6F5)4 or BArF4; [ArF = 3,5-bis(trifluoromethyl)phenyl]) afforded “tuck-in” [CpMo(CO)(κ3-PNP)]+ complexes that feature the amine bound to the metal. Displacement of the κ3 Mo-N bond by CD3CN gives [CpMo(CO)(PNP)(CD3CN)]+. The kinetics of this reaction were studied by NMR spectroscopy, providing the activation parameters ΔH‡ = 22.1 kcal/mol, ΔS‡ = 1.89 cal/(mol·K), Ea = 22.7 kcal/mol. Protonation of CpMo(CO)(PEtNMePEt)H affords [CpMo(CO)(κ2-PEtNMePEt)(H)2]+ as a Mo dihydride complex, which loses H2 to generate [CpMo(CO)(κ3-PEtNMePEt)]+ at room temperature. CpMo(CO)(dppp)H (dppp = 1,2-bis(diphenylphosphino)propane) was studied as a Mo diphosphine analogue without a pendant amine, and the product of protonation of this complex gives [CpMo(CO)(dppp)(H)2]+. Our results show that the pendant amine has a strong driving force to form stable “tuck-in” [CpMo(CO)(κ3-PNP)]+ complexes, and also promotes hydrogen elimination from [CpMo(CO)(PNP)(H)2]+ complexes by formation of Mo-N dative bond. We thank the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences for support. Pacific Northwest National Laboratory is operated by

  10. A new class of transition metal pincer ligand: tantalum complexes that feature a [CCC] X3-donor array derived from a terphenyl ligand.

    PubMed

    Sattler, Aaron; Parkin, Gerard

    2012-02-01

    A new class of [CCC] X(3)-donor pincer ligand for transition metals has been constructed via cyclometalation of a 2,6-di-p-tolylphenyl ([Ar(Tol(2))]) derivative. Specifically, addition of PMe(3) to [Ar(Tol(2))]TaMe(3)Cl induces elimination of methane and formation of the pincer complex, [κ(3)-Ar(Tol'(2))]Ta(PMe(3))(2)MeCl (Tol' = C(6)H(3)Me), which may also be obtained by treatment of Ta(PMe(3))(2)Me(3)Cl(2) with [Ar(Tol(2))]Li. Solutions of [κ(3)-Ar(Tol'(2))]Ta(PMe(3))(2)MeCl undergo ligand redistribution with the formation of [κ(3)-Ar(Tol'(2))]Ta(PMe(3))(2)Me(2)and [κ(3)-Ar(Tol'(2))]Ta(PMe(3))(2)Cl(2), which may also be synthesized by the reactions of [κ(3)-Ar(Tol'(2))]Ta(PMe(3))(2)MeCl with MeMgBr and ZnCl(2), respectively. Reduction of [κ(3)-Ar(Tol'(2))]Ta(PMe(3))(2)Cl(2) with KC(8) in benzene gives the benzene complex [κ(3)-Ar(Tol'(2))]Ta(PMe(3))(2)(η(6)-C(6)H(6)) that is better described as a 1,4-cyclohexadienediyl derivative. Deuterium labeling employing Ta(PMe(3))(2)(CD(3))(3)Cl(2) demonstrates that the pincer ligand is created by a pair of Ar-H/Ta-Me sigma-bond metathesis transformations, rather than by a mechanism that involves α-H abstraction by a tantalum methyl ligand.

  11. Organometallic complexes with terminal imidazolato ligands and their use as metalloligands.

    PubMed

    Gómez, Eva; Huertos, Miguel A; Pérez, Julio; Riera, Lucía; Menéndez-Velázquez, Amador

    2010-10-18

    Compounds [Re(bipy)(CO)(3)(HIm)]OTf (1) and [Mo(η(3)-C(3)H(4)-R-2)(CO)(2)(HIm)(phen)]BAr'(4) [R = Me (2a), H (2b); Ar' = 3,5-bis(trifluoromethyl)phenyl; HIm = 1H-imidazole] were prepared from 1H-imidazole and either [Re(OTf)(bipy)(CO)(3)] or [MoCl(η(3)-C(3)H(4)-R-2)(CO)(2)(phen)]. Compounds 1, 2a, and 2b were deprotonated to afford the terminal κ-N-imidazolate complexes [Re(bipy)(CO)(3)(Im)] (3) and [Mo(η(3)-C(3)H(4)-R-2)(CO)(2)(Im)(phen)] [R = Me (4a), H (4b)], which were fully characterized, including an X-ray structural determination of 3. The topological analysis of the electron density (obtained from the X-ray diffraction study) and its Laplacian were used to characterize the differences in the electron density at the five-membered ring ligand between the imidazole and imidazolate complexes 1 and 3. The reaction of complexes 3, 4a, and 4b with the appropriate organometallic complexes afforded the bimetallic imidazolate-bridged compounds [{Re(bipy)(CO)(3)}(2)(μ-Im)]OTf (5), [{Mo(η(3)-C(4)H(7))(CO)(2)(phen)}(2)(μ-Im)]OTf (6), and [{Mo(η(3)-C(3)H(5))(CO)(2)(phen)}(μ-Im){Re(phen)(CO)(3)}]OTf (7). The reaction of [Mo(η(3)-C(4)H(7))(CO)(2)(Im)(phen)] (4a) with SnClPh(3) led to the formation of the trinuclear complex [{Mo(η(3)-C(4)H(7))(CO)(2)(phen)(μ-Im)}(2){SnPh(3)}]BAr'(4) (8).

