Science.gov

Sample records for ligand-modified colloid-enhanced ultrafiltration

  1. Removal of Radioactive Cations and Anions from Polluted Water Using Ligand-Modified Colloid-Enhanced Ultrafiltration

    SciTech Connect

    Scamehorn, John F.; Palmer, Cynthia E.; Taylor, Richard W.

    1999-06-01

    The objectives of this project are to determine the feasibility of and develop optimum conditions for the use of colloid-enhanced ultrafiltration (CEUF) methods to remove and recover radionuclides and associated toxic nonradioactive contaminants from polluted water. The target metal ions are uranium, plutonium, thorium, strontium and lead along with chromium (as chromate). Anionic or amphiphilic chelating agents, used in conjunction with polyelectrolyte colloids, provide a means to confer selectivity required for removal of the target cations. This project entails a comprehensive study of the effects of solution composition and filtration unit operating parameters on the separation efficiency and selectivity of ligand modified colloid-enhanced ultrafiltration (LM-CEUF) processes. Problem areas identified by the Office of Environmental Management addressed by this project include removal of hazardous ionic materials from ground water, mixed waste, and aqueous waste solutions produced during decontamination and decommissioning operations. Separation and concentration of the target ions will result in a substantial reduction in the volume of material requiring disposal or long-term storage.

  2. Removal of Radioactive Cations Anions from Polluted Water Using Ligand-Modified Colloid-Enhanced Ultrafiltration (60041-OK)

    SciTech Connect

    Scamehorn,John F.; Taylor, Richard W.; Palmer, Cynthia E.

    2000-06-01

    The objectives of this project are to determine the feasibility of and develop optimum conditions for the use of colloid-enhanced ultrafiltration (CEUF) methods to remove and recover radionuclides and associated toxic non-radioactive contaminants from polluted water. The target metal ions are uranium, plutonium, thorium, strontium, cadmium, and lead along with chromium (as chromate). Anionic or amphiphilic chelating agents, used in conjunction with polyelectrolyte colloids, provide a means to confer selectivity required for removal of the target cations. This project entails a comprehensive study of the effects of solution composition and filtration unit operating parameters on the separation efficiency and selectivity of ligand modified colloid-enhanced ultrafiltration (LM-CEUF) processes. Problem areas identified by the Office of Environmental Management addressed by this project include removal of hazardous ionic materials from ground water, mixed waste, and aqueous waste solutions produced during decontamination and decommissioning operations. Separation and concentration of the target ions will result in a substantial reduction in the volume of material requiring disposal or long-term storage.

  3. Removal of radioactive cations and anions from polluted water using ligand-modified colloid-enhanced ultrafiltration. 1998 annual progress report

    SciTech Connect

    Scamehorn, J.F.; Palmer, C.E.; Taylor, R.W.

    1998-06-01

    'The objectives of this project are to determine the feasibility of and develop optimum conditions for the use of colloid-enhanced ultrafiltration (CEUF) methods to remove and recover radionuclides and associated toxic non-radioactive contaminants from polluted water. The target metal ions are uranium, plutonium, thorium, strontium and lead along with chromium (as chromate). Anionic chelating agents, used in conjunction with polyelectrolyte colloids, provide a means to confer selectivity required for removal of the target cations. This project entails a comprehensive study of the effects of solution composition and filtration unit operating parameters on the separation efficiency and selectivity of ligand modified colloid-enhanced ultrafiltration (LM-CEUF) processes. Problem areas identified by the Office of Environmental Management addressed by this project include removal of hazardous ionic materials from groundwater, aqueous waste solutions and mixed waste. Separation and concentration of the target ions will result in a substantial reduction in the volume of material requiring long-term storage. This report summarizes work after 8 months of a 3-year project.'

  4. Removal of Radioactive Cations and Anions from Polluted Water using Ligand-Modified Colloid-Enhanced Ultrafiltration

    SciTech Connect

    Scamehorn, John F; Taylor, Richard W; Palmer, Cynthia E

    2001-12-17

    The purpose of this project was to develop, optimize, and evaluate new separation methods for removal of hazardous (radionuclides and toxic non-radioactive contaminants) metal ions from either ground water or aqueous waste solutions produced during Decontamination and Decommissioning operations at DOE sites. Separation and concentration of the target ions will result in a substantial reduction in the volume of material requiring disposal or long-term storage. The target metal ions studied were uranium, thorium, lead, cadmium, and mercury along with chromium (as chromate). The methods tested use membrane ultrafiltration in conjunction with water-soluble polymers or surfactants with added metal-selective chelating agents. Laboratory scale tests showed removal of 99.0-99.9% of each metal tested in a single separation stage. The methods developed for selective removal of radionuclides (UO22+, Th4+) and toxic heavy metals (Pb2+, Cd2+, Hg2+) are applicable to two DOE focus areas; decontamination of sites and equipment, and in remediation of contaminated groundwater. Colloid-enhanced ultrafiltration methods have potential to be substantially less expensive than alternative methods and can result in less waste. Results of studies with varying solution composition (concentration, acidity) and filtration parameters (pressure, flow rate) have increased our understanding of the fundamental processes that control the metal ion separation and colloid recovery steps of the overall process. Further laboratory studies are needed to improve the ligand/colloid recovery step and field demonstration of the technology is needed to prove the applicability of the integrated process. A number of graduate students, post-doctoral associates, and research associates have received training and research experience in the areas of separation science, colloid chemistry, and metal ion coordination chemistry of radionuclides and

  5. A study of colloid-enhanced ultrafiltration. Final report, March 1984--December 1993

    SciTech Connect

    Scamehorn, J.F.; Christian, S.D.

    1994-02-01

    Over the past nine years of funding by DOE Office of Basic Energy Sciences, the authors have developed a whole family of methods under the umbrella of colloid-enhanced ultrafiltration techniques. These methods can be used for removal of either dissolved organics or multivalent ions from water or both simultaneously. They have gone from very fundamental studies of the ultrafiltration process to a field test using actual polluted groundwater. The orientation of this research has been the ultimate development of a workable, economical process. To do this, the authors have tried to understand the underlying fundamental phenomena involved in the separation and in potential solutions to technological bottlenecks and developed new scientific knowledge in the process. However, the thrust of the investigations have been focused on bringing the technology to a successful adoption by industry. This report summarizes the following: micellar-enhanced ultrafiltration; polyelectrolyte-enhanced ultrafiltration; ion-expulsion ultrafiltration; ligand-modified micellar-enhanced ultrafiltration; polyelectrolyte/surfactant-enhanced ultrafiltration, supporting research, and relation to energy. 61 refs.

  6. Solubilization and separation of p-tert-butylphenol using polyelectrolyte/surfactant complexes in colloid-enhanced ultrafiltration

    SciTech Connect

    Uchiyama, Hirotaka; Christian, S.D.; Tucker, E.E.; Scamehorn, J.F. )

    1994-03-15

    Water-soluble polyelectrolyte/surfactant complexes, involving oppositely charged species, can form at quite low thermodynamic activities of the surfactant. This fact can be exploited in colloid-enhanced ultrafiltration separations, where both molecular organic pollutants and toxic ions are to be removed from contaminated aqueous streams. Investigations have been made of (a) the solubilization and ultrafiltration of solutions of organic solutes in polymer/surfactant solutions, for comparison with studies of micellar surfactant solutions in the absence of added polymers; (b) the penetration of surfactant through the membrane (leakage of monomer) in dialysis and ultrafiltration experiments; and (c) the utility of polyelectrolytes as scavengers'' for surfactant species that-enter the permeate or filtrate in colloid-enhanced ultrafiltration separations. The polyelectrolyte chosen for the studies is sodium poly(styrenesulfonate) and the surfactant is cetylpyridinium chloride (hexadecylpyridinium chloride). A detailed study has been made of the solubilization and separation of p-tert-butylphenol in aqueous mixtures of sodium poly(styrenesulfonate) and cetylpyridinium chloride, at polyelectrolyte to surfactant mole ratios of two to one and three to one.

  7. Use of ligand-modified micellar-enhanced ultrafiltration to selectively separate copper ions from wastewater streams

    SciTech Connect

    Shadizadeh, S.B.

    1992-12-31

    The selective removal of target ions from an aqueous solution containing ions of like charge by ligand-modified micellar-enhanced ultrafiltration (LM-MEUF), is presented. In LM-MEUF, surfactant and specially tailored ligand are added to the contaminated stream. The surfactant forms aggregates called micelles, the hydrocarbon core of which the ligand complexed with the target species will solubilize. The surfactant is chosen to have the same charge type as the target ion; therefore, other ions (with similar charge) will not associate with the micelle, which makes the separation of the target ion selective. The solution is then processed by ultrafiltration, using a membrane with pore size small enough to block the passage of the micelles. In this study the divalent copper is the target ion in the solution containing divalent calcium. The surfactant is cetylpyridinium chloride (CPC) and the ligand is 4-hexadecyloxybenzyliminodiacetic acid (C{sub 16}BIDA). Experiments were conducted with batch stirred cells and the results have been compared to separation that take place under a variety of conditions in the LM-MEUF process. Rejections of copper of up to 99.8% are observed, with almost no rejection of calcium, showing that LM-MEUF has excellent selectivity and separation efficiency.

  8. An equilibrium model for ligand-modified micellar-enhanced ultrafiltration. Selective separation of metal ions using iminoacetic substituted polyamines and a theoretical model for the titration behavior of polyamines

    SciTech Connect

    Dharmawardana, Udeni Rajaratna

    1992-01-01

    This thesis consists of three chapters. Chapter 1, An equilibrium model for ligand-modified micellar-enhanced ultrafiltration, describes a theoretical model and experimental investigations which used the semi-equilibrium-dialysis method with N-n-dodecyl iminodiacetic acid as the ligand. In Chapter 2, Selective separation of metal ions using iminoacetic substituted polyamines, polyamines with a substituted ligand group are synthesized and used in investigating selective separation of copper ions from aqueous solution. In Chapter 3, A theoretical model for the titration behavior of polyamines, a novel approach to explain the titration behavior of polymeric amines based on the binding behavior of counterions is described. The application of this study is to the investigation of inexpensive and efficient methods of industrial waste water treatment.

  9. ULTRAFILTRATION

    PubMed Central

    Greenberg, David M.; Greenberg, Max M.

    1933-01-01

    Assuming that "bound" water loses its solvent properties, it is shown by an ultrafiltration method that in solutions of gelatin, casein, starch, and glycogen, and in blood serum, only a very small fraction of the water can be associated with the colloids in this form. PMID:19872721

  10. A study of micellar-enhanced ultrafiltration

    SciTech Connect

    Scamehorn, J.F.; Christian, S.D.

    1991-02-01

    Research on ultrafiltration continued. Progress is briefly reported in four basic categories: systematic studies of the phenomenon of solubilization of organics in micelles and the mechanism of removal of organics from aqueous streams, using micellar-enhanced ultrafiltration (MEUF); systematic studies and the development of theoretical models for the binding of ions by micelles and polyelectrolytes; development and demonstration of four new related separation processes for removing ions from water: ligand-modified micellar-enhanced ultrafiltration (LM-MEUF), polyelectrolyte-enhanced ultrafiltration (PEUF), ion-explusion ultrafiltration (IEUF), and a combined surfactant-polyelectrolyte ultrafiltration process; and investigation of downstream processing of the effluent streams from all five of the UF separation processes.

  11. Piezoelectrically assisted ultrafiltration

    SciTech Connect

    Ahner, N.; Gottschlich, D.; Narang, S.; Roberts, D.; Sharma, S.; Ventura, S.

    1993-01-01

    The authors have demonstrated the feasibility of using piezoelectrically assisted ultrafiltration to reduce membrane fouling and enhance the flux through ultrafiltration membranes. A preliminary economic evaluation, accounting for the power consumption of the piezoelectric driver and the extent of permeate flow rate enhancement, has also shown that piezoelectrically assisted ultrafiltration is cost effective and economically competitive in comparison with traditional separation processes. Piezoelectric transducers, such as a piezoelectric lead zirconate titanate (PZT) disc or a piezoelectric horn, driven by moderate power, significantly enhance the permeate flux on fouled membranes, presumably because they promote local turbulence. Several experiments were conducted on polysulfone and regenerated cellulose UF membranes fouled during filtration of model feed solutions. Solutions of poly(ethylene glycol) and of high-molecular weight dextran were used as models. The authors found that they could significantly increase the permeate flux by periodically driving the piezoelectric transducer, horn or PZT disc, by application of moderate power over short periods of time, from 20 to 90 seconds. Enhancements as high as a factor of 8 were recorded within a few seconds, and enhanced permeate fluxes were maintained over a prolonged period (up to 3 hours). The prolonged flux enhancement makes it feasible to drive the piezoelectric transducer intermittently, thereby reducing the power consumption of the piezoelectric driver. As piezoelectric drivers of sonically assisted ultrafiltration, PZT disc transducers are preferred over the piezoelectric horn because of their small size and ease of adaptability to ultrafiltration test cells. The horn transmits sonic energy to the UF membrane through a titanium element driven by a separate piezoelectric transducer, but a piezoelectric ceramic disc transmits energy directly to the UF membrane.

  12. Ligand modified nanoparticles increases cell uptake, alters endocytosis and elevates glioma distribution and internalization.

    PubMed

    Gao, Huile; Yang, Zhi; Zhang, Shuang; Cao, Shijie; Shen, Shun; Pang, Zhiqing; Jiang, Xinguo

    2013-01-01

    Nanoparticles (NPs) were widely used in drugs/probes delivery for improved disease diagnosis and/or treatment. Targeted delivery to cancer cells is a highly attractive application of NPs. However, few studies have been performed on the targeting mechanisms of these ligand-modified delivery systems. Additional studies are needed to understand the transport of nanoparticles in the cancer site, the interactions between nanoparticles and cancer cells, the intracellular trafficking of nanoparticles within the cancer cells and the subcellular destiny and potential toxicity. Interleukin 13 (IL-13) peptide can specifically bind IL-13Rα2, a receptor that is highly expressed on glioma cells but is expressed at low levels on other normal cells. It was shown that the nanoparticels modification with the IL-13 peptide could improve glioma treatment by selectively increasing cellular uptake, facilitating cell internalization, altering the uptake pathway and increasing glioma localization.

  13. Evaluation of ultrafiltration failure.

    PubMed

    Korbet, S M

    1998-07-01

    The evaluation of ultrafiltration failure is embarked upon when a patient has persistent problems with symptoms and signs of fluid overload. Fluid overload is a common problem in peritoneal dialysis (PD) patients and the risk of its occurrence increases with time on dialysis. Although often attributed to changes in peritoneal membrane function (membrane failure), there are a number of potential, and frequently more common factors that can contribute to the failure of adequate fluid removal in patients on PD. Many of the causes of ultrafiltration failure may be apparent after an initial informal evaluation. However, if after this the etiology remains unexplained, a systematic approach to the differential diagnosis of this problem can be utilized with the use of the peritoneal equilibration test. Once a diagnosis is confirmed, a logical therapeutic plan can be formulated.

  14. Ultrafiltration of pegylated proteins

    NASA Astrophysics Data System (ADS)

    Molek, Jessica R.

    There is considerable clinical interest in the use of "second-generation" therapeutics produced by conjugation of a native protein with various polymers including polyethylene glycol (PEG). PEG--protein conjugates, so-called PEGylated proteins, can exhibit enhanced stability, half-life, and bioavailability. One of the challenges in the commercial production of PEGylated proteins is the purification required to remove unreacted polymer, native protein, and in many cases PEGylated proteins with nonoptimal degrees of conjugation. The overall objective of this thesis was to examine the use of ultrafiltration for the purification of PEGylated proteins. This included: (1) analysis of size-based separation of PEGylated proteins using conventional ultrafiltration membranes, (2) use of electrically-charged membranes to exploit differences in electrostatic interactions, and (3) examination of the effects of PEGylation on protein fouling. The experimental results were analyzed using appropriate theoretical models, with the underlying physical properties of the PEGylated proteins evaluated using size exclusion chromatography, capillary electrophoresis, dynamic light scattering, and reverse phase chromatography. PEGylated proteins were produced by covalent attachment of activated PEG to a protein via primary amines on the lysine residues. A simple model was developed for the reaction kinetics, which was used to explore the effect of reaction conditions and mode of operation on the distribution of PEGylated products. The effective size of the PEGylated proteins was evaluated using size exclusion chromatography, with appropriate correlations developed for the size in terms of the molecular weight of the native protein and attached PEG. The electrophoretic mobility of the PEGylated proteins were evaluated by capillary electrophoresis with the data in good agreement with a simple model accounting for the increase in protein size and the reduction in the number of protonated amine

  15. Ultrafiltration of gelatinous cornstarch suspensions

    SciTech Connect

    Gaddis, J.L.; Amond, T.C. III; Thomas, R.L.

    1999-04-01

    It was the objective of this study to examine ultrafiltration of gelatinized starch to compare with other viscous streams and to develop a supporting data base. The objective was broadened to explain and model observations contrasted with other viscous materials. In particular, the results of ultrafiltration of starch are not consistent with diffusion-based theories of ultrafiltration; however, the resistance to flow is well modeled as a flowing filter cake. The results presented here may be useful for predicting the performance of a starch reactor wherein the goal is to convert the starch into sugars or alcohol via the action of special enzymes or hydrolysis.

  16. Isolated ultrafiltration in heart failure patients.

    PubMed

    Costanzo, Maria Rosa; Ronco, Claudio

    2012-06-01

    Most heart failure hospitalizations are due to volume overload, which contributes to disease progression. Heart failure decompensation is typically treated with intravenous diuretics, which are of limited efficacy especially in patients with underlying chronic kidney disease. Since the introduction of hemodialysis, ultrafiltration has been used to remove excess body fluid. Newer, simplified isolated ultrafiltration devices make ultrafiltration feasible at most hospitals and in less acute care settings. Veno-venous ultrafiltration is characterized by transport of solutes and water across a semipermeable membrane in response to a transmembrane pressure gradient generated by a peristaltic pump. Monitoring of ultrafiltration requires a combination of clinical and biomarkers values. Hemodynamic instability due to overaggressive fluid removal must be avoided. Based on recent clinical trials, practice guidelines state that ultrafiltration is reasonable for patients with congestion refractory to medical therapy (Class IIa, Level of Evidence B). Unanswered questions regarding ultrafiltration in heart failure patients include optimal fluid removal rates, effect on long-term survival, and cost.

  17. Balanced ultrafiltration: inflammatory mediator removal capacity.

    PubMed

    Guan, Yulong; Wan, Caihong; Wang, Shigang; Sun, Peng; Long, Cun

    2012-10-01

    Ultrafiltration with a hemoconcentrator may remove excess fluid load and alleviate tissue edema and has been universally adopted in extracorporeal circulation protocols during pediatric cardiac surgery. Balanced ultrafiltration is advocated to remove inflammatory mediators generated during surgery. However, whether balanced ultrafiltration can remove all or a portion of the inflammatory mediator load remains unclear. The inflammatory mediator removal capacity of zero-balanced ultrafiltration was measured during pediatric extracorporeal circulation in vitro. Extracorporeal circulation was composed of cardiotomy reservoir, D902 Lilliput 2 membrane oxygenator, and Capiox AF02 pediatric arterial line filter. The Hemoconcentrator BC 20 plus was placed between arterial purge line and oxygenator venous reservoir. Fresh donor human whole blood was added into the circuit and mixed with Ringer's solution to obtain a final hematocrit of 24-28%. After 2 h of extracorporeal circulation, zero-balanced ultrafiltration was initiated and arterial line pressure was maintained at approximately 100 mmHg with Hoffman clamp. The rate of ultrafiltration (12 mL/min) was controlled by ultrafiltrate outlet pressure. Identical volume of plasmaslyte A was dripped into the circuit to maintain stable hematocrit during the 45 min of the experiment. Plasma and ultrafiltrate samples were drawn every 5 min, and concentrations of inflammatory mediators including interleukin-1β (IL-1β), IL-6, IL-10, neutrophil elastase (NE), and tumor necrosis factor-α (TNF-α) were measured. All assayed inflammatory mediators were detected in the ultrafiltrate, demonstrating that the ultrafiltrator may remove inflammatory mediators. However, dynamic observations suggested that the concentration of NE was highest among the five inflammatory mediators in both plasma and ultrafiltrate (P < 0.001). IL-1β had the lowest concentration in plasma, whereas the concentration of TNF-α was the lowest in ultrafiltrate (P

  18. STUDIES IN ULTRAFILTRATION

    PubMed Central

    Zinsser, Hans; Tang, Fei-Fang

    1927-01-01

    the two varieties of virus investigated by us, they were of a magnitude larger than casein and collargol and smaller than colloidal arsenic. The weak point in drawing our conclusions is the fact that we were not in a position to measure for ourselves with any accuracy the actual sizes of collargol and arsenic trisulfide particles. Accepting the general views of Bechhold and others, however, our experiments would define the sizes of the separticular substances as larger than 20 mµ and probably smaller than 100 mµ. The order of magnitudes of the substances measured by us would then be as follows: Crystallized egg albumen Crystallized serum albumen Trypsin Collargol Casein Bacteriophage, Rous sarcoma virus, herpes virus Arsenic trisulfide Our experiments show little agreement with the work of Levaditi and Nicolau and of Levaditi, Nicolau and Galloway. In their recent filtration tests of foot-and-mouth disease this virus is reported by them as passing through membranes that held back trypsin, indicating a size much smaller than any of the viruses measured by us. Our results, on the other hand, are in actual measurements comparable to those of Olitsky and Boëz, not only in the fact that the viruses with which we worked correspond approximately to the size determined by them for foot-and-mouth disease, but that the percentage of collodion in membranes permeable for virus and impermeable for colloidal arsenic corresponds almost exactly to our own. This gives us confidence that the technique developed may be more easily standardized than we at first believed and that the method of ultrafiltration, owing to the great ease with which membranes of relatively standard size may be made, may have valuable applications in the investigation of bacteriological and immunological problems. PMID:19869343

  19. Purification of lysozyme using ultrafiltration.

    PubMed

    Ghosh, R; Cui, Z F

    2000-04-20

    This article examines the separation of lysozyme from chicken egg white by ultrafiltration with 25 kDa and 50 kDa MWCO polysulfone membranes. The effects of pH, system hydrodynamics, feed concentration, and transmembrane pressure on permeate flux, lysozyme transmission, purification factor, and productivity have been discussed. With both types of membranes, higher permeate flux and lysozyme transmission were observed at higher pH. Higher lysozyme purity was generally obtained with the 25 kDa MWCO membrane. Purity of lysozyme decreased when the feed concentration was increased. With the 50 kDa MWCO membrane permeate flux, productivity and the purity of lysozyme were found to increase with increase in transmembrane pressure. The possibility of using a two-step ultrafiltration process for achieving high productivity along with high purity of lysozyme was also investigated.

  20. Ultrafiltration evaluation with depleted uranium oxide

    SciTech Connect

    Weisbrod, K.R.; Schake, A.R.; Morgan, A.N.; Purdy, G.M.; Martinez, H.E.; Nelson, T.O.

    1998-03-01

    Scientists at the Los Alamos National Laboratory Plutonium Facility are using electrodissolution in neutral to alkaline solutions to decontaminate oralloy parts that have surface plutonium contamination. Ultrafiltration of the electrolyte stream removes precipitate so that the electrolyte stream to the decontamination fixture is precipitate free. This report describes small-scale laboratory ultrafiltration experiments that the authors performed to determine conditions necessary for full-scale operation of an ultrafiltration module. Performance was similar to what they observed in the ferric hydroxide system. At 12 psi transmembrane pressure, a shear rate of 12,000 sec{sup {minus}1} was sufficient to sustain membrane permeability. Ultrafiltration of uranium(VI) oxide appears to occur as easily as ultrafiltration of ferric hydroxide. Considering the success reported in this study, the authors plan to add ultrafiltration to the next decontamination system for oralloy parts.

  1. Alkaline detergent recycling via ultrafiltration

    SciTech Connect

    Steffani, C.; Meltzer, M.

    1995-06-01

    The metal finishing industry uses alkaline cleaners and detergents to remove oils and dirt from manufactured parts, often before they are painted or plated. The use of these cleaners has grown because environmental regulations are phasing out ozone depleting substances and placing restrictions on the use and disposal of many hazardous solvents. Lawrence Livermore National Laboratory is examining ultrafiltration as a cleaning approach that reclaims the cleaning solutions and minimizes wastes. The ultrafiltration membrane is made from sheets of polymerized organic film. The sheets are rolled onto a supporting frame and installed in a tube. Spent cleaning solution is pumped into a filter chamber and filtered through the membrane that captures oils and dirt and allows water and detergent to pass. The membrane is monitored and when pressure builds from oil and dirt, an automatic system cleans the surface to maintain solution flow and filtration quality. The results show that the ultrafiltration does not disturb the detergent concentration or alkalinity but removed almost all the oils and dirt leaving the solution in condition to be reused.

  2. Preparation of Gnathostoma protein by ultrafiltration method using Nanosep membrane.

    PubMed

    Sugaroon, Suphan; Saksirisampant, Wilai; Kraivichian, Kanyarattana; Suwansaksri, Jamsai; Wiwanitkit, Viroj

    2003-01-01

    We report our experience with Gnathostoma protein preparation by the ultrafiltration method. Crude antigen was sonicated and ultrafiltrated using the Nanosep 100 K membrane. SDS-PAGE electrophoresis showed protein bands at 43, 41, 24, 22, 21, 19.5 kDa. Use of the ultrafiltration method can provide specific protein (24 kDa), similar to the non-ultrafiltration method, with the other 5 non-specific proteins. Using the non-ultrafiltration method, there were more (20) non-specific protein. The ultrafiltration method can be an alternative method for the preparation of protein, which can provide better results than non-ultrafiltration.

  3. Ultrafiltration of equine digital lamellar tissue.

    PubMed

    Underwood, Claire; Collins, Simon N; van Eps, Andrew W; Allavena, Rachel E; Medina-Torres, Carlos E; Pollitt, Christopher C

    2014-11-01

    There are no experimentally validated pharmacological means of preventing laminitis; however, locally acting pharmaceutical agents with the potential to prevent laminitis have been identified. Demonstrating therapeutic drug concentrations in lamellar tissue is essential for evaluating the efficacy of these agents. The aim of this study was to develop an experimental technique for repeatedly sampling lamellar interstitial fluid. A technique for placing ultrafiltration probes was developed in vitro using 15 cadaver limbs. Subsequently, lamellar ultrafiltration probes were placed in one forelimb in six living horses. Interstitial fluid was collected continuously from the probes as ultrafiltrate for 4 (n = 4) or 14 days (n = 2). The rate of ultrafiltrate collection was calculated every 12 h. Biochemical analyses were performed on ultrafiltrate collected on night 1 (12-24 h post-implantation) and night 4 (84-96 h post-implantation). Sections surrounding the probe and control tissue from the contralateral limb were harvested, stained with H&E and Masson's trichrome and scored based on the tissue response to the probe. Ultrafiltration probes were placed in the lamellar tissue in all six horses. Ultrafiltrate was collected from these probes at 55 (30-63) μL/h (median [interquartile range]). Fluid production decreased significantly with time from night 3 onwards (P < 0.05). There was no significant change in the constituents of the ultrafiltrate between nights 1 and 4 (P > 0.05). The technique was well tolerated. This study demonstrates that ultrafiltration can be used to sample equine digital lamellar interstitial fluid, and has potential for measuring lamellar drug levels.

  4. Evaluation of Ultrafiltration for Spacecraft Water Reuse

    NASA Technical Reports Server (NTRS)

    Pickering, Karen D.; Wiesner, Mark R.

    2001-01-01

    Ultrafiltration is examined for use as the first stage of a primary treatment process for spacecraft wastewater. It is hypothesized that ultrafiltration can effectively serve as pretreatment for a reverse osmosis system, removing the majority of organic material in a spacecraft wastewater. However, it is believed that the interaction between the membrane material and the surfactant found in the wastewater will have a significant impact on the fouling of the ultrafiltration membrane. In this study, five different ultrafiltration membrane materials are examined for the filtration of wastewater typical of that expected to be produced onboard the International Space Station. Membranes are used in an unstirred batch cell. Flux, organic carbon rejection, and recovery from fouling are measured. The results of this evaluation will be used to select the most promising membranes for further study.

  5. 21 CFR 177.2910 - Ultra-filtration membranes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... up to 12 percent yttrium oxide (CAS Reg. No. 1314-36-9). (3) Ultra-filtration membranes that consist... up to 5 percent yttrium oxide (CAS Reg. No. 1314-36-9). (4) Ultrafiltration membranes that consist...

  6. 21 CFR 177.2910 - Ultra-filtration membranes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... up to 12 percent yttrium oxide (CAS Reg. No. 1314-36-9). (3) Ultra-filtration membranes that consist... up to 5 percent yttrium oxide (CAS Reg. No. 1314-36-9). (4) Ultrafiltration membranes that consist...

  7. 21 CFR 177.2910 - Ultra-filtration membranes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... up to 12 percent yttrium oxide (CAS Reg. No. 1314-36-9). (3) Ultra-filtration membranes that consist... up to 5 percent yttrium oxide (CAS Reg. No. 1314-36-9). (4) Ultrafiltration membranes that consist...

  8. Ultrafiltration of hemicellulose hydrolysate fermentation broth

    NASA Astrophysics Data System (ADS)

    Kresnowati, M. T. A. P.; Desiriani, Ria; Wenten, I. G.

    2017-03-01

    Hemicelulosic material is often used as the main substrate to obtain high-value products such as xylose. The five carbon sugar, xylose, could be further processed by fermentation to produce xylitol. However, not only the hemicellulose hydrolysate fermentation broth contains xylitol, but also metabolite products, residual substances, biomass and mineral salts. Therefore, in order to obtain the end products, various separation processes are required to separate and purify the desired product from the fermentation broth. One of the most promising downstream processing methods of fermentation broth clarification is ultrafiltration due to its potential for energy saving and higher purity. In addition, ultrafiltration membrane has a high performance in separating inhibitory components in the fermentation broth. This paper assesses the influence of operating conditions; including trans-membrane pressure, velocity, pH of the fermentation broth solutions, and also to the xylitol concentration in the product. The challenges of the ultrafiltration process will be pointed out.

  9. Tangential Ultrafiltration of Aqueous "Saccharomyces Cerevisiae" Suspensions

    ERIC Educational Resources Information Center

    Silva, Carlos M.; Neves, Patricia S.; Da Silva, Francisco A.; Xavier, Ana M. R. B.; Eusebio, M. F. J.

    2008-01-01

    Experimental work on ultrafiltration is presented to illustrate the practical and theoretical principles of this separation technique. The laboratory exercise comprises experiments with pure water and with aqueous "Saccharomyces cerevisiae" (from commercial Baker's yeast) suspensions. With this work students detect the characteristic phenomena…

  10. Reexamining ultrafiltration and solute transport in groundwater

    NASA Astrophysics Data System (ADS)

    Neuzil, C. E.; Person, Mark

    2017-06-01

    Geologic ultrafiltration—slowing of solutes with respect to flowing groundwater—poses a conundrum: it is consistently observed experimentally in clay-rich lithologies, but has been difficult to identify in subsurface data. Resolving this could be important for clarifying clay and shale transport properties at large scales as well as interpreting solute and isotope patterns for applications ranging from nuclear waste repository siting to understanding fluid transport in tectonically active environments. Simulations of one-dimensional NaCl transport across ultrafiltering clay membrane strata constrained by emerging data on geologic membrane properties showed different ultrafiltration effects than have often been envisioned. In relatively high-permeability advection-dominated regimes, salinity increases occurred mostly within membrane units while their effluent salinity initially fell and then rose to match solute delivery. In relatively low-permeability diffusion-dominated regimes, salinity peaked at the membrane upstream boundary and effluent salinity remained low. In both scenarios, however, only modest salinity changes (up to ˜3 g L-1) occurred because of self-limiting tendencies; membrane efficiency declines as salinity rises, and although sediment compaction increases efficiency, it is also decreases permeability and allows diffusive transport to dominate. It appears difficult for ultrafiltration to generate brines as speculated, but widespread and less extreme ultrafiltration effects in the subsurface could be unrecognized. Conditions needed for ultrafiltration are present in settings that include topographically-driven flow systems, confined aquifer systems subjected to injection or withdrawal, compacting basins, and accretionary complexes.

  11. Microfiltration and Ultrafiltration Membranes for Drinking Water

    EPA Science Inventory

    This article provides a concise and abbreviated summary of AWWA Manual of Practice M53, Microfiltration and Ultrafiltration Membranes for Drinking Water, to serve as a quick point of reference. For convenience, the article’s organization matches that of M53, as follows: • wate...

  12. Tangential Ultrafiltration of Aqueous "Saccharomyces Cerevisiae" Suspensions

    ERIC Educational Resources Information Center

    Silva, Carlos M.; Neves, Patricia S.; Da Silva, Francisco A.; Xavier, Ana M. R. B.; Eusebio, M. F. J.

    2008-01-01

    Experimental work on ultrafiltration is presented to illustrate the practical and theoretical principles of this separation technique. The laboratory exercise comprises experiments with pure water and with aqueous "Saccharomyces cerevisiae" (from commercial Baker's yeast) suspensions. With this work students detect the characteristic phenomena…

  13. Microfiltration and Ultrafiltration Membranes for Drinking Water

    EPA Science Inventory

    This article provides a concise and abbreviated summary of AWWA Manual of Practice M53, Microfiltration and Ultrafiltration Membranes for Drinking Water, to serve as a quick point of reference. For convenience, the article’s organization matches that of M53, as follows: • wate...

  14. Ligand-modified polyelectrolyte-enhanced ultrafiltration with electrostatic attachment of ligands. 2. Use of diethylenetriaminepentaacetic acid/cationic polyelectrolyte mixtures to remove both cations and anions from aqueous streams

    SciTech Connect

    Tuncay, M. Univ. of Oklahoma, Norman, OK ); Christian, S.D.; Tucker, E.E.; Taylor, R.W.; Scamehorn, J.F. )

    1994-12-01

    A mixture of a cationic polyelectrolyte, poly(diallyldimethylammonium chloride) or PDADMAC, and the anionic ligand diethylenetriaminepentaacetic acid (DTPA) can be added to aqueous streams as a water-soluble colloid to bind simultaneously divalent cations, such as Cu[sup 2+] and Pb[sup 2+], and anions, such as CrO[sub 4][sup 2[minus

  15. [Exploration of ultrafiltration failure in peritoneal dialysis].

    PubMed

    Bellavia, Salvatore; Coche, Emmanuel; Goffin, Eric

    2008-12-01

    Ultrafiltration failure (UFF) is a common complication of peritoneal dialysis (PD). It may be due to a technical problem (PD catheter obstruction or migration, peritoneal leaks or intraperitoneal adhesions) or because of a peritoneal membrane alteration (hyperpermeability, aquaporin dysfunction, peritoneal sclerosis or enhanced lymphatic reabsorption). We, here, present the case of a patient who developed several consecutive PD complications that eventually led to UFF. We also present an algorithm, which may help clinicians to establish a precise etiological diagnosis of UFF.

  16. Ultrafiltration in the management of refractory congestive heart failure.

    PubMed Central

    Simpson, I A; Rae, A P; Simpson, K; Gribben, J; Boulton Jones, J M; Allison, M E; Hutton, I

    1986-01-01

    Ultrafiltration was performed in nine patients with congestive cardiac failure that was refractory to conventional medical treatment. A mean of 12 X 7 litres of fluid was removed, and there was a sustained symptomatic improvement in all patients. Weight loss continued after ultrafiltration and a sustained increase in serum sodium concentration was also noted. A transient fall in right atrial pressure was seen only at four hours after ultrafiltration. No adverse haemodynamic effects were seen four and eighteen hours after fluid removal. Intracardiac dimensions measured by echocardiography remained unchanged. Ultrafiltration can be used to relieve symptoms in patients with refractory congestive heart failure and gross oedema. PMID:3964500

  17. Parallel electric field in flux restoration during ultrafiltration

    SciTech Connect

    Silva, M.; Zaniquelli, M.E.D. ); Galembeck, F. )

    1991-01-01

    Ultrafiltration membrane permeability may be restored by applying an electric field parallel to the plane of the membrane in the feed compartment of ultrafiltration cells. Two different electrode arrangements are described. Under some conditions, flux restoration is complete. An electric field parallel to the membrane can thus be used to eliminate membrane polarization and fouling.

  18. Ultrafiltrative deinking of flexographic ONP : the role of surfactants

    Treesearch

    Bradley H. Upton; Gopal A. Krishnagopalan; Said Abubakr

    1999-01-01

    Ultrafiltration is a potentially viable method of removing finely dispersed flexographic pigments from the deinking water loop. This work examines the effects of surface-active materials on ultrafiltration efficiency. A logarithmic relationship between permeate flax and pigment concentration was demonstrated at ink concentrations above 0.4%, permeation rates becoming...

  19. Continuous ultrafiltration for congestive heart failure: the CUORE trial.

    PubMed

    Marenzi, Giancarlo; Muratori, Manuela; Cosentino, Eugenio R; Rinaldi, Elisa R; Donghi, Valeria; Milazzo, Valentina; Ferramosca, Emiliana; Borghi, Claudio; Santoro, Antonio; Agostoni, Piergiuseppe

    2014-05-01

    Background: There are limited data comparing ultrafiltration with standard medical therapy as first-line treatment in patients with severe congestive heart failure (HF). We compared ultrafiltration and conventional therapy in patients hospitalized for HF and overt fluid overload.Methods and Results: Fifty-six patients with congestive HF were randomized to receive standard medical therapy (control group; n = 29) or ultrafiltration (ultrafiltration group; = 27). The primary endpoint of the study was rehospitalizations for congestive HF during a 1-year follow-up. Despite similar body weight reduction at hospital discharge in the 2 groups (7.5 ± 4.5 and 7.9 ± 5.0 kg, respectively;P = .75), a lower incidence of rehospitalizations for HF was observed in the ultrafiltration-treated patients during the following year (hazard ratio 0.14, 95% confidence interval 0.04-0.48; P = .002).Ultrafiltration-induced benefit was associated with a more stable renal function, unchanged furosemide dose, and lower B-type natriuretic peptide levels. At 1 year, 7 deaths (30%) occurred in the ultrafiltration group and 11 (44%) in the control group (P = .33).Conclusions: In HF patients with severe fluid overload, first-line treatment with ultrafiltration is associated with a prolonged clinical stabilization and a greater freedom from rehospitalization for congestive HF.

  20. Development and Demonstration of Ultrafiltration Simulants

    SciTech Connect

    Russell, Renee L.; Billing, Justin M.; Peterson, Reid A.; Rinehart, Donald E.; Smith, Harry D.

    2009-02-24

    According to Bechtel National, Inc. (BNI) Test Specification 24590-PTF-TSP-RT-06-006, Rev 0, Simulant Development to Support the Development and Demonstration of Leaching and Ultrafiltration Pretreatment Processes,” simulants for boehmite, gibbsite, and filtration are to be developed that can be used in subsequent bench and integrated testing of the leaching/filtration processes for the waste treatment plant (WTP). These simulants will then be used to demonstrate the leaching process and to help refine processing conditions which may impact safety basis considerations (Smith 2006). This report documents the results of the filtration simulant development.

  1. Reverse osmosis and ultrafiltration solve separation problems

    SciTech Connect

    Gooding, C.H.

    1985-01-07

    Membrane separation is discussed and analyzed in this paper. The analysis reviews the basic principles, suggests approaches to design, and briefly discusses some of the membranes and equipment available. The potential for energy saving through the use of membrane separation is enormous compared with other separation techniques, particularly evaporation. The author describes the evaporative methods in some detail. The reverse osmosis system (RO) is also described. In lowerpressure ultrafiltration systems, the energy savings are greater using this option. RO may have advantages over evaporation in terms of product quality, and because RO is not a thermal process, it can be used to concentrate temperature-sensitive materials without loss of quality.

  2. From the Lindlar catalyst to supported ligand-modified palladium nanoparticles: selectivity patterns and accessibility constraints in the continuous-flow three-phase hydrogenation of acetylenic compounds.

    PubMed

    Vilé, Gianvito; Almora-Barrios, Neyvis; Mitchell, Sharon; López, Núria; Pérez-Ramírez, Javier

    2014-05-12

    Site modification and isolation through selective poisoning comprise an effective strategy to enhance the selectivity of palladium catalysts in the partial hydrogenation of triple bonds in acetylenic compounds. The recent emergence of supported hybrid materials matching the stereo- and chemoselectivity of the classical Lindlar catalyst holds promise to revolutionize palladium-catalyzed hydrogenations, and will benefit from an in-depth understanding of these new materials. In this work, we compare the performance of bare, lead-poisoned, and ligand-modified palladium catalysts in the hydrogenation of diverse alkynes. Catalytic tests, conducted in a continuous-flow three-phase reactor, coupled with theoretical calculations and characterization methods, enable elucidation of the structural origins of the observed selectivity patterns. Distinctions in the catalytic performance are correlated with the relative accessibility of the active site to the organic substrate, and with the adsorption configuration and strength, depending on the ensemble size and surface potentials. This explains the role of the ligand in the colloidally prepared catalysts in promoting superior performance in the hydrogenation of terminal and internal alkynes, and short-chain alkynols. In contrast, the greater accessibility of the active surface of the Pd-Pb alloy and the absence of polar groups are shown to be favorable in the conversion of alkynes containing long aliphatic chains and/or ketone groups. These findings provide detailed insights for the advanced design of supported nanostructured catalysts.

  3. Synthesis of liver-targeting dual-ligand modified GCGA/5-FU nanoparticles and their characteristics in vitro and in vivo

    PubMed Central

    Cheng, Mingrong; Gao, Xiaoyan; Wang, Yong; Chen, Houxiang; He, Bing; Li, Yingchun; Han, Jiang; Zhang, Zhiping

    2013-01-01

    Nanoparticle drug delivery systems using polymers hold promise for clinical applications. We synthesized dual-ligand modified chitosan (GCGA) nanoparticles using lactic acid, glycyrrhetinic acid, and chitosan to target the liver in our previous studies. We then synthesized the GCGA/5-FU nanoparticles by conjugating 5-fluorouracil (5-FU) onto the GCGA nanomaterial, which had a mean particle size of 239.9 nm, a polydispersity index of 0.040, a zeta potential of +21.2 mV, and a drug loading of 3.90%. GCGA/5-FU nanoparticles had good slow release properties, and the release process could be divided into five phases: small burst release, gentle release, second burst release, steady release, and slow release. Inhibitory effects of GCGA/5-FU on tumor cells targeted the liver, and were time and dose dependent. GCGA nanoparticles significantly prolonged the efficacy of 5-FU on tumor cells, and alleviated the resistance of tumor cells to 5-FU. GCGA/5-FU nanoparticles were mostly concentrated in the liver, indicating that the GCGA nanoparticles were liver targeting. GCGA/5-FU nanoparticles significantly suppressed tumor growth in orthotopic liver transplantation mouse model, and improved mouse survival. PMID:24232303

  4. Ultrafiltration of micellar solutions containing phenols

    SciTech Connect

    Adamczak, H.; Materna, K.; Urbanski, R.; Szymanowski, J.

    1999-10-15

    Micellar-enhanced ultrafiltration represents a potentially attractive tool for the removal of different contaminants from wastewaters. The ultrafiltration of micellar solutions containing phenol or 4-nitrophenol was studied. Sodium dodecyl sulfate (SDS), hexadecylrimethyl ammonium sulfate, alkyl polyglucoside Glucopon 215 SC UP, and oxyethylated methyl dodecanoates with the average degree of oxyethylation equal to 5 and 9 were used as surfactants and NaHCO{sub 3} as an electrolyte and alkalizing agent. Filtration and phenol rejection depends on the presence of NaHCO{sub 3} and the type of surfactant. NaHCO{sub 3} depresses to the filtration rate, especially in the case of SDS and hydrophobic oxyethylated methyl dodecanoate. The highest filtration rates are obtained for hexadecyltrimethyl ammonium bromide (CTAB) and alkyl polyglucoside micellar solutions. The best separations, both of phenol and 4-nitrophenol (almost 100% rejection), are obtained for CTAB micellar solutions at the pH range from 3 to 11. Nonionic surfactants are not effective enough for the separation of phenol and 4-nitrophenol. SDS solutions permit only the separation of phenol.

  5. Ultrafiltration of lipoproteins through a synthetic membrane

    PubMed Central

    Colton, Clark K.; Friedman, Sigmund; Wilson, Dana E.; Lees, Robert S.

    1972-01-01

    To investigate the interaction of lipoproteins with semipermeable membranes, solutions of low density lipoproteins (LDL), very low density lipoproteins (VLDL), mixtures of the two, and diluted, normal, and hyperlipidemic serum were ultrafiltered through a synthetic membrane (500 A nominal pore diameter) using a stirred laboratory ultrafiltration cell. The pressure dependence of ultrafiltrate flux showed that a concentrated layer of lipoproteins was built up at the membrane surface (concentration polarization) and that VLDL was more subject to polarization than LDL. This phenomenon controlled the observed lipoprotein transport behavior. Whereas true membrane rejection (the fraction of the solute on the membrane surface which does not pass through the membrane) was greater than 0.95 for both LDL and VLDL, observed solute rejection varied from nearly 0 to 1.0, depending upon experimental conditions. If concentration polarization occurs in the arterial system, these results suggest that lipoprotein transport into arterial wall may be influenced not only by arterial blood pressure and the properties of the arterial wall, but also by local hemodynamic conditions and by the relative as well as absolute magnitudes of LDL and VLDL concentration. PMID:4344733

  6. Ultrafiltration. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect

    Not Available

    1993-12-01

    The bibliography contains citations concerning ultrafiltration, the separation of colloids or fine solid materials by filtration through microporous or semi-permeable materials. Citations discuss the use of the ultrafiltration process for removing dissolved toxic metals from groundwater, production of food-grade protein, treating kraft black liquor from pulp and paper processing, decontamination of low-level radioactive waste water, desalination, and hemodialysis. Topics also include ultrafiltration equipment and membrane descriptions. Procedures for preventing fouling and the cleaning of the filtration materials and membranes are also presented. (Contains a minimum of 116 citations and includes a subject term index and title list.)

  7. Ultrafiltration. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    Not Available

    1994-12-01

    The bibliography contains citations concerning ultrafiltration, the separation of colloids or fine solid materials by filtration through microporous or semi-permeable materials. Citations discuss the use of the ultrafiltration process for removing dissolved toxic metals from groundwater, production of food-grade protein, treating kraft black liquor from pulp and paper processing, decontamination of low-level radioactive waste water, desalination, and hemodialysis. Topics also include ultrafiltration equipment and membrane descriptions. Procedures for preventing fouling and the cleaning of the filtration materials and membranes are also presented. (Contains a minimum of 133 citations and includes a subject term index and title list.)

  8. Ultrafiltration. (Latest citations from the NTIS database). Published Search

    SciTech Connect

    Not Available

    1993-01-01

    The bibliography contains citations concerning ultrafiltration, the separation of colloids or fine solid materials by filtration through microporous or semi-permeable materials. Citations discuss the use of the ultrafiltration process for removing dissolved toxic metals from groundwater, production of food-grade protein, treating kraft black liquor from pulp and paper processing, decontamination of low-level radioactive waste water, desalination, and hemodialysis. Topics also include ultrafiltration equipment and membrane descriptions. Procedures for preventing fouling and the cleaning of the filtration materials and membranes are also presented. (Contains a minimum of 113 citations and includes a subject term index and title list.)

  9. Recovery by ultrafiltration of a commercial enzyme for cellulose hydrolysis

    SciTech Connect

    Pizzichini, M.; Fabiani, C.; Sperandei, M. )

    1991-02-01

    An enzymatic process of cellulose hydrolysis based mainly on the use of membrane techniques is under study. The proposed flow sheet assumes that during cellulose hydrolysis the enzyme is continuously separated from glucose and cellobiose and is recycled in the cellulose reaction vessel by membrane ultrafiltration. The ultrafiltration of Celluclast enzyme by Novo is performed in a DDS column module assembled with flat polysulfone membranes. Membrane polarization effects are studies in the 0.1-5% w/v enzyme concentration range under varying pressures up to 600 kPa. A partial loss of enzymatic activity is observed as a consequence of the ultrafiltration and membrane washing operations.

  10. Ion-expulsion ultrafiltration to remove chromate from wastewater

    SciTech Connect

    Krehbiel, D.K.; Scamehorn, J.F.; Ritter, R.; Christian, S.D.; Tucker, E.E. )

    1992-10-01

    In ion expulsion ultrafiltration, a water-soluble colloid with the same charge as the target ion to be removed is added to water. This stream is then treated by ultrafiltration with membrane pores small enough to reject the colloid. In this study, chromate was removed from water using polystyrene sulfonate as the colloid in both batch-stirred cell and spiral-wound ultrafiltration devices. At very low pressures, Donnan equilibrium could be used to describe the permeate chromate concentration. As the pressure increased, diffusional effects caused the separation to become poorer. A spiral-wound unit resulted in a much higher separation efficiency than a stirred cell in this process.

  11. Ultrafiltration. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1995-12-01

    The bibliography contains citations concerning ultrafiltration, the separation of colloids or fine solid materials by filtration through microporous or semi-permeable materials. Citations discuss the use of the ultrafiltration process for removing dissolved toxic metals from groundwater, production of food-grade protein, treating kraft black liquor from pulp and paper processing, decontamination of low-level radioactive waste water, desalination, and hemodialysis. Topics also include ultrafiltration equipment and membrane descriptions. Procedures for preventing fouling and the cleaning of the filtration materials and membranes are also presented. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  12. Ultrafiltration of Kraft Black Liquor. Final report, Phase I

    SciTech Connect

    Hill, M.K.

    1985-10-01

    Kraft Black Liquor (KBL) is ultrafiltered to favorably affect the properties of the KBL permeate. The major property to be changed is viscosity. If the high molecular weight lignin is removed by ultrafiltration, the KBL permeate should show a significant drop in viscosity. An objective of the work reported was to examine how much KBL viscosity is lowered relative to membrane and membrane pore size used in the ultrafiltration. Another objective was an initial evaluation of ultrafiltration equipment and membranes. Operating characteristics were determined for selected equipment and membranes. Decreases in KBL permeate viscosity were indeed seen. (LEW)

  13. Lysozyme separation by hollow-fibre ultrafiltration.

    PubMed

    Ghosh; Silva1; Cui

    2000-08-01

    This paper discusses the purification of lysozyme from chicken egg white using hollow-fibre ultrafiltration (30kDa MWCO, polysulphone membrane). Lysozyme is preferentially transmitted through the membrane while the membrane largely retains other egg white proteins. Improvement in system hydrodynamics resulted in an increase in permeate flux while lysozyme transmission remained unaffected, leading to higher productivity. The percentage purity of lysozyme obtained was generally insensitive to system hydrodynamics. The permeate flux and productivity increased with increase in transmembrane pressure (TMP) before levelling off around 0.7bar. However, the TMP did not have any pronounced effect on the transmission and the purity of lysozyme. Experiments carried out in the diafiltration mode showed that moderately pure lysozyme (80-90%) could be obtained in an extended operation.

  14. Ceramic Ultrafiltration Membrane from Nanosilica Particles

    NASA Astrophysics Data System (ADS)

    Wahid, Zarina Abdul; Ramli, Rafindde; Muchtar, Andanastuti; Mohammad, Abd Wahab

    This study attempts to develop asymmetric ceramic membrane filter from nanosilica particles for ultrafiltration (UF) membrane. The alumina tube was used as a support and was coated with SiC which acted as an intermediate layer or microfiltration (MF) layer. The UF membrane was developed using the filtration technique through chemical suspension of the particles. Nanosilica was suspended in HCl acid, iso-propanol and acetone before it was deposited on the alumina tube using a special coating assembly. The membranes were characterised for pore size, thickness and microstructure. This study found that the use of nanoparticles for membrane development could easily control the pore size as well as the thickness of the membrane. The uniformity of the membrane thickness could also be achieved through this filtration technique.

  15. An osmolyte-based micro-volume ultrafiltration technique.

    PubMed

    Ghosh, Raja

    2014-12-07

    This paper discusses a novel, simple, and inexpensive micro-volume ultrafiltration technique for protein concentration, desalting, buffer exchange, and size-based protein purification. The technique is suitable for processing protein samples in a high-throughput mode. It utilizes a combination of capillary action, and osmosis for drawing water and other permeable species from a micro-volume sample droplet applied on the surface of an ultrafiltration membrane. A macromolecule coated on the permeate side of the membrane functions as the osmolyte. The action of the osmolyte could, if required, be augmented by adding a supersorbent polymer layer over the osmolyte. The mildly hydrophobic surface of the polymeric ultrafiltration membrane used in this study minimized sample droplet spreading, thus making it easy to recover the retained material after separation, without sample interference and cross-contamination. High protein recoveries were observed in the micro-volume ultrafiltration experiments described in the paper.

  16. The role of ultrafiltration in the management of heart failure.

    PubMed

    Costanzo, Maria Rosa

    2008-01-01

    Congestion causes the majority of hospitalizations for heart failure and contributes to heart failure progression and mortality. Intravenous loop diuretics reduce the signs and symptoms of congestion. Loop diuretics, however, may be associated with increased morbidity and mortality due to deleterious effects on neurohormonal activation, electrolyte balance, and cardiac and renal function. Ultrafiltration, an alternative method of sodium and water removal, safely improves hemodynamics in heart failure patients. Recent clinical trial data suggest that ultrafiltration may also reduce rehospitalizations for worsening heart failure.

  17. Evaluation of ultrafiltration for determining molecular weight of fulvic acid

    USGS Publications Warehouse

    Aiken, G.R.

    1984-01-01

    Two commonly used ultrafiltration membranes are evaluated for the determination of molecular weights of humic substances. Polyacrylic acids of Mr 2000 and 5000 and two well-characterized fulvic acids are used as standards. Molecular size characteristics of standards, as determined by small-angle X-ray scattering, are presented. Great care in evaluating molecular weight data obtained by ultrafiltration is needed because of broad nominal cutoffs and membrane-solute interactions.

  18. Quantification and clinical application of carboplatin in plasma ultrafiltrate.

    PubMed

    Downing, Kim; Jensen, Berit Packert; Grant, Sue; Strother, Matthew; George, Peter

    2017-05-10

    Carboplatin is a chemotherapy drug used in a variety of cancers with the primary toxicity being exposure-dependant myelosuppression. We present the development and validation of a simple, robust inductively coupled plasma mass spectrometry (ICP-MS) method to measure carboplatin in plasma ultrafiltrate. Plasma ultrafiltrates samples were prepared using Amicon Ultra 30,000da cut-off filters and then diluted with ammonia EDTA before ICP-MS analysis. The assay was validated in the range 0.19-47.5mg/L carboplatin in ultrafiltrate. The assay was linear (r(2)>0.9999), accurate (<6% bias, 12% bias at LLOQ) and precise (intra- and inter-day precision of <3% coefficient of variation). No matrix effects were observed between plasma ultrafiltrate and aqueous platinum calibrators and recovery was complete. The assay was applied to 10 clinical samples from patients receiving carboplatin. Incurred sample reanalysis showed reproducible values over 3 analysis days (<6% CV). As plasma stability prior to ultrafiltration has been a major concern in previous clinical studies this was studied extensively at room temperature (22°C) over 24h. Carboplatin was found to be stable in both spiked plasma (n=3) and real patient samples (n=10) at room temperature for up to 8h before ultrafiltration. This makes routine measurement of carboplatin concentrations in clinical settings feasible. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Glomerular ultrafiltration in the pseudopregnant rat.

    PubMed

    Baylis, C

    1982-09-01

    Whole kidney and single nephron indices of glomerular ultrafiltration were measured by clearance and micropuncture techniques in anesthetized virgin, 9-day pregnant, and 9-day pseudopregnant Munich-Wistar rats. Whole kidney glomerular filtration rate (GFR) and single nephron glomerular filtration rate (SNGFR) were elevated in pregnant and pseudopregnant rats compared with virgins (0.78 +/- 0.05, 0.75 +/- 0.06 vs. 0.57 +/- 0.03 ml/min, P less than 0.005 and P less than 0.001; 32.1 +/- 2.5, 30.0 +/- 2.8 vs. 22.1 +/- 2.0 nl/min, P less than 0.01 and P less than 0.05, respectively). Total renal plasma flow rate (RPF) and single glomerular plasma flow rate (QA) were also increased in pregnant and pseudopregnant rats compared to virgins (3.05 +/- 0.19, 2.90 +2- 0.24 vs. 2.28 +/- 0.21 ml/min, P less than 0.01 and P less than 0.05; 109.0 +/- 15.8, 100.4 +/- 12.8 vs. 68.0 +/- 6.9 nl/min, both P less thn 0.05). There was little difference in the other determinants of ultrafiltration among the three groups. Plasma volume was measured in separate experiments and was higher in pregnant and pseudopregnant rats compared with virgins (9.4 +/- 0.2, 9.8 +/- 0.4 vs. 8.4 +/- 0.3 ml, P less than 0.01 and P less than 0.05, respectively). The gestational increase in GFR in the rat occurs as the result of increased RPF, which is due to both plasma volume expansion and renal vasodilation. Since the changes in renal hemodynamics seen in pseudopregnancy were almost identical to those occurring in pregnant rats, the early stimulus to increased GFR must be maternal and not fetoplacental in origin.

  20. Ultrafiltration modeling of non-ionic microgels

    NASA Astrophysics Data System (ADS)

    Roa, Rafael; Zholkovskiy, Emiliy K.; Nägele, Gerhard

    Membrane ultrafiltration (UF) is a pressure driven process allowing for the separation and enrichment of protein solutions and dispersions of nanosized microgel particles. The permeate flux and the near-membrane concentration-polarization (CP) layer in this process is determined by advective-diffusive dispersion transport and the interplay of applied and osmotic transmembrane pressure contributions. The UF performance is thus strongly dependent on the membrane properties, the hydrodynamic structure of the Brownian particles, their direct and hydrodynamic interactions, and the boundary conditions. We present a macroscopic description of cross-flow UF of non-ionic microgels modeled as solvent-permeable spheres. Our filtration model involves recently derived semi-analytic expressions for the concentration-dependent collective diffusion coefficient and viscosity of permeable particle dispersions [Riest et al., Soft Matter, 2015, 11, 2821]. These expressions have been well tested against computer simulation and experimental results. We analyze the CP layer properties and the permeate flux at different operating conditions and discuss various filtration process efficiency and cost indicators. Our results show that the proper specification of the concentration-dependent transport coefficients is important for reliable filtration process predictions. We also show that the solvent permeability of microgels is an essential ingredient to the UF modeling. The particle permeability lowers the particle concentration at the membrane surface, thus increasing the permeate flux.

  1. Use of serum ultrafiltrate in the serum dilution test.

    PubMed

    Leggett, J E; Wolz, S A; Craig, W A

    1989-10-01

    Although pooled human serum diluent is advocated in the serum dilution test, its use may compensate for protein binding defects in patients and yield nonrepresentative titers. To test this hypothesis, comparison was made of serum ultrafiltrate (molecular weight cutoff less than or equal to 30,000) serially diluted into either pooled serum ultrafiltrate or Mueller-Hinton broth with patient serum samples diluted into pooled human serum in 111 assays from 55 patients and 6 volunteers. Of 111 bactericidal titers in ultrafiltrate and/or Mueller-Hinton broth, 101 were within a single twofold dilution of titers in pooled human serum. Nine of 10 discordant titers involved highly bound drugs and were usually higher in ultrafiltrate than in pooled human serum. In seven additional volunteers with renal failure, titers in ultrafiltrate and in each volunteer's serum were higher than those diluted in pooled human serum (P = .002). Recommended methods using pooled serum diluent may not accurately predict actual bactericidal titers in patients with abnormal protein binding.

  2. Impact of modified ultrafiltration on morbidity after pediatric cardiac surgery.

    PubMed

    Raja, Shahzad G; Yousufuddin, Shaik; Rasool, Faisal; Nubi, Ayo; Danton, Mark; Pollock, James

    2006-08-01

    Cardiopulmonary bypass is a double-edged sword. Without it, corrective cardiac surgery would not be possible in the majority of children with congenital heart disease. However, much of the perioperative morbidity that occurs after cardiac surgery can be attributed to a large extent to pathophysiologic processes engendered by extracorporeal circulation. One of the challenges that has confronted pediatric cardiac surgeons has been to minimize the consequences of cardiopulmonary bypass. Ultrafiltration is a strategy that has been used for many years in an effort to attenuate the effects of hemodilution that occur when small children undergo surgery with cardiopulmonary bypass. Over the past several years, a modified technique of ultrafiltration, commonly known as modified ultrafiltration, has been used with increasing enthusiasm. Multiple studies have been undertaken to assess the effects of modified ultrafiltration on organ function and postoperative morbidity following repair of congenital heart defects. This review attempts to evaluate current available scientific evidence on the impact of modified ultrafiltration on organ function and morbidity after pediatric cardiac surgery.

  3. Fouling mechanisms in the integrated system with softening and ultrafiltration.

    PubMed

    Kweon, Ji Hyang; Lawler, Desmond F

    2004-11-01

    Softening is designed to remove hardness ions, but it can also remove NOM and particles, yielding the possibility to use the process as a pretreatment for ultrafiltration. The objectives of this research were to understand the nature of the fouling mechanisms for ultrafiltration when used for waters that either require softening or have been softened, and to use that understanding to determine promising options for the use of softening as a pretreatment before ultrafiltration. To understand fouling mechanisms in the integrated system with softening and ultrafiltration, three different levels of softening performance in terms of removal of inorganics and organic matter were selected. Experiments were performed with both natural waters and synthetic waters with similar (but separable) inorganic, organic, and particulate characteristics. The synthetic waters were used to distinguish among inorganic fouling by precipitates, organic fouling, particulate fouling, and combined fouling by particles and organic matter. The results showed that organic matter played a major role in fouling, either by itself or by adsorption onto particles, and that softening pretreatment effectively reduced the foulants prior to ultrafiltration.

  4. Charged ultrafiltration membranes increase the selectivity of whey protein separations.

    PubMed

    Bhushan, S; Etzel, M R

    2009-04-01

    Ultrafiltration is widely used to concentrate proteins, but fractionation of one protein from another is much less common. This study examined the use of positively charged membranes to increase the selectivity of ultrafiltration and allow the fractionation of proteins from cheese whey. By adding a positive charge to ultrafiltration membranes, and adjusting the solution pH, it was possible to permeate proteins having little or no charge, such as glycomacropeptide, and retain proteins having a positive charge. Placing a charge on the membrane increased the selectivity by over 600% compared to using an uncharged membrane. The data were fit using the stagnant film model that relates the observed sieving coefficient to membrane parameters such as the flux, mass transfer coefficient, and membrane Peclet number. The model was a useful tool for data analysis and for the scale up of membrane separations for whey protein fractionation.

  5. Cytotoxic effects on splenic ultrafiltrates upon leukaemic lymphocytes.

    PubMed Central

    Attallah, A. M.; Houck, J. C.

    1975-01-01

    Ultrafiltrates from spleen inhibited both DNA synthesis and the proliferation of normal lymphocytes stimulated inculture from both mouse and man without apparent cytotoxicity. However, the same doses of this spleen ultrafiltrate will kill up to two-thirds of the leukaemic lymphoblasts from both mouse and man after 24 h incubation. This unique lymphocytotoxic effect could also be demonstrated on fresh primary cultures of leukaemic lymphocytes and was highly effective on slowly growing established cell lines under crowd culture conditions. Furthermore. ultrafiltrated thymus extract did not affect the DNA synthesis rates of the viability of NC-37 lymphoblasts, which have B cell characteristic. Thymus extract was cytotoxic to Molt cells, which have T cell characteristics. PMID:1062220

  6. Ultrafiltration of Kraft Black Liquor: Phase II, Final report

    SciTech Connect

    Hill, M.K.

    1987-09-01

    The major justification for examining ultrafiltration was to lower the viscosity of the Kraft Black Liquor by recovering it as an ultrafiltration permeate from which the highest MW lignin had been removed. The liquor could then be concentrated to a higher percentage solids before firing into the recovery boiler. Consequent energy savings for the 1000 ton/day pulp mill would be 2.05 x 10 Btu/y for each percentage increase in TDS (total dissolved solids) to the recovery boiler. This Phase II report gives data on viscosity with percentage solids of KBL permeates. Another favorable effect of ultrafiltration on the permeate properties is disproportionate removal of multivalent ions including the major scaling ion CaS . If this high-viscosity high-Ca retentate could be treated to lower its viscosity and to release the Ca in a non-scaling form, this would enhance the possibility that ultrafiltration might be useful in a mill situation. Included in this report are data on the results of treating the retentate fraction. Other justifications for this program included further information in KBL properties: lignin MW in the KBL at high pH; elemental and sugar analyses; and differential properties of lignins in the retentate and the permeate fractions. A preliminary economic analysis of ultrafiltration is contained in this report. These analyses indicate that with flux rates now attainable, ultrafiltration would not be economically justified at this time if the only justification is to lower KBL viscosity. For certain situations where high Ca liquors present a scaling problem, especially in an evaporator-limited mill, the economics are more favorable. There are also unsolved problems relating to the use of the high viscosity retentate.

  7. Solution-spun hollow fiber polysulfone and polyethersulfone ultrafiltration membranes

    SciTech Connect

    Liu, Tinghui; Zhang, Donghui; Xu, Shunguang; Sourirajan, S. )

    1992-02-01

    Polysulfone hollow fiber membranes are currently in extensive industrial use, either as such for ultrafiltration (UF) applications or as a base for subsequent coating operations for use as gas or vapor separation membranes. A laboratory apparatus for making hollow fiber membranes by the solution spinning process is described. Several hollow fiber membranes form polysulfone (Udel-3500) and polyethersulfone (Victrex) polymers have been made by using the above apparatus. The effects of spin-solution composition, length of air gap, and pressure used for fiber extrusion on fiber dimensions and ultrafiltration performance of the resulting membranes have been studied and are discussed.

  8. Radiocarbon dating of VIRI bone samples using ultrafiltration

    NASA Astrophysics Data System (ADS)

    Minami, Masayo; Yamazaki, Kana; Omori, Takayuki; Nakamura, Toshio

    2013-01-01

    Ultrafiltration can effectively remove low-molecular-weight (LMW) contaminants from bone gelatin to extract high-molecular-weight (HMW) proteins that are derived from original bone collagen, though it cannot remove HMW collagen crosslinked with humic acids. Therefore, ultrafiltration is often used to obtain more accurate 14C dates of bones. However, ultrafiltration may introduce new contaminants to bone gelatins, mainly from ultrafilters used. To study the effects of ultrafiltration on 14C age, we analyzed the C/N ratio, δ13CPDB and δ15NAIR values, and 14C ages of acid-soluble bone collagen obtained by decalcification, gelatin extracted from acid-insoluble bone collagen, and the HMW gelatin and LMW fractions produced during ultrafiltration of the extracted gelatin. Bone samples from the Fifth International Radiocarbon Intercomparison (VIRI) were used: VIRI-E (mammoth), -F (horse), -G (human), and -I (whale). In this study, carbon and nitrogen content and gelatin yields were used to evaluate collagen preservation in the VIRI bone samples. Radiocarbon ages, δ13CPDB and δ15NAIR values of unfiltered and HMW gelatins were obtained and compared with the published consensus values. The LMW fraction was found to exhibit different values from those of the other fractions, indicating the possible presence of extraneous contamination. The Vivaspin™ 6 ultrafilters used in this study were analyzed and radiocarbon dated both before and after cleaning. We present evidence to suggest that LMW fraction contaminants could be derived from the ultrafilters rather than humic substances. Excessively long ultrafiltration time was suspected to have contaminated the bone samples with material from the ultrafilter, because those samples exhibited older 14C ages than did those filtered for shorter durations. The results in this study indicate that 14C ages of unfiltered gelatin extracted from well-preserved bones can be sufficiently accurate, and that care should be taken not to

  9. Adsorption of amylase enzyme on ultrafiltration membranes.

    PubMed

    Beier, Søren Prip; Enevoldsen, Ann Dorrit; Kontogeorgis, Georgios M; Hansen, Ernst B; Jonsson, Gunnar

    2007-08-28

    A method to measure the static adsorption on membrane surfaces has been developed and described. The static adsorption of amylase-F has been measured on two different ultrafiltration membranes, both with a cutoff value of 10 kDa (a PES membrane and the ETNA10PP membrane, which is a surface-modified PVDF membrane). The adsorption follows the Langmuir adsorption theory. Thus, the static adsorption consists of monolayer coverage and is expressed both as a permeability drop and an adsorption resistance. From the adsorption isotherms, the maximum static permeability drops and the maximum static adsorption resistances are determined. The maximum static permeability drop for the hydrophobic PES membrane is 75%, and the maximum static adsorption resistance is 0.014 m2.h.bar/L. The maximum static permeability drop for the hydrophilic surface-modified PVDF membrane (ETNA10PP) is 23%, and the maximum static adsorption resistance is 0.0046 m2.h.bar/L. The difference in maximum static adsorption, by a factor of around 3, affects the performance during the filtration of a 5 g/L amylase-F solution at 2 bar. The two membranes behave very similarly during filtration with almost equal fluxes and retentions even though the initial water permeability of the PES membrane is around 3 times larger than the initial water permeability of the ETNA10PP membrane. This is mainly attributed to the larger maximum static adsorption of the PES membrane. The permeability drop during filtration exceeds the maximum static permeability drop, indicating that the buildup layer on the membranes during filtration exceeds monolayer coverage, which is also seen by the increase in fouling resistance during filtration. The accumulated layer on the membrane surface can be described as a continually increasing cake-layer thickness, which is independent of the membrane type. At higher concentrations of enzyme, concentration polarization effects cannot be neglected. Therefore, stagnant film theory and the osmotic

  10. Thin Stillage Fractionation Using Ultrafiltration: Resistance in Series Model

    USDA-ARS?s Scientific Manuscript database

    Fractionation of thin stillage using ultrafiltration was conducted to evaluate membranes as an alternative to evaporators in the ethanol industry. Two regenerated cellulose membranes with molecular weight cut offs of 10,000 and 100,000 kDa, respectively, were evaluated. Total solids (suspended and...

