Ligand Depot: a data warehouse for ligands bound to macromolecules.
Feng, Zukang; Chen, Li; Maddula, Himabindu; Akcan, Ozgur; Oughtred, Rose; Berman, Helen M; Westbrook, John
2004-09-01
Ligand Depot is an integrated data resource for finding information about small molecules bound to proteins and nucleic acids. The initial release (version 1.0, November, 2003) focuses on providing chemical and structural information for small molecules found as part of the structures deposited in the Protein Data Bank. Ligand Depot accepts keyword-based queries and also provides a graphical interface for performing chemical substructure searches. A wide variety of web resources that contain information on small molecules may also be accessed through Ligand Depot. Ligand Depot is available at http://ligand-depot.rutgers.edu/. Version 1.0 supports multiple operating systems including Windows, Unix, Linux and the Macintosh operating system. The current drawing tool works in Internet Explorer, Netscape and Mozilla on Windows, Unix and Linux.
Lee, Chang Woo; Kim, Jung Eun; Do, Hackwon; Kim, Ryeo-Ok; Lee, Sung Gu; Park, Hyun Ho; Chang, Jeong Ho; Yim, Joung Han; Park, Hyun; Kim, Il-Chan; Lee, Jun Hyuck
2015-09-11
Fatty acid-binding proteins (FABPs) are involved in transporting hydrophobic fatty acids between various aqueous compartments of the cell by directly binding ligands inside their β-barrel cavities. Here, we report the crystal structures of ligand-unbound pFABP4, linoleate-bound pFABP4, and palmitate-bound pFABP5, obtained from gentoo penguin (Pygoscelis papua), at a resolution of 2.1 Å, 2.2 Å, and 2.3 Å, respectively. The pFABP4 and pFABP5 proteins have a canonical β-barrel structure with two short α-helices that form a cap region and fatty acid ligand binding sites in the hydrophobic cavity within the β-barrel structure. Linoleate-bound pFABP4 and palmitate-bound pFABP5 possess different ligand-binding modes and a unique ligand-binding pocket due to several sequence dissimilarities (A76/L78, T30/M32, underlining indicates pFABP4 residues) between the two proteins. Structural comparison revealed significantly different conformational changes in the β3-β4 loop region (residues 57-62) as well as the flipped Phe60 residue of pFABP5 than that in pFABP4 (the corresponding residue is Phe58). A ligand-binding study using fluorophore displacement assays shows that pFABP4 has a relatively strong affinity for linoleate as compared to pFABP5. In contrast, pFABP5 exhibits higher affinity for palmitate than that for pFABP4. In conclusion, our high-resolution structures and ligand-binding studies provide useful insights into the ligand-binding preferences of pFABPs based on key protein-ligand interactions. Copyright © 2015 Elsevier Inc. All rights reserved.
Ranking Enzyme Structures in the PDB by Bound Ligand Similarity to Biological Substrates.
Tyzack, Jonathan D; Fernando, Laurent; Ribeiro, Antonio J M; Borkakoti, Neera; Thornton, Janet M
2018-04-03
There are numerous applications that use the structures of protein-ligand complexes from the PDB, such as 3D pharmacophore identification, virtual screening, and fragment-based drug design. The structures underlying these applications are potentially much more informative if they contain biologically relevant bound ligands, with high similarity to the cognate ligands. We present a study of ligand-enzyme complexes that compares the similarity of bound and cognate ligands, enabling the best matches to be identified. We calculate the molecular similarity scores using a method called PARITY (proportion of atoms residing in identical topology), which can conveniently be combined to give a similarity score for all cognate reactants or products in the reaction. Thus, we generate a rank-ordered list of related PDB structures, according to the biological similarity of the ligands bound in the structures. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
High-resolution cryo-EM proteasome structures in drug development
da Fonseca, Paula C. A.
2017-01-01
With the recent advances in biological structural electron microscopy (EM), protein structures can now be obtained by cryo-EM and single-particle analysis at resolutions that used to be achievable only by crystallographic or NMR methods. We have explored their application to study protein–ligand interactions using the human 20S proteasome, a well established target for cancer therapy that is also being investigated as a target for an increasing range of other medical conditions. The map of a ligand-bound human 20S proteasome served as a proof of principle that cryo-EM is emerging as a realistic approach for more general structural studies of protein–ligand interactions, with the potential benefits of extending such studies to complexes that are unfavourable to other methods and allowing structure determination under conditions that are closer to physiological, preserving ligand specificity towards closely related binding sites. Subsequently, the cryo-EM structure of the Plasmodium falciparum 20S proteasome, with a new prototype specific inhibitor bound, revealed the molecular basis for the ligand specificity towards the parasite complex, which provides a framework to guide the development of highly needed new-generation antimalarials. Here, the cryo-EM analysis of the ligand-bound human and P. falciparum 20S proteasomes is reviewed, and a complete description of the methods used for structure determination is provided, including the strategy to overcome the bias orientation of the human 20S proteasome on electron-microscope grids and details of the icr3d software used for three-dimensional reconstruction. PMID:28580914
Outcome of the First wwPDB/CCDC/D3R Ligand Validation Workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Paul D.; Aertgeerts, Kathleen; Bauer, Cary
Crystallographic studies of ligands bound to biological macromolecules (proteins and nucleic acids) represent an important source of information concerning drug-target interactions, providing atomic level insights into the physical chemistry of complex formation between macromolecules and ligands. Of the more than 115,000 entries extant in the Protein Data Bank archive, ~75% include at least one non-polymeric ligand. Ligand geometrical and stereochemical quality, the suitability of ligand models for in silico drug discovery/design, and the goodness-of-fit of ligand models to electron density maps vary widely across the archive. We describe the proceedings and conclusions from the first Worldwide Protein Data Bank/Cambridge Crystallographicmore » Data Centre/Drug Design Data Resource (wwPDB/CCDC/D3R) Ligand Validation Workshop held at the Research Collaboratory for Structural Bioinformatics at Rutgers University on July 30-31, 2015. Experts in protein crystallography from academe and industry came together with non-profit and for-profit software providers for crystallography and with experts in computational chemistry and data archiving to discuss and make recommendations on best practices, as framed by a series of questions central to structural studies of macromolecule-ligand complexes. What data concerning bound ligands should be archived in the Protein Data Bank? How should the ligands be best represented? How should structural models of macromolecule-ligand complexes be validated? What supplementary information should accompany publications of structural studies of biological macromolecules? Consensus recommendations on best practices developed in response to each of these questions are provided, together with some details regarding implementation. Important issues addressed but not resolved at the workshop are also enumerated.« less
Outcome of the First wwPDB/CCDC/D3R Ligand Validation Workshop
Adams, Paul D.; Aertgeerts, Kathleen; Bauer, Cary; ...
2016-04-05
Crystallographic studies of ligands bound to biological macromolecules (proteins and nucleic acids) represent an important source of information concerning drug-target interactions, providing atomic level insights into the physical chemistry of complex formation between macromolecules and ligands. Of the more than 115,000 entries extant in the Protein Data Bank archive, ~75% include at least one non-polymeric ligand. Ligand geometrical and stereochemical quality, the suitability of ligand models for in silico drug discovery/design, and the goodness-of-fit of ligand models to electron density maps vary widely across the archive. We describe the proceedings and conclusions from the first Worldwide Protein Data Bank/Cambridge Crystallographicmore » Data Centre/Drug Design Data Resource (wwPDB/CCDC/D3R) Ligand Validation Workshop held at the Research Collaboratory for Structural Bioinformatics at Rutgers University on July 30-31, 2015. Experts in protein crystallography from academe and industry came together with non-profit and for-profit software providers for crystallography and with experts in computational chemistry and data archiving to discuss and make recommendations on best practices, as framed by a series of questions central to structural studies of macromolecule-ligand complexes. What data concerning bound ligands should be archived in the Protein Data Bank? How should the ligands be best represented? How should structural models of macromolecule-ligand complexes be validated? What supplementary information should accompany publications of structural studies of biological macromolecules? Consensus recommendations on best practices developed in response to each of these questions are provided, together with some details regarding implementation. Important issues addressed but not resolved at the workshop are also enumerated.« less
Outcome of the First wwPDB/CCDC/D3R Ligand Validation Workshop.
Adams, Paul D; Aertgeerts, Kathleen; Bauer, Cary; Bell, Jeffrey A; Berman, Helen M; Bhat, Talapady N; Blaney, Jeff M; Bolton, Evan; Bricogne, Gerard; Brown, David; Burley, Stephen K; Case, David A; Clark, Kirk L; Darden, Tom; Emsley, Paul; Feher, Victoria A; Feng, Zukang; Groom, Colin R; Harris, Seth F; Hendle, Jorg; Holder, Thomas; Joachimiak, Andrzej; Kleywegt, Gerard J; Krojer, Tobias; Marcotrigiano, Joseph; Mark, Alan E; Markley, John L; Miller, Matthew; Minor, Wladek; Montelione, Gaetano T; Murshudov, Garib; Nakagawa, Atsushi; Nakamura, Haruki; Nicholls, Anthony; Nicklaus, Marc; Nolte, Robert T; Padyana, Anil K; Peishoff, Catherine E; Pieniazek, Susan; Read, Randy J; Shao, Chenghua; Sheriff, Steven; Smart, Oliver; Soisson, Stephen; Spurlino, John; Stouch, Terry; Svobodova, Radka; Tempel, Wolfram; Terwilliger, Thomas C; Tronrud, Dale; Velankar, Sameer; Ward, Suzanna C; Warren, Gregory L; Westbrook, John D; Williams, Pamela; Yang, Huanwang; Young, Jasmine
2016-04-05
Crystallographic studies of ligands bound to biological macromolecules (proteins and nucleic acids) represent an important source of information concerning drug-target interactions, providing atomic level insights into the physical chemistry of complex formation between macromolecules and ligands. Of the more than 115,000 entries extant in the Protein Data Bank (PDB) archive, ∼75% include at least one non-polymeric ligand. Ligand geometrical and stereochemical quality, the suitability of ligand models for in silico drug discovery and design, and the goodness-of-fit of ligand models to electron-density maps vary widely across the archive. We describe the proceedings and conclusions from the first Worldwide PDB/Cambridge Crystallographic Data Center/Drug Design Data Resource (wwPDB/CCDC/D3R) Ligand Validation Workshop held at the Research Collaboratory for Structural Bioinformatics at Rutgers University on July 30-31, 2015. Experts in protein crystallography from academe and industry came together with non-profit and for-profit software providers for crystallography and with experts in computational chemistry and data archiving to discuss and make recommendations on best practices, as framed by a series of questions central to structural studies of macromolecule-ligand complexes. What data concerning bound ligands should be archived in the PDB? How should the ligands be best represented? How should structural models of macromolecule-ligand complexes be validated? What supplementary information should accompany publications of structural studies of biological macromolecules? Consensus recommendations on best practices developed in response to each of these questions are provided, together with some details regarding implementation. Important issues addressed but not resolved at the workshop are also enumerated. Copyright © 2016 Elsevier Ltd. All rights reserved.
Outcome of the first wwPDB/CCDC/D3R Ligand Validation Workshop
Adams, Paul D.; Aertgeerts, Kathleen; Bauer, Cary; Bell, Jeffrey A.; Berman, Helen M.; Bhat, Talapady N.; Blaney, Jeff; Bolton, Evan; Bricogne, Gerard; Brown, David; Burley, Stephen K.; Case, David A.; Clark, Kirk L.; Darden, Tom; Emsley, Paul; Feher, Victoria A.; Feng, Zukang; Groom, Colin R.; Harris, Seth F.; Hendle, Jorg; Holder, Thomas; Joachimiak, Andrzej; Kleywegt, Gerard J.; Krojer, Tobias; Marcotrigiano, Joseph; Mark, Alan E.; Markley, John L.; Miller, Matthew; Minor, Wladek; Montelione, Gaetano T.; Murshudov, Garib; Nakagawa, Atsushi; Nakamura, Haruki; Nicholls, Anthony; Nicklaus, Marc; Nolte, Robert T.; Padyana, Anil K.; Peishoff, Catherine E.; Pieniazek, Susan; Read, Randy J.; Shao, Chenghua; Sheriff, Steven; Smart, Oliver; Soisson, Stephen; Spurlino, John; Stouch, Terry; Svobodova, Radka; Tempel, Wolfram; Terwilliger, Thomas C.; Tronrud, Dale; Velankar, Sameer; Ward, Suzanna; Warren, Gregory L.; Westbrook, John D.; Williams, Pamela; Yang, Huanwang; Young, Jasmine
2016-01-01
Summary Crystallographic studies of ligands bound to biological macromolecules (proteins and nucleic acids) represent an important source of information concerning drug-target interactions, providing atomic level insights into the physical chemistry of complex formation between macromolecules and ligands. Of the more than 115,000 entries extant in the Protein Data Bank archive, ~75% include at least one non-polymeric ligand. Ligand geometrical and stereochemical quality, the suitability of ligand models for in silico drug discovery/design, and the goodness-of-fit of ligand models to electron density maps vary widely across the archive. We describe the proceedings and conclusions from the first Worldwide Protein Data Bank/Cambridge Crystallographic Data Centre/Drug Design Data Resource (wwPDB/CCDC/D3R) Ligand Validation Workshop held at the Research Collaboratory for Structural Bioinformatics at Rutgers University on July 30–31, 2015. Experts in protein crystallography from academe and industry came together with non-profit and for-profit software providers for crystallography and with experts in computational chemistry and data archiving to discuss and make recommendations on best practices, as framed by a series of questions central to structural studies of macromolecule-ligand complexes. What data concerning bound ligands should be archived in the Protein Data Bank? How should the ligands be best represented? How should structural models of macromolecule-ligand complexes be validated? What supplementary information should accompany publications of structural studies of biological macromolecules? Consensus recommendations on best practices developed in response to each of these questions are provided, together with some details regarding implementation. Important issues addressed but not resolved at the workshop are also enumerated. PMID:27050687
Conformational Transitions upon Ligand Binding: Holo-Structure Prediction from Apo Conformations
Seeliger, Daniel; de Groot, Bert L.
2010-01-01
Biological function of proteins is frequently associated with the formation of complexes with small-molecule ligands. Experimental structure determination of such complexes at atomic resolution, however, can be time-consuming and costly. Computational methods for structure prediction of protein/ligand complexes, particularly docking, are as yet restricted by their limited consideration of receptor flexibility, rendering them not applicable for predicting protein/ligand complexes if large conformational changes of the receptor upon ligand binding are involved. Accurate receptor models in the ligand-bound state (holo structures), however, are a prerequisite for successful structure-based drug design. Hence, if only an unbound (apo) structure is available distinct from the ligand-bound conformation, structure-based drug design is severely limited. We present a method to predict the structure of protein/ligand complexes based solely on the apo structure, the ligand and the radius of gyration of the holo structure. The method is applied to ten cases in which proteins undergo structural rearrangements of up to 7.1 Å backbone RMSD upon ligand binding. In all cases, receptor models within 1.6 Å backbone RMSD to the target were predicted and close-to-native ligand binding poses were obtained for 8 of 10 cases in the top-ranked complex models. A protocol is presented that is expected to enable structure modeling of protein/ligand complexes and structure-based drug design for cases where crystal structures of ligand-bound conformations are not available. PMID:20066034
LiCata, V J; Bernlohr, D A
1998-12-01
Adipocyte lipid-binding protein (ALBP) is one of a family of intracellular lipid-binding proteins (iLBPs) that bind fatty acids, retinoids, and other hydrophobic ligands. The different members of this family exhibit a highly conserved three-dimensional structure; and where structures have been determined both with (holo) and without (apo) bound lipid, observed conformational changes are extremely small (Banaszak, et al., 1994, Adv. Prot. Chem. 45, 89; Bernlohr, et al., 1997, Annu. Rev. Nutr. 17, 277). We have examined the electrostatic, hydrophobic, and water accessible surfaces of ALBP in the apo form and of holo forms with a variety of bound ligands. These calculations reveal a number of previously unrecognized changes between apo and holo ALBP, including: 1) an increase in the overall protein surface area when ligand binds, 2) expansion of the binding cavity when ligand is bound, 3) clustering of individual residue exposure increases in the area surrounding the proposed ligand entry portal, and 4) ligand-binding dependent variation in the topology of the electrostatic potential in the area surrounding the ligand entry portal. These focused analyses of the crystallographic structures thus reveal a number of subtle but consistent conformational and surface changes that might serve as markers for differential targeting of protein-lipid complexes within the cell. Most changes are consistent from ligand to ligand, however there are some ligand-specific changes. Comparable calculations with intestinal fatty-acid-binding protein and other vertebrate iLBPs show differences in the electrostatic topology, hydrophobic topology, and in localized changes in solvent exposure near the ligand entry portal. These results provide a basis toward understanding the functional and mechanistic differences among these highly structurally homologous proteins. Further, they suggest that iLBPs from different tissues exhibit one of two predominant end-state structural distributions of the ligand entry portal.
Improving virtual screening of G protein-coupled receptors via ligand-directed modeling
Simms, John; Christopoulos, Arthur; Wootten, Denise
2017-01-01
G protein-coupled receptors (GPCRs) play crucial roles in cell physiology and pathophysiology. There is increasing interest in using structural information for virtual screening (VS) of libraries and for structure-based drug design to identify novel agonist or antagonist leads. However, the sparse availability of experimentally determined GPCR/ligand complex structures with diverse ligands impedes the application of structure-based drug design (SBDD) programs directed to identifying new molecules with a select pharmacology. In this study, we apply ligand-directed modeling (LDM) to available GPCR X-ray structures to improve VS performance and selectivity towards molecules of specific pharmacological profile. The described method refines a GPCR binding pocket conformation using a single known ligand for that GPCR. The LDM method is a computationally efficient, iterative workflow consisting of protein sampling and ligand docking. We developed an extensive benchmark comparing LDM-refined binding pockets to GPCR X-ray crystal structures across seven different GPCRs bound to a range of ligands of different chemotypes and pharmacological profiles. LDM-refined models showed improvement in VS performance over origin X-ray crystal structures in 21 out of 24 cases. In all cases, the LDM-refined models had superior performance in enriching for the chemotype of the refinement ligand. This likely contributes to the LDM success in all cases of inhibitor-bound to agonist-bound binding pocket refinement, a key task for GPCR SBDD programs. Indeed, agonist ligands are required for a plethora of GPCRs for therapeutic intervention, however GPCR X-ray structures are mostly restricted to their inactive inhibitor-bound state. PMID:29131821
Smaldone, Giovanni; Berisio, Rita; Balasco, Nicole; D'Auria, Sabato; Vitagliano, Luigi; Ruggiero, Alessia
2018-05-31
Thermotoga maritima Arginine Binding Protein (TmArgBP) is a valuable candidate for arginine biosensing in diagnostics. This protein is endowed with unusual structural properties that include an extraordinary thermal/chemical stability, a domain swapped structure that undergoes large tertiary and quaternary structural transition, and the ability to form non-canonical oligomeric species. As the intrinsic stability of TmArgBP allows for extensive protein manipulations, we here dissected its structure in two parts: its main body deprived of the swapping fragment (TmArgBP 20-233 ) and the C-terminal peptide corresponding to the helical swapping element. Both elements have been characterized independently or in combination using a repertoire of biophysical/structural techniques. Present investigations clearly indicate that TmArgBP 20-233 represents a better scaffold for arginine sensing compared to the wild-type protein. Moreover, our data demonstrate that the ligand-free and the ligand-bound forms respond very differently to this helix deletion. This drastic perturbation has an important impact on the ligand-bound form of TmArgBP 20-233 stability whereas it barely affects its ligand-free state. The crystallographic structures of these forms provide a rationale to this puzzling observation. Indeed, the arginine-bound state is very rigid and virtually unchanged upon protein truncation. On the other hand, the flexible ligand-free TmArgBP 20-233 is able to adopt a novel state as a consequence of the helix deletion. Therefore, the flexibility of the ligand-free form endows this state with a remarkable robustness upon severe perturbations. In this scenario, TmArgBP dissection highlights an intriguing connection between destabilizing/stabilizing effects and the overall flexibility that could operate also in other proteins. Copyright © 2018 Elsevier B.V. All rights reserved.
Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography
NASA Astrophysics Data System (ADS)
Stagno, J. R.; Liu, Y.; Bhandari, Y. R.; Conrad, C. E.; Panja, S.; Swain, M.; Fan, L.; Nelson, G.; Li, C.; Wendel, D. R.; White, T. A.; Coe, J. D.; Wiedorn, M. O.; Knoska, J.; Oberthuer, D.; Tuckey, R. A.; Yu, P.; Dyba, M.; Tarasov, S. G.; Weierstall, U.; Grant, T. D.; Schwieters, C. D.; Zhang, J.; Ferré-D'Amaré, A. R.; Fromme, P.; Draper, D. E.; Liang, M.; Hunter, M. S.; Boutet, S.; Tan, K.; Zuo, X.; Ji, X.; Barty, A.; Zatsepin, N. A.; Chapman, H. N.; Spence, J. C. H.; Woodson, S. A.; Wang, Y.-X.
2017-01-01
Riboswitches are structural RNA elements that are generally located in the 5‧ untranslated region of messenger RNA. During regulation of gene expression, ligand binding to the aptamer domain of a riboswitch triggers a signal to the downstream expression platform. A complete understanding of the structural basis of this mechanism requires the ability to study structural changes over time. Here we use femtosecond X-ray free electron laser (XFEL) pulses to obtain structural measurements from crystals so small that diffusion of a ligand can be timed to initiate a reaction before diffraction. We demonstrate this approach by determining four structures of the adenine riboswitch aptamer domain during the course of a reaction, involving two unbound apo structures, one ligand-bound intermediate, and the final ligand-bound conformation. These structures support a reaction mechanism model with at least four states and illustrate the structural basis of signal transmission. The three-way junction and the P1 switch helix of the two apo conformers are notably different from those in the ligand-bound conformation. Our time-resolved crystallographic measurements with a 10-second delay captured the structure of an intermediate with changes in the binding pocket that accommodate the ligand. With at least a 10-minute delay, the RNA molecules were fully converted to the ligand-bound state, in which the substantial conformational changes resulted in conversion of the space group. Such notable changes in crystallo highlight the important opportunities that micro- and nanocrystals may offer in these and similar time-resolved diffraction studies. Together, these results demonstrate the potential of ‘mix-and-inject’ time-resolved serial crystallography to study biochemically important interactions between biomacromolecules and ligands, including those that involve large conformational changes.
Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography
Stagno, J. R.; Liu, Y.; Bhandari, Y. R.; Conrad, C. E.; Panja, S.; Swain, M.; Fan, L.; Nelson, G.; Li, C.; Wendel, D. R.; White, T. A.; Coe, J. D.; Wiedorn, M. O.; Knoska, J.; Oberthuer, D.; Tuckey, R. A.; Yu, P.; Dyba, M.; Tarasov, S. G.; Weierstall, U.; Grant, T. D.; Schwieters, C. D.; Zhang, J.; Ferré-D’Amaré, A. R.; Fromme, P.; Draper, D. E.; Liang, M.; Hunter, M. S.; Boutet, S.; Tan, K.; Zuo, X.; Ji, X.; Barty, A.; Zatsepin, N. A.; Chapman, H. N.; Spence, J. C. H.; Woodson, S. A.; Wang, Y.-X.
2017-01-01
Riboswitches are structural RNA elements that are generally located in the 5′ untranslated region of messenger RNA. During regulation of gene expression, ligand binding to the aptamer domain of a riboswitch triggers a signal to the downstream expression platform1–3. A complete understanding of the structural basis of this mechanism requires the ability to study structural changes over time4. Here we use femtosecond X-ray free electron laser (XFEL) pulses5,6 to obtain structural measurements from crystals so small that diffusion of a ligand can be timed to initiate a reaction before diffraction. We demonstrate this approach by determining four structures of the adenine riboswitch aptamer domain during the course of a reaction, involving two unbound apo structures, one ligand-bound intermediate, and the final ligand-bound conformation. These structures support a reaction mechanism model with at least four states and illustrate the structural basis of signal transmission. The three-way junction and the P1 switch helix of the two apo conformers are notably different from those in the ligand-bound conformation. Our time-resolved crystallographic measurements with a 10-second delay captured the structure of an intermediate with changes in the binding pocket that accommodate the ligand. With at least a 10-minute delay, the RNA molecules were fully converted to the ligand-bound state, in which the substantial conformational changes resulted in conversion of the space group. Such notable changes in crystallo highlight the important opportunities that micro- and nanocrystals may offer in these and similar time-resolved diffraction studies. Together, these results demonstrate the potential of ‘mix-and-inject’ time-resolved serial crystallography to study biochemically important interactions between biomacromolecules and ligands, including those that involve large conformational changes. PMID:27841871
Shin, Jae-Min; Cho, Doo-Ho
2005-01-01
PDB-Ligand (http://www.idrtech.com/PDB-Ligand/) is a three-dimensional structure database of small molecular ligands that are bound to larger biomolecules deposited in the Protein Data Bank (PDB). It is also a database tool that allows one to browse, classify, superimpose and visualize these structures. As of May 2004, there are about 4870 types of small molecular ligands, experimentally determined as a complex with protein or DNA in the PDB. The proteins that a given ligand binds are often homologous and present the same binding structure to the ligand. However, there are also many instances wherein a given ligand binds to two or more unrelated proteins, or to the same or homologous protein in different binding environments. PDB-Ligand serves as an interactive structural analysis and clustering tool for all the ligand-binding structures in the PDB. PDB-Ligand also provides an easier way to obtain a number of different structure alignments of many related ligand-binding structures based on a simple and flexible ligand clustering method. PDB-Ligand will be a good resource for both a better interpretation of ligand-binding structures and the development of better scoring functions to be used in many drug discovery applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Lihua; Lin, Shengchen; Rong, Hui
2012-03-15
Iloprost is a prostacyclin analog that has been used to treat many vascular conditions. Peroxisome proliferator-activated receptors (PPARs) are ligand-regulated transcription factors with various important biological effects such as metabolic and cardiovascular physiology. Here, we report the crystal structures of the PPAR{alpha} ligand-binding domain and PPAR{delta} ligand-binding domain bound to iloprost, thus providing unambiguous evidence for the direct interaction between iloprost and PPARs and a structural basis for the recognition of PPAR{alpha}/{delta} by this prostacyclin analog. In addition to conserved contacts for all PPAR{alpha} ligands, iloprost also initiates several specific interactions with PPARs using its unique structural groups. Structural andmore » functional studies of receptor-ligand interactions reveal strong functional correlations of the iloprost-PPAR{alpha}/{delta} interactions as well as the molecular basis of PPAR subtype selectivity toward iloprost ligand. As such, the structural mechanism may provide a more rational template for designing novel compounds targeting PPARs with more favorable pharmacologic impact based on existing iloprost drugs.« less
Structural insights into selective agonist actions of tamoxifen on human estrogen receptor alpha.
Chakraborty, Sandipan; Biswas, Pradip Kumar
2014-08-01
Tamoxifen-an anti-estrogenic ligand in breast tissues used as a first-line treatment in estrogen receptor (ER)-positive breast cancers-is associated with the development of resistance followed by resumption of tumor growth in about 30 % of cases. Whether tamoxifen assists in proliferation in such cases or whether any ligand-independent pathway to transcription exists is not fully understood; also, no ERα mutants have been detected so far that could lead to tamoxifen resistance. Using in silico conformational analysis of the ERα ligand binding domain (LBD), in the absence and presence of selective agonist (diethylstilbestrol; DES), antagonist (Faslodex; ICI), and selective estrogen receptor modulator (SERM; 4-hydroxy tamoxifen; 4-OHT) ligands, we have elucidated ligand-responsive structural modulations of the ERα-LBD dimer in its agonist and antagonist complexes to address the issue of "tamoxifen resistance". DES and ICI were found to stabilize the dimer in their agonist and antagonist conformations, respectively. The ERα-LBD dimer without the presence of any bound ligand also led to a stable structure in agonist conformation. However, binding of 4-OHT to the antagonist structure led to a flexible conformation allowing the protein to visit conformations populated by agonists as was evident from principal component analysis and radius of gyration plots. Further, the relaxed conformations of the 4-OHT bound protein exhibited a diminished size of the co-repressor binding pocket in the LBD, thus signaling a partial blockage of the co-repressor binding motif. Thus, the ability of 4-OHT-bound ERα-LBD to assume flexible conformations visited by agonists and reduced co-repressor binding surface at the LBD provide crucial structural insights into tamoxifen-resistance that complement our existing understanding.
NASA Astrophysics Data System (ADS)
Zhang, Shanrong; Sherry, A. Dean
2003-02-01
Rapid water exchange is normally considered a prerequisite for efficient Gd3+-based MRI contrast agents. Yet recent measures of exchange rates in some Gd3+ complexes have shown that water exchange can become limiting when such complexes are attached to larger macromolecular structures. A new class of lanthanide complexes that display unusually slow water exchange (bound water lifetimes (τM298) > 10 μs) has recently been reported. This apparent disadvantage may be taken advantage of by switching the metal ion from gadolinium(III) to a lanthanide that shifts the bound water resonance substantially away from bulk water. Given appropriate water exchange kinetics, one can then alter the intensity of the bulk water signal by selective presaturation of this highly shifted, Ln3+-bound water resonance. This provides the basis of a new method to alter MR image contrast in tissue. We have synthesized a variety of DOTA-tetra(amide) ligands to evaluate as potential magnetization transfer (MT) contrast agents and found that the bound water lifetimes in these complexes are sensitive to both ligand structure (a series of Eu3+ complexes have τM298 values that range from 1 to 1300 μs) and the identity of the paramagnetic Ln3+ cation (from 3 to 800 μs for a single ligand). This demonstrates that it may be possible either to fine-tune the ligand structure or to select proper lanthanide cation to create an optimal MT agent for any clinical imaging field.
Weiss, Dahlia R; Ahn, SeungKirl; Sassano, Maria F; Kleist, Andrew; Zhu, Xiao; Strachan, Ryan; Roth, Bryan L; Lefkowitz, Robert J; Shoichet, Brian K
2013-05-17
A prospective, large library virtual screen against an activated β2-adrenergic receptor (β2AR) structure returned potent agonists to the exclusion of inverse-agonists, providing the first complement to the previous virtual screening campaigns against inverse-agonist-bound G protein coupled receptor (GPCR) structures, which predicted only inverse-agonists. In addition, two hits recapitulated the signaling profile of the co-crystal ligand with respect to the G protein and arrestin mediated signaling. This functional fidelity has important implications in drug design, as the ability to predict ligands with predefined signaling properties is highly desirable. However, the agonist-bound state provides an uncertain template for modeling the activated conformation of other GPCRs, as a dopamine D2 receptor (DRD2) activated model templated on the activated β2AR structure returned few hits of only marginal potency.
Star PolyMOCs with Diverse Structures, Dynamics, and Functions by Three-Component Assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yufeng; Gu, Yuwei; Keeler, Eric G.
2016-12-05
We report star polymer metal–organic cage (polyMOC) materials whose structures, mechanical properties, functionalities, and dynamics can all be precisely tailored through a simple three-component assembly strategy. The star polyMOC network is composed of tetra-arm star polymers functionalized with ligands on the chain ends, small molecule ligands, and palladium ions; polyMOCs are formed via metal–ligand coordination and thermal annealing. The ratio of small molecule ligands to polymer-bound ligands determines the connectivity of the MOC junctions and the network structure. The use of large M12L24 MOCs enables great flexibility in tuning this ratio, which provides access to a rich spectrum of materialmore » properties including tunable moduli and relaxation dynamics.« less
Modeling ligand recognition at the P2Y12 receptor in light of X-ray structural information
NASA Astrophysics Data System (ADS)
Paoletta, Silvia; Sabbadin, Davide; von Kügelgen, Ivar; Hinz, Sonja; Katritch, Vsevolod; Hoffmann, Kristina; Abdelrahman, Aliaa; Straßburger, Jens; Baqi, Younis; Zhao, Qiang; Stevens, Raymond C.; Moro, Stefano; Müller, Christa E.; Jacobson, Kenneth A.
2015-08-01
The G protein-coupled P2Y12 receptor (P2Y12R) is an important antithrombotic target and of great interest for pharmaceutical discovery. Its recently solved, highly divergent crystallographic structures in complex either with nucleotides (full or partial agonist) or with a nonnucleotide antagonist raise the question of which structure is more useful to understand ligand recognition. Therefore, we performed extensive molecular modeling studies based on these structures and mutagenesis, to predict the binding modes of major classes of P2Y12R ligands previously reported. Various nucleotide derivatives docked readily to the agonist-bound P2Y12R, but uncharged nucleotide-like antagonist ticagrelor required a hybrid receptor resembling the agonist-bound P2Y12R except for the top portion of TM6. Supervised molecular dynamics (SuMD) of ticagrelor binding indicated interactions with the extracellular regions of P2Y12R, defining possible meta-binding sites. Ureas, sulfonylureas, sulfonamides, anthraquinones and glutamic acid piperazines docked readily to the antagonist-bound P2Y12R. Docking dinucleotides at both agonist- and antagonist-bound structures suggested interactions with two P2Y12R pockets. Thus, our structure-based approach consistently rationalized the main structure-activity relationships within each ligand class, giving useful information for designing improved ligands.
Jatana, Nidhi; Thukral, Lipi; Latha, N
2016-01-01
Human Dopamine Receptor D4 (DRD4) orchestrates several neurological functions and represents a target for many psychological disorders. Here, we examined two rare variants in DRD4; V194G and R237L, which elicit functional alterations leading to disruption of ligand binding and G protein coupling, respectively. Using atomistic molecular dynamics (MD) simulations, we provide in-depth analysis to reveal structural signatures of wild and mutant complexes with their bound agonist and antagonist ligands. We constructed intra-protein network graphs to discriminate the global conformational changes induced by mutations. The simulations also allowed us to elucidate the local side-chain dynamical variations in ligand-bound mutant receptors. The data suggest that the mutation in transmembrane V (V194G) drastically disrupts the organization of ligand binding site and causes disorder in the native helical arrangement. Interestingly, the R237L mutation leads to significant rewiring of side-chain contacts in the intracellular loop 3 (site of mutation) and also affects the distant transmembrane topology. Additionally, these mutations lead to compact ICL3 region compared to the wild type, indicating that the receptor would be inaccessible for G protein coupling. Our findings thus reveal unreported structural determinants of the mutated DRD4 receptor and provide a robust framework for design of effective novel drugs.
Structure of the Epstein-Barr virus gp42 protein bound to the MHC class II recepter HLA-DR1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mullen, M.; Haan, K.M.; Longnecker, R.
Epstein-Barr virus (EBV) causes infectious mononucleosis, establishes long-term latent infections, and is associated with a variety of human tumors. The EBV gp42 glycoprotein binds MHC class II molecules, playing a critical role in infection of B lymphocytes. EBV gp42 belongs to the C-type lectin superfamily, with homology to NK receptors of the immune system. We report the crystal structure of gp42 bound to the human MHC class II molecule HLA-DR1. The gp42 binds HLA-DR1 using a surface site that is distinct from the canonical lectin and NK receptor ligand binding sites. At the canonical ligand binding site, gp42 forms amore » large hydrophobic groove, which could interact with other ligands necessary for EBV entry, providing a mechanism for coupling MHC recognition and membrane fusion.« less
Successful generation of structural information for fragment-based drug discovery.
Öster, Linda; Tapani, Sofia; Xue, Yafeng; Käck, Helena
2015-09-01
Fragment-based drug discovery relies upon structural information for efficient compound progression, yet it is often challenging to generate structures with bound fragments. A summary of recent literature reveals that a wide repertoire of experimental procedures is employed to generate ligand-bound crystal structures successfully. We share in-house experience from setting up and executing fragment crystallography in a project that resulted in 55 complex structures. The ligands span five orders of magnitude in affinity and the resulting structures are made available to be of use, for example, for development of computational methods. Analysis of the results revealed that ligand properties such as potency, ligand efficiency (LE) and, to some degree, clogP influence the success of complex structure generation. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Maltose-Binding Protein Fusion Construct Yields a Robust Crystallography Platform for MCL1
Clifton, Matthew C.; Dranow, David M.; Leed, Alison; Fulroth, Ben; Fairman, James W.; Abendroth, Jan; Atkins, Kateri A.; Wallace, Ellen; Fan, Dazhong; Xu, Guoping; Ni, Z. J.; Daniels, Doug; Van Drie, John; Wei, Guo; Burgin, Alex B.; Golub, Todd R.; Hubbard, Brian K.; Serrano-Wu, Michael H.
2015-01-01
Crystallization of a maltose-binding protein MCL1 fusion has yielded a robust crystallography platform that generated the first apo MCL1 crystal structure, as well as five ligand-bound structures. The ability to obtain fragment-bound structures advances structure-based drug design efforts that, despite considerable effort, had previously been intractable by crystallography. In the ligand-independent crystal form we identify inhibitor binding modes not observed in earlier crystallographic systems. This MBP-MCL1 construct dramatically improves the structural understanding of well-validated MCL1 ligands, and will likely catalyze the structure-based optimization of high affinity MCL1 inhibitors. PMID:25909780
Enzyme Active Site Interactions by Raman/FTIR, NMR, and Ab Initio Calculations
Deng, Hua
2017-01-01
Characterization of enzyme active site structure and interactions at high resolution is important for the understanding of the enzyme catalysis. Vibrational frequency and NMR chemical shift measurements of enzyme-bound ligands are often used for such purpose when X-ray structures are not available or when higher resolution active site structures are desired. This review is focused on how ab initio calculations may be integrated with vibrational and NMR chemical shift measurements to quantitatively determine high-resolution ligand structures (up to 0.001 Å for bond length and 0.01 Å for hydrogen bonding distance) and how interaction energies between bound ligand and its surroundings at the active site may be determined. Quantitative characterization of substrate ionic states, bond polarizations, tautomeric forms, conformational changes and its interactions with surroundings in enzyme complexes that mimic ground state or transition state can provide snapshots for visualizing the substrate structural evolution along enzyme-catalyzed reaction pathway. Our results have shown that the integration of spectroscopic studies with theoretical computation greatly enhances our ability to interpret experimental data and significantly increases the reliability of the theoretical analysis. PMID:24018325
Sakkiah, Sugunadevi; Kusko, Rebecca; Pan, Bohu; Guo, Wenjing; Ge, Weigong; Tong, Weida; Hong, Huixiao
2018-01-01
When a small molecule binds to the androgen receptor (AR), a conformational change can occur which impacts subsequent binding of co-regulator proteins and DNA. In order to accurately study this mechanism, the scientific community needs a crystal structure of the Wild type AR (WT-AR) ligand binding domain, bound with antagonist. To address this open need, we leveraged molecular docking and molecular dynamics (MD) simulations to construct a structure of the WT-AR ligand binding domain bound with antagonist bicalutamide. The structure of mutant AR (Mut-AR) bound with this same antagonist informed this study. After molecular docking analysis pinpointed the suitable binding orientation of a ligand in AR, the model was further optimized through 1 μs of MD simulations. Using this approach, three molecular systems were studied: (1) WT-AR bound with agonist R1881, (2) WT-AR bound with antagonist bicalutamide, and (3) Mut-AR bound with bicalutamide. Our structures were very similar to the experimentally determined structures of both WT-AR with R1881 and Mut-AR with bicalutamide, demonstrating the trustworthiness of this approach. In our model, when WT-AR is bound with bicalutamide, Val716/Lys720/Gln733, or Met734/Gln738/Glu897 move and thus disturb the positive and negative charge clumps of the AF2 site. This disruption of the AF2 site is key for understanding the impact of antagonist binding on subsequent co-regulator binding. In conclusion, the antagonist induced structural changes in WT-AR detailed in this study will enable further AR research and will facilitate AR targeting drug discovery.
Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haga, Kazuko; Kruse, Andrew C.; Asada, Hidetsugu
2012-03-15
The parasympathetic branch of the autonomic nervous system regulates the activity of multiple organ systems. Muscarinic receptors are G-protein-coupled receptors that mediate the response to acetylcholine released from parasympathetic nerves. Their role in the unconscious regulation of organ and central nervous system function makes them potential therapeutic targets for a broad spectrum of diseases. The M2 muscarinic acetylcholine receptor (M2 receptor) is essential for the physiological control of cardiovascular function through activation of G-protein-coupled inwardly rectifying potassium channels, and is of particular interest because of its extensive pharmacological characterization with both orthosteric and allosteric ligands. Here we report the structuremore » of the antagonist-bound human M2 receptor, the first human acetylcholine receptor to be characterized structurally, to our knowledge. The antagonist 3-quinuclidinyl-benzilate binds in the middle of a long aqueous channel extending approximately two-thirds through the membrane. The orthosteric binding pocket is formed by amino acids that are identical in all five muscarinic receptor subtypes, and shares structural homology with other functionally unrelated acetylcholine binding proteins from different species. A layer of tyrosine residues forms an aromatic cap restricting dissociation of the bound ligand. A binding site for allosteric ligands has been mapped to residues at the entrance to the binding pocket near this aromatic cap. The structure of the M2 receptor provides insights into the challenges of developing subtype-selective ligands for muscarinic receptors and their propensity for allosteric regulation.« less
Amano, Yasushi; Yamaguchi, Tomohiko; Tanabe, Eiki
2014-04-15
Soluble epoxide hydrolase (sEH) is a component of the arachidonic acid cascade and is a candidate target for therapies for hypertension or inflammation. Although many sEH inhibitors are available, their scaffolds are not structurally diverse, and knowledge of their specific interactions with sEH is limited. To obtain detailed structural information about protein-ligand interactions, we conducted fragment screening of sEH, analyzed the fragments using high-throughput X-ray crystallography, and determined 126 fragment-bound structures at high resolution. Aminothiazole and benzimidazole derivatives were identified as novel scaffolds that bind to the catalytic triad of sEH with good ligand efficiency. We further identified fragment hits that bound to subpockets of sEH called the short and long branches. The water molecule conserved in the structure plays an important role in binding to the long branch, whereas Asp496 and the main chain of Phe497 form hydrogen bonds with fragment hits in the short branch. Fragment hits and their crystal structures provide structural insights into ligand binding to sEH that will facilitate the discovery of novel and potent inhibitors of sEH. Copyright © 2014 Elsevier Ltd. All rights reserved.
Reaction chemistry and ligand exchange at cadmium selenide nanocrystal surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owen, Jonathan; Park, Jungwon; Trudeau, Paul-Emile
Chemical modification of nanocrystal surfaces is fundamentally important to their assembly, their implementation in biology and medicine, and greatly impacts their electrical and optical properties. However, it remains a major challenge owing to a lack of analytical tools to directly determine nanoparticle surface structure. Early nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) studies of CdSe nanocrystals prepared in tri-n-octylphosphine oxide (1) and tri-n-octylphosphine (2), suggested these coordinating solvents are datively bound to the particle surface. However, assigning the broad NMR resonances of surface-bound ligands is complicated by significant concentrations of phosphorus-containing impurities in commercial sources of 1, andmore » XPS provides only limited information about the nature of the phosphorus containing molecules in the sample. More recent reports have shown the surface ligands of CdSe nanocrystals prepared in technical grade 1, and in the presence of alkylphosphonic acids, include phosphonic and phosphinic acids. These studies do not, however, distinguish whether these ligands are bound datively, as neutral, L-type ligands, or by X-type interaction of an anionic phosphonate/phosphinate moiety with a surface Cd{sup 2+} ion. Answering this question would help clarify why ligand exchange with such particles does not proceed generally as expected based on a L-type ligand model. By using reagents with reactive silicon-chalcogen and silicon-chlorine bonds to cleave the ligands from the nanocrystal surface, we show that our CdSe and CdSe/ZnS core-shell nanocrystal surfaces are likely terminated by X-type binding of alkylphosphonate ligands to a layer of Cd{sup 2+}/Zn{sup 2+} ions, rather than by dative interactions. Further, we provide spectroscopic evidence that 1 and 2 are not coordinated to our purified nanocrystals.« less
Huang, Jianyun; Chen, Shuai; Zhang, J. Jillian; Huang, Xin-Yun
2013-01-01
G protein-coupled receptors (GPCRs) mediate transmembrane signaling. Before ligand binding, GPCRs exist in a basal state. Crystal structures of several GPCRs bound with antagonists or agonists have been solved. However, the crystal structure of the ligand-free basal state of a GPCR, the starting point of GPCR activation and function, has not been determined. Here we report the X-ray crystal structure of the first ligand-free basal state of a GPCR in a lipid membrane-like environment. Oligomeric turkey β1-adrenergic receptors display two alternating dimer interfaces. One interface involves the transmembrane domain (TM) 1, TM2, the C-terminal H8, and the extracellular loop 1. The other interface engages residues from TM4, TM5, the intracellular loop 2 and the extracellular loop 2. Structural comparisons show that this ligand-free state is in an inactive conformation. This provides the structural information regarding GPCR dimerization and oligomerization. PMID:23435379
A Quantitative Measure of Conformational Changes in Apo, Holo and Ligand-Bound Forms of Enzymes.
Singh, Satendra; Singh, Atul Kumar; Wadhwa, Gulshan; Singh, Dev Bukhsh; Dwivedi, Seema; Gautam, Budhayash; Ramteke, Pramod W
2016-06-01
Determination of the native geometry of the enzymes and ligand complexes is a key step in the process of structure-based drug designing. Enzymes and ligands show flexibility in structural behavior as they come in contact with each other. When ligand binds with active site of the enzyme, in the presence of cofactor some structural changes are expected to occur in the active site. Motivation behind this study is to determine the nature of conformational changes as well as regions where such changes are more pronounced. To measure the structural changes due to cofactor and ligand complex, enzyme in apo, holo and ligand-bound forms is selected. Enzyme data set was retrieved from protein data bank. Fifteen triplet groups were selected for the analysis of structural changes based on selection criteria. Structural features for selected enzymes were compared at the global as well as local region. Accessible surface area for the enzymes in entire triplet set was calculated, which describes the change in accessible surface area upon binding of cofactor and ligand with the enzyme. It was observed that some structural changes take place during binding of ligand in the presence of cofactor. This study will helps in understanding the level of flexibility in protein-ligand interaction for computer-aided drug designing.
Access to Formally Ni(I) States in a Heterobimetallic NiZn System
Uyeda, Christopher
2014-01-01
Heterobimetallic NiZn complexes featuring metal centers in distinct coordination environments have been synthesized using diimine-dioxime ligands as binucleating scaffolds. A tetramethylfuran-containing ligand derivative enables a stable one-electron-reduced S = 1/2 species to be accessed using Cp2Co as a chemical reductant. The resulting pseudo-square planar complex exhibits spectroscopic and crystallographic characteristics of a ligand-centered radical bound to a Ni(II) center. Upon coordination of a π-acidic ligand such as PPh3, however, a five-coordinate Ni(I) metalloradical is formed. The electronic structures of these reduced species provide insight into the subtle effects of ligand structure on the potential and reversibility of the NiII/I couple for complexes of redox-active tetraazamacrocycles. PMID:25614786
Chlamydia trachomatis CT771 (nudH) is an asymmetric Ap4A hydrolase.
Barta, Michael L; Lovell, Scott; Sinclair, Amy N; Battaile, Kevin P; Hefty, P Scott
2014-01-14
Asymmetric diadenosine 5',5‴-P(1),P(4)-tetraphosphate (Ap4A) hydrolases are members of the Nudix superfamily that asymmetrically cleave the metabolite Ap4A into ATP and AMP while facilitating homeostasis. The obligate intracellular mammalian pathogen Chlamydia trachomatis possesses a single Nudix family protein, CT771. As pathogens that rely on a host for replication and dissemination typically have one or zero Nudix family proteins, this suggests that CT771 could be critical for chlamydial biology and pathogenesis. We identified orthologues to CT771 within environmental Chlamydiales that share active site residues suggesting a common function. Crystal structures of both apo- and ligand-bound CT771 were determined to 2.6 Å and 1.9 Å resolution, respectively. The structure of CT771 shows a αβα-sandwich motif with many conserved elements lining the putative Nudix active site. Numerous aspects of the ligand-bound CT771 structure mirror those observed in the ligand-bound structure of the Ap4A hydrolase from Caenorhabditis elegans. These structures represent only the second Ap4A hydrolase enzyme member determined from eubacteria and suggest that mammalian and bacterial Ap4A hydrolases might be more similar than previously thought. The aforementioned structural similarities, in tandem with molecular docking, guided the enzymatic characterization of CT771. Together, these studies provide the molecular details for substrate binding and specificity, supporting the analysis that CT771 is an Ap4A hydrolase (nudH).
Probing protein flexibility reveals a mechanism for selective promiscuity
Pabon, Nicolas A; Camacho, Carlos J
2017-01-01
Many eukaryotic regulatory proteins adopt distinct bound and unbound conformations, and use this structural flexibility to bind specifically to multiple partners. However, we lack an understanding of how an interface can select some ligands, but not others. Here, we present a molecular dynamics approach to identify and quantitatively evaluate the interactions responsible for this selective promiscuity. We apply this approach to the anticancer target PD-1 and its ligands PD-L1 and PD-L2. We discover that while unbound PD-1 exhibits a hard-to-drug hydrophilic interface, conserved specific triggers encoded in the cognate ligands activate a promiscuous binding pathway that reveals a flexible hydrophobic binding cavity. Specificity is then established by additional contacts that stabilize the PD-1 cavity into distinct bound-like modes. Collectively, our studies provide insight into the structural basis and evolution of multiple binding partners, and also suggest a biophysical approach to exploit innate binding pathways to drug seemingly undruggable targets. DOI: http://dx.doi.org/10.7554/eLife.22889.001 PMID:28432789
Ligand placement based on prior structures: the guided ligand-replacement method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klei, Herbert E.; Bristol-Myers Squibb, Princeton, NJ 08543-4000; Moriarty, Nigel W., E-mail: nwmoriarty@lbl.gov
2014-01-01
A new module, Guided Ligand Replacement (GLR), has been developed in Phenix to increase the ease and success rate of ligand placement when prior protein-ligand complexes are available. The process of iterative structure-based drug design involves the X-ray crystal structure determination of upwards of 100 ligands with the same general scaffold (i.e. chemotype) complexed with very similar, if not identical, protein targets. In conjunction with insights from computational models and assays, this collection of crystal structures is analyzed to improve potency, to achieve better selectivity and to reduce liabilities such as absorption, distribution, metabolism, excretion and toxicology. Current methods formore » modeling ligands into electron-density maps typically do not utilize information on how similar ligands bound in related structures. Even if the electron density is of sufficient quality and resolution to allow de novo placement, the process can take considerable time as the size, complexity and torsional degrees of freedom of the ligands increase. A new module, Guided Ligand Replacement (GLR), was developed in Phenix to increase the ease and success rate of ligand placement when prior protein–ligand complexes are available. At the heart of GLR is an algorithm based on graph theory that associates atoms in the target ligand with analogous atoms in the reference ligand. Based on this correspondence, a set of coordinates is generated for the target ligand. GLR is especially useful in two situations: (i) modeling a series of large, flexible, complicated or macrocyclic ligands in successive structures and (ii) modeling ligands as part of a refinement pipeline that can automatically select a reference structure. Even in those cases for which no reference structure is available, if there are multiple copies of the bound ligand per asymmetric unit GLR offers an efficient way to complete the model after the first ligand has been placed. In all of these applications, GLR leverages prior knowledge from earlier structures to facilitate ligand placement in the current structure.« less
A python-based docking program utilizing a receptor bound ligand shape: PythDock.
Chung, Jae Yoon; Cho, Seung Joo; Hah, Jung-Mi
2011-09-01
PythDock is a heuristic docking program that uses Python programming language with a simple scoring function and a population based search engine. The scoring function considers electrostatic and dispersion/repulsion terms. The search engine utilizes a particle swarm optimization algorithm. A grid potential map is generated using the shape information of a bound ligand within the active site. Therefore, the searching area is more relevant to the ligand binding. To evaluate the docking performance of PythDock, two well-known docking programs (AutoDock and DOCK) were also used with the same data. The accuracy of docked results were measured by the difference of the ligand structure between x-ray structure, and docked pose, i.e., average root mean squared deviation values of the bound ligand were compared for fourteen protein-ligand complexes. Since the number of ligands' rotational flexibility is an important factor affecting the accuracy of a docking, the data set was chosen to have various degrees of flexibility. Although PythDock has a scoring function simpler than those of other programs (AutoDock and DOCK), our results showed that PythDock predicted more accurate poses than both AutoDock4.2 and DOCK6.2. This indicates that PythDock could be a useful tool to study ligand-receptor interactions and could also be beneficial in structure based drug design.
Bhattacharyya, Moitrayee; Vishveshwara, Saraswathi
2010-08-12
One of the major challenges in understanding enzyme catalysis is to identify the different conformations and their populations at detailed molecular level in response to ligand binding/environment. A detail description of the ligand induced conformational changes provides meaningful insights into the mechanism of action of enzymes and thus its function. In this study, we have explored the ligand induced conformational changes in H.pylori LuxS and the associated mechanistic features. LuxS, a dimeric protein, produces the precursor (4,5-dihydroxy-2,3-pentanedione) for autoinducer-2 production which is a signalling molecule for bacterial quorum sensing. We have performed molecular dynamics simulations on H.pylori LuxS in its various ligand bound forms and analyzed the simulation trajectories using various techniques including the structure network analysis, free energy evaluation and water dynamics at the active site. The results bring out the mechanistic details such as co-operativity and asymmetry between the two subunits, subtle changes in the conformation as a response to the binding of active and inactive forms of ligands and the population distribution of different conformations in equilibrium. These investigations have enabled us to probe the free energy landscape and identify the corresponding conformations in terms of network parameters. In addition, we have also elucidated the variations in the dynamics of water co-ordination to the Zn2+ ion in LuxS and its relation to the rigidity at the active sites. In this article, we provide details of a novel method for the identification of conformational changes in the different ligand bound states of the protein, evaluation of ligand-induced free energy changes and the biological relevance of our results in the context of LuxS structure-function. The methodology outlined here is highly generalized to illuminate the linkage between structure and function in any protein of known structure.
He, Yan; Estephan, Rima; Yang, Xiaomin; Vela, Adriana; Wang, Hsin; Bernard, Cédric; Stark, Ruth E.
2011-01-01
Liver fatty acid-binding protein (LFABP) is a 14-kDa cytosolic polypeptide, differing from other family members in number of ligand binding sites, diversity of bound ligands, and transfer of fatty acid(s) to membranes primarily via aqueous diffusion rather than direct collisional interactions. Distinct two-dimensional 1H-15N NMR signals indicative of slowly exchanging LFABP assemblies formed during stepwise ligand titration were exploited, without solving the protein-ligand complex structures, to yield the stoichiometries for the bound ligands, their locations within the protein binding cavity, the sequence of ligand occupation, and the corresponding protein structural accommodations. Chemical shifts were monitored for wild-type LFABP and a R122L/S124A mutant in which electrostatic interactions viewed as essential to fatty acid binding were removed. For wild-type LFABP the results compared favorably with previous tertiary structures of oleate-bound wild-type LFABP in crystals and in solution: there are two oleates, one U-shaped ligand that positions the long hydrophobic chain deep within the cavity and another extended structure with the hydrophobic chain facing the cavity and the carboxylate group lying close to the protein surface. The NMR titration validated a prior hypothesis that the first oleate to enter the cavity occupies the internal protein site. In contrast, 1H/15N chemical shift changes supported only one liganded oleate for R122L/S124A LFABP, at an intermediate location within the protein cavity. A rationale based on protein sequence and electrostatics was developed to explain the stoichiometry and binding site trends for LFABPs and to put these findings into context within the larger protein family. PMID:21226535
Sharma, Monika; Bulusu, Gopalakrishnan; Mitra, Abhijit
2009-09-01
Riboswitches are structural cis-acting genetic regulatory elements in 5' UTRs of mRNAs, consisting of an aptamer domain that regulates the behavior of an expression platform in response to its recognition of, and binding to, specific ligands. While our understanding of the ligand-bound structure of the aptamer domain of the adenine riboswitches is based on crystal structure data and is well characterized, understanding of the structure and dynamics of the ligand-free aptamer is limited to indirect inferences from physicochemical probing experiments. Here we report the results of 15-nsec-long explicit-solvent molecular dynamics simulations of the add A-riboswitch crystal structure (1Y26), both in the adenine-bound (CLOSED) state and in the adenine-free (OPEN) state. Root-mean-square deviation, root-mean-square fluctuation, dynamic cross-correlation, and backbone torsion angle analyses are carried out on the two trajectories. These, along with solvent accessible surface area analysis of the two average structures, are benchmarked against available experimental data and are shown to constitute the basis for obtaining reliable insights into the molecular level details of the binding and switching mechanism. Our analysis reveals the interaction network responsible for, and conformational changes associated with, the communication between the binding pocket and the expression platform. It further highlights the significance of a, hitherto unreported, noncanonical W:H trans base pairing between A73 and A24, in the OPEN state, and also helps us to propose a possibly crucial role of U51 in the context of ligand binding and ligand discrimination.
Li, Yi-Ching; Chiang, Chia-Wang; Yeh, Hui-Chun; Hsu, Pei-Yung; Whitby, Frank G.; Wang, Lee-Ho; Chan, Nei-Li
2008-01-01
Prostacyclin synthase (PGIS) is a cytochrome P450 (P450) enzyme that catalyzes production of prostacyclin from prostaglandin H2. PGIS is unusual in that it catalyzes an isomerization rather than a monooxygenation, which is typical of P450 enzymes. To understand the structural basis for prostacyclin biosynthesis in greater detail, we have determined the crystal structures of ligand-free, inhibitor (minoxidil)-bound and substrate analog U51605-bound PGIS. These structures demonstrate a stereo-specific substrate binding and suggest features of the enzyme that facilitate isomerization. Unlike most microsomal P450s, where large substrate-induced conformational changes take place at the distal side of the heme, conformational changes in PGIS are observed at the proximal side and in the heme itself. The conserved and extensive heme propionate-protein interactions seen in all other P450s, which are largely absent in the ligand-free PGIS, are recovered upon U51605 binding accompanied by water exclusion from the active site. In contrast, when minoxidil binds, the propionate-protein interactions are not recovered and water molecules are largely retained. These findings suggest that PGIS represents a divergent evolution of the P450 family, in which a heme barrier has evolved to ensure strict binding specificity for prostaglandin H2, leading to a radical-mediated isomerization with high product fidelity. The U51605-bound structure also provides a view of the substrate entrance and product exit channels. PMID:18032380
Baum, Amanda E.; Park, Heaweon; Wang, Denan; Lindeman, Sergey V.; Fiedler, Adam T.
2012-01-01
Using the tris(3,5-diphenylpyrazol-1-yl)borate (Ph2Tp) supporting ligand, a series of mono- and dinuclear ferrous complexes containing hydroquinonate (HQate) ligands have been prepared and structurally characterized with X-ray crystallography. The monoiron(II) complexes serve as faithful mimics of the substrate-bound form of hydroquinone dioxygenases (HQDOs) – a family of nonheme Fe enzymes that catalyze the oxidative cleavage of 1,4-dihydroxybenzene units. Reflecting the variety of HQDO substrates, the synthetic complexes feature both mono- and bidentate HQate ligands. The bidentate HQates cleanly provide five-coordinate, high-spin Fe(II) complexes with the general formula [Fe(Ph2Tp)(HLX)] (1X), where HLX is a HQate(1-) ligand substituted at the 2-position with a benzimidazolyl (1A), acetyl (1B and 1C), or methoxy (1D) group. In contrast, the monodentate ligand 2,6-dimethylhydroquinone (H2LF) exhibited a greater tendency to bridge between two Fe(II) centers, resulting in formation of [Fe2(Ph2Tp)2(μ-LF)(MeCN)] [2F(MeCN)]. However, addition of one equivalent of “free” pyrazole (Ph2pz) ligand provided the mononuclear complex, [Fe(Ph2Tp)(HLF)(Ph2pz)] [1F(Ph2pz)], which is stabilized by an intramolecular hydrogen bond between the HLF and Ph2pz donors. Complex 1F(Ph2pz) represents the first crystallographically-characterized example of a monoiron complex bound to an untethered HQate ligand. The geometric and electronic structures of the Fe/HQate complexes were further probed with spectroscopic (UV-vis absorption, 1H NMR) and electrochemical methods. Cyclic voltammograms of complexes in the 1X series revealed an Fe-based oxidation between 0 and −300 mV (vs. Fc+/0), in addition to irreversible oxidation(s) of the HQate ligand at higher potentials. The one-electron oxidized species (1Xox) were examined with UV-vis absorption and electron paramagnetic resonance (EPR) spectroscopies. PMID:22930005
Twilight reloaded: the peptide experience
Weichenberger, Christian X.; Pozharski, Edwin; Rupp, Bernhard
2017-01-01
The de facto commoditization of biomolecular crystallography as a result of almost disruptive instrumentation automation and continuing improvement of software allows any sensibly trained structural biologist to conduct crystallographic studies of biomolecules with reasonably valid outcomes: that is, models based on properly interpreted electron density. Robust validation has led to major mistakes in the protein part of structure models becoming rare, but some depositions of protein–peptide complex structure models, which generally carry significant interest to the scientific community, still contain erroneous models of the bound peptide ligand. Here, the protein small-molecule ligand validation tool Twilight is updated to include peptide ligands. (i) The primary technical reasons and potential human factors leading to problems in ligand structure models are presented; (ii) a new method used to score peptide-ligand models is presented; (iii) a few instructive and specific examples, including an electron-density-based analysis of peptide-ligand structures that do not contain any ligands, are discussed in detail; (iv) means to avoid such mistakes and the implications for database integrity are discussed and (v) some suggestions as to how journal editors could help to expunge errors from the Protein Data Bank are provided. PMID:28291756
Twilight reloaded: the peptide experience.
Weichenberger, Christian X; Pozharski, Edwin; Rupp, Bernhard
2017-03-01
The de facto commoditization of biomolecular crystallography as a result of almost disruptive instrumentation automation and continuing improvement of software allows any sensibly trained structural biologist to conduct crystallographic studies of biomolecules with reasonably valid outcomes: that is, models based on properly interpreted electron density. Robust validation has led to major mistakes in the protein part of structure models becoming rare, but some depositions of protein-peptide complex structure models, which generally carry significant interest to the scientific community, still contain erroneous models of the bound peptide ligand. Here, the protein small-molecule ligand validation tool Twilight is updated to include peptide ligands. (i) The primary technical reasons and potential human factors leading to problems in ligand structure models are presented; (ii) a new method used to score peptide-ligand models is presented; (iii) a few instructive and specific examples, including an electron-density-based analysis of peptide-ligand structures that do not contain any ligands, are discussed in detail; (iv) means to avoid such mistakes and the implications for database integrity are discussed and (v) some suggestions as to how journal editors could help to expunge errors from the Protein Data Bank are provided.
Ligand Entry and Exit Pathways in the β2-adrenergic Receptor
Wang, Ting; Duan, Yong
2009-01-01
The recently determined crystal structure of the human β2-adrenergic (β2AR) G-protein coupled receptor provides an excellent structural basis for exploring β2AR -ligand binding and dissociation process. Based on this crystal structure, we simulated ligand exit from the β2AR receptor by applying the random acceleration molecular dynamics (RAMD) simulation method. The simulation results showed that the extracellular opening on the receptor surface was the most frequently observed egress point (referred to as pathway A) and a few other pathways through inter-helical clefts were also observed with significantly lower frequencies. In the egress trajectories along pathway A, the D192-K305 salt bridge between the extracellular loop 2 (ECL2) and the apex of the transmembrane helix 7 (TM7) was exclusively broken. The spatial occupancy maps of the ligand computed from the 100 RAMD simulation trajectories indicated that the receptor-ligand interactions that restrained the ligand in the binding pocket were the major resistance encountered by the ligand during exit and no second barrier was notable. We next performed RAMD simulations by using a putative ligand-free conformation of the receptor as input structure. This conformation was obtained in a standard MD simulation in the absence of the ligand and it differed from the ligand-bound conformation in a hydrophobic patch bridging ECL2 and TM7 due to the rotation of F193 of ECL2. Results from the RAMD simulations with this putative ligand-free conformation suggest that the cleft formed by the hydrophobic bridge, TM2, TM3 and TM7 on the extracellular surface likely serves as a more specific ligand-entry site and the ECL2-TM7 hydrophobic junction can be partially interrupted upon the entry of ligand that pushes F193 to rotate, resulting in a conformation as observed in the ligand-bound crystal structure. These results may help design β2AR-targeting drugs with improved efficacy as well as understand the receptor subtype-selectivity of ligand binding in the β family of the adrenergic receptors that share almost identical ligand-binding pockets but show notable amino acid sequence divergence in the putative ligand-entry site, including ECL2 and the extracellular end of TM7. PMID:19665031
Validation of ligands in macromolecular structures determined by X-ray crystallography
Horský, Vladimír; Svobodová Vařeková, Radka; Bendová, Veronika
2018-01-01
Crystallographic studies of ligands bound to biological macromolecules (proteins and nucleic acids) play a crucial role in structure-guided drug discovery and design, and also provide atomic level insights into the physical chemistry of complex formation between macromolecules and ligands. The quality with which small-molecule ligands have been modelled in Protein Data Bank (PDB) entries has been, and continues to be, a matter of concern for many investigators. Correctly interpreting whether electron density found in a binding site is compatible with the soaked or co-crystallized ligand or represents water or buffer molecules is often far from trivial. The Worldwide PDB validation report (VR) provides a mechanism to highlight any major issues concerning the quality of the data and the model at the time of deposition and annotation, so the depositors can fix issues, resulting in improved data quality. The ligand-validation methods used in the generation of the current VRs are described in detail, including an examination of the metrics to assess both geometry and electron-density fit. It is found that the LLDF score currently used to identify ligand electron-density fit outliers can give misleading results and that better ligand-validation metrics are required. PMID:29533230
Lagarde, Nathalie; Zagury, Jean-François; Montes, Matthieu
2014-10-27
The evaluation of virtual ligand screening methods is of major importance to ensure their reliability. Taking into account the agonist/antagonist pharmacological profile should improve the quality of the benchmarking data sets since ligand binding can induce conformational changes in the nuclear receptor structure and such changes may vary according to the agonist/antagonist ligand profile. We indeed found that splitting the agonist and antagonist ligands into two separate data sets for a given nuclear receptor target significantly enhances the quality of the evaluation. The pharmacological profile of the ligand bound in the binding site of the target structure was also found to be an additional critical parameter. We also illustrate that active compound data sets for a given pharmacological activity can be used as a set of experimentally validated decoy ligands for another pharmacological activity to ensure a reliable and challenging evaluation of virtual screening methods.
Visualizing polynucleotide polymerase machines at work
Steitz, Thomas A
2006-01-01
The structures of T7 RNA polymerase (T7 RNAP) captured in the initiation and elongation phases of transcription, that of φ29 DNA polymerase bound to a primer protein and those of the multisubunit RNAPs bound to initiating factors provide insights into how these proteins can initiate RNA synthesis and synthesize 6–10 nucleotides while remaining bound to the site of initiation. Structural insight into the translocation of the product transcript and the separation of the downstream duplex DNA is provided by the structures of the four states of nucleotide incorporation. Single molecule and biochemical studies show a distribution of primer terminus positions that is altered by the binding of NTP and PPi ligands. This article reviews the insights that imaging the structure of polynucleotide polymerases at different steps of the polymerization reaction has provided on the mechanisms of the polymerization reaction. Movies are shown that allow the direct visualization of the conformational changes that the polymerases undergo during the different steps of polymerization. PMID:16900098
2018-01-01
Plant homeodomain (PHD) zinc fingers are histone reader domains that are often associated with human diseases. Despite this, they constitute a poorly targeted class of readers, suggesting low ligandability. Here, we describe a successful fragment-based campaign targeting PHD fingers from the proteins BAZ2A and BAZ2B as model systems. We validated a pool of in silico fragments both biophysically and structurally and solved the first crystal structures of PHD zinc fingers in complex with fragments bound to an anchoring pocket at the histone binding site. The best-validated hits were found to displace a histone H3 tail peptide in competition assays. This work identifies new chemical scaffolds that provide suitable starting points for future ligand optimization using structure-guided approaches. The demonstrated ligandability of the PHD reader domains could pave the way for the development of chemical probes to drug this family of epigenetic readers. PMID:29529862
Amato, Anastasia; Lucas, Xavier; Bortoluzzi, Alessio; Wright, David; Ciulli, Alessio
2018-04-20
Plant homeodomain (PHD) zinc fingers are histone reader domains that are often associated with human diseases. Despite this, they constitute a poorly targeted class of readers, suggesting low ligandability. Here, we describe a successful fragment-based campaign targeting PHD fingers from the proteins BAZ2A and BAZ2B as model systems. We validated a pool of in silico fragments both biophysically and structurally and solved the first crystal structures of PHD zinc fingers in complex with fragments bound to an anchoring pocket at the histone binding site. The best-validated hits were found to displace a histone H3 tail peptide in competition assays. This work identifies new chemical scaffolds that provide suitable starting points for future ligand optimization using structure-guided approaches. The demonstrated ligandability of the PHD reader domains could pave the way for the development of chemical probes to drug this family of epigenetic readers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Begley, Darren W.; Hartley, Robert C.; Davies, Douglas R.
As part of the Seattle Structural Genomics Center for Infectious Disease, we seek to enhance structural genomics with ligand-bound structure data which can serve as a blueprint for structure-based drug design. We have adapted fragment-based screening methods to our structural genomics pipeline to generate multiple ligand-bound structures of high priority drug targets from pathogenic organisms. In this study, we report fragment screening methods and structure determination results for 2C-methyl-D-erythritol-2,4-cyclo-diphosphate (MECP) synthase from Burkholderia pseudomallei, the gram-negative bacterium which causes melioidosis. Screening by nuclear magnetic resonance spectroscopy as well as crystal soaking followed by X-ray diffraction led to the identification ofmore » several small molecules which bind this enzyme in a critical metabolic pathway. A series of complex structures obtained with screening hits reveal distinct binding pockets and a range of small molecules which form complexes with the target. Additional soaks with these compounds further demonstrate a subset of fragments to only bind the protein when present in specific combinations. This ensemble of fragment-bound complexes illuminates several characteristics of MECP synthase, including a previously unknown binding surface external to the catalytic active site. These ligand-bound structures now serve to guide medicinal chemists and structural biologists in rational design of novel inhibitors for this enzyme.« less
NASA Technical Reports Server (NTRS)
Childs-Disney, Jessica L. (Inventor); Disney, Matthew D. (Inventor)
2017-01-01
Disclosed are methods for identifying a nucleic acid (e.g., RNA, DNA, etc.) motif which interacts with a ligand. The method includes providing a plurality of ligands immobilized on a support, wherein each particular ligand is immobilized at a discrete location on the support; contacting the plurality of immobilized ligands with a nucleic acid motif library under conditions effective for one or more members of the nucleic acid motif library to bind with the immobilized ligands; and identifying members of the nucleic acid motif library that are bound to a particular immobilized ligand. Also disclosed are methods for selecting, from a plurality of candidate ligands, one or more ligands that have increased likelihood of binding to a nucleic acid molecule comprising a particular nucleic acid motif, as well as methods for identifying a nucleic acid which interacts with a ligand.
Potenza, Donatella; Belvisi, Laura
2008-01-21
The aim of this work is to show that transferred-NOE provides useful and detailed information on membrane-bound receptor-ligand interactions in living cells. Here, we study the interaction between intact human platelets and some ligands containing the RGD sequence. Conformational properties of the free and bound pentapeptides are reported.
Ligand-modified metal clusters for gas separation and purification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okrut, Alexander; Ouyang, Xiaoying; Runnebaum, Ron
2017-02-21
Provided is an organic ligand-bound metal surface that selects one gaseous species over another. The species can be closely sized molecular species having less than 1 Angstrom difference in kinetic diameter. In one embodiment, the species comprise carbon monoxide and ethylene. Such organic ligand-bound metal surfaces can be successfully used in gas phase separations or purifications, sensing, and in catalysis.
Heterogeneity and dynamics of the ligand recognition mode in purine-sensing riboswitches.
Jain, Niyati; Zhao, Liang; Liu, John D; Xia, Tianbing
2010-05-04
High-resolution crystal structures and biophysical analyses of purine-sensing riboswitches have revealed that a network of hydrogen bonding interactions appear to be largey responsible for discrimination of cognate ligands against structurally related compounds. Here we report that by using femtosecond time-resolved fluorescence spectroscopy to capture the ultrafast decay dynamics of the 2-aminopurine base as the ligand, we have detected the presence of multiple conformations of the ligand within the binding pockets of one guanine-sensing and two adenine-sensing riboswitches. All three riboswitches have similar conformational distributions of the ligand-bound state. The known crystal structures represent the global minimum that accounts for 50-60% of the population, where there is no significant stacking interaction between the ligand and bases of the binding pocket, but the hydrogen-bonding cage collectively provides an electronic environment that promotes an ultrafast ( approximately 1 ps) charge transfer pathway. The ligand also samples multiple conformations in which it significantly stacks with either the adenine or the uracil bases of the A21-U75 and A52-U22 base pairs that form the ceiling and floor of the binding pocket, respectively, but favors the larger adenine bases. These alternative conformations with well-defined base stacking interactions are approximately 1-1.5 kcal/mol higher in DeltaG degrees than the global minimum and have distinct charge transfer dynamics within the picosecond to nanosecond time regime. Inside the pocket, the purine ligand undergoes dynamic motion on the low nanosecond time scale, sampling the multiple conformations based on time-resolved anisotropy decay dynamics. These results allowed a description of the energy landscape of the bound ligand with intricate details and demonstrated the elastic nature of the ligand recognition mode by the purine-sensing riboswitches, where there is a dynamic balance between hydrogen bonding and base stacking interactions, yielding the high affinity and specificity by the aptamer domain.
Suddala, Krishna C.; Rinaldi, Arlie J.; Feng, Jun; Mustoe, Anthony M.; Eichhorn, Catherine D.; Liberman, Joseph A.; Wedekind, Joseph E.; Al-Hashimi, Hashim M.; Brooks, Charles L.; Walter, Nils G.
2013-01-01
Riboswitches are structural elements in the 5′ untranslated regions of many bacterial messenger RNAs that regulate gene expression in response to changing metabolite concentrations by inhibition of either transcription or translation initiation. The preQ1 (7-aminomethyl-7-deazaguanine) riboswitch family comprises some of the smallest metabolite sensing RNAs found in nature. Once ligand-bound, the transcriptional Bacillus subtilis and translational Thermoanaerobacter tengcongensis preQ1 riboswitch aptamers are structurally similar RNA pseudoknots; yet, prior structural studies have characterized their ligand-free conformations as largely unfolded and folded, respectively. In contrast, through single molecule observation, we now show that, at near-physiological Mg2+ concentration and pH, both ligand-free aptamers adopt similar pre-folded state ensembles that differ in their ligand-mediated folding. Structure-based Gō-model simulations of the two aptamers suggest that the ligand binds late (Bacillus subtilis) and early (Thermoanaerobacter tengcongensis) relative to pseudoknot folding, leading to the proposal that the principal distinction between the two riboswitches lies in their relative tendencies to fold via mechanisms of conformational selection and induced fit, respectively. These mechanistic insights are put to the test by rationally designing a single nucleotide swap distal from the ligand binding pocket that we find to predictably control the aptamers′ pre-folded states and their ligand binding affinities. PMID:24003028
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, X.; Ye, S; Guo, S
Phosphagen kinase (PK) family members catalyze the reversible phosphoryl transfer between phosphagen and ADP to reserve or release energy in cell energy metabolism. The structures of classic quaternary complexes of dimeric creatine kinase (CK) revealed asymmetric ligand binding states of two protomers, but the significance and mechanism remain unclear. To understand this negative cooperativity further, we determined the first structure of dimeric arginine kinase (dAK), another PK family member, at 1.75 {angstrom}, as well as the structure of its ternary complex with AMPPNP and arginine. Further structural analysis shows that the ligand-free protomer in a ligand-bound dimer opens more widelymore » than the protomers in a ligand-free dimer, which leads to three different states of a dAK protomer. The unexpected allostery of the ligand-free protomer in a ligand-bound dimer should be relayed from the ligand-binding-induced allostery of its adjacent protomer. Mutations that weaken the interprotomer connections dramatically reduced the catalytic activities of dAK, indicating the importance of the allosteric propagation mediated by the homodimer interface. These results suggest a reciprocating mechanism of dimeric PK, which is shared by other ATP related oligomeric enzymes, e.g., ATP synthase. - Wu, X., Ye, S., Guo, S., Yan, W., Bartlam, M., Rao, Z. Structural basis for a reciprocating mechanism of negative cooperativity in dimeric phosphagen kinase activity.« less
2015-01-01
In this work, we investigate the dynamic motions of fatty acid binding protein 4 (FABP4) in the absence and presence of a ligand by explicitly solvated all-atom molecular dynamics simulations. The dynamics of one ligand-free FABP4 and four ligand-bound FABP4s is compared via multiple 1.2 μs simulations. In our simulations, the protein interconverts between the open and closed states. Ligand-free FABP4 prefers the closed state, whereas ligand binding induces a conformational transition to the open state. Coupled with opening and closing of FABP4, the ligand adopts distinct binding modes, which are identified and compared with crystal structures. The concerted dynamics of protein and ligand suggests that there may exist multiple FABP4–ligand binding conformations. Thus, this work provides details about how ligand binding affects the conformational preference of FABP4 and how ligand binding is coupled with a conformational change of FABP4 at an atomic level. PMID:25231537
Li, Yan; Li, Xiang; Dong, Zigang
2014-10-14
In this work, we investigate the dynamic motions of fatty acid binding protein 4 (FABP4) in the absence and presence of a ligand by explicitly solvated all-atom molecular dynamics simulations. The dynamics of one ligand-free FABP4 and four ligand-bound FABP4s is compared via multiple 1.2 μs simulations. In our simulations, the protein interconverts between the open and closed states. Ligand-free FABP4 prefers the closed state, whereas ligand binding induces a conformational transition to the open state. Coupled with opening and closing of FABP4, the ligand adopts distinct binding modes, which are identified and compared with crystal structures. The concerted dynamics of protein and ligand suggests that there may exist multiple FABP4-ligand binding conformations. Thus, this work provides details about how ligand binding affects the conformational preference of FABP4 and how ligand binding is coupled with a conformational change of FABP4 at an atomic level.
NASA Astrophysics Data System (ADS)
Xu, Xianjin; Yan, Chengfei; Zou, Xiaoqin
2017-08-01
The growing number of protein-ligand complex structures, particularly the structures of proteins co-bound with different ligands, in the Protein Data Bank helps us tackle two major challenges in molecular docking studies: the protein flexibility and the scoring function. Here, we introduced a systematic strategy by using the information embedded in the known protein-ligand complex structures to improve both binding mode and binding affinity predictions. Specifically, a ligand similarity calculation method was employed to search a receptor structure with a bound ligand sharing high similarity with the query ligand for the docking use. The strategy was applied to the two datasets (HSP90 and MAP4K4) in recent D3R Grand Challenge 2015. In addition, for the HSP90 dataset, a system-specific scoring function (ITScore2_hsp90) was generated by recalibrating our statistical potential-based scoring function (ITScore2) using the known protein-ligand complex structures and the statistical mechanics-based iterative method. For the HSP90 dataset, better performances were achieved for both binding mode and binding affinity predictions comparing with the original ITScore2 and with ensemble docking. For the MAP4K4 dataset, although there were only eight known protein-ligand complex structures, our docking strategy achieved a comparable performance with ensemble docking. Our method for receptor conformational selection and iterative method for the development of system-specific statistical potential-based scoring functions can be easily applied to other protein targets that have a number of protein-ligand complex structures available to improve predictions on binding.
Choosing the Best Enzyme Complex Structure Made Easy.
Das, Sayoni; Orengo, Christine
2018-04-03
In this issue of Structure, Tyzack et al. (2018) present a study of enzyme-ligand complexes in the PDB and show that the molecular similarity of bound and cognate ligands can be used to choose the most biologically appropriate complex structure for analysis when multiple structures are available. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yong; Choi, Mihwa; Cavey, Greg
The orphan nuclear receptor steroidogenic factor 1 (SF-1) regulates the differentiation and function of endocrine glands. Although SF-1 is constitutively active in cell-based assays, it is not known whether this transcriptional activity is modulated by ligands. Here, we describe the 1.5 {angstrom} crystal structure of the SF-1 ligand binding domain in complex with an LXXLL motif from a coregulator protein. The structure reveals the presence of a phospholipid ligand in a surprisingly large pocket ({approx}1600 {angstrom}{sup 3}), with the receptor adopting the canonical active conformation. The bound phospholipid is readily exchanged and modulates SF-1 interactions with coactivators. Mutations designed tomore » reduce the size of the SF-1 pocket or to disrupt hydrogen bonds with the phospholipid abolish SF-1/coactivator interactions and significantly reduce SF-1 transcriptional activity. These findings provide evidence that SF-1 is regulated by endogenous ligands and suggest an unexpected relationship between phospholipids and endocrine development and function.« less
A nickel tripeptide as a metallodithiolate ligand anchor for resin-bound organometallics.
Green, Kayla N; Jeffery, Stephen P; Reibenspies, Joseph H; Darensbourg, Marcetta Y
2006-05-17
The molecular structure of the acetyl CoA synthase enzyme has clarified the role of individual nickel atoms in the dinickel active site which mediates C-C and C-S coupling reactions. The NiN2S2 portion of the biocatalyst (N2S2 = a cysteine-glycine-cysteine or CGC4- tripeptide ligand) serves as an S-donor ligand comparable to classical bidentate ligands operative in organometallic chemistry, ligating the second nickel which is redox and catalytically active. Inspired by this biological catalyst, the synthesis of NiN2S2 metalloligands, including the solid-phase synthesis of resin-bound Ni(CGC)2-, and sulfur-based derivatization with W(CO)5 and Rh(CO)2+ have been carried out. Through comparison to analogous well-characterized, solution-phase complexes, Attenuated Total Reflectance FTIR spectroscopy establishes the presence of unique heterobimetallic complexes, of the form [Ni(CGC)]M(CO)x, both in solution and immobilized on resin beads. This work provides the initial step toward exploitation of such an evolutionarily optimized nickel peptide as a solid support anchor for hybrid bioinorganic-organometallic catalysts.
Structure and symmetry inform gating principles of ionotropic glutamate receptors.
Zhu, Shujia; Gouaux, Eric
2017-01-01
Ionotropic glutamate receptors (iGluRs) transduce signals derived from release of the excitatory neurotransmitter glutamate from pre-synaptic neurons into excitation of post-synaptic neurons on a millisecond time-scale. In recent years, the elucidation of full-length iGluR structures of NMDA, AMPA and kainate receptors by X-ray crystallography and single particle cryo-electron microscopy has greatly enhanced our understanding of the interrelationships between receptor architecture and gating mechanism. Here we briefly review full-length iGluR structures and discuss the similarities and differences between NMDA receptors and non-NMDA iGluRs. We focus on distinct conformations, including ligand-free, agonist-bound active, agonist-bound desensitized and antagonist-bound conformations as well as modulator and auxiliary protein-bound states. These findings provide insights into structure-based mechanisms of iGluR gating and modulation which together shape the amplitude and time course of the excitatory postsynaptic potential. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ghosh, Arun K; R Nyalapatla, Prasanth; Kovela, Satish; Rao, Kalapala Venkateswara; Brindisi, Margherita; Osswald, Heather L; Amano, Masayuki; Aoki, Manabu; Agniswamy, Johnson; Wang, Yuan-Fang; Weber, Irene T; Mitsuya, Hiroaki
2018-05-24
The design, synthesis, and biological evaluation of a new class of HIV-1 protease inhibitors containing stereochemically defined fused tricyclic polyethers as the P2 ligands and a variety of sulfonamide derivatives as the P2' ligands are described. A number of ring sizes and various substituent effects were investigated to enhance the ligand-backbone interactions in the protease active site. Inhibitors 5c and 5d containing this unprecedented fused 6-5-5 ring system as the P2 ligand, an aminobenzothiazole as the P2' ligand, and a difluorophenylmethyl as the P1 ligand exhibited exceptional enzyme inhibitory potency and maintained excellent antiviral activity against a panel of highly multidrug-resistant HIV-1 variants. The umbrella-like P2 ligand for these inhibitors has been synthesized efficiently in an optically active form using a Pauson-Khand cyclization reaction as the key step. The racemic alcohols were resolved efficiently using a lipase catalyzed enzymatic resolution. Two high resolution X-ray structures of inhibitor-bound HIV-1 protease revealed extensive interactions with the backbone atoms of HIV-1 protease and provided molecular insight into the binding properties of these new inhibitors.