  12. Dichlorodioxomolybdenum(VI) complexes bearing oxygen-donor ligands as olefin epoxidation catalysts.

    PubMed

    Oliveira, Tânia S M; Gomes, Ana C; Lopes, André D; Lourenço, João P; Almeida Paz, Filipe A; Pillinger, Martyn; Gonçalves, Isabel S

    2015-08-21

    Treatment of the solvent adduct [MoO2Cl2(THF)2] with either 2 equivalents of N,N-dimethylbenzamide (DMB) or 1 equivalent of N,N'-diethyloxamide (DEO) gave the dioxomolybdenum(vi) complexes [MoO2Cl2(DMB)2] () and [MoO2Cl2(DEO)] (). The molecular structures of and were determined by single-crystal X-ray diffraction. Both complexes present a distorted octahedral geometry and adopt the cis-oxo, trans-Cl, cis-L configuration typical of complexes of the type [MoO2X2(L)n], with either the monodentate DMB or bidentate DEO oxygen-donor ligands occupying the equatorial positions trans to the oxo groups. The complexes were applied as homogeneous catalysts for the epoxidation of olefins, namely cis-cyclooctene (Cy), 1-octene, trans-2-octene, α-pinene and (R)-(+)-limonene, using tert-butylhydroperoxide (TBHP) as oxidant. In the epoxidation of Cy at 55 °C, the desired epoxide was the only product and turnover frequencies in the range of ca. 3150-3200 mol molMo(-1) h(-1) could be reached. The catalytic production of cyclooctene oxide was investigated in detail, varying either the reaction temperature or the cosolvent. Complexes and were also applied in liquid-liquid biphasic catalytic epoxidation reactions by using an ionic liquid of the type [C4mim][X] (C4mim = 1-n-butyl-3-methylimidazolium; X = NTf2, BF4 or PF6] as a solvent to immobilise the metal catalysts. Recycling for multiple catalytic runs was achieved without loss of activity.

  13. Copper(ii) mixed-ligand polypyridyl complexes with doxycycline - structures and biological evaluation.

    PubMed

    Abosede, Olufunso O; Vyas, Nilima A; Singh, Sushma B; Kumbhar, Avinash S; Kate, Anup; Kumbhar, Anupa A; Khan, Ayesha; Erxleben, Andrea; Smith, Peter; de Kock, Carmen; Hoffmann, Frank; Obaleye, Joshua A

    2016-02-21

    Mixed-ligand Cu(ii) complexes of the type [Cu(doxycycline)(L)(H2O)2](NO3)2, where doxycycline = [4-(dimethylamino)-3,5,10,12,12a-pentahydroxy-6-methyl-1,11-dioxo-1,4,4a,5,5a,6,11,12a-octahydrotetracene-2-carboxamide] and L = 2,2'-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 3) and dipyrido[3,2-a:2',3'-c]phenazine (dppz, 4) have been synthesised and characterised by structural, analytical, and spectral methods. The single-crystal X-ray structures of 1 and 2 exhibited two different geometries, distorted square-pyramidal and octahedral respectively as well as different coordination modes of doxycycline. Complexes 2-4 exhibit prominent plasmid DNA cleavage at significantly low concentrations probably by an oxidative mechanism. Matrix Metalloproteinase (MMP-2) inhibition studies revealed that all complexes inhibit MMP-2 similar to doxycycline which is a well-known MMP inhibitor with 3 being the most potent. IC50 values of doxycycline and 1-4 against MCF-7 (human breast cancer) and HeLa cell lines were almost equal in which 3 showed the highest efficiency (IC50 = 0.46 ± 0.05 μM), being consistent with its increased MMP inhibition potency. The antimalarial activities of these complexes against the chloroquine-sensitive Plasmodium falciparum NF54 and chloroquine-resistant Plasmodium falciparum Dd2 strains reveal that complex 3 exhibited a higher activity than artesunate drug against the chloroquine-resistant Dd2 strain.

  14. X-ray absorption fine structure (XAFS) studies of copper (II) mixed ligand complexes having tetramethylethylenediamine as one of the ligands

    NASA Astrophysics Data System (ADS)

    Sharma, Sharad; Joshi, S. K.; Shrivastava, B. D.; Hinge, V. K.; Prasad, J.; Srivastava, K.