  11. Rheology of defatted ultrafiltration-diafiltration soy proteins

    USDA-ARS?s Scientific Manuscript database

    The linear and non-linear rheological properties of defatted soy proteins produced by ultrafiltration-diafiltration were investigated at three temperatures. Five concentrations ranging from 10% to 30% of the defatted ultrafiltered-diafiltered (DUD) soy proteins were prepared. The properties of DUD...

  12. An improved ultrafiltration method for determining free testosterone in serum

    SciTech Connect

    Vlahos, I.; MacMahon, W.; Sgoutas, D.; Bowers, W.; Thompson, J.; Trawick, W.

    1982-11-01

    In this method, we use the Amicon MPS-1 centrifugal ultrafiltration device and the YMB membrane in measuring free testosterone in serum. Two independent assays are combined: total testosterone and the ultrafiltrable fraction of added (/sup 3/H)testosterone. The unbound fraction is determined in 0.15-0.5 mL ultrafiltrates of 0.6 to 1 mL of variably diluted serum that has been equilibrated with (/sup 3/H)testosterone at 37 degrees C. The assay is rapid (less than 1 h), practicable (requires 0.6 mL of serum), and reproducible (CV 3.2% within assay, 3.9% between assays). Accuracy was evaluated as the fraction of free testosterone in the ultrafiltrate of dialyzed serum vs that in a prior dialysate; they were the same confirming the validity of the free testosterone measurement. Samples from ostensibly healthy men and women and from hirsute and pregnant women gave results that agreed with those obtained by equilibrium dialysis. Total testosterone concentrations for normal and hirsute women showed considerable overlap, but data on free testosterone concentrations in these populations were better resolved.

  13. Coagulation pretreatment for ultrafiltration of deinking effluents containing flexographic inks

    Treesearch

    Bruno Chabot; Gopal A. Krishnagopalan; Said Abubakr

    1999-01-01

    This study was carried out to determine the potential of coagulation pretreatment with organic or inorganic coagulants to improve ultrafiltration performance during processing of wash deinking effluents containing flexographic inks. Wash filtrate effluents generated from mixtures of old flexographic and offset newspapers and old magazines were pretreated with a...

  14. Ultrafiltration with an isosmotic solution during long peritoneal dialysis exchanges.

    PubMed

    Mistry, C D; Mallick, N P; Gokal, R

    1987-07-25

    The potential of a starch-derived glucose polymer (molecular weight 16,800) as an osmotic agent for peritoneal dialysis was evaluated. A dialysate isosmotic to uraemic serum (302 [SEM 1.3] mOsm/kg) containing 5% glucose polymer (9.4 mmol/l) was compared with hypertonic (332 [1.0] mOsm/kg) 1.36% glucose (76 mmol/l) solution for ultrafiltration, solute transport, and carbohydrate absorption over 6 h and 12 h peritoneal dialysis exchanges. Glucose polymer solution produced substantially greater net ultrafiltration than glucose, while maintaining stable dialysate osmolality throughout the exchanges. At 6 h and 12 h, 14.4% and 28.1% of glucose polymer had been absorbed, compared with 61.5% and 83.0% of glucose; thus, glucose polymer provided less than 50% of the calorie load of the glucose dialysate per unit volume of ultrafiltrate. There was a 7-9-fold increase in serum maltose with glucose polymer. This high-molecular-weight glucose polymer produced sustained ultrafiltration even when dialysate osmolality remained within the physiological range, by a mechanism resembling "colloid" osmosis. It is a safe and effective osmotic agent but its long-term effects need further study.

  15. Screening drugs for metabolic stability using pulsed ultrafiltration mass spectrometry.

    PubMed

    Geun Shin, Young; Bolton, Judy L; van Breemen, Richard B

    2002-02-01

    A pulsed ultrafiltration-mass spectrometric screening method has been developed to evaluate the metabolic stability of drugs. Pooled human liver microsomes containing cytochrome P450 enzymes were trapped by an ultrafiltration membrane in a stirred flow-through chamber, and eight beta-blocker drugs including acebutolol, alprenolol, atenolol, metoprolol, oxprenolol, pindolol, propranolol, and timolol were flow-injected through the chamber along with the cofactor NADPH. The ultrafiltrate was collected, concentrated and analyzed by using liquid chromatography-tandem mass spectrometry (LC-MS-MS) in order to quantitate the unmetabolized fraction of each drug. The metabolic stability of each beta-blocker was determined based on the difference between the corresponding LC-MS-MS peak areas of an experimental incubation and a control without NADPH. A flow-through incubation method, pulsed ultrafiltration metabolic screening minimizes the potential for product feed back inhibition of cytochrome P450 enzymes. The importance of this phenomenon was illustrated by the observation that the metabolic stability of the set of beta-blocker drugs measured using pulsed ultrafiltration more closely resembled the in vivo stability than that determined using a conventional batch incubation with microsomes or an incubation with human hepatocytes. Since a mixture of compounds was analyzed, the relative metabolic stability of each compound could be assessed by comparison to the other compounds in the incubation. This approach might be particularly useful for the ranking of a directed library of drug leads with respect to metabolic stability and then the selection of lead compounds for further drug development.

  16. Diuretics and ultrafiltration in acute heart failure syndrome.

    PubMed

    Zhi, Qi; Liang, Jiang Chang

    2013-01-01

    The use of diuretics and ultrafiltration in acute heart failure syndrome (AHFS) has been investigated in a number of randomized controlled trials (RCTs). However, the benefits have been variable. We therefore performed a meta-analysis to examine the overall effect of all-cause mortality, rehospitalization, renal function, dyspnea relief, and adverse events in patients with AHFS. We identified RCTs by a systematic search of MEDLINE, EMBASE, and the Cochrane Controlled Clinical Trials Register Database. Eligible RCTs were those that enrolled patients with AHFS and involved comparison of diuretic versus ultrafiltration therapy. Five RCTs with a total of nearly 500 patients were included. Overall, ultrafiltration therapy was not associated with significantly decreased risk of all-cause mortality (relative risk [RR], 0.977; 95% confidence interval [CI], 0.602 to 1.587; P = 0.925; I² = 0.0%), rehospitalization (RR, 0.903; 95% CI, 0.696 to 1.170; P = 0.440; I² = 77.4%), dyspnea score (weighted mean difference [WMD], 0.168; 95% CI, -0.318 to 0.653; P = 0.498; I² = 11.4%) and creatinine (WMD, 0.055 mg/mL; 95% CI, -0.101 to 0.210; P = 0.491; I² = 48.4%). However, there was significantly more weight loss (WMD, 1.333 kg; 95% CI, 0.186 to 2.479; P = 0.023; I² = 57.7%) and net fluid removal (WMD, 1459.432 mL; 95% CI, 275.911 to 2642.953; P = 0.016; I² = 25.2%) in the ultrafiltration-therapy group. There was no significant difference in the risk of adverse events between the two groups. Compared with diuretic therapy, ultrafiltration produces greater weight loss and net fluid removal in a safe and effective manner.

  17. Cross-flow Ultrafiltration Scaling Considerations

    SciTech Connect

    Duignan, M

    2006-04-10

    One legacy of the nuclear age is radioactive waste and it must be stabilized to be stored in a safe manner. An important part of the stabilization process is the separation of radioactive solids from the liquid wastes by cross-flow ultrafiltration. The performance of this technology with the wastes to be treated was unknown and, therefore, had to be obtained. However, before beginning a filter study the question of experimental scale had to be addressed. Of course, carrying out experiments using full-size equipment is always ideal, but rarely practical when dealing with plant size processes. Flow loops that will handle millions of liters of slurries, which are either highly caustic or acidic, with flow rates of 10,000 lpm make full-scale tests prohibitively expensive. Moreover, when the slurries happen to be radioactive such work is also very dangerous. All of these considerations lend themselves to investigations at smaller scales and in many situations can be treated with computational analyses. Unfortunately, as scale is reduced it becomes harder to provide prototypic results and the two and three phase multi-component mixtures challenge accurate computational results. To obtain accurate and representative filter results the use of two scales were chosen: (1) Small-scale--would allow the testing with actual radioactive waste samples and compare results with simulated wastes that were not radioactive. For this scale the feed tank held 6 liters of waste and it had a single cross-flow filter tube 0.61 m long. (2) Pilot-scale--would be restricted to use simulated non-radioactive wastes. At this larger scale the feed tank held 120 liters of waste and the filter unit was prototypic to the planned plant facility in pore size (0.1 micron), length (2.29 m), diameter (0.0127 m inside and 0.0159 m outside diameter), and being multi-tubed. The small-scale apparatus is convenient, easy to use, and can test both radioactive and non-radioactive wastes; therefore, there is a

  18. Ultrafiltration followed by haemodialysis. A longterm trial and acute studies.

    PubMed

    Pierides, A M; Kurtz, S B; Johnson, W J

    1978-01-01

    Separate ultrafiltration followed by haemodialysis (U.F.-H.D.) using Gambro Major or Cordis-Dow hollow-fiber dialyzers were evaluated in 10 dialysis patients over a mean period of 4 1/2 months and 455 U.F.-H.D. procedures. Fluid control was facilitated in oedematous patients but the number of hypotensive episodes during the combined procedure requiring intravenous 5% saline did not significantly decrease. No significant improvement in hypertension was noted. Ultrafiltration (U.F.) alone for acutely water overloaded, azotaemic patients proved very useful. Two to five liters of oedema fluid could be removed asymptomatically in one to three hours using transmembrane pressures of 250 to 500 mmHg and U.F. rates of 10 to 42 ml/min. Two patients became acutely and symptomatically hypotensive. One was an insulin dependent diabetic in whom 3800 ml were removed in 75 minutes and the other a hypertensive patient undergoing treatment with Minoxidil and propranolol.

  19. Parallel quantification of lectin-glycan interaction using ultrafiltration.

    PubMed

    Takeda, Yoichi; Seko, Akira; Sakono, Masafumi; Hachisu, Masakazu; Koizumi, Akihiko; Fujikawa, Kohki; Ito, Yukishige

    2013-06-28

    Using ultrafiltration membrane, a simple method for screening protein-ligand interaction was developed. The procedure comprises three steps: mixing ligand with protein, ultrafiltration of the solution, and quantification of unbound ligands by HPLC. By conducting analysis with variable protein concentrations, affinity constants were easily obtained. Multiple ligands can be analyzed simultaneously as a mixture, when concentration of ligands was controlled. Feasibility of this method for lectin-glycan interaction analysis was examined using fluorescently labeled high-mannose-type glycans and recombinant intracellular lectins or endo-α-mannosidase mutants. Estimated Ka values of malectin and VIP36 were in good agreement indeed with those evaluated by conventional methods such as isothermal titration calorimetry (ITC) or frontal affinity chromatography (FAC). Finally, several mutants of endo-α-mannosidase were produced and their affinities to monoglucosylated glycans were evaluated.

  20. MEMBRANES FOR ULTRAFILTRATION, OF GRADUATED FINENESS DOWN TO MOLECULAR SIEVES

    PubMed Central

    McBain, J. W.; Kistler, S. S.

    1928-01-01

    The use of cellophane in ultrafiltration is recommended. It is shown that after it has been swollen in water it does not hold back molecules such as sucrose but that it holds back all but the finest colloidal particles. Two methods are given for progressively decreasing the size of the pores until the cellophane becomes a very fine molecular sieve. A sieve structure as the chief factor seems most in accordance with our experience of this and other ultrafilters. Collodion membranes may also be used as molecular sieves but their properties are inconstant. Bedicher is a very fine and rapid filtering ultrafilter and pig's bladder holds back a fair proportion of such molecules as sucrose and potassium chloride. Notes are made on the behavior of cellophane in aqueous and non-aqueous solutions. It is emphasized that ultrafiltration is distinctive and has but little relation to diffusion, dialysis, osmosis, electroosmosis or thermodynamics. PMID:19872450

  1. Concentration polarization model for hollow-fiber membrane ultrafiltration

    SciTech Connect

    Yeh, H.M. ); Cheng, T.W. )

    1994-02-01

    The concentration polarization model has been applied to analyze the permeate flux of hollow-fiber membrane ultrafiltration. Comparison of theoretical prediction with experimental data has been made under various transmembrane pressures, feed velocities, and solution concentrations. Both theoretical prediction and experimental results show that average permeate flux increases as transmembrane pressure or feed velocity increases, but decreases when solution concentration increases. 24 refs., 9 figs.

  2. Virus Rejection by the Reverse Osmosis - Ultrafiltration Processes

    DTIC Science & Technology

    Rejection of viruses by commercial grade asymmetrical cellulose acetate membranes commonly used in the ultrafiltration and reverse osmosis processes...penetration of viruses may be attributable to the presence of random areas of imperfect crosslinkage of the cellulose acetate in the dense layer of...the membrane. Despite limited virus penetration, all of the cellulose acetate membranes used in this study rejected an extremely high percentage of the viruses and provided a product water of excellent quality.

  3. Low-molecular weight plasma proteome analysis using centrifugal ultrafiltration.

    PubMed

    Greening, David W; Simpson, Richard J

    2011-01-01

    The low-molecular weight fraction (LMF) of the human plasma proteome is an invaluable source of biological information, especially in the context of identifying plasma-based biomarkers of disease. This protocol outlines a standardized procedure for the rapid/reproducible LMF profiling of human plasma samples using centrifugal ultrafiltration fractionation, followed by 1D-SDS-PAGE separation and nano-LC-MS/MS. Ultrafiltration is a convective process that uses anisotropic semipermeable membranes to separate macromolecular species on the basis of size. We have optimized centrifugal ultrafiltration for plasma fractionation with respect to buffer and solvent composition, centrifugal force, duration and temperature to facilitate >95% recovery, and enrichment of low-M (r) components from human plasma. Using this protocol, >260 unique peptides can be identified from a single plasma profiling experiment using 100 μL of plasma (Greening and Simpson, J Proteomics 73:637-648, 2010). The efficacy of this method is demonstrated by the identification, for the first time, of several plasma proteins (e.g., protein KIAA0649 (Q9Y4D3), rheumatoid factor D5, serine protease inhibitor A3, and transmembrane adapter protein PAG) previously not reported in extant high-confidence Human Proteome Organization Plasma Proteome Project datasets.

  4. Removing cadmium ions from water via nanoparticle-enhanced ultrafiltration.

    PubMed

    Jawor, Anna; Hoek, Eric M V

    2010-04-01

    Here we evaluate removal of cadmium ions from water by nanoparticle-enhanced ultrafiltration using polymer and zeolite nanoparticles. This evaluation considered nanoparticle physical-chemical properties, metal-binding kinetics, capacity and reversibility, and ultrafiltration separation for a Linde type A zeolite nanocrystals, poly(acrylic acid), alginic acid, and carboxyl-functionalized PAMAM dendrimers in simple, laboratory prepared ionic solutions. The three synthetic materials exhibited fast binding kinetics and strong affinity for cadmium, with good regeneration capabilities. Only the zeolite nanoparticles were completely rejected by the ultrafiltration membranes tested. Overall, colloidal zeolites performed similar to conventional metal binding polymers, but were more easily recovered using relatively loose filtration membranes (i.e., lower energy consumption). Further, the superhydrophilic colloidal zeolites caused relatively little flux decline even in the presence of divalent cations which caused dense, highly impermeable polymer gels to form over the membranes. These results suggest zeolite nanoparticles may compete with polymeric materials in low-pressure hybrid filtration processes designed to remove toxic metals from water.

  5. Modified ultrafiltration in adult patients undergoing cardiac surgery.

    PubMed

    Zakkar, Mustafa; Guida, Gustavo; Angelini, Gianni D

    2015-03-01

    A best evidence topic in cardiac surgery was written according to a structured protocol. The question addressed was the impact of modified ultrafiltration on adult patients undergoing cardiac surgery in terms of inflammatory and metabolic changes, blood loss and early clinical outcomes. A total of 155 papers were identified using the search as described below. Of these, six papers presented the best evidence to answer the clinical question as they reported data to reach conclusions regarding the issues of interest for this review. The author, date and country of publication, patient group, study type and weaknesses and relevant outcomes were tabulated. Modified ultrafiltration in adult patients undergoing cardiac surgery seems to attenuate the levels of inflammatory molecules associated with surgery, reduces blood loss and blood transfusion and improves cardiac output, index and systemic vascular resistance. However, this was not translated in any reduction in length of stay in intensive care unit or hospital. Most studies were single-centre prospective non-blinded trials that included a small cohort of elective coronary artery bypass grafting patients, which makes it underpowered to provide unbiased evidence regarding clinical outcomes. Properly designed and conducted prospective randomized studies are required to answer whether the beneficial effect of modified ultrafiltration on systemic inflammatory molecules associated with surgery can translate with improvement in clinical outcome.

  6. Membrane fouling mechanism in ultrafiltration of succinic acid fermentation broth.

    PubMed

    Wang, Caixia; Li, Qiang; Tang, Huang; Yan, Daojiang; Zhou, Wei; Xing, Jianmin; Wan, Yinhua

    2012-07-01

    The membrane fouling mechanism was studied in treating succinic acid fermentation broth during dead-end ultrafiltration. Different membranes were used and two models were applied to analyze the fouling mechanism. Resistance-in-series model was applied to determine the main factor that caused the operation resistance. Results indicated that most membranes tended to be fouled by cake layer or concentration polarization. Hermia's model, which is composed of four individual sub-models, was used to analyze the predominant fouling mechanism. Results showed that the fouling of RC 10 kDa and PES 30 kDa was controlled by the complete blocking mechanism, while PES 100 kDa was controlled by the intermediate blocking and PES 10 kDa was controlled by cake layer. This conclusion was also proved by SEM photos. Membrane characteristics were monitored before and after ultrafiltration by AFM and goniometer. Both contact angle and roughness of most membranes increased after ultrafiltration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Mathematical modeling of methoxyanabasine C11H16N2O polymer solution ultrafiltration

    NASA Astrophysics Data System (ADS)

    Satayev, Marat; Shakirov, Birzhan; Mutaliyeva, Botagoz; Satayeva, Lazzat; Altynbekov, Rustem; Baiysbay, Omirbek; Alibekov, Ravshanbek

    2012-06-01

    This work covers the mathematical modeling of ultrafiltration with immobile membranes for physiologically-active of methoxyanabasine C11H16N2O polymer solution. Methoxyanabasine is used as low toxic antineoplastic drug. On the basis of theoretical and experimental analysis of mass transfer and hydrodynamics, it is offered the mathematical model of permeability of membranes at an ultrafiltration of polymer solutions. Further the formulas for determination of factor of concentration polarization and ultrafiltration selectivity are calculated.

  8. Impact of selected wastewater constituents on the removal of sulfonamide antibiotics via ultrafiltration and micellar enhanced ultrafiltration.

    PubMed

    Exall, Kirsten; Balakrishnan, Vimal K; Toito, John; McFadyen, Renée

    2013-09-01

    To better understand the environmental mobility of sulfonamide antibiotics and develop improved processes for their removal during wastewater treatment, stirred cell ultrafiltration (UF) experiments were conducted using both synthetic and real wastewater effluent. The interactions between selected sulfonamides (sulfaguanidine, sulfathiazole and sulfamerazine), solids and dissolved organic matter were systematically explored. The further impact of micellar enhanced ultrafiltration (MEUF), a process in which surfactants are added at micellar concentrations to enhance removal of various trace contaminants from aqueous streams, was then explored by using a cationic surfactant, cetyltrimethylammonium bromide (CTAB). Ultrafiltration of sulfonamides in the absence of other materials generally removed only 15-20% of the antibiotics. The presence of micellar solutions of CTAB generally improved removal of sulfonamides over UF alone, with rejections ranging from 20 to 74%. Environmental solids (sediment) further increased retention of sulfonamides using both UF and MEUF, but the presence of DOM did not influence rejection. Similar trends were observed on UF and MEUF of real effluent samples that had been spiked with the sulfonamides, confirming the environmental relevance of the observed interactions between sulfonamides, surfactant, and wastewater constituents. The results demonstrate that MEUF processes can be designed for the selective removal of such trace contaminants as sulfonamide antibiotics.

  9. Impact of fill volume on ultrafiltration with icodextrin in children on chronic peritoneal dialysis.

    PubMed

    Rousso, Sharon; Banh, Tonny M; Ackerman, Susan; Piva, Elizabeth; Licht, Christoph; Harvey, Elizabeth A

    2016-10-01

    Icodextrin is a solution of glucose polymers developed to provide sustained ultrafiltration over an extended dwell. Our aim was to determine whether or not fill volume with icodextrin contributes to the ability to achieve ultrafiltration in children. The charts of all children on chronic peritoneal dialysis between January 2000 and July 2014 were screened for the use of an icodextrin day dwell. Data were extracted from the electronic chart and the HomeChoice™ Pro card and corrected for body surface area (BSA). Fifty children had an icodextrin day dwell. A linear correlation was found between the daytime fill volume and net ultrafiltration (p < 0.001). More ultrafiltration was achieved with a fill volume above 550 ml/m(2) BSA (107 ± 75 ml/m(2) BSA) than with smaller fill volumes (-8 ± 99 ml; p = 0.004). Ultrafiltration was achieved in 88 % of children with a fill volume above 550 ml/m(2) BSA versus only 44 % of patients with a smaller fill volume (p = 0.001). Icodextrin was well tolerated. Our observations reveal that the larger the fill volume the higher the likelihood of achieving ultrafiltration with icodextrin and suggest that a minimum day dwell volume of 550 ml/m(2) BSA seems to facilitate ultrafiltration in children. To our knowledge this is the largest study addressing ultrafiltration with icodextrin in children.

  10. Effect of ultrafiltration on peritoneal dialysis drug clearances.

    PubMed

    Lau, A H; Chow-Tung, E; Assadi, F K; Fornell, L; John, E

    1985-01-01

    To determine the effect of dialysate osmolarity on peritoneal dialysis drug transfer, peritoneal dialysis clearances of theophylline, phenobarbital, and tobramycin were determined in 10 rabbits using dialysate containing 1.5 and 4.25% glucose. Urea and creatinine clearances were also obtained for comparison. Under similar dialysis conditions, the peritoneal clearances of the three drugs remained unchanged for the two types of dialysate. In contrast, the peritoneal clearances of urea and creatinine were significantly higher with the use of 4.25% glucose dialysate (p less than 0.001). Thus, peritoneal dialysis clearances of theophylline, phenobarbital and tobramycin are not significantly affected by hypertonicity-induced ultrafiltration during acute peritoneal dialysis.

  11. Treatment of diuretic-resistant fluid retention with ultrafiltration.

    PubMed

    Asaba, H; Bergström, J; Fürst, P; Shaldon, S; Wiklund, S

    1978-01-01

    Nine patients with diuretic-resistant edema, secondary to congestive heart failure, liver cirrhosis, or nephrotic syndrome, were treated with ultrafiltration using high water flux dialyzers. Access to the blood stream was obtained by femoral vein catheterization. As much as 8.3 kg of fluid were removed in 3--4 hours with only transient decline in blood pressure. The procedure was well tolerated and yielded immediate symptomatic relief. The potential for restoration of an edema-free state in patients with diuretic-resistant edema suggests that further experience with this technique is justified.

  12. Ultrafiltration treatment for liquid laundry wastes from nuclear power stations

    SciTech Connect

    Kichik, V.A.; Maslova, M.N.; Svittsov, A.A.; Kuleshov, N.F.

    1988-03-01

    The authors conduct a comprehensive analysis of the waste constituents--radioactive and organic--of the laundry water resulting from the on-site laundering and decontamination of clothing worn in nuclear power plants. The primary isotope contaminants consist of niobium and zirconium 95, manganese 54, cobalt 60, iron 59, and cesium 134 and 137. A variety of filter and adsorbent materials used in an ultrafiltration process are comparatively tested for their effectiveness in removing not only these isotopes but also the organic contaminants in the process of recycling the water. Those materials consist of copper hexacyanoferrate, polyacrylophosphonic acid, and several metal-polymer complexes.

  13. Continuous ultrafiltration in acute decompensated heart failure: current issues and future directions.

    PubMed

    Marenzi, Giancarlo; Morpurgo, Marco; Agostoni, Piergiuseppe

    2015-04-01

    Most patients hospitalized for acutely decompensated heart failure (ADHF) present with symptoms and signs of volume overload, which are also associated with high rates of death and re-hospitalization. Several studies have investigated the possible use of extracorporeal ultrafiltration in the management of ADHF, evaluating potential clinical benefits in terms of hospitalization and survival rates versus those of conventional diuretic therapy. Though ultrafiltration remains an extremely appealing therapeutic option for patients with AHDF, some of the most recent studies have reported conflicting results. Differences in the selection of study population, heterogeneity of the indications for the use of ultrafiltration, disparity in the ultrafiltration protocols, and high variability in the pharmacologic therapies used for the control group could explain some of these contradictory findings. The purpose of the present review is to provide an overview and an update on the mechanisms and clinical effects of ultrafiltration and on currently available evidence supporting its use in ADHF.

  14. Impact of ultrafiltration membrane material on Peptide separation from a snow crab byproduct hydrolysate by electrodialysis with ultrafiltration membranes.

    PubMed

    Doyen, Alain; Beaulieu, Lucie; Saucier, Linda; Pouliot, Yves; Bazinet, Laurent

    2011-03-09

    Electrodialysis with ultrafiltration membrane (EDUF) is a technology based on the separation of molecules according to their charge and molecular mass. Some works have already successfully demonstrated the recovery of bioactive peptide fractions. However, the impact of ultrafiltration membrane (UFM) material, used in the EDUF system, on the peptide migration has never been studied. Consequently, the objectives of this work were (1) to evaluate the effect of two different UFM materials on the selective separation of peptides from a snow crab byproduct hydrolysate by electrodialysis with ultrafiltration membranes and (2) to determine the effect of UFM material on their potential fouling by peptides. It appeared that, after 6 h of EDUF separation using polyether sulfone (PES) and cellulose acetate (CA) UFM, peptides with low molecular weights ranging from 300 to 700 Da represented the most abundant population in the KCl1 (compartment located near the anode for the recovery of anionic/acid peptide fractions) and KCl2 (compartment located near the cathode for the recovery of cationic/basic peptide fractions) permeates. Peptides with molecular weights ranging from 700 to 900 Da did not migrate during the EDUF treatment. Moreover, only CA UFM allowed the recovery of high molecular weight molecules (900-20000 Da) in both KCl compartments. Peptides desorbed from PES and CA UFM after 6 h of EDUF separation had low molecular weights and belonged mainly to the 600-700 Da molecular weight range. These peptides represented a low proportion of the peptides initially present in the snow crab byproduct hydrolysate with individual molecular weight range proportions from 1.52 ± 0.31 to 10.2 ± 2.32%.

  15. Accuracy assessment on the analysis of unbound drug in plasma by comparing traditional centrifugal ultrafiltration with hollow fiber centrifugal ultrafiltration and application in pharmacokinetic study.

    PubMed

    Zhang, Lin; Zhang, Zhi-Qing; Dong, Wei-Chong; Jing, Shao-Jun; Zhang, Jin-Feng; Jiang, Ye

    2013-11-29

    In present study, accuracy assessment on the analysis of unbound drug in plasma was made by comparing traditional centrifugal ultrafiltration (CF-UF) with hollow fiber centrifugal ultrafiltration (HFCF-UF). We used metformin (MET) as a model drug and studied the influence of centrifugal time, plasma condition and freeze-thaw circle times on the ultrafiltrate volume and related effect on the measurement of MET. Our results demonstrated that ultrafiltrate volume was a crucial factor which influenced measurement accuracy of unbound drug in plasma. For traditional CF-UF, the ultrafiltrate volume cannot be well-controlled due to a series of factors. Compared with traditional CF-UF, the ultrafiltrate volume by HFCF-UF can be easily controlled by the inner capacity of the U-shaped hollow fiber inserted into the sample under enough centrifugal force and centrifugal time, which contributes to a more accurate measurement. Moreover, the developed HFCF-UF method achieved a successful application in real plasma samples and exhibited several advantages including high precision, extremely low detection limit and perfect recovery. The HFCF-UF method offers the advantage of highly satisfactory performance in addition to being simple and fast in pretreatment, with these characteristics being consistent with the practicability requirements in current scientific research.

  16. Treatment of laundry wastewater using polyethersulfone/polyvinylpyrollidone ultrafiltration membranes.

    PubMed

    Sumisha, A; Arthanareeswaran, G; Lukka Thuyavan, Y; Ismail, A F; Chakraborty, S

    2015-11-01

    In this study, laundry wastewater filtration was studied using hydrophilic polyvinylpyrollidone (PVP) modified polyethersulfone (PES) ultrafiltration membranes. The performances of PES/PVP membranes were assessed using commercial PES membrane with 10kDa in ultrafiltration. Operating parameters The influence of transmembrane pressure (TMP) and stirring speed on laundry wastewater flux was investigated. A higher permeate flux of 55.2L/m(2)h was obtained for modified PES membrane with high concentration of PVP at TMP of 500kPa and 750rpm of stirring speed. The separation efficiencies of membranes were also studied with respect to chemical oxygen demand (COD), total dissolved solids (TDS), turbidity and conductivity. Results showed that PES membrane with 10% of PVP had higher permeate flux, flux recovery and less fouling when compared with other membranes. Higher COD and TDS rejection of 88% and 82% were also observed for modified membranes due to the improved surface property of membranes. This indicated that modified PES membranes are suitable for the treatment of surfactant, detergent and oil from laundry wastewater.

  17. Fluctuation of Ultrafiltration Coefficient of Hemodialysis Membrane During Reuse

    NASA Astrophysics Data System (ADS)

    Arif, Idam; Christin

    2010-12-01

    Hemodialysis treatment for patient with kidney failure is to regulate body fluid and to excrete waste products of metabolism. The patient blood and the dialyzing solution (dialysate) are flowed counter currently in a dialyzer to allow volume flux of fluid and diffusion of solutes from the blood to the dialysate through a semipermiable membrane. The volume flux of fluid depends on the hydrostatic and the osmotic pressure difference between the blood and the dialysate. It also depends on the membrane parameter that represents how the membrane allows the fluid and the solutes to move across as a result of the pressure difference, known as the ultrafiltration coefficient Kuf. The coefficient depends on the number and the radius of membrane pores for the movement of the fluids and the solutes across the membrane. The measured membrane ultrafiltration coefficient of reused dialyzer shows fluctuation between one uses to another without any significant trend of change. This indicates that the cleaning process carried out before reuse does not cause perfect removal of clots that happen in the previous use. Therefore the unblocked pores are forced to work hardly to obtain targeted volume flux in a certain time of treatment. This may increase the unblocked pore radius. Reuse is stopped when there is indication of blood leakage during the hemodialysis treatment.

  18. Analysis of ultrafiltration and mass transfer in a bioartificial pancreas.

    PubMed

    Jaffrin, M Y; Reach, G; Notelet, D

    1988-02-01

    A bioartificial pancreas is an implantable device which contains insulin secreting cells (Langerhans islets), separated from the circulating blood by a semi-permeable membrane to avoid rejection. This paper describes the operation of such a device and evaluates the respective contributions of diffusion and ultrafiltration to the glucose and insulin mass transfer. It is shown that the pressure drop along the blood channel produces across the first half of the channel an ultrafiltration flux toward the islet compartment followed in the second half by an equal flux in reverse direction from islets to blood. The mass transfer analysis is carried out for an optimal geometry in which a U-shaped blood channel surrounds closely a very thin islet compartment formed by a folded flat membrane. A complete model of insulin release by this device is developed and is compared with in vitro data obtained with rats islets. Satisfactory kinetics is achieved with a polyacrylonitrile membrane used in hemodialysis. But the model shows that the membrane hydraulic permeability should be increased by a factor of 10 to significantly improve the performance.

  19. Ultra-filtration measurement using CT imaging technology

    NASA Astrophysics Data System (ADS)

    Lu, Junfeng; Lu, Wenqiang

    2009-02-01

    As a functional unit in the hemodialysis process, dialyzer captured quite a few medical research interests since 1980s. In the design of dialyzer or in the ongoing hemodialysis process, to estimate the ultra-filtration amount of a dialyzer, the sideway loss of the running blood flow through hollow fibers or filtration channels should be measured. This further leads to the measurement of the blood flow inside the dialyzer. For this measurement, a non-invasive method is highly desired because of the high-dense bundled hollow fibers or packed channels inside the dialyzer. As non-invasive measurement tools, CT (Computed Tomography) technologies were widely used for tissue, bone, and cancerous clinical analyses etc …. Thus, in this paper, a CT system is adopted to predict the blood flow inside a hollow fiber dialyzer. In view of symmetric property of the hollow fiber dialyzer, the largest cutting plane that parallels to the cylindrical dialyzer was analyzed by the CT system dynamically. And then, a noninvasive image analysis method used to predict the ultra-filtration amount is proposed.

  20. Concentrating membrane proteins using ultrafiltration without concentrating detergents.

    PubMed

    Feroz, Hasin; Vandervelden, Craig; Ikwuagwu, Bon; Ferlez, Bryan; Baker, Carol S; Lugar, Daniel J; Grzelakowski, Mariusz; Golbeck, John H; Zydney, Andrew L; Kumar, Manish

    2016-10-01

    Membrane proteins (MPs) are of rapidly growing interest in the design of pharmaceutical products, novel sensors, and synthetic membranes. Ultrafiltration (UF) using commercially available centrifugal concentrators is typically employed for laboratory-scale concentration of low-yield MPs, but its use is accompanied by a concomitant increase in concentration of detergent micelles. We present a detailed analysis of the hydrodynamic processes that control detergent passage during ultrafiltration of MPs and propose methods to optimize detergent passage during protein concentration in larger-scale membrane processes. Experiments were conducted using nonionic detergents, octyl-β-D glucoside (OG), and decyl-β-D maltoside (DM) with the bacterial water channel protein, Aquaporin Z (AqpZ) and the light driven chloride pump, halorhodopsin (HR), respectively. The observed sieving coefficient (So ), a measure of detergent passage, was evaluated in both stirred cell and centrifugal systems. So for DM and OG increased with increasing filtrate flux and decreasing shear rates in the stirred cell, that is, with increasing concentration polarization (CP). Similar effects were observed during filtration of MP-detergent (MPD) micelles. However, lower transmission was observed in the centrifugal system for both detergent and MPD systems. This is attributed to free convection-induced shear and hence reduced CP along the membrane surface during centrifugal UF. Thus to concentrate MPs without retention of detergent, design of UF systems that promote CP is required. Biotechnol. Bioeng. 2016;113: 2122-2130. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Deasphalting of a long residue using ultrafiltration inorganic membranes

    SciTech Connect

    Guizard, C.; Rambault, D.; Cot, L.

    1994-12-31

    Separation by membrane technology is now a well established technique for water purification and other aqueous applications. Non-aqueous applications, especially in the chemical and the petroleum industries, are a more recent development. The ceramic membranes available on the market are reported to have excellent pore size uniformity, thermal and mechanical properties superior to competitive polymer membranes and high stability in organic media. Therefore, their specific properties make them ideally suited for direct deasphalting of petroleum residues by ultrafiltration. Inorganic ultrafiltration membranes have been successfully applied to remove directly asphaltenes from a long residue Basrha; an asphaltene retention rate higher than 75% and a permeate flux as high as 40 l/h.m{sup 2} have been achieved with a zirconia/carbon composite membrane with pore size of 6.3 nm in diameter. Typical process parameters are a temperature of 150{degrees}C, a transmembrane pressure of 8 bar and a fluid velocity of 11.5 m/s. Fouling of the membrane was not evidenced over a period of 500 minutes.

  2. Mammalian cell and protein distributions in ultrafiltration hollow fiber bioreactors.

    PubMed

    Piret, J M; Cooney, C L

    1990-11-01

    The heterogeneous nature of hollow fiber reactors for cell cultivation requires special considerations for proper design and operation. Downstream concentration of high-molecular-weight proteins has been measured in the shell side of ultrafiltration hollow fiber bioreactors. This distribution resulted from shell-side convective fluxes which caused a concentration polarization of proteins retained by the ultrafiltration membranes (nominal 3 x 10(4) D cutoff). Measurements of the axial hybridoma cell distribution also revealed a downstream concentration of viable cells during the first month of perfusion operation. This is believed to result from the shell-side convective flow and its influence on the inoculum and high-molecular-weight growth factor distributions. The heterogeneous distribution of cells leads to reduced cell numbers and reactor productivities. The mechanisms responsible for these phenomena have been investigated and their implications in process design and operation are considered. The heterogeneous protein and cell distributions on the shell side of hollow fiber bioreactors have been reduced significantly by periodic alternation of the direction of recycle flow and the reactor antibody productivities have been doubled.

  3. Humic substance-enhanced ultrafiltration for removal of cobalt.

    PubMed

    Kim, Ho-Jeong; Baek, Kitae; Kim, Bo-Kyong; Yang, Ji-Won

    2005-06-30

    It is well known that the membrane separation process combined with surfactant micelle (micellar-enhanced ultrafiltration) or polyelectrolyte (polyelectrolyte-enhanced ultrafiltration) can remove heavy metal ions or radionuclides effectively. However, the complexing agent, surfactant or polyelectrolyte remained in effluent is a serious disadvantage of these methods. In this study, humic substances (HS) were used as complexing agents instead of synthetic chemicals. The HS are sorts of natural organic matters and their functional groups such as carboxyl and phenyl groups can bind with the cation and form complexes. The effects of HS concentration and pH on the removal of cobalt were investigated. At the HS concentration of 3g/L and pH of 6, over 95% of cobalt was removed by regenerated cellulose membrane with molecular weight cut-off (MWCO) of 3000. As the HS concentration increased, the removal of cobalt was also enhanced because of the increase in binding sites (functional groups). The removal of cobalt increased from 72.5% to 97.5% as pH increased from 4 to 8 at the HS concentration of 3g/L. It resulted from the more deprotonation of functional groups in humic acid at higher pH.

  4. The dynamic observation of plasma concentration of antimicrobial agents during balanced ultrafiltration in vitro.

    PubMed

    Fang, Yinghui; Guan, Yulong; Wan, Caihong; Fu, Zhida; Jiang, Juanjuan; Wu, Chunfu; Zhao, Ju; Sun, Peng; Long, Cun

    2014-01-01

    Routine perioperative intravenous antimicrobial agents are administered as surgical prophylaxis. However, whether balanced ultrafiltration during extracorporeal circulation has substantial effect on the concentration of antimicrobial agents remains unclear. The concentrations of antimicrobial agents in plasma and ultrafiltrate samples were measured in this pseudo-extracorporeal circulation model. Extracorporeal circulation consisted of cardiotomy reservoir, membrane oxygenator, and pediatric arterial line filter. A hemoconcentrator was placed between the arterial purge line and oxygenator venous reservoir. Fresh donor human whole blood was added into the circuit and mixed with Ringer's solution to obtain a final hematocrit of 24-28%. Two kinds of antimicrobial agents, cefotiam (320 mg) and cefmetazole (160 mg), were bolus added into the circuit. After 30 min of extracorporeal circulation, zero-balanced ultrafiltration was initiated and arterial line pressure was maintained at approximately 100 mm Hg with a Hoffman clamp. The rate of ultrafiltration (12 mL/min) was controlled by ultrafiltrate outlet pressure. An identical volume of Plasmalyte A was dripped into the circuit to maintain stable hematocrit during 45 min of experiment. Plasma and ultrafiltrate samples were drawn every 5 min, and concentrations of antimicrobial agents (including cefotiam and cefmetazole) were measured with high performance liquid chromatography. Both antimicrobial agents were detected in ultrafiltrate, demonstrating hemoconcentration may remove antimicrobial agents. The concentrations of plasma antimicrobial agents decreased linearly with the increase of ultrafiltrate volume. At end of balanced ultrafiltration, the concentration of plasma cefotiam was 104.96 ± 44.36 mg/L, which is about 44.38% ± 7.42% of the initial concentration (238.95 ± 101.12 mg/L) (P < 0.001); the concentration of plasma cefmetazole decreased linearly to 25.76 ± 14.78

  5. From lab to full-scale ultrafiltration in microalgae harvesting

    NASA Astrophysics Data System (ADS)

    Wenten, I. G.; Steven, S.; Dwiputra, A.; Khoiruddin; Hakim, A. N.

    2017-07-01

    Ponding system is generally used for microalgae cultivation. However, selection of appropriate technology for the harvesting process is challenging due to the low cell density of cultivated microalgae from the ponding system and the large volume of water to be handled. One of the promising technologies for microalgae harvesting is ultrafiltration (UF). In this study, the performance of UF during harvesting of microalgae in a lab- and a full-scale test is investigated. The performances of both scales are compared and analyzed to provide an understanding of several aspects which affect the yield produced from lab and actual conditions. Furthermore, a unique self-standing non-modular UF is introduced in the full-scale test. The non-modular UF exhibits several advantages, such as simple piping and connection, single pump for filtration and backwashing, and smaller footprint. With those advantages, the non-modular UF could be a promising technology for microalgae harvesting in industrial-scale.

  6. Extracorporeal ultrafiltration therapy for acute decompensated heart failure.

    PubMed

    Pourafshar, Negiin; Karimi, Ashkan; Kazory, Amir

    2016-01-01

    Congestion is the most common reason for hospitalization of patients with acute decompensated heart failure (ADHF) and adversely impacts their outcomes. Extracorporeal ultrafiltration (UF) therapy has re-emerged as an effective strategy for decongestion in this setting. This article is intended to discuss key concepts in UF and its technique, provide a brief historical view of UF application for decongestion in ADHF, review the hemodynamic and neurohormonal effects of UF and their positive effects on the pathophysiology of ADHF, discuss the findings of the landmark trials in this field, and explain key findings of these studies as well as the apparent discrepancies in their findings. In a separate section we discuss the intricacies of renal dysfunction in ADHF as it plays a very important role in understanding the current evidence and designing futures clinical trials of UF in ADHF. In the end, the authors provide their perspective on the future role of UF in management of patients with ADHF and congestion.

  7. Concentration and separation of biological organisms by ultrafiltration and dielectrophoresis

    DOEpatents

    Simmons, Blake A.; Hill, Vincent R.; Fintschenko, Yolanda; Cummings, Eric B.

    2010-10-12

    Disclosed is a method for monitoring sources of public water supply for a variety of pathogens by using a combination of ultrafiltration techniques together dielectrophoretic separation techniques. Because water-borne pathogens, whether present due to "natural" contamination or intentional introduction, would likely be present in drinking water at low concentrations when samples are collected for monitoring or outbreak investigations, an approach is needed to quickly and efficiently concentrate and separate particles such as viruses, bacteria, and parasites in large volumes of water (e.g., 100 L or more) while simultaneously reducing the sample volume to levels sufficient for detecting low concentrations of microbes (e.g., <10 mL). The technique is also designed to screen the separated microbes based on specific conductivity and size.

  8. Printing-assisted surface modifications of patterned ultrafiltration membranes

    SciTech Connect

    Wardrip, Nathaniel C.; Dsouza, Melissa; Urgun-Demirtas, Meltem; Snyder, Seth W.; Gilbert, Jack A.; Arnusch, Christopher J.

    2016-10-17

    Understanding and restricting microbial surface attachment will enhance wastewater treatment with membranes. We report a maskless lithographic patterning technique for the generation of patterned polymer coatings on ultrafiltration membranes. Polyethylene glycol, zwitterionic, or negatively charged hydrophilic polymer compositions in parallel- or perpendicular-striped patterns with respect to feed flow were evaluated using wastewater. Membrane fouling was dependent on the orientation and chemical composition of the coatings. Modifications reduced alpha diversity in the attached microbial community (Shannon indices decreased from 2.63 to 1.89) which nevertheless increased with filtration time. Sphingomonas species, which condition membrane surfaces and facilitate cellular adhesion, were depleted in all modified membranes. Microbial community structure was significantly different between control, different patterns, and different chemistries. Lastly, this study broadens the tools for surface modification of membranes with polymer coatings and for understanding and optimization of antifouling surfaces.

  9. Printing-assisted surface modifications of patterned ultrafiltration membranes

    DOE PAGES

    Wardrip, Nathaniel C.; Dsouza, Melissa; Urgun-Demirtas, Meltem; ...

    2016-10-17

    Understanding and restricting microbial surface attachment will enhance wastewater treatment with membranes. We report a maskless lithographic patterning technique for the generation of patterned polymer coatings on ultrafiltration membranes. Polyethylene glycol, zwitterionic, or negatively charged hydrophilic polymer compositions in parallel- or perpendicular-striped patterns with respect to feed flow were evaluated using wastewater. Membrane fouling was dependent on the orientation and chemical composition of the coatings. Modifications reduced alpha diversity in the attached microbial community (Shannon indices decreased from 2.63 to 1.89) which nevertheless increased with filtration time. Sphingomonas species, which condition membrane surfaces and facilitate cellular adhesion, were depleted inmore » all modified membranes. Microbial community structure was significantly different between control, different patterns, and different chemistries. Lastly, this study broadens the tools for surface modification of membranes with polymer coatings and for understanding and optimization of antifouling surfaces.« less

  10. High concentration biotherapeutic formulation and ultrafiltration: Part 1 pressure limits.

    PubMed

    Lutz, Herb; Arias, Joshua; Zou, Yu

    2017-01-01

    High therapeutic dosage requirements and the desire for ease of administration drive the trend to subcutaneous administration using delivery systems such as subcutaneous pumps and prefilled syringes. Because of dosage volume limits, prefilled syringe administration requires higher concentration liquid formulations, limited to about 30 cP or roughly 100-300 g L(-1) for mAb's. Ultrafiltration (UF) processes are routinely used to formulate biological therapeutics. This article considers pressure constraints on the UF process that may limit its ability to achieve high final product concentrations. A system hardware analysis shows that the ultrafiltration cassette pressure drop is the major factor limiting UF systems. Additional system design recommendations are also provided. The design and performance of a new cassette with a lower feed channel flow resistance is described along with 3D modeling of feed channel pressure drop. The implications of variations in cassette flow channel resistance for scaling up and setting specifications are considered. A recommendation for a maximum pressure specification is provided. A review of viscosity data and theory shows that molecular engineering, temperature, and the use of viscosity modifying excipients including pH adjustment can be used to achieve higher concentrations. The combined use of a low pressure drop cassette with excipients further increased final concentrations by 35%. Guidance is provided on system operation to control hydraulics during final concentration. These recommendations should allow one to design and operate systems to routinely achieve the 30 cP target final viscosity capable of delivery using a pre-filled syringe. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:113-124, 2017.

  11. Peritoneal ultrafiltration in end-stage chronic heart failure.

    PubMed

    Fröhlich, Hanna; Katus, Hugo A; Täger, Tobias; Lossnitzer, Nicole; Grossekettler, Leonie; Kihm, Lars; Zeier, Martin; Remppis, Andrew; Frankenstein, Lutz; Schwenger, Vedat

    2015-04-01

    Cardiorenal syndrome type 2 (CRS-2) is common in end-stage chronic heart failure (CHF). Peritoneal ultrafiltration (pUF) may entail clinical functional improvement and a reduction in hospitalizations. Thirty-nine consecutive end-stage CHF patients with stable CRS-2 were initiated on ambulatory pUF after interdisciplinary cardiological/nephrological evaluation and prospectively followed for 1 year. All-cause hospitalization was the primary end point. Secondary end points included mortality, treatment alteration and change in weight, NYHA functional class or quality of life (QoL). Outcomes were compared both within the pUF cohort (365 prior to initiation) and with 39 matched CHF patients receiving standard medical treatment. Compared with pretreatment, there was a trend to a reduction in 1-year hospitalization days in the pUF group (P = 0.07). One-year mortality was 33% in the pUF group and 23% in the matched control cohort. pUF was stopped in eight patients (18%) due to recurrent peritonitis (n = 3), insufficient ultrafiltration (n = 3) or cardiac recompensation (n = 1). Compared with standard medical treatment, pUF significantly improved volume overload (P < 0.05), NYHA functional class (P < 0.001) and mental health (P < 0.05). Moreover, hospitalization days for all causes as well as cardiovascular hospitalization days were significantly reduced during the interim periods in the pUF group (P < 0.05 and P < 0.001, respectively). pUF is effective in improving the clinical condition of end-stage CHF patients suffering from CRS-2. Randomized controlled trials are needed to clarify the effects of pUF on hospitalization and mortality in these patients.

  12. Peritoneal ultrafiltration in end-stage chronic heart failure

    PubMed Central

    Fröhlich, Hanna; Katus, Hugo A.; Täger, Tobias; Lossnitzer, Nicole; Grossekettler, Leonie; Kihm, Lars; Zeier, Martin; Remppis, Andrew; Frankenstein, Lutz; Schwenger, Vedat

    2015-01-01

    Background Cardiorenal syndrome type 2 (CRS-2) is common in end-stage chronic heart failure (CHF). Peritoneal ultrafiltration (pUF) may entail clinical functional improvement and a reduction in hospitalizations. Methods Thirty-nine consecutive end-stage CHF patients with stable CRS-2 were initiated on ambulatory pUF after interdisciplinary cardiological/nephrological evaluation and prospectively followed for 1 year. All-cause hospitalization was the primary end point. Secondary end points included mortality, treatment alteration and change in weight, NYHA functional class or quality of life (QoL). Outcomes were compared both within the pUF cohort (365 prior to initiation) and with 39 matched CHF patients receiving standard medical treatment. Results Compared with pretreatment, there was a trend to a reduction in 1-year hospitalization days in the pUF group (P = 0.07). One-year mortality was 33% in the pUF group and 23% in the matched control cohort. pUF was stopped in eight patients (18%) due to recurrent peritonitis (n = 3), insufficient ultrafiltration (n = 3) or cardiac recompensation (n = 1). Compared with standard medical treatment, pUF significantly improved volume overload (P < 0.05), NYHA functional class (P < 0.001) and mental health (P < 0.05). Moreover, hospitalization days for all causes as well as cardiovascular hospitalization days were significantly reduced during the interim periods in the pUF group (P < 0.05 and P < 0.001, respectively). Conclusions pUF is effective in improving the clinical condition of end-stage CHF patients suffering from CRS-2. Randomized controlled trials are needed to clarify the effects of pUF on hospitalization and mortality in these patients. PMID:25815181

  13. PORTABLE ULTRAFILTRATION DEVICE FOR CONCENTRATION PATHOGENS FROM LARGE VOUME SAMPLES OF DRINKING WATER

    EPA Science Inventory

    Symposium Paper in proceedings of Water Security Congress, Washington, D.C., 12 Sep 2006 - Development and testing of several potential protocols utilizing ultrafiltration to collect and concentrate microorganisms from large volume water samples.

  14. Class and Home Problems. The Lambert W Function in Ultrafiltration and Diafiltration

    ERIC Educational Resources Information Center

    Foley, Greg

    2016-01-01

    Novel analytical solutions based on the Lambert W function for two problems in ultrafiltration and diafiltration are described. Example problems, suitable for incorporation into an introductory module in unit operations, membrane processing, or numerical methods are provided in each case.

  15. Class and Home Problems. The Lambert W Function in Ultrafiltration and Diafiltration

    ERIC Educational Resources Information Center

    Foley, Greg

    2016-01-01

    Novel analytical solutions based on the Lambert W function for two problems in ultrafiltration and diafiltration are described. Example problems, suitable for incorporation into an introductory module in unit operations, membrane processing, or numerical methods are provided in each case.

  16. PORTABLE ULTRAFILTRATION DEVICE FOR CONCENTRATION PATHOGENS FROM LARGE VOUME SAMPLES OF DRINKING WATER

    EPA Science Inventory

    Symposium Paper in proceedings of Water Security Congress, Washington, D.C., 12 Sep 2006 - Development and testing of several potential protocols utilizing ultrafiltration to collect and concentrate microorganisms from large volume water samples.

  17. Ultrafiltration behavior of major ions (Na, Ca, Mg, F, Cl, and SO4) in natural waters.

    PubMed

    Guo, L; Hunt, B J; Santschi, P H

    2001-04-01

    Aquatic colloids, including macromolecules and microparticles, with sizes ranging between 1 nm to 1 micron, play important roles in the mobility and bioavailability of heavy metals and other contaminants in natural waters. Cross-flow ultrafiltration has become one of the most commonly used techniques for isolating aquatic colloids. However, the ultrafiltration behavior of chemical species remains poorly understood. We report here the permeation behavior of major ions (Na, Ca, Mg, F, Cl, and SO4) in natural waters during ultrafiltration using an Amicon 1 kDa ultrafiltration membrane (S10N1). Water samples across a salinity gradient of 0-20@1000 were collected from the Trinity River and Galveston Bay. The permeation behavior of major ions was well predicted by a permeation model, resulting in a constant permeation coefficient for each ion. The value of the model-derived permeation coefficient (Pc) was 0.99 for Na, 0.97 for Cl, and 0.95 for F, respectively, in Trinity River waters. Values of Pc close to 1 indicate that retention of Na, Cl, and F by the 1 kDa membrane during ultrafiltration was indeed minimal (< 1-5%). In contrast, significant (14-36%) retention was observed for SO4, Ca, and Mg in Trinity River waters, with a Pc value of 0.64, 0.82, and 0.86 for SO4, Ca and Mg, respectively. However, these retained major ions can further permeate through the 1 kDa membrane during diafiltration with ultrapure water. The selective retention of major ions during ultrafiltration may have important implications for the measurement of chemical and physical speciation of trace elements when using cross-flow ultrafiltration membranes to separate colloidal species from natural waters. Our results also demonstrate that the percent retention of major ions during ultrafiltration decreases with increasing salinity or ionic strength. This retention is largely attributed to electrostatic repulsion by the negatively charged cartridge membrane.

  18. Extracorporeal versus peritoneal ultrafiltration in diuretic-resistant congestive heart failure – a review

    PubMed Central

    Wańkowicz, Zofia; Próchnicka, Agnieszka; Olszowska, Anna; Baczyński, Daniel; Krzesiński, Paweł; Dziuk, Mirosław

    2011-01-01

    Summary Diuretic-resistant congestive heart failure in the form of type 2 cardiorenal syndrome is a problem of growing significance in everyday clinical practice because of high morbidity and mortality. There has been scant progress in the treatment of overhydration, the main cause of symptoms in this group of patients. The aim of our review is to present recent advances in the ultrafiltration therapy of congestive heart failure, with special attention to the new dedicated device for extracorporeal isolated ultrafiltration, as well as modifications of peritoneal dialysis in the form of peritoneal ultrafiltration with icodextrin solution and incremental peritoneal dialysis. Technical and clinical features, costs and potential risks of available devices for isolated ultrafiltration are presented. This method should be reserved for patients with true diuretic resistance as part of a more complex strategy aiming at the adequate control of fluid retention. Peritoneal ultrafiltration is presented as a viable alternative to extracorporeal ultrafiltration because of medical and psychosocial benefits of home-based therapy, lower costs and more effective daily ultrafiltration. In conclusion, large, properly randomized and controlled clinical trials with long-term follow-up will be essential in assessing the logistics and cost-effectiveness of both methods. Most importantly, however, they should be able to evaluate the impact of both methods on preservation of renal function and delaying the progression of heart failure by interrupting the vicious circle of cardiorenal syndrome. Our review is supplemented with the case report of the use of peritoneal ultrafiltration with a single 12-hour nighttime icodextrin exchange as a life-saving procedure in a patient with congestive heart failure resistant to pharmacological treatment. PMID:22129914

  19. Extracorporeal versus peritoneal ultrafiltration in diuretic-resistant congestive heart failure--a review.

    PubMed

    Wańkowicz, Zofia; Próchnicka, Agnieszka; Olszowska, Anna; Baczyński, Daniel; Krzesiński, Paweł; Dziuk, Mirosław

    2011-12-01

    Diuretic-resistant congestive heart failure in the form of type 2 cardiorenal syndrome is a problem of growing significance in everyday clinical practice because of high morbidity and mortality. There has been scant progress in the treatment of overhydration, the main cause of symptoms in this group of patients. The aim of our review is to present recent advances in the ultrafiltration therapy of congestive heart failure, with special attention to the new dedicated device for extracorporeal isolated ultrafiltration, as well as modifications of peritoneal dialysis in the form of peritoneal ultrafiltration with icodextrin solution and incremental peritoneal dialysis. Technical and clinical features, costs and potential risks of available devices for isolated ultrafiltration are presented. This method should be reserved for patients with true diuretic resistance as part of a more complex strategy aiming at the adequate control of fluid retention. Peritoneal ultrafiltration is presented as a viable alternative to extracorporeal ultrafiltration because of medical and psychosocial benefits of home-based therapy, lower costs and more effective daily ultrafiltration. In conclusion, large, properly randomized and controlled clinical trials with long-term follow-up will be essential in assessing the logistics and cost-effectiveness of both methods. Most importantly, however, they should be able to evaluate the impact of both methods on preservation of renal function and delaying the progression of heart failure by interrupting the vicious circle of cardiorenal syndrome. Our review is supplemented with the case report of the use of peritoneal ultrafiltration with a single 12-hour nighttime icodextrin exchange as a life-saving procedure in a patient with congestive heart failure resistant to pharmacological treatment.

  20. Seawater ultrafiltration: role of particles on organic rejections and permeate fluxes.

    PubMed

    Massé, Anthony; Thi, Hanh Nguyen; Roelens, Guillaume; Legentilhomme, Patrick; Jaouen, Pascal

    2013-01-01

    The role of natural compounds of seawater and added particles on mechanisms of membrane fouling and organic matter rejection has been investigated. Ultrafiltration (100 kDa) has been conducted in both dead-end (out/in) and tangential (in/out) modes on polysulfone hollow fibre membranes. The permeate fluxes are approximately three times higher for tangential ultrafiltration than for dead-end ultrafiltration without differences between settled and non-settled seawaters (NS-SWs) (51-55 L h(-1) m(-2) for tangential and 17-22 L h(-1) m(-2) for dead-end ultrafiltration). Adding bentonite or kieselguhr from 0.13 to 1.13 g L(-1) of suspended solids to NS-SW does not act significantly on permeate fluxes of dead-end contrary to tangential ultrafiltration. For the latter, an addition of particles induces a slight drop of permeate fluxes. Original particles of reconstituted seawater could increase the cake porosity, whereas bentonite and kieselguhr, compounds smaller than original particles, could participate in the formation of a compact cake. The total organic carbon removal was equal to approximately 80% whatever the mode of ultrafiltration may be and the suspended solid concentration ranged from 0.13 to 1.13 g L(-1). Dissolved organic carbon (DOC) and colloidal organic carbon rejection rates were greater for tangential ultrafiltration (37-49%) compared with dead-end ultrafiltration (30-44%) at different concentrations of added particles. Bentonite or kieselguhr addition induced a slight decrease of DOC removal. In the case of particles addition, the worst DOC rejection is found for bentonite.

  1. Noncasein nitrogen analysis of ultrafiltration and microfiltration retentate.

    PubMed

    Zhang, H; Metzger, L E

    2011-04-01

    Previous research has suggested that the standard noncasein nitrogen (NCN) measurement method for milk overestimates the NCN content of microfiltration (MF) retentate. The objective of this study was to develop a modified method to more accurately measure the NCN content of ultrafiltration and MF retentate products. The standard method is based on precipitation of casein micelles at their isoelectric point (4.6) with acetic acid. In the standard method, a 10-mL milk sample and 75 mL of 38°C water are placed in a 100-mL volumetric flask. One milliliter of 10% acetic acid solution is added and the flask is incubated at 38°C for 10 min. Subsequently, 1 mL of 1N sodium acetate solution is added and mixed. After cooling the contents to 20°C, the flask is made up to 100mL with water, mixed, and then filtered (Whatman No. 1 filter paper). The N content of the filtrate is then determined by Kjeldahl analysis and referred to as NCN. A method was developed that used a 50-mL centrifugal tube instead of a volumetric flask. This modification facilitated measurement of the pH after addition of acetic acid. Subsequently, the sample was centrifuged (800×g at 25°C) for 10 min to facilitate filtration with a smaller pore size filter paper (Whatman no. 6). In this study, we evaluated the effect of pH after addition of 1% acetic acid and pH of the final filtrate on NCN analysis. Four pH levels after acetic acid addition (4.0, 4.2, 4.4, and 4.6) and 2 pH levels after sodium acetate addition (4.6 and 4.8) were evaluated. As the pH after acetic acid addition was increased from 4.0 to 4.6, the NCN content significantly decreased. Sodium dodecyl sulfate PAGE results also indicated that the casein fractions present in the filtrate were significantly decreased when the pH was increased from 4.0 to 4.6. The NCN content slightly decreased but the difference was not significant when the final pH of the filtrate was increased from 4.6 to 4.8. Subsequently, the NCN contents of several

  2. Renal Ultrafiltration Changes Induced by Focused US1

    PubMed Central

    Fischer, Krisztina; McDannold, Nathan J.; Zhang, Yongzhi; Kardos, Magdolna; Szabo, Andras; Szabo, Antal; Reusz, Gyorgy S.; Jolesz, Ferenc A.

    2009-01-01

    Purpose: To determine if focused ultrasonography (US) combined with a diagnostic microbubble-based US contrast agent can be used to modulate glomerular ultrafiltration and size selectivity. Materials and Methods: The experiments were approved by the animal care committee. The left kidney of 17 healthy rabbits was sonicated by using a 260-kHz focused US transducer in the presence of a microbubble-based US contrast agent. The right kidney served as the control. Three acoustic power levels were applied: 0.4 W (six rabbits), 0.9 W (six rabbits), and 1.7 W (five rabbits). Three rabbits were not treated with focused US and served as control animals. The authors evaluated changes in glomerular size selectivity by measuring the clearance rates of 3000- and 70 000-Da fluorescence-neutral dextrans. The creatinine clearance was calculated for estimation of the glomerular filtration rate. The urinary protein-creatinine ratio was monitored during the experiments. The authors assessed tubular function by evaluating the fractional sodium excretion, tubular reabsorption of phosphate, and γ-glutamyltransferase–creatinine ratio. Whole-kidney histologic analysis was performed. For each measurement, the values obtained before and after sonication were compared by using the paired t test. Results: Significant (P < .05) increases in the relative (ratio of treated kidney value/nontreated kidney value) clearance of small- and large-molecule agents and the urine flow rates that resulted from the focused US treatments were observed. Overall, 1.23-, 1.23-, 1.61-, and 1.47-fold enhancement of creatinine clearance, 3000-Da dextran clearance, 70 000-Da dextran clearance, and urine flow rate, respectively, were observed. Focal tubular hemorrhage and transient functional tubular alterations were observed at only the highest (1.7-W) acoustic power level tested. Conclusion: Glomerular ultrafiltration and size selectivity can be temporarily modified with simultaneous application of US and

  3. Post-treatment of banknote printing works wastewater ultrafiltration concentrate.

    PubMed

    Zhang, Guojun; Liu, Z Z; Song, L F; Hu, J Y; Ong, S L; Ng, W J

    2004-09-01

    A novel process of vortex settling and stage-2 ultrafiltration (UF) with alternating feed direction was used to further concentrate the concentrate produced by a stage-1 UF employed for treatment of banknote printing works wastewater. In this post-treatment process, the final concentrate volume for incineration was reduced by 4-5 times while the permeate of the stage-2 UF could be further reused in the banknote printing operation. It was noted vortex settling facilitated settling of the printing ink and the strategy of regularly alternating feed direction in the UF resulted in a higher permeate flux compared to the corresponding flux for operation without alternating feed direction. The hydraulic retention time (HRT) of the vortex settling tank (VST) used in the pilot-scale experiment was 14 min while feed direction to the stage-2 UF was alternated once every hour. Based on the pilot-scale experimental results, a full-scale system was set up. An economic analysis showed that the novel system was a cost-effective option for post-treatment of stage-1 UF concentrate. The treatment system has been successfully implemented at several Chinese banknote printing companies.

  4. Reduced fouling of ultrafiltration membranes via surface fluorination

    SciTech Connect

    Sedath, R.H.; Yates, S.F.; Li, N.N.

    1993-03-01

    Surface fluorination can affect significantly the performance of an ultrafiltration membrane used to concentrate a food-related stream. Membranes fluorinated and tested as flat sheets exhibit higher initial fluxes, and do not foul as rapidly as untreated membranes. This improvement is linked to increased surface hydrophilicity, as shown in decreased contact angle with water. This increased hydrophilicity, in turn, is linked to the addition of fluorine and oxygen to the surface. The pilot plant study did-not show the difference in membrane flux and fouling observed in the flat sheet study. Instead, fluorinated and unfluorinated modules behaved similarly. Fouling by potato waste feed was severe and resulted in formation of an extensive gel layer within the module on the membrane surface. XPS, SEM and FTIR indicate that buildup of organic material occurred on both fluorinated and unfluorinated membranes, but SEM indicates that a fibrous mat of material was observed only on the nonfluorinated membrane. We conclude that in the pilot study, membrane fouling and gel formation were so extensive that the surface interaction effect was overwhelmed.

  5. Biodegradation of Microcystins during Gravity-Driven Membrane (GDM) Ultrafiltration

    PubMed Central

    Kohler, Esther; Villiger, Jörg; Posch, Thomas; Derlon, Nicolas; Shabarova, Tanja; Morgenroth, Eberhard; Pernthaler, Jakob; Blom, Judith F.

    2014-01-01

    Gravity-driven membrane (GDM) ultrafiltration systems require little maintenance: they operate without electricity at ultra-low pressure in dead-end mode and without control of the biofilm formation. These systems are already in use for water purification in some regions of the world where adequate treatment and distribution of drinking water is not readily available. However, many water bodies worldwide exhibit harmful blooms of cyanobacteria that severely lower the water quality due to the production of toxic microcystins (MCs). We studied the performance of a GDM system during an artificial Microcystis aeruginosa bloom in lake water and its simulated collapse (i.e., the massive release of microcystins) over a period of 21 days. Presence of live or destroyed cyanobacterial cells in the feed water decreased the permeate flux in the Microcystis treatments considerably. At the same time, the microbial biofilms on the filter membranes could successfully reduce the amount of microcystins in the filtrate below the critical threshold concentration of 1 µg L−1 MC for human consumption in three out of four replicates after 15 days. We found pronounced differences in the composition of bacterial communities of the biofilms on the filter membranes. Bacterial genera that could be related to microcystin degradation substantially enriched in the biofilms amended with microcystin-containing cyanobacteria. In addition to bacteria previously characterized as microcystin degraders, members of other bacterial clades potentially involved in MC degradation could be identified. PMID:25369266

  6. Investigation of membrane fouling in ultrafiltration using model organic compounds.

    PubMed

    Kweon, J H; Lawler, D F

    2005-01-01

    Natural organic matter (NOM) is known to be the worst foulant in the membrane processes, but the complexities of NOM make it difficult to determine its effects on membrane fouling. Therefore, simple organic compounds (surrogates for NOM) were used in this research to investigate the fouling mechanisms in ultrafiltration. Previous research on NOM components in membrane processes indicated that polysaccharides formed an important part of the fouling cake. Three polysaccharides (dextran, alginic acid, and polygalacturonic acid) and a smaller carbohydrate (tannic acid) were evaluated for their removal in softening (the treatment process in the City of Austin). Two polysaccharides (dextran and alginic acid) were selected and further investigated for their effects on membrane fouling. The two raw organic waters (4 mg/L C) showed quite different patterns of flux decline indicating different fouling mechanisms. Softening pretreatment was effective to reduce flux decline of both waters. The SEM images of the fouled membrane clearly showed the shapes of deposited foulants. The high resolution results of the XPS spectra showed substantially different spectra of carbon, C(1s), in the membrane fouled by two raw organic waters. The XPS was beneficial in determining the relative composition of each fouling material on the membrane surface.

  7. Reduced fouling of ultrafiltration membranes via surface fluorination

    SciTech Connect

    Sedath, R.H.; Yates, S.F.; Li, N.N.

    1993-03-01

    Surface fluorination can affect significantly the performance of an ultrafiltration membrane used to concentrate a food-related stream. Membranes fluorinated and tested as flat sheets exhibit higher initial fluxes, and do not foul as rapidly as untreated membranes. This improvement is linked to increased surface hydrophilicity, as shown in decreased contact angle with water. This increased hydrophilicity, in turn, is linked to the addition of fluorine and oxygen to the surface. The pilot plant study did-not show the difference in membrane flux and fouling observed in the flat sheet study. Instead, fluorinated and unfluorinated modules behaved similarly. Fouling by potato waste feed was severe and resulted in formation of an extensive gel layer within the module on the membrane surface. XPS, SEM and FTIR indicate that buildup of organic material occurred on both fluorinated and unfluorinated membranes, but SEM indicates that a fibrous mat of material was observed only on the nonfluorinated membrane. We conclude that in the pilot study, membrane fouling and gel formation were so extensive that the surface interaction effect was overwhelmed.

  8. Summary of the ultrafiltration, reverse osmosis, and adsorbents project

    SciTech Connect

    Colvin, C.M.; Roberts, R.C.; Williams, M.K.

    1983-01-28

    The design for a medium-size (40 gal/min) ultrafiltration (UF) membrane unit includes a schematic diagram, capital and operating costs, a list and discussion of the radioisotopes tested and the results achieved, operating parameters, and characteristics of the available membrane configurations. The plant design for a reverse osmosis (RO) membrane unit includes a conceptual diagram, specifications for a RO unit producing 40 gal/min of permeated product, a list of radioisotopes tested on RO units and the rejections achieved, a discussion of the principal of RO, a discussion of the upper limits of cation and anion concentrations (there are no lower limits), a discussion of membrane configurations and porosities, a discussion of factors affecting membranes, a section on calculating the membrane area needed for a particular application, and capital and operating cost calculations. The design for an ion-exchange pilot plant includes a schematic diagram; flow, resin, and column specifications; impurity limits; and operating and capital costs. A short theoretical discussion and process description are also included. The design retains flexibility so that application to a specific stream can be determined.