Crystallization of bi-functional ligand protein complexes.
Antoni, Claudia; Vera, Laura; Devel, Laurent; Catalani, Maria Pia; Czarny, Bertrand; Cassar-Lajeunesse, Evelyn; Nuti, Elisa; Rossello, Armando; Dive, Vincent; Stura, Enrico Adriano
2013-06-01
Homodimerization is important in signal transduction and can play a crucial role in many other biological systems. To obtaining structural information for the design of molecules able to control the signalization pathways, the proteins involved will have to be crystallized in complex with ligands that induce dimerization. Bi-functional drugs have been generated by linking two ligands together chemically and the relative crystallizability of complexes with mono-functional and bi-functional ligands has been evaluated. There are problems associated with crystallization with such ligands, but overall, the advantages appear to be greater than the drawbacks. The study involves two matrix metalloproteinases, MMP-12 and MMP-9. Using flexible and rigid linkers we show that it is possible to control the crystal packing and that by changing the ligand-enzyme stoichiometric ratio, one can toggle between having one bi-functional ligand binding to two enzymes and having the same ligand bound to each enzyme. The nature of linker and its point of attachment on the ligand can be varied to aid crystallization, and such variations can also provide valuable structural information about the interactions made by the linker with the protein. We report here the crystallization and structure determination of seven ligand-dimerized complexes. These results suggest that the use of bi-functional drugs can be extended beyond the realm of protein dimerization to include all drug design projects. Copyright © 2013 Elsevier Inc. All rights reserved.
Najmanovich, Rafael
2013-01-01
IsoCleft Finder is a web-based tool for the detection of local geometric and chemical similarities between potential small-molecule binding cavities and a non-redundant dataset of ligand-bound known small-molecule binding-sites. The non-redundant dataset developed as part of this study is composed of 7339 entries representing unique Pfam/PDB-ligand (hetero group code) combinations with known levels of cognate ligand similarity. The query cavity can be uploaded by the user or detected automatically by the system using existing PDB entries as well as user-provided structures in PDB format. In all cases, the user can refine the definition of the cavity interactively via a browser-based Jmol 3D molecular visualization interface. Furthermore, users can restrict the search to a subset of the dataset using a cognate-similarity threshold. Local structural similarities are detected using the IsoCleft software and ranked according to two criteria (number of atoms in common and Tanimoto score of local structural similarity) and the associated Z-score and p-value measures of statistical significance. The results, including predicted ligands, target proteins, similarity scores, number of atoms in common, etc., are shown in a powerful interactive graphical interface. This interface permits the visualization of target ligands superimposed on the query cavity and additionally provides a table of pairwise ligand topological similarities. Similarities between top scoring ligands serve as an additional tool to judge the quality of the results obtained. We present several examples where IsoCleft Finder provides useful functional information. IsoCleft Finder results are complementary to existing approaches for the prediction of protein function from structure, rational drug design and x-ray crystallography. IsoCleft Finder can be found at: http://bcb.med.usherbrooke.ca/isocleftfinder. PMID:24555058
Enhanced sampling of glutamate receptor ligand-binding domains.
Lau, Albert Y
2018-04-14
The majority of excitatory synaptic transmission in the central nervous system is mediated by ionotropic glutamate receptors (iGluRs). These membrane-bound protein assemblies consist of modular domains that can be genetically isolated and expressed, which has resulted in a plethora of crystal structures of individual domains in different conformations bound to different ligands. These structures have presented opportunities for molecular dynamics (MD) simulation studies. To examine the free energies that govern molecular behavior, simulation strategies and algorithms have been developed, collectively called enhanced sampling methods This review focuses on the use of enhanced sampling MD simulations of isolated iGluR ligand-binding domains to characterize thermodynamic properties important to receptor function. Copyright © 2018 Elsevier B.V. All rights reserved.
Predicting the accuracy of ligand overlay methods with Random Forest models.
Nandigam, Ravi K; Evans, David A; Erickson, Jon A; Kim, Sangtae; Sutherland, Jeffrey J
2008-12-01
The accuracy of binding mode prediction using standard molecular overlay methods (ROCS, FlexS, Phase, and FieldCompare) is studied. Previous work has shown that simple decision tree modeling can be used to improve accuracy by selection of the best overlay template. This concept is extended to the use of Random Forest (RF) modeling for template and algorithm selection. An extensive data set of 815 ligand-bound X-ray structures representing 5 gene families was used for generating ca. 70,000 overlays using four programs. RF models, trained using standard measures of ligand and protein similarity and Lipinski-related descriptors, are used for automatically selecting the reference ligand and overlay method maximizing the probability of reproducing the overlay deduced from X-ray structures (i.e., using rmsd < or = 2 A as the criteria for success). RF model scores are highly predictive of overlay accuracy, and their use in template and method selection produces correct overlays in 57% of cases for 349 overlay ligands not used for training RF models. The inclusion in the models of protein sequence similarity enables the use of templates bound to related protein structures, yielding useful results even for proteins having no available X-ray structures.
A structural basis for antigen presentation by the MHC class Ib molecule, Qa-1b.
Zeng, Li; Sullivan, Lucy C; Vivian, Julian P; Walpole, Nicholas G; Harpur, Christopher M; Rossjohn, Jamie; Clements, Craig S; Brooks, Andrew G
2012-01-01
The primary function of the monomorphic MHC class Ib molecule Qa-1(b) is to present peptides derived from the leader sequences of other MHC class I molecules for recognition by the CD94-NKG2 receptors expressed by NK and T cells. Whereas the mode of peptide presentation by its ortholog HLA-E, and subsequent recognition by CD94-NKG2A, is known, the molecular basis of Qa-1(b) function is unclear. We have assessed the interaction between Qa-1(b) and CD94-NKG2A and shown that they interact with an affinity of 17 μM. Furthermore, we have determined the structure of Qa-1(b) bound to the leader sequence peptide, Qdm (AMAPRTLLL), to a resolution of 1.9 Å and compared it with that of HLA-E. The crystal structure provided a basis for understanding the restricted peptide repertoire of Qa-1(b). Whereas the Qa-1(b-AMAPRTLLL) complex was similar to that of HLA-E, significant sequence and structural differences were observed between the respective Ag-binding clefts. However, the conformation of the Qdm peptide bound by Qa-1(b) was very similar to that of peptide bound to HLA-E. Although a number of conserved innate receptors can recognize heterologous ligands from other species, the structural differences between Qa-1(b) and HLA-E manifested in CD94-NKG2A ligand recognition being species specific despite similarities in peptide sequence and conformation. Collectively, our data illustrate the structural homology between Qa-1(b) and HLA-E and provide a structural basis for understanding peptide repertoire selection and the specificity of the interaction of Qa-1(b) with CD94-NKG2 receptors.
Crystal Structures of the β2-Adrenergic Receptor
NASA Astrophysics Data System (ADS)
Weis, William I.; Rosenbaum, Daniel M.; Rasmussen, Søren G. F.; Choi, Hee-Jung; Thian, Foon Sun; Kobilka, Tong Sun; Yao, Xiao-Jie; Day, Peter W.; Parnot, Charles; Fung, Juan J.; Ratnala, Venkata R. P.; Kobilka, Brian K.; Cherezov, Vadim; Hanson, Michael A.; Kuhn, Peter; Stevens, Raymond C.; Edwards, Patricia C.; Schertler, Gebhard F. X.; Burghammer, Manfred; Sanishvili, Ruslan; Fischetti, Robert F.; Masood, Asna; Rohrer, Daniel K.
G protein coupled receptors (GPCRs) constitute the largest family of membrane proteins in the human genome, and are responsible for the majority of signal transduction events involving hormones and neuro-transmitters across the cell membrane. GPCRs that bind to diffusible ligands have low natural abundance, are relatively unstable in detergents, and display basal G protein activation even in the absence of ligands. To overcome these problems two approaches were taken to obtain crystal structures of the β2-adrenergic receptor (β2AR), a well-characterized GPCR that binds cate-cholamine hormones. The receptor was bound to the partial inverse agonist carazolol and co-crystallized with a Fab made to a three-dimensional epitope formed by the third intracellular loop (ICL3), or by replacement of ICL3 with T4 lysozyme. Small crystals were obtained in lipid bicelles (β2AR-Fab) or lipidic cubic phase (β2AR-T4 lysozyme), and diffraction data were obtained using microfocus technology. The structures provide insights into the basal activity of the receptor, the structural features that enable binding of diffusible ligands, and the coupling between ligand binding and G-protein activation.
Rigid-body Ligand Recognition Drives Cytotoxic T-lymphocyte Antigen 4 (CTLA-4) Receptor Triggering
Yu, Chao; Sonnen, Andreas F.-P.; George, Roger; Dessailly, Benoit H.; Stagg, Loren J.; Evans, Edward J.; Orengo, Christine A.; Stuart, David I.; Ladbury, John E.; Ikemizu, Shinji; Gilbert, Robert J. C.; Davis, Simon J.
2011-01-01
The inhibitory T-cell surface-expressed receptor, cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), which belongs to the class of cell surface proteins phosphorylated by extrinsic tyrosine kinases that also includes antigen receptors, binds the related ligands, B7-1 and B7-2, expressed on antigen-presenting cells. Conformational changes are commonly invoked to explain ligand-induced “triggering” of this class of receptors. Crystal structures of ligand-bound CTLA-4 have been reported, but not the apo form, precluding analysis of the structural changes accompanying ligand binding. The 1.8-Å resolution structure of an apo human CTLA-4 homodimer emphasizes the shared evolutionary history of the CTLA-4/CD28 subgroup of the immunoglobulin superfamily and the antigen receptors. The ligand-bound and unbound forms of both CTLA-4 and B7-1 are remarkably similar, in marked contrast to B7-2, whose binding to CTLA-4 has elements of induced fit. Isothermal titration calorimetry reveals that ligand binding by CTLA-4 is enthalpically driven and accompanied by unfavorable entropic changes. The similarity of the thermodynamic parameters determined for the interactions of CTLA-4 with B7-1 and B7-2 suggests that the binding is not highly specific, but the conformational changes observed for B7-2 binding suggest some level of selectivity. The new structure establishes that rigid-body ligand interactions are capable of triggering CTLA-4 phosphorylation by extrinsic kinase(s). PMID:21156796
Ligand-Dependent Activation and Deactivation of the Human Adenosine A2A Receptor
Li, Jianing; Jonsson, Amanda L.; Beuming, Thijs; Shelley, John C.; Voth, Gregory A.
2013-01-01
G protein-coupled receptors (GPCRs) are membrane proteins with critical functions in cellular signal transduction, representing a primary class of drug targets. Acting by direct binding, many drugs modulate GPCR activity and influence the signaling pathways associated with numerous diseases. However, complete details of ligand-dependent GPCR activation/deactivation are difficult to obtain from experiments. Therefore, it remains unclear how ligands modulate a GPCR’s activity. To elucidate the ligand-dependent activation/deactivation mechanism of the human adenosine A2A receptor (AA2AR), a member of the class A GPCRs, we performed large-scale unbiased molecular dynamics and metadynamics simulations of the receptor embedded in a membrane. At the atomic level, we have observed distinct structural states that resemble the active and inactive states. In particular we noted key structural elements changing in a highly concerted fashion during the conformational transitions, including six conformational states of a tryptophan (Trp2466.48). Our findings agree with a previously proposed view, that during activation, this tryptophan residue undergoes a rotameric transition that may be coupled to a series of coherent conformational changes, resulting in the opening of the G protein-binding site. Further, metadynamics simulations provide quantitative evidence for this mechanism, suggesting how ligand binding shifts the equilibrium between the active and inactive states. Our analysis also proposes that a few specific residues are associated with agonism/antagonism, affinity and selectivity, and suggests that the ligand-binding pocket can be thought of as having three distinct regions, providing dynamic features for structure-based design. Additional simulations with AA2AR bound to a novel ligand are consistent with our proposed mechanism. Generally, our study provides insights into the ligand-dependent AA2AR activation/deactivation in addition to what has been found in crystal structures. These results should aid in the discovery of more effective and selective GPCR ligands. PMID:23678995
Ligand-dependent activation and deactivation of the human adenosine A(2A) receptor.
Li, Jianing; Jonsson, Amanda L; Beuming, Thijs; Shelley, John C; Voth, Gregory A
2013-06-12
G-protein-coupled receptors (GPCRs) are membrane proteins with critical functions in cellular signal transduction, representing a primary class of drug targets. Acting by direct binding, many drugs modulate GPCR activity and influence the signaling pathways associated with numerous diseases. However, complete details of ligand-dependent GPCR activation/deactivation are difficult to obtain from experiments. Therefore, it remains unclear how ligands modulate a GPCR's activity. To elucidate the ligand-dependent activation/deactivation mechanism of the human adenosine A2A receptor (AA2AR), a member of the class A GPCRs, we performed large-scale unbiased molecular dynamics and metadynamics simulations of the receptor embedded in a membrane. At the atomic level, we have observed distinct structural states that resemble the active and inactive states. In particular, we noted key structural elements changing in a highly concerted fashion during the conformational transitions, including six conformational states of a tryptophan (Trp246(6.48)). Our findings agree with a previously proposed view that, during activation, this tryptophan residue undergoes a rotameric transition that may be coupled to a series of coherent conformational changes, resulting in the opening of the G-protein binding site. Further, metadynamics simulations provide quantitative evidence for this mechanism, suggesting how ligand binding shifts the equilibrium between the active and inactive states. Our analysis also proposes that a few specific residues are associated with agonism/antagonism, affinity, and selectivity, and suggests that the ligand-binding pocket can be thought of as having three distinct regions, providing dynamic features for structure-based design. Additional simulations with AA2AR bound to a novel ligand are consistent with our proposed mechanism. Generally, our study provides insights into the ligand-dependent AA2AR activation/deactivation in addition to what has been found in crystal structures. These results should aid in the discovery of more effective and selective GPCR ligands.
Chenge, Jude T.; Duyet, Le Van; Swami, Shalini; McLean, Kirsty J.; Kavanagh, Madeline E.; Coyne, Anthony G.; Rigby, Stephen E. J.; Cheesman, Myles R.; Girvan, Hazel M.; Levy, Colin W.; Rupp, Bernd; von Kries, Jens P.; Abell, Chris; Leys, David; Munro, Andrew W.
2017-01-01
The Mycobacterium tuberculosis H37Rv genome encodes 20 cytochromes P450, including P450s crucial to infection and bacterial viability. Many M. tuberculosis P450s remain uncharacterized, suggesting that their further analysis may provide new insights into M. tuberculosis metabolic processes and new targets for drug discovery. CYP126A1 is representative of a P450 family widely distributed in mycobacteria and other bacteria. Here we explore the biochemical and structural properties of CYP126A1, including its interactions with new chemical ligands. A survey of azole antifungal drugs showed that CYP126A1 is inhibited strongly by azoles containing an imidazole ring but not by those tested containing a triazole ring. To further explore the molecular preferences of CYP126A1 and search for probes of enzyme function, we conducted a high throughput screen. Compounds containing three or more ring structures dominated the screening hits, including nitroaromatic compounds that induce substrate-like shifts in the heme spectrum of CYP126A1. Spectroelectrochemical measurements revealed a 155-mV increase in heme iron potential when bound to one of the newly identified nitroaromatic drugs. CYP126A1 dimers were observed in crystal structures of ligand-free CYP126A1 and for CYP126A1 bound to compounds discovered in the screen. However, ketoconazole binds in an orientation that disrupts the BC-loop regions at the P450 dimer interface and results in a CYP126A1 monomeric crystal form. Structural data also reveal that nitroaromatic ligands “moonlight” as substrates by displacing the CYP126A1 distal water but inhibit enzyme activity. The relatively polar active site of CYP126A1 distinguishes it from its most closely related sterol-binding P450s in M. tuberculosis, suggesting that further investigations will reveal its diverse substrate selectivity. PMID:27932461
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granier, Sébastien; Manglik, Aashish; Kruse, Andrew C.
The opioid receptor family comprises three members, the {mu}-, {delta}- and {kappa}-opioid receptors, which respond to classical opioid alkaloids such as morphine and heroin as well as to endogenous peptide ligands like endorphins. They belong to the G-protein-coupled receptor (GPCR) superfamily, and are excellent therapeutic targets for pain control. The {delta}-opioid receptor ({delta}-OR) has a role in analgesia, as well as in other neurological functions that remain poorly understood. The structures of the {mu}-OR and {kappa}-OR have recently been solved. Here we report the crystal structure of the mouse {delta}-OR, bound to the subtype-selective antagonist naltrindole. Together with the structuresmore » of the {mu}-OR and {kappa}-OR, the {delta}-OR structure provides insights into conserved elements of opioid ligand recognition while also revealing structural features associated with ligand-subtype selectivity. The binding pocket of opioid receptors can be divided into two distinct regions. Whereas the lower part of this pocket is highly conserved among opioid receptors, the upper part contains divergent residues that confer subtype selectivity. This provides a structural explanation and validation for the 'message-address' model of opioid receptor pharmacology, in which distinct 'message' (efficacy) and 'address' (selectivity) determinants are contained within a single ligand. Comparison of the address region of the {delta}-OR with other GPCRs reveals that this structural organization may be a more general phenomenon, extending to other GPCR families as well.« less
Structural basis of ligand recognition in 5-HT3 receptors
Kesters, Divya; Thompson, Andrew J; Brams, Marijke; van Elk, René; Spurny, Radovan; Geitmann, Matthis; Villalgordo, Jose M; Guskov, Albert; Helena Danielson, U; Lummis, Sarah C R; Smit, August B; Ulens, Chris
2013-01-01
The 5-HT3 receptor is a pentameric serotonin-gated ion channel, which mediates rapid excitatory neurotransmission and is the target of a therapeutically important class of anti-emetic drugs, such as granisetron. We report crystal structures of a binding protein engineered to recognize the agonist serotonin and the antagonist granisetron with affinities comparable to the 5-HT3 receptor. In the serotonin-bound structure, we observe hydrophilic interactions with loop E-binding site residues, which might enable transitions to channel opening. In the granisetron-bound structure, we observe a critical cation–π interaction between the indazole moiety of the ligand and a cationic centre in loop D, which is uniquely present in the 5-HT3 receptor. We use a series of chemically tuned granisetron analogues to demonstrate the energetic contribution of this electrostatic interaction to high-affinity ligand binding in the human 5-HT3 receptor. Our study offers the first structural perspective on recognition of serotonin and antagonism by anti-emetics in the 5-HT3 receptor. PMID:23196367
Kozyulina, Polina Y; Loskutov, Yuriy V; Kozyreva, Varvara K; Rajulapati, Anuradha; Ice, Ryan J; Jones, Brandon C; Pugacheva, Elena N
2015-03-01
The dissemination of tumor cells relies on efficient cell adhesion and migration, which in turn depends upon endocytic trafficking of integrins. In the current work, it was found that depletion of the prometastatic protein, NEDD9, in breast cancer cells results in a significant decrease in individual cell migration due to impaired trafficking of ligand-bound integrins. NEDD9 deficiency does not affect the expression or internalization of integrins but heightens caveolae-dependent trafficking of ligand-bound integrins to early endosomes. Increase in mobility of ligand-bound integrins is concomitant with an increase in tyrosine phosphorylation of caveolin-1 (CAV1) and volume of CAV1-vesicles. NEDD9 directly binds to CAV1 and colocalizes within CAV1 vesicles. In the absence of NEDD9, the trafficking of ligand-bound integrins from early to late endosomes is impaired, resulting in a significant decrease in degradation of ligand-integrin complexes and an increase in recycling of ligand-bound integrins from early endosomes back to the plasma membrane without ligand disengagement, thus leading to low adhesion and migration. Reexpression of NEDD9 or decrease in the amount of active, tyrosine 14 phosphorylated (Tyr14) CAV1 in NEDD9-depleted cells rescues the integrin trafficking deficiency and restores cellular adhesion and migration capacity. Collectively, these findings indicate that NEDD9 orchestrates trafficking of ligand-bound integrins through the attenuation of CAV1 activity. This study provides valuable new insight into the potential therapeutic benefit of NEDD9 depletion to reduce dissemination of tumor cells and discovers a new regulatory role of NEDD9 in promoting migration through modulation of CAV1-dependent trafficking of integrins. ©2014 American Association for Cancer Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grosso, Marcos; Kalstein, Adrian; Parisi, Gustavo
The native state of a protein consists of an equilibrium of conformational states on an energy landscape rather than existing as a single static state. The co-existence of conformers with different ligand-affinities in a dynamical equilibrium is the basis for the conformational selection model for ligand binding. In this context, the development of theoretical methods that allow us to analyze not only the structural changes but also changes in the fluctuation patterns between conformers will contribute to elucidate the differential properties acquired upon ligand binding. Molecular dynamics simulations can provide the required information to explore these features. Its use inmore » combination with subsequent essential dynamics analysis allows separating large concerted conformational rearrangements from irrelevant fluctuations. We present a novel procedure to define the size and composition of essential dynamics subspaces associated with ligand-bound and ligand-free conformations. These definitions allow us to compare essential dynamics subspaces between different conformers. Our procedure attempts to emphasize the main similarities and differences between the different essential dynamics in an unbiased way. Essential dynamics subspaces associated to conformational transitions can also be analyzed. As a test case, we study the glutaminase interacting protein (GIP), composed of a single PDZ domain. Both GIP ligand-free state and glutaminase L peptide-bound states are analyzed. Our findings concerning the relative changes in the flexibility pattern upon binding are in good agreement with experimental Nuclear Magnetic Resonance data.« less
E-novo: an automated workflow for efficient structure-based lead optimization.
Pearce, Bradley C; Langley, David R; Kang, Jia; Huang, Hongwei; Kulkarni, Amit
2009-07-01
An automated E-Novo protocol designed as a structure-based lead optimization tool was prepared through Pipeline Pilot with existing CHARMm components in Discovery Studio. A scaffold core having 3D binding coordinates of interest is generated from a ligand-bound protein structural model. Ligands of interest are generated from the scaffold using an R-group fragmentation/enumeration tool within E-Novo, with their cores aligned. The ligand side chains are conformationally sampled and are subjected to core-constrained protein docking, using a modified CHARMm-based CDOCKER method to generate top poses along with CDOCKER energies. In the final stage of E-Novo, a physics-based binding energy scoring function ranks the top ligand CDOCKER poses using a more accurate Molecular Mechanics-Generalized Born with Surface Area method. Correlation of the calculated ligand binding energies with experimental binding affinities were used to validate protocol performance. Inhibitors of Src tyrosine kinase, CDK2 kinase, beta-secretase, factor Xa, HIV protease, and thrombin were used to test the protocol using published ligand crystal structure data within reasonably defined binding sites. In-house Respiratory Syncytial Virus inhibitor data were used as a more challenging test set using a hand-built binding model. Least squares fits for all data sets suggested reasonable validation of the protocol within the context of observed ligand binding poses. The E-Novo protocol provides a convenient all-in-one structure-based design process for rapid assessment and scoring of lead optimization libraries.
Manzoni, Francesco; Wallerstein, Johan; Schrader, Tobias E; Ostermann, Andreas; Coates, Leighton; Akke, Mikael; Blakeley, Matthew P; Oksanen, Esko; Logan, Derek T
2018-05-24
The medically important drug target galectin-3 binds galactose-containing moieties on glycoproteins through an intricate pattern of hydrogen bonds to a largely polar surface-exposed binding site. All successful inhibitors of galectin-3 to date have been based on mono- or disaccharide cores closely resembling natural ligands. A detailed understanding of the H-bonding networks in these natural ligands will provide an improved foundation for the design of novel inhibitors. Neutron crystallography is an ideal technique to reveal the geometry of hydrogen bonds because the positions of hydrogen atoms are directly detected rather than being inferred from the positions of heavier atoms as in X-ray crystallography. We present three neutron crystal structures of the C-terminal carbohydrate recognition domain of galectin-3: the ligand-free form and the complexes with the natural substrate lactose and with glycerol, which mimics important interactions made by lactose. The neutron crystal structures reveal unambiguously the exquisite fine-tuning of the hydrogen bonding pattern in the binding site to the natural disaccharide ligand. The ligand-free structure shows that most of these hydrogen bonds are preserved even when the polar groups of the ligand are replaced by water molecules. The protonation states of all histidine residues in the protein are also revealed and correlate well with NMR observations. The structures give a solid starting point for molecular dynamics simulations and computational estimates of ligand binding affinity that will inform future drug design.
Kurkcuoglu, Zeynep; Doruker, Pemra
2016-01-01
Incorporating receptor flexibility in small ligand-protein docking still poses a challenge for proteins undergoing large conformational changes. In the absence of bound structures, sampling conformers that are accessible by apo state may facilitate docking and drug design studies. For this aim, we developed an unbiased conformational search algorithm, by integrating global modes from elastic network model, clustering and energy minimization with implicit solvation. Our dataset consists of five diverse proteins with apo to complex RMSDs 4.7–15 Å. Applying this iterative algorithm on apo structures, conformers close to the bound-state (RMSD 1.4–3.8 Å), as well as the intermediate states were generated. Dockings to a sequence of conformers consisting of a closed structure and its “parents” up to the apo were performed to compare binding poses on different states of the receptor. For two periplasmic binding proteins and biotin carboxylase that exhibit hinge-type closure of two dynamics domains, the best pose was obtained for the conformer closest to the bound structure (ligand RMSDs 1.5–2 Å). In contrast, the best pose for adenylate kinase corresponded to an intermediate state with partially closed LID domain and open NMP domain, in line with recent studies (ligand RMSD 2.9 Å). The docking of a helical peptide to calmodulin was the most challenging case due to the complexity of its 15 Å transition, for which a two-stage procedure was necessary. The technique was first applied on the extended calmodulin to generate intermediate conformers; then peptide docking and a second generation stage on the complex were performed, which in turn yielded a final peptide RMSD of 2.9 Å. Our algorithm is effective in producing conformational states based on the apo state. This study underlines the importance of such intermediate states for ligand docking to proteins undergoing large transitions. PMID:27348230
Structural basis for selectivity and diversity in angiotensin II receptors
Zhang, Haitao; Han, Gye Won; Batyuk, Alexander; ...
2017-04-20
The angiotensin II receptors AT 1R and AT 2R serve as key components of the renin–angiotensin–aldosterone system. AT 1R has a central role in the regulation of blood pressure, but the function of AT 2R is unclear and it has a variety of reported effects. To identify the mechanisms that underlie the differences in function and ligand selectivity between these receptors, here we report crystal structures of human AT 2R bound to an AT 2R-selective ligand and to an AT 1R/AT 2R dual ligand, capturing the receptor in an active-like conformation. Unexpectedly, helix VIII was found in a non-canonical position,more » stabilizing the active-like state, but at the same time preventing the recruitment of G proteins or β-arrestins, in agreement with the lack of signalling responses in standard cellular assays. Structure–activity relationship, docking and mutagenesis studies revealed the crucial interactions for ligand binding and selectivity. Finally, our results thus provide insights into the structural basis of the distinct functions of the angiotensin receptors, and may guide the design of new selective ligands.« less
Structural basis for selectivity and diversity in angiotensin II receptors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Haitao; Han, Gye Won; Batyuk, Alexander
The angiotensin II receptors AT 1R and AT 2R serve as key components of the renin–angiotensin–aldosterone system. AT 1R has a central role in the regulation of blood pressure, but the function of AT 2R is unclear and it has a variety of reported effects. To identify the mechanisms that underlie the differences in function and ligand selectivity between these receptors, here we report crystal structures of human AT 2R bound to an AT 2R-selective ligand and to an AT 1R/AT 2R dual ligand, capturing the receptor in an active-like conformation. Unexpectedly, helix VIII was found in a non-canonical position,more » stabilizing the active-like state, but at the same time preventing the recruitment of G proteins or β-arrestins, in agreement with the lack of signalling responses in standard cellular assays. Structure–activity relationship, docking and mutagenesis studies revealed the crucial interactions for ligand binding and selectivity. Finally, our results thus provide insights into the structural basis of the distinct functions of the angiotensin receptors, and may guide the design of new selective ligands.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Aiming; Rajashankar, Kanagalaghatta R.; Patel, Dinshaw J.
Significant advances in our understanding of RNA architecture, folding and recognition have emerged from structure-function studies on riboswitches, non-coding RNAs whose sensing domains bind small ligands and whose adjacent expression platforms contain RNA elements involved in the control of gene regulation. We now report on the ligand-bound structure of the Thermotoga petrophila fluoride riboswitch, which adopts a higher-order RNA architecture stabilized by pseudoknot and long-range reversed Watson-Crick and Hoogsteen A {sm_bullet} U pair formation. The bound fluoride ion is encapsulated within the junctional architecture, anchored in place through direct coordination to three Mg{sup 2+} ions, which in turn are octahedrallymore » coordinated to water molecules and five inwardly pointing backbone phosphates. Our structure of the fluoride riboswitch in the bound state shows how RNA can form a binding pocket selective for fluoride, while discriminating against larger halide ions. The T. petrophila fluoride riboswitch probably functions in gene regulation through a transcription termination mechanism.« less
Grosso, Marcos; Kalstein, Adrian; Parisi, Gustavo; Roitberg, Adrian E; Fernandez-Alberti, Sebastian
2015-06-28
The native state of a protein consists of an equilibrium of conformational states on an energy landscape rather than existing as a single static state. The co-existence of conformers with different ligand-affinities in a dynamical equilibrium is the basis for the conformational selection model for ligand binding. In this context, the development of theoretical methods that allow us to analyze not only the structural changes but also changes in the fluctuation patterns between conformers will contribute to elucidate the differential properties acquired upon ligand binding. Molecular dynamics simulations can provide the required information to explore these features. Its use in combination with subsequent essential dynamics analysis allows separating large concerted conformational rearrangements from irrelevant fluctuations. We present a novel procedure to define the size and composition of essential dynamics subspaces associated with ligand-bound and ligand-free conformations. These definitions allow us to compare essential dynamics subspaces between different conformers. Our procedure attempts to emphasize the main similarities and differences between the different essential dynamics in an unbiased way. Essential dynamics subspaces associated to conformational transitions can also be analyzed. As a test case, we study the glutaminase interacting protein (GIP), composed of a single PDZ domain. Both GIP ligand-free state and glutaminase L peptide-bound states are analyzed. Our findings concerning the relative changes in the flexibility pattern upon binding are in good agreement with experimental Nuclear Magnetic Resonance data.
NASA Astrophysics Data System (ADS)
Grosso, Marcos; Kalstein, Adrian; Parisi, Gustavo; Roitberg, Adrian E.; Fernandez-Alberti, Sebastian
2015-06-01
The native state of a protein consists of an equilibrium of conformational states on an energy landscape rather than existing as a single static state. The co-existence of conformers with different ligand-affinities in a dynamical equilibrium is the basis for the conformational selection model for ligand binding. In this context, the development of theoretical methods that allow us to analyze not only the structural changes but also changes in the fluctuation patterns between conformers will contribute to elucidate the differential properties acquired upon ligand binding. Molecular dynamics simulations can provide the required information to explore these features. Its use in combination with subsequent essential dynamics analysis allows separating large concerted conformational rearrangements from irrelevant fluctuations. We present a novel procedure to define the size and composition of essential dynamics subspaces associated with ligand-bound and ligand-free conformations. These definitions allow us to compare essential dynamics subspaces between different conformers. Our procedure attempts to emphasize the main similarities and differences between the different essential dynamics in an unbiased way. Essential dynamics subspaces associated to conformational transitions can also be analyzed. As a test case, we study the glutaminase interacting protein (GIP), composed of a single PDZ domain. Both GIP ligand-free state and glutaminase L peptide-bound states are analyzed. Our findings concerning the relative changes in the flexibility pattern upon binding are in good agreement with experimental Nuclear Magnetic Resonance data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
French, Jarrod B.; Cen, Yana; Sauve, Anthony A.
2010-11-11
Nicotinamidases are salvage enzymes that convert nicotinamide to nicotinic acid. These enzymes are essential for the recycling of nicotinamide into NAD{sup +} in most prokaryotes and most single-cell and multicellular eukaryotes, but not in mammals. The significance of these enzymes for nicotinamide salvage and for NAD{sup +} homeostasis has stimulated interest in nicotinamidases as possible antibiotic targets. Nicotinamidases are also regulators of intracellular nicotinamide concentrations, thereby regulating signaling of downstream NAD{sup +}-consuming enzymes, such as the NAD{sup +}-dependent deacetylases (sirtuins). Here, we report several high-resolution crystal structures of the nicotinamidase from Streptococcus pneumoniae (SpNic) in unliganded and ligand-bound forms. Themore » structure of the C136S mutant in complex with nicotinamide provides details about substrate binding, while a trapped nicotinoyl thioester in a complex with SpNic reveals the structure of the proposed thioester reaction intermediate. Examination of the active site of SpNic reveals several important features, including a metal ion that coordinates the substrate and the catalytically relevant water molecule and an oxyanion hole that both orients the substrate and offsets the negative charge that builds up during catalysis. Structures of this enzyme with bound nicotinaldehyde inhibitors elucidate the mechanism of inhibition and provide further details about the catalytic mechanism. In addition, we provide a biochemical analysis of the identity and role of the metal ion that orients the ligand in the active site and activates the water molecule responsible for hydrolysis of the substrate. These data provide structural evidence of several proposed reaction intermediates and allow for a more complete understanding of the catalytic mechanism of this enzyme.« less
Structure of a nanobody-stabilized active state of the β(2) adrenoceptor.
Rasmussen, Søren G F; Choi, Hee-Jung; Fung, Juan Jose; Pardon, Els; Casarosa, Paola; Chae, Pil Seok; Devree, Brian T; Rosenbaum, Daniel M; Thian, Foon Sun; Kobilka, Tong Sun; Schnapp, Andreas; Konetzki, Ingo; Sunahara, Roger K; Gellman, Samuel H; Pautsch, Alexander; Steyaert, Jan; Weis, William I; Kobilka, Brian K
2011-01-13
G protein coupled receptors (GPCRs) exhibit a spectrum of functional behaviours in response to natural and synthetic ligands. Recent crystal structures provide insights into inactive states of several GPCRs. Efforts to obtain an agonist-bound active-state GPCR structure have proven difficult due to the inherent instability of this state in the absence of a G protein. We generated a camelid antibody fragment (nanobody) to the human β(2) adrenergic receptor (β(2)AR) that exhibits G protein-like behaviour, and obtained an agonist-bound, active-state crystal structure of the receptor-nanobody complex. Comparison with the inactive β(2)AR structure reveals subtle changes in the binding pocket; however, these small changes are associated with an 11 Å outward movement of the cytoplasmic end of transmembrane segment 6, and rearrangements of transmembrane segments 5 and 7 that are remarkably similar to those observed in opsin, an active form of rhodopsin. This structure provides insights into the process of agonist binding and activation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamiaux, C.; Stanley, D.; Greenwood, D.R.
Takeout (To) proteins are found exclusively in insects and have been proposed to have important roles in various aspects of their physiology and behavior. Limited sequence similarity with juvenile hormone-binding proteins (JHBPs), which specifically bind and transport juvenile hormones in Lepidoptera, suggested a role for To proteins in binding hydrophobic ligands. We present the first crystal structure of a To protein, EpTo1 from the light brown apple moth Epiphyas postvittana, solved in-house by the single-wavelength anomalous diffraction technique using sulfur anomalous dispersion, and refined to 1.3 {angstrom} resolution. EpTo1 adopts the unusual {alpha}/{beta}-wrap fold, seen only for JHBP and severalmore » mammalian lipid carrier proteins, a scaffold tailored for the binding and/or transport of hydrophobic ligands. EpTo1 has a 45 {angstrom} long, purely hydrophobic, internal tunnel that extends for the full length of the protein and accommodates a bound ligand. The latter was shown by mass spectrometry to be ubiquinone-8 and is probably derived from Escherichia coli. The structure provides the first direct experimental evidence that To proteins are ligand carriers; gives insights into the nature of endogenous ligand(s) of EpTo1; shows, by comparison with JHBP, a basis for different ligand specificities; and suggests a mechanism for the binding/release of ligands.« less
Lessons in molecular recognition. 2. Assessing and improving cross-docking accuracy.
Sutherland, Jeffrey J; Nandigam, Ravi K; Erickson, Jon A; Vieth, Michal
2007-01-01
Docking methods are used to predict the manner in which a ligand binds to a protein receptor. Many studies have assessed the success rate of programs in self-docking tests, whereby a ligand is docked into the protein structure from which it was extracted. Cross-docking, or using a protein structure from a complex containing a different ligand, provides a more realistic assessment of a docking program's ability to reproduce X-ray results. In this work, cross-docking was performed with CDocker, Fred, and Rocs using multiple X-ray structures for eight proteins (two kinases, one nuclear hormone receptor, one serine protease, two metalloproteases, and two phosphodiesterases). While average cross-docking accuracy is not encouraging, it is shown that using the protein structure from the complex that contains the bound ligand most similar to the docked ligand increases docking accuracy for all methods ("similarity selection"). Identifying the most successful protein conformer ("best selection") and similarity selection substantially reduce the difference between self-docking and average cross-docking accuracy. We identify universal predictors of docking accuracy (i.e., showing consistent behavior across most protein-method combinations), and show that models for predicting docking accuracy built using these parameters can be used to select the most appropriate docking method.
Structural basis for molecular recognition at serotonin receptors.
Wang, Chong; Jiang, Yi; Ma, Jinming; Wu, Huixian; Wacker, Daniel; Katritch, Vsevolod; Han, Gye Won; Liu, Wei; Huang, Xi-Ping; Vardy, Eyal; McCorvy, John D; Gao, Xiang; Zhou, X Edward; Melcher, Karsten; Zhang, Chenghai; Bai, Fang; Yang, Huaiyu; Yang, Linlin; Jiang, Hualiang; Roth, Bryan L; Cherezov, Vadim; Stevens, Raymond C; Xu, H Eric
2013-05-03
Serotonin or 5-hydroxytryptamine (5-HT) regulates a wide spectrum of human physiology through the 5-HT receptor family. We report the crystal structures of the human 5-HT1B G protein-coupled receptor bound to the agonist antimigraine medications ergotamine and dihydroergotamine. The structures reveal similar binding modes for these ligands, which occupy the orthosteric pocket and an extended binding pocket close to the extracellular loops. The orthosteric pocket is formed by residues conserved in the 5-HT receptor family, clarifying the family-wide agonist activity of 5-HT. Compared with the structure of the 5-HT2B receptor, the 5-HT1B receptor displays a 3 angstrom outward shift at the extracellular end of helix V, resulting in a more open extended pocket that explains subtype selectivity. Together with docking and mutagenesis studies, these structures provide a comprehensive structural basis for understanding receptor-ligand interactions and designing subtype-selective serotonergic drugs.
Fenwick, Michael K.; Oswald, Robert E.
2008-01-01
Glutamate receptors mediate neuronal intercommunication in the central nervous system by coupling extracellular neurotransmitter-receptor interactions to ion channel conductivity. To gain insight into structural and dynamical factors that underlie this coupling, solution NMR experiments were performed on the bi-lobed ligand-binding core of glutamate receptor 2 in complexes with a set of willardiine partial agonists. These agonists are valuable for studying structure-function relationships because their 5-position substituent size is correlated with ligand efficacy and extent of receptor desensitization whereas the substituent electronegativity is correlated with ligand potency. NMR results show that the protein backbone amide chemical shift deviations correlate mainly with efficacy and extent of desensitization. Pronounced deviations occur at specific residues in the ligand-binding site and in the two helical segments that join the lobes by a disulfide bond. Experiments detecting conformational exchange show that micro- to millisecond timescale motions also occur near the disulfide bond and vary largely with efficacy and extent of desensitization. These results thus identify regions displaying structural and dynamical dissimilarity arising from differences in ligand-protein interactions and lobe closure which may play a critical role in receptor response. Furthermore, measures of line broadening and conformational exchange for a portion of the ligand-binding site correlate with ligand EC50 data. These results do not have any correlate in the currently available crystal structures and thus provide a novel view of ligand-binding events that may be associated with agonist potency differences. PMID:18387631
The design of high affinity human PD-1 mutants by using molecular dynamics simulations (MD).
Du, Jiangfeng; Qin, Yaping; Wu, Yahong; Zhao, Wenshan; Zhai, Wenjie; Qi, Yuanming; Wang, Chuchu; Gao, Yanfeng
2018-06-07
Programmed cell death protein 1 (PD-1), a negative co-stimulatory molecule, plays crucial roles in immune escape. Blockade of the interaction between PD-1 and PD-L1 shows exciting clinical responses in a fraction of cancer patients and the success makes PD-1 as a valuable target in immune checkpoint therapy. For the rational design of PD-1 targeting modulators, the ligand binding mechanism of PD-1 should be well understood in prior. In this study, we applied 50 ns molecular dynamics simulations to observe the structural properties of PD-1 molecule in both apo and ligand bound states, and we studied the structural features of PD-1 in human and mouse respectively. The results showed that the apo hPD-1 was more flexible than that in PD-L1 bound state. We unexpectedly found that K135 was important for binding energy although it was not at the binding interface. Moreover, the residues which stabilized the interactions with PD-L1 were distinguished. Taking the dynamic features of these residues into account, we identified several residual sites where mutations may gain the function of ligand binding. The in vitro binding experiments revealed the mutants M70I, S87 W, A129L, A132L, and K135 M were better in ligand binding than the wild type PD-1. The structural information from MD simulation combined with in silico mutagenesis provides guidance to design engineered PD-1 mutants to modulate the PD-1/PD-L1 pathway.
Bhattacharyya, Moitrayee; Vishveshwara, Saraswathi
2011-07-01
In this article, we present a novel application of a quantum clustering (QC) technique to objectively cluster the conformations, sampled by molecular dynamics simulations performed on different ligand bound structures of the protein. We further portray each conformational population in terms of dynamically stable network parameters which beautifully capture the ligand induced variations in the ensemble in atomistic detail. The conformational populations thus identified by the QC method and verified by network parameters are evaluated for different ligand bound states of the protein pyrrolysyl-tRNA synthetase (DhPylRS) from D. hafniense. The ligand/environment induced re-distribution of protein conformational ensembles forms the basis for understanding several important biological phenomena such as allostery and enzyme catalysis. The atomistic level characterization of each population in the conformational ensemble in terms of the re-orchestrated networks of amino acids is a challenging problem, especially when the changes are minimal at the backbone level. Here we demonstrate that the QC method is sensitive to such subtle changes and is able to cluster MD snapshots which are similar at the side-chain interaction level. Although we have applied these methods on simulation trajectories of a modest time scale (20 ns each), we emphasize that our methodology provides a general approach towards an objective clustering of large-scale MD simulation data and may be applied to probe multistate equilibria at higher time scales, and to problems related to protein folding for any protein or protein-protein/RNA/DNA complex of interest with a known structure.
CD94-NKG2A recognition of human leukocyte antigen (HLA)-E bound to an HLA class I leader sequence.
Petrie, Emma J; Clements, Craig S; Lin, Jie; Sullivan, Lucy C; Johnson, Darryl; Huyton, Trevor; Heroux, Annie; Hoare, Hilary L; Beddoe, Travis; Reid, Hugh H; Wilce, Matthew C J; Brooks, Andrew G; Rossjohn, Jamie
2008-03-17
The recognition of human leukocyte antigen (HLA)-E by the heterodimeric CD94-NKG2 natural killer (NK) receptor family is a central innate mechanism by which NK cells monitor the expression of other HLA molecules, yet the structural basis of this highly specific interaction is unclear. Here, we describe the crystal structure of CD94-NKG2A in complex with HLA-E bound to a peptide derived from the leader sequence of HLA-G. The CD94 subunit dominated the interaction with HLA-E, whereas the NKG2A subunit was more peripheral to the interface. Moreover, the invariant CD94 subunit dominated the peptide-mediated contacts, albeit with poor surface and chemical complementarity. This unusual binding mode was consistent with mutagenesis data at the CD94-NKG2A-HLA-E interface. There were few conformational changes in either CD94-NKG2A or HLA-E upon ligation, and such a "lock and key" interaction is typical of innate receptor-ligand interactions. Nevertheless, the structure also provided insight into how this interaction can be modulated by subtle changes in the peptide ligand or by the pairing of CD94 with other members of the NKG2 family. Differences in the docking strategies used by the NKG2D and CD94-NKG2A receptors provided a basis for understanding the promiscuous nature of ligand recognition by NKG2D compared with the fidelity of the CD94-NKG2 receptors.
CD94-NKG2A recognition of human leukocyte antigen (HLA)-E bound to an HLA class I leader sequence
Petrie, Emma J.; Clements, Craig S.; Lin, Jie; Sullivan, Lucy C.; Johnson, Darryl; Huyton, Trevor; Heroux, Annie; Hoare, Hilary L.; Beddoe, Travis; Reid, Hugh H.; Wilce, Matthew C.J.; Brooks, Andrew G.; Rossjohn, Jamie
2008-01-01
The recognition of human leukocyte antigen (HLA)-E by the heterodimeric CD94-NKG2 natural killer (NK) receptor family is a central innate mechanism by which NK cells monitor the expression of other HLA molecules, yet the structural basis of this highly specific interaction is unclear. Here, we describe the crystal structure of CD94-NKG2A in complex with HLA-E bound to a peptide derived from the leader sequence of HLA-G. The CD94 subunit dominated the interaction with HLA-E, whereas the NKG2A subunit was more peripheral to the interface. Moreover, the invariant CD94 subunit dominated the peptide-mediated contacts, albeit with poor surface and chemical complementarity. This unusual binding mode was consistent with mutagenesis data at the CD94-NKG2A–HLA-E interface. There were few conformational changes in either CD94-NKG2A or HLA-E upon ligation, and such a “lock and key” interaction is typical of innate receptor–ligand interactions. Nevertheless, the structure also provided insight into how this interaction can be modulated by subtle changes in the peptide ligand or by the pairing of CD94 with other members of the NKG2 family. Differences in the docking strategies used by the NKG2D and CD94-NKG2A receptors provided a basis for understanding the promiscuous nature of ligand recognition by NKG2D compared with the fidelity of the CD94-NKG2 receptors. PMID:18332182
Structure-based CoMFA as a predictive model - CYP2C9 inhibitors as a test case.
Yasuo, Kazuya; Yamaotsu, Noriyuki; Gouda, Hiroaki; Tsujishita, Hideki; Hirono, Shuichi
2009-04-01
In this study, we tried to establish a general scheme to create a model that could predict the affinity of small compounds to their target proteins. This scheme consists of a search for ligand-binding sites on a protein, a generation of bound conformations (poses) of ligands in each of the sites by docking, identifications of the correct poses of each ligand by consensus scoring and MM-PBSA analysis, and a construction of a CoMFA model with the obtained poses to predict the affinity of the ligands. By using a crystal structure of CYP 2C9 and the twenty known CYP inhibitors as a test case, we obtained a CoMFA model with a good statistics, which suggested that the classification of the binding sites as well as the predicted bound poses of the ligands should be reasonable enough. The scheme described here would give a method to predict the affinity of small compounds with a reasonable accuracy, which is expected to heighten the value of computational chemistry in the drug design process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Chun-Chi; Baek, Kyuwon; Lu, Zhe
2012-05-08
We report the crystal structures of the ligand-binding domain (LBD) of a rat inositol 1,4,5-trisphosphate receptor (InsP{sub 3}R) in its apo and InsP{sub 3}-bound conformations. Comparison of these two conformations reveals that LBD's first {beta}-trefoil fold ({beta}-TF1) and armadillo repeat fold (ARF) move together as a unit relative to its second {beta}-trefoil fold ({beta}-TF2). Whereas apo LBD may spontaneously transition between gating conformations, InsP{sub 3} binding shifts this equilibrium toward the active state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez-Miller, Samantha; Zou, Qin; Novotny, Milos V.
In mice, the major urinary proteins (MUP) play a key role in pheromonal communication by binding and transporting semiochemicals. MUP-IV is the only isoform known to be expressed in the vomeronasal mucosa. In comparison with the MUP isoforms that are abundantly excreted in the urine, MUP-IV is highly specific for the male mouse pheromone 2-sec-butyl-4,5-dihydrothiazole (SBT). To examine the structural basis of this ligand preference, we determined the X-ray crystal structure of MUP-IV bound to three mouse pheromones: SBT, 2,5-dimethylpyrazine, and 2-heptanone. We also obtained the structure of MUP-IV with 2-ethylhexanol bound in the cavity. These four structures show thatmore » relative to the major excreted MUP isoforms, three amino acid substitutions within the binding calyx impact ligand coordination. The F103 for A along with F54 for L result in a smaller cavity, potentially creating a more closely packed environment for the ligand. The E118 for G substitution introduces a charged group into a hydrophobic environment. The sidechain of E118 is observed to hydrogen bond to polar groups on all four ligands with nearly the same geometry as seen for the water-mediated hydrogen bond network in the MUP-I and MUP-II crystal structures. These differences in cavity size and interactions between the protein and ligand are likely to contribute to the observed specificity of MUP-IV.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allaire, Marc, E-mail: allaire@bnl.gov; Moiseeva, Natalia; Botez, Cristian E.
The correlation coefficients calculated between raw powder diffraction profiles can be used to identify ligand-bound/unbound states of lysozyme. The discovery of ligands that bind specifically to a targeted protein benefits from the development of generic assays for high-throughput screening of a library of chemicals. Protein powder diffraction (PPD) has been proposed as a potential method for use as a structure-based assay for high-throughput screening applications. Building on this effort, powder samples of bound/unbound states of soluble hen-egg white lysozyme precipitated with sodium chloride were compared. The correlation coefficients calculated between the raw diffraction profiles were consistent with the known bindingmore » properties of the ligands and suggested that the PPD approach can be used even prior to a full description using stereochemically restrained Rietveld refinement.« less
Duan, Mojie; Liu, Na; Zhou, Wenfang; Li, Dan; Yang, Minghui; Hou, Tingjun
2016-09-13
Androgen receptor (AR) plays important roles in the development of prostate cancer (PCa). The antagonistic drugs, which suppress the activity of AR, are widely used in the treatment of PCa. However, the molecular mechanism of antagonism about how ligands affect the structures of AR remains elusive. To better understand the conformational variability of ARs bound with agonists or antagonists, we performed long time unbiased molecular dynamics (MD) simulations and enhanced sampling simulations for the ligand binding domain of AR (AR-LBD) in complex with various ligands. Based on the simulation results, we proposed an allosteric pathway linking ligands and helix 12 (H12) of AR-LBD, which involves the interactions among the ligands and the residues W741, H874, and I899. The interaction pathway provides an atomistic explanation of how ligands affect the structure of AR-LBD. A repositioning of H12 was observed, but it is facilitated by the C-terminal of H12, instead of by the loop between helix 11 (H11) and H12. The bias-exchange metadynamics simulations further demonstrated the above observations. More importantly, the free energy profiles constructed by the enhanced sampling simulations revealed the transition process between the antagonistic form and agonistic form of AR-LBD. Our results would be helpful for the design of more efficient antagonists of AR to combat PCa.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, R.; Wilton, R.; Cuff, M. E.
The tandem Per-Arnt-Sim (PAS) like sensors are commonly found in signal transduction proteins. The periplasmic solute binding protein (SBP) domains are found ubiquitously and are generally involved in solute transport. These domains are widely observed as parts of separate proteins but not within the same polypeptide chain. We report the structural and biochemical characterization of the extracellular ligand-binding receptor, Dret_0059 from Desulfohalobium retbaense DSM 5692, an organism isolated from the Retba salt lake in Senegal. The structure of Dret_0059 consists of a novel combination of SBP and TPAS sensor domains. The N-terminal region forms an SBP domain and the C-terminalmore » region folds into a tandem PAS-like domain structure. A ketoleucine moiety is bound to the SBP, whereas a cytosine molecule is bound in the distal PAS domain of the TPAS. The differential scanning flourimetry studies in solution support the ligands observed in the crystal structure. There are only two other proteins with this structural architecture in the non-redundant sequence data base and we predict that they too bind the same substrates. There is significant interaction between the SBP and TPAS domains, and it is quite conceivable that the binding of one ligand will have an effect on the binding of the other. Our attempts to remove the ligands bound to the protein during expression were not successful, therefore, it is not clear what the relative affects are. The genomic context of this receptor does not contain any protein components expected for transport function, hence, we suggest that Dret_0059 is likely involved in signal transduction and not in solute transport.« less
Two conformations of the integrin A-domain (I-domain): a pathway for activation?
Lee, J O; Bankston, L A; Arnaout, M A; Liddington, R C
1995-12-15
Integrins are plasma membrane proteins that mediate adhesion to other cells and to components of the extracellular matrix. Most integrins are constitutively inactive in resting cells, but are rapidly and reversibly activated in response to agonists, leading to highly regulated cell adhesion. This activation is associated with conformational changes in their extracellular portions, but the nature of the structural changes that lead to a change in adhesiveness is not understood. The interactions of several integrins with their extracellular ligands are mediated by an A-type domain (generally called the I-domain in integrins). Binding of the I-domain to protein ligands is dependent on divalent cations. We have described previously the structure of the I-domain from complement receptor 3 with bound Mg2+, in which the glutamate side chain from a second I-domain completes the octahedral coordination sphere of the metal, acting as a ligand mimetic. We now describe a new crystal form of the I-domain with bound Mn2+, in which water completes the metal coordination sphere and there is no equivalent of the glutamate ligand. Comparison of the two crystal forms reveals a change in metal coordination which is linked to a large (10 A) shift of the C-terminal helix and the burial of two phenylalanine residues into the hydrophobic core of the Mn2+ form. These structural changes, analogous to those seen in the signal-transducing G-proteins, alter the electrophilicity of the metal, reducing its ability to bind ligand-associated acidic residues, and dramatically alter the surface of the protein implicated in binding ligand. Our observations provide the first atomic resolution view of conformational changes in an integrin domain, and suggest how these changes are linked to a change in integrin adhesiveness. We propose that the Mg2+ form represents the conformation of the domain in the active state and the Mn2+ form the conformation in the inactive state of the integrin.
The Surface Chemistry of Metal Chalcogenide Nanocrystals
NASA Astrophysics Data System (ADS)
Anderson, Nicholas Charles
The surface chemistry of metal chalcogenide nanocrystals is explored through several interrelated analytical investigations. After a brief discussion of the nanocrystal history and applications, molecular orbital theory is used to describe the electronic properties of semiconductors, and how these materials behave on the nanoscale. Quantum confinement plays a major role in dictating the optical properties of metal chalcogenide nanocrystals, however surface states also have an equally significant contribution to the electronic properties of nanocrystals due to the high surface area to volume ratio of nanoscale semiconductors. Controlling surface chemistry is essential to functionalizing these materials for biological imaging and photovoltaic device applications. To better understand the surface chemistry of semiconducting nanocrystals, three competing surface chemistry models are presented: 1.) The TOPO model, 2.) the Non-stoichiometric model, and 3.) the Neutral Fragment model. Both the non-stoichiometric and neutral fragment models accurately describe the behavior of metal chalcogenide nanocrystals. These models rely on the covalent bond classification system, which divides ligands into three classes: 1.) X-type, 1-electron donating ligands that balance charge with excess metal at the nanocrystal surface, 2.) L-type, 2-electron donors that bind metal sites, and 3.) Z-type, 2-electron acceptors that bind chalcogenide sites. Each of these ligand classes is explored in detail to better understand the surface chemistry of metal chalcogenide nanocrystals. First, chloride-terminated, tri-n-butylphosphine (Bu 3P) bound CdSe nanocrystals were prepared by cleaving carboxylate ligands from CdSe nanocrystals with chlorotrimethylsilane in Bu3P solution. 1H and 31P{1H} nuclear magnetic resonance spectra of the isolated nanocrystals allowed assignment of distinct signals from several free and bound species, including surface-bound Bu3P and [Bu3P-H]+[Cl]- ligands as well as a Bu3P complex of cadmium chloride. Nuclear magnetic resonance spectroscopy supports complete cleavage of the X-type carboxylate ligands. Combined with measurements of the Se:Cd:Cl ratio using Rutherford backscattering spectrometry, these studies support a structural model of nanocrystals where chloride ligands terminate the crystal lattice by balancing the charges of excess Cd2+ ions. The adsorption of dative phosphine ligands leads to nanocrystals who's solubility is afforded by reversibly bound and readily exchanged L-type ligands, e.g. primary amines and phosphines. The other halides (Br and I) can also be used to prepare Bu 3P-bound, halide-terminated CdSe nanocrystals, however these nanocrystals are not soluble after exchange. The change in binding affinity of Bu 3P over the halide series is briefly discussed. Next, we report a series of L-type ligand exchanges using Bu3P-bound, chloride-terminated CdSe nanocrystals with several Lewis bases, including aromatic, cyclic, and non-cyclic sulfides, and ethers; primary, secondary, and tertiary amines and phosphines; tertiary phosphine chalcogenides; primary alcohols, isocyanides, and isothiocyanides. Using 31P nuclear magnetic resonance spectroscopy, we establish a relative binding affinity for these ligands that reflects electronic considerations but is dominated primarily by steric interactions, as determined by comparing binding affinity to Tolmann cone angles. We also used chloride-terminated CdSe nanocrystals to explore the reactivity of ionic salts at nanocrystal surfaces. These salts, particularly [Bu3P-H]+[Cl]-, bind nanocrystals surfaces as L-type ligands, making them soluble in polar solvents such as acetonitrile. This information should provide insight for rational ligand design for future applications involving metal chalcogenide nanocrystals. The strongest ligand, primary n-alkylamine, rapidly displace the Bu3P from halide-terminated CdSe nanocrystals, leading to amine-bound nanocrystals with higher dative ligand coverages and greatly increased photoluminescence quantum yields. The importance of ligand coverage to both the UV-visible absorption and photoluminescence spectra are discussed. (Abstract shortened by UMI.).
Do All X-ray Structures of Protein-Ligand Complexes Represent Functional States? EPOR, a Case Study.
Corbett, Michael S P; Mark, Alan E; Poger, David
2017-02-28
Based on differences between the x-ray crystal structures of ligand-bound and unbound forms, the activation of the erythropoietin receptor (EPOR) was initially proposed to involve a cross-action scissorlike motion. However, the validity of the motions involved in the scissorlike model has been recently challenged. Here, atomistic molecular dynamics simulations are used to examine the structure of the extracellular domain of the EPOR dimer in the presence and absence of erythropoietin and a series of agonistic or antagonistic mimetic peptides free in solution. The simulations suggest that in the absence of crystal packing effects, the EPOR chains in the different dimers adopt very similar conformations with no clear distinction between the agonist and antagonist-bound complexes. This questions whether the available x-ray crystal structures of EPOR truly represent active or inactive conformations. The study demonstrates the difficulty in using such structures to infer a mechanism of action, especially in the case of membrane receptors where just part of the structure has been considered in addition to potential confounding effects that arise from the comparison of structures in a crystal as opposed to a membrane environment. The work highlights the danger of assigning functional significance to small differences between structures of proteins bound to different ligands in a crystal environment without consideration of the effects of the crystal lattice and thermal motion. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Chakraborty, Sandeep
2014-01-01
The ability to accurately and effectively predict the interaction between proteins and small drug-like compounds has long intrigued researchers for pedagogic, humanitarian and economic reasons. Protein docking methods (AutoDock, GOLD, DOCK, FlexX and Glide to name a few) rank a large number of possible conformations of protein-ligand complexes using fast algorithms. Previously, it has been shown that structural congruence leading to the same enzymatic function necessitates the congruence of electrostatic properties (CLASP). The current work presents a methodology for docking a ligand into a target protein, provided that there is at least one known holoenzyme with ligand bound - DOCLASP (Docking using CLASP). The contact points of the ligand in the holoenzyme defines a motif, which is used to query the target enzyme using CLASP. If there are significant matches, the holoenzyme and the target protein are superimposed based on congruent atoms. The same linear and rotational transformations are also applied to the ligand, thus creating a unified coordinate framework having the holoenzyme, the ligand and the target enzyme. In the current work, the dipeptidyl peptidase-IV inhibitor vildagliptin was docked to the PI-PLC structure complexed with myo-inositol using DOCLASP. Also, corroboration of the docking of phenylthiourea to the modelled structure of polyphenol oxidase (JrPPO1) from walnut is provided based on the subsequently solved structure of JrPPO1 (PDBid:5CE9). Analysis of the binding of the antitrypanosomial drug suramin to nine non-homologous proteins in the PDB database shows a diverse set of binding motifs, and multiple binding sites in the phospholipase A2-likeproteins from the Bothrops genus of pitvipers. The conformational changes in the suramin molecule on binding highlights the challenges in docking flexible ligands into an already 'plastic' binding site. Thus, DOCLASP presents a method for 'soft docking' ligands to proteins with low computational requirements.
Capaldi, Stefano; Guariento, Mara; Perduca, Massimiliano; Di Pietro, Santiago M; Santomé, José A; Monaco, Hugo L
2006-07-01
The family of the liver bile acid-binding proteins (L-BABPs), formerly called liver basic fatty acid-binding proteins (Lb-FABPs) shares fold and sequence similarity with the paralogous liver fatty acid-binding proteins (L-FABPs) but has a different stoichiometry and specificity of ligand binding. This article describes the first X-ray structure of a member of the L-BABP family, axolotl (Ambystoma mexicanum) L-BABP, bound to two different ligands: cholic and oleic acid. The protein binds one molecule of oleic acid in a position that is significantly different from that of either of the two molecules that bind to rat liver FABP. The stoichiometry of binding of cholate is of two ligands per protein molecule, as observed in chicken L-BABP. The cholate molecule that binds buried most deeply into the internal cavity overlaps well with the analogous bound to chicken L-BABP, whereas the second molecule, which interacts with the first only through hydrophobic contacts, is more external and exposed to the solvent. (c) 2006 Wiley-Liss, Inc.
Integrating structure-based and ligand-based approaches for computational drug design.
Wilson, Gregory L; Lill, Markus A
2011-04-01
Methods utilized in computer-aided drug design can be classified into two major categories: structure based and ligand based, using information on the structure of the protein or on the biological and physicochemical properties of bound ligands, respectively. In recent years there has been a trend towards integrating these two methods in order to enhance the reliability and efficiency of computer-aided drug-design approaches by combining information from both the ligand and the protein. This trend resulted in a variety of methods that include: pseudoreceptor methods, pharmacophore methods, fingerprint methods and approaches integrating docking with similarity-based methods. In this article, we will describe the concepts behind each method and selected applications.
EGFR oligomerization organizes kinase-active dimers into competent signalling platforms
Needham, Sarah R.; Roberts, Selene K.; Arkhipov, Anton; Mysore, Venkatesh P.; Tynan, Christopher J.; Zanetti-Domingues, Laura C.; Kim, Eric T.; Losasso, Valeria; Korovesis, Dimitrios; Hirsch, Michael; Rolfe, Daniel J.; Clarke, David T.; Winn, Martyn D.; Lajevardipour, Alireza; Clayton, Andrew H. A.; Pike, Linda J.; Perani, Michela; Parker, Peter J.; Shan, Yibing; Shaw, David E.; Martin-Fernandez, Marisa L.
2016-01-01
Epidermal growth factor receptor (EGFR) signalling is activated by ligand-induced receptor dimerization. Notably, ligand binding also induces EGFR oligomerization, but the structures and functions of the oligomers are poorly understood. Here, we use fluorophore localization imaging with photobleaching to probe the structure of EGFR oligomers. We find that at physiological epidermal growth factor (EGF) concentrations, EGFR assembles into oligomers, as indicated by pairwise distances of receptor-bound fluorophore-conjugated EGF ligands. The pairwise ligand distances correspond well with the predictions of our structural model of the oligomers constructed from molecular dynamics simulations. The model suggests that oligomerization is mediated extracellularly by unoccupied ligand-binding sites and that oligomerization organizes kinase-active dimers in ways optimal for auto-phosphorylation in trans between neighbouring dimers. We argue that ligand-induced oligomerization is essential to the regulation of EGFR signalling. PMID:27796308
Purinergic P2X receptors: structural models and analysis of ligand-target interaction.
Dal Ben, Diego; Buccioni, Michela; Lambertucci, Catia; Marucci, Gabriella; Thomas, Ajiroghene; Volpini, Rosaria
2015-01-07
The purinergic P2X receptors are ligand-gated cation channels activated by the endogenous ligand ATP. They assemble as homo- or heterotrimers from seven cloned subtypes (P2X1-7) and all trimer subunits present a common topology consisting in intracellular N- and C- termini, two transmembrane domains and a large extracellular domain. These membrane proteins are present in virtually all mammalian tissues and regulate a large variety of responses in physio- and pathological conditions. The development of ligands that selectively activate or block specific P2X receptor subtypes hence represents a promising strategy to obtain novel pharmacological tools for the treatment of pain, cancer, inflammation, and neurological, cardiovascular, and endocrine diseases. The publication of the crystal structures of zebrafish P2X4 receptor in inactive and ATP-bound active forms provided structural data for the analysis of the receptor structure, the interpretation of mutagenesis data, and the depiction of ligand binding and receptor activation mechanism. In addition, the availability of ATP-competitive ligands presenting selectivity for P2X receptor subtypes supports the design of new potent and selective ligands with possibly improved pharmacokinetic profiles, with the final aim to obtain new drugs. This study describes molecular modelling studies performed to develop structural models of the human and rat P2X receptors in inactive and active states. These models allowed to analyse the role of some non-conserved residues at ATP binding site and to study the receptor interaction with some non-specific or subtype selective agonists and antagonists. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Hopton, Suzanne R; Thompson, Andrew S
2011-05-17
Previous structural studies of the cyclopropapyrroloindole (CPI) antitumor antibiotics have shown that these ligands bind covalently edge-on into the minor groove of double-stranded DNA. Reversible covalent modification of the DNA via N3 of adenine occurs in a sequence-specific fashion. Early nuclear magnetic resonance and molecular modeling studies with both mono- and bis-alkylating ligands indicated that the ligands fit tightly within the minor groove, causing little distortion of the helix. In this study, we propose a new binding model for several of the CPI-based analogues, in which the aromatic secondary rings form π-stacked complexes within the minor groove. One of the adducts, formed with adozelesin and the d(ATTAAT)(2) sequence, also demonstrates the ability of these ligands to manipulate the DNA of the binding site, resulting in a Hoogsteen base-paired adduct. Although this type of base pairing has been previously observed with the bisfunctional CPI analogue bizelesin, this is the first time that such an observation has been made with a monoalkylating nondimeric analogue. Together, these results provide a new model for the design of CPI-based antitumor antibiotics, which also has a significant bearing on other structurally related and structurally unrelated minor groove-binding ligands. They indicate the dynamic nature of ligand-DNA interactions, demonstrating both DNA conformational flexibility and the ability of two DNA-bound ligands to interact to form stable covalent modified complexes.
Structures of invisible, excited protein states by relaxation dispersion NMR spectroscopy
Vallurupalli, Pramodh; Hansen, D. Flemming; Kay, Lewis E.
2008-01-01
Molecular function is often predicated on excursions between ground states and higher energy conformers that can play important roles in ligand binding, molecular recognition, enzyme catalysis, and protein folding. The tools of structural biology enable a detailed characterization of ground state structure and dynamics; however, studies of excited state conformations are more difficult because they are of low population and may exist only transiently. Here we describe an approach based on relaxation dispersion NMR spectroscopy in which structures of invisible, excited states are obtained from chemical shifts and residual anisotropic magnetic interactions. To establish the utility of the approach, we studied an exchanging protein (Abp1p SH3 domain)–ligand (Ark1p peptide) system, in which the peptide is added in only small amounts so that the ligand-bound form is invisible. From a collection of 15N, 1HN, 13Cα, and 13CO chemical shifts, along with 1HN-15N, 1Hα-13Cα, and 1HN-13CO residual dipolar couplings and 13CO residual chemical shift anisotropies, all pertaining to the invisible, bound conformer, the structure of the bound state is determined. The structure so obtained is cross-validated by comparison with 1HN-15N residual dipolar couplings recorded in a second alignment medium. The methodology described opens up the possibility for detailed structural studies of invisible protein conformers at a level of detail that has heretofore been restricted to applications involving visible ground states of proteins. PMID:18701719
Jeong, Byung-Cheon; Park, Si Hoon; Yoo, Kyoung Shin; Shin, Jeong Sheop; Song, Hyun Kyu
2013-07-01
Cystathionine β-synthase (CBS) domains are small intracellular modules that can act as binding domains for adenosine derivatives, and they may regulate the activity of associated enzymes or other functional domains. Among these, the single CBS domain-containing proteins, CBSXs, from Arabidopsis thaliana, have recently been identified as redox regulators of the thioredoxin system. Here, the crystal structure of CBSX2 in complex with adenosine monophosphate (AMP) is reported at 2.2Å resolution. The structure of dimeric CBSX2 with bound-AMP is shown to be approximately flat, which is in stark contrast to the bent form of apo-CBSXs. This conformational change in quaternary structure is triggered by a local structural change of the unique α5 helix, and by moving each loop P into an open conformation to accommodate incoming ligands. Furthermore, subtle rearrangement of the dimer interface triggers movement of all subunits, and consequently, the bent structure of the CBSX2 dimer becomes a flat structure. This reshaping of the structure upon complex formation with adenosine-containing ligand provides evidence that ligand-induced conformational reorganization of antiparallel CBS domains is an important regulatory mechanism. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Banerjee, Amrita; Chakraborty, Sumit; Altan-Bonnet, Nihal; Grebel, Haim
2013-09-01
Infrared (IR) spectroscopy provides fingerprinting of the energy and orientation of molecular bonds. The IR signals are generally weak and require amplification. Here we present a new plasmonic platform, made of freely suspended graphene, which was coating periodic metal structures. Only monolayer thick films were needed for a fast signal recording. We demonstrated unique IR absorption signals of bound proteins: these were the hemagglutinin area (HA1) of swine influenza (H1N1) and the avian influenza (H5N1) viruses bound to their respective tri-saccharides ligand receptors. The simplicity and sensitivity of such approach may find applications in fast monitoring of binding events.
Knowledge-Based Elastic Potentials for Docking Drugs or Proteins with Nucleic Acids
Ge, Wei; Schneider, Bohdan; Olson, Wilma K.
2005-01-01
Elastic ellipsoidal functions defined by the observed hydration patterns around the DNA bases provide a new basis for measuring the recognition of ligands in the grooves of double-helical structures. Here a set of knowledge-based potentials suitable for quantitative description of such behavior is extracted from the observed positions of water molecules and amino acid atoms that form hydrogen bonds with the nitrogenous bases in high resolution crystal structures. Energies based on the displacement of hydrogen-bonding sites on drugs in DNA-crystal complexes relative to the preferred locations of water binding around the heterocyclic bases are low, pointing to the reliability of the potentials and the apparent displacement of water molecules by drug atoms in these structures. The validity of the energy functions has been further examined in a series of sequence substitution studies based on the structures of DNA bound to polyamides that have been designed to recognize the minor-groove edges of Watson-Crick basepairs. The higher energies of binding to incorrect sequences superimposed (without conformational adjustment or displacement of polyamide ligands) on observed high resolution structures confirm the hypothesis that the drug subunits associate with specific DNA bases. The knowledge-based functions also account satisfactorily for the measured free energies of DNA-polyamide association in solution and the observed sites of polyamide binding on nucleosomal DNA. The computations are generally consistent with mechanisms by which minor-groove binding ligands are thought to recognize DNA basepairs. The calculations suggest that the asymmetric distributions of hydrogen-bond-forming atoms on the minor-groove edge of the basepairs may underlie ligand discrimination of G·C from C·G pairs, in addition to the commonly believed role of steric hindrance. The analysis of polyamide-bound nucleosomal structures reveals other discrepancies in the expected chemical design, including unexpected contacts to DNA and modified basepair targets of some ligands. The ellipsoidal potentials thus appear promising as a mathematical tool for the study of drug- and protein-DNA interactions and for gaining new insights into DNA-binding mechanisms. PMID:15501936
Structural mechanism underlying capsaicin binding and activation of TRPV1 ion channel
Cheng, Wei; Yang, Wei; Yu, Peilin; Song, Zhenzhen; Yarov-Yarovoy, Vladimir; Zheng, Jie
2015-01-01
Capsaicin bestows spiciness by activating TRPV1 channel with exquisite potency and selectivity. Capsaicin-bound channel structure was previously resolved by cryo-EM at 4.2-to-4.5 Å resolution, however important details required for mechanistic understandings are unavailable: capsaicin was registered as a small electron density, reflecting neither its chemical structure nor specific ligand-channel interactions. We obtained the missing atomic-level details by iterative computation, which were confirmed by systematic site-specific functional tests. We observed that the bound capsaicin takes “tail-up, head-down” configurations. The vanillyl and amide groups form specific interactions to anchor its bound position, while the aliphatic tail may sample a range of conformations, making it invisible in cryo-EM images. Capsaicin stabilizes the open state by “pull-and-contact” interactions between the vanillyl group and the S4-S5 linker. Our study provided a structural mechanism for the agonistic function of capsaicin and its analogs, and demonstrated an effective approach to obtain atomic level information from cryo-EM structures. PMID:26053297
Fluoride ion encapsulation by Mg2+ and phosphates in a fluoride riboswitch
Ren, Aiming; Rajashankar, Kanagalaghatta R.; Patel, Dinshaw J.
2012-01-01
Significant advances in our understanding of RNA architecture, folding and recognition have emerged from structure-function studies on riboswicthes, non-coding RNAs whose sensing domains bind small ligands and whose adjacent expression platforms contain RNA elements involved in the control of gene regulation. We now report on the ligand-bound structure of the Thermotoga petrophila fluoride riboswitch, which adopts a higher-order RNA architecture stabilized by pseudoknot and long-range reversed Watson-Crick and Hoogsteen A•U pair formation. The bound fluoride ion is encapsulated within the junctional architecture, anchored in place through direct coordination to three Mg2+ ions, which in turn are octahedrally coordinated to waters and five inwardly-pointing backbone phosphates. Our structure of the fluoride riboswitch in the bound state defines how RNA can form a binding pocket selective for fluoride, while discriminating against larger halide ions. The T. petrophila fluoride riboswitch most likely functions in gene regulation through a transcription termination mechanism. PMID:22678284
NASA Astrophysics Data System (ADS)
Kadukova, Maria; Grudinin, Sergei
2018-01-01
The 2016 D3R Grand Challenge 2 provided an opportunity to test multiple protein-ligand docking protocols on a set of ligands bound to farnesoid X receptor that has many available experimental structures. We participated in the Stage 1 of the Challenge devoted to the docking pose predictions, with the mean RMSD value of our submission poses of 2.9 Å. Here we present a thorough analysis of our docking predictions made with AutoDock Vina and the Convex-PL rescoring potential by reproducing our submission protocol and running a series of additional molecular docking experiments. We conclude that a correct receptor structure, or more precisely, the structure of the binding pocket, plays the crucial role in the success of our docking studies. We have also noticed the important role of a local ligand geometry, which seems to be not well discussed in literature. We succeed to improve our results up to the mean RMSD value of 2.15-2.33 Å dependent on the models of the ligands, if docking these to all available homologous receptors. Overall, for docking of ligands of diverse chemical series we suggest to perform docking of each of the ligands to a set of multiple receptors that are homologous to the target.
Muto, S; Takada, T; Matsumoto, K
2001-07-02
The biological activities of mannose-binding lectin (MBL) which binds to different ligands on mammalian cells were examined using two types of Colo205 cells, a human colon adenocarcinoma cell line: one naturally expressing Lewis A and Lewis B antigens as ligands for MBL (NT-Colo205), and the other modified to express high-mannose type oligosaccharides by treatment with benzyl-2-acetamide-2-deoxy-alpha-galactopyranoside and 1-deoxymannojirimycin (Bz+dMM-Colo205). Although the final lysis was not observed, the deposition of C4 and C3 was observed on both types of Colo205 cells after treatment with MBL and complements as a result of complement activation by MBL. MBL bound to Bz+dMM-Colo205 could also activate human peripheral blood leukocytes and induce superoxide production; however, MBL bound to NT-Colo205 could not. This may be explained by the lower affinity of MBL to Lewis A and Lewis B antigens than to high-mannose type oligosaccharides under physiological conditions, since MBL bound to NT-Colo205 was more easily released from the cell surface than that bound to Bz+dMM-Colo205 at 37 degrees C. These findings suggest that the difference in the affinity of MBL to its ligands could influence the expression of some biological activities of MBL.
Orlowska, Karina; Molcan, Tomasz; Swigonska, Sylwia; Sadowska, Agnieszka; Jablonska, Monika; Nynca, Anna; Jastrzebski, Jan P; Ciereszko, Renata E
2016-06-01
The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that can be activated by structurally diverse synthetic and natural chemicals, including toxic environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In the present study, homology models of the porcine AhR-ligand binding domain (LBD) and the porcine aryl hydrocarbon receptor nuclear translocator-ligand binding domain (ARNT-LBD) were created on the basis of structures of closely related respective proteins i.e., human Hif-2α and ARNT. Molecular docking of TCDD to the porcine AhR-LBD model revealed high binding affinity (-8.8kcal/mol) between TCDD and the receptor. Moreover, formation of the TCDD/AhR-LBD complex was confirmed experimentally with the use of electrophoretic mobility shift assay (EMSA). It was found that TCDD (10nM, 2h of incubation) not only bound to the AhR in the porcine granulosa cells but also activated the receptor. The current study provides a framework for examining the key events involved in the ligand-dependent activation of the AhR. Copyright © 2016 Elsevier Inc. All rights reserved.
Kaushik, Sanket; Singh, Nagendra; Yamini, Shavait; Singh, Avinash; Sinha, Mau; Arora, Ashish; Kaur, Punit; Sharma, Sujata; Singh, Tej P
2013-01-01
The incidences of infections caused by an aerobic Gram-negative bacterium, Acinetobacter baumannii are very common in hospital environments. It usually causes soft tissue infections including urinary tract infections and pneumonia. It is difficult to treat due to acquired resistance to available antibiotics is well known. In order to design specific inhibitors against one of the important enzymes, peptidyl-tRNA hydrolase from Acinetobacter baumannii, we have determined its three-dimensional structure. Peptidyl-tRNA hydrolase (AbPth) is involved in recycling of peptidyl-tRNAs which are produced in the cell as a result of premature termination of translation process. We have also determined the structures of two complexes of AbPth with cytidine and uridine. AbPth was cloned, expressed and crystallized in unbound and in two bound states with cytidine and uridine. The binding studies carried out using fluorescence spectroscopic and surface plasmon resonance techniques revealed that both cytidine and uridine bound to AbPth at nanomolar concentrations. The structure determinations of the complexes revealed that both ligands were located in the active site cleft of AbPth. The introduction of ligands to AbPth caused a significant widening of the entrance gate to the active site region and in the process of binding, it expelled several water molecules from the active site. As a result of interactions with protein atoms, the ligands caused conformational changes in several residues to attain the induced tight fittings. Such a binding capability of this protein makes it a versatile molecule for hydrolysis of peptidyl-tRNAs having variable peptide sequences. These are the first studies that revealed the mode of inhibitor binding in Peptidyl-tRNA hydrolases which will facilitate the structure based ligand design.
Wu, R.; Wilton, R.; Cuff, M. E.; ...
2017-02-07
The tandem Per-Arnt-Sim (PAS) like sensors are commonly found in signal transduction proteins. The periplasmic solute binding protein (SBP) domains are found ubiquitously and are generally involved in solute transport. These domains are widely observed as parts of separate proteins but not within the same polypeptide chain. We report the structural and biochemical characterization of the extracellular ligand-binding receptor, Dret_0059 from Desulfohalobium retbaense DSM 5692, an organism isolated from the Retba salt lake in Senegal. The structure of Dret_0059 consists of a novel combination of SBP and TPAS sensor domains. The N-terminal region forms an SBP domain and the C-terminalmore » region folds into a tandem PAS-like domain structure. A ketoleucine moiety is bound to the SBP, whereas a cytosine molecule is bound in the distal PAS domain of the TPAS. The differential scanning flourimetry studies in solution support the ligands observed in the crystal structure. There are only two other proteins with this structural architecture in the non-redundant sequence data base and we predict that they too bind the same substrates. There is significant interaction between the SBP and TPAS domains, and it is quite conceivable that the binding of one ligand will have an effect on the binding of the other. Our attempts to remove the ligands bound to the protein during expression were not successful, therefore, it is not clear what the relative affects are. The genomic context of this receptor does not contain any protein components expected for transport function, hence, we suggest that Dret_0059 is likely involved in signal transduction and not in solute transport.« less
Novel Route to Transition Metal Isothiocyanate Complexes Using Metal Powders and Thiourea
NASA Technical Reports Server (NTRS)
Harris, Jerry D.; Eckles, William E.; Hepp, Aloysius F.; Duraj, Stan A.; Hehemann, David G.; Fanwick, Phillip E.; Richardson, John
2003-01-01
A new synthetic route to isothiocyanate-containing materials is presented. Eight isothiocyanate- 4-methylpyridine (y-picoline) compounds were prepared by refluxing metal powders (Mn, Fe, Co, Ni, and Cu) with thiourea in y-picoline. With the exception of compound 5,prepared with Co, the isothiocyanate ligand was generated in situ by the isomerization of thiourea to NH4+SCN- at reflux temperatures. The complexes were characterized by x-ray crystallography. Compounds 1,2, and 8 are the first isothiocyanate- 4-methylpyridine anionic compounds ever prepared and structurally characterized. Compounds 1 and 2 are isostructural with four equatorially bound isothiocyanate ligands and two axially bound y-picoline molecules. Compound 8 is a five-coordinate copper(II) molecule with a distorted square-pyramidal geometry. Coordinated picoline and two isothiocyanates form the basal plane and the remaining isothiocyanate is bound at the apex. Structural data are presented for all compounds.
Kleckner, Ian R.; McElroy, Craig A.; Kuzmic, Petr; Gollnick, Paul; Foster, Mark P.