    2014-09-01

    X-ray absorption fine structure (XAFS) has been studied at the K-edge of copper in copper(II) mixed ligand complexes, having tetramethylethylenediamine (tmen) as one of the ligands, viz., Cu(tmen)(gly)ClO4, Cu(tmen)(bipy)(ClO4)2 and Cu(tmen)(phen)(ClO4)2. The spectra have been recorded at the dispersive XAFS beamline (BL-8) at the 2.5 GeV INDUS-2 synchrotron, RRCAT, Indore, India. The data obtained has been processed and analyzed using the computer program Athena. It has been observed that K-edge has been found to split in two edges, K and K', in each of the complex. The chemical shift has been utilized to determine the oxidation state of copper in the complexes and also the effective nuclear charge (ENC). The EXAFS data has been analyzed to obtain the bond lengths in the complexes using Levy's, Lytle's and Lytle, Sayers and Stern's (LSS) methods. The first peak in the Fourier transform of the spectra gives the value of first shell phase uncorrected bond length. The results obtained from the Fourier transformation and LSS methods are in good agreement.

  15. Crystal structure of the extracellular segment of integrin {alpha}V{beta}3 in complex with an Arg-Gly-Asp ligand.

    SciTech Connect

    Xiong, J.-P.; Stehle, T.; Zhang, R.; Joachimiak, A.; Goodman, S.; Arnaout, M. A.; Biosciences Division; Massachusetts General Hospital; Harvard Medical School

    2002-04-05

    The structural basis for the divalent cation-dependent binding of heterodimeric alpha beta integrins to their ligands, which contain the prototypical Arg-Gly-Asp sequence, is unknown. Interaction with ligands triggers tertiary and quaternary structural rearrangements in integrins that are needed for cell signaling. Here we report the crystal structure of the extracellular segment of integrin alpha Vbeta 3 in complex with a cyclic peptide presenting the Arg-Gly-Asp sequence. The ligand binds at the major interface between the alpha V and beta 3 subunits and makes extensive contacts with both. Both tertiary and quaternary changes are observed in the presence of ligand. The tertiary rearrangements take place in beta A, the ligand-binding domain of beta 3; in the complex, beta A acquires two cations, one of which contacts the ligand Asp directly and the other stabilizes the ligand-binding surface. Ligand binding induces small changes in the orientation of alpha V relative to beta 3.

  16. N6-benzyladenosine derivatives as novel N-donor ligands of platinum(II) dichlorido complexes.

    PubMed

    Starha, Pavel; Popa, Igor; Trávníček, Zdeněk; Vančo, Ján

    2013-06-14

    The platinum(II) complexes trans-[PtCl₂(Ln)₂]∙xSolv 1-13 (Solv = H₂O or CH3OH), involving N6-benzyladenosine-based N-donor ligands, were synthesized; L(n) stands for N6-(2-methoxybenzyl)adenosine (L₁, involved in complex 1), N6-(4-methoxy-benzyl)adenosine (L₂, 2), N6-(2-chlorobenzyl)adenosine (L₃, 3), N6-(4-chlorobenzyl)-adenosine (L₄, 4), N6-(2-hydroxybenzyl)adenosine (L₅, 5), N6-(3-hydroxybenzyl)-adenosine (L₆, 6), N6-(2-hydroxy-3-methoxybenzyl)adenosine (L₇, 7), N6-(4-fluoro-benzyl)adenosine (L₈, 8), N6-(4-methylbenzyl)adenosine (L₉, 9), 2-chloro-N6-(3-hydroxy-benzyl)adenosine (L₁₀, 10), 2-chloro-N6-(4-hydroxybenzyl)adenosine (L₁₁, 11), 2-chloro-N6-(2-hydroxy-3-methoxybenzyl)adenosine (L₁₂, 12) and 2-chloro-N6-(2-hydroxy-5-methylbenzyl)adenosine (L₁₃, 13). The compounds were characterized by elemental analysis, mass spectrometry, IR and multinuclear (¹H-, ¹³C-, ¹⁹⁵Pt- and ¹⁵N-) and two-dimensional NMR spectroscopy, which proved the N7-coordination mode of the appropriate N6-benzyladenosine derivative and trans-geometry of the title complexes. The complexes 1-13 were found to be non-toxic in vitro against two selected human cancer cell lines (HOS and MCF7; with IC₅₀ > 50.0 µM). However, they were found (by ESI-MS study) to be able to interact with the physiological levels of the sulfur-containing biogenic biomolecule L-methionine by a relatively simple 1:1 exchange mechanism (one L(n) molecule was replaced by one L-methionine molecule), thus forming a mixed-nitrogen/sulfur-ligand dichlorido-platinum(II) coordination species.