  9. Summary of the ultrafiltration, reverse osmosis, and adsorbents project

    NASA Astrophysics Data System (ADS)

    Colvin, C. M.; Roberts, R. C.; Williams, M. K.

    1983-01-01

    The design for a medium size (40 gal/min) ultrafiltration (UF) membrane unit includes a schematic diagram, capital and operating costs, a list and discussion of the radioisotopes tested and the results achieved, operating parameters, and characteristics of the available membrane configurations. The plant design for a reverse osmosis (RO) membrane unit includes a conceptual diagram, specifications for a RO unit producing 40 gal/min of permeated product, a list of radioisotopes tested on RO units and the rejections achieved, a discussion of the principal of RO, a discussion of the upper limits of cation and anion concentrations (there are no lower limits), a discussion of membrane configurations and porosities, a discussion of factors affecting membranes, a section on calculating the membrane area needed for a particular application, and capital and operating cost calculations. The design for an ion exchange pilot plant includes a schematic diagram; flow, resin, and column specifications; impurity limits; and operating and capital costs. A short theoretical discussion and process description are also included. The design retains flexibility so that application to a specific stream can be determined.

  10. Effect of ozone on biopolymers in biofiltration and ultrafiltration processes.

    PubMed

    Siembida-Lösch, Barbara; Anderson, William B; Wang, Yulang Michael; Bonsteel, Jane; Huck, Peter M

    2015-03-01

    The focus of this full-scale study was to determine the effect of ozone on biopolymer concentrations in biofiltration and ultrafiltration (UF) processes treating surface water from Lake Ontario. Ozonation was out of service for maintenance for 9 months, hence, it was possible to investigate ozone's action on biologically active carbon contactors (BACCs) and UF, in terms of biopolymer removal. Given the importance of biopolymers for fouling, this fraction was quantified using a chromatographic technique. Ozone pre-treatment was observed to positively impact the active biomass in biofilters. However, since an increase of the active biomass did not result in higher biopolymer removal, active biomass concentration cannot be a surrogate for biofiltration performance. It was evident that increasing empty bed contact time (EBCT) from 4 to 19 min only had a positive effect on biopolymer removal through BACCs when ozone was out of service. However, as a mass balance experiment showed, ozone-free operation resulted in higher deposition of biopolymers on a UF membrane and slight deterioration in its performance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Ultrafiltration of charge-stabilized dispersions at low salinity.

    PubMed

    Roa, Rafael; Menne, Daniel; Riest, Jonas; Buzatu, Pompilia; Zholkovskiy, Emiliy K; Dhont, Jan K G; Wessling, Matthias; Nägele, Gerhard

    2016-05-18

    We present a comprehensive study of cross-flow ultrafiltration (UF) of charge-stabilized suspensions, under low-salinity conditions of electrostatically strongly repelling colloidal particles. The axially varying permeate flux, near-membrane concentration-polarization (CP) layer and osmotic pressure profiles are calculated using a macroscopic diffusion-advection boundary layer method, and are compared with filtration experiments on aqueous suspensions of charge-stabilized silica particles. The theoretical description based on the one-component macroion fluid model (OCM) accounts for the strong influence of surface-released counterions on the renormalized colloid charge and suspension osmotic compressibility, and for the influence of the colloidal hydrodynamic interactions and electric double layer repulsion on the concentration-dependent suspension viscosity η, and collective diffusion coefficient Dc. A strong electro-hydrodynamic enhancement of Dc and η, and likewise of the osmotic pressure, is predicted theoretically, as compared with their values for a hard-sphere suspension. We also point to the failure of generalized Stokes-Einstein relations describing reciprocal relations between Dc and η. According to our filtration model, Dc is of dominant influence, giving rise to an only weakly developed CP layer having practically no effect on the permeate flux. This prediction is quantitatively confirmed by our UF measurements of the permeate flux using an aqueous suspension of charged silica spheres as the feed system. The experimentally detected fouling for the largest considered transmembrane pressure values is shown not to be due to filter cake formation by crystallization or vitrification.

  12. Upgrading of solvent extracted athabasca bitumen by membrane ultrafiltration

    SciTech Connect

    Sparks, B.D.; Hazlett, J.D.; Kutowy, O.; Tweddle, T.A. )

    1990-08-01

    This paper reports on solvent extraction processes that have been tested extensively for the separation of bitumen from surface-mineable, oil-bearing deposits. The end result of these processes is a solution of bitumen in a hydrocarbon solvent, usually a light naphtha. The bitumen solution contains only minimal amounts of solids and water; but, because of the constraints of the solid- liquid separation and washing steps, the bitumen concentration in the produced solutions can be quite low. Solvent must be separated from these solutions for recycle back to the extraction step of the process. This is usually accomplished by conventional techniques such as distillation, multiple-effect evaporation, or steam stripping. Sometimes a combination of these techniques is required. As a result of the low bitumen content of the solutions, the energy and capital costs associated with solvent recycle can be substantial. The use of membranes for nonaqueous liquid separations is a recent application of this developing technology. Several patents can be found describing processes for the recovery of solvent used in lube oil dewaxing or the regeneration of used automotive oils. A Japanese company has reported the development of several solvent-stable ultrafiltration membranes for the removal of solids from a number of solvents. The use of spiral-wound polysulfone membranes for the recovery of pentane solvent used in heavy oil deasphalting has been described by an American firm.

  13. Biodegradation of microcystins during gravity-driven membrane (GDM) ultrafiltration.

    PubMed

    Kohler, Esther; Villiger, Jörg; Posch, Thomas; Derlon, Nicolas; Shabarova, Tanja; Morgenroth, Eberhard; Pernthaler, Jakob; Blom, Judith F

    2014-01-01

    Gravity-driven membrane (GDM) ultrafiltration systems require little maintenance: they operate without electricity at ultra-low pressure in dead-end mode and without control of the biofilm formation. These systems are already in use for water purification in some regions of the world where adequate treatment and distribution of drinking water is not readily available. However, many water bodies worldwide exhibit harmful blooms of cyanobacteria that severely lower the water quality due to the production of toxic microcystins (MCs). We studied the performance of a GDM system during an artificial Microcystis aeruginosa bloom in lake water and its simulated collapse (i.e., the massive release of microcystins) over a period of 21 days. Presence of live or destroyed cyanobacterial cells in the feed water decreased the permeate flux in the Microcystis treatments considerably. At the same time, the microbial biofilms on the filter membranes could successfully reduce the amount of microcystins in the filtrate below the critical threshold concentration of 1 µg L(-1) MC for human consumption in three out of four replicates after 15 days. We found pronounced differences in the composition of bacterial communities of the biofilms on the filter membranes. Bacterial genera that could be related to microcystin degradation substantially enriched in the biofilms amended with microcystin-containing cyanobacteria. In addition to bacteria previously characterized as microcystin degraders, members of other bacterial clades potentially involved in MC degradation could be identified.

  14. Treatment of oily wastes using high-shear rotary ultrafiltration

    SciTech Connect

    Reed, B.E.; Viadero, R. Jr.; Young, J.; Lin, W.

    1997-12-01

    The high-shear rotary ultrafiltration (UF) system uses membrane rotation to provide the turbulence required to minimize concentration polarization and flux decline. The high-shear UF system was effective in concentrating oily wastes from about 5% to as high as 65%. The decoupling of turbulence promotion from feed pressurization/recirculation by rotating the membrane was the primary reason for the improvement in performance over that observed with conventional UF systems. Transitional and gel layer oil concentrations (20% and 50--59%, respectively) were higher than values reported in the literature. Permeate flux was dependent on the temperature and rotational speed. Flux increased by about 45% when the temperature was increased from 43 to 60 C. A larger decrease in waste viscosity, over that predicted for water alone, and increased oil droplet diffusivity were hypothesized as reasons for the stronger than expected flux-temperature relationship. The flux-rotational speed ({omega}) relationship was described by J = f({omega}){sup 0.90}; however, the gel layer exhibited stability with increasing {omega}. The ceramic membrane was superior to the polymeric membrane in regards to permeate flux and quality as well as cleaning and durability.

  15. Direct ultrafiltration performance and membrane integrity monitoring by microbiological analysis.

    PubMed

    Ferrer, O; Casas, S; Galvañ, C; Lucena, F; Bosch, A; Galofré, B; Mesa, J; Jofre, J; Bernat, X

    2015-10-15

    The feasibility of substituting a conventional pre-treatment, consisting of dioxi-chlorination, coagulation/flocculation, settling and sand filtration, of a drinking water treatment plant (DWTP) by direct ultrafiltration (UF) has been assessed from a microbiological standpoint. Bacterial indicators, viral indicators and human viruses have been monitored in raw river, ultrafiltered and conventionally pre-treated water samples during two years. Direct UF has proven to remove bacterial indicators quite efficiently and to a greater extent than the conventional process does. Nevertheless, the removal of small viruses such as some small bacteriophages and human viruses (e.g. enteroviruses and noroviruses) is lower than the current conventional pre-treatment. Membrane integrity has been assessed during two years by means of tailored tests based on bacteriophages with different properties (MS-2, GA and PDR-1) and bacterial spores (Bacillus spores). Membrane integrity has not been compromised despite the challenging conditions faced by directly treating raw river water. Bacteriophage PDR-1 appears as a suitable microbe to test membrane integrity, as its size is slightly larger than the considered membrane pore size. However, its implementation at full scale plant is still challenging due to difficulties in obtaining enough phages for its seeding.

  16. Removal of phenolic compounds in water by ultrafiltration membrane treatments.

    PubMed

    Acero, Juan L; Benítez, F Javier; Leal, Ana I; Real, Francisco J

    2005-01-01

    The ultrafiltration (UF) of aqueous solutions containing mixtures of three phenolic compounds (gallic acid, acetovanillone, and esculetin) was studied in a tangential UF laboratory system. These substances were selected as model pollutants present in the tannic fraction of the cork processing wastewaters. The two membranes used were a polyethersulfone membrane (Biomax5K) and a regenerated cellulose membrane (Ultracel5K), both with a molecular weight cut-off (MWCO) of 5000 Da. Previous experiments for the characterization of the membranes led to values for the water hydraulic permeability of 70.3 and 18.1 L/h x m2 x bar for the Biomax5K and Ultracel5K membranes, respectively. During the UF experiments, the permeate flow rate remained almost constant with processing time and the evolution of the pollutants concentrations varied depending on the nature of the membranes and the substances. The influence of the main operating variables (tansmembrane pressure and feed flow rate) on the permeate flux was established, and values for the apparent and intrinsic rejection coefficients were evaluated. Cork processing wastewater UF experiments were also conducted under similar operating conditions to those applied to the ultrapure water solutions. Removals of chemical oxygen demand, aromatic and tannic contents, and color were determined in these experiments, and the elimination of the three model compounds in the wastewater was also followed, with the evaluation of their apparent rejection coefficients.

  17. Extractive acetonobutylic fermentation by coupling ultrafiltration and distillation.

    PubMed

    Minier, M; Grateloup, R; Blanc-Ferras, E; Goma, G

    1990-04-15

    An extractive acetonobutylic fermentation process is developed by integrating bioproduction, Ultrafiltration, and distillation, providing simultaneous retention of biomass, selective removal of inhibitors from the permeate, as well as separation and purification of acetone-butanol-ethanol solvents. Successive batch fermentations were performed with normal pressure distillation (98 degrees C), which permitted prolonging and enhancing (by a factor of 3) solvent production, with very few volume exchanges of medium (average dilution rate ws 0.002 h(-1)), and recovering on-line concentrated solvents. Different operating conditions were also tested in order to study the presence of extracellular autolytic enzymes as inhibition factors: It was shown that, (1) extracellular autolytic activity remains low during the larger part of fermentations, even without enzyme-inactivating thermotreatment in the distillation boiler, and (2) high-temperature distillation causes deleterious effects to the culture medium for long duration treatments. Progressive improvements of the process were achieved, first, by managing continuous runs, providing a minimum renewal of the culture medium and, mainly, by decreasing temperature and pressure of distilation. Solvent productivity then reached 2.6 g/L h for a 0.036 h(-1) average dilution rate, corresponding to a feed concentration of 156 g/L glucose actually consumed.

  18. Novel antioxidant Peptide derived from the ultrafiltrate of ovomucin hydrolysate.

    PubMed

    Chang, Oun Ki; Ha, Go Eun; Han, Gi-Sung; Seol, Kuk-Hwan; Kim, Hyoun Wook; Jeong, Seok-Geun; Oh, Mi-Hwa; Park, Beom-Young; Ham, Jun-Sang

    2013-07-31

    The techno-functional properties of ovomucin as a gel-forming agent and its biological properties are well-known. The aim of the present study was to investigate antioxidant activity in ovomucin hydrolysate using radical scavenging assays. Electrophoresis showed that ovomucin isolated from whole egg was well separated. Ovomucin hydrolysis was carried out using microbial protease according to different incubation times. These ovomucin hydrolysates exhibited 85% antioxidant activity as measured by the 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) assay after a 2 h incubation with protease and retained 90% activity until 24 h. At an incubation time of 4 h, the activity of ovomucin hydrolysates reached approximately 90%, corresponding to 115 μM gallic acid equivalent, regardless of the proteases used. The partially purified fraction of the hydrolysate by ultrafiltration and reverse-phase high-performance liquid chromatography was collected and then analyzed by liquid chromatography electrospray ionization mass spectrometry. Two peptides, LDEPDPL and NIQTDDFRT, in this fraction were identified. The antioxidant activities of these two synthesized peptides were measured to be 51.8 and 24.7% by the 2,2-diphenyl-1-picrylhydrazyl assay.

  19. Threefold peritoneal test of osmotic conductance, ultrafiltration efficiency, and fluid absorption.

    PubMed

    Waniewski, Jacek; Paniagua, Ramón; Stachowska-Pietka, Joanna; Ventura, María-de-Jesús; Ávila-Díaz, Marcela; Prado-Uribe, Carmen; Mora, Carmen; García-López, Elvia; Lindholm, Bengt

    2013-01-01

    Fluid removal during peritoneal dialysis depends on modifiable factors such as tonicity of dialysis fluids and intrinsic characteristics of the peritoneal transport barrier and the osmotic agent-for example, osmotic conductance, ultrafiltration efficiency, and peritoneal fluid absorption. The latter parameters cannot be derived from tests of the small-solute transport rate. We here propose a simple test that may provide information about those parameters. Volumes and glucose concentrations of drained dialysate obtained with 3 different combinations of glucose-based dialysis fluid (3 exchanges of 1.36% glucose during the day and 1 overnight exchange of either 1.36%, 2.27%, or 3.86% glucose) were measured in 83 continuous ambulatory peritoneal dialysis (CAPD) patients. Linear regression analyses of daily net ultrafiltration in relation to the average dialysate-to-plasma concentration gradient of glucose allowed for an estimation of the osmotic conductance of glucose and the peritoneal fluid absorption rate, and net ultrafiltration in relation to glucose absorption allowed for an estimation of the ultrafiltration effectiveness of glucose. The osmotic conductance of glucose was 0.067 ± 0.042 (milliliters per minute divided by millimoles per milliliter), the ultrafiltration effectiveness of glucose was 16.77 ± 7.97 mL/g of absorbed glucose, and the peritoneal fluid absorption rate was 0.94 ± 0.97 mL/min (if estimated concomitantly with osmotic conductance) or 0.93 ± 0.75 mL/min (if estimated concomitantly with ultrafiltration effectiveness). These fluid transport parameters were independent of small-solute transport characteristics, but proportional to total body water estimated by bioimpedance. By varying the glucose concentration in 1 of 4 daily exchanges, osmotic conductance, ultrafiltration efficiency, and peritoneal fluid absorption could be estimated in CAPD patients, yielding transport parameter values that were similar to those obtained by other, more

  20. Threefold Peritoneal Test of Osmotic Conductance, Ultrafiltration Efficiency, and Fluid Absorption

    PubMed Central

    Waniewski, Jacek; Paniagua, Ramón; Stachowska-Pietka, Joanna; Ventura, María-de-Jesús; Ávila-Díaz, Marcela; Prado-Uribe, Carmen; Mora, Carmen; García-López, Elvia; Lindholm, Bengt

    2013-01-01

    ♦ Background: Fluid removal during peritoneal dialysis depends on modifiable factors such as tonicity of dialysis fluids and intrinsic characteristics of the peritoneal transport barrier and the osmotic agent—for example, osmotic conductance, ultrafiltration efficiency, and peritoneal fluid absorption. The latter parameters cannot be derived from tests of the small-solute transport rate. We here propose a simple test that may provide information about those parameters. ♦ Methods: Volumes and glucose concentrations of drained dialysate obtained with 3 different combinations of glucose-based dialysis fluid (3 exchanges of 1.36% glucose during the day and 1 overnight exchange of either 1.36%, 2.27%, or 3.86% glucose) were measured in 83 continuous ambulatory peritoneal dialysis (CAPD) patients. Linear regression analyses of daily net ultrafiltration in relation to the average dialysate-to-plasma concentration gradient of glucose allowed for an estimation of the osmotic conductance of glucose and the peritoneal fluid absorption rate, and net ultrafiltration in relation to glucose absorption allowed for an estimation of the ultrafiltration effectiveness of glucose. ♦ Results: The osmotic conductance of glucose was 0.067 ± 0.042 (milliliters per minute divided by millimoles per milliliter), the ultrafiltration effectiveness of glucose was 16.77 ± 7.97 mL/g of absorbed glucose, and the peritoneal fluid absorption rate was 0.94 ± 0.97 mL/min (if estimated concomitantly with osmotic conductance) or 0.93 ± 0.75 mL/min (if estimated concomitantly with ultrafiltration effectiveness). These fluid transport parameters were independent of small-solute transport characteristics, but proportional to total body water estimated by bioimpedance. ♦ Conclusions: By varying the glucose concentration in 1 of 4 daily exchanges, osmotic conductance, ultrafiltration efficiency, and peritoneal fluid absorption could be estimated in CAPD patients, yielding transport parameter

  1. Determination of endogenous ions in intercellular fluid using capillary ultrafiltration and microdialysis probes.

    PubMed

    Linhares, M C; Kissinger, P T

    1993-01-01

    Capillary ultrafiltration probes are novel sampling tools for continuously monitoring small molecules in the extracellular fluid of awake animals. Capillary ultrafiltration uses a vacuum applied to hydrophilic membrane fibres and extracts intercellular fluid and quantitatively recover many small hydrophilic molecules. The effects of continuously removing a small amount of fluid from the interstitial space are not known. The concentration of sodium, potassium, calcium and inorganic phosphorus were determined in the collected ultrafiltrates from subcutaneous tissue. These values were compared to literature values and to concentrations determined for the same animals using microdialysis. The concentrations of sodium, potassium, calcium and inorganic phosphorous were found to be 140 +/- 4, 3.7 +/- 0.1, 1.1 +/- 0.1 and 1.7 +/- 0.1 mM, respectively, in the subcutaneous ultrafiltrates obtained from rats. These corresponded very well with literature values and microdialysates, obtained, using pure water as the perfusate, in subcutaneous tissue. The concentration of sodium and potassium were determined to be 142 +/- 2 mM and 3.6 +/- 0.2 mM, respectively, for the dialysates. Hyperinsulinemic-induced decrease in intercellular potassium levels under a euglycemic clamp were monitored using capillary ultrafiltration probes in rats to further validate this technique for monitoring small molecule dynamics in the intercellular space. The intercellular level of potassium in rats decreased from 3.6 +/- 0.5 to 2.6 +/- 0.3 mM after an acute dose of pork insulin.

  2. Cardiorenal syndrome: ultrafiltration therapy for heart failure--trials and tribulations.

    PubMed

    Kazory, Amir

    2013-10-01

    Heart failure remains the leading cause of hospitalization in older patients and is considered a growing public health problem with a significant financial burden on the health care system. The suboptimal efficacy and safety profile of diuretic-based therapeutic regimens coupled with unsatisfactory results of the studies on novel pharmacologic agents have positioned ultrafiltration on the forefront as an appealing therapeutic option for patients with acute decompensated heart failure (ADHF). In recent years, substantial interest in the use of ultrafiltration has been generated due to the advent of dedicated portable devices and promising results of trials focusing both on mechanistic and clinical aspects of this therapeutic modality. This article briefly reviews the proposed benefits of ultrafiltration therapy in the setting of ADHF and summarizes the major findings of the currently available studies in this field. The results of more recent trials on cardiorenal syndrome that present a counterpoint to previous observations and highlight certain limitations of ultrafiltration therapy are then discussed, followed by identification of major challenges and unanswered questions that could potentially hinder its more widespread use. Future studies are warranted to shed light on less well characterized aspects of ultrafiltration therapy and to further define its role in ADHF and cardiorenal syndrome.

  3. Enhancement of permeate flux by gas slugs for crossflow ultrafiltration in tubular membrane module

    SciTech Connect

    Cheng, T.W.; Yeh, H.M.; Gau, C.T.

    1998-11-01

    Flux enhancements by gas slugs for dextran T500 solutions ultrafiltrated in a ZrO{sub 2}/carbon tubular membrane module were measured and are discussed for various resistances of the concentration boundary layer. These resistances are functions of the liquid velocity, the transmembrane pressure, and the feed concentration in the liquid-phase ultrafiltration. When the boundary layer resistance is low, the flux enhancement by gas slugs is limited. For a liquid ultrafiltration system with a severe concentration polarization, or operated in conditions of low liquid velocity, high transmembrane pressure, and high feed concentration, flux enhancement by gas slugs is very significant if the gas velocity exceeds a certain threshold. This threshold gas velocity depends on the extent of the concentration polarization in the single liquid-phase ultrafiltration system. It is concluded that the same permeate flux obtained in single liquid-phase ultrafiltration with a higher crossflow velocity can also be achieved with a lower liquid velocity by introducing gas slug of moderate velocity, and lead to reduced energy consumption.

  4. [Membrane fouling based on change of membrane characteristic parameters during ultrafiltration of protein].

    PubMed

    Wang, Xu-Dong; Zhang, Yin-Hui; Wang, Lei; Zhang, Hui-Hui; Xia, Si-Qing

    2014-11-01

    In order to further understand membrane fouling mechanism of various protein systems during ultrafiltration, polyethersulfone (PES) ultrafiltration membrane with relative molecular weight cut off of 50 x 10(3) was used, the ultrafiltration processes of three kinds of protein solution were investigated: lysozyme ( LYS), bovine serum albumin ( BSA), and LYS + BSA. Contact angle meter, field emission scanning electron microscope (FESEM) and atomic force microscope (AFM) were adopted to determine the change of membrane characteristic parameters at different fouling stages. The results indicated that the changes of ultrafiltration membrane flux obviously exhibited three stages: sharp flux decline in the initial stage (approximately between 0-5 min), slow flux decline during the transition stage (approximately between 5-60 min), and stable flux in the late stage (approximately between 60-120 min). During the whole ultrafiltration process, the LYS-fouled membrane had the largest flux decline, followed by the LYS + BSA-fouled membrane, and the BSA-fouled membrane had the least decline. The changes of membrane characteristic parameters clearly indicated that the initial filtration stage of LYS was controlled by pore constriction, while pore blocking and pore constriction were the main fouling mechanism at the transition stage. Pore blocking was the main fouling mechanism of BSA in the initial fouling stage, while the transition stage was controlled by pore constriction. Cake filtration was the main fouling mechanism of LYS and BSA in the late stage. The membrane fouling of binary mixtures LYS + BSA appeared to be dominated by LYS.

  5. Identification of the Allergenic Ingredients in Reduning Injection by Ultrafiltration and High-Performance Liquid Chromatography.

    PubMed

    Wang, Fang; Li, Cun-yu; Zheng, Yun-feng; Li, Hong-yang; Xiao, Wei; Peng, Guo-ping

    2016-01-01

    Reduning injection is a traditional Chinese medicine injection which has multiple functions such as clearing heat, dispelling wind, and detoxification. Although Reduning injection was widely utilized, reports of its allergenicity emerged one after another. However, there is little research on its allergenic substances. The aim of this study is to evaluate the sensitization of Reduning injection and explore the underlying cause of the anaphylactic reaction. The main ingredients in Reduning injection were analyzed before and after ultrafiltration. Ultrafiltrate Reduning injection, unfiltered Reduning injection, egg albumin, Tween-80, and nine effective components in Reduning injection were utilized to sensitize guinea pigs. The serum 5-hydroxytryptamine level was used to assess the sensitization effect of Reduning injection. We found a significant decrease in Tween-80 content comparing to other components in the injection after ultrafiltration. Unfiltered Reduning injection, Tween-80, chlorogenic acid, and cryptochlorogenin acid caused remarkable anaphylactoid reaction on guinea pigs while ultrafiltration Reduning resulted in a significantly lower degree of sensitization. Our results suggest that ultrafiltration could significantly reduce the sensitization of Reduning injection, which is likely due to the decrease of Tween-80. We also conjectured that the form of chlorogenic acid and cryptochlorogenin acid within the complex solution mixture may also affect the sensitizing effect.

  6. Identification of the Allergenic Ingredients in Reduning Injection by Ultrafiltration and High-Performance Liquid Chromatography

    PubMed Central

    Wang, Fang; Li, Cun-yu; Zheng, Yun-feng; Li, Hong-yang; Xiao, Wei; Peng, Guo-ping

    2016-01-01

    Reduning injection is a traditional Chinese medicine injection which has multiple functions such as clearing heat, dispelling wind, and detoxification. Although Reduning injection was widely utilized, reports of its allergenicity emerged one after another. However, there is little research on its allergenic substances. The aim of this study is to evaluate the sensitization of Reduning injection and explore the underlying cause of the anaphylactic reaction. The main ingredients in Reduning injection were analyzed before and after ultrafiltration. Ultrafiltrate Reduning injection, unfiltered Reduning injection, egg albumin, Tween-80, and nine effective components in Reduning injection were utilized to sensitize guinea pigs. The serum 5-hydroxytryptamine level was used to assess the sensitization effect of Reduning injection. We found a significant decrease in Tween-80 content comparing to other components in the injection after ultrafiltration. Unfiltered Reduning injection, Tween-80, chlorogenic acid, and cryptochlorogenin acid caused remarkable anaphylactoid reaction on guinea pigs while ultrafiltration Reduning resulted in a significantly lower degree of sensitization. Our results suggest that ultrafiltration could significantly reduce the sensitization of Reduning injection, which is likely due to the decrease of Tween-80. We also conjectured that the form of chlorogenic acid and cryptochlorogenin acid within the complex solution mixture may also affect the sensitizing effect. PMID:27144180

  7. [Hydrolyzed lactose contained in the ultrafiltrate of milk or milk products in an enzymatic membrane reactor].

    PubMed

    Roger, L; Maubois, J L; Thapon, J L; Brule, G

    1978-01-01

    Milk and milk by-products with a low lactose content, very interesting from a nutritional and technological point of view, were obtained by the application of the enzymatic membrane reactor technique. A previous separation of the aqueous phase of milk or ultrafiltrate was necessary and realized by ultrafiltration. The enzyme, a commercial beta-galactosidase, was maintained in solution in the retentate part of the membrane reactor. The optimal conditions of the lactose hydrolysis in milk and whey ultrafiltrates were determined. The behaviour of the aqueous phase of milk in membrane reactor, specially of mineral salts, was studied. Three possibilities were proposed to avoid a calcium-phosphate deposit on the surface of (and in) the reactor membranes: a precipitation of calcium salts by heating, a partial demineralization by electrodialysis or ion exchange, a calcium complexation by addition of sodium citrate. A continuous process for the lactose hydrolysis of milk and demineralized whey or milk ultrafiltrate was proposed. The organoleptic quality of low lactose milk, before and after heat treatment, was evaluated by a tasting panel. High sweeting syrup, were obtained by concentration of lactose hydrolyzed and demineralized ultrafiltrates. Nutritional aspects of these products are discussed specially from the toxicological point of view of galactose.

  8. [Removal of lead from aqueous solutions by complexation-ultrafiltration with chitosan].

    PubMed

    Xie, Zhang-Wang; Shao, Jia-Hui; He, Yi-Liang

    2010-06-01

    Polyethersulphone (PES) membrane was chosen and chitosan was used as complexing agent to remove lead ions by complexation-ultrafiltration. Effects of solution pH, Pb2+/chitosan ratio, ionic strength and Ca2+ on the rejection coefficient of lead were investigated. The effect of concentration time on lead rejection coefficient and membrane flux was also studied. The value of pH was found to be the key parameter in the process of complexation-ultrafiltration. The rejection coefficient of lead goes high to over 99% at pH 6.0 with the Pb2+/chitosan ratio 0.25. The increase of ionic strength and Ca2+ is not beneficial to the lead removal by complexation-ultrafiltration. The chitosan-metal complex was acidified and then the chitosan was regenerated by diafiltration. The regenerated chitosan was used to remove Pb2+ by complexation-ultrafiltration, and the rejection coefficient of lead was found to be 96.2%, which shows no significant difference with that obtained on the fresh chitosan. Results showed that complexation-ultrafiltration can effectively remove lead from aqueous solutions and chitosan can be effectively regenerated.

  9. Ultrafiltration of charge-stabilized dispersions at low salinity

    NASA Astrophysics Data System (ADS)

    Roa, Rafael; Menne, Daniel; Riest, Jonas; Buzatu, Pompilia; Zholkovskiy, Emiliy K.; Dhont, Jan K. G.; Wessling, Matthias; Nägele, Gerhard

    We present a comprehensive study of cross-flow ultrafiltration (UF) of charge-stabilized suspensions, under low-salinity conditions of electrostatically strongly repelling colloidal particles. The axially varying permeate flux, near-membrane concentration-polarization (CP) layer and osmotic pressure profiles are calculated using a macroscopic diffusion-advection boundary layer method, and are compared with filtration experiments on aqueous suspensions of charge-stabilized silica particles. The theoretical description based on the one-component macroion fluid model (OCM) accounts for the strong influence of surface-released counterions on the renormalized colloid charge and suspension osmotic compressibility, and for the influence of the colloidal hydrodynamic interactions and electric double layer repulsion on the concentration-dependent suspension viscosity $\\eta$, and collective diffusion coefficient $D_c$. A strong electro-hydrodynamic enhancement of $D_c$ and $\\eta$, and likewise of the osmotic pressure is predicted theoretically, as compared with their values for a hard-sphere suspension. We also point to the failure of generalized Stokes-Einstein relations describing reciprocal relations between $D_c$ and $\\eta$. According to our filtration model, $D_c$ is of dominant influence, giving rise to an only weakly developed CP layer having practically no effect on the permeate flux. This prediction is quantitatively confirmed by our UF measurements of the permeate flux using an aqueous suspension of charged silica spheres as the feed system. The experimentally detected fouling for the largest considered transmembrane pressure values is shown not to be due to filter cake formation by crystallization or vitrification.

  10. Characterization of ultrafiltration of undiluted and diluted stored urine.

    PubMed

    Ouma, J; Septien, S; Velkushanova, K; Pocock, J; Buckley, C

    2016-11-01

    Urine ultrafiltration (UF) was studied in terms of flux, permeability, resistance and fouling. Two types of samples were used: stored urine representing the feedstock obtained from urine diversion dry toilets; and diluted stored urine representing the feedstock obtained from urinals. Three different filtration experiment sets were adopted in this study. For the first case, pressure was set in an ascending order, i.e. from 10 to 60 kPa during filtration of stored urine. For the second case, pressure was set in a descending order, i.e. from 60 to 10 kPa for the same feed stream. The third case involved filtration of diluted urine with pressure in ascending order, i.e. from 10 to 60 kPa. The results indicated that diluted urine had higher flux than undiluted urine with maximum values of 43 and 26 L·m(-2)·h(-1) respectively. Cake formation was the dominating fouling mechanism during urine filtration with a contribution of about 90% to the total hydraulic resistance. The contribution of chemically irreversible fouling was low (-2%), unless operating from high to low pressures. Indeed, irreversible fouling appeared to be greater during the experiments starting at higher pressure. Although undiluted urine had a higher fouling potential compared to diluted urine, the specific cake resistance was higher for diluted urine, probably due to a denser cake caused by lower particle sizes in that sample. The permeate obtained after urine filtration had much lower suspended solids content compared to the feedstock, with rejections up to 99%. The concentration of the ionic species remained unchanged, and 75% of the organic compounds and dissolved solids remained in the permeate. Urine UF could then be used as pre-treatment to remove suspended solids.

  11. Thin stillage fractionation using ultrafiltration: resistance in series model.

    PubMed

    Arora, Amit; Dien, Bruce S; Belyea, Ronald L; Wang, Ping; Singh, Vijay; Tumbleson, M E; Rausch, Kent D

    2009-02-01

    The corn based dry grind process is the most widely used method in the US for fuel ethanol production. Fermentation of corn to ethanol produces whole stillage after ethanol is removed by distillation. It is centrifuged to separate thin stillage from wet grains. Thin stillage contains 5-10% solids. To concentrate solids of thin stillage, it requires evaporation of large amounts of water and maintenance of evaporators. Evaporator maintenance requires excess evaporator capacity at the facility, increasing capital expenses, requiring plant slowdowns or shut downs and results in revenue losses. Membrane filtration is one method that could lead to improved value of thin stillage and may offer an alternative to evaporation. Fractionation of thin stillage using ultrafiltration was conducted to evaluate membranes as an alternative to evaporators in the ethanol industry. Two regenerated cellulose membranes with molecular weight cut offs of 10 and 100 kDa were evaluated. Total solids (suspended and soluble) contents recovered through membrane separation process were similar to those from commercial evaporators. Permeate flux decline of thin stillage using a resistance in series model was determined. Each of the four components of total resistance was evaluated experimentally. Effects of operating variables such as transmembrane pressure and temperature on permeate flux rate and resistances were determined and optimum conditions for maximum flux rates were evaluated. Model equations were developed to evaluate the resistance components that are responsible for fouling and to predict total flux decline with respect to time. Modeling results were in agreement with experimental results (R(2) > 0.98).

  12. Obtaining the Osmotic Pressure of Electrostatically Stabilized Colloidal Dispersions from Frontal Ultrafiltration Experiments.

    PubMed

    Richard Bowen W; Williams

    2001-01-01

    A new method for determining the osmotic pressure of electrostatically stabilized colloidal particles from frontal ultrafiltration experiments has been developed. The method is based on a reverse calculation utilizing a previously developed analysis of frontal ultrafiltration (W. R. Bowen and F. Jenner, Chem. Eng. Sci. 50, 1707, 1995; W. R. Bowen and P. M. Williams, Biotechnol. Bioeng. 50, 125, 1996). The method has the following advantages over conventional membrane osmometer measurements: (i) only very simple apparatus is required, (ii) results are obtained quickly, (iii) only small sample quantities are required, and (iv) only dilute initial samples are needed, as the ultrafiltration process creates a concentrated solution at the membrane, making sample preparation a simple task. A comparison of the osmotic pressure determined by this new method with previously measured osmotic pressure data shows excellent agreement. The approach demonstrates how analysis of process data may provide quantitative information on the interactions of concentrated colloidal systems. Copyright 2001 Academic Press.

  13. Hyperbranched chelating polymers for the polymer-assisted ultrafiltration of boric acid

    SciTech Connect

    Smith, B.M.; Todd, P.; Bowman, C.N.

    1999-07-01

    Two hyperbranched chelating polymers, glucoheptonamide derivatives of dendrimetric poly(amido amine) and poly(ethylene imine), were employed in polymer-assisted ultrafiltration and concentration of boron from aqueous feed streams. For feeds containing approximately 1 mM B (10 ppm), volume reduction factors of 20 were observed in cyclic adsorption-desorption. The concentrations of both polymers declined due to permeation through an ultrafiltration membrane with pore sizes which should have retained them. Acid-catalyzed hydrolysis of the amide linkages between the polymer backbone and the chelating side groups is implicated in this loss of polymer mass and effectiveness.

  14. Flat ceramic ultrafiltration membranes and modules coated by the sol-gel technique

    SciTech Connect

    Pflanz, K.; Stroh, N.; Riedel, R.

    1994-12-31

    Sol-gel techniques are common in preparing inorganic ultrafiltration membranes. Since applicable membranes should exhibit improved chemical and thermal stability with respect to phase transition, pore size and particle growth, the authors developed a new method for preparing an inorganic ultrafiltration membrane made of magnesium aluminum spinel, MgAl{sub 2}O{sub 4}. This membrane is supported by a flat ceramic microfilter ({alpha}-Al{sub 2}O{sub 3}) produced via the tape casting process, which offers the opportunity of improved processing techniques and new module concepts compared to the widely used extruded multi channel modules. Membrane characteristics and some applications will be shown.

  15. Slow continuous intravenous plasmapheresis (SCIP): clinical applications and hemostability of extracorporeal ultrafiltration.

    PubMed

    Handley, Harold H; Gorsuch, Rey; Peters, Harold; Cooper, Thomas G; Bien, Richard H; Levin, Nathan W; Ronco, Claudio

    2005-01-01

    An intravenous plasmapheresis catheter which excludes >99.4% of platelets from external ultrafiltration circuits is currently undergoing safety and efficacy trials for fluid removal from NYHA class II-IV congestive heart failure patients resistant to diuretic drug therapy. In animals, the SCIP catheter allowed a four fold increase in ultrafiltration efficiency without hemolysis, hemoinstability or external cartridge changes in 72 hours of treatment. Further, systemic anticoagulation was not required. These techniques might be envisioned for treatment of fluid overload in heart failure, surgery or trauma and may have applications in therapeutic apheresis, venous thrombosis, liver disease or autologous tissue engineering.

  16. Ultrafiltration of sulfite liquors for separation of lignosulfonates removed from water by coagulation

    SciTech Connect

    Medvedev, Yu.M.; Medvedev, M.I.; Tsapyuk, E.A.

    1986-04-10

    This paper attempts to select an ultrafilter retaining lignosulfonate (LS) fractions precipitated by coagulants and to study the relationships of their concentration and efficiency of removal from water by coagulants. The material studied - sulfite liquor from the Syas' pulp and paper combine - was fractionated with the use of ''Vladipor'' cellulose acetate ultrafiltration membranes of various pore sizes. Data on the efficiency of removal from water of LS fractions retained by membranes differing in pore size are presented. It is concluded that ecologically safe LS fractions (removed almost completely by the coagulant) can be obtained by ultrafiltration of technical liquor through UAM-500 membranes under 0.7 MPA pressure.

  17. Ultrafiltration Characteristics of Glucose Polymers with Low Polydispersity

    PubMed Central

    Leypoldt, John K.; Hoff, Catherine M.; Piscopo, Dean; Carr, Seraya N.; Svatek, Jessica M.; Holmes, Clifford J.

    2013-01-01

    ♦ Background: Icodextrin, a glucose polymer with a polydispersity [ratio of weight-average molecular weight (Mw) to number-average molecular weight] of approximately 2.6, has been shown, compared with glucose, to provide superior ultrafiltration (UF) efficiency [ratio of UF to carbohydrate (CHO) absorbed] when used as an osmotic agent during a long-dwell peritoneal dialysis exchange. In an experimental rabbit model, we evaluated the effect of Mw on the UF and UF efficiency of glucose polymers with low polydispersity. ♦ Methods: A crossover trial in female New Zealand White rabbits (2.20 - 2.65 kg) with surgically implanted peritoneal catheters evaluated two glucose polymers at nominal concentrations of 7.5 g/dL: a 6K polymer (Mw: 6.4 kDa; polydispersity: 2.3) and a 19K polymer (Mw: 18.8 kDa; polydispersity: 2.0). Rabbits were randomized to receive either the 6K (n = 11) or the 19K (n = 12) solution during the first exchange (40 mL/kg body weight). The alternative solution was evaluated in a second exchange 3 days later. During each 4-hour dwell, the UF and total glucose polymer CHO absorbed were determined. ♦ Results: The UF was higher for the 6K (p < 0.0001) than for the 19K polymer (mean ± standard deviation: 73.6 ± 30.8 mL vs. 43.0 ± 20.2 mL), as was the amount of CHO absorbed (42.5% ± 9.8% vs. 35.7% ± 11.0%, p = 0.021). In spite of higher CHO absorption, an approximately 50% higher (p = 0.029) UF efficiency was achieved with the 6K polymer (28.3 ± 18.8 mL/g) than with the 19K polymer (19.0 ± 11.3 mL/g). The results were independent of the order of the experimental exchanges. ♦ Conclusions: Glucose polymers with low polydispersity are effective osmotic agents in a rabbit model. The low-Mw polymer was more effective at generating UF and had a higher UF efficiency, but those results came at the expense of the polymer being more readily absorbed from the peritoneal cavity. PMID:23123667

  18. Peritoneal residual volume induces variability of ultrafiltration with icodextrin.

    PubMed

    Akonur, Alp; Holmes, Clifford J; Leypoldt, John K

    2014-01-01

    Icodextrin induces ultrafiltration (UF) during long-dwell exchanges by creating a difference in oncotic pressure between the peritoneal cavity and plasma; however, the mechanisms governing intra-patient and inter-patient variability in UF when icodextrin is used remain largely unexplained. In the present study, we show theoretically that differences in peritoneal residual volume (VR) have a more profound effect on UF with icodextrin use than with glucose use. This phenomenon is attributed to a differential effect of VR on oncotic, rather than osmotic, pressure between the peritoneal cavity and plasma. ♢ The three-pore model was used to calculate the effect on UF of VR between 150 mL and 1200 mL when 7.5% icodextrin (ICO) or 3.86% glucose solution is used at the end of a 12-hour dwell in the four patient transport groups (that is, fast to slow). Oncotic (with ICO) and osmotic (with glucose) pressure differences averaged over the entire dwell were also calculated. ♢ As expected, at a nominal VR of 300 mL, UF with glucose differed substantially between the four patient transport groups (2 - 804 mL), whereas UF with ICO did not (556 - 573 mL). When VR was increased to 1200 mL from 150 mL, the concentrations of the oncotic and osmotic agents at the start of the dwell with an infusion volume of 2 L decreased to 4.9% from 7.0% with ICO and to 2.5% from 3.6% with glucose. The decrease in UF on average was greater with ICO [to 252 mL from 624 mL: that is, a reduction of 372 mL (60%)] than with glucose [to 292 mL from 398 mL: that is, a reduction of 106 mL (27%)]. Those trends agreed with the calculated reductions in the oncotic pressure difference with ICO [reduction of 12 mmHg (49%)] and the osmotic pressure difference with glucose [reduction of 19 mmHg (33%)]. ♢ When ICO is used, VR modifies the oncotic pressure difference between the peritoneal cavity and plasma to substantially alter UF. This modification suggests that potential causes of increased VR should be

  19. Target weight achievement and ultrafiltration rate thresholds: potential patient implications.

    PubMed

    Flythe, Jennifer E; Assimon, Magdalene M; Overman, Robert A

    2017-06-02

    Higher ultrafiltration (UF) rates and extracellular hypo- and hypervolemia are associated with adverse outcomes among maintenance hemodialysis patients. The Centers for Medicare and Medicaid Services recently considered UF rate and target weight achievement measures for ESRD Quality Incentive Program inclusion. The dual measures were intended to promote balance between too aggressive and too conservative fluid removal. The National Quality Forum endorsed the UF rate measure but not the target weight measure. We examined the proposed target weight measure and quantified weight gains if UF rate thresholds were applied without treatment time (TT) extension or interdialytic weight gain (IDWG) reduction. Data were taken from the 2012 database of a large dialysis organization. Analyses considered 152,196 United States hemodialysis patients. We described monthly patient and dialysis facility target weight achievement patterns and examined differences in patient characteristics across target weight achievement status and differences in facilities across target weight measure scores. We computed the cumulative, theoretical 1-month fluid-related weight gain that would occur if UF rates were capped at 13 mL/h/kg without concurrent TT extension or IDWG reduction. Target weight achievement patterns were stable over the year. Patients who did not achieve target weight (post-dialysis weight ≥ 1 kg above or below target weight) tended to be younger, black and dialyze via catheter, and had shorter dialysis vintage, greater body weight, higher UF rate and more missed treatments compared with patients who achieved target weight. Facilities had, on average, 27.1 ± 9.7% of patients with average post-dialysis weight ≥ 1 kg above or below the prescribed target weight. In adjusted analyses, facilities located in the midwest and south and facilities with higher proportions of black and Hispanic patients and higher proportions of patients with shorter TTs were more likely to

  20. Peritoneal Residual Volume Induces Variability of Ultrafiltration with Icodextrin

    PubMed Central

    Akonur, Alp; Holmes, Clifford J.; Leypoldt, John K.

    2014-01-01

    ♦ Background: Icodextrin induces ultrafiltration (UF) during long-dwell exchanges by creating a difference in oncotic pressure between the peritoneal cavity and plasma; however, the mechanisms governing intra-patient and inter-patient variability in UF when icodextrin is used remain largely unexplained. In the present study, we show theoretically that differences in peritoneal residual volume (VR) have a more profound effect on UF with icodextrin use than with glucose use. This phenomenon is attributed to a differential effect of VR on oncotic, rather than osmotic, pressure between the peritoneal cavity and plasma. ♦ Methods: The three-pore model was used to calculate the effect on UF of VR between 150 mL and 1200 mL when 7.5% icodextrin (ICO) or 3.86% glucose solution is used at the end of a 12-hour dwell in the four patient transport groups (that is, fast to slow). Oncotic (with ICO) and osmotic (with glucose) pressure differences averaged over the entire dwell were also calculated. ♦ Results: As expected, at a nominal VR of 300 mL, UF with glucose differed substantially between the four patient transport groups (2 - 804 mL), whereas UF with ICO did not (556 - 573 mL). When VR was increased to 1200 mL from 150 mL, the concentrations of the oncotic and osmotic agents at the start of the dwell with an infusion volume of 2 L decreased to 4.9% from 7.0% with ICO and to 2.5% from 3.6% with glucose. The decrease in UF on average was greater with ICO [to 252 mL from 624 mL: that is, a reduction of 372 mL (60%)] than with glucose [to 292 mL from 398 mL: that is, a reduction of 106 mL (27%)]. Those trends agreed with the calculated reductions in the oncotic pressure difference with ICO [reduction of 12 mmHg (49%)] and the osmotic pressure difference with glucose [reduction of 19 mmHg (33%)]. ♦ Conclusions: When ICO is used, VR modifies the oncotic pressure difference between the peritoneal cavity and plasma to substantially alter UF. This modification suggests

  1. The variability in ultrafiltration achieved with icodextrin, possibly explained.

    PubMed

    Venturoli, Daniele; Jeloka, Tarun K; Ersoy, Fevzi F; Rippe, Bengt; Oreopoulos, Dimitrios G

    2009-01-01

    A recent study by Jeloka et al. (Perit Dial Int 2006; 26:336-40) highlighted the high variability in maximum ultrafiltered volume (UF(max)) and the corresponding dwell time (t(max)) obtained using 7.5% icodextrin solution. We aimed to pinpoint the possible sources of this phenomenon by simulating the icodextrin ultrafiltration (UF) profiles according to the three-pore model of peritoneal transport. The individual UF time courses observed in the study by Jeloka et al. (n = 29) were first characterized by linear and quadratic regression. We were then able to identify four main patterns. These were then adapted to UF profiles generated by the three-pore model by systematically altering the values of some model parameters, namely, the mass transfer area coefficient (MTAC or PS) for icodextrin/glucose, the peritoneal UF coefficient (LpS), the plasma colloid osmotic pressure gradient (DeltaPi), and the macromolecular clearance out of the peritoneal cavity (Cl(LF)). Modifications in the PS values caused only marginal variations in UF(max) and t(max), while more significant changes were produced by altering LpS and Cl(LF). However, far more evident was the importance of changes in DeltaPi. In fact, lowering DeltaPi to 14 mmHg caused a steady increase in UF with 10 - 14 hour dwells. On the contrary, the UF profiles became nearly "flat" when DeltaPi was increased to 30 mmHg. The parallel shifts induced by altering icodextrin metabolite concentrations did not markedly influence UF(max) or t(max). The UF pattern in icodextrin dwells seem to be mainly determined by the plasma colloid osmotic pressure, while only moderate changes can be seen with alterations in LpS and Cl(LF). The result is not completely unexpected considering that icodextrin acts by inducing a strong colloid osmotic gradient. A number of clinical studies would be needed, however, in order to prove this hypothesis.

  2. Nutrient Recovery from the Dry Grind Process Using Sequential Micro and Ultrafiltration of Thin Stillage

    USDA-ARS?s Scientific Manuscript database

    The effectiveness of microfiltration (MF) and ultrafiltration (UF) for nutrient recovery from a thin stillage stream was determined. When a stainless steel MF membrane (0.1 um pore size) was used, the content of solids increased from 7.0% to 22.8% with a mean permeate flux rate of 45 L/m**2/h (LMH)...

  3. Magnetic field on fouling control of ultrafiltration membranes applied in treatment of a synthetic textile effluent.

    PubMed

    Carlesso, Franciele; Zin, Guilherme; de Souza, Selene M A G U; Luccio, Marco Di; de Souza, Antonio A U; Oliveira, J Vladimir

    2016-01-01

    Membrane performance is decreased by fouling, reducing permeate flux and membrane lifespan. This paper assesses ultrafiltration of a model textile effluent assisted by permanent magnetic field as an alternative to improve the water permeability recovery. Ultrafiltration was performed in a tangential module and model solutions, composed of carboxymethylcellulose (CMC) and sodium sulphate (Na2SO4). The feed was permeated through 30 kDa polysulphone membrane with and without the presence of a permanent magnetic field of 0.41 T, perpendicular to the membrane surface. Magnetic induction (MI) of feed solution was also investigated by recirculation of the feed stream through the magnetic field for 3 h. The increase in feed concentration did not affect permeate flux, while the presence of salt resulted in a severe flux decline. Effective water permeability recovery was obtained when the magnetic field was applied in the ultrafiltration process, although the MI of the CMC and Na2SO4 solutions also caused some enhancement in permeability recovery. Scanning electron microscopy images showed differences between the assays done with and without the presence of magnetic field. The magnetic field application in ultrafiltration of CMC and Na2SO4 solutions has proved to be an attractive alternative for improving the permeability recovery.

  4. Ultrafiltration by a compacted clay membrane-II. Sodium ion exclusion at various ionic strengths

    USGS Publications Warehouse

    Hanshaw, B.B.; Coplen, T.B.

    1973-01-01

    Several recent laboratory studies and field investigations have indicated that shales and compacted clay minerals behave as semipermeable membranes. One of the properties of semipermeable membranes is to retard or prevent the passage of charged ionic species through the membrane pores while allowing relatively free movement of uncharged species. This phenomenon is termed salt filtering, reverse osmosis, or ultrafiltration. This paper shows how one can proceed from the ion exchange capacity of clay minerals and, by means of Donnan membrane equilibrium concept and the Teorell-Meyer-Siever theory, develop a theory to explain why and to what extent ultrafiltration occurs when solutions of known concentration are forced to flow through a clay membrane. Reasonable agreement between theory and laboratory results were found. The concentration of the ultrafiltrate was always greater than predicted because of uncertainty in values of some parameters in the equations. Ultrafiltration phenomena may be responsible for the formation of some subsurface brines and mineral deposits. The effect should also be taken into consideration in any proposal for subsurface waste emplacement in an environment containing large quantities of clay minerals. ?? 1973.

  5. Ultrafiltrate and microdialysis DL probe in vitro recoveries: electrolytes and metabolites

    NASA Technical Reports Server (NTRS)

    Janle, E. M.; Cregor, M.

    1996-01-01

    UF ultrafiltration and DL microdialysis probes are well-suited for sampling interstitial concentrations of ions and metabolites in peripheral tissue. The first step in utilization of membrane sampling techniques is to determine the recovery characteristics of the probes in vitro.

  6. Effects of electric fields on the removal of ultraviolet filters by ultrafiltration membranes.

    PubMed

    Chen, Xin; Deng, Huiping

    2013-03-01

    Ultraviolet (UV) filters represent a new class of micropollutants in water. To effectively remove these substances and minimize fouling during ultrafiltration, an electro-ultrafiltration process was used to separate benzophenone-3 (BP-3) from water by applying an electric field across the membrane. The effects of the electric field on the filtration performance, including resistance and retention, modification of polyvinylidene fluoride (PVDF) membrane and possible intermediates produced during electro-ultrafiltration, were studied thoroughly. The results clearly indicate that the combination of the electric field with ultrafiltration could increase BP-3 rejection and reduce filtration resistance. The membrane had a rougher surface and the pore size increased due to the modifications of PVDF membrane induced by the electric field. The decrease in contact angle demonstrated the improvement of hydrophilicity in the PVDF membrane surface after the electrofiltration treatment. The mechanism of BP-3 degradation in the electrofiltration was examined theoretically by calculating the frontier electron densities of the BP-3 molecule. The C3 atom in the BP-3 structure was demonstrated to be the most reactive site, which was consistent with the intermediate results identified by gas chromatography-mass spectrometry (GC-MS) analysis.

  7. Examination of zinc uptake in a combined system using sludge, minerals and ultrafiltration membranes.

    PubMed

    Katsou, Evina; Malamis, Simos; Haralambous, Katherine

    2010-10-15

    This work investigates the feasibility of zinc removal from wastewater with the use of ultrafiltration (UF) membranes combined with natural minerals and sludge. Activated sludge obtained from a membrane bioreactor (MBR) was enriched with initial zinc concentration of 320 mg/L and specific concentrations of zeolite, bentonite and vermiculite. The mixture was agitated and placed inside a batch ultrafiltration unit where the filtration process took place. The effect of several parameters on zinc removal was investigated including the mineral type, quantity and grain size, the metal-mineral contact time and the associated kinetics, the pH value, the zinc initial concentration and sludge mixed liquor suspended solids (MLSS) concentration. The ultrafiltration membranes without any mineral addition were able to remove 38-78% of zinc ions due to biosorption on sludge flocs. The addition of minerals increased the Zn(II) removal efficiencies reaching in some cases more than 90%. Bentonite was the most effective mineral in zinc removal followed by vermiculite. Alkaline pH values favoured zinc removal due to enhanced chemical precipitation. A three-stage adsorption process was identified where the boundary layer diffusion process was followed by a two-stage intraparticle diffusion process. Powder size vermiculite was more effective than granular vermiculite in zinc removal. Minerals also resulted in membrane fouling mitigation since the membrane permeability drop was reduced. The combined sludge-mineral-ultrafiltration system can be effectively employed for the treatment of industrial wastewater.

  8. Nephelometric determination of the chemical oxygen demand in filtrates after the ultrafiltration purification of used lubricants

    SciTech Connect

    Bykadorov, N.U.; Radchenko, S.S.

    1995-11-01

    Regions with developed industry are characterized by a large amount of lubricants in wastewater, and controlling the amount of mineral oil in the water in these regions is of prime importance. One of the methods of purifying used lubricants is ultrafiltration. In most cases, ultrafiltration purification is performed in BTU-0.5/2 tubular units with F-1 Teflon membranes. It is known that, in the case of the ultrafiltration purification of dispersed systems, the part of the dispersed phase with a particle size smaller than the diameter of membrane pores usually penetrates to the filtrate. The formation of the dispersed phase with a smaller size of particles is also possible because oil particles of a larger size are pressed through the membrane due to the wetting of the membrane material with the dispersed phase, which is the case of Teflon membranes. As a result, water produced by the ultrafiltration purification of lubricant-containing wastes contains oil particles 10-100 nm in size, which is comparable to the membrane pores. The amount of these particles can be small, which makes their determination difficult. Moreover, the method of controlling the amount of oil in the filtrate should be rapid, sensitive, and simple enough to allow its application in industrial conditions.

  9. Protein in wet-milled corn germ recovered by ultrafiltration-diafiltration

    USDA-ARS?s Scientific Manuscript database

    This study was conducted to evaluate ultrafiltration-diafiltration (UF-DF) as a means to improve the extractability of wet-milled corn germ protein and determine its effects on the functional properties of the recovered protein product. Wet germ and finished (dried) germ proteins were extracted by u...

  10. Upward, inclined ultrafiltration under constant pressure using a dead-end filter

    SciTech Connect

    Iritani, Eiji; Watanabe, Takeshi; Murase, Toshiro

    1993-10-01

    The effectiveness of ultrafiltration using a dead-end filter in the upward direction to reduce the buildup of gelatinous cake on the membrane was demonstrated by using bovine serum albumin, ultrafine silica sol, and submicron suspensions. In inclined filtration, the greater the angle of inclination the faster was the rate of filtration.

  11. Continuous renal replacement therapy for congestive heart failure: the wearable continuous ultrafiltration system.

    PubMed

    Gura, Victor; Beizai, Masoud; Ezon, Carlos; Rambod, Edmond

    2006-01-01

    Ultrafiltration is effective in the treatment of fluid and sodium overload in congestive heart failure. There is no available device to provide this therapy to ambulatory patients. We built and tested in vivo a wearable belt that can provide continuous ultrafiltration, 168 hours a week. Nine pigs underwent ureteral ligation and subsequently were allowed fluids ad lib, producing fluid overload. Next day, ultrafiltration was performed for 8 hours. The device consists of a hollow-fiber filter, a 9 V battery-operated pulsatile blood pump, a micro pump for heparin infusion, and another micro pump to control ultrafiltration rate. Blood flow was 65 ml/min and the weight of the device is less than 2.5 lb. Fluid removal rate ranged from 0 to 700 ml/h and averaged 106 ml/h. Salt removed was 7.6 g. No complications were observed. The potential impact on the quality of life of these patients by reducing the shortness of breath, leg swelling, and returning their ability to enjoy salt in their food might be significant, and a reduction in morbidity could be expected. The economic impact in reducing hospital admissions and length of stay, intensive care unit utilization, and drug consumption could be significant. Further studies are needed to compare this innovative approach with traditional drug-based therapy.

  12. Ultrafiltrate and microdialysis DL probe in vitro recoveries: electrolytes and metabolites

    NASA Technical Reports Server (NTRS)

    Janle, E. M.; Cregor, M.

    1996-01-01

    UF ultrafiltration and DL microdialysis probes are well-suited for sampling interstitial concentrations of ions and metabolites in peripheral tissue. The first step in utilization of membrane sampling techniques is to determine the recovery characteristics of the probes in vitro.

  13. [Ultrafiltration versus intravenous diuretics in decompensated heart failure: a meta-analysis of randomized controlled trials].

    PubMed

    Zhao, Yu-liang; Zhang, Ling; Yang, Ying-ying; Tang, Yi; Liu, Fang; Fu, Ping

    2013-08-13

    To explore whether ultrafiltration is superior to intravenous diuretics in ameliorating fluid overload and preserving renal functions in decompensated heart failure patients. By searching in Pubmed, Cochrane Library, Embase, Springer, WanFang, CQVIP, CNKI and CBM database as well as related Chinese journals, qualified randomized controlled trials (RCTs) were included for meta-analysis by Revman 5.0 and STATA 10.0. Six RCTs were included with 241 patients in ultrafiltration group and 240 patients in intravenous diuretics group. Pooled analyses demonstrated ultrafiltration was superior to intravenous diuretics in the aspects of weight loss (WMD = 1.44 kg, 95%CI:0.33-2.55 kg, P = 0.01) and fluid removal (WMD = 1.23 kg, 95%CI:0.63-1.82 kg, P < 0.01) while no significant difference was observed in serum creatinine level (WMD = -5.70 µmol/L, 95%CI: -35.02-23.61 µmol/L, P = 0.70), serum creatinine change from baseline (WMD = 4.74 µmol/L, 95%CI:-13.72-23.20 µmol/L, P = 0.61), mortality (RR = 1.09, 95%CI: 0.69-1.70, P = 0.72) or rehospitalization (RR = 0.92, 95%CI:0.53-1.61, P = 0.78). For decompensated heart failure patients, ultrafiltration is superior to intravenous diuretics in mitigating fluid overload. No intergroup difference was observed in renal function preservation, mortality or rehospitalization.

  14. Solution of Algebraic Equations in the Analysis, Design, and Optimization of Continuous Ultrafiltration

    ERIC Educational Resources Information Center

    Foley, Greg

    2011-01-01

    Continuous feed and bleed ultrafiltration, modeled with the gel polarization model for the limiting flux, is shown to provide a rich source of non-linear algebraic equations that can be readily solved using numerical and graphical techniques familiar to undergraduate students. We present a variety of numerical problems in the design, analysis, and…

  15. Role of continuous renal replacement therapy ultrafiltrate cultures in the microbial diagnosis of sepsis.

    PubMed

    Michaud, Jennine M; Zitter, Jessica N; Kaplan, Joshua; Dever, Lisa L

    2014-08-01

    In a cohort of 23 critically ill patients receiving continuous renal replacement therapy, we investigated the role of ultrafiltrate fluid cultures as an adjunct to blood cultures in identifying the microbial etiology of sepsis. We found they provided no additional benefit and may yield false positives due to contamination.

  16. Purification of Drug Loaded PLGA Nanoparticles Prepared by Emulsification Solvent Evaporation Using Stirred Cell Ultrafiltration Technique.

    PubMed

    Paswan, Suresh K; Saini, T R

    2017-09-18

    The emulsifiers in an exceedingly higher level are used in the preparation of drug loaded polymeric nanoparticles prepared by emulsification solvent evaporation method. This creates great problem to the formulator due to their serious toxicities when it is to be administered by parenteral route. The final product is therefore required to be freed from the used surfactants by the conventional purification techniques which is a cumbersome job. The solvent resistant stirred cell ultrafiltration unit (Millipore) was used in this study using polyethersulfone ultrafiltration membrane (Biomax®) having pore size of NMWL 300 KDa as the membrane filter. The purification efficiency of this technique was compared with the conventional centrifugation technique. The flow rate of ultrafiltration was optimized for removal of surfactant (polyvinyl alcohol) impurities to the acceptable levels in 1-3.5 h from the nanoparticle dispersion of tamoxifen prepared by emulsification solvent evaporation method. The present investigations demonstrate the application of solvent resistant stirred cell ultrafiltration technique for removal of toxic impurities of surfactant (PVA) from the polymeric drug nanoparticles (tamoxifen) prepared by emulsification solvent evaporation method. This technique offers added benefit of producing more concentrated nanoparticles dispersion without causing significant particle size growth which is observed in other purification techniques, e.g., centrifugation and ultracentrifugation.

  17. Decongestive treatment of acute decompensated heart failure: cardiorenal implications of ultrafiltration and diuretics.

    PubMed

    Freda, Benjamin J; Slawsky, Mara; Mallidi, Jaya; Braden, Gregory L

    2011-12-01

    In patients with acute decompensated heart failure (ADHF), treatment aimed at adequate decongestion of the volume overloaded state is essential. Despite diuretic therapy, many patients remain volume overloaded and symptomatic. In addition, adverse effects related to diuretic treatment are common, including worsening kidney function and electrolyte disturbances. The development of decreased kidney function during treatment affects the response to diuretic therapy and is associated with important clinical outcomes, including mortality. The occurrence of diuretic resistance and the morbidity and mortality associated with diuretic therapy has stimulated interest to develop effective and safe treatment strategies that maximize decongestion and minimize decreased kidney function. During the last few decades, extracorporeal ultrafiltration has been used to remove fluid from diuretic-refractory hypervolemic patients. Recent clinical studies using user-friendly machines have suggested that ultrafiltration may be highly effective for decongesting patients with ADHF. Many questions remain regarding the comparative impact of diuretics and ultrafiltration on important clinical outcomes and adverse effects, including decreased kidney function. This article serves as a summary of key clinical studies addressing these points. The overall goal is to assist practicing clinicians who are contemplating the use of ultrafiltration for a patient with ADHF.

  18. Drinking water production by ultrafiltration of Songhuajiang River with PAC adsorption.

    PubMed

    Xia, Sheng-Ji; Liu, Ya-Nan; Li, Xing; Yao, Juan-Juan

    2007-01-01

    In recent years, membrane ultrafiltration (UF) of surface water for drinking water treatment has become a more attractive technology worldwide as a possible alternative treatment to conventional clarification. To evaluate the performance of ultrafiltration membranes for treatment of surface water in North China, a 48-m2 low pressure hollow fiber membrane ultrafiltration pilot plant was constructed. Ultrafiltration was operated in cross-flow and with powdered activated carbon (PAC) adsorption. Turbidity was almost completely removed to less than 0.2 NTU (below Chinese standard 1 NTU). It was found that PAC addition enhanced organic matter removal. The combined process of PAC/UF allowed to 41% removal of COD(Mn), 46% removal of DOC and 57% decrease in UV254 absorbance. The elimination of particles, from average 12000/ml in the raw water to approximately 15/ml in the permeated, was observed. When PAC concentration was below 30 mg/L, backwashing could recovery the membrane flux with backwash interval/backwashing duration of 1/30.

  19. Bimodal Solutions or Twice-Daily Icodextrin to Enhance Ultrafiltration in Peritoneal Dialysis Patients

    PubMed Central

    Dousdampanis, Periklis; Trigka, Konstantina; Bargman, Joanne M.

    2013-01-01

    The efficacy and safety of icodextrin has been well established. In this paper, we will discuss the pharmacokinetics and biocompatibility of icodextrin and its clinical effect on fluid management in peritoneal dialysis patients. Novel strategies for its prescription for peritoneal dialysis patients with inadequate ultrafiltration are reviewed. PMID:23365749

  20. Solution of Algebraic Equations in the Analysis, Design, and Optimization of Continuous Ultrafiltration

    ERIC Educational Resources Information Center

    Foley, Greg

    2011-01-01

    Continuous feed and bleed ultrafiltration, modeled with the gel polarization model for the limiting flux, is shown to provide a rich source of non-linear algebraic equations that can be readily solved using numerical and graphical techniques familiar to undergraduate students. We present a variety of numerical problems in the design, analysis, and…

  1. Pretreatment of spent sulphite liquor via ultrafiltration and nanofiltration for bio-based succinic acid production.

    PubMed

    Pateraki, Chrysanthi; Ladakis, Dimitrios; Stragier, Lutgart; Verstraete, Willy; Kookos, Ioannis; Papanikolaou, Seraphim; Koutinas, Apostolis

    2016-09-10

    Ultrafiltration and nanofiltration of spent sulphite liquor (SSL) has been employed to evaluate the simultaneous production of lignosulphonates and bio-based succinic acid using the bacterial strains Actinobacillus succinogenes and Basfia succiniciproducens. Ultrafiltration with membranes of 10, 5 and 3kDa molecular weight cut-off results in significant losses of lignosulphonates (26-50%) in the permeate stream, while nanofiltration using membrane with 500Da molecular weight cut-off results in high retention yields of lignosulphonates (95.6%) in the retentate stream. Fed-batch bioreactor cultures using permeates from ultrafiltrated SSL resulted in similar succinic acid concentration (27.5g/L) and productivity (0.4g/L/h) by both strains. When permeates from nanofiltrated SSL were used, the strain B. succiniciproducens showed the highest succinic acid concentration (33.8g/L), yield (0.58g per g of consumed sugars) and productivity (0.48g/L/h). The nanofiltration of 1t of thick spent sulphite liquor could lead to the production of 306.3kg of lignosulphonates and 52.7kg of succinic acid, whereas the ultrafiltration of 1t of thick spent sulphite liquor using a 3kDa membrane could result in the production of 237kg of lignosulphonates and 71.8kg of succinic acid when B. succiniproducens is used in both cases.

  2. [Removal of nickel from aqueous solutions using complexation-ultrafiltration process].

    PubMed

    Qin, Shu; Shao, Jia-Hui; He, Yi-Liang; Li, Wen-Xi

    2012-04-01

    Polyacrylate (PAANa) and polyethylenimine (PEI) were used as complexing agents to combine with nickel ions. This complexation solution was transferred to the ultrafiltration cell and the separation by polyethersulfone (PES) ultrafiltration membranes was carried out under the pressure of 0.1 MPa. Effects of solution pH and polymer/Ni2+ mass ratio on nickel removal were investigated. The complex reaction equilibrium constants were calculated according to Langmuir isotherm model. Effects of concentration time on nickel removal and membrane flux were also studied. With PAANa as a polymer, the removal rate of nickel went the highest to 99.5% at pH 8 with PAANa/Ni2+ ratio of 5. When PEI was used, the removal rate of nickel ions went highest to 93.0% at pH 7 with PEI/Ni2+ ratio of 5. Best-fit complexation equilibrium constants at different pH values showed that pH 7 was most beneficial to the complex reaction. In addition, the number of nickel ions bound to a single monomer complexing agent increased with increase of pH value. During 12 h ultrafiltration process, the decline of membrane flux was less than 10% with PAANa as the complexing agent, while the membrane flux remains the same when PEI was used. The removal rates of Ni2+ kept constant with both complexing agents. Results showed that complexation-ultrafiltration can effectively remove nickel from aqueous solution at appropriate conditions.

  3. Improved solubility and emulsification of wet-milled corn germ protein recovered by ultrafiltration-diafiltration

    USDA-ARS?s Scientific Manuscript database

    This study evaluated ultrafiltration-diafiltration (UFDF) as a means to improve the extractability of wet-milled corn germ protein and determined its effects on the functional properties of the recovered protein product. Wet germ (WG) and finished germ (FG) proteins (Pr) were extracted by using 0.1M...

  4. Integrated downstream processing of lactoperoxidase from milk whey involving aqueous two-phase extraction and ultrasound-assisted ultrafiltration.