2014-01-01
The trp RNA-binding Attenuation Protein (TRAP) assembles into an 11-fold symmetric ring that regulates transcription and translation of trp-mRNA in bacilli via heterotropic allosteric activation by the amino acid tryptophan (Trp). Whereas nuclear magnetic resonance studies have revealed that Trp-induced activation coincides with both μs-ms rigidification and local structural changes in TRAP, the pathway of binding of the 11 Trp ligands to the TRAP ring remains unclear. Moreover, because each of eleven bound Trp molecules is completely surrounded by protein, its release requires flexibility of Trp-bound (holo) TRAP. Here, we used stopped-flow fluorescence to study the kinetics of Trp binding by Bacillus stearothermophilus TRAP over a range of temperatures and we observed well-separated kinetic steps. These data were analyzed using non-linear least-squares fitting of several two- and three-step models. We found that a model with two binding steps best describes the data, although the structural equivalence of the binding sites in TRAP implies a fundamental change in the time-dependent structure of the TRAP rings upon Trp binding. Application of the two binding step model reveals that Trp binding is much slower than the diffusion limit, suggesting a gating mechanism that depends on the dynamics of apo TRAP. These data also reveal that Trp dissociation from the second binding mode is much slower than after the first Trp binding mode, revealing insight into the mechanism for positive homotropic allostery, or cooperativity. Temperature dependent analyses reveal that both binding modes imbue increases in bondedness and order toward a more compressed active state. These results provide insight into mechanisms of cooperative TRAP activation, and underscore the importance of protein dynamics for ligand binding, ligand release, protein activation, and allostery. PMID:24224873
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Arun K.; Brindisi, Margherita; Nyalapatla, Prasanth R.
Based upon molecular insights from the X-ray structures of inhibitor-bound HIV-1 protease complexes, we have designed a series of isophthalamide-derived inhibitors incorporating substituted pyrrolidines, piperidines and thiazolidines as P2-P3 ligands for specific interactions in the S2-S3 extended site. Compound 4b has shown an enzyme Ki of 0.025 nM and antiviral IC50 of 69 nM. An X-ray crystal structure of inhibitor 4b-HIV-1 protease complex was determined at 1.33 Å resolution. We have also determined X-ray structure of 3b-bound HIV-1 protease at 1.27 Å resolution. These structures revealed important molecular insight into the inhibitor–HIV-1 protease interactions in the active site.
X-ray structures and mechanism of the human serotonin transporter.
Coleman, Jonathan A; Green, Evan M; Gouaux, Eric
2016-04-21
The serotonin transporter (SERT) terminates serotonergic signalling through the sodium- and chloride-dependent reuptake of neurotransmitter into presynaptic neurons. SERT is a target for antidepressant and psychostimulant drugs, which block reuptake and prolong neurotransmitter signalling. Here we report X-ray crystallographic structures of human SERT at 3.15 Å resolution bound to the antidepressants (S)-citalopram or paroxetine. Antidepressants lock SERT in an outward-open conformation by lodging in the central binding site, located between transmembrane helices 1, 3, 6, 8 and 10, directly blocking serotonin binding. We further identify the location of an allosteric site in the complex as residing at the periphery of the extracellular vestibule, interposed between extracellular loops 4 and 6 and transmembrane helices 1, 6, 10 and 11. Occupancy of the allosteric site sterically hinders ligand unbinding from the central site, providing an explanation for the action of (S)-citalopram as an allosteric ligand. These structures define the mechanism of antidepressant action in SERT, and provide blueprints for future drug design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Arun K.; Takayama, Jun; Rao, Kalapala Venkateswar
The design, synthesis, X-ray crystal structure, molecular modeling, and biological evaluation of a series of new generation SARS-CoV PLpro inhibitors are described. A new lead compound 3 (6577871) was identified via high-throughput screening of a diverse chemical library. Subsequently, we carried out lead optimization and structure-activity studies to provide a series of improved inhibitors that show potent PLpro inhibition and antiviral activity against SARS-CoV infected Vero E6 cells. Interestingly, the (S)-Me inhibitor 15h (enzyme IC{sub 50} = 0.56 {mu}M; antiviral EC{sub 50} = 9.1 {mu}M) and the corresponding (R)-Me 15g (IC{sub 50} = 0.32 {mu}M; antiviral EC{sub 50} = 9.1more » {mu}M) are the most potent compounds in this series, with nearly equivalent enzymatic inhibition and antiviral activity. A protein-ligand X-ray structure of 15g-bound SARS-CoV PLpro and a corresponding model of 15h docked to PLpro provide intriguing molecular insight into the ligand-binding site interactions.« less
Atomic resolution mechanism of ligand binding to a solvent inaccessible cavity in T4 lysozyme
Ahalawat, Navjeet; Pandit, Subhendu; Kay, Lewis E.
2018-01-01
Ligand binding sites in proteins are often localized to deeply buried cavities, inaccessible to bulk solvent. Yet, in many cases binding of cognate ligands occurs rapidly. An intriguing system is presented by the L99A cavity mutant of T4 Lysozyme (T4L L99A) that rapidly binds benzene (~106 M-1s-1). Although the protein has long served as a model system for protein thermodynamics and crystal structures of both free and benzene-bound T4L L99A are available, the kinetic pathways by which benzene reaches its solvent-inaccessible binding cavity remain elusive. The current work, using extensive molecular dynamics simulation, achieves this by capturing the complete process of spontaneous recognition of benzene by T4L L99A at atomistic resolution. A series of multi-microsecond unbiased molecular dynamics simulation trajectories unequivocally reveal how benzene, starting in bulk solvent, diffuses to the protein and spontaneously reaches the solvent inaccessible cavity of T4L L99A. The simulated and high-resolution X-ray derived bound structures are in excellent agreement. A robust four-state Markov model, developed using cumulative 60 μs trajectories, identifies and quantifies multiple ligand binding pathways with low activation barriers. Interestingly, none of these identified binding pathways required large conformational changes for ligand access to the buried cavity. Rather, these involve transient but crucial opening of a channel to the cavity via subtle displacements in the positions of key helices (helix4/helix6, helix7/helix9) leading to rapid binding. Free energy simulations further elucidate that these channel-opening events would have been unfavorable in wild type T4L. Taken together and via integrating with results from experiments, these simulations provide unprecedented mechanistic insights into the complete ligand recognition process in a buried cavity. By illustrating the power of subtle helix movements in opening up multiple pathways for ligand access, this work offers an alternate view of ligand recognition in a solvent-inaccessible cavity, contrary to the common perception of a single dominant pathway for ligand binding. PMID:29775455
Doubling the Size of the Glucocorticoid Receptor Ligand Binding Pocket by Deacylcortivazol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suino-Powell, Kelly; Xu, Yong; Zhang, Chenghai
A common feature of nuclear receptor ligand binding domains (LBD) is a helical sandwich fold that nests a ligand binding pocket within the bottom half of the domain. Here we report that the ligand pocket of glucocorticoid receptor (GR) can be continuously extended into the top half of the LBD by binding to deacylcortivazol (DAC), an extremely potent glucocorticoid. It has been puzzling for decades why DAC, which contains a phenylpyrazole replacement at the conserved 3-ketone of steroid hormones that are normally required for activation of their cognate receptors, is a potent GR activator. The crystal structure of the GRmore » LBD bound to DAC and the fourth LXXLL motif of steroid receptor coactivator 1 reveals that the GR ligand binding pocket is expanded to a size of 1,070 {angstrom}{sup 3}, effectively doubling the size of the GR dexamethasone-binding pocket of 540 {angstrom}{sup 3} and yet leaving the structure of the coactivator binding site intact. DAC occupies only {approx}50% of the space of the pocket but makes intricate interactions with the receptor around the phenylpyrazole group that accounts for the high-affinity binding of DAC. The dramatic expansion of the DAC-binding pocket thus highlights the conformational adaptability of GR to ligand binding. The new structure also allows docking of various nonsteroidal ligands that cannot be fitted into the previous structures, thus providing a new rational template for drug discovery of steroidal and nonsteroidal glucocorticoids that can be specifically designed to reach the unoccupied space of the expanded pocket.« less
Zhou, Mi; Tang, Min; Li, Shuiming; Peng, Li; Huang, Haojun; Fang, Qihua; Liu, Zhao; Xie, Peng; Li, Gao; Zhou, Jian
2018-06-21
For specific applications, gold nanoparticles (GNPs) are commonly functionalized with various biological ligands, including amino-free ligands such as amino acids, peptides, proteins, and nucleic acids. Upon entering a biological fluid, the protein corona that forms around GNPs can conceal the targeting ligands and sterically hinder the functional properties. The protein corona is routinely prepared by standard centrifugation or sucrose cushion centrifugation. However, such methodologies are not applicable to the exclusive analysis of a ligand-binding protein corona. In this study, we first proposed a lock-in strategy based on a combination of rapid crosslinking and stringent washing. Cysteine was used as a model of amino-free ligands and attached to GNPs. After corona formation in the human plasma, GNP cysteine and corona proteins were quickly fixed by 5 s of crosslinking with 7.5% formaldehyde. After stringent washing using SDS buffer with sonication, the cysteine-bound proteins were effectively separated from unbound proteins. Qualitative and quantitative analyses using a mass spectrometry-based proteomics approach indicated that the protein composition of the cysteine-binding corona from the new method was significantly different from the composition of the whole corona from the two conventional methods. Furthermore, network and formaldehyde-linked site analyses of cysteine-binding proteins provided useful information toward a better knowledge of the behavior of protein-ligand and protein-protein interactions. Collectively, our new strategy has the capability to particularly characterize the protein composition of a cysteine-binding corona. The presented methodology in principal provides a generic way to analyze a nanoparticle corona bound to amino-free ligands and has the potential to decipher corona-masked ligand functions.
Bai, Qifeng; Zhang, Yang; Ban, Yihe; Liu, Huanxiang; Yao, Xiaojun
2013-01-01
β2 adrenergic receptor (β2AR) regulated many key physiological processes by activation of a heterotrimeric GTP binding protein (Gs protein). This process could be modulated by different types of ligands. But the details about this modulation process were still not depicted. Here, we performed molecular dynamics (MD) simulations on the structures of β2AR-Gs protein in complex with different types of ligands. The simulation results demonstrated that the agonist BI-167107 could form hydrogen bonds with Ser2035.42, Ser2075.46 and Asn2936.55 more than the inverse agonist ICI 118,551. The different binding modes of ligands further affected the conformation of β2AR. The energy landscape profiled the energy contour map of the stable and dissociated conformation of Gαs and Gβγ when different types of ligands bound to β2AR. It also showed the minimum energy pathway about the conformational change of Gαs and Gβγ along the reaction coordinates. By using interactive essential dynamics analysis, we found that Gαs and Gβγ domain of Gs protein had the tendency to separate when the inverse agonist ICI 118,551 bound to β2AR. The α5-helix had a relatively quick movement with respect to transmembrane segments of β2AR when the inverse agonist ICI 118,551 bound to β2AR. Besides, the analysis of the centroid distance of Gαs and Gβγ showed that the Gαs was separated from Gβγ during the MD simulations. Our results not only could provide details about the different types of ligands that induced conformational change of β2AR and Gs protein, but also supplied more information for different efficacies of drug design of β2AR. PMID:23922653
Zinc-binding structure of a catalytic amyloid from solid-state NMR.
Lee, Myungwoon; Wang, Tuo; Makhlynets, Olga V; Wu, Yibing; Polizzi, Nicholas F; Wu, Haifan; Gosavi, Pallavi M; Stöhr, Jan; Korendovych, Ivan V; DeGrado, William F; Hong, Mei
2017-06-13
Throughout biology, amyloids are key structures in both functional proteins and the end product of pathologic protein misfolding. Amyloids might also represent an early precursor in the evolution of life because of their small molecular size and their ability to self-purify and catalyze chemical reactions. They also provide attractive backbones for advanced materials. When β-strands of an amyloid are arranged parallel and in register, side chains from the same position of each chain align, facilitating metal chelation when the residues are good ligands such as histidine. High-resolution structures of metalloamyloids are needed to understand the molecular bases of metal-amyloid interactions. Here we combine solid-state NMR and structural bioinformatics to determine the structure of a zinc-bound metalloamyloid that catalyzes ester hydrolysis. The peptide forms amphiphilic parallel β-sheets that assemble into stacked bilayers with alternating hydrophobic and polar interfaces. The hydrophobic interface is stabilized by apolar side chains from adjacent sheets, whereas the hydrated polar interface houses the Zn 2+ -binding histidines with binding geometries unusual in proteins. Each Zn 2+ has two bis-coordinated histidine ligands, which bridge adjacent strands to form an infinite metal-ligand chain along the fibril axis. A third histidine completes the protein ligand environment, leaving a free site on the Zn 2+ for water activation. This structure defines a class of materials, which we call metal-peptide frameworks. The structure reveals a delicate interplay through which metal ions stabilize the amyloid structure, which in turn shapes the ligand geometry and catalytic reactivity of Zn 2 .
Heusser, Stephanie A.; Howard, Rebecca J.; Borghese, Cecilia M.; Cullins, Madeline A.; Broemstrup, Torben; Lee, Ui S.; Lindahl, Erik; Carlsson, Jens
2013-01-01
GABAA receptors play a crucial role in the actions of general anesthetics. The recently published crystal structure of the general anesthetic propofol bound to Gloeobacter violaceus ligand-gated ion channel (GLIC), a bacterial homolog of GABAA receptors, provided an opportunity to explore structure-based ligand discovery for pentameric ligand-gated ion channels (pLGICs). We used molecular docking of 153,000 commercially available compounds to identify molecules that interact with the propofol binding site in GLIC. In total, 29 compounds were selected for functional testing on recombinant GLIC, and 16 of these compounds modulated GLIC function. Active compounds were also tested on recombinant GABAA receptors, and point mutations around the presumed binding pocket were introduced into GLIC and GABAA receptors to test for binding specificity. The potency of active compounds was only weakly correlated with properties such as lipophilicity or molecular weight. One compound was found to mimic the actions of propofol on GLIC and GABAA, and to be sensitive to mutations that reduce the action of propofol in both receptors. Mutant receptors also provided insight about the position of the binding sites and the relevance of the receptor’s conformation for anesthetic actions. Overall, the findings support the feasibility of the use of virtual screening to discover allosteric modulators of pLGICs, and suggest that GLIC is a valid model system to identify novel GABAA receptor ligands. PMID:23950219
NASA Astrophysics Data System (ADS)
Choudhary, Pallavi K.; Gallo, Sofia; Sigel, Roland K. O.
2017-03-01
Riboswitches are RNA elements that bind specific metabolites in order to regulate the gene expression involved in controlling the cellular concentration of the respective molecule or ion. Ligand recognition is mostly facilitated by Mg2+ mediated pre-organization of the riboswitch to an active tertiary fold. To predict these specific Mg2+ induced tertiary interactions of the btuB riboswitch from E. coli, we here report Mg2+ binding pockets in its aptameric part in both, the ligand-free and the ligand-bound form. An ensemble of weak and strong metal ion binding sites distributed over the entire aptamer was detected by terbium(III) cleavage assays, Tb3+ being an established Mg2+ mimic. Interestingly many of the Mn+ (n = 2 or 3) binding sites involve conserved bases within the class of coenzyme B12-binding riboswitches. Comparison with the published crystal structure of the coenzyme B12 riboswitch of S. thermophilum aided in identifying a common set of Mn+ binding sites that might be crucial for tertiary interactions involved in the organization of the aptamer. Our results suggest that Mn+ binding at strategic locations of the btuB riboswitch indeed facilitates the assembly of the binding pocket needed for ligand recognition. Binding of the specific ligand, coenzyme B12 (AdoCbl), to the btuB aptamer does however not lead to drastic alterations of these Mn+ binding cores, indicating the lack of a major rearrangement within the three-dimensional structure of the RNA. This finding is strengthened by Tb3+ mediated footprints of the riboswitch's structure in its ligand-free and ligand-bound state indicating that AdoCbl indeed induces local changes rather than a global structural rearrangement.
Pierre, Valérie C.; Kaiser, Jens T.; Barton, Jacqueline K.
2007-01-01
We report the 1.1-Å resolution crystal structure of a bulky rhodium complex bound to two different DNA sites, mismatched and matched in the oligonucleotide 5′-(dCGGAAATTCCCG)2-3′. At the AC mismatch site, the structure reveals ligand insertion from the minor groove with ejection of both mismatched bases and elucidates how destabilized mispairs in DNA may be recognized. This unique binding mode contrasts with major groove intercalation, observed at a matched site, where doubling of the base pair rise accommodates stacking of the intercalator. Mass spectral analysis reveals different photocleavage products associated with the two binding modes in the crystal, with only products characteristic of mismatch binding in solution. This structure, illustrating two clearly distinct binding modes for a molecule with DNA, provides a rationale for the interrogation and detection of mismatches. PMID:17194756
Coopman, K.; Wallis, R.; Robb, G.; Brown, A. J. H.; Wilkinson, G. F.; Timms, D.
2011-01-01
The C-terminal regions of glucagon-like peptide-1 (GLP-1) bind to the N terminus of the GLP-1 receptor (GLP-1R), facilitating interaction of the ligand N terminus with the receptor transmembrane domain. In contrast, the agonist exendin-4 relies less on the transmembrane domain, and truncated antagonist analogs (e.g. exendin 9–39) may interact solely with the receptor N terminus. Here we used mutagenesis to explore the role of residues highly conserved in the predicted transmembrane helices of mammalian GLP-1Rs and conserved in family B G protein coupled receptors in ligand binding and GLP-1R activation. By iteration using information from the mutagenesis, along with the available crystal structure of the receptor N terminus and a model of the active opsin transmembrane domain, we developed a structural receptor model with GLP-1 bound and used this to better understand consequences of mutations. Mutation at Y152 [transmembrane helix (TM) 1], R190 (TM2), Y235 (TM3), H363 (TM6), and E364 (TM6) produced similar reductions in affinity for GLP-1 and exendin 9–39. In contrast, other mutations either preferentially [K197 (TM2), Q234 (TM3), and W284 (extracellular loop 2)] or solely [D198 (TM2) and R310 (TM5)] reduced GLP-1 affinity. Reduced agonist affinity was always associated with reduced potency. However, reductions in potency exceeded reductions in agonist affinity for K197A, W284A, and R310A, while H363A was uncoupled from cAMP generation, highlighting critical roles of these residues in translating binding to activation. Data show important roles in ligand binding and receptor activation of conserved residues within the transmembrane domain of the GLP-1R. The receptor structural model provides insight into the roles of these residues. PMID:21868452
Mandal, Kalyaneswar; Uppalapati, Maruti; Ault-Riché, Dana; Kenney, John; Lowitz, Joshua; Sidhu, Sachdev S; Kent, Stephen B H
2012-09-11
Total chemical synthesis was used to prepare the mirror image (D-protein) form of the angiogenic protein vascular endothelial growth factor (VEGF-A). Phage display against D-VEGF-A was used to screen designed libraries based on a unique small protein scaffold in order to identify a high affinity ligand. Chemically synthesized D- and L- forms of the protein ligand showed reciprocal chiral specificity in surface plasmon resonance binding experiments: The L-protein ligand bound only to D-VEGF-A, whereas the D-protein ligand bound only to L-VEGF-A. The D-protein ligand, but not the L-protein ligand, inhibited the binding of natural VEGF(165) to the VEGFR1 receptor. Racemic protein crystallography was used to determine the high resolution X-ray structure of the heterochiral complex consisting of {D-protein antagonist + L-protein form of VEGF-A}. Crystallization of a racemic mixture of these synthetic proteins in appropriate stoichiometry gave a racemic protein complex of more than 73 kDa containing six synthetic protein molecules. The structure of the complex was determined to a resolution of 1.6 Å. Detailed analysis of the interaction between the D-protein antagonist and the VEGF-A protein molecule showed that the binding interface comprised a contact surface area of approximately 800 Å(2) in accord with our design objectives, and that the D-protein antagonist binds to the same region of VEGF-A that interacts with VEGFR1-domain 2.
Hydrogel Tethering Enhances Interdomain Stabilization of Single-Chain Antibodies.
Xiong, Yijia; Ford, Nicole R; Hecht, Karen A; Roesijadi, Guritno; Squier, Thomas C
2017-11-15
Here, we identify the importance of molecular crowding agents in the functional stabilization of scFv antibodies. Antibodies were tethered through an engineered calmodulin (CaM)-binding peptide into a stimulus-responsive hydrogel composed of poly(ethylene glycol) (PEG)-functionalized CaM. Macromolecular crowding is modulated by transient heating, which decreases effective pore sizes. Using a fluorescent ligand bound to the scFv, frequency-domain fluorescence spectroscopy was used to assess the structural coupling between the V H and the V L domains and relationships with functional stabilization. There is minimal structural coupling between the V H and the V L domains in solution, as is apparent from the substantial rotational mobility for the bound ligand, that is suggestive of an independent mobility for the V H and the V L domains. In comparison, the hydrogel matrix acts to structurally couple the V H and the V L domains, resulting in a reduction in rotational mobility and a retention of ligand binding in the presence of 8.0 M urea. Under these same conditions, ligand binding is disrupted for scFv antibodies in solution. Increases in the stabilization of scFv antibodies in hydrogels is not simply the result of molecular crowding because decreases in pore size act to destabilize ligand binding. Rather, our results suggest that the functional stabilization of the scFv antibody within the PEG hydrogel matrix includes important factors involving protein solvation that stabilize interdomain interactions between the V H and the V L domains necessary for ligand binding.
Tomoo, Koji; Miki, Yasuhiro; Morioka, Hideaki; Seike, Kiho; Ishida, Toshimasa; Ikenishi, Sadao; Miyamoto, Katsushiro; Hasegawa, Tomokazu; Yamano, Akihito; Hamada, Kensaku; Tsujibo, Hiroshi
2017-06-01
BxlE from Streptomyces thermoviolaceus OPC-520 is a xylo-oligosaccharide (mainly xylobiose)-binding protein that serves as the initial receptor for the bacterial ABC-type xylo-oligosaccharide transport system. To determine the ligand-binding mechanism of BxlE, X-ray structures of ligand-free (open form) and ligand (xylobiose)-bound (closed form) BxlE were determined at 1.85 Å resolution. BxlE consists of two globular domains that are linked by two β-strands, with the cleft at the interface of the two domains creating the ligand-binding pocket. In the ligand-free open form, this pocket consists of a U-shaped and negatively charged groove located between the two domains. In the xylobiose-bound closed form of BxlE, both the N and C domains move to fold the ligand without conformational changes in either domain. Xylobiose is buried in the groove and wrapped by the N-domain mainly via hydrogen bond interactions and by the C-domain primarily via non-polar interactions with Trp side chains. In addition to the concave shape matching the binding of xylobiose, an inter-domain salt bridge between Asp-47 and Lys-294 limits the space in the ligand-binding site. This domain-stabilized mechanism of ligand binding to BxlE is a unique feature that is not observed with other solute-binding proteins. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.
Xu, Yuqun; Miyakawa, Takuya; Nakamura, Hidemitsu; Nakamura, Akira; Imamura, Yusaku; Asami, Tadao; Tanokura, Masaru
2016-08-10
The perception of two plant germination inducers, karrikins and strigolactones, are mediated by the proteins KAI2 and D14. Recently, KAI2-type proteins from parasitic weeds, which are possibly related to seed germination induced by strigolactone, have been classified into three clades characterized by different responses to karrikin/strigolactone. Here we characterized a karrikin-binding protein in Striga (ShKAI2iB) that belongs to intermediate-evolving KAI2 and provided the structural bases for its karrikin-binding specificity. Binding assays showed that ShKAI2iB bound karrikins but not strigolactone, differing from other KAI2 and D14. The crystal structures of ShKAI2iB and ShKAI2iB-karrikin complex revealed obvious structural differences in a helix located at the entry of its ligand-binding cavity. This results in a smaller closed pocket, which is also the major cause of ShKAI2iB's specificity of binding karrikin. Our structural study also revealed that a few non-conserved amino acids led to the distinct ligand-binding profile of ShKAI2iB, suggesting that the evolution of KAI2 resulted in its diverse functions.
Thermodynamics of Ligand Binding to a Heterogeneous RNA Population in the Malachite Green Aptamer
Sokoloski, Joshua E.; Dombrowski, Sarah E.; Bevilacqua, Philip C.
2011-01-01
The malachite green aptamer binds two closely related ligands, malachite green (MG) and tetramethylrosamine (TMR), with near equal affinity. The MG ligand consists of three phenyl rings emanating from a central carbon, while TMR has two of the three rings connected by an ether linkage. The binding pockets for MG and TMR in the aptamer, known from high-resolution structure, differ only in the conformation of a few nucleotides. Herein, we applied isothermal titration calorimetry (ITC) to compare the thermodynamics for binding of MG and TMR to the aptamer. Binding heat capacities were obtained from ITC titrations over the temperature range of 15 to 60 °C. Two temperature regimes were found for MG binding: one from 15 to 45 °C where MG bound with a large negative heat capacity and an apparent stoichiometry (n) of ~0.4, and another from 50 to 60 °C where MG bound with positive heat capacity and n~1.1. The binding of TMR, on the other hand, revealed only one temperature regime for binding, with a more modest negative heat capacity and n~1.2. The large difference in heat capacity between the two ligands suggests that significantly more conformational rearrangement occurs upon the binding of MG than TMR, which is consistent with differences in solvent accessible surface area calculated for available ligand-bound structures. Lastly, we note that binding stoichiometry of MG was improved not only by raising the temperature, but also by lowering the concentration of Mg2+ or increasing the time between ITC injections. These studies suggest that binding of a dynamical ligand to a functional RNA requires the RNA itself to have significant dynamics. PMID:22192051
Small Molecule Ligands of Methyl-Lysine Binding Proteins
Herold, J. Martin; Wigle, Tim J.; Norris, Jacqueline L.; Lam, Robert; Korboukh, Victoria K.; Gao, Cen; Ingerman, Lindsey A.; Kireev, Dmitri B.; Senisterra, Guillermo; Vedadi, Masoud; Tripathy, Ashutosh; Brown, Peter J.; Arrowsmith, Cheryl H.; Jin, Jian; Janzen, William P.; Frye, Stephen V.
2011-01-01
Proteins which bind methylated lysines (“readers” of the histone code) are important components in the epigenetic regulation of gene expression and can also modulate other proteins that contain methyl-lysine such as p53 and Rb. Recognition of methyl-lysine marks by MBT domains leads to compaction of chromatin and a repressed transcriptional state. Antagonists of MBT domains would serve as probes to interrogate the functional role of these proteins and initiate the chemical biology of methyl-lysine readers as a target class. Small molecule MBT antagonists were designed based on the structure of histone peptide-MBT complexes and their interaction with MBT domains determined using a chemiluminescent assay and ITC. The ligands discovered antagonize native histone peptide binding, exhibiting 5-fold stronger binding affinity to L3MBTL1 than its preferred histone peptide. The first co-crystal structure of a small molecule bound to L3MBTL1 was determined and provides new insights into binding requirements for further ligand design. PMID:21417280
Identifying Interactions that Determine Fragment Binding at Protein Hotspots.
Radoux, Chris J; Olsson, Tjelvar S G; Pitt, Will R; Groom, Colin R; Blundell, Tom L
2016-05-12
Locating a ligand-binding site is an important first step in structure-guided drug discovery, but current methods do little to suggest which interactions within a pocket are the most important for binding. Here we illustrate a method that samples atomic hotspots with simple molecular probes to produce fragment hotspot maps. These maps specifically highlight fragment-binding sites and their corresponding pharmacophores. For ligand-bound structures, they provide an intuitive visual guide within the binding site, directing medicinal chemists where to grow the molecule and alerting them to suboptimal interactions within the original hit. The fragment hotspot map calculation is validated using experimental binding positions of 21 fragments and subsequent lead molecules. The ligands are found in high scoring areas of the fragment hotspot maps, with fragment atoms having a median percentage rank of 97%. Protein kinase B and pantothenate synthetase are examined in detail. In each case, the fragment hotspot maps are able to rationalize a Free-Wilson analysis of SAR data from a fragment-based drug design project.
Khan, Sara; Farooq, Umar; Kurnikova, Maria
2017-08-22
In this study, we explore the structural and dynamic adaptations of the Tryptophan synthase α-subunit in a ligand bound state in psychrophilic, mesophilic and hyperthermophilic organisms at different temperatures by MD simulations. We quantify the global and local fluctuations in the 40 ns time scale by analyzing the root mean square deviation/fluctuations. The distinct behavior of the active site and loop 6 is observed with the elevation of temperature. Protein stability relies more on electrostatic interactions, and these interactions might be responsible for the stability of varying temperature evolved proteins. The paper also focuses on the effect of temperature on protein dynamics and stability governed by the distinct behavior of the ligand associated with its retention, binding and dissociation over the course of time. The integration of principle component analysis and a free energy landscape was useful in identifying the conformational space accessible to ligand bound homologues and how the presence of the ligand alters the conformational and dynamic properties of the protein.
Molecular Dynamics Methodologies for Probing Cannabinoid Ligand/Receptor Interaction
Lynch, Diane L.; Hurst, Dow P.; Shore, Derek M.; Pitman, Mike C.; Reggio, Patricia H.
2018-01-01
The cannabinoid type 1 and 2 G-protein-coupled receptors are currently important pharmacological targets with significant drug discovery potential. These receptors have been shown to display functional selectivity or biased agonism, a property currently thought to have substantial therapeutic potential. Although recent advances in crystallization techniques have provided a wealth of structural information about this important class of membrane-embedded proteins, these structures lack dynamical information. In order to fully understand the interplay of structure and function for this important class of proteins, complementary techniques that address the dynamical aspects of their function are required such as NMR as well as a variety of other spectroscopies. Complimentary to these experimental approaches is molecular dynamics, which has been effectively used to help unravel, at the atomic level, the dynamics of ligand binding and activation of these membrane-bound receptors. Here, we discuss and present several representative examples of the application of molecular dynamics simulations to the understanding of the signatures of ligand-binding and -biased signaling at the cannabinoid type 1 and 2 receptors. PMID:28750815
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caspers, Nicole L.; Han, Seungil; Rajamohan, Francis
2016-10-27
Crystals of phosphorylated JAK1 kinase domain were initially generated in complex with nucleotide (ADP) and magnesium. The tightly bound Mg 2+-ADP at the ATP-binding site proved recalcitrant to ligand displacement. Addition of a molar excess of EDTA helped to dislodge the divalent metal ion, promoting the release of ADP and allowing facile exchange with ATP-competitive small-molecule ligands. Many kinases require the presence of a stabilizing ligand in the ATP site for crystallization. This procedure could be useful for developing co-crystallization systems with an exchangeable ligand to enable structure-based drug design of other protein kinases.
Cerisier, Natacha; Regad, Leslie; Triki, Dhoha; Petitjean, Michel; Flatters, Delphine; Camproux, Anne-Claude
2017-10-01
While recent literature focuses on drug promiscuity, the characterization of promiscuous binding sites (ability to bind several ligands) remains to be explored. Here, we present a proteochemometric modeling approach to analyze diverse ligands and corresponding multiple binding sub-pockets associated with one promiscuous binding site to characterize protein-ligand recognition. We analyze both geometrical and physicochemical profile correspondences. This approach was applied to examine the well-studied druggable urokinase catalytic domain inhibitor binding site, which results in a large number of complex structures bound to various ligands. This approach emphasizes the importance of jointly characterizing pocket and ligand spaces to explore the impact of ligand diversity on sub-pocket properties and to establish their main profile correspondences. This work supports an interest in mining available 3D holo structures associated with a promiscuous binding site to explore its main protein-ligand recognition tendency. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xu, Jin-Gen; Huang, Chunfeng; Yang, Zhengfeng; Jin, Mengmeng; Fu, Panhan; Zhang, Ni; Luo, Jian; Li, Dali; Liu, Mingyao; Zhou, Yan; Zhu, Yongqun
2015-01-23
Leucine-rich repeat G-protein-coupled receptors (LGRs) are a unique class of G-protein-coupled receptors characterized by a large extracellular domain to recognize ligands and regulate many important developmental processes. Among the three groups of LGRs, group B members (LGR4-6) recognize R-spondin family proteins (Rspo1-4) to stimulate Wnt signaling. In this study, we successfully utilized the "hybrid leucine-rich repeat technique," which fused LGR4 with the hagfish VLR protein, to obtain two recombinant human LGR4 proteins, LGR415 and LGR49. We determined the crystal structures of ligand-free LGR415 and the LGR49-Rspo1 complex. LGR4 exhibits a twisted horseshoe-like structure. Rspo1 adopts a flat and β-fold architecture and is bound in the concave surface of LGR4 in the complex through electrostatic and hydrophobic interactions. All the Rspo1-binding residues are conserved in LGR4-6, suggesting that LGR4-6 bind R-spondins through an identical surface. Structural analysis of our LGR4-Rspo1 complex with the previously determined LGR4 and LGR5 structures revealed that the concave surface of LGR4 is the sole binding site for R-spondins, suggesting a one-site binding model of LGR4-6 in ligand recognition. The molecular mechanism of LGR4-6 is distinct from the two-step mechanism of group A receptors LGR1-3 and the multiple-interface binding model of group C receptors LGR7-8, suggesting LGRs utilize the divergent mechanisms for ligand recognition. Our structures, together with previous reports, provide a comprehensive understanding of the ligand recognition by LGRs. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
A systematic analysis of atomic protein-ligand interactions in the PDB.
Ferreira de Freitas, Renato; Schapira, Matthieu
2017-10-01
As the protein databank (PDB) recently passed the cap of 123 456 structures, it stands more than ever as an important resource not only to analyze structural features of specific biological systems, but also to study the prevalence of structural patterns observed in a large body of unrelated structures, that may reflect rules governing protein folding or molecular recognition. Here, we compiled a list of 11 016 unique structures of small-molecule ligands bound to proteins - 6444 of which have experimental binding affinity - representing 750 873 protein-ligand atomic interactions, and analyzed the frequency, geometry and impact of each interaction type. We find that hydrophobic interactions are generally enriched in high-efficiency ligands, but polar interactions are over-represented in fragment inhibitors. While most observations extracted from the PDB will be familiar to seasoned medicinal chemists, less expected findings, such as the high number of C-H···O hydrogen bonds or the relatively frequent amide-π stacking between the backbone amide of proteins and aromatic rings of ligands, uncover underused ligand design strategies.
Klein, Tobias; Tucker, Julie; Holdgate, Geoffrey A; Norman, Richard A; Breeze, Alexander L
2014-02-13
The binding of a ligand to its target protein is often accompanied by conformational changes of both the protein and the ligand. This is of particular interest, since structural rearrangements of the macromolecular target and the ligand influence the free energy change upon complex formation. In this study, we use X-ray crystallography, isothermal titration calorimetry, and surface-plasmon resonance biosensor analysis to investigate the binding of pyrazolylaminopyrimidine inhibitors to FGFR1 tyrosine kinase, an important anticancer target. Our results highlight that structurally close analogs of this inhibitor series interact with FGFR1 with different binding modes, which are a consequence of conformational changes in both the protein and the ligand as well as the bound water network. Together with the collected kinetic and thermodynamic data, we use the protein-ligand crystal structure information to rationalize the observed inhibitory potencies on a molecular level.
Kong, Leopold; Huang, Chih-chin; Coales, Stephen J.; Molnar, Kathleen S.; Skinner, Jeff; Hamuro, Yoshitomo; Kwong, Peter D.
2010-01-01
The binding reaction of the HIV-1 gp120 envelope glycoprotein to the CD4 receptor involves exceptional changes in enthalpy and entropy. Crystal structures of gp120 in unliganded and various ligand-bound states, meanwhile, reveal an inner domain able to fold into diverse conformations, a structurally invariant outer domain, and, in the CD4-bound state, a bridging sheet minidomain. These studies, however, provide only hints as to the flexibility of each state. Here we use amide hydrogen/deuterium exchange coupled to mass spectrometry to provide quantifications of local conformational stability for HIV-1 gp120 in unliganded and CD4-bound states. On average, unliganded core gp120 displayed >10,000-fold slower exchange of backbone-amide hydrogens than a theoretically unstructured protein of the same composition, with binding by CD4 reducing the rate of gp120 amide exchange a further 10-fold. For the structurally constant CD4, alterations in exchange correlated well with alterations in binding surface (P value = 0.0004). For the structurally variable gp120, however, reductions in flexibility extended outside the binding surface, and regions of expected high structural diversity (inner domain/bridging sheet) displayed roughly 20-fold more rapid exchange in the unliganded state than regions of low diversity (outer domain). Thus, despite an extraordinary reduction in entropy, neither unliganded gp120 nor free CD4 was substantially unstructured, suggesting that most of the diverse conformations that make up the gp120 unliganded state are reasonably ordered. The results provide a framework for understanding how local conformational stability influences entropic change, conformational diversity, and structural rearrangements in the gp120-CD4 binding reaction. PMID:20660185
Dynamic undocking and the quasi-bound state as tools for drug discovery
NASA Astrophysics Data System (ADS)
Ruiz-Carmona, Sergio; Schmidtke, Peter; Luque, F. Javier; Baker, Lisa; Matassova, Natalia; Davis, Ben; Roughley, Stephen; Murray, James; Hubbard, Rod; Barril, Xavier
2017-03-01
There is a pressing need for new technologies that improve the efficacy and efficiency of drug discovery. Structure-based methods have contributed towards this goal but they focus on predicting the binding affinity of protein-ligand complexes, which is notoriously difficult. We adopt an alternative approach that evaluates structural, rather than thermodynamic, stability. As bioactive molecules present a static binding mode, we devised dynamic undocking (DUck), a fast computational method to calculate the work necessary to reach a quasi-bound state at which the ligand has just broken the most important native contact with the receptor. This non-equilibrium property is surprisingly effective in virtual screening because true ligands form more-resilient interactions than decoys. Notably, DUck is orthogonal to docking and other 'thermodynamic' methods. We demonstrate the potential of the docking-undocking combination in a fragment screening against the molecular chaperone and oncology target Hsp90, for which we obtain novel chemotypes and a hit rate that approaches 40%.
Conserved conformational selection mechanism of Hsp70 chaperone-substrate interactions
Velyvis, Algirdas; Zoltsman, Guy; Rosenzweig, Rina; Bouvignies, Guillaume
2018-01-01
Molecular recognition is integral to biological function and frequently involves preferred binding of a molecule to one of several exchanging ligand conformations in solution. In such a process the bound structure can be selected from the ensemble of interconverting ligands a priori (conformational selection, CS) or may form once the ligand is bound (induced fit, IF). Here we focus on the ubiquitous and conserved Hsp70 chaperone which oversees the integrity of the cellular proteome through its ATP-dependent interaction with client proteins. We directly quantify the flux along CS and IF pathways using solution NMR spectroscopy that exploits a methyl TROSY effect and selective isotope-labeling methodologies. Our measurements establish that both bacterial and human Hsp70 chaperones interact with clients by selecting the unfolded state from a pre-existing array of interconverting structures, suggesting a conserved mode of client recognition among Hsp70s and highlighting the importance of molecular dynamics in this recognition event. PMID:29460778
A structural informatics approach to mine kinase knowledge bases.
Brooijmans, Natasja; Mobilio, Dominick; Walker, Gary; Nilakantan, Ramaswamy; Denny, Rajiah A; Feyfant, Eric; Diller, David; Bikker, Jack; Humblet, Christine
2010-03-01
In this paper, we describe a combination of structural informatics approaches developed to mine data extracted from existing structure knowledge bases (Protein Data Bank and the GVK database) with a focus on kinase ATP-binding site data. In contrast to existing systems that retrieve and analyze protein structures, our techniques are centered on a database of ligand-bound geometries in relation to residues lining the binding site and transparent access to ligand-based SAR data. We illustrate the systems in the context of the Abelson kinase and related inhibitor structures. 2009 Elsevier Ltd. All rights reserved.
Selenophene transition metal complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Carter James
1994-07-27
This research shows that selenophene transition metal complexes have a chemistry that is similar to their thiophene analogs. Selenophene coordination has been demonstrated and confirmed by molecular structure in both the η 5- and the η 1(Se)-coordination modes. The reaction chemistry of selenophene complexes closely resembles that of the analogous thiophene complexes. One major difference, however, is that selenophene is a better donor ligand than thiophene making the selenophene complexes more stable than the corresponding thiophene complexes. The 77Se NMR chemical shift values for selenophene complexes fall within distinct regions primarily depending on the coordination mode of the selenophene ligand.more » In the final paper, the C-H bond activation of η 1(S)-bound thiophenes, η 1(S)-benzothiophene and η 1(Se)-bound selenophenes has been demonstrated. The deprotonation and rearrangement of the η 1(E)-bound ligand to the carbon bound L-yl complex readily occurs in the presence of base. Reprotonation with a strong acid gives a carbene complex that is unreactive towards nucleophilic attack at the carbene carbon and is stable towards exposure to air. The molecular structure of [Cp(NO)(PPh 3)Re(2-benzothioenylcarbene)]O 3SCF 3 was determined and contains a Re-C bond with substantial double bond character. Methyl substitution for the thienylcarbene or selenylcarbene gives a carbene that rearranges thermally to give back the η 1(E)-bound complex. Based on these model reactions, a new mechanism for the H/D exchange of thiophene over the hydrodesulfurization catalyst has been proposed.« less
Li, Xiang; Anderson, Marie; Collin, Delphine; Muegge, Ingo; Wan, John; Brennan, Debra; Kugler, Stanley; Terenzio, Donna; Kennedy, Charles; Lin, Siqi; Labadia, Mark E; Cook, Brian; Hughes, Robert; Farrow, Neil A
2017-07-14
The nuclear receptor retinoid acid receptor-related orphan receptor γt (RORγt) is a master regulator of the Th17/IL-17 pathway that plays crucial roles in the pathogenesis of autoimmunity. RORγt has recently emerged as a highly promising target for treatment of a number of autoimmune diseases. Through high-throughput screening, we previously identified several classes of inverse agonists for RORγt. Here, we report the crystal structures for the ligand-binding domain of RORγt in both apo and ligand-bound states. We show that apo RORγt adopts an active conformation capable of recruiting coactivator peptides and present a detailed analysis of the structural determinants that stabilize helix 12 (H12) of RORγt in the active state in the absence of a ligand. The structures of ligand-bound RORγt reveal that binding of the inverse agonists disrupts critical interactions that stabilize H12. This destabilizing effect is supported by ab initio calculations and experimentally by a normalized crystallographic B-factor analysis. Of note, the H12 destabilization in the active state shifts the conformational equilibrium of RORγt toward an inactive state, which underlies the molecular mechanism of action for the inverse agonists reported here. Our findings highlight that nuclear receptor structure and function are dictated by a dynamic conformational equilibrium and that subtle changes in ligand structures can shift this equilibrium in opposite directions, leading to a functional switch from agonists to inverse agonists. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Bridging Enzymatic Structure Function via Mechanics: A Coarse-Grain Approach.
Sacquin-Mora, S
2016-01-01
Flexibility is a central aspect of protein function, and ligand binding in enzymes involves a wide range of structural changes, ranging from large-scale domain movements to small loop or side-chain rearrangements. In order to understand how the mechanical properties of enzymes, and the mechanical variations that are induced by ligand binding, relate to enzymatic activity, we carried out coarse-grain Brownian dynamics simulations on a set of enzymes whose structures in the unbound and ligand-bound forms are available in the Protein Data Bank. Our results show that enzymes are remarkably heterogeneous objects from a mechanical point of view and that the local rigidity of individual residues is tightly connected to their part in the protein's overall structure and function. The systematic comparison of the rigidity of enzymes in their unbound and bound forms highlights the fact that small conformational changes can induce large mechanical effects, leading to either more or less flexibility depending on the enzyme's architecture and the location of its ligand-biding site. These mechanical variations target a limited number of specific residues that occupy key locations for enzymatic activity, and our approach thus offers a mean to detect perturbation-sensitive sites in enzymes, where the addition or removal of a few interactions will lead to important changes in the proteins internal dynamics. © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Young Do; Finzi, Andrés; Wu, Xueling
2013-03-04
The HIV-1 envelope (Env) spike (gp120{sub 3}/gp41{sub 3}) undergoes considerable structural rearrangements to mediate virus entry into cells and to evade the host immune response. Engagement of CD4, the primary human receptor, fixes a particular conformation and primes Env for entry. The CD4-bound state, however, is prone to spontaneous inactivation and susceptible to antibody neutralization. How does unliganded HIV-1 maintain CD4-binding capacity and regulate transitions to the CD4-bound state? To define this mechanistically, we determined crystal structures of unliganded core gp120 from HIV-1 clades B, C, and E. Notably, all of these unliganded HIV-1 structures resembled the CD4-bound state. Conformationalmore » fixation with ligand selection and thermodynamic analysis of full-length and core gp120 interactions revealed that the tendency of HIV-1 gp120 to adopt the CD4-bound conformation was restrained by the V1/V2- and V3-variable loops. In parallel, we determined the structure of core gp120 in complex with the small molecule, NBD-556, which specifically recognizes the CD4-bound conformation of gp120. Neutralization by NBD-556 indicated that Env spikes on primary isolates rarely assume the CD4-bound conformation spontaneously, although they could do so when quaternary restraints were loosened. Together, the results suggest that the CD4-bound conformation represents a 'ground state' for the gp120 core, with variable loop and quaternary interactions restraining unliganded gp120 from 'snapping' into this conformation. A mechanism of control involving deformations in unliganded structure from a functionally critical state (e.g., the CD4-bound state) provides advantages in terms of HIV-1 Env structural diversity and resistance to antibodies and inhibitors, while maintaining elements essential for entry.« less
Kim, Jeong Yun; Kulik, Heather J
2018-05-10
We present a detailed study of nearly 70 Zn molecular catalysts for CO 2 hydration from four diverse ligand classes ranging from well-studied carbonic anhydrase mimics (e.g., cyclen) to new structures we obtain by leveraging diverse hits from large organic libraries. Using microkinetic analysis and establishing linear free energy relationships, we confirm that turnover is sensitive to the relative thermodynamic stability of reactive hydroxyl and bound bicarbonate moieties. We observe a wide range of thermodynamic stabilities for these intermediates, showing up to 6 kcal/mol improvement over well-studied cyclen catalysts. We observe a good correlation between the p K a of the Zn-OH 2 moiety and the resulting relative stability of hydroxyl moieties over bicarbonate, which may be rationalized by the dominant effect of the difference in higher Zn-OH bond order in comparison to weaker bonding in bicarbonate and water. A direct relationship is identified between isolated organic ligand p K a and the p K a of a bound water molecule on the catalyst. Thus, organic ligand p K a , which is intuitive, easy to compute or tabulate, and much less sensitive to electronic structure method choice than whole-catalyst properties, is a good quantitative descriptor for predicting the effect of through-bond electronic effects on relative CO 2 hydration energetics. We expect this to be applicable to other reactions where is it essential to stabilize turnover-determining hydroxyl species with respect to more weakly bound moieties. Finally, we note exceptions for rigid ligands (e.g., porphyrins) that are observed to preferentially stabilize hydroxyl over bicarbonate without reducing p K a values as substantially. We expect the strategy outlined here, to (i) curate diverse ligands from large organic libraries and (ii) identify when ligand-only properties can determine catalyst energetics, to be broadly useful for both experimental and computational catalyst design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y Li; Q Wang; R Mariuzza
2011-12-31
Natural killer (NK) cells are lymphocytes of the innate immune system that participate in the elimination of tumor cells. In humans, the activating natural cytotoxicity receptors (NCRs) NKp30, NKp44, and NKp46 play a major role in NK cell-mediated tumor cell lysis. NKp30 recognizes B7-H6, a member of the B7 family which is expressed on tumor, but not healthy, cells. To understand the basis for tumor surveillance by NCRs, we determined the structure of NKp30, a member of the CD28 family which includes CTLA-4 and PD-1, in complex with B7-H6. The overall organization of the NKp30-B7-H6-activating complex differs considerably from thosemore » of the CTLA-4-B7 and PD-1-PD-L T cell inhibitory complexes. Whereas CTLA-4 and PD-1 use only the front {beta}-sheet of their Ig-like domain to bind ligands, NKp30 uses both front and back {beta}-sheets, resulting in engagement of B7-H6 via the side, as well as face, of the {beta}-sandwich. Moreover, B7-H6 contacts NKp30 through the complementarity-determining region (CDR) - like loops of its V-like domain in an antibody-like interaction that is not observed for B7 or PD-L. This first structure of an NCR bound to ligand provides a template for designing molecules to stimulate NKp30-mediated cytolytic activity for tumor immunotherapy.« less
Katre, Uma V; Mazumder, Suman; Prusti, Rabi K; Mohanty, Smita
2009-11-13
In moths, pheromone-binding proteins (PBPs) are responsible for the transport of the hydrophobic pheromones to the membrane-bound receptors across the aqueous sensillar lymph. We report here that recombinant Antheraea polyphemus PBP1 (ApolPBP1) picks up hydrophobic molecule(s) endogenous to the Escherichia coli expression host that keeps the protein in the "open" (bound) conformation at high pH but switches to the "closed" (free) conformation at low pH. This finding has bearing on the solution structures of undelipidated lepidopteran moth PBPs determined thus far. Picking up a hydrophobic molecule from the host expression system could be a common feature for lipid-binding proteins. Thus, delipidation is critical for bacterially expressed lipid-binding proteins. We have shown for the first time that the delipidated ApolPBP1 exists primarily in the closed form at all pH levels. Thus, current views on the pH-induced conformational switch of PBPs hold true only for the ligand-bound open conformation of the protein. Binding of various ligands to delipidated ApolPBP1 studied by solution NMR revealed that the protein in the closed conformation switches to the open conformation only at or above pH 6.0 with a protein to ligand stoichiometry of approximately 1:1. Mutation of His(70) and His(95) to alanine drives the equilibrium toward the open conformation even at low pH for the ligand-bound protein by eliminating the histidine-dependent pH-induced conformational switch. Thus, the delipidated double mutant can bind ligand even at low pH in contrast to the wild type protein as revealed by fluorescence competitive displacement assay using 1-aminoanthracene and solution NMR.
Zhang, Chen; Zhang, Tuo; Zou, Juan; Miller, Cassandra Lynn; Gorkhali, Rakshya; Yang, Jeong-Yeh; Schilmiller, Anthony; Wang, Shuo; Huang, Kenneth; Brown, Edward M; Moremen, Kelley W; Hu, Jian; Yang, Jenny J
2016-05-01
Ca(2+)-sensing receptors (CaSRs) modulate calcium and magnesium homeostasis and many (patho)physiological processes by responding to extracellular stimuli, including divalent cations and amino acids. We report the first crystal structure of the extracellular domain (ECD) of human CaSR bound with Mg(2+) and a tryptophan derivative ligand at 2.1 Å. The structure reveals key determinants for cooperative activation by metal ions and aromatic amino acids. The unexpected tryptophan derivative was bound in the hinge region between two globular ECD subdomains, and represents a novel high-affinity co-agonist of CaSR. The dissection of structure-function relations by mutagenesis, biochemical, and functional studies provides insights into the molecular basis of human diseases arising from CaSR mutations. The data also provide a novel paradigm for understanding the mechanism of CaSR-mediated signaling that is likely shared by the other family C GPCR [G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor] members and can facilitate the development of novel CaSR-based therapeutics.
Erickson, Jon A; Jalaie, Mehran; Robertson, Daniel H; Lewis, Richard A; Vieth, Michal
2004-01-01
The key to success for computational tools used in structure-based drug design is the ability to accurately place or "dock" a ligand in the binding pocket of the target of interest. In this report we examine the effect of several factors on docking accuracy, including ligand and protein flexibility. To examine ligand flexibility in an unbiased fashion, a test set of 41 ligand-protein cocomplex X-ray structures were assembled that represent a diversity of size, flexibility, and polarity with respect to the ligands. Four docking algorithms, DOCK, FlexX, GOLD, and CDOCKER, were applied to the test set, and the results were examined in terms of the ability to reproduce X-ray ligand positions within 2.0A heavy atom root-mean-square deviation. Overall, each method performed well (>50% accuracy) but for all methods it was found that docking accuracy decreased substantially for ligands with eight or more rotatable bonds. Only CDOCKER was able to accurately dock most of those ligands with eight or more rotatable bonds (71% accuracy rate). A second test set of structures was gathered to examine how protein flexibility influences docking accuracy. CDOCKER was applied to X-ray structures of trypsin, thrombin, and HIV-1-protease, using protein structures bound to several ligands and also the unbound (apo) form. Docking experiments of each ligand to one "average" structure and to the apo form were carried out, and the results were compared to docking each ligand back to its originating structure. The results show that docking accuracy falls off dramatically if one uses an average or apo structure. In fact, it is shown that the drop in docking accuracy mirrors the degree to which the protein moves upon ligand binding.
Horváth, Gergő; Bencsura, Ákos; Simon, Ágnes; Tochtrop, Gregory P; DeKoster, Gregory T; Covey, Douglas F; Cistola, David P; Toke, Orsolya
2016-02-01
Besides aiding digestion, bile salts are important signal molecules exhibiting a regulatory role in metabolic processes. Human ileal bile acid binding protein (I-BABP) is an intracellular carrier of bile salts in the epithelial cells of the distal small intestine and has a key role in the enterohepatic circulation of bile salts. Positive binding cooperativity combined with site selectivity of glycocholate and glycochenodeoxycholate, the two most abundant bile salts in the human body, make human I-BABP a unique member of the family of intracellular lipid binding proteins. Solution NMR structure of the ternary complex of human I-BABP with glycocholate and glycochenodeoxycholate reveals an extensive network of hydrogen bonds and hydrophobic interactions stabilizing the bound bile salts. Conformational changes accompanying bile salt binding affects four major regions in the protein including the C/D, E/F and G/H loops as well as the helical segment. Most of these protein regions coincide with a previously described network of millisecond time scale fluctuations in the apo protein, a motion absent in the bound state. Comparison of the heterotypic doubly ligated complex with the unligated form provides further evidence of a conformation selection mechanism of ligand entry. Structural and dynamic aspects of human I-BABP-bile salt interaction are discussed and compared with characteristics of ligand binding in other members of the intracellular lipid binding protein family. The coordinates of the 10 lowest energy structures of the human I-BABP : GCDA : GCA complex as well as the distance restraints used to calculate the final ensemble have been deposited in the Brookhaven Protein Data Bank with accession number 2MM3. © 2015 FEBS.
Shi, Danfeng; Zhou, Shuangyan; Liu, Xuewei; Zhao, Chenxi; Liu, Huanxiang; Yao, Xiaojun
2018-03-01
The inhibitors blocking the interaction between programmed cell death protein 1(PD-1) and programmed death-ligand 1(PD-L1) can activate the immune response of T cell and eliminate cancer cells. The crystallographic studies have provided structural insights of the interactive interfaces between PD-L1 and its protein ligands. However, the hotspot residues on PD-L1 as well as structural and energetic basis for different protein ligands still need to be further investigated. Molecular modeling methods including molecular dynamics simulation, per-residue free energy decomposition, virtual alanine scanning mutagenesis and residue-residue contact analysis were used to qualitatively and quantitatively analyze the interactions between PD-L1 and different protein ligands. The results of virtual alanine scanning mutagenesis suggest that Y56, Q66, M115, D122, Y123, R125 are the hotspot residues on PD-L1. The residue-residue contact analysis further shows that PD-1 interacts with PD-L1 mainly by F and G strands while monoclonal antibodies like avelumab and BMS-936559 mainly interact with PD-L1 by CDR2 and CDR3 loops of the heavy chain. A structurally similar β-hairpin peptide with 13 or 14 residues was extracted from each protein ligand and these β-hairpin peptides were found tightly binding to the putative hotspot residues on PD-L1. This study recognizes the hotspot residues on PD-L1 and uncovers the common structural and energetic basis of different protein ligands binding to PD-L1. These results will be valuable for the design of small molecule or peptide inhibitors targeting on PD-L1. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhou, Jian-Liang; An, Jing-Jing; Li, Ping; Li, Hui-Jun; Jiang, Yan; Cheng, Jie-Fei
2009-03-20
We present herein a novel bioseparation/chemical analysis strategy for protein-ligand screening and affinity ranking in compound mixtures, designed to increase screening rates and improve sensitivity and ruggedness in performance. The strategy is carried out by combining on-line two-dimensional turbulent flow chromatography (2D-TFC) with liquid chromatography-mass spectrometry (LC-MS), and accomplished through the following steps: (1) a reversed-phase TFC stage to separate the protein/ligand complex from the unbound free molecules, (2) an on-line dissociation process to release the bound ligands from the complexes, and (3) a second mixed-mode cation-exchange/reversed-phase TFC stage to trap the bound ligands and to remove the proteins and salts, followed by LC-MS analysis for identification and determination of the binding affinities. The technique can implement an ultra-fast isolation of protein/ligand complex with the retention time of a complex peak in about 5s, and on-line prepare the "clean" sample to be directly compatible with the LC-MS analysis. The improvement in performance of this 2D-TFC/LC-MS approach over the conventional approach has been demonstrated by determining affinity-selected ligands of the target proteins acetylcholinesterase and butyrylcholinesterase from a small library with known binding affinities and a steroidal alkaloid library composed of structurally similar compounds. Our results show that 2D-TFC/LC-MS is a generic and efficient tool for high-throughput screening of ligands with low-to-high binding affinities, and structure-activity relationship evaluation.
Structure of the Apo Form of Bacillus stearothermophilus Phosphofructokinase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mosser, Rockann; Reddy, Manchi C.M.; Bruning, John B.
2012-02-08
The crystal structure of the unliganded form of Bacillus stearothermophilus phosphofructokinase (BsPFK) was determined using molecular replacement to 2.8 {angstrom} resolution (Protein Data Bank entry 3U39). The apo BsPFK structure serves as the basis for the interpretation of any structural changes seen in the binary or ternary complexes. When the apo BsPFK structure is compared with the previously published liganded structures of BsPFK, the structural impact that the binding of the ligands produces is revealed. This comparison shows that the apo form of BsPFK resembles the substrate-bound form of BsPFK, a finding that differs from previous predictions.
Mandal, Kalyaneswar; Uppalapati, Maruti; Ault-Riché, Dana; Kenney, John; Lowitz, Joshua; Sidhu, Sachdev S.; Kent, Stephen B.H.
2012-01-01
Total chemical synthesis was used to prepare the mirror image (D-protein) form of the angiogenic protein vascular endothelial growth factor (VEGF-A). Phage display against D-VEGF-A was used to screen designed libraries based on a unique small protein scaffold in order to identify a high affinity ligand. Chemically synthesized D- and L- forms of the protein ligand showed reciprocal chiral specificity in surface plasmon resonance binding experiments: The L-protein ligand bound only to D-VEGF-A, whereas the D-protein ligand bound only to L-VEGF-A. The D-protein ligand, but not the L-protein ligand, inhibited the binding of natural VEGF165 to the VEGFR1 receptor. Racemic protein crystallography was used to determine the high resolution X-ray structure of the heterochiral complex consisting of {D-protein antagonist + L-protein form ofVEGF-A}. Crystallization of a racemic mixture of these synthetic proteins in appropriate stoichiometry gave a racemic protein complex of more than 73 kDa containing six synthetic protein molecules. The structure of the complex was determined to a resolution of 1.6 Å. Detailed analysis of the interaction between the D-protein antagonist and the VEGF-A protein molecule showed that the binding interface comprised a contact surface area of approximately 800 Å2 in accord with our design objectives, and that the D-protein antagonist binds to the same region of VEGF-A that interacts with VEGFR1-domain 2. PMID:22927390
Exploring Flexibility of Progesterone Receptor Ligand Binding Domain Using Molecular Dynamics
Zheng, Liangzhen; Mu, Yuguang
2016-01-01
Progesterone receptor (PR), a member of nuclear receptor (NR) superfamily, plays a vital role for female reproductive tissue development, differentiation and maintenance. PR ligand, such as progesterone, induces conformation changes in PR ligand binding domain (LBD), thus mediates subsequent gene regulation cascades. PR LBD may adopt different conformations upon an agonist or an antagonist binding. These different conformations would trigger distinct transcription events. Therefore, the dynamics of PR LBD would be of general interest to biologists for a deep understanding of its structure-function relationship. However, no apo-form (non-ligand bound) of PR LBD model has been proposed either by experiments or computational methods so far. In this study, we explored the structural dynamics of PR LBD using molecular dynamics simulations and advanced sampling tools in both ligand-bound and the apo-forms. Resolved by the simulation study, helix 11, helix 12 and loop 895–908 (the loop between these two helices) are quite flexible in antagonistic conformation. Several residues, such as Arg899 and Glu723, could form salt-bridging interaction between helix 11 and helix 3, and are important for the PR LBD dynamics. And we also propose that helix 12 in apo-form PR LBD, not like other NR LBDs, such as human estrogen receptor α (ERα) LBD, may not adopt a totally extended conformation. With the aid of umbrella sampling and metadynamics simulations, several stable conformations of apo-form PR LBD have been sampled, which may work as critical structural models for further large scale virtual screening study to discover novel PR ligands for therapeutic application. PMID:27824891
Sung, Nuri; Lee, Jungsoon; Kim, Ji-Hyun; Chang, Changsoo; Joachimiak, Andrzej; Lee, Sukyeong; Tsai, Francis T. F.
2016-01-01
Heat-shock protein of 90 kDa (Hsp90) is an essential molecular chaperone that adopts different 3D structures associated with distinct nucleotide states: a wide-open, V-shaped dimer in the apo state and a twisted, N-terminally closed dimer with ATP. Although the N domain is known to mediate ATP binding, how Hsp90 senses the bound nucleotide and facilitates dimer closure remains unclear. Here we present atomic structures of human mitochondrial Hsp90N (TRAP1N) and a composite model of intact TRAP1 revealing a previously unobserved coiled-coil dimer conformation that may precede dimer closure and is conserved in intact TRAP1 in solution. Our structure suggests that TRAP1 normally exists in an autoinhibited state with the ATP lid bound to the nucleotide-binding pocket. ATP binding displaces the ATP lid that signals the cis-bound ATP status to the neighboring subunit in a highly cooperative manner compatible with the coiled-coil intermediate state. We propose that TRAP1 is a ligand-activated molecular chaperone, which couples ATP binding to dramatic changes in local structure required for protein folding. PMID:26929380
NASA Astrophysics Data System (ADS)
Slamnoiu, Stefan; Vlad, Camelia; Stumbaum, Mihaela; Moise, Adrian; Lindner, Kathrin; Engel, Nicole; Vilanova, Mar; Diaz, Mireia; Karreman, Christiaan; Leist, Marcel; Ciossek, Thomas; Hengerer, Bastian; Vilaseca, Marta; Przybylski, Michael
2014-08-01
Bioaffinity analysis using a variety of biosensors has become an established tool for detection and quantification of biomolecular interactions. Biosensors, however, are generally limited by the lack of chemical structure information of affinity-bound ligands. On-line bioaffinity-mass spectrometry using a surface-acoustic wave biosensor (SAW-MS) is a new combination providing the simultaneous affinity detection, quantification, and mass spectrometric structural characterization of ligands. We describe here an on-line SAW-MS combination for direct identification and affinity determination, using a new interface for MS of the affinity-isolated ligand eluate. Key element of the SAW-MS combination is a microfluidic interface that integrates affinity-isolation on a gold chip, in-situ sample concentration, and desalting with a microcolumn for MS of the ligand eluate from the biosensor. Suitable MS- acquisition software has been developed that provides coupling of the SAW-MS interface to a Bruker Daltonics ion trap-MS, FTICR-MS, and Waters Synapt-QTOF- MS systems. Applications are presented for mass spectrometric identifications and affinity (KD) determinations of the neurodegenerative polypeptides, ß-amyloid (Aß), and pathophysiological and physiological synucleins (α- and ß-synucleins), two key polypeptide systems for Alzheimer's disease and Parkinson's disease, respectively. Moreover, first in vivo applications of αSyn polypeptides from brain homogenate show the feasibility of on-line affinity-MS to the direct analysis of biological material. These results demonstrate on-line SAW-bioaffinity-MS as a powerful tool for structural and quantitative analysis of biopolymer interactions.
Ashford, Paul; Moss, David S; Alex, Alexander; Yeap, Siew K; Povia, Alice; Nobeli, Irene; Williams, Mark A
2012-03-14
Protein structures provide a valuable resource for rational drug design. For a protein with no known ligand, computational tools can predict surface pockets that are of suitable size and shape to accommodate a complementary small-molecule drug. However, pocket prediction against single static structures may miss features of pockets that arise from proteins' dynamic behaviour. In particular, ligand-binding conformations can be observed as transiently populated states of the apo protein, so it is possible to gain insight into ligand-bound forms by considering conformational variation in apo proteins. This variation can be explored by considering sets of related structures: computationally generated conformers, solution NMR ensembles, multiple crystal structures, homologues or homology models. It is non-trivial to compare pockets, either from different programs or across sets of structures. For a single structure, difficulties arise in defining particular pocket's boundaries. For a set of conformationally distinct structures the challenge is how to make reasonable comparisons between them given that a perfect structural alignment is not possible. We have developed a computational method, Provar, that provides a consistent representation of predicted binding pockets across sets of related protein structures. The outputs are probabilities that each atom or residue of the protein borders a predicted pocket. These probabilities can be readily visualised on a protein using existing molecular graphics software. We show how Provar simplifies comparison of the outputs of different pocket prediction algorithms, of pockets across multiple simulated conformations and between homologous structures. We demonstrate the benefits of use of multiple structures for protein-ligand and protein-protein interface analysis on a set of complexes and consider three case studies in detail: i) analysis of a kinase superfamily highlights the conserved occurrence of surface pockets at the active and regulatory sites; ii) a simulated ensemble of unliganded Bcl2 structures reveals extensions of a known ligand-binding pocket not apparent in the apo crystal structure; iii) visualisations of interleukin-2 and its homologues highlight conserved pockets at the known receptor interfaces and regions whose conformation is known to change on inhibitor binding. Through post-processing of the output of a variety of pocket prediction software, Provar provides a flexible approach to the analysis and visualization of the persistence or variability of pockets in sets of related protein structures.
Steric Effect on the Nucleophilic Reactivity of Nickel(III) Peroxo Complexes.
Kim, Jalee; Shin, Bongki; Kim, Hyunjeong; Lee, Junhyung; Kang, Joongoo; Yanagisawa, Sachiko; Ogura, Takashi; Masuda, Hideki; Ozawa, Tomohiro; Cho, Jaeheung
2015-07-06
A set of nickel(III) peroxo complexes bearing tetraazamacrocyclic ligands, [Ni(III)(TBDAP)(O2)](+) (TBDAP = N,N'-di-tert-butyl-2,11-diaza[3.3](2,6)pyridinophane) and [Ni(III)(CHDAP)(O2)](+) (CHDAP = N,N'-dicyclohexyl-2,11-diaza[3.3](2,6)pyridinophane), were prepared by reacting [Ni(II)(TBDAP)(NO3)(H2O)](+) and [Ni(II)(CHDAP)(NO3)](+), respectively, with H2O2 in the presence of triethylamine. The mononuclear nickel(III) peroxo complexes were fully characterized by various physicochemical methods, such as UV-vis, electrospray ionization mass spectrometry, resonance Raman, electron paramagnetic resonance, and X-ray analysis. The spectroscopic and structural characterization clearly shows that the NiO2 cores are almost identical where the peroxo ligand is bound in a side-on fashion. However, the different steric properties of the supporting ligands were confirmed by X-ray crystallography, where the CHDAP ligand gives enough space around the Ni core compared to the TBDAP ligand. The nickel(III) peroxo complexes showed reactivity in the oxidation of aldehydes. In the aldehyde deformylation reaction, the nucleophilic reactivity of the nickel(III) peroxo complexes was highly dependent on the steric properties of the macrocyclic ligands, with a reactivity order of [Ni(III)(TBDAP)(O2)](+) < [Ni(III)(CHDAP)(O2)](+). This result provides fundamental insight into the mechanism of the structure (steric)-reactivity relationship of metal peroxo intermediates.
Chen, Xun; Stout, Steven; Mueller, Uwe; Boykow, George; Visconti, Richard; Siliphaivanh, Phieng; Spencer, Kerrie; Presland, Jeremy; Kavana, Michael; Basso, Andrea D; McLaren, David G; Myers, Robert W
2017-08-01
We have developed and validated label-free, liquid chromatography-mass spectrometry (LC-MS)-based equilibrium direct and competition binding assays to quantitate small-molecule antagonist binding to recombinant human and mouse BLT1 receptors expressed in HEK 293 cell membranes. Procedurally, these binding assays involve (1) equilibration of the BLT1 receptor and probe ligand, with or without a competitor; (2) vacuum filtration through cationic glass fiber filters to separate receptor-bound from free probe ligand; and (3) LC-MS analysis in selected reaction monitoring mode for bound probe ligand quantitation. Two novel, optimized probe ligands, compounds 1 and 2, were identified by screening 20 unlabeled BLT1 antagonists for direct binding. Saturation direct binding studies confirmed the high affinity, and dissociation studies established the rapid binding kinetics of probe ligands 1 and 2. Competition binding assays were established using both probe ligands, and the affinities of structurally diverse BLT1 antagonists were measured. Both binding assay formats can be executed with high specificity and sensitivity and moderate throughput (96-well plate format) using these approaches. This highly versatile, label-free method for studying ligand binding to membrane-associated receptors should find broad application as an alternative to traditional methods using labeled ligands.
CDOCKER and lambda λ -dynamics for prospective prediction in D3R Grand Challenge 2
NASA Astrophysics Data System (ADS)
Ding, Xinqiang; Hayes, Ryan L.; Vilseck, Jonah Z.; Charles, Murchtricia K.; Brooks, Charles L.
2018-01-01
The opportunity to prospectively predict ligand bound poses and free energies of binding to the Farnesoid X Receptor in the D3R Grand Challenge 2 provided a useful exercise to evaluate CHARMM based docking (CDOCKER) and λ-dynamics methodologies for use in "real-world" applications in computer aided drug design. In addition to measuring their current performance, several recent methodological developments have been analyzed retrospectively to highlight best procedural practices in future applications. For pose prediction with CDOCKER, when the protein structure used for rigid receptor docking was close to the crystallographic holo structure, reliable poses were obtained. Benzimidazoles, with a known holo receptor structure, were successfully docked with an average RMSD of 0.97 Å. Other non-benzimidazole ligands displayed less accuracy largely because the receptor structures we chose for docking were too different from the experimental holo structures. However, retrospective analysis has shown that when these ligands were re-docked into their holo structures, the average RMSD dropped to 1.18 Å for all ligands. When sulfonamides and spiros were docked with the apo structure, which agrees more with their holo structure than the structures we chose, five out of six ligands were correctly docked. These docking results emphasize the need for flexible receptor docking approaches. For λ-dynamics techniques, including multisite λ-dynamics (MSλD), reasonable agreement with experiment was observed for the 33 ligands investigated; root mean square errors of 2.08 and 1.67 kcal/mol were obtained for free energy sets 1 and 2, respectively. Retrospectively, soft-core potentials, adaptive landscape flattening, and biasing potential replica exchange (BP-REX) algorithms were critical to model large substituent perturbations with sufficient precision and within restrictive timeframes, such as was required with participation in Grand Challenge 2. These developments, their associated benefits, and proposed procedures for their use in future applications are discussed.
CDOCKER and λ-dynamics for prospective prediction in D₃R Grand Challenge 2.
Ding, Xinqiang; Hayes, Ryan L; Vilseck, Jonah Z; Charles, Murchtricia K; Brooks, Charles L
2018-01-01
The opportunity to prospectively predict ligand bound poses and free energies of binding to the Farnesoid X Receptor in the D3R Grand Challenge 2 provided a useful exercise to evaluate CHARMM based docking (CDOCKER) and [Formula: see text]-dynamics methodologies for use in "real-world" applications in computer aided drug design. In addition to measuring their current performance, several recent methodological developments have been analyzed retrospectively to highlight best procedural practices in future applications. For pose prediction with CDOCKER, when the protein structure used for rigid receptor docking was close to the crystallographic holo structure, reliable poses were obtained. Benzimidazoles, with a known holo receptor structure, were successfully docked with an average RMSD of 0.97 [Formula: see text]. Other non-benzimidazole ligands displayed less accuracy largely because the receptor structures we chose for docking were too different from the experimental holo structures. However, retrospective analysis has shown that when these ligands were re-docked into their holo structures, the average RMSD dropped to 1.18 [Formula: see text] for all ligands. When sulfonamides and spiros were docked with the apo structure, which agrees more with their holo structure than the structures we chose, five out of six ligands were correctly docked. These docking results emphasize the need for flexible receptor docking approaches. For [Formula: see text]-dynamics techniques, including multisite [Formula: see text]-dynamics (MS[Formula: see text]D), reasonable agreement with experiment was observed for the 33 ligands investigated; root mean square errors of 2.08 and 1.67 kcal/mol were obtained for free energy sets 1 and 2, respectively. Retrospectively, soft-core potentials, adaptive landscape flattening, and biasing potential replica exchange (BP-REX) algorithms were critical to model large substituent perturbations with sufficient precision and within restrictive timeframes, such as was required with participation in Grand Challenge 2. These developments, their associated benefits, and proposed procedures for their use in future applications are discussed.
Identification of the Ah-Receptor Structural Determinants for Ligand Preferences
Xing, Yongna
2012-01-01
The aryl hydrocarbon receptor (AHR) is a transcription factor that responds to diverse ligands and plays a critical role in toxicology, immune function, and cardiovascular physiology. The structural basis of the AHR for ligand promiscuity and preferences is critical for understanding AHR function. Based on the structure of a closely related protein HIF2α, we modeled the AHR ligand binding domain (LBD) bound to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and benzo(a)pyrene (BaP) and identified residues that control ligand preferences by shape and H-bond potential. Mutations to these residues, particularly Q377 and G298, resulted in robust and opposite changes in the potency of TCDD and BaP and up to a 20-fold change in the ratio of TCDD/BaP efficacy. The model also revealed a flexible “belt” structure; molecular dynamic (MD) simulation suggested that the “belt” and several other structural elements in the AHR-LBD are more flexible than HIF2α and likely contribute to ligand promiscuity. Molecular docking of TCDD congeners to a model of human AHR-LBD ranks their binding affinity similar to experimental ranking of their toxicity. Our study reveals key structural basis for prediction of toxicity and understanding the AHR signaling through diverse ligands. PMID:22659362
Lam, Wai Han; Yam, Vivian Wing-Wah
2010-12-06
The structural geometry, electronic structure, photophysical properties, and the fluxional behavior of a series of A-frame diplatinum alkynyl complexes, [Pt(2)(μ-dppm)(2)(μ-C≡CR)(C≡CR)(2)](+) [R = (t)Bu (1), C(6)H(5) (2), C(6)H(4)Ph-p (3), C(6)H(4)Et-p (4), C(6)H(4)OMe-p (5); dppm = bis(diphenylphosphino)methane], have been studied by density functional theory (DFT) and time-dependent TD-DFT associated with conductor-like polarizable continuum model (CPCM) calculations. The results show that the Pt···Pt distance strongly depends on the binding mode of the alkynyl ligands. A significantly shorter Pt···Pt distance is found in the symmetrical form, in which the bridging alkynyl ligand is σ-bound to the two metal centers, than in the unsymmetrical form where the alkynyl ligand is σ-bound to one metal and π-bound to another. For the two structural forms in 1-5, both the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy levels show a dependence on the nature of the substituents attached to the alkynyl ligand. The energies of the HOMO and LUMO are found to increase and decrease, respectively, from R = (t)Bu to R = Ph and to R = C(6)H(4)Ph-p, because of the increase of the π- conjugation of the alkynyl ligand. On the basis of the TDDFT/CPCM calculations, the low-energy absorption band consists of two types of transitions, which are ligand-to-ligand charge-transfer (LLCT) [π(alkynyl) → σ*(dppm)]/metal-centered MC [dσ*(Pt(2)) → pσ(Pt(2))] transitions as well as interligand π → π* transition from the terminal alkynyl ligands to the bridging alkynyl ligand mixed with metal-metal-to-ligand charge transfer MMLCT [dσ*(Pt(2)) → π*(bridging alkynyl)] transition. The latter transition is lower in energy than the former. The calculation also indicates that the emission for the complexes originates from the triplet interligand π(terminal alkynyls) → π*(bridging alkynyl)/MMLCT [dσ*(Pt(2)) → π*(bridging alkynyl)] excited state. In terms of the fluxional behavior, calculations have been performed to study the details of the mechanisms for the three fluxional processes, which are the σ,π-alkynyl exchange, the ring-flipping, and the bridging-to-terminal alkynyl exchange processes.
The Free Energy Landscape of Small Molecule Unbinding
Huang, Danzhi; Caflisch, Amedeo
2011-01-01
The spontaneous dissociation of six small ligands from the active site of FKBP (the FK506 binding protein) is investigated by explicit water molecular dynamics simulations and network analysis. The ligands have between four (dimethylsulphoxide) and eleven (5-diethylamino-2-pentanone) non-hydrogen atoms, and an affinity for FKBP ranging from 20 to 0.2 mM. The conformations of the FKBP/ligand complex saved along multiple trajectories (50 runs at 310 K for each ligand) are grouped according to a set of intermolecular distances into nodes of a network, and the direct transitions between them are the links. The network analysis reveals that the bound state consists of several subbasins, i.e., binding modes characterized by distinct intermolecular hydrogen bonds and hydrophobic contacts. The dissociation kinetics show a simple (i.e., single-exponential) time dependence because the unbinding barrier is much higher than the barriers between subbasins in the bound state. The unbinding transition state is made up of heterogeneous positions and orientations of the ligand in the FKBP active site, which correspond to multiple pathways of dissociation. For the six small ligands of FKBP, the weaker the binding affinity the closer to the bound state (along the intermolecular distance) are the transition state structures, which is a new manifestation of Hammond behavior. Experimental approaches to the study of fragment binding to proteins have limitations in temporal and spatial resolution. Our network analysis of the unbinding simulations of small inhibitors from an enzyme paints a clear picture of the free energy landscape (both thermodynamics and kinetics) of ligand unbinding. PMID:21390201
The free energy landscape of small molecule unbinding.
Huang, Danzhi; Caflisch, Amedeo
2011-02-01
The spontaneous dissociation of six small ligands from the active site of FKBP (the FK506 binding protein) is investigated by explicit water molecular dynamics simulations and network analysis. The ligands have between four (dimethylsulphoxide) and eleven (5-diethylamino-2-pentanone) non-hydrogen atoms, and an affinity for FKBP ranging from 20 to 0.2 mM. The conformations of the FKBP/ligand complex saved along multiple trajectories (50 runs at 310 K for each ligand) are grouped according to a set of intermolecular distances into nodes of a network, and the direct transitions between them are the links. The network analysis reveals that the bound state consists of several subbasins, i.e., binding modes characterized by distinct intermolecular hydrogen bonds and hydrophobic contacts. The dissociation kinetics show a simple (i.e., single-exponential) time dependence because the unbinding barrier is much higher than the barriers between subbasins in the bound state. The unbinding transition state is made up of heterogeneous positions and orientations of the ligand in the FKBP active site, which correspond to multiple pathways of dissociation. For the six small ligands of FKBP, the weaker the binding affinity the closer to the bound state (along the intermolecular distance) are the transition state structures, which is a new manifestation of Hammond behavior. Experimental approaches to the study of fragment binding to proteins have limitations in temporal and spatial resolution. Our network analysis of the unbinding simulations of small inhibitors from an enzyme paints a clear picture of the free energy landscape (both thermodynamics and kinetics) of ligand unbinding.
Kaushik, Sanket; Singh, Nagendra; Yamini, Shavait; Singh, Avinash; Sinha, Mau; Arora, Ashish; Kaur, Punit; Sharma, Sujata; Singh, Tej P.
2013-01-01
The incidences of infections caused by an aerobic Gram-negative bacterium, Acinetobacter baumannii are very common in hospital environments. It usually causes soft tissue infections including urinary tract infections and pneumonia. It is difficult to treat due to acquired resistance to available antibiotics is well known. In order to design specific inhibitors against one of the important enzymes, peptidyl-tRNA hydrolase from Acinetobacter baumannii, we have determined its three-dimensional structure. Peptidyl-tRNA hydrolase (AbPth) is involved in recycling of peptidyl-tRNAs which are produced in the cell as a result of premature termination of translation process. We have also determined the structures of two complexes of AbPth with cytidine and uridine. AbPth was cloned, expressed and crystallized in unbound and in two bound states with cytidine and uridine. The binding studies carried out using fluorescence spectroscopic and surface plasmon resonance techniques revealed that both cytidine and uridine bound to AbPth at nanomolar concentrations. The structure determinations of the complexes revealed that both ligands were located in the active site cleft of AbPth. The introduction of ligands to AbPth caused a significant widening of the entrance gate to the active site region and in the process of binding, it expelled several water molecules from the active site. As a result of interactions with protein atoms, the ligands caused conformational changes in several residues to attain the induced tight fittings. Such a binding capability of this protein makes it a versatile molecule for hydrolysis of peptidyl-tRNAs having variable peptide sequences. These are the first studies that revealed the mode of inhibitor binding in Peptidyl-tRNA hydrolases which will facilitate the structure based ligand design. PMID:23844024
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, R.; Wilton, R.; Cuff, M. E.
We report the structural and biochemical characterization of a novel periplasmic ligand-binding protein, Dret_0059, from Desulfohalobium retbaense DSM 5692, an organism isolated from the Salt Lake Retba in Senegal. The structure of the protein consists of a unique combination of a periplasmic solute binding protein (SBP) domain at the N-terminal and a tandem PAS-like sensor domain at the C-terminal region. SBP domains are found ubiquitously and their best known function is in solute transport across membranes. PAS-like sensor domains are commonly found in signal transduction proteins. These domains are widely observed as parts of many protein architectures and complexes butmore » have not been observed previously within the same polypeptide chain. In the structure of Dret_0059, a ketoleucine moiety is bound to the SBP, whereas a cytosine molecule is bound in the distal PAS-like domain of the tandem PAS-like domain. Differential scanning flourimetry support the binding of ligands observed in the crystal structure. There is significant interaction between the SBP and tandem PAS-like domains, and it is possible that the binding of one ligand could have an effect on the binding of the other. We uncovered three other proteins with this structural architecture in the non-redundant sequence data base, and predict that they too bind the same substrates. The genomic context of this protein did not offer any clues for its function. We did not find any biological process in which the two observed ligands are coupled. The protein Dret_0059 could be involved in either signal transduction or solute transport.« less
Conformational Rearrangement Within the Soluble Domains of the CD4 Receptor is Ligand-Specific
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashish,F.; Juncadella, I.; Garg, R.
2008-01-01
Ligand binding induces shape changes within the four modular ectodomains (D1-D4) of the CD4 receptor, an important receptor in immune signaling. Small angle x-ray scattering (SAXS) on both a two-domain and a four-domain construct of the soluble CD4 (sCD4) is consistent with known crystal structures demonstrating a bilobal and a semi-extended tetralobal Z conformation in solution, respectively. Detection of conformational changes within sCD4 as a result of ligand binding was followed by SAXS on sCD4 bound to two different glycoprotein ligands: the tick saliva immunosuppressor Salp15 and the HIV-1 envelope protein gp120. Ab initio modeling of these data showed thatmore » both Salp15 and gp120 bind to the D1 domain of sCD4 and yet induce drastically different structural rearrangements. Upon binding, Salp15 primarily distorts the characteristic lobal architecture of the sCD4 without significantly altering the semi-extended shape of the sCD4 receptor. In sharp contrast, the interaction of gp120 with sCD4 induces a shape change within sCD4 that can be described as a Z-to-U bi-fold closure of the four domains across its flexible D2-D3 linker. Placement of known crystal structures within the boundaries of the SAXS-derived models suggests that the ligand-induced shape changes could be a result of conformational changes within this D2-D3 linker. Functionally, the observed shape changes in CD4 receptor causes dissociation of lymphocyte kinase from the cytoplasmic domain of Salp15-bound CD4 and facilitates an interaction between the exposed V3 loops of CD4-bound gp120 molecule to the extracellular loops of its co-receptor, a step essential for HIV-1 viral entry.« less
Xu, Yuqun; Miyakawa, Takuya; Nakamura, Hidemitsu; Nakamura, Akira; Imamura, Yusaku; Asami, Tadao; Tanokura, Masaru
2016-01-01
The perception of two plant germination inducers, karrikins and strigolactones, are mediated by the proteins KAI2 and D14. Recently, KAI2-type proteins from parasitic weeds, which are possibly related to seed germination induced by strigolactone, have been classified into three clades characterized by different responses to karrikin/strigolactone. Here we characterized a karrikin-binding protein in Striga (ShKAI2iB) that belongs to intermediate-evolving KAI2 and provided the structural bases for its karrikin-binding specificity. Binding assays showed that ShKAI2iB bound karrikins but not strigolactone, differing from other KAI2 and D14. The crystal structures of ShKAI2iB and ShKAI2iB-karrikin complex revealed obvious structural differences in a helix located at the entry of its ligand-binding cavity. This results in a smaller closed pocket, which is also the major cause of ShKAI2iB’s specificity of binding karrikin. Our structural study also revealed that a few non-conserved amino acids led to the distinct ligand-binding profile of ShKAI2iB, suggesting that the evolution of KAI2 resulted in its diverse functions. PMID:27507097
1H NMR study of the effect of variable ligand on heme oxygenase electronic and molecular structure
Ma, Li-Hua; Liu, Yangzhong; Zhang, Xuhong; Yoshida, Tadashi; La Mar, Gerd N.