  17. Group 4 complexes of a tert-butylphosphine-bridged biphenolate ligand.

    PubMed

    Liang, Lan-Chang; Hsu, Yu-Lin; Lin, Sheng-Ta

    2011-04-18

    The coordination chemistry of group 4 complexes supported by the tridentate, dianionic biphenolate phosphine ligand that carries a phosphorus-bound tert-butyl group, 2,2'-tert-butylphosphino-bis(4,6-di-tert-butylphenolate) ([(t)Bu-OPO](2-)), is described. Metathetical reactions of {[(t)Bu-OPO]Li(2)(DME)}(2) with 2 or 1 equiv of TiCl(4)(THF)(2) selectively produce [(t)Bu-OPO]TiCl(2)(THF) (1a) and Ti[(t)Bu-OPO](2) (2a), respectively. Protonolysis of Ti(O(i)Pr)(4) with 2 or 1 equiv of H(2)[(t)Bu-OPO] cleanly generates 2a and [(t)Bu-OPO]Ti(O(i)Pr)(2) (3a), respectively. Complex 1a can alternatively be prepared from comproportionation of 2a with 1 equiv of TiCl(4)(THF)(2). Treatment of 1a with 2 equiv of NaO(t)Bu affords [(t)Bu-OPO]Ti(O(t)Bu)(2) (4a). In contrast, reactions of {[(t)Bu-OPO]Li(2)(DME)}(2) with ZrCl(4)(THF)(2) or HfCl(4)(THF)(2), regardless of stoichiometry of the starting materials employed, selectively give bis-ligated M[(t)Bu-OPO](2) [M = Zr (2b), Hf (2c)]. Comproportionation of 2b,c with MCl(4)(THF)(2) (M = Zr, Hf) leads to the formation of [(t)Bu-OPO]MCl(2)(THF) [M = Zr (1b), Hf (1c)], which, upon being treated with 2 equiv of NaO(t)Bu, generates [(t)Bu-OPO]M(O(t)Bu)(2)(THF) (4b,c). These synthetic results are markedly different from those obtained from analogous reactions employing a biphenolate phosphine ligand bearing a phosphorus-bound phenyl group ([Ph-OPO](2-)), highlighting a profound phosphorus substituent effect on complex conformation. The alkoxide complexes 3a and 4a-c are all active initiators for catalytic ring-opening polymerization of ε-caprolactone. To assess the potential phosphorus substituent effect on catalysis, [Ph-OPO]Ti(O(i)Pr)(2) (5a) was prepared, and its reactivity was examined. Interestingly, polymers prepared from 3a are characterized by low polydispersities with molecular weights that are linearly dependent on the monomer-to-initiator ratio, thus featuring a living system. The polydispersitiy indexes of polymers prepared

  18. Molybdenum complexes supported by mixed NHC/phosphine ligands: activation of N2 and reaction with P(OMe)3 to the first meta-phosphite complex.

    PubMed

    Gradert, Christian; Stucke, Nadja; Krahmer, Jan; Näther, Christian; Tuczek, Felix

    2015-01-12

    Molybdenum(0) dinitrogen complexes, supported by the mixed NHC/phosphine pincer ligand PCP, exhibit an extreme activation of the N2 ligand due to a very π-electron-rich metal center. The low thermal stability of these compounds can be increased using phosphites instead of phosphines as coligands. Through an amalgam reduction of [MoCl3(PCP)] in the presence of trimethyl phosphite and N2 the highly activated and room-temperature stable dinitrogen complex [Mo(N2)(PCP)(P(OMe)3)2] is obtained. As a second product, the first transition metal complex containing the meta-phosphite ligand P(O)(OMe) originates from this reaction.

  19. Ruthenium(II) bipyridine complexes bearing new keto-enol azoimine ligands: Synthesis, structure, electrochemistry and DFT calculations

    NASA Astrophysics Data System (ADS)

    Al-Noaimi, Mousa; Awwadi, Firas F.; Mansi, Ahmad; Abdel-Rahman, Obadah S.; Hammoudeh, Ayman; Warad, Ismail

    2015-01-01

    The novel azoimine ligand, Phsbnd NHsbnd Ndbnd C(COCH3)sbnd NHPh(Ctbnd CH) (H2L), was synthesized and its molecular structure was determined by X-ray crystallography. Catalytic hydration of the terminal acetylene of H2L in the presence of RuCl3·3H2O in ethanol at reflux temperature yielded a ketone (L1 = Phsbnd Ndbnd Nsbnd C(COCH3)dbnd Nsbnd Ph(COCH3) and an enol (L2 = Phsbnd Ndbnd Nsbnd C(COCH3)dbnd Nsbnd PhC(OH)dbnd CH2) by Markovnikov addition of water. Two mixed-ligand ruthenium complexes having general formula, trans-[Ru(bpy)(Y)Cl2] (1-2) (where Y = L1 (1) and Y = L2 (2), bpy is 2.2‧-bipyrdine) were achieved by the stepwise addition of equimolar amounts of (H2L) and bpy ligands to RuCl3·3H2O in absolute ethanol. Theses complexes were characterized by elemental analyses and spectroscopic (IR, UV-Vis, and NMR (1D 1H NMR, 13C NMR, (DEPT-135), (DEPT-90), 2D 1H-1H and 13C-1H correlation (HMQC) spectroscopy)). The two complexes exhibit a quasi-reversible one electron Ru(II)/Ru(III) oxidation couple at 604 mV vs. ferrocene/ferrocenium (Cp2Fe0/+) couple along with one electron ligand reduction at -1010 mV. The crystal structure of complex 1 showed that the bidentate ligand L1 coordinates to Ru(II) by the azo- and imine-nitrogen donor atoms. The complex adopts a distorted trans octahedral coordination geometry of chloride ligands. The electronic spectra of 1 and 1+ in dichloromethane have been modeled by time-dependent density functional theory (TD-DFT).