    PubMed

    Nandini, K E; Rastogi, Navin K

    2011-01-01

    The present work involves the adoption of an integrated approach for the purification of lactoperoxidase from milk whey by coupling aqueous two-phase extraction (ATPE) with ultrasound-assisted ultrafiltration. The effect of system parameters of ATPE such as type of phase system, polyethylene glycol (PEG) molecular mass, system pH, tie line length and phase volume ratio was evaluated so as to obtain differential partitioning of contaminant proteins and lactoperoxidase in top and bottom phases, respectively. PEG 6000-potassium phosphate system was found to be suitable for the maximum activity recovery of lactoperoxidase 150.70% leading to 2.31-fold purity. Further, concentration and purification of enzyme was attempted using ultrafiltration. The activity recovery and purification factor achieved after ultrafiltration were 149.85% and 3.53-fold, respectively. To optimise productivity and cost-effectiveness of integrated process, influence of ultrasound for the enhancement of permeate flux during ultrafiltration was also investigated. Intermittent use of ultrasound along with stirring (2 min acoustic and 2 min stirring) resulted in increased permeate flux from 0.94 to 2.18 l/m(2) h in comparison to the ultrafiltration without ultrasound. The use of ultrasound during ultrafiltration resulted in increase in flux, but there was no significant change in activity recovery and purification factor. The integrated approach involving ATPE and ultrafiltration may prove to be a feasible method for the downstream processing of lactoperoxidase from milk whey.

  5. Glomerular ultrafiltration of IGF-I may contribute to increased renal sodium retention in diabetic nephropathy.

    PubMed

    Wang, S N; Lapage, J; Hirschberg, R

    1999-08-01

    Insulin-like growth factor-I (IGF-I) is found in plasma at relatively high levels (approximately 40 nmol/L) but <1% is present in the free form and >99% is bound to specific binding proteins to form high-molecular-weight complexes of approximately 50 and approximately 150 kd. We hypothesized that in rats with diabetic nephropathy but not in normal animals, IGF-I-containing binding protein complexes undergo glomerular ultrafiltration, allowing the peptide to interact with IGF-I receptors in apical tubular membranes. By this route, ultrafiltered IGF-I may increase tubular epithelial cell sodium absorption in overt diabetic nephropathy. In serum samples from diabetic rats, IGF-I levels (227 +/- 34 ng/mL) were reduced as compared with control levels (319 +/- 33 ng/mL, P = .05), and IGF-binding protein-2 (IGFBP-2) is increased about 2-fold. In diabetic rats, IGF-I undergoes glomerular ultrafiltration and is present in proximal tubular fluid that was collected by nephron micropuncture at 2.54 +/- 0.54 nmol/L but is below the detection limit in tubular fluid from normal rats. IGFBP-1, IGFBP-2, IGFBP-3, and IGFBP-4 are all present in diabetic rat glomerular ultrafiltrate, but IGFBP-2 levels are greater than those of each of the other three IGFBPs. Neither recombinant human IGF-I (1 nmol/L) nor diabetic rat glomerular ultrafiltrate affect sodium transport in cultured mouse proximal tubular cells. In contrast, rhIGF-I and diabetic rat glomerular ultrafiltrate increase the apical-to-basolateral transport of 22Na+ in distal tubule-like A6 cells through mechanisms involving apical IGF-I receptors. In normal rats, luminal infusion with rhIGF-I or with diabetic rat glomerular ultrafiltrate into late proximal tubules increases distal tubular Na+ absorption. These findings indicate that diabetic glomerular sclerosis causes glomerular ultrafiltration of IGF-I, and they suggest that tubular fluid IGF-I may contribute to sodium (and fluid) retention that is commonly observed in

  6. Copper removal from sludge permeate with ultrafiltration membranes using zeolite, bentonite and vermiculite as adsorbents.

    PubMed

    Malamis, S; Katsou, E; Stylianou, M; Haralambous, K J; Loizidou, M

    2010-01-01

    The aim of this work is to examine copper removal from sludge permeate with the use of low-cost minerals of Mediterranean origin combined with ultrafiltration membranes. The minerals used were zeolite (clinoptilolite), bentonite and vermiculite. Activated sludge was enriched with 0.01 N (317.7 ppm) of Cu(II). Fixed concentrations of minerals were added to sludge and the pH value was adjusted at 5.5. The mixture was agitated for 2 hours at 800 rpm at room temperature and was then filtered through a batch ultrafiltration system for 1 hour. This experiment was repeated, for comparison purposes, with sludge enriched with 0.01 N of Cu(II) with no mineral addition. The results showed that ultrafiltration membranes with no mineral addition were able to remove a significant amount of copper with removal efficiencies ranging from 59.4-78.3%. The addition of 10 g/l and 20 g/l of bentonite combined with ultrafiltration membranes resulted in removal efficiencies of 94.9% and 99.4% respectively and that of 10 g/l and 20 g/l of vermiculite in removal efficiencies of 93.8% and 96.8%, respectively. The ion exchange capacity of minerals followed the order bentonite > vermiculite > zeolite. Furthermore, membrane fouling was investigated. The addition of zeolite and bentonite reduced membrane fouling, while the addition of vermiculite did not impact on fouling. The use of low-cost minerals in combination with ultrafiltration membranes can be employed to treat industrial wastewater, resulting in a final effluent with very low copper concentrations.

  7. Micellar-enhanced ultrafiltration membrane (MEUF) of Batik wastewater using Cetylpyridinium chloride surfactant

    NASA Astrophysics Data System (ADS)

    Aryanti, Nita; Pramudono, Bambang; Prawira, Christ Nadya P.; Renardi, Rheza; Fatikhatul K. Ika, S.

    2015-12-01

    In batik production, reactive dyes such as remazol, indigosol, naphtol and rapid are used in the dying process. Batik wastewater contains high level of reactive dyes, wax and sodium salts and is characterized with high Chemical Oxygen Demand (COD), Total Suspended Solids (TSS) as well as high concentration of phenol and Ammonia. Micellar-Enhanced Ultrafiltration Membrane (MEUF) is one of promising technology to separate low molecular weight substances such as dyes. The MEUF process involves combination of ultrafiltration membrane and surfactant at concentration higher than surfactant's Critical Micelle Concentration (CMC). This technique combines high selectivity of reverse osmosis membrane and high flux of ultrafiltration membrane but with lower pressure. Ultrafiltration of batik waste water without surfactant (UF) and with addition of surfactant (MEUF) were studied in order to compare the performance of both systems. The Batik wastewater were obtained from batik industry in Semarang and Surakarta, Central Java, Indonesia. Cetyl Pyridinium Chloride at concentration of 2 and 4 times of its CMC were used. Flatsheet ultrafiltration membrane was made from Polyethersulphone (12% w/w), N-methyl Pyrrolidone (83% w/w) and Polyethylene Glycol (5% w/w). The performance of the UF and MEUF were evaluated based on flux profiles and rejections (COD, TSS, concentration of Ammonia). The results showed that the MEUF had superior performance than the UF. Concentration of COD, TSS, phenol and ammonia were reduced significantly. The rejection of COD were 92.74% and 94.15%. Moreover, the MEUF was capable to reduce the TSS with the rejection of 86.26% and 65%. The concentration of ammonia in permeate were 0.43 ppm and below 0.01 ppm.

  8. Combining electrophoresis with detection under ultraviolet light and multiple ultrafiltration for isolation of humic fluorescence fractions.

    PubMed

    Trubetskaya, Olga E; Shaloiko, Lubov A; Demin, Dmitrii V; Marchenkov, Victor V; Proskuryakov, Ivan I; Coelho, Christian; Trubetskoj, Oleg A

    2011-04-01

    Polyacrylamide gel electrophoresis of chernozem soil humic acids (HAs) followed by observation under UV (312 nm) excitation light reveals new low molecular weight (MW) fluorescent fractions. Ultrafiltration of HAs sample in 7 M urea on a membrane of low nominal MW retention (NMWR, 5 kDa) was repetitively used for separation of fluorescent and non-fluorescent species. Thirty ultrafiltrates and the final retentate R were obtained. Fluorescence maxima of separate ultrafiltrates were different and non-monotonously changed in the range of 475-505 nm. Fluorescence maxima of less than 490 nm were detected only in the four first utrafiltrates. For further physical-chemical analyses all utrafiltrates were combined into a fraction called UF<5 (NMW<5 kDa). Retentate R demonstrated very weak fluorescence under 270 nm excitation, while fluorescence intensity of UF<5 was about six times higher than of the bulk HAs. Fraction UF<5 was further ultrafiltrated on membranes of MNWR 3 kDa and 1 kDa, yielding three subfractions UF3-5, UF1-3 and UF<1 with NMW 3-5 kDa, 1-3 kDa and <1 kDa, respectively. The validation of the UF procedure was performed by size exclusion chromatography on Sephadex G-25 column. The fluorescence maxima were found to be at 505, 488 and 465 nm for UF3-5, UF1-3 and UF<1, respectively, with increasing of fluorescence intensity from UF3-5 to UF1-3 to UF<1 fraction. EPR analysis showed that the amount of free radicals was the largest in retentate R and drastically decreased in fluorescent ultrafiltrates. The results demonstrate that more than one fluorophore is present in chernozem soil HAs complex. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Sexual differences in glomerular ultrafiltration: effect of androgen administration in ovariectomized rats.

    PubMed

    Blantz, R C; Peterson, O W; Blantz, E R; Wilson, C B

    1988-03-01

    The glomerular ultrafiltration rate varies as a function of age and sex. To further elucidate the basis for the sexual difference, an androgen [Deca-Durabolin (DECA)] was administered to female ovariectomized rats, and glomerular hemodynamics were evaluated by renal micropuncture after 6 and 16 weeks of therapy. Results were compared to those in control ovariectomized female rats injected with vehicle. Therapy did not produce significant differences in body weight, but kidney size was modestly increased in DECA-treated rats at 6 weeks (0.68 +/- 0.03 vs. 0.86 +/- 0.03 g wet weight; P less than 0.05); at 16 weeks major differences in renal size were documented (0.69 +/- 0.03 vs. 1.18 +/- 0.05 g wet weight; P less than 0.01). The increase in size was primarily due to tubular hypertrophy, with more modest increases in glomerular size. After 6 weeks of therapy, the single nephron glomerular filtration rate (SNGFR) was increased in DECA-treated ovariectomized rats (24.8 +/- 1.0 vs. 32.9 +/- 1.1 nl/min; P less than 0.01). Whole kidney glomerular filtration rate also rose in proportion to increases in kidney size. The greater SNGFR was attributed to higher rates of nephron plasma flow and a numerical increase in the glomerular ultrafiltration coefficient. However, after 16 weeks of androgen therapy, in spite of marked renal hypertrophy, SNGFR did not further rise in proportion to renal size, and the rate of nephron plasma flow and the glomerular ultrafiltration coefficient actually fell relative to those in control untreated rats. Light microscopic evaluation of renal tissue revealed no abnormalities in DECA-treated rats. Thus, 6-week androgen therapy to ovariectomized female rats increased both glomerular ultrafiltration rates and renal size. However, with prolonged administration a glomerular dysfunction may have ensued whereby glomerular ultrafiltration was dissociated from increases in renal size.

  10. Intradialytic ultrafiltration volume and vascular access outcomes: a Japan Dialysis Outcomes and Practice Patterns Study subanalysis.

    PubMed

    Asano, Manabu; Oguchi, Kenichi; Saito, Akira; Onishi, Yoshihiro; Yamamoto, Yosuke; Fukuhara, Shunichi; Akiba, Takashi; Akizawa, Tadao

    2016-11-02

    The relationship between intradialytic ultrafiltration volume and vascular access (VA) patency remains unclear. Using data from the Japan Dialysis Outcomes and Practice Patterns Study, we analyzed whether large-volume ultrafiltration was associated with VA failure in hemodialysis patients. We included 2736 patients for whom it was possible to evaluate VA patency and bodyweight change during dialysis. Patients were divided into three groups according to the tertile of intradialytic ultrafiltration by bodyweight: low, -9.5%-3.8%; middle, 3.8%-5.1%; and high, 5.1%-13.7%. Primary VA patency was defined as the time to first VA intervention, and secondary patency as the time to creation of a new VA. Hazard ratios for VA failure were compared across groups by using Cox regression models adjusted for age, sex, body mass index, diabetes, hemoglobin and phosphorus levels, Kt/V, and erythropoiesis-stimulating agent and antiplatelet use. For the low, middle, and high groups, the incidences of primary and secondary VA patency were 4.7, 5.6, and 6.7 events/100 person-years and 1.3, 1.6, and 1.7 events/100 person-years, respectively. Adjusted hazard ratios for primary VA patency in the middle and high groups versus the low group were 1.16 (95% confidence interval [CI], 0.88-1.52) and 1.41 (95% CI, 1.07-1.87), respectively; those for secondary VA patency were 1.29 (95% CI, 0.78-2.13) and 1.45 (95% CI, 0.86-2.45), respectively. Large-volume ultrafiltration during dialysis tended to increase VA failure in hemodialysis patients. We thus recommend smaller ultrafiltration volumes during hemodialysis to secure VA safely.

  11. Effect of Ultrafiltration on Pulmonary Function and Interleukins in Patients Undergoing Cardiopulmonary Bypass.

    PubMed

    Kosour, Carolina; Dragosavac, Desanka; Antunes, Nilson; Almeida de Oliveira, Rosmari Aparecida Rosa; Martins Oliveira, Pedro Paulo; Wilson Vieira, Reinaldo

    2016-08-01

    To evaluate the effect of ultrafiltration on interleukins, TNF-α levels, and pulmonary function in patients undergoing coronary artery bypass grafting (CABG). Prospective, randomized, controlled trial. University hospital. Forty patients undergoing CABG were randomized into a group assigned to receive ultrafiltration (UF) during cardiopulmonary bypass (CPB) or into another group (control) that underwent the same procedure but without ultrafiltration. Interleukins and TNF-α levels, pulmonary gas exchange, and ventilatory mechanics were measured in the preoperative, intraoperative, and postoperative periods. Interleukins and TNF-α also were analyzed in the perfusate of the test group. There were increases in IL-6 and IL-8 at 30 minutes after CPB and 6, 12, 24, and 36 hours after surgery, along with an increase in TNF-α at 30 minutes after CPB and 24, 36, and 48 hours after surgery in both groups. IL-1 increased at 30 minutes after CPB and 12 hours after surgery, while IL-6 increased 24 and 36 hours after surgery in the UF group. The analysis of the ultrafiltrate showed the presence of TNF-α and traces of IL-1β, IL-6, and IL-8. There were alterations in the oxygen index, alveolar-arterial oxygen difference, deadspace, pulmonary static compliance and airway resistance after anesthesia and sternotomy, as well as in airway resistance at 6 hours after surgery in both groups, with no difference between them. Ultrafiltration increased the serum level of IL-1 and IL-6, while it did not interfere with gas exchange and pulmonary mechanics in CABG. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. The analysis of blood serum for paraldehyde by ultrafiltration and gas chromatography with a wide-bore capillary column.

    PubMed

    Hessel, D W

    1988-01-01

    The techniques of membrane ultrafiltration and capillary column gas chromatography were examined for their applicability to the quantification of paraldehyde in blood serum. Serum samples of standards, controls, and patients were treated with an aqueous solution of internal standard and then deproteinized by passage through a disposable ultrafiltration device. The ultrafiltrates were chromatographed on a wide-bore glass capillary column mounted in a packed column gas chromatograph. The method was shown to have adequate sensitivity, specificity, precision, accuracy, and linearity for therapeutic drug monitoring and toxicological purposes.

  13. [The ultrafiltration at pre-analytical stage under detection of concentration of lactic acid in blood plasma].

    PubMed

    Alekseevskaia, E S; Zhloba, A A; Subbotina, T F

    2013-11-01

    The detection of concentration of lactic acid in blood plasma and other objects is especially applied to discover the mitochondria dysfunctions. The study was organized to analyze samplings of blood plasma and plasma ultra-filtrates taken from 80 healthy persons and 73 patients with activation of intravascular coagulation and fibrinolysis using lactate-oxidase test. The comparative analysis of results of detection of concentrations of lactic acid in blood plasma and its ultra-filtrate established that in 72% of cases the higher values of concentration of detecting lactic acid took place after procedure of ultra-filtration enabling separation of overwhelming quantity of protein. In accordance with accumulated experience in the field of clinical diagnostic practice the enzyme tests are to be applied to detect the concentration of lactic acid in blood plasma and other objects. The present study demonstrated the expediency of application of plasma ultra-filtrate to detect the concentration of lactic acid.

  14. The evaluation of hollow-fiber ultrafiltration and celite concentration of enteroviruses, adenoviruses and bacteriophage from different water matrices

    EPA Pesticide Factsheets

    The data to support the evaluation of hollow-fiber ultrafiltration and celite concentration of enteroviruses, adenoviruses and bacteriophage from different water matricesThis dataset is associated with the following publication:Rhodes , E., E. Huff, D. Hamilton, and J. Jones. The evaluation of hollow-fiber ultrafiltration and celite concentration of enteroviruses, adenoviruses and bacteriophage from different water matrices. JOURNAL OF VIROLOGICAL METHODS. Elsevier Science Ltd, New York, NY, USA, 228(2): 31-38, (2016).

  15. Fouling reduction by ozone-enhanced backwashing process in ultrafiltration of petroleum-based oil in water emulsion

    NASA Astrophysics Data System (ADS)

    Aryanti, Nita; Prihatiningtyas, Indah; Kusworo, Tutuk Djoko

    2017-06-01

    Ultrafiltration membrane has been successfully applied for oily waste water treatment. However, one significant drawback of membrane technology is fouling which is responsible for permeate flux decline as well as reducing membrane performance. One method commonly used to reduce fouling is a backwashing process. The backwashing is carried out by a push of reversed flow from permeate side to the feed side of a membrane to remove fouling on the membrane pore and release fouling release fouling layer on the external side. However, for adsorptive fouling, the backwashing process was not effective. On the other hand, Ozone demonstrated great performance for reducing organics fouling. Hence this research was focused on backwashing process with ozone for removing fouling due to ultrafiltration of petroleum based oil emulsion. Gasoline and diesel oil were selected as dispersed phase, while as continuous phase was water added with Tween 80 as a surfactant. This research found that the Ozone backwashing was effective to improve flux recovery. In ultrafiltration of gasoline emulsion, the flux recovery after Ozone backwashing was in the range of 42-74%. For ultrafiltration of diesel oil emulsion, the permeate flux recovery was about 35-84%. In addition, foulant deposition was proposed and predicting that foulant deposition for ultrafiltration of gasoline-in-water emulsion was surfactant as the top layer and the oil was underneath the surfactant. On the other hand, for ultrafiltration of diesel oil-in-water emulsion, the oil was predicted as a top layer above the surfactant foulant.

  16. Removal of chromium from aqueous solution by complexation-ultrafiltration using a water-soluble macroligand.

    PubMed

    Aliane, A; Bounatiro, N; Cherif, A T; Akretche, D E

    2001-06-01

    A process for purifying waste waters containing heavy and toxic metal such as chromium has been studied. A batch complexation-ultrafiltration process was used to concentrate and recover chromium from sulphate solution. As the chromium ions are too small to be retained by the filter, they are first complexed with a water-soluble macroligand (polyethylene-imine). Factors affecting the rejection rate and permeate flux such as pH, concentration ligand, chloride and sulphate concentration, membrane pore size, applied pressure and extraction factor were investigated. Best operating conditions can be obtained in order to achieve high levels of removal (> 95%). Then, decomplexation is obtained so that metal can be separated from macroligand by a second ultrafiltration plant to reuse the macroligand.

  17. Hydrophobic asymmetric ultrafiltration PVDF membranes: an alternative separator for VFB with excellent stability.

    PubMed

    Wei, Wenping; Zhang, Huamin; Li, Xianfeng; Zhang, Hongzhang; Li, Yun; Vankelecom, Ivo

    2013-02-14

    Polyvinylidene fluoride (PVDF) ultrafiltration membranes were investigated for the first time in vanadium redox flow battery (VFB) applications. Surprisingly, PVDF ultrafiltration membranes with hydrophobic pore walls and relatively large pore sizes of several tens of nanometers proved able to separate vanadium ions and protons efficiently, thus being suitable as a VFB separator. The ion selectivity of this new type of VFB membrane could be tuned readily by controlling the membrane morphology via changes in the composition of the membrane casting solution, and the casting thickness. The results showed that the PVDF membranes offered good performances and excellent stability in VFB applications, where it could, performance-wise, truly substitute Nafion in VFB applications, but at a much lower cost.

  18. Enhancing performance and surface antifouling properties of polysulfone ultrafiltration membranes with salicylate-alumoxane nanoparticles

    NASA Astrophysics Data System (ADS)

    Mokhtari, Samaneh; Rahimpour, Ahmad; Shamsabadi, Ahmad Arabi; Habibzadeh, Setareh; Soroush, Masoud

    2017-01-01

    To improve the hydrophilicity and antifouling properties of polysulfone (PS) ultrafiltration membranes, we studied the use of salicylate-alumoxane (SA) nanoparticles as a novel hydrophilic additive. The effects of SA nanoparticles on the membrane characteristics and performance were investigated in terms of membrane structure, permeation flux, solute rejection, hydrophilicity, and antifouling ability. The new mixed-matrix membranes (MMMs) possess asymmetric structures. They have smaller finger-like pores and smoother surfaces than the neat PS membranes. The embedment of SA nanoparticles in the polymer matrix and the improvement of surface hydrophilicity were investigated. Ultrafiltration experiments indicated that the pure-water flux of the new MMMs initially increases with SA nanoparticles loading followed by a decrease at high loadings. Higher BSA solution flux was achieved for the MMMs compared to the neat PS membranes. Membranes with 1 wt.% SA nanoparticles exhibit the highest flux recovery ratio of 87% and the lowest irreversible fouling of 13%.

  19. Hydrolysis and large scale ultrafiltration study of alfalfa protein concentrate enzymatic hydrolysate.

    PubMed

    D'Alvise; Lesueur-Lambert; Fertin; Dhulster; Guillochon

    2000-08-01

    Batch enzymatic hydrolysis of insoluble Alfalfa Protein Concentrate by Delvolase was carried out at laboratory and at pilot-plant scale coupled to an ultrafiltration reactor with a mineral tubular membrane. Parametric studies were carried out on the batch system to determine the biochemical and hydrodynamical optimum conditions. The hydrolysis conditions selected were 40 degrees C, pH 9.5, initial substrate level 3 g protein/100 g and the enzyme substrate ratio 152 U/g protein. After 5 h of hydrolysis, 96% of the total amount of initial nitrogen was solubilized. The ultrafiltration conditions selected were a 10 000 Nominal Molecular Weight Cut-Off, a transmembrane pressure of 1.5 bar, a flux velocity of 0.8 m/s. Fifty percent of the initial nitrogen appeared in the permeate.

  20. Recovery of ionic liquid via a hybrid methodology of electrodialysis with ultrafiltration after biomass pretreatment.

    PubMed

    Liang, Xiaocong; Fu, Yan; Chang, Jie

    2016-11-01

    Hybrid membrane-based methodology of electrodialysis (ED) with ultrafiltration (UF) was employed to recover the IL BmimBr (1-Butyl-3-methylimidazolium bromide) after biomass fractionation. Ultrafiltration was used to remove the residual lignin in IL solutions. Influence of molecular weight interception of UF treatment, initial IL concentration in dilute section, applied voltage and flow rate in each section of ED module were studied in detail. In this study, the highest overall IL recovery ratio reached 75.2% and the current efficiency of ED process approached 79.1%. Besides, the highest IL recovery performance of specific energy consumption was about 514.1g/kw·h. Insight gained from this study suggests a potential methodology for IL recovery after the pretreatment process for biomass.

  1. Application of ultrafiltration and complexation to the treatment of low-level radioactive effluents

    SciTech Connect

    Chmielewski, A.G.; Harasimowicz, M.

    1995-04-01

    This paper addresses certain aspects of the design and development process aiming at reducing the radioactivity of liquid low-level waste streams (LLLW) to a very low level. Two types of membrane processes are being examined: ultrafiltration (UF) and seeded ultrafiltration (SUF). The UF membrane enables the removal of very fine particles of solid material from liquid radioactive waste. Only the particles with molecular weight above the cut-off of the UF membrane are retained. Much greater radioactivity removal may be achieved if the effluent is treated with high-molecular-molecules. This paper presents results of experiments consisting of decontamination of model radioactive effluents, simulated waste, and original LLLW by using several ligands for binding the radioactive ions of Cr, Co and Cs.

  2. Optimal operating policy of the ultrafiltration membrane bioreactor for enzymatic hydrolysis of cellulose

    SciTech Connect

    Lee, SeungGoo; Kim, HakSung . Dept. of Biotechnology)

    1993-09-05

    The dilution rate of an ultrafiltration membrane bioreactor in the enzymatic hydrolysis of cellulose was optimized using the kinetic model developed by Fan and Lee.' The sequence of optimal dilution rates was found to generally consist of an initial period of a minimal value (batch period), a subsequent period of maximum dilution rate, a period of a second batch, and a final period of a singular dilution rate. The effects of operating conditions, such as [beta]-glucosidase activity, operating time, maximum dilution rate, substrate feeding rate, and enzyme-to-substrate ratio on both the conversion yield and the sequence of optimal dilution rates were investigated. To evaluate the validity of kinetic model employed in this work, enzymatic hydrolysis was carried out using -cellulose as a substrate in the ultrafiltration membrane bioreactor. The experimental data were well consistent with the simulation results.

  3. Ultrafiltration and determination of Zn- and Cu-humic substances complexes stability constants.

    PubMed

    Nifant'eva, T I; Burba, P; Fedorova, O; Shkinev, V M; Spivakov, B Y

    2001-03-16

    This study exhibits that size fractionation of humic substances (HS) and their metal complexes by ultrafiltration is an efficient procedure for simultaneous determination of stability constants. Using sequential-stage ultrafiltration and a radiotracer technique the HS-Cu and HS-Zn complexes studied can gently be size-fractionated and their free metal fractions simply be discriminated. The conditional stability constants Ki obtained for size fractions of these HS metal complexes exhibit a clear molecular size dependence. Accordingly, the highest Ki values (6.6 for Zn and 6.4 for Cu) are found in the HS fractions of >105 kDa. Moreover, the overall stability constants K found for Cu (log K=5.5) and Zn complexes (log K=4.5) of the aquatic HS complexes studied are quite comparable to those reported in the literature.

  4. More Efficient Sodium Removal by Ultrafiltration Compared to Diuretics in Acute Heart Failure; Underexplored and Overstated.

    PubMed

    Kazory, Amir

    2016-01-01

    Enhanced removal of sodium has often been cited as an advantage of ultrafiltration (UF) therapy over diuretic-based medical treatment in the management of acute decompensated heart failure. However, so far clinical studies have rarely evaluated the precise magnitude of sodium removal, and this assumption is largely based on the physiologic mechanisms and anecdotal observations that predate the contemporary management of heart failure. Recent data suggest that patients treated with UF experience substantial reduction in urinary sodium excretion possibly due to prolonged intravascular volume contraction. Consequently, the efficient sodium extraction through production of isotonic ultrafiltrate can be offset by urine hypotonicity. Based on the limited currently available data, it seems unlikely that the persistent benefits of UF could be solely explained by its greater efficiency in sodium removal. The design of the future studies should include frequent measurements of urine sodium to precisely compare the impact of UF and diuretics on sodium balance. © 2016 S. Karger AG, Basel.

  5. Watermelon juice concentration using ultrafiltration: Analysis of sugar and ascorbic acid.

    PubMed

    Bhattacharjee, Chiranjit; Saxena, Vinod K; Dutta, Suman

    2017-10-01

    Raw watermelon juice was concentrated in a laboratory-scale flat-plate ultrafiltration system incorporating polyethersulfone membranes with a molecular weight cutoff of 5 kDa. The experiments have been carried out over a wide range of transmembrane pressures (100-300 kPa). The effect of ultrafiltration with molecular weight cutoff of 5 kDa polyethersulfone membrane on concentrate properties is reported. The total soluble solid content of the permeate was found to be very good, while the ascorbic acid content was on the lower side as compared to feed. The analyses of flux decay according to fouling models reported in the literature revealed that the formation of a cake layer covering the entire surface of the membrane is the main cause of the membrane fouling.

  6. A general diagram for estimating pore size of ultrafiltration and reverse osmosis membranes

    NASA Technical Reports Server (NTRS)

    Sarbolouki, M. N.

    1982-01-01

    A slit sieve model has been used to develop a general correlation between the average pore size of the upstream surface of a membrane and the molecular weight of the solute which it retains by better than 80%. The pore size is determined by means of the correlation using the high retention data from an ultrafiltration (UF) or a reverse osmosis (RO) experiment. The pore population density can also be calculated from the flux data via appropriate equations.

  7. A general diagram for estimating pore size of ultrafiltration and reverse osmosis membranes

    NASA Technical Reports Server (NTRS)

    Sarbolouki, M. N.

    1982-01-01

    A slit sieve model has been used to develop a general correlation between the average pore size of the upstream surface of a membrane and the molecular weight of the solute which it retains by better than 80%. The pore size is determined by means of the correlation using the high retention data from an ultrafiltration (UF) or a reverse osmosis (RO) experiment. The pore population density can also be calculated from the flux data via appropriate equations.

  8. Effective ultrafiltration with acute peritoneal dialysis in a child with diuretic-resistant nephrotic edema.

    PubMed

    Barman, Himesh; Sirie, Rokoloukho; Duwarah, Sourabh Gohain

    2015-01-01

    Edema is a cardinal feature of the nephrotic syndrome and sometimes merits independent treatment. The use of diuretics is usually sufficient in the treatment of edema. Ultrafiltration (UF) may sometimes be needed in diuretic-resistant states. The use of UF for steroid-resistant nephrotic edema is scarce in children. We report a child with steroid-resistant nephrotic syndrome with diuretic-resistant nephrotic edema treated successfully using acute peritoneal dialysis as a means of UF.

  9. Kraft lignin recovery by ultrafiltration: economic feasibility and impact on the kraft recovery system

    SciTech Connect

    Kirkman, A.G.; Gratzl, J.S.; Edwards, L.L.

    1986-05-01

    The widespread use of the kraft pulping process could provide a ready supply of lignin materials for many uses. Simulation studies demonstrate that recovery of the high-molecular-weight kraft lignin by ultrafiltration of a fraction of the black liquor flow is attractive from both an economic and an operational standpoint. Benefits are derived from relief of a furnace-limited recovery system and from the marketing of the lignin or modified lignin products. 10 references.

  10. Preparation of PES ultrafiltration membranes with natural amino acids based zwitterionic antifouling surfaces

    NASA Astrophysics Data System (ADS)

    Xu, Chen; Liu, Xiaojiu; Xie, Binbin; Yao, Chen; Hu, Wenhan; Li, Yi; Li, Xinsong

    2016-11-01

    In this report, a simple and facile approach to enhance the antifouling property of poly(ether sulfone) (PES) ultrafiltration membrane was developed by grafting natural amino acids onto surface. First of all, poly(ether sulfone) composite membranes blended with poly(glycidyl methacrylate) were fabricated by phase inversion method followed by grafting of different types of natural amino acids onto the membrane surface through epoxy ring opening reaction. The analysis of attenuated total reflectance Fourier transform infrared spectroscopy (ATR/FTIR) and X-ray photoelectron spectroscopy (XPS) verified the substantial enrichment of amino acids onto the surface of PES membranes. The hydrophilicity of the PES membranes was improved after grafting amino acids. The mechanical property and morphologies of the PES membranes proved that their basic performances were not obviously affected by grafting reaction, and these parameters were all still in the typical range for ultrafiltration membranes. The antifouling property of the grafted PES membranes against bovine serum albumin (BSA) and lysozyme (Lyz) was investigated in detail. It was found that PES membranes incorporated with neutral amino acids exhibited higher fouling resistance to both BSA and Lyz than the parent PES membrane. It can be ascribed to the formation of zwitterionic structure on the surface consisting of protonated secondary amino cations and carboxyl anions. Meanwhile, PES membranes grafted with charged amino acids had better antifouling properties against protein with same electric charges and improved adsorption related to protein with opposite electric charges. Furthermore, the ultrafiltration performance of the zwitterionic PES membranes was evaluated. The results showed that the modified membranes possessed of enhanced pure water flux, relative flux recovery and mildly lower rejection. The Darcy's Law analysis illustrated that the acidic amino acid grafted PES membranes had much lower permeation

  11. Waste treatment by ultrafiltration. (Latest citations from Pollution Abstracts). Published Search

    SciTech Connect

    Not Available

    1993-12-01

    The bibliography contains citations concerning the use of ultrafiltration in the treatment of wastewaters. Techniques for the removal of heavy metals and organic pollutants are described. The results of bench-scale and pilot-plant studies, and the experiences derived from full-scale industrial installations are presented. Efficiency improvement methods, process design criteria, and comparisons of cost effectiveness versus other treatment methods are discussed. (Contains a minimum of 76 citations and includes a subject term index and title list.)

  12. Ultrasound-Assisted Extraction, Centrifugation and Ultrafiltration: Multistage Process for Polyphenol Recovery from Purple Sweet Potatoes.

    PubMed

    Zhu, Zhenzhou; Jiang, Tian; He, Jingren; Barba, Francisco J; Cravotto, Giancarlo; Koubaa, Mohamed

    2016-11-20

    This work provides an evaluation of an ultrasound-assisted, combined extraction, centrifugation and ultrafiltration process for the optimal recovery of polyphenols. A purple sweet potato (PSP) extract has been obtained using ultrasonic circulating extraction equipment at a power of 840 W, a frequency of 59 kHz and using water as solvent. Extract ultrafiltration, using polyethersulfone (PES), was carried out for the recovery of polyphenol, protein and anthocyanin. Pre-treatment, via the centrifugation of purple sweet potato extract at 2500 rpm over 6 min, led to better polyphenol recovery, with satisfactory protein removal (reused for future purposes), than PSP extract filtration without centrifugation. Results showed that anthocyanin was efficiently recovered (99%) from permeate. The exponential model fit well with the experimental ultrafiltration data and led to the calculation of the membrane's fouling coefficient. The optimization of centrifugation conditions showed that, at a centrifugation speed of 4000 rpm (1195× g) and duration of 7.74 min, the optimized polyphenol recovery and fouling coefficient were 34.5% and 29.5 m(-1), respectively. The removal of proteins in the centrifugation process means that most of the anthocyanin content (90%) remained after filtration. No significant differences in the intensities of the HPLC-DAD-ESI-MS² peaks were found in the samples taken before and after centrifugation for the main anthocyanins; peonidin-3-feruloylsophoroside-5-glucoside, peonidin-3-caffeoyl-p-hydroxybenzoylsophoroside-5-glucoside, and peonidin-3-caffeoyl-feruloyl sophoroside-5-glucoside. This proves that centrifugation is an efficient method for protein removal without anthocyanin loss. This study considers this process an ultrasound-assisted extraction-centrifugation-ultrafiltration for purple sweet potato valorization in "green" technology.

  13. Preparation and characterization of HfO{sub 2} ultrafiltration membranes

    SciTech Connect

    Larbot, A.; Blanc, P.; Julbe, A.

    1994-12-31

    In this work the authors shall describe the preparation of hafnia ultrafiltration membranes. Hafnia is an interesting material because of its chemical and high temperature resistance. Hafnia is very close to zirconia by its chemical properties except for the monoclinic to tetragonal transformation. The transition temperature is higher for hafnia (1850{degrees}C) and it has a lower volume variation. Therefore an application to molten metal filtration is possible without damage to the membrane.

  14. Peritoneal dialysis for chronic cardiorenal syndrome: Lessons learned from ultrafiltration trials

    PubMed Central

    Kazory, Amir

    2015-01-01

    The current models of cardiorenal syndrome (CRS) are mainly based on a cardiocentric approach; they assume that worsening renal function is an adverse consequence of the decline in cardiac function rather than a separate and independent pathologic phenomenon. If this assumption were true, then mechanical extraction of fluid (i.e., ultrafiltration therapy) would be expected to portend positive impact on renal hemodynamics and function through improvement in cardio-circulatory physiology and reduction in neurohormonal activation. However, currently available ultrafiltration trials, whether in acute heart failure (AHF) or in CRS, have so far failed to show any improvement in renal function; they have reported no impact or even observed adverse renal outcomes in this setting. Moreover, the presence or absence of renal dysfunction seems to affect the overall safety and efficacy of ultrafiltration therapy in AHF. This manuscript briefly reviews cardiorenal physiology in AHF and concludes that therapeutic options for CRS should not only target cardio-circulatory status of the patients, but they need to also have the ability of addressing the adverse homeostatic consequences of the associated decline in renal function. Peritoneal dialysis (PD) can be such an option for the chronic cases of CRS as it has been shown to provide efficient intracorporeal ultrafiltration and sodium extraction in volume overloaded patients while concurrently correcting the metabolic consequences of diminished renal function. Currently available trials on PD in heart failure have shown the safety and efficacy of this therapeutic modality for patients with chronic CRS and suggest that it could represent a pathophysiologically and conceptually relevant option in this setting. PMID:26225199

  15. The influence of aggregation of latex particles on membrane fouling attachments & ultrafiltration performance in ultrafiltration of latex contaminated water and wastewater.

    PubMed

    Abdelrasoul, Amira; Doan, Huu; Lohi, Ali; Cheng, Chil-Hung

    2017-02-01

    The goal of the present study was to investigate the influence of latex particle aggregation on membrane fouling attachments and the ultrafiltration performance of simulated latex effluent using Cetyltrimethyl Ammonium Bromide (CTAB) as a cationic surfactant. Hydrophilic polysulfone and ultrafilic flat heterogeneous membranes, with molecular weight cut off (MWCO) of 60,000 and 100,000, respectively, as well as hydrophobic polyvinylidene difluoride with MWCO of 100,000, were used under a constant flow rate and cross-flow mode in ultrafiltration of latex solution. In addition, a polycarbonate flat membrane with uniform pore size of 0.05μm was likewise used during the experiment. The effects of CTAB on the latex particle size distribution were investigated at various concentrations, different treatment times, and diverse agitation duration times. The effects of CTAB on the zeta potential of membrane surfaces and latex particles were also investigated. The data obtained indicate that the particle size distribution of treated latex effluent experienced significant shifts in the peaks toward a larger size range caused by the aggregation of particles. As a result, the mass of fouling contributing to pore blocking and the irreversible fouling were noticeably reduced. The optimum results occurred in the instance when CTAB was added at the critical micelle concentration of 0.36g/L, for the duration of 10min and with minimal agitation. Notably, a higher stirring rate had an overall negative effect on the membrane fouling minimization.

  16. Selective separation of Eu{sup 3+} using polymer-enhanced ultrafiltration

    SciTech Connect

    Norton, M.V.

    1994-03-01

    A process to selectively remove {sup 241}Am from liquid radioactive waste was investigated as an actinide separation method applicable to Hanford and other waste sites. The experimental procedures involved removal of Eu, a nonradioactive surrogate for Am, from aqueous solutions at pH 5 using organic polymers in conjunction with ultrafiltration. Commercially available polyacrylic acid (60,000 MW) and Pacific Northwest Laboratory`s (PNL) synthesized E3 copolymer ({approximately}10,000 MW) were tested. Test solutions containing 10 {mu}g/mL of Eu were dosed vath each polymer at various concentrations in order to bind Eu (i.e., by complexation and/or cation exchange) for subsequent rejection by an ultrafiltration coupon. Test solutions were filtered with and without polymer to determine if enhanced Eu separation could be achieved from polymer treatment. Both polymers significantly increased Eu removal. Optimum concentrations were 20 {mu}g/mL of polyacrylic acid and 100 {mu}g/mL of E3 for 100% Eu rejection by the Amicon PM10 membrane at 55 psi. In addition to enhancement of removal, the polymers selectively bound Eu over Na, suggesting that selective separation of Eu was possible. This suggests that polymer-enhanced ultrafiltration is a potential process for separation of {sup 241}Am from Hanford tank waste, further investigation of binding agents and membranes effective under very alkaline and high ionic strength is warranted. This process also has potential applications for selective separation of toxic metals from industrial process streams.

  17. Removal of phenol from synthetic waste water using Gemini micellar-enhanced ultrafiltration (GMEUF).

    PubMed

    Zhang, Wenxiang; Huang, Guohe; Wei, Jia; Li, Huiqin; Zheng, Rubing; Zhou, Ya

    2012-10-15

    Comprehensive studies were conducted on the phenol wastewater ultrafiltration (UF) with the help of various concentrations of cationic Gemini surfactant (N1-dodecyl-N1,N1,N2,N2-tetramethyl-N2-octylethane-1,2-diaminium bromide, CG), conventional cationic surfactant (dodecyl trimethyl ammonium bromide, DTAB), anionic surfactant (sodium dodecyl sulfate, SDS) and nonionic surfactant ((dodecyloxy)polyethoxyethanol, Brij35). A flat sheet module with polyethersulfone (PES) membrane was employed in this investigation. The effects of feed concentration (phenol and surfactant) on the retention of phenol and surfactant, permeate flux and membrane fouling by micelles were evaluated. The distribution coefficient (D), the loading of the micelles (L(m)) and the equilibrium distribution constant (K) were also utilized to estimate the micellar-enhanced ultrafiltration ability for phenol. Scanning electron microscope (SEM), Fourier transform infrared spectrometer with attenuated total reflectance accessory (ATR-FTIR) and mercury porosimeter were applied to analyze membrane surface morphology, membrane material characteristics and membrane fouling for the original and fouled membranes. Based on the above analysis, the performance of the selected Gemini surfactant was proved superior in the following aspects: retention of phenol/surfactant (peak value is 95.8% for phenol retention), permeate flux and membrane fouling with respect to other conventional surfactants possessing equal alkyl chain length. These results demonstrated that CG surfactant with exceptional structure has favorable prospects in the treatment of phenol wastewater by the micellar-enhanced ultrafiltration.

  18. Structure and Activity of a New Low Molecular Weight Heparin Produced by Enzymatic Ultrafiltration

    PubMed Central

    FU, LI; ZHANG, FUMING; LI, GUOYUN; ONISHI, AKIHIRO; BHASKAR, UJJWAL; SUN, PEILONG; LINHARDT, ROBERT J.

    2014-01-01

    The standard process for preparing the low molecular weight heparin (LMWH) tinzaparin, through the partial enzymatic depolymerization of heparin, results in a reduced yield due to the formation of a high content of undesired disaccharides and tetrasaccharides. An enzymatic ultrafiltration reactor for LMWH preparation was developed to overcome this problem. The behavior, of the heparin oligosaccharides and polysaccharides using various membranes and conditions, was investigated to optimize this reactor. A novel product, LMWH-II, was produced from the controlled depolymerization of heparin using heparin lyase II in this optimized ultrafiltration reactor. Enzymatic ultrafiltration provides easy control and high yields (>80%) of LMWH-II. The molecular weight properties of LMWH-II were similar to other commercial LMWHs. The structure of LMWH-II closely matched heparin’s core structural features. Most of the common process artifacts, present in many commercial LWMHs, were eliminated as demonstrated by 1D and 2D nuclear magnetic resonance spectroscopy. The antithrombin III and platelet factor-4 binding affinity of LMWH-II were comparable to commercial LMWHs, as was its in vitro anticoagulant activity. PMID:24634007

  19. Plasma ultrafiltrates from Fanconi Anemia patients induces chromosomal breakages in donor lymphocytes

    SciTech Connect

    Emerit, I.; Levy, A.; Pagano, G.

    1994-09-01

    The present study investigated the occurrence, if any, of transferable clastogenic activity in the plasma from Fanconi Anemia (FA) patients and their families. A total of 13 FA homozygotes, 25 parents, and 12 siblings were studied for their: (a) spontaneous and DEB-induced chromosomal instability, and (b) induction of chromosomal breaks in peripheral blood lymphocytes (PBL) from healthy donors, following exposure to plasma ultrafiltrates from FA subjects, their parents or siblings. Plasma was ultrafiltered through membranes with a cutoff at 10,000 daltons (YM 10 Amicon) and 0.25 ml-aliquote added to PBL from 14 healthy donors. DEB test provided FA confirmatory diagnosis. The occurrence of clastogenic factors (CF) was evident in all FA patients, except for one. In two out of three patients, who died during this study, very high CF levels were observed. Clastogenic activity was significantly higher in male than in female patients (p<0.05). No correlation was observed between CF data and spontaneous or DEB-induced chromosomal instability. Ultrafiltrates from parents and siblings showed less CF than FA homozygotes; however, concentration by ultrafiltration through YM 2 (3x to 5x) led to excess clastogenic activity. The control plasmas were lacking CF even after an 8x concentration. The present data suggest that CF formation in the plasma of FA patients is consistent with an in vivo prooxident state in FA.

  20. Preparation of ultrafiltration membrane by phase separation coupled with microwave irradiation

    SciTech Connect

    Suryani, Puput Eka; Purnama, Herry; Susanto, Heru

    2015-12-29

    Preparation of low fouling ultrafiltration membrane is still a big challenge in the membrane field. In this paper, polyether sulfone (PES) ultrafiltration membranes were prepared by non-solvent-induced phase separation (NIPS) coupled with microwave irradiation. Polyethylene glycol (PEG) and polyethylene glycol methacrylate (PEGMA) were used as additives to improve membrane hydrophilicity. In this study, the concentration of additive, irradiation time and microwave power was varied. The membranes were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy, while the performances were tested by adsorptive and ultrafiltration fouling experiments. The results show that the irradiation time and irradiation power are very important parameter that influence the membrane characteristic. In addition, type and concentration of additive are other important parameters. The results suggest that microwave irradiation is the most important parameter influencing the membrane characteristic. Both pure water flux and fouling resistance increase with increasing irradiation time, power irradiation, and additive concentration. PES membrane with addition of 10% w/w PEG and irradiated by 130 W microwave power for 180 seconds is the best membrane performance.

  1. Hydrodynamic analysis of the miniaturized hemofilter for a wearable ultrafiltration device.

    PubMed

    Ronco, Claudio; Kim, Jeong Chul; Garzotto, Francesco; Galavotti, Daniele; Bellini, Corrado; Brolgli, Matteo; Nalesso, Federico

    2013-01-01

    Using a small wearable hemofiltration device, heart failure (HF) patients may have the possibility of eliminating acute hemodynamic changes and the freedom from spending many hours attached to a large stationary treatment system. We developed a miniaturized hemofilter for a vest-type wearable ultrafiltration device for the treatment of overhydration and congestive HF. In this study, we investigated the feasibility of the newly developed hemofilter based on dynamic CT imaging and in vitro evaluation of hydrodynamic properties. The dynamic CT imaging technique showed development of uniform flow distribution and effective bubble removal in the hemofilter. Hydrodynamic performance of the hemofilter was also acceptable with a stable pressure drop in the blood compartment and ultrafiltration profiles in the intended operating ranges for the treatment of congestive HF patients. The newly developed miniaturized hemofilter for a wearable ultrafiltration device meets the technical requirements of wearable medical devices and its structural design enables uniform blood flow distribution and stable hydrodynamics during operation. Copyright © 2013 S. Karger AG, Basel.

  2. Peritoneal ultrafiltration for refractory fluid overload and ascites due to pulmonary arterial hypertension.

    PubMed

    Husain-Syed, Faeq; Muciño-Bermejo, María-Jimena; Ronco, Claudio; Seeger, Werner; Birk, Horst-Walter

    2015-01-01

    Pulmonary hypertension is a common finding in patients with advanced liver disease. Similarly, among patients with advanced pulmonary arterial hypertension, right heart failure leads to congestive hepatopathy. Diuretic resistant fluid overload in both advanced pulmonary hypertension and chronic liver disease is a demanding challenge for physicians. Venous congestion and ascites-induced increased intra-abdominal pressure are essential regarding recurrent hospitalization, morbidity and mortality. Due to impaired right-ventricular function, many patients cannot tolerate extracorporeal ultrafiltration. Peritoneal dialysis, a well-established, hemodynamically tolerated treatment for outpatients may be a good alternative to control fluid status. We present a patient with pulmonary arterial hypertension and congestive hepatopathy hospitalized for over 3 months due to ascites induced refractory volume overload treated with peritoneal ultrafiltration. We report the treatment benefits on fluid balance, cardiorenal and pulmonary function, as well as its safety. In conclusion, we report a case in which peritoneal ultrafiltration was an efficient treatment option for refractory ascites in patients with congestive hepatopathy.

  3. Structure and activity of a new low-molecular-weight heparin produced by enzymatic ultrafiltration.

    PubMed

    Fu, Li; Zhang, Fuming; Li, Guoyun; Onishi, Akihiro; Bhaskar, Ujjwal; Sun, Peilong; Linhardt, Robert J

    2014-05-01

    The standard process for preparing the low-molecular-weight heparin (LMWH) tinzaparin, through the partial enzymatic depolymerization of heparin, results in a reduced yield because of the formation of a high content of undesired disaccharides and tetrasaccharides. An enzymatic ultrafiltration reactor for LMWH preparation was developed to overcome this problem. The behavior, of the heparin oligosaccharides and polysaccharides using various membranes and conditions, was investigated to optimize this reactor. A novel product, LMWH-II, was produced from the controlled depolymerization of heparin using heparin lyase II in this optimized ultrafiltration reactor. Enzymatic ultrafiltration provides easy control and high yields (>80%) of LMWH-II. The molecular weight properties of LMWH-II were similar to other commercial LMWHs. The structure of LMWH-II closely matched heparin's core structural features. Most of the common process artifacts, present in many commercial LWMHs, were eliminated as demonstrated by 1D and 2D nuclear magnetic resonance spectroscopy. The antithrombin III and platelet factor-4 binding affinity of LMWH-II were comparable to commercial LMWHs, as was its in vitro anticoagulant activity. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  4. Construction of microgels embedded robust ultrafiltration membranes for highly effective bioadhesion resistance.

    PubMed

    Xia, Yi; Cheng, Chong; Wang, Rui; He, Chao; Ma, Lang; Zhao, Changsheng

    2016-03-01

    Effective and robust anti-bioadhesion ultrafiltration membranes were fabricated in this paper via physically blending of anti-bioadhesion microgels. The microgels were synthesized by one-step cross-linking of antifouling segment, poly(ethylene glycol) methacrylate (PEGMA), and electrostatic repulsion segment, methylacrylic acid (MAA). Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) results indicated that large amounts of PEGMA and MAA polymers had been enriched on the membranes surface. Scanning electron microscope (SEM) indicated that the spherical PEGMA-MAA (PM) microgels might form interpenetrating structure with the membrane matrixes, and substantially increased the pore size of the membranes. Water contact angle (WCA), pore size distributions and ultrafiltration tests suggested that the hydrophilicity, porosity, water flux, and antifouling property for the modified membranes were significantly enhanced. More importantly, systematic anti-adhesion investigations of plasma proteins, platelets, bacteria and vein endothelial cells confirmed that the modified membranes owned strong resistance capability to the bioadhesion of various organisms. The results revealed that highly robust and effective anti-bioadhesion ultrafiltration membranes could be prepared via the proposed blending of PM microgels with membrane matrix, thus this approach should be potential in various biomedical or industrial filtration fields where anti-bioadhesion properties were highly demanded.

  5. A one-step centrifugal ultrafiltration method to concentrate enteric viruses from wastewater.

    PubMed

    Qiu, Yuanyuan; Lee, Bonita E; Ruecker, Norma J; Neumann, Norman; Ashbolt, Nicholas; Pang, Xiaoli

    2016-11-01

    A one-step centrifugal ultrafiltration method was developed to enhance rapid detection of human enteric viruses and co-occurring viruses in wastewater. Samples were collected pre- and post-UV treatment at two full-scale tertiary municipal wastewater treatment plants in Calgary, Canada. Viruses were concentrated from 100mL wastewater samples through direct centrifugation using the Centricon Plus-70 ultrafilter. Seven viruses, including norovirus, rotavirus, sapovirus, astrovirus, enterovirus, adenovirus and JC virus, were tested using real-time quantitative PCR (rt-qPCR) and cell culture. All of the viruses were detected in pre- and post-UV samples by rt-qPCR, with rotavirus the most numerous (6.6 log10 GE copies/L). Infectious viruses, by cell culture, were found in all tested pre-UV samples but only in one post-UV sample. The results were comparable and consistent to that obtained using virus adsorption-elution method, indicating that the centrifugal ultrafiltration method is adequate to retain the viruses and maintain their infectivity during processing. As a simple, rapid and cost-effective method to screen wastewater viruses, this one-step centrifugal ultrafiltration method may serve as an effective approach to assess virus removal and gain knowledge of human virus activity during wastewater treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Separation of water-soluble polysaccharides from Cyclocarya paliurus by ultrafiltration process.

    PubMed

    Xie, Jian-Hua; Shen, Ming-Yue; Nie, Shao-Ping; Zhao, Qiang; Li, Chang; Xie, Ming-Yong

    2014-01-30

    In this study, ultrafiltration membrane process was employed to separate polysaccharides from Cyclocarya paliurus (Batal.) Iljinskaja (C. paliurus) to simulate industrial production. Meanwhile, the molecular weight distribution of C. paliurus polysaccharides was investigated by gel permeation chromatography. Four fractions were obtained and named as CPPS-A, CPPS-B, CPPS-C and CPPS-D, respectively. CPPS-A and CPPS-B contained approximately 69.5% and 12.7% of polysaccharides, whose molecular weight were in the range of 100-300 kDa and 120 kDa, respectively. CPPS-C was comprised of two polysaccharides with average molecular weight of 40 kDa and 15 kDa. Results showed that ultrafiltration resulted in the removal of parts of small molecule weight polysaccharides, the increase of proportion of high molecule weight ones and the obvious improvement of quality of products. Compared with ethanol precipitation and gel permeation chromatography techniques, ultrafiltration showed many advantages, and also provided theoretical support for industrial manufacturing of C. paliurus polysaccharides in separation.

  7. Supported mesoporous carbon ultrafiltration membrane and process for making the same

    SciTech Connect

    Strano, Michael; Foley, Henry C.; Agarwal, Hans

    2004-04-13

    A novel supported mesoporous carbon ultrafiltration membrane and process for producing the same. The membranes comprise a mesoporous carbon layer that exists both within and external to the porous support. A liquid polymer precursor composition comprising both carbonizing and noncarbonizing templating polymers is deposited on the porous metal support. The coated support is then heated in an inert-gas atmosphere to pyrolyze the polymeric precursor and form a mesoporous carbon layer on and within the support. The pore-size of the membranes is dependent on the molecular weight of the noncarbonizing templating polymer precursor. The mesoporous carbon layer is stable and can withstand high temperatures and exposure to organic chemicals. Additionally, the porous metal support provides excellent strength properties. The composite structure of the membrane provides novel structural properties and allows for increased operating pressures allowing for greater membrane flow rates. The invention also relates to the use of the novel ultrafiltration membrane to separate macromolecules from solution. An example is shown separating bovine serum albumin from water. The membrane functions by separating and by selective adsorption. Because of the membrane's porous metal support, it is well suited to industrial applications. The unique properties of the supported mesoporous carbon membrane also allow the membrane to be used in transient pressure or temperature swing separations processes. Such processes were not previously possible with existing mesoporous membranes. The present invention, however, possesses the requisite physical properties to perform such novel ultrafiltration processes.

  8. Preparation of ultrafiltration membrane by phase separation coupled with microwave irradiation

    NASA Astrophysics Data System (ADS)

    Suryani, Puput Eka; Purnama, Herry; Susanto, Heru

    2015-12-01

    Preparation of low fouling ultrafiltration membrane is still a big challenge in the membrane field. In this paper, polyether sulfone (PES) ultrafiltration membranes were prepared by non-solvent-induced phase separation (NIPS) coupled with microwave irradiation. Polyethylene glycol (PEG) and polyethylene glycol methacrylate (PEGMA) were used as additives to improve membrane hydrophilicity. In this study, the concentration of additive, irradiation time and microwave power was varied. The membranes were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy, while the performances were tested by adsorptive and ultrafiltration fouling experiments. The results show that the irradiation time and irradiation power are very important parameter that influence the membrane characteristic. In addition, type and concentration of additive are other important parameters. The results suggest that microwave irradiation is the most important parameter influencing the membrane characteristic. Both pure water flux and fouling resistance increase with increasing irradiation time, power irradiation, and additive concentration. PES membrane with addition of 10% w/w PEG and irradiated by 130 W microwave power for 180 seconds is the best membrane performance.

  9. Free cortisol in serum assayed by temperature-controlled ultrafiltration before fluorescence polarization immunoassay.

    PubMed

    Lentjes, E G; Romijn, F; Maassen, R J; de Graaf, L; Gautier, P; Moolenaar, A J

    1993-12-01

    A method is described for a temperature-controlled ultrafiltration procedure to measure free cortisol in serum. A special thermometer with a sensor was developed, measuring the temperature directly in the ultrafiltration device. The sensor is screwed on the axis of the centrifuge rotor, and the centrifuge is placed in a temperature-controlled box so that the temperature of the sample is kept at 37 degrees C +/- 0.1 degrees C. The overall CV of the free cortisol assay ranges from 2.2% to 11.4%, of which the ultrafiltration contributes only 2.2-3.6%. Increasing amounts of cortisol-binding protein, as found in women using estrogen-containing oral contraceptives, have minor but significant effects on the free cortisol concentrations in serum. Serum free cortisol concentrations in a reference population (n = 114; central 95 percentiles) were 12-43 nmol/L (4-9.5% of total cortisol); in the group of the oral-contraceptive users (n = 27), the reference interval was 11-53 nmol/L (1.5-4.5%).

  10. Ceramic membrane by tape casting and sol-gel coating for microfiltration and ultrafiltration application

    NASA Astrophysics Data System (ADS)

    Das, Nandini; Maiti, H. S.

    2009-11-01

    Alumina membrane filters in the form of thin (0.3-0.8 mm) discs of 25-30 mm diameter suitable for microfiltration application have been fabricated by tape-casting technique. Further using this microfiltration membrane as substrate, boehmite sol coating was applied on it and ultrafiltration membrane with very small thickness was formed. The pore size of the microfiltration membrane could be varied in the range of 0.1-0.7 μm through optimisation of experimental parameter. In addition, each membrane shows a very narrow pore size distribution. The most important factor, which determines the pore size of the membrane, is the initial particle size and its distribution of the ceramic powder. The top thin ultrafiltration, boehmite layer was prepared by sol-gel method, with a thickness of 0.5 μm. Particle size of the sol was approximately 30-40 nm. The structure and formation of the layer was analysed through TEM. At 550 °C formation of the top layer was completed. The pore size of the ultrafiltration membrane measured from TEM micrograph was almost 10 nm. Results of microbial (Escherichia coli—smallest-sized water-borne bacteria) test confirm the possibility of separation through this membrane

  11. Application of ultrafiltration in the pulp and paper industry: metals removal and whitewater reuse.

    PubMed

    Oliveira, C R; Silva, C M; Milanez, A F

    2007-01-01

    In the pulp and paper industry, the water use minimization is a constant target. One way to reduce water use is to recycle the effluent in a closed-cycle concept. In paper mills, the main source of liquid effluent is the so-called whitewater, which is the excess water, originated from pulp stock dewatering and other fibre contaminated water. This research studied the reuse of paper mill whitewater after membrane ultrafiltration (UF) in the paper machine and in the pulp bleach plant of an integrated mill. Contaminant removal and flux behaviour of the UF system were evaluated. The treatment by ultrafiltration was technically feasible and the treated whitewater had good potential to be reused in some processes in the paper machine. The reuse of ultrafiltered whitewater in the bleaching plant was not recommended because of the high level of soluble calcium present in this stream. Therefore, a combined treatment of the whitewater using the principle of precipitation and ultrafiltration was proposed showing good results and enabling the use of the treated whitewater in the bleach plant.

  12. Exploration of zwitterionic cellulose acetate antifouling ultrafiltration membrane for bovine serum albumin (BSA) separation.

    PubMed

    Liu, Yang; Huang, Haitao; Huo, Pengfei; Gu, Jiyou

    2017-06-01

    This study focused on the preparation of a new kind of membrane material, zwitterionic cellulose acetate (ZCA), via a three-step procedure consist of oxidization, Schiff base and quaternary amination reaction, and the fabrication of antifouling ZCA ultrafiltration membrane by the non-solvent-induced phase separation method (NIPS). The morphologies, surface chemical structures and compositions of the obtained CA and ZCA membranes were thoroughly characterized by field emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray (EDX) spectroscopy, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), respectively. Meanwhile, the thermal stability, porosity and average pore size of two investigated membranes were also studied. As a result, the ZCA membrane displayed significantly improved hydrophilicity and water permeability compared with those of the reference CA membrane, despite a slight decrease in the protein rejection ratio. According to the cycle ultrafiltration performance of bovine serum albumin (BSA) solution and protein adsorption experiment, ZCA membrane exhibited better flux recovery property and fouling resistant ability, especially irreversible fouling resistant ability, suggesting superior antifouling performance. This new approach gives polymer-based membrane a long time life and excellent ultrafiltration performance, and seems promising for potential applications in the protein separation.

  13. Metal ions removal from wastewater or washing water from contaminated soil by ultrafiltration-complexation.

    PubMed

    Molinari, Raffaele; Gallo, Saverio; Argurio, Pietro

    2004-02-01

    In the present paper a process for removal of ions from wastewater or from washing water of contaminated soil by using the weakly basic water-soluble polymer polyethylenimine (PEI) as chelating agent and the Cu(2+) ion as model in combination with an ultrafiltration process was investigated. The complexing agent was preliminarily tested to establish the best operative conditions of the process. Next, ultrafiltration tests by using five different membranes were realised to check membrane performance like flux and rejection. Finally, the possibility for recovering and recycling the polymer was tested in order to obtain an economically sustainable process. Obtained results showed that complexation conditions depends on pH: indeed, at a pH>6 PEI-Cu(2+) complexes are formed, while at pH<3 the decomplexation reaction takes place. Saturation condition is 0.333 mg Cu(2+)/mg PEI, meaning a ratio PEI/Cu(2+)=3(w/w). UF tests showed good results using the PAN 40 kDa membrane reaching an average copper concentration in the permeate of 2 mg/l and a flux of 135.4 and 156.5l/h.m(2) at 2 and 4 bar, respectively. Metal rejection, permeate flow rate, and possibility to regenerating and recycling the polymer makes the polymer-assisted ultrafiltration process (PAUF) very interesting for metal ion removal from waters.

  14. Effects of ultrafiltration, dialysis, and temperature on gas exchange during hemodiafiltration: a laboratory experiment.

    PubMed

    Ruzicka, J; Novak, I; Rokyta, R; Matejovic, M; Hadravsky, M; Nalos, M; Sramek, V

    2001-12-01

    To study gas exchange in the filter during continuous venovenous hemodiafiltration (CVVHDF), an air-tight heated mixing chamber with adjustable CO2 supply was constructed and connected to a CVVHDF monitor. Bicarbonate-free crystalloid (Part 1) and packed red blood cell (Part 2) solutions were circulated at 150 ml x min(-1). Gas exchange expressed as pre-postfilter difference in CO2 and O2 contents was measured at different CVVHDF settings and temperatures of circulating and dialysis solutions. Ultrafiltration was most efficacious for CO2 removal (at 1,000 ml x h(-1) ultrafiltration CO2 losses reached 13% of prefilter CO2 content). Addition of dialysis (1,000 ml x h(-1)) increased CO2 loss to 17% and at maximal parameters (filtration 3,000 ml x h(-1), dialysis 2,500 ml x h(-1)), the loss of CO2 amounted to 35% of prefilter content. Temperature changes of circulating and/or dialysis fluids had no significant impact on CO2 losses. The O2 exchange during CVVHDF was negligible. Currently used CVVHDF is only marginally effective in CO2 removal. Higher volume ultrafiltration combined with dialysis can be expected to reach clinical significance.

  15. Comparison of 2 ultrafiltration systems for the concentration of seeded viruses from environmental waters.

    PubMed

    Olszewski, John; Winona, Linda; Oshima, Kevin H

    2005-04-01

    The use of ultrafiltration as a concentration method to recover viruses from environmental waters was investigated. Two ultrafiltration systems (hollow fiber and tangential flow) in a large- (100 L) and small-scale (2 L) configuration were able to recover greater than 50% of multiple viruses (bacteriophage PP7 and T1 and poliovirus type 2) from varying water turbidities (10-157 nephelometric turbidity units (NTU)) simultaneously. Mean recoveries (n = 3) in ground and surface water by the large-scale hollow fiber ultrafiltration system (100 L) were comparable to recoveries observed in the small-scale system (2 L). Recovery of seeded viruses in highly turbid waters from small-scale tangential flow (2 L) (screen and open channel) and hollow fiber ultrafilters (2 L) (small pilot) were greater than 70%. Clogging occurred in the hollow fiber pencil module and when particulate concentrations exceeded 1.6 g/L and 5.5 g/L (dry mass) in the screen and open channel filters, respectively. The small pilot module was able to filter all concentrates without clogging. The small pilot hollow fiber ultrafilter was used to test recovery of seeded viruses from surface waters from different geographical regions in 10-L volumes. Recoveries >70% were observed from all locations.

  16. High flow rates during modified ultrafiltration decrease cerebral blood flow velocity and venous oxygen saturation in infants.

    PubMed

    Rodriguez, Rosendo A; Ruel, Marc; Broecker, Lothar; Cornel, Garry

    2005-07-01

    The intracranial hemodynamic effects of modified ultrafiltration in children are unknown. We investigated the effects of different blood flow rates during modified ultrafiltration on the cerebral hemodynamics of children with weights above and below 10 kg. Thirty-one children (weights: < or = 10 kg, n = 21; > 10 kg, n = 10) undergoing cardiopulmonary bypass were studied. Middle-cerebral artery blood flow velocities and cerebral mixed venous oxygen saturations were measured before, five minutes from the beginning, and at the end of ultrafiltration. Patients were classified according to their blood flow rates during ultrafiltration in three groups: high (> or = 20 mL/kg/min), moderate (10-19 mL/kg/min), and low flow rates (< 10 mL/kg/min). During modified ultrafiltration, blood pressures and hematocrit increased (p < 0.001), but cerebral blood flow velocities and mixed venous oxygen saturations decreased (p < 0.001). A significant correlation was found between blood flow rates of ultrafiltration and the decline in mean cerebral blood flow velocity (r = - 0.48; p = 0.005) and cerebral oxygen saturation (r = - 0.49; p = 0.005) or hematocrit increase (r = 0.59; p = 0.001). Infants exposed to high flow rates had greater reduction of cerebral blood flow velocity and regional mixed venous saturation and higher hematocrit at the end of ultrafiltration compared with those subjected to moderate and low flow rates (p < 0.04). No significant difference was found between moderate and low flow groups. The flow rate of ultrafiltration was the only independent predictor of the changes in cerebral mixed venous oxygen saturation (p = 0.033). High blood flow rates through the ultrafilter during modified ultrafiltration transiently decrease the cerebral circulation in young infants compared with lower blood flow rates. These effects may be related to an increased diastolic runoff from the aorta into the ultrafiltration circuit that leads to a "stealing" effect from the intracranial

  17. "AVOID"ing harm by a double-edged sword: is there a role for ultrafiltration in heart failure?

    PubMed

    Kazory, Amir

    2016-03-01

    Prior studies comparing ultrafiltration with medical management for acute decompensated heart failure have yielded conflicting results. The AVOID-HF trial was designed as a definitive comparison of optimal ultrafiltration versus optimal diuretic-based medical therapy; unfortunately, the trial was terminated prematurely because of slow recruitment. The results of AVOID-HF nevertheless provide a rationale for well-designed, adequately powered trials to determine whether ultrafiltration has a role in the routine management of acute decompensated heart failure.

  18. [Comparison of essential oil enriched with ultrafiltration method and extraction method respectively from essential oil-in-water emulsion of Citri Reticulatae Pericarpium Viride by GC-MS].

    PubMed

    Yin, Ailing; Han, Zhifeng; Shen, Jie; Guo, Liwei; Cao, Guiping

    2011-10-01

    To study on the separation from essential oil-in-water emulsion of Citri Reticulatae Pericarpium Viride by ultrafiltration and acetoacetate extraction methods respectively, and the comparison of the oil yields and chemical compositions. Essential oil-in-water emulsion of Citri Reticulatae Pericarpium Viride was separated by ultrafiltration and acetoacetate extraction methods respectively, and the chemical compositions were analyzed and compared by GC-MS. Ultrafiltration method could enrich essential oil more and its chemical compositions were more similar to the essential oil prepared by steam distillation method. Ultrafiltration method is a good medium to separate essential oil from essential oil-in-water emulsion of Citri Reticulatae Pericarpium Viride.

  19. Modified ultrafiltration reduces morbidity after adult cardiac operations: a prospective, randomized clinical trial.

    PubMed

    Luciani, G B; Menon, T; Vecchi, B; Auriemma, S; Mazzucco, A

    2001-09-18

    Extracorporeal circulation contributes to morbidity after open-heart surgery by causing a systemic inflammatory reaction. Modified ultrafiltration is a technique able to remove the fluid overload and inflammatory mediators associated with use of cardiopulmonary bypass. It has been shown to reduce morbidity after cardiac operations in children, but the impact on adult cardiac procedures is unknown. Five hundred seventy-three consecutive adult patients were prospectively randomized to either ultrafiltration after cardiopulmonary bypass (treatment) or to no ultrafiltration (control). Parsonnet score was used to assess the severity of the patients' clinical conditions. Analysis was done with Student's t test or Mann-Whitney U test for continuous variables and Fisher's exact test or Pearson's chi(2) for discrete variables. Hospital mortality was 2.5% (7 of 284) in the treatment group versus 3.8% (11 of 289) in the control group (P=0.357). Hospital morbidity was lower in treated patients (66 of 284 [23.2%] versus 117 of 289 [40.5%], P=0.0001). Cardiac morbidity was similar (26 of 284 [9.1%] versus 35 of 289 [12.1%], P=0.251), whereas significantly lower rates of respiratory (20 of 284 [7.0%] versus 36 of 289 [12.5%], P=0.029), neurological (5 of 284 [1.8%] versus 14 of 289 [4.8%], P=0.039), and gastrointestinal (0 of 284 versus 4 of 289 [1.4%], P=0.044) complications were found in treated patients. Transfusion requirements were also lower in treated patients (1.66+/-2.6 versus 2.25+/-3.8 U/patient, P=0.039). Duration of intensive care (39.9+/-49.2 versus 46.3+/-72.8 hours, P=0.218) and hospital stay (7.6+/-3.5 versus 7.9+/-4.4 days, P=0.372) were comparable. Modified ultrafiltration after cardiopulmonary bypass is associated with a lower prevalence of early morbidity and lower blood transfusion requirements. The impact on length of hospital stay needs further analysis. Routine application of modified ultrafiltration after adult cardiac operations is warranted.