2009-01-01
Heme oxygenase carries out stereospecific catabolism of protohemin to yield iron, CO and biliverdin. Instability of the physiological oxy complex has necessitated the use of model ligands, of which cyanide and azide are amenable to solution NMR characterization. Since cyanide and azide are contrasting models for bound oxygen, it is of interest to characterize differences in their molecular and/or electronic structures. We report on detailed 2D NMR comparison of the azide and cyanide substrate complexes of heme oxygenase from Neisseria meningitidis, which reveals significant and widespread differences in chemical shifts between the two complexes. To differentiate molecular from electronic structural changes between the two complexes, the anisotropy and orientation of the paramagnetic susceptibility tensor were determined for the azide complex for comparison with those for the cyanide complex. Comparison of the predicted and observed dipolar shifts reveals that shift differences are strongly dominated by differences in electronic structure and do not provide any evidence for detectable differences in molecular structure or hydrogen bonding except in the immediate vicinity of the distal ligand. The readily cleaved C-terminus interacts with the active site and saturation-transfer allows difficult heme assignments in the high-spin aquo complex. PMID:18976815
Structural and mutagenetic analyses of a 1,3-1,4-β-glucanase from Paecilomyces thermophila.
Cheng, Ya-Shan; Huang, Chun-Hsiang; Chen, Chun-Chi; Huang, Ting-Yung; Ko, Tzu-Ping; Huang, Jian-Wen; Wu, Tzu-Hui; Liu, Je-Ruei; Guo, Rey-Ting
2014-02-01
The thermostable 1,3-1,4-β-glucanase PtLic16A from the fungus Paecilomyces thermophila catalyzes stringent hydrolysis of barley β-glucan and lichenan with an outstanding efficiency and has great potential for broad industrial applications. Here, we report the crystal structures of PtLic16A and an inactive mutant E113A in ligand-free form and in complex with the ligands cellobiose, cellotetraose and glucotriose at 1.80Å to 2.25Å resolution. PtLic16A adopts a typical β-jellyroll fold with a curved surface and the concave face forms an extended ligand binding cleft. These structures suggest that PtLic16A might carry out the hydrolysis via retaining mechanism with E113 and E118 serving as the nucleophile and general acid/base, respectively. Interestingly, in the structure of E113A/1,3-1,4-β-glucotriose complex, the sugar bound to the -1 subsite adopts an intermediate-like (α-anomeric) configuration. By combining all crystal structures solved here, a comprehensive binding mode for a substrate is proposed. These findings not only help understand the 1,3-1,4-β-glucanase catalytic mechanism but also provide a basis for further enzymatic engineering. Copyright © 2013 Elsevier B.V. All rights reserved.
Chen, Minjiao; Jiang, Ming; Sun, Yueru; Guo, Zu-Feng; Guo, Zhihong
2011-07-05
1,4-Dihydroxy-2-naphthoyl-coenzyme A (DHNA-CoA) synthase, or MenB, catalyzes an intramolecular Claisen condensation involving two oxyanion intermediates in the biosynthetic pathway of menaquinone, an essential respiration electron transporter in many microorganisms. Here we report the finding that the DHNA-CoA product and its analogues bind and inhibit the synthase from Escherichia coli with significant ultraviolet--visible spectral changes, which are similar to the changes induced by deprotonation of the free inhibitors in a basic solution. Dissection of the structure--affinity relationships of the inhibitors identifies the hydroxyl groups at positions 1 (C1-OH) and 4 (C4-OH) of DHNA-CoA or their equivalents as the dominant and minor sites, respectively, for the enzyme--ligand interaction that polarizes or deprotonates the bound ligands to cause the observed spectral changes. In the meantime, spectroscopic studies with active site mutants indicate that C4-OH of the enzyme-bound DHNA-CoA interacts with conserved polar residues Arg-91, Tyr-97, and Tyr-258 likely through a hydrogen bonding network that also includes Ser-161. In addition, site-directed mutation of the conserved Asp-163 to alanine causes a complete loss of the ligand binding ability of the protein, suggesting that the Asp-163 side chain is most likely hydrogen-bonded to C1-OH of DHNA-CoA to provide the dominant polarizing effect. Moreover, this mutation also completely eliminates the enzyme activity, strongly supporting the possibility that the Asp-163 side chain provides a strong stabilizing hydrogen bond to the tetrahedral oxyanion, which takes a position similar to that of C1-OH of the enzyme-bound DHNA-CoA and is the second high-energy intermediate in the intracellular Claisen condensation reaction. Interestingly, both Arg-91 and Tyr-97 are located in a disordered loop forming part of the active site of all available DHNA-CoA synthase structures. Their involvement in the interaction with the small molecule ligands suggests that the disordered loop is folded in interaction with the substrates or reaction intermediates, supporting an induced-fit catalytic mechanism for the enzyme.
Harris, Caleb F; Bayless, Michael B; van Leest, Nicolaas P; Bruch, Quinton J; Livesay, Brooke N; Bacsa, John; Hardcastle, Kenneth I; Shores, Matthew P; de Bruin, Bas; Soper, Jake D
2017-10-16
A new family of low-coordinate Co complexes supported by three redox-noninnocent tridentate [OCO] pincer-type bis(phenolate) N-heterocyclic carbene (NHC) ligands are described. Combined experimental and computational data suggest that the charge-neutral four-coordinate complexes are best formulated as Co(II) centers bound to closed-shell [OCO] 2- dianions, of the general formula [(OCO)Co II L] (where L is a solvent-derived MeCN or THF). Cyclic voltammograms of the [(OCO)Co II L] complexes reveal three oxidations accessible at potentials below 1.2 V vs Fc + /Fc, corresponding to generation of formally Co(V) species, but the true physical/spectroscopic oxidation states are much lower. Chemical oxidations afford the mono- and dications of the imidazoline NHC-derived complex, which were examined by computational and magnetic and spectroscopic methods, including single-crystal X-ray diffraction. The metal and ligand oxidation states of the monocationic complex are ambiguous; data are consistent with formulation as either [( S OCO)Co III (THF) 2 ] + containing a closed-shell [ S OCO] 2- diphenolate ligand bound to a S = 1 Co(III) center, or [( S OCO • )Co II (THF) 2 ] + with a low-spin Co(II) ion ferromagnetically coupled to monoanionic [ S OCO • ] - containing a single unpaired electron distributed across the [OCO] framework. The dication is best described as [( S OCO 0 )Co II (THF) 3 ] 2+ , with a single unpaired electron localized on the d 7 Co(II) center and a doubly oxidized, charge-neutral, closed-shell S OCO 0 ligand. The combined data provide for the first time unequivocal and structural evidence for [OCO] ligand redox activity. Notably, varying the degree of unsaturation in the NHC backbone shifts the ligand-based oxidation potentials by up to 400 mV. The possible chemical origins of this unexpected shift, along with the potential utility of the [OCO] pincer ligands for base-metal-mediated organometallic coupling catalysis, are discussed.
Smirnov, Alexey; Zubrienė, Asta; Manakova, Elena; Gražulis, Saulius
2018-01-01
The structure-thermodynamics correlation analysis was performed for a series of fluorine- and chlorine-substituted benzenesulfonamide inhibitors binding to several human carbonic anhydrase (CA) isoforms. The total of 24 crystal structures of 16 inhibitors bound to isoforms CA I, CA II, CA XII, and CA XIII provided the structural information of selective recognition between a compound and CA isoform. The binding thermodynamics of all structures was determined by the analysis of binding-linked protonation events, yielding the intrinsic parameters, i.e., the enthalpy, entropy, and Gibbs energy of binding. Inhibitor binding was compared within structurally similar pairs that differ by para- or meta-substituents enabling to obtain the contributing energies of ligand fragments. The pairs were divided into two groups. First, similar binders—the pairs that keep the same orientation of the benzene ring exhibited classical hydrophobic effect, a less exothermic enthalpy and a more favorable entropy upon addition of the hydrophobic fragments. Second, dissimilar binders—the pairs of binders that demonstrated altered positions of the benzene rings exhibited the non-classical hydrophobic effect, a more favorable enthalpy and variable entropy contribution. A deeper understanding of the energies contributing to the protein-ligand recognition should lead toward the eventual goal of rational drug design where chemical structures of ligands could be designed based on the target protein structure. PMID:29503769
Tc-99m galactosyl-neoglycoalbumin: in vitro characterization of receptor-mediated binding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vera, D.R.; Krohn, K.A.; Stadalnik, R.C.
1984-07-01
Hepatic binding protein (HBP) is a membrane receptor that binds and transports plasma glycoproteins from hepatic blood to hepatocellular lysosomes. A characterization is made of the in vitro binding of Tc-99m galactosyl-neoglycoalbumin (Tc-NGA), a synthetic HBP ligand, to liver membrane. Structural modifications of NGA resulted in the alteration of the equilibrium constant, KA, and the forward-binding rate constant, kb. Binding was second-order; the relative amount of membrane-bound NGA depended on the initial concentrations of ligand and membrane. Membrane displacement studies, using carrier ligands in contrast to previously bound Tc-NGA or I-NGA, correlated with the binding characteristics of a native HBPmore » ligand, asialo-orosomucoid. Computer simulation was used to study the detectability of the changes in HBP concentration at different values of kb. The simulations indicated that radiopharmacokinetic sensitivity to alterations in (HBP) should be possible using a neoglycoalbumin preparation with a carbohydrate density within the range of 15 to 25 galactose units per albumin molecule.« less
Metal–organic complexation in the marine environment
Luther, George W; Rozan, Timothy F; Witter, Amy; Lewis, Brent
2001-01-01
We discuss the voltammetric methods that are used to assess metal–organic complexation in seawater. These consist of titration methods using anodic stripping voltammetry (ASV) and cathodic stripping voltammetry competitive ligand experiments (CSV-CLE). These approaches and a kinetic approach using CSV-CLE give similar information on the amount of excess ligand to metal in a sample and the conditional metal ligand stability constant for the excess ligand bound to the metal. CSV-CLE data using different ligands to measure Fe(III) organic complexes are similar. All these methods give conditional stability constants for which the side reaction coefficient for the metal can be corrected but not that for the ligand. Another approach, pseudovoltammetry, provides information on the actual metal–ligand complex(es) in a sample by doing ASV experiments where the deposition potential is varied more negatively in order to destroy the metal–ligand complex. This latter approach gives concentration information on each actual ligand bound to the metal as well as the thermodynamic stability constant of each complex in solution when compared to known metal–ligand complexes. In this case the side reaction coefficients for the metal and ligand are corrected. Thus, this method may not give identical information to the titration methods because the excess ligand in the sample may not be identical to some of the actual ligands binding the metal in the sample. PMID:16759421
Autiero, Ida; Ruvo, Menotti; Improta, Roberto; Vitagliano, Luigi
2018-04-01
Aptamers are RNA/DNA biomolecules representing an emerging class of protein interactors and regulators. Despite the growing interest in these molecules, current understanding of chemical-physical basis of their target recognition is limited. Recently, the characterization of the aptamer targeting the protein-S8 has suggested that flexibility plays important functional roles. We investigated the structural versatility of the S8-aptamer by molecular dynamics simulations. Five different simulations have been conducted by varying starting structures and temperatures. The simulation of S8-aptamer complex provides a dynamic view of the contacts occurring at the complex interface. The simulation of the aptamer in ligand-free state indicates that its central region is intrinsically endowed with a remarkable flexibility. Nevertheless, none of the trajectory structures adopts the structure observed in the S8-aptamer complex. The aptamer ligand-bound is very rigid in the simulation carried out at 300 K. A structural transition of this state, providing insights into the aptamer-protein recognition process, is observed in a simulation carried out at 400 K. These data indicate that a key event in the binding is linked to the widening of the central region of the aptamer. Particularly relevant is switch of the A26 base from its ligand-free state to a location that allows the G13-C28 base-pairing. Intrinsic flexibility of the aptamer is essential for partner recognition. Present data indicate that S8 recognizes the aptamer through an induced-fit rather than a population-shift mechanism. The present study provides deeper understanding of the structural basis of the structural versatility of aptamers. Copyright © 2018 Elsevier B.V. All rights reserved.
Structural insights into μ-opioid receptor activation
Huang, Weijiao; Manglik, Aashish; Venkatakrishnan, A. J.; Laeremans, Toon; Feinberg, Evan N.; Sanborn, Adrian L.; Kato, Hideaki E.; Livingston, Kathryn E.; Thorsen, Thor S.; Kling, Ralf; Granier, Sébastien; Gmeiner, Peter; Husbands, Stephen M.; Traynor, John R.; Weis, William I.; Steyaert, Jan; Dror, Ron O.; Kobilka, Brian K.
2015-01-01
Summary Activation of the μ-opioid receptor (μOR) is responsible for the efficacy of the most effective analgesics. To understand the structural basis for μOR activation, we obtained a 2.1 Å X-ray crystal structure of the μOR bound to the morphinan agonist BU72 and stabilized by a G protein-mimetic camelid-antibody fragment. The BU72-stabilized changes in the μOR binding pocket are subtle and differ from those observed for agonist-bound structures of the β2 adrenergic receptor (β2AR) and the M2 muscarinic receptor (M2R). Comparison with active β2AR reveals a common rearrangement in the packing of three conserved amino acids in the core of the μOR, and molecular dynamics simulations illustrate how the ligand-binding pocket is conformationally linked to this conserved triad. Additionally, an extensive polar network between the ligand-binding pocket and the cytoplasmic domains appears to play a similar role in signal propagation for all three GPCRs. PMID:26245379
NASA Astrophysics Data System (ADS)
Agbeworvi, George; Assefa, Zerihun; Sykora, Richard E.; Taylor, Jared; Crawford, Carlos
2016-03-01
The structures and spectroscopic properties of two high coordinate gold(I) phosphine complexes with the TFFPP=tri(4-fluorophenyl)phosphine ligand are reported. Synthesis in a 1:3 metal to ligand ratio provided the compound [AuCl(TFFPP)3] (2) that crystallize in the P 1 bar space group, where the asymmetric unit consists of three independent molecules. In all three sites, two sets of bond angles display distinctly different ranges. The three P-Au-P angles have average values of 117.92°, 117.57°, and 114.78° for sites A, B, and C, with the corresponding P-Au-Cl angles of 98.31°, 99.05°, and 103.38°, respectively. The chloride ion coordinates as the fourth ligand, at the corresponding Au-Cl distance of 2.7337, 2.6825, and 2.6951 Å for the three sites. This distance is longer by 0.40-0.45 Å than the Au-Cl distance found in the mono TFFPP complex 1 (2.285 Å) indicating a weakening of the Au-Cl interaction as the coordination number increases. In compound 3, [Au(TFFPP)3]Cl·½CH2Cl2·H2O, the structure consists of three phosphine ligands bound to the gold(I) atom, but the Cl- exists as uncoordinated counter anion. The structural differences observed in the two complexes are attributable to crystal-packing effects caused by the introduction of H-bonding as well as enhanced intra and inter-molecular π-interaction in 3. The photoluminescence of the complexes compared with that of the ligand show ligand centered emission perturbed by the metal coordination. Theoretical DFT studies conducted on these complexes supports assignments of the electronic transitions observed in these systems.
The molecular determinants of CD8 co-receptor function.
Cole, David K; Laugel, Bruno; Clement, Mathew; Price, David A; Wooldridge, Linda; Sewell, Andrew K
2012-10-01
CD8(+) T cells respond to signals mediated through a specific interaction between the T-cell receptor (TCR) and a composite antigen in the form of an epitopic peptide bound between the polymorphic α1 and α2 helices of an MHC class I (MHCI) molecule. The CD8 glycoprotein 'co-receives' antigen by binding to an invariant region of the MHCI molecule and can enhance ligand recognition by up to 1 million-fold. In recent years, a number of structural and biophysical investigations have shed light on the role of the CD8 co-receptor during T-cell antigen recognition. Here, we provide a collated resource for these data, and discuss how the structural and biophysical parameters governing CD8 co-receptor function further our understanding of T-cell cross-reactivity and the productive engagement of low-affinity antigenic ligands. © 2012 The Authors. Immunology © 2012 Blackwell Publishing Ltd.
Structure of Zebrafish IRBP Reveals Fatty Acid Binding
Ghosh, Debashis; Haswell, Karen M.; Sprada, Molly; Gonzalez-Fernandez, Federico
2015-01-01
Interphotoreceptor retinoid-binding protein (IRBP) has a remarkable role in targeting and protecting all-trans and 11-cis retinol, and 11-cis retinal during the rod and cone visual cycles. Little is known about how the correct retinoid is efficiently delivered and removed from the correct cell at the required time. It has been proposed that different fatty composition at that the outer-segments and retinal-pigmented epithelium could have an important role is regulating the delivery and uptake of the visual cycle retinoids at the cell-interphotoreceptor-matrix interface. Although this suggests intriguing mechanisms for the role of local fatty acids in visual-cycle retinoid trafficking, nothing is known about the structural basis of IRBP-fatty acid interactions. Such regulation may be mediated through IRBP’s unusual repeating homologous modules, each containing about 300 amino acids. We have been investigating structure-function relationships of Zebrafish IRBP (zIRBP), which has only two tandem modules (z1 and z2), as a model for the more complex four-module mammalian IRBP’s. Here we report the first X-ray crystal structure of a teleost IRBP, and the only structure with a bound ligand. The X-ray structure of z1, determined at 1.90Å resolution, reveals a two-domain organization of the module (domains A and B). A deep hydrophobic pocket was identified within the N-terminal domain A. In fluorescence titrations assays, oleic acid displaced all-trans retinol from zIRBP. Our study, which provides the first structure of an IRBP with bound ligand, supports a potential role for fatty acids in regulating retinoid binding. PMID:26344741
Tran, Tuan; Disney, Matthew D.
2011-01-01
In our previous study to identify the RNA internal loops that bind an aminoglycoside derivative, we determined that 6′-N-5-hexynoate kanamycin A prefers to bind 1×1 nucleotide internal loops containing C•A mismatches. In this present study, the molecular recognition between a variety of RNAs that are mutated around the C•A loop and the ligand was investigated. Studies show that both loop nucleotides and loop closing pairs affect binding affinity. Most interestingly, it was shown that there is a correlation between the thermodynamic stability of the C•A internal loops and ligand affinity. Specifically, C•A loops that had relatively high or low stability bound the ligand most weakly whereas loops with intermediate stability bound the ligand most tightly. In contrast, there is no correlation between the likelihood that a loop forms a C-A+ pair at lower pH and ligand affinity. It was also found that a 1×1 nucleotide C•A loop that bound to the ligand with the highest affinity is identical to the consensus site in RNAs that are edited by adenosine deaminases acting on RNA type 2 (ADAR2). These studies provide a detailed investigation of factors affecting small molecule recognition of internal loops containing C•A mismatches, which are present in a variety of RNAs that cause disease. PMID:21207945
The Role of Flexibility and Conformational Selection in the Binding Promiscuity of PDZ Domains
Münz, Márton; Hein, Jotun; Biggin, Philip C.
2012-01-01
In molecular recognition, it is often the case that ligand binding is coupled to conformational change in one or both of the binding partners. Two hypotheses describe the limiting cases involved; the first is the induced fit and the second is the conformational selection model. The conformational selection model requires that the protein adopts conformations that are similar to the ligand-bound conformation in the absence of ligand, whilst the induced-fit model predicts that the ligand-bound conformation of the protein is only accessible when the ligand is actually bound. The flexibility of the apo protein clearly plays a major role in these interpretations. For many proteins involved in signaling pathways there is the added complication that they are often promiscuous in that they are capable of binding to different ligand partners. The relationship between protein flexibility and promiscuity is an area of active research and is perhaps best exemplified by the PDZ domain family of proteins. In this study we use molecular dynamics simulations to examine the relationship between flexibility and promiscuity in five PDZ domains: the human Dvl2 (Dishevelled-2) PDZ domain, the human Erbin PDZ domain, the PDZ1 domain of InaD (inactivation no after-potential D protein) from fruit fly, the PDZ7 domain of GRIP1 (glutamate receptor interacting protein 1) from rat and the PDZ2 domain of PTP-BL (protein tyrosine phosphatase) from mouse. We show that despite their high structural similarity, the PDZ binding sites have significantly different dynamics. Importantly, the degree of binding pocket flexibility was found to be closely related to the various characteristics of peptide binding specificity and promiscuity of the five PDZ domains. Our findings suggest that the intrinsic motions of the apo structures play a key role in distinguishing functional properties of different PDZ domains and allow us to make predictions that can be experimentally tested. PMID:23133356
Yan, Feng; Bikbulatov, Ruslan V.; Mocanu, Viorel; Dicheva, Nedyalka; Parker, Carol E.; Wetsel, William C.; Mosier, Philip D.; Westkaemper, Richard B.; Allen, John A.; Zjawiony, Jordan K.; Roth, Bryan L.
2009-01-01
Salvinorin A, the most potent naturally occurring hallucinogen, has gained increasing attention since the κ-opioid receptor (KOR) was identified as its principal molecular target by us (Roth et al, PNAS, 2002). Here we report the design, synthesis and biochemical characterization of novel, irreversible, salvinorin A-derived ligands suitable as active state probes of the KOR. Based on prior substituted cysteine accessibility and molecular modeling studies, C3157.38 was chosen as a potential anchoring point for covalent labeling of salvinorin A-derived ligands. Automated docking of a series of potential covalently-bound ligands suggested that either a haloacetate moiety or other similar electrophilic groups could irreversibly bind with C3157.38. 22-thiocyanatosalvinorin A (RB-64) and 22-chlorosalvinorin A (RB-48) were both found to be extraordinarily potent and selective KOR agonists in vitro and in vivo. As predicted based on molecular modeling studies, RB-64 induced wash-resistant inhibition of binding with a strict requirement for a free cysteine in or near the binding pocket. Mass spectrometry (MS) studies utilizing synthetic KOR peptides and RB-64 supported the hypothesis that the anchoring residue was C3157.38 and suggested one biochemical mechanism for covalent binding. These studies provide direct evidence for the presence of a free cysteine in the agonist-bound state of KOR and provide novel insights into the mechanism by which salvinorin A binds to and activates KOR. PMID:19555087
Prospect of Bioflavonoid Fisetin as a Quadruplex DNA Ligand: A Biophysical Approach
Sengupta, Bidisha; Pahari, Biswapathik; Blackmon, Laura; Sengupta, Pradeep K.
2013-01-01
Quadruplex (G4) forming sequences in telomeric DNA and c-myc promoter regions of human DNA are associated with tumorogenesis. Ligands that can facilitate or stabilize the formation and increase the stabilization of G4 can prevent tumor cell proliferation and have been regarded as potential anti-cancer drugs. In the present study, steady state and time-resolved fluorescence measurements provide important structural and dynamical insights into the free and bound states of the therapeutically potent plant flavonoid fisetin (3,3′,4′,7-tetrahydroxyflavone) in a G4 DNA matrix. The excited state intra-molecular proton transfer (ESPT) of fisetin plays an important role in observing and understanding the binding of fisetin with the G4 DNA. Differential absorption spectra, thermal melting, and circular dichroism spectroscopic studies provide evidences for the formation of G4 DNA and size exclusion chromatography (SEC) proves the binding and 1∶1 stoichiometry of fisetin in the DNA matrix. Comparative analysis of binding in the presence of EtBr proves that fisetin favors binding at the face of the G-quartet, mostly along the diagonal loop. Time resolved fluorescence anisotropy decay analysis indicates the increase in the restrictions in motion from the free to bound fisetin. We have also investigated the fingerprints of the binding of fisetin in the antiparallel quadruplex using Raman spectroscopy. Preliminary results indicate fisetin to be a prospective candidate as a G4 ligand. PMID:23785423
Acetylcholinesterase (AChE), a serine hydrolase vital for regulating the neurotransmitter acetylcholine in animals, has been used as a target for drugs and pesticides. With the increasing availability of AChE crystal structures, with or without ligands bound, structure-based appr...
Structural and Computational Studies of Cp(CO)2(PCy3)MoFBF3, a Complex with a Bound BF4- Ligand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Tan-Yun; Szalda, David J.; Franz, James A.
2010-02-15
Hydride transfer from Cp(CO)2(PCy3)MoH to Ph3C+BF4 gives Cp(CO)2(PCy3)MoFBF3, and the crystal structure of this complex was determined. In the weakly bound FBF3 ligand, the B-F(bridging) bond length is 1.475(8) Å, which is 0.15 Å longer than the average length of the three B-F(terminal) bonds. The PCy3 and FBF3 ligands are cis to each other in the four-legged piano stool structure. Electronic structure (DFT) calculations predict the trans isomer of Cp(CO)2(PCy3)MoFBF3 to be 9.5 kcal/mol (in ΔGog,298)) less stable than the cis isomer that was crystallographically characterized. Hydride transfer from Cp(CO)2(PCy3)MoH to Ph3C+BAr'4 [Ar' = 3,5-bis(trifluoromethyl)phenyl] in CH2Cl2 solvent produces [Cp(CO)2(PCy3)Mo(ClCH2Cl)]+[BAr'4]more » , in which CH2Cl2 is coordinated to the metal. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less
Kozyulina, Polina Y.; Loskutov, Yuriy V.; Kozyreva, Varvara K.; Rajulapati, Anuradha; Ice, Ryan J.; Jones, Brandon. C.; Pugacheva, Elena N.
2014-01-01
The dissemination of tumor cells relies on efficient cell adhesion and migration, which in turn depends upon endocytic trafficking of integrins. In the current work, it was found that depletion of pro-metastatic protein, NEDD9, in breast cancer (BC) cells results in a significant decrease in individual cell migration due to impaired trafficking of ligand-bound integrins. NEDD9 deficiency does not affect the expression or internalization of integrins but heightens caveolae-dependent trafficking of ligand-bound integrins to early endosomes. Increase in mobility of ligand-bound integrins is concomitant with an increase in tyrosine phosphorylation of caveolin-1 (CAV1) and volume of CAV1-vesicles. NEDD9 directly binds to CAV1 and co-localizes within CAV1 vesicles. In the absence of NEDD9, the trafficking of ligand-bound integrins from early to late endosomes is impaired, resulting in a significant decrease in degradation of ligand/integrin complexes and an increase in recycling of ligand-bound integrins from early endosomes back to the plasma membrane without ligand disengagement, thus leading to low adhesion and migration. Re-expression of NEDD9 or decrease in the amount of active, tyrosine 14 phosphorylated (Tyr14) CAV1 in NEDD9 depleted cells rescues the integrin trafficking deficiency and restores cellular adhesion and migration capacity. Collectively, these findings indicate that NEDD9 orchestrates trafficking of ligand-bound integrins through the attenuation of CAV1 activity. PMID:25319010
2014-10-21
lases.11,30,31 The first bound structure of CapD [Protein Data Bank ( PDB ) entry 3G9K] was determined with a di-α-L-Glu ligand.29 The di-α-L-Glu ligand...Article dx.doi.org/10.1021/bi500623c | Biochemistry 2014, 53, 6954−69676956 into the CapD structure ( PDB entry 3G9K29) identified two principal...in capsule anchoring and remodeling makes the enzyme a promising target for anthrax medical countermeasures. Although the structure of CapD is known
The Retinoid X Receptors and Their Ligands
Dawson, Marcia I.; Xia, Zebin
2014-01-01
This chapter presents an overview of the current status of studies on the structural and molecular biology of the retinoid X receptor subtypes α, β, and γ (RXRs, NR2B1–3), their nuclear and cytoplasmic functions, post-transcriptional processing, and recently reported ligands. Points of interest are the different changes in the ligand-binding pocket induced by variously shaped agonists, the communication of the ligand–bound pocket with the coactivator binding surface and the heterodimerization interface, and recently identified ligands that are natural products, those that function as environmental toxins or drugs that had been originally designed to interact with other targets, as well as those that were deliberately designed as RXR-selective transcriptional agonists, synergists, or antagonists. Of these synthetic ligands, the general trend in design appears to be away from fully aromatic rigid structures to those containing partial elements of the flexible tetraene side chain of 9-cis-retinoic acid. PMID:22020178
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchi-Salvador, D. P.; Fernandes, C. A. H.; Amui, S. F.
2006-06-01
A non-catalytic and myotoxic Lys49-PLA{sub 2} from B. jararacussu venom was crystallized with BPB inhibitor and X-ray diffraction data were collected. Preliminary analysis indicates that the ligand is bound to the His48 residue. Structure determination may provide insights into the myotoxic and cytotoxic mechanisms of Lys49-PLA{sub 2}s. For the first time, a non-catalytic and myotoxic Lys49-PLA{sub 2} (BthTX-I from Bothrops jararacussu venom) has been crystallized with BPB inhibitor. X-ray diffraction data were collected and electron-density calculations showed that the ligand is bound to the His48 residue. BthTX-I with His48 chemically modified by BPB shows strongly reduced myotoxic and cytotoxic activities.more » This suggests a biological correlation between the modification of His48, which is associated with catalytic activity of PLA{sub 2}s, and other toxicological activities of Lys49-PLA{sub 2}s.« less
Mihaylov, Tzvetan; Trendafilova, Natasha; Georgieva, Ivelina
2008-05-01
Molecular modeling of the La(III) complex of 3,3'-(benzylidene)bis(4-hydroxycoumarin) (PhDC) was performed using density functional theory (DFT) methods at B3LYP/6-31G(d) and BP86/TZP levels. Both Stuttgart-Dresden effective core potential and ZORA approximation were applied to the La(III) center. The electron density distribution and the nucleophilic centers of the deprotonated ligand PhDC(2-) in a solvent environment were estimated on the basis of Hirshfeld atomic charges, electrostatic potential values at the nuclei, and Nalewajski-Mrozek bond orders. In accordance with the empirical formula La(PhDC)(OH)(H(2)O), a chain structure of the complex was simulated by means of two types of molecular fragment: (1) two La(III) cations bound to one PhDC(2-) ligand, and (2) two PhDC(2-) ligands bound to one La(III) cation. Different orientations of PhDC(2-), OH(-) and H(2)O ligands in the La(III) complexes were investigated using 20 possible [La(PhDC(2-))(2)(OH)(H(2)O)](2-) fragments. Energy calculations predicted that the prism-like structure based on "tail-head" cis-LML2 type binding and stabilized via HO...HOH intramolecular hydrogen bonds is the most probable structure for the La(III) complex. The calculated vibrational spectrum of the lowest energy La(III) model fragment is in very good agreement with the experimental IR spectrum of the complex, supporting the suggested ligand binding mode to La(III) in a chain structure, namely, every PhDC(2-) interacts with two La(III) cations through both carbonylic and both hydroxylic oxygens, and every La(III) cation binds four oxygen atoms of two different PhDC(2-).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bade-Döding, Christina; Theodossis, Alex; Gras, Stephanie
2011-09-28
Polymorphic differences between human leukocyte antigen (HLA) molecules affect the specificity and conformation of their bound peptides and lead to differential selection of the T-cell repertoire. Mismatching during allogeneic transplantation can, therefore, lead to immunological reactions. We investigated the structure-function relationships of six members of the HLA-B*41 allelic group that differ by six polymorphic amino acids, including positions 80, 95, 97 and 114 within the antigen-binding cleft. Peptide-binding motifs for B*41:01, *41:02, *41:03, *41:04, *41:05 and *41:06 were determined by sequencing self-peptides from recombinant B*41 molecules by electrospray ionization tandem mass spectrometry. The crystal structures of HLA-B*41:03 bound to amore » natural 16-mer self-ligand (AEMYGSVTEHPSPSPL) and HLA-B*41:04 bound to a natural 11-mer self-ligand (HEEAVSVDRVL) were solved. Peptide analysis revealed that all B*41 alleles have an identical anchor motif at peptide position 2 (glutamic acid), but differ in their choice of C-terminal p{Omega} anchor (proline, valine, leucine). Additionally, B*41:04 displayed a greater preference for long peptides (>10 residues) when compared to the other B*41 allomorphs, while the longest peptide to be eluted from the allelic group (a 16mer) was obtained from B*41:03. The crystal structures of HLA-B*41:03 and HLA-B*41:04 revealed that both alleles interact in a highly conserved manner with the terminal regions of their respective ligands, while micropolymorphism-induced changes in the steric and electrostatic properties of the antigen-binding cleft account for differences in peptide repertoire and auxiliary anchoring. Differences in peptide repertoire, and peptide length specificity reflect the significant functional evolution of these closely related allotypes and signal their importance in allogeneic transplantation, especially B*41:03 and B*41:04, which accommodate longer peptides, creating structurally distinct peptide-HLA complexes.« less
Ho, Ngoc Anh Thu; Dawes, Stephanie S.; Crowe, Adam M.; Casabon, Israël; Gao, Chen; Kendall, Sharon L.; Baker, Edward N.; Eltis, Lindsay D.; Lott, J. Shaun
2016-01-01
Cholesterol can be a major carbon source for Mycobacterium tuberculosis during infection, both at an early stage in the macrophage phagosome and later within the necrotic granuloma. KstR is a highly conserved TetR family transcriptional repressor that regulates a large set of genes responsible for cholesterol catabolism. Many genes in this regulon, including kstR, are either induced during infection or are essential for survival of M. tuberculosis in vivo. In this study, we identified two ligands for KstR, both of which are CoA thioester cholesterol metabolites with four intact steroid rings. A metabolite in which one of the rings was cleaved was not a ligand. We confirmed the ligand-protein interactions using intrinsic tryptophan fluorescence and showed that ligand binding strongly inhibited KstR-DNA binding using surface plasmon resonance (IC50 for ligand = 25 nm). Crystal structures of the ligand-free form of KstR show variability in the position of the DNA-binding domain. In contrast, structures of KstR·ligand complexes are highly similar to each other and demonstrate a position of the DNA-binding domain that is unfavorable for DNA binding. Comparison of ligand-bound and ligand-free structures identifies residues involved in ligand specificity and reveals a distinctive mechanism by which the ligand-induced conformational change mediates DNA release. PMID:26858250
Kozakov, Dima; Grove, Laurie E.; Hall, David R.; Bohnuud, Tanggis; Mottarella, Scott; Luo, Lingqi; Xia, Bing; Beglov, Dmitri; Vajda, Sandor
2016-01-01
FTMap is a computational mapping server that identifies binding hot spots of macromolecules, i.e., regions of the surface with major contributions to the ligand binding free energy. To use FTMap, users submit a protein, DNA, or RNA structure in PDB format. FTMap samples billions of positions of small organic molecules used as probes and scores the probe poses using a detailed energy expression. Regions that bind clusters of multiple probe types identify the binding hot spots, in good agreement with experimental data. FTMap serves as basis for other servers, namely FTSite to predict ligand binding sites, FTFlex to account for side chain flexibility, FTMap/param to parameterize additional probes, and FTDyn to map ensembles of protein structures. Applications include determining druggability of proteins, identifying ligand moieties that are most important for binding, finding the most bound-like conformation in ensembles of unliganded protein structures, and providing input for fragment based drug design. FTMap is more accurate than classical mapping methods such as GRID and MCSS, and is much faster than the more recent approaches to protein mapping based on mixed molecular dynamics. Using 16 probe molecules, the FTMap server finds the hot spots of an average size protein in less than an hour. Since FTFlex performs mapping for all low energy conformers of side chains in the binding site, its completion time is proportionately longer. PMID:25855957
Qian, Minxie; Huang, Qichen; Wu, Guangteng; Lai, Luhua; Tang, Youqi; Pei, Jianfeng; Kusunoki, Masami
2012-02-01
The structure of acetamidase/formamidase (Amds/Fmds) from the archaeon Thermoanaerobacter tengcongensis has been determined by X-ray diffraction analysis using MAD data in a crystal of space group P2₁, with unit-cell parameters a = 41.23 (3), b = 152.88 (6), c = 100.26 (7) Å, β = 99.49 (3) ° and been refined to a crystallographic R-factor of 17.4% and R-free of 23.7%. It contains two dimers in one asymmetric unit, in which native Amds/Fmds (TE19) contains of the 32 kDa native protein. The final model consists of 4 monomer (299 amino acids residues with additional 2 expression tag amino acids residues), 5 Ca²⁺, 4 Zn²⁺ and 853 water molecules. The monomer is composed by the following: an N-domain which is featuring by three-layers β/β/β; a prominent excursion between N-terminal end of strand β₇ and β₁₁, which contains four-stranded antiparallel β sheet; an C-domain which is formed by the last 82 amino acid residues with the feature of mixed α/β structure. The protein contains ion-pair Ca²⁺-Zn²⁺. The portion of three-layer β/β/β along with the loops provides four protein ligands to the tightly bound Ca²⁺, three water molecules complete the coordination; and provides five protein ligands to the tightly bound Zn²⁺, one water molecule complete the coordination.
Straight-Chain Alkyl Isocyanides Open the Distal Histidine Gate in Crystal Structures of Myoglobin†
Smith, Rober D.; Blouin, George C.; Johnson, Kenneth A.; Phillips, George N.; Olson, John S.
2014-01-01
Crystal structures of methyl, ethyl, propyl and butyl isocyanide bound to sperm whale myoglobin (Mb) reveal two major conformations. In the in conformer, His(E7) is in a “closed” position, forcing the ligand alkyl chain to point inward. In the out conformer, His(E7) is in an “open” position, allowing the ligand side chain to point outward. A progressive increase in the population of the out conformer is observed with increasing ligand length in P21 crystals of native Mb at pH 7.0. This switch from in to out with increasing ligand size also occurs in solution as measured by the decrease in the relative intensity of the low (~2075 cm 1) versus high frequency (~2125 cm 1) isocyano bands. In contrast, all four isocyanides in P6 crystals of wild type recombinant Mb occupy the in conformation. However, mutating either His64 to Ala, creating a “hole” to solvent, or Phe46 to Val, freeing rotation of His64, causes bound butyl isocyanide to point completely outward in P6 crystals. Thus, the unfavorable hindrance caused with crowding a large alkyl side chain into the distal pocket appears to be roughly equal to that for pushing open the His(E7) gate and is easily affected by crystal packing. This structural conclusion supports the “side path” kinetic mechanism for O2 release, in which the dissociated ligand first moves toward the protein interior and then encounters steric resistance, which is roughly equal to that for escaping to solvent through the His(E7) channel. PMID:20481504
Shen, Lu; Decker, Caitlin G; Maynard, Heather D; Levine, Alex J
2016-09-01
We present here the calculation of the mean time to capture of a tethered ligand to the receptor. This calculation is then used to determine the shift in the partitioning between (1) free, (2) singly bound, and (3) doubly bound ligands in chemical equilibrium as a function of the length of the tether. These calculations are used in the research article Fibroblast Growth Factor 2 Dimer with Superagonist in vitro Activity Improves Granulation Tissue Formation During Wound Healing (Decker et al., in press [1]) to explain quantitatively how changes in polymeric linker length in the ligand dimers modifies the efficacy of these molecules relative to that of free ligands.
An alternate binding site for PPARγ ligands
Hughes, Travis S.; Giri, Pankaj Kumar; de Vera, Ian Mitchelle S.; Marciano, David P.; Kuruvilla, Dana S.; Shin, Youseung; Blayo, Anne-Laure; Kamenecka, Theodore M.; Burris, Thomas P.; Griffin, Patrick R.; Kojetin, Douglas J.
2014-01-01
PPARγ is a target for insulin sensitizing drugs such as glitazones, which improve plasma glucose maintenance in patients with diabetes. Synthetic ligands have been designed to mimic endogenous ligand binding to a canonical ligand-binding pocket to hyperactivate PPARγ. Here we reveal that synthetic PPARγ ligands also bind to an alternate site, leading to unique receptor conformational changes that impact coregulator binding, transactivation and target gene expression. Using structure-function studies we show that alternate site binding occurs at pharmacologically relevant ligand concentrations, and is neither blocked by covalently bound synthetic antagonists nor by endogenous ligands indicating non-overlapping binding with the canonical pocket. Alternate site binding likely contributes to PPARγ hyperactivation in vivo, perhaps explaining why PPARγ full and partial or weak agonists display similar adverse effects. These findings expand our understanding of PPARγ activation by ligands and suggest that allosteric modulators could be designed to fine tune PPARγ activity without competing with endogenous ligands. PMID:24705063
Selenolate complexes of CYP101 and the heme-bound hHO-1/H25A proximal cavity mutant.
Jiang, Yongying; Ortiz de Montellano, Paul R
2008-05-05
Thiolate and selenolate complexes of CYP101 (P450cam) and the H25A proximal cavity mutant of heme-bound human heme oxygenase-1 (hHO-1) have been examined by UV-vis spectroscopy. Both thiolate and selenolate ligands bound to the heme distal side in CYP101 and gave rise to characteristic hyperporphyrin spectra. Thiolate ligands also bound to the proximal side of the heme in the cavity created by the H25A mutation in hHO-1, giving a Soret absorption similar to that of the H25C hHO-1 mutant. Selenolate ligands also bound to this cavity mutant under anaerobic conditions but reduced the heme iron to the ferrous state, as shown by the formation of a ferrous CO complex. Under aerobic conditions, the selenolate ligand but not the thiolate ligand was rapidly oxidized. These results indicate that selenocysteine-coordinated heme proteins will not be stable species in the absence of a redox potential stabilizing effect.
Squire, C J; Clark, G R; Denny, W A
1997-01-01
The X-ray crystal structure of the complex between the synthetic antitumour and antiviral DNA binding ligand SN 7167 and the DNA oligonucleotide d(CGCGAATTCGCG)2 has been determined to an R factor of 18.3% at 2.6 A resolution. The ligand is located within the minor groove and covers almost 6 bp with the 1-methylpyridinium ring extending as far as the C9-G16 base pair and the 1-methylquinolinium ring lying between the G4-C21 and A5-T20 base pairs. The ligand interacts only weakly with the DNA, as evidenced by long range contacts and shallow penetration into the groove. This structure is compared with that of the complex between the parent compound SN 6999 and the alkylated DNA sequence d(CGC[e6G]AATTCGCG)2. There are significant differences between the two structures in the extent of DNA bending, ligand conformation and groove binding. PMID:9321660
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Bingfa; Bachhawat, Priti; Chu, Matthew Ling-Hon
The adenosine A2A receptor (A2AR) has long been implicated in cardiovascular disorders. As more selective A2AR ligands are being identified, its roles in other disorders, such as Parkinson’s disease, are starting to emerge, and A2AR antagonists are important drug candidates for nondopaminergic anti-Parkinson treatment. Here we report the crystal structure of A2A receptor bound to compound 1 (Cmpd-1), a novel A2AR/N-methyl D-aspartate receptor subtype 2B (NR2B) dual antagonist and potential anti-Parkinson candidate compound, at 3.5 Å resolution. The A2A receptor with a cytochrome b562-RIL (BRIL) fusion (A2AR–BRIL) in the intracellular loop 3 (ICL3) was crystallized in detergent micelles using vapor-phasemore » diffusion. Whereas A2AR–BRIL bound to the antagonist ZM241385 has previously been crystallized in lipidic cubic phase (LCP), structural differences in the Cmpd-1–bound A2AR–BRIL prevented formation of the lattice observed with the ZM241385–bound receptor. The crystals grew with a type II crystal lattice in contrast to the typical type I packing seen from membrane protein structures crystallized in LCP. Cmpd-1 binds in a position that overlaps with the native ligand adenosine, but its methoxyphenyl group extends to an exosite not previously observed in other A2AR structures. Structural analysis revealed that Cmpd-1 binding results in the unique conformations of two tyrosine residues, Tyr91.35 and Tyr2717.36, which are critical for the formation of the exosite. The structure reveals insights into antagonist binding that are not observed in other A2AR structures, highlighting flexibility in the binding pocket that may facilitate the development of A2AR-selective compounds for the treatment of Parkinson’s disease.« less
NASA Astrophysics Data System (ADS)
Athanasiou, Christina; Vasilakaki, Sofia; Dellis, Dimitris; Cournia, Zoe
2018-01-01
Computer-aided drug design has become an integral part of drug discovery and development in the pharmaceutical and biotechnology industry, and is nowadays extensively used in the lead identification and lead optimization phases. The drug design data resource (D3R) organizes challenges against blinded experimental data to prospectively test computational methodologies as an opportunity for improved methods and algorithms to emerge. We participated in Grand Challenge 2 to predict the crystallographic poses of 36 Farnesoid X Receptor (FXR)-bound ligands and the relative binding affinities for two designated subsets of 18 and 15 FXR-bound ligands. Here, we present our methodology for pose and affinity predictions and its evaluation after the release of the experimental data. For predicting the crystallographic poses, we used docking and physics-based pose prediction methods guided by the binding poses of native ligands. For FXR ligands with known chemotypes in the PDB, we accurately predicted their binding modes, while for those with unknown chemotypes the predictions were more challenging. Our group ranked #1st (based on the median RMSD) out of 46 groups, which submitted complete entries for the binding pose prediction challenge. For the relative binding affinity prediction challenge, we performed free energy perturbation (FEP) calculations coupled with molecular dynamics (MD) simulations. FEP/MD calculations displayed a high success rate in identifying compounds with better or worse binding affinity than the reference (parent) compound. Our studies suggest that when ligands with chemical precedent are available in the literature, binding pose predictions using docking and physics-based methods are reliable; however, predictions are challenging for ligands with completely unknown chemotypes. We also show that FEP/MD calculations hold predictive value and can nowadays be used in a high throughput mode in a lead optimization project provided that crystal structures of sufficiently high quality are available.
Rühmann, Eggert H; Rupp, Melinda; Betz, Michael; Heine, Andreas; Klebe, Gerhard
2016-02-04
Structural preorganization to fix bioactive conformations at protein binding sites is a popular strategy to enhance binding affinity during late-stage optimization. The rationale for this enhancement relates to entropic advantages assigned to rigidified versus flexible ligands. We analyzed a narrow series of peptidomimetics binding to thrombin. The individual ligands exhibit at P2 a conformationally flexible glycine, more restricted alanine, N-methylglycine, N-methylhomoalanine, and largely rigidified proline moiety. Overall, affinity was found to increase by a factor of 1000, explained partly by an entropic advantage. All ligands adopt the same binding mode with small deviations. The residual mobility of the bound ligands is decreased across the series, and a protein side chain differs in its order/disorder behavior along with changes in the surface-water network pattern established across the newly generated protein-ligand surfaces. The enthalpy/entropy inventory displays a rather complex picture and emphasizes that thermodynamics can only be compared in terms of relative differences within a structurally similar ligand series. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structural analysis of ibuprofen binding to human adipocyte fatty-acid binding protein (FABP4).
González, Javier M; Fisher, S Zoë
2015-02-01
Inhibition of human adipocyte fatty-acid binding protein (FABP4) has been proposed as a treatment for type 2 diabetes, fatty liver disease and atherosclerosis. However, FABP4 displays a naturally low selectivity towards hydrophobic ligands, leading to the possibility of side effects arising from cross-inhibition of other FABP isoforms. In a search for structural determinants of ligand-binding selectivity, the binding of FABP4 towards a group of small molecules structurally related to the nonsteroidal anti-inflammatory drug ibuprofen was analyzed through X-ray crystallography. Several specific hydrophobic interactions are shown to enhance the binding affinities of these compounds, whereas an aromatic edge-to-face interaction is proposed to determine the conformation of bound ligands, highlighting the importance of aromatic interactions in hydrophobic environments.
Receptor-ligand binding sites and virtual screening.
Hattotuwagama, Channa K; Davies, Matthew N; Flower, Darren R
2006-01-01
Within the pharmaceutical industry, the ultimate source of continuing profitability is the unremitting process of drug discovery. To be profitable, drugs must be marketable: legally novel, safe and relatively free of side effects, efficacious, and ideally inexpensive to produce. While drug discovery was once typified by a haphazard and empirical process, it is now increasingly driven by both knowledge of the receptor-mediated basis of disease and how drug molecules interact with receptors and the wider physiome. Medicinal chemistry postulates that to understand a congeneric ligand series, or set thereof, is to understand the nature and requirements of a ligand binding site. Likewise, structural molecular biology posits that to understand a binding site is to understand the nature of ligands bound therein. Reality sits somewhere between these extremes, yet subsumes them both. Complementary to rules of ligand design, arising through decades of medicinal chemistry, structural biology and computational chemistry are able to elucidate the nature of binding site-ligand interactions, facilitating, at both pragmatic and conceptual levels, the drug discovery process.
Abele, U.; Schulz, G. E.
1995-01-01
The structure of adenylate kinase from yeast ligated with the two-substrate-mimicking inhibitor Ap5A and Mg2+ has been refined to 1.96 A resolution. In addition, the refined structure of the same complex with a bound imidazole molecule replacing Mg2+ has been determined at 1.63 A. These structures indicate that replacing Mg2+ by imidazole disturbs the water structure and thus the complex. A comparison with the G-proteins shows that Mg2+ is exactly at the same position with respect to the phosphates. However, although the Mg2+ ligand sphere of the G-proteins is a regular octahedron containing peptide ligands, the reported adenylate kinase has no such ligands and an open octahedron leaving space for the Mg2+ to accompany the transferred phosphoryl group. A superposition of the known crystalline and therefore perturbed phosphoryl transfer geometries in the adenylate kinases demonstrates that all of them are close to the start of the forward reaction with bound ATP and AMP. Averaging all observed perturbed structures gives rise to a close approximation of the transition state, indicating in general how to establish an elusive transition state geometry. The average shows that the in-line phosphoryl transfer is associative, because there is no space for a dissociative metaphosphate intermediate. As a side result, the secondary dipole interaction in the alpha-helices of both protein structures has been quantified. PMID:7670369
Acetylcholinesterase (AChE), a serine hydrolase vital for regulating the neurotransmitter acetylcholine in animals, has been used as a target for drugs and pesticides. With the increasing availability of AChE crystal structures, with or without ligands bound, structure-based appr...
In-crystal reaction cycle of a toluene-bound diiron hydroxylase
NASA Astrophysics Data System (ADS)
Acheson, Justin F.; Bailey, Lucas J.; Brunold, Thomas C.; Fox, Brian G.
2017-03-01
Electrophilic aromatic substitution is one of the most important and recognizable classes of organic chemical transformation. Enzymes create the strong electrophiles that are needed for these highly energetic reactions by using O2, electrons, and metals or other cofactors. Although the nature of the oxidants that carry out electrophilic aromatic substitution has been deduced from many approaches, it has been difficult to determine their structures. Here we show the structure of a diiron hydroxylase intermediate formed during a reaction with toluene. Density functional theory geometry optimizations of an active site model reveal that the intermediate is an arylperoxo Fe2+/Fe3+ species with delocalized aryl radical character. The structure suggests that a carboxylate ligand of the diiron centre may trigger homolytic cleavage of the O-O bond by transferring a proton from a metal-bound water. Our work provides the spatial and electronic constraints needed to propose a comprehensive mechanism for diiron enzyme arene hydroxylation that accounts for many prior experimental results.
Catalytic mechanism of a retinoid isomerase essential for vertebrate vision
Kiser, Philip D.; Zhang, Jianye; Badiee, Mohsen; Li, Qingjiang; Shi, Wuxian; Sui, Xuewu; Golczak, Marcin; Tochtrop, Gregory P.; Palczewski, Krzysztof
2015-01-01
Visual function in vertebrates is dependent on the membrane-bound retinoid isomerase, RPE65, an essential component of the retinoid cycle pathway that regenerates 11-cis-retinal for rod and cone opsins. The mechanism by which RPE65 catalyzes stereoselective retinoid isomerization has remained elusive due to uncertainty about how retinoids bind to its active site. Here we present crystal structures of RPE65 in complex with retinoid-mimetic compounds, one of which is in clinical trials for treatment of age-related macular degeneration. The structures reveal the active site retinoid-binding cavity located near the membrane-interacting surface of the enzyme as well as an Fe-bound palmitate ligand positioned in an adjacent pocket. With the geometry of the RPE65-substrate complex clarified we delineate a mechanism of catalysis that reconciles the extensive biochemical and structural research on this enzyme. These data provide molecular foundations for understanding a key process in vision and pharmacological inhibition of RPE65 with small molecules. PMID:25894083
Valenzuela-Chavira, Ignacio; Contreras-Vergara, Carmen A.; Arvizu-Flores, Aldo A.; Serrano-Posada, Hugo; Lopez-Zavala, Alonso A.; García-Orozco, Karina D.; Hernandez-Paredes, Javier; Rudiño-Piñera, Enrique; Stojanoff, Vivian; Sotelo-Mundo, Rogerio R.; Islas-Osuna, Maria A.
2017-01-01
We studied a mango glutathione S-transferase (GST) (Mangifera indica) bound to glutathione (GSH) and S-hexyl glutathione (GSX). This GST Tau class (MiGSTU) had a molecular mass of 25.5 kDa. MiGSTU Michaelis-Menten kinetic constants were determined for their substrates obtaining a Km, Vmax and kcat for CDNB of 0.792 mM, 80.58 mM·min−1 and 68.49 s−1 respectively and 0.693 mM, 105.32 mM·min−1 and 89.57 s−1, for reduced GSH respectively. MiGSTU had a micromolar affinity towards GSH (5.2 μM) or GSX (7.8 μM). The crystal structure of the MiGSTU in apo or bound to GSH or GSX generated a model that explains the thermodynamic signatures of binding and showed the importance of enthalpic-entropic compensation in ligand binding to Tau-class GST enzymes. PMID:28104507
Statistical analysis of EGFR structures' performance in virtual screening
NASA Astrophysics Data System (ADS)
Li, Yan; Li, Xiang; Dong, Zigang
2015-11-01
In this work the ability of EGFR structures to distinguish true inhibitors from decoys in docking and MM-PBSA is assessed by statistical procedures. The docking performance depends critically on the receptor conformation and bound state. The enrichment of known inhibitors is well correlated with the difference between EGFR structures rather than the bound-ligand property. The optimal structures for virtual screening can be selected based purely on the complex information. And the mixed combination of distinct EGFR conformations is recommended for ensemble docking. In MM-PBSA, a variety of EGFR structures have identically good performance in the scoring and ranking of known inhibitors, indicating that the choice of the receptor structure has little effect on the screening.
2015-01-01
Peptidylglycine monooxygenase (PHM) catalyzes the final step in the biosynthesis of amidated peptides that serve as important signaling molecules in numerous endocrine pathways. The catalytic mechanism has attracted much attention because of a number of unique attributes, including the presence of a pair of uncoupled copper centers separated by 11 Å (termed CuH and CuM), an unusual Cu(I)SMet interaction at the oxygen binding M-site, and the postulated Cu(II)–superoxo intermediate. Understanding the mechanism requires determining the catalytic roles of the individual copper centers and how they change during catalysis, a task made more difficult by the overlapping spectral signals from each copper center in the wild-type (WT) protein. To aid in this effort, we constructed and characterized two PHM variants that bound metal at only one site. The H242A variant bound copper at the H-center, while the H107AH108A double mutant bound copper at the M-center; both mutants were devoid of catalytic activity. Oxidized Cu(II) forms showed electron paramagnetic resonance and extended X-ray absorption fine structure (EXAFS) spectra consistent with their previously determined Cu(II)His3O and Cu(II)His2O2 ligand sets for the H- and M-centers, respectively. Cu(I) forms, on the other hand, showed unique chemistry. The M-center bound two histidines and a methionine at all pHs, while the H-center was two-coordinate at neutral pH but coordinated a new methionine S ligand at low pH. Fourier transform infrared studies confirmed and extended previous assignments of CO binding and showed unambiguously that the 2092 cm–1 absorbing species observed in the WT and many variant forms is an M-site Cu(I)–CO adduct. Silver binding was also investigated. When H107AH108A and M109I (a WT analogue with both sites intact) were incubated with excess AgNO3, each variant bound a single Ag(I) ion, from which it was inferred that Ag(I) binds selectively at the M-center with little or no affinity for the H-center. EXAFS at the Ag K-edge established a strong degree of similarity between the ligand sets of Cu and Ag bound at the M-center. These studies validate previous spectral assignments and provide new insights into the detailed chemistry of each metal site. PMID:24471980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conroy, W.G.
Structural relatedness between the variable region of anti-ligand antibodies and opioid binding sites allowed the generation of anti-idiotypic antibodies which recognized opioid receptors. The IgG{sub 3}k antibodies which bound to opioid receptors were obtained when an anti-morphine antiserum was the idiotype. Both antibodies bound to opioid receptors, but only one of these blocked the binding of ({sup 3}H)naloxone. The antibody which did not inhibit the binding of ({sup 3}H)naloxone was itself displaced from the receptor by opioid ligands. The unique binding properties displayed by this antibody indicated that anti-idiotypic antibodies are not always a perfect image of the original ligand,more » and therefore may be more useful than typical ligands as probes for the receptor. An auto-anti-idiotypic technique was successfully used to obtain anti-opioid receptor antibodies. Another IgG{sub 3}k antibody that blocked the binding of ({sup 3}H)naloxone to rat brain opioid receptors was obtained when a mouse was immunized with naloxone conjugated to bovine serum albumin. These data confirmed that an idiotype-anti-idiotype network which can generate an anti-receptor antibody normally functions when an opioid ligand is introduced into an animal in an immunogenic form.« less
Brambilla, R; Schnapp, A; Casagranda, F; Labrador, J P; Bergemann, A D; Flanagan, J G; Pasquale, E B; Klein, R
1995-01-01
The Eph-related family of receptor tyrosine kinases consists of at least 13 members, several of which display distinctive expression patterns in the developing and adult nervous system. Recently, a small family of ligands, structurally related to the B61 protein, was identified. Binding of these ligands to Eph-related receptors did not, however, elicit measurable biological signals in cultured cells. In order to study functional interactions between B61-related ligands and Eph-related receptors, we constructed chimeric receptors, containing an Eph-related ectodomain and the cytoplasmic domain of the TrkB neurotrophin receptor. Expression and activation of such chimeric receptors in NIH 3T3 cells induced transformation in focus formation assays. Membrane-bound LERK2 ligand is shown to signal through three different Eph-related receptors, namely Cek5, Cek10 and Elk. LERK2, however, fails to interact functionally with the Cek9 receptor. Quantitative analysis including binding assays indicates that Cek10 is the preferred LERK2 receptor. Preliminary mutagenesis of the LERK2 protein suggests a negative regulatory role for its cytoplasmic domain in LERK2 signaling. Images PMID:7621826
Borbulevych, Oleg Y; Plumley, Joshua A; Martin, Roger I; Merz, Kenneth M; Westerhoff, Lance M
2014-05-01
Macromolecular crystallographic refinement relies on sometimes dubious stereochemical restraints and rudimentary energy functionals to ensure the correct geometry of the model of the macromolecule and any covalently bound ligand(s). The ligand stereochemical restraint file (CIF) requires a priori understanding of the ligand geometry within the active site, and creation of the CIF is often an error-prone process owing to the great variety of potential ligand chemistry and structure. Stereochemical restraints have been replaced with more robust functionals through the integration of the linear-scaling, semiempirical quantum-mechanics (SE-QM) program DivCon with the PHENIX X-ray refinement engine. The PHENIX/DivCon package has been thoroughly validated on a population of 50 protein-ligand Protein Data Bank (PDB) structures with a range of resolutions and chemistry. The PDB structures used for the validation were originally refined utilizing various refinement packages and were published within the past five years. PHENIX/DivCon does not utilize CIF(s), link restraints and other parameters for refinement and hence it does not make as many a priori assumptions about the model. Across the entire population, the method results in reasonable ligand geometries and low ligand strains, even when the original refinement exhibited difficulties, indicating that PHENIX/DivCon is applicable to both single-structure and high-throughput crystallography.
Rotation of Guanine Amino Groups in G-Quadruplexes: A Probe for Local Structure and Ligand Binding.
Adrian, Michael; Winnerdy, Fernaldo Richtia; Heddi, Brahim; Phan, Anh Tuân
2017-08-22
Nucleic acids are dynamic molecules whose functions may depend on their conformational fluctuations and local motions. In particular, amino groups are dynamic components of nucleic acids that participate in the formation of various secondary structures such as G-quadruplexes. Here, we present a cost-efficient NMR method to quantify the rotational dynamics of guanine amino groups in G-quadruplex nucleic acids. An isolated spectrum of amino protons from a specific tetrad-bound guanine can be extracted from the nuclear Overhauser effect spectroscopy spectrum based on the close proximity between the intra-residue imino and amino protons. We apply the method in different structural contexts of G-quadruplexes and their complexes. Our results highlight the role of stacking and hydrogen-bond interactions in restraining amino-group rotation. The measurement of the rotation rate of individual amino groups could give insight into the dynamic processes occurring at specific locations within G-quadruplex nucleic acids, providing valuable probes for local structure, dynamics, and ligand binding. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Chen, Zhiqiang; Huang, Chao; Chennamsetty, Naresh; Xu, Xuankuo; Li, Zheng Jian
2016-08-19
Cation-exchange chromatography (CEX) of a structurally unstable Fc-fusion protein exhibited multi-peak elution profile upon a salt-step elution due to protein aggregation during intra-column buffer transition where low pH and high salt coexisted. The protein exhibited a single-peak elution behavior during a pH-step elution; nevertheless, the levels of soluble aggregates (i.e. high molecular weight species, HMW) in the CEX eluate were still found up to 12-fold higher than that for the load material. The amount of the aggregates formed upon the pH-step elution was dependent on column loading with maximum HMW achieved at intermediate loading levels, supporting the hypothesis that the aggregation was the result of both the conformational changes of the bound protein and the solution concentration of the aggregation-susceptible proteins during elution. Factors such as high load pH, short protein/resin contact time, hydrophilic resin surface, and weak ionizable ligand were effective, to some extent, to reduce aggregate formation by improving the structural integrity of the bound protein. An orthogonal technique, differential scanning fluorimetry (DSF) using Sypro Orange dye confirmed that the bound protein exposed more hydrophobic area than the native molecule in free solution, especially in the pH 4-5 range. The Sypro Orange dye study of resin surface property also demonstrated that the poly[styrene-divinylbenzene]-based Poros XS with polyhydroxyl surface coating is more hydrophobic compared to the agarose-based CM Sepharose FF and SP Sepharose FF. The hydrophobic property of Poros XS contributed to stronger interactions with the partially unfolded bound protein and consequently to the higher aggregate levels seen in Poros XS eluate. This work also investigates the aggregation reversibility in CEX eluate where up to 66% of the aggregates were observed to dissociate into native monomers over a period of 120h, and links the aggregate stability to such conditions as resin surface properties and charged ligand type. Experimental data was correlated semi-quantitatively with theoretical protein charge and hydrophobicity calculations using homology modeling within the BIOVIA Discovery Studio software. Finally, an arginine-sulphopropyl (Arg-SP) agarose resin immobilized with multi-functional ligands was prepared to verify the proposed hypothesis and to eliminate the aggregate formation. The findings of this work provide general insights in understanding aggregate formation and dissociation for structurally unstable proteins in the CEX step. Copyright © 2016 Elsevier B.V. All rights reserved.
Pettersson, John R; Lanni, Frederick; Rule, Gordon S
2017-08-08
Single-molecule fluorescence techniques were used to characterize the binding of products and inhibitors to human glutathione S-transferase A1-1 (hGSTA1-1). The identification of at least two different bound states for the wild-type enzyme suggests that there are at least two conformations of the protein, consistent with the model that ligand binding promotes closure of the carboxy-terminal helix over the active site. Ligand induced changes in ensemble fluorescence energy transfer support this proposed structural change. The more predominant state in the ensemble of single molecules shows a significantly faster off-rate, suggesting that the carboxy-terminal helix is delocalized in this state, permitting faster exit of the bound ligand. A point mutation (I219A), which is known to interfere with the association of the carboxy-terminal helix with the enzyme, shows increased rates of interconversion between the open and closed state. Kinematic traces of fluorescence from single molecules show that a single molecule readily samples a number of different conformations, each with a characteristic off-rate.
Wu, Jian; Jones, John M; Nguyen-Huu, Xuong; Ten Eyck, Lynn F; Taylor, Susan S
2004-06-01
Cyclic adenosine 5'-monophosphate (cAMP) is an ancient signaling molecule, and in vertebrates, a primary target for cAMP is cAMP-dependent protein kinase (PKA). (R(p))-adenosine 3',5'-cyclic monophosphothioate ((R(p))-cAMPS) and its analogues are the only known competitive inhibitors and antagonists for cAMP activation of PKA, while (S(p))-adenosine 3',5'-cyclic monophosphothioate ((S(p))-cAMPS) functions as an agonist. The crystal structures of a Delta(1-91) deletion mutant of the RIalpha regulatory subunit of PKA bound to (R(p))-cAMPS and (S(p))-cAMPS were determined at 2.4 and 2.3 A resolution, respectively. While the structures are similar to each other and to the crystal structure of RIalpha bound to cAMP, differences in the dynamical properties of the protein when (R(p))-cAMPS is bound are apparent. The structures highlight the critical importance of the exocyclic oxygen's interaction with the invariant arginine in the phosphate binding cassette (PBC) and the importance of this interaction for the dynamical properties of the interactions that radiate out from the PBC. The conformations of the phosphate binding cassettes containing two invariant arginine residues (Arg209 on domain A, and Arg333 on domain B) are somewhat different due to the sulfur interacting with this arginine. Furthermore, the B-site ligand together with the entire domain B show significant differences in their overall dynamic properties in the crystal structure of Delta(1-91) RIalpha complexed with (R(p))-cAMPS phosphothioate analogue ((R(p))-RIalpha) compared to the cAMP- and (S(p))-cAMPS-bound type I and II regulatory subunits, based on the temperature factors. In all structures, two structural solvent molecules exist within the A-site ligand binding pocket; both mediate water-bridged interactions between the ligand and the protein. No structured waters are in the B-site pocket. Owing to the higher resolution data, the N-terminal segment (109-117) of the RIalpha subunit can also be traced. This strand forms an intermolecular antiparallel beta-sheet with the same strand in an adjacent molecule and implies that the RIalpha subunit can form a weak homodimer even in the absence of its dimerization domain.
NASA Astrophysics Data System (ADS)
Smith, Jarrod Anson
2D homonuclear 1H NMR methods and restrained molecular dynamics (rMD) calculations have been applied to determining the three-dimensional structures of DNA and minor groove-binding ligand-DNA complexes in solution. The structure of the DNA decamer sequence d(GCGTTAACGC)2 has been solved both with a distance-based rMD protocol and an NOE relaxation matrix backcalculation-based protocol in order to probe the relative merits of the different refinement methods. In addition, three minor groove binding ligand-DNA complexes have been examined. The solution structure of the oligosaccharide moiety of the antitumor DNA scission agent calicheamicin γ1I has been determined in complex with a decamer duplex containing its high affinity 5'-TCCT- 3' binding sequence. The structure of the complex reinforces the belief that the oligosaccharide moiety is responsible for the sequence selective minor-groove binding activity of the agent, and critical intermolecular contacts are revealed. The solution structures of both the (+) and (-) enantiomers of the minor groove binding DNA alkylating agent duocarmycin SA have been determined in covalent complex with the undecamer DNA duplex d(GACTAATTGTC).d(GAC AATTAGTC). The results support the proposal that the alkylation activity of the duocarmycin antitumor antibiotics is catalyzed by a binding-induced conformational change in the ligand which activates the cyclopropyl group for reaction with the DNA. Comparisons between the structures of the two enantiomers covalently bound to the same DNA sequence at the same 5'-AATTA-3 ' site have provided insight into the binding orientation and site selectivity, as well as the relative rates of reactivity of these two agents.
Elucidating Ligand-Modulated Conformational Landscape of GPCRs Using Cloud-Computing Approaches.
Shukla, Diwakar; Lawrenz, Morgan; Pande, Vijay S
2015-01-01
G-protein-coupled receptors (GPCRs) are a versatile family of membrane-bound signaling proteins. Despite the recent successes in obtaining crystal structures of GPCRs, much needs to be learned about the conformational changes associated with their activation. Furthermore, the mechanism by which ligands modulate the activation of GPCRs has remained elusive. Molecular simulations provide a way of obtaining detailed an atomistic description of GPCR activation dynamics. However, simulating GPCR activation is challenging due to the long timescales involved and the associated challenge of gaining insights from the "Big" simulation datasets. Here, we demonstrate how cloud-computing approaches have been used to tackle these challenges and obtain insights into the activation mechanism of GPCRs. In particular, we review the use of Markov state model (MSM)-based sampling algorithms for sampling milliseconds of dynamics of a major drug target, the G-protein-coupled receptor β2-AR. MSMs of agonist and inverse agonist-bound β2-AR reveal multiple activation pathways and how ligands function via modulation of the ensemble of activation pathways. We target this ensemble of conformations with computer-aided drug design approaches, with the goal of designing drugs that interact more closely with diverse receptor states, for overall increased efficacy and specificity. We conclude by discussing how cloud-based approaches present a powerful and broadly available tool for studying the complex biological systems routinely. © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carr, Carolyn E.; Musiani, Francesco; Huang, Hsin-Ting
Escherichia coli RcnR (resistance to cobalt and nickel regulator, EcRcnR) is a metal-responsive repressor of the genes encoding the Ni(II) and Co(II) exporter proteins RcnAB by binding to PRcnAB. The DNA binding affinity is weakened when the cognate ions Ni(II) and Co(II) bind to EcRcnR in a six-coordinate site that features a (N/O)5S ligand donor-atom set in distinct sites: while both metal ions are bound by the N terminus, Cys35, and His64, Co(II) is additionally bound by His3. On the other hand, the noncognate Zn(II) and Cu(I) ions feature a lower coordination number, have a solvent-accessible binding site, and coordinatemore » protein ligands that do not include the N-terminal amine. A molecular model of apo-EcRcnR suggested potential roles for Glu34 and Glu63 in binding Ni(II) and Co(II) to EcRcnR. The roles of Glu34 and Glu63 in metal binding, metal selectivity, and function were therefore investigated using a structure/function approach. X-ray absorption spectroscopy was used to assess the structural changes in the Ni(II), Co(II), and Zn(II) binding sites of Glu → Ala and Glu → Cys variants at both positions. The effect of these structural alterations on the regulation of PrcnA by EcRcnR in response to metal binding was explored using LacZ reporter assays. These combined studies indicate that while Glu63 is a ligand for both metal ions, Glu34 is a ligand for Co(II) but possibly not for Ni(II). The Glu34 variants affect the structure of the cognate metal sites, but they have no effect on the transcriptional response. In contrast, the Glu63 variants affect both the structure and transcriptional response, although they do not completely abolish the function of EcRcnR. The structure of the Zn(II) site is not significantly perturbed by any of the glutamic acid variations. The spectroscopic and functional data obtained on the mutants were used to calculate models of the metal-site structures of EcRcnR bound to Ni(II), Co(II), and Zn(II). The results are interpreted in terms of a switch mechanism, in which a subset of the metal-binding ligands is responsible for the allosteric response required for DNA release.« less
Crystal structure of the ligand-bound glucagon-like peptide-1 receptor extracellular domain.
Runge, Steffen; Thøgersen, Henning; Madsen, Kjeld; Lau, Jesper; Rudolph, Rainer
2008-04-25
The glucagon-like peptide-1 receptor (GLP-1R) belongs to Family B1 of the seven-transmembrane G protein-coupled receptors, and its natural agonist ligand is the peptide hormone glucagon-like peptide-1 (GLP-1). GLP-1 is involved in glucose homeostasis, and activation of GLP-1R in the plasma membrane of pancreatic beta-cells potentiates glucose-dependent insulin secretion. The N-terminal extracellular domain (nGLP-1R) is an important ligand binding domain that binds GLP-1 and the homologous peptide Exendin-4 with differential affinity. Exendin-4 has a C-terminal extension of nine amino acid residues known as the "Trp cage", which is absent in GLP-1. The Trp cage was believed to interact with nGLP-1R and thereby explain the superior affinity of Exendin-4. However, the molecular details that govern ligand binding and specificity of nGLP-1R remain undefined. Here we report the crystal structure of human nGLP-1R in complex with the antagonist Exendin-4(9-39) solved by the multiwavelength anomalous dispersion method to 2.2A resolution. The structure reveals that Exendin-4(9-39) is an amphipathic alpha-helix forming both hydrophobic and hydrophilic interactions with nGLP-1R. The Trp cage of Exendin-4 is not involved in binding to nGLP-1R. The hydrophobic binding site of nGLP-1R is defined by discontinuous segments including primarily a well defined alpha-helix in the N terminus of nGLP-1R and a loop between two antiparallel beta-strands. The structure provides for the first time detailed molecular insight into ligand binding of the human GLP-1 receptor, an established target for treatment of type 2 diabetes.
Hildebrandt, Jana; Görls, Helmar; Häfner, Norman; Ferraro, Giarita; Dürst, Matthias; Runnebaum, Ingo B; Weigand, Wolfgang; Merlino, Antonello
2016-08-02
A new pseudo-octahedral π-arene ruthenium(ii) piano-stool compound, containing an O,S-bidentate ligand (compound 1) and showing significant cytotoxic activity in vitro, was synthesized and characterized. In solution stability and interaction with the model protein bovine pancreatic ribonuclease (RNase A) were investigated by using UV-Vis absorption spectroscopy. Its crystal structure and that of the adduct formed upon reaction with RNase A were obtained by X-ray crystallography. The comparison between the structure of purified compound 1 and that of the fragment bound to RNase A reveals an unusual mode of protein binding that includes ligand exchange and alteration of coordination sphere geometry.
Di-μ-chlorido-bis[(2-aminobenzamide-κ2 N 2,O)chloridocopper(II)
Damous, Maamar; Dénès, George; Bouacida, Sofiane; Hamlaoui, Meriem; Merazig, Hocine; Daran, Jean-Claude
2013-01-01
The title compound, [Cu2Cl4(C7H8N2O)2], crystallizes as discrete [CuLCl2]2 (L = 2-aminobenzamide) dimers with inversion symmetry. Each CuII ion is five-coordinated and is bound to two bridging chloride ligands, a terminal chloride ligand and a bidentate 2-aminobenzamide ligand. The crystal structure exhibits alternating layers parallel to (010) along the b-axis direction. In the crystal, the components are linked via N—H⋯Cl hydrogen bonds, forming a three-dimensional network. These interactions link the molecules within the layers and also link the layers together and reinforce the cohesion of the structure. PMID:24426988
Structural analysis of Bacillus pumilus phenolic acid decarboxylase, a lipocalin-fold enzyme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matte, Allan; Grosse, Stephan; Bergeron, Hélène
The decarboxylation of phenolic acids, including ferulic and p-coumaric acids, to their corresponding vinyl derivatives is of importance in the flavoring and polymer industries. Here, the crystal structure of phenolic acid decarboxylase (PAD) from Bacillus pumilus strain UI-670 is reported. The enzyme is a 161-residue polypeptide that forms dimers both in the crystal and in solution. The structure of PAD as determined by X-ray crystallography revealed a -barrel structure and two -helices, with a cleft formed at one edge of the barrel. The PAD structure resembles those of the lipocalin-fold proteins, which often bind hydrophobic ligands. Superposition of structurally relatedmore » proteins bound to their cognate ligands shows that they and PAD bind their ligands in a conserved location within the -barrel. Analysis of the residue-conservation pattern for PAD-related sequences mapped onto the PAD structure reveals that the conservation mainly includes residues found within the hydrophobic core of the protein, defining a common lipocalin-like fold for this enzyme family. A narrow cleft containing several conserved amino acids was observed as a structural feature and a potential ligand-binding site.« less
Anisotropic energy flow and allosteric ligand binding in albumin
NASA Astrophysics Data System (ADS)
Li, Guifeng; Magana, Donny; Dyer, R. Brian
2014-01-01
Allosteric interactions in proteins generally involve propagation of local structural changes through the protein to a remote site. Anisotropic energy transport is thought to couple the remote sites, but the nature of this process is poorly understood. Here, we report the relationship between energy flow through the structure of bovine serum albumin and allosteric interactions between remote ligand binding sites of the protein. Ultrafast infrared spectroscopy is used to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic and anisotropic energy flow through the protein structure following input of thermal energy into the flexible ligand binding sites, without local heating of the rigid helix bundles that connect these sites. This efficient energy transport mechanism enables the allosteric propagation of binding energy through the connecting helix structures.
Anisotropic energy flow and allosteric ligand binding in albumin.
Li, Guifeng; Magana, Donny; Dyer, R Brian
2014-01-01
Allosteric interactions in proteins generally involve propagation of local structural changes through the protein to a remote site. Anisotropic energy transport is thought to couple the remote sites, but the nature of this process is poorly understood. Here, we report the relationship between energy flow through the structure of bovine serum albumin and allosteric interactions between remote ligand binding sites of the protein. Ultrafast infrared spectroscopy is used to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic and anisotropic energy flow through the protein structure following input of thermal energy into the flexible ligand binding sites, without local heating of the rigid helix bundles that connect these sites. This efficient energy transport mechanism enables the allosteric propagation of binding energy through the connecting helix structures.
Anisotropic energy flow and allosteric ligand binding in albumin
Li, Guifeng; Magana, Donny; Dyer, R. Brian
2014-01-01
Allosteric interactions in proteins generally involve propagation of local structural changes through the protein to a remote site. Anisotropic energy transport is thought to couple the remote sites, but the nature of this process is poorly understood. Here, we report the relationship between energy flow through the structure of bovine serum albumin and allosteric interactions between remote ligand binding sites of the protein. Ultrafast infrared spectroscopy is used to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic and anisotropic energy flow through the protein structure following input of thermal energy into the flexible ligand binding sites, without local heating of the rigid helix bundles that connect these sites. This efficient energy transport mechanism enables the allosteric propagation of binding energy through the connecting helix structures. PMID:24445265
NASA Astrophysics Data System (ADS)
Zhang, Xianjun; Zhao, Fei; Wu, Yiran; Yang, Jun; Han, Gye Won; Zhao, Suwen; Ishchenko, Andrii; Ye, Lintao; Lin, Xi; Ding, Kang; Dharmarajan, Venkatasubramanian; Griffin, Patrick R.; Gati, Cornelius; Nelson, Garrett; Hunter, Mark S.; Hanson, Michael A.; Cherezov, Vadim; Stevens, Raymond C.; Tan, Wenfu; Tao, Houchao; Xu, Fei
2017-05-01
The Smoothened receptor (SMO) belongs to the Class Frizzled of the G protein-coupled receptor (GPCR) superfamily, constituting a key component of the Hedgehog signalling pathway. Here we report the crystal structure of the multi-domain human SMO, bound and stabilized by a designed tool ligand TC114, using an X-ray free-electron laser source at 2.9 Å. The structure reveals a precise arrangement of three distinct domains: a seven-transmembrane helices domain (TMD), a hinge domain (HD) and an intact extracellular cysteine-rich domain (CRD). This architecture enables allosteric interactions between the domains that are important for ligand recognition and receptor activation. By combining the structural data, molecular dynamics simulation, and hydrogen-deuterium-exchange analysis, we demonstrate that transmembrane helix VI, extracellular loop 3 and the HD play a central role in transmitting the signal employing a unique GPCR activation mechanism, distinct from other multi-domain GPCRs.
Dzurová, Lenka; Forneris, Federico; Savino, Simone; Galuszka, Petr; Vrabka, Josef; Frébort, Ivo
2015-08-01
The recently discovered cytokinin (CK)-specific phosphoribohydrolase "Lonely Guy" (LOG) is a key enzyme of CK biosynthesis, converting inactive CK nucleotides into biologically active free bases. We have determined the crystal structures of LOG from Claviceps purpurea (cpLOG) and its complex with the enzymatic product phosphoribose. The structures reveal a dimeric arrangement of Rossmann folds, with the ligands bound to large pockets at the interface between cpLOG monomers. Structural comparisons highlight the homology of cpLOG to putative lysine decarboxylases. Extended sequence analysis enabled identification of a distinguishing LOG sequence signature. Taken together, our data suggest phosphoribohydrolase activity for several proteins of unknown function. © 2015 Wiley Periodicals, Inc.
Using the [beta][subscript 2]-Adrenoceptor for Structure-Based Drug Design
ERIC Educational Resources Information Center
Manallack, David T.; Chalmers, David K.; Yuriev, Elizabeth
2010-01-01
The topics of molecular modeling and drug design are studied in a medicinal chemistry course. The recently reported structures of several G protein-coupled receptors (GPCR) with bound ligands have been used to develop a simple computer-based experiment employing molecular-modeling software. Knowledge of the specific interactions between a ligand…
The Design, Synthesis, and Characterization of Open Sites on Metal Clusters
NASA Astrophysics Data System (ADS)
Nigra, Michael Mark
Coordinatively unsaturated corner and edge atoms have been hypothesized to have the highest activity of sites responsible for many catalytic reactions on a metal surface. Recent studies have validated this hypothesis in varied reaction systems. However, quantification of different types of coordinatively unsaturated sites, and elucidation of their individual catalytic rates has remained a largely unresolved challenge when understanding catalysis on metal surfaces. Yet such structure-function knowledge would be invaluable to the design of more active and selective metal-surface catalysts in the future. I investigated the catalytic contributions of undercoordinated sites such as corner and edge atoms are investigated in a model reaction system using organic ligands bound to the gold nanoparticle surface. The catalyst consisted of 4 nm gold nanoparticles on a metal oxide support, using resazurin to resorufin as a model reaction system. My results demonstrate that in this system, corner atom sites are the most undercoordinated sites, and are over an order of magnitude more active when compared to undercoordinated edge atom sites, while terrace sites remain catalytically inactive for the reduction reaction of resazurin to resorufin. Catalytic activity has been also demonstrated for calixarene-bound gold nanoparticles using the reduction of 4-nitrophenol. With the 4-nitrophenol reduction reaction, a comparative study was undertaken to compare calixarene phosphine and calixarene thiol bound 4 nm gold particles. The results of the study suggested that a leached site was responsible for catalysis and not sites on the original gold nanoparticles. Future experiments with calixarene bound gold clusters could investigate ligand effects in reactions where the active site is not a leached or aggregated gold species, possibly in oxidation reactions, where electron-rich gold is hypothesized to be a good catalyst. The results that emphasize the enhanced catalytic activity of undercoordinated sites led me to synthesize small gold clusters consisting of a high fraction of coordinatively unsaturated open sites. This was enabled through an approach that utilized bulky calix[4]arene ligands that are bound to a gold core. Since the size of the calix[4]arene ligand is commensurate with the size of the gold cluster core, the calix[4]arene ligand does not pack closely together on the gold cluster surface. This in turn results in areas of accessible gold atom sites between ligands. Additionally, these calix[4]arene ligands prevent cluster aggregation and electronically tune the gold core in a manner conceptually similar to enzymes affecting reactivity through organic side-chains acting as ligands. I quantified the number of open sites that result from this packing problem on the gold cluster surface, using fluorescence probe chemisorption experiments. The results of these chemisorption measurements support the mechanical model of accessibility whereby accessibility is not dependent on the identity of the functional group, whether it be calixarene phosphines or N-heterocyclic carbenes, bound to the gold surface, but rather to the relative radii of curvature of bound ligands and the gold cluster core. Additional materials characterization was completed with transmission electron microscopy in both bright-field imaging of zeolites, in MCM-22 and delaminated ITQ-2 and UCB-1 materials, and in dark field imaging of glucan coatings on oxide particles. These materials could prove to be interesting materials as to use as supports for the calixarene-bound metal clusters described above or for other metal clusters.