  20. Availability of zinc and the ligands citrate and histidine to wheat: does uptake of entire complexes play a role?

    PubMed

    Gramlich, Anja; Tandy, Susan; Frossard, Emmanuel; Eikenberg, Jost; Schulin, Rainer

    2013-11-06

    Organic ligands in soils affect the availability of trace metals such as Zn to plants. This study investigated the effects of two of these ligands, citrate and histidine, on Zn uptake by wheat under hydroponic conditions. Uptake of (65)Zn in the presence of these ligands was compared to uptake in the presence of EDTA at the same free Zn concentration (Zn(2+) ~ 50 nM). In the presence of citrate Zn root uptake was enhanced ~3.5 times and in the presence of histidine, by a factor of ~9, compared to the EDTA treatments. Citrate uptake was slightly reduced in the treatment containing ligands and Zn compared to the treatment containing the same ligand concentration but no Zn. In addition, a higher uptake of Zn than of citrate was observed. This suggests that the enhanced Zn uptake was primarily due to increased supply of Zn(2+) by diffusion and dissociation of Zn-citrate complexes at the root surface. Histidine uptake was much higher than citrate uptake and not influenced by the presence of Zn. As histidine forms stronger complexes with Zn than citrate, the results suggest that the enhancement of Zn uptake in the presence of histidine was in part due to the uptake of undissociated Zn-histidine complexes.

  1. Bi-functional CD22 ligands use multimeric immunoglobulins as protein scaffolds in assembly of immune complexes on B cells

    PubMed Central

    O'Reilly, Mary K.; Collins, Brian E.; Han, Shoufa; Liao, Liang; Rillahan, Cory; Kitov, Pavel I.; Bundle, David R.; Paulson, James C.

    2008-01-01

    CD22 is a B cell specific sialic-acid-binding immunoglobulin-like lectin (Siglec) whose function as a regulator of B cell signaling is modulated by its interaction with glycan ligands bearing the sequence NeuAcα2-6Gal. To date, only highly multivalent polymeric ligands (n=450) have achieved sufficient avidity to bind to CD22 on native B cells. Here we demonstrate that a synthetic bi-functional molecule comprising a ligand of CD22 linked to an antigen (nitrophenol; NP) can use a monoclonal anti-NP-IgM as a decavalent protein scaffold to efficiently drive assembly of IgM-CD22 complexes on the surface of native B cells. Surprisingly, anti-NP antibodies of lower valency, IgA (n =4) and IgG (n =2), were also found to drive complex formation, though with lower avidity. Ligands bearing alternate linkers of variable length and structure were constructed to establish the importance of a minimal length requirement, and versatility in the structural requirement. We show that the ligand drives assembly of IgM complexes exclusively on the surface of B cells and not other classes of white blood cells that do not express CD22, which lends itself to the possibility of targeting B cells in certain hematopoietic malignancies. PMID:18505252

  2. Half-sandwich complexes of rhodium containing cysteine-derived ligands.

    PubMed

    Carmona, María; Rodríguez, Ricardo; Lahoz, Fernando J; García-Orduña, Pilar; Osante, Iñaki; Cativiela, Carlos; López, José A; Carmona, Daniel