  20. A multicenter feasibility study on ultrafiltration via a single peripheral venous access in acute heart failure with overt fluid overload.

    PubMed

    Morpurgo, Marco; Pasqualini, Mario; Brunazzi, Maria Cristiana; Vianello, Gabriele; Valle, Roberto; Roncon, Loris; Fiorini, Fulvio; Aspromonte, Nadia; Barbiero, Mario; Goldoni, Marco; Marenzi, Giancarlo

    2017-08-01

    The need for a central venous catheter has limited the widespread use of ultrafiltration in daily clinical practice for the treatment of acute heart failure (AHF) with overt fluid overload. We evaluated the feasibility of a new ultrafiltration device, the CHIARA (Congestive Heart Impairment Advanced Removal Approach) system, that utilizes a single-lumen cannula (17G, multi-hole) inserted in a peripheral vein of the arm. In this multicenter, prospective, feasibility study, consecutive ultrafiltration treatments (lasting ≥6 hours and with an ultrafiltration rate ≥100ml/h) with the CHIARA device and a single peripheral venous approach were performed at 6 Italian hospitals. For each session, we evaluated the performance of the venous access, the ultrafiltrate volume removed, and the cause of its interruption. One-hundred-three ultrafiltration sessions were performed in 55 patients with AHF (average 1.9±1.7 treatment/patient). The overall median length of ultrafiltration treatment was 14h (interquartile range 7-21) with removal of 3266±3088ml of fluid (183±30ml/hour). The treatment was successfully completed in 92 (89%) sessions and in 80% of patients. The mean suction flow rate from the vein was 70±20ml/min, while the mean re-injection flow rate was 98±26ml/min. There were no clinically relevant complications related to the venous access and/or to the anticoagulant therapy with heparin. The study demonstrated that the CHIARA system satisfies clinical applicability and efficacy criteria in the treatment of AHF, in terms of adequate fluid removal through a single peripheral venous access. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  1. Organic complexation of rare earth elements in natural waters: Evaluating model calculations from ultrafiltration data

    NASA Astrophysics Data System (ADS)

    Pourret, Olivier; Davranche, Mélanie; Gruau, Gérard; Dia, Aline

    2007-06-01

    The Stockholm Humic Model (SHM) and Humic Ion-Binding Models V and VI were compared for their ability to predict the role of dissolved organic matter (DOM) in the speciation of rare earth elements (REE) in natural waters. Unlike Models V and VI, SHM is part of a speciation code that also allows us to consider dissolution/precipitation, sorption/desorption and oxidation/reduction reactions. In this context, it is particularly interesting to test the performance of SHM. The REE specific equilibrium constants required by the speciation models were estimated using linear free-energy relationships (LFER) between the first hydrolysis constants and the stability constants for REE complexation with lactic and acetic acid. Three datasets were used for the purpose of comparison: (i) World Average River Water (Dissolved Organic Carbon (DOC) = 5 mg L -1), previously investigated using Model V, was reinvestigated using SHM and Model VI; (ii) two natural organic-rich waters (DOC = 18-24 mg L -1), whose REE speciation has already been determined with both Model V and ultrafiltration studies, were also reinvestigated using SHM and Model VI; finally, (iii) new ultrafiltration experiments were carried out on samples of circumneutral-pH (pH 6.2-7.1), organic-rich (DOC = 7-20 mg L -1) groundwaters from the Kervidy-Naizin and Petit-Hermitage catchments, western France. The results were then compared with speciation predictions provided by Model VI and SHM, successively. When applied to World Average River Water, both Model VI and SHM yield comparable results, confirming the earlier finding that a large fraction of the dissolved REE in rivers occurs as organic complexes This implies that the two models are equally valid for calculating REE speciation in low-DOC waters at circumneutral-pH. The two models also successfully reproduced ultrafiltration results obtained for DOC-rich acidic groundwaters and river waters. By contrast, the two models yielded different results when compared to

  2. Extracorporeal Ultrafiltration for Fluid Overload in Heart Failure: Current Status and Prospects for Further Research.

    PubMed

    Costanzo, Maria Rosa; Ronco, Claudio; Abraham, William T; Agostoni, Piergiuseppe; Barasch, Jonathan; Fonarow, Gregg C; Gottlieb, Stephen S; Jaski, Brian E; Kazory, Amir; Levin, Allison P; Levin, Howard R; Marenzi, Giancarlo; Mullens, Wilfried; Negoianu, Dan; Redfield, Margaret M; Tang, W H Wilson; Testani, Jeffrey M; Voors, Adriaan A

    2017-05-16

    More than 1 million heart failure hospitalizations occur annually, and congestion is the predominant cause. Rehospitalizations for recurrent congestion portend poor outcomes independently of age and renal function. Persistent congestion trumps serum creatinine increases in predicting adverse heart failure outcomes. No decongestive pharmacological therapy has reduced these harmful consequences. Simplified ultrafiltration devices permit fluid removal in lower-acuity hospital settings, but with conflicting results regarding safety and efficacy. Ultrafiltration performed at fixed rates after onset of therapy-induced increased serum creatinine was not superior to standard care and resulted in more complications. In contrast, compared with diuretic agents, some data suggest that adjustment of ultrafiltration rates to patients' vital signs and renal function may be associated with more effective decongestion and fewer heart failure events. Essential aspects of ultrafiltration remain poorly defined. Further research is urgently needed, given the burden of congestion and data suggesting sustained benefits of early and adjustable ultrafiltration. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. [The influences of ultrafiltration and alcohol sedimentation on protective effects of Radix Astragali and Radix Hedyseri against rat's cerebral ischemia].

    PubMed

    Liu, Yong-qi; Wang, Zhi-wang; Wei, Shu-chang; Yan, Chun-lu; Wang, Rui-qiong; Li, Ying-dong

    2015-03-01

    To investigate the influences of ultrafiltration and alcohol sedimentation on protective effects of Radix Astragali and Radix Hedyseri against rat's cerebral ischemia. Using dexamethasone (im.) and ligating common carotid artery, the rat stasis model combined transient cerebral ischemia was established to evaluate the effects of the ultrafiltration and alcohol sedimentation through detecting antioxidant system and other indexes in brain tissue. The results showed that the 6 g/kg water extract(crude drug), ultrafiltration and alcohol sedimentation of Radix Astragali and Radix Hedyseri could upgrade adenosine-triphosphate (ATP), superoxide dismutase (SOD) and catalase (CAT), and degrade malondialdehyde(MDA) and water content of brain tissue in rat stasis model combined transient cerebral ischemia, the water extract and ultrafiltration of them could degrade lactic acid (LD) of brain tissue, and the effects of alcohol sedimentation of Radix Astragali and Radix Hedyseri become weaker than water extract of them. The water extract, ultrafiltration and alcohol sedimentation of Radix Astragali and Radix Hedyseri have some protective effects on cerebral ischemia in rats, the effective differences of the extract through the same extraction method are not remarkable, and alcohol precipitation method has obvious influences effect on Radix Astragali and Radix Hedyseri.

  4. Carbon nanotube-templated polyaniline nanofibers: synthesis, flash welding and ultrafiltration membranes

    NASA Astrophysics Data System (ADS)

    Liao, Yaozu; Yu, Deng-Guang; Wang, Xia; Chain, Wei; Li, Xin-Gui; Hoek, Eric M. V.; Kaner, Richard B.

    2013-04-01

    Electro-active switchable ultrafiltration membranes are of great interest due to the possibility of external control over permeability, selectivity, anti-fouling and cleaning. Here, we report on hybrid single-walled carbon nanotube (SWCNT)-polyaniline (PANi) nanofibers synthesized by in situ polymerization of aniline in the presence of oxidized SWCNTs. The composite nanofibers exhibit unique morphology of core-shell (SWCNT-PANi) structures with average total diameters of 60 nm with 10 to 30 nm thick PANi coatings. The composite nanofibers are easily dispersed in polar aprotic solvents and cast into asymmetric membranes via a nonsolvent induced phase separation. The hybrid SWCNT-PANi membranes are electrically conductive at neutral pH and exhibit ultrafiltration-like permeability and selectivity when filtering aqueous suspensions of 6 nm diameter bovine serum albumin and 48 nm diameter silica particles. A novel flash welding technique is utilized to tune the morphology, porosity, conductivity, permeability and nanoparticle rejection of the SWCNT-PANi composite ultrafiltration membranes. Upon flash welding, both conductivity and pure water permeability of the membranes improves by nearly a factor of 10, while maintaining silica nanoparticle rejection levels above 90%. Flash welding of SWCNT-PANi composite membranes holds promise for formation of electrochemically tunable membranes.Electro-active switchable ultrafiltration membranes are of great interest due to the possibility of external control over permeability, selectivity, anti-fouling and cleaning. Here, we report on hybrid single-walled carbon nanotube (SWCNT)-polyaniline (PANi) nanofibers synthesized by in situ polymerization of aniline in the presence of oxidized SWCNTs. The composite nanofibers exhibit unique morphology of core-shell (SWCNT-PANi) structures with average total diameters of 60 nm with 10 to 30 nm thick PANi coatings. The composite nanofibers are easily dispersed in polar aprotic solvents and

  5. Concentration of infectious aquatic rhabdoviruses from freshwater and seawater using ultrafiltration.

    PubMed

    Grant, Amelia A M; Jakob, Eva; Richard, Jon; Garver, Kyle A

    2011-12-01

    Infectious hematopoietic necrosis virus (IHNV), viral hemorrhagic septicemia virus, and spring viremia of carp virus were concentrated and detected from freshwater and seawater samples by using hollow-fiber ultrafiltration. Within 60 min, virus in a 50-L freshwater or saltwater sample was concentrated more than 70-fold, and virus retention efficiencies were consistently greater than 88%. Retention efficiency was highly dependent upon concentrations of column blocking and sample stabilization solutions. A large column with a surface area of 1.15 m2 and a filtration capacity of 5-200 L exhibited optimal viral retention when blocked with 2% fetal bovine serum (FBS) and when the samples were supplemented with 0.1% FBS. Conversely, a small column with 100-fold less surface area and a filtering capacity of 0.5-2.0 L was optimized when blocked with 1% FBS and when the samples were supplemented with 0.1% FBS. The optimized ultrafiltration procedure was further validated with water from a tank that contained IHNV-exposed juvenile sockeye salmon Oncorhynchus nerka, resulting in an average virus retention efficiency of 91.6 +/- 4.1% (mean +/- SE). Virus quantification of concentrated samples demonstrated that IHNV shedding in sockeye salmon preceded mortality; shedding of the virus was observed to increase significantly as early as 7 d postchallenge and peaked at day 14, when virus levels reached 4.87 x 10(3) plaque-forming units/mL. We conclude that ultrafiltration is a reliable and effective method for concentrating viable aquatic rhabdoviruses from large volumes of water and has application for the analysis of environmental water samples.

  6. Xanthan gum recovery from fermentation broth using ultrafiltration: Kinetics and process evaluation

    SciTech Connect

    Lo, Y.M.; Yang, S.T.; Min, D.B.

    1995-12-01

    Ultrafiltration of xanthan gum solution as an alternative method to alcohol precipitation for xanthan gum recovery from dilute fermentation broth was studied. A polysulfone membrane (with 500,000 MWCO) hollow fiber (106 mil fiber diameter) tubular cartridge was used to concentrate xanthan broth from less than 3 (w/v) % to {approximately}13.5 (w/v) %, with the xanthan recovery yield of {approximately}95 % or higher. During ultrafiltration, the filtrate flux was one order of magnitude lower for xanthan broth than for water, However, the flux remained almost constant for xanthan concentrations up to {approximately}8%. It was then reduced dramatically as the xanthan concentration increased beyond 8%. The reduced filtrate flux was caused by the reduced pumping (shear) rate and higher viscosities at higher xanthan concentrations. At constant xanthan concentration, the filtrate flux remained almost unchanged for the entire period studied, suggesting that the process is not subject to membrane fouling. In general, the filtrate flux decreased with increasing the xanthan concentration and increased with increasing the pumping (shear) rate and the trans-membrane pressure difference. Changing the solution pH had a slight effect on the viscosity of xanthan solution, but did not affect the filtration performance. Even under high-shear-rate conditions, ultrafiltration did not give any adverse effects on the rheological properties and molecular weight of the xanthan polymer. Thus, ultra filtration can be used to concentrate xanthan broth from fermentation by a factor of four or higher and to reduce the subsequent alcohol recovery costs by at least 75 %.

  7. Effects of zero-balanced ultrafiltration on procalcitonin and respiratory function after cardiopulmonary bypass.

    PubMed

    Song, L O U; Yinglong, L I U; Jinping, L I U

    2007-09-01

    The abnormal conditions to which blood is subjected during cardiopulmonary bypass (CPB) trigger an activation of the inflammatory response and cause pulmonary dysfunction. It has been suggested that high-volume, zero-balanced ultrafiltration (ZBUF) facilitates clearance of inflammatory mediators and improves post-operative pulmonary function. Procalcitonin, a newly discovered inflammatory mediator, has been found to be increased after CPB and has been proven to be an appropriate parameter for predicting pulmonary dysfunction secondary to CPB. The aim of this study was to investigate the effects of zero-balanced ultrafiltration (ZBUF) on procalcitonin (PCT) and respiratory function of infants with Tetralogy of Fallot (TOF) after CPB. Twenty infants with TOF undergoing open-heart total surgical correction were randomly assigned to two groups. The trial group was given ZBUF (50 ml/kg) and conventional ultrafiltration (CUF), while the control group was given CUF only. Plasma PCT and pulmonary function were monitored and compared between the two groups before the operation (T1), before rewarming (T2), at the end of the operation (T3), and at 12 h, 24 h and 48 h after the operation (T4-T6). PCT was decreased in the trial group between 12 h and 48 h post-operatively, but the differences did not reach statistical significance. The trial group's pulmonary compliance was higher at 12 h post-operatively (p < 0.05). Oxygenation index was increased in the trial group at the end of the operation and 12 h post-operatively (p > 0.05). Intubation time was shorter in the trial group (P < 0.01). A positive correlation was found between peak PCT concentration and intubation time. ZBUF appeared to improve ventilation and shorten intubation time. The improved respiratory function may be due to the lower plasma PCT.

  8. Virus removal by ultrafiltration: Understanding long-term performance change by application of Bayesian analysis.

    PubMed

    Carvajal, Guido; Branch, Amos; Sisson, Scott A; Roser, David J; van den Akker, Ben; Monis, Paul; Reeve, Petra; Keegan, Alexandra; Regel, Rudi; Khan, Stuart J

    2017-10-01

    Ultrafiltration is an effective barrier to waterborne pathogens including viruses. Challenge testing is commonly used to test the inherent reliability of such systems. Performance validation seeks to demonstrate the adequate reliability of the treatment system. Appropriate and rigorous data analysis is an essential aspect of validation testing. In this study we used Bayesian analysis to assess the performance of a full-scale ultrafiltration system which was validated and revalidated after five years of operation. A hierarchical Bayesian model was used to analyse a number of similar ultrafiltration membrane skids working in parallel during the two validation periods. This approach enhanced our ability to obtain accurate estimations of performance variability, especially when the sample size of some system skids was limited. This methodology enabled the quantitative estimation of uncertainty in the performance parameters and generation of predictive distributions incorporating those uncertainties. The results indicated that there was a decrease in the mean skid performance after five years of operation of approximately 1 log reduction value (LRV). Interestingly, variability in the LRV also reduced, with standard deviations from the revalidation data being decreased by a mean 0.37 LRV compared with the original validation data. The model was also useful in comparing the operating performance of the various parallel skids within the same year. Evidence of differences was obtained in 2015 for one of the membrane skids. A hierarchical Bayesian analysis of validation data provides robust estimations of performance and the incorporation of probabilistic analysis which is increasingly important for comprehensive quantitative risk assessment purposes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Dead-end hollow-fiber ultrafiltration for concentration and enumeration of Escherichia coli and broad-host-range plasmid DNA from wastewater

    PubMed Central

    Asfahl, Kyle L.; Savin, Mary C.

    2012-01-01

    Broad-host-range plasmids can facilitate dissemination of antibiotic resistance determinants among diverse bacterial populations. We evaluated hollow-fiber ultrafiltration for increases in detection efficiency of broad-host-range plasmids and Escherichia coli DNA in wastewater. Ultrafiltration followed by PCR showed limited increases in DNA detection and quantification in effluent compared with membrane filtration alone. PMID:22251424

  10. Simple and efficient ultrafiltration method for purification of rotavirus VP6 oligomeric proteins.

    PubMed

    Lappalainen, Suvi; Vesikari, Timo; Blazevic, Vesna

    2016-11-01

    Bacterial endotoxins, DNA, live viruses, and viral proteins derived from bacterial and baculovirus (BV) expression vectors employed in recombinant protein production contaminate the final product. Density gradient centrifugation is commonly used to partially purify oligomeric proteins, but impurities from the expression system still remain. We describe a simple and rapid ultrafiltration method for final purification of rotavirus VP6 oligomeric nanotubes and nanospheres. Contamination originating from the BV vector used in VP6 production was undetectable. The method is highly efficient, fast and inexpensive and can be used for a small-scale laboratory purification of VP6 protein to replace technically demanding multi-step chromatographic procedures.

  11. Analysis of Peptides by Denaturing Ultrafiltration and LC-MALDI-TOF-MS

    PubMed Central

    An, Y; Goldman, R

    2017-01-01

    The dynamic range of complex biological samples represents a challenge for mass spectrometric characterization. Removal of high abundant proteins is a prerequisite for a successful mass spectrometric analysis of low abundant analytes. In particular, plasma and serum proteome span at least ten orders of magnitude and represent a major challenge for biomarker discovery. Immunoaffinity depletion is the most common methods of removal of high abundant proteins. Here we describe coupling of denaturing ultrafiltration, an alternative depletion strategy, with reverse phase fractionation and mass spectrometry for characterization of low molecular weight proteins and peptides. PMID:23765617

  12. [Diuretic resistance and mechanical ventilation in decompensated cor pulmonale: successful treatment by slow continuous ultrafiltration].

    PubMed

    Ries, W; Schenzer, A; Lüken, J; Ries, C; Machraoui, A

    2012-08-01

    We report on a 53-year-old male patient who presented with severe dyspnea at rest and massive volume overload because of decompensated cor pulmonale. Furthermore he suffered from stage 3 chronic kidney disease. As there was diuretics resistance and carbon dioxide narcosis, he had to be intubated and ventilated. The massive volume overload could be successfully treated with slow continuous ultrafiltration (SCUF) with removal of a volume of 27.5 l within 3 days. The SCUF therapy is an effective and gentle method to treat even an excessive volume overload based on diuretics resistance.

  13. Investigation of ultrafiltration rejection of surfactant micelles by dynamic light scattering

    SciTech Connect

    Singh, R.

    1996-05-01

    The absence of nonionic surfactant micelles in ultrafiltration membrane (molecular weight cut-off = 10,000) permeates is verified with the aid of a dynamic light-scattering (DLS) technique. DLS is also used to determine the hydrodynamic radii of micelles at concentrations above the critical micelle concentration. An empirical relationship between the micelle diameter, diffusion coefficient, and a pseudomolecular weight is plotted. The relationship can be used to screen high molecular weight cut-off membranes for surfactant-based UF applications.

  14. Waste treatment by ultrafiltration. (Latest citations from Pollution Abstracts). Published Search

    SciTech Connect

    1995-11-01

    The bibliography contains citations concerning the use of ultrafiltration in the treatment of wastewaters. Techniques for the removal of heavy metals and organic pollutants are described. The results of bench-scale and pilot-plant studies, and the experiences derived from full-scale industrial installations are presented. Efficiency improvement methods, process design criteria, and comparisons of cost effectiveness versus other treatment methods are discussed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  15. Ionized calcium in normal serum, ultrafiltrates, and whole blood determined by ion-exchange electrodes

    PubMed Central

    Moore, Edward W.

    1970-01-01

    Ion-exchange calcium electrodes represent the first practical method for the direct measurement of ionized calcium [Ca++] in biologic fluids. Using both “static” and “flow-through” electrodes, serum [Ca++] was within a rather narrow range: 0.94-1.33 mmoles/liter (mean, 1.14 mmoles/liter). Within a given individual, [Ca++] varied only about 6% over a several month period. Consistent pH effects on [Ca++] were observed in serum and whole blood, [Ca++] varying inversely with pH. Less consistent pH effects were also noted in ultrafiltrates, believed to largely represent precipitation of certain calcium complexes from a supersaturated solution. Heparinized whole blood [Ca++] was significantly less than in corresponding serum at normal blood pH, related to the formation of a calcium-heparin complex. [Ca++] in ultrafiltrates represented a variable fraction (66.7-90.2%) of total diffusible calcium. There was no apparent correlation between serum ionized and total calcium concentrations. Thus, neither serum total calcium nor total ultrafiltrable calcium provided a reliable index of serum [Ca++]. Change in serum total calcium was almost totally accounted for by corresponding change in protein-bound calcium [CaProt]. About 81% of [CaProt] was estimated to be bound to albumin and about 19% to globulins. From observed pH, serum protein, and [CaProt] data, a nomogram was developed for estimating [CaProt] without ultrafiltration. Data presented elsewhere indicate that calcium binding by serum proteins obeys the mass-law equation for a monoligand association. This was indicated in the present studies by a close correspondence of observed serum [Ca++] values with those predicted by the McLean-Hastings nomogram. While these electrodes allow study of numerous problems not possible previously, they have not been perfected to the same degree of reliability obtainable with current pH electrodes. The commercial (Orion flow-through) electrode is: (a) expensive. (b) requires

  16. Adsorption of N-alkylpyridinium chlorides from water and salt solutions on cellulose acetate ultrafiltration membranes

    SciTech Connect

    Klimenko, N.A.; Yaroshenko, N.A.; Kondratova, T.B.

    1988-09-01

    A study has been made of the adsorption of three homologues in the N-alkylpyridinium chloride series from water and salt solutions, over a wide range of concentrations, on cellulose acetate ultrafiltration membranes, Grades UAM-500 and UAM-150. When adsorption takes place from true solutions, the membrane surface is hydrophobized. In the region of micellar solutions, nonassociated molecules and micelles are adsorbed in the mesopores and supermicropores, forming a mosaic adsorption layer. The thickness of the modifying layer depends on the length of the hydrophobic radical and on the composition of the system.

  17. [The concentration of viruses in water using the tangential flow ultrafiltration. Recovery effectiveness in experimental conditions].

    PubMed

    Bigliardi, L; Cesari, C; Zoni, R; Sansebastiano, G E

    2004-01-01

    Poliovirus 1 concentration tests were carried out in artificially contaminated water by tangential flow ultrafiltration with Polisulfone filters 100000 MWCO. The tests were performed in 1 and in 20 liters of waters. The filters were conditioned and eluted respectively with Beef extract 3% and with glicina 1% at pH 7 and pH 9. The recovery mean using Beef extract resulted properly good, about the 83% and comparable to percentages we obtained in previous works with filters in cellulose nitrate and Virosorb filters. The viral recovery was low using the glicina for conditioning and eluting the filters.

  18. Potential of ultrafiltration for organic matter removal in the polymer industry effluent based on particle size distribution analysis.

    PubMed

    Doğruel, Serdar; Çokgör, Emine Ubay; Ince, Orhan; Sözen, Seval; Orhon, Derin

    2013-01-01

    The purpose of the study was the experimental evaluation of ultrafiltration as a potential innovative technology for the removal of organic matter of around 15,000 mg chemical oxygen demand (COD) per liter in the polymer industry wastewater. Particle size distribution (PSD) analysis served as the major experimental instrument along with conventional chemical settling. Biodegradation characteristics of the remaining COD after ultrafiltration were determined by model interpretation of the corresponding oxygen uptake rate (OUR) profile. The study first involved a detailed characterization of the polymer wastewater including PSD analysis of the COD content. Chemical treatability was investigated using lime alone and with ferric chloride as coagulants followed with a PSD assessment of the chemically settled effluent. Modeling of the OUR profile generated by the ultrafiltration effluent defined related biodegradation kinetics and provided information on the overall COD removal potential. PSD analysis indicated that more than 70 % of the total COD accumulated in the 220- to 450-nm size range. It indicated that ultrafiltration was potentially capable of removing more than 90 % of the COD with an effluent lower than 1,500 mg COD/L. Chemical settling with 750 mg/L of FeCl(3) dosing at a pH of 7.0 provided a similar performance. The ultrafiltration effluent included mainly hydrolysable COD and proved to be biodegradable, with the process kinetics compatible with domestic sewage. PSD evaluation proved to be a valuable scientific instrument for underlining the merit of ultrafiltration as the appropriate innovative technology for polymer wastewater, removing the major portion of the COD in a way that is suitable for recovery and reuse and producing a totally biodegradable effluent.

  19. Removal of organic matter and heavy metals of low concentration from wastewater via micellar-enhanced ultrafiltration: an overview

    NASA Astrophysics Data System (ADS)

    Li, F.; Li, X.; Zhang, J. D.; Peng, L.; Liu, C. Y.

    2017-01-01

    As a new and effective means of wastewater treatment, the micellar-enhanced ultrafiltration (MEUF) has been extensively studied. In this paper, MEUF was introduced from the aspects of theory basis, ultrafiltration membranes, and surfactants. Additionally, the latest research achievements in removing organic matter and heavy ions, its application in actual wastewater, and the characterization parameters of MEUF were introduced and summarized. Then, influences and mechanisms of the primary operation parameters, including surfactant concentration, pH, electrolytes, and transmembrane pressure on the performance of the MEUF process were analyzed. Finally, existing problems in the MEUF process were identified and developmental trends were predicted.

  20. Evaluation of an Ultrafiltration-Based Procedure for Simultaneous Recovery of Diverse Microbes in Source Waters.

    PubMed

    Kahler, Amy M; Johnson, Trisha B; Hahn, Donghyun; Narayanan, Jothikumar; Derado, Gordana; Hill, Vincent R

    2015-03-01

    In this study, hollow-fiber ultrafiltration (UF) was assessed for recovery of Escherichia coli, Clostridium perfringens spores, Cryptosporidium parvum oocysts, echovirus 1, and bacteriophages MS2 and ΦX174 from ground and surface waters. Microbes were seeded into twenty-two 50-L water samples that were collected from the Southeastern United States and concentrated to ∼500 mL by UF. Secondary concentration was performed for C. parvum by centrifugation followed by immunomagnetic separation. Secondary concentration for viruses was performed using centrifugal ultrafilters or polyethylene glycol precipitation. Nine water quality parameters were measured in each water sample to determine whether water quality data correlated with UF and secondary concentration recovery efficiencies. Average UF recovery efficiencies were 66%-95% for the six enteric microbes. Average recovery efficiencies for the secondary concentration methods were 35%-95% for C. parvum and the viruses. Overall, measured water quality parameters were not significantly associated with UF recovery efficiencies. However, recovery of ΦX174 was negatively correlated with turbidity. The recovery data demonstrate that UF can be an effective method for concentrating diverse microbes from ground and surface waters. This study highlights the utility of tangential-flow hollow fiber ultrafiltration for recovery of bacteria, viruses, and parasites from large volume environmental water samples.

  1. Dual-Functional Ultrafiltration Membrane for Simultaneous Removal of Multiple Pollutants with High Performance.

    PubMed

    Pan, Shunlong; Li, Jiansheng; Noonan, Owen; Fang, Xiaofeng; Wan, Gaojie; Yu, Chengzhong; Wang, Lianjun

    2017-05-02

    Simultaneous removal of multiple pollutants from aqueous solution with less energy consumption is crucial in water purification. Here, a novel concept of dual-functional ultrafiltration (DFUF) membrane is demonstrated by entrapment of nanostructured adsorbents into the finger-like pores of ultrafiltration (UF) membrane rather than in the membrane matrix in previous reports of blend membranes, resulting in an exceptionally high active content and simultaneous removal of multiple pollutants from water due to the dual functions of rejection and adsorption. As a demonstration, hollow porous Zr(OH)x nanospheres (HPZNs) were immobilized in poly(ether sulfone) (PES) UF membranes through polydopamine coating with a high content of 68.9 wt %. The decontamination capacity of DFUF membranes toward multiple model pollutants (colloidal gold, polyethylene glycol (PEG), Pb(II)) was evaluated against a blend membrane. Compared to the blend membrane, the DFUF membranes showed 2.1-fold increase in the effective treatment volume for the treatment of Pb(II) contaminated water from 100 ppb to below 10 ppb (WHO drinking water standard). Simultaneously, the DFUF membranes effectively removed the colloidal gold and PEG below instrument detection limit, however the blend membrane only achieved 97.6% and 96.8% rejection for colloidal gold and PEG, respectively. Moreover, the DFUF membranes showed negligible leakage of nanoadsorbents during testing; and the membrane can be easily regenerated and reused. This study sheds new light on the design of high performance multifunction membranes for drinking water purification.

  2. Study of antifouling modified ultrafiltration membrane based on the secondary treated water of urban sewage.

    PubMed

    Meng, Xiao-rong; Zhao, Liang; Wang, Lei; Wang, Xu-dong; Huang, Dan-xi; Miao, Rui

    2012-01-01

    Mixtures of polyvinylidene fluoride (PVDF) and polyvinyl alcohol (PVA) containing hydrophilic ultrafiltration membranes were prepared by adding PVA (5 to 30%) to PVDF by the phase inversion method. The hydrophilic contact angle (CA), equilibrium water content, pure water flux and bovine serum albumin retention were studied to assess the membrane performance. The anti-fouling performance of modified membrane to the secondary treated water was evaluated by flux decline, washing recovery rate and fouling resistance analysis. Scanning electron microscopy showed that the cross-section structure of the membranes had finger-like pores, which were well developed and uniformly distributed, and the sub-layer structure was looser and more porous with the increasing content of PVA. The CA gradually decreased. The steady flux was 800 L/m(2) h from P15 to P30, and the BSA retention sharply declined. The ultrafiltration tests for secondary treated water indicated that the main fouling source of the modified membrane was the concentration polarization and cake layer resistance. After physical flushing, the flux recovery ratio of the membrane could reach 100% when the PVA content was 5-15%, which shows excellent anti-pollution performance and good prospects for use in processing wastewater from urban sewage.

  3. Detection of Macromolecular Fractions in HCN Polymers Using Electrophoretic and Ultrafiltration Techniques.

    PubMed

    Marín-Yaseli, Margarita R; Cid, Cristina; Yagüe, Ana I; Ruiz-Bermejo, Marta

    2017-02-01

    Elucidating the origin of life involves synthetic as well as analytical challenges. Herein, for the first time, we describe the use of gel electrophoresis and ultrafiltration to fractionate HCN polymers. Since the first prebiotic synthesis of adenine by Oró, HCN polymers have gained much interest in studies on the origins of life due to the identification of biomonomers and related compounds within them. Here, we demonstrate that macromolecular fractions with electrophoretic mobility can also be detected within HCN polymers. The migration of polymers under the influence of an electric field depends not only on their sizes (one-dimensional electrophoresis) but also their different isoelectric points (two-dimensional electrophoresis, 2-DE). The same behaviour was observed for several macromolecular fractions detected in HCN polymers. Macromolecular fractions with apparent molecular weights as high as 250 kDa were detected by tricine-SDS gel electrophoresis. Cationic macromolecular fractions with apparent molecular weights as high as 140 kDa were also detected by 2-DE. The HCN polymers synthesized were fractionated by ultrafiltration. As a result, the molecular weight distributions of the macromolecular fractions detected in the HCN polymers directly depended on the synthetic conditions used to produce these polymers. The implications of these results for prebiotic chemistry will be discussed.

  4. [Effect of charged ultrafiltration membrane on natural organic matter removal and membrane fouling].

    PubMed

    Hou, Juan; Shao, Jia-Hui; He, Yi-Liang

    2010-06-01

    With the deterioration of water pollution and stringency of water standards, ultrafiltration (UF) has become one of the best alternatives replacing conventional drinking water treatment technologies. However, UF is not very effectively to remove natural organic matter (NOM) due to the comparatively large pore size compared to the size of NOM. Fouling issue is another factor that restricts its widespread application. The rejection coefficient and flux decline during ultrafiltration of humic acid (HA) and raw water through neutral unmodified and negatively charge-modified regenerated cellulose (RC) membranes were investigated, and the analysis for membrane resistance was provided. The initial removal rate for HA is 59% and the flux decline is 32% on neutral unmodified RC membrane with MWCO of 100 x 10(3), while the initial removal rate for HA increases to 92% and the flux decline decreases to 25% on negatively charge-modified RC membrane. Compared to neutral unmodified RC membrane, the removal rate for NOM on negatively charge-modified RC membrane increases 20% and the flux decline decreases 12%. Results indicated that charged UF membrane could be an effective way for better removal of NOM and reduction of the membrane fouling due to the electrostatic interaction with the combination effect of membrane pore size.

  5. Pre-treatment for ultrafiltration: effect of pre-chlorination on membrane fouling

    PubMed Central

    Yu, Wenzheng; Xu, Lei; Graham, Nigel; Qu, Jiuhui

    2014-01-01

    Microbial effects are believed to be a major contributor to membrane fouling in drinking water treatment. Sodium hypochlorite (NaClO) is commonly applied in membrane cleaning, but its potential use as a pretreatment for controlling operational fouling has received little attention. In this study, the effect of adding a continuous low dose of NaClO (1 mg/l as active Cl) in combination with alum, before ultrafiltration, was compared with only alum as pretreatment. The results showed that the addition of NaClO substantially reduced membrane fouling both in terms of the rate of TMP development and the properties of the membrane cake layer. Although the size of nano-scale primary coagulant flocs changed little by the addition of NaClO, the cake layer on the membrane had a greater porosity and a substantially reduced thickness. NaClO was found to inactivate bacteria in the influent flow, which reduced both microbial proliferation and the production of proteins and polysaccharides in the cake layer and contributed significantly to improving the overall ultrafiltration performance. NaClO dosing had no adverse impact on the formation of currently regulated disinfection by-product compounds (THMs and HAAs). PMID:25269375

  6. Integrated Microfluidic Aptasensor for Mass Spectrometric Detection of Vasopressin in Human Plasma Ultrafiltrate.

    PubMed

    Yang, J; Zhu, J; Pei, R; Oliver, J A; Landry, D W; Stojanovic, M N; Lin, Q

    2016-07-14

    We present a microfluidic aptamer-based biosensor for detection of low-molecular-weight biomarkers in patient samples. Using a microfluidic device that integrates aptamer-based specific analyte extraction, isocratic elution, and detection by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, we demonstrate rapid, sensitive and label-free detection of arginine vasopressin (AVP) in human plasma ultrafiltrate. AVP molecules in complex matrices are specifically captured by an aptamer that is immobilized on microbeads via affinity binding in a microchamber. After the removal of unbound, contaminating molecules through washing, aptamer-AVP complexes are thermally disrupted via on-chip temperature control. Released AVP molecules are eluted with purified water and transferred to a separate microchamber, and deposited onto a single spot on a MALDI plate via repeated, piezoelectrically actuated ejection, which enriches AVP molecules over the spot area. This integrated on-chip sample processing enables the quantitative detection of low-abundance AVP by MALDI-TOF mass spectrometry in a rapid and label-free manner. Our experimental results show the detection of AVP in human plasma ultrafiltrate as low as physiologically relevant picomolar concentrations via aptamer-based selective preconcentration, demonstrating the potential of our approach as a rapid (~ 1hr), sensitive clinical AVP assay.

  7. The optimisation of ultrasonic cleaning procedures for dairy fouled ultrafiltration membranes.

    PubMed

    Muthukumaran, Shobha; Kentish, Sandra; Lalchandani, Sharan; Ashokkumar, Muthupandian; Mawson, Raymond; Stevens, Geoff W; Grieser, Franz

    2005-01-01

    Ultrafiltration (UF) of whey is a major membrane based process in the dairy industry. However, commercialization of this application has been limited by membrane fouling, which has a detrimental influence on the permeation rate. There are a number of different chemical and physical cleaning methods currently used for cleaning a fouled membrane. It has been suggested that the cleaning frequency and the severity of such cleaning procedures control the membrane lifetime. The development of an optimal cleaning strategy should therefore have a direct implication on the process economics. Recently, the use of ultrasound has attracted considerable interest as an alternative approach to the conventional methods. In the present study, we have studied the ultrasonic cleaning of polysulfone ultrafiltration membranes fouled with dairy whey solutions. The effects of a number of cleaning process parameters have been examined in the presence of ultrasound and results compared with the conventional operation. Experiments were conducted using a small single sheet membrane unit that was immersed totally within an ultrasonic bath. Results show that ultrasonic cleaning improves the cleaning efficiency under all experimental conditions. The ultrasonic effect is more significant in the absence of surfactant, but is less influenced by temperature and transmembrane pressure. Our results suggest that the ultrasonic energy acts primarily by increasing the turbulence within the cleaning solution.

  8. Effect of PAC addition on immersed ultrafiltration for the treatment of algal-rich water.

    PubMed

    Zhang, Yan; Tian, Jiayu; Nan, Jun; Gao, ShanShan; Liang, Heng; Wang, Meilian; Li, Guibai

    2011-02-28

    The aim of this study was to evaluate the effect of powdered activated carbon (PAC) addition on the treatment of algal-rich water by immersed ultrafiltration (UF), in terms of permeate quality and membrane fouling. Experiments were performed with a hollow-fiber polyvinyl chloride ultrafiltration membrane at a laboratory scale, 20-25°C and 10 L/(m(2) h) constant permeate flux. UF could achieve an absolute removal of Microcystis aeruginosa cells, but a poor removal of algogenic organic matter (AOM) released into water, contaminants responsible for severe membrane fouling. The addition of 4 g/L PAC to the immersed UF reactor significantly alleviated the development of trans-membrane pressure and enhanced the removal of dissovled organic carbon (by 10.9±1.7%), UV(254) (by 27.1±1.7%), and microcystins (expressed as MC-LR(eq), by 40.8±4.2%). However, PAC had little effect on the rejection of hydrophilic high molecular weight AOM such as carbohydrates and proteins. It was also identified that PAC reduced the concentrations of carbohydrates and proteins in the reactor due to decreased light intensity, as well as the MC-LR(eq) concentration by PAC adsorption.

  9. A hybrid microbial fuel cell membrane bioreactor with a conductive ultrafiltration membrane biocathode for wastewater treatment.

    PubMed

    Malaeb, Lilian; Katuri, Krishna P; Logan, Bruce E; Maab, Husnul; Nunes, S P; Saikaly, Pascal E

    2013-10-15

    A new hybrid, air-biocathode microbial fuel cell-membrane bioreactor (MFC-MBR) system was developed to achieve simultaneous wastewater treatment and ultrafiltration to produce water for direct reclamation. The combined advantages of this system were achieved by using an electrically conductive ultrafiltration membrane as both the cathode and the membrane for wastewater filtration. The MFC-MBR used an air-biocathode, and it was shown to have good performance relative to an otherwise identical cathode containing a platinum catalyst. With 0.1 mm prefiltered domestic wastewater as the feed, the maximum power density was 0.38 W/m(2) (6.8 W/m(3)) with the biocathode, compared to 0.82 W/m(2) (14.5 W/m(3)) using the platinum cathode. The permeate quality from the biocathode reactor was comparable to that of a conventional MBR, with removals of 97% of the soluble chemical oxygen demand, 97% NH3-N, and 91% of total bacteria (based on flow cytometry). The permeate turbidity was <0.1 nephelometric turbidity units. These results show that a biocathode MFC-MBR system can achieve high levels of wastewater treatment with a low energy input due to the lack of a need for wastewater aeration.

  10. Respirometric assays of two different MBR (microfiltration and ultrafiltration) to obtain kinetic and stoichiometric parameters.

    PubMed

    Ruiz, L M; Arévalo, J; Parada, J; González, D; Moreno, B; Pérez, J; Gómez, M A

    2011-01-01

    A comparison of two different medium scale MBRs (ultrafiltration and microfiltration) using respirometric methods has been achieved. The ultrafiltration membrane plant (0.034 microm pore size) maintained recirculation sludge flow at seven times the influent flow, and membranes were backwashed every 5 min and chemically cleaned weekly. The microfiltration membrane plant (0.4 microm pore size) maintained recirculation sludge flow at four times the influent flow, membrane-relax was applied after the production phase and membranes were chemically cleaned in the event of high trans-membrane pressure. Both technologies showed a similar performance with regard to heterotrophic kinetic and stoichiometric parameters and organic matter effluent concentrations. The influent was characterized by means of its COD fractions and the average removal percentages for COD concentrations were around 97% for both plants in spite of influent COD fluctuation, temperature variations and sludge retention time (SRT) evolution. Both SRT evolution and temperature affect the heterotrophic yield (Y(H)) and the decay coefficient (bH) in the same range for both plants. Y(H) values of over 0.8 mg COD/mg COD were obtained during the unsteady periods, while under steady state conditions these values fell to less than 0.4 mg COD/mg COD. bH by contrast reached values of less than 0.05 d(-1).

  11. Effect of enhanced coagulation by KMnO(4) on the fouling of ultrafiltration membranes.

    PubMed

    Yu, Wen-Zheng; Gregory, John; Liu, Ting; Yang, Yan-lin; Sun, Min; Li, Gui-bai

    2011-01-01

    Pre-coagulation enhanced by KMnO(4) before ultrafiltration (KCUF) was compared with normal pre-coagulation by alum (CUF) in the ultrafiltration of water from the Songhua River, China. The trans-membrane pressure (TMP) with KCUF was much lower than that when alum alone was used. With KCUF a slower increment of TMP occurred, even under conditions of high river water turbidity. The results also showed that the removal of COD, UV(254) and TOC was appreciably higher after adding 0.5mg/L KMnO(4) compared with CUF. Although assimilable organic carbon (AOC) was increased by permanganate treatment, the AOC of the permeate from KCUF was nearly the same as that from CUF, showing that the cake layer on the surface of KCUF membrane could adsorb small molecules more effectively than that of CUF. This result was confirmed by the apparent molecular weight (MW) distribution measured by size exclusion chromatography (SEC). It was shown that flocs formed by KMnO(4) and alum were larger than those formed only by alum, causing higher removal of flocs and higher permeation flux. Lower NOM was found in the permeate from the KCUF systems because oxidation and adsorption of organic matter on the flocs occurred. The membrane was partly clogged by organic matter or other materials including some small flocs.

  12. Performance of ceramic ultrafiltration membranes and fouling behavior of a dye-polysaccharide binary system.

    PubMed

    Zuriaga-Agustí, E; Alventosa-deLara, E; Barredo-Damas, S; Alcaina-Miranda, M I; Iborra-Clar, M I; Mendoza-Roca, J A

    2014-05-01

    Ultrafiltration membrane processes have become an established technology in the treatment and reuse of secondary effluents. Nevertheless, membrane fouling arises as a major obstacle in the efficient operation of these systems. In the current study, the performance of tubular ultrafiltration ceramic membranes was evaluated according to the roles exerted by membrane pore size, transmembrane pressure and feed concentration on a binary foulant system simulating textile wastewater. For that purpose, carboxymethyl cellulose sodium salt (CMC) and an azo dye were used as colloidal and organic foulants, respectively. Results showed that a larger pore size enabled more solutes to get adsorbed into the pores, producing a sharp permeate flux decline attributed to the rapid pore blockage. Besides, an increase in CMC concentration enhanced severe fouling in the case of the tighter membrane. Concerning separation efficiency, organic matter was almost completely removed with removal efficiency above 98.5%. Regarding the dye, 93% of rejection was achieved. Comparable removal efficiencies were attributed to the dynamic membrane formed by the cake layer, which governed process performance in terms of rejection and selectivity. As a result, none of the evaluated parameters showed significant influence on separation efficiency, supporting the significant role of cake layer on filtration process.

  13. Ultrafiltration of surfactant and aromatic/surfactant solutions using ceramic membranes

    SciTech Connect

    Gadelle, F.; Koros, W.J.; Schechter, R.S.

    1996-10-01

    Rejection and permeate flux taken together establish the efficiency of an ultrafiltration separation. The controllable factors that may influence the efficiency are systematically studied. These factors include transmembrane pressure, recirculation rate, membrane pore size, and solute and surfactant structure and concentration. Experiments carried out using both cationic and nonionic surfactants show that rejection decreases and permeate flux increases with membranes of increasing pore sizes. However, for the large pore size membrane (200 {angstrom}), it is also observed that rejection increases and permeate flux decreases as the filtration proceeds. These unexpected results suggest that micelles penetrate and accumulate into the larger pores, thereby reducing the effective membrane pore size. Depending on the molecular structure and concentration of the surfactant, rejection as high as 99.9% is achieved with a ceramic membrane having 65 {angstrom} pores. Permeate fluxes between 30 and 70% of pure water are observed. The addition of a solute tends to improve surfactant rejection and to decrease the permeate flux. Solute rejection increases with surfactant concentration and hydrophobicity. Solubilization isotherms determined here by ultrafiltration are shown to be in agreement with isotherms obtained with head space gas chromatography.

  14. Appropriateness of mechanistic and non-mechanistic models for the application of ultrafiltration to mixed waste

    SciTech Connect

    Foust, Henry; Ghosehajra, Malay

    2007-07-01

    This study asks two questions: (1) How appropriate is the use of a basic filtration equation to the application of ultrafiltration of mixed waste, and (2) How appropriate are non-parametric models for permeate rates (volumes)? To answer these questions, mechanistic and non-mechanistic approaches are developed for permeate rates and volumes associated with an ultrafiltration/mixed waste system in dia-filtration mode. The mechanistic approach is based on a filtration equation which states that t/V vs. V is a linear relationship. The coefficients associated with this linear regression are composed of physical/chemical parameters of the system and based the mass balance equation associated with the membrane and associated developing cake layer. For several sets of data, a high correlation is shown that supports the assertion that t/V vs. V is a linear relationship. It is also shown that non-mechanistic approaches, i.e., the use of regression models to are not appropriate. One models considered is Q(p) = a*ln(Cb)+b. Regression models are inappropriate because the scale-up from a bench scale (pilot scale) study to full-scale for permeate rates (volumes) is not simply the ratio of the two membrane surface areas. (authors)

  15. Characterization of inorganic carbon-supported microfiltration and ultrafiltration membranes by aqueous phenol adsorption

    SciTech Connect

    Bialopiotrowicz, T.; Blanpain-Avet, P.; Lalande, M.

    1999-06-01

    The adsorption of phenol on inorganic carbon-supported microfiltration and ultrafiltration membranes has been determined. Using the statistical Student`s t-test, it has been shown that phenol adsorption data are well fitted to the Langmuir and BET isotherm equations. It was thus concluded that the adsorption of phenol was monomolecular and that the specific surface area (SSA) calculated from these data was essential. M1 and M2 ultrafiltration membranes were found to have a higher SSA than microfiltration M14 and carbon support membranes. Assuming that a simple model of the porous structure consisted of a packed bed of spherical particles, it was possible to determine an apparent average pore diameter from SSA data using the Carman-Kozeny equation. The SSA determined from phenol adsorption was found to be close to that measured from mercury porosimetry for the microfiltration membrane and carbon support. Such a result is due to the fact that there is a common basis between the Carman-Kozeny equation employed in the adsorption method and the determination of the ratio 4 V/A (V = total porous volume, A = total pore area) in the mercury porosimetry method (as both methods consider a constant volume/surface ratio of the pores along the microporous membrane thickness).

  16. Pre-treatment for ultrafiltration: effect of pre-chlorination on membrane fouling

    NASA Astrophysics Data System (ADS)

    Yu, Wenzheng; Xu, Lei; Graham, Nigel; Qu, Jiuhui

    2014-10-01

    Microbial effects are believed to be a major contributor to membrane fouling in drinking water treatment. Sodium hypochlorite (NaClO) is commonly applied in membrane cleaning, but its potential use as a pretreatment for controlling operational fouling has received little attention. In this study, the effect of adding a continuous low dose of NaClO (1 mg/l as active Cl) in combination with alum, before ultrafiltration, was compared with only alum as pretreatment. The results showed that the addition of NaClO substantially reduced membrane fouling both in terms of the rate of TMP development and the properties of the membrane cake layer. Although the size of nano-scale primary coagulant flocs changed little by the addition of NaClO, the cake layer on the membrane had a greater porosity and a substantially reduced thickness. NaClO was found to inactivate bacteria in the influent flow, which reduced both microbial proliferation and the production of proteins and polysaccharides in the cake layer and contributed significantly to improving the overall ultrafiltration performance. NaClO dosing had no adverse impact on the formation of currently regulated disinfection by-product compounds (THMs and HAAs).

  17. Enhanced purification of plasmid DNA isoforms by exploiting ionic strength effects during ultrafiltration.

    PubMed

    Li, Ying; Currie, David; Zydney, Andrew L

    2016-04-01

    The solution structure of plasmid DNA is known to be a strong function of solution conditions due to intramolecular electrostatic interactions between the charged phosphate groups along the DNA backbone. The objective of this work was to determine whether it was possible to enhance the use of ultrafiltration for separation of different plasmid isoforms by proper selection of the solution ionic strength and ion type. Experiments were performed with a 3.0 kbp plasmid using composite regenerated cellulose ultrafiltration membranes. The transmission of the linear isoform was nearly independent of solution ionic strength, but increased significantly with increasing filtrate flux due to the elongation of the highly flexible plasmid in the converging flow field into the membrane pores. In contrast, the transmission of the open-circular and supercoiled plasmids both increased with increasing NaCl or MgCl2 concentration due to the change in plasmid size and conformational flexibility. The effect of ionic strength was greatest for the supercoiled plasmid, providing opportunities for enhanced purification of this therapeutically active isoform. This behavior was confirmed using experiments performed with binary mixtures of the different isoforms. These results clearly demonstrate the potential for enhancing the performance of membrane systems for plasmid DNA separations by proper selection of the ionic conditions.

  18. Maximizing Production Capacity from an Ultrafiltration Process at the Hanford Department of Waste Treatment Facility

    SciTech Connect

    Foust, Henry C.; Holton, Langdon K.; Demick, Laurence E.

    2005-12-31

    The Department of Energy has contracted Bechtel National, Inc. to design, construct and commission a Waste Treatment and Immobilization Plant (WTP) to treat radioactive slurry currently stored in underground waste storage tanks. A critical element of the waste treatment capacity for the WTP is the proper operation of an ultrafiltration process (UFP). The UFP separates supernate solution from radioactive solids. The solution and solid phases are separately immobilized. An oversight review of the UFP design and operation has identified several methods to improve the capacity of the ultrafiltration process, which will also improve the capacity of the WTP. Areas explored were the basis of design, an analysis of the WTP capacity, process chemistry within the UFP, and UFP process control. This article discusses some of the findings of this oversight review in terms of sodium and solid production, which supports the treatment of low activity waste (LAW) associated with the facility, and solid production, which supports the treatment of high level waste (HLW) associated with the facility.

  19. Preparation of hydrophilic and antifouling polysulfone ultrafiltration membrane derived from phenolphthalin by copolymerization method

    NASA Astrophysics Data System (ADS)

    Liu, Zhixiao; Mi, Zhiming; Chen, Chunhai; Zhou, Hongwei; Zhao, Xiaogang; Wang, Daming

    2017-04-01

    In this task, carboxylated polysulfone (PSF-COOH) was achieved by introducing the monomer of phenolphthalin (PPL) containing carboxyl to the molecule backbone of polysulfone (PSF). And a series of PSF-COOH copolymers with different carboxylation degree was synthesized by adjusting the molar (%) of bisphenol A (BPA) and PPL in direct copolymerization method and was prepared as PSF-COOH ultrafiltration membranes via phase separation method. The effect of PPL molar (%) in copolymers on the morphology, hydrophilicity, permeation flux, antifouling and mechanical properties of membranes was investigated by scanning electron microscope (SEM), atomic force microscope (AFM), water contact angle, ultrafiltration experiments and universal testing machine, respectively. The results showed that with the increased carboxyl content in membranes, the hydrophilicity, permeation fluxes and antifouling properties of membranes gradually increased. When the molar (%) of PPL to BPA was 100:0, the membrane exhibited the highest pure water flux (329.6 L/m2 h) and the maximum flux recovery rate (92.5%). When the content of carboxyl in the membrane was 80% or more, after three cycles of BSA solution (1 g/L) filtration, the flux recovery rate was basically constant or showed a slightly increase. Thus, it can achieve the goal of long term usage without compromising flux.

  20. Fractionation of sugar beet pulp into pectin, cellulose, and arabinose by arabinases combined with ultrafiltration

    SciTech Connect

    Spangnuolo, M.; Crecchio, C.; Pizzigallo, M.D.R.; Ruggiero, P.

    1999-09-20

    Incubation of beet pulp with two arabinases ({alpha}-L-arabinofuranosidase and endo-arabinase), used singularly or in combination at different units of activity per gram of beet pulp, caused the hydrolysis of arabinasn, which produced a hydrolyzate consisting mainly of arabinose. Pectin and a residue enriched with cellulose were subsequently separated from the incubation mixture. The best enzymatic hydrolysis results were obtained when 100 U/g of beet pulp of each enzyme worked synergistically with yields of 100% arabinose and 91.7% pectin. These yields were higher than those obtained with traditional chemical hydrolysis. The pectin fraction showed a low content of neutral sugar content and the cellulose residue contained only a small amount of pentoses. Semicontinuous hydrolysis with enzyme recycling in an ultrafiltration unit was also carried out to separate arabinose, pectin, and cellulose from beet pulp in 7 cycles of hydrolysis followed by ultrafiltration. The yields of separation were similar to those obtained in batch experiments, with an enzyme consumption reduced by 3.5 times and some significant advantages over batch processes.

  1. Respiratory drive and pulmonary mechanics during haemodialysis with ultrafiltration in ventilated patients.

    PubMed

    Huang, C C; Tsai, Y H; Lin, M C; Yang, C T; Hsieh, M J; Lan, R S

    1997-10-01

    The improvements of respiratory drive and pulmonary mechanics which follow haemodialysis with ultrafiltration in mechanically ventilated renal failure patients seem predictable but have not been studied before. In this study, 14 renal failure patients with stable haemodynamics mechanically ventilated with pressure support ventilation (PSV) were enrolled. Respiratory drive (represented as P0.1), pulmonary mechanics, breathing pattern, arterial blood gas and haemodynamics were measured according to the time schedule: pre-dialysis (Time 0), and at 60, 120, 180, 240 minutes thereafter. Following the removal of excess lung water during haemodialysis, auto-PEEP and patient's work of breathing (WOBp) decreased gradually. P0.1 lessened progressively along with the improvement in pulmonary mechanics. The changes in auto-PEEP and WOBp correlated closely to the pre- and post-dialysis decline of P0.1 (delta P0.1). There was a negative, moderately significant correlation between the amount of fluid ultrafiltrated during dialysis (delta UF) and the delta P0.1 (R = -0.54). The breathing pattern remained stable during dialysis. No hypoventilation or hypoxaemia occurred despite the development of metabolic alkalosis induced by bicarbonate dialysate. We have shown that respiratory drive decreases gradually during bicarbonate haemodialysis. The improvements of pulmonary mechanics, rather than the rapid alkalization of body fluids, responds to the decrease of P0.1 in renal failure patients ventilated with PSV.

  2. Lymph is not a Plasma Ultrafiltrate: A Proteomic Analysis of Injured Patients

    PubMed Central

    Moore, Ernest E.; Wohlauer, Max; Banerjee, Anirban; Silliman, Christopher C; Hansen, Kirk C.

    2014-01-01

    Studies on animal models have documented a role for the water soluble protein fraction of mesenteric lymph as a conduit from hemorrhagic shock to acute lung injury and post-injury multiple organ failure. We hypothesize that mesenteric lymph is not an ultrafiltrate of plasma and contains specific protein mediators that may predispose patients to ALI/MOF. Mesenteric lymph and plasma were collected from critically ill or injured patients and from nine patients with lymphatic injuries, during semi-elective spine reconstruction, or immediately before organ donation. Proteomic analyses were performed through immuno-affinity depletion of the 14 most abundant plasma proteins, and GeLC-MS analyses. Overall, 548 proteins were identified in the patients undergoing semi-elective surgery, of which 155 were uniquely present in the lymph. In addition, the post-shock plasma proteome was characterized by peculiar features, suggesting that only a partial overlap exists between the plasma and mesenteric lymph from trauma patients. Differential proteins between the matched plasma and mesenteric lymph from trauma patients could be related to, coagulopathy and hypercoagulability, cell lysis, pro-inflammatory responses and immune system activation, extracellular matrix remodeling, lymph-specific immunomodulation and vascular hypoactivity/neoangiogenesis, and energy/redox metabolic adaptation to trauma. In conclusion, the proteome of mesenteric lymph is biologically different (in qualitative and quantitative terms) than that of a mere plasma ultrafiltrate. PMID:25243428

  3. Development of a bench-scale immersed ultrafiltration apparatus for coagulation pretreatment experiments.

    PubMed

    Walsh, Margaret E; Zhao, Na; Gagnon, Graham A

    2011-01-01

    The purpose of this paper is to present results of a project that focused on developing a standardized bench-scale apparatus and operating procedures for immersed ultrafiltration (UF) membrane systems to assess integrated process designs (e.g., coagulation-UF) under controlled laboratory conditions. The integrated test apparatus, termed Immersed Ultrafiltration Enhanced Coagulation (IUEC), was designed using a hollow-fiber, outside-in UF module immersed in a single compartment water preparation and filtration tank equipped with aeration mixing capabilities for coagulation and flocculation process evaluations. Bench-scale experiments were conducted with alum on a low turbidity surface water source to evaluate system performance of the integrated IUEC apparatus compared to a standard jar test unit. The experiments were evaluated by measuring the removal of natural organic matter and zeta-potential analysis from water collected from a conventional mechanically-mixed process with a manual transfer to a UF membrane system and comparing these results to the IUEC system. The results of this study demonstrated that using the single-compartment IUEC apparatus can provide water quality data that is congruent with those obtained through conventional methods that rely on use of standard jar tests.

  4. Preparation and characterization of an antibacterial ultrafiltration membrane with N-chloramine functional groups.

    PubMed

    Hou, Shuhua; Dong, Xue; Zhu, Jianhua; Zheng, Jifu; Bi, Weihui; Li, Shenghai; Zhang, Suobo

    2017-06-15

    In this study, a cardo poly(aryl ether ketone) ultrafiltration membrane containing an N-chloramine functional group (PEK-N-Cl membrane) was easily obtained via exposure of a cardo poly(aryl ether ketone) ultrafiltration membrane (PEK-NH membrane) to dilute sodium hypochlorite solution. The chlorination process did not harm membrane performance. In addition, the PEK-N-Cl membrane was stable in both air and water. The PEK-N-Cl membrane exhibited excellent antimicrobial properties against both Gram-negative and Gram-positive bacteria (i.e. E. coli and Bacillus subtilis, respectively). The PEK-N-Cl membrane provided 94.2% and 100% reduction of E. coli and Bacillus subtilis, respectively, within 30min of contact times. Moreover, nearly 100% of the E. coli was killed after 2h during the filtration process for the PEK-N-Cl membrane. In addition, the water flux decreased by 42% for the PEK-N-Cl membrane compared to 77.6% for the PEK-NH membrane after filtration of the E. coli solution and incubation on LB nutrient agar plate, indicating that the PEK-N-Cl membrane enhibits antifouling. Furthermore, the PEK-N-Cl membrane is recyclable via subsequent exposure to a sodium hypochlorite solution.

  5. Simultaneous separation of acid and basic bioactive peptides by electrodialysis with ultrafiltration membrane.

    PubMed

    Poulin, Jean-François; Amiot, Jean; Bazinet, Laurent

    2006-05-29

    beta-Lactoglobulin (beta-lg), one of the major whey components, can release by enzymatic hydrolysis different bioactive peptidic sequences according to the enzyme used. However, these protein hydrolysates have to be fractionated to obtain peptides in a more purified form. The aim of the present work was to evaluate the feasibility of separating peptides from a beta-lg hydrolysate using an ultrafiltration (UF) membrane stacked in an electrodialysis (ED) cell and to study the effect of pH on the migration of basic/cationic and acid/anionic peptides in the ED configuration. Electrodialysis with ultrafiltration membrane (EDUF) appeared to be a selective method of separation since amongst a total of 40 peptides in the raw hydrolysate, only 13 were recovered in the separated adjacent solutions (KCl 1 and KCl 2). Amongst these 13 migrating peptides, 3 acid/anionic peptides migrated only in one compartment (KCl 1), while 3 basic/cationic peptides migrated only in the second compartment (KCl 2) and that whatever the pH conditions of the hydrolysate solution. Furthermore, the highest migration was obtained for the ACE-inhibitory peptide beta-lg 142-148, with a value of 10.75%. The integrity of the UF membrane was kept and EDUF would minimize the fouling of UF membrane.

  6. Immunoaffinity Ultrafiltration with Ion Spray HPLC/MS for Screening Small-Molecule Libraries.

    PubMed

    Wieboldt, R; Zweigenbaum, J; Henion, J

    1997-05-01

    A solution-phase screening method for libraries of pharmaceutically relevant molecules is presented. The technique is applicable to screening combinatorial libraries of 20-30 closely related molecules. In this report, individual benzodiazepines are selected from a multicomponent library mixture by formation in solution of noncovalent immunoaffinity complexes with antibodies raised to therapeutically proven drugs such as nitrazepam, temazepam, or oxazepam. Captured compounds are separated from nonspecifically bound library components by centrifugal ultrafiltration. The specifically selected molecules retained on the filter are subsequently liberated from the antibodies by acidification and analyzed by HPLC coupled with pneumatically assisted electrospray (ion spray) ionization mass spectrometric detection. Competition by the benzodiazepines for limited antibody binding sites is controlled by varying the stoichiometry of the complexation mixture. This procedure selects library components with the greatest affinity for a particular antibody. Specific capture of benzodiazepines is demonstrated by screening both a pool of structurally similar benzodiazepines and a more complex mixture of benzodiazepines with an additional set of unrelated compounds. Affinity ultrafiltration and electrospray mass spectrometry complement each other to enhance screening and identification of pooled drug candidates and potentially can be extended to other small-molecule combinatorial libraries and macromolecular receptor preparations.

  7. Interplay of different NOM fouling mechanisms during ultrafiltration for drinking water production.

    PubMed

    Jermann, D; Pronk, W; Meylan, S; Boller, M

    2007-04-01

    Ultrafiltration is an emerging technology for drinking water production, but a main challenge remains the lack of understanding about fouling. This paper investigates the impact of molecular interactions between different natural organic matter (NOM) compounds on ultrafiltration fouling mechanisms. We performed dead-end filtration experiments with individual and mixed humic acid and alginate (polysaccharide). Alginate showed detrimental, but mostly reversible, flux decline and high solute retention. Our results indicate that this was caused by pore blocking transformed into cake building and weak molecular foulant-membrane and foulant-foulant interactions. In the presence of calcium, aggravated fouling was observed, related to complexation of alginate and its subsequently induced gel formation. With humic acid, more severe irreversible fouling occurred due to humic acid adsorption. Minor adsorption of alginate onto the membrane was also observed, which probably caused the substantial irreversible flux decline. The fouling characteristics in the mixtures reflected a combination of the individual humic acid and alginate experiments and we conclude, that the individual fouling mechanisms mutually influence each other. A model elucidates this interplay of the individual fouling mechanisms via hydrophobic and electrostatic interactions. In our study such an interplay resulted in an alginate cake, or gel in the presence of calcium, which is relatively irreversibly adsorbed onto the membrane by humic acid associations. This study shows the importance of mutual influences between various foulants for improved understanding of fouling phenomena. Furthermore it shows that substances with a minor individual influence might have a large impact in mixed systems such as natural water.

  8. Application of the hybrid complexation-ultrafiltration process for metal ion removal from aqueous solutions.

    PubMed

    Zeng, Jianxian; Ye, Hongqi; Hu, Zhongyu

    2009-01-30

    Complexation-ultrafiltration process was investigated for mercury and cadmium removal from aqueous solutions by using poly(acrylic acid) sodium salt (PAASS) as a complexing agent. The kinetics of complexation reactions of PAASS with the metal ions were studied under a large excess PAASS and pH 5.5. It takes 25 and 50 min for mercury and cadmium to get the complexation equilibrium, respectively, and the reaction kinetics can be described by a pseudo-first-order equation. Effects of various operating parameters such as loading ratios, pH values, etc. on metal rejection coefficients (R) were investigated. In the process of concentration, membrane fluxes decline slowly and R values are about 1. The concentrated retentates were used further for the decomplexation. The decomplexation ratio of mercury-PAASS complex is about 30%, whereas that of cadmium-PAASS complex reaches 93.5%. After the decomplexation, diafiltration experiments were carried out at pH 2.5. Cadmium can be diafiltrated satisfactorily from the retentate, but for mercury it is the contrary. Selective separation of the both metal ions was studied from a binary solution at pH 5. When mercury, cadmium and PAASS concentrations are 30, 30 and 40 mg L(-1), respectively, mercury is retained by ultrafiltration while almost all cadmium passes through the membrane.

  9. INVESTIGATION OF CONVENTIONAL MEMBRANE AND TANGENTIAL FLOW ULTRAFILTRATION ARTIFACTS AND THEIR APPLICATION TO THE CHARACTERIZATION OF FRESHWATER COLLOIDS

    EPA Science Inventory

    Artifacts associated with the fractionation of colloids in a freshwater sample were investigated for conventional membrane filtration (0.45 micron cutoff), and two tangential flow ultrafiltration cartridges (0.1 micron cutoff and 3000 MW cutoff). Membrane clogging during conventi...

  10. INVESTIGATION OF CONVENTIONAL MEMBRANE AND TANGENTIAL FLOW ULTRAFILTRATION ARTIFACTS AND THEIR APPLICATION TO THE CHARACTERIZATION OF FRESHWATER COLLOIDS

    EPA Science Inventory

    Artifacts associated with the fractionation of colloids in a freshwater sample were investigated for conventional membrane filtration (0.45 micron cutoff), and two tangential flow ultrafiltration cartridges (0.1 micron cutoff and 3000 MW cutoff). Membrane clogging during conventi...

  11. REMOVAL OF MICROBIAL CONTAMINANTS IN DRINKING WATER: KOCH MEMBRANE SYSTEMS, HF-82-35-PMPW™ ULTRAFILTRATION MEMBRANE

    EPA Science Inventory

    Two Koch Membrane Systems HF-82-35-PMPW ultrafiltration membrane cartridges were tested for removal of viruses, bacteria, and protozoan cysts at NSF’s Drinking Water Treatment Systems Laboratory. The ETV testing was conducted as part of a series of evaluations of the Expeditiona...

  12. REMOVAL OF MICROBIAL CONTAMINANTS IN DRINKING WATER: KOCH MEMBRANE SYSTEMS, HF-82-35-PMPW™ ULTRAFILTRATION MEMBRANE

    EPA Science Inventory

    Two Koch Membrane Systems HF-82-35-PMPW ultrafiltration membrane cartridges were tested for removal of viruses, bacteria, and protozoan cysts at NSF’s Drinking Water Treatment Systems Laboratory. The ETV testing was conducted as part of a series of evaluations of the Expeditiona...

  13. Evaluation of Hollow-Fiber Ultrafiltration Primary Concentration of Pathogens and Secondary Concentration of Viruses from Water

    EPA Science Inventory

    In this study, tangential hollow-fiber ultrafiltration (HFUF) was evaluated for virus and Cryptosporidium parvum concentration. Recovery of viruses at a low filtration rate was found to be significantly greater than at a higher filtration rate, with the recoveries of bacteriopha...

  14. Influence of Enteromorpha polysaccharides on variation of coagulation behavior, flocs properties and membrane fouling in coagulation-ultrafiltration process.

    PubMed

    Zhao, Shuang; Gao, Baoyu; Yue, Qinyan; Sun, Shenglei; Song, Wuchang; Jia, Ruibao

    2015-03-21

    Enteromorpha polysaccharides (Ep) were used as a new coagulant aid together with polyaluminum chloride (PACl) in coagulation-ultrafiltration process to purify Yellow River water. The evolution of flocs size, growth rate, strength, recoverability and fractal structure due to Ep addition were systematically studied in this paper. On this basis, membrane fouling caused by the coagulation effluents of PACl and Ep were also investigated. Results indicated that Ep addition lead to 20% increase in coagulation performance, and meanwhile generate flocs with bigger sizes, faster growth rates and higher recovery abilities. Additionally, the flocs formed by PACl presented more compact structure with a larger D(f) value, while much looser flocs were obtained when Ep was added. Results of ultrafiltration experiments implied that with Ep addition, membrane fouling could be significantly reduced due to large size and loosely structures of flocs in coagulation effluents. Considering both the coagulation efficiency and ultrafiltration membrane performance, 0.2 mg/L Ep was determined as the optimal dosage in coagulation-ultrafiltration process in this study.