NASA Astrophysics Data System (ADS)
Poornima, C. S.; Dean, P. M.
1995-12-01
Water molecules are known to play an important rôle in mediating protein-ligand interactions. If water molecules are conserved at the ligand-binding sites of homologous proteins, such a finding may suggest the structural importance of water molecules in ligand binding. Structurally conserved water molecules change the conventional definition of `binding sites' by changing the shape and complementarity of these sites. Such conserved water molecules can be important for site-directed ligand/drug design. Therefore, five different sets of homologous protein/protein-ligand complexes have been examined to identify the conserved water molecules at the ligand-binding sites. Our analysis reveals that there are as many as 16 conserved water molecules at the FAD binding site of glutathione reductase between the crystal structures obtained from human and E. coli. In the remaining four sets of high-resolution crystal structures, 2-4 water molecules have been found to be conserved at the ligand-binding sites. The majority of these conserved water molecules are either bound in deep grooves at the protein-ligand interface or completely buried in cavities between the protein and the ligand. All these water molecules, conserved between the protein/protein-ligand complexes from different species, have identical or similar apolar and polar interactions in a given set. The site residues interacting with the conserved water molecules at the ligand-binding sites have been found to be highly conserved among proteins from different species; they are more conserved compared to the other site residues interacting with the ligand. These water molecules, in general, make multiple polar contacts with protein-site residues.
Zou, Yaozhong; Zhang, Houjin; Brunzelle, Joseph S.; Johannes, Tyler W.; Woodyer, Ryan; Hung, John E.; Nair, Nikhil; van der Donk, Wilfred A.; Zhao, Huimin; Nair, Satish K.
2015-01-01
The enzyme phosphite dehydrogenase (PTDH) catalyzes the NAD+-dependent conversion of phosphite to phosphate and represents the first biological catalyst that has been characterized to carry out the enzymatic oxidation of phosphorus. Despite over a decade’s worth of investigation into both the mechanism of its unusual reaction, as well as its utility in cofactor regeneration, there has been a lack of any structural data on PTDH. Here we present the co-crystal structure of an engineered thermostable variant of PTDH bound to NAD+ (1.7 Å resolution), as well as four other co-crystal structures of thermostable PTDH and its variants with different ligands (all between 1.85 – 2.3 Å resolution). These structures provide a molecular framework for understanding prior mutational analysis, and point to additional residues, located in the active site, that may contribute to the enzymatic activity of this highly unusual catalyst. PMID:22564171
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Yaozhong; Zhang, Houjin; Brunzelle, Joseph S.
The enzyme phosphite dehydrogenase (PTDH) catalyzes the NAD{sup +}-dependent conversion of phosphite to phosphate and represents the first biological catalyst that has been shown to conduct the enzymatic oxidation of phosphorus. Despite investigation for more than a decade into both the mechanism of its unusual reaction and its utility in cofactor regeneration, there has been a lack of any structural data for PTDH. Here we present the cocrystal structure of an engineered thermostable variant of PTDH bound to NAD{sup +} (1.7 {angstrom} resolution), as well as four other cocrystal structures of thermostable PTDH and its variants with different ligands (allmore » between 1.85 and 2.3 {angstrom} resolution). These structures provide a molecular framework for understanding prior mutational analysis and point to additional residues, located in the active site, that may contribute to the enzymatic activity of this highly unusual catalyst.« less
Wu, R; Wilton, R; Cuff, M E; Endres, M; Babnigg, G; Edirisinghe, J N; Henry, C S; Joachimiak, A; Schiffer, M; Pokkuluri, P R
2017-04-01
We report the structural and biochemical characterization of a novel periplasmic ligand-binding protein, Dret_0059, from Desulfohalobium retbaense DSM 5692, an organism isolated from Lake Retba, in Senegal. The structure of the protein consists of a unique combination of a periplasmic solute binding protein (SBP) domain at the N-terminal and a tandem PAS-like sensor domain at the C-terminal region. SBP domains are found ubiquitously, and their best known function is in solute transport across membranes. PAS-like sensor domains are commonly found in signal transduction proteins. These domains are widely observed as parts of many protein architectures and complexes but have not been observed previously within the same polypeptide chain. In the structure of Dret_0059, a ketoleucine moiety is bound to the SBP, whereas a cytosine molecule is bound in the distal PAS-like domain of the tandem PAS-like domain. Differential scanning flourimetry support the binding of ligands observed in the crystal structure. There is significant interaction between the SBP and tandem PAS-like domains, and it is possible that the binding of one ligand could have an effect on the binding of the other. We uncovered three other proteins with this structural architecture in the non-redundant sequence data base, and predict that they too bind the same substrates. The genomic context of this protein did not offer any clues for its function. We did not find any biological process in which the two observed ligands are coupled. The protein Dret_0059 could be involved in either signal transduction or solute transport. © 2017 The Protein Society.
Neurotransmitter and psychostimulant recognition by the dopamine transporter
Wang, Kevin H.; Penmatsa, Aravind; Gouaux, Eric
2015-01-01
Na+/Cl−-coupled biogenic amine transporters are the primary targets of therapeutic and abused drugs, ranging from antidepressants to the psychostimulants cocaine and amphetamines, and to their cognate substrates. Here we determine x-ray crystal structures of the Drosophila melanogaster dopamine transporter (dDAT) bound to its substrate dopamine (DA), a substrate analogue 3,4-dichlorophenethylamine, the psychostimulants D-amphetamine, methamphetamine, or to cocaine and cocaine analogues. All ligands bind to the central binding site, located approximately halfway across the membrane bilayer, in close proximity to bound sodium and chloride ions. The central binding site recognizes three chemically distinct classes of ligands via conformational changes that accommodate varying sizes and shapes, thus illustrating molecular principles that distinguish substrates from inhibitors in biogenic amine transporters. PMID:25970245
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, Jacob Lauwring, E-mail: jla@mb.au.dk; Schrøder, Tenna Juul; Christensen, Søren
2014-02-01
The identification of the first small-molecule ligand of the neuronal receptor sortilin and structure determination of the receptor–ligand complex are reported. Sortilin is a type I membrane glycoprotein belonging to the vacuolar protein sorting 10 protein (Vps10p) family of sorting receptors and is most abundantly expressed in the central nervous system. Sortilin has emerged as a key player in the regulation of neuronal viability and has been implicated as a possible therapeutic target in a range of disorders. Here, the identification of AF40431, the first reported small-molecule ligand of sortilin, is reported. Crystals of the sortilin–AF40431 complex were obtained bymore » co-crystallization and the structure of the complex was solved to 2.7 Å resolution. AF40431 is bound in the neurotensin-binding site of sortilin, with the leucine moiety of AF40431 mimicking the binding mode of the C-terminal leucine of neurotensin and the 4-methylumbelliferone moiety of AF40431 forming π-stacking with a phenylalanine.« less
Walker, Ryan G; Angerman, Elizabeth B; Kattamuri, Chandramohan; Lee, Yun-Sil; Lee, Se-Jin; Thompson, Thomas B
2015-03-20
Myostatin, a member of the TGF-β family of ligands, is a strong negative regulator of muscle growth. As such, it is a prime therapeutic target for muscle wasting disorders. Similar to other TGF-β family ligands, myostatin is neutralized by binding one of a number of structurally diverse antagonists. Included are the antagonists GASP-1 and GASP-2, which are unique in that they specifically antagonize myostatin. However, little is known from a structural standpoint describing the interactions of GASP antagonists with myostatin. Here, we present the First low resolution solution structure of myostatin-free and myostatin-bound states of GASP-1 and GASP-2. Our studies have revealed GASP-1, which is 100 times more potent than GASP-2, preferentially binds myostatin in an asymmetrical 1:1 complex, whereas GASP-2 binds in a symmetrical 2:1 complex. Additionally, C-terminal truncations of GASP-1 result in less potent myostatin inhibitors that form a 2:1 complex, suggesting that the C-terminal domains of GASP-1 are the primary mediators for asymmetric complex formation. Overall, this study provides a new perspective on TGF-β antagonism, where closely related antagonists can utilize different ligand-binding strategies. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Walker, Ryan G.; Angerman, Elizabeth B.; Kattamuri, Chandramohan; Lee, Yun-Sil; Lee, Se-Jin; Thompson, Thomas B.
2015-01-01
Myostatin, a member of the TGF-β family of ligands, is a strong negative regulator of muscle growth. As such, it is a prime therapeutic target for muscle wasting disorders. Similar to other TGF-β family ligands, myostatin is neutralized by binding one of a number of structurally diverse antagonists. Included are the antagonists GASP-1 and GASP-2, which are unique in that they specifically antagonize myostatin. However, little is known from a structural standpoint describing the interactions of GASP antagonists with myostatin. Here, we present the First low resolution solution structure of myostatin-free and myostatin-bound states of GASP-1 and GASP-2. Our studies have revealed GASP-1, which is 100 times more potent than GASP-2, preferentially binds myostatin in an asymmetrical 1:1 complex, whereas GASP-2 binds in a symmetrical 2:1 complex. Additionally, C-terminal truncations of GASP-1 result in less potent myostatin inhibitors that form a 2:1 complex, suggesting that the C-terminal domains of GASP-1 are the primary mediators for asymmetric complex formation. Overall, this study provides a new perspective on TGF-β antagonism, where closely related antagonists can utilize different ligand-binding strategies. PMID:25657005
Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs
NASA Astrophysics Data System (ADS)
Dror, Ron O.; Green, Hillary F.; Valant, Celine; Borhani, David W.; Valcourt, James R.; Pan, Albert C.; Arlow, Daniel H.; Canals, Meritxell; Lane, J. Robert; Rahmani, Raphaël; Baell, Jonathan B.; Sexton, Patrick M.; Christopoulos, Arthur; Shaw, David E.
2013-11-01
The design of G-protein-coupled receptor (GPCR) allosteric modulators, an active area of modern pharmaceutical research, has proved challenging because neither the binding modes nor the molecular mechanisms of such drugs are known. Here we determine binding sites, bound conformations and specific drug-receptor interactions for several allosteric modulators of the M2 muscarinic acetylcholine receptor (M2 receptor), a prototypical family A GPCR, using atomic-level simulations in which the modulators spontaneously associate with the receptor. Despite substantial structural diversity, all modulators form cation-π interactions with clusters of aromatic residues in the receptor extracellular vestibule, approximately 15Å from the classical, `orthosteric' ligand-binding site. We validate the observed modulator binding modes through radioligand binding experiments on receptor mutants designed, on the basis of our simulations, either to increase or to decrease modulator affinity. Simulations also revealed mechanisms that contribute to positive and negative allosteric modulation of classical ligand binding, including coupled conformational changes of the two binding sites and electrostatic interactions between ligands in these sites. These observations enabled the design of chemical modifications that substantially alter a modulator's allosteric effects. Our findings thus provide a structural basis for the rational design of allosteric modulators targeting muscarinic and possibly other GPCRs.
Jenkins, Jermaine L; Krucinska, Jolanta; McCarty, Reid M; Bandarian, Vahe; Wedekind, Joseph E
2011-07-15
Riboswitches are RNA regulatory elements that govern gene expression by recognition of small molecule ligands via a high affinity aptamer domain. Molecular recognition can lead to active or attenuated gene expression states by controlling accessibility to mRNA signals necessary for transcription or translation. Key areas of inquiry focus on how an aptamer attains specificity for its effector, the extent to which the aptamer folds prior to encountering its ligand, and how ligand binding alters expression signal accessibility. Here we present crystal structures of the preQ(1) riboswitch from Thermoanaerobacter tengcongensis in the preQ(1)-bound and free states. Although the mode of preQ(1) recognition is similar to that observed for preQ(0), surface plasmon resonance revealed an apparent K(D) of 2.1 ± 0.3 nm for preQ(1) but a value of 35.1 ± 6.1 nm for preQ(0). This difference can be accounted for by interactions between the preQ(1) methylamine and base G5 of the aptamer. To explore conformational states in the absence of metabolite, the free-state aptamer structure was determined. A14 from the ceiling of the ligand pocket shifts into the preQ(1)-binding site, resulting in "closed" access to the metabolite while simultaneously increasing exposure of the ribosome-binding site. Solution scattering data suggest that the free-state aptamer is compact, but the "closed" free-state crystal structure is inadequate to describe the solution scattering data. These observations are distinct from transcriptional preQ(1) riboswitches of the same class that exhibit strictly ligand-dependent folding. Implications for gene regulation are discussed.
Karnawat, Vishakha; Mehrotra, Sonali; Balaram, Hemalatha; Puranik, Mrinalini
2016-05-03
In enzymes that conduct complex reactions involving several substrates and chemical transformations, the active site must reorganize at each step to complement the transition state of that chemical step. Adenylosuccinate synthetase (ADSS) utilizes a molecule each of guanosine 5'-monophosphate (GTP) and aspartate to convert inosine 5'-monophosphate (IMP) into succinyl adenosine 5'-monophosphate (sAMP) through several kinetic intermediates. Here we followed catalysis by ADSS through high-resolution vibrational spectral fingerprints of each substrate and intermediate involved in the forward reaction. Vibrational spectra show differential ligand distortion at each step of catalysis, and band positions of substrates are influenced by binding of cosubstrates. We found that the bound IMP is distorted toward its N1-deprotonated form even in the absence of any other ligands. Several specific interactions between GTP and active-site amino acid residues result in large Raman shifts and contribute substantially to intrinsic binding energy. When both IMP and GTP are simultaneously bound to ADSS, IMP is converted into an intermediate 6-phosphoryl inosine 5'-monophosphate (6-pIMP). The 6-pIMP·ADSS complex was found to be stable upon binding of the third ligand, hadacidin (HDA), an analogue of l-aspartate. We find that in the absence of HDA, 6-pIMP is quickly released from ADSS, is unstable in solution, and converts back into IMP. HDA allosterically stabilizes ADSS through local conformational rearrangements. We captured this complex and determined the spectra and structure of 6-pIMP in its enzyme-bound state. These results provide important insights into the exquisite tuning of active-site interactions with changing substrate at each kinetic step of catalysis.
Allosteric Ligand Binding and Anisotropic Energy Flow in Albumin
NASA Astrophysics Data System (ADS)
Dyer, Brian
2014-03-01
Protein allostery usually involves propagation of local structural changes through the protein to a remote site. Coupling of structural changes at remote sites is thought to occur through anisotropic energy transport, but the nature of this process is poorly understood. We have studied the relationship between allosteric interactions of remote ligand binding sites of the protein and energy flow through the structure of bovine serum albumin (BSA). We applied ultrafast infrared spectroscopy to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic flow through the protein structure following input of thermal energy into the flexible ligand binding sites. We also observe anisotropic heat flow through the structure, without local heating of the rigid helix bundles that connect these sites. We will discuss the implications of this efficient energy transport mechanism with regard to the allosteric propagation of binding energy through the connecting helix structures.
de Graaf, Chris; Donnelly, Dan; Wootten, Denise; Lau, Jesper; Sexton, Patrick M.; Miller, Laurence J.; Ahn, Jung-Mo; Liao, Jiayu; Fletcher, Madeleine M.; Brown, Alastair J. H.; Zhou, Caihong; Deng, Jiejie; Wang, Ming-Wei
2016-01-01
The glucagon-like peptide (GLP)-1 receptor (GLP-1R) is a class B G protein–coupled receptor (GPCR) that mediates the action of GLP-1, a peptide hormone secreted from three major tissues in humans, enteroendocrine L cells in the distal intestine, α cells in the pancreas, and the central nervous system, which exerts important actions useful in the management of type 2 diabetes mellitus and obesity, including glucose homeostasis and regulation of gastric motility and food intake. Peptidic analogs of GLP-1 have been successfully developed with enhanced bioavailability and pharmacological activity. Physiologic and biochemical studies with truncated, chimeric, and mutated peptides and GLP-1R variants, together with ligand-bound crystal structures of the extracellular domain and the first three-dimensional structures of the 7-helical transmembrane domain of class B GPCRs, have provided the basis for a two-domain–binding mechanism of GLP-1 with its cognate receptor. Although efforts in discovering therapeutically viable nonpeptidic GLP-1R agonists have been hampered, small-molecule modulators offer complementary chemical tools to peptide analogs to investigate ligand-directed biased cellular signaling of GLP-1R. The integrated pharmacological and structural information of different GLP-1 analogs and homologous receptors give new insights into the molecular determinants of GLP-1R ligand selectivity and functional activity, thereby providing novel opportunities in the design and development of more efficacious agents to treat metabolic disorders. PMID:27630114
Tsai, Fu-Te; Chen, Pei-Lin; Liaw, Wen-Feng
2010-04-14
Nitrosylation of [PPN](2)[(ONO)(2)Fe(eta(2)-ONO)(2)] [1; PPN = bis(triphenylphosphoranylidene)ammonium] yields the nitrite-containing {Fe(NO)}(7) mononitrosyliron complex (MNIC) [PPN](2)[(NO)Fe(ONO)(3)(eta(2)-ONO)] (2). At 4 K, complex 2 exhibits an S = (3)/(2) axial EPR spectrum with principal g values of g( perpendicular) = 3.971 and g( parallel) = 2.000, suggestive of the {Fe(III)(NO(-))}(7) electronic structure. Addition of 1 equiv of PPh(3) to complex 2 triggers O-atom transfer of the chelating nitrito ligand under mild conditions to yield the {Fe(NO)(2)}(9) dinitrosyliron complex (DNIC) [PPN][(ONO)(2)Fe(NO)(2)] (3). These results demonstrate that both electronic structure [{Fe(III)(NO(-))}(7), S = (3)/(2)] and redox-active ligands ([RS](-) for [(RS)(3)Fe(NO)](-) and [NO(-)] for complex 2) are required for the transformation of {Fe(NO)}(7) MNICs into {Fe(NO)(2)}(9) DNICs. In comparison with the PPh(3)-triggered O-atom abstraction of the chelating nitrito ligand of the {Fe(NO)(2)}(9) DNIC [(1-MeIm)(2)(eta(2)-ONO)Fe(NO)(2)] (5; 1-MeIm = 1-methylimidazole) to generate the {Fe(NO)(2)}(10) DNIC [(1-MeIm)(PPh(3))Fe(NO)(2)] (6), glacial acetic acid protonation of the N-bound nitro ligand in the {Fe(NO)(2)}(10) DNIC [PPN][(eta(1)-NO(2))(PPh(3))Fe(NO)(2)] (7) produced the {Fe(NO)(2)}(9) DNIC [PPN][(OAc)(2)Fe(NO)(2)] (8), nitric oxide, and H(2)O. These results demonstrate that the distinct electronic structures of {Fe(NO)(2)}(9/10) motifs [{Fe(NO)(2)}(9) vs {Fe(NO)(2)}(10)] play crucial roles in modulating nitrite binding modes (O-bound chelating/monodentate nitrito for {Fe(NO)(2)}(9) DNICs vs N-bound nitro as a pi acceptor for {Fe(NO)(2)}(10) DNICs) and regulating nitrite activation pathways (O-atom abstraction by PPh(3) leading to the intermediate with a nitroxyl-coordinated ligand vs protonation accompanied by dehydration leading to the intermediate with a nitrosonium-coordinated ligand). That is, the redox shuttling between the {Fe(NO)(2)}(9) and {Fe(NO)(2)}(10) DNICs modulates the nitrite binding modes and then triggers nitrite activation to generate nitric oxide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Dayle MA; Raugei, Simone; Squier, Thomas C.
2014-09-30
Control of the reactivity of the nickel center of the [NiFe] hydrogenase and other metalloproteins commonly involves outer coordination sphere ligands that act to modify the geometry and physical properties of the active site metal centers. We carried out a combined set of classical molecular dynamics and quantum/classical mechanics calculations to provide quantitative estimates of how dynamic fluctuations of the active site within the protein matrix modulate the electronic structure at the catalytic center. Specifically we focused on the dynamics of the inner and outer coordination spheres of the cysteinate-bound Ni–Fe cluster in the catalytically active Ni-C state. There aremore » correlated movements of the cysteinate ligands and the surrounding hydrogen-bonding network, which modulate the electron affinity at the active site and the proton affinity of a terminal cysteinate. On the basis of these findings, we hypothesize a coupling between protein dynamics and electron and proton transfer reactions critical to dihydrogen production.« less
Smith, Dayle M A; Raugei, Simone; Squier, Thomas C
2014-11-21
Control of the reactivity of the nickel center of the [NiFe] hydrogenase and other metalloproteins commonly involves outer coordination sphere ligands that act to modify the geometry and physical properties of the active site metal centers. We carried out a combined set of classical molecular dynamics and quantum/classical mechanics calculations to provide quantitative estimates of how dynamic fluctuations of the active site within the protein matrix modulate the electronic structure at the catalytic center. Specifically we focused on the dynamics of the inner and outer coordination spheres of the cysteinate-bound Ni-Fe cluster in the catalytically active Ni-C state. There are correlated movements of the cysteinate ligands and the surrounding hydrogen-bonding network, which modulate the electron affinity at the active site and the proton affinity of a terminal cysteinate. On the basis of these findings, we hypothesize a coupling between protein dynamics and electron and proton transfer reactions critical to dihydrogen production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basak, Sandip; Schmandt, Nicolaus; Gicheru, Yvonne
Desensitization in pentameric ligand-gated ion channels plays an important role in regulating neuronal excitability. Here, we show that docosahexaenoic acid (DHA), a key ω-3 polyunsaturated fatty acid in synaptic membranes, enhances the agonist-induced transition to the desensitized state in the prokaryotic channel GLIC. We determined a 3.25 Å crystal structure of the GLIC-DHA complex in a potentially desensitized conformation. The DHA molecule is bound at the channel-periphery near the M4 helix and exerts a long-range allosteric effect on the pore across domain-interfaces. In this previously unobserved conformation, the extracellular-half of the pore-lining M2 is splayed open, reminiscent of the openmore » conformation, while the intracellular-half is constricted, leading to a loss of both water and permeant ions. These findings, in combination with spin-labeling/EPR spectroscopic measurements in reconstituted-membranes, provide novel mechanistic details of desensitization in pentameric channels.« less
Theory and Normal Mode Analysis of Change in Protein Vibrational Dynamics on Ligand Binding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mortisugu, Kei; Njunda, Brigitte; Smith, Jeremy C
2009-12-01
The change of protein vibrations on ligand binding is of functional and thermodynamic importance. Here, this process is characterized using a simple analytical 'ball-and-spring' model and all-atom normal-mode analysis (NMA) of the binding of the cancer drug, methotrexate (MTX) to its target, dihydrofolate reductase (DHFR). The analytical model predicts that the coupling between protein vibrations and ligand external motion generates entropy-rich, low-frequency vibrations in the complex. This is consistent with the atomistic NMA which reveals vibrational softening in forming the DHFR-MTX complex, a result also in qualitative agreement with neutron-scattering experiments. Energy minimization of the atomistic bound-state (B) structure whilemore » gradually decreasing the ligand interaction to zero allows the generation of a hypothetical 'intermediate' (I) state, without the ligand force field but with a structure similar to that of B. In going from I to B, it is found that the vibrational entropies of both the protein and MTX decrease while the complex structure becomes enthalpically stabilized. However, the relatively weak DHFR:MTX interaction energy results in the net entropy gain arising from coupling between the protein and MTX external motion being larger than the loss of vibrational entropy on complex formation. This, together with the I structure being more flexible than the unbound structure, results in the observed vibrational softening on ligand binding.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borbulevych, Oleg Y.; Plumley, Joshua A.; Martin, Roger I.
2014-05-01
Semiempirical quantum-chemical X-ray macromolecular refinement using the program DivCon integrated with PHENIX is described. Macromolecular crystallographic refinement relies on sometimes dubious stereochemical restraints and rudimentary energy functionals to ensure the correct geometry of the model of the macromolecule and any covalently bound ligand(s). The ligand stereochemical restraint file (CIF) requires a priori understanding of the ligand geometry within the active site, and creation of the CIF is often an error-prone process owing to the great variety of potential ligand chemistry and structure. Stereochemical restraints have been replaced with more robust functionals through the integration of the linear-scaling, semiempirical quantum-mechanics (SE-QM)more » program DivCon with the PHENIX X-ray refinement engine. The PHENIX/DivCon package has been thoroughly validated on a population of 50 protein–ligand Protein Data Bank (PDB) structures with a range of resolutions and chemistry. The PDB structures used for the validation were originally refined utilizing various refinement packages and were published within the past five years. PHENIX/DivCon does not utilize CIF(s), link restraints and other parameters for refinement and hence it does not make as many a priori assumptions about the model. Across the entire population, the method results in reasonable ligand geometries and low ligand strains, even when the original refinement exhibited difficulties, indicating that PHENIX/DivCon is applicable to both single-structure and high-throughput crystallography.« less
Stanic-Vucinic, Dragana; Nikolic, Milan; Milcic, Milos; Cirkovic Velickovic, Tanja
2016-01-01
Phycocyanobilin (PCB) binds with high affinity (2.2 x 106 M-1 at 25°C) to human serum albumin (HSA) at sites located in IB and IIA subdomains. The aim of this study was to examine effects of PCB binding on protein conformation and stability. Using 300 ns molecular dynamics (MD) simulations, UV-VIS spectrophotometry, CD, FT-IR, spectrofluorimetry, thermal denaturation and susceptibility to trypsin digestion, we studied the effects of PCB binding on the stability and rigidity of HSA, as well as the conformational changes in PCB itself upon binding to the protein. MD simulation results demonstrated that HSA with PCB bound at any of the two sites showed greater rigidity and lower overall and individual domain flexibility compared to free HSA. Experimental data demonstrated an increase in the α-helical content of the protein and thermal and proteolytic stability upon ligand binding. PCB bound to HSA undergoes a conformational change to a more elongated conformation in the binding pockets of HSA. PCB binding to HSA stabilizes the structure of this flexible transport protein, making it more thermostable and resistant to proteolysis. The results from this work explain at molecular level, conformational changes and stabilization of HSA structure upon ligand binding. The resultant increased thermal and proteolytic stability of HSA may provide greater longevity to HSA in plasma. PMID:27959940
Mills, Jeffrey L; Liu, Gaohua; Skerra, Arne; Szyperski, Thomas
2009-08-11
The NMR structure of the 21 kDa lipocalin FluA, which was previously obtained by combinatorial design, elucidates a reshaped binding site specific for the dye fluorescein resulting from 21 side chain replacements with respect to the parental lipocalin, the naturally occurring bilin-binding protein (BBP). As expected, FluA exhibits the lipocalin fold of BBP, comprising eight antiparallel beta-strands forming a beta-barrel with an alpha-helix attached to its side. Comparison of the NMR structure of free FluA with the X-ray structures of BBP.biliverdin IX(gamma) and FluA.fluorescein complexes revealed significant conformational changes in the binding pocket, which is formed by four loops at the open end of the beta-barrel as well as adjoining beta-strand segments. An "induced fit" became apparent for the side chain conformations of Arg 88 and Phe 99, which contact the bound fluorescein in the complex and undergo concerted rearrangement upon ligand binding. Moreover, slower internal motional modes of the polypeptide backbone were identified by measuring transverse (15)N backbone spin relaxation times in the rotating frame for free FluA and also for the FluA.fluorescein complex. A reduction in the level of such motions was detected upon complex formation, indicating rigidification of the protein structure and loss of conformational entropy. This hypothesis was confirmed by isothermal titration calorimetry, showing that ligand binding is enthalpy-driven, thus overcompensating for the negative entropy associated with both ligand binding per se and rigidification of the protein. Our investigation of the solution structure and dynamics as well as thermodynamics of lipocalin-ligand interaction not only provides insight into the general mechanism of small molecule accommodation in the deep and narrow cavity of this abundant class of proteins but also supports the future design of corresponding binding proteins with novel specificities, so-called "anticalins".
Quinlan, R. Jason; Reinhart, Gregory D.
2008-01-01
Differences between the crystal structures of inhibitor-bound and uninihibited forms of phosphofructokinase (PFK) from B. stearothermophilus have led to a structural model for allosteric inhibition by phosphenolpyruvate (PEP) wherein a dimer-dimer interface within the tetrameric enzyme undergoes a quaternary shift. We have developed a labeling and hybridization technique to generate a tetramer with subunits containing two different extrinsic fluorophores simultaneously in known subunit orientations. This construct has been utilized in the examination of the effects of allosteric ligand and substrate binding on the subunit affinities of tetrameric PFK using several biophysical and spectroscopic techniques including 2-photon, dual-channel Fluorescence Correlation Spectroscopy (FCS). We demonstrate that PEP-binding at the allosteric site is sufficient to reduce the affinity of the active site interface from beyond the limits of experimental detection to nanomolar affinity, while conversely strengthening the interface at which it is bound. The reduced interface affinity is specific to inhibitor-binding, as binding the activator ADP at the same allosteric site causes no reduction in subunit affinity. With inhibitor bound, the weakened subunit affinity has allowed the kinetics of dimer association to be elucidated. PMID:16981693
Le Gac, Stéphane; Najjari, Btissam; Dorcet, Vincent; Roisnel, Thierry; Fusaro, Luca; Luhmer, Michel; Furet, Eric; Halet, Jean-François; Boitrel, Bernard
2013-08-12
Overhanging carboxylic acid porphyrins have revealed promising ditopic ligands offering a new entry in the field of supramolecular coordination chemistry of porphyrinoids. Notably, the adjunction of a so-called hanging-atop (HAT) Pb(II) cation to regular Pb(II) porphyrin complexes allowed a stereoselective incorporation of the N-core bound cation, and an allosterically controlled Newton's cradle-like motion of the two Pb(II) ions also emerged from such bimetallic complexes. In this contribution, we have extended this work to other ligands and metal ions, aiming at understanding the parameters that control the HAT Pb(II) coordination. The nature of the N-core bound metal ion (Zn(II), Cd(II)), the influence of the deprotonation state of the overhanging COOH group and the presence of a neutral ligand on the opposite side (exogenous or intramolecular), have been examined through (1)H NMR spectroscopic experiments with the help of radiocrystallographic structures and DFT calculations. Single and bis-strap ligands have been considered. They all incorporate a COOH group hung over the N-core on one side. For the bis-strap ligands, either an ester or an amide group has been introduced on the other side. In the presence of a base, the mononuclear Zn(II) or Cd(II) complexes incorporate the carbonyl of the overhanging carboxylate as apical ligand, decreasing its availability for the binding of a HAT Pb(II). An allosteric effector (e.g., 4-dimethylaminopyridine (DMAP), in the case of a single-strap ligand) or an intramolecular ligand (e.g., an amide group), strong enough to compete with the carbonyl of the hung COO(-), is required to switch the N-core bound cation to the opposite side with concomitant release of the COO(-), thereby allowing HAT Pb(II) complexation. In the absence of a base, Zn(II) or Cd(II) binds preferentially the carbonyl of the intramolecular ester or amide groups in apical position rather than that of the COOH. This better preorganization, with the overhanging COOH fully available, is responsible for a stronger binding of the HAT Pb(II). Thus, either allosteric or acid-base control is achieved through stereoselective metalation of Zn(II) or Cd(II). In the latter case, according to the deprotonation state of the COOH group, the best electron-donating ligand is located on one or the other side of the porphyrin (COO(-)>CONHR>COOR>COOH): the lower affinity of COOH for Zn(II) and Cd(II), the higher for a HAT Pb(II). These insights provide new opportunities for the elaboration of innovative bimetallic molecular switches. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ni, Min; Li, Quanle; Chen, Hao; Li, Shengqing
2015-07-01
The title coordination polymer, poly[[μ-aqua-tri-aqua-(μ3-benzene-1,3,5-tri-carboxyl-ato)sodiumzinc] sesquihydrate], {[NaZn(C9H3O6)(H2O)4]·1.5H2O} n , was obtained in ionic liquid microemulsion at room temperture by the reaction of benzene-1,3,5-tri-carb-oxy-lic acid (H3BTC) with Zn(NO3)2·6H2O in the presence of NaOH. The asymmetric unit comprises two Na(+) ions (each located on an inversion centre), one Zn(2+) ion, one BTC ligand, four coordinating water mol-ecules and two solvent water molecules, one of which is disordered about an inversion centre and shows half-occupation. The Zn(2+) cation is five-coordinated by two carboxyl-ate O atoms from two different BTC ligands and three coordinating H2O mol-ecules; the Zn-O bond lengths are in the range 1.975 (2)-2.058 (3) Å. The Na(+) cations are six-coordinated but have different arrangements of the ligands: one is bound to two carboxyl-ate O atoms of two BTC ligands and four O atoms from four coordinating H2O mol-ecules while the other is bound by four carboxyl-ate O atoms from four BTC linkers and two O atoms of coordinating H2O mol-ecules. The completely deprotonated BTC ligand acts as a bridging ligand binding the Zn(2+) atom and Na(+) ions, forming a layered structure extending parallel to (100). An intricate network of O-H⋯O hydrogen bonds is present within and between the layers.
Selenolate Complexes of CYP101 and the Heme-bound hHO-1/H25A Proximal Cavity Mutant
Jiang, Yongying; Ortiz de Montellano, Paul R.
2009-01-01
Thiolate and selenolate complexes of CYP101 (P450cam) and the H25A proximal cavity mutant of heme-bound human heme oxygenase-1 (hHO-1) have been examined by UV-visible spectroscopy. Both thiolate and selenolate ligands bound to the heme distal side in CYP101 and gave rise to characteristic hyperporphyrin spectra. Thiolate ligands also bound to the proximal side of the heme in the cavity created by the H25A mutation in hHO-1, giving a Soret absorption similar to that of the H25C hHO-1 mutant. Selenolate ligands also bound to this cavity mutant under anaerobic conditions, but reduced the heme iron to the ferrous state as shown by formation of a ferrous-CO complex. Under aerobic conditions, the selenolate but not thiolate ligand was rapidly oxidized. These results indicate that selenocysteine-coordinated heme proteins will not be stable species in the absence of a redox potential stabilizing effect. PMID:18376820
Dissecting Orthosteric Contacts for a Reverse-Fragment-Based Ligand Design.
Chandramohan, Arun; Tulsian, Nikhil K; Anand, Ganesh S
2017-08-01
Orthosteric sites on proteins are formed typically from noncontiguous interacting sites in three-dimensional space where the composite binding interaction of a biological ligand is mediated by multiple synergistic interactions of its constituent functional groups. Through these multiple interactions, ligands stabilize both the ligand binding site and the local secondary structure. However, relative energetic contributions of the individual contacts in these protein-ligand interactions are difficult to resolve. Deconvolution of the contributions of these various functional groups in natural inhibitors/ligand would greatly aid in iterative fragment-based drug discovery (FBDD). In this study, we describe an approach of progressive unfolding of a target protein using a gradient of denaturant urea to reveal the individual energetic contributions of various ligand-functional groups to the affinity of the entire ligand. Through calibrated unfolding of two protein-ligand systems: cAMP-bound regulatory subunit of Protein Kinase A (RIα) and IBMX-bound phosphodiesterase8 (PDE8), monitored by amide hydrogen-deuterium exchange mass spectrometry, we show progressive disruption of individual orthosteric contacts in the ligand binding sites, allowing us to rank the energetic contributions of these individual interactions. In the two cAMP-binding sites of RIα, exocyclic phosphate oxygens of cAMP were identified to mediate stronger interactions than ribose 2'-OH in both the RIα-cAMP binding interfaces. Further, we have also ranked the relative contributions of the different functional groups of IBMX based on their interactions with the orthosteric residues of PDE8. This strategy for deconstruction of individual binding sites and identification of the strongest functional group interaction in enzyme orthosteric sites offers a rational starting point for FBDD.
Complex between α-bungarotoxin and an α7 nicotinic receptor ligand-binding domain chimaera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Sun; Li, Shu-Xing; Bren, Nina
2013-09-01
To identify high-affinity interactions between long-chain α-neurotoxins and nicotinic receptors, we determined the crystal structure of the complex between α-btx (α-bungarotoxin) and a pentameric ligand-binding domain constructed from the human α7 AChR (acetylcholine receptor) and AChBP (acetylcholine-binding protein). The complex buries ~2000 Å 2 (1 Å=0.1 nm) of surface area, within which Arg 36 and Phe 32 from finger II of α-btx form a π-cation stack that aligns edge-to-face with the conserved Tyr 184 from loop-C of α7, while Asp 30 of α-btx forms a hydrogen bond with the hydroxy group of Tyr 184. These inter-residue interactions diverge from thosemore » in a 4.2 Å structure of α-ctx (α-cobratoxin) bound to AChBP, but are similar to those in a 1.94 Å structure of α-btx bound to the monomeric α1 extracellular domain, although compared with the monomer-bound complex, the α-btx backbone exhibits a large shift relative to the protein surface. Mutational analyses show that replacing Tyr 184 with a threonine residue abolishes high-affinity α-btx binding, whereas replacing with a phenylalanine residue maintains high affinity. Comparison of the α-btx complex with that coupled to the agonist epibatidine reveals structural rearrangements within the binding pocket and throughout each subunit. The overall findings highlight structural principles by which α-neurotoxins interact with nicotinic receptors.« less
Crystal structure of the Rasputin NTF2-like domain from Drosophila melanogaster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vognsen, Tina, E-mail: tv@farma.ku.dk; Kristensen, Ole, E-mail: ok@farma.ku.dk
2012-03-30
Highlights: Black-Right-Pointing-Pointer The crystal structure of the NTF2-like domain of Rasputin protein is presented. Black-Right-Pointing-Pointer Differences to known ligand binding sites of nuclear transport factor 2 are discussed. Black-Right-Pointing-Pointer A new ligand binding site for the Rasputin and G3BP proteins is proposed. -- Abstract: The crystal structure of the NTF2-like domain of the Drosophila homolog of Ras GTPase SH3 Binding Protein (G3BP), Rasputin, was determined at 2.7 A resolution. The overall structure is highly similar to nuclear transport factor 2: It is a homodimer comprised of a {beta}-sheet and three {alpha}-helices forming a cone-like shape. However, known binding sites formore » RanGDP and FxFG containing peptides show electrostatic and steric differences compared to nuclear transport factor 2. A HEPES molecule bound in the structure suggests a new, and possibly physiologically relevant, ligand binding site.« less
Molecular Recognition of Corticotropin releasing Factor by Its G protein-coupled Receptor CRFR1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pioszak, Augen A.; Parker, Naomi R.; Suino-Powell, Kelly
2009-01-15
The bimolecular interaction between corticotropin-releasing factor (CRF), a neuropeptide, and its type 1 receptor (CRFR1), a class B G-protein-coupled receptor (GPCR), is crucial for activation of the hypothalamic-pituitary-adrenal axis in response to stress, and has been a target of intense drug design for the treatment of anxiety, depression, and related disorders. As a class B GPCR, CRFR1 contains an N-terminal extracellular domain (ECD) that provides the primary ligand binding determinants. Here we present three crystal structures of the human CRFR1 ECD, one in a ligand-free form and two in distinct CRF-bound states. The CRFR1 ECD adopts the alpha-beta-betaalpha fold observedmore » for other class B GPCR ECDs, but the N-terminal alpha-helix is significantly shorter and does not contact CRF. CRF adopts a continuous alpha-helix that docks in a hydrophobic surface of the ECD that is distinct from the peptide-binding site of other class B GPCRs, thereby providing a basis for the specificity of ligand recognition between CRFR1 and other class B GPCRs. The binding of CRF is accompanied by clamp-like conformational changes of two loops of the receptor that anchor the CRF C terminus, including the C-terminal amide group. These structural studies provide a molecular framework for understanding peptide binding and specificity by the CRF receptors as well as a template for designing potent and selective CRFR1 antagonists for therapeutic applications.« less
Maurer, Manuela; de Beer, Stephanie B A; Oostenbrink, Chris
2016-04-15
The periplasmic oligopeptide binding protein A (OppA) represents a well-known example of water-mediated protein-ligand interactions. Here, we perform free-energy calculations for three different ligands binding to OppA, using a thermodynamic integration approach. The tripeptide ligands share a high structural similarity (all have the sequence KXK), but their experimentally-determined binding free energies differ remarkably. Thermodynamic cycles were constructed for the ligands, and simulations conducted in the bound and (freely solvated) unbound states. In the unbound state, it was observed that the difference in conformational freedom between alanine and glycine leads to a surprisingly slow convergence, despite their chemical similarity. This could be overcome by increasing the softness parameter during alchemical transformations. Discrepancies remained in the bound state however, when comparing independent simulations of the three ligands. These difficulties could be traced to a slow relaxation of the water network within the active site. Fluctuations in the number of water molecules residing in the binding cavity occur mostly on a timescale larger than the simulation time along the alchemical path. After extensive simulations, relative binding free energies that were converged to within thermal noise could be obtained, which agree well with available experimental data.
Maurer, Manuela; de Beer, Stephanie B. A.; Oostenbrink, Chris
2018-01-01
The periplasmic oligopeptide binding protein A (OppA) represents a well-known example of water-mediated protein-ligand interactions. Here, we perform free-energy calculations for three different ligands binding to OppA, using a thermodynamic integration approach. The tripeptide ligands share a high structural similarity (all have the sequence KXK), but their experimentally-determined binding free energies differ remarkably. Thermodynamic cycles were constructed for the ligands, and simulations conducted in the bound and (freely solvated) unbound states. In the unbound state, it was observed that the difference in conformational freedom between alanine and glycine leads to a surprisingly slow convergence, despite their chemical similarity. This could be overcome by increasing the softness parameter during alchemical transformations. Discrepancies remained in the bound state however, when comparing independent simulations of the three ligands. These difficulties could be traced to a slow relaxation of the water network within the active site. Fluctuations in the number of water molecules residing in the binding cavity occur mostly on a timescale larger than the simulation time along the alchemical path. After extensive simulations, relative binding free energies that were converged to within thermal noise could be obtained, which agree well with available experimental data. PMID:27092480
Triki, Dhoha; Cano Contreras, Mario Enrique; Flatters, Delphine; Visseaux, Benoit; Descamps, Diane; Camproux, Anne-Claude; Regad, Leslie
2018-01-15
The HIV-2 protease (PR2) is a homodimer of 99 residues with asymmetric assembly and binding various ligands. We propose an exhaustive study of the local structural asymmetry between the two monomers of all available PR2 structures complexed with various inhibitors using a structural alphabet approach. On average, PR2 exhibits asymmetry in 31% of its positions-i.e., exhibiting different backbone local conformations in the two monomers. This asymmetry was observed all along its structure, particularly in the elbow and flap regions. We first differentiated structural asymmetry conserved in most PR2 structures from the one specific to some PR2. Then, we explored the origin of the detected asymmetry in PR2. We localized asymmetry that could be induced by PR2's flexibility, allowing transition from the semi-open to closed conformations and the asymmetry potentially induced by ligand binding. This latter could be important for the PR2's adaptation to diverse ligands. Our results highlighted some differences between asymmetry of PR2 bound to darunavir and amprenavir that could explain their differences of affinity. This knowledge is critical for a better description of PR2's recognition and adaptation to various ligands and for a better understanding of the resistance of PR2 to most PR2 inhibitors, a major antiretroviral class.
Sun, Ying-Ji; Huang, Qian-Qian; Zhang, Jian-Jun
2014-03-17
A series of mononuclear Co(II)-flavonolate complexes [Co(II)L(R)(fla)] (L(R)H = 2-{[bis(pyridin-2-ylmethyl)amino]methyl}-p/m-R-benzoic acid; R = p-OMe (1), p-Me (2), m-Br (4), and m-NO2 (5); fla = flavonolate) were designed and synthesized as structural and functional models for the ES (enzyme-substrate) complexes to mimic the active site of the Co(II)-containing quercetin 2,3-dioxygenase (Co-2,3-QD). The metal center Co(II) ion in each complex shows a similar distorted octahedral geometry. The model complexes display high enzyme-type dioxygenation reactivity (oxidative O-heterocyclic ring opening of the coordinated substrate flavonolate) at low temperature, presumably due to the attached carboxylate group in the ligands. The reactivity exhibits a substituent group dependent order of -OMe (1) > -Me (2) > -H (3)14b > -Br (4) > -NO2 (5), and the Hammett plot is linear (ρ = -0.78). This can be explained as the electronic nature of the substituent group in the ligands may influence the conformation and redox potential of the bound flavonolate and finally bring different reactivity. The structures, properties, and reactivity of the model complexes show some dependence on the substituent group in the supporting model ligands, and there is some relationship among them. This study is the first example of a series of structural and functional ES models of Co-2,3-QD, with focus on the effects of the electronic nature of substituted groups and the carboxylate group of the ligands to the dioxygenation reactivity, that will provide important insights into the structure-property-reactivity relationship and the catalytic role of Co-2,3-QD.
The X-ray Crystal Structure of Glutathionylcobalamin Revealed
Hannibal, Luciana; Smith, Clyde A.
2010-01-01
The first evidence of a complex between glutathione and cobalamin, glutathionylcobalamin (GSCbl), was presented by Wagner and Bernhauer more than 40 years ago (Ann N Y Acad Sci, 1964, 112, 580). More recently, NMR and EXAFS solution studies by Brown et al (Biochemistry, 1993, 32, 8421) and Scheuring et al. (Biochemistry, 1994, 33, 6310), respectively, provided evidence that the glutathionyl moiety in GSCbl is bound to the cobalt center via a Co-S bond. Despite continued efforts, the structural analysis of glutathionylcobalamin in the solid state has remained elusive. Here we report the first atomic resolution crystal structure of GSCbl, refined to a crystallographic R-factor of 0.0683. The glutathione moiety is bound to the cobalt center through the sulfur atom as expected, with a Co-S bond distance of 2.295(1) A. This distance agrees with the distance obtained from the EXAFS analysis of GSCbl (2.280(5) Å). However, the bond to the axial α-5,6-dimethylbenzimidazole base (DMB), 2.074(3) Å, is significantly shorter than that determined from the EXAFS measurements (Co-N3B = 2.15(3) Å). The corrin fold angle is 24.7°, the highest ever reported for a cobalamin structure, and points in the direction of the β-face of the corrin, towards the glutathione (GS−). The GS− ligand has been modeled in two conformations, each featuring distinct hydrogen bonding interactions. In both conformations, the α-carboxylate group of the GS− ligand interacts with the generally rigid side chain a of the cobalamin molecule, resulting in two distinct conformations. A comparison with the structure of other thiolatocobalamins revealed high similarity in the positions of the atoms in the cysteinyl moiety, the fold of the corrin rings, and the Co-S bond distances. PMID:20863098
The X-ray crystal structure of glutathionylcobalamin revealed.
Hannibal, Luciana; Smith, Clyde A; Jacobsen, Donald W
2010-11-01
The first evidence of a complex between glutathione and cobalamin, glutathionylcobalamin (GSCbl), was presented by Wagner and Bernhauer more than 40 years ago (Ann. N.Y. Acad. Sci. 1964, 112, 580). More recently, NMR and EXAFS solution studies by Brown et al. (Biochemistry 1993, 32, 8421) and Scheuring et al. (Biochemistry 1994, 33, 6310), respectively, provided evidence that the glutathionyl moiety in GSCbl is bound to the cobalt center via a Co-S bond. Despite continued efforts, the structural analysis of glutathionylcobalamin in the solid state has remained elusive. Here, we report the first atomic resolution crystal structure of GSCbl, refined to a crystallographic R factor of 0.0683. The glutathione moiety is bound to the cobalt center through the sulfur atom as expected, with a Co-S bond distance of 2.295(1) Å. This distance agrees with the distance obtained from the EXAFS analysis of GSCbl (2.280(5) Å). However, the bond to the axial α-5,6-dimethylbenzimidazole base (DMB), 2.074(3) Å, is significantly shorter than that determined from the EXAFS measurements (Co-N3B = 2.15(3) Å). The corrin fold angle is 24.7°, the highest ever reported for a cobalamin structure, and points in the direction of the β face of the corrin, toward the glutathione (GS(-)). The GS(-) ligand has been modeled in two conformations, each featuring distinct hydrogen bonding interactions. In both conformations, the α-carboxylate group of the GS(-) ligand interacts with the generally rigid side chain a of the cobalamin molecule, resulting in two distinct conformations. A comparison with the structure of other thiolatocobalamins revealed high similarity in the positions of the atoms in the cysteinyl moiety, the fold of the corrin rings, and the Co-S bond distances.
NASA Astrophysics Data System (ADS)
Zhu, D.-W.; Han, Q.; Qiu, W.; Campbell, R. L.; Xie, B.-X.; Azzi, A.; Lin, S.-X.
1999-01-01
Human estrogenic 17β-hydroxysteroid dehydrogenase (17β-HSD1) is responsible for the synthesis of active estrogens that stimulate the proliferation of breast cancer cells. The enzyme has been crystallized using a Mg 2+/PEG (3500)/β-octyl glucoside system [Zhu et al., J. Mol. Biol. 234 (1993) 242]. The space group of these crystals is C2. Here we report that cations can affect 17β-HSD1 crystallization significantly. In the presence of Mn 2+ instead of Mg 2+, crystals have been obtained in the same space group with similar unit cell dimensions. In the presence of Li + and Na + instead of Mg 2+, the space group has been changed to P2 12 12 1. A whole data set for a crystal of 17ß-HSD1 complex with progesterone grown in the presence of Li + has been collected to 1.95 Å resolution with a synchrotron source. The cell dimensions are a=41.91 Å, b=108.21 Å, c=117.00 Å. The structure has been preliminarily determined by molecular replacement, yielding important information on crystal packing in the presence of different cations. In order to further understand the structure-function relationship of 17β-HSD1, enzyme complexes with several ligands have been crystallized. As the steroids have very low aqueous solubility, we used a combined method of seeding and co-crystallization to obtain crystals of 17β-HSD1 complexed with various ligands. This method provides ideal conditions for growing complex crystals, with ligands such as 20α-hydroxysteroid progesterone, testosterone and 17β-methyl-estradiol-NADP +. Several complex structures have been determined with reliable electronic density of the bound ligands.
Crystal Structures of T Cell Receptor (Beta) Chains Related to Rheumatoid Arthritis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li,H.; van Vranken, S.; Zhao, Y.
The crystal structures of the V{beta}17+ {beta} chains of two human T cell receptors (TCRs), originally derived from the synovial fluid (SF4) and tissue (C5-1) of a patient with rheumatoid arthritis (RA), have been determined in native (SF4) and mutant (C5-1{sub F104{yields}Y/C187{yields}S}) forms, respectively. These TCR {beta} chains form homo-dimers in solution and in crystals. Structural comparison reveals that the main-chain conformations in the CDR regions of the C5-1 and SF4 V{beta}17 closely resemble those of a V{beta}17 JM22 in a bound form; however, the CDR3 region shows different conformations among these three V{beta}17 structures. At the side-chain level, conformationalmore » differences were observed at the CDR2 regions between our two ligand-free forms and the bound JM22 form. Other significant differences were observed at the V{beta} regions 8-12, 40-44, and 82-88 between C5-1/SF4 and JM22 V{beta}17, implying that there is considerable variability in the structures of very similar {beta} chains. Structural alignments also reveal a considerable variation in the V{beta}-C{beta} associations, and this may affect ligand recognition. The crystal structures also provide insights into the structure basis of T cell recognition of Mycoplasma arthritidis mitogen (MAM), a superantigen that may be implicated in the development of human RA. Structural comparisons of the V{beta} domains of known TCR structures indicate that there are significant similarities among V{beta} regions that are MAM-reactive, whereas there appear to be significant structural differences among those V{beta} regions that lack MAM-reactivity. It further reveals that CDR2 and framework region (FR) 3 are likely to account for the binding of TCR to MAM.« less
Valenzuela-Chavira, Ignacio; Contreras-Vergara, Carmen A.; Arvizu-Flores, Aldo A.; ...
2017-01-17
We studied a mango glutathione S-transferase (GST) ( Mangifera indica) bound to glutathione (GSH) and S-hexyl glutathione (GSX). This GST Tau class (MiGSTU) had a molecular mass of 25.5 kDa. MiGSTU Michaelis-Menten kinetic constants were determined for their substrates obtaining a K m, V max and k cat for CDNB of 0.792 mM, 80.58 mM min -1 and 68.49 s -1 respectively and 0.693 mM, 105.32 mM min -1 and 89.57 s -1, for reduced GSH respectively. MiGSTU had a micromolar affinity towards GSH (5.2 mM) or GSX (7.8 mM). As a result, the crystal structure of the MiGSTU inmore » apo or bound to GSH or GSX generated a model that explains the thermodynamic signatures of binding and showed the importance of enthalpic-entropic compensation in ligand binding to Tau-class GST enzymes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valenzuela-Chavira, Ignacio; Contreras-Vergara, Carmen A.; Arvizu-Flores, Aldo A.
We studied a mango glutathione S-transferase (GST) ( Mangifera indica) bound to glutathione (GSH) and S-hexyl glutathione (GSX). This GST Tau class (MiGSTU) had a molecular mass of 25.5 kDa. MiGSTU Michaelis-Menten kinetic constants were determined for their substrates obtaining a K m, V max and k cat for CDNB of 0.792 mM, 80.58 mM min -1 and 68.49 s -1 respectively and 0.693 mM, 105.32 mM min -1 and 89.57 s -1, for reduced GSH respectively. MiGSTU had a micromolar affinity towards GSH (5.2 mM) or GSX (7.8 mM). As a result, the crystal structure of the MiGSTU inmore » apo or bound to GSH or GSX generated a model that explains the thermodynamic signatures of binding and showed the importance of enthalpic-entropic compensation in ligand binding to Tau-class GST enzymes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronning, Donald R; Iacopelli, Natalie M; Mishra, Vidhi
2012-03-15
The bacterial enzyme 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) plays a central role in three essential metabolic pathways in bacteria: methionine salvage, purine salvage, and polyamine biosynthesis. Recently, its role in the pathway that leads to the production of autoinducer II, an important component in quorum-sensing, has garnered much interest. Because of this variety of roles, MTAN is an attractive target for developing new classes of inhibitors that influence bacterial virulence and biofilm formation. To gain insight toward the development of new classes of MTAN inhibitors, the interactions between the Helicobacter pylori-encoded MTAN and its substrates and substrate analogs were probed using X-raymore » crystallography. The structures of MTAN, an MTAN-Formycin A complex, and an adenine bound form were solved by molecular replacement and refined to 1.7, 1.8, and 1.6 Å, respectively. The ribose-binding site in the MTAN and MTAN-adenine cocrystal structures contain a tris[hydroxymethyl]aminomethane molecule that stabilizes the closed form of the enzyme and displaces a nucleophilic water molecule necessary for catalysis. This research gives insight to the interactions between MTAN and bound ligands that promote closing of the enzyme active site and highlights the potential for designing new classes of MTAN inhibitors using a link/grow or ligand assembly development strategy based on the described H. pylori MTAN crystal structures.« less
NASA Astrophysics Data System (ADS)
Jones, Alan M.; Westwood, Isaac M.; Osborne, James D.; Matthews, Thomas P.; Cheeseman, Matthew D.; Rowlands, Martin G.; Jeganathan, Fiona; Burke, Rosemary; Lee, Diane; Kadi, Nadia; Liu, Manjuan; Richards, Meirion; McAndrew, Craig; Yahya, Norhakim; Dobson, Sarah E.; Jones, Keith; Workman, Paul; Collins, Ian; van Montfort, Rob L. M.
2016-10-01
The heat shock protein 70s (HSP70s) are molecular chaperones implicated in many cancers and of significant interest as targets for novel cancer therapies. Several HSP70 inhibitors have been reported, but because the majority have poor physicochemical properties and for many the exact mode of action is poorly understood, more detailed mechanistic and structural insight into ligand-binding to HSP70s is urgently needed. Here we describe the first comprehensive fragment-based inhibitor exploration of an HSP70 enzyme, which yielded an amino-quinazoline fragment that was elaborated to a novel ATP binding site ligand with different physicochemical properties to known adenosine-based HSP70 inhibitors. Crystal structures of amino-quinazoline ligands bound to the different conformational states of the HSP70 nucleotide binding domain highlighted the challenges of a fragment-based approach when applied to this particular flexible enzyme class with an ATP-binding site that changes shape and size during its catalytic cycle. In these studies we showed that Ser275 is a key residue in the selective binding of ATP. Additionally, the structural data revealed a potential functional role for the ATP ribose moiety in priming the protein for the formation of the ATP-bound pre-hydrolysis complex by influencing the conformation of one of the phosphate binding loops.
Optimizing the Readout of Lanthanide-DOTA Complexes for the Detection of Ligand-Bound Copper(I).
Hanna, Jill R; Allan, Christopher; Lawrence, Charlotte; Meyer, Odile; Wilson, Neil D; Hulme, Alison N
2017-05-14
The CuAAC 'click' reaction was used to couple alkyne-functionalized lanthanide-DOTA complexes to a range of fluorescent antennae. Screening of the antenna components was aided by comparison of the luminescent output of the resultant sensors using data normalized to account for reaction conversion as assessed by IR. A maximum 82-fold enhanced signal:background luminescence output was achieved using a Eu(III)-DOTA complex coupled to a coumarin-azide, in a reaction which is specific to the presence of copper(I). This optimized complex provides a new lead design for lanthanide-DOTA complexes which can act as irreversible 'turn-on' catalytic sensors for the detection of ligand-bound copper(I).
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Dowd, Bing; Williams, Sarah; Wang, Hongxin
Isoprenoid biosynthesis is an important area for anti-infective drug development. One isoprenoid target described is (E)-1-hydroxy-2-methyl-but-2-enyl 4-diphosphate (HMBPP) reductase (IspH), which forms isopentenyl diphosphate and dimethylallyl diphosphate from HMBPP in a 2H + /2e - reduction. IspH contains a 4 Fe-4 S cluster, and in this work, we first investigated how small molecules bound to the cluster by using HYSCORE and NRVS spectroscopies. The results of these, as well as other structural and spectroscopic investigations, led to the conclusion that, in most cases, ligands bound to IspH 4 Fe-4 S clusters by η 1 coordination, forming tetrahedral geometries at themore » unique fourth Fe, ligand side chains preventing further ligand (e.g., H 2 O, O 2 ) binding. Based on these ideas, we used in silico methods to find drug-like inhibitors that might occupy the HMBPP substrate binding pocket and bind to Fe, leading to the discovery of a barbituric acid analogue with a K i value of ≈500 nm against Pseudomonas aeruginosa IspH.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
French, Jarrod B.; Ealick, Steven E.
The stereospecific oxidative degradation of uric acid to (S)-allantoin was recently shown to proceed via three enzymatic steps. The final conversion is a decarboxylation of the unstable intermediate 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) and is catalyzed by OHCU decarboxylase. Here we present the structures of Klebsiella pneumoniae OHCU decarboxylase in unliganded form and with bound allantoin. These structures provide evidence that ligand binding organizes the active site residues for catalysis. Modeling of the substrate and intermediates provides additional support for this hypothesis. In addition we characterize the steady state kinetics of this enzyme and report the first OHCU decarboxylase inhibitor, allopurinol, a structuralmore » isomer of hypoxanthine. This molecule is a competitive inhibitor of K. pneumoniae OHCU decarboxylase with a K{sub i} of 30 {+-} 2 {micro}m. Circular dichroism measurements confirm structural observations that this inhibitor disrupts the necessary organization of the active site. Our structural and biochemical studies also provide further insights into the mechanism of catalysis of OHCU decarboxylation.« less
Ghosh, Arun K.; Parham, Garth L.; Martyr, Cuthbert D.; Nyalapatla, Prasanth R.; Osswald, Heather L.; Agniswamy, Johnson; Wang, Yuan-Fang; Amano, Masayuki; Weber, Irene T.; Mitsuya, Hiroaki
2013-01-01
The design, synthesis, and biological evaluation of a series of HIV-1 protease inhibitors incorporating stereochemically defined fused tricyclic P2-ligands are described. Various substituent effects were investigated in order to maximize the ligand-binding site interactions in the protease active site. Inhibitors 16a and 16f showed excellent enzyme inhibitory and antiviral activity while incorporation of sulfone functionality resulted in a decrease in potency. Both inhibitors 16a and 16f have maintained activity against a panel of multidrug resistant HIV-1 variants. A high-resolution X-ray crystal structure of 16a-bound HIV-1 protease revealed important molecular insights into the ligand-binding site interactions which may account for the inhibitor’s potent antiviral activity and excellent resistance profiles. PMID:23947685
Laskar, Payel; Yamamoto, Keishi; Srinivas, Anga; Mifleur, Alexis; Nagae, Haruki; Tsurugi, Hayato; Mashima, Kazushi
2017-10-03
A mononuclear tantallacyclopentadiene complex, TaCl 3 (C 4 H 2 tBu 2 ) (3), serves as a unique ligand to nickel: the addition of Ni(COD) 2 to 3 selectively afforded heterobimetallic Ta-Ni complex 4. The cyclooctadiene ligand bound to the nickel center in complex 4 was readily substituted by monodentate and bidentate phosphine ligands, such as dimethylphenylphosphine, 1,2-bis(diphenylphosphino)ethane, and 1,2-bis(diethylphosphino)ethane, to give the corresponding phosphine complexes 5, 6a, and 6b. We also examined a ligand substitution reaction with 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr) to produce the corresponding Ta-Ni complex 7. These newly prepared Ta-Ni heterobimetallic complexes were characterized spectroscopically together with the crystal structures of 4, 6a, and 7.
Homologous ligands accommodated by discrete conformations of a buried cavity
Merski, Matthew; Fischer, Marcus; Balius, Trent E.; Eidam, Oliv; Shoichet, Brian K.
2015-01-01
Conformational change in protein–ligand complexes is widely modeled, but the protein accommodation expected on binding a congeneric series of ligands has received less attention. Given their use in medicinal chemistry, there are surprisingly few substantial series of congeneric ligand complexes in the Protein Data Bank (PDB). Here we determine the structures of eight alkyl benzenes, in single-methylene increases from benzene to n-hexylbenzene, bound to an enclosed cavity in T4 lysozyme. The volume of the apo cavity suffices to accommodate benzene but, even with toluene, larger cavity conformations become observable in the electron density, and over the series two other major conformations are observed. These involve discrete changes in main-chain conformation, expanding the site; few continuous changes in the site are observed. In most structures, two discrete protein conformations are observed simultaneously, and energetic considerations suggest that these conformations are low in energy relative to the ground state. An analysis of 121 lysozyme cavity structures in the PDB finds that these three conformations dominate the previously determined structures, largely modeled in a single conformation. An investigation of the few congeneric series in the PDB suggests that discrete changes are common adaptations to a series of growing ligands. The discrete, but relatively few, conformational states observed here, and their energetic accessibility, may have implications for anticipating protein conformational change in ligand design. PMID:25847998
Homologous ligands accommodated by discrete conformations of a buried cavity.
Merski, Matthew; Fischer, Marcus; Balius, Trent E; Eidam, Oliv; Shoichet, Brian K
2015-04-21
Conformational change in protein-ligand complexes is widely modeled, but the protein accommodation expected on binding a congeneric series of ligands has received less attention. Given their use in medicinal chemistry, there are surprisingly few substantial series of congeneric ligand complexes in the Protein Data Bank (PDB). Here we determine the structures of eight alkyl benzenes, in single-methylene increases from benzene to n-hexylbenzene, bound to an enclosed cavity in T4 lysozyme. The volume of the apo cavity suffices to accommodate benzene but, even with toluene, larger cavity conformations become observable in the electron density, and over the series two other major conformations are observed. These involve discrete changes in main-chain conformation, expanding the site; few continuous changes in the site are observed. In most structures, two discrete protein conformations are observed simultaneously, and energetic considerations suggest that these conformations are low in energy relative to the ground state. An analysis of 121 lysozyme cavity structures in the PDB finds that these three conformations dominate the previously determined structures, largely modeled in a single conformation. An investigation of the few congeneric series in the PDB suggests that discrete changes are common adaptations to a series of growing ligands. The discrete, but relatively few, conformational states observed here, and their energetic accessibility, may have implications for anticipating protein conformational change in ligand design.
ForceGen 3D structure and conformer generation: from small lead-like molecules to macrocyclic drugs
NASA Astrophysics Data System (ADS)
Cleves, Ann E.; Jain, Ajay N.
2017-05-01
We introduce the ForceGen method for 3D structure generation and conformer elaboration of drug-like small molecules. ForceGen is novel, avoiding use of distance geometry, molecular templates, or simulation-oriented stochastic sampling. The method is primarily driven by the molecular force field, implemented using an extension of MMFF94s and a partial charge estimator based on electronegativity-equalization. The force field is coupled to algorithms for direct sampling of realistic physical movements made by small molecules. Results are presented on a standard benchmark from the Cambridge Crystallographic Database of 480 drug-like small molecules, including full structure generation from SMILES strings. Reproduction of protein-bound crystallographic ligand poses is demonstrated on four carefully curated data sets: the ConfGen Set (667 ligands), the PINC cross-docking benchmark (1062 ligands), a large set of macrocyclic ligands (182 total with typical ring sizes of 12-23 atoms), and a commonly used benchmark for evaluating macrocycle conformer generation (30 ligands total). Results compare favorably to alternative methods, and performance on macrocyclic compounds approaches that observed on non-macrocycles while yielding a roughly 100-fold speed improvement over alternative MD-based methods with comparable performance.
Martinez, Jennifer S [Santa Fe, NM; Swanson, Basil I [Los Alamos, NM; Grace, Karen M [Los Alamos, NM; Grace, Wynne K [Los Alamos, NM; Shreve, Andrew P [Santa Fe, NM
2009-06-02
An assay element is described including recognition ligands bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of a biological target is described including injecting a biological target-containing sample into a sensor cell including the assay element, with the recognition ligands adapted for binding to selected biological targets, maintaining the sample within the sensor cell for time sufficient for binding to occur between selected biological targets within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting the fluorescent-label in any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.
Spitale, Robert C.; Torelli, Andrew T.; Krucinska, Jolanta; Bandarian, Vahe; Wedekind, Joseph E.
2009-01-01
Riboswitches are RNA elements that control gene expression through metabolite binding. The preQ1 riboswitch exhibits the smallest known ligand-binding domain and is of interest for its economical organization and high affinity interactions with guanine-derived metabolites required to confer tRNA wobbling. Here we present the crystal structure of a preQ1 aptamer domain in complex with its precursor metabolite preQ0. The structure is highly compact with a core that features a stem capped by a well organized decaloop. The metabolite is recognized within a deep pocket via Watson-Crick pairing with C15. Additional hydrogen bonds are made to invariant bases U6 and A29. The ligand-bound state confers continuous helical stacking throughout the core fold, thus providing a platform to promote Watson-Crick base pairing between C9 of the decaloop and the first base of the ribosome-binding site, G33. The structure offers insight into the mode of ribosome-binding site sequestration by a minimal RNA fold stabilized by metabolite binding and has implications for understanding the molecular basis by which bacterial genes are regulated. PMID:19261617
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saikatendu, Kumar Singh; Zhang, Xuejun; Kinch, Lisa
The protein encoded by the SA1388 gene from Staphylococcus aureus was chosen for structure determination to elucidate its domain organization and confirm our earlier remote homology based prediction that it housed a nitrogen regulatory PII protein-like domain. SA1388 was predicted to contain a central PII-like domain and two flanking regions, which together belong to the NIF3-like protein family. Proteins like SA1388 remain a poorly studied group and their structural characterization could guide future investigations aimed at understanding their function. The structure of SA1388 has been solved to 2.0{angstrom} resolution by single wavelength anomalous dispersion phasing method using selenium anomalous signals.more » It reveals a canonical NIF3-like fold containing two domains with a PII-like domain inserted in the middle of the polypeptide. The N and C terminal halves of the NIF3-like domains are involved in dimerization, while the PII domain forms trimeric contacts with symmetry related monomers. Overall, the NIF3-like domains of SA1388 are organized as a hexameric toroid similar to its homologs, E. coli ybgI and the hypothetical protein SP1609 from Streptococcus pneumoniae. The openings on either side of the toroid are partially covered by trimeric 'lids' formed by the PII domains. The junction of the two NIF3 domains has two zinc ions bound at what appears to be a histidine rich active site. A well-defined electron density corresponding to an endogenously bound ligand of unknown identity is observed in close proximity to the metal site. SA1388 is the third member of the NIF3-like family of proteins to be structurally characterized, the other two also being hypothetical proteins of unknown function. The structure of SA1388 confirms our earlier prediction that the inserted domain that separates the two NIF3 domains adopts a PII-like fold and reveals an overall capped toroidal arrangement for the protein hexamer. The six PII-like domains form two trimeric 'lids' that cap the central cavity of the toroid on either side and provide only small openings to allow regulated entry of small molecules into the occluded chamber. The presence of the electron density of the bound ligand may provide important clues on the likely function of NIF3-like proteins.« less
Crystal Structure of Thrombin Bound to the Uncleaved Extracellular Fragment of PAR1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gandhi, Prafull S.; Chen, Zhiwei; Di Cera, Enrico
2010-05-11
Abundant structural information exists on how thrombin recognizes ligands at the active site or at exosites separate from the active site region, but remarkably little is known about how thrombin recognizes substrates that bridge both the active site and exosite I. The case of the protease-activated receptor PAR1 is particularly relevant in view of the plethora of biological effects associated with its activation by thrombin. Here, we present the 1.8 {angstrom} resolution structure of thrombin S195A in complex with a 30-residue long uncleaved extracellular fragment of PAR1 that documents for the first time a productive binding mode bridging the activemore » site and exosite I. The structure reveals two unexpected features of the thrombin-PAR1 interaction. The acidic P3 residue of PAR1, Asp{sup 39}, does not hinder binding to the active site and actually makes favorable interactions with Gly{sup 219} of thrombin. The tethered ligand domain shows a considerable degree of disorder even when bound to thrombin. The results fill a significant gap in our understanding of the molecular mechanisms of recognition by thrombin in ways that are relevant to other physiological substrates.« less
NASA Astrophysics Data System (ADS)
Zuckerman, Nathaniel Benjamin
1. Compound NSC-670224, previously shown to be toxic to Saccharomyces cerevisiae at low micromolar concentrations, potentially acts via a mechanism of action related to that of tamoxifen (NSC 180973), a widely utilized breast cancer drug. The structure of NSC-670224, previously thought to be a 2,4-dichloro arene, was established as the 3,4-dichloro arene, and a focused library of analogues were synthesized and biologically evaluated in conjunction with the UCSC Chemical Screening Center. The synthesis of a biotinylated affinity probe was also completed in order to extract the protein target(s) of NSC-670224 from yeast and human cell lines in collaboration with the Hartzog lab (UCSC MCD Biology) 2. Stabilization of ruthenium nanoparticles (Ru NPs) through carbene bound ligands has led to a simple and effective means to generate new materials with unique optoelectronic properties. The affinity of freshly prepared Ru NPs to diazo compounds, specifically octyl diazoacetate (ODA), provides a robust nanostructure that can be further functionalized via metathesis of terminal olefins to generate these unique materials. Carbene-stabilized Ru NPs have provided insights into the nature of extended conjugation and intraparticle charge delocalization through covalently bound probes (e.g., ferrocene and pyrene). The growing interest to study electronic communication through Ru NPs has lead to collaborative, multidisciplinary efforts between analytical (Shaowei Chen lab, UCSC), theoretical (Haobin Wang Lab, NMSU), and synthetic organic chemists (Konopelski Lab, UCSC). With this powerful collaboration, new methods to generate stabilized Ru NPs, testing theory with experiment, and efficient means to functionalize NPs have been investigated. The syntheses of custom ligands and their applications to nanoparticle-mediated electronic communication are reported.
Zhang, Xianjun; Zhao, Fei; Wu, Yiran; ...
2017-05-17
Here, the Smoothened receptor (SMO) belongs to the Class Frizzled of the G protein-coupled receptor (GPCR) superfamily, constituting a key component of the Hedgehog signalling pathway. Here we report the crystal structure of the multi-domain human SMO, bound and stabilized by a designed tool ligand TC114, using an X-ray free-electron laser source at 2.9 Å. The structure reveals a precise arrangement of three distinct domains: a seven-transmembrane helices domain (TMD), a hinge domain (HD) and an intact extracellular cysteine-rich domain (CRD). This architecture enables allosteric interactions between the domains that are important for ligand recognition and receptor activation. By combiningmore » the structural data, molecular dynamics simulation, and hydrogen-deuterium-exchange analysis, we demonstrate that transmembrane helix VI, extracellular loop 3 and the HD play a central role in transmitting the signal employing a unique GPCR activation mechanism, distinct from other multi-domain GPCRs.« less
Bolam, David N.; Roberts, Shirley; Proctor, Mark R.; Turkenburg, Johan P.; Dodson, Eleanor J.; Martinez-Fleites, Carlos; Yang, Min; Davis, Benjamin G.; Davies, Gideon J.; Gilbert, Harry J.
2007-01-01
Glycosylation of macrolide antibiotics confers host cell immunity from endogenous and exogenous agents. The Streptomyces antibioticus glycosyltransferases, OleI and OleD, glycosylate and inactivate oleandomycin and diverse macrolides including erythromycin, respectively. The structure of these enzyme–ligand complexes, in tandem with kinetic analysis of site-directed variants, provide insight into the interaction of macrolides with their synthetic apparatus. Erythromycin binds to OleD and the 23S RNA of its target ribosome in the same conformation and, although the antibiotic contains a large number of polar groups, its interaction with these macromolecules is primarily through hydrophobic contacts. Erythromycin and oleandomycin, when bound to OleD and OleI, respectively, adopt different conformations, reflecting a subtle effect on sugar positioning by virtue of a single change in the macrolide backbone. The data reported here provide structural insight into the mechanism of resistance to both endogenous and exogenous antibiotics, and will provide a platform for the future redesign of these catalysts for antibiotic remodelling. PMID:17376874
NASA Astrophysics Data System (ADS)
Gaieb, Zied; Liu, Shuai; Gathiaka, Symon; Chiu, Michael; Yang, Huanwang; Shao, Chenghua; Feher, Victoria A.; Walters, W. Patrick; Kuhn, Bernd; Rudolph, Markus G.; Burley, Stephen K.; Gilson, Michael K.; Amaro, Rommie E.
2018-01-01
The Drug Design Data Resource (D3R) ran Grand Challenge 2 (GC2) from September 2016 through February 2017. This challenge was based on a dataset of structures and affinities for the nuclear receptor farnesoid X receptor (FXR), contributed by F. Hoffmann-La Roche. The dataset contained 102 IC50 values, spanning six orders of magnitude, and 36 high-resolution co-crystal structures with representatives of four major ligand classes. Strong global participation was evident, with 49 participants submitting 262 prediction submission packages in total. Procedurally, GC2 mimicked Grand Challenge 2015 (GC2015), with a Stage 1 subchallenge testing ligand pose prediction methods and ranking and scoring methods, and a Stage 2 subchallenge testing only ligand ranking and scoring methods after the release of all blinded co-crystal structures. Two smaller curated sets of 18 and 15 ligands were developed to test alchemical free energy methods. This overview summarizes all aspects of GC2, including the dataset details, challenge procedures, and participant results. We also consider implications for progress in the field, while highlighting methodological areas that merit continued development. Similar to GC2015, the outcome of GC2 underscores the pressing need for methods development in pose prediction, particularly for ligand scaffolds not currently represented in the Protein Data Bank (http://www.pdb.org), and in affinity ranking and scoring of bound ligands.
NASA Astrophysics Data System (ADS)
Somov, N. V.; Chausov, F. F.; Zakirov, R. M.
2017-07-01
3D coordination polymers cesium nitrilotris(methylenephosphonate) and dicesium nitrilotris( methylenephosphonate) are synthesized and their crystal structure is determined. In the crystal of [Cs-μ6-NH(CH2PO3)3H4] (space group P, Z = 2), cesium atoms occupy two crystallographically inequivalent positions with c.n. = 10 and c.n. = 14. The phosphonate ligand plays the bridging function; its denticity is nine. The crystal packing consists of alternating layers of Cs atoms in different environments with layers of ligand molecules between them. A ligand is bound to three Cs atoms of one layer and three Cs atoms of another layer. In the crystal of [Cs2-μ10-NH(CH2PO3H)3] · H2O (space group P, Z = 2), the complex has a dimeric structure: the bridging phosphonate ligand coordinates Cs to form a three-dimensional Cs4O6 cluster. The denticity of the ligand is equal to nine; the coordination numbers of cesium atoms are seven and nine. Two-dimensional corrugated layers of Cs4O6 clusters lie in the (002) plane, and layers of ligand molecules are located between them. Each ligand molecule coordinates eight Cs atoms of one layer and two Cs atoms of the neighboring layer.
Cash, Jennifer N; Angerman, Elizabeth B; Kattamuri, Chandramohan; Nolan, Kristof; Zhao, Huaying; Sidis, Yisrael; Keutmann, Henry T; Thompson, Thomas B
2012-01-06
TGF-β family ligands are involved in a variety of critical physiological processes. For instance, the TGF-β ligand myostatin is a staunch negative regulator of muscle growth and a therapeutic target for muscle-wasting disorders. Therefore, it is important to understand the molecular mechanisms of TGF-β family regulation. One form of regulation is through inhibition by extracellular antagonists such as the follistatin (Fst)-type proteins. Myostatin is tightly controlled by Fst-like 3 (Fstl3), which is the only Fst-type molecule that has been identified in the serum bound to myostatin. Here, we present the crystal structure of myostatin in complex with Fstl3. The structure reveals that the N-terminal domain (ND) of Fstl3 interacts uniquely with myostatin as compared with activin A, because it utilizes different surfaces on the ligand. This results in conformational differences in the ND of Fstl3 that alter its position in the type I receptor-binding site of the ligand. We also show that single point mutations in the ND of Fstl3 are detrimental to ligand binding, whereas corresponding mutations in Fst have little effect. Overall, we have shown that the NDs of Fst-type molecules exhibit distinctive modes of ligand binding, which may affect overall affinity of ligand·Fst-type protein complexes.
Structural Basis for Activation of Fatty Acid-binding Protein 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillilan,R.; Ayers, S.; Noy, N.
2007-01-01
Fatty acid-binding protein 4 (FABP4) delivers ligands from the cytosol to the nuclear receptor PPAR{gamma} in the nucleus, thereby enhancing the transcriptional activity of the receptor. Notably, FABP4 binds multiple ligands with a similar affinity but its nuclear translocation is activated only by specific compounds. To gain insight into the structural features that underlie the ligand-specificity in activation of the nuclear import of FABP4, we solved the crystal structures of the protein complexed with two compounds that induce its nuclear translocation, and compared these to the apo-protein and to FABP4 structures bound to non-activating ligands. Examination of these structures indicatesmore » that activation coincides with closure of a portal loop phenylalanine side-chain, contraction of the binding pocket, a subtle shift in a helical domain containing the nuclear localization signal of the protein, and a resultant change in oligomeric state that exposes the nuclear localization signal to the solution. Comparisons of backbone displacements induced by activating ligands with a measure of mobility derived from translation, libration, screw (TLS) refinement, and with a composite of slowest normal modes of the apo state suggest that the helical motion associated with the activation of the protein is part of the repertoire of the equilibrium motions of the apo-protein, i.e. that ligand binding does not induce the activated configuration but serves to stabilize it. Nuclear import of FABP4 can thus be understood in terms of the pre-existing equilibrium hypothesis of ligand binding.« less
Hansen, Scott B; Sulzenbacher, Gerlind; Huxford, Tom; Marchot, Pascale; Bourne, Yves; Taylor, Palmer
2006-01-01
Nicotinic acetylcholine receptors (nAChRs) are well-characterized allosteric transmembrane proteins involved in the rapid gating of ions elicited by ACh. These receptors belong to the Cys-loop superfamily of ligand-gated ion channels, which also includes GABAA and GABAC, 5-HT3, and glycine receptors. The nAChRs are homo- or heteromeric pentamers of structurally related subunits that encompass an extracellular N-terminal ligand-binding domain, four transmembrane-spanning regions that form the ion channel, and an extended intracellular region between spans 3 and 4. Ligand binding triggers conformational changes that are transmitted to the transmembrane-spanning region, leading to gating and changes in membrane potential. The four transmembrane spans on each of the five subunits create a substantial region of hydrophobicity that precludes facile crystallization of this protein. However the freshwater snail, Lymnaea stagnalis, produces a soluble homopentameric protein, termed the ACh-binding protein (AChBP), which binds ACh (Smit et al., 2001). Its structure was determined recently (Brejc et al., 2001) at high resolution, revealing the structural scaffold for nAChR, and has become a functional and structural surrogate of the nAChR ligand-binding domain. We have characterized an AChBP from Aplysia californica and determined distinct ligand-binding properties when compared to those of L. stagnalis, including ligand specificity for the nAChR alpha7 subtype-specific alpha-conotoxin ImI (Hansen et al., 2004).
Otani, Hiroshi; Stogios, Peter J.; Xu, Xiaohui; ...
2015-09-22
CouR, a MarR-type transcriptional repressor, regulates the cou genes, encoding p-hydroxycinnamate catabolism in the soil bacterium Rhodococcus jostii RHA1. The CouR dimer bound two molecules of the catabolite p-coumaroyl–CoA (K d = 11 ± 1 μM). The presence of p-coumaroyl–CoA, but neither p-coumarate nor CoASH, abrogated CouR's binding to its operator DNA in vitro. The crystal structures of ligand-free CouR and its p-coumaroyl–CoA-bound form showed no significant conformational differences, in contrast to other MarR regulators. The CouR– p-coumaroyl–CoA structure revealed two ligand molecules bound to the CouR dimer with their phenolic moieties occupying equivalent hydrophobic pockets in each protomer andmore » their CoA moieties adopting non-equivalent positions to mask the regulator's predicted DNA-binding surface. More specifically, the CoA phosphates formed salt bridges with predicted DNA-binding residues Arg36 and Arg38, changing the overall charge of the DNA-binding surface. The substitution of either arginine with alanine completely abrogated the ability of CouR to bind DNA. By contrast, the R36A/R38A double variant retained a relatively high affinity for p-coumaroyl–CoA (K d = 89 ± 6 μM). Altogether, our data point to a novel mechanism of action in which the ligand abrogates the repressor's ability to bind DNA by steric occlusion of key DNA-binding residues and charge repulsion of the DNA backbone.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
G Gainsford; G Evans; K Johnston
2011-12-31
The title compound, abbreviated as 5'ThiomethylImmA, is a potent inhibitor of methylthioadenosine phosphorylase [Singh et al. (2004). Biochemistry, 43, 9-18]. The synchrotron study reported here shows that the hydrochloride salt crystallizes with two independent, nearly superimposable, dications as a monohydrate with formula 2C{sub 12}H{sub 19}N{sub 5}O{sub 2}S{sup 2+}{center_dot}4Cl{sup -}{center_dot}H{sub 2}O. Hydrogen bonding utilizing the H atoms of the dication is found to favor certain molecular conformations in the salt, which are significantly different from those found as bound in the enzyme. Ligand docking studies starting from either of these dications or related neutral structures successfully place the conformationally revised structuresmore » in the enzyme active site but only under particular hydrogen-bonding and molecular flexibility criteria. Density functional theory calculations verify the energy similarity of the indendent cations and confirm the significant energy cost of the required conformation change to the enzyme bound form. The results suggest the using crystallographically determined free ligand coordinates as starting parameters for modelling may have serious limitations.« less
Fay, Jonathan F; Farrens, David L
2012-09-28
Allosteric ligands that modulate how G protein-coupled receptors respond to traditional orthosteric drugs are an exciting and rapidly expanding field of pharmacology. An allosteric ligand for the cannabinoid receptor CB1, Org 27569, exhibits an intriguing effect; it increases agonist binding, yet blocks agonist-induced CB1 signaling. Here we explored the mechanism behind this behavior, using a site-directed fluorescence labeling approach. Our results show that Org 27569 blocks conformational changes in CB1 that accompany G protein binding and/or activation, and thus inhibit formation of a fully active CB1 structure. The underlying mechanism behind this behavior is that simultaneous binding of Org 27569 produces a unique agonist-bound conformation, one that may resemble an intermediate structure formed on the pathway to full receptor activation.