    2016-09-28

    The modified cysteine ligand, S-benzyl-α-methyl-l-cysteine (HL2), was prepared from l-cysteine hydrochloride methyl ester. The reaction of commercial S-benzyl-l-cysteine (HL1) or HL2 with the dimer, [{(η(5)-C5Me5)RhCl}2(μ-Cl)2], gives rise to the cationic complexes, [(η(5)-C5Me5)RhCl(HL)]Cl (HL = HL1 (1), HL2 (2)), in which the cysteine ligand exhibits a κ(2)N,S coordination mode. In a basic medium, HL1 or HL2 reacts with [{(η(5)-C5Me5)RhCl}2(μ-Cl)2] to afford mixtures of two epimers at the metal centre of the neutral complexes, [(η(5)-C5Me5)RhCl(κ(2)N,O-L)] (HL = HL1 (3), HL2 (4)), in which amino carboxylate adopts a κ(2)N,O mode of coordination along with variable amounts of the cationic compounds, [(η(5)-C5Me5)Rh(κ(3)N,O,S-L)]Cl (HL = HL1 (6Cl), HL2 (7Cl)), which contain κ(3)N,O,S coordinated cysteine-derived ligands. However, in a basic medium, the N-Boc substituted cysteine S-benzyl-N-Boc-l-cysteine (HL3) only yields the κ(2)O,S coordinated derivative, [(η(5)-C5Me5)RhCl(κ(2)O,S-L3)] (5), as a mixture of two diastereomers depending on the configuration of the metal centre. The bidentate chelate complexes 3-5 react with AgSbF6 to give the hexafluoroantimonates [(η(5)-C5Me5)Rh(κ(3)N,O,S-L)][SbF6] (HL = HL1 (6Sb), HL2 (7Sb), HL3 (8Sb)) with tridentate coordination. Compound 8Sb reacts with NaHCO3 to give the neutral complex [(η(5)-C5Me5)Rh(κ(3)N,O,S-L3-H)] (9), which can also be prepared by reacting the dimer [{(η(5)-C5Me5)RhCl}2(μ-Cl)2] with HL3 in the presence of two equivalents of NaHCO3. The new compounds contain up to four stereogenic centres, namely, Rh, S, N, and C. The absolute configuration of the complexes has been established by spectroscopic and diffractometric investigations, including the crystal structure determination of [(η(5)-C5Me5)RhCl(κ(2)O,S-L3)] (5), [(η(5)-C5Me5)Rh(κ(3)N,O,S-L1)][SbF6] (6Sb), [(η(5)-C5Me5)Rh(κ(3)N,O,S-L2)][SbF6] (7Sb) and [(η(5)-C5Me5)Rh(κ(3)N,O,S-L3-H)] (9). Variable temperature (1)H NMR

  3. Oxidative condensation reactions of (diethylenetriamine)cobalt(III) complexes with substituted bis(pyridin-2-yl)methane ligands

    NASA Astrophysics Data System (ADS)

    Zhou, Xiangting; Hockless, David C. R.; Willis, Anthony C.; Jackson, W. Gregory

    2005-04-01

    The synthesis and characterisation of Co(III) complexes derived from a condensation reaction with a central or terminal nitrogen of a dien ligand and the α-carbon of a range of substituted bis(pyridin-2-yl)methane ligands are described. Aerial oxidation of bpm {bis(pyridin-2-yl)methane with Co(II)/dien or direct reaction with Co(dien)Cl 3 provided in low yield a single C-N condensation product 1 (at the primary terminal NH 2) after the pyridyl -CH 2- is formally oxidised to -CH +-. The methyl substituted ligand bpe {1,1-bis(pyridin-2-yl)ethane} behaves likewise, except both terminal (prim) and central (sec) amines condense to yield isomeric products 2 and 3. Two of these three materials have been characterised by single crystal X-ray crystallography. The corresponding reactions for the bis(pyridyl) ligand bpk {bis(pyridin-2-yl)ketone} provided C-N condensation products without the requirement for oxidation at the α-C center; two carbinolamine complexes in different geometrical configurations resulted, mer-anti-[Co(dienbpc)Cl]ZnCl 4, 5, and unsym- fac-[Co(dienbpc)Cl]ZnCl 4, 6, {dienbpc=[2-(2-aminoethylamino)-ethylamino]-di-pyridin-2-yl-methanol}. In addition, a novel complex, [Co(bpk)(bpd-OH)Cl]ZnCl 4, 4, in which one bidentate N, N-bonded bpk ligand and one tridentate N, O, N-bonded bpd (the diol from bpk+OH -) were coordinated, was obtained via the Co(II)/O 2 synthetic route. When the bpc ligand (bpc=bis(pyridin-2-yl)methanol) was employed directly as a reagent along with dien, no condensation reactions were observed, but rather a single isomeric complex [Co(dien)(bpc)]Cl.ZnCl 4, 7, in which the ligand bpc acted as a N,N,O-bonded tridentate ligand rather than as a N,N-bidentate ligand was isolated. 13C, 1D and 2D 1H NMR studies are reported for all the complexes; they establish the structures unambiguously.

  4. Carbonyl substitution chemistry of some trimetallic transition metal cluster complexes with polyfunctional ligands

    SciTech Connect

    Byrne, Lindsay T.; Hondow, Nicole S.; Koutsantonis, George A.; Skelton, Brian W.; Torabi, A. Asgar; White, Allan H.; Wild, S. Bruce