  15. Porous membrane ultrafiltration-A novel method for enrichment of the active compounds from micro-plasma samples

    NASA Astrophysics Data System (ADS)

    Liu, Qingshan; Yin, Xiaoying; Sha, Biying; You, Jingjing

    2014-10-01

    To enrich the active compounds from plasma samples, a novel and simple method has been developed using a porous membrane envelope based on the ultrafiltration technique combining with high-performance liquid chromatography. The ultrafiltration device is a sealed porous membrane envelope prepared with a polypropylene sheet to effectively separate the active small molecules and large biomolecules, and a sample carrier is held inside the envelope to load plasma samples. The enrichment of hyperoside and isoquercitrin from rat plasma was used as an example. Significant factors of this method, such as membrane types, the desorption solvent, and the desorption time were optimized for the ultrafiltration method. Under the optimal conditions, correlation coefficients of 0.999 and 0.998 were obtained for hyperoside and isoquercitrin, respectively, with a linear range between 0.5 and 100 μg/mL. The absolute extraction recoveries from 83.2% to 86.8% were achieved. The detection limits of the method for hyperoside and isoquercitrin were 0.22 and 0.20 μg/mL, respectively. Compared with protein precipitation, solid-phase extraction and commercial ultrafiltration membrane methods, our proposed method demonstrates lower detection limits and lower cost for extraction. Also, it consumes less plasma samples and is found to be applicable to biological samples.

  16. Porous membrane ultrafiltration-A novel method for enrichment of the active compounds from micro-plasma samples.

    PubMed

    Liu, Qingshan; Yin, Xiaoying; Sha, Biying; You, Jingjing

    2014-10-15

    To enrich the active compounds from plasma samples, a novel and simple method has been developed using a porous membrane envelope based on the ultrafiltration technique combining with high-performance liquid chromatography. The ultrafiltration device is a sealed porous membrane envelope prepared with a polypropylene sheet to effectively separate the active small molecules and large biomolecules, and a sample carrier is held inside the envelope to load plasma samples. The enrichment of hyperoside and isoquercitrin from rat plasma was used as an example. Significant factors of this method, such as membrane types, the desorption solvent, and the desorption time were optimized for the ultrafiltration method. Under the optimal conditions, correlation coefficients of 0.999 and 0.998 were obtained for hyperoside and isoquercitrin, respectively, with a linear range between 0.5 and 100μg/mL. The absolute extraction recoveries from 83.2% to 86.8% were achieved. The detection limits of the method for hyperoside and isoquercitrin were 0.22 and 0.20μg/mL, respectively. Compared with protein precipitation, solid-phase extraction and commercial ultrafiltration membrane methods, our proposed method demonstrates lower detection limits and lower cost for extraction. Also, it consumes less plasma samples and is found to be applicable to biological samples.

  17. Evaluation of Hollow-Fiber Ultrafiltration Primary Concentration of Pathogens and Secondary Concentration of Viruses from Water

    EPA Science Inventory

    In this study, tangential hollow-fiber ultrafiltration (HFUF) was evaluated for virus and Cryptosporidium parvum concentration. Recovery of viruses at a low filtration rate was found to be significantly greater than at a higher filtration rate, with the recoveries of bacteriopha...

  18. Ceramic membrane fouling during ultrafiltration of oil/water emulsions: roles played by stabilization surfactants of oil droplets.

    PubMed

    Lu, Dongwei; Zhang, Tao; Ma, Jun

    2015-04-07

    Oil/water (O/W) emulsion stabilized by surfactants is the part of oily wastewater that is most difficult to handle. Ceramic membrane ultrafiltration presently is an ideal process to treat O/W emulsions. However, little is known about the fouling mechanism of the ceramic membrane during O/W emulsion treatment. This paper investigated how stabilization surfactants of O/W emulsions influence the irreversible fouling of ceramic membranes during ultrafiltration. An unexpected phenomenon observed was that irreversible fouling was much less when the charge of the stabilization surfactant of O/W emulsions is opposite to the membrane. The less ceramic membrane fouling in this case was proposed to be due to a synergetic steric effect and demulsification effect which prevented the penetration of oil droplets into membrane pores and led to less pore blockage. This proposed mechanism was supported by cross section images of fouled and virgin ceramic membranes taken with scanning electron microscopy, regression results of classical fouling models, and analysis of organic components rejected by the membrane. Furthermore, this mechanism was also verified by the existence of a steric effect and demulsification effect. Our finding suggests that ceramic membrane oppositely charged to the stabilization surfactant should be applied in ultrafiltration of O/W emulsions to alleviate irreversible membrane fouling. It could be a useful rule for ceramic membrane ultrafiltration of oily wastewater.

  19. Pharmacokinetic study on pradofloxacin in the dog – Comparison of serum analysis, ultrafiltration and tissue sampling after oral administration

    PubMed Central

    2013-01-01

    Background Pradofloxacin, a newly developed 8-cyano-fluoroquinolone, show enhanced activity against Gram-positive organisms and anaerobes to treat canine and feline bacterial infections. The purpose of this cross-over study was to measure the unbound drug concentration of pradofloxacin in the interstitial fluid (ISF) using ultrafiltration and to compare the kinetics of pradofloxacin in serum, ISF and tissue using enrofloxacin as reference. Results After oral administration of enrofloxacin (5 mg/kg) and pradofloxacin (3 mg/kg and 6 mg/kg, respectively), serum collection and ultrafiltration in regular intervals over a period of 24 h were performed, followed by tissue sampling at the end of the third dosing protocol (pradofloxacin 6 mg/kg). Peak concentrations of pradofloxacin (3 mg/kg) were 1.55±0.31 μg/ml in the ISF and 1.85±0.23 μg/ml in serum and for pradofloxacin (6 mg/kg) 2.71±0.81 μg/kg in the ISF and 2.77±0.64 μg/kg in serum; both without a statistical difference between ISF and serum. Comparison between all sampling approaches showed no consistent pattern of statistical differences. Conclusions Despite some technical shortcomings the ultrafiltration approach appears to be the most sensitive sampling technique to estimate pharmacokinetic values of pradofloxacin at the infection site. Pharmacokinetics – Pradofloxacin – Ultrafiltration – Dog – Oral Administration. PMID:23410255

  20. Polydopamine coating effects on ultrafiltration membrane to enhance power density and mitigate biofouling of ultrafiltration microbial fuel cells (UF-MFCs).

    PubMed

    Kim, Kyoung-Yeol; Yang, Euntae; Lee, Mi-Young; Chae, Kyu-Jung; Kim, Chang-Min; Kim, In S

    2014-05-01

    Membrane resistance is due to the low accessibility of liquid electrolytes onto the membrane surface; resultant membrane biofouling lowers the power generation capacity of microbial fuel cells (MFCs). In this study, in order to reduce membrane resistance caused by migrative ion transport resistance and membrane biofouling, a polydopamine (PD) coating was adopted for the modification of ultrafiltration (UF) membrane surfaces in UF membrane integrated MFCs (UF-MFCs). After a PD coating was applied to a UF membrane, the contact angle measured on the support layer of a UF membrane decreased and the membrane surface charge became negative. The maximum power density of UF-MFC increased after the PD coating on a UF membrane and a remarkable reduction of charge transfer resistance was observed using electrochemical impedance spectroscopy (EIS) analysis. Lower extracellular polymeric substance (EPS) concentrations and total cell numbers were observed on the PD coated UF membrane surface after 72 h operation, although 17% of a permeate flux of UF-MFC decreased after PD coating.

  1. Ultrafiltration separation of aquatic natural organic matter: chemical probes for quality assurance.

    PubMed

    Revchuk, Alex D; Suffet, I H Mel

    2009-08-01

    Characterization of molecular size of natural organic matter (NOM) is a valuable tool when assessing its effect on the performance of water treatment systems as well as its geochemical origin. Size fractionation can be accomplished by ultrafiltration (UF). Unfortunately, membrane manufacturing generates a range of pore sizes. Many membrane manufacturers use molecular weight cutoff (MWCO) metric based on a 90% retention of given solute after specified duration of filtration. The objective of this study was to characterize the ability of different commercially available UF membranes to separate different size fractions of NOM. The UF membranes characterized were YM (regenerated cellulose, negatively charged) and PB (polyethersulfone, negatively charged) product lines by Millipore. The probes used to represent the size, shape and charge of NOM were polymers (polyethylene glycols (PEGs), dextrans, polystyrene sulfonates (PSSs)), dyes (bromocresol green, congo red, methyl red, methyl orange) and biological molecules (vitamin B-12 and bacitracin). The results show that MWCO definition does not hold for membranes of 5kDa and 10kDa pore openings using most polymers and dyes. The MWCO definition holds for 1kDa membrane for all tested probes. Under natural water conditions PSSs assume random coil configurations that are nearly identical to Suwannee fulvic acid. The results show that PSS agrees with stated MWCOs. The study demonstrates that ultrafiltration is not a simple mechanical sieving process, but that charges on the membrane and the constituent play a significant role in the rejection process. Effective probe size was increased seven- to fourteen-fold by charge interactions between the negative probes and negatively charged membrane. Uncharged molecules larger than specified MWCOs are able to pass through pores (PEGs), while small charged molecules (dyes) do not pass. For probes with low or neutral charges, shape becomes an important factor, with globular being favored

  2. Iron and copper isotope fractionation during filtration and ultrafiltration of boreal organic-rich waters

    NASA Astrophysics Data System (ADS)

    Ilina, Svetlana M.; Viers, Jerome; Pokrovsky, Oleg S.; Poitrasson, Franck; Lapitsky, Sergey A.; Alekhin, Yuriy V.

    2010-05-01

    Typical feature of all boreal surface waters is high concentration of dissolved (< 0.22 µm) organic matter (DOM) and iron, notably in the form of Fe(III)-OM complexes. Organic and organo-mineral colloids are the most likely carriers of trace metals such as Cu in rivers of the boreal zone. This work addresses colloidal speciation of Cu and Fe using conventional size separation technique, on-site frontal ultrafiltration. Specifically, we aimed to test the possibility of the presence of different pools of metal having specific isotopic signatures in different colloidal fractions using stable isotope measurements. We have chosen Cu for its high affinity to colloidal DOM and Fe for its tendency to form stable organo-mineral colloids of various size. Samples of natural waters were collected from small rivers, lakes, bogs, groundwater and soil environments in the Northern Karelia (NW Russia) during summer baseflow period. Large volumes (20-40 L) of water were filtered in the field through progressively decreasing pore size filters: 20, 10, 5, 0.8, 0.45, 0.22, 0.1 µm and 100, 10 and 1 kDa (1 kDa ~ 1 nm) using nylon and regenerated cellulose membranes and frontal ultrafiltration (Millipore, Amicon) devises. The homogeneity of the sample was verified by tracing radiogenic Sr isotopes in each fraction. In all filtrates and ultrafiltrates (permeates), and in selected retentates, stable isotopic composition of Cu and Fe was measured using double focusing high resolution MC-ICP MS (Neptune). We observe rather constant Cu isotopic ratio in all filtrate series and a systematic enrichment of heavy isotope of Fe with decreasing poresize. These preliminary results can be explained by strong complexation of Cu with small-size organic ligands of fulvic nature and its partial association with organo-mineral colloids. Both Fe(III) - OM complxeation and Fe(III) oxyhydroxides precipitation can be invoked to explain Fe isotope fractionation. This work allows, for the first, time, multi

  3. A reliable method to assess the water permeability of a dialysis system: the global ultrafiltration coefficient.

    PubMed

    Ficheux, A; Gayrard, N; Duranton, F; Guzman, C; Szwarc, I; Vetromile, F; Brunet, P; Servel, M F; Argilés, A

    2017-02-01

    Recent randomized controlled trials suggest that sufficiently high convection post-dilutional haemodiafiltration (HC-HDF) improves survival in dialysis patients, consequently this technique is increasingly being adopted. However, when performing HC-HDF, rigorous control systems of the ultrafiltration setting are required. Assessing the global ultrafiltration coefficient of the dialysis system [GKD-UF; defined as ultrafiltration rate (QUF)/transmembrane pressure] or water permeability may be adapted to the present dialysis settings and be of value in clinics. GKD-UF was determined and its reproducibility, variability and influencing factors were specifically assessed in 15 stable patients routinely treated by high-flux haemodialysis or HC-HDF in a single unit. GKD-UF invariably followed a parabolic function with increasing QUF in dialysis and both pre- and post-dilution HC-HDF (R2 constantly >0.96). The vertex of the parabola, GKD-UF-max and related QUF were very reproducible per patient (coefficient of variation 3.9 ± 0.6 and 3.3 ± 0.3%, respectively) and they greatly varied across patients (31–42 mL/h−1/mmHg and 82–100 mL/min, respectively). GKD-UF-max and its associated QUF decreased during dialysis treatment (P < 0.01). The GKD-UF-max decrease was related to weight loss (R2 = 0.66; P = 0.0015). GKD-UF is a reliable and accurate method to assess the water permeability of a system in vivo. It varies according to dialysis setting and patient-related factors. It is an objective parameter evaluating the forces driving convection and identifies any diversion of the system during the treatment procedure. It is applicable to low- or high-flux dialysis as well as pre- or post-dilution HDF. Thus, it may be used to describe the characteristics of a dialysis system, is suitable for clinical use and may be of help for personalized prescription.

  4. Novel cellobiose 2-epimerases for the production of epilactose from milk ultrafiltrate containing lactose.

    PubMed

    Krewinkel, Manuel; Kaiser, Jana; Merz, Michael; Rentschler, Eva; Kuschel, Beatrice; Hinrichs, Jörg; Fischer, Lutz

    2015-06-01

    A selected number of enzymes have recently been assigned to the emerging class of cellobiose 2-epimerases (CE). All CE convert lactose to the rare sugar epilactose, which is regarded as a new prebiotic. Within this study, the gene products of 2 potential CE genes originating from the mesophilic bacteria Cellulosilyticum lentocellum and Dysgonomonas gadei were recombinantly produced in Escherichia coli and purified by chromatography. The enzymes have been identified as novel CE by sequence analysis and biochemical characterizations. The biochemical characterizations included the determination of the molecular weight, the substrate spectrum, and the kinetic parameters, as well as the pH and temperature profiles in buffer and food matrices. Both identified CE epimerize cellobiose and lactose into the C2 epimerization products glucosylmannose and epilactose, respectively. The epimerization activity for lactose was maximal at pH 8.0 or 7.5 and 40°C in defined buffer systems for the CE from C. lentocellum and the CE from D. gadei, respectively. In addition, biotransformations of the foodstuff milk ultrafiltrate containing lactose were demonstrated. The CE from D. gadei was produced in a stirred-tank reactor (12 L) and purified using an automatic system. Enzyme production and purification in this scale indicates that a future upscaling of CE production is possible. The bioconversions of lactose in milk ultrafiltrate were carried out either in a batch process or in a continuously operated enzyme membrane reactor (EMR) process. Both processes ran at an industrially relevant low temperature of 8°C to reduce undesirable microbial growth. The enzyme was reasonably active at the low process temperature because the CE originated from a mesophilic organism. An epilactose yield of 29.9% was achieved in the batch process within 28 h of operation time. In the continuous EMR process, the epilactose yield in the product stream was lower, at 18.5%. However, the enzyme productivity

  5. Physicochemical and Microbiological Properties of Yogurt-cheese Manufactured with Ultrafiltrated Cow's Milk and Soy Milk Blends

    PubMed Central

    Lee, Na-Kyoung; Mok, Bo Ram; Jeewanthi, Renda Kankanamge Chaturika; Yoon, Yoh Chang; Paik, Hyun-Dong

    2015-01-01

    The objective of this study was to develop yogurt-cheese using cow’s milk, ultrafiltrated cow’s milk, and soy milk. The addition of soy milk and ultrafiltrated milk increased the amount of protein in the yogurt-cheese. Yogurt-cheeses were made using cheese base using 10% and 20% soy milk with raw and ultrafiltrated cow’s milk, and stored at 4℃ during 2 wk. The yield of yogurt-cheeses made with added soy milk was decreased and the cutting point was delayed compared to yogurt-cheese made without soy milk. Yogurt-cheese made using ultrafiltrated cow’s milk showed the highest yield. However, yogurt-cheese made with added soy milk had higher protein content and titratable acidity than yogurt-cheese made using raw and ultrafiltrated cow’s milk. Fat and lactose contents in the yogurt-cheese made with added soy milk were lower. Yogurt-cheeses made with added soy milk contained several soy protein bands corresponding to the sizes of α2-, β-, and κ-casein band. Yogurt-cheese made with added soy milk had similar elasticity to yogurt-cheese made without soy milk but had lower cohesiveness. There was no significant difference in the number of lactic acid bacteria in the different cheeses, as all had over 8.0 Log CFU/g. Considering these data and the fact that proteins and fats of vegetable origin with high biological value were observed as well as unsaturated fats, yogurt-cheese made with added soy milk can be considered to be a functional food. PMID:26761829

  6. Physicochemical and Microbiological Properties of Yogurt-cheese Manufactured with Ultrafiltrated Cow's Milk and Soy Milk Blends.

    PubMed

    Lee, Na-Kyoung; Mok, Bo Ram; Jeewanthi, Renda Kankanamge Chaturika; Yoon, Yoh Chang; Paik, Hyun-Dong

    2015-01-01

    The objective of this study was to develop yogurt-cheese using cow's milk, ultrafiltrated cow's milk, and soy milk. The addition of soy milk and ultrafiltrated milk increased the amount of protein in the yogurt-cheese. Yogurt-cheeses were made using cheese base using 10% and 20% soy milk with raw and ultrafiltrated cow's milk, and stored at 4℃ during 2 wk. The yield of yogurt-cheeses made with added soy milk was decreased and the cutting point was delayed compared to yogurt-cheese made without soy milk. Yogurt-cheese made using ultrafiltrated cow's milk showed the highest yield. However, yogurt-cheese made with added soy milk had higher protein content and titratable acidity than yogurt-cheese made using raw and ultrafiltrated cow's milk. Fat and lactose contents in the yogurt-cheese made with added soy milk were lower. Yogurt-cheeses made with added soy milk contained several soy protein bands corresponding to the sizes of α2-, β-, and κ-casein band. Yogurt-cheese made with added soy milk had similar elasticity to yogurt-cheese made without soy milk but had lower cohesiveness. There was no significant difference in the number of lactic acid bacteria in the different cheeses, as all had over 8.0 Log CFU/g. Considering these data and the fact that proteins and fats of vegetable origin with high biological value were observed as well as unsaturated fats, yogurt-cheese made with added soy milk can be considered to be a functional food.

  7. Ultrafiltration of priming blood before cardiopulmonary bypass attenuates inflammatory response and maintains cardiopulmonary function in neonatal piglets.

    PubMed

    Ugaki, Shinya; Honjo, Osami; Kotani, Yasuhiro; Nakakura, Mahito; Douguchi, Takuma; Oshima, Yu; Yoshizumi, Ko; Kasahara, Shingo; Sano, Shunji

    2009-01-01

    Blood priming is necessary for cardiopulmonary bypass (CPB) in neonates to avoid excessive hemodilution; however, transfusion-related inflammation affects postCPB outcomes in neonatal open-heart surgery. We hypothesized that ultrafiltration of priming blood before CPB may reduce inflammatory mediators in priming blood and postCPB inflammatory responses, thereby improving cardiopulmonary function. Twelve 1-week-old piglets (3.5 +/- 0.2 kg) were divided into two groups. Group U (n = 6) employed the priming blood ultrafiltrated before CPB, but group N (n = 6) used the nonultrafiltrated blood. Cardiopulmonary bypass was performed for 2 hours and then modified ultrafiltration (MUF) was conducted. Data were acquired before CPB and after MUF. The values of K+, serotonin, and IL-8 in priming blood was significantly decreased after ultrafiltration (8.2 +/- 2.6 vs. 4.2 +/- 0.8 mEq/L, p < 0.01, 234 +/- 96 vs. 74 +/- 42 ng/ml, p < 0.01, 78.4 +/- 5.1 vs. 64.5 +/- 59.1 pg/ml, p < 0.05). Group U after MUF had lower thrombin-antithrombin complex levels (23.9 +/- 5.1 vs. 33.7 +/- 4.6 ng/ml, p < 0.01) and lower IL-8 levels in airway fluid (925 +/- 710 vs. 2495 +/- 1207 pg/ml, p < 0.05) than group N. Cardiac output and arterial PO2 after MUF in group U were also higher (1.13 +/- 0.21 vs. 0.69 +/- 0.22, p < 0.01, 340 +/- 190 vs. 149 +/- 84 mm Hg, p < 0.05). The ultrafiltration of blood priming before CPB attenuated activation of the coagulation pathway and inflammatory responses and preserved cardiopulmonary function in neonatal piglets.

  8. Ligand-modified metal clusters for gas separation and purification

    DOEpatents

    Okrut, Alexander; Ouyang, Xiaoying; Runnebaum, Ron; Gates, Bruce C.; Katz, Alexander

    2017-02-21

    Provided is an organic ligand-bound metal surface that selects one gaseous species over another. The species can be closely sized molecular species having less than 1 Angstrom difference in kinetic diameter. In one embodiment, the species comprise carbon monoxide and ethylene. Such organic ligand-bound metal surfaces can be successfully used in gas phase separations or purifications, sensing, and in catalysis.

  9. Membrane filtration studies of aquatic humic substances and their metal species: a concise overview. Part 2. Evaluation of conditional stability constants by using ultrafiltration.

    PubMed

    Nifant'eva, T I; Shkinev, V M; Spivakov, B Y; Burba, P

    1999-02-01

    The assessment of conditional stability constants of aquatic humic substance (HS) metal complexes is overviewed with special emphasis on the application of ultrafiltration methods. Fundamentals and limitations of stability functions in the case of macromolecular and polydisperse metal-HS species in aquatic environments are critically discussed. The review summarizes the advantages and application of ultrafiltration for metal-HS complexation studies, discusses the comparibility and reliability of stability constants. The potential of ultrafiltration procedures for characterizing the lability of metal-HS species is also stressed.

  10. Processing used nuclear fuel with nanoscale control of uranium and ultrafiltration

    NASA Astrophysics Data System (ADS)

    Wylie, Ernest M.; Peruski, Kathryn M.; Prizio, Sarah E.; Bridges, Andrea N. A.; Rudisill, Tracy S.; Hobbs, David T.; Phillip, William A.; Burns, Peter C.

    2016-05-01

    Current separation and purification technologies utilized in the nuclear fuel cycle rely primarily on liquid-liquid extraction and ion-exchange processes. Here, we report a laboratory-scale aqueous process that demonstrates nanoscale control for the recovery of uranium from simulated used nuclear fuel (SIMFUEL). The selective, hydrogen peroxide induced oxidative dissolution of SIMFUEL material results in the rapid assembly of persistent uranyl peroxide nanocluster species that can be separated and recovered at moderate to high yield from other process-soluble constituents using sequestration-assisted ultrafiltration. Implementation of size-selective physical processes like filtration could results in an overall simplification of nuclear fuel cycle technology, improving the environmental consequences of nuclear energy and reducing costs of processing.

  11. Influence of operating conditions on ceramic ultrafiltration membrane performance when treating textile effluents.

    PubMed

    Barredo-Damas, S; Alcaina-Miranda, M I; Gemma, M; Iborra-Clar, M I; Mendoza-Roca, J A

    2011-01-01

    This work studies the performance of three commercial ceramic ultrafiltration membranes (ZrO(2)-TiO(2)) treating raw effluent from a textile industry. The effect of crossflow velocity at 3, 4 and 5 m s(-1) as well as membrane characteristics, such as molecular weight cut-off (30, 50 and 150 kDa), on process performance were studied. Experiments were carried out in concentration mode in order to observe the effect of volume reduction factor simultaneously. Results showed a combined influence of both crossflow velocity and molecular weight cut-off on flux performance. TOC and COD removals up to 70% and 84% respectively were reached. On the other hand, almost complete color (>97%) and turbidity (>99%) removals were achieved for all the membranes and operating conditions.

  12. Ultrahigh throughput, ultrafiltration-based n-glycomics platform for ultraperformance liquid chromatography (ULTRA(3)).

    PubMed

    Stöckmann, Henning; Duke, Rebecca M; Millán Martín, Silvia; Rudd, Pauline M

    2015-08-18

    Accurate, reproducible, and fast quantification of N-glycans is crucial not only for the development and quality control of modern glycosylated biopharmaceuticals, but also in clinical biomarker discovery. Several methods exist for fluorescent labeling of N-glycans and subsequent chromatographic separation and quantification. However, the methods can be complex, lengthy, and expensive. Here we report an automated ultrafiltration-based N-glycoanalytical workflow combined with a glycan labeling strategy that is based on the reaction of glycosylamines with fluorescent carbamate. The entire protocol is quick, simple, and cost-effective and requires less than 1 μg of protein per sample. As many as 768 affinity purified IgG glycoprotein samples can be prepared in a single run with a liquid handling platform.

  13. Bisphenol A removal by combination of powdered activated carbon adsorption and ultrafiltration

    NASA Astrophysics Data System (ADS)

    Wang, Rongchang; Tong, Hao; Xia, Siqing; Zhang, Yalei; Zhao, Jianfu

    2010-11-01

    Bisphenol A (BPA) removal from surface water in the presence of natural organic matter (NOM) by combination of powdered activated carbon (PAC) adsorption and ultrafiltration (UF) was investigated in this study. It was especially focused on the effects of various factors on BPA removal, such as PAC dosage, NOM concentration and pH value. BPA removal by UF+PAC process increased sharply from 4% to 92%, when PAC dosage increased from 0 to 120 mg/L. The optimal PAC dosage was determined to be 30 mg/L. The results also showed that BPA retention was slightly favored in the presence of NOM. As pH increased from 7.0 to 10.5, BPA removal substantially decreased from 90% to 59%. PAC+UF process is recommended to be used as an emergence facility in drinking water treatment, especially when an accidental spilling of deleterious substance, e.g., BPA, in the water resources happens.

  14. Modeling the improvement of ultrafiltration membrane mass transfer when using biofiltration pretreatment in surface water applications.

    PubMed

    Netcher, Andrea C; Duranceau, Steven J

    2016-03-01

    In surface water treatment, ultrafiltration (UF) membranes are widely used because of their ability to supply safe drinking water. Although UF membranes produce high-quality water, their efficiency is limited by fouling. Improving UF filtrate productivity is economically desirable and has been attempted by incorporating sustainable biofiltration processes as pretreatment to UF with varying success. The availability of models that can be applied to describe the effectiveness of biofiltration on membrane mass transfer are lacking. In this work, UF water productivity was empirically modeled as a function of biofilter feed water quality using either a quadratic or Gaussian relationship. UF membrane mass transfer variability was found to be governed by the dimensionless mass ratio between the alkalinity (ALK) and dissolved organic carbon (DOC). UF membrane productivity was optimized when the biofilter feed water ALK to DOC ratio fell between 10 and 14.

  15. Ultrafiltration performance of heat-treated shamouti orange [Citrus sinensis (L.) Osbeck] juice.

    PubMed

    Merin, U; Shomer, I

    1999-07-01

    During ultrafiltration of orange juice with inorganic membranes, heating of the juice prior to the filtration experiment resulted in a significant increase of the fouling indices. The effect of the irreversible fouling (Rif) was always high, whereas the reversible fouling (Rrf) depended on the treatment. It was clearly seen that fouling was reduced after pectin degradation, but the heat treatment applied to the juice before filtration still resulted in reduced fluxes. It is suggested that pectins and proteins that undergo flocculation/coagulation during the heat treatment tend to interact with the membrane-filtering layer and to cause reduction of permeation flux. To clean the membrane to restore its pure water flux, close to the initial one, a proteolitic enzyme detergent wash was needed.

  16. Trace element speciation in natural waters using hollow-fiber ultrafiltration

    NASA Astrophysics Data System (ADS)

    Lydersen, E.; Bjørnstad, H. E.; Salbu, B.; Pappas, A. C.

    In natural waters trace elements may be present in different physico/chemical forms, varying in size, charge and density. In order to obtain information on the size distribution pattern, hollow-fiber ultrafiltration technique is a useful tool. The membranes are made of inert polymers with different nominal molecular weight cut-off levels. Compared with traditional disc filtering techniques, the main advantages with hollow-fibers are basically the high filtering capacity, combined with minimal clogging and sorption problems. Using a peristaltic pump, the water is transported directly into the molecular weight discriminators. Thus fractionation can be performed in the field, in situ fractionation. The system is closed, contamination risks are minimized and it is possible to determine the degree of sorption on the internal equipment surfaces using a mass-balance approach. Applications of hollow-fibers in natural waters and in laboratory studies are demonstrated in this paper.

  17. Integrated antimicrobial and antifouling ultrafiltration membrane by surface grafting PEO and N-chloramine functional groups.

    PubMed

    Hou, Shuhua; Xing, Jialin; Dong, Xue; Zheng, Jifu; Li, Shenghai

    2017-08-15

    Ultrafiltration membranes with integrated antimicrobial and antifouling properties were fabricated using an engineering thermoplastic (carboxylated cardopoly(aryl ether ketone, PEK-COOH). Different molecular weights of PEO (Mw: 120, 350, 550) were grafted to the PEK-COOH membrane surface via EDC/NHS methodology. N-chloramine modified membranes then were prepared by simple exposure to dilute sodium hypochlorite solution. The surface grafting processes were all performed in water (i.e. without organic solvent). With this surface modification, the hydrophilicity of membranes improved significantly and the pure water flux increased compared to the unmodified PEK-COOH membrane. Furthermore, the PEO and N-chloramine modified membranes were resistant not only to both protein adsorption and bacterial adhesion, but also to microbial proliferation. The results of this work suggest that PEO and N-chloramine modified membranes are promising as fouling-resistant membranes. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Removal of emerging contaminants by simultaneous application of membrane ultrafiltration, activated carbon adsorption, and ultrasound irradiation.

    PubMed

    Secondes, Mona Freda N; Naddeo, Vincenzo; Belgiorno, Vincenzo; Ballesteros, Florencio

    2014-01-15

    Advanced wastewater treatment is necessary to effectively remove emerging contaminants (ECs) with chronic toxicity, endocrine disrupting effects, and the capability to induce the proliferation of highly resistant microbial strains in the environment from before wastewater disposal or reuse. This paper investigates the efficiency of a novel hybrid process that applies membrane ultrafiltration, activated carbon adsorption, and ultrasound irradiation simultaneously to remove ECs. Diclofenac, carbamazepine, and amoxicillin are chosen for this investigation because of their assessed significant environmental risks. Removal mechanisms and enhancement effects are analysed in single and combined processes. The influence of adsorbent dose and ultrasonic frequency to EC removal are also investigated. Results suggest that adsorption is probably the main removal mechanism and is affected by the nature of ECs and the presence of other components in the mixture. Almost complete removals are achieved in the hybrid process for all ECs.

  19. Analysis of mass transfer in unstirred batch ultrafiltration: Effect of variation of diffusivity in boundary layer

    SciTech Connect

    Bhattacharjee, C.; Datta, S.

    1999-08-01

    An unsteady-state mass transfer model has been developed which takes into account the variation of diffusivity with solute concentration in the boundary layer. The main aim of this model is to study the effect of variation of diffusivity on membrane surface concentration as well as on the concentration profile prevailing within the boundary layer. Experimental data generated in this study have been used to validate the model. The resulting complex nonlinear partial differential equation has been solved by a numerical technique. The developed model is also capable of simulating volumetric flux and the permeate volume collected at any time under specified operating conditions. The simulated results show excellent fitting of the present model with variable diffusivity consideration when compared with experimental data. On the other hand, prediction based on constant diffusivity deviates considerably, indicating the importance of consideration of variable diffusivity in unsteady-state batch ultrafiltration.

  20. A two-stage ultrafiltration and nanofiltration process for recycling dairy wastewater.

    PubMed

    Luo, Jianquan; Ding, Luhui; Qi, Benkun; Jaffrin, Michel Y; Wan, Yinhua

    2011-08-01

    A two-stage ultrafiltration and nanofiltration (UF/NF) process for the treatment of model dairy wastewater was investigated to recycle nutrients and water from the wastewater. Ultracel PLGC and NF270 membranes were found to be the most suitable for this purpose. In the first stage, protein and lipid were concentrated by the Ultracel PLGC UF membrane and could be used for algae cultivation to produce biodiesel and biofuel, and the permeate from UF was concentrated by the NF270 membrane in the second stage to obtain lactose in retentate and reusable water in permeate, while the NF retentate could be recycled for anaerobic digestion to produce biogas. With this approach, most of dairy wastewater could be recycled to produce reusable water and substrates for bioenergy production. Compared with the single NF process, this two-stage UF/NF process had a higher efficiency and less membrane fouling.

  1. Effects of protein concentration and detergent on endotoxin reduction by ultrafiltration.

    PubMed

    Jang, Hyun; Kim, Hyo-Seung; Moon, Seung-Cheol; Lee, Young-Rae; Yu, Kang-Yeoul; Lee, Byeong-Kil; Youn, Hyun Zo; Jeong, Young-Ju; Kim, Byeong-Soo; Lee, Sung-Ho; Kim, Jong-Suk

    2009-07-31

    Lipopolysaccharide (LPS), found in the outer membrane of Gram negative bacteria, only exerts its toxic effects when in free form. LPS has three major parts, lipid A, the toxic component, along with a core polysaccharide and O-specific polysaccharide. LPS monomers are known to have molecular masses between 10 to 30 kDa. Under physiological conditions, LPS exists in equilibrium between monomer and vesicle forms. LPS removal by 100 kDa ultrafiltration was more efficient (99.6% of LPS removed) with a low concentration of protein (2.0 mg/ml) compared to a high concentration (20.1 mg/ml). In the presence of different detergents (0.5% Tween 20, 1.0% taurodeoxycholate and 1.0% Triton X-100), LPS removal was more efficient at low protein concentrations (2.0 mg/ml) compared to high protein concentrations (20.1 mg/ml).

  2. Method for concentration and separation of biological organisms by ultrafiltration and dielectrophoresis

    SciTech Connect

    Simmons, Blake A.; Hill, Vincent R.; Fintschenko, Yolanda; Cummings, Eric B.

    2012-09-04

    Disclosed is a method for monitoring sources of public water supply for a variety of pathogens by using a combination of ultrafiltration techniques together dielectrophoretic separation techniques. Because water-borne pathogens, whether present due to "natural" contamination or intentional introduction, would likely be present in drinking water at low concentrations when samples are collected for monitoring or outbreak investigations, an approach is needed to quickly and efficiently concentrate and separate particles such as viruses, bacteria, and parasites in large volumes of water (e.g., 100 L or more) while simultaneously reducing the sample volume to levels sufficient for detecting low concentrations of microbes (e.g., <10 mL). The technique is also designed to screen the separated microbes based on specific conductivity and size.

  3. Improved Therapeutic Profiles of PLA2-Free Bee Venom Prepared by Ultrafiltration Method

    PubMed Central

    Lee, Hyunkyoung; Pyo, Min-Jung; Bae, Seong Kyeong; Heo, Yunwi; Kim, Choul Goo; Kang, Changkeun

    2015-01-01

    Bee venom (BV) has long been used in traditional Eastern and Western medicine for chronic inflammation, pain and skin therapy. Human exposure to BV, however, often causes unwanted adverse effects and is even fatal in some cases. Phospholipase A2 (PLA2) of BV is now suspected to play a key role in these adverse effects. We investigated the potential use of PLA2-free bee venom (PBV) as a replacement for BV in cosmetic products. PBV prepared by molecular weight cut-off ultrafiltration exhibits a superior profile in comparison with regular BV, by inhibiting elastase activity and suppressing the induction of nitric oxide (NO) and metalloproteinase-9 (MMP-9), while retaining the effects of cell proliferation and protection against ultraviolet B (UVB)-induced damage in human dermal fibroblast cells. PBV thus appears to be more promising than BV as a cosmetic ingredient with a reduced potential for adverse reactions in the recipient. PMID:25874031

  4. Simple method for the detoxification of wastewater ultrafiltration concentrates for rotavirus assay by indirect immunofluorescence.

    PubMed Central

    Oragui, J I; Mara, D D

    1989-01-01

    A simple method for the detoxification of ultrafiltration concentrates of wastewaters for rotavirus assay by the indirect immunofluorescence technique has been developed. Polyacrylamide (Bio-Gel) or dextran (Sephadex G50) beads were mixed with concentrates (0.5 g/10 ml, wt/vol) of wastewaters seeded with simian rotavirus SA11 and allowed to stand for 2 h. The supernatant was decontaminated with antibiotics and then assayed for rotaviruses. Concentrates from raw sewage and treated effluents seeded with SA11 were used to infect MA104 or LLC MK2 cell lines. The concentrates, particularly those from raw sewage and anaerobic waste stabilization ponds, were very toxic to the tissue culture cells. These toxic effects were determined by the detachment and subsequent loss of cells after incubation with concentrates and assay medium for 24 h. They were either completely eliminated or were reduced by greater than 80% after treatment with beads. PMID:2541662

  5. Cheese whey protein recovery by ultrafiltration through transglutaminase (TG) catalysis whey protein cross-linking.

    PubMed

    Wen-Qiong, Wang; Lan-Wei, Zhang; Xue, Han; Yi, Lu

    2017-01-15

    In whey ultrafiltration (UF) production, two main problems are whey protein recovery and membrane fouling. In this study, membrane coupling protein transglutaminase (TG) catalysis protein cross-linking was investigated under different conditions to find out the best treatment. We found that the optimal conditions for protein recovery involved catalyzing whey protein cross-linking with TG (40U/g whey proteins) at 40°C for 60min at pH 5.0. Under these conditions, the recovery rate was increased 15-20%, lactose rejection rate was decreased by 10%, and relative permeate flux was increase 30-40% compared to the sample without enzyme treatment (control). It was noticeable that the total resistance and cake resistance were decreased after enzyme catalysis. This was mainly due to the increased particle size and decreased zeta potential. Therefore, membrane coupling enzyme catalysis protein cross-linking is a potential means for further use.

  6. Effect of magnetic field on the ultrafiltration of bovine serum albumin.

    PubMed

    Vardanega, Renata; Tres, Marcus V; Mazutti, Marcio A; Treichel, Helen; de Oliveira, Débora; Di Luccio, Marco; Oliveira, J Vladimir

    2013-08-01

    This work evaluates the effects of a static magnetic field on the permeation of bovine serum albumin (BSA) in a tangential ultrafiltration membrane module. Experimental tests were carried out at different pHs using a poly(sulfone) membrane with molecular weight cut off of 60 kDa under the influence of a 0.4 T neodymium-iron-boron magnetic field. Results showed an increase in the permeate flux of water after the cleaning procedures of the new and reused membranes in the presence of the magnetic field. The elusive mechanism of magnetic memory is also shown to take place for the water fluxes fully recovered after the cleaning procedures when the magnetic field was applied to the system before the permeation. When the magnetic field was applied during permeation, the water fluxes presented lower percent of recuperation after the cleaning procedures, thus suggesting that the BSA solution may have somewhat been influenced by magnetic memory.

  7. Ultrafiltration by a compacted clay membrane-I. Oxygen and hydrogen isotopic fractionation

    USGS Publications Warehouse

    Coplen, T.B.; Hanshaw, B.B.

    1973-01-01

    Laboratory experiments were carried out to determine the magnitude of the isotopic fractionation of distilled water and of 0.01 N NaCl forced to flow at ambient temperature under a hydraulic pressure drop of 100 bars across a montmorillonite disc compacted to a porosity of 35 per cent by a pressure of 330 bars. The ultrafiltrates in both experiments were depleted in D by 2.5%. and in O18 by 0.8%. relative to the residual solution. No additional isotopic fractionation due to a salt filtering mechanism was observed at NaCl concentrations up to 0.01 N. Adsorption is most likely the principal mechanism which produces isotopic fractionation, but molecular diffusion may play a minor role. The results suggest that oxygen and hydrogen isotopic fractionation of ground water during passage through compacted clayey sediments should be a common occurrence, in accord with published interpretations of isotopic data from the Illinois and Alberta basins. ?? 1973.

  8. Integrated coagulation-trickling filter-ultrafiltration processes for domestic wastewater treatment and reclamation.

    PubMed

    Zhao, Qing-Liang; Zhong, Hui-Yuan; Liu, Jin-Li; Liu, Yu

    2012-01-01

    More and more research effort has been put into the development of affordable and high-efficiency wastewater reclamation technology for small communities. In this study, an integrated chemically enhanced primary treatment (CEPT), trickling filter (TF) and ultrafiltration (UF) process was developed with success. Coagulant produced from fly ash was used to enhance primary treatment, while trickling filter packed with coal cinder through four-layer structure without aeration was employed for further removal of COD and ammonium-nitrogen from the CEPT effluent. 95 and 88% removal of COD and ammonium were achieved, while total phosphorus (TP) and suspended solid (SS) were found to be removed completely at a coagulant dosage of 2.5 mL/L in the CEPT-TF-UF system. The product water can meet the standard of Reuse of Recycling Water for Urban Water Quality Standard for Urban Miscellaneous Water Consumption (GB/T 18920-2002, China).

  9. Antifouling ultrafiltration membranes via post-fabrication grafting of biocidal nanomaterials.

    PubMed

    Mauter, Meagan S; Wang, Yue; Okemgbo, Kaetochi C; Osuji, Chinedum O; Giannelis, Emmanuel P; Elimelech, Menachem

    2011-08-01

    Ultrafiltration (UF) membranes perform critical pre-treatment functions in advanced water treatment processes. In operational systems, however, biofouling decreases membrane performance and increases the frequency and cost of chemical cleaning. The present work demonstrates a novel technique for covalently or ionically tethering antimicrobial nanoparticles to the surface of UF membranes. Silver nanoparticles (AgNPs) encapsulated in positively charged polyethyleneimine (PEI) were reacted with an oxygen plasma modified polysulfone UF membrane with and without 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) present. The nucleophilic primary amines of the PEI react with the electrophilic carboxyl groups on the UF membrane surface to form electrostatic and covalent bonds. The irreversible modification process imparts significant antimicrobial activity to the membrane surface. Post-synthesis functionalization methods, such as the one presented here, maximize the density of nanomaterials at the membrane surface and may provide a more efficient route for fabricating diverse array of reactive nanocomposite membranes.

  10. The Effect of Preoxidation on Ultrafiltration Performance in Drinking Water Treatment

    NASA Astrophysics Data System (ADS)

    Li, Weiying; Xu, Jingjing; Lu, Junyu; Zhao, Yong; Sun, Xiuli; Dong, Bingzhi

    2010-11-01

    Membrane fouling due to foulants existing in the membrane feed water is an inevitable problem for ultrafiltration (UF) applied to water treatment. A bench-scale study was undertaken to evaluate the anti-fouling effect of different oxidants preoxidation on the dead-end, constant flux UF of surface water. Furthermore, the mechanisms of membrane fouling by natural organic matter (NOM) were examined. The concept of UMFI (unified membrane fouling index) was applied to assess hydraulically reversible and irreversible fouling potential of UF membrane in the bench-scale fouling studies. It was found that preoxidation greatly impacted the membrane fouling potential, which might be the result of changes of NOM characteristics. The transmembrane pressure (TMP) increased slightly and slowly with increasing dosage. The membrane fouled by preoxidation water was more amenable to chlorine-induced permeability recovery, but it was contrary for hydraulically irreversible fouling. Therefore, preoxidation is a promising pretreatment method for UF systems, and needed further determining.

  11. Impact of feed solution flow rate on Peptide fractionation by electrodialysis with ultrafiltration membrane.

    PubMed

    Poulin, Jean-François; Amiot, Jean; Bazinet, Laurent

    2008-03-26

    Recently, processes combining an electrical field as a driving force to porous membranes have been developed for the separation of protein or peptide mixtures to obtain more purified products with higher functionality or nutritional value. The objective of this work was to evaluate the influence of the flow rate on the productivity and selectivity as well as on the electrodialytic parameters of electrodialysis with an ultrafiltration membrane (EDUF) during the fractionation of peptides from a beta-lactoglobulin tryptic hydrolysate. It appeared that the feed solution flow rate had no impact on the yield of the process but induced changes in the selectivity. In fact, increases in the flow rate decreased the migration of the peptides with limited electrophoretic mobility.

  12. Treatment of laundry wastes by the combination of ultrafiltration and reverse osmosis

    SciTech Connect

    Lee, K.W.; Park, S.C.; Park, H.H.; Kim, J.H.

    1993-12-31

    Fundamental and pilot-scale experiments were conducted to develop a laundry waste treatment system for a nuclear research center. The system is composed of a preconcentration step with reverse osmosis (RO) unit, a volume reduction step with ultrafiltration (UF) unit, and the final purification step with RO unit. At the RO process, the waste was concentrated over the critical micelle concentration on the basis of surfactant concentration. The performance of the UF process was investigated by adsorption experiments of radionuclides on the micellar surface and the separation of the micelles. Under the experimental conditions studied, the overall volume reduction factor over the entire processes was 250 and the average decontamination factors of C{sup 60} and Cs{sup 137} were 110 and 20 respectively.

  13. Pilot-scale investigation of drinking water ultrafiltration membrane fouling rates using advanced data analysis techniques.

    PubMed

    Chen, Fei; Peldszus, Sigrid; Peiris, Ramila H; Ruhl, Aki S; Mehrez, Renata; Jekel, Martin; Legge, Raymond L; Huck, Peter M

    2014-01-01

    A pilot-scale investigation of the performance of biofiltration as a pre-treatment to ultrafiltration for drinking water treatment was conducted between 2008 and 2010. The objective of this study was to further understand the fouling behaviour of ultrafiltration at pilot scale and assess the utility of different foulant monitoring tools. Various fractions of natural organic matter (NOM) and colloidal/particulate matter of raw water, biofilter effluents, and membrane permeate were characterized by employing two advanced NOM characterization techniques: liquid chromatography - organic carbon detection (LC-OCD) and fluorescence excitation-emission matrices (FEEM) combined with principal component analysis (PCA). A framework of fouling rate quantification and classification was also developed and utilized in this study. In cases such as the present one where raw water quality and therefore fouling potential vary substantially, such classification can be considered essential for proper data interpretation. The individual and combined contributions of various NOM fractions and colloidal/particulate matter to hydraulically reversible and irreversible fouling were investigated using various multivariate statistical analysis techniques. Protein-like substances and biopolymers were identified as major contributors to both reversible and irreversible fouling, whereas colloidal/particulate matter can alleviate the extent of irreversible fouling. Humic-like substances contributed little to either reversible or irreversible fouling at low level fouling rates. The complementary nature of FEEM-PCA and LC-OCD for assessing the fouling potential of complex water matrices was also illustrated by this pilot-scale study. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Removal of trace organic chemicals and performance of a novel hybrid ultrafiltration-osmotic membrane bioreactor.

    PubMed

    Holloway, Ryan W; Regnery, Julia; Nghiem, Long D; Cath, Tzahi Y

    2014-09-16

    A hybrid ultrafiltration-osmotic membrane bioreactor (UFO-MBR) was investigated for over 35 days for nutrient and trace organic chemical (TOrC) removal from municipal wastewater. The UFO-MBR system uses both ultrafiltration (UF) and forward osmosis (FO) membranes in parallel to simultaneously extract clean water from an activated sludge reactor for nonpotable (or environmental discharge) and potable reuse, respectively. In the FO stream, water is drawn by osmosis from activated sludge through an FO membrane into a draw solution (DS), which becomes diluted during the process. A reverse osmosis (RO) system is then used to reconcentrate the diluted DS and produce clean water suitable for direct potable reuse. The UF membrane extracts water, dissolved salts, and some nutrients from the system to prevent their accumulation in the activated sludge of the osmotic MBR. The UF permeate can be used for nonpotable reuse purposes (e.g., irrigation and toilet flushing). Results from UFO-MBR investigation illustrated that the chemical oxygen demand, total nitrogen, and total phosphorus removals were greater than 99%, 82%, and 99%, respectively. Twenty TOrCs were detected in the municipal wastewater that was used as feed to the UFO-MBR system. Among these 20 TOrCs, 15 were removed by the hybrid UFO-MBR system to below the detection limit. High FO membrane rejection was observed for all ionic and nonionic hydrophilic TOrCs and lower rejection was observed for nonionic hydrophobic TOrCs. With the exceptions of bisphenol A and DEET, all TOrCs that were detected in the DS were well rejected by the RO membrane. Overall, the UFO-MBR can operate sustainably and has the potential to be utilized for direct potable reuse applications.

  15. Reduction of disinfection by-product precursors in reservoir water by coagulation and ultrafiltration.

    PubMed

    Wang, Feng; Gao, Baoyu; Ma, Defang; Yue, Qinyan; Li, Ruihua; Wang, Qianwen

    2016-11-01

    In this study, reservoir water intended for drinking water supply was treated by (i) ultrafiltration (UF) (ii) coagulation (CW) (iii) coagulation combined with ultrafiltration (CW-UF). To probe the influences of three treatment processes on disinfection byproduct (DBP) precursors in source water, the changes of dissolved organic matter (DOM) amounts and physicochemical properties, and disinfection byproduct (DBP) formation characteristics during chlorine disinfection were investigated. Both carbonaceous DBP (C-DBP) and nitrogenous DBP (N-DBP) formation and speciation were analyzed. The influence of chlorine dose, contact time on DBP formation and speciation were also studied to optimize the disinfection conditions to minimize the DBP formation. Compared with UF and CW alone, CW-UF improved the dissolved organic carbon (DOC) removal from about 20 % to 59 %. The three-dimensional excitation and emission matrix (3DEEM) fluorescence spectroscopy analysis showed that CW-UF had high removal efficiency in microbial products (Region IV), fulvic acid-like (Region III) and humic acid-like (Region V). The total C-DBP was determined by the formation of trihalomethanes and trichloromethane was the most abundant species (40 %). The most abundant N-DBP species was dichloroacetonitrile (32.5 %), followed by trichloroactetonitrile. CW-UF effectively reduced the risk of DBPs in drinking water supply by reducing 30.8 % and 16.9 % DBPs formation potential compared with UF and CW alone. Increasing contact time improved the yields of both C-DBPs and N-DBPs. Chlorine dosage had slight influence on DBP yield in this study.

  16. Inferior vena cava collapsibility to guide fluid removal in slow continuous ultrafiltration: a pilot study.

    PubMed

    Guiotto, Giovanna; Masarone, Mario; Paladino, Fiorella; Ruggiero, Enrico; Scott, Sean; Verde, Sossio; Schiraldi, Fernando

    2010-04-01

    To investigate whether ultrasound determination of the inferior vena cava diameter (IVCD) and its collapsibility index (IVCCI) could be used to optimize the fluid removal rate while avoiding hypotension during slow continuous ultrafiltration (SCUF). Twenty-four consecutive patients [13 men and 11 women, mean age 72 +/- 5 years; New York Heart Association (NYHA) functional classes III-IV] with acute decompensated heart failure (ADHF) and diuretic resistance were admitted to our 16-bed medical ICU. Blood pressure (BP), heart rate (HR), respiratory rate (RR), blood samples for hematocrit, creatinine, sodium, potassium, and arterial BGA plus lactate were obtained at baseline and than every 2 h from the beginning of SCUF. IVCD, assessed by M-mode subcostal echocardiography during spontaneous breathing, was evaluated before SCUF, at 12 h, and just after the cessation of the procedure. The IVCCI was calculated as follows: [(IVCD(max) - IVCD(min))/IVCD(max)] x 100. Mean UF time was 20.3 +/- 4.6 h with a mean volume of 287.6 +/- 96.2 ml h(-1) and a total ultrafiltrate production of 5,780.8 +/- 1,994.6 ml. No significant difference in MAP, HR, RR, and IVCD before and after UF was found. IVCCI increased significantly after UF (P < 0.001). Hypotension was observed only in those patients (2/24) who reached an IVCCI >30%. In all the other patients, a significant increase in IVCCI was obtained without any hemodynamic instability. IVC ultrasound is a rapid, simple, and non-invasive means for bedside monitoring of intravascular volume during SCUF and may guide fluid removal velocity.

  17. Dead-End Hollow-Fiber Ultrafiltration for Recovery of Diverse Microbes from Water▿

    PubMed Central

    Smith, Carmela M.; Hill, Vincent R.

    2009-01-01

    Dead-end ultrafiltration (DEUF) is an alternative approach to tangential-flow hollow-fiber ultrafiltration that can be readily employed under field conditions to recover microbes from water. The hydraulics of DEUF and microbe recovery for a new DEUF method were investigated using 100-liter tap water samples. Pressure, flow rate, and temperature were investigated using four hollow-fiber ultrafilter types. Based on hydraulic performance, the Asahi Kasei REXEED 25S ultrafilter was selected for microbe recovery experiments. Microbe recovery experiments were performed using MS2 bacteriophage, Enterococcus faecalis, Clostridium perfringens spores, and Cryptosporidium parvum oocysts. Microbes were recovered from ultrafilters by backflushing using a surfactant solution. Average flow rates were 2.1 liters/min for 100-liter water samples having turbidities of 0.28 to 4.3 nephelometric turbidity units (NTU), and no evidence of appreciable filter clogging was observed. The DEUF average recovery efficiencies for each study analyte in tap water were as follows: for E. faecalis, 93% ± 16%; for MS2, 57% ± 7.7%; for C. perfringens spores, 94% ± 22%; and for C. parvum, 87% ± 18%. Average microbe recoveries for tap water amended with surface water (average turbidity = 4.3 NTU) were as follows: for E. faecalis, 78% ± 12%; for MS2, 73% ± 13%; for C. perfringens, 57% ± 21%; and for C. parvum, 83% ± 21%. These data demonstrate that DEUF is an effective method for recovering diverse microbes from water and should be a useful tool for field-based environmental investigations. PMID:19561183

  18. Enhancing effect of serum ultrafiltrate on the activity of cephalosporins against gram-negative bacilli.

    PubMed Central

    Leggett, J E; Craig, W A

    1989-01-01

    A few studies have suggested that the inhibitory effect of serum on activity of broad-spectrum cephalosporins is less than that predicted by the degree of protein binding. Microdilution MICs of ceftriaxone, cefoperazone, moxalactam, and ceftizoxime were therefore determined against ATCC and clinical strains of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus in Mueller-Hinton broth containing either human albumin (as 0, 2.5, or 5% solution) or heat-inactivated human serum (as 0, 25, 50, or 95% solution). Arithmetic linear dilutions were used to improve accuracy. For standard bacterial strains, MICs in the presence of 5% albumin were higher than in broth alone by multiples of 10.9 to 21 for ceftriaxone, 5.5 to 16.4 for cefoperazone, 1.9 to 3.7 for moxalactam, and 1.1 to 1.4 for ceftizoxime, as expected by their protein binding. MICs in the presence of 95% serum were similar to those in 5% albumin for all four drugs against S. aureus and P. aeruginosa but were 2.2- to 4.8-fold lower (P less than 0.001) against E. coli and K. pneumoniae. Similar findings were observed at lower protein concentrations and with clinical isolates, except that for some strains of P. aeruginosa MICs were lower in serum than in albumin. Individual sera from five subjects gave comparable results. The addition of serum ultrafiltrate to albumin-containing solutions reduced MICs of ceftriaxone and cefoperazone 1.6- to 7.4-fold against E. coli and K. pneumoniae (P less than 0.01) but did not alter the MICs for S. aureus. Serum may contain an ultrafiltrable component(s) that enhances the activity of third-generation cephalosporins against many gram-negative bacilli. PMID:2496656

  19. Tangential flow ultrafiltration for detection of white spot syndrome virus (WSSV) in shrimp pond water.

    PubMed

    Alavandi, S V; Ananda Bharathi, R; Satheesh Kumar, S; Dineshkumar, N; Saravanakumar, C; Joseph Sahaya Rajan, J

    2015-06-15

    Water represents the most important component in the white spot syndrome virus (WSSV) transmission pathway in aquaculture, yet there is very little information. Detection of viruses in water is a challenge, since their counts will often be too low to be detected by available methods such as polymerase chain reaction (PCR). In order to overcome this difficulty, viruses in water have to be concentrated from large volumes of water prior to detection. In this study, a total of 19 water samples from aquaculture ecosystem comprising 3 creeks, 10 shrimp culture ponds, 3 shrimp broodstock tanks and 2 larval rearing tanks of shrimp hatcheries and a sample from a hatchery effluent treatment tank were subjected to concentration of viruses by ultrafiltration (UF) using tangential flow filtration (TFF). Twenty to 100l of water from these sources was concentrated to a final volume of 100mL (200-1000 fold). The efficiency of recovery of WSSV by TFF ranged from 7.5 to 89.61%. WSSV could be successfully detected by PCR in the viral concentrates obtained from water samples of three shrimp culture ponds, one each of the shrimp broodstock tank, larval rearing tank, and the shrimp hatchery effluent treatment tank with WSSV copy numbers ranging from 6 to 157mL(-1) by quantitative real time PCR. The ultrafiltration virus concentration technique enables efficient detection of shrimp viral pathogens in water from aquaculture facilities. It could be used as an important tool to understand the efficacy of biosecurity protocols adopted in the aquaculture facility and to carry out epidemiological investigations of aquatic viral pathogens.

  20. Disentangling the Ultrafiltration Rate–Mortality Association: The Respective Roles of Session Length and Weight Gain

    PubMed Central

    Curhan, Gary C.; Brunelli, Steven M.

    2013-01-01

    Summary Background and objectives Rapid ultrafiltration rate is associated with increased mortality among hemodialysis patients. Ultrafiltration rates are determined by interdialytic weight gain and session length. Although both interdialytic weight gain and session length have been linked to mortality, the relationship of each to mortality, independent of the other, is not adequately defined. This study was designed to evaluate whether shorter session length independent of weight gain and larger weight gain independent of session length are associated with increased mortality. Design, setting, participants, & measurements Data were taken from a national cohort of 14,643 prevalent, thrice-weekly, in-center hemodialysis patients dialyzing from 2005 to 2009 (median survival time, 25 months) at a single dialysis organization. Patients with adequate urea clearance and delivered dialysis session ≥240 and <240 minutes were pair-matched on interdialytic weight gain (n=1794), and patients with weight gain ≤3 and >3 kg were pair-matched on session length (n=2114); mortality associations were estimated separately. Results Compared with delivered session length ≥240, session length <240 minutes was associated with increased all-cause mortality (adjusted hazard ratio [95% confidence interval], 1.32 [1.03 to 1.69]). Compared with weight gain ≤3, weight gain >3 kg was associated with increased mortality (1.29 [1.01 to 1.65]). The associations were consistent across strata of age, sex, weight, and weight gain and session length. Secondary analyses demonstrated dose-response relationships between both and mortality. Conclusions Among patients with adequate urea clearance, shorter dialysis session length and greater interdialytic weight gain are associated with increased mortality; thus, both are viable targets for directed intervention. PMID:23493384

  1. Enhancing effect of serum ultrafiltrate on the activity of cephalosporins against gram-negative bacilli.

    PubMed

    Leggett, J E; Craig, W A

    1989-01-01

    A few studies have suggested that the inhibitory effect of serum on activity of broad-spectrum cephalosporins is less than that predicted by the degree of protein binding. Microdilution MICs of ceftriaxone, cefoperazone, moxalactam, and ceftizoxime were therefore determined against ATCC and clinical strains of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus in Mueller-Hinton broth containing either human albumin (as 0, 2.5, or 5% solution) or heat-inactivated human serum (as 0, 25, 50, or 95% solution). Arithmetic linear dilutions were used to improve accuracy. For standard bacterial strains, MICs in the presence of 5% albumin were higher than in broth alone by multiples of 10.9 to 21 for ceftriaxone, 5.5 to 16.4 for cefoperazone, 1.9 to 3.7 for moxalactam, and 1.1 to 1.4 for ceftizoxime, as expected by their protein binding. MICs in the presence of 95% serum were similar to those in 5% albumin for all four drugs against S. aureus and P. aeruginosa but were 2.2- to 4.8-fold lower (P less than 0.001) against E. coli and K. pneumoniae. Similar findings were observed at lower protein concentrations and with clinical isolates, except that for some strains of P. aeruginosa MICs were lower in serum than in albumin. Individual sera from five subjects gave comparable results. The addition of serum ultrafiltrate to albumin-containing solutions reduced MICs of ceftriaxone and cefoperazone 1.6- to 7.4-fold against E. coli and K. pneumoniae (P less than 0.01) but did not alter the MICs for S. aureus. Serum may contain an ultrafiltrable component(s) that enhances the activity of third-generation cephalosporins against many gram-negative bacilli.

  2. A Modified EPA Method 1623 that Uses Tangential Flow Hollow-Fiber Ultrafiltration and Heat Dissociation Steps to Detect Waterborne Cryptosporidum and Giardia spp.

    EPA Science Inventory

    This protocol describes the use of a tangential flow hollow-fiber ultrafiltration sample concentration system and a heat dissociation as alternative steps for the detection of waterborne Cryptosporidium and Giardia species using EPA Method 1623.

  3. Ultrafiltration, a useful method for isolation of intermediates in native chemical ligation exemplified with the total synthesis of Sortase AΔN59.

    PubMed

    Deng, Fang-kun

    2015-04-01

    In this paper, ultrafiltration was employed to facilitate the isolation of intermediates in native chemical ligation. Depending on the molecular weight cutoff of the membrane used, molecules with different sizes could be purified, separated, or concentrated by the ultrafiltration process. Total chemical synthesis of the polypeptide chain of the enzyme Sortase AΔN59 was used as an example of the application of ultrafiltration in chemical protein synthesis. Sortase A is a ligase that catalyzes transpeptidation reactions between proteins that have C-terminal LPXTG recognition sequence and Gly5- on the peptidoglycan of bacterial cell walls. Ultrafiltration technique facilitated synthesis of Sortase AΔN59 and was a promising tool in isolation of intermediates in native chemical ligation.

  4. A Modified EPA Method 1623 that Uses Tangential Flow Hollow-Fiber Ultrafiltration and Heat Dissociation Steps to Detect Waterborne Cryptosporidum and Giardia spp.

    EPA Science Inventory

    This protocol describes the use of a tangential flow hollow-fiber ultrafiltration sample concentration system and a heat dissociation as alternative steps for the detection of waterborne Cryptosporidium and Giardia species using EPA Method 1623.

  5. The dye or humic acid water treatment and membrane fouling by polyaluminum chloride composited with sodium alginate in coagulation-ultrafiltration process.

    PubMed

    Wang, Yan; Zhang, Feng; Chu, Yongbao; Gao, Baoyu; Yue, Qinyan

    2013-01-01

    Composite flocculants have been extensively studied and applied in recent years in order to improve the water treatment efficiency. In this study, a new composite flocculant prepared by polyaluminum chloride (PAC) and sodium alginate (SA) was used to treat dye and humic acid water in the coagulation-ultrafiltration process. The subsequent effects of PAC/SA on ultrafiltration membrane fouling were investigated by calculating the Modified Fouling Index (MFI). The results showed that the application of PAC/SA could not only restrict the membrane fouling but also improve the removal efficiency of the coagulation-ultrafiltration process. MFI of PAC/SA was the lowest, followed by PAC and the raw water for coagulated effluents filtered by ultrafiltration membrane. For example, MFI of PAC/SA was 0.40 s mL(-2) for reactive blue KGL (denoted as RB-KGL) treatment, while that of PAC was 2.26 s mL(-2). The removal efficiencies were improved as coagulation was used as pretreatment of ultrafiltration membrane. And PAC/SA could form the higher removal efficiency than PAC, especially for RB-KGL. The color removal efficiency of PAC/SA was 96.36% for RB-KGL treated by coagulation-ultrafiltration process, which was higher than that of PAC (85.62%).

  6. Novelties of combustion synthesized titania ultrafiltration membrane in efficient removal of methylene blue dye from aqueous effluent.

    PubMed

    Doke, Suresh M; Yadav, Ganapati D

    2014-12-01

    In this study, titania nanoparticles were synthesized by combustion and used to make ultrafiltration membrane. Characteristics of titania membranes such as textural evaluation, surface morphology, pure water permeability and protein rejection were investigated. Titania membrane sintered at 450 °C showed pure water permeability 11 × 10−2 L h−1 m−2 kPa−1 and 76% protein rejection. The membrane presented good water flux and retention properties with regards to protein and methylene blue dye. Ultrafiltration process was operated at lower pressure (100 kPa) and showed 99% removal of methylene blue using adsorptive micellar flocculation at sodium dodecyl sulfate concentration below its critical micellar concentration. Ferric chloride was used as the coagulant. The method of making titania membrane and its use are new. These studies can be extended to other dyes and pollutants.

  7. Implantation of an ultrafiltration device in the ileum and spiral colon of steers to continuously collect intestinal fluid.

    PubMed

    Warren, Chelsea D; Prange, Timo; Campbell, Nigel B; Gerard, Mat P; Martin, Luke G; Jacob, Megan E; Smith, Geof W; Papich, Mark G; Foster, Derek M

    2014-12-01

    Collection of fluid from the lumen of the gastrointestinal tract is commonly necessary for research projects, but presents challenges including intestinal motility and potential for leakage of intestinal contents. In this study, ultrafiltration collection devices were surgically implanted in the ileum and spiral colon of 12 steers for repeated collection of intestinal fluid over 48 hours. There were no significant complications associated with surgery or during the post-operative period, nor were there any significant pathologic changes found at necropsy 3 or 4 days post-surgery. Over 48 hours, we obtained 88% of the desired 212 samples. Only two devices failed to routinely collect samples. Use of ultrafiltration probes is a novel, consistent and humane method to repeatedly sample the gastrointestinal contents.

  8. Enhanced permeability and antifouling performance of cellulose acetate ultrafiltration membrane assisted by l-DOPA functionalized halloysite nanotubes.

    PubMed

    Mu, Keguang; Zhang, Dalun; Shao, Ziqiang; Qin, Dujian; Wang, Yalong; Wang, Shuo

    2017-10-15

    l-Dopa functionalized halloysite nanotubes (HNTs) were prepared by the self-polymerization of l-dopa in the weak alkaline condition. Then different contents of l-dopa coated HNTs (LPDHNTs) were blended into cellulose acetate to prepare enhanced performance ultrafiltration membranes via the phase inversion method. The HNTs and LPDHNTs were characterized by FTIR, XPS, and TEM anysis. And the membranes morphologies, separation performance, antifouling performance, mechanical properties and hydrophilicity were also investigated. It was found that the composite membranes exhibited excellent antifouling performance. The pure water flux of 3.0wt% LPDHNTs/CA membrane increased from 11.4Lm(-2)h(-1) to 92.9Lm(-2)h(-1), while the EA rejection ratio of the membrane was about 91.2%. In addition, the mechanical properties of the resultant membranes were strengthened compared with the CA ultrafiltration membrane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Ultrafiltration as alternative purification procedure for the characterization of low and high molecular-mass phenolics from almond skins.

    PubMed

    Prodanov, Marin; Garrido, Ignacio; Vacas, Visitación; Lebrón-Aguilar, Rosa; Dueñas, Montserrat; Gómez-Cordovés, Carmen; Bartolomé, Begoña

    2008-02-25

    A combination of sample preparation (ultrafiltration) and analysis techniques is proposed for the characterization of complex phenolic mixtures such as extracts from almond (Prunus dulcis (Mill.) D.A. Webb) skins. LC/ESI-MS analysis of the permeates obtained after ultrafiltration on semipermeable membranes (low molecular-mass phenolic fractions) allowed the identification of several benzoic acids and aldehydes, flavan-3-ol monomers and oligomers, and flavonol and flavanone glycosides in almond skins. MALDI-TOF and ESI-MS/MS analysis of the diafiltered concentrates (high molecular-mass phenolic fractions) demonstrated the presence of proanthocyanidin oligomers up to decamers, composed of (epi)afzelechin, (epi)catechin and (epi)gallocatechin units linked by C-C bonds (type B) and by both C-C and C-O bonds (type A). This analytical protocol can be of utility in the study of low and high molecular-mass phenolic compounds in natural products.

  10. Interaction of strontium and europium with an aquatic fulvic acid studied by ultrafiltration and ion exchange techniques

    NASA Astrophysics Data System (ADS)

    Nordén, Maria; Ephraim, James; Allard, Bert

    The complexation of an aquatic fulvic acid, FA, with Sr2+ and Eu3+ was studied using an ultrafiltration technique and an ion exchange distribution method. The total amount of bound metal (Sr2+ and Eu3+) was measured as a function of pH at low metal concentrations (trace levels) and constant FA concentration. In the Sr-FA system the bound metal fraction increased slightly with pH, and the values obtained from the two experimental techniques were comparable. For Eu-FA, according to the ultrafiltration data, the fraction of bound metal ion was relatively insensitive to pH changes, whereas values from the ion exchange measurements showed a strong and positive dependence on pH. The results are discussed in the light of possible intrinsic problems of the two methods.

  11. Determination of total and unbound concentrations of lopinavir in plasma using liquid chromatography-tandem mass spectrometry and ultrafiltration methods.

    PubMed

    Illamola, S M; Labat, L; Benaboud, S; Tubiana, R; Warszawski, J; Tréluyer, J M; Hirt, D

    2014-08-15

    Lopinavir is an HIV protease inhibitor with high protein binding (98-99%) in human plasma. This study was designed to develop an ultrafiltration method to measure the unbound concentrations of lopinavir overcoming the non-specific binding issue. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the determination of total concentrations of lopinavir in plasma was developed and validated, and an adaptation was also optimized and validated for the determination of unbound concentrations. The chromatographic separation was performed with a C18 column (100 mm × 2.1mm i.d., 5 μm particle size) using a mobile phase containing deionized water with formic acid, and acetonitrile, with gradient elution at a flow-rate of 350 μL min(-1). Identification of the compounds was performed by multiple reaction monitoring, using electrospray ionization in positive ion mode. The method was validated over a clinical range of 0.01-1 μg/mL for human plasma ultrafiltrate and 0.1-15 μg/mL in human plasma. The inter and intra-assay accuracies and precisions were between 0.23% and 11.37% for total lopinavir concentrations, and between 3.50% and 13.30% for plasma ultrafiltrate (unbound concentration). The ultrafiltration method described allows an accurate separation of the unbound fraction of lopinavir, circumscribing the loss of drug by nonspecific binding (NSB), and the validated LC-MS/MS methodology proposed is suitable for the determination of total and unbound concentrations of lopinavir in clinical practice.