Pozzi, Cecilia; Di Pisa, Flavio; Lalli, Daniela; Rosa, Camilla; Theil, Elizabeth; Turano, Paola; Mangani, Stefano
2015-04-01
Ferritin superfamily protein cages reversibly synthesize internal biominerals, Fe2O3·H2O. Fe(2+) and O2 (or H2O2) substrates bind at oxidoreductase sites in the cage, initiating biomineral synthesis to concentrate iron and prevent potentially toxic reactions products from Fe(2+)and O2 or H2O2 chemistry. By freezing ferritin crystals of Rana catesbeiana ferritin M (RcMf) at different time intervals after exposure to a ferrous salt, a series of high-resolution anomalous X-ray diffraction data sets were obtained that led to crystal structures that allowed the direct observation of ferrous ions entering, moving along and binding at enzyme sites in the protein cages. The ensemble of crystal structures from both aerobic and anaerobic conditions provides snapshots of the iron substrate bound at different cage locations that vary with time. The observed differential occupation of the two iron sites in the enzyme oxidoreductase centre (with Glu23 and Glu58, and with Glu58, His61 and Glu103 as ligands, respectively) and other iron-binding sites (with Glu53, His54, Glu57, Glu136 and Asp140 as ligands) reflects the approach of the Fe(2+) substrate and its progression before the enzymatic cycle 2Fe(2+) + O2 → Fe(3+)-O-O-Fe(3+) → Fe(3+)-O(H)-Fe(3+) and turnover. The crystal structures also revealed different Fe(2+) coordination compounds bound to the ion channels located at the threefold and fourfold symmetry axes of the cage.
The 15-K neutron structure of saccharide-free concanavalin A.
Blakeley, M P; Kalb, A J; Helliwell, J R; Myles, D A A
2004-11-23
The positions of the ordered hydrogen isotopes of a protein and its bound solvent can be determined by using neutron crystallography. Furthermore, by collecting neutron data at cryo temperatures, the dynamic disorder within a protein crystal is reduced, which may lead to improved definition of the nuclear density. It has proved possible to cryo-cool very large Con A protein crystals (>1.5 mm3) suitable for high-resolution neutron and x-ray structure analysis. We can thereby report the neutron crystal structure of the saccharide-free form of Con A and its bound water, including 167 intact D2O molecules and 60 oxygen atoms at 15 K to 2.5-A resolution, along with the 1.65-A x-ray structure of an identical crystal at 100 K. Comparison with the 293-K neutron structure shows that the bound water molecules are better ordered and have lower average B factors than those at room temperature. Overall, twice as many bound waters (as D2O) are identified at 15 K than at 293 K. We note that alteration of bound water orientations occurs between 293 and 15 K; such changes, as illustrated here with this example, could be important more generally in protein crystal structure analysis and ligand design. Methodologically, this successful neutron cryo protein structure refinement opens up categories of neutron protein crystallography, including freeze-trapped structures and cryo to room temperature comparisons.
International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors
Chazot, Paul L.; Cowart, Marlon; Gutzmer, Ralf; Leurs, Rob; Liu, Wai L. S.; Stark, Holger; Thurmond, Robin L.; Haas, Helmut L.
2015-01-01
Histamine is a developmentally highly conserved autacoid found in most vertebrate tissues. Its physiological functions are mediated by four 7-transmembrane G protein–coupled receptors (H1R, H2R, H3R, H4R) that are all targets of pharmacological intervention. The receptors display molecular heterogeneity and constitutive activity. H1R antagonists are long known antiallergic and sedating drugs, whereas the H2R was identified in the 1970s and led to the development of H2R-antagonists that revolutionized stomach ulcer treatment. The crystal structure of ligand-bound H1R has rendered it possible to design new ligands with novel properties. The H3R is an autoreceptor and heteroreceptor providing negative feedback on histaminergic and inhibition on other neurons. A block of these actions promotes waking. The H4R occurs on immuncompetent cells and the development of anti-inflammatory drugs is anticipated. PMID:26084539
Howes, Barry D; Boechi, Leonardo; Boffi, Alberto; Estrin, Dario E; Smulevich, Giulietta
2015-01-01
In this chapter, we will discuss the paradigmatic case of Thermobifida fusca (Tf-trHb) HbO in its ferrous and ferric states and its behaviour towards a battery of possible ligands. This choice was dictated by the fact that it has been one of the most extensively studied truncated haemoglobins, both in terms of spectroscopic and molecular dynamics studies. Tf-trHb typifies the structural properties of group II trHbs, as the active site is characterized by a highly polar distal environment in which TrpG8, TyrCD1, and TyrB10 provide three potential H-bond donors in the distal cavity capable of stabilizing the incoming ligands. The role of these residues in key topological positions, and their interplay with the iron-bound ligands, has been addressed in studies carried out on the CO, F(-), OH(-), CN(-), and HS(-) adducts formed with the wild-type protein and a combinatorial set of mutants, in which the distal polar residues, TrpG8, TyrCD1, and TyrB10, have been singly, doubly, or triply replaced by a Phe residue. In this context, such a complete analysis provides an excellent benchmark for the investigation of the relationship between protein structure and function, allowing one to translate physicochemical properties of the active site into the observed functional behaviour. Tf-trHb will be compared with other members of the group II trHbs and, more generally, with members of the other trHb subgroups. © 2015 Elsevier Ltd. All rights reserved.
Metal-dependent function of a mammalian acireductone dioxygenase
Deshpande, Aditi R.; Wagenpfeil, Karina; Pochapsky, Thomas C.; Petsko, Gregory A.; Ringe, Dagmar
2017-01-01
The two acireductone dioxygenase (ARD) isozymes from the methionine salvage pathway of Klebsiella oxytoca are the only known pair of naturally occurring metalloenzymes with distinct chemical and physical properties determined solely by the identity of the divalent transition metal ion (Fe2+ or Ni2+) in the active site. We now show that this dual chemistry can also occur in mammals. ARD from Mus musculus (MmARD) was studied to relate metal ion identity and three-dimensional structure to enzyme function. The iron-containing isozyme catalyzes the cleavage of 1,2-dihydroxy-3-keto-5-(thiomethyl)pent-1-ene (acireductone) by O2 to formate and the ketoacid precursor of methionine, the penultimate step in methionine salvage. The nickel bound form of ARD catalyzes an off-pathway reaction resulting in formate, carbon monoxide (CO) and 5-(thiomethyl) propionate. Recombinant MmARD was expressed and purified to obtain a homogeneous enzyme with a single transition metal ion bound. The Fe2+ bound protein, which shows about ten-fold higher activity than others, catalyzes on-pathway chemistry, whereas the Ni2+, Co2+ or Mn2+ forms exhibit off-pathway chemistry, as has been seen with ARD from Klebsiella. Thermal stability of the isozymes is strongly affected by metal ion identity, with Ni2+ bound MmARD being the most stable followed by Co2+ and Fe2+, and Mn2+-bound ARD being the least stable. Ni2+ and Co2+ bound MmARD were crystallized and the structures of the two proteins found to be similar. Enzyme-ligand complexes provide insight into substrate binding, metal coordination and catalytic mechanism. PMID:26858196
Tomić, A; Berynskyy, M; Wade, R C; Tomić, S
2015-11-01
The experimentally determined structures of human dipeptidyl peptidase III (DPP III) for the wild-type protein and for the complex of its E451A mutant with the peptide substrate, tynorphin, differ significantly in their overall shape. The two domains of the enzyme are separated by a wide cleft in the structure of the ligand-free enzyme, while in the ligand-bound mutant they are very close to each other, and the protein structure is extremely compact. Here, we applied a range of molecular dynamics simulation techniques to investigate the DPP III conformational landscape and the influence of ligand binding on the protein structure and dynamics. We used conventional, accelerated and steered methods to simulate DPP III and its complexes with tynorphin and with the preferred, synthetic, substrate Arg-Arg-2-naphthylamide. We found that DPP III can adopt a number of different forms in solution. The compact forms are more stable, but the open and partially closed states, spanning a wide range of conformations, can more effectively recognize the substrate which preferentially binds to the five-stranded β-core of the lower DPP III domain. The simulations indicated the existence of a dynamic equilibrium between open and semi-closed states and revealed two ways that the protein can close, leading to two distinct compact structures. The way in which the protein closes depends on the presence of the ligand.
An engineered allosteric switch in leucine-zipper oligomerization.
Gonzalez, L; Plecs, J J; Alber, T
1996-06-01
Controversy remains about the role of core side-chain packing in specifying protein structure. To investigate the influence of core packing on the oligomeric structure of a coiled coil, we engineered a GCN4 leucine zipper mutant that switches from two to three strands upon binding the hydrophobic ligands cyclohexane and benzene. In solution these ligands increased the apparent thermal stability and the oligomerization order of the mutant leucine zipper. The crystal structure of the peptide-benzene complex shows a single benzene molecule bound at the engineered site in the core of the trimer. These results indicate that coiled coils are well-suited to function as molecular switches and emphasize that core packing is an important determinant of oligomerization specificity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Back, J.; Malchiodi, E; Cho, S
2009-01-01
Certain cell-surface receptors engage ligands expressed on juxtaposed cells and ligands on the same cell. The structural basis for trans versus cis binding is not known. Here, we showed that Ly49 natural killer (NK) cell receptors bound two MHC class I (MHC-I) molecules in trans when the two ligand-binding domains were backfolded onto the long stalk region. In contrast, dissociation of the ligand-binding domains from the stalk and their reorientation relative to the NK cell membrane allowed monovalent binding of MHC-I in cis. The distinct conformations (backfolded and extended) define the structural basis for cis-trans binding by Ly49 receptors andmore » explain the divergent functional consequences of cis versus trans interactions. Further analyses identified specific stalk segments that were not required for MHC-I binding in trans but were essential for inhibitory receptor function. These data identify multiple distinct roles of stalk regions for receptor function.« less
A common feature pharmacophore for FDA-approved drugs inhibiting the Ebola virus.
Ekins, Sean; Freundlich, Joel S; Coffee, Megan
2014-01-01
We are currently faced with a global infectious disease crisis which has been anticipated for decades. While many promising biotherapeutics are being tested, the search for a small molecule has yet to deliver an approved drug or therapeutic for the Ebola or similar filoviruses that cause haemorrhagic fever. Two recent high throughput screens published in 2013 did however identify several hits that progressed to animal studies that are FDA approved drugs used for other indications. The current computational analysis uses these molecules from two different structural classes to construct a common features pharmacophore. This ligand-based pharmacophore implicates a possible common target or mechanism that could be further explored. A recent structure based design project yielded nine co-crystal structures of pyrrolidinone inhibitors bound to the viral protein 35 (VP35). When receptor-ligand pharmacophores based on the analogs of these molecules and the protein structures were constructed, the molecular features partially overlapped with the common features of solely ligand-based pharmacophore models based on FDA approved drugs. These previously identified FDA approved drugs with activity against Ebola were therefore docked into this protein. The antimalarials chloroquine and amodiaquine docked favorably in VP35. We propose that these drugs identified to date as inhibitors of the Ebola virus may be targeting VP35. These computational models may provide preliminary insights into the molecular features that are responsible for their activity against Ebola virus in vitro and in vivo and we propose that this hypothesis could be readily tested.
A common feature pharmacophore for FDA-approved drugs inhibiting the Ebola virus
Ekins, Sean; Freundlich, Joel S.; Coffee, Megan
2014-01-01
We are currently faced with a global infectious disease crisis which has been anticipated for decades. While many promising biotherapeutics are being tested, the search for a small molecule has yet to deliver an approved drug or therapeutic for the Ebola or similar filoviruses that cause haemorrhagic fever. Two recent high throughput screens published in 2013 did however identify several hits that progressed to animal studies that are FDA approved drugs used for other indications. The current computational analysis uses these molecules from two different structural classes to construct a common features pharmacophore. This ligand-based pharmacophore implicates a possible common target or mechanism that could be further explored. A recent structure based design project yielded nine co-crystal structures of pyrrolidinone inhibitors bound to the viral protein 35 (VP35). When receptor-ligand pharmacophores based on the analogs of these molecules and the protein structures were constructed, the molecular features partially overlapped with the common features of solely ligand-based pharmacophore models based on FDA approved drugs. These previously identified FDA approved drugs with activity against Ebola were therefore docked into this protein. The antimalarials chloroquine and amodiaquine docked favorably in VP35. We propose that these drugs identified to date as inhibitors of the Ebola virus may be targeting VP35. These computational models may provide preliminary insights into the molecular features that are responsible for their activity against Ebola virus in vitro and in vivo and we propose that this hypothesis could be readily tested. PMID:25653841
Improved ligand geometries in crystallographic refinement using AFITT in PHENIX
Janowski, Pawel A.; Moriarty, Nigel W.; Kelley, Brian P.; ...
2016-08-31
Modern crystal structure refinement programs rely on geometry restraints to overcome the challenge of a low data-to-parameter ratio. While the classical Engh and Huber restraints work well for standard amino-acid residues, the chemical complexity of small-molecule ligands presents a particular challenge. Most current approaches either limit ligand restraints to those that can be readily described in the Crystallographic Information File (CIF) format, thus sacrificing chemical flexibility and energetic accuracy, or they employ protocols that substantially lengthen the refinement time, potentially hindering rapid automated refinement workflows.PHENIX–AFITTrefinement uses a full molecular-mechanics force field for user-selected small-molecule ligands during refinement, eliminating the potentiallymore » difficult problem of finding or generating high-quality geometry restraints. It is fully integrated with a standard refinement protocol and requires practically no additional steps from the user, making it ideal for high-throughput workflows.PHENIX–AFITTrefinements also handle multiple ligands in a single model, alternate conformations and covalently bound ligands. Here, the results of combiningAFITTand thePHENIXsoftware suite on a data set of 189 protein–ligand PDB structures are presented. Refinements usingPHENIX–AFITTsignificantly reduce ligand conformational energy and lead to improved geometries without detriment to the fit to the experimental data. Finally, for the data presented,PHENIX–AFITTrefinements result in more chemically accurate models for small-molecule ligands.« less
Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta.
Wang, Ray Yu-Ruei; Song, Yifan; Barad, Benjamin A; Cheng, Yifan; Fraser, James S; DiMaio, Frank
2016-09-26
Cryo-EM has revealed the structures of many challenging yet exciting macromolecular assemblies at near-atomic resolution (3-4.5Å), providing biological phenomena with molecular descriptions. However, at these resolutions, accurately positioning individual atoms remains challenging and error-prone. Manually refining thousands of amino acids - typical in a macromolecular assembly - is tedious and time-consuming. We present an automated method that can improve the atomic details in models that are manually built in near-atomic-resolution cryo-EM maps. Applying the method to three systems recently solved by cryo-EM, we are able to improve model geometry while maintaining the fit-to-density. Backbone placement errors are automatically detected and corrected, and the refinement shows a large radius of convergence. The results demonstrate that the method is amenable to structures with symmetry, of very large size, and containing RNA as well as covalently bound ligands. The method should streamline the cryo-EM structure determination process, providing accurate and unbiased atomic structure interpretation of such maps.
Peng, Yingjie; Zhong, Chen; Huang, Wei; Ding, Jianping
2008-09-01
Isocitrate dehydrogenases (IDHs) catalyze oxidative decarboxylation of isocitrate (ICT) into alpha-ketoglutarate (AKG). We report here the crystal structures of Saccharomyces cerevesiae mitochondrial NADP-IDH Idp1p in binary complexes with coenzyme NADP, or substrate ICT, or product AKG, and in a quaternary complex with NADPH, AKG, and Ca(2+), which represent different enzymatic states during the catalytic reaction. Analyses of these structures identify key residues involved in the binding of these ligands. Comparisons among these structures and with the previously reported structures of other NADP-IDHs reveal that eukaryotic NADP-IDHs undergo substantial conformational changes during the catalytic reaction. Binding or release of the ligands can cause significant conformational changes of the structural elements composing the active site, leading to rotation of the large domain relative to the small and clasp domains along two hinge regions (residues 118-124 and residues 284-287) while maintaining the integrity of its secondary structural elements, and thus, formation of at least three distinct overall conformations. Specifically, the enzyme adopts an open conformation when bound to NADP, a quasi-closed conformation when bound to ICT or AKG, and a fully closed conformation when bound to NADP, ICT, and Ca(2+) in the pseudo-Michaelis complex or with NADPH, AKG, and Ca(2+) in the product state. The conformational changes of eukaryotic NADP-IDHs are quite different from those of Escherichia coli NADP-IDH, for which significant conformational changes are observed only between two forms of the apo enzyme, suggesting that the catalytic mechanism of eukaryotic NADP-IDHs is more complex than that of EcIDH, and involves more fine-tuned conformational changes.
Peng, Yingjie; Zhong, Chen; Huang, Wei; Ding, Jianping
2008-01-01
Isocitrate dehydrogenases (IDHs) catalyze oxidative decarboxylation of isocitrate (ICT) into α-ketoglutarate (AKG). We report here the crystal structures of Saccharomyces cerevesiae mitochondrial NADP-IDH Idp1p in binary complexes with coenzyme NADP, or substrate ICT, or product AKG, and in a quaternary complex with NADPH, AKG, and Ca2+, which represent different enzymatic states during the catalytic reaction. Analyses of these structures identify key residues involved in the binding of these ligands. Comparisons among these structures and with the previously reported structures of other NADP-IDHs reveal that eukaryotic NADP-IDHs undergo substantial conformational changes during the catalytic reaction. Binding or release of the ligands can cause significant conformational changes of the structural elements composing the active site, leading to rotation of the large domain relative to the small and clasp domains along two hinge regions (residues 118–124 and residues 284–287) while maintaining the integrity of its secondary structural elements, and thus, formation of at least three distinct overall conformations. Specifically, the enzyme adopts an open conformation when bound to NADP, a quasi-closed conformation when bound to ICT or AKG, and a fully closed conformation when bound to NADP, ICT, and Ca2+ in the pseudo-Michaelis complex or with NADPH, AKG, and Ca2+ in the product state. The conformational changes of eukaryotic NADP-IDHs are quite different from those of Escherichia coli NADP-IDH, for which significant conformational changes are observed only between two forms of the apo enzyme, suggesting that the catalytic mechanism of eukaryotic NADP-IDHs is more complex than that of EcIDH, and involves more fine-tuned conformational changes. PMID:18552125
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumaran,D.; Bonnano, J.; Burley, S.
2006-01-01
Phosphatidylglycerophosphatase (PGPase), an enzyme involved in lipid metabolism, catalyzes formation of phosphatidylglycerol from phosphatidylglycerophosphate. Phosphatidylglycerol is a multifunctional phospholipid, found in the biological membranes of many organisms. Here, we report the crystal structure of Listeria monocytogenes PGPase at 1.8 Angstroms resolution. PGPase, an all-helical molecule, forms a homotetramer. Each protomer contains an independent active site with two metal ions, Ca{sup 2+} and Mg{sup 2+}, forming a hetero-binuclear center located in a hydrophilic cavity near the surface of the molecule. The binuclear center, conserved ligands, metal-bound water molecules, and an Asp-His dyad form the active site. The catalytic mechanism of thismore » enzyme is likely to proceed via binuclear metal activated nucleophilic water. The binuclear metal-binding active-site environment of this structure should provide insights into substrate binding and metal-dependent catalysis. A long channel with inter-linked linear water chains, termed 'proton wires', is observed at the tetramer interface. Comparison of similar water chain structures in photosynthetic reaction centers (RCs), Cytochrome f, gramicidin, and bacteriorhodopsin, suggests that PGPase may conduct protons via proton wires.« less
Multiparameter flow cytometry of a pH sensitive ligand bound to receptors and inside cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fay, S.P.; Habbersett, R.; Posner, R.G.
1993-01-01
Because fluoresceinated ligands of the neutrophil formyl peptide receptor can be protonated either upon binding to the receptor on the cell surface or in acidified intracellular compartments, the authors synthesized a ligand conjugated to the pH sensitive fluorescent probe SNAFL (CHO-Met-Leu-Phe-Phe-Lys-SNAFL). In the three laser flow cytometer at LANL, protonated dye is excited at 488 nm and emits at 530 nm; unprotonated dye is excited at 568 nm and emits at 650 nm. Detection at the isobestic and isoemissive points at 528 and 600 nm is used to keep track of variations in ligand concentration from sample to sample. Themore » SNAFL-ligand bound to HL-60 cells (which overexpress the formyl peptide receptor) was compared to the free ligand in solution over a pH range from 6.5 to 9.0. The results suggest that the ligand bound to cell surface receptors was protonated in the binding pocket, possibly by virtue of its proximity to His 90, based on sequence data. When the cells were raised from 4[degrees] to 37[degrees], they also observed a time-dependent acidification of the ligand, indicative of ligand-receptor processing beginning 3-4 minutes after internalization.« less
NASA Astrophysics Data System (ADS)
Neu, M. P.; Matonic, J. H.; Smith, D. M.; Scott, B. L.
2000-07-01
The compounds we have isolated and characterized include plutonium(III) and plutonium(IV) bound by ligands with a range of donor types and denticity (halide, phosphine oxide, hydroxamate, amine, sulfide) in a variety of coordination geometries. For example, we have obtained the first X-ray structure of Pu(III) complexed by a soft donor ligand. Using a "one pot" synthesis beginning with Pu metal strips and iodine in acetonitrile and adding trithiacyclononane we isolated the complex, PuI3(9S3)(MeCN)2 (Figure 1). On the other end of the coordination chemistry spectrum, we have obtained the first single crystal structure of the Pu(IV) hexachloro anion (Figure 2). Although this species has been used in plutonium purification via anion exchange chromatography for decades, the bond distances and exact structure were not known. We have also characterized the first plutonium-biomolecule complex, Pu(IV) bound by the siderophore desferrioxamine E.In this presentation we will review the preparation, structures, and importance of previously known coordination compounds and of those we have recently isolated. We will show the coordination chemistry of plutonium is rich and varied, well worth additional exploration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprenger, Janina; Lund University, SE-221 84 Lund; Svensson, Bo
In this work, X-ray crystallography was used to examine ligand complexes of spermidine synthase from the malaria parasite Plasmodium falciparum (PfSpdS). The enzymes of the polyamine-biosynthesis pathway have been proposed to be promising drug targets in the treatment of malaria. Spermidine synthase (SpdS; putrescine aminopropyltransferase) catalyzes the transfer of the aminopropyl moiety from decarboxylated S-adenosylmethionine to putrescine, leading to the formation of spermidine and 5′-methylthioadenosine (MTA). In this work, X-ray crystallography was used to examine ligand complexes of SpdS from the malaria parasite Plasmodium falciparum (PfSpdS). Five crystal structures were determined of PfSpdS in complex with MTA and the substratemore » putrescine, with MTA and spermidine, which was obtained as a result of the enzymatic reaction taking place within the crystals, with dcAdoMet and the inhibitor 4-methylaniline, with MTA and 4-aminomethylaniline, and with a compound predicted in earlier in silico screening to bind to the active site of the enzyme, benzimidazol-(2-yl)pentan-1-amine (BIPA). In contrast to the other inhibitors tested, the complex with BIPA was obtained without any ligand bound to the dcAdoMet-binding site of the enzyme. The complexes with the aniline compounds and BIPA revealed a new mode of ligand binding to PfSpdS. The observed binding mode of the ligands, and the interplay between the two substrate-binding sites and the flexible gatekeeper loop, can be used in the design of new approaches in the search for new inhibitors of SpdS.« less
Underwood, Christina Rye; Garibay, Patrick; Knudsen, Lotte Bjerre; Hastrup, Sven; Peters, Günther H; Rudolph, Rainer; Reedtz-Runge, Steffen
2010-01-01
GLP-1 (glucagon-like peptide-1) is an incretin released from intestinal L-cells in response to food intake. Activation of the GLP-1 receptor potentiates the synthesis and release of insulin from pancreatic beta-cells in a glucose-dependent manner. The GLP-1 receptor belongs to class B of the G-protein-coupled receptors, a subfamily characterized by a large N-terminal extracellular ligand binding domain. Exendin-4 and GLP-1 are 50% identical, and exendin-4 is a full agonist with similar affinity and potency for the GLP-1 receptor. We recently solved the crystal structure of the GLP-1 receptor extracellular domain in complex with the competitive antagonist exendin-4(9-39). Interestingly, the isolated extracellular domain binds exendin-4 with much higher affinity than the endogenous agonist GLP-1. Here, we have solved the crystal structure of the extracellular domain in complex with GLP-1 to 2.1 Aresolution. The structure shows that important hydrophobic ligand-receptor interactions are conserved in agonist- and antagonist-bound forms of the extracellular domain, but certain residues in the ligand-binding site adopt a GLP-1-specific conformation. GLP-1 is a kinked but continuous alpha-helix from Thr(13) to Val(33) when bound to the extracellular domain. We supplemented the crystal structure with site-directed mutagenesis to link the structural information of the isolated extracellular domain with the binding properties of the full-length receptor. The data support the existence of differences in the binding modes of GLP-1 and exendin-4 on the full-length GLP-1 receptor.
Underwood, Christina Rye; Garibay, Patrick; Knudsen, Lotte Bjerre; Hastrup, Sven; Peters, Günther H.; Rudolph, Rainer; Reedtz-Runge, Steffen
2010-01-01
GLP-1 (glucagon-like peptide-1) is an incretin released from intestinal L-cells in response to food intake. Activation of the GLP-1 receptor potentiates the synthesis and release of insulin from pancreatic β-cells in a glucose-dependent manner. The GLP-1 receptor belongs to class B of the G-protein-coupled receptors, a subfamily characterized by a large N-terminal extracellular ligand binding domain. Exendin-4 and GLP-1 are 50% identical, and exendin-4 is a full agonist with similar affinity and potency for the GLP-1 receptor. We recently solved the crystal structure of the GLP-1 receptor extracellular domain in complex with the competitive antagonist exendin-4(9–39). Interestingly, the isolated extracellular domain binds exendin-4 with much higher affinity than the endogenous agonist GLP-1. Here, we have solved the crystal structure of the extracellular domain in complex with GLP-1 to 2.1 Åresolution. The structure shows that important hydrophobic ligand-receptor interactions are conserved in agonist- and antagonist-bound forms of the extracellular domain, but certain residues in the ligand-binding site adopt a GLP-1-specific conformation. GLP-1 is a kinked but continuous α-helix from Thr13 to Val33 when bound to the extracellular domain. We supplemented the crystal structure with site-directed mutagenesis to link the structural information of the isolated extracellular domain with the binding properties of the full-length receptor. The data support the existence of differences in the binding modes of GLP-1 and exendin-4 on the full-length GLP-1 receptor. PMID:19861722
Regulation of expression of the ligand for CD40 on T helper lymphocytes.
Castle, B E; Kishimoto, K; Stearns, C; Brown, M L; Kehry, M R
1993-08-15
Activated Th cells deliver contact-dependent signals to resting B lymphocytes that initiate and drive B cell proliferation. Recently, a ligand for the B lymphocyte membrane protein, CD40, has been identified that delivers contact-dependent Th cell signals to B cells. A dimeric soluble form of CD40 was produced and used to further characterize the regulation of expression of the CD40 ligand. Expression of the CD40 ligand was rapidly induced after Th lymphocyte activation, and its stability depended upon whether Th cells were activated with soluble or plastic-bound stimuli. Th cells activated with soluble stimuli rapidly turned over cell-surface CD40 ligand whereas Th cells activated with plastic-bound stimuli exhibited more stable CD40 ligand expression for up to 48 h. Removal of activated Th cells from the plastic-bound stimulus resulted in a rapid turnover of CD40 ligand, suggesting that continuous stimulation could maintain CD40 ligand expression. Ligation by soluble CD40 could also stabilize expression of CD40 ligand on the Th cell surface. Both CD40 ligand and IL-2 were transiently synthesized from 1 to 12 h after Th cell activation and had similar kinetics of synthesis. In Con A-activated Th cells newly synthesized CD40 ligand exhibited an initial high turnover (1.5 h t1/2) and after 5 h of Th cell activation became more stable (10-h t1/2). In Th cells activated with plastic-bound anti-CD3, CD40 ligand exhibited a similar biphasic turnover except that the rapid turnover phase began significantly later. This delay could allow more time for newly synthesized CD40 ligand to assemble or associate with other molecules and thus become stabilized on the cell surface. Newly synthesized CD40 ligand in Con A-activated Th cells appeared to not be efficient in delivering Th cell-dependent contact signals to resting B cells, implying the need for assembly or accessory proteins. Regulation of CD40 ligand expression was consistent with all the characteristics of Th cell-delivered contact signals to B cells and may contribute to the high degree of specificity in B cell responses.
Binding of D-phenylalanine and D-tyrosine to carboxypeptidase A.
Christianson, D W; Mangani, S; Shoham, G; Lipscomb, W N
1989-08-05
The structures of the complexes of carboxypeptidase A with the amino acids D-phenylalanine and D-tyrosine are reported as determined by x-ray crystallographic methods to a resolution of 2.0 A. In each individual study one molecule of amino acids binds to the enzyme in the COOH-terminal hydrophobic pocket: the carboxylate of the bound ligand salt links with Arg-145, and the alpha-amino group salt links with Glu-270. The carboxylate of Glu-270 must break its hydrogen bond with the native zinc-bound water molecule in order to exploit the latter interaction. This result is in accord with spectroscopic studies which indicate that the binding of D or L amino acids (or analogues thereof) allows for more facile displacement of the metal-bound water by anions (Bicknell, R., Schaffer, A., Bertini, I., Luchinat, C., Vallee, B. L., and Auld, D. S. (1988) Biochemistry 27, 1050-1057). Additionally, we observe a significant movement of the zinc-bound water molecule (approximately 1 A) upon the binding of D-ligands. We propose that this unanticipated movement also contributes to anion sensitivity. The structural results of the current x-ray study correct predictions made in an early model building study regarding the binding of D-phenylalanine (Lipscomb, W. N., Hartsuck, J. A., Reeke, G. N., Jr., Quiocho, F. A., Bethge, P. H., Ludwig, M. L., Steitz, T. A., Muirhead, H., and Coppola, J. C. (1968) Brookhaven Symp. Biol. 21, 24-90).
Solomentsev, Gleb; Diehl, Carl; Akke, Mikael
2018-03-06
FKBP12 (FK506 binding protein 12 kDa) is an important drug target. Nuclear magnetic resonance (NMR) order parameters, describing amplitudes of motion on the pico- to nanosecond time scale, can provide estimates of changes in conformational entropy upon ligand binding. Here we report backbone and methyl-axis order parameters of the apo and FK506-bound forms of FKBP12, based on 15 N and 2 H NMR relaxation. Binding of FK506 to FKBP12 results in localized changes in order parameters, notably for the backbone of residues E54 and I56 and the side chains of I56, I90, and I91, all positioned in the binding site. The order parameters increase slightly upon FK506 binding, indicating an unfavorable entropic contribution to binding of TΔ S = -18 ± 2 kJ/mol at 293 K. Molecular dynamics simulations indicate a change in conformational entropy, associated with all dihedral angles, of TΔ S = -26 ± 9 kJ/mol. Both these values are significant compared to the total entropy of binding determined by isothermal titration calorimetry and referenced to a reactant concentration of 1 mM ( TΔ S = -29 ± 1 kJ/mol). Our results reveal subtle differences in the response to ligand binding compared to that of the previously studied rapamycin-FKBP12 complex, despite the high degree of structural homology between the two complexes and their nearly identical ligand-FKBP12 interactions. These results highlight the delicate dependence of protein dynamics on drug interactions, which goes beyond the view provided by static structures, and reinforce the notion that protein conformational entropy can make important contributions to the free energy of ligand binding.
Ashikawa, Yuji; Fujimoto, Zui; Usami, Yusuke; Inoue, Kengo; Noguchi, Haruko; Yamane, Hisakazu; Nojiri, Hideaki
2012-06-24
Dihydroxylation of tandemly linked aromatic carbons in a cis-configuration, catalyzed by multicomponent oxygenase systems known as Rieske nonheme iron oxygenase systems (ROs), often constitute the initial step of aerobic degradation pathways for various aromatic compounds. Because such RO reactions inherently govern whether downstream degradation processes occur, novel oxygenation mechanisms involving oxygenase components of ROs (RO-Os) is of great interest. Despite substantial progress in structural and physicochemical analyses, no consensus exists on the chemical steps in the catalytic cycles of ROs. Thus, determining whether conformational changes at the active site of RO-O occur by substrate and/or oxygen binding is important. Carbazole 1,9a-dioxygenase (CARDO), a RO member consists of catalytic terminal oxygenase (CARDO-O), ferredoxin (CARDO-F), and ferredoxin reductase. We have succeeded in determining the crystal structures of oxidized CARDO-O, oxidized CARDO-F, and both oxidized and reduced forms of the CARDO-O: CARDO-F binary complex. In the present study, we determined the crystal structures of the reduced carbazole (CAR)-bound, dioxygen-bound, and both CAR- and dioxygen-bound CARDO-O: CARDO-F binary complex structures at 1.95, 1.85, and 2.00 Å resolution. These structures revealed the conformational changes that occur in the catalytic cycle. Structural comparison between complex structures in each step of the catalytic mechanism provides several implications, such as the order of substrate and dioxygen bindings, the iron-dioxygen species likely being Fe(III)-(hydro)peroxo, and the creation of room for dioxygen binding and the promotion of dioxygen binding in desirable fashion by preceding substrate binding. The RO catalytic mechanism is proposed as follows: When the Rieske cluster is reduced, substrate binding induces several conformational changes (e.g., movements of the nonheme iron and the ligand residue) that create room for oxygen binding. Dioxygen bound in a side-on fashion onto nonheme iron is activated by reduction to the peroxo state [Fe(III)-(hydro)peroxo]. This state may react directly with the bound substrate, or O-O bond cleavage may occur to generate Fe(V)-oxo-hydroxo species prior to the reaction. After producing a cis-dihydrodiol, the product is released by reducing the nonheme iron. This proposed scheme describes the catalytic cycle of ROs and provides important information for a better understanding of the mechanism.
Méndez-Luna, David; Bello, Martiniano; Correa-Basurto, José
2016-04-01
The G-protein coupled receptors (GPCRs) represent the largest superfamily of membrane proteins in charge to pass the cell signaling after binding with their cognate ligands to the cell interior. In breast cancer, a GPCR named GPER1 plays a key role in the process of growth and the proliferation of cancer cells. In a previous study, theoretical methods were applied to construct a model of GPER1, which later was submitted to molecular dynamics (MD) simulations to perform a docking calculation. Based on this preceding work, it is known that GPER1 is sensitive to structural differences in its binding site. However, due to the nature of that past study, conformational changes linked to the ligand binding were not observed. Therefore, in this study, in order to explore the conformational changes coupled to the agonist/antagonist binding, MD simulations of about 0.25μs were performed for the free and bound states, summarizing 0.75μs of MD simulation in total. For the bound states, one agonist (G-1) and antagonist (G-15) were chosen since is widely known that these two molecules cause an impact on GPER1 mobility. Based on the conformational ensemble generated through MD simulations, we found that despite G-1 and G-15 being stabilized by similar map of residues, the structural differences between both ligands impact the hydrogen bond pattern not only at the GPER1 binding site but also along the seven-helix bundle, causing significant differences in the conformational mobility along the extracellular and cytoplasmic domain, and to a lesser degree in the curvatures of helix 2, helix 3 and helix 7 between the free and bound states, which is in agreement with reported literature, and might be linked to microscopic characteristics of the activated-inactivated transition. Furthermore, binding free energy calculations using the MM/GBSA method for the bound states, followed by an alanine scanning analysis allowed us to identify some important residues for the complex stabilization. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ranatunga, Wasantha; Hill, Emma E.; Mooster, Jana L.
We have determined the crystal structure, at 1.4, of the Nudix hydrolase DR1025 from the extremely radiation resistant bacterium Deinococcus radiodurans. The protein forms an intertwined homodimer by exchanging N-terminal segments between chains. We have identified additional conserved elements of the Nudix fold, including the metal-binding motif, a kinked b-strand characterized by a proline two positions upstream of the Nudix consensus sequence, and participation of the N-terminal extension in the formation of the substrate-binding pocket. Crystal structures were also solved of DR1025 crystallized in the presence of magnesium and either a GTP analog or Ap4A (both at 1.6 resolution). Inmore » the Ap4Aco-crystal, the electron density indicated that the product of asymmetric hydrolysis, ATP, was bound to the enzyme. The GTP analog bound structure showed that GTP was bound almost identically as ATP. Neither nucleoside triphosphate was further cleaved.« less
Metal Oxides in Surface Sediment Control Nickel Bioavailability to Benthic Macroinvertebrates.
Mendonca, Raissa M; Daley, Jennifer M; Hudson, Michelle L; Schlekat, Christian E; Burton, G Allen; Costello, David M
2017-11-21
In aquatic ecosystems, the cycling and toxicity of nickel (Ni) are coupled to other elemental cycles that can limit its bioavailability. Current sediment risk assessment approaches consider acid-volatile sulfide (AVS) as the major binding phase for Ni, but have not yet incorporated ligands that are present in oxic sediments. Our study aimed to assess how metal oxides play a role in Ni bioavailability in surficial sediments exposed to effluent from two mine sites. We coupled spatially explicit sediment geochemistry (i.e., separate oxic and suboxic) to the indigenous macroinvertebrate community structure. Effluent-exposed sites contained high concentrations of sediment Ni and AVS, though roughly 80% less AVS was observed in surface sediments. Iron (Fe) oxide mineral concentrations were elevated in surface sediments and bound a substantial proportion of Ni. Redundancy analysis of the invertebrate community showed surface sediment geochemistry significantly explained shifts in community abundances. Relative abundance of the dominant mayfly (Ephemeridae) was reduced in sites with greater bioavailable Ni, but accounting for Fe oxide-bound Ni greatly decreased variation in effect thresholds between the two mine sites. Our results provide field-based evidence that solid-phase ligands in oxic sediment, most notably Fe oxides, may have a critical role in controlling nickel bioavailability.
Silvaroli, Josie A; Arne, Jason M; Chelstowska, Sylwia; Kiser, Philip D; Banerjee, Surajit; Golczak, Marcin
2016-04-15
Important in regulating the uptake, storage, and metabolism of retinoids, cellular retinol-binding protein 1 (CRBP1) is essential for trafficking vitamin A through the cytoplasm. However, the molecular details of ligand uptake and targeted release by CRBP1 remain unclear. Here we report the first structure of CRBP1 in a ligand-free form as well as ultra-high resolution structures of this protein bound to either all-trans-retinol or retinylamine, the latter a therapeutic retinoid that prevents light-induced retinal degeneration. Superpositioning of human apo- and holo-CRBP1 revealed major differences within segments surrounding the entrance to the retinoid-binding site. These included α-helix II and hairpin turns between β-strands βC-βD and βE-βF as well as several side chains, such as Phe-57, Tyr-60, and Ile-77, that change their orientations to accommodate the ligand. Additionally, we mapped hydrogen bond networks inside the retinoid-binding cavity and demonstrated their significance for the ligand affinity. Analyses of the crystallographic B-factors indicated several regions with higher backbone mobility in the apoprotein that became more rigid upon retinoid binding. This conformational flexibility of human apo-CRBP1 facilitates interaction with the ligands, whereas the more rigid holoprotein structure protects the labile retinoid moiety during vitamin A transport. These findings suggest a mechanism of induced fit upon ligand binding by mammalian cellular retinol-binding proteins. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Using DFT Methods to Study Activators in Optical Materials
Du, Mao-Hua
2015-08-17
Density functional theory (DFT) calculations of various activators (ranging from transition metal ions, rare-earth ions, ns 2 ions, to self-trapped and dopant-bound excitons) in phosphors and scintillators are reviewed. As a single-particle ground-state theory, DFT calculations cannot reproduce the experimentally observed optical spectra, which involve transitions between multi-electronic states. However, DFT calculations can generally provide sufficiently accurate structural relaxation and distinguish different hybridization strengths between an activator and its ligands in different host compounds. This is important because the activator-ligand interaction often governs the trends in luminescence properties in phosphors and scintillators, and can be used to search for newmore » materials. DFT calculations of the electronic structure of the host compound and the positions of the activator levels relative to the host band edges in scintillators are also important for finding optimal host-activator combinations for high light yields and fast scintillation response. Mn 4+ activated red phosphors, scintillators activated by Ce 3+, Eu 2+, Tl +, and excitons are shown as examples of using DFT calculations in phosphor and scintillator research.« less
Structural Basis of Human CYP51 Inhibition by Antifungal Azoles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strushkevich, Natallia; Usanov, Sergey A.; Park, Hee-Won
2010-09-22
The obligatory step in sterol biosynthesis in eukaryotes is demethylation of sterol precursors at the C14-position, which is catalyzed by CYP51 (sterol 14-alpha demethylase) in three sequential reactions. In mammals, the final product of the pathway is cholesterol, while important intermediates, meiosis-activating sterols, are produced by CYP51. Three crystal structures of human CYP51, ligand-free and complexed with antifungal drugs ketoconazole and econazole, were determined, allowing analysis of the molecular basis for functional conservation within the CYP51 family. Azole binding occurs mostly through hydrophobic interactions with conservative residues of the active site. The substantial conformational changes in the B{prime} helix andmore » F-G loop regions are induced upon ligand binding, consistent with the membrane nature of the protein and its substrate. The access channel is typical for mammalian sterol-metabolizing P450 enzymes, but is different from that observed in Mycobacterium tuberculosis CYP51. Comparison of the azole-bound structures provides insight into the relative binding affinities of human and bacterial P450 enzymes to ketoconazole and fluconazole, which can be useful for the rational design of antifungal compounds and specific modulators of human CYP51.« less
Richardson, J; Thomas, K A; Rubin, B H; Richardson, D C
1975-01-01
An electron density map at 3 angstrom resolution has been calculated for Cu2+, Zn2+ superoxide dismutase from bovine erythrocytes, and the course of the main chain has been traced. The dominant structural feature is an 8-stranded barrel of antiparallel beta-pleated sheet. There is one very short helical section and two long loops of non-repetitive structure. The Cu and Zn are bound between the loops and one side of the beta barrel and are about 6 Angstrom apart, with a common histidine ligand. The Cu has four histidine ligands in a somewhat distorted square plane, and the Zn has three histidines and an aspartate in approximately tetrahedral arrangement. The two coppers of a dimer are about 34 Angstrom apart. The two subunits have essentially the same conformation and have an extensive contact area that mainly involves hydrophobic side chain interactions. The overall folding pattern of the polypeptide chain is very similar to that of an immunoglobulin domain. Images PMID:1055410
Baum, Bernhard; Lecker, Laura S. M.; Zoltner, Martin; Jaenicke, Elmar; Schnell, Robert; Hunter, William N.; Brenk, Ruth
2015-01-01
Bacterial infections remain a serious health concern, in particular causing life-threatening infections of hospitalized and immunocompromised patients. The situation is exacerbated by the rise in antibacterial drug resistance, and new treatments are urgently sought. In this endeavour, accurate structures of molecular targets can support early-stage drug discovery. Here, crystal structures, in three distinct forms, of recombinant Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF) are presented. This enzyme, which is involved in fatty-acid biosynthesis, has been validated by genetic and chemical means as an antibiotic target in Gram-positive bacteria and represents a potential target in Gram-negative bacteria. The structures of apo FabF, of a C164Q mutant in which the binding site is altered to resemble the substrate-bound state and of a complex with 3-(benzoylamino)-2-hydroxybenzoic acid are reported. This compound mimics aspects of a known natural product inhibitor, platensimycin, and surprisingly was observed binding outside the active site, interacting with a symmetry-related molecule. An unusual feature is a completely buried potassium-binding site that was identified in all three structures. Comparisons suggest that this may represent a conserved structural feature of FabF relevant to fold stability. The new structures provide templates for structure-based ligand design and, together with the protocols and reagents, may underpin a target-based drug-discovery project for urgently needed antibacterials. PMID:26249693
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudolf, Jeffrey D.; Bigelow, Lance; Chang, Changsoo
The bleomycins (BLMs), tallysomycins (TLMs), phleomycin, and zorbamycin (ZBM) are members of the BLM family of glycopeptide-derived antitumor antibiotics. The BLM-producing Streptomyces verticillus ATCC15003 and the TLM-producing Streptoalloteichus hindustanus E465-94 ATCC31158 both possess at least two self-resistance elements, an N-acetyltransferase and a binding protein. The N-acetyltransferase provides resistance by disrupting the metal-binding domain of the antibiotic that is required for activity, while the binding protein confers resistance by sequestering the metal-bound antibiotic and preventing drug activation via molecular oxygen. We recently established that the ZBM producer, Streptomyces flavoviridis ATCC21892, lacks the N-acetyltransferase resistance gene and that the ZBM-binding protein, ZbmA,more » is sufficient to confer resistance in the producing strain. To investigate the resistance mechanism attributed to ZbmA, we determined the crystal structures of apo and Cu(II)-ZBM-bound ZbmA at high resolutions of 1.90 and 1.65 angstrom, respectively. A comparison and contrast with other structurally characterized members of the BLM-binding protein family revealed key differences in the protein ligand binding environment that fine-tunes the ability of ZbmA to sequester metal-bound ZBM and supports drug sequestration as the primary resistance mechanism in the producing organisms of the BLM family of antitumor antibiotics.« less
Unno, Masaki; Ardèvol, Albert; Rovira, Carme; Ikeda-Saito, Masao
2013-01-01
Heme oxygenase catalyzes the degradation of heme to biliverdin, iron, and carbon monoxide. Here, we present crystal structures of the substrate-free, Fe3+-biliverdin-bound, and biliverdin-bound forms of HmuO, a heme oxygenase from Corynebacterium diphtheriae, refined to 1.80, 1.90, and 1.85 Å resolution, respectively. In the substrate-free structure, the proximal and distal helices, which tightly bracket the substrate heme in the substrate-bound heme complex, move apart, and the proximal helix is partially unwound. These features are supported by the molecular dynamic simulations. The structure implies that the heme binding fixes the enzyme active site structure, including the water hydrogen bond network critical for heme degradation. The biliverdin groups assume the helical conformation and are located in the heme pocket in the crystal structures of the Fe3+-biliverdin-bound and the biliverdin-bound HmuO, prepared by in situ heme oxygenase reaction from the heme complex crystals. The proximal His serves as the Fe3+-biliverdin axial ligand in the former complex and forms a hydrogen bond through a bridging water molecule with the biliverdin pyrrole nitrogen atoms in the latter complex. In both structures, salt bridges between one of the biliverdin propionate groups and the Arg and Lys residues further stabilize biliverdin at the HmuO heme pocket. Additionally, the crystal structure of a mixture of two intermediates between the Fe3+-biliverdin and biliverdin complexes has been determined at 1.70 Å resolution, implying a possible route for iron exit. PMID:24106279
Structure of the CCR5 Chemokine Receptor-HIV Entry Inhibitor Maraviroc Complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Qiuxiang; Zhu, Ya; Li, Jian
2013-10-21
The CCR5 chemokine receptor acts as a co-receptor for HIV-1 viral entry. Here we report the 2.7 angstrom–resolution crystal structure of human CCR5 bound to the marketed HIV drug maraviroc. The structure reveals a ligand-binding site that is distinct from the proposed major recognition sites for chemokines and the viral glycoprotein gp120, providing insights into the mechanism of allosteric inhibition of chemokine signaling and viral entry. A comparison between CCR5 and CXCR4 crystal structures, along with models of co-receptor–gp120-V3 complexes, suggests that different charge distributions and steric hindrances caused by residue substitutions may be major determinants of HIV-1 co-receptor selectivity.more » These high-resolution insights into CCR5 can enable structure-based drug discovery for the treatment of HIV-1 infection.« less
Structure and dynamics of the M3 muscarinic acetylcholine receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruse, Andrew C.; Hu, Jianxin; Pan, Albert C.
2012-03-01
Acetylcholine, the first neurotransmitter to be identified, exerts many of its physiological actions via activation of a family of G-protein-coupled receptors (GPCRs) known as muscarinic acetylcholine receptors (mAChRs). Although the five mAChR subtypes (M1-M5) share a high degree of sequence homology, they show pronounced differences in G-protein coupling preference and the physiological responses they mediate. Unfortunately, despite decades of effort, no therapeutic agents endowed with clear mAChR subtype selectivity have been developed to exploit these differences. We describe here the structure of the G{sub q/11}-coupled M3 mAChR ('M3 receptor', from rat) bound to the bronchodilator drug tiotropium and identify themore » binding mode for this clinically important drug. This structure, together with that of the G{sub i/o}-coupled M2 receptor, offers possibilities for the design of mAChR subtype-selective ligands. Importantly, the M3 receptor structure allows a structural comparison between two members of a mammalian GPCR subfamily displaying different G-protein coupling selectivities. Furthermore, molecular dynamics simulations suggest that tiotropium binds transiently to an allosteric site en route to the binding pocket of both receptors. These simulations offer a structural view of an allosteric binding mode for an orthosteric GPCR ligand and provide additional opportunities for the design of ligands with different affinities or binding kinetics for different mAChR subtypes. Our findings not only offer insights into the structure and function of one of the most important GPCR families, but may also facilitate the design of improved therapeutics targeting these critical receptors.« less
Collauto, Alberto; DeBerg, Hannah A; Kaufmann, Royi; Zagotta, William N; Stoll, Stefan; Goldfarb, Daniella
2017-06-14
Ligand binding can induce significant conformational changes in proteins. The mechanism of this process couples equilibria associated with the ligand binding event and the conformational change. Here we show that by combining the application of W-band double electron-electron resonance (DEER) spectroscopy with microfluidic rapid freeze quench (μRFQ) it is possible to resolve these processes and obtain both equilibrium constants and reaction rates. We studied the conformational transition of the nitroxide labeled, isolated carboxy-terminal cyclic-nucleotide binding domain (CNBD) of the HCN2 ion channel upon binding of the ligand 3',5'-cyclic adenosine monophosphate (cAMP). Using model-based global analysis, the time-resolved data of the μRFQ DEER experiments directly provide fractional populations of the open and closed conformations as a function of time. We modeled the ligand-induced conformational change in the protein using a four-state model: apo/open (AO), apo/closed (AC), bound/open (BO), bound/closed (BC). These species interconvert according to AC + L ⇌ AO + L ⇌ BO ⇌ BC. By analyzing the concentration dependence of the relative contributions of the closed and open conformations at equilibrium, we estimated the equilibrium constants for the two conformational equilibria and the open-state ligand dissociation constant. Analysis of the time-resolved μRFQ DEER data gave estimates for the intrinsic rates of ligand binding and unbinding as well as the rates of the conformational change. This demonstrates that DEER can quantitatively resolve both the thermodynamics and the kinetics of ligand binding and the associated conformational change.
Direct protein photoinduced conformational changes using porphyrins.
NASA Astrophysics Data System (ADS)
Brancaleon, Lorenzo; Silva, Ivan; Fernandez, Nicholas; Johnson, Eric; Sansone, Samuel
2008-03-01
Most proteins functions depend on the interaction with other ligands. These interactions depend on uniquely structured binding sites formed by the folding of the proteins. Ligands can often prompt intended as well as ``accidental'' protein structural changes. One can foresee that the ability to prompt and control post-translational protein folding could be a powerful tool to investigate protein folding mechanisms but also to inhibit certain proteins or induce new properties to proteins. One possible way to produce such structural disruption is the combination of light and photoactive ligands. This option has been investigated in recent years by exploiting photoisomerization and other properties of non-physiological dyes. We used an alternative approach which uses porphyrins as the ``triggers'' of structural changes. The advantage of porphyrins is that they can be found naturally in living cells. The photophysical properties of porphyrins can induce local as well as long range effects on the structure of the bound protein. Porphyrins are known to produce structural changes in porphyrin-specific proteins, however the novelty of our results is that we demonstrated that these dyes can also produce structural changes in non-porphyrin-specific globular proteins. We will present an overview of our research to-date in this field and its potential applications.
Kolafa, J; Perram, J W; Bywater, R P
2000-01-01
We have studied protein-ligand interactions by molecular dynamics simulations using software designed to exploit parallel computing architectures. The trajectories were analyzed to extract the essential motions and to estimate the individual contributions of fragments of the ligand to overall binding enthalpy. Two forms of the bound ligand are compared, one with the termini blocked by covalent derivatization, and one in the underivatized, zwitterionic form. The ends of the peptide tend to bind more loosely in the capped form. We can observe significant motions in the bound ligand and distinguish between motions of the peptide backbone and of the side chains. This could be useful in designing ligands, which fit optimally to the binding protein. We show that it is possible to determine the different contributions of each residue in a peptide to the enthalpy of binding. Proline is a major net contributor to binding enthalpy, in keeping with the known propensity for this family of proteins to bind proline-rich peptides. PMID:10919999
Kona, Fathima; Tao, Peng; Martin, Philip; Xu, Xingjue; Gatti, Domenico L
2009-04-28
Aquifex aeolicus 3-deoxy-d-manno-octulosonate 8-phosphate synthase (KDO8PS) is active with a variety of different divalent metal ions bound in the active site. The Cd(2+), Zn(2+), and Cu(2+) substituted enzymes display similar values of k(cat) and similar dependence of K(m)(PEP) and K(m)(A5P) on both substrate and product concentrations. However, the flux-control coefficients for some of the catalytically relevant reaction steps are different in the presence of Zn(2+) or Cu(2+), suggesting that the type of metal bound in the active site affects the behavior of the enzyme in vivo. The type of metal also affects the rate of product release in the crystal environment. For example, the crystal structure of the Cu(2+) enzyme incubated with phosphoenolpyruvate (PEP) and arabinose 5-phosphate (A5P) shows the formed product, 3-deoxy-d-manno-octulosonate 8-phosphate (KDO8P), still bound in the active site in its linear conformation. This observation completes our structural studies of the condensation reaction, which altogether have provided high-resolution structures for the reactants, the intermediate, and the product bound forms of KDO8PS. The crystal structures of the Cd(2+), Zn(2+), and Cu(2+) substituted enzymes show four residues (Cys-11, His-185, Glu-222, and Asp-233) and a water molecule as possible metal ligands. Combined quantum mechanics/molecular mechanics (QM/MM) geometry optimizations reveal that the metal centers have a delocalized electronic structure, and that their true geometry is square pyramidal for Cd(2+) and Zn(2+) and distorted octahedral or distorted tetrahedral for Cu(2+). These geometries are different from those obtained by QM optimization in the gas phase (tetrahedral for Cd(2+) and Zn(2+), distorted tetrahedral for Cu(2+)) and may represent conformations of the metal center that minimize the reorganization energy between the substrate-bound and product-bound states. The QM/MM calculations also show that when only PEP is bound to the enzyme the electronic structure of the metal center is optimized to prevent a wasteful reaction of PEP with water.
Gonzalez-Gutierrez, Giovanni; Lukk, Tiit; Agarwal, Vinayak; Papke, David; Nair, Satish K.; Grosman, Claudio
2012-01-01
The determination of structural models of the various stable states of an ion channel is a key step toward the characterization of its conformational dynamics. In the case of nicotinic-type receptors, different structures have been solved but, thus far, these different models have been obtained from different members of the superfamily. In the case of the bacterial member ELIC, a cysteamine-gated channel from Erwinia chrisanthemi, a structural model of the protein in the absence of activating ligand (and thus, conceivably corresponding to the closed state of this channel) has been previously generated. In this article, electrophysiological characterization of ELIC mutants allowed us to identify pore mutations that slow down the time course of desensitization to the extent that the channel seems not to desensitize at all for the duration of the agonist applications (>20 min). Thus, it seems reasonable to conclude that the probability of ELIC occupying the closed state is much lower for the ligand-bound mutants than for the unliganded wild-type channel. To gain insight into the conformation adopted by ELIC under these conditions, we solved the crystal structures of two of these mutants in the presence of a concentration of cysteamine that elicits an intracluster open probability of >0.9. Curiously, the obtained structural models turned out to be nearly indistinguishable from the model of the wild-type channel in the absence of bound agonist. Overall, our findings bring to light the limited power of functional studies in intact membranes when it comes to inferring the functional state of a channel in a crystal, at least in the case of the nicotinic-receptor superfamily. PMID:22474383
Ligand bound structures of a glycosyl hydrolase family 30 glucuronoxylan xylanohydrolase
Franz St. Johns; Jason C. Hurlbert; John D. Rice; James F. Preston; Edwin Pozharski
2011-01-01
Xylanases of glycosyl hydrolase family 30 (GH30) have been shown to cleave β-1,4 linkages of 4-O-methylglucuronoxylan (MeGXn) as directed by the position along the xylan chain of an α-1,2-linked 4-O-methylglucuronate (MeGA) moiety. Complete hydrolysis of MeGXn by...
Baum, Bernhard; Muley, Laveena; Smolinski, Michael; Heine, Andreas; Hangauer, David; Klebe, Gerhard
2010-04-09
Additivity of functional group contributions to protein-ligand binding is a very popular concept in medicinal chemistry as the basis of rational design and optimized lead structures. Most of the currently applied scoring functions for docking build on such additivity models. Even though the limitation of this concept is well known, case studies examining in detail why additivity fails at the molecular level are still very scarce. The present study shows, by use of crystal structure analysis and isothermal titration calorimetry for a congeneric series of thrombin inhibitors, that extensive cooperative effects between hydrophobic contacts and hydrogen bond formation are intimately coupled via dynamic properties of the formed complexes. The formation of optimal lipophilic contacts with the surface of the thrombin S3 pocket and the full desolvation of this pocket can conflict with the formation of an optimal hydrogen bond between ligand and protein. The mutual contributions of the competing interactions depend on the size of the ligand hydrophobic substituent and influence the residual mobility of ligand portions at the binding site. Analysis of the individual crystal structures and factorizing the free energy into enthalpy and entropy demonstrates that binding affinity of the ligands results from a mixture of enthalpic contributions from hydrogen bonding and hydrophobic contacts, and entropic considerations involving an increasing loss of residual mobility of the bound ligands. This complex picture of mutually competing and partially compensating enthalpic and entropic effects determines the non-additivity of free energy contributions to ligand binding at the molecular level. (c) 2010 Elsevier Ltd. All rights reserved.
Tuning Riboswitch Regulation through Conformational Selection
Wilson, Ross C.; Smith, Angela M.; Fuchs, Ryan T.; Kleckner, Ian R.; Henkin, Tina M.; Foster, Mark P.
2010-01-01
SUMMARY The SMK box riboswitch, which represents one of three known classes of S-adenosylmethionine (SAM)-responsive riboswitches, regulates gene expression in bacteria at the level of translation initiation. In contrast to most riboswitches, which contain separate domains responsible for ligand recognition and gene regulation, the ligand-binding and regulatory domains of the SMK box riboswitch are coincident. This property was exploited to allow the first atomic-level characterization of a functionally intact riboswitch in both the ligand-bound and ligand-free states. NMR spectroscopy revealed distinct mutually exclusive RNA conformations that are differentially populated in the presence or absence of the effector metabolite. Isothermal titration calorimetry and in vivo reporter assay results revealed the thermodynamic and functional consequences of this conformational equilibrium. We present a comprehensive model of the structural, thermodynamic, and functional properties of this compact RNA regulatory element. PMID:21075119
Mitchell, Michael J.
2013-01-01
Circulating tumor cells (CTCs) in blood are known to adhere to the luminal surface of the microvasculature via receptor-mediated adhesion, which contributes to the spread of cancer metastasis to anatomically distant organs. Such interactions between ligands on CTCs and endothelial cell-bound surface receptors are sensitive to receptor-ligand distances at the nanoscale. The sugar-rich coating expressed on the surface of CTCs and endothelial cells, known as the glycocalyx, serves as a physical structure that can control the spacing and, thus, the availability of such receptor-ligand interactions. The cancer cell glycocalyx can also regulate the ability of therapeutic ligands to bind to CTCs in the bloodstream. Here, we review the role of cell glycocalyx on the adhesion and therapeutic treatment of CTCs in the bloodstream. PMID:24133067
Machaba, Kgothatso E; Cele, Favorite N; Mhlongo, Ndumiso N; Soliman, Mahmoud E S
2016-12-01
Tuberculosis, caused by Mycobacterium tuberculosis, is one of the most common causes of death in the world. Mycobacterium tuberculosis -sliding clamp is a protein essential for many important DNA transactions including replication and DNA repair proteins, thus, a potential drug target for tuberculosis. Further investigation is needed in understanding DNA polymerase sliding clamp structure, especially from a computational perspective. In this study, we employ a wide-range of comparative molecular dynamic analyses on two systems: Mycobacterium tuberculosis - sliding clamp enzyme in its apo and bound form. The results reported in this study shows apo conformation to be less stable, as compared to bound conformation with an average radius of gyration of 25.812 and 25.459 Å, respectively. This was further supported by root mean square fluctuation, where an apo enzyme showed a higher degree of flexibility. However, the presence of the ligand lowers radius of gyration and root mean square fluctuation and also leads to an existence of negative correlated motions. Principal component analysis further justifies the same findings, whereby the apo enzyme exhibits a higher fluctuation compared to the bound complex. In addition, a stable 3 10 helix located at the binding site appears to be unstable in the presence of the ligand. Hence, it is possible that the binding of the ligand may have caused a rearrangement of the structure, leading to a change in the unwinding of 3 10 helix. Findings reported in this study further enhance the understanding of Mycobacterium tuberculosis -DnaN and also give a lead to the development of potent tuberculosis drugs.
Holby, Edward F.; Taylor, Christopher D.
2015-03-19
We report calculated oxygen reduction reaction energy pathways on multi-metal-atom structures that have previously been shown to be thermodynamically favorable. We predict that such sites have the ability to spontaneously cleave the O₂ bond and then will proceed to over-bind reaction intermediates. In particular, the *OH bound state has lower energy than the final 2 H₂O state at positive potentials. Contrary to traditional surface catalysts, this *OH binding does not poison the multi-metal-atom site but acts as a modifying ligand that will spontaneously form in aqueous environments leading to new active sites that have higher catalytic activities. These *OH boundmore » structures have the highest calculated activity to date.« less
Structural basis for ligand-dependent dimerization of phenylalanine hydroxylase regulatory domain
Patel, Dipali; Kopec, Jolanta; Fitzpatrick, Fiona; McCorvie, Thomas J.; Yue, Wyatt W.
2016-01-01
The multi-domain enzyme phenylalanine hydroxylase (PAH) catalyzes the hydroxylation of dietary I-phenylalanine (Phe) to I-tyrosine. Inherited mutations that result in PAH enzyme deficiency are the genetic cause of the autosomal recessive disorder phenylketonuria. Phe is the substrate for the PAH active site, but also an allosteric ligand that increases enzyme activity. Phe has been proposed to bind, in addition to the catalytic domain, a site at the PAH N-terminal regulatory domain (PAH-RD), to activate the enzyme via an unclear mechanism. Here we report the crystal structure of human PAH-RD bound with Phe at 1.8 Å resolution, revealing a homodimer of ACT folds with Phe bound at the dimer interface. This work delivers the structural evidence to support previous solution studies that a binding site exists in the RD for Phe, and that Phe binding results in dimerization of PAH-RD. Consistent with our structural observation, a disease-associated PAH mutant impaired in Phe binding disrupts the monomer:dimer equilibrium of PAH-RD. Our data therefore support an emerging model of PAH allosteric regulation, whereby Phe binds to PAH-RD and mediates the dimerization of regulatory modules that would bring about conformational changes to activate the enzyme. PMID:27049649
Weimar, T; Harris, S L; Pitner, J B; Bock, K; Pinto, B M
1995-10-17
Transferred nuclear Overhauser enhancement (TRNOE) experiments have been performed to investigate the bound conformation of the trisaccharide repeating unit of the Streptococcus Group A cell-wall polysaccharide. Thus, the conformations of propyl 3-O-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-2-O-(alpha-L-rhamnopyran osyl)- alpha-L-rhamnopyranoside [C(A')B] (1) as a free ligand and when complexed to the monoclonal antibody Strep 9 were examined. Improved insights about the conformational preferences of the glycosidic linkages of the trisaccharide ligand showed that the free ligand populates various conformations in aqueous solution, thus displaying relatively flexible behavior. The NOE HNAc-H2A', which was not detected in previous work, accounts for a conformation at the beta-(1-->3) linkage with a phi angle of approximately 180 degrees. Observed TRNOEs for the complex are weak, and their analysis was further complicated by spin diffusion. With the use of transferred rotating-frame Overhauser enhancement (TRROE) experiments, the amount of spin diffusion was assessed experimentally, proving that all of the observed long-range TRNOEs arose through spin diffusion. Four interglycosidic distances, derived from the remaining TRNOEs and TRROEs, together with repulsive constraints, derived from the absence of TRROE effects, were used as input parameters in simulated annealing and molecular mechanics calculations to determine the bound conformation of the trisaccharide. Complexation by the antibody results in the selection of one defined conformation of the carbohydrate hapten. This bound conformation, which is a local energy minimum on the energy maps calculated for the trisaccharide ligand, shows only a change from a +gauche to a -gauche orientation at the psi angle of the alpha-(1-->2) linkage when compared to the global minimum conformation. The results infer that the bound conformation of the Streptococcus Group A cell-wall polysaccharide is different from its previously proposed solution structure (Kreis et al., 1995).
Ligand-Induced Conformational Change in the α7 Nicotinic Receptor Ligand Binding Domain
Henchman, Richard H.; Wang, Hai-Long; Sine, Steven M.; Taylor, Palmer; McCammon, J. Andrew
2005-01-01
Molecular dynamics simulations of a homology model of the ligand binding domain of the α7 nicotinic receptor are conducted with a range of bound ligands to induce different conformational states. Four simulations of 15 ns each are run with no ligand, antagonist d-tubocurarine (dTC), agonist acetylcholine (ACh), and agonist ACh with potentiator Ca2+, to give insight into the conformations of the active and inactive states of the receptor and suggest the mechanism for conformational change. The main structural factor distinguishing the active and inactive states is that a more open, symmetric arrangement of the five subunits arises for the two agonist simulations, whereas a more closed and asymmetric arrangement results for the apo and dTC cases. Most of the difference arises in the lower portion of the ligand binding domain near its connection to the adjacent transmembrane domain. The transfer of the more open state to the transmembrane domain could then promote ion flow through the channel. Variation in how subunits pack together with no ligand bound appears to give rise to asymmetry in the apo case. The presence of dTC expands the receptor but induces rotations in alternate directions in adjacent subunits that lead to an asymmetric arrangement as in the apo case. Ca2+ appears to promote a slightly greater expansion in the subunits than ACh alone by stabilizing the C-loop and ACh positions. Although the simulations are unlikely to be long enough to view the full conformational changes between open and closed states, a collection of different motions at a range of length scales are observed that are likely to participate in the conformational change. PMID:15665135
Gril, B; Liu, W Q; Lenoir, C; Garbay, C; Vidal, M
2006-04-01
Growth factor receptor-bound protein 2 (Grb2) is an adapter protein involved in the Ras-dependent signaling pathway that plays an important role in human cancers initiated by oncogenic receptors. Grb2 is constituted by one Src homology 2 domain surrounded by two SH3 domains, and the inhibition of the interactions produced by these domains could provide an antitumor approach. In evaluating chemical libraries, to search for potential Grb2 inhibitors, it was necessary to elaborate a rapid test for their screening. We have developed, first, a batch method based on the use of an affinity column bearing a Grb2-SH3 peptide ligand to isolate highly purified Grb2. We subsequently describe a very rapid 96-well screening of inhibitors based on a simple competition between purified Grb2 and a peroxidase-coupled proline-rich peptide.
Virtual screening using the ligand ZINC database for novel lipoxygenase-3 inhibitors.
Monika; Kour, Janmeet; Singh, Kulwinder
2013-01-01
The leukotrienes constitute a group of arachidonic acid-derived compounds with biologic activities suggesting important roles in inflammation and immediate hypersensitivity. Epidermis-type lipoxygenase-3 (ALOXE3), a distinct subclass within the multigene family of mammalian lipoxygenases, is a novel isoenzyme involved in the metabolism of leukotrienes and plays a very important role in skin barrier functions. Lipoxygenase selective inhibitors such as azelastine and zileuton are currently used to reduce inflammatory response. Nausea, pharyngolaryngeal pain, headache, nasal burning and somnolence are the most frequently reported adverse effects of these drugs. Therefore, there is still a need to develop more potent lipoxygenase inhibitors. In this paper, we report the screening of various compounds from the ZINC database (contains over 21 million compounds) using the Molegro Virtual Docker software against the ALOXE3 protein. Screening was performed using molecular constraints tool to filter compounds with physico-chemical properties similar to the 1N8Q bound ligand protocatechuic acid. The analysis resulted in 4319 Lipinski compliant hits which are docked and scored to identify structurally novel ligands that make similar interactions to those of known ligands or may have different interactions with other parts of the binding site. Our screening approach identified four molecules ZINC84299674; ZINC76643455; ZINC84299122 & ZINC75626957 with MolDock score of -128.901, -120.22, -116.873 & - 102.116 kcal/mol, respectively. Their energy scores were better than the 1N8Q bound co-crystallized ligand protocatechuic acid (with MolDock score of -77.225 kcal/mol). All the ligands were docked within the binding pocket forming interactions with amino acid residues.
Frandsen, Kristian E H; Poulsen, Jens Christian Navarro; Tovborg, Morten; Johansen, Katja S; Lo Leggio, Leila
2017-01-01
Lytic polysaccharide monooxygenases (LPMOs) are a class of copper-dependent enzymes discovered within the last ten years. They oxidatively cleave polysaccharides (chitin, lignocellulose, hemicellulose and starch-derived), presumably making recalcitrant substrates accessible to glycoside hydrolases. Recently, the first crystal structure of an LPMO-substrate complex was reported, giving insights into the interaction of LPMOs with β-linked substrates (Frandsen et al., 2016). The LPMOs acting on α-linked glycosidic bonds (family AA13) display binding surfaces that are quite different from those of LPMOs that act on β-linked glycosidic bonds (families AA9-AA11), as revealed from the first determined structure (Lo Leggio et al., 2015), and thus presumably the AA13s interact with their substrate in a distinct fashion. Here, several new structures of the same AA13 enzyme, Aspergillus oryzae AA13, are presented. Crystals obtained in the presence of high zinc-ion concentrations were used, as they can be obtained more reproducibly than those used to refine the deposited copper-containing structure. One structure with an ordered zinc-bound active site was solved at 1.65 Å resolution, and three structures from crystals soaked with maltooligosaccharides in solutions devoid of zinc ions were solved at resolutions of up to 1.10 Å. Despite similar unit-cell parameters, small rearrangements in the crystal packing occur when the crystals are depleted of zinc ions, resulting in a more occluded substrate-binding surface. In two of the three structures maltooligosaccharide ligands are bound, but not at the active site. Two of the structures presented show a His-ligand conformation that is incompatible with metal-ion binding. In one of these structures this conformation is the principal one (80% occupancy), giving a rare atomic resolution view of a substantially misfolded enzyme that is presumably rendered inactive.
Hinsen, Konrad; Vaitinadapoule, Aurore; Ostuni, Mariano A; Etchebest, Catherine; Lacapere, Jean-Jacques
2015-02-01
The 18 kDa protein TSPO is a highly conserved transmembrane protein found in bacteria, yeast, animals and plants. TSPO is involved in a wide range of physiological functions, among which the transport of several molecules. The atomic structure of monomeric ligand-bound mouse TSPO in detergent has been published recently. A previously published low-resolution structure of Rhodobacter sphaeroides TSPO, obtained from tubular crystals with lipids and observed in cryo-electron microscopy, revealed an oligomeric structure without any ligand. We analyze this electron microscopy density in view of available biochemical and biophysical data, building a matching atomic model for the monomer and then the entire crystal. We compare its intra- and inter-molecular contacts with those predicted by amino acid covariation in TSPO proteins from evolutionary sequence analysis. The arrangement of the five transmembrane helices in a monomer of our model is different from that observed for the mouse TSPO. We analyze possible ligand binding sites for protoporphyrin, for the high-affinity ligand PK 11195, and for cholesterol in TSPO monomers and/or oligomers, and we discuss possible functional implications. Copyright © 2014 Elsevier B.V. All rights reserved.
Martinez, Jennifer S [Santa Fe, NM; Swanson, Basil I [Los Alamos, NM; Shively, John E [Arcadia, CA; Li, Lin [Monrovia, CA
2009-06-02
An assay element is described including recognition ligands adapted for binding to carcinoembryonic antigen (CEA) bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of CEA is described including injecting a possible CEA-containing sample into a sensor cell including the assay element, maintaining the sample within the sensor cell for time sufficient for binding to occur between CEA present within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.
How Diverse are the Protein-Bound Conformations of Small-Molecule Drugs and Cofactors?
NASA Astrophysics Data System (ADS)
Friedrich, Nils-Ole; Simsir, Méliné; Kirchmair, Johannes
2018-03-01
Knowledge of the bioactive conformations of small molecules or the ability to predict them with theoretical methods is of key importance to the design of bioactive compounds such as drugs, agrochemicals and cosmetics. Using an elaborate cheminformatics pipeline, which also evaluates the support of individual atom coordinates by the measured electron density, we compiled a complete set (“Sperrylite Dataset”) of high-quality structures of protein-bound ligand conformations from the PDB. The Sperrylite Dataset consists of a total of 10,936 high-quality structures of 4548 unique ligands. Based on this dataset, we assessed the variability of the bioactive conformations of 91 small molecules—each represented by a minimum of ten structures—and found it to be largely independent of the number of rotatable bonds. Sixty-nine molecules had at least two distinct conformations (defined by an RMSD greater than 1 Å). For a representative subset of 17 approved drugs and cofactors we observed a clear trend for the formation of few clusters of highly similar conformers. Even for proteins that share a very low sequence identity, ligands were regularly found to adopt similar conformations. For cofactors, a clear trend for extended conformations was measured, although in few cases also coiled conformers were observed. The Sperrylite Dataset is available for download from http://www.zbh.uni-hamburg.de/sperrylite_dataset.
Grewal, Baljinder K; Bhat, Jyotsna; Sobhia, Masilamani Elizabeth
2015-01-01
PKCβII is a potential target for therapeutic intervention against pandemic diabetic complications. Present study probes the molecular interactions of PKCβII with its clinically important ligands, viz. ruboxistaurin, enzastaurin and co-crystallized ligand, 2-methyl-1H-indol-3-yl-BIM-1. The essentials of PKCβII-ligand interaction, crystal water-induced alterations in these interactions and key interacting flexible residues are analyzed. Computational methodologies, viz. molecular docking and molecular simulation coupled with molecular mechanics-Poisson-Boltzmann surface area and generalized born surface area (MM-PB[GB]SA) are employed. The structural changes in the presence and absence of crystal water molecules in PKCβII ATP binding site residues, and its interaction with bound ligand, are identified. Difference in interaction of selective and nonselective ligand with ATP binding site residues of PKCβII is reported. The study showed that the nonbonding interactions contribute significantly in PKCβII-ligand binding and presence of crystal water molecules affects the interactions. The findings of present work may integrate the new aspects in the drug design process of PKCβII inhibitors.
Structural basis of ligand binding modes at the neuropeptide Y Y1 receptor.
Yang, Zhenlin; Han, Shuo; Keller, Max; Kaiser, Anette; Bender, Brian J; Bosse, Mathias; Burkert, Kerstin; Kögler, Lisa M; Wifling, David; Bernhardt, Guenther; Plank, Nicole; Littmann, Timo; Schmidt, Peter; Yi, Cuiying; Li, Beibei; Ye, Sheng; Zhang, Rongguang; Xu, Bo; Larhammar, Dan; Stevens, Raymond C; Huster, Daniel; Meiler, Jens; Zhao, Qiang; Beck-Sickinger, Annette G; Buschauer, Armin; Wu, Beili
2018-04-01
Neuropeptide Y (NPY) receptors belong to the G-protein-coupled receptor superfamily and have important roles in food intake, anxiety and cancer biology 1,2 . The NPY-Y receptor system has emerged as one of the most complex networks with three peptide ligands (NPY, peptide YY and pancreatic polypeptide) binding to four receptors in most mammals, namely the Y 1 , Y 2 , Y 4 and Y 5 receptors, with different affinity and selectivity 3 . NPY is the most powerful stimulant of food intake and this effect is primarily mediated by the Y 1 receptor (Y 1 R) 4 . A number of peptides and small-molecule compounds have been characterized as Y 1 R antagonists and have shown clinical potential in the treatment of obesity 4 , tumour 1 and bone loss 5 . However, their clinical usage has been hampered by low potency and selectivity, poor brain penetration ability or lack of oral bioavailability 6 . Here we report crystal structures of the human Y 1 R bound to the two selective antagonists UR-MK299 and BMS-193885 at 2.7 and 3.0 Å resolution, respectively. The structures combined with mutagenesis studies reveal the binding modes of Y 1 R to several structurally diverse antagonists and the determinants of ligand selectivity. The Y 1 R structure and molecular docking of the endogenous agonist NPY, together with nuclear magnetic resonance, photo-crosslinking and functional studies, provide insights into the binding behaviour of the agonist and for the first time, to our knowledge, determine the interaction of its N terminus with the receptor. These insights into Y 1 R can enable structure-based drug discovery that targets NPY receptors.
The Impact of a Ligand Binding on Strand Migration in the SAM-I Riboswitch
Huang, Wei; Kim, Joohyun; Jha, Shantenu; Aboul-ela, Fareed
2013-01-01
Riboswitches sense cellular concentrations of small molecules and use this information to adjust synthesis rates of related metabolites. Riboswitches include an aptamer domain to detect the ligand and an expression platform to control gene expression. Previous structural studies of riboswitches largely focused on aptamers, truncating the expression domain to suppress conformational switching. To link ligand/aptamer binding to conformational switching, we constructed models of an S-adenosyl methionine (SAM)-I riboswitch RNA segment incorporating elements of the expression platform, allowing formation of an antiterminator (AT) helix. Using Anton, a computer specially developed for long timescale Molecular Dynamics (MD), we simulated an extended (three microseconds) MD trajectory with SAM bound to a modeled riboswitch RNA segment. Remarkably, we observed a strand migration, converting three base pairs from an antiterminator (AT) helix, characteristic of the transcription ON state, to a P1 helix, characteristic of the OFF state. This conformational switching towards the OFF state is observed only in the presence of SAM. Among seven extended trajectories with three starting structures, the presence of SAM enhances the trend towards the OFF state for two out of three starting structures tested. Our simulation provides a visual demonstration of how a small molecule (<500 MW) binding to a limited surface can trigger a large scale conformational rearrangement in a 40 kDa RNA by perturbing the Free Energy Landscape. Such a mechanism can explain minimal requirements for SAM binding and transcription termination for SAM-I riboswitches previously reported experimentally. PMID:23704854
NASA Astrophysics Data System (ADS)
Ilayaraja, Renganathan; Rajkumar, Ramalingam; Rajesh, Durairaj; Muralidharan, Arumugam Ramachandran; Padmanabhan, Parasuraman; Archunan, Govindaraju
2014-06-01
Chemosignals play a crucial role in social and sexual communication among inter- and intra-species. Chemical cues are bound with protein that is present in the pheromones irrespective of sex are commonly called as pheromone binding protein (PBP). In rats, the pheromone compounds are bound with low molecular lipocalin protein α2u-globulin (α2u). We reported farnesol is a natural endogenous ligand (compound) present in rat preputial gland as a bound volatile compound. In the present study, an attempt has been made through computational method to evaluating the binding efficiency of α2u with the natural ligand (farnesol) and standard fluorescent molecule (2-naphthol). The docking analysis revealed that the binding energy of farnesol and 2-naphthol was almost equal and likely to share some binding pocket of protein. Further, to extrapolate the results generated through computational approach, the α2u protein was purified and subjected to fluorescence titration and binding assay. The results showed that the farnesol is replaced by 2-naphthol with high hydrophobicity of TYR120 in binding sites of α2u providing an acceptable dissociation constant indicating the binding efficiency of α2u. The obtained results are in corroboration with the data made through computational approach.
Structural basis of ubiquitin modification by the Legionella effector SdeA.
Dong, Yanan; Mu, Yajuan; Xie, Yongchao; Zhang, Yupeng; Han, Youyou; Zhou, Yu; Wang, Wenhe; Liu, Zihe; Wu, Mei; Wang, Hao; Pan, Man; Xu, Ning; Xu, Cong-Qiao; Yang, Maojun; Fan, Shilong; Deng, Haiteng; Tan, Tianwei; Liu, Xiaoyun; Liu, Lei; Li, Jun; Wang, Jiawei; Fang, Xianyang; Feng, Yue
2018-05-01
Protein ubiquitination is a multifaceted post-translational modification that controls almost every process in eukaryotic cells. Recently, the Legionella effector SdeA was reported to mediate a unique phosphoribosyl-linked ubiquitination through successive modifications of the Arg42 of ubiquitin (Ub) by its mono-ADP-ribosyltransferase (mART) and phosphodiesterase (PDE) domains. However, the mechanisms of SdeA-mediated Ub modification and phosphoribosyl-linked ubiquitination remain unknown. Here we report the structures of SdeA in its ligand-free, Ub-bound and Ub-NADH-bound states. The structures reveal that the mART and PDE domains of SdeA form a catalytic domain over its C-terminal region. Upon Ub binding, the canonical ADP-ribosyltransferase toxin turn-turn (ARTT) and phosphate-nicotinamide (PN) loops in the mART domain of SdeA undergo marked conformational changes. The Ub Arg72 might act as a 'probe' that interacts with the mART domain first, and then movements may occur in the side chains of Arg72 and Arg42 during the ADP-ribosylation of Ub. Our study reveals the mechanism of SdeA-mediated Ub modification and provides a framework for further investigations into the phosphoribosyl-linked ubiquitination process.
An Unsymmetric Ligand Framework for Noncoupled Homo- and Heterobimetallic Complexes.
Haas, Ruth M; Hern, Zachary; Sproules, Stephen; Hess, Corinna R
2017-12-18
We introduce a new unsymmetric ligand, PDIpCy (PDI = pyridyldiimine; Cy = cyclam), that offers two distinct, noncoupled coordination sites. A series of homo- and heterobimetallic complexes, [Zn 2 (PDIpCy)(THF)(OTf) 4 ] (1; THF = tetrahydrofuran and OTf = triflate), [Ni 2 (PDIpCy)(THF)(OTf) 2 ](OTf) 2 (2), and [NiZn(PDIpCy)(THF)(OTf) 4 ] (3), are described. The one-electron-reduced compounds, [Zn 2 (PDIpCy)(OTF) 3 ] (4), [Ni 2 (PDIpCy)(OTf)](OTf) 2 (5), and [NiZn(PDIpCy)(OTf) 3 ] (6), were isolated, and their electronic structures were characterized. The reduced compounds are charge-separated species, with electron storage at either the PDI ligand (4) or at the PDI-bound metal ion (5 and 6).