    2008-11-03

    The trimetallic clusters [Ru{sub 3}(CO){sub 10}(dppm)], [Ru{sub 3}(CO){sub 12}] and [RuCo{sub 2}(CO){sub 11}] react with a number of multifunctional secondary phosphine and tertiary arsine ligands to give products consequent on carbonyl substitution and, in the case of the secondary phosphines, PH activation. The reaction with the unresolved mixed P/S donor, 1-phenylphosphino-2-thio(ethane), HSCH{sub 2}CH{sub 2}PHPh ({double_bond}LH{sub 2}), gave two products under various conditions which have been characterized by spectroscopic and crystallographic means. These two complexes [Ru{sub 3}({mu}dppm)(H)(CO){sub 7}(LH)] and [Ru{sub 3}({mu}-dppm)(H)(CO){sub 8}(LH)Ru{sub 3}({mu}-dppm)(CO){sub 9}], show the versatility of the ligand, with it chelating in the former and bridging two Ru{sub 3} units in the latter. The stereogenic centres in the molecules gave rise to complicated spectroscopic data which are consistent with the presence of diastereoisomers. In the case of [Ru{sub 3}(CO){sub 12}] the reaction with LH{sub 2} gave a poor yield of a tetranuclear butterfly cluster, [Ru{sub 4}(CO){sub 10}(L){sub 2}], in which two of the ligands bridge opposite hinge wingtip bonds of the cluster. A related ligand, HSCH{sub 2}CH{sub 2}AsMe(C{sub 6}H{sub 4}CH{sub 2}OMe), reacted with [RuCo{sub 2}(CO){sub 11}] to give a low yield of the heterobimetallic Ru-Co adduct, [RuCo(CO){sub 6}(SCH{sub 2}CH{sub 2}AsMe(C{sub 6}H{sub 4}CH{sub 2}OMe))], which appears to be the only one of its type so far structurally characterized. The secondary phosphine, HPMe(C{sub 6}H{sub 4}(CH{sub 2}OMe)) and its oxide HP(O)Me(C{sub 6}H{sub 4}(CH{sub 2}OMe)) also react with the cluster [Ru{sub 3}(CO){sub 10}(dppm)] to give carbonyl substitution products, [Ru{sub 3}(CO){sub 5}(dppm)({mu}{sub 2}-PMe(C{sub 6}H{sub 4}CH{sub 2}OMe)){sub 4}], and [Ru{sub 3}H(CO){sub 7}(dppm)({mu}{sub 2},{eta}{sup 1}P({double_bond}O)Me(C{sub 6}H{sub 4}CH{sub 2}OMe))]. The former consists of an open Ru{sub 3} triangle with four

  5. Structural, DFT and biological studies on Cr(III) complexes of semi and thiosemicarbazide ligands derived from diketo hydrazide

    NASA Astrophysics Data System (ADS)

    Yousef, T. A.; Alduaij, O. K.; Ahmed, Sara F.; Abu El-Reash, G. M.; El-Gammal, O. A.

    2016-12-01

    Three ligands have been prepared by addition ethanolic suspension of 2-hydrazino-2-oxo-N-phenyl-acetamide to phenyl isocyanate (H2PAPS), phenyl isothiocyanate (H2PAPT) and benzoyl isothiocyanate (H2PABT). The Cr(III) chloride complexes were prepared and characterized by conventional techniques. The data confirmed that the complexes have the following formulaes, [Cr(H2PAPS)Cl3], [Cr(HPAPT)Cl2(H2O)2] and [Cr(HPABT)Cl2(H2O)]. The IR spectra of complexes shows that H2PAPS behaves as neutral tridentate via both CO of hydrazide moiety and Cdbnd N(azomethine) due to enolization of CO isocyanate without deprotonation. H2PAPT suggests the coordination as mononegative bidentate via both CO of hydrazide moiety in keto and deprotonated enolic oxygen atoms. H2PABT act as mononegative tridentate via carbonyl oxygen (Cdbnd O)3, the deprotonated enolic oxygen atom (dbnd Csbnd Osbnd)1 and NH1 groups. The experimental IR data of ligands are compared with those obtained theoretically from DFT calculations. Also, the bond lengths, bond angles, HOMO, LUMO and dipole moments have been calculated. The calculated HOMO-LUMO energy gap reveals that charge transfer occurs within the ligand molecules. The calculated values of binding energies indicates the higher stability of metal complexes than of ligands. Also, the kinetic and thermodynamic parameters for the different thermal degradation steps of the complexes were determined by Coats-Redfern and Horowitz-Metzger methods.

  6. Synthesis of metal complexes involving Schiff base ligand with methylenedioxy moiety: spectral, thermal, XRD and antimicrobial studies.