  12. Photochemical modification of poly(ether sulfone) ultrafiltration membranes by UV-assisted graft polymerization for the prevention of biofouling

    NASA Astrophysics Data System (ADS)

    Pieracci, John Paul

    Membranes are widely used by the biotechnology industry in the separation and recovery of proteins from biological solutions. Fouling of membrane surfaces by irreversible protein adsorption during ultrafiltration causes loss of membrane permeability and can reduce membrane selectivity and lead to significant product loss through denaturation. In this work, low fouling poly(ether sulfone) (PES) ultrafiltration membranes were produced by ultraviolet (UV) assisted graft polymerization of hydrophilic vinyl monomers using a newly developed photochemical dip modification technique. This technique was developed to make the UV modification process more easily adaptable to continuous membrane manufacturing processes. A method was also developed to measure and track the degree of polymer grafting on the membrane surface using attenuated total reflection Fourier transform infrared spectroscopy (FTIR/ATR). Grafting the hydrophilic monomer N-vinyl-2-pyrrolidinone (NVP) onto the membrane surface increased surface wettability and produced membranes with the high wettability of regenerated cellulose membranes. The enhanced surface wettability significantly decreased irreversible adsorptive fouling during the filtration of the protein bovine serum albumin (BSA). In order to maintain the rejection of BSA after modification, PES chain scission was tightly controlled by regulating the UV wavelength range and the light intensity used. The UV reactor system was operated with 300 nm UV lamps and a benzene filter used to remove high energy wavelengths below 275 nm that were determined to cause severe loss of BSA rejection due to pore enlargement from extensive chain scission. Dip modification caused membrane permeability to decrease due to the grafted chains blocking the membrane pores. The use of a chain transfer agent during modification followed by ethanol cleaning increased modified membrane permeability, but BSA rejection was severely decreased. The resultant membranes produced by

  13. Haemodialysing babies weighing <8 kg with the Newcastle infant dialysis and ultrafiltration system (Nidus): comparison with peritoneal and conventional haemodialysis.

    PubMed

    Coulthard, Malcolm G; Crosier, Jean; Griffiths, Clive; Smith, Jon; Drinnan, Michael; Whitaker, Mike; Beckwith, Robert; Matthews, John N S; Flecknell, Paul; Lambert, Heather J

    2014-10-01

    To compare the efficacy of the Newcastle infant dialysis and ultrafiltration system (Nidus) with peritoneal dialysis (PD) and conventional haemodialysis (HD) in infants weighing <8 kg. We compared the urea, creatinine and phosphate clearances, the ultrafiltration precision, and the safety of the Nidus machine with PD in 7 piglets weighing 1-8 kg, in a planned randomised cross-over trial in babies, and in babies for whom no other therapy existed, some of whom later graduated to conventional HD. Two babies entered the randomised trial; 1 recovered rapidly on PD, the other remained on the Nidus as PD failed. Additionally, 9 babies were treated on the Nidus on humanitarian grounds: 3 because of failed PD, and 3 with permanent kidney failure later converted to conventional HD. We haemodialysed 10 babies weighing between 1.8 and 5.9 kg for 2,475 h during 354 Nidus sessions without any clinically important incidents, and without detectable haemolysis. Single-lumen vascular access was used with no blood priming of circuits. The urea, creatinine and phosphate clearances using the Nidus were around 1.5 to 2.0 ml/min in piglets and babies, and were consistently higher than PD clearances, which ranged from about 0.2 to 0.8 ml/min (p ≤ 0.0002 for each chemical). Ultrafiltration was achieved to microlitre precision by the Nidus, but varied widely with PD. Fluid removal using conventional HD was imprecise and resulted in some hypovolaemic episodes requiring correction. The Nidus can provide HD in the Pediatric Intensive Care Unit (PICU) and outpatient intermittent HD without blood priming for babies weighing <8 kg, It generates higher dialysis clearances than PD, and delivers more precise ultrafiltration control than either PD or conventional HD.

  14. Role of glomerular ultrafiltration of growth factors in progressive interstitial fibrosis in diabetic nephropathy.

    PubMed

    Wang, S N; LaPage, J; Hirschberg, R

    2000-03-01

    The present in vivo and in vivo experiments were performed to test the hypothesis that in rats with glomerular proteinuria, the bioactive growth factors transforming growth factor-beta (TGF-beta) and hepatocyte growth factor (HGF) are ultrafiltered into tubular fluid, can interact with respective receptors in apical tubular cell membranes, increase the expression and basolateral secretion of C-C-chemokines, which interact with cells in the renal interstitium and indirectly cause myofibroblasts to increase the expression of extracellular matrix proteins. HGF and TGF-beta were measured by Western blot and bioassay in glomerular ultrafiltrate that was collected by nephron micropuncture from rats with diabetic nephropathy and control rats. Proximal tubular and collecting duct cells were incubated with diluted proximal tubular fluid or recombinant human HGF (rhHGF) or rhTGF-beta and expression of C-C-chemokines was measured by RT-PCR and ELISA. Interactions of tubular cell chemokines with macrophages and indirectly with myofibroblasts were also examined using cell culture models. In rats with glomerular proteinuria due to diabetic nephropathy mature, bioactive HGF as well as active and latent TGF-beta were detected in early proximal tubular fluid. Specific HGF- and TGF-beta type II receptors were expressed in apical tubular membranes more in diabetic compared to control rats. Incubation of cultured mouse proximal tubular cells (mPTC) or medullary collecting duct cells (mIMCD-3) with diabetic rat proximal tubular fluid increased MCP-1 and RANTES mRNA levels as well as secreted peptide up to threefold. In contrast, high glucose (450 mg/dL), bovine serum albumin (BSA) or rat albumin (each at 100 micrograms/mL) or 10 nmol/L insulin-like growth factor-I (IGF-I; which was also present in glomerular ultrafiltrate in rats with diabetic nephropathy) did not affect expression of these chemokines. Recombinant human TGF-beta as well as rhHGF each increased MCP-1 and RANTES mRNA as

  15. Response surface-optimized removal of Reactive Red 120 dye from its aqueous solutions using polyethyleneimine enhanced ultrafiltration.

    PubMed

    Dasgupta, J; Singh, M; Sikder, J; Padarthi, V; Chakraborty, S; Curcio, S

    2015-11-01

    Retention of toxic dyes with molecular weights lower than the molecular weight cut-off (MWCO) of the ultrafiltration membranes can be improved through selective binding of the target dyes to a water-soluble polymer, followed by ultrafiltration of the macromolecular complexes formed. This method, often referred to as polymer enhanced ultrafiltration (PEUF), was investigated in the present study, using polyethyleneimine (PEI) as the chelating agent. Model azo dye Reactive Red 120 was selected as the poorly biodegradable, target contaminant, because of its frequent recalcitrant presence in colored effluents, and its eventual ecotoxicological impacts on the environment. The effects of the governing process factors, namely, cross flow rate, transmembrane pressure polymer to dye ratio and pH, on target dye rejection efficiency were meticulously examined. Additionally, each parameter level was statistically optimized using central composite design (CCD) from the response surface methodology (RSM) toolkit, with an objective to maximize performance efficiency. The results revealed high dye retention efficiency over 99%, accompanied with reasonable permeate flux over 100L/m(2)h under optimal process conditions. The estimated results were elucidated graphically through response surface (RS) plots and validated experimentally. The analyses clearly established PEUF as a novel, reasonably efficient and economical route for recalcitrant dye treatment.

  16. Effect of skim milk treated with high hydrostatic pressure on permeate flux and fouling during ultrafiltration.

    PubMed

    Leu, Mathilde; Marciniak, Alice; Chamberland, Julien; Pouliot, Yves; Bazinet, Laurent; Doyen, Alain

    2017-09-01

    Ultrafiltration (UF) is largely used in the dairy industry to generate milk and whey protein concentrate for standardization of milk or production of dairy ingredients. Recently, it was demonstrated that high hydrostatic pressure (HHP) extended the shelf life of milk and improved rennet coagulation and cheese yield. Pressurization also modified casein micelle size distribution and promoted aggregation of whey proteins. These changes are likely to affect UF performance. Consequently, this study determined the effect of skim milk pressurization (300 and 600 MPa, 5 min) on UF performance in terms of permeate flux decline and fouling. The effect of HHP on milk proteins was first studied and UF was performed in total recycle mode at different transmembrane pressures to determine optimal UF operational parameters and to evaluate the effect of pressurization on critical and limiting fluxes. Ultrafiltration was also performed in concentration mode at a transmembrane pressure of 345 kPa for 130 or 140 min to evaluate the decline of permeate flux and to determine fouling resistances. It was observed that average casein micelle size decreased by 32 and 38%, whereas β-lactoglobulin denaturation reached 30 and 70% at 300 and 600 MPa, respectively. These results were directly related to UF performance because initial permeate fluxes in total recycle mode decreased by 25% at 300 and 600 MPa compared with nonpressurized milk, critical flux, and limiting flux, which were lower during UF of milk treated with HHP. During UF in concentration mode, initial permeate fluxes were 30% lower at 300 and 600 MPa compared with the control, but the total flux decline was higher for nonpressurized milk (62%) compared with pressure-treated milk (30%). Fouling resistances were similar, whatever the treatment, except at 600 MPa where irreversible fouling was higher. Characterization of the fouling layer showed that caseins and β-lactoglobulin were mainly involved in membrane fouling after UF of

  17. Micellar enhanced ultrafiltration process for the treatment of olive mill wastewater.

    PubMed

    El-Abbassi, Abdelilah; Khayet, Mohamed; Hafidi, Abdellatif

    2011-10-01

    Olive mill wastewater (OMW) is an important environmental pollution problem, especially in the Mediterranean, which is the main olive oil production region worldwide. Environmental impact of OMW is related to its high organic load and particularly to the phytotoxic and antibacterial action of its phenolic content. In fact, polyphenols are known as powerful antioxidants with interesting nutritional and pharmaceutical properties. In the present work, the efficiency of OMW Micellar Enhanced Ultrafiltration (MEUF) treatment for removal and concentration of polyphenols was investigated, using an anionic surfactant (Sodium Dodecyl Sulfate salt, SDS) and a hydrophobic poly(vinyldene fluoride) (PVDF) membrane. The effects of the process experimental conditions on the permeate flux were investigated, and the secondary membrane resistance created by SDS molecules was evaluated. The initial fluxes of OMW processing by MEUF using SDS were 25.7 and 44.5 l/m2 h under transmembrane pressures of 3.5 and 4.5 bar, respectively. The rejection rate of polyphenols without using any surfactant ranged from 5 to 28%, whereas, it reached 74% when SDS was used under optimum pH (pH 2). The MEUF provides a slightly colored permeate (about 88% less dark), which requires clearly less chemical oxygen demand (COD) for its oxidation (4.33% of the initial COD). These results showed that MEUF process can efficiently be applied to the treatment of OMW and for the concentration and recovery of polyphenols.

  18. Mechanisms of MS2 bacteriophage removal by fouled ultrafiltration membrane subjected to different cleaning methods.

    PubMed

    Lu, Ruiqing; Mosiman, Daniel; Nguyen, Thanh H

    2013-01-01

    An ultrafiltration unit with a polyvinylidene fluoride (PVDF) membrane of 40 nm nominal pore size was used to study bacteriophage MS2 removal under different membrane conditions: pristine membrane, membrane fouled by soluble microbial product (SMP) extracted from membrane bioreactor (MBR) feedwater, backwashed membrane, and chemically cleaned membrane. The order of MS2 removal by these membranes was as follows: fouled membrane > backwashed membrane > chemically cleaned membrane ≈ pristine membrane. A linear correlation between membrane relative permeability and MS2 removal was found. Mass balance analysis showed a high percentage of MS2 in the concentrate for the fouled membrane as compared with the pristine membrane. Quartz crystal microbalance (QCM) results showed faster kinetics of MS2 adhesion to the pristine membrane than to the SMP-fouled membrane. In agreement with QCM results, an attractive force between MS2 and the pristine membrane was detected using an atomic force microscope (AFM), whereas a repulsive force was detected for the interaction between MS2 and the fouled membrane. The presence of SMP on the membrane surface led to higher rejection of MS2 due to both pore blocking and repulsion between MS2 and the SMP layer. Chemical cleaning removed most of the SMP foulant and as a result led to a lower MS2 removal.

  19. Enhancement and Mitigation Mechanisms of Protein Fouling of Ultrafiltration Membranes under Different Ionic Strengths.

    PubMed

    Miao, Rui; Wang, Lei; Mi, Na; Gao, Zhe; Liu, Tingting; Lv, Yongtao; Wang, Xudong; Meng, Xiaorong; Yang, Yongzhe

    2015-06-02

    To determine further the enhancement and mitigation mechanisms of protein fouling, filtration experiments were carried out with polyvinylidene fluoride (PVDF) ultrafiltration (UF) membranes and bovine serum albumin (BSA) over a range of ionic strengths. The interaction forces, the adsorption behavior of BSA on the membrane surface, and the structure of the BSA adsorbed layers at corresponding ionic strengths were investigated. Results indicate that when the ionic strength increased from 0 to 1 mM, there was a decrease in the PVDF-BSA and BSA-BSA electrostatic repulsion forces, resulting in a higher deposition rate of BSA onto the membrane surface, and the formation of a denser BSA layer; consequently, membrane fouling was enhanced. However, at ionic strengths of 10 and 100 mM, membrane fouling and the BSA removal rate decreased significantly. This was mainly due to the increased hydration repulsion forces, which caused a decrease in the PVDF-BSA and BSA-BSA interaction forces accompanied by a decreased hydrodynamic radius and increased diffusion coefficient of BSA. Consequently, BSA passed more easily through the membrane and into permeate. There was less accumulation of BSA on the membrane surface. A more nonrigid and open structure BSA layer was formed on the membrane surface.

  20. Effect of coagulation on fouling rate and cleanability of ultrafiltration membranes

    SciTech Connect

    Ying, W.; Tansel, B.

    1996-11-01

    Among the membrane filtration techniques, continuous cross-flow ultrafiltration (UF) is an innovative method to separate solid/liquid or liquid/liquid phases at a lower pressure of 5--150 psi compared to reverse osmosis (RO) in which the applied pressure is an order of magnitude higher. Recently, attempts have been made to combine processes of UF and other treatments for many applications. However, there is very little knowledge about the filtration process which combined coagulation and UF, and very few attempts have been made to apply coagulated UF to the treatment of fuel oil contaminated water. During the UF treatment of organic contaminants rapid declines in flux will occur due to the membrane fouling. Oil as a foulant plants an important role in the flux decrease. However, there are very limited pretreatment processes which can effectively remove fuel oil from water and hence solve the fouling problem. The purpose of the study was to examine the effectiveness of a simple method for reducing UF membrane fouling which is caused by fuel oils in feed water. In this simple method, a coagulant was added into the feed water contaminated by fuel oils during the cross-flow UF treatment (coagulated UF). In this investigation, turbidity and petroleum hydrocarbon removal efficiency, permeate flux and membrane fouling potential were evaluated by a series of batch experiments. The mechanisms by which the membrane fouling was significantly reduced by coagulation were discussed.

  1. Lactic acid recovery from cheese whey fermentation broth using combined ultrafiltration and nanofiltration membranes.

    PubMed

    Li, Yebo; Shahbazi, Abolghasem

    2006-01-01

    The separation of lactic acid from lactose in the ultrafiltration permeate of cheese whey broth was studied using a cross-flow nanofiltration membrane unit. Experiments to test lactic acid recovery were conducted at three levels of pressure (1.4, 2.1, and 2.8 MPa), two levels of initial lactic acid concentration (18.6 and 27 g/L), and two types of nanofiltration membranes (DS-5DK and DS-5HL). Higher pressure caused significantly higher permeate flux and higher lactose and lactic acid retention (p < 0.0001). Higher initial lactic acid concentrations also caused significantly higher permeate flux, but significantly lower lactose and lactic acid retention (p < 0.0001). The two tested membranes demonstrated significant differences on the permeate flux and lactose and lactic acid retention. Membrane DS-5DK was found to retain 100% of lactose at an initial lactic acid concentration of 18.6 g/L for all the tested pressures, and had a retention level of 99.5% of lactose at initial lactic acid concentration of 27 g/L when the pressure reached 2.8 MPa. For all the tests when lactose retention reached 99-100%, as much as 64% of the lactic acid could be recovered in the permeate.

  2. ACE-I Inhibitory Activity from Phaseolus lunatus and Phaseolus vulgaris Peptide Fractions Obtained by Ultrafiltration.

    PubMed

    Betancur-Ancona, David; Dávila-Ortiz, Gloria; Chel-Guerrero, Luis Antonio; Torruco-Uco, Juan Gabriel

    2015-11-01

    The involvement of angiotensin-I-converting enzyme (ACE-I) as one of the mechanisms controlling blood pressure is being studied to find alternative means of control of hypertension on human beings. On the market there are synthetic drugs that can control it, but these can cause undesirable health side effects. In this work was assessed the fractionation by ultrafiltration of the Lima bean (Phaseolus lunatus) and Jamapa bean (Phaseolus vulgaris), protein hydrolysates obtained with Alcalase(®) and Flavourzyme(®) on ACE-I inhibitory activity. Four membranes of different molecular cutoffs (10, 5, 3, and 1 kDa) were used. Fractions that had a higher inhibitory activity in both legumes were denominated as E (<1 kDa) with IC50 of 30.3 and 51.8 μg/mL values for the P. lunatus with Alcalase and Flavourzyme, respectively, and for the Phaseolus vulgaris with Alcalase and Flavourzyme with about 63.8 and 65.8 μg/mL values, respectively. The amino acid composition of these fractions showed residues in essential amino acids, which make a good source of energy and amino acids. On the other hand, the presence of hydrophobic amino acids such as V and P is a determining factor in the ACE-I inhibitor effect. The results suggest the possibility of obtaining and utilizing these peptide fractions in the development and innovation of a functional product that helps with treatment and/or prevention of hypertension.

  3. Recovery of nickel from aqueous solutions by complexation-ultrafiltration process with sodium polyacrylate and polyethylenimine.

    PubMed

    Shao, Jiahui; Qin, Shu; Davidson, Joshua; Li, Wenxi; He, Yiliang; Zhou, H Susan

    2013-01-15

    The recovery of nickel from aqueous dilute solutions by complexation-ultrafiltration process with sodium polyacrylate (PAAS) and polyethylenimine (PEI) was studied. Experiments were performed as a function of aqueous pH, polymer/Ni(2+) ratio and background electrolyte concentration. At optimum experimental conditions, the nickel removal rate reaches 99.5% using PAAS and 93.0% using PEI as the complexation agent. The nickel removal rate was found to decrease as the adding salt NaCl concentration increases for both complexation agents. A series of experiments implied that the mechanism could be the compressing electric double layer other than the competitive complexation. Diafiltration technique was further performed to regenerate complexation agents and recover nickel. The nickel removal rates were found to be close to those obtained with the original PEI and PAAS. Finally, Langmuir-type binding isotherm equation was employed to evaluate the extent of nickel bound to PAAS and PEI. The overall results from the two-step process of complexation-UF and decomplexation-UF separation showed that it could be a promising method for nickel removal and recovery from aqueous solutions. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Membrane fouling in ultrafiltration of natural water after pretreatment to different extents.

    PubMed

    Ao, Lu; Liu, Wenjun; Zhao, Lin; Wang, Xiaomao

    2016-05-01

    The combined fouling during ultrafiltration (UF) of surface water pretreated to different extents was investigated to disclose the roles of polysaccharides, proteins, and inorganic particles in UF membrane fouling. Both reversible and irreversible fouling decreased with enhanced pretreatment (biologically active carbon (BAC) treatment and sand filtration). The sand filter effluent fouled the membrane very slowly. The UF membrane removed turbidity to less than 0.1 nephelometric turbidity unit (NTU), reduced polysaccharides by 25.4%-29.9%, but rejected few proteins. Both polysaccharides and inorganic particles were detected on the fouled membranes, but inorganic particles could be effectively removed by backwashing. The increase of turbidity in the sand filter effluent to 3.05 NTU did not significantly increase the fouling rate, but an increase in the turbidity in the BAC effluent to 6.11 NTU increased the fouling rate by more than 100%. The results demonstrated that the polysaccharide, not the protein, constituents of biopolymers were responsible for membrane fouling. Membrane fouling was closely associated with a small fraction of polysaccharides in the feed water. Inorganic particles exacerbated membrane fouling only when the concentration of fouling-inducing polysaccharides in the feed water was relatively high. The combined fouling was largely reversible, and polysaccharides were the predominant substances responsible for irreversible fouling. Copyright © 2015. Published by Elsevier B.V.

  5. The effect of contaminated particle sphericity and size on membrane fouling in cross flow ultrafiltration.

    PubMed

    Abdelrasoul, Amira; Doan, Huu; Lohi, Ali; Cheng, Chil-Hung

    2017-03-15

    The goal of the current research was to critically examine the role of the shape and the size of contaminated particles for an accurate prediction of membrane fouling phenomenon. Polycarbonate flat membranes (PC) with uniform pore sizes of 0.05 and 0.1 µm, in addition to Polysulfone membranes (PS) with molecular weight cut off (MWCO) of 60,000 kDa were used under a constant feed flow rate and a cross-flow mode in ultrafiltration of a latex paint solution featuring a wide range of particle size distribution. The current mathematical model was developed to illustrate the effect of irregularity and polydispersity of latex particles on the mass of fouling and irreversible fouling on membranes. The experimental results established that the sphericity of contaminated particles had a critical effect on the membrane fouling and prediction of transmembrane pressure and total mass of fouling using the homogenous pore size membranes. The Cetyltrimethyl Ammonium Bromide (CTAB) was implemented as a cationic surfactant so as to facilitate the aggregation of latex particles. The results obtained indicated that the particle size had a significant influence on fouling potential at different aggregation levels.

  6. Fouling behavior of silica nanoparticle-surfactant mixtures during constant flux dead-end ultrafiltration.

    PubMed

    Trzaskus, Krzysztof W; Lee, Sooi Li; de Vos, Wiebe M; Kemperman, Antoine; Nijmeijer, Kitty

    2017-11-15

    The increasing use of engineered nanoparticles in customer products results in their accumulation in water sources. In this experimental study, we investigated the role of surfactant type (cationic, anionic and non-ionic) and concentration on fouling development, nanoparticle rejection and fouling irreversibility during dead-end ultrafiltration of model silica nanoparticles. Our work demonstrates that the type of surfactant influences the nanoparticle stability, which in turn is responsible for differences in fouling behavior of the nanoparticles. Moreover, the surfactant itself interacts with the PES-PVP membrane and contributes to the fouling as well. We have shown that anionic SDS (sodium dodecylsulfate) does not interact extensively with the negatively charged silica nanoparticles and does not change significantly the surface charge and size of these nanoparticles. Adsorption of the cationic CTAB (cetyltrimethylammonium bromide) onto the silica nanoparticles causes charge transition and nanoparticle aggregation, whereas non-ionic TX-100 (Triton X-100) neutralizes the surface charge of the nanoparticles but does not change significantly the nanoparticle size. The most severe fouling development was observed for the silica nanoparticle - TX-100 system, where nanoparticles in the filtration cake formed exhibited the lowest repulsive interactions. Rejection of the nanoparticles was also highest for the mixture containing silica nanoparticles and TX-100. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Fluorescent natural organic matter responsible for ultrafiltration membrane fouling: Fate, contributions and fouling mechanisms.

    PubMed

    Wang, Hui; Ding, An; Gan, Zhendong; Qu, Fangshu; Cheng, Xiaoxiang; Bai, Langming; Guo, Shaodong; Li, Guibai; Liang, Heng

    2017-09-01

    Membrane fouling has been a main obstacle to the success of ultrafiltration (UF) technology. Recently, fluorescent natural organic matter (FNOM), including humic-like substances (HS) and protein-like substances, has been recognized as substances responsible for membrane fouling. In this study, the matrix of FNOM in natural river water was substantially modified by combined coagulation and powdered activated carbon adsorption to enhance the diversity of the FNOM matrix. Fluorescence excitation emission matrix spectroscopy was employed to characterize FNOM components during the UF process. The correlations between FNOM components of the feedwater and membrane fouling were evaluated for the initial period and long-term operation. Reliable correlations of the maximum fluorescence intensity of HS with initial membrane fouling indicated that HS were major foulants in the initial period. Furthermore, the protein-like component exhibited significant correlation with the concentration effect fouling (R(2) = 0.6131) and with irreversible fouling (R(2) = 0.8711). We found that the fouling mechanism changed from pore obstruction to a protein concentration polarization layer followed by protein cake layer filtration. Total fouling of the UF membrane over long-term operation was alleviated with powdered activated carbon (PAC) adsorption; however, the mitigation of irreversible fouling was dependent on whether PAC adsorbed protein-like substances. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Prevention of PVDF ultrafiltration membrane fouling by coating MnO2 nanoparticles with ozonation

    PubMed Central

    Yu, Wenzheng; Brown, Matthew; Graham, Nigel. J. D.

    2016-01-01

    Pre-treatment is normally required to reduce or control the fouling of ultrafiltration (UF) membranes in drinking water treatment process. Current pre-treatment methods, such as coagulation, are only partially effective to prevent long-term fouling. Since biological activities are a major contributor to accumulated fouling, the application of an oxidation/disinfection step can be an effective complement to coagulation. In this study, a novel pre-treatment method has been evaluated at laboratory scale consisting of the addition of low dose ozone into the UF membrane tank after coagulation and the use of a hollow-fibre membrane coated with/without MnO2 nanoparticles over a test period of 70 days. The results showed that there was minimal fouling of the MnO2 coated membrane (0.5 kPa for 70 days), while the uncoated membrane experienced both reversible and irreversible fouling. The difference was attributed to the greatly reduced presence of bacteria and organic matter because of the catalytic decomposition of ozone to hydroxyl radicals and increase of the hydrophilicity of the membrane surface. In particular, the MnO2 coated membrane had a much thinner cake layer, with significantly less polysaccharides and proteins, and much less accumulated organic matter within the membrane pores. PMID:27436142

  9. KNT-artificial neural network model for flux prediction of ultrafiltration membrane producing drinking water.

    PubMed

    Oh, H K; Yu, M J; Gwon, E M; Koo, J Y; Kim, S G; Koizumi, A

    2004-01-01

    This paper describes the prediction of flux behavior in an ultrafiltration (UF) membrane system using a Kalman neuro training (KNT) network model. The experimental data was obtained from operating a pilot plant of hollow fiber UF membrane with groundwater for 7 months. The network was trained using operating conditions such as inlet pressure, filtration duration, and feed water quality parameters including turbidity, temperature and UV254. Pre-processing of raw data allowed the normalized input data to be used in sigmoid activation functions. A neural network architecture was structured by modifying the number of hidden layers, neurons and learning iterations. The structure of KNT-neural network with 3 layers and 5 neurons allowed a good prediction of permeate flux by 0.997 of correlation coefficient during the learning phase. Also the validity of the designed model was evaluated with other experimental data not used during the training phase and nonlinear flux behavior was accurately estimated with 0.999 of correlation coefficient and a lower error of prediction in the testing phase. This good flux prediction can provide preliminary criteria in membrane design and set up the proper cleaning cycle in membrane operation. The KNT-artificial neural network is also expected to predict the variation of transmembrane pressure during filtration cycles and can be applied to automation and control of full scale treatment plants.

  10. Prevention of PVDF ultrafiltration membrane fouling by coating MnO2 nanoparticles with ozonation

    NASA Astrophysics Data System (ADS)

    Yu, Wenzheng; Brown, Matthew; Graham, Nigel. J. D.

    2016-07-01

    Pre-treatment is normally required to reduce or control the fouling of ultrafiltration (UF) membranes in drinking water treatment process. Current pre-treatment methods, such as coagulation, are only partially effective to prevent long-term fouling. Since biological activities are a major contributor to accumulated fouling, the application of an oxidation/disinfection step can be an effective complement to coagulation. In this study, a novel pre-treatment method has been evaluated at laboratory scale consisting of the addition of low dose ozone into the UF membrane tank after coagulation and the use of a hollow-fibre membrane coated with/without MnO2 nanoparticles over a test period of 70 days. The results showed that there was minimal fouling of the MnO2 coated membrane (0.5 kPa for 70 days), while the uncoated membrane experienced both reversible and irreversible fouling. The difference was attributed to the greatly reduced presence of bacteria and organic matter because of the catalytic decomposition of ozone to hydroxyl radicals and increase of the hydrophilicity of the membrane surface. In particular, the MnO2 coated membrane had a much thinner cake layer, with significantly less polysaccharides and proteins, and much less accumulated organic matter within the membrane pores.

  11. Standardization in the production and testing procedures for polyethersulfone hollow fiber ultrafiltration membranes

    SciTech Connect

    Ma, K.; Sourirajan, S.; Zhang, H.

    1995-09-01

    Several hollow fiber ultrafiltration membranes have been produced from polyethersulfone-polyvinyl pyrrolidone-N-methyl-2-pyrrolidone solutions and tested. The effects of feed flow velocity through the fiber bore on pressure drop in the test fiber bundle, membrane separations for PEG solutes, and the obtainable mass transfer coefficients under the test conditions have been experimentally determined and discussed. Further, the effects of storage time and prefiltration of the fiber casting polymer solution on the performance characteristics of the resulting membranes have been studied. The viscosity of the fiber casting solution increased upon storage for a few weeks, and it decreased after the solution was filtered prior to use in fiber production. Storage time and filtration treatment of the fiber casting solution had significant effects on the morphology of the resulting membranes. Casting solution of longer storage time and without filtration pretreatment produced smaller size pores on the membrane bore-side skin layer, and a larger number of such pores and/or a thinner skin layer in the resulting membrane. On the basis of these results, the need for standardizing the fiber producing conditions and fiber testing procedure is pointed out, and a few suggestions are made for such standardization.

  12. Experimental comparison of point-of-use filters for drinking water ultrafiltration.

    PubMed

    Totaro, M; Valentini, P; Casini, B; Miccoli, M; Costa, A L; Baggiani, A

    2017-06-01

    Waterborne pathogens such as Pseudomonas spp. and Legionella spp. may persist in hospital water networks despite chemical disinfection. Point-of-use filtration represents a physical control measure that can be applied in high-risk areas to contain the exposure to such pathogens. New technologies have enabled an extension of filters' lifetimes and have made available faucet hollow-fibre filters for water ultrafiltration. To compare point-of-use filters applied to cold water within their period of validity. Faucet hollow-fibre filters (filter A), shower hollow-fibre filters (filter B) and faucet membrane filters (filter C) were contaminated in two different sets of tests with standard bacterial strains (Pseudomonas aeruginosa DSM 939 and Brevundimonas diminuta ATCC 19146) and installed at points-of-use. Every day, from each faucet, 100 L of water was flushed. Before and after flushing, 250 mL of water was collected and analysed for microbiology. There was a high capacity of microbial retention from filter C; filter B released only low Brevundimonas spp. counts; filter A showed poor retention of both micro-organisms. Hollow-fibre filters did not show good micro-organism retention. All point-of-use filters require an appropriate maintenance of structural parameters to ensure their efficiency. Copyright © 2016 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  13. Combined ultrafiltration-electrodeionization technique for production of high purity water.

    PubMed

    Wardani, Anita Kusuma; Hakim, Ahmad Nurul; Khoiruddin; Wenten, I Gede

    2017-06-01

    Electrodeionization (EDI) is the most common method to produce high purity water used for boiler feed water, microelectronic, and pharmaceutical industries. Commonly, EDI is combined with reverse osmosis (RO) to meet the requirement of EDI feed water, with hardness less than 1 ppm. However, RO requires a relatively high operating pressure and ultrafiltration (UF) as pretreatment which results in high energy consumption and high complexity in piping and instrumentation. In this work, UF was used as the sole pretreatment of EDI to produce high purity water. Tap water with conductivity 248 μS/cm was fed to UF-EDI system. The UF-EDI system showed good performance with ion removal more than 99.4% and produced water with low conductivity from 0.2 to 1 μS/cm and total organic compounds less than 0.3 ppm. Generally, product conductivity decreased with the increase of current density of EDI and the decrease of feed velocity and UF pressure. The energy consumption for UF-EDI system in this work was 0.89-2.36 kWh/m(3). These results proved that UF-EDI system meets the standards of high purity water for pharmaceutical and boiler feed water with lower investment and energy consumption than RO-EDI system.

  14. Fouling of ultrafiltration membrane by algal-rich water: effect of kalium, calcium, and aluminum.

    PubMed

    Zhang, Yan; Ma, Fang; Li, Gui-bai

    2013-09-01

    Algae are commonly aquatic plants showing generally negatively charged. The fouling behavior of hollow-fiber ultrafiltration membrane by algal-rich water could be therefore influenced by various cations (K(+), Ca(2+), and Al(3+)) and their doses. Microcystis aeruginosa solution was used as the feed solution to study the fouling in detail. Constant flux experiments were performed with a laboratory-scale experiment. Increasing the concentrations of calcium and aluminum had a significant impact on alleviating membrane fouling and increasing flux recovery by backwashing, especially for calcium. However, kalium ion had little influence on the membrane filtration. Based on the measurement of MW distribution and zeta potential, charge neutralization was proposed to be the primary aggregation mechanism for calcium, in contrast to precipitate coverage and sweep flocculation for aluminum. It was demonstrated that the fouling layer became more loose and porous in the presence of Ca(2+) and Al(3+), respectively, which can be identified by scanning electron microscope (SEM). However, SEM also proved that the two additives damaged the cell walls and caused the intercellular organic matter released to different extents.

  15. Effect of low dosage of coagulant on the ultrafiltration membrane performance in feedwater treatment.

    PubMed

    Ma, Baiwen; Yu, Wenzheng; Liu, Huijuan; Qu, Jiuhui

    2014-03-15

    One of the critical issues for the widely application of ultrafiltration (UF) in water treatment is membrane fouling owning to the dissolved organic matter. The aim of the present study is to explore the effect of various particle sizes caused by low dosages of coagulant with dissolved organic matter on the UF membrane performance. Aluminum chloride was added to the synthetic water with the hydrophobic humic acid (HA), the hydrophilic bovine serum albumin (BSA) - a protein- and their 1:1 (mass ratio) mixture. The results showed that there was a critical dose of Al that could cause dramatic flux reduction by blocking the membrane pores after coagulating with HA/BSA. For HA or BSA, the critical dose of Al was relatively lower at pH 6.0 than that at pH 8.0. After coagulation, the flux decline caused by HA was slightly varied as a function of pH while that caused by BSA was greatly affected by pH. The flux decline caused by the 1:1 (mass ratio) HA/BSA mixture after coagulation was similar to that caused by HA after coagulation because BSA could be encapsulated by HA. In addition, the peak value of the molecular weight (MW) distribution of HA coagulated with Al was changed more drastically compared to that of BSA after filtration.

  16. Effect of chlorine on adsorption/ultrafiltration treatment for removing natural organic matter in drinking water.

    PubMed

    Ha, Tae-Wook; Choo, Kwang-Ho; Choi, Sang-June

    2004-06-15

    In drinking water treatment, prechlorination is often applied in order to control microorganisms and taste-and-odor-causing materials, which may influence organics removal by adsorption and membrane filtration. Thus, the addition of chlorine into an advanced water treatment process using a hybrid of adsorption and ultrafiltration (UF) was investigated in terms of natural organic matter (NOM) removal and membrane permeability. A comparison between two adsorbents, iron oxide particles (IOP) and powdered activated carbon (PAC), was made to understand the sorption behavior for NOM with and without chlorination. Chlorine modified the properties of dissolved and colloidal NOM in raw water, which brought about lower TOC removal, during IOP/UF. The location of IOPs, whether they were in suspension or in a cake layer, affected NOM removal, depending on the presence of colloidal particles in feedwater. Chlorine also played a role in reducing the size of particulate matter in raw water, which could be in close association with a decline in permeate flux after chlorination.

  17. Ultrafiltration capacity and peritoneal fluid kinetics in continuous ambulatory peritoneal dialysis patients.

    PubMed

    Zhe, Xing-wei; Tian, Xin-kui; Cheng, Lei; Wang, Tao

    2008-01-01

    Volume control is critical for peritoneal dialysis. Although peritoneal equilibration test (PET) has been used to clarify the peritoneal membrane characteristics, it is not able to adequately predict peritoneal fluid removal and optimize appropriately the dwell time. In the present study, we applied computer simulation and performed a more detailed evaluation of the fluid kinetics in patients with different ultrafiltration (UF) capacity. Patients who used three to four exchanges of 2.27% glucose dialysate per day (poor UF capacity group), and patients who used three to four exchanges of 1.36% glucose dialysate per day (good UF capacity group) to achieve adequate amount of peritoneal fluid removal were included in the present analysis. All included patients were asked to record appropriately their dialysis exchanges for the assessment of their peritoneal fluid transport characteristics. Seventeen continuous ambulatory peritoneal dialysis patients were selected in the present study, nine in poor UF capacity group and eight in good UF capacity group. Patients in poor UF capacity group had significantly higher daily glucose exposure, higher dialysate-to-plasma ratio of creatinine (D/P creatinine) values, and higher peritoneal fluid absorption rate, K(e), as compared to patients with good UF capacity. Our results suggest that patients with poor UF capacity have significant higher peritoneal small solute transport rate, and more importantly, higher peritoneal fluid absorption rate as compared to patients with good UF capacity.

  18. Recovery of diverse microbes in high turbidity surface water samples using dead-end ultrafiltration

    PubMed Central

    Mull, Bonnie; Hill, Vincent R.

    2015-01-01

    Dead-end ultrafiltration (DEUF) has been reported to be a simple, field-deployable technique for recovering bacteria, viruses, and parasites from large-volume water samples for water quality testing and waterborne disease investigations. While DEUF has been reported for application to water samples having relatively low turbidity, little information is available regarding recovery efficiencies for this technique when applied to sampling turbid water samples such as those commonly found in lakes and rivers. This study evaluated the effectiveness of a DEUF technique for recoveringMS2 bacteriophage, enterococci, Escherichia coli, Clostridium perfringens, and Cryptosporidium parvum oocysts in surface water samples having elevated turbidity. Average recovery efficiencies for each study microbe across all turbidity ranges were: MS2 (66%), C. parvum (49%), enterococci (85%), E. coli (81%), and C. perfringens (63%). The recovery efficiencies for MS2 and C. perfringens exhibited an inversely proportional relationship with turbidity, however no significant differences in recovery were observed for C. parvum, enterococci, or E. coli. Although ultrafilter clogging was observed, the DEUF method was able to process 100-L surface water samples at each turbidity level within 60 min. This study supports the use of the DEUF method for recovering a wide array of microbes in large-volume surface water samples having medium to high turbidity. PMID:23064261

  19. Sorbinil does not prevent hyperfiltration, elevated ultrafiltration pressure and albuminuria in streptozotocin-diabetic rats.

    PubMed

    Körner, A; Celsi, G; Eklöf, A C; Linné, T; Persson, B; Aperia, A

    1992-05-01

    The effects of aldose reductase inhibition on kidney function were studied in rats with streptozotocin-induced diabetes mellitus. Diabetic rats were fed sorbinil (20 and 50 mg/kg) by daily gastric gavage and were compared with untreated diabetic rats and normal rats. The rats were under daily supervision with regard to blood glucose control, insulin administration and body weight. The aim was to promote continuous body growth and to maintain the blood glucose concentration at around 22 mmol/l without large day-to-day fluctuations. The renal functional changes observed in this well-established diabetic model closely resembled those reported in human Type 1 (insulin-dependent) diabetes mellitus. Sorbinil treatment completely prevented renal cortical sorbital accumulation, but did not abolish kidney enlargement or the increase in ultrafiltration pressure and glomerular filtration rate. Albumin excretion was increased to the same extent in the sorbinil-treated and in the untreated diabetic rats. We conclude that increased metabolism of glucose to sorbitol does not cause the hyperfiltration in rats with streptozotocin-induced diabetes.

  20. Using Zero Balance Ultrafiltration with Dialysate as a Replacement Fluid for Hyperkalemia during Cardiopulmonary Bypass.

    PubMed

    Heath, Michele; Raghunathan, Karthik; Welsby, Ian; Maxwell, Cory

    2014-09-01

    Avoiding or managing hyperkalemia during cardiac surgery, especially in a patient with chronic renal insufficiency, can be challenging. Hyperkalemic cardioplegia solution is usually administered to achieve and maintain an electrical arrest of the heart. This solution eventually mixes in with the systemic circulation, contributing to elevated systemic potassium levels. Administration of packed red blood cells, hemolysis, tissue damage, and acidosis are also common causes of hyperkalemia. Current strategies to avoid or manage hyperkalemia include minimizing the volume of cardioplegia administered, shifting potassium from the extracellular into the intracellular space (by the administration of sodium bicarbonate when the pH is low and/or dextrose-insulin when effects relatively independent of serum pH are desired), using zero-balanced ultrafiltration (Z-BUF) with normal saline as the replacement fluid (to remove potassium from the body rather than simply shift the electrolyte across cellular membranes), and, occasionally, hemodialysis (1). We report the application of Z-BUF using an electrolyte-balanced, low potassium dialysate solution rather than isotonic saline to avoid a high chloride load and the potential for hyperchloremic acidosis to successfully treat hyperkalemia while on cardiopulmonary bypass.

  1. Control of Protein Particle Formation During Ultrafiltration/Diafiltration Through Interfacial Protection

    PubMed Central

    Callahan, Daniel J; Stanley, Bradford; Li, Yuling

    2014-01-01

    This study investigates the mechanism of protein particle formation during ultrafiltration/diafiltration (UF/DF), finding that agitation drives particle formation by promoting protein-interface adsorption and desorption. Low conductivity and the presence of surfactant reduced the level of particle formation in small-scale stirring studies, and the same trends were observed in pumping and UF/DF. Polysorbate 80 (PS80) and hydroxypropyl-β-cyclodextrin (HPβCD) reduced particle formation in UF/DF by factors of 15 and 4, respectively. Measurements of conformational stability, colloidal stability, and surface tension demonstrated that PS80 protects against particle formation by preventing protein-interface adsorption, low conductivity improves the colloidal stability of the protein, and the mechanism of action of HPβCD remains unclear. This work demonstrates that interfacial adsorption–desorption of the protein during UF/DF is the principal cause of particle formation, that the level of surfactant-free particle formation depends on the colloidal stability of the protein, and that the inclusion of surfactant greatly reduces in-process particle formation during UF/DF. PMID:24449131

  2. Using Zero Balance Ultrafiltration with Dialysate as a Replacement Fluid for Hyperkalemia during Cardiopulmonary Bypass

    PubMed Central

    Heath, Michele; Raghunathan, Karthik; Welsby, Ian; Maxwell, Cory

    2014-01-01

    Abstract: Avoiding or managing hyperkalemia during cardiac surgery, especially in a patient with chronic renal insufficiency, can be challenging. Hyperkalemic cardioplegia solution is usually administered to achieve and maintain an electrical arrest of the heart. This solution eventually mixes in with the systemic circulation, contributing to elevated systemic potassium levels. Administration of packed red blood cells, hemolysis, tissue damage, and acidosis are also common causes of hyperkalemia. Current strategies to avoid or manage hyperkalemia include minimizing the volume of cardioplegia administered, shifting potassium from the extracellular into the intracellular space (by the administration of sodium bicarbonate when the pH is low and/or dextrose–insulin when effects relatively independent of serum pH are desired), using zero-balanced ultrafiltration (Z-BUF) with normal saline as the replacement fluid (to remove potassium from the body rather than simply shift the electrolyte across cellular membranes), and, occasionally, hemodialysis (1). We report the application of Z-BUF using an electrolyte-balanced, low potassium dialysate solution rather than isotonic saline to avoid a high chloride load and the potential for hyperchloremic acidosis to successfully treat hyperkalemia while on cardiopulmonary bypass. PMID:26357794

  3. Ultrafiltration for acute decompensated heart failure: cost, reimbursement, and financial impact.

    PubMed

    Ross, Edward A; Bellamy, Frank B; Hawig, Scott; Kazory, Amir

    2011-05-01

    In addition to the proposed pathophysiologic mechanisms whereby ultrafiltration (UF) can be advantageous over diuretics in the treatment of heart failure, there can also be financial and resource-utilization reasons for pursuing this extracorporeal strategy. In those cases in which the clinical outcomes would be equivalent, however, the decision whether to pursue UF will depend greatly on the anticipated hospitalization length of stay (LOS), the patient population's pay or mix, the needs and costs for high-acuity (eg, intensive care unit) care, and widely varying expenses for the equipment and disposable supplies. From a fiscal perspective, the financial viability of UF programs revolves around how improvements in LOS, resource utilization, and readmissions relate to the typical diagnosis-driven (eg, diagnosis-related group) reimbursement. We analyzed the impact of these various factors so as to better understand how the intensity (and expense) of pharmaceutical and extracorporeal therapies impacts a single admission, as well as to serve as the basis for developing strategies for optimizing long-term care. 2011 Wiley Periodicals, Inc.

  4. Ultrasonic irradiation for ultrafiltration membrane cleaning in MBR systems: operational conditions and consequences.

    PubMed

    Ruiz, L M; Perez, J I; Gómez, A; Letona, A; Gómez, M A

    2017-02-01

    Ultrasonic irradiation is one of the most promising membrane cleaning techniques for membrane bioreactors (MBRs) because of several advantages such as high flux-recovery capacity and in situ application without interrupting the filtration process. However, significant contradictions may be found and, consequently, this method has not yet been widely developed. In this paper, four MBRs equipped with hollow-fibre polyvinylidene fluoride ultrafiltration membranes were operated continuously. The cleaning method applied consisted of sonication at low power (15 W) with different frequencies (20, 25, 30, and 40 kHz) for each module and aerated backwashing. The different MBRs were analysed comparatively between them and with a conventional MBR in order to check the effects of the irradiated waves on membrane integrity, effluent quality and process performance. Effluent turbidity and chemical oxygen demand, total and volatile suspended solid concentration and activated sludge viscosity were affected by biomass fragmentation or membrane cake removal, mainly at lower frequencies. The best transmembrane pressure control was achieved at the frequency of 20 kHz without a significant effect on membrane integrity. The results showed that under these operational conditions, no negative effects on effluent quality or membrane integrity were found, suggesting that this method was suitable for this type of membrane.

  5. Toxicity removal efficiency of decentralised sequencing batch reactor and ultra-filtration membrane bioreactors.

    PubMed

    Libralato, Giovanni; Volpi Ghirardini, Annamaria; Avezzù, Francesco

    2010-08-01

    As a consequence of the Water Framework Directive and Marine Strategy Framework Directive, there is now more focus on discharges from wastewater treatment plants both to transitional and marine-coastal waters. The constraint to encourage sustainable water policy to prevent water deterioration and reduce or stop discharges has entailed new requirements for existing wastewater treatment plants in the form of advanced wastewater treatment technologies as further suggested by the Integrated Pollution and Prevention Control Bureau. A whole toolbox of physico-chemical and ecotoxicological parameters to investigate commercial and mixed domestic and industrial discharges was considered to check the efficiency of an Activated-Sludge Sequencing Batch Reactor (AS-SBR) and two Ultra-Filtration Membrane Biological Reactors (UF-MBRs) on a small scale decentralised basis. All discharges were conveyed into Venice lagoon (Italy), one of the widest impacted Mediterranean transitional environment. The UF-MBRs were able to provide good quality effluents potentially suitable for non-potable reuse, as well as reducing specific inorganic micro-pollutants concentration (e.g. metals). Conversely, the AS-SBR showed unpredictable and discontinuous removal abilities. (c) 2010 Elsevier Ltd. All rights reserved.

  6. Ultrafiltration membrane for effective removal of chromium ions from potable water

    NASA Astrophysics Data System (ADS)

    Muthumareeswaran, M. R.; Alhoshan, Mansour; Agarwal, Gopal Prasad

    2017-01-01

    The objective of the present work was to investigate the efficacy of indigenously developed polyacrylonitrile (PAN) based ultrafiltration (UF) membrane for chromium ions removal from potable water. The hydrolyzed PAN membranes effectively rejected chromium anions in the feed ranging from 250 ppb to 400 ppm and a rejection of ≥90% was achieved for pH ≥ 7 at low chromate concentration (≤25 ppm) in feed. The rejection mechanism of chromium ions was strongly dependent on Donnan exclusion principle, while size exclusion principle for UF did not play a major role on ions rejection. Feed pH played a vital role in changing porosity of membrane, which influenced the retention behavior of chromate ions. Cross-flow velocity, pressure did not play significant role for ions rejection at low feed concentration. However, at higher feed concentration (≥400 ppm), concentration polarization became important and it reduced the chromate rejection to 32% at low cross flow and high pressure. Donnan steric-partitioning pore and dielectric exclusion model (DSPM-DE) was applied to evaluate the chromate ions transport through PAN UF membrane as a function of flux by using optimized model parameters and the simulated data matched well with experimental results.

  7. Ultrafiltration membrane for effective removal of chromium ions from potable water

    PubMed Central

    Muthumareeswaran, M. R.; Alhoshan, Mansour; Agarwal, Gopal Prasad

    2017-01-01

    The objective of the present work was to investigate the efficacy of indigenously developed polyacrylonitrile (PAN) based ultrafiltration (UF) membrane for chromium ions removal from potable water. The hydrolyzed PAN membranes effectively rejected chromium anions in the feed ranging from 250 ppb to 400 ppm and a rejection of ≥90% was achieved for pH ≥ 7 at low chromate concentration (≤25 ppm) in feed. The rejection mechanism of chromium ions was strongly dependent on Donnan exclusion principle, while size exclusion principle for UF did not play a major role on ions rejection. Feed pH played a vital role in changing porosity of membrane, which influenced the retention behavior of chromate ions. Cross-flow velocity, pressure did not play significant role for ions rejection at low feed concentration. However, at higher feed concentration (≥400 ppm), concentration polarization became important and it reduced the chromate rejection to 32% at low cross flow and high pressure. Donnan steric-partitioning pore and dielectric exclusion model (DSPM-DE) was applied to evaluate the chromate ions transport through PAN UF membrane as a function of flux by using optimized model parameters and the simulated data matched well with experimental results. PMID:28134266

  8. Removal of anionic contaminants by surfactant modified powdered activated carbon (SM-PAC) combined with ultrafiltration.

    PubMed

    Hong, Hye-Jin; Kim, Hojeong; Lee, You-Jin; Yang, Ji-Won

    2009-10-30

    A variety of inorganic contaminants may form toxic oxyanions in aqueous systems which pose significant hazard to human health and the ecosystem. In order to remove the oxyanions from aqueous stream effectively, surfactant-modified powdered activated carbon (SM-PAC) combined with ultrafiltration (UF) was proposed in this study. As the cationic surfactant, cetylpyridinium chloride (CPC), adsorbs on the surface of PAC, the zeta potential of PAC increases to +40 mV. Oxyanions such as chromate, ferricyanide and arsenate bind on SM-PAC by electrostatic interaction, then the contaminants bound with SM-PAC can be separated by UF membrane. 0.3 mM of chromate and ferricyanide are removed completely with 4.0 g/L of SM-PAC. In case of arsenate, the removal efficiency was lower than chromate and ferricyanide. It is considered that the competition occurs among anionic pollutants on the limited binding sites of SM-PAC and lower valence of arsenate results in the lower removal efficiency. High permeate flux is maintained during filtration. The spent SM-PAC was regenerated by the concentrated Cl(-) solutions. NaCl solution whose molar Cl(-) concentration is 1.4 times higher than the contaminants bound on SM-PAC was optimal for the regeneration. Regenerated SM-PAC exhibited similar adsorption capacity to fresh SM-PAC. SM-PAC combined with UF can effectively remove anionic contaminants. Moreover, the simple and efficient regeneration process is proposed.

  9. Novel strategies for diagnosing the cause of short-term organic fouling in ultrafiltration.

    PubMed

    Kim, Hyun-Chul

    2016-01-01

    The main objective of this study was to demonstrate the usefulness of a multi-strategic approach for identifying the extent and mechanism of fouling in the ultrafiltration (UF) of wastewater effluent organic matter (EfOM). In this study, we combined EfOM fractionation with spectroscopic autopsies for clean and fouled UF membranes. The EfOM fractions were sequentially removed from the wastewater effluent using relatively gentle techniques (neutral pH and no extractions). The residual EfOM samples were then used in UF tests. This work showed that resistance to filtration was partially reduced with the removal of particles (>20 nm), but almost all of the short-term fouling was eliminated with the removal of organic acids, which constitute 22% of the total organic carbon. The membrane autopsies were conducted using attenuated reflectance infrared spectroscopy for the top and bottom fouled membranes, and comparison was made with the infrared spectra of a clean membrane. Hydrophilic base/neutrals were the dominant EfOM constituents at the top of the fouled membranes. Hydrophobic acids were adsorbed onto the pore walls deep inside the membranes, which coincided with the permeability recovery of fouled membranes. The fouling mechanisms were examined by measuring the resistance to filtration as a function of permeate flux using various operational conditions and by investigating the effectiveness of hydraulic and chemical cleaning on the restoration of membrane permeability.

  10. Preparation and characterization of thermally stable copoly(phthalazinone biphenyl ether sulfone) hollow fiber ultrafiltration membranes

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Zhang, Shouhai; Wang, Yutian; Lu, Yan; Jian, Xigao

    2015-04-01

    Novel thermally stable copoly(phthalazinone biphenyl ether sulfone) (PPBES) hollow fiber ultrafiltration (UF) membranes were successfully fabricated by the dry/wet phase inversion technique. The effects of polymer dope formulation (i.e., the PPBES concentration, different types and contents of additives) and fiber spinning conditions (i.e., air gap distance, coagulation bath temperature) on the morphologies and separation performance of PPBES hollow fiber UF membranes were investigated, respectively. It was found that the water flux of hollow fiber membrane decreased with the increase of PPBES concentration or EGME content in casting solution, while the rejection of PEG increased. However, the PPBES hollow fiber UF prepared with LiCl as inorganic small molecule additive exhibited different phenomena. In addition, the decrease of air gap distance or the increase of coagulation bath temperature could improve the water flux of UF membrane while reduce the rejection of PEG. Moreover, the thermal stability of the PPBES hollow fiber UF membranes was investigated. The water flux of PPBES membrane increased dramatically from 155 to 428 L m-2 h-1 without significant decrease of rejection when the temperature of feed solution increased from 20 °C to 95 °C.

  11. Separation and characterization of alpha-chain subunits from tilapia (Tilapia zillii) skin gelatin using ultrafiltration.

    PubMed

    Chen, Shulin; Tang, Lanlan; Su, Wenjin; Weng, Wuyin; Osako, Kazufumi; Tanaka, Munehiko

    2015-12-01

    Alpha-chain subunits were separated from tilapia skin gelatin using ultrafiltration, and the physicochemical properties of obtained subunits were investigated. As a result, α1-subunit and α2-subunit could be successfully separated by 100 kDa MWCO regenerated cellulose membranes and 150 kDa MWCO polyethersulfone membranes, respectively. Glycine was the most dominant amino acid in both α1-subunit and α2-subunit. However, the tyrosine content was higher in α2-subunit than in α1-subunit, resulting in strong absorption near 280 nm observed in the UV absorption spectrum. Based on the DSC analysis, it was found that the glass transition temperatures of gelatin, α1-subunit and α2-subunit were 136.48 °C, 126.77 °C and 119.43 °C, respectively. Moreover, the reduced viscosity and denaturation temperature of α1-subunit were higher than those of α2-subunit, and the reduced viscosity reached the highest when α-subunits were mixed with α1/α2 ratio of approximately 2, suggesting that α1-subunit plays a more important role in the thermostability of gelatin than α2-subunit.

  12. Novel Applications of Modified Ultrafiltration and Autologous Priming Techniques to Reduce Blood Product Exposure on ECMO.

    PubMed

    Neal, James R; Blau, Caitlin L; Cornelius, Amanda M; Pike, Roxann B; Dearani, Joseph A; Mora, Bassem N

    2016-03-01

    Patients needing the assistance of extracorporeal membrane oxygenation (ECMO) are at risk of hemodilution and, in some instances, may require exposure to large amounts of allogeneic blood products. Patient outcomes can be improved by taking steps to reduce transfusions and hemodilution. Currently, modified ultrafiltration (MUF) is used across the world to reduce hemodilution after cardiopulmonary bypass (CPB). Another common technique during bypass initiation is autologous priming. By applying modified versions of these techniques, ECMO patients may potentially benefit. Usually, patients requiring immediate transition from CPB to ECMO are not stable enough to tolerate MUF. Through alterations of the CPB and ECMO circuit tubing, MUF can be performed once on ECMO. Another technique to potentially lower the transfusion requirements for ECMO patients is a complete circuit blood transfer during an ECMO circuit exchange. While selective component changes are preferred if possible, occasionally a complete circuit change must be done. To minimize hemodilution or prevent priming with blood products, the original ECMO circuit's blood can be transferred to the new ECMO circuit before connecting to the patient. Both of these techniques, in our opinion, helped to reduce the number of transfusions that our ECMO patients have seen during these critical time periods.

  13. Evaluation of Humic Acid and Tannic Acid Fouling in Graphene Oxide-Coated Ultrafiltration Membranes.

    PubMed

    Chu, Kyoung Hoon; Huang, Yi; Yu, Miao; Her, Namguk; Flora, Joseph R V; Park, Chang Min; Kim, Suhan; Cho, Jaeweon; Yoon, Yeomin

    2016-08-31

    Three commercially available ultrafiltration (UF) membranes (poly(ether sulfone), PES) that have nominal molecular weight cut-offs (5, 10, and 30 kDa) were coated with graphene oxide (GO) nanosheets. Field-emission scanning electron microscopy, Fourier-transform infrared spectroscopy, confocal laser scanning microscopy, water contact angle measurements, and X-ray photoelectron spectroscopy were employed to determine the changed physicochemical properties of the membranes after GO coating. The water permeability and single-solute rejection of GO-coated (GOC) membranes for humic acid (HA) molecules were significantly higher by approximately 15% and 55%, respectively, compared to those of pristine UF membranes. However, the GOc membranes for single-solute tannic acid (TA) rejection showed similar trends of higher flux decline versus pristine PES membranes, because the relatively smaller TA molecules were readily adsorbed onto the membrane pores. When the mixed-solute of HA and TA rejection tests were performed, in particular, the adsorbed small TA molecules resulted in irreversible membrane fouling due to cake formation and membrane pore blocking on the membrane surface for the HA molecules. Although both membranes showed significantly higher flux declines for small molecules rejection, the GOc membranes showed better performance than the pristine UF membranes in terms of the rejection of various mixed-solute molecules, due to higher membrane recovery and antifouling capabilities.

  14. A new way to apply ultrasound in cross-flow ultrafiltration: application to colloidal suspensions.

    PubMed

    Hengl, N; Jin, Y; Pignon, F; Baup, S; Mollard, R; Gondrexon, N; Magnin, A; Michot, L; Paineau, E

    2014-05-01

    A new coupling of ultrasound device with membrane process has been developed in order to enhance cross-flow ultrafiltration of colloidal suspensions usually involved in several industrial applications included bio and agro industries, water and sludge treatment. In order to reduce mass transfer resistances induced by fouling and concentration polarization, which both are main limitations in membrane separation process continuous ultrasound is applied with the help of a vibrating blade (20 kHz) located in the feed channel all over the membrane surface (8mm between membrane surface and the blade). Hydrodynamic aspects were also taking into account by the control of the rectangular geometry of the feed channel. Three colloidal suspensions with different kinds of colloidal interaction (attractive, repulsive) were chosen to evaluate the effect of their physico-chemical properties on the filtration. For a 90 W power (20.5 W cm(-2)) and a continuous flow rate, permeation fluxes are increased for each studied colloidal suspension, without damaging the membrane. The results show that the flux increase depends on the initial structural properties of filtered dispersion in terms of colloidal interaction and spatial organizations. For instance, a Montmorillonite Wyoming-Na clay suspension was filtered at 1.5 × 10(5)Pa transmembrane pressure. Its permeation flux is increased by a factor 7.1, from 13.6 L m(-2)h(-1) without ultrasound to 97 L m(-2)h(-1) with ultrasound.

  15. Membrane foulants and fouling mechanisms in microfiltration and ultrafiltration of an activated sludge effluent.

    PubMed

    Nguyen, S T; Roddick, F A; Harris, J L

    2010-01-01

    Membrane fouling in microfiltration (MF) and ultrafiltration (UF) of an activated sludge (AS) effluent was investigated. It was found that the major membrane foulants were polysaccharides, proteins, polysaccharide-like and protein-like materials and humic substances. MF fouling by the raw effluent was governed by pore adsorption of particles smaller than the pores during the first 30 minutes of filtration and then followed the cake filtration model. UF fouling could be described by the cake filtration model throughout the course of filtration. Coagulation with alum and (poly)aluminium chlorohydrate (ACH) altered the MF fouling mechanism to follow the cake filtration model from the beginning of filtration. The MF and UF flux improvement by coagulation was due to the removal of some of the foulants in the raw AS effluent by the coagulants. The MF flux improvement was greater for alum than for ACH whereas the two coagulants performed equally well in UF. Coagulation also reduced hydraulically irreversible fouling on the membranes and this effect was more prominent in MF than in UF. The unified membrane fouling index (UMFI) was used to quantitatively evaluate the effectiveness of coagulation on membrane flux enhancement.

  16. Pre-treatment of industrial wastewater polluted with lead using adsorbents and ultrafiltration or microfiltration membranes.

    PubMed

    Katsou, Evina; Malamis, Simos; Haralambous, Katherine

    2011-04-01

    This work investigated the use of ultrafiltration (UF) or microfiltration (MF) membranes combined with natural minerals for the pre-treatment of wastewater containing high amounts of lead. The effects of initial lead concentration, solution pH, membrane pore size, mineral type and concentration and mineral - metal contact time were investigated. Lead removal accomplished by the UF system was higher in wastewater compared to that obtained in aqueous solutions and this was attributed to the formation of insoluble metal precipitates/complexes, which were effectively retained by the membranes. At pH = 6 the dominant removal mechanism was precipitation/complexation, while mineral adsorption enhanced lead removal. The combined use of minerals and UF/MF membranes can effectively remove lead from wastewater resulting in a final effluent that can be further treated biologically with no biomass inhibition problems or can be safely discharged into municipal sewers. Kinetics investigation revealed a two-stage diffusion process for all minerals employed. The Langmuir isotherm exhibited the best fit to the experimental data.

  17. Carbon nanotubes-blended poly(phenylene sulfone) membranes for ultrafiltration applications

    NASA Astrophysics Data System (ADS)

    Lawrence Arockiasamy, D.; Alam, Javed; Alhoshan, Mansour

    2013-03-01

    Multi-walled carbon nanotubes (MWCNT) were carboxylated by a chemical method. Poly(phenylene sulfone) (PPSU), MWCNT and functionalized (carboxylated) MWCNT/poly(phenylene sulfone) (PPSU) blend membranes were synthesized via the phase-inversion method. The resultant membranes were then characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), atomic force microscopy (AFM) and contact angle. The FMWCNT blend membranes appeared to be more hydrophilic, with higher pure water flux than did the pure PPSU and MWCNT/PPSU blend membranes. It was also found that the presence of multi-walled carbon nanotubes (MWCNTs) in the blend membranes was an important factor affecting the morphology and permeation properties of the membranes. The model proteins such as trypsin (20 kDa), pepsin (35 kDa), egg albumin (45 kDa) and bovine serum albumin (69 kDa) rejection experiments were carried out under identical operational conditions employing both PPSU and blend membranes. The membranes were also subjected to the determination of molecular weight cut-off (MWCO) using different molecular weights of proteins. During trypsin ultrafiltration, PPSU/MWCNT and PPSU/FMWCNT membranes showed a slower flux decline rate than did the PPSU membrane.

  18. Lignin Peroxidase from Streptomyces viridosporus T7A: Enzyme Concentration Using Ultrafiltration

    NASA Astrophysics Data System (ADS)

    Gottschalk, Leda M. F.; Bon, Elba P. S.; Nobrega, Ronaldo

    It is well known that lignin degradation is a key step in the natural process of biomass decay whereby oxidative enzymes such as laccases and high redox potential ligninolytic peroxidases and oxidases play a central role. More recently, the importance of these enzymes has increased because of their prospective industrial use for the degradation of the biomass lignin to increase the accessibility of the cellulose and hemicellulose moieties to be used as renewable material for the production of fuels and chemicals. These biocatalysts also present potential application on environmental biocatalysis for the degradation of xenobiotics and recalcitrant pollutants. However, the cost for these enzymes production, separation, and concentration must be low to permit its industrial use. This work studied the concentration of lignin peroxidase (LiP), produced by Streptomyces viridosporus T7A, by ultrafiltration, in a laboratory-stirred cell, loaded with polysulfone (PS) or cellulose acetate (CA) membranes with molecular weight cutoffs (MWCO) of 10, 20, and 50 KDa. Experiments were carried out at 25 °C and pH 7.0 in accordance to the enzyme stability profile. The best process conditions and enzyme yield were obtained using a PS membrane with 10 KDa MWCO, whereby it was observed a tenfold LiP activity increase, reaching 1,000 U/L and 90% enzyme activity upholding.

  19. The effect of ultrafiltration on dialysance. Mathematical theory and experimental verification.

    PubMed

    Hootkins, R; Bourgeois, B

    1991-01-01

    It is known that convective transport (ultrafiltration, QF) augments diffusive transport. This augmentation achieves great importance as solute molecular weight increases. Previous mathematical treatments of dialysance (D) have provided the relationship between D and blood flow rate (QB), dialysate flow rate (QD), and dialyzer membrane surface area permeability product (KoA), in the limit of QF = 0. The authors derived the relationship between D (defined as D') and QB, QD, and KoA for the general case of QF greater than or equal to 0: D' = X-Y/In X/Y . [(1-ó) QF + KoA] for X = X(D', QF, QD) = 1 - [D'/QD + QF] Y = Y(D', QF, QB) = D'-QB/QF-QB ó = the Staverman reflection coefficient. This equation demonstrates an approximate linear increase in D' as QF increases. Experimental verification is provided by in vivo studies of dialysis patients in which the dialysance of vancomycin doubles as QF is increased from 0 to 50. Because D' varies linearly with QF, this allows for the determination of KoA and ó. Using the Cobe 500HG Hemophan membrane, KoA for vancomycin was determined to be 6.54 and ó = 0.88.

  20. Biopolymer fouling in dead-end ultrafiltration of treated domestic wastewater.

    PubMed

    Zheng, Xing; Ernst, Mathias; Huck, Peter M; Jekel, Martin

    2010-10-01

    Ultrafiltration (UF) is considered as a suitable treatment process after conventional wastewater treatment to produce reuse water. Nevertheless, fouling affects the performance of UF to a large extent. As biopolymers (mostly macro polysaccharide-like and protein-like molecules) have been identified as major foulants affecting the filterability of water in dead-end UF, the present study focuses on investigating the reversibility of biopolymer fouling occurring at different biopolymer mass loads to the membrane and under different compression conditions. UF-membrane stirred cell tests using five cycles show that filtering treated domestic wastewater leads to a significant permeability reduction due to the accumulation of biopolymers on the membrane surface and/or in the membrane pores. Although they can be removed by hydraulic backwashing, an increased mass load of biopolymers reduces the removal efficiency. This correlation was verified using a UF pilot plant filtering treated wastewater (secondary effluent or slow sand filtrate). The effect of biopolymer fouling layer deformation on its reversibility was studied using multi-cycle membrane filtration tests under different filtration pressures. The results showed that higher filtration pressures result in more compact biopolymer fouling which is more difficult to be hydraulically backwashed. This phenomenon was also confirmed by pilot-scale UF experiments. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Ultrafiltration/nanofiltration for the tertiary treatment of leather industry effluents.

    PubMed

    Streit, Katia F; Ferreira, Jane Zoppas; Bernardes, Andréa M; Norberta De Pinho, Maria

    2009-12-15

    Biologically treated effluents from the leather industry pose severe problems for the environment due in part to both the inorganic charge and the high nitrogen content associated with the organic charge. Pressure-driven membrane processes, namely ultrafiltration/nanofiltration (UF/NF) technology, were investigated for their selective retention of the organics and permeation of the inorganic fraction. Permeation experiments were carried out with two model solutions representative of a treated tannery effluent. UF and NF of these model solutions were assessed in terms of both their inorganic/organic fractionation capability and their permeation productivity. The UF membranes with MWCOs ranging from 10,000 to 1000 Da yield retentate streams enriched in organic compounds and permeate streams enriched in salts. Despite their high capacity for pure water permeation, they displayed low permeation fluxes, as the result of concentration polarization and fouling phenomena. NF 200 and NF 270 membranes associated fractionation capability with high permeation rates. Furthermore, these membranes demonstrated the highest permeate fluxes -30 kg/h/m(2) and 16 kg/h/m(2) for different model solutions, at the transmembrane pressure of 8 bar. Although these membranes had lower hydraulic permeabilities relative to the other membranes tested, they exhibited the best characteristics in terms of minimization of colloidal fouling.

  2. Effect of gamma-ray irradiation at low doses on the performance of PES ultrafiltration membrane

    NASA Astrophysics Data System (ADS)

    Zhang, Xue; Niu, Lixia; Li, Fuzhi; Yu, Suping; Zhao, Xuan; Hu, Hongying

    2016-10-01

    The influence of gamma irradiation on the performance of polyether sulfone (PES) ultrafiltration (UF) membrane was investigated at low absorbed doses (0-75 kGy) using a cobalt source. The performance of the UF membranes was tested using low level radioactive wastewater (LLRW) containing three types of surfactants (anionic, cationic and nonionic surfactants). The physical and chemical properties of membrane surface were analyzed, and relationships between these properties and separation performance and fouling characteristics were determined. At 10-75 kGy irradiation, there were no significant changes observed in the membrane surface roughness or polymer functional groups, however the contact angle decreased sharply from 92° to ca. 70° at irradiation levels as low as 10 kGy. When membranes were exposed to the surfactant-containing LLRW, the flux decreased more sharply for higher dosed irradiated membranes, while flux in virgin membranes increased during the filtration processes. The study highlights that fouling properties of membrane may be changed due to the changes of surface hydrophilicity at low dose irradiation, while other surface properties and retentions remain stable. Therefore, a membrane fouling test with real or simulated wastewater is recommended to fully evaluate the membrane irradiation resistance.