Huang, Li-Shar; Shen, John T; Wang, Andy C; Berry, Edward A
2006-01-01
Mitochondrial Complex II (succinate:ubiquinone oxidoreductase) is purified in a partially inactivated state, which can be activated by removal of tightly bound oxaloacetate (E.B. Kearney, et al., Biochem. Biophys. Res. Commun. 49 1115-1121). We crystallized Complex II in the presence of oxaloacetate or with the endogenous inhibitor bound. The structure showed a ligand essentially identical to the "malate-like intermediate" found in Shewanella Flavocytochrome c crystallized with fumarate (P. Taylor, et al., Nat. Struct. Biol. 6 1108-1112) Crystallization of Complex II in the presence of excess fumarate also gave the malate-like intermediate or a mixture of that and fumarate at the active site. In order to more conveniently monitor the occupation state of the dicarboxylate site, we are developing a library of UV/Vis spectral effects induced by binding different ligands to the site. Treatment with fumarate results in rapid development of the fumarate difference spectrum and then a very slow conversion into a species spectrally similar to the OAA-liganded complex. Complex II is known to be capable of oxidizing malate to the enol form of oxaloacetate (Y.O. Belikova, et al., Biochim. Biophys. Acta 936 1-9). The observations above suggest it may also be capable of interconverting fumarate and malate. It may be useful for understanding the mechanism and regulation of the enzyme to identify the malate-like intermediate and its pathway of formation from oxaloacetate or fumarate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Li-Shar; Shen, John T.; Wang, Andy C.
2006-07-01
Mitochondrial Complex II (succinate:ubiquinoneoxidoreductase) is purified in a partially innactivated state, which canbe activated by removal of tightly bound oxaloacetate (Kearney, E.B. etal. Biochem Biophys Res Commun 49, 1115-1121). We crystallized Complex IIin the presence of oxaloacetate or with the endogenous inhibitor bound.The structure showed a ligand essentially identical to the "malate-likeintermediate" found in Shewanella Flavocytochrome c crystallized withfumarate (Taylor, P., et al. Nat Struct Biol 6, 1108-1112.)Crystallization of Complex II in the presence of excess fumarate alsogave the malate-like intermediate or a mixture of that and fumarate atthe active site. In order to more conveniently monitor the occupationstate ofmore » the dicarboxylate site, we are developing a library of UV/Visspectral effects induced by binding different ligands to the site.Treatment with fumarate results in rapid development of the fumaratedifference spectrum and then a very slow conversion into a speciesspectrally similar to the OAA liganded complex. Complex II is known to becapable of oxidizing malate to the enol form of oxaloacetate (Belikova,Y.O., et al. Biochim Biophys Acta 936, 1-9). The observations abovesuggest it may also be capable of interconverting fumarate and malate. Itmay be useful for understanding the mechanism and regulation of theenzyme to identify the malate-like intermediate and its pathway offormation from oxaloacetate or fumarate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLaughlin, A.C.
1982-01-01
The paramagnetic divalent cation cobalt has large and well-understood effects on NMR signals from ligands bound in the first coordination sphere, i.e., inner-sphere ligands, and the authors have used these effects to identify divalent cation binding sites at the surface of phosphatidylserine membranes. /sup 31/P NMR results show that 13% of the bound cobalt ions are involved in inner-sphere complexes with the phosphodiester group, while /sup 13/C NMR results show that 54% of the bound cobalt ions are involved in unidentate inner sphere complexes with the carboxyl group. No evidence is found for cobalt binding to the carbonyl groups, butmore » proton release studies suggest that 32% of the bound cobalt ions are involved in chelate complexes that contain both the carboxyl and the amine groups. All of the bound cobalt ions can thus be accounted for in terms of inner sphere complexes with the phosphodiester group or the carboxyl group. They suggest that the unidentate inner-sphere complex between cobalt and the carboxyl group of phosphatidylserine and the inner-sphere complex between cobalt and the phosphodiester group of phosphatidylserine provide reasonable models for complexes between alkaline earth cations and phosphatidylserine membranes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLaughlin, A.C.
1982-09-28
The paramagnetic divalent cation cobalt has large and well-understood effects on NMR signals from ligands bound in the first coordination sphere, i.e., inner-sphere ligands, and we have used these effects to identify divalent cation binding sites at the surface of phosphatidylserine membranes. /sup 31/P NMR results show that 13% of the bound cobalt ions are involved in inner-sphere complexes with the phosphodiester group, while /sup 13/C NMR results show that 54% of the bound cobalt ions are involved in unidentate inner sphere complexes with the carboxyl group. No evidence is found for cobalt binding to the carbonyl groups, but protonmore » release studies suggest that 32% of the bound cobalt ions are involved in chelate complexes that contain both the carboxyl and the amine groups. All (i.e., 13% + 54% + 32% = 99%) of the bound cobalt ions can thus be accounted for in terms of inner sphere complexes with the phosphodiester group or the carboxyl group. We suggest that the unidentate inner-sphere complex between cobalt and the carboxyl group of phosphatidylserine and the inner-sphere complex between cobalt and the phosphodiester group of phosphatidylserine provide reasonable models for complexes between alkaline earth cations and phosphatidylserine membranes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez-Aguilar, Jose Manuel; Shan, Jufang; LeVine, Michael V.
With recent progress in determination of G protein-coupled receptor (GPCR) structure with crystallography, a variety of other experimental approaches (e.g., NMR spectroscopy, fluorescent-based assays, mass spectrometry techniques) are also being used to characterize state-specific and ligand-specific conformational states. MD simulations offer a powerful complementary approach to elucidate the dynamic features associated with ligand-specific GPCR conformations. To shed light on the conformational elements and dynamics of the important aspect of GPCR functional selectivity, we carried out unbiased microsecond-length MD simulations of the human serotonin 2A receptor (5-HT 2AR) in the absence of ligand and bound to four distinct serotonergic agonists. Themore » 5-HT 2AR is a suitable system to study the structural features involved in the ligand-dependent conformational heterogeneity of GPCRs because it is well-characterized experimentally and exhibits a strong agonist-specific phenotype in that some 5-HT 2AR agonists induce LSD-like hallucinations, while others lack this psychoactive property entirely. Here we report evidence for structural and dynamic differences in 5-HT 2AR interacting with such pharmacologically distinct ligands, hallucinogens, and nonhallucinogens obtained from all-atom MD simulations. Differential ligand binding contacts were identified for structurally similar hallucinogens and nonhallucinogens and found to correspond to different conformations in the intracellular loop 2 (ICL2). From the different ICL2 conformations, functional selective phenotypes are suggested through effects on dimerization and/or distinct direct interaction with effector proteins. Lastly, the findings are presented in the context of currently proposed hallucinogenesis mechanisms, and ICL2 is proposed as a fine-tuning selective switch that can differentiates modes of 5-HT 2AR activation.« less
Perez-Aguilar, Jose Manuel; Shan, Jufang; LeVine, Michael V.; ...
2014-10-14
With recent progress in determination of G protein-coupled receptor (GPCR) structure with crystallography, a variety of other experimental approaches (e.g., NMR spectroscopy, fluorescent-based assays, mass spectrometry techniques) are also being used to characterize state-specific and ligand-specific conformational states. MD simulations offer a powerful complementary approach to elucidate the dynamic features associated with ligand-specific GPCR conformations. To shed light on the conformational elements and dynamics of the important aspect of GPCR functional selectivity, we carried out unbiased microsecond-length MD simulations of the human serotonin 2A receptor (5-HT 2AR) in the absence of ligand and bound to four distinct serotonergic agonists. Themore » 5-HT 2AR is a suitable system to study the structural features involved in the ligand-dependent conformational heterogeneity of GPCRs because it is well-characterized experimentally and exhibits a strong agonist-specific phenotype in that some 5-HT 2AR agonists induce LSD-like hallucinations, while others lack this psychoactive property entirely. Here we report evidence for structural and dynamic differences in 5-HT 2AR interacting with such pharmacologically distinct ligands, hallucinogens, and nonhallucinogens obtained from all-atom MD simulations. Differential ligand binding contacts were identified for structurally similar hallucinogens and nonhallucinogens and found to correspond to different conformations in the intracellular loop 2 (ICL2). From the different ICL2 conformations, functional selective phenotypes are suggested through effects on dimerization and/or distinct direct interaction with effector proteins. Lastly, the findings are presented in the context of currently proposed hallucinogenesis mechanisms, and ICL2 is proposed as a fine-tuning selective switch that can differentiates modes of 5-HT 2AR activation.« less
Sarabipour, Sarvenaz; Hristova, Kalina
2016-01-01
The G380R mutation in the transmembrane domain of FGFR3 is a germline mutation responsible for most cases of Achondroplasia, a common form of human dwarfism. Here we use quantitative Föster Resonance Energy Transfer (FRET) and osmotically derived plasma membrane vesicles to study the effect of the achondroplasia mutation on the early stages of FGFR3 signaling in response to the ligands fgf1 and fgf2. Using a methodology that allows us to capture structural changes on the cytoplasmic side of the membrane in response to ligand binding to the extracellular domain of FGFR3, we observe no measurable effects of the G380R mutation on FGFR3 ligand-bound dimer configurations. Instead, the most notable effect of the achondroplasia mutation is increased propensity for FGFR3 dimerization in the absence of ligand. This work reveals new information about the molecular events that underlie the achondroplasia phenotype, and highlights differences in FGFR3 activation due to different single amino-acid pathogenic mutations. PMID:27040652
Discovery of Tertiary Sulfonamides as Potent Liver X Receptor Antagonists
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuercher, William J.; Buckholz, Richard G.; Campobasso, Nino
2010-08-12
Tertiary sulfonamides were identified in a HTS as dual liver X receptor (LXR, NR1H2, and NR1H3) ligands, and the binding affinity of the series was increased through iterative analogue synthesis. A ligand-bound cocrystal structure was determined which elucidated key interactions for high binding affinity. Further characterization of the tertiary sulfonamide series led to the identification of high affinity LXR antagonists. GSK2033 (17) is the first potent cell-active LXR antagonist described to date. 17 may be a useful chemical probe to explore the cell biology of this orphan nuclear receptor.
Discovery of tertiary sulfonamides as potent liver X receptor antagonists.
Zuercher, William J; Buckholz, Richard G; Campobasso, Nino; Collins, Jon L; Galardi, Cristin M; Gampe, Robert T; Hyatt, Stephen M; Merrihew, Susan L; Moore, John T; Oplinger, Jeffrey A; Reid, Paul R; Spearing, Paul K; Stanley, Thomas B; Stewart, Eugene L; Willson, Timothy M
2010-04-22
Tertiary sulfonamides were identified in a HTS as dual liver X receptor (LXR, NR1H2, and NR1H3) ligands, and the binding affinity of the series was increased through iterative analogue synthesis. A ligand-bound cocrystal structure was determined which elucidated key interactions for high binding affinity. Further characterization of the tertiary sulfonamide series led to the identification of high affinity LXR antagonists. GSK2033 (17) is the first potent cell-active LXR antagonist described to date. 17 may be a useful chemical probe to explore the cell biology of this orphan nuclear receptor.
NASA Astrophysics Data System (ADS)
Chau, Lai-Kwan; Porter, Marc D.
1990-03-01
Monolayer films of n-perfluorocarboxylic acids (CF 3(CF 2) nCOOH, where n = 0-2, 5-8) have been formed by spontaneous adsorption at silver. Infrared reflection spectroscopy, optical ellipsometry, and contact angle measurements indicate that these films exhibit low surface free energies, that the carboxylic acid group is symmetrically bound at the silver substrate as a carboxylate bridging ligand, and that the structure is composed of tilted (≈ 40° from the surface normal) perfluorocarbon chains and small structural defects.
Diehl, Carl; Engström, Olof; Delaine, Tamara; Håkansson, Maria; Genheden, Samuel; Modig, Kristofer; Leffler, Hakon; Ryde, Ulf; Nilsson, Ulf J; Akke, Mikael
2010-10-20
Rational drug design is predicated on knowledge of the three-dimensional structure of the protein-ligand complex and the thermodynamics of ligand binding. Despite the fundamental importance of both enthalpy and entropy in driving ligand binding, the role of conformational entropy is rarely addressed in drug design. In this work, we have probed the conformational entropy and its relative contribution to the free energy of ligand binding to the carbohydrate recognition domain of galectin-3. Using a combination of NMR spectroscopy, isothermal titration calorimetry, and X-ray crystallography, we characterized the binding of three ligands with dissociation constants ranging over 2 orders of magnitude. (15)N and (2)H spin relaxation measurements showed that the protein backbone and side chains respond to ligand binding by increased conformational fluctuations, on average, that differ among the three ligand-bound states. Variability in the response to ligand binding is prominent in the hydrophobic core, where a distal cluster of methyl groups becomes more rigid, whereas methyl groups closer to the binding site become more flexible. The results reveal an intricate interplay between structure and conformational fluctuations in the different complexes that fine-tunes the affinity. The estimated change in conformational entropy is comparable in magnitude to the binding enthalpy, demonstrating that it contributes favorably and significantly to ligand binding. We speculate that the relatively weak inherent protein-carbohydrate interactions and limited hydrophobic effect associated with oligosaccharide binding might have exerted evolutionary pressure on carbohydrate-binding proteins to increase the affinity by means of conformational entropy.
Schneider, Sebastian; Provasi, Davide; Filizola, Marta
2016-11-22
Substantial attention has recently been devoted to G protein-biased agonism of the μ-opioid receptor (MOR) as an ideal new mechanism for the design of analgesics devoid of serious side effects. However, designing opioids with appropriate efficacy and bias is challenging because it requires an understanding of the ligand binding process and of the allosteric modulation of the receptor. Here, we investigated these phenomena for TRV-130, a G protein-biased MOR small-molecule agonist that has been shown to exert analgesia with less respiratory depression and constipation than morphine and that is currently being evaluated in human clinical trials for acute pain management. Specifically, we carried out multimicrosecond, all-atom molecular dynamics (MD) simulations of the binding of this ligand to the activated MOR crystal structure. Analysis of >50 μs of these MD simulations provides insights into the energetically preferred binding pathway of TRV-130 and its stable pose at the orthosteric binding site of MOR. Information transfer from the TRV-130 binding pocket to the intracellular region of the receptor was also analyzed, and was compared to a similar analysis carried out on the receptor bound to the classical unbiased agonist morphine. Taken together, these studies lead to a series of testable hypotheses of ligand-receptor interactions that are expected to inform the structure-based design of improved opioid analgesics.
Podust, Larissa M.; Ioanoviciu, Alexandra; Ortiz de Montellano, Paul R.
2009-01-01
Mycobacterium tuberculosis responds to the changes in environmental conditions through a two-component signaling system that detects reduced O2 tension and NO and CO exposures via the heme-binding GAF domains of two sensory histidine kinases, DosT and DevS, and the transcriptional regulator DosR. We report the first x-ray structure of the DosT heme-bound GAF domain (GAFDosT) in both oxy and deoxy forms determined to a resolution of 2.3 Å. In GAFDosT, heme binds in an orientation orthogonal to that in the PAS domains via a highly conserved motif including invariant H147 as a proximal heme axial ligand. On the distal side, invariant Y169 is in stacking interactions with the heme with its long axis parallel and the plane of the ring orthogonal to the heme plane. In one of the two protein monomers in an asymmetric unit, O2 binds as a second axial ligand to the heme iron, and is stabilized via an H-bond to the OH-group of Y169. The structure reveals two small tunnel-connected cavities and a pore on the protein surface that suggest a potential route for O2 access to the sensing pocket. The limited conformational differences observed between differently heme iron-ligated GAFDosT monomers in the asymmetric unit may result from crystal lattice limitations since atmospheric oxygen binding likely occurs in the crystal as a result of x-ray induced Fe3+ photoreduction during diffraction data collection. Determination of the GAFDosT structure sets up a framework in which to address ligand-recognition, discrimination, and signal propagation schemes in the heme-based GAF domains of biological sensors. PMID:18980385
Elegheert, Jonathan; Brigé, Ann; Van Beeumen, Jozef; Savvides, Savvas N
2017-10-01
Shewanella oneidensis, a Gram-negative γ-proteobacterium with an extensive redox capacity, possesses four old yellow enzyme (OYE) homologs. Of these, Shewanella yellow enzyme 4 (SYE4) is implicated in resistance to oxidative stress. Here, we present a series of high-resolution crystal structures for SYE4 in the oxidized and reduced states, and in complex with phenolic ligands and the nitro-aromatic explosive picric acid. The structures unmask new features, including the identification of a binding platform for long-chain hydrophobic molecules. Furthermore, we present the first structural observation of a hydride-Meisenheimer complex of picric acid with a flavoenzyme. Overall, our study exposes the binding promiscuity of SYE4 toward a variety of electrophilic substrates and is consistent with a general detoxification function for SYE4. © 2017 Federation of European Biochemical Societies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trong, I.Le; Stenkamp, R.E.; Ibarra, C.
2005-08-22
Cytosolic glutathione S-transferases (GSTs) play a critical role in xenobiotic binding and metabolism, as well as in modulation of oxidative stress. Here, the high-resolution X-ray crystal structures of homodimeric human GSTA1-1 in the apo form and in complex with S-hexyl glutathione (two data sets) are reported at 1.8, 1.5, and 1.3A respectively. At this level of resolution, distinct conformations of the alkyl chain of S-hexyl glutathione are observed, reflecting the nonspecific nature of the hydrophobic substrate binding site (H-site). Also, an extensive network of ordered water, including 75 discrete solvent molecules, traverses the open subunit-subunit interface and connects the glutathionemore » binding sites in each subunit. In the highest-resolution structure, three glycerol moieties lie within this network and directly connect the amino termini of the glutathione molecules. A search for ligand binding sites with the docking program Molecular Operating Environment identified the ordered water network binding site, lined mainly with hydrophobic residues, suggesting an extended ligand binding surface for nonsubstrate ligands, the so-called ligandin site. Finally, detailed comparison of the structures reported here with previously published X-ray structures reveal a possible reaction coordinate for ligand-dependent conformational changes in the active site and the C-terminus.« less
Complexes of horseradish peroxidase with formate, acetate, and carbon monoxide.
Carlsson, Gunilla H; Nicholls, Peter; Svistunenko, Dimitri; Berglund, Gunnar I; Hajdu, Janos
2005-01-18
Carbon monoxide, formate, and acetate interact with horseradish peroxidase (HRP) by binding to subsites within the active site. These ligands also bind to catalases, but their interactions are different in the two types of enzymes. Formate (notionally the "hydrated" form of carbon monoxide) is oxidized to carbon dioxide by compound I in catalase, while no such reaction is reported to occur in HRP, and the CO complex of ferrocatalase can only be obtained indirectly. Here we describe high-resolution crystal structures for HRP in its complexes with carbon monoxide and with formate, and compare these with the previously determined HRP-acetate structure [Berglund, G. I., et al. (2002) Nature 417, 463-468]. A multicrystal X-ray data collection strategy preserved the correct oxidation state of the iron during the experiments. Absorption spectra of the crystals and electron paramagnetic resonance data for the acetate and formate complexes in solution correlate electronic states with the structural results. Formate in ferric HRP and CO in ferrous HRP bind directly to the heme iron with iron-ligand distances of 2.3 and 1.8 A, respectively. CO does not bind to the ferric iron in the crystal. Acetate bound to ferric HRP stacks parallel with the heme plane with its carboxylate group 3.6 A from the heme iron, and without an intervening solvent molecule between the iron and acetate. The positions of the oxygen atoms in the bound ligands outline a potential access route for hydrogen peroxide to the iron. We propose that interactions in this channel ensure deprotonation of the proximal oxygen before binding to the heme iron.
Shrestha, Utsab R.; Perera, Suchithranga M. D. C.; Bhowmik, Debsindhu; ...
2016-09-15
Light activation of the visual G-protein-coupled receptor (GPCR) rhodopsin leads to significant structural fluctuations of the protein embedded within the membrane yielding the activation of cognate G-protein (transducin), which initiates biological signaling. Here, we report a quasi-elastic neutron scattering study of the activation of rhodopsin as a GPCR prototype. Our results reveal a broadly distributed relaxation of hydrogen atom dynamics of rhodopsin on a picosecond–nanosecond time scale, crucial for protein function, as only observed for globular proteins previously. Interestingly, the results suggest significant differences in the intrinsic protein dynamics of the dark-state rhodopsin versus the ligand-free apoprotein, opsin. These differencesmore » can be attributed to the influence of the covalently bound retinal ligand. Moreover, an idea of the generic free-energy landscape is used to explain the GPCR dynamics of ligand-binding and ligand-free protein conformations, which can be further applied to other GPCR systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrestha, Utsab R.; Perera, Suchithranga M. D. C.; Bhowmik, Debsindhu
Light activation of the visual G-protein-coupled receptor (GPCR) rhodopsin leads to significant structural fluctuations of the protein embedded within the membrane yielding the activation of cognate G-protein (transducin), which initiates biological signaling. Here, we report a quasi-elastic neutron scattering study of the activation of rhodopsin as a GPCR prototype. Our results reveal a broadly distributed relaxation of hydrogen atom dynamics of rhodopsin on a picosecond–nanosecond time scale, crucial for protein function, as only observed for globular proteins previously. Interestingly, the results suggest significant differences in the intrinsic protein dynamics of the dark-state rhodopsin versus the ligand-free apoprotein, opsin. These differencesmore » can be attributed to the influence of the covalently bound retinal ligand. Moreover, an idea of the generic free-energy landscape is used to explain the GPCR dynamics of ligand-binding and ligand-free protein conformations, which can be further applied to other GPCR systems.« less
Unexpected Effects of K+ and Adenosine Triphosphate on the Thermal Stability of Na+,K+-ATPase.
Placenti, M Agueda; Kaufman, Sergio B; González Flecha, F Luis; González Lebrero, Rodolfo M
2017-05-18
Na + ,K + -ATPase is an integral membrane protein which couples ATP hydrolysis to the transport of three Na + out and two K + into the cell. The aim of this work is to characterize the effect of K + , ATP, and Mg 2+ (essential activator) on the Na + ,K + -ATPase thermal stability. Under all conditions tested, thermal inactivation of the enzyme is concomitant with a structural change involving the ATP binding site and membrane-associated regions. Both ligands exert a clear stabilizing effect due to both enthalpic and entropic contributions. Competition experiments between ATP and K + showed that, when ATP is present, the inactivation rate coefficient exhibits a biphasic dependence on K + concentration. At low [K + ], destabilization of the enzyme is observed, while stabilization occurred at larger cation concentrations. This is not expected for a simple competition between the enzyme and two ligands that individually protect the enzyme. A model that includes enzyme species with none, one, or two K + and/or one molecule of ATP bound explains the experimental data. We concluded that, despite both ligands stabilizing the enzyme, the species with one K + and one ATP simultaneously bound is unstable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soloviov, Maksym; Meuwly, Markus, E-mail: m.meuwly@unibas.ch
2015-09-14
Multidimensional potential energy surfaces based on reproducing kernel-interpolation are employed to explore the energetics and dynamics of free and bound nitric oxide in myoglobin (Mb). Combining a force field description for the majority of degrees of freedom and the higher-accuracy representation for the NO ligand and the Fe out-of-plane motion allows for a simulation approach akin to a mixed quantum mechanics/molecular mechanics treatment. However, the kernel-representation can be evaluated at conventional force-field speed. With the explicit inclusion of the Fe-out-of-plane (Fe-oop) coordinate, the dynamics and structural equilibrium after photodissociation of the ligand are correctly described compared to experiment. Experimentally, themore » Fe-oop coordinate plays an important role for the ligand dynamics. This is also found here where the isomerization dynamics between the Fe–ON and Fe–NO state is significantly affected whether or not this co-ordinate is explicitly included. Although the Fe–ON conformation is metastable when considering only the bound {sup 2}A state, it may disappear once the {sup 4}A state is included. This explains the absence of the Fe–ON state in previous experimental investigations of MbNO.« less
NASA Astrophysics Data System (ADS)
Singh, Nidhi; Chevé, Gwénaël; Ferguson, David M.; McCurdy, Christopher R.
2006-08-01
Combined ligand-based and target-based drug design approaches provide a synergistic advantage over either method individually. Therefore, we set out to develop a powerful virtual screening model to identify novel molecular scaffolds as potential leads for the human KOP (hKOP) receptor employing a combined approach. Utilizing a set of recently reported derivatives of salvinorin A, a structurally unique KOP receptor agonist, a pharmacophore model was developed that consisted of two hydrogen bond acceptor and three hydrophobic features. The model was cross-validated by randomizing the data using the CatScramble technique. Further validation was carried out using a test set that performed well in classifying active and inactive molecules correctly. Simultaneously, a bovine rhodopsin based "agonist-bound" hKOP receptor model was also generated. The model provided more accurate information about the putative binding site of salvinorin A based ligands. Several protein structure-checking programs were used to validate the model. In addition, this model was in agreement with the mutation experiments carried out on KOP receptor. The predictive ability of the model was evaluated by docking a set of known KOP receptor agonists into the active site of this model. The docked scores correlated reasonably well with experimental p K i values. It is hypothesized that the integration of these two independently generated models would enable a swift and reliable identification of new lead compounds that could reduce time and cost of hit finding within the drug discovery and development process, particularly in the case of GPCRs.
Journigan, V Blair; Polgar, Willma E; Tuan, Edward W; Lu, James; Daga, Pankaj R; Zaveri, Nurulain T
2017-10-16
Few opioid ligands binding to the three classic opioid receptor subtypes, mu, kappa and delta, have high affinity at the fourth opioid receptor, the nociceptin/orphanin FQ receptor (NOP). We recently reported the discovery of AT-076 (1), (R)-7-hydroxy-N-((S)-1-(4-(3-hydroxyphenyl)piperidin-1-yl)-3-methylbutan-2-yl)-1,2,3,4-tetrahydroisoquinoline-3-carboxamide, a pan antagonist with nanomolar affinity for all four subtypes. Since AT-076 binds with high affinity at all four subtypes, we conducted a structure-activity relationship (SAR) study to probe ligand recognition features important for pan opioid receptor activity, using chemical modifications of key pharmacophoric groups. SAR analysis of the resulting analogs suggests that for the NOP receptor, the entire AT-076 scaffold is crucial for high binding affinity, but the binding mode is likely different from that of NOP antagonists C-24 and SB-612111 bound in the NOP crystal structure. On the other hand, modifications of the 3-hydroxyphenyl pharmacophore, but not the 7-hydroxy Tic pharmacophore, are better tolerated at kappa and mu receptors and yield very high affinity multifunctional (e.g. 12) or highly selective (e.g. 16) kappa ligands. With the availability of the opioid receptor crystal structures, our SAR analysis of the common chemotype of AT-076 suggests rational approaches to modulate binding selectivity, enabling the design of multifunctional or selective opioid ligands from such scaffolds.
Panja, Sudipta; Halder, Mintu
2016-08-01
Exogenous ligand binding can be adequate to alter the secondary structure of biomolecules besides other external stimuli. In such cases, structural alterations can complicate on the nature of interaction with the exogenous molecules. In order to accommodate the exogenous ligand, the biomolecule has to unfold resulting in a considerable change to its properties. If the bound ligand can be unbound, the biomolecule gets the opportunity to refold back and return to its native state. Keeping this in mind, we have purposely investigated the interaction of tartrazine (TZ), a well abundant azo food colorant, with two homologous lysozymes, namely, human lysozyme (HLZ) and chicken egg white lysozyme (CEWLZ) in physiological pH condition. The binding of TZ with lysozymes has been identified to accompany a ligand-induced secondary structure alteration as indicated by the circular dichroism spectra, and the reduction of α-helical content is more with HLZ than CEWLZ. Interestingly, the binding is identified to occur in the electronic ground state of TZ with lysozyme in its hydrophobic cavity, containing excess of positive charge, predominantly via electrostatic interaction. With increase of salinity of the medium the protein tends to refold back due to wakening of electrostatic forces and consequent reduction of strength of ligand interaction and unbinding. The entropy enthalpy compensation (EEC) has been probed to understand the binding features and it is found that CEWLZ-TZ shows better compensation than HLZ-TZ complex. This is presumably due to the fact that with CEWLZ the binding does not accompany substantial change in the protein secondary structure and hence ineffective to scramble the EEC. The present study initiates the importance of ligand-perturbed structural alteration of biomolecule in controlling the thermodynamics of binding. If there is a considerable alteration of the protein secondary structure due to binding, it is indicative that such changes should bring in the overall loss of activity of protein. Copyright © 2016 Elsevier B.V. All rights reserved.
X-ray structures of general anaesthetics bound to a pentameric ligand-gated ion channel.
Nury, Hugues; Van Renterghem, Catherine; Weng, Yun; Tran, Alphonso; Baaden, Marc; Dufresne, Virginie; Changeux, Jean-Pierre; Sonner, James M; Delarue, Marc; Corringer, Pierre-Jean
2011-01-20
General anaesthetics have enjoyed long and widespread use but their molecular mechanism of action remains poorly understood. There is good evidence that their principal targets are pentameric ligand-gated ion channels (pLGICs) such as inhibitory GABA(A) (γ-aminobutyric acid) receptors and excitatory nicotinic acetylcholine receptors, which are respectively potentiated and inhibited by general anaesthetics. The bacterial homologue from Gloeobacter violaceus (GLIC), whose X-ray structure was recently solved, is also sensitive to clinical concentrations of general anaesthetics. Here we describe the crystal structures of the complexes propofol/GLIC and desflurane/GLIC. These reveal a common general-anaesthetic binding site, which pre-exists in the apo-structure in the upper part of the transmembrane domain of each protomer. Both molecules establish van der Waals interactions with the protein; propofol binds at the entrance of the cavity whereas the smaller, more flexible, desflurane binds deeper inside. Mutations of some amino acids lining the binding site profoundly alter the ionic response of GLIC to protons, and affect its general-anaesthetic pharmacology. Molecular dynamics simulations, performed on the wild type (WT) and two GLIC mutants, highlight differences in mobility of propofol in its binding site and help to explain these effects. These data provide a novel structural framework for the design of general anaesthetics and of allosteric modulators of brain pLGICs.
Thillainayagam, Mahalakshmi; Malathi, Kullappan; Ramaiah, Sudha
2017-11-27
The structural motifs of chalcones, flavones, and triazoles with varied substitutions have been studied for the antimalarial activity. In this study, 25 novel derivatives of chalcone and flavone hybrid derivatives with 1, 2, 3-triazole linkage are docked with Plasmodium falciparum dihydroorotate dehydrogenase to establish their inhibitory activity against Plasmodium falciparum. The best binding conformation of the ligands at the catalytic site of dihydroorotate dehydrogenase are selected to characterize the best bound ligand using the best consensus score and the number of hydrogen bond interactions. The ligand namely (2E)-3-(4-{[1-(3-chloro-4-fluorophenyl)-1H-1, 2, 3-triazol-4-yl]methoxy}-3-methoxyphenyl-1-(2-hydroxy-4,6-dimethoxyphenyl)prop-2-en-1-one, is one the among the five best docked ligands, which interacts with the protein through nine hydrogen bonds and with a consensus score of five. To refine and confirm the docking study results, the stability of complexes is verified using Molecular Dynamics Simulations, Molecular Mechanics /Poisson-Boltzmann Surface Area free binding energy analysis, and per residue contribution for the binding energy. The study implies that the best docked Plasmodium falciparum dihydroorotate dehydrogenase-ligand complex is having high negative binding energy, most stable, compact, and rigid with nine hydrogen bonds. The study provides insight for the optimization of chalcone and flavone hybrids with 1, 2, 3-triazole linkage as potent inhibitors.
Controlled method of reducing electrophoretic mobility of macromolecules, particles, or cells
NASA Technical Reports Server (NTRS)
Vanalstine, James M. (Inventor)
1992-01-01
A method of reducing electrophoretic mobility of macromolecules, particles, cells, and other substances is provided which comprises interacting in a conventional electrophoretic separating procedure, the substances with a polymer-linked affinity compound comprised of a hydrophilic neutral polymer such as polyethylene glycol bound to a second component such as a hydrophobic compound, an immunocompound such as an antibody or antibody active fragment, or a ligand such as a hormone, drug, antigen, or a hapten. The reduction of electrophoretic mobility achieved is directly proportional to the concentration of the polymer-linked affinity compound employed, and such reduction can comprise up to 100 percent for particular particles and cells. The present invention is advantageous in that electrophoretic separation can now be achieved for substances whose native surface charge structure had prevented them from being separated by normal electrophoretic means. Depending on the affinity component utilized, separation can be achieved on the basis of the specific/irreversible, specific/reversible, semi-specific/reversible, relatively nonspecific/reversible, or relatively nonspecific/irreversible ligand-substance interactions.
Hutchens, T W; Allen, M H; Li, C M; Yip, T T
1992-09-07
The metal ion specificity of most 'zinc-finger' metal binding domains is unknown. The human estrogen receptor protein contains two different C2-C2 type 'zinc-finger' sequences within its DNA-binding domain (ERDBD). Copper inhibits the function of this protein by mechanisms which remain unclear. We have used electrospray ionization mass spectrometry to evaluate directly the 71-residue ERDBD (K180-M250) in the absence and presence of Cu(II) ions. The ERDBD showed a high affinity for Cu and was completely occupied with 4 Cu bound; each Cu ion was evidently bound to only two ligand residues (net loss of only 2 Da per bound Cu). The Cu binding stoichiometry was confirmed by atomic absorption. These results (i) provide the first direct physical evidence for the ability of the estrogen receptor DNA-binding domain to bind Cu and (ii) document a twofold difference in the Zn- and Cu-binding capacity. Differences in the ERDBD domain structure with bound Zn and Cu are predicted. Given the relative intracellular contents of Zn and Cu, our findings demonstrate the need to investigate further the Cu occupancy of this and other zinc-finger domains both in vitro and in vivo.
Michino, Mayako; Chen, Jianhan; Stevens, Raymond C; Brooks, Charles L
2010-08-01
Building reliable structural models of G protein-coupled receptors (GPCRs) is a difficult task because of the paucity of suitable templates, low sequence identity, and the wide variety of ligand specificities within the superfamily. Template-based modeling is known to be the most successful method for protein structure prediction. However, refinement of homology models within 1-3 A C alpha RMSD of the native structure remains a major challenge. Here, we address this problem by developing a novel protocol (foldGPCR) for modeling the transmembrane (TM) region of GPCRs in complex with a ligand, aimed to accurately model the structural divergence between the template and target in the TM helices. The protocol is based on predicted conserved inter-residue contacts between the template and target, and exploits an all-atom implicit membrane force field. The placement of the ligand in the binding pocket is guided by biochemical data. The foldGPCR protocol is implemented by a stepwise hierarchical approach, in which the TM helical bundle and the ligand are assembled by simulated annealing trials in the first step, and the receptor-ligand complex is refined with replica exchange sampling in the second step. The protocol is applied to model the human beta(2)-adrenergic receptor (beta(2)AR) bound to carazolol, using contacts derived from the template structure of bovine rhodopsin. Comparison with the X-ray crystal structure of the beta(2)AR shows that our protocol is particularly successful in accurately capturing helix backbone irregularities and helix-helix packing interactions that distinguish rhodopsin from beta(2)AR. (c) 2010 Wiley-Liss, Inc.
Recent advance in the design of small molecular modulators of estrogen-related receptors.
Lu, Xiaoyun; Peng, Lijie; Lv, Man; ding, Ke
2012-01-01
The estrogen-related receptors (ERRs), comprising ERRα, ERRβ and ERRγ, are the members of the nuclear receptor superfamily, which have been functionally implicated in estrogen signal pathway in various patterns. However, no natural ligand of ERRs has been identified to data, so identification of the synthetic modulators (inverse agonist and agonist) of ERRs would be highly effective in the treatment of estrogen-related pathologies, such as diabetes, breast cancer and osteoporosis. This review summarizes the structures and biological functions of ERR subtypes, and the progress in designing the small molecular modulators of ERRs as well as the detailed description of available co-crystal structures of the LBD of ERRs in three distinct states: unligand, inverse agonist bound, and agonist bound.
Group IV nanocrystals with ion-exchangeable surface ligands and methods of making the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler, Lance M.; Nichols, Asa W.; Chernomordik, Boris D.
Methods are described that include reacting a starting nanocrystal that includes a starting nanocrystal core and a covalently bound surface species to create an ion-exchangeable (IE) nanocrystal that includes a surface charge and a first ion-exchangeable (IE) surface ligand ionically bound to the surface charge, where the starting nanocrystal core includes a group IV element.
NALDB: nucleic acid ligand database for small molecules targeting nucleic acid
Kumar Mishra, Subodh; Kumar, Amit
2016-01-01
Nucleic acid ligand database (NALDB) is a unique database that provides detailed information about the experimental data of small molecules that were reported to target several types of nucleic acid structures. NALDB is the first ligand database that contains ligand information for all type of nucleic acid. NALDB contains more than 3500 ligand entries with detailed pharmacokinetic and pharmacodynamic information such as target name, target sequence, ligand 2D/3D structure, SMILES, molecular formula, molecular weight, net-formal charge, AlogP, number of rings, number of hydrogen bond donor and acceptor, potential energy along with their Ki, Kd, IC50 values. All these details at single platform would be helpful for the development and betterment of novel ligands targeting nucleic acids that could serve as a potential target in different diseases including cancers and neurological disorders. With maximum 255 conformers for each ligand entry, our database is a multi-conformer database and can facilitate the virtual screening process. NALDB provides powerful web-based search tools that make database searching efficient and simplified using option for text as well as for structure query. NALDB also provides multi-dimensional advanced search tool which can screen the database molecules on the basis of molecular properties of ligand provided by database users. A 3D structure visualization tool has also been included for 3D structure representation of ligands. NALDB offers an inclusive pharmacological information and the structurally flexible set of small molecules with their three-dimensional conformers that can accelerate the virtual screening and other modeling processes and eventually complement the nucleic acid-based drug discovery research. NALDB can be routinely updated and freely available on bsbe.iiti.ac.in/bsbe/naldb/HOME.php. Database URL: http://bsbe.iiti.ac.in/bsbe/naldb/HOME.php PMID:26896846
Sayer, Christopher; Finnigan, William; Isupov, Michail N; Levisson, Mark; Kengen, Servé W M; van der Oost, John; Harmer, Nicholas J; Littlechild, Jennifer A
2016-05-10
A new carboxyl esterase, AF-Est2, from the hyperthermophilic archaeon Archaeoglobus fulgidus has been cloned, over-expressed in Escherichia coli and biochemically and structurally characterized. The enzyme has high activity towards short- to medium-chain p-nitrophenyl carboxylic esters with optimal activity towards the valerate ester. The AF-Est2 has good solvent and pH stability and is very thermostable, showing no loss of activity after incubation for 30 min at 80 °C. The 1.4 Å resolution crystal structure of AF-Est2 reveals Coenzyme A (CoA) bound in the vicinity of the active site. Despite the presence of CoA bound to the AF-Est2 this enzyme has no CoA thioesterase activity. The pantetheine group of CoA partially obstructs the active site alcohol pocket suggesting that this ligand has a role in regulation of the enzyme activity. A comparison with closely related α/β hydrolase fold enzyme structures shows that the AF-Est2 has unique structural features that allow CoA binding. A comparison of the structure of AF-Est2 with the human carboxyl esterase 1, which has CoA thioesterase activity, reveals that CoA is bound to different parts of the core domain in these two enzymes and approaches the active site from opposite directions.
Sayer, Christopher; Finnigan, William; Isupov, Michail N.; Levisson, Mark; Kengen, Servé W. M.; van der Oost, John; Harmer, Nicholas J.; Littlechild, Jennifer A.
2016-01-01
A new carboxyl esterase, AF-Est2, from the hyperthermophilic archaeon Archaeoglobus fulgidus has been cloned, over-expressed in Escherichia coli and biochemically and structurally characterized. The enzyme has high activity towards short- to medium-chain p-nitrophenyl carboxylic esters with optimal activity towards the valerate ester. The AF-Est2 has good solvent and pH stability and is very thermostable, showing no loss of activity after incubation for 30 min at 80 °C. The 1.4 Å resolution crystal structure of AF-Est2 reveals Coenzyme A (CoA) bound in the vicinity of the active site. Despite the presence of CoA bound to the AF-Est2 this enzyme has no CoA thioesterase activity. The pantetheine group of CoA partially obstructs the active site alcohol pocket suggesting that this ligand has a role in regulation of the enzyme activity. A comparison with closely related α/β hydrolase fold enzyme structures shows that the AF-Est2 has unique structural features that allow CoA binding. A comparison of the structure of AF-Est2 with the human carboxyl esterase 1, which has CoA thioesterase activity, reveals that CoA is bound to different parts of the core domain in these two enzymes and approaches the active site from opposite directions. PMID:27160974
Oswal, Dhawal P.; Balanarasimha, Madhumitha; Loyer, Jeannette K.; Bedi, Shimpi; Soman, Frances L.; Rider, S. Dean; Hostetler, Heather A.
2013-01-01
Peroxisome proliferator-activated receptor α (PPARα) belongs to the family of ligand-dependent nuclear transcription factors that regulate energy metabolism. Although there exists remarkable overlap in the activities of PPARα across species, studies utilizing exogenous PPARα ligands suggest species differences in binding, activation, and physiological effects. While unsaturated long-chain fatty acids (LCFA) and their thioesters (long-chain fatty acyl-CoA; LCFA-CoA) function as ligands for recombinant mouse PPARα (mPPARα), no such studies have been conducted with full-length human PPARα (hPPARα). The objective of the current study was to determine whether LCFA and LCFA-CoA constitute high-affinity endogenous ligands for hPPARα or whether there exist species differences for ligand specificity and affinity. Both hPPARα and mPPARα bound with high affinity to LCFA-CoA; however, differences were noted in LCFA affinities. A fluorescent LCFA analog was bound strongly only by mPPARα, and naturally occurring saturated LCFA was bound more strongly by hPPARα than mPPARα. Similarly, unsaturated LCFA induced transactivation of both hPPARα and mPPARα, whereas saturated LCFA induced transactivation only in hPPARα-expressing cells. These data identified LCFA and LCFA-CoA as endogenous ligands of hPPARα, demonstrated species differences in binding specificity and activity, and may help delineate the role of PPARα as a nutrient sensor in metabolic regulation. PMID:23797899
Plazinska, Anita; Kolinski, Michal; Wainer, Irving W; Jozwiak, Krzysztof
2013-11-01
The β2 adrenergic receptor (β2-AR) has become a model system for studying the ligand recognition process and mechanism of the G protein coupled receptors activation. In the present study stereoisomers of fenoterol and some of its derivatives (N = 94 molecules) were used as molecular probes to identify differences in stereo-recognition interactions between β2-AR and structurally similar agonists. The present study aimed at determining the 3D molecular models of the fenoterol derivative-β2-AR complexes. Molecular models of β2-AR have been developed by using the crystal structure of the human β2-AR T4 lysozyme fusion protein with bound (S)-carazolol (PDB ID: 2RH1) and more recently reported structure of a nanobody-stabilized active state of the β2-AR with the bound full agonist BI-167107 (PDB ID: 3P0G). The docking procedure allowed us to study the similarities and differences in the recognition binding site(s) for tested ligands. The agonist molecules occupied the same binding region, between TM III, TM V, TM VI and TM VII. The residues identified by us during docking procedure (Ser203, Ser207, Asp113, Lys305, Asn312, Tyr308, Asp192) were experimentally indicated in functional and biophysical studies as being very important for the agonist-receptor interactions. Moreover, the additional space, an extension of the orthosteric pocket, was identified and described. Furthermore, the molecular dynamics simulations were used to study the molecular mechanism of interaction between ligands ((R,R')- and (S,S')-fenoterol) and β2-AR. Our research offers new insights into the ligand stereoselective interaction with one of the most important GPCR member. This study may also facilitate the design of improved selective medications, which can be used to treat, prevent and control heart failure symptoms.
A G-quadruplex-containing RNA activates fluorescence in a GFP-like fluorophore
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Hao; Suslov, Nikolai B.; Li, Nan-Sheng
2014-08-21
Spinach is an in vitro–selected RNA aptamer that binds a GFP-like ligand and activates its green fluorescence. Spinach is thus an RNA analog of GFP and has potentially widespread applications for in vivo labeling and imaging. We used antibody-assisted crystallography to determine the structures of Spinach both with and without bound fluorophore at 2.2-Å and 2.4-Å resolution, respectively. Spinach RNA has an elongated structure containing two helical domains separated by an internal bulge that folds into a G-quadruplex motif of unusual topology. The G-quadruplex motif and adjacent nucleotides comprise a partially preformed binding site for the fluorophore. The fluorophore bindsmore » in a planar conformation and makes extensive aromatic stacking and hydrogen bond interactions with the RNA. Our findings provide a foundation for structure-based engineering of new fluorophore-binding RNA aptamers.« less
Self-assembly of a double-helical complex of sodium.
Bell, T W; Jousselin, H
1994-02-03
Spontaneous self-organization of helical and multiple-helical molecular structures occurs on several levels in living organisms. Key examples are alpha-helical polypeptides, double-helical nucleic acids and helical protein structures, including F-actin, microtubules and the protein sheath of the tobacco mosaic virus. Although the self-assembly of double-helical transition-metal complexes bears some resemblance to the molecular organization of double-stranded DNA, selection between monohelical, double-helical and triple-helical structures is determined largely by the size and geometrical preference of the tightly bound metal. Here we present an example of double-helical assembly induced by the weaker and non-directional interactions of an alkali-metal ion with an organic ligand that is pre-organized into a coil. We have characterized the resulting complex by two-dimensional NMR and fast-atom-bombardment mass spectrometry. These results provide a step toward the creation of molecular tubes or ion channels consisting of intertwined coils.
A G-Quadruplex-Containing RNA Activates Fluorescence in a GFP-Like Fluorophore
Huang, Hao; Suslov, Nikolai B.; Li, Nan-Sheng; Shelke, Sandip A.; Evans, Molly E.; Koldobskaya, Yelena; Rice, Phoebe A.; Piccirilli, Joseph A.
2014-01-01
Spinach is an in vitro selected RNA aptamer that binds a GFP-like ligand and activates its green fluorescence.Spinach is thus an RNA analog of GFP, and has potentially widespread applications for in vivo labeling and imaging. We used antibody-assisted crystallography to determine the structures of Spinach both with and without bound fluorophore at 2.2 and 2.4 Å resolution, respectively. Spinach RNA has an elongated structure containing two helical domains separated by an internal bulge that folds into a G-quadruplex motif of unusual topology. The G-quadruplex motif and adjacent nucleotides comprise a partially pre-formed binding site for the fluorophore.The fluorophore binds in a planar conformation and makes extensive aromatic stacking and hydrogen bond interactions with the RNA. Our findings provide a foundation for structure-based engineering of new fluorophore-binding RNA aptamers. PMID:24952597
RNA-Puzzles Round III: 3D RNA structure prediction of five riboswitches and one ribozyme
Biesiada, Marcin; Boniecki, Michał J.; Chou, Fang-Chieh; Ferré-D'Amaré, Adrian R.; Das, Rhiju; Dunin-Horkawicz, Stanisław; Geniesse, Caleb; Kappel, Kalli; Kladwang, Wipapat; Krokhotin, Andrey; Łach, Grzegorz E.; Major, François; Mann, Thomas H.; Pachulska-Wieczorek, Katarzyna; Patel, Dinshaw J.; Piccirilli, Joseph A.; Popenda, Mariusz; Purzycka, Katarzyna J.; Ren, Aiming; Rice, Greggory M.; Santalucia, John; Tandon, Arpit; Trausch, Jeremiah J.; Wang, Jian; Weeks, Kevin M.; Williams, Benfeard; Xiao, Yi; Zhang, Dong; Zok, Tomasz
2017-01-01
RNA-Puzzles is a collective experiment in blind 3D RNA structure prediction. We report here a third round of RNA-Puzzles. Five puzzles, 4, 8, 12, 13, 14, all structures of riboswitch aptamers and puzzle 7, a ribozyme structure, are included in this round of the experiment. The riboswitch structures include biological binding sites for small molecules (S-adenosyl methionine, cyclic diadenosine monophosphate, 5-amino 4-imidazole carboxamide riboside 5′-triphosphate, glutamine) and proteins (YbxF), and one set describes large conformational changes between ligand-free and ligand-bound states. The Varkud satellite ribozyme is the most recently solved structure of a known large ribozyme. All puzzles have established biological functions and require structural understanding to appreciate their molecular mechanisms. Through the use of fast-track experimental data, including multidimensional chemical mapping, and accurate prediction of RNA secondary structure, a large portion of the contacts in 3D have been predicted correctly leading to similar topologies for the top ranking predictions. Template-based and homology-derived predictions could predict structures to particularly high accuracies. However, achieving biological insights from de novo prediction of RNA 3D structures still depends on the size and complexity of the RNA. Blind computational predictions of RNA structures already appear to provide useful structural information in many cases. Similar to the previous RNA-Puzzles Round II experiment, the prediction of non-Watson–Crick interactions and the observed high atomic clash scores reveal a notable need for an algorithm of improvement. All prediction models and assessment results are available at http://ahsoka.u-strasbg.fr/rnapuzzles/. PMID:28138060
Conformational Entropy from NMR Relaxation in Proteins: The SRLS Perspective.
Tchaicheeyan, Oren; Meirovitch, Eva
2017-02-02
Conformational entropy changes associated with bond-vector motions in proteins contribute to the free energy of ligand-binding. To derive such contributions, we apply the slowly relaxing local structure (SRLS) approach to NMR relaxation from 15 N-H bonds or C-CDH 2 moieties of several proteins in free and ligand-bound form. The spatial restraints on probe motion, which determine the extent of local order, are expressed in SRLS by a well-defined potential, u(θ). The latter yields the orientational probability density, P eq = exp(-u(θ)), and hence the related conformational entropy, Ŝ = -∫P eq (θ) ln[P eq (θ)] sin θ dθ (Ŝ is "entropy" in units of k B T, and θ represents the bond-vector orientation in the protein). SRLS is applied to 4-oxalocrotonate tautomerase (4-OT), the acyl-coenzyme A binding protein (ACBP), the C-terminal SH2 domain of phospholipase C γ 1 (PLC γ 1C SH2), the construct dihydrofolate reductase-E:folate (DHFR-E:folate), and their complexes with appropriate ligands, to determine ΔŜ. Eglin C and its V18A and V34A mutants are also studied. Finally, SRLS is applied to the structurally homologous proteins TNfn3 and FNfn10 to characterize within its scope the unusual "dynamics" of the TNfn3 core. Upon ligand-binding, the backbones of 4-OT, ACBP, and PLC γ 1C SH2 show limited, increased, and decreased order, respectively; the cores of DHFR-E:folate and PLC γ 1C SH2 become more ordered. The V18A (V34A) mutation increases (decreases) the order within the eglin C core. The core of TNfn3 is less ordered structurally and more mobile kinetically. Secondary structure versus loops, surface-binding versus core insertion, and ligand size emerged as being important in rationalizing ΔŜ. The consistent and general tool developed herein is expected to provide further insights in future work.
DNA binding triggers tetramerization of the glucocorticoid receptor in live cells
Presman, Diego M.; Ganguly, Sourav; Schiltz, R. Louis; Johnson, Thomas A.; Karpova, Tatiana S.; Hager, Gordon L.
2016-01-01
Transcription factors dynamically bind to chromatin and are essential for the regulation of genes. Although a large percentage of these proteins appear to self-associate to form dimers or higher order oligomers, the stoichiometry of DNA-bound transcription factors has been poorly characterized in vivo. The glucocorticoid receptor (GR) is a ligand-regulated transcription factor widely believed to act as a dimer or a monomer. Using a unique set of imaging techniques coupled with a cell line containing an array of DNA binding elements, we show that GR is predominantly a tetramer when bound to its target DNA. We find that DNA binding triggers an interdomain allosteric regulation within the GR, leading to tetramerization. We therefore propose that dynamic changes in GR stoichiometry represent a previously unidentified level of regulation in steroid receptor activation. Quaternary structure analysis of other members of the steroid receptor family (estrogen, androgen, and progesterone receptors) reveals variation in oligomerization states among this family of transcription factors. Because GR’s oligomerization state has been implicated in therapy outcome, our findings open new doors to the rational design of novel GR ligands and redefine the quaternary structure of steroid receptors. PMID:27382178
Identification and specificity studies of small-molecule ligands for SH3 protein domains.
Inglis, Steven R; Stojkoski, Cvetan; Branson, Kim M; Cawthray, Jacquie F; Fritz, Daniel; Wiadrowski, Emma; Pyke, Simon M; Booker, Grant W
2004-10-21
The Src Homology 3 (SH3) domains are small protein-protein interaction domains that bind proline-rich sequences and mediate a wide range of cell-signaling and other important biological processes. Since deregulated signaling pathways form the basis of many human diseases, the SH3 domains have been attractive targets for novel therapeutics. High-affinity ligands for SH3 domains have been designed; however, these have all been peptide-based and no examples of entirely nonpeptide SH3 ligands have previously been reported. Using the mouse Tec Kinase SH3 domain as a model system for structure-based ligand design, we have identified several simple heterocyclic compounds that selectively bind to the Tec SH3 domain. Using a combination of nuclear magnetic resonance chemical shift perturbation, structure-activity relationships, and site-directed mutagenesis, the binding of these compounds at the proline-rich peptide-binding site has been characterized. The most potent of these, 2-aminoquinoline, bound with Kd = 125 microM and was able to compete for binding with a proline-rich peptide. Synthesis of 6-substituted-2-aminoquinolines resulted in ligands with up to 6-fold improved affinity over 2-aminoquinoline and enhanced specificity for the Tec SH3 domain. Therefore, 2-aminoquinolines may potentially be useful for the development of high affinity small molecule ligands for SH3 domains.
Analysis of macromolecules, ligands and macromolecule-ligand complexes
Von Dreele, Robert B [Los Alamos, NM
2008-12-23
A method for determining atomic level structures of macromolecule-ligand complexes through high-resolution powder diffraction analysis and a method for providing suitable microcrystalline powder for diffraction analysis are provided. In one embodiment, powder diffraction data is collected from samples of polycrystalline macromolecule and macromolecule-ligand complex and the refined structure of the macromolecule is used as an approximate model for a combined Rietveld and stereochemical restraint refinement of the macromolecule-ligand complex. A difference Fourier map is calculated and the ligand position and points of interaction between the atoms of the macromolecule and the atoms of the ligand can be deduced and visualized. A suitable polycrystalline sample of macromolecule-ligand complex can be produced by physically agitating a mixture of lyophilized macromolecule, ligand and a solvent.
Hot spot analysis for driving the development of hits into leads in fragment based drug discovery
Hall, David R.; Ngan, Chi Ho; Zerbe, Brandon S.; Kozakov, Dima; Vajda, Sandor
2011-01-01
Fragment based drug design (FBDD) starts with finding fragment-sized compounds that are highly ligand efficient and can serve as a core moiety for developing high affinity leads. Although the core-bound structure of a protein facilitates the construction of leads, effective design is far from straightforward. We show that protein mapping, a computational method developed to find binding hot spots and implemented as the FTMap server, provides information that complements the fragment screening results and can drive the evolution of core fragments into larger leads with a minimal loss or, in some cases, even a gain in ligand efficiency. The method places small molecular probes, the size of organic solvents, on a dense grid around the protein, and identifies the hot spots as consensus clusters formed by clusters of several probes. The hot spots are ranked based on the number of probe clusters, which predicts the binding propensity of the subsites and hence their importance for drug design. Accordingly, with a single exception the main hot spot identified by FTMap binds the core compound found by fragment screening. The most useful information is provided by the neighboring secondary hot spots, indicating the regions where the core can be extended to increase its affinity. To quantify this information, we calculate the density of probes from mapping, which describes the binding propensity at each point, and show that the change in the correlation between a ligand position and the probe density upon extending or repositioning the core moiety predicts the expected change in ligand efficiency. PMID:22145575
Mascarenhas, Nahren Manuel; Kästner, Johannes
2013-02-01
A well-studied periplasmic-binding protein involved in the abstraction of maltose is maltose-binding protein (MBP), which undergoes a ligand-induced conformational transition from an open (ligand-free) to a closed (ligand-bound) state. Umbrella sampling simulations have been us to estimate the free energy of binding of maltose to MBP and to trace the potential of mean force of the unbinding event using the center-of-mass distance between the protein and ligand as the reaction coordinate. The free energy thus obtained compares nicely with the experimentally measured value justifying our theoretical basis. Measurement of the domain angle (N-terminal-domain - hinge - C-terminal-domain) along the unbinding pathway established the existence of three different states. Starting from a closed state, the protein shifts to an open conformation during the initial unbinding event of the ligand then resides in a semi-open conformation and later resides predominantly in an open-state. These transitions along the ligand unbinding pathway have been captured in greater depth using principal component analysis. It is proposed that in mixed-model, both conformational selection and an induced-fit mechanism combine to the ligand recognition process in MBP. Copyright © 2012 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baum, Bernhard; Lecker, Laura S. M.; Zoltner, Martin
Three crystal structures of recombinant P. aeruginosa FabF are reported: the apoenzyme, an active-site mutant and a complex with a fragment of a natural product inhibitor. The characterization provides reagents and new information to support antibacterial drug discovery. Bacterial infections remain a serious health concern, in particular causing life-threatening infections of hospitalized and immunocompromised patients. The situation is exacerbated by the rise in antibacterial drug resistance, and new treatments are urgently sought. In this endeavour, accurate structures of molecular targets can support early-stage drug discovery. Here, crystal structures, in three distinct forms, of recombinant Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF)more » are presented. This enzyme, which is involved in fatty-acid biosynthesis, has been validated by genetic and chemical means as an antibiotic target in Gram-positive bacteria and represents a potential target in Gram-negative bacteria. The structures of apo FabF, of a C164Q mutant in which the binding site is altered to resemble the substrate-bound state and of a complex with 3-(benzoylamino)-2-hydroxybenzoic acid are reported. This compound mimics aspects of a known natural product inhibitor, platensimycin, and surprisingly was observed binding outside the active site, interacting with a symmetry-related molecule. An unusual feature is a completely buried potassium-binding site that was identified in all three structures. Comparisons suggest that this may represent a conserved structural feature of FabF relevant to fold stability. The new structures provide templates for structure-based ligand design and, together with the protocols and reagents, may underpin a target-based drug-discovery project for urgently needed antibacterials.« less
Kelley, Stacy L.; Lukk, Tiit; Nair, Satish K.; Tapping, Richard I.
2012-01-01
Human monocyte differentiation antigen CD14 is a pattern recognition receptor that enhances innate immune responses to infection by sensitizing host cells to bacterial lipopolysaccharide (LPS; endotoxin), lipoproteins, lipoteichoic acid and other acylated microbial products. CD14 physically delivers these lipidated microbial products to various Toll-like receptor signaling complexes that subsequently induce intracellular proinflammatory signaling cascades upon ligand binding. The ensuing cellular responses are usually protective to the host, but can also result in host fatality through sepsis. In this work, we have determined the X-ray crystal structure of human CD14. The structure reveals a bent solenoid typical of leucine rich repeat proteins with an amino terminal pocket that presumably binds acylated ligands including LPS. Comparison of human and mouse CD14 structures show great similarity in overall protein fold. However, compared to mouse CD14, human CD14 contains an expanded pocket and alternative rim residues that are likely to be important for LPS binding and cell activation. The X-ray crystal structure of human CD14 presented herein may foster additional ligand bound structural studies, virtual docking studies, and drug design efforts to mitigate LPS induced sepsis and other inflammatory diseases. PMID:23264655
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calvo, Eric; Mans, Ben J.; Ribeiro, José M.C.
The mosquito D7 salivary proteins are encoded by a multigene family related to the arthropod odorant-binding protein (OBP) superfamily. Forms having either one or two OBP domains are found in mosquito saliva. Four single-domain and one two-domain D7 proteins from Anopheles gambiae and Aedes aegypti (AeD7), respectively, were shown to bind biogenic amines with high affinity and with a stoichiometry of one ligand per protein molecule. Sequence comparisons indicated that only the C-terminal domain of AeD7 is homologous to the single-domain proteins from A. gambiae, suggesting that the N-terminal domain may bind a different class of ligands. Here, we describemore » the 3D structure of AeD7 and examine the ligand-binding characteristics of the N- and C-terminal domains. Isothermal titration calorimetry and ligand complex crystal structures show that the N-terminal domain binds cysteinyl leukotrienes (cysLTs) with high affinities (50-60 nM) whereas the C-terminal domain binds biogenic amines. The lipid chain of the cysLT binds in a hydrophobic pocket of the N-terminal domain, whereas binding of norepinephrine leads to an ordering of the C-terminal portion of the C-terminal domain into an alpha-helix that, along with rotations of Arg-176 and Glu-268 side chains, acts to bury the bound ligand.« less
Ligand conjugation to bimodal poly(ethylene glycol) brush layers on microbubbles.
Chen, Cherry C; Borden, Mark A
2010-08-17
Using microbubbles as model systems, we examined molecular diffusion and binding to colloidal surfaces in bimodal poly(ethylene glycol) (PEG) brush layers. A microbubble is a gaseous colloidal particle with a diameter of less than 10 mum, of which the surface comprises amphiphilic phospholipids self-assembled to form a lipid monolayer shell. Due to the compressible gas core, microbubbles provide a sensitive acoustic response and are currently used as ultrasound contrast agents. Similar to the design of long circulating liposomes, PEG chains are typically incorporated into the shell of microbubbles to form a steric barrier against coalescence and adsorption of macromolecules to the microbubble surface. We introduced a buried-ligand architecture (BLA) design where the microbubble surface was coated with a bimodal PEG brush. After microbubbles were generated, fluorescent ligands with different molecular weights were conjugated to the tethered functional groups on the shorter PEG chains, while the longer PEG chains served as a shield to protect these ligands from exposure to the surrounding environment. BLA microbubbles reduced the binding of macromolecules (>10 kDa) to the tethers due to the steric hindrance of the PEG overbrush while allowing the uninhibited attachment of small molecules (<1 kDa). Roughly 40% less fluorescein-conjugated streptavidin (SA-FITC) bound to BLA microbubbles compared to exposed-ligand architecture (ELA) microbubbles. The binding of SA-FITC to BLA microbubbles suggested a possible phase separation between the lipid species on the surface leading to populations of revealed and concealed ligands. Ligand conjugation kinetics was independent of microbubble size, regardless of ligand size or microbubble architecture. We observed, for the first time, streptavidin-induced surface structure formation for ELA microbubbles and proposed that this phenomenon may be correlated to flow cytometry scattering measurements. We therefore demonstrated the feasibility of postlabeling for small-molecule ligands to BLA microbubbles to generate stealth targeted ultrasound contrast agents.
Rigid Residue Scan Simulations Systematically Reveal Residue Entropic Roles in Protein Allostery
Liu, Jin
2016-01-01
Intra-protein information is transmitted over distances via allosteric processes. This ubiquitous protein process allows for protein function changes due to ligand binding events. Understanding protein allostery is essential to understanding protein functions. In this study, allostery in the second PDZ domain (PDZ2) in the human PTP1E protein is examined as model system to advance a recently developed rigid residue scan method combining with configurational entropy calculation and principal component analysis. The contributions from individual residues to whole-protein dynamics and allostery were systematically assessed via rigid body simulations of both unbound and ligand-bound states of the protein. The entropic contributions of individual residues to whole-protein dynamics were evaluated based on covariance-based correlation analysis of all simulations. The changes of overall protein entropy when individual residues being held rigid support that the rigidity/flexibility equilibrium in protein structure is governed by the La Châtelier’s principle of chemical equilibrium. Key residues of PDZ2 allostery were identified with good agreement with NMR studies of the same protein bound to the same peptide. On the other hand, the change of entropic contribution from each residue upon perturbation revealed intrinsic differences among all the residues. The quasi-harmonic and principal component analyses of simulations without rigid residue perturbation showed a coherent allosteric mode from unbound and bound states, respectively. The projection of simulations with rigid residue perturbation onto coherent allosteric modes demonstrated the intrinsic shifting of ensemble distributions supporting the population-shift theory of protein allostery. Overall, the study presented here provides a robust and systematic approach to estimate the contribution of individual residue internal motion to overall protein dynamics and allostery. PMID:27115535
Titration ELISA as a Method to Determine the Dissociation Constant of Receptor Ligand Interaction.
Eble, Johannes A
2018-02-15
The dissociation constant describes the interaction between two partners in the binding equilibrium and is a measure of their affinity. It is a crucial parameter to compare different ligands, e.g., competitive inhibitors, protein isoforms and mutants, for their binding strength to a binding partner. Dissociation constants are determined by plotting concentrations of bound versus free ligand as binding curves. In contrast, titration curves, in which a signal that is proportional to the concentration of bound ligand is plotted against the total concentration of added ligand, are much easier to record. The signal can be detected spectroscopically and by enzyme-linked immunosorbent assay (ELISA). This is exemplified in a protocol for a titration ELISA that measures the binding of the snake venom-derived rhodocetin to its immobilized target domain of α2β1 integrin. Titration ELISAs are versatile and widely used. Any pair of interacting proteins can be used as immobilized receptor and soluble ligand, provided that both proteins are pure, and their concentrations are known. The difficulty so far has been to determine the dissociation constant from a titration curve. In this study, a mathematical function underlying titration curves is introduced. Without any error-prone graphical estimation of a saturation yield, this algorithm allows processing of the raw data (signal intensities at different concentrations of added ligand) directly by mathematical evaluation via non-linear regression. Thus, several titration curves can be recorded simultaneously and transformed into a set of characteristic parameters, among them the dissociation constant and the concentration of binding-active receptor, and they can be evaluated statistically. When combined with this algorithm, titration ELISAs gain the advantage of directly presenting the dissociation constant. Therefore, they may be used more efficiently in the future.
SMMRNA: a database of small molecule modulators of RNA
Mehta, Ankita; Sonam, Surabhi; Gouri, Isha; Loharch, Saurabh; Sharma, Deepak K.; Parkesh, Raman
2014-01-01
We have developed SMMRNA, an interactive database, available at http://www.smmrna.org, with special focus on small molecule ligands targeting RNA. Currently, SMMRNA consists of ∼770 unique ligands along with structural images of RNA molecules. Each ligand in the SMMRNA contains information such as Kd, Ki, IC50, ΔTm, molecular weight (MW), hydrogen donor and acceptor count, XlogP, number of rotatable bonds, number of aromatic rings and 2D and 3D structures. These parameters can be explored using text search, advanced search, substructure and similarity-based analysis tools that are embedded in SMMRNA. A structure editor is provided for 3D visualization of ligands. Advance analysis can be performed using substructure and OpenBabel-based chemical similarity fingerprints. Upload facility for both RNA and ligands is also provided. The physicochemical properties of the ligands were further examined using OpenBabel descriptors, hierarchical clustering, binning partition and multidimensional scaling. We have also generated a 3D conformation database of ligands to support the structure and ligand-based screening. SMMRNA provides comprehensive resource for further design, development and refinement of small molecule modulators for selective targeting of RNA molecules. PMID:24163098
Zorrilla, Silvia; Garzón, Beatriz; Pérez-Sala, Dolores
2010-04-01
Peroxisome proliferator-activated receptor gamma (PPARgamma) is a member of the nuclear receptor superfamily involved in insulin sensitization, atherosclerosis, inflammation, and carcinogenesis. PPARgamma transcriptional activity is modulated by specific ligands that promote conformational changes allowing interaction with coactivators. Here we show that the fluorophore 1-anilinonaphthalene-8-sulfonic acid (ANS) binds to PPARgamma-LBD (ligand binding domain), displaying negligible interaction with other nuclear receptors such as PPARalpha and retinoid X receptor alpha (RXRalpha). ANS binding is competed by PPARgamma agonists such as rosiglitazone, 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)), and 9,10-dihydro-15-deoxy-Delta(12,14)-prostaglandin J(2) (CAY10410). Moreover, the affinity of PPARgamma for these ligands, determined through ANS competition titrations, is within the range of that reported previously, thereby suggesting that ANS competition could be useful in the screening and characterization of novel PPARgamma agonists. In contrast, gel-based competition assays showed limited performance with noncovalently bound ligands. We applied the ANS binding assay to characterize a biotinylated analog of 15d-PGJ(2) that does not activate PPAR in cells. We found that although this compound bound to PPARgamma with low affinity, it failed to promote PPARgamma interaction with a fluorescent SRC-1 peptide, indicating a lack of receptor activation. Therefore, combined approaches using ANS and fluorescent coactivator peptides to monitor PPARgamma binding and interactions may provide valuable strategies to fully understand the role of PPARgamma ligands. Copyright 2009 Elsevier Inc. All rights reserved.
Alicea, Ismael; Marvin, Jonathan S; Miklos, Aleksandr E; Ellington, Andrew D; Looger, Loren L; Schreiter, Eric R
2011-12-02
The phnD gene of Escherichia coli encodes the periplasmic binding protein of the phosphonate (Pn) uptake and utilization pathway. We have crystallized and determined structures of E. coli PhnD (EcPhnD) in the absence of ligand and in complex with the environmentally abundant 2-aminoethylphosphonate (2AEP). Similar to other bacterial periplasmic binding proteins, 2AEP binds near the center of mass of EcPhnD in a cleft formed between two lobes. Comparison of the open, unliganded structure with the closed 2AEP-bound structure shows that the two lobes pivot around a hinge by ~70° between the two states. Extensive hydrogen bonding and electrostatic interactions stabilize 2AEP, which binds to EcPhnD with low nanomolar affinity. These structures provide insight into Pn uptake by bacteria and facilitated the rational design of high signal-to-noise Pn biosensors based on both coupled small-molecule dyes and autocatalytic fluorescent proteins. Copyright © 2011 Elsevier Ltd. All rights reserved.
Alicea, Ismael; Marvin, Jonathan S.; Miklos, Aleksandr E.; Ellington, Andrew D.; Looger, Loren L.; Schreiter, Eric R.
2012-01-01
The phnD gene of Escherichia coli encodes the periplasmic binding protein of the phosphonate uptake and utilization pathway. We have crystallized and determined structures of E. coli PhnD (EcPhnD) in the absence of ligand and in complex with the environmentally abundant 2-aminoethylphosphonate (2AEP). Similar to other bacterial periplasmic binding proteins, 2AEP binds near the center of mass of EcPhnD in a cleft formed between two lobes. Comparison of the open, unliganded structure with the closed 2AEP-bound structure shows that the two lobes pivot around a hinge by ~70° between the two states. Extensive hydrogen bonding and electrostatic interactions stabilize 2AEP, which binds to EcPhnD with low nanomolar affinity. These structures provide insight into phosphonate uptake by bacteria and facilitated the rational design of high signal-to-noise phosphonate biosensors based both on coupled small molecule dyes and autocatalytic fluorescent proteins. PMID:22019591
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alicea, Ismael; Marvin, Jonathan S.; Miklos, Aleksandr E.
2012-09-17
The phnD gene of Escherichia coli encodes the periplasmic binding protein of the phosphonate (Pn) uptake and utilization pathway. We have crystallized and determined structures of E. coli PhnD (EcPhnD) in the absence of ligand and in complex with the environmentally abundant 2-aminoethylphosphonate (2AEP). Similar to other bacterial periplasmic binding proteins, 2AEP binds near the center of mass of EcPhnD in a cleft formed between two lobes. Comparison of the open, unliganded structure with the closed 2AEP-bound structure shows that the two lobes pivot around a hinge by {approx}70{sup o} between the two states. Extensive hydrogen bonding and electrostatic interactionsmore » stabilize 2AEP, which binds to EcPhnD with low nanomolar affinity. These structures provide insight into Pn uptake by bacteria and facilitated the rational design of high signal-to-noise Pn biosensors based on both coupled small-molecule dyes and autocatalytic fluorescent proteins.« less
Alvarez, Lautaro D; Mañez, Pau Arroyo; Estrin, Darío A; Burton, Gerardo
2012-07-01
A structure for the ligand binding domain (LBD) of the DAF-12 receptor from Caenorhabditis elegans was obtained from the X-ray crystal structure of the receptor LBD from Strongyloides stercoralis bound to (25R)-Δ(7)-dafachronic acid (DA) (pdb:3GYU). The model was constructed in the presence of the ligand using a combination of Modeller, Autodock, and molecular dynamics (MD) programs, and then its dynamical behavior was studied by MD. A strong ligand binding mode (LBM) was found, with the three arginines in the ligand binding pocket (LBP) contacting the C-26 carboxylate group of the DA. The quality of the ceDAF-12 model was then evaluated by constructing several ligand systems for which the experimental activity is known. Thus, the dynamical behavior of the ceDAF-12 complex with the more active (25S)-Δ(7)-DA showed two distinct binding modes, one of them being energetically more favorable compared with the 25R isomer. Then the effect of the Arg564Cys and Arg598Met mutations on the (25R)-Δ(7)-DA binding was analyzed. The MD simulations showed that in the first case the complex was unstable, consistent with the lack of transactivation activity of (25R)-Δ(7)-DA in this mutant. Instead, in the case of the Arg598Met mutant, known to produce a partial loss of activity, our model predicted smaller effects on the LBM with a more stable MD trajectory. The model also showed that removal of the C-25 methyl does not impede the simultaneous strong interaction of the carboxylate with the three arginines, predicting that 27-nor-DAs are putative ceDAF-12 ligands. Copyright © 2012 Wiley Periodicals, Inc.
van Haaren, R J; Goubitz, K; Fraanje, J; van Strijdonck, G P; Oevering, H; Coussens, B; Reek, J N; Kamer, P C; van Leeuwen, P W
2001-07-02
X-ray crystal structures of a series of cationic (P-P)palladium(1,1-(CH(3))(2)C(3)H(3)) complexes (P-P = dppe (1,2-bis(diphenylphosphino)ethane), dppf (1,1'-bis(diphenylphosphino)ferrocene), and DPEphos (2,2'-bis(diphenylphosphino)diphenyl ether)) and the (Xantphos)Pd(C(3)H(5))BF(4) (Xantphos = 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene) complex have been determined. In the solid state structure, the phenyl rings of the ligand are oriented in the direction of the nonsymmetrically bound [1,1-(CH(3))(2)C(3)H(3)] moiety. An increase of the bite angle of the chelating ligand results in an increase of the cone angle. In complexes containing ligands having a large cone angle, the distances between the phenyl rings and the allyl moiety become small, resulting in a distortion of the symmetry of the palladium-allyl bond. In solution, two types of dynamic exchange have been observed, the pi-sigma rearrangement and the apparent rotation of the allyl moiety. At the same time, the folded structure of the ligand changes from an endo to an exo orientation or vice versa. The regioselectivity in the palladium-catalyzed allylic alkylation of 3-methyl-but-2-enyl acetate is determined by the cone angle of the bidentate phosphine ligand. Nucleophilic attack by a malonate anion takes place preferentially at the allylic carbon atom having the largest distance to palladium. Ligands with a larger cone angle direct the regioselectivity to the formation of the branched product, from 8% for dppe (1) to 61% found for Xantphos (6). The influence of the cone angle on the regioselectivity has been assigned to a sterically induced electronic effect.
Bhagavat, Raghu; Sankar, Santhosh; Srinivasan, Narayanaswamy; Chandra, Nagasuma
2018-03-06
Protein-ligand interactions form the basis of most cellular events. Identifying ligand binding pockets in proteins will greatly facilitate rationalizing and predicting protein function. Ligand binding sites are unknown for many proteins of known three-dimensional (3D) structure, creating a gap in our understanding of protein structure-function relationships. To bridge this gap, we detect pockets in proteins of known 3D structures, using computational techniques. This augmented pocketome (PocketDB) consists of 249,096 pockets, which is about seven times larger than what is currently known. We deduce possible ligand associations for about 46% of the newly identified pockets. The augmented pocketome, when subjected to clustering based on similarities among pockets, yielded 2,161 site types, which are associated with 1,037 ligand types, together providing fold-site-type-ligand-type associations. The PocketDB resource facilitates a structure-based function annotation, delineation of the structural basis of ligand recognition, and provides functional clues for domains of unknown functions, allosteric proteins, and druggable pockets. Copyright © 2018 Elsevier Ltd. All rights reserved.
Molecular basis of human CD22 function and therapeutic targeting.
Ereño-Orbea, June; Sicard, Taylor; Cui, Hong; Mazhab-Jafari, Mohammad T; Benlekbir, Samir; Guarné, Alba; Rubinstein, John L; Julien, Jean-Philippe
2017-10-02
CD22 maintains a baseline level of B-cell inhibition to keep humoral immunity in check. As a B-cell-restricted antigen, CD22 is targeted in therapies against dysregulated B cells that cause autoimmune diseases and blood cancers. Here we report the crystal structure of human CD22 at 2.1 Å resolution, which reveals that specificity for α2-6 sialic acid ligands is dictated by a pre-formed β-hairpin as a unique mode of recognition across sialic acid-binding immunoglobulin-type lectins. The CD22 ectodomain adopts an extended conformation that facilitates concomitant CD22 nanocluster formation on B cells and binding to trans ligands to avert autoimmunity in mammals. We structurally delineate the CD22 site targeted by the therapeutic antibody epratuzumab at 3.1 Å resolution and determine a critical role for CD22 N-linked glycosylation in antibody engagement. Our studies provide molecular insights into mechanisms governing B-cell inhibition and valuable clues for the design of immune modulators in B-cell dysfunction.The B-cell-specific co-receptor CD22 is a therapeutic target for depleting dysregulated B cells. Here the authors structurally characterize the ectodomain of CD22 and present its crystal structure with the bound therapeutic antibody epratuzumab, which gives insights into the mechanism of inhibition of B-cell activation.
Normal Modes Expose Active Sites in Enzymes.
Glantz-Gashai, Yitav; Meirson, Tomer; Samson, Abraham O
2016-12-01
Accurate prediction of active sites is an important tool in bioinformatics. Here we present an improved structure based technique to expose active sites that is based on large changes of solvent accessibility accompanying normal mode dynamics. The technique which detects EXPOsure of active SITes through normal modEs is named EXPOSITE. The technique is trained using a small 133 enzyme dataset and tested using a large 845 enzyme dataset, both with known active site residues. EXPOSITE is also tested in a benchmark protein ligand dataset (PLD) comprising 48 proteins with and without bound ligands. EXPOSITE is shown to successfully locate the active site in most instances, and is found to be more accurate than other structure-based techniques. Interestingly, in several instances, the active site does not correspond to the largest pocket. EXPOSITE is advantageous due to its high precision and paves the way for structure based prediction of active site in enzymes.
Normal Modes Expose Active Sites in Enzymes
Glantz-Gashai, Yitav; Samson, Abraham O.
2016-01-01
Accurate prediction of active sites is an important tool in bioinformatics. Here we present an improved structure based technique to expose active sites that is based on large changes of solvent accessibility accompanying normal mode dynamics. The technique which detects EXPOsure of active SITes through normal modEs is named EXPOSITE. The technique is trained using a small 133 enzyme dataset and tested using a large 845 enzyme dataset, both with known active site residues. EXPOSITE is also tested in a benchmark protein ligand dataset (PLD) comprising 48 proteins with and without bound ligands. EXPOSITE is shown to successfully locate the active site in most instances, and is found to be more accurate than other structure-based techniques. Interestingly, in several instances, the active site does not correspond to the largest pocket. EXPOSITE is advantageous due to its high precision and paves the way for structure based prediction of active site in enzymes. PMID:28002427
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xianjun; Zhao, Fei; Wu, Yiran
Here, the Smoothened receptor (SMO) belongs to the Class Frizzled of the G protein-coupled receptor (GPCR) superfamily, constituting a key component of the Hedgehog signalling pathway. Here we report the crystal structure of the multi-domain human SMO, bound and stabilized by a designed tool ligand TC114, using an X-ray free-electron laser source at 2.9 Å. The structure reveals a precise arrangement of three distinct domains: a seven-transmembrane helices domain (TMD), a hinge domain (HD) and an intact extracellular cysteine-rich domain (CRD). This architecture enables allosteric interactions between the domains that are important for ligand recognition and receptor activation. By combiningmore » the structural data, molecular dynamics simulation, and hydrogen-deuterium-exchange analysis, we demonstrate that transmembrane helix VI, extracellular loop 3 and the HD play a central role in transmitting the signal employing a unique GPCR activation mechanism, distinct from other multi-domain GPCRs.« less
Structural insights into simocyclinone as an antibiotic, effector ligand and substrate
Buttner, Mark J; Schäfer, Martin; Lawson, David M
2017-01-01
Abstract Simocyclinones are antibiotics produced by Streptomyces and Kitasatospora species that inhibit the validated drug target DNA gyrase in a unique way, and they are thus of therapeutic interest. Structural approaches have revealed their mode of action, the inducible-efflux mechanism in the producing organism, and given insight into one step in their biosynthesis. The crystal structures of simocyclinones bound to their target (gyrase), the transcriptional repressor SimR and the biosynthetic enzyme SimC7 reveal fascinating insight into how molecular recognition is achieved with these three unrelated proteins. PMID:29126195
Structural insights into simocyclinone as an antibiotic, effector ligand and substrate.
Buttner, Mark J; Schäfer, Martin; Lawson, David M; Maxwell, Anthony
2018-01-01
Simocyclinones are antibiotics produced by Streptomyces and Kitasatospora species that inhibit the validated drug target DNA gyrase in a unique way, and they are thus of therapeutic interest. Structural approaches have revealed their mode of action, the inducible-efflux mechanism in the producing organism, and given insight into one step in their biosynthesis. The crystal structures of simocyclinones bound to their target (gyrase), the transcriptional repressor SimR and the biosynthetic enzyme SimC7 reveal fascinating insight into how molecular recognition is achieved with these three unrelated proteins. © FEMS 2017.
Analysis of zinc binding sites in protein crystal structures.
Alberts, I L; Nadassy, K; Wodak, S J
1998-08-01
The geometrical properties of zinc binding sites in a dataset of high quality protein crystal structures deposited in the Protein Data Bank have been examined to identify important differences between zinc sites that are directly involved in catalysis and those that play a structural role. Coordination angles in the zinc primary coordination sphere are compared with ideal values for each coordination geometry, and zinc coordination distances are compared with those in small zinc complexes from the Cambridge Structural Database as a guide of expected trends. We find that distances and angles in the primary coordination sphere are in general close to the expected (or ideal) values. Deviations occur primarily for oxygen coordinating atoms and are found to be mainly due to H-bonding of the oxygen coordinating ligand to protein residues, bidentate binding arrangements, and multi-zinc sites. We find that H-bonding of oxygen containing residues (or water) to zinc bound histidines is almost universal in our dataset and defines the elec-His-Zn motif. Analysis of the stereochemistry shows that carboxyl elec-His-Zn motifs are geometrically rigid, while water elec-His-Zn motifs show the most geometrical variation. As catalytic motifs have a higher proportion of carboxyl elec atoms than structural motifs, they provide a more rigid framework for zinc binding. This is understood biologically, as a small distortion in the zinc position in an enzyme can have serious consequences on the enzymatic reaction. We also analyze the sequence pattern of the zinc ligands and residues that provide elecs, and identify conserved hydrophobic residues in the endopeptidases that also appear to contribute to stabilizing the catalytic zinc site. A zinc binding template in protein crystal structures is derived from these observations.