    PubMed

    Sundararajan, M L; Jeyakumar, T; Anandakumaran, J; Karpanai Selvan, B

    2014-10-15

    Metal complexes of Zn(II), Cd(II), Ni(II), Cu(II), Fe(III), Co(II), Mn(II) Hg(II), and Ag(I) have been synthesized from Schiff base ligand, prepared by the condensation of 3,4-(methylenedioxy)aniline and 5-bromo salicylaldehyde. All the compounds have been characterized by using elemental analysis, molar conductance, FT-IR, UV-Vis, (1)H NMR, (13)C NMR, mass spectra, powder XRD and thermal analysis (TG/DTA) technique. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). The FT-IR, (1)H NMR, (13)C NMR and UV-Vis spectral data suggest that the ligand coordinate to the metal atom by imino nitrogen and phenolic oxygen as bidentate manner. Mass spectral data further support the molecular mass of the compounds and their structure. Powder XRD indicates the crystalline state and morphology of the ligand and its metal complexes. The thermal behaviors of the complexes prove the presence of lattice as well as coordinated water molecules in the complexes. Melting point supports the thermal stability of all the compounds. The in vitro antimicrobial effects of the synthesized compounds were tested against five bacterial and three fungal species by well diffusion method. Antioxidant activities have also been performed for all the compounds. Metal complexes show more biological activity than the Schiff base.

  7. Synthesis of metal complexes involving Schiff base ligand with methylenedioxy moiety: Spectral, thermal, XRD and antimicrobial studies

    NASA Astrophysics Data System (ADS)

    Sundararajan, M. L.; Jeyakumar, T.; Anandakumaran, J.; Karpanai Selvan, B.

    2014-10-01

    Metal complexes of Zn(II), Cd(II), Ni(II), Cu(II), Fe(III), Co(II), Mn(II) Hg(II), and Ag(I) have been synthesized from Schiff base ligand, prepared by the condensation of 3,4-(methylenedioxy)aniline and 5-bromo salicylaldehyde. All the compounds have been characterized by using elemental analysis, molar conductance, FT-IR, UV-Vis, 1H NMR, 13C NMR, mass spectra, powder XRD and thermal analysis (TG/DTA) technique. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). The FT-IR, 1H NMR, 13C NMR and UV-Vis spectral data suggest that the ligand coordinate to the metal atom by imino nitrogen and phenolic oxygen as bidentate manner. Mass spectral data further support the molecular mass of the compounds and their structure. Powder XRD indicates the crystalline state and morphology of the ligand and its metal complexes. The thermal behaviors of the complexes prove the presence of lattice as well as coordinated water molecules in the complexes. Melting point supports the thermal stability of all the compounds. The in vitro antimicrobial effects of the synthesized compounds were tested against five bacterial and three fungal species by well diffusion method. Antioxidant activities have also been performed for all the compounds. Metal complexes show more biological activity than the Schiff base.

  8. Synthesis, structures and reactivity of ruthenium nitrosyl complexes containing Kläui's oxygen tripodal ligand.

    PubMed

    Ip, Ho-Fai; Yi, Xiao-Yi; Wong, Wai-Yeung; Williams, Ian D; Leung, Wa-Hung

    2011-11-07

    Ruthenium nitrosyl complexes containing the Kläui's oxgyen tripodal ligand L(OEt)(-) ([CpCo{P(O)(OEt)(2)}(3)](-) where Cp = η(5)-C(5)H(5)) were synthesized and their photolysis studied. The treatment of [Ru(N^N)(NO)Cl(3)] with [AgL(OEt)] and Ag(OTf) afforded [L(OEt)Ru(N^N)(NO)][OTf](2) where N^N = 4,4'-di-tert-butyl-2,2'-bipyridyl (dtbpy) (2·[OTf](2)), 2,2'-bipyridyl (bpy) (3·[OTf](2)), N,N,N'N'-tetramethylethylenediamine (4·[OTf](2)). Anion metathesis of 3·[OTf](2) with HPF(6) and HBF(4) gave 3·[PF(6)](2) and 3·[BF(4)](2), respectively. Similarly, the PF(6)(-) salt 4·[PF(6)](2) was prepared by the reaction of 4·[OTf](2) with HPF(6). The irradiation of [L(OEt)Ru(NO)Cl(2)] (1) with UV light in CH(2)Cl(2)-MeCN and tetrahydrofuran (thf)-H(2)O afforded [L(OEt)RuCl(2)(MeCN)] (5) and the chloro-bridged dimer [L(OEt)RuCl](2)(μ-Cl)(2) (6), respectively. The photolysis of complex [2][OTf](2) in MeCN gave [L(OEt)Ru(dtbpy)(MeCN)][OTf](2) (7). Refluxing complex 5 with RNH(2) in thf gave [L(OEt)RuCl(2)(NH(2)R)] (R = tBu (8), p-tol (9), Ph (10)). The oxidation of complex 6 with PhICl(2) gave [L(OEt)RuCl(3)] (11), whereas the reduction of complex 6 with Zn and NH(4)PF(6) in MeCN yielded [L(OEt)Ru(MeCN)(3)][PF(6)] (12). The reaction of 3·[BF(4)](2) with benzylamine afforded the μ-dinitrogen complex [{L(OEt)Ru(bpy)}(2)(μ-N(2))][BF(4)](2) (13) that was oxidized by [Cp(2)Fe]PF(6) to a mixed valence Ru(II,III) species. The formal potentials of the RuL(OEt) complexes have been determined by cyclic voltammetry. The structures of complexes 5,6,10,11 and 13 have been establish