  3. Ultrafiltration and nanofiltration in the pulp and paper industry using cross-rotational (CR) filters.

    PubMed

    Mänttäri, M; Nyström, M

    2004-01-01

    Ultra- and nanofiltration with high shear CR-filters have been utilized for cleaning of clear filtrates and effluents from the pulp and paper industry. The aim was to find out how different nanofiltration membranes operate at high shear conditions. The filtration efficiency of the membranes was evaluated by measuring flux, retention and fouling at various recovery and pH conditions. High fluxes (approximately 100 L/(m2h)) for nanofiltration membranes were measured when circulation waters from the paper machine were filtered at neutral conditions. In the filtration of discharge of external activated sludge treatment plants we measured fluxes around 150 L/(m2h) even at a concentration factor of 12. The best NF membranes removed over 80% of the organic carbon and of the conductivity and almost completely eliminated the color. With acidic waters fluxes and retentions were significantly lower. The NF270 membrane from Dow and the Desal-5 membranes from Osmonics had the highest flux and retention properties. However, the Desal-5 membrane lost its retention properties slowly, which restricts its use in the high shear CR-filter. CR-nanofiltration can be used in the pulp and paper industry without feed pre-treatment by ultrafiltration. This increases the attractiveness of high shear CR-nanofiltration.

  4. Plasma deposition of silver nanoparticles on ultrafiltration membranes: antibacterial and anti-biofouling properties.

    PubMed

    Cruz, Mercedes Cecilia; Ruano, Gustavo; Wolf, Marcus; Hecker, Dominic; Vidaurre, Elza Castro; Schmittgens, Ralph; Rajal, Verónica Beatriz

    2015-02-01

    A novel and versatile plasma reactor was used to modify Polyethersulphone commercial membranes. The equipment was applied to: i) functionalize the membranes with low-temperature plasmas, ii) deposit a film of poly(methyl methacrylate) (PMMA) by Plasma Enhanced Chemical Vapor Deposition (PECVD) and, iii) deposit silver nanoparticles (SNP) by Gas Flow Sputtering. Each modification process was performed in the same reactor consecutively, without exposure of the membranes to atmospheric air. Scanning electron microscopy and transmission electron microscopy were used to characterize the particles and modified membranes. SNP are evenly distributed on the membrane surface. Particle fixation and transport inside membranes were assessed before- and after-washing assays by X-ray photoelectron spectroscopy depth profiling analysis. PMMA addition improved SNP fixation. Plasma-treated membranes showed higher hydrophilicity. Anti-biofouling activity was successfully achieved against Gram-positive (Enterococcus faecalis) and -negative (Salmonella Typhimurium) bacteria. Therefore, disinfection by ultrafiltration showed substantial resistance to biofouling. The post-synthesis functionalization process developed provides a more efficient fabrication route for anti-biofouling and anti-bacterial membranes used in the water treatment field. To the best of our knowledge, this is the first report of a gas phase condensation process combined with a PECVD procedure in order to deposit SNP on commercial membranes to inhibit biofouling formation.

  5. Exergy analysis of an industrial-scale ultrafiltrated (UF) cheese production plant: a detailed survey

    NASA Astrophysics Data System (ADS)

    Nasiri, Farshid; Aghbashlo, Mortaza; Rafiee, Shahin

    2017-02-01

    In this study, a detailed exergy analysis of an industrial-scale ultrafiltrated (UF) cheese production plant was conducted based on actual operational data in order to provide more comprehensive insights into the performance of the whole plant and its main subcomponents. The plant included four main subsystems, i.e., steam generator (I), above-zero refrigeration system (II), Bactocatch-assisted pasteurization line (III), and UF cheese production line (IV). In addition, this analysis was aimed at quantifying the exergy destroyed in processing a known quantity of the UF cheese using the mass allocation method. The specific exergy destruction of the UF cheese production was determined at 2330.42 kJ/kg. The contributions of the subsystems I, II, III, and IV to the specific exergy destruction of the UF cheese production were computed as 1337.67, 386.18, 283.05, and 323.51 kJ/kg, respectively. Additionally, it was observed through the analysis that the steam generation system had the largest contribution to the thermodynamic inefficiency of the UF cheese production, accounting for 57.40 % of the specific exergy destruction. Generally, the outcomes of this survey further manifested the benefits of applying exergy analysis for design, analysis, and optimization of industrial-scale dairy processing plants to achieve the most cost-effective and environmentally-benign production strategies.

  6. All-nanoparticle layer-by-layer surface modification of micro- and ultrafiltration membranes.

    PubMed

    Escobar-Ferrand, Luis; Li, Diya; Lee, Daeyeon; Durning, Christopher J

    2014-05-20

    Layer-by-layer (LbL) deposition using primarily inorganic silica nanoparticles is employed for surface modification of polymeric micro- and ultrafiltration (MF/UF) membranes to produce novel thin film composite (TFC) membranes intended for nanofiltration (NF) and reverse osmosis (RO) applications. A wide variety of porous substrate membranes with different surface characteristics are successfully employed. This report gives detailed results for polycarbonate track etched (PCTE), polyethersulfone (PES), and sulfonated PES (SPEES) MF/UF substrates. Both spherical (cationic/anionic) and eccentric elongated (anionic) silica nanoparticles are deposited using conditions similar to those in prior works for solid substrates (e.g., Lee et al.). Appropriate selection of the pH for anionic and cationic particle deposition enables construction of nanoparticle-only layers 100-1200 nm in thickness atop the original porous membrane substrates. The surface layer thickness appears to vary linearly with the number of bilayers deposited, i.e., with the number of anionic/cationic deposition cycles. The deposition process is optimized to eliminate drying-induced cracking and improve mechanical durability via thickness control and postdeposition hydrothermal treatment. "Dead-end" permeation tests using dextran standards reveal the hydraulic characteristics and separations capability for the PCTE-based TFC membranes. The results show that nanoparticle-based LbL surface modification of MF and UF rated media can produce TFC membranes with NF capabilities.

  7. Comparison of acidic polymers for the removal of cobalt from water solutions by polymer assisted ultrafiltration.

    PubMed

    Dambies, Laurent; Jaworska, Agnieszka; Zakrzewska-Trznadel, Grazyna; Sartowska, Bozena

    2010-06-15

    In this study, three sulfonated water-soluble polymers based on poly(vinyl alcohol) of different molecular weights (10,000, 50,000 and 100,000 Da) were prepared and tested against commercially available poly(acrylic acid) for the removal of cobalt using polymer assisted ultrafiltration. High rejection rates were obtained between pH 3 and 6 with sulfonated poly(vinyl alcohol) (PVA 10,000 and 50,000 Da) whereas poly(acrylic acid) (PAA) of similar molecular weights performed rather poorly in this pH range. Sulfonation improved significantly sorption capability of PVA. Sulfonated PVA 10,000 was the best complexing agent with rejection rate above 95% between pH 3 and 6. For unmodified PVA the rejection rate was only 30-45% at pH 6 and there was no rejection at pH 3 at all. PAA rejection rate was above 90% at pH 6 and only about 10% at pH 3. Large scale experiment in cross-flow, continuous apparatus conducted by using PVA-SO(3)H 10,000 Da to remove (60)Co radioisotope from water solutions showed excellent results demonstrating the potential of this polymer to purify acidic radioactive wastes containing cobalt radioisotopes.

  8. Production and functional characterisation of antioxidative hydrolysates from corn protein via enzymatic hydrolysis and ultrafiltration.

    PubMed

    Zhou, Kequan; Sun, Shi; Canning, Corene

    2012-12-01

    Corn protein was hydrolysed by three microbial proteases and further separated by sequential ultra-filtration to 12 hydrolysate fractions which were investigated for free radical scavenging capacity and chelating activity. The oxygen radical absorbance capacity (ORAC) of the hydrolysates varied significantly between 65.6 and 191.4μmoles Trolox equivalents (TE)/g dried weight with a small peptide fraction (NP-F3) produced by neutral protease (NP) possessing the highest antioxidant activity. The 1,1-diphenyl-2-picrylhydrazyl radical (DPPH()) scavenging activities of the hydrolysate fractions also varied significantly between 18.4 and 38.7μmoles TE/g. Two fractions (AP-F2 and AP-F3) produced by alkaline protease (AP) showed the strongest activity. However, no significant difference was detected on the chelating activity of the fractions. NP-F3, AP-F2, and AP-F3 were incorporated into ground beef to determine their effects on lipid oxidation during 15-day storage period. NP-F3 was the only fraction that inhibited lipid oxidation at both 250 and 500μg/g levels by as much as 52.9%.

  9. Purification of anatid herpesvirus 1 particles by tangential-flow ultrafiltration and sucrose gradient ultracentrifugation.

    PubMed

    Guo, Yufei; Cheng, Anchun; Wang, Mingshu; Zhou, Yi

    2009-10-01

    Anatid herpesvirus 1 (AHV-1) infection causes substantial economic losses to the world-wide waterfowl production. However, little is known about the efficient method used to study the purification of AHV-1 and the negative staining morphology of the purified virus particles. This lack of knowledge is one of the important factors that have affected the progress of research studies on AHV-1 molecular virology to such an extent that they are lagging far behind those on other members of the same family Herpesviridae. Therefore, an efficient method for purifying AHV-1 from cell-culture medium has been developed. Abundant AHV-1 particles, whose morphological features match those of herpesvirus, were obtained by using the following procedures: (1) conventional differential centrifugation for removal of debris after cell disruption, (2) tangential-flow ultrafiltration coupled with sucrose density gradient ultracentrifugation for isolation of the virus, and (3) conventional differential ultracentrifugation for virus concentration. The purified AHV-1 particles were subjected to transmission electron microscopy (TEM), infectivity and recovery tests, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), immunoblotting assay, and agar gel diffusion test (AGDT). The results of examinations revealed that purified AHV-1 particles were free of visible contamination or degradation. The purified AHV-1 particles were biologically active and were successful in initiating infection upon inoculation into susceptible duck embryo fibroblast. The procedures are reliable technically and feasible for purification of large volumes of viruses.

  10. Continuous transformation of benzaldehyde to benzyl alcohol by Rhodotorula mucilaginosa immobilized in an ultrafiltration cell

    SciTech Connect

    Wisniewski, J.; Winnicki, T.; Majewska, K.

    1982-06-01

    Microbiological transformation of benzaldehyde accomplished by the fungus Rhodotorula mucilaginosa immobilized in the ultrafiltration cell was studied. A polysulfone membrane formed on a sintered PVC support was used for the separation of the transformation product from the cellular material. Kinetic investigations have led to results which are typical of continuously fed stirred tank reactors (CFSTR)-the value of the maximum reaction rate (Vmax) and apparent Michaelis constant (K'm) are practically independent of the substrate retention time (calculated in terms of the flow intensity value). A strong relationship was found to occur between Vmax and biomass concentration in the reactor. Study of the apparent enzyme stability shows that the decrease in the biocatalyst activity is chiefly caused by penetration of the cells through the membrane. The experimental results were approximated in terms of the adopted mathematical model. Based on this model, the half-lives (t1/2) of enzyme activities were determined. The t1/2 value varies from 35 to 82 days and depends both on the permeate flux through the membrane and on the separation properties of the membrane. (Refs. 15).

  11. Partitioning of nitroxides in dispersed systems investigated by ultrafiltration, EPR and NMR spectroscopy.

    PubMed

    Krudopp, Heimke; Sönnichsen, Frank D; Steffen-Heins, Anja

    2015-08-15

    The partitioning behavior of paramagnetic nitroxides in dispersed systems can be determined by deconvolution of electron paramagnetic resonance (EPR) spectra giving equivalent results with the validated methods of ultrafiltration techniques (UF) and pulsed-field gradient nuclear magnetic resonance spectroscopy (PFG-NMR). The partitioning behavior of nitroxides with increasing lipophilicity was investigated in anionic, cationic and nonionic micellar systems and 10 wt% o/w emulsions. Apart from EPR spectra deconvolution, the PFG-NMR was used in micellar solutions as a non-destructive approach, while UF based on separation of very small volume of the aqueous phase. As a function of their substituent and lipophilicity, the proportions of nitroxides that were solubilized in the micellar or emulsion interface increased with increasing nitroxide lipophilicity for all emulsifier used. Comparing the different approaches, EPR deconvolution and UF revealed comparable nitroxide proportions that were solubilized in the interfaces. Those proportions were higher than found with PFG-NMR. For PFG-NMR self-diffusion experiments the reduced nitroxides were used revealing a high dynamic of hydroxylamines and emulsifiers. Deconvolution of EPR spectra turned out to be the preferred method for measuring the partitioning behavior of paramagnetic molecules as it enables distinguishing between several populations at their individual solubilization sites. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Performance enhancement of polyvinyl chloride ultrafiltration membrane modified with graphene oxide.

    PubMed

    Zhao, Yuanyuan; Lu, Jiaqi; Liu, Xuyang; Wang, Yudan; Lin, Jiuyang; Peng, Na; Li, Jingchun; Zhao, Fangbo

    2016-10-15

    A novel polyvinyl chloride (PVC) membrane was modified with graphene oxide (GO) via phase inversion method to improve its hydrophilicity and mechanical properties. The GO presented a large amount of hydrophilic groups after the modification through the modified Hummers method. It was observed that with the addition of low fraction of GO powder, the GO/PVC hybrid membranes exhibited a significant enhancement in hydrophilicity, water flux, and mechanical properties. With optimal dosage (0.1wt%), the pure water flux of GO/PVC membrane increased from 232.6L/(m(2)hbar) to 430.0L/(m(2)hbar) and the tensile strength increased from 231.3cN to 305.3cN. The improved properties of the PVC/GO hybrid membranes are mainly attributed to the strong hydrophilicity of functional groups on the GO surface, indicating that GO has a promising candidate for modification of PVC ultrafiltration membranes in wastewater treatment.

  13. Evaluation and validation of virus removal by ultrafiltration during the production of diaspirin crosslinked haemoglobin (DCLHb).

    PubMed

    Azari, M; Boose, J A; Burhop, K E; Camacho, T; Catarello, J; Darling, A; Ebeling, A A; Estep, T N; Pearson, L; Guzder, S; Herren, J; Ogle, K; Paine, J; Rohn, K; Sarajari, R; Sun, C S; Zhang, L

    2000-06-01

    Virus retention during ultrafiltration through A/G Technology filter cartridges was investigated to characterize the removal process and validate the degree of virus titre reduction during the filtration of red blood cell haemolysates performed as part of the production of diaspirin crosslinked haemoglobin (DCLHb). When viruses were suspended in phosphate buffered saline solution, retention was greater with larger sized viruses and smaller filter pore size. Virus titre was maintained at starting levels in the filter retentate circuit during the course of filtration, suggesting that the virus removal mechanism is predominantly size exclusion. Evaluation of specific processing variables indicated that the retention of phiX174 virus was increased in the presence of red blood cell haemolysate or at high membrane crossflow rates and transmembrane pressures, while the retention of EMC virus was less sensitive to variations in these parameters. Using these results to design a validation protocol, log reduction values of >7.9 were demonstrated for the retention of human immunodeficiency virus, pseudorabies virus and bovine viral diarrhoea viruses, 7.6 for hepatitis A virus, and 4.2 for porcine parvovirus. It was also shown that the retention of viruses was maintained during repetitive use of the same filter cartridge.

  14. Is semi-flocculation effective as pretreatment to ultrafiltration in wastewater treatment?

    PubMed

    Shon, H K; Vigneswaran, S; Ngo, H H; Ben Aim, R

    2005-01-01

    In this study, ferric chloride (FeCl(3)) flocculation was used as a pretreatment to ultrafiltration (UF) in treating synthetic wastewater containing synthetic organic matter (SOM). The effect of flocculant dose was studied in terms of organic removal and membrane flux decline. The UF with optimum dose of FeCl(3) (68 mg L(-1)) did not experience any flux decline during the whole operation of 6 h. The preflocculation with a smaller dose of 20 mg L(-1) of FeCl(3) led to a severe flux decline in the UF (more than 65% in 6 h). To understand the phenomenon of the flux decline of UF, the MW ranges of SOM removed by different doses of FeCl(3) and by the post treatment of UF were studied. Flocculation with at least 50 mg L(-1) of FeCl(3) dose was found to be necessary to avoid any significant flux decline and to obtain superior DOC removal.

  15. Rapid Screening for α-Glucosidase Inhibitors from Gymnema sylvestre by Affinity Ultrafiltration-HPLC-MS.

    PubMed

    Chen, Guilin; Guo, Mingquan

    2017-01-01

    Gymnema sylvestre R. Br. (Asclepiadaceae) has been known to posses potential anti-diabetic activity, and the gymnemic acids were reported as the main bioactive components in this plant species. However, the specific components responsible for the hypoglycemic effect still remain unknown. In the present study, the in vitro study revealed that the extract of G. sylvestre exhibited significant inhibitory activity against α-glucosidase with IC50 at 68.70 ± 1.22 μg/mL compared to acarbose (positive control) at 59.03 ± 2.30 μg/mL, which further indicated the potential anti-diabetic activity. To this end, a method based on affinity ultrafiltration coupled with liquid chromatography mass spectrometry (UF-HPLC-MS) was established to rapidly screen and identify the α-glucosidase inhibitors from G. sylvestre. In this way, 9 compounds with higher enrichment factors (EFs) were identified according to their MS/MS spectra. Finally, the structure-activity relationships revealed that glycosylation could decrease the potential antisweet activity of sapogenins, and other components except gymnemic acids in G. sylvestre could also be good α-glucosidase inhibitors due to their synergistic effects. Taken together, the proposed method combing α-glucosidase and UF-HPLC-MS presents high efficiency for rapidly screening and identifying potential inhibitors of α-glucosidase from complex natural products, and could be further explored as a valuable high-throughput screening (HTS) platform in the early anti-diabetic drug discovery stage.

  16. Surface modification of ultrafiltration membranes by grafting glycine-functionalized PVA based on polydopamine coatings

    NASA Astrophysics Data System (ADS)

    Li, Fang; Ye, Jianfeng; Yang, Linming; Deng, Chunhua; Tian, Qing; Yang, Bo

    2015-08-01

    Due to the ease of processing and stability during filtration, polydopamine (PD) coatings with grafted hydrophilic polymers have recently received significant attention. In this study, glycine-functionalized PVA was synthesized and grafted to a PD-coated ultrafiltration (UF) membrane to improve its performance during wastewater filtration. The membranes were modified by grafting PD with glycine-functionalized PVA (PD-g-PVA), and the resultant materials were characterized using surface morphology analyses, contact angle measurements, flux, oil/water emulsion separation tests, and grafted layer stability tests. The performance of the PD-g-PVA membrane was compared to that of the membrane modified with PD-g-polyethylene glycol (PEG). After grafting the PD-g-PVA, the surface roughness of the membranes decreased significantly. The grafted PVA layer, which was stable under acidic and alkaline conditions, protected the PD layer. The filtration experiments with an oil/water emulsion indicated that modifying the glycine-functionalized PVA by grafting can significantly improve the antifouling ability of membranes.

  17. Antioxidant activities of bambara groundnut (Vigna subterranea) protein hydrolysates and their membrane ultrafiltration fractions.

    PubMed

    Arise, Abimbola K; Alashi, Adeola M; Nwachukwu, Ifeanyi D; Ijabadeniyi, Oluwatosin A; Aluko, Rotimi E; Amonsou, Eric O

    2016-05-18

    In this study, the bambara protein isolate (BPI) was digested with three proteases (alcalase, trypsin and pepsin), to produce bambara protein hydrolysates (BPHs). These hydrolysates were passed through ultrafiltration membranes to obtain peptide fractions of different sizes (<1, 1-3, 3-5 and 5-10 kDa). The hydrolysates and their peptide fractions were investigated for antioxidant activities. The membrane fractions showed that peptides with sizes <3 kDa had significantly (p < 0.05) reduced surface hydrophobicity when compared with peptides >3 kDa. This is in agreement with the result obtained for the ferric reducing power, metal chelating and hydroxyl radical scavenging activities where higher molecular weight peptides exhibited better activity (p < 0.05) when compared to low molecular weight peptide fractions. However, for all the hydrolysates, the low molecular weight peptides were more effective diphenyl-1-picrylhydrazyl (DPPH) radical scavengers but not superoxide radicals when compared to the bigger peptides. In comparison with glutathione (GSH), BPHs and their membrane fractions had better (p < 0.05) reducing power and ability to chelate metal ions except for the pepsin hydrolysate and its membrane fractions that did not show any metal chelating activity. However, the 5-10 kDa pepsin hydrolysate peptide fractions had greater (88%) hydroxyl scavenging activity than GSH, alcalase and trypsin hydrolysates (82%). These findings show the potential use of BPHs and their peptide fraction as antioxidants in reducing food spoilage or management of oxidative stress-related metabolic disorders.

  18. Treatment of high-ammonium anaerobic digester supernatant by aerobic granular sludge and ultrafiltration processes.

    PubMed

    Cydzik-Kwiatkowska, Agnieszka; Zielińska, Magdalena; Bernat, Katarzyna; Wojnowska-Baryła, Irena; Truchan, Tomasz

    2013-02-01

    Anaerobic sludge digester supernatant characterized by 569 mg TKN L(-1), high color and a COD/N ratio of 1.4 was treated in granular sequencing batch reactors (GSBRs) followed by post-denitrification (P-D) and ultrafiltration (UF) steps. The use of granular sludge allowed for the oxidation of ammonium in anaerobic digester supernatant at all investigated GSBR cycle lengths of 6, 8 and 12 h. The highest ammonium removal rate (15 mg N g(-1) VSS h(-1)) with removal efficiency of 99% was noted at 8 h. Since the GSBR effluent was characterized by a high concentration of nitrites, slowly-degradable substances and biomass, additional purification steps were applied. In P-D stage, the microbial activity of granular biomass in the GSBR effluent was implemented. The P-D was supported by external carbon source addition and the most advantageous variant comprised dosing of half of the theoretical acetate dose for nitrite reduction in the 3-h intervals. The use of the system consisting of the GSBR with 8 h, an optimal P-D variant and a UF for the treatment of anaerobic digester supernatant allowed for the 99%, 71% and 97% reductions of TKN, COD and color, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Evaluation of Novel Large Cut-Off Ultrafiltration Membranes for Adenovirus Serotype 5 (Ad5) Concentration

    PubMed Central

    Peixoto, Cristina; Roederstein, Susanne; Schleuss, Tobias; Alves, Paula M.; Mota, José P. B.; Carrondo, Manuel J. T.

    2014-01-01

    The purification of virus particles and viral vectors for vaccine and gene therapy applications is gaining increasing importance in order to deliver a fast, efficient, and reliable production process. Ultrafiltration (UF) is a widely employed unit operation in bioprocessing and its use is present in several steps of the downstream purification train of biopharmaceuticals. However, to date few studies have thoroughly investigated the performance of several membrane materials and cut-offs for virus concentration/diafiltration. The present study aimed at developing a novel class of UF cassettes for virus concentration/diafiltration. A detailed study was conducted to evaluate the effects of (i) membrane materials, namely polyethersulfone (PES), regenerated cellulose (RC), and highly cross-linked RC (xRC), (ii) nominal cut-off, and (iii) UF device geometry at different production scales. The results indicate that the xRC cassettes with a cut-off of approximately 500 kDa are able to achieve a 10-fold concentration factor with 100% recovery of particles with a process time twice as fast as that of a commercially available hollow fiber. DNA and host cell protein clearances, as well as hydraulic permeability and fouling behavior, were also assessed. PMID:25546428

  20. Plasma deposition of silver nanoparticles on ultrafiltration membranes: antibacterial and anti-biofouling properties

    PubMed Central

    Cruz, Mercedes Cecilia; Ruano, Gustavo; Wolf, Marcus; Hecker, Dominic; Vidaurre, Elza Castro; Schmittgens, Ralph; Rajal, Verónica Beatriz

    2015-01-01

    A novel and versatile plasma reactor was used to modify Polyethersulphone commercial membranes. The equipment was applied to: i) functionalize the membranes with low-temperature plasmas, ii) deposit a film of poly(methyl methacrylate) (PMMA) by Plasma Enhanced Chemical Vapor Deposition (PECVD) and, iii) deposit silver nanoparticles (SNP) by Gas Flow Sputtering. Each modification process was performed in the same reactor consecutively, without exposure of the membranes to atmospheric air. Scanning electron microscopy and transmission electron microscopy were used to characterize the particles and modified membranes. SNP are evenly distributed on the membrane surface. Particle fixation and transport inside membranes were assessed before- and after-washing assays by X-ray photoelectron spectroscopy depth profiling analysis. PMMA addition improved SNP fixation. Plasma-treated membranes showed higher hydrophilicity. Anti-biofouling activity was successfully achieved against Gram-positive (Enterococcus faecalis) and -negative (Salmonella Typhimurium) bacteria. Therefore, disinfection by ultrafiltration showed substantial resistance to biofouling. The post-synthesis functionalization process developed provides a more efficient fabrication route for anti-biofouling and anti-bacterial membranes used in the water treatment field. To the best of our knowledge, this is the first report of a gas phase condensation process combined with a PECVD procedure in order to deposit SNP on commercial membranes to inhibit biofouling formation. PMID:26166926

  1. [Determination of plasma protein binding rate of arctiin and arctigenin with ultrafiltration].

    PubMed

    Han, Xue-Ying; Wang, Wei; Tan, Ri-Qiu; Dou, De-Qiang

    2013-02-01

    To determine the plasma protein binding rate of arctiin and arctigenin. The ultrafiltration combined with HPLC was employed to determine the plasma protein binding rate of arctiin and arctigenin as well as rat plasma and healthy human plasma proteins. The plasma protein binding rate of arctiin with rat plasma at the concentrations of 64. 29, 32.14, 16.07 mg x L(-1) were (71.2 +/- 2.0)%, (73.4 +/- 0.61)%, (78.2 +/- 1.9)%, respectively; while the plasma protein binding rate of arctiin with healthy human plasma at the above concentrations were (64.8 +/- 3.1)%, (64.5 +/- 2.5)%, (77.5 +/- 1.7)%, respectively. The plasma protein binding rate of arctigenin with rat plasma at the concentrations of 77.42, 38.71, 19.36 mg x L(-1) were (96.7 +/- 0.41)%, (96.8 +/- 1.6)%, (97.3 +/- 0.46)%, respectively; while the plasma protein binding rate of arctigenin with normal human plasma at the above concentrations were (94.7 +/- 3.1)%, (96.8 +/- 1.6)%, (97.9 +/- 1.3)%, respectively. The binding rate of arctiin with rat plasma protein was moderate, which is slightly higher than the binding rate of arctiin with healthy human plasma protein. The plasma protein binding rates of arctigenin with both rat plasma and healthy human plasma are very high.

  2. Removal of radionuclides in drinking water by membrane treatment using ultrafiltration, reverse osmosis and electrodialysis reversal.

    PubMed

    Montaña, M; Camacho, A; Serrano, I; Devesa, R; Matia, L; Vallés, I

    2013-11-01

    A pilot plant had been built to test the behaviour of ultrafiltration (UF), reverse osmosis (RO), and electrodialysis reversal (EDR) in order to improve the quality of the water supplied to Barcelona metropolitan area from the Llobregat River. This paper presents results from two studies to reduce natural radioactivity. The results from the pilot plant with four different scenarios were used to design the full-scale treatment plant built (SJD WTP). The samples taken at different steps of the treatment were analysed to determine gross alpha, gross beta and uranium activity. The results obtained revealed a significant improvement in the radiological water quality provided by both membrane techniques (RO and EDR showed removal rates higher than 60%). However, UF did not show any significant removal capacity for gross alpha, gross beta or uranium activities. RO was better at reducing the radiological parameters studied and this treatment was selected and applied at the full scale treatment plant. The RO treatment used at the SJD WTP reduced the concentration of both gross alpha and gross beta activities and also produced water of high quality with an average removal of 95% for gross alpha activity and almost 93% for gross beta activity at the treatment plant. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Selective separation and concentration of antihypertensive peptides from rapeseed protein hydrolysate by electrodialysis with ultrafiltration membranes.

    PubMed

    He, Rong; Girgih, Abraham T; Rozoy, Elodie; Bazinet, Laurent; Ju, Xing-Rong; Aluko, Rotimi E

    2016-04-15

    Rapeseed protein isolate was subjected to alcalase digestion to obtain a protein hydrolysate that was separated into peptide fractions using electrodialysis with ultrafiltration membrane (EDUF) technology. The EDUF process (6h duration) led to isolation of three peptide fractions: anionic (recovered in KCl-1 compartment), cationic (recovered in KCl-2 compartment), and those that remained in the feed compartment, which was labeled final rapeseed protein hydrolysate (FRPH). As expected the KCl-1 peptides were enriched in negatively-charged (43.57%) while KCl-2 contained high contents of positively-charged (28.35%) amino acids. All the samples inhibited angiotensin converting enzyme (ACE) and renin activities in dose-dependent manner with original rapeseed protein hydrolysate having the least ACE-inhibitory IC50 value of 0.0932±0.0037 mg/mL while FRPH and KCl-2 had least renin-inhibitory IC50 values of 0.47±0.05 and 0.55±0.06 mg/mL, respectively. Six hours after oral administration (100 mg/kg body weight) to spontaneously hypertensive rats, the FRPH produced the maximum systolic blood pressure reduction of -51 mmHg. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Micellar-enhanced ultrafiltration process (MEUF) for removing copper from synthetic wastewater containing ligands.

    PubMed

    Liu, Chuan-Kun; Li, Chi-Wang; Lin, Ching-Yu

    2004-11-01

    The effects of the type and concentration of ligands on the removal of Cu by micellar-enhanced ultrafiltration (MEUF) with the help of either anionic or cationic surfactants were investigated. The removal efficiency of copper by anionic surfactant-(SDS-) MEUF depends on the ligand-to-Cu ratio and the ligand-to-Cu complexation constant. At fixed ligand-to-Cu ratio, the Cu removal efficiency decreases in the order of citric acid>NTA>EDTA, which is the reverse order of Cu-ligand complexation constants for these ligands. Increasing SDS-ligand ratios from 12 to 60 at fixed ligand concentration did not improve copper removal efficiency. The cationic surfactant, CPC, enhances Cu removal efficiency in systems with condition of ligand-copper ratios higher than 1.0, where Cu removal is not very efficient using SDS-MEUF process. The Cu removal efficiency with CPC-MEUF depends on both the ligand-to-Cu ratio and the type of ligands.

  5. Demonstrating ultra-filtration and reverse osmosis performance using size exclusion chromatography.

    PubMed

    Henderson, R K; Stuetz, R M; Khan, S J

    2010-01-01

    Advanced water treatment plants employing ultrafiltration (UF) and reverse osmosis (RO) membrane processes are frequently implemented for the production of high-quality recycled water. It is important that process performance is able to be quantified and assessed to ensure it is fit for purpose. This research utilizes size exclusion chromatography with organic carbon, organic nitrogen and UV(254) detection to determine the change in both DOC concentration and character through a UF/3 stage-RO pilot plant. It was determined that 97% of the influent DOC was removed on average to produce a water of less than 0.5 mg L(-1) as C. The UF process removed more than half of the biopolymer fraction, equating to 4.5% DOC removal, while the RO process generally removed all DOC except a small proportion of the low MW humics and acids and low MW neutral fraction. While not changing significantly in concentration, the Stage 3 RO permeate typically contained low concentrations of humic fraction, indicating a change in character and therefore a change in rejection mechanism. Overall, it was determined that while TOC monitoring is important in advanced water treatment systems, improved understanding of the character of the TOC present lends greater insight into the assessment of process performance.

  6. Modified Ultrafiltration During Cardiopulmonary Bypass and Postoperative Course of Pediatric Cardiac Surgery

    PubMed Central

    Ziyaeifard, Mohsen; Alizadehasl, Azin; Massoumi, Gholamreza

    2014-01-01

    Context: The use of cardiopulmonary bypass (CPB) provokes the inflammatory responses associated with ischemic/reperfusion injury, hemodilution and other agents. Exposure of blood cells to the bypass circuit surface starts a systemic inflammatory reaction that may causes post-CPB organ dysfunction, particularly in lungs, heart and brain. Evidence Acquisition: We investigated in the MEDLINE, PUBMED, and EMBASE databases and Google scholar for every available article in peer reviewed journals between 1987 and 2013, for related subjects to CPB with conventional or modified ultrafiltration (MUF) in pediatrics cardiac surgery patients. Results: MUF following separation from extracorporeal circulation (ECC) provides well known advantages in children with improvements in the hemodynamic, pulmonary, coagulation and other organs functions. Decrease in blood transfusion, reduction of total body water, and blood loss after surgery, are additional benefits of MUF. Conclusions: Consequently, MUF has been associated with attenuation of morbidity after pediatric cardiac surgery. In this review, we tried to evaluate the current evidence about MUF on the organ performance and its effect on post-CPB morbidity in pediatric patients. PMID:25478538

  7. Spectroscopic study of humic acids fractionated by means of tangential ultrafiltration

    NASA Astrophysics Data System (ADS)

    Francioso, O.; Sánchez-Cortés, S.; Casarini, D.; Garcia-Ramos, J. V.; Ciavatta, C.; Gessa, C.

    2002-05-01

    Different chemical and spectroscopic techniques—diffuse reflectance infrared Fourier transform (DRIFT), surface-enhanced Raman spectroscopy (SERS), and 1H, 13C nuclear magnetic resonance (NMR) have been applied to investigate a peat humic acid (HA) separated by tangential ultrafiltration into different nominal molecular weight (NMW) fractions. Each fraction analyzed showed a characteristic DRIFT and NMR pattern. High nominal molecular weight fractions were mainly characterized by long chains of methyl and methylene groups and poorly substituted aromatic rings, while in low nominal molecular weight fractions (L-NMW), phenolic and oxygen-containing groups were predominant. A comparative study on fractions before and after treatment with 0.5 M HCl was carried out. Purified fractions showed either an increase in the carboxylate and phenolic OH groups or an improvement in signal-to-noise ratio of their NMR spectra. The SERS study of NMW fractions allowed significative information on structure and conformation of these fractions. In particular, L-NMW fractions showed a great structural modification, when different alkaline extractants or treatment with HCl were used. Humic-like substances obtained by catechol and gallic acid polymerization on metal surface were investigated using SERS. The SERS spectra of these polymers were compared and discussed with those of NMW HA fractions.

  8. Biofilm increases permeate quality by organic carbon degradation in low pressure ultrafiltration.

    PubMed

    Chomiak, A; Traber, J; Morgenroth, E; Derlon, N

    2015-11-15

    We investigated the influence of biofouling of ultrafiltration membranes on the removal of organic model foulants and ultimately on the quality of permeate. Gravity Driven Membrane ultrafiltration (GDM) membrane systems were operated with modified river water during five weeks without control of the biofilm formation. Three GDM systems were studied: two systems with biofilms exposed to (A) variable or (B) constant load of organic foulants, and (C) one system operated without biofilm and exposed to constant foulant loading. Biodegradable dextran or non-biodegradable polystyrene sulfonate model foulants were tested. Substrate biodegradability was confirmed by Size Exclusion Chromatography (SEC) and by degradation batch tests (D). The GDM systems (A) and (B) were fed with pre-filtered river water supplemented with dextran (Dex) of 1, 150 or 2000 kDa, or polystyrene sulfonate (PSS) of 1 or 80 kDa at concentrations of 2-3.5 mgC L(-1). In exp. (C) the feed water consisted of deionized water with 25 mgC L(-1) of either PSS 1, 80 kDa or Dex 2000 kDa. The biofilm formation on UF membrane surfaces controlled the foulant permeation and thus the permeate quality. Biofilms exposed to continuous foulant loading (exp. B) degraded low molecular weight (LMW) biodegradable foulants (1 kDa Dex), which improved the permeate quality. For high molecular weight (HMW) substrates (150, 2000 kDa Dex), the improvement of the permeate quality was observed after 7 days of biofilm formation, and resulted from the foulant hydrolysis followed by degradation. For non-biodegradable foulants, an improvement of 20% of the retention was observed for the polystyrene (1, 80 kDa PSS) due to the presence of biofilms on membrane surfaces. For variable foulant loading (exp. A) the biofilms hydrolysed the large biodegradable foulants but did not degraded them fully, which resulted a deterioration of the permeate quality (except for the LMW dextran (1 kDa) that was fully degraded). Overall, the "biofilm

  9. Ultrafiltration improves ELISA and Endopep MS analysis of botulinum neurotoxin type A in drinking water.

    PubMed

    Raphael, Brian H; Lautenschlager, Matthew; Kahler, Amy; Pai, Suresh; Parks, Bryan A; Kalb, Suzanne R; Maslanka, Susan E; Shah, Sanjiv; Magnuson, Matthew; Hill, Vincent R

    2012-09-01

    The objective of this study was to adapt and evaluate two in vitro botulinum neurotoxin (BoNT) detection methods, including the Botulinum Toxin ELISA and the Endopep MS (a mass spectrometric-based endopeptidase method), for use with drinking water samples. The method detection limits (MDL) of the ELISA and Endopep MS were 260 pg/mL and 21 pg/mL of BoNT/A complex toxin, respectively. Since toxin could be present in water samples at highly dilute concentrations, large volume (100-L) samples of municipal tap water from five US municipalities having distinct water compositions were dechlorinated, spiked with 5 μg BoNT/A, and subjected to tangential-flow ultrafiltration (UF) using hollow fiber dialyzers. The recovery efficiency of BoNT/A using UF and quantified by ELISA ranged from 11% to 36% while efficiencies quantified by MS ranged from 26% to 55%. BoNT/A was shown to be stable in dechlorinated municipal tap water stored at 4°C for up to four weeks. In addition, toxin present in UF-concentrated water samples was also shown to be stable at 4°C for up to four weeks, allowing holding of samples prior to analysis. Finally, UF was used to concentrate a level of toxin (7 pg/mL) which is below the MDL for direct analysis by both ELISA and Endopep MS. Following UF, toxin was detectable in these samples using both in vitro analysis methods. These data demonstrate that UF-concentration of toxin from large volume water samples followed by use of existing analytical methods for detection of BoNT/A can be used in support of a monitoring program for contaminants in drinking water. Published by Elsevier B.V.

  10. Enhanced Wettability and Transport Control of Ultrafiltration and Reverse Osmosis Membranes with Grafted Polyelectrolytes.

    PubMed

    Gao, Kai; Kearney, Logan T; Wang, Ruocun; Howarter, John A

    2015-11-11

    End-functionalized poly(acrylic acid) (PAA-silane) was synthesized with reversible addition-fragmentation chain-transfer (RAFT) polymerization and attached to both polysulfone ultrafiltration (UF) and polyamide reverse osmosis (RO) membranes through a nonimpairing, one-step grafting to approach in order to improve membrane surface wettability with minimal impact on membrane transport performance. After PAA grafting, composition and morphology changes on the membrane surface were characterized with Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). Static contact angle on PAA grafted membranes exhibited an increase in surface hydrophilicity and hence a potential enhancement in antifouling performance. The native contact angle on the polysulfone membrane systems was 86° and was reduced to 24° after modification, while the polyamide film contact angle decreased from 58° to 25°. The PAA layer endowed the porous UF membrane with dynamic control over the permeability and selectivity through the manipulation of the solution pH. The UF membrane with a 35 nm average pore size displayed a 115% increase in flux when the contact solution was changed from pH 11 to pH 3. This effect was diminished to 70% and 32% as the average pore size decreased to 20 and 10 nm, respectively. Modified RO membranes displayed no reduction in membrane performance indicating that the underlying materials were unaffected by the modification environment or added polymer. Model polyamide and polysulfone surfaces were reacted with the PAA-silane inside a quartz crystal microbalance (QCM) to help inform the deposition behavior for the respective membrane chemistries.

  11. Effect of coagulation and flocculation conditions on water quality in an immersed ultrafiltration process.

    PubMed

    Walsh, M E; Zhao, N; Gora, S L; Gagnon, G A

    2009-08-01

    The removal of natural organic matter under variable coagulation and flocculation pretreatment conditions was evaluated for three surface waters in an immersed ultrafiltration (UF) process. Coagulation with alum, flocculation and UF treatment were conducted in a bench-scale test apparatus designed to simulate pilot- and full-scale water treatment systems. Variable coagulation and flocculation operating conditions were investigated, including coagulant dose, hydraulic retention time (HRT) and mixing intensity (e.g. velocity gradient). Treatment performance was evaluated by measuring specific water quality parameters in the permeate stream, including dissolved organic carbon (DOC), UV254 and true colour. Coagulant dose was found to be the most important variable for treatment performance with regard to permeate water quality, with significantly lower alum dosages required to achieve enhanced coagulation water quality targets than conventional filtration systems. Experiments conducted to evaluate variable flocculation stage HRT and applied velocity gradient demonstrated that traditional set points for these operating variables, applied in conventional filtration systems, may not be required in UF systems. In particular, optimized UF permeate water quality was found with reduced flocculation retention times (e.g. <10 minutes) and mixing intensities (e.g. < 100 s(-1)). The impact of intermittent air scour, or air sparging, operations in the UF process tank during operation was also evaluated. The use of air scour, tested as an intermittent operation at an applied velocity gradient of 50 s(-1) was found to significantly reduce DOC concentrations and UV254 measurements in the UF permeate stream when compared with UF operations without air scour.

  12. Fate and fouling characteristics of fluorescent dissolved organic matter in ultrafiltration of terrestrial humic substances.

    PubMed

    Quang, Viet Ly; Kim, Hyun-Chul; Maqbool, Tahir; Hur, Jin

    2016-12-01

    Ultrafiltration (UF) membrane fouling caused by terrestrial input of dissolved organic matter (DOM), especially during high flood periods, is poorly understood. In this study, we examined the fouling characteristics of three different terrestrial humic substances (HS) on regenerated cellulose (RC) UF membranes with the pore sizes of 30 k-3 kDa via conventional bulk HS measurements as well as an advanced fluorescence spectroscopy. The fluorescence excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC) identified one protein-like (C1) and three humic-like fluorescent components (C2-C4) from soil and leaf-derived HS. The fate of the different fluorescent components was individually tracked for the UF processes. The higher removal rates were found generally on the order of high molecular weight (HMW) C1 to smaller sized humic-like components (C4 > C3 > C2) regardless of the HS sources, implying the importance of HS molecular sizes on the UF operation. Among the humic-like components, C2 was the most associated with irreversible fouling, while other two humic-like components contributed more to reversible fouling. For soil-derived HS, C4 can be suggested as a good surrogate for membrane fouling, as evidenced by the highest correlation between the removal rates and the total fouling indices among the tested HS variables including conventional bulk parameters. Our study demonstrated a promising application of EEM-PARAFAC for probing membrane fouling of terrestrial DOM, which provided additional insight into the fate of different fluorescent components on the UF processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Reducing ultrafiltration membrane fouling during potable water reuse using pre-ozonation.

    PubMed

    Wang, Hui; Park, Minkyu; Liang, Heng; Wu, Shimin; Lopez, Israel J; Ji, Weikang; Li, Guibai; Snyder, Shane A

    2017-08-13

    Wastewater reclamation has increasingly become popular to secure potable water supply. Low-pressure membrane processes such as microfiltration (MF) and ultrafiltration (UF) play imperative roles as a barrier of macromolecules for such purpose, but are often limited by membrane fouling. Effluent organic matter (EfOM), including biopolymers and particulates, in secondary wastewater effluents have been known to be major foulants in low-pressure membrane processes. Hence, the primary aim of this study was to investigate the effects of pre-ozonation as a pre-treatment for UF on the membrane fouling caused by EfOM in secondary wastewater effluents for hydrophilic regenerated cellulose (RC) and hydrophobic polyethersulfone (PES) UF membranes. It was found that greater fouling reduction was achieved by pre-ozonation for the hydrophilic RC membrane than the hydrophobic PES membrane at increasing ozone doses. In addition, the physicochemical property changes of EfOM, including biopolymer fractions, by pre-ozonation were systemically investigated. The classical pore blocking model and the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theories were employed to scrutinize the fouling alleviation mechanism by pre-ozonation. As a result, the overarching mechanisms of fouling reduction were attributed to the following key reasons: (1) Ozone degraded macromolecules such as biopolymers like proteins and polysaccharides into smaller fractions, thereby increasing free energy of cohesion of EfOM and rendering them more hydrophilic and stable; (2) pre-ozonation augmented the interfacial free energy of adhesion between foulants and the RC/PES membranes, leading to the increase of repulsions and/or the decrease of attractions; and (3) pre-ozonation prolonged the transition from pore blocking to cake filtration that was a dominant fouling mechanism, thereby reducing fouling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Longer treatment time and slower ultrafiltration in hemodialysis: associations with reduced mortality in the DOPPS.

    PubMed

    Saran, R; Bragg-Gresham, J L; Levin, N W; Twardowski, Z J; Wizemann, V; Saito, A; Kimata, N; Gillespie, B W; Combe, C; Bommer, J; Akiba, T; Mapes, D L; Young, E W; Port, F K

    2006-04-01

    Longer treatment time (TT) and slower ultrafiltration rate (UFR) are considered advantageous for hemodialysis (HD) patients. The study included 22,000 HD patients from seven countries in the Dialysis Outcomes and Practice Patterns Study (DOPPS). Logistic regression was used to study predictors of TT > 240 min and UFR > 10 ml/h/kg bodyweight. Cox regression was used for survival analyses. Statistical adjustments were made for patient demographics, comorbidities, dose of dialysis (Kt/V), and body size. Europe and Japan had significantly longer (P < 0.0001) average TT than the US (232 and 244 min vs 211 in DOPPS I; 235 and 240 min vs 221 in DOPPS II). Kt/V increased concomitantly with TT in all three regions with the largest absolute difference observed in Japan. TT > 240 min was independently associated with significantly lower relative risk (RR) of mortality (RR = 0.81; P = 0.0005). Every 30 min longer on HD was associated with a 7% lower RR of mortality (RR = 0.93; P < 0.0001). The RR reduction with longer TT was greatest in Japan. A synergistic interaction occurred between Kt/V and TT (P = 0.007) toward mortality reduction. UFR > 10 ml/h/kg was associated with higher odds of intradialytic hypotension (odds ratio = 1.30; P = 0.045) and a higher risk of mortality (RR = 1.09; P = 0.02). Longer TT and higher Kt/V were independently as well as synergistically associated with lower mortality. Rapid UFR during HD was also associated with higher mortality risk. These results warrant a randomized clinical trial of longer dialysis sessions in thrice-weekly HD.

  15. Effects of bovine colostral ultrafiltrates on growth and differentiation of 3T3-L1 preadipocytes.

    PubMed

    Lee, Seong-Ho; Hossner, Kim L

    2002-12-01

    This study was designed to compare the effects of whole and size-fractionated bovine colostrum with bovine calf serum (BCS) on the growth and differentiation of 3T3-L1 fibroblasts. High (HMW) and low (LMW)-molecular-mass ultrafiltrate fractions of colostrum were prepared from defatted colostrum (COL) by diafiltration through membranes with a molecular-mass cut-off of 30 kDa. Incorporation of [(3)H]thymidine into the cells was used as a reflection of DNA synthesis/cell proliferation. The growth-promoting activity of LMW was 2.3- and 2.5-fold higher than COL and HMW, respectively (P <0.05), and 185 microg/ml LMW stimulated cell proliferation equivalent to 10% BCS. Although insulin-like growth factor (IGF)-I, IGF-II and platelet-derived growth factor AB stimulated 3T3-L1 cells, antibodies to these factors did not inhibit the LMW effects. The LMW fraction was about twice as effective as COL and HMW in stimulating differentiation of the cells into adipocytes, but maximal differentiation was only 60% of that seen with 10% fetal bovine serum (FBS). Treatment with COL, HMW, IGF-I and insulin induced peroxisome-proliferator-activated receptor gamma RNA, but levels were about half of that with 10% FBS treatment and LMW induction was 80% of FBS. Low amounts of leptin mRNA were detected in adipocytes and abundance did not differ between treatments with BCS, hormones or COL fractions. This study showed that bovine colostral LMW stimulated the growth and differentiation of 3T3-L1 preadipocytes and may be a useful serum substitute to support the growth of these cells.

  16. Effects of sodium hypochlorite exposure mode on PES/PVP ultrafiltration membrane degradation.

    PubMed

    Causserand, Christel; Pellegrin, Bastien; Rouch, Jean-Christophe

    2015-11-15

    Drinking water production plants using membrane filtration processes report membrane failure issues. According to the literature, membrane degradation is often induced by exposure to sodium hypochlorite, an oxidant widely used during in-place cleanings. The present study focused on quantifying the effect of membrane exposure mode to hypochlorite on properties modifications of a PES/PVP ultrafiltration membrane widely used for drinking water production. For this purpose effects of sodium hypochlorite concentration, contact duration and exposure mode (static or dynamic) were investigated. The pH of the hypochlorite solution was set to 8 as it was demonstrated in numerous previous works that the pH range 7-8 leads to the most severe modification in the membrane characteristics. Membrane degradation was monitored at molecular scale by attenuated total reflectance infrared spectroscopy and at macroscopic scale by pure water permeability and elongation at break measurements. The results obtained in static (soaking) and dynamic (filtration and filtration/backwashing cycles) hypochlorite exposure modes indicated that PES/PVP membrane degradation progress was predominantly governed by hypochlorite oxidation rate. In the tested conditions, mechanical stress (pressure differentials) did not significantly contribute to membrane ageing. The correlation between molecular and macroscopic characterizations demonstrated that PVP degradation is responsible for the membrane integrity loss. A linear relationship between the loss of ductility of the membrane and the progress of the PVP degradation was obtained whatever the exposure mode. Thanks to experiments conducted at various hypochlorite concentrations and exposure durations, the hypochlorite dose parameter (hypochlorite concentration times contact time), widely used in the literature, was demonstrated to be inappropriate to describe the degradation rate: the hypochlorite concentration impact was shown to be dominating the

  17. Personal viewpoint: Limiting maximum ultrafiltration rate as a potential new measure of dialysis adequacy.

    PubMed

    Agar, John W M

    2016-01-01

    While the solute clearance marker (Kt/Vurea ) is widely used, no effective marker for volume management exists. Two principles apply to acute volume change in hemodialysis: (1) the plasma refill rate, the maximum rate the extracellular fluid can replace a contracting intravascular volume (±5 mL/kg/hour) and (2) the rate of intravascular volume contraction where coronary hypoperfusion, myocardial stun, and vascular risk escalates (observed at ≥10 mL/kg/hour). In extended hour and higher frequency hemodialysis, intravascular contraction rates are usually equilibrated by the plasma refill rate, but in "conventional" in-center hemodialysis, volume contraction rates commonly exceed the capabilities of the plasma refill rate, resulting in inevitable hypovolemia. To minimize cardiovascular risk, fluid removal rates should ideally be ≤10 mL/kg/hour, acknowledging that this may be challenging in the in-center setting. Two options exist to limit volume removal to >10 mL/kg/hour: restricting interdialytic weight gain (always conflict-fraught, often unachievable) or extending sessional duration to allow additional removal time. Just as Kt/Vurea quantifies solute removal, a simple-to-apply rate variable should also apply for volume removal. As predialysis and target postdialysis weights are both known, a simple measure--a maximum rate for ultrafiltration (UFRmax )--would advise the sessional duration (T) required to minimize organ stun by removing the required fluid load (V) from any patient of predialysis weight (W). This would ensure a removal rate no greater than 10 mL/kg/hour-T (hours) = V (mL)/10 × W (kg). Used together, Kt/Vurea and UFRmax would form a solute and volume composite, each dialysis treatment continuing until both solute and volume requirements are fulfilled.

  18. Hemodynamic Response to Hemodialysis With Ultrafiltration Rate Profiles Either Gradually Decreasing or Gradually Increasing.

    PubMed

    Morales-Alvarez, Ricardo; Martínez-Memije, Raúl; Becerra-Luna, Brayans; García-Paz, Paola; Infante, Oscar; Palma-Ramírez, Alfredo; Caviedes-Aramburu, Amaya; Vargas-Barrón, Jesús; Lerma, Claudia; Pérez-Grovas, Héctor

    2016-07-01

    Hemodialysis (HD) is usually performed with the gradually decreasing ultrafiltration rate (UFR) profile (dUFR). The aim of the present study was to compare the hemodynamic response to HD with the dUFR to that of HD with the gradually increasing UFR profile (iUFR). The study population included 10 patients (three women, mean age: 28 ± 8 years) undergoing maintenance HD who had reached dry weight without taking antihypertensive medications. Each patient received (in random order) one HD session with the dUFR and another with the iUFR (both with 3 h total UFR = 2200 mL). Hemodynamic response was evaluated with a brachial blood pressure (BP) monitor, echocardiogram and Portapres to measure digital BP, heart rate, cardiac output, stroke volume, and peripheral resistance. Mean values were compared at each HD hour during the first 3 h of a 4-h HD session. The HD characteristics, including Kt/V, were similar for both UFR profiles. Relative blood volume decreased more gradually and linearly with the iUFR. Hemodynamic variables were not significantly different between the two profiles, but brachial BP was more stable with the iUFR. Digital diastolic BP increased with both profiles. Peripheral resistance increased with both profiles, and tended to increase more with the iUFR. Echocardiographic variables changed similarly during the HD session with both profiles. In conclusion, these two UFR profiles are similar in most hemodynamic variables. The statistical equivalence of both profiles suggests that either could be prescribed based on the clinical characteristics of the patient.

  19. Use of ultrafiltration to isolate viruses from seawater which are pathogens of marine phytoplankton.

    PubMed

    Suttle, C A; Chan, A M; Cottrell, M T

    1991-03-01

    Viruses may be major structuring elements of phytoplankton communities and hence important regulators of nutrient and energy fluxes in aquatic environments. In order to ascertain whether viruses are potentially important in dictating phytoplankton community structure, it is essential to determine the extent to which representative phytoplankton taxa are susceptible to viral infection. We used a spiral ultrafiltration cartridge (30,000-molecular-weight cutoff) to concentrate viruses from seawater at efficiencies approaching 100%. Natural virus communities were concentrated from stations in the Gulf of Mexico, a barrier island pass, and a hypersaline lagoon (Laguna Madre) and added to cultures of potential phytoplankton hosts. By following changes in in vivo fluorescence over time, it was possible to isolate several viruses that were pathogens to a variety of marine phytoplankton, including a prasinophyte (Micromonas pusilla), a pennate diatom (likely a Navicula sp.), a centric diatom (of unknown taxa), and a chroococcoid cyanobacterium (a Synechococcus sp.). As well, we observed changes in fluorescence in cultures of a cryptophyte (a Rhodomonas sp.) and a chlorophyte (Nannochloropsis oculata) which were consistent with the presence of viral pathogens. Although pathogens were isolated from all stations, all the pathogens were not isolated from every station. Filterability studies on the viruses infecting M. pusilla and the Navicula sp. showed that the viruses were consistently infective after filtration through polycarbonate and glass-fiber filters but were affected by most other filter types. Establishment of phytoplankton-pathogen systems will be important in elucidating the effect that viruses have on primary producers in aquatic systems.

  20. Iron-tannin-framework complex modified PES ultrafiltration membranes with enhanced filtration performance and fouling resistance.

    PubMed

    Fang, Xiaofeng; Li, Jiansheng; Li, Xin; Pan, Shunlong; Sun, Xiuyun; Shen, Jinyou; Han, Weiqing; Wang, Lianjun; Van der Bruggen, Bart

    2017-11-01

    In this work, an iron-tannin-framework (ITF) complex was introduced to a poly (ether sulfone) (PES) casting solution as a hydrophilic additive to fabricate ITF/PES ultrafiltration (UF) membranes via non-solvent-induced phase separation (NIPS). The structure and performance of the PES membranes with ITF concentrations ranging from 0 to 0.9wt.% were systematically investigated by scanning electron microscopy, water contact angle, permeability, protein rejection and fouling resistance measurements. The results indicate that the pore structure and surface properties of PES UF membranes can be regulated by incorporating the ITF complex. Compared with classical PES membranes, ITF/PES membranes were found to have an increased hydrophilicity and porosity and reduced surface pore size. Importantly, a simultaneous enhancement of permeability and separation performance was observed for the blend membranes, which indicates that the introduction of the ITF complex can break through the trade-off between permeability and selectivity of UF membranes.When the ITF content was 0.3wt.%, the permeability reached a maximum of 319.4(L/m(2)h) at 0.1MPa, which is 1.6 times higher than that of the classical PES membrane. Furthermore, the BSA rejection increased from 25.9% for the PES membrane to 95.9% for the enhanced membrane. In addition, the same membrane showed an improved fouling resistance (higher flux recovery and lower adhesion force) and stable hydrophilicity (unchanged after incubation in deionized water for 30days). The simple, green and cost-effective preparation process and the outstanding filtration performance highlight the potential of ITF/PES membranes for practical applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Excellent Biofouling Alleviation of Thermoexfoliated Vermiculite Blended Poly(ether sulfone) Ultrafiltration Membrane.

    PubMed

    Orooji, Yasin; Liang, Feng; Razmjou, Amir; Li, Sha; Mofid, Mohammad Reza; Liu, Quan; Guan, Kecheng; Liu, Zhengkun; Jin, Wanqin

    2017-09-06

    Flux and antifouling properties of mixed matrix membranes (MMMs) are yet to attain satisfactory status. The objective of this study is to find a method for mitigating the biofouling of poly(ether sulfone) (PES) ultrafiltration membranes via blending of thermoexfoliated vermiculite (VMT). Flow cytometry analysis shows that the behaviors of Bacillus subtilis 168 as a Gram-positive bacterium and Escherichia coli DH5 alpha as a Gram-negative bacterium were different. Hence, cell property is a suspected contributory factor in biofilm formation. Accordingly, considering the local predominant bacterial strains, a regionally customized membrane could scientifically be an expert solution for biofouling mitigation. Fabricated composite membranes have shown a higher flux compared to control PES membrane. Among all composite membranes, the PES-VMT0.10 had the highest flux of 476.4 L/(m(2) h) (LMH) before fouling, and the highest flux of 210.7 LMH after three cycles of usage. In addition, the rejection rate of the PES-VMT0.15 The bovine serum albumin (BSA) sample was >77%, while that of the PES-VMT0.10 was >84%. The results of the static BSA adsorption test and the bacterial attachment test indicated that the membranes with macro-roughness on their surface showed better antibiofouling resistance. The antifouling properties of the modified membranes were also improved, because of their optimal wettability. On one hand, the hydrophilicity of membranes caused damaging both Gram-positive and Gram-negative bacteria and bacteriocidal effect. On the other hand, BSA adsorption and bacterial attachment on the membrane surface were affected by pore diameter.

  2. Ultrafiltration Tandem Mass Spectrometry of Estrogens for Characterization of Structure and Affinity for Human Estrogen Receptors

    PubMed Central

    Sun, Yongkai; Gu, Chungang; Liu, Xuemei; Liang, Wenzhong; Yao, Ping; Bolton, Judy L.; van Breemen, Richard B.

    2006-01-01

    Although hormone replacement therapy (HRT) is used by post-menopausal women for the relief of menopausal symptoms and the potential reduction of osteoporosis, HRT also increases their risk of Alzheimer’s disease, stroke, breast cancer, and endometrial cancer. Since the majority of these effects are associated primarily with estrogen binding to only one of the estrogen receptors (ER), new assays are needed that can more efficiently evaluate ER-binding and identify ligands selective for ER-α and ER-β. High performance liquid chromatography-tandem mass spectrometry (LC-MS-MS) was combined with ultrafiltration as a new method to investigate the relative binding of compounds to the ERs and to evaluate the structures of these estrogens. Mixtures of estradiol and six equine estrogens including equilin, equilenin, 8,9-dehydroestrone, and their 17β-hydroxyl derivatives were assayed simultaneously to determine their relative binding to human ER-α and ER-β. Estrogens containing a 17β-OH group were found to have higher relative affinities for the estrogen receptors than their ketone analogs. In addition, 17β-EN showed selectivity for binding to ER-β over ER-α. The results were compared to the IC50 values obtained by using a conventional radiolabled estradiol competitive binding assay. Finally, the utility of negative ion electrospray tandem mass spectrometry for the unambiguous identification these estrogen isomers was investigated. Several characteristic recyclization pathways during tandem mass spectrometry were identified, which might be useful for distinguishing related estrogens. PMID:15694777

  3. Intermittent operation of ultra-low pressure ultrafiltration for decentralized drinking water treatment.

    PubMed

    Peter-Varbanets, Maryna; Gujer, Willi; Pronk, Wouter

    2012-06-15

    River water was treated by ultrafiltration at a relatively low transmembrane pressure (40 mbar). As observed before, flux stabilization occurred after several days of operation although no back-flushing or cross flow was applied. Interruptions in flux were applied by temporary offset of the transmembrane pressure. After restoration of the transmembrane pressure, the initial flux was higher than the stable flux level, and the flux recovery depended on the standstill time. Furthermore, if a short cross flow was applied after standstill, the flux was restored to an even higher level. In all cases, the flux decreased again during operation to reach finally the same stable level as before standstill. In order to evaluate the influence of intermittent operation as practiced for water treatment on a household level, daily interruptions of flux were applied. An optimum of total daily water production rate was obtained at 21 h of operation and 3 h of standstill per day. A model was developed which can describe the impact of intermittent operation on the flux depending on the duration of the standstill and operating periods. This enables the prediction of production capacity of the system operated intermittently. The flux increase during standstill could be explained by a relaxation and expansion of the biofouling layer, while the higher flux after forward-flushing was caused by this layer being partially sloughed off. Household water treatment with the process presented here will generally be operated on a discontinuous basis. The results show that such operation schemes do not compromise the permeability of the system, but actually lead to higher fluxes after standstill.

  4. Estradiol Uptake in a Combined Magnetic Ion Exchange - Ultrafiltration (MIEX-UF) Process During Water Treatment.

    PubMed

    Imbrogno, Alessandra; Biscarat, Jennifer; Schafer, Andrea Iris

    2017-01-01

    Estrogens and their synthetic analogues are widely used as pharmaceuticals. Upon oral administration these drugs are eventually excreted via urine. The persistence of these pharmaceuticals and inefficient removal by water treatment lead to accumulation in surface water and effluents with negative effects for aquatic life and human health. In this study, the uptake of estradiol by a combined magnetic ion exchange resin - ultrafiltration process (MIEX-UF) was investigated. This is a relatively common process used in drinking water treatment for the removal of natural organic matter. However, uptake of micropollutants, such as steroidal pharmaceuticals, may occur as a side effect of water treatment due to the high affinity for polymeric materials. To elucidate the mechanism governing estradiol partitioning between water, resin and membrane, the influence of different parameters, such as pH, humic acid concentration and membrane molecular-weight-cut-off (MWCO) was studied. Humic acid concentration and pH affected estradiol uptake most. At pH 11 the most significant increase of estradiol uptake was observed for MIEX-UF process (30 ng/g corresponding to 80%) compared with individual UF (17 ng/g corresponding to 12%). The presence of humic acid slightly reduced estradiol uptake at pH 11 (about 55%) due to competition for the ion exchange binding sites. Results demonstrated that the uptake of estradiol, which is amongst the most potent EDCs detected in surface water, in the MIEX-UF process can reach significant quantities (30 ng/g of resin) leading to uncontrolled accumulation of this micropollutant during drinking water treatment. This study gives a novel contribution in the understanding the mechanism of the unanticipated accumulation of pharmaceuticals, such as estradiol, in the drinking water treatment process. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Identifying polyvinylidene fluoride ultrafiltration membrane fouling behavior of different effluent organic matter fractions using colloidal probes.

    PubMed

    Miao, Rui; Wang, Lei; Lv, Yongtao; Wang, Xudong; Feng, Ling; Liu, Ziwen; Huang, Danxi; Yang, Yongzhe

    2014-05-15

    The interaction forces between effluent organic matter (EfOM) fractions and membrane were measured by atomic force microscopy in conjunction with self-made membrane material colloidal probes. The inter-EfOM-fraction and intra-EfOM-fraction interactions were investigated using corresponding EfOM-fraction-coated colloidal probe. We combined this analysis with corresponding fouling experiments to identify the EfOM fractions responsible for polyvinylidene fluoride (PVDF) ultrafiltration membrane fouling. Results show that hydrophilic and hydrophobic fractions were the dominant fractions responsible for membrane fouling and flux decline in the initial and later filtration stages, respectively, which was mainly attributed to the stronger PVDF-hydrophilic fraction and intra-hydrophobic-fraction interaction forces. This phenomenon, in conjunction with the fact that each interaction force of PVDF-EfOM fraction was stronger than corresponding intra-EfOM-fraction force, suggests that the elimination of the PVDF-hydrophilic fraction interaction force is the best strategy for controlling EfOM fouling. Moreover, the inter-EfOM-fraction interaction force was mainly controlled by the corresponding intra-EfOM-fraction interaction forces. And, while the membrane-EfOM fraction and intra-EfOM-fraction interactions for each type of EfOM fraction are equivalent, the EfOM fractions with the molecular weight smaller than the molecular weight cutoff of the membranes used were mainly responsible for membrane fouling rather than the relatively high-molecular-weight fractions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Nanofiber Composite Membrane with Intrinsic Janus Surface for Reversed-Protein-Fouling Ultrafiltration.

    PubMed

    Vanangamudi, Anbharasi; Dumée, Ludovic F; Duke, Mikel C; Yang, Xing

    2017-05-31

    Janus nanofiber based composite ultrafiltration (UF) membranes were fabricated via a two-step method, i.e., consecutive electrospinning of hydrophilic nylon-6,6/chitosan nanofiber blend and conventional casting of hydrophobic poly(vinylidene difluoride) (PVDF) dope solution. The as-developed PVDF/nylon-6,6/chitosan membranes were investigated for its morphology using Scanning Electron Microscopy (SEM) by which 18 wt % PVDF was chosen as the optimum base polymer concentration due to optimal degree of integration of cast and nanofiber layers. This membrane was benchmarked against the pure PVDF and PVDF/nylon-6,6 membranes in terms of surface properties, permeability, and its ability to reverse protein fouling. The improved hydrophilicity of the PVDF/nylon-6,6/chitosan membrane was revealed from the 72% reduction in the initial water contact angle compared to the pure PVDF benchmark, due to the incorporation of intrinsic hydrophilic hydroxyl and amine functional groups on the membrane surface confirmed by FTIR. The integration of the nanofiber and cast layers has led to altered pore arrangements offering about 93% rejection of bovine serum albumin (BSA) proteins with a permeance of 393 L·m(-2)·h(-1)·bar(-1) in cross-flow filtration experiments; while the PVDF benchmark only had a BSA rejection of 67% and a permeance of 288 L·m(-2)·h(-1)·bar(-1). The PVDF/nylon-6,6/chitosan membrane exhibited high fouling propensity with 2.2 times higher reversible fouling and 78% decrease in the irreversible fouling compared to the PVDF benchmark after 4 h of filtration with BSA foulants.

  7. Applying polarity rapid assessment method and ultrafiltration to characterize NDMA precursors in wastewater effluents.

    PubMed

    Chen, Chao; Leavey, Shannon; Krasner, Stuart W; Mel Suffet, I H

    2014-06-15

    Certain nitrosamines in water are disinfection byproducts that are probable human carcinogens. Nitrosamines have diverse and complex precursors that include effluent organic matter, some anthropogenic chemicals, and natural (likely non-humic) substances. An easy and selective tool was first developed to characterize nitrosamine precursors in treated wastewaters, including different process effluents. This tool takes advantages of the polarity rapid assessment method (PRAM) and ultrafiltration (UF) (molecular weight distribution) to locate the fractions with the strongest contributions to the nitrosamine precursor pool in the effluent organic matter. Strong cation exchange (SCX) and C18 solid-phase extraction cartridges were used for their high selectivity for nitrosamine precursors. The details of PRAM operation, such as cartridge clean-up, capacity, pH influence, and quality control were included in this paper, as well as the main parameters of UF operation. Preliminary testing of the PRAM/UF method with effluents from one wastewater treatment plant gave very informative results. SCX retained 45-90% of the N-nitrosodimethylamine (NDMA) formation potential (FP)-a measure of the precursors-in secondary and tertiary wastewater effluents. These results are consistent with NDMA precursors likely having a positively charged amine group. C18 adsorbed 30-45% of the NDMAFP, which indicates that a substantial portion of these precursors were non-polar. The small molecular weight (MW) (<1 kDa) and large MW (>10 kDa) fractions obtained from UF were the primary contributors to NDMAFP. The combination of PRAM and UF brings important information on the characteristics of nitrosamine precursors in water with easy operation.

  8. Efficacy of extracorporeal ultrafiltration of ascitic fluid as a treatment of refractory ascites.

    PubMed

    Daimon, S; Yasuhara, S; Saga, T; Tokunaga, S; Chikaki, H; Dan, K

    1998-10-01

    Refractory ascites is recognized in patients with various conditions. Although intravenous reinjection of ascitic fluid after its filtration and concentration (IRA) is an effective method of treating this condition, many associated side-effects have been reported. We performed extracorporeal ultrafiltration of ascitic fluid (EUA) to demonstrate the efficacy and advantages of this method of treating refractory ascites. EUA was performed in seven patients with hepatic cirrhosis (3 cases), lupus nephritis, diabetic nephropathy, and carcinomatous peritonitis (2 cases) for a total of 122 sessions. IRA was performed in three of these seven patients for a total of 12 sessions. The average volumes of ascitic fluid removed by EUA and IRA were 3.94+/-1.45 litres and 2.87+/-0.69 litres (mean+/-SD) respectively. Although chills and acute renal failure were recognized as complications of IRA in five and one sessions respectively, the only complication of EUA was severe intra-abdominal haemorrhage