Sgraja, Tanja; Ulschmid, Julia; Becker, Katja; Schneuwly, Stephan; Klebe, Gerhard; Reuter, Klaus; Heine, Andreas
2004-10-01
In vivo studies with the fruit-fly Drosophila melanogaster have shown that the Sniffer protein prevents age-dependent and oxidative stress-induced neurodegenerative processes. Sniffer is a NADPH-dependent carbonyl reductase belonging to the enzyme family of short-chain dehydrogenases/reductases (SDRs). The crystal structure of the homodimeric Sniffer protein from Drosophila melanogaster in complex with NADP+ has been determined by multiple-wavelength anomalous dispersion and refined to a resolution of 1.75 A. The observed fold represents a typical dinucleotide-binding domain as detected for other SDRs. With respect to the cofactor-binding site and the region referred to as substrate-binding loop, the Sniffer protein shows a striking similarity to the porcine carbonyl reductase (PTCR). This loop, in both Sniffer and PTCR, is substantially shortened compared to other SDRs. In most enzymes of the SDR family this loop adopts a well-defined conformation only after substrate binding and remains disordered in the absence of any bound ligands or even if only the dinucleotide cofactor is bound. In the structure of the Sniffer protein, however, the conformation of this loop is well defined, although no substrate is present. Molecular modeling studies provide an idea of how binding of substrate molecules to Sniffer could possibly occur.
Prigozhin, Daniil M; Papavinasasundaram, Kadamba G; Baer, Christina E; Murphy, Kenan C; Moskaleva, Alisa; Chen, Tony Y; Alber, Tom; Sassetti, Christopher M
2016-10-28
Monitoring the environment with serine/threonine protein kinases is critical for growth and survival of Mycobacterium tuberculosis, a devastating human pathogen. Protein kinase B (PknB) is a transmembrane serine/threonine protein kinase that acts as an essential regulator of mycobacterial growth and division. The PknB extracellular domain (ECD) consists of four repeats homologous to penicillin-binding protein and serine/threonine kinase associated (PASTA) domains, and binds fragments of peptidoglycan. These properties suggest that PknB activity is modulated by ECD binding to peptidoglycan substructures, however, the molecular mechanisms underpinning PknB regulation remain unclear. In this study, we report structural and genetic characterization of the PknB ECD. We determined the crystal structures of overlapping ECD fragments at near atomic resolution, built a model of the full ECD, and discovered a region on the C-terminal PASTA domain that has the properties of a ligand-binding site. Hydrophobic interaction between this surface and a bound molecule of citrate was observed in a crystal structure. Our genetic analyses in M. tuberculosis showed that nonfunctional alleles were produced either by deletion of any of single PASTA domain or by mutation of individual conserved residues lining the putative ligand-binding surface of the C-terminal PASTA repeat. These results define two distinct structural features necessary for PknB signal transduction, a fully extended ECD and a conserved, membrane-distal putative ligand-binding site. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Sarabipour, Sarvenaz; Hristova, Kalina
2016-07-01
The G380R mutation in the transmembrane domain of FGFR3 is a germline mutation responsible for most cases of Achondroplasia, a common form of human dwarfism. Here we use quantitative Fӧster Resonance Energy Transfer (FRET) and osmotically derived plasma membrane vesicles to study the effect of the achondroplasia mutation on the early stages of FGFR3 signaling in response to the ligands fgf1 and fgf2. Using a methodology that allows us to capture structural changes on the cytoplasmic side of the membrane in response to ligand binding to the extracellular domain of FGFR3, we observe no measurable effects of the G380R mutation on FGFR3 ligand-bound dimer configurations. Instead, the most notable effect of the achondroplasia mutation is increased propensity for FGFR3 dimerization in the absence of ligand. This work reveals new information about the molecular events that underlie the achondroplasia phenotype, and highlights differences in FGFR3 activation due to different single amino-acid pathogenic mutations. Copyright © 2016 Elsevier B.V. All rights reserved.
Pancera, Marie; Majeed, Shahzad; Ban, Yih-En Andrew; Chen, Lei; Huang, Chih-chin; Kong, Leopold; Stuckey, Jonathan; Zhou, Tongqing; Robinson, James E.; Schief, William R.; Sodroski, Joseph; Wyatt, Richard; Kwong, Peter D.
2009-01-01
The viral spike of HIV-1 is composed of three gp120 envelope glycoproteins attached noncovalently to three gp41 transmembrane molecules. Viral entry is initiated by binding to the CD4 receptor on the cell surface, which induces large conformational changes in gp120. These changes not only provide a model for receptor-triggered entry, but affect spike sensitivity to drug- and antibody-mediated neutralization. Although some of the details of the CD4-induced conformational change have been visualized by crystal structures and cryoelectron tomograms, the critical gp41-interactive region of gp120 was missing from previous atomic-level characterizations. Here we determine the crystal structure of an HIV-1 gp120 core with intact gp41-interactive region in its CD4-bound state, compare this structure to unliganded and antibody-bound forms to identify structurally invariant and plastic components, and use ligand-oriented cryoelectron tomograms to define component mobility in the viral spike context. Newly defined gp120 elements proximal to the gp41 interface complete a 7-stranded β-sandwich, which appeared invariant in conformation. Loop excursions emanating from the sandwich form three topologically separate—and structurally plastic—layers, topped off by the highly glycosylated gp120 outer domain. Crystal structures, cryoelectron tomograms, and interlayer chemistry were consistent with a mechanism in which the layers act as a shape-changing spacer, facilitating movement between outer domain and gp41-associated β-sandwich and providing for conformational diversity used in immune evasion. A “layered” gp120 architecture thus allows movement among alternative glycoprotein conformations required for virus entry and immune evasion, whereas a β-sandwich clamp maintains gp120–gp41 interaction and regulates gp41 transitions. PMID:20080564
Pancera, Marie; Majeed, Shahzad; Ban, Yih-En Andrew; Chen, Lei; Huang, Chih-chin; Kong, Leopold; Kwon, Young Do; Stuckey, Jonathan; Zhou, Tongqing; Robinson, James E; Schief, William R; Sodroski, Joseph; Wyatt, Richard; Kwong, Peter D
2010-01-19
The viral spike of HIV-1 is composed of three gp120 envelope glycoproteins attached noncovalently to three gp41 transmembrane molecules. Viral entry is initiated by binding to the CD4 receptor on the cell surface, which induces large conformational changes in gp120. These changes not only provide a model for receptor-triggered entry, but affect spike sensitivity to drug- and antibody-mediated neutralization. Although some of the details of the CD4-induced conformational change have been visualized by crystal structures and cryoelectron tomograms, the critical gp41-interactive region of gp120 was missing from previous atomic-level characterizations. Here we determine the crystal structure of an HIV-1 gp120 core with intact gp41-interactive region in its CD4-bound state, compare this structure to unliganded and antibody-bound forms to identify structurally invariant and plastic components, and use ligand-oriented cryoelectron tomograms to define component mobility in the viral spike context. Newly defined gp120 elements proximal to the gp41 interface complete a 7-stranded beta-sandwich, which appeared invariant in conformation. Loop excursions emanating from the sandwich form three topologically separate--and structurally plastic--layers, topped off by the highly glycosylated gp120 outer domain. Crystal structures, cryoelectron tomograms, and interlayer chemistry were consistent with a mechanism in which the layers act as a shape-changing spacer, facilitating movement between outer domain and gp41-associated beta-sandwich and providing for conformational diversity used in immune evasion. A "layered" gp120 architecture thus allows movement among alternative glycoprotein conformations required for virus entry and immune evasion, whereas a beta-sandwich clamp maintains gp120-gp41 interaction and regulates gp41 transitions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vitvitsky, Victor; Yadav, Pramod K.; An, Sojin
Hydrogen sulfide is a cardioprotective signaling molecule but is toxic at elevated concentrations. Red blood cells can synthesize H2S but, lacking organelles, cannot dispose of H2S via the mitochondrial sulfide oxidation pathway. We have recently shown that at high sulfide concentrations, ferric hemoglobin oxidizes H2S to a mixture of thiosulfate and iron-bound polysulfides in which the latter species predominates. Here, we report the crystal structure of human hemoglobin containing low spin ferric sulfide, the first intermediate in heme-catalyzed sulfide oxidation. The structure provides molecular insights into why sulfide is susceptible to oxidation in human hemoglobin but is stabilized against itmore » in HbI, a specialized sulfide-carrying hemoglobin from a mollusk adapted to life in a sulfide-rich environment. We have also captured a second sulfide bound at a postulated ligand entry/exit site in the α-subunit of hemoglobin, which, to the best of our knowledge, represents the first direct evidence for this site being used to access the heme iron. Hydrodisulfide, a postulated intermediate at the junction between thiosulfate and polysulfide formation, coordinates ferric hemoglobin and, in the presence of air, generated thiosulfate. At low sulfide/heme iron ratios, the product distribution between thiosulfate and iron-bound polysulfides was approximately equal. The iron-bound polysulfides were unstable at physiological glutathione concentrations and were reduced with concomitant formation of glutathione persulfide, glutathione disulfide, and H2S. Hence, although polysulfides are unlikely to be stable in the reducing intracellular milieu, glutathione persulfide could serve as a persulfide donor for protein persulfidation, a posttranslational modification by which H2S is postulated to signal.« less
Polymers for metal extractions in carbon dioxide
DeSimone, Joseph M.; Tumas, William; Powell, Kimberly R.; McCleskey, T. Mark; Romack, Timothy J.; McClain, James B.; Birnbaum, Eva R.
2001-01-01
A composition useful for the extraction of metals and metalloids comprises (a) carbon dioxide fluid (preferably liquid or supercritical carbon dioxide); and (b) a polymer in the carbon dioxide, the polymer having bound thereto a ligand that binds the metal or metalloid; with the ligand bound to the polymer at a plurality of locations along the chain length thereof (i.e., a plurality of ligands are bound at a plurality of locations along the chain length of the polymer). The polymer is preferably a copolymer, and the polymer is preferably a fluoropolymer such as a fluoroacrylate polymer. The extraction method comprises the steps of contacting a first composition containing a metal or metalloid to be extracted with a second composition, the second composition being as described above; and then extracting the metal or metalloid from the first composition into the second composition.
Cole, Jason C.
2017-01-01
Many ligand-discovery stories tell of the use of structures of protein–ligand complexes, but the contribution of structural chemistry is such a core part of finding and improving ligands that it is often overlooked. More than 800 000 crystal structures are available to the community through the Cambridge Structural Database (CSD). Individually, these structures can be of tremendous value and the collection of crystal structures is even more helpful. This article provides examples of how small-molecule crystal structures have been used to complement those of protein–ligand complexes to address challenges ranging from affinity, selectivity and bioavailability though to solubility. PMID:28291759
Uba, Abdullahi Ibrahim; Yelekçi, Kemal
2018-08-01
Human histone deacetylase 6 (HDAC6) has been shown to play a major role in oncogenic cell transformation via deacetylation of α-tubulin, making it a viable target of anticancer drug design and development. The crystal structure of HDAC6 catalytic domain 2 has been recently made available, providing avenues for structure-based drug design campaign. Here, in our continuous effort to identify potentially selective HDAC6 inhibitors, structure-based virtual screening of ∼72 461 compounds was carried out using Autodock Vina. The top 100 compounds with calculated ΔG < -10 kcal/mol were manually inspected for binding mode orientation. Furthermore, the top 20 compounds with reasonable binding modes were evaluated for selectivity by further docking against HDAC6 and HDAC7 using Autodock4. Four compounds with a carboxylic fragment, displayed potential selectivity for HDAC6 over HDAC7, and were found to have good druglike and ADMET properties. Their docking complexes were then submitted to 10 ns-molecular dynamics (MD) simulation using nanoscale MD (NAMD) software, to examine the stability of ligand binding modes. These predicted inhibitors remained bound to HDAC6 in the presence of water and ions, and the root-mean-square deviation (RMSD), radius of gyration (Rg) and nonbond distance (protein-ligand) profiles suggested that they might be stable over time of the simulation. This study may provide scaffolds for further lead optimization towards the design of HDAC6 inhibitors with improved selectivity. Copyright © 2018 Elsevier Ltd. All rights reserved.
Warfield, Becka M.
2017-01-01
RNA aptamers are oligonucleotides that bind with high specificity and affinity to target ligands. In the absence of bound ligand, secondary structures of RNA aptamers are generally stable, but single-stranded and loop regions, including ligand binding sites, lack defined structures and exist as ensembles of conformations. For example, the well-characterized theophylline-binding aptamer forms a highly stable binding site when bound to theophylline, but the binding site is unstable and disordered when theophylline is absent. Experimental methods have not revealed at atomic resolution the conformations that the theophylline aptamer explores in its unbound state. Consequently, in the present study we applied 21 microseconds of molecular dynamics simulations to structurally characterize the ensemble of conformations that the aptamer adopts in the absence of theophylline. Moreover, we apply Markov state modeling to predict the kinetics of transitions between unbound conformational states. Our simulation results agree with experimental observations that the theophylline binding site is found in many distinct binding-incompetent states and show that these states lack a binding pocket that can accommodate theophylline. The binding-incompetent states interconvert with binding-competent states through structural rearrangement of the binding site on the nanosecond to microsecond timescale. Moreover, we have simulated the complete theophylline binding pathway. Our binding simulations supplement prior experimental observations of slow theophylline binding kinetics by showing that the binding site must undergo a large conformational rearrangement after the aptamer and theophylline form an initial complex, most notably, a major rearrangement of the C27 base from a buried to solvent-exposed orientation. Theophylline appears to bind by a combination of conformational selection and induced fit mechanisms. Finally, our modeling indicates that when Mg2+ ions are present the population of binding-competent aptamer states increases more than twofold. This population change, rather than direct interactions between Mg2+ and theophylline, accounts for altered theophylline binding kinetics. PMID:28437473
Tice, Daniel B; Pike, Robert D; Bebout, Deborah C
2016-08-09
An unbranched N3O2 ligand 2,6-bis[((2-pyridinylmethyl)oxy)methyl]pyridine (L1) was used to prepare new mononuclear heteroleptic Group 12 perchlorate complexes characterized by IR, (1)H NMR and X-ray crystallography. Racemic complexes with pentadentate L1 and one to four oxygens from either water or perchlorate bound to a metal ion were structurally characterized. Octahedral [Zn(L1)(OH2)](ClO4)2 (1) and pentagonal bipyramidal [Cd(L1)(OH2)(OClO3)]ClO4 (2) structures were found with lighter congeners. The polymorphic forms of [Hg(L1)(ClO4)2] characterized (3 in P1[combining macron] and 4 in P21/c) had a mix of monodentate, anisobidentate and bidentate perchlorates, providing the first examples of a tricapped trigonal prismatic Hg(ii) coordination geometry, as well as additional examples of a rare square antiprismatic Hg(ii) coordination geometry. Solution state (1)H NMR characterization of the Group 12 complexes in CD3CN indicated intramolecular reorganization remained rapid under conditions where intermolecular M-L1 exchange was slow on the chemical shift time scale for Zn(ii) and on the J(M(1)H) time scale for Cd(ii) and Hg(ii). Solution studies with more than one equivalent of ligand also suggested that a complex with a 1 : 2 ratio of M : L1 contributed significantly to solution equilibria with Hg(ii) but not the other metal ions. The behavior of related linear pentadentate ligands with Group 12 perchlorate salts is discussed.
Chaudhary, Nitika; Sandhu, Padmani; Ahmed, Mushtaq; Akhter, Yusuf
2017-02-01
Trichothecenes are the sesquiterpenes secreted by Trichoderma spp. residing in the rhizosphere. These compounds have been reported to act as plant growth promoters and bio-control agents. The structural knowledge for the transporter proteins of their efflux remained limited. In this study, three-dimensional structure of Thmfs1 protein, a trichothecene transporter from Trichoderma harzianum, was homology modelled and further Molecular Dynamics (MD) simulations were used to decipher its mechanism. Fourteen transmembrane helices of Thmfs1 protein are observed contributing to an inward-open conformation. The transport channel and ligand binding sites in Thmfs1 are identified based on heuristic, iterative algorithm and structural alignment with homologous proteins. MD simulations were performed to reveal the differential structural behaviour occurring in the ligand free and ligand bound forms. We found that two discrete trichothecene binding sites are located on either side of the central transport tunnel running from the cytoplasmic side to the extracellular side across the Thmfs1 protein. Detailed analysis of the MD trajectories showed an alternative access mechanism between N and C-terminal domains contributing to its function. These results also demonstrate that the transport of trichodermin occurs via hopping mechanism in which the substrate molecule jumps from one binding site to another lining the transport tunnel. Copyright © 2016 Elsevier B.V. All rights reserved.
Ng, Simon; Lin, Edith; Kitov, Pavel I.; ...
2015-04-10
Here we describe an approach to accelerate the search for competitive inhibitors for carbohydrate-recognition domains (CRDs). Genetically encoded fragment-based-discovery (GE-FBD) uses selection of phagedisplayed glycopeptides to dock a glycan fragment at the CRD and guide selection of Synergistic peptide motifs adjacent to the CRD. Starting from concanavalin A (ConA), a mannose (Man)-binding protein, as a bait, we narrowed a library of 10 8 glycopeptides to 86 leads that share a consensus motif, Man-WYD. Validation of synthetic leads yielded Man-WYDLF that exhibited 40 50-fold enhancement in affinity over methyl α-D-mannopyranoside (MeMan). Lectin array Suggested specificity: Man-WYD derivative bound only to 3more » out of 17 proteins-ConA, LcH, and PSA-that bind to Man. An X-ray structure of ConA.:Man-WYD proved that the trimannoside core and Man-WYD exhibit identical CRD docking; but their extra-CRD binding modes are significantly. different. Still, they have comparable affinity and selectivity for various Man-binding proteins. The intriguing observation provides new insight into functional mimicry :of carbohydrates by peptide ligands. GE-FBD may provide an alternative to rapidly search for competitive inhibitors for lectins.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, Simon; Lin, Edith; Kitov, Pavel I.
Here we describe an approach to accelerate the search for competitive inhibitors for carbohydrate-recognition domains (CRDs). Genetically encoded fragment-based-discovery (GE-FBD) uses selection of phagedisplayed glycopeptides to dock a glycan fragment at the CRD and guide selection of Synergistic peptide motifs adjacent to the CRD. Starting from concanavalin A (ConA), a mannose (Man)-binding protein, as a bait, we narrowed a library of 10 8 glycopeptides to 86 leads that share a consensus motif, Man-WYD. Validation of synthetic leads yielded Man-WYDLF that exhibited 40 50-fold enhancement in affinity over methyl α-D-mannopyranoside (MeMan). Lectin array Suggested specificity: Man-WYD derivative bound only to 3more » out of 17 proteins-ConA, LcH, and PSA-that bind to Man. An X-ray structure of ConA.:Man-WYD proved that the trimannoside core and Man-WYD exhibit identical CRD docking; but their extra-CRD binding modes are significantly. different. Still, they have comparable affinity and selectivity for various Man-binding proteins. The intriguing observation provides new insight into functional mimicry :of carbohydrates by peptide ligands. GE-FBD may provide an alternative to rapidly search for competitive inhibitors for lectins.« less
Grouleff, Julie; Schiøtt, Birgit
2013-01-01
The competitive inhibitor cocaine and the non-competitive inhibitor ibogaine induce different conformational states of the human serotonin transporter. It has been shown from accessibility experiments that cocaine mainly induces an outward-facing conformation, while the non-competitive inhibitor ibogaine, and its active metabolite noribogaine, have been proposed to induce an inward-facing conformation of the human serotonin transporter similar to what has been observed for the endogenous substrate, serotonin. The ligand induced conformational changes within the human serotonin transporter caused by these three different types of ligands, substrate, non-competitive and competitive inhibitors, are studied from multiple atomistic molecular dynamics simulations initiated from a homology model of the human serotonin transporter. The results reveal that diverse conformations of the human serotonin transporter are captured from the molecular dynamics simulations depending on the type of the ligand bound. The inward-facing conformation of the human serotonin transporter is reached with noribogaine bound, and this state resembles a previously identified inward-facing conformation of the human serotonin transporter obtained from molecular dynamics simulation with bound substrate, but also a recently published inward-facing conformation of a bacterial homolog, the leucine transporter from Aquifex Aoelicus. The differences observed in ligand induced behavior are found to originate from different interaction patterns between the ligands and the protein. Such atomic-level understanding of how an inhibitor can dictate the conformational response of a transporter by ligand binding may be of great importance for future drug design. PMID:23776432
Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction.
Brylinski, Michal
2013-11-25
A common strategy for virtual screening considers a systematic docking of a large library of organic compounds into the target sites in protein receptors with promising leads selected based on favorable intermolecular interactions. Despite a continuous progress in the modeling of protein-ligand interactions for pharmaceutical design, important challenges still remain, thus the development of novel techniques is required. In this communication, we describe eSimDock, a new approach to ligand docking and binding affinity prediction. eSimDock employs nonlinear machine learning-based scoring functions to improve the accuracy of ligand ranking and similarity-based binding pose prediction, and to increase the tolerance to structural imperfections in the target structures. In large-scale benchmarking using the Astex/CCDC data set, we show that 53.9% (67.9%) of the predicted ligand poses have RMSD of <2 Å (<3 Å). Moreover, using binding sites predicted by recently developed eFindSite, eSimDock models ligand binding poses with an RMSD of 4 Å for 50.0-39.7% of the complexes at the protein homology level limited to 80-40%. Simulations against non-native receptor structures, whose mean backbone rearrangements vary from 0.5 to 5.0 Å Cα-RMSD, show that the ratio of docking accuracy and the estimated upper bound is at a constant level of ∼0.65. Pearson correlation coefficient between experimental and predicted by eSimDock Ki values for a large data set of the crystal structures of protein-ligand complexes from BindingDB is 0.58, which decreases only to 0.46 when target structures distorted to 3.0 Å Cα-RMSD are used. Finally, two case studies demonstrate that eSimDock can be customized to specific applications as well. These encouraging results show that the performance of eSimDock is largely unaffected by the deformations of ligand binding regions, thus it represents a practical strategy for across-proteome virtual screening using protein models. eSimDock is freely available to the academic community as a Web server at http://www.brylinski.org/esimdock .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pioszak, Augen A.; Parker, Naomi R.; Gardella, Thomas J.
2009-12-01
Parathyroid hormone (PTH) and PTH-related protein (PTHrP) are two related peptides that control calcium/phosphate homeostasis and bone development, respectively, through activation of the PTH/PTHrP receptor (PTH1R), a class B G protein-coupled receptor. Both peptides hold clinical interest for their capacities to stimulate bone formation. PTH and PTHrP display different selectivity for two distinct PTH1R conformations, but how their binding to the receptor differs is unclear. The high resolution crystal structure of PTHrP bound to the extracellular domain (ECD) of PTH1R reveals that PTHrP binds as an amphipathic {alpha}-helix to the same hydrophobic groove in the ECD as occupied by PTH,more » but in contrast to a straight, continuous PTH helix, the PTHrP helix is gently curved and C-terminally 'unwound.' The receptor accommodates the altered binding modes by shifting the side chain conformations of two residues within the binding groove: Leu-41 and Ile-115, the former acting as a rotamer toggle switch to accommodate PTH/PTHrP sequence divergence, and the latter adapting to the PTHrP curvature. Binding studies performed with PTH/PTHrP hybrid ligands having reciprocal exchanges of residues involved in different contacts confirmed functional consequences for the altered interactions and enabled the design of altered PTH and PTHrP peptides that adopt the ECD-binding mode of the opposite peptide. Hybrid peptides that bound the ECD poorly were selective for the G protein-coupled PTH1R conformation. These results establish a molecular model for better understanding of how two biologically distinct ligands can act through a single receptor and provide a template for designing better PTH/PTHrP therapeutics.« less
Moritsugu, Kei; Koike, Ryotaro; Yamada, Kouki; Kato, Hiroaki; Kidera, Akinori
2015-01-01
Molecular dynamics (MD) simulations of proteins provide important information to understand their functional mechanisms, which are, however, likely to be hidden behind their complicated motions with a wide range of spatial and temporal scales. A straightforward and intuitive analysis of protein dynamics observed in MD simulation trajectories is therefore of growing significance with the large increase in both the simulation time and system size. In this study, we propose a novel description of protein motions based on the hierarchical clustering of fluctuations in the inter-atomic distances calculated from an MD trajectory, which constructs a single tree diagram, named a “Motion Tree”, to determine a set of rigid-domain pairs hierarchically along with associated inter-domain fluctuations. The method was first applied to the MD trajectory of substrate-free adenylate kinase to clarify the usefulness of the Motion Tree, which illustrated a clear-cut dynamics picture of the inter-domain motions involving the ATP/AMP lid and the core domain together with the associated amplitudes and correlations. The comparison of two Motion Trees calculated from MD simulations of ligand-free and -bound glutamine binding proteins clarified changes in inherent dynamics upon ligand binding appeared in both large domains and a small loop that stabilized ligand molecule. Another application to a huge protein, a multidrug ATP binding cassette (ABC) transporter, captured significant increases of fluctuations upon binding a drug molecule observed in both large scale inter-subunit motions and a motion localized at a transmembrane helix, which may be a trigger to the subsequent structural change from inward-open to outward-open states to transport the drug molecule. These applications demonstrated the capabilities of Motion Trees to provide an at-a-glance view of various sizes of functional motions inherent in the complicated MD trajectory. PMID:26148295
Ambrosi, Gianluca; Formica, Mauro; Fusi, Vieri; Giorgi, Luca; Macedi, Eleonora; Micheloni, Mauro; Paoli, Paola; Pontellini, Roberto; Rossi, Patrizia
2011-02-01
Binding properties of 24,29-dimethyl-6,7,15,16-tetraoxotetracyclo[19.5.5.0(5,8).0(14,17)]-1,4,9,13,18,21,24,29-octaazaenatriaconta-Δ(5,8),Δ(14,17)-diene ligand L towards Zn(II) and anions, such as the halide series and inorganic oxoanions (phosphate (Pi), sulfate, pyrophosphate (PPi), and others), were investigated in aqueous solution; in addition, the Zn(II)/L system was tested as a metal-ion-based receptor for the halide series. Ligand L is a cryptand receptor incorporating two squaramide functions in an over-structured chain that connects two opposite nitrogen atoms of the Me(2)[12]aneN(4) polyaza macrocyclic base. It binds Zn(II) to form mononuclear species in which the metal ion, coordinated by the Me(2)[12]aneN(4) moiety, lodges inside the three-dimensional cavity. Zn(II)-containing species are able to bind chloride and fluoride at the physiologically important pH value of 7.4; the anion is coordinated to the metal center but the squaramide units play the key role in stabilizing the anion through a hydrogen-bonding network; two crystal structures reported here clearly show this aspect. Free L is able to bind fluoride, chloride, bromide, sulfate, Pi, and PPi in aqueous solution. The halides are bound at acidic pH, whereas the oxoanions are bound in a wide range of pH values ranging from acidic to basic. The cryptand cavity, abundant in hydrogen-bonding sites at all pH values, allows excellent selectivity towards Pi to be achieved mainly at physiological pH 7.4. By joining amine and squaramide moieties and using this preorganized topology, it was possible, with preservation of the solubility of the receptor, to achieve a very wide pH range in which oxoanions can be bound. The good selectivity towards Pi allows its discrimination in a manner not easily obtainable with nonmetallic systems in aqueous environment. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Application of Shape Similarity in Pose Selection and Virtual Screening in CSARdock2014 Exercise.
Kumar, Ashutosh; Zhang, Kam Y J
2016-06-27
To evaluate the applicability of shape similarity in docking-based pose selection and virtual screening, we participated in the CSARdock2014 benchmark exercise for identifying the correct docking pose of inhibitors targeting factor XA, spleen tyrosine kinase, and tRNA methyltransferase. This exercise provides a valuable opportunity for researchers to test their docking programs, methods, and protocols in a blind testing environment. In the CSARdock2014 benchmark exercise, we have implemented an approach that uses ligand 3D shape similarity to facilitate docking-based pose selection and virtual screening. We showed here that ligand 3D shape similarity between bound poses could be used to identify the native-like pose from an ensemble of docking-generated poses. Our method correctly identified the native pose as the top-ranking pose for 73% of test cases in a blind testing environment. Moreover, the pose selection results also revealed an excellent correlation between ligand 3D shape similarity scores and RMSD to X-ray crystal structure ligand. In the virtual screening exercise, the average RMSD for our pose prediction was found to be 1.02 Å, and it was one of the top performances achieved in CSARdock2014 benchmark exercise. Furthermore, the inclusion of shape similarity improved virtual screening performance of docking-based scoring and ranking. The coefficient of determination (r(2)) between experimental activities and docking scores for 276 spleen tyrosine kinase inhibitors was found to be 0.365 but reached 0.614 when the ligand 3D shape similarity was included.
Christoforou, Anna Maria; Marzilli, Patricia A; Fronczek, Frank R; Marzilli, Luigi G
2007-12-24
Polyamine ligands (L) have excellent binding characteristics for the formation of fac-99mTc(CO)3-based radiopharmaceuticals. Normally, these L are elaborated so as to leave pendant groups designed to impart useful biodistribution characteristics to the fac-[99mTc(CO)3L] imaging agent. Our goal is to lay a foundation for understanding the features of the bound elaborated ligands by using the fac-[Re(CO)3L]-analogue approach with the minimal prototypical ligands, diethylenetriamine (dien) or simple dien-related derivatives. Treatment of the fac-[Re(CO)3(H2O)3]+ cation with such triamine (NNN) ligands afforded fac-[Re(CO)3L]+ complexes. Ligand variations included having a central amine thioether donor, thus allowing X-ray crystallographic and NMR spectroscopic comparisons of fac-[Re(CO)3L]+ complexes with NNN and NSN ligands. fac-[Re(CO)3L]+ complexes with two terminal exo-NH groups exhibit unusually far upfield exo-NH NMR signals in DMSO-d6. Upon the addition of Cl-, these exo-NH signals move downfield, while the signals of any endo-NH or central NH groups move very little. This behavior is attributed to the formation of 1:1 ion pairs having selective Cl- hydrogen bonding to both exo-NH groups. Base addition to a DMSO-d6 solution of meso-exo-[Re(CO)3(N,N',N''-Me3dien)]PF6 led to isomerization of only one NHMe group, producing the chiral isomer. The meso isomer did not form. The [Re(CO)3(N,N,N',N'',N''-pentamethyldiethylenetriamine)]triflate.[Re(CO)3(mu3-OH)]4.3.35H2O crystal, the first structure with a fac-[Re(CO)3L] complex cocrystallized with this well-known cluster, provided parameters for a bulky NNN ligand and also reveals CO-CO interlocking intermolecular interactions that could stabilize the crystal.
Structure of the human smoothened receptor 7TM bound to an antitumor agent
Wang, Chong; Wu, Huixian; Katritch, Vsevolod; Han, Gye Won; Huang, Xi-Ping; Liu, Wei; Siu, Fai Yiu; Roth, Bryan L.; Cherezov, Vadim; Stevens, Raymond C.
2013-01-01
The smoothened (SMO) receptor, a key signal transducer in the Hedgehog (Hh) signaling pathway is both responsible for the maintenance of normal embryonic development and implicated in carcinogenesis. The SMO receptor is classified as a class Frizzled (class F) G protein-coupled receptor (GPCR), although the canonical Hh signaling pathway involves the transcription factor Gli and the sequence similarity with class A GPCRs is less than 10%. Here we report the crystal structure at 2.5 Å resolution of the transmembrane domain of the human SMO receptor bound to the small molecule antagonist LY2940680. Although the SMO receptor shares the seven transmembrane helical (7TM) fold, most conserved motifs for class A GPCRs are absent, and the structure reveals an unusually complex arrangement of long extracellular loops stabilized by four disulfide bonds. The ligand binds at the extracellular end of the 7TM bundle and forms extensive contacts with the loops. PMID:23636324
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Serrano, V.S.; Davis, M.F.; Gaff, J.F.
X-ray crystal structures of the metcyano form of dehaloperoxidase-hemoglobin (DHP A) from Amphitrite ornata (DHPCN) and the C73S mutant of DHP A (C73SCN) were determined using synchrotron radiation in order to further investigate the geometry of diatomic ligands coordinated to the heme iron. The DHPCN structure was also determined using a rotating-anode source. The structures show evidence of photoreduction of the iron accompanied by dissociation of bound cyanide ion (CN{sup -}) that depend on the intensity of the X-ray radiation and the exposure time. The electron density is consistent with diatomic molecules located in two sites in the distal pocketmore » of DHPCN. However, the identities of the diatomic ligands at these two sites are not uniquely determined by the electron-density map. Consequently, density functional theory calculations were conducted in order to determine whether the bond lengths, angles and dissociation energies are consistent with bound CN{sup -} or O{sub 2} in the iron-bound site. In addition, molecular-dynamics simulations were carried out in order to determine whether the dynamics are consistent with trapped CN{sup -} or O{sub 2} in the second site of the distal pocket. Based on these calculations and comparison with a previously determined X-ray crystal structure of the C73S-O{sub 2} form of DHP [de Serrano et al. (2007), Acta Cryst. D63, 1094-1101], it is concluded that CN{sup -} is gradually replaced by O{sub 2} as crystalline DHP is photoreduced at 100 K. The ease of photoreduction of DHP A is consistent with the reduction potential, but suggests an alternative activation mechanism for DHP A compared with other peroxidases, which typically have reduction potentials that are 0.5 V more negative. The lability of CN{sup -} at 100 K suggests that the distal pocket of DHP A has greater flexibility than most other hemoglobins.« less
A novel formulation of veggies with potent liver detoxifying activity.
Jain, Mohit M; Kumari, Nirmala; Rai, Geeta
2015-01-01
LXR (encoded by NR1H2 and 3) and FXR (known as bile acid receptor) encoded by NR1H4 (nuclear receptor subfamily 1, group H and member 4) are nuclear receptors in humans and are important regulators of bile acid production, cholesterol, fatty acid and glucose homeostasis hence responsible for liver detoxification. Several strategies for drug design with numerous ligands for this target have failed owing to the inability of the ligand to access the target/receptor or their early metabolisation. In this work, we have evaluated FXR and LXR structure bound with agonist and compared the binding energy affinity of active ligands present in live green-real veggies with reference drugs (ligands) present in the market. A high throughput screening combined with molecular docking, absorption, distribution, metabolism, excretion and toxicity (ADMET) predictions, log P values and percentage of human oral absorption value led to the identification of two compounds present in live green-real veggies with strong potential for liver detoxification.
NALDB: nucleic acid ligand database for small molecules targeting nucleic acid.
Kumar Mishra, Subodh; Kumar, Amit
2016-01-01
Nucleic acid ligand database (NALDB) is a unique database that provides detailed information about the experimental data of small molecules that were reported to target several types of nucleic acid structures. NALDB is the first ligand database that contains ligand information for all type of nucleic acid. NALDB contains more than 3500 ligand entries with detailed pharmacokinetic and pharmacodynamic information such as target name, target sequence, ligand 2D/3D structure, SMILES, molecular formula, molecular weight, net-formal charge, AlogP, number of rings, number of hydrogen bond donor and acceptor, potential energy along with their Ki, Kd, IC50 values. All these details at single platform would be helpful for the development and betterment of novel ligands targeting nucleic acids that could serve as a potential target in different diseases including cancers and neurological disorders. With maximum 255 conformers for each ligand entry, our database is a multi-conformer database and can facilitate the virtual screening process. NALDB provides powerful web-based search tools that make database searching efficient and simplified using option for text as well as for structure query. NALDB also provides multi-dimensional advanced search tool which can screen the database molecules on the basis of molecular properties of ligand provided by database users. A 3D structure visualization tool has also been included for 3D structure representation of ligands. NALDB offers an inclusive pharmacological information and the structurally flexible set of small molecules with their three-dimensional conformers that can accelerate the virtual screening and other modeling processes and eventually complement the nucleic acid-based drug discovery research. NALDB can be routinely updated and freely available on bsbe.iiti.ac.in/bsbe/naldb/HOME.php. Database URL: http://bsbe.iiti.ac.in/bsbe/naldb/HOME.php. © The Author(s) 2016. Published by Oxford University Press.
Muegge, I; Martin, Y C
1999-03-11
A fast, simplified potential-based approach is presented that estimates the protein-ligand binding affinity based on the given 3D structure of a protein-ligand complex. This general, knowledge-based approach exploits structural information of known protein-ligand complexes extracted from the Brookhaven Protein Data Bank and converts it into distance-dependent Helmholtz free interaction energies of protein-ligand atom pairs (potentials of mean force, PMF). The definition of an appropriate reference state and the introduction of a correction term accounting for the volume taken by the ligand were found to be crucial for deriving the relevant interaction potentials that treat solvation and entropic contributions implicitly. A significant correlation between experimental binding affinities and computed score was found for sets of diverse protein-ligand complexes and for sets of different ligands bound to the same target. For 77 protein-ligand complexes taken from the Brookhaven Protein Data Bank, the calculated score showed a standard deviation from observed binding affinities of 1.8 log Ki units and an R2 value of 0.61. The best results were obtained for the subset of 16 serine protease complexes with a standard deviation of 1.0 log Ki unit and an R2 value of 0.86. A set of 33 inhibitors modeled into a crystal structure of HIV-1 protease yielded a standard deviation of 0.8 log Ki units from measured inhibition constants and an R2 value of 0.74. In contrast to empirical scoring functions that show similar or sometimes better correlation with observed binding affinities, our method does not involve deriving specific parameters that fit the observed binding affinities of protein-ligand complexes of a given training set. We compared the performance of the PMF score, Böhm's score (LUDI), and the SMOG score for eight different test sets of protein-ligand complexes. It was found that for the majority of test sets the PMF score performs best. The strength of the new approach presented here lies in its generality as no knowledge about measured binding affinities is needed to derive atomic interaction potentials. The use of the new scoring function in docking studies is outlined.
Zubrienė, Asta; Matulienė, Jurgita; Baranauskienė, Lina; Jachno, Jelena; Torresan, Jolanta; Michailovienė, Vilma; Cimmperman, Piotras; Matulis, Daumantas
2009-01-01
The analysis of tight protein-ligand binding reactions by isothermal titration calorimetry (ITC) and thermal shift assay (TSA) is presented. The binding of radicicol to the N-terminal domain of human heat shock protein 90 (Hsp90αN) and the binding of ethoxzolamide to human carbonic anhydrase (hCAII) were too strong to be measured accurately by direct ITC titration and therefore were measured by displacement ITC and by observing the temperature-denaturation transitions of ligand-free and ligand-bound protein. Stabilization of both proteins by their ligands was profound, increasing the melting temperature by more than 10 ºC, depending on ligand concentration. Analysis of the melting temperature dependence on the protein and ligand concentrations yielded dissociation constants equal to 1 nM and 2 nM for Hsp90αN-radicicol and hCAII-ethoxzolamide, respectively. The ligand-free and ligand-bound protein fractions melt separately, and two melting transitions are observed. This phenomenon is especially pronounced when the ligand concentration is equal to about half the protein concentration. The analysis compares ITC and TSA data, accounts for two transitions and yields the ligand binding constant and the parameters of protein stability, including the Gibbs free energy and the enthalpy of unfolding. PMID:19582223
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fay, S.P.; Domalewski, M.D.; Houghton, T.G.
1994-02-01
Environmentally sensitive molecules have many potential cellular applications. The authors have investigated the utility of a pH sensitive ligand for the formyl peptide receptor, CHO-Met-Leu-Phe-Phe-Lys (SNAFL)-OH (SNAFL-seminaphthofluorescein), because in previous studies protonation has been used to explain the quenching when the fluorescinated formyl pentapeptide ligand binds to this receptor. Moreover, acidification in intracellular compartments is a general mechanism occurring in cells during processing of ligand-receptor complexes. Because the protonated form of SNAFL is excited at 488 nm with emission at 530 nm and the unprotonated form is excited at 568 nm with emission at 650 nm, the ratio of protonatedmore » and unprotonated forms can be examined by multiparameter flow cytometry. The authors found that the receptor-bound ligand is sensitive to both the extracellular and intracellular pH. There is a small increase in the pK[sub a] of the ligand upon binding to the receptor consistent with protonation in the binding pocket. Once internalized, spectral changes in the probe consistent with acidification and ligand dissociation from the receptor are observed. 22 refs., 4 figs.« less
Control of scavenger receptor-mediated endocytosis by novel ligands of different length.
Guaderrama-Díaz, Margarita; Solís, Carlos F; Velasco-Loyden, Gabriela; Laclette, Juan P; Mas-Oliva, Jaime
2005-03-01
The scavenger receptor recognized as a multiligand family of receptors falls in the group that is internalised through endocytosis. In this report we used several recombinant fragments of the tapeworm protein paramyosin, known to form filamentous dimers that bind collagenous structures as ligands of different length for the class A type I scavenger receptor (SR-AI). While native CHO cells are unresponsive to any of the recombinant fragments, it is shown that CHO cells transfected with this receptor efficiently internalise recombinant fragments that correspond to two thirds of the full-length paramyosin. In contrast, recombinant products corresponding to one-third of the full-length paramyiosin are not internalised. It is also shown that important molecules in the organization of the coated pit, are enriched when the two-thirds long paramyosin fragments were bound and internalised through the SR-AI. Moreover, internalisation of these fragments trigger a classical apoptotic pathway shown by the presence of TUNEL positive cells and the appearance of apoptotic bodies. We report paramyosin as a new ligand for the scavenger receptor and provide evidence supporting the notion that these receptors upon the formation of arrays with length-specific molecules, not only trigger endocytosis but also seem to regulate the synthesis of molecules involved in the organization of coated pits.
Structural basis for Smoothened receptor modulation and chemoresistance to anti-cancer drugs
Wang, Chong; Wu, Huixian; Evron, Tama; Vardy, Eyal; Han, Gye Won; Huang, Xi-Ping; Hufeisen, Sandy J.; Mangano, Thomas J.; Urban, Dan J.; Katritch, Vsevolod; Cherezov, Vadim; Caron, Marc G.; Roth, Bryan L.; Stevens, Raymond C.
2014-01-01
The Smoothened receptor (SMO) mediates signal transduction in the hedgehog pathway, which is implicated in normal development and carcinogenesis. SMO antagonists can suppress the growth of some tumors; however, mutations at SMO have been found to abolish their anti-tumor effects, a phenomenon known as chemoresistance. Here we report three crystal structures of human SMO bound to the antagonists SANT1 and Anta XV, and the agonist, SAG1.5, at 2.6–2.8Å resolution. The long and narrow cavity in the transmembrane domain of SMO harbors multiple ligand binding sites, where SANT1 binds at a deeper site as compared with other ligands. Distinct interactions at D4736.55 elucidated the structural basis for the differential effects of chemoresistance mutations on SMO antagonists. The agonist SAG1.5 induces a conformational rearrangement of the binding pocket residues, which could contribute to SMO activation. Collectively, these studies reveal the structural basis for the modulation of SMO by small molecules. PMID:25008467
Guschin, Dmitrii A; Castillo, John; Dimcheva, Nina; Schuhmann, Wolfgang
2010-10-01
The design of polymers carrying suitable ligands for coordinating Os complexes in ligand exchange reactions against labile chloro ligands is a strategy for the synthesis of redox polymers with bound Os centers which exhibit a wide variation in their redox potential. This strategy is applied to polymers with an additional variation of the properties of the polymer backbone with respect to pH-dependent solubility, monomer composition, hydrophilicity etc. A library of Os-complex-modified electrodeposition polymers was synthesized and initially tested with respect to their electron-transfer ability in combination with enzymes such as glucose oxidase, cellobiose dehydrogenase, and PQQ-dependent glucose dehydrogenase entrapped during the pH-induced deposition process. The different polymer-bound Os complexes in a library containing 50 different redox polymers allowed the statistical evaluation of the impact of an individual ligand to the overall redox potential of an Os complex. Using a simple linear regression algorithm prediction of the redox potential of Os complexes becomes feasible. Thus, a redox polymer can now be designed to optimally interact in electron-transfer reactions with a selected enzyme.
Disorder and function: a review of the dehydrin protein family
Graether, Steffen P.; Boddington, Kelly F.
2014-01-01
Dehydration proteins (dehydrins) are group 2 members of the late embryogenesis abundant (LEA) protein family. The protein architecture of dehydrins can be described by the presence of three types of conserved sequence motifs that have been named the K-, Y-, and S-segments. By definition, a dehydrin must contain at least one copy of the lysine-rich K-segment. Abiotic stresses such as drought, cold, and salinity cause the upregulation of dehydrin mRNA and protein levels. Despite the large body of genetic and protein evidence of the importance of these proteins in stress response, the in vivo protective mechanism is not fully known. In vitro experimental evidence from biochemical assays and localization experiments suggests multiple roles for dehydrins, including membrane protection, cryoprotection of enzymes, and protection from reactive oxygen species. Membrane binding by dehydrins is likely to be as a peripheral membrane protein, since the protein sequences are highly hydrophilic and contain many charged amino acids. Because of this, dehydrins in solution are intrinsically disordered proteins, that is, they have no well-defined secondary or tertiary structure. Despite their disorder, dehydrins have been shown to gain structure when bound to ligands such as membranes, and to possibly change their oligomeric state when bound to ions. We review what is currently known about dehydrin sequences and their structures, and examine the various ligands that have been shown to bind to this family of proteins. PMID:25400646
Wu, Jun; Wu, Minjie; Li, Chunping; Yu, Guanghui
2014-01-01
The binding characteristics of organic ligands and minerals in fulvic acids (FAs) with Al are essential for understanding soil C sequestration, remain poorly understood. In this study, Fourier transform infrared (FTIR) spectroscopy combined with two-dimensional correlation spectroscopy (2DCOS) analysis was applied for the first time to explore the binding of Al with organic ligands and minerals in soil FAs. For these analyses, two contrasting treatments were selected from a long-term (i.e., 22-year) fertilization experiment: chemical (NPK) fertilization and swine manure (SM) fertilization. The results showed that the long-term application of organic and inorganic fertilizers to soils had little effect on the compositions of the fluorescent substances and organic ligands in the soil FAs. However, long-term SM fertilization increased the weathered Al and Si concentrations in the soil FAs compared with long-term chemical fertilization. Furthermore, organic ligands in the soil FAs were mainly bound with Al in the NPK treatment, whereas both organic ligands and minerals (Al-O-Si, Si-O) were bound with Al under the M fertilization conditions. Both transmission electron microscopy (TEM) images and X-ray diffraction spectra demonstrated that amorphous and short-range-ordered nanominerals were abundant in the soil FAs from the SM plot in contrast to the soil FAs from the NPK plot. This result illustrates the role nanominerals play in the preservation of soil FAs by during long-term organic fertilization. In summary, the combination of FTIR and 2D correlation spectroscopy is a promising approach for the characterization of the binding capability between soil FAs and Al, and a better understanding FA-Al binding capability will greatly contribute to global C cycling. PMID:25137372
Fadda, Elisa; Woods, Robert J
2011-10-11
The ability of ligands to displace conserved water molecules in protein binding sites is of significant interest in drug design and is particularly pertinent in the case of glycomimetic drugs. This concept was explored in previous work [ Clarke et al. J. Am. Chem. Soc. 2001 , 123 , 12238 - 12247 and Kadirvelraj et al. J. Am. Chem. Soc. 2008 , 130 , 16933 - 16942 ] for a highly conserved water molecule located in the binding site of the prototypic carbohydrate-binding protein Concanavalin A (Con A). A synthetic ligand was designed with the aim of displacing such water. While the synthetic ligand bound to Con A in an analogous manner to that of the natural ligand, crystallographic analysis demonstrated that it did not displace the conserved water. In order to quantify the affinity of this particular water for the Con A surface, we report here the calculated standard binding free energy for this water in both ligand-bound and free Con A, employing three popular water models: TIP3P, TIP4P, and TIP5P. Although each model was developed to perform well in simulations of bulk-phase water, the computed binding energies for the isolated water molecule displayed a high sensitivity to the model. Both molecular dynamics simulation and free energy results indicate that the choice of water model may greatly influence the characterization of surface water molecules as conserved (TIP5P) or not (TIP3P) in protein binding sites, an observation of considerable significance to rational drug design. Structural and theoretical aspects at the basis of the different behaviors are identified and discussed.
Podder, Avijit; Pandey, Deeksha; Latha, N
2016-04-01
Dopamine receptors (DR) are neuronal cell surface proteins that mediate the action of neurotransmitter dopamine in brain. Dopamine receptor D2 (DRD2) that belongs to G-protein coupled receptors (GPCR) family is a major therapeutic target for of various neurological and psychiatric disorders in human. The third inter cellular loop (ICL3) in DRD2 is essential for coupling G proteins and several signaling scaffold proteins. A mutation in ICL3 can interfere with this binding interface, thereby altering the DRD2 signaling. In this study we have examined the deleterious effect of serine to cysteine mutation at position 311 (S311C) in the ICL3 region that is implicated in diseases like schizophrenia and alcoholism. An in silico structure modeling approach was employed to determine the wild type (WT) and mutant S311C structures of DRD2, scaffold proteins - Gαi/o and NEB2. Protein-ligand docking protocol was exercised to predict the interactions of natural agonist dopamine with both the WT and mutant structures of DRD2. Besides, atomistic molecular dynamics (MD) simulations were performed to provide insights into essential dynamics of the systems-unbound and dopamine bound DRD2 (WT and mutant) and three independent simulations for Gαi, Gαo and NEB2 systems. To provide information on intra-molecular arrangement of the structures, a comprehensive residue interactions network of both dopamine bound WT and mutant DRD2 protein were studied. We also employed a protein-protein docking strategy to find the interactions of scaffold proteins - Gαi/o and NEB2 with both dopamine bound WT and mutant structures of DRD2. We observed a marginal effect of the mutation in dopamine binding mechanism on the trajectories analyzed. However, we noticed a significant structural alteration of the mutant receptor which affects Gαi/o and NEB2 binding that can be causal for malfunctioning in cAMP-dependent signaling and Ca(+) homeostasis in the brain dopaminergic system leading to neuropsychiatric disorders. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Fujimoto, Zui; Suzuki, Rintaro; Shiotsuki, Takahiro; Tsuchiya, Wataru; Tase, Akira; Momma, Mitsuru; Yamazaki, Toshimasa
2013-01-01
Juvenile hormones (JHs) control a diversity of crucial life events in insects. In Lepidoptera which major agricultural pests belong to, JH signaling is critically controlled by a species-specific high-affinity, low molecular weight JH-binding protein (JHBP) in hemolymph, which transports JH from the site of its synthesis to target tissues. Hence, JHBP is expected to be an excellent target for the development of novel specific insect growth regulators (IGRs) and insecticides. A better understanding of the structural biology of JHBP should pave the way for the structure-based drug design of such compounds. Here, we report the crystal structure of the silkworm Bombyx mori JHBP in complex with two molecules of 2-methyl-2,4-pentanediol (MPD), one molecule (MPD1) bound in the JH-binding pocket while the other (MPD2) in a second cavity. Detailed comparison with the apo-JHBP and JHBP-JH II complex structures previously reported by us led to a number of intriguing findings. First, the JH-binding pocket changes its size in a ligand-dependent manner due to flexibility of the gate α1 helix. Second, MPD1 mimics interactions of the epoxide moiety of JH previously observed in the JHBP-JH complex, and MPD can compete with JH in binding to the JH-binding pocket. We also confirmed that methoprene, which has an MPD-like structure, inhibits the complex formation between JHBP and JH while the unepoxydated JH III (methyl farnesoate) does not. These findings may open the door to the development of novel IGRs targeted against JHBP. Third, binding of MPD to the second cavity of JHBP induces significant conformational changes accompanied with a cavity expansion. This finding, together with MPD2-JHBP interaction mechanism identified in the JHBP-MPD complex, should provide important guidance in the search for the natural ligand of the second cavity. PMID:23437107
Structural basis for the glycosyltransferase activity of the Salmonella effector SseK3.
Esposito, Diego; Günster, Regina A; Martino, Luigi; El Omari, Kamel; Wagner, Armin; Thurston, Teresa L M; Rittinger, Katrin
2018-04-06
The Salmonella -secreted effector SseK3 translocates into host cells, targeting innate immune responses, including NF-κB activation. SseK3 is a glycosyltransferase that transfers an N -acetylglucosamine (GlcNAc) moiety onto the guanidino group of a target arginine, modulating host cell function. However, a lack of structural information has precluded elucidation of the molecular mechanisms in arginine and GlcNAc selection. We report here the crystal structure of SseK3 in its apo form and in complex with hydrolyzed UDP-GlcNAc. SseK3 possesses the typical glycosyltransferase type-A (GT-A)-family fold and the metal-coordinating D X D motif essential for ligand binding and enzymatic activity. Several conserved residues were essential for arginine GlcNAcylation and SseK3-mediated inhibition of NF-κB activation. Isothermal titration calorimetry revealed SseK3's preference for manganese coordination. The pattern of interactions in the substrate-bound SseK3 structure explained the selection of the primary ligand. Structural rearrangement of the C-terminal residues upon ligand binding was crucial for SseK3's catalytic activity, and NMR analysis indicated that SseK3 has limited UDP-GlcNAc hydrolysis activity. The release of free N -acetyl α-d-glucosamine, and the presence of the same molecule in the SseK3 active site, classified it as a retaining glycosyltransferase. A glutamate residue in the active site suggested a double-inversion mechanism for the arginine N -glycosylation reaction. Homology models of SseK1, SseK2, and the Escherichia coli orthologue NleB1 reveal differences in the surface electrostatic charge distribution, possibly accounting for their diverse activities. This first structure of a retaining GT-A arginine N -glycosyltransferase provides an important step toward a better understanding of this enzyme class and their roles as bacterial effectors. © 2018 Esposito et al.
Johnson, Joseph L; Cusack, Bernadette; Davies, Matthew P; Fauq, Abdul; Rosenberry, Terrone L
2003-05-13
Acetylcholinesterase (AChE) contains a narrow and deep active site gorge with two sites of ligand binding, an acylation site (or A-site) at the base of the gorge, and a peripheral site (or P-site) near the gorge entrance. The P-site contributes to catalytic efficiency by transiently binding substrates on their way to the acylation site, where a short-lived acyl enzyme intermediate is produced. A conformational interaction between the A- and P-sites has recently been found to modulate ligand affinities. We now demonstrate that this interaction is of functional importance by showing that the acetylation rate constant of a substrate bound to the A-site is increased by a factor a when a second molecule of substrate binds to the P-site. This demonstration became feasible through the introduction of a new acetanilide substrate analogue of acetylcholine, 3-(acetamido)-N,N,N-trimethylanilinium (ATMA), for which a = 4. This substrate has a low acetylation rate constant and equilibrates with the catalytic site, allowing a tractable algebraic solution to the rate equation for substrate hydrolysis. ATMA affinities for the A- and P-sites deduced from the kinetic analysis were confirmed by fluorescence titration with thioflavin T as a reporter ligand. Values of a >1 give rise to a hydrolysis profile called substrate activation, and the AChE site-specific mutant W86F, and to a lesser extent wild-type human AChE itself, showed substrate activation with acetylthiocholine as the substrate. Substrate activation was incorporated into a previous catalytic scheme for AChE in which a bound P-site ligand can also block product dissociation from the A-site, and two additional features of the AChE catalytic pathway were revealed. First, the ability of a bound P-site ligand to increase the substrate acetylation rate constant varied with the structure of the ligand: thioflavin T accelerated ATMA acetylation by a factor a(2) of 1.3, while propidium failed to accelerate. Second, catalytic rate constants in the initial intermediate formed during acylation (EAP, where EA is the acyl enzyme and P is the alcohol leaving group cleaved from the ester substrate) may be constrained such that the leaving group P must dissociate before hydrolytic deacylation can occur.
Decoding the Role of Water Dynamics in Ligand-Protein Unbinding: CRF1R as a Test Case.
Bortolato, Andrea; Deflorian, Francesca; Weiss, Dahlia R; Mason, Jonathan S
2015-09-28
The residence time of a ligand-protein complex is a crucial aspect in determining biological effect in vivo. Despite its importance, the prediction of ligand koff still remains challenging for modern computational chemistry. We have developed aMetaD, a fast and generally applicable computational protocol to predict ligand-protein unbinding events using a molecular dynamics (MD) method based on adiabatic-bias MD and metadynamics. This physics-based, fully flexible, and pose-dependent ligand scoring function evaluates the maximum energy (RTscore) required to move the ligand from the bound-state energy basin to the next. Unbinding trajectories are automatically analyzed and translated into atomic solvation factor (SF) values representing the water dynamics during the unbinding event. This novel computational protocol was initially tested on two M3 muscarinic receptor and two adenosine A2A receptor antagonists and then evaluated on a test set of 12 CRF1R ligands. The resulting RTscores were used successfully to classify ligands with different residence times. Additionally, the SF analysis was used to detect key differences in the degree of accessibility to water molecules during the predicted ligand unbinding events. The protocol provides actionable working hypotheses that are applicable in a drug discovery program for the rational optimization of ligand binding kinetics.
Sen, Kakali; Horrell, Sam; Kekilli, Demet; Yong, Chin W; Keal, Thomas W; Atakisi, Hakan; Moreau, David W; Thorne, Robert E; Hough, Michael A; Strange, Richard W
2017-07-01
Microbial nitrite reductases are denitrifying enzymes that are a major component of the global nitrogen cycle. Multiple structures measured from one crystal (MSOX data) of copper nitrite reductase at 240 K, together with molecular-dynamics simulations, have revealed protein dynamics at the type 2 copper site that are significant for its catalytic properties and for the entry and exit of solvent or ligands to and from the active site. Molecular-dynamics simulations were performed using different protonation states of the key catalytic residues (Asp CAT and His CAT ) involved in the nitrite-reduction mechanism of this enzyme. Taken together, the crystal structures and simulations show that the Asp CAT protonation state strongly influences the active-site solvent accessibility, while the dynamics of the active-site 'capping residue' (Ile CAT ), a determinant of ligand binding, are influenced both by temperature and by the protonation state of Asp CAT . A previously unobserved conformation of Ile CAT is seen in the elevated temperature series compared with 100 K structures. DFT calculations also show that the loss of a bound water ligand at the active site during the MSOX series is consistent with reduction of the type 2 Cu atom.
Wear, Martin A; Nowicki, Matthew W; Blackburn, Elizabeth A; McNae, Iain W; Walkinshaw, Malcolm D
2017-04-01
We have established a refined methodology for generating surface plasmon resonance sensor surfaces of recombinant his-tagged human cyclophilin-A. Our orientation-specific stabilisation approach captures his-tagged protein under 'physiological conditions' (150 mm NaCl, pH 7.5) and covalently stabilises it on Ni 2+ -nitrilotriacetic acid surfaces, very briefly activated for primary amine-coupling reactions, producing very stable and active surfaces (≥ 95% specific activity) of cyclophilin-A. Variation in protein concentration with the same contact time allows straightforward generation of variable density surfaces, with essentially no loss of activity, making the protocol easily adaptable for studying numerous interactions; from very small fragments, ~ 100 Da, to large protein ligands. This new method results in an increased stability and activity of the immobilised protein and allowed us to expand the thermo-kinetic analysis space, and to determine accurate and robust thermodynamic parameters for the cyclophilin-A-cyclosporin-A interaction. Furthermore, the increased sensitivity of the surface allowed identification of a new nonpeptide inhibitor of cyclophilin-A, from a screen of a fragment library. This fragment, 2,3-diaminopyridine, bound specifically with a mean affinity of 248 ± 60 μm. The X-ray structure of this 109-Da fragment bound in the active site of cyclophilin-A was solved to a resolution of 1.25 Å (PDB: 5LUD), providing new insight into the molecular details for a potential new series of nonpeptide cyclophilin-A inhibitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grover, Abhinav; Shandilya, Ashutosh; Agrawal, Vibhuti
2011-01-07
Research highlights: {yields} Withaferin A and 17-DMAG synergistically inhibit the Hsp90-Cdc37 chaperone pair. {yields} Binding of WA to Cdc37 cleft suppresses its kinase binding activity. {yields} 17-DMAG binding to the association complex results in H-bonds with 60% clustering. {yields} The ligands' bound complex was found structurally and thermodynamically stable. -- Abstract: The chaperone Hsp90 is involved in regulating the stability and activation state of more than 200 'client' proteins and takes part in the cancer diseased states. The major clientele-protein kinases depend on Hsp90 for their proper folding and functioning. Cdc37, a kinase targeting co-chaperone of Hsp90, mediates the interactionsmore » between Hsp90 and protein kinases. Targeting of Cdc37 has the prospect of delivering predominantly kinase-selective molecular responses as compared to the current pharmacologic Hsp90 inhibitors. The present work reports a bio-computational study carried out with the aim of exploring the dual inhibition of Hsp90/Cdc37 chaperone/co-chaperone association complex by the naturally occurring drug candidates withaferin A and 17-DMAG along with their possible modes of action. Our molecular docking studies reveal that withaferin A in combination with 17-DMAG can act as potent chaperone system inhibitors. The structural and thermodynamic stability of the ligands' bound complex was also observed from molecular dynamics simulations in water. Our results suggest a novel tumor suppressive action mechanism of herbal ligands which can be looked forward for further clinical investigations for possible anticancer drug formulations.« less
The effect of post-synthesis aging on the ligand exchange activity of iron oxide nanoparticles.
Davis, Kathleen; Vidmar, Michael; Khasanov, Airat; Cole, Brian; Ghelardini, Melanie; Mayer, Justin; Kitchens, Christopher; Nath, Amar; Powell, Brian A; Mefford, O Thompson
2018-02-01
Ligand exchange is a widely-used method of controlling the surface chemistry of nanomaterials. Exchange is dependent on many factors including the age of the core particle being modified. Aging of the particles can impact surface structure and composition, which in turn can affect ligand binding. To quantify the effects of aging on ligand exchange, we employed a technique to track the exchange of radiolabeled 14 C-oleic acid with unlabeled, oleic acid bound to iron oxide nanoparticles. Liquid scintillation counting (LSC) was used to determine the amount of 14 C-oleic acid adsorbing to the particles throughout the duration of the exchange for particles aged for 2days, 7days, and 30days. Results revealed an increase in the total amount of ligands exchanged with aging up to 30days. Kinetic analysis of these results revealed a significant decrease in the overall rate of ligand exchange between 2 and 30days. The change in extent of adsorption with age could suggest increased availability of free binding sites. A follow-up study comparing exchange with oxidized and unoxidized particles suggested this increase in ligand adsorption may be due to changes in the Fe 2+ /Fe 3+ ratio on the surface as the particles aged. Copyright © 2017 Elsevier Inc. All rights reserved.
Collective Excitations in Protein as a Measure of Balance Between its Softness and Rigidity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrestha, Utsab R.; Bhowmik, Debsindhu; Van Delinder, Kurt W.
Here, we elucidate the protein activity from the perspective of protein softness and flexibility by studying the collective phonon-like excitations in a globular protein, human serum albumin (HSA), and taking advantage of the state-of-the-art inelastic X-ray scattering (IXS) technique. Such excitations demonstrate that the protein becomes softer upon thermal denaturation due to disruption of weak noncovalent bonds. On the other hand, no significant change in the local excitations is detected in ligand- (drugs) bound HSA compared to the ligand-free HSA. These results clearly suggest that the protein conformational flexibility and rigidity are balanced by the native protein structure for biologicalmore » activity.« less
NASA Astrophysics Data System (ADS)
Cichos, J.; Karbowiak, M.
2012-05-01
For electronic or biomedical applications it is desirable to have ligand-free water-dispersible nanocrystals (NCs). The commonly used FTIR spectroscopy often provides a direct evidence for molecules on the surface. In some cases, however, the strong bands of solvent molecules may obscure the peaks of surface bounded ligands. We show that in this regard the emission spectroscopy may be used as a more reliable probing tool. The relevant information can be obtained from emission and excitation spectra, emission decay times as well as from analysis of relative efficiency of excitation energy transfer from Gd3+ to Eu3+ ions. Using these methods we tested samples obtained by various synthetic routes and indicated that only nitrosonium tetrafluoroborate (NOBF4) removes successfully the organic ligands from the nanocrystals surface, yielding organic ligand-free NCs dispersible in aqueous solutions. The conclusions drawn from emission spectroscopy are useful for interpretation of results of FTIR, Raman and NMR studies. The detailed assignment of FTIR peaks for oleate-capped and oleate-free NCs is also provided. Finally, we point to the risk of drawing erroneous conclusions about colloidal stability of nanocrystals if refractive indexes of NCs and medium are similar.
Zhao, Li-Hua; Zhou, X Edward; Yi, Wei; Wu, Zhongshan; Liu, Yue; Kang, Yanyong; Hou, Li; de Waal, Parker W; Li, Suling; Jiang, Yi; Scaffidi, Adrian; Flematti, Gavin R; Smith, Steven M; Lam, Vinh Q; Griffin, Patrick R; Wang, Yonghong; Li, Jiayang; Melcher, Karsten; Xu, H Eric
2015-01-01
Strigolactones (SLs) are endogenous hormones and exuded signaling molecules in plant responses to low levels of mineral nutrients. Key mediators of the SL signaling pathway in rice include the α/β-fold hydrolase DWARF 14 (D14) and the F-box component DWARF 3 (D3) of the ubiquitin ligase SCFD3 that mediate ligand-dependent degradation of downstream signaling repressors. One perplexing feature is that D14 not only functions as the SL receptor but is also an active enzyme that slowly hydrolyzes diverse natural and synthetic SLs including GR24, preventing the crystallization of a binary complex of D14 with an intact SL as well as the ternary D14/SL/D3 complex. Here we overcome these barriers to derive a structural model of D14 bound to intact GR24 and identify the interface that is required for GR24-mediated D14-D3 interaction. The mode of GR24-mediated signaling, including ligand recognition, hydrolysis by D14, and ligand-mediated D14-D3 interaction, is conserved in structurally diverse SLs. More importantly, D14 is destabilized upon the binding of ligands and D3, thus revealing an unusual mechanism of SL recognition and signaling, in which the hormone, the receptor, and the downstream effectors are systematically destabilized during the signal transduction process. PMID:26470846
Miyakawa, Takuya; Sawano, Yoriko; Miyazono, Ken-ichi; Miyauchi, Yumiko; Hatano, Ken-ichi
2013-01-01
STK_08120 is a member of the thermoacidophile-specific DUF3211 protein family from Sulfolobus tokodaii strain 7. Its molecular function remains obscure, and sequence similarities for obtaining functional remarks are not available. In this study, the crystal structure of STK_08120 was determined at 1.79-Å resolution to predict its probable function using structure similarity searches. The structure adopts an α/β structure of a helix-grip fold, which is found in the START domain proteins with cavities for hydrophobic substrates or ligands. The detailed structural features implied that fatty acids are the primary ligand candidates for STK_08120, and binding assays revealed that the protein bound long-chain saturated fatty acids (>C14) and their trans-unsaturated types with an affinity equal to that for major fatty acid binding proteins in mammals and plants. Moreover, the structure of an STK_08120-myristic acid complex revealed a unique binding mode among fatty acid binding proteins. These results suggest that the thermoacidophile-specific protein family DUF3211 functions as a fatty acid carrier with a novel binding mode. PMID:23836863
DOE Office of Scientific and Technical Information (OSTI.GOV)
Economou, Nicoleta J.; Zentner, Isaac J.; Lazo, Edwin
2013-04-01
Using a carrier-protein strategy, the structure of teicoplanin bound to its bacterial cell-wall target has been determined. The structure reveals the molecular determinants of target recognition, flexibility in the antibiotic backbone and intrinsic radiation sensitivity of teicoplanin. Multidrug-resistant bacterial infections are commonly treated with glycopeptide antibiotics such as teicoplanin. This drug inhibits bacterial cell-wall biosynthesis by binding and sequestering a cell-wall precursor: a d-alanine-containing peptide. A carrier-protein strategy was used to crystallize the complex of teicoplanin and its target peptide by fusing the cell-wall peptide to either MBP or ubiquitin via native chemical ligation and subsequently crystallizing the protein–peptide–antibiotic complex.more » The 2.05 Å resolution MBP–peptide–teicoplanin structure shows that teicoplanin recognizes its ligand through a combination of five hydrogen bonds and multiple van der Waals interactions. Comparison of this teicoplanin structure with that of unliganded teicoplanin reveals a flexibility in the antibiotic peptide backbone that has significant implications for ligand recognition. Diffraction experiments revealed an X-ray-induced dechlorination of the sixth amino acid of the antibiotic; it is shown that teicoplanin is significantly more radiation-sensitive than other similar antibiotics and that ligand binding increases radiosensitivity. Insights derived from this new teicoplanin structure may contribute to the development of next-generation antibacterials designed to overcome bacterial resistance.« less
Conformational free energy modeling of druglike molecules by metadynamics in the WHIM space.
Spiwok, Vojtěch; Hlat-Glembová, Katarína; Tvaroška, Igor; Králová, Blanka
2012-03-26
Protein-ligand affinities can be significantly influenced not only by the interaction itself but also by conformational equilibrium of both binding partners, free ligand and free protein. Identification of important conformational families of a ligand and prediction of their thermodynamics is important for efficient ligand design. Here we report conformational free energy modeling of nine small-molecule drugs in explicitly modeled water by metadynamics with a bias potential applied in the space of weighted holistic invariant molecular (WHIM) descriptors. Application of metadynamics enhances conformational sampling compared to unbiased molecular dynamics simulation and allows to predict relative free energies of key conformations. Selected free energy minima and one example of transition state were tested by a series of unbiased molecular dynamics simulation. Comparison of free energy surfaces of free and target-bound Imatinib provides an estimate of free energy penalty of conformational change induced by its binding to the target. © 2012 American Chemical Society
Structural and thermodynamic basis of a frontometaphyseal dysplasia mutation in filamin A
Ithychanda, Sujay S.; Dou, Kevin; Robertson, Stephen P.; Qin, Jun
2017-01-01
Filamin-mediated linkages between transmembrane receptors (TR) and the actin cytoskeleton are crucial for regulating many cytoskeleton-dependent cellular processes such as cell shape change and migration. A major TR binding site in the immunoglobulin repeat 21 (Ig21) of filamin is masked by the adjacent repeat Ig20, resulting in autoinhibition. The TR binding to this site triggers the relief of Ig20 and protein kinase A (PKA)-mediated phosphorylation of Ser-2152, thereby dynamically regulating the TR-actin linkages. A P2204L mutation in Ig20 reportedly cause frontometaphyseal dysplasia, a skeletal disorder with unknown pathogenesis. We show here that the P2204L mutation impairs a hydrophobic core of Ig20, generating a conformationally fluctuating molten globule-like state. Consequently, unlike in WT filamin, where PKA-mediated Ser-2152 phosphorylation is ligand-dependent, the P2204L mutant is readily accessible to PKA, promoting ligand-independent phosphorylation on Ser-2152. Strong TR peptide ligands from platelet GP1bα and G-protein-coupled receptor MAS effectively bound Ig21 by displacing Ig20 from autoinhibited WT filamin, but surprisingly, the capacity of these ligands to bind the P2204L mutant was much reduced despite the mutation-induced destabilization of the Ig20 structure that supposedly weakens the autoinhibition. Thermodynamic analysis indicated that compared with WT filamin, the conformationally fluctuating state of the Ig20 mutant makes Ig21 enthalpically favorable to bind ligand but with substantial entropic penalty, resulting in total higher free energy and reduced ligand affinity. Overall, our results reveal an unusual structural and thermodynamic basis for the P2204L-induced dysfunction of filamin and frontometaphyseal dysplasia disease. PMID:28348077
NASA Astrophysics Data System (ADS)
Zhang, Yixuan; Deng, Lu; Kitova, Elena N.; Klassen, John S.
2013-10-01
The results of collision-induced dissociation (CID) experiments performed on gaseous protonated and deprotonated ions of complexes of cholera toxin B subunit homopentamer (CTB5) with the pentasaccharide (β-D-Gal p-(1→3)-β-D-Gal pNAc-(1→4)[α-D-Neu5Ac-(2→3)]-β-D-Gal p-(1→4)-β-D-Glc p (GM1)) and corresponding glycosphingolipid (β-D-Gal p-(1→3)-β-D-Gal pNAc-(1→4)[α-D-Neu5Ac-(2→3)]-β-D-Gal p-(1→4)-β-D-Glc p-Cer (GM1-Cer)) ligands, and the homotetramer streptavidin (S4) with biotin (B) and 1,2-dipalmitoyl- sn-glycero-3-phosphoethanolamine-N-(biotinyl) (Btl), are reported. The protonated (CTB5 + 5GM1)n+ ions dissociated predominantly by the loss of a single subunit, with the concomitant migration of ligand to another subunit. The simultaneous loss of ligand and subunit was observed as a minor pathway. In contrast, the deprotonated (CTB5 + 5GM1)n- ions dissociated preferentially by the loss of deprotonated ligand; the loss of ligand-bound and ligand-free subunit were minor pathways. The presence of ceramide (Cer) promoted ligand migration and the loss of subunit. The main dissociation pathway for the protonated and deprotonated (S4 + 4B)n+/- ions, as well as for deprotonated (S4 + 4Btl)n- ions, was loss of the ligand. However, subunit loss from the (S4 + 4B)n+ ions was observed as a minor pathway. The (S4 + 4Btl)n+ ions dissociated predominantly by the loss of free and ligand-bound subunit. The charge state of the complex and the collision energy were found to have little effect on the relative contribution of the different dissociation channels. Thermally-driven ligand migration between subunits was captured in the results of molecular dynamics simulations performed on protonated (CTB5 + 5GM1)15+ ions (with a range of charge configurations) at 800 K. Notably, the migration pathway was found to be highly dependent on the charge configuration of the ion. The main conclusion of this study is that the dissociation pathways of multisubunit protein-ligand complexes in the gas phase depend, not only on the native topology of the complex, but also on structural changes that occur upon collisional activation.
Characterisation of the Native Lipid Moiety of Echinococcus granulosus Antigen B
Obal, Gonzalo; Ramos, Ana Lía; Silva, Valeria; Lima, Analía; Batthyany, Carlos; Bessio, María Inés; Ferreira, Fernando; Salinas, Gustavo; Ferreira, Ana María
2012-01-01
Antigen B (EgAgB) is the most abundant and immunogenic antigen produced by the larval stage (metacestode) of Echinococcus granulosus. It is a lipoprotein, the structure and function of which have not been completely elucidated. EgAgB apolipoprotein components have been well characterised; they share homology with a group of hydrophobic ligand binding proteins (HLBPs) present exclusively in cestode organisms, and consist of different isoforms of 8-kDa proteins encoded by a polymorphic multigene family comprising five subfamilies (EgAgB1 to EgAgB5). In vitro studies have shown that EgAgB apolipoproteins are capable of binding fatty acids. However, the identity of the native lipid components of EgAgB remains unknown. The present work was aimed at characterising the lipid ligands bound to EgAgB in vivo. EgAgB was purified to homogeneity from hydatid cyst fluid and its lipid fraction was extracted using chloroform∶methanol mixtures. This fraction constituted approximately 40–50% of EgAgB total mass. High-performance thin layer chromatography revealed that the native lipid moiety of EgAgB consists of a variety of neutral (mainly triacylglycerides, sterols and sterol esters) and polar (mainly phosphatidylcholine) lipids. Gas-liquid chromatography analysis showed that 16∶0, 18∶0 and 18∶1(n-9) are the most abundant fatty acids in EgAgB. Furthermore, size exclusion chromatography coupled to light scattering demonstrated that EgAgB comprises a population of particles heterogeneous in size, with an average molecular mass of 229 kDa. Our results provide the first direct evidence of the nature of the hydrophobic ligands bound to EgAgB in vivo and indicate that the structure and composition of EgAgB lipoprotein particles are more complex than previously thought, resembling high density plasma lipoproteins. Results are discussed considering what is known on lipid metabolism in cestodes, and taken into account the Echinococcus spp. genomic information regarding both lipid metabolism and the EgAgB gene family. PMID:22616019
Chen, XinCai; Shi, JiYan; Chen, YingXu; Xu, XiangHua; Chen, LiTao; Wang, Hui; Hu, TianDou
2007-03-01
Previously performed studies have shown that Pseudomonas putida CZ1 biomass can bind an appreciable amount of Cu(II) and Zn(II) ions from aqueous solutions. The mechanisms of Cu- and Zn-binding by P. putida CZ1 were ascertained by chemical modifications of the biomass followed by Fourier transform infrared and X-ray absorption spectroscopic analyses of the living or nonliving cells. A dramatic decrease in Cu(II)- and Zn(II)-binding resulted after acidic methanol esterification of the nonliving cells, indicating that carboxyl functional groups play an important role in the binding of metal to the biomaterial. X-ray absorption spectroscopy was used to determine the speciation of Cu ions bound by living and nonliving cells, as well as to elucidate which functional groups were involved in binding of the Cu ions. The X-ray absorption near-edge structure spectra analysis showed that the majority of the Cu was bound in both samples as Cu(II). The fitting results of Cu K-edge extended X-ray absorption fine structure spectra showed that N/O ligands dominated in living and nonliving cells. Therefore, by combining different techniques, our results indicate that carboxyl functional groups are the major ligands responsible for the metal binding in P. putida CZ1.
Chiou, Jian Wei; Fu, Brian
2016-01-01
The receptor for advanced glycation end products (RAGE), a transmembrane receptor in the immunoglobulin superfamily, is involved in several inflammatory processes. RAGE induces cellular signaling pathways upon binding with various ligands, such as advanced glycation end products (AGEs), β-amyloids, and S100 proteins. The solution structure of S100A12 and the V ligand-binding region of RAGE have been reported previously. Using heteronuclear NMR spectroscopy to conduct 1H–15N heteronuclear single quantum coherence (HSQC) titration experiments, we identified and mapped the binding interface between S100A12 and the V domain of RAGE. The NMR chemical shift data were used as the constraints for the High Ambiguity Driven biomolecular DOCKing (HADDOCK) calculation to generate a structural model of the S100A12–V domain complex. In addition, tranilast (an anti-allergic drug) showed strong interaction with S100A12 in the 1H–15N HSQC titration, fluorescence experiments, and WST-1 assay. The results also indicated that tranilast was located at the binding site between S100A12 and the V domain, blocking interaction between these two proteins. Our results provide the mechanistic details for a structural model and reveal a potential precursor for an inhibitor for pro-inflammatory diseases, which could be useful for the development of new drugs. PMID:27598566
DNA attachment to support structures
Balhorn, Rodney L.; Barry, Christopher H.
2002-01-01
Microscopic beads or other structures are attached to nucleic acids (DNA) using a terminal transferase. The transferase adds labeled dideoxy nucleotide bases to the ends of linear strands of DNA. The labels, such as the antigens digoxigenin and biotin, bind to the antibody compounds or other appropriate complementary ligands, which are bound to the microscopic beads or other support structures. The method does not require the synthesis of a synthetic oligonucleotide probe. The method can be used to tag or label DNA even when the DNA has an unknown sequence, has blunt ends, or is a very large fragment (e.g., >500 kilobase pairs).
Binding pose and affinity prediction in the 2016 D3R Grand Challenge 2 using the Wilma-SIE method
NASA Astrophysics Data System (ADS)
Hogues, Hervé; Sulea, Traian; Gaudreault, Francis; Corbeil, Christopher R.; Purisima, Enrico O.
2018-01-01
The Farnesoid X receptor (FXR) exhibits significant backbone movement in response to the binding of various ligands and can be a challenge for pose prediction algorithms. As part of the D3R Grand Challenge 2, we tested Wilma-SIE, a rigid-protein docking method, on a set of 36 FXR ligands for which the crystal structures had originally been blinded. These ligands covered several classes of compounds. To overcome the rigid protein limitations of the method, we used an ensemble of publicly available structures for FXR from the PDB. The use of the ensemble allowed Wilma-SIE to predict poses with average and median RMSDs of 2.3 and 1.4 Å, respectively. It was quite clear, however, that had we used a single structure for the receptor the success rate would have been much lower. The most successful predictions were obtained on chemical classes for which one or more crystal structures of the receptor bound to a molecule of the same class was available. In the absence of a crystal structure for the class, observing a consensus binding mode for the ligands of the class using one or more receptor structures of other classes seemed to be indicative of a reasonable pose prediction. Affinity prediction proved to be more challenging with generally poor correlation with experimental IC50s (Kendall tau 0.3). Even when the 36 crystal structures were used the accuracy of the predicted affinities was not appreciably improved. A possible cause of difficulty is the internal energy strain arising from conformational differences in the receptor across complexes, which may need to be properly estimated and incorporated into the SIE scoring function.
Reinholdt, Marc; Croissant, Jonas; Di Carlo, Lidia; Granier, Dominique; Gaveau, Philippe; Bégu, Sylvie; Devoisselle, Jean-Marie; Mutin, P Hubert; Smith, Mark E; Bonhomme, Christian; Gervais, Christel; van der Lee, Arie; Laurencin, Danielle
2011-08-15
We describe the preparation of the first crystalline compounds based on arylboronate ligands PhB(OH)(3)(-) coordinated to metal cations: [Ca(PhB(OH)(3))(2)], [Sr(PhB(OH)(3))(2)]·H(2)O, and [Ba(PhB(OH)(3))(2)]. The calcium and strontium structures were solved using powder and single-crystal X-ray diffraction, respectively. In both cases, the structures are composed of chains of cations connected through phenylboronate ligands, which interact one with each other to form a 2D lamellar structure. The temperature and pH conditions necessary for the formation of phase-pure compounds were investigated: changes in temperature were found to mainly affect the morphology of the crystallites, whereas strong variations in pH were found to affect the formation of pure phases. All three compounds were characterized using a wide range of analytical techniques (TGA, IR, Raman, XRD, and high resolution (1)H, (11)B, and (13)C solid-state NMR), and the different coordination modes of phenylboronate ligands were analyzed. Two different kinds of hydroxyl groups were identified in the structures: those involved in hydrogen bonds, and those that are effectively "free" and not involved in hydrogen bonds of any significant strength. To position precisely the OH protons within the structures, an NMR-crystallography approach was used: the comparison of experimental and calculated NMR parameters (determined using the Gauge Including Projector Augmented Wave method, GIPAW) allowed the most accurate positions to be identified. In the case of the calcium compound, it was found that it is the (43)Ca NMR data that are critical to help identify the best model of the structure. © 2011 American Chemical Society
The active enhancer network operated by liganded RXR supports angiogenic activity in macrophages
Daniel, Bence; Hah, Nasun; Horvath, Attila; Czimmerer, Zsolt; Poliska, Szilard; Gyuris, Tibor; Keirsse, Jiri; Gysemans, Conny; Van Ginderachter, Jo A.; Balint, Balint L.; Evans, Ronald M.; Barta, Endre; Nagy, Laszlo
2014-01-01
RXR signaling is predicted to have a major impact in macrophages, but neither the biological consequence nor the genomic basis of its ligand activation is known. Comprehensive genome-wide studies were carried out to map liganded RXR-mediated transcriptional changes, active binding sites, and cistromic interactions in the context of the macrophage genome architecture. The macrophage RXR cistrome has 5200 genomic binding sites, which are not impacted by ligand. Active enhancers are characterized by PU.1 binding, an increase of enhancer RNA, and P300 recruitment. Using these features, 387 liganded RXR-bound enhancers were linked to 226 genes, which predominantly reside in CTCF/cohesin-limited functional domains. These findings were molecularly validated using chromosome conformation capture (3C) and 3C combined with sequencing (3C-seq), and we show that selected long-range enhancers communicate with promoters via stable or RXR-induced loops and that some of the enhancers interact with each other, forming an interchromosomal network. A set of angiogenic genes, including Vegfa, has liganded RXR-controlled enhancers and provides the macrophage with a novel inducible program. PMID:25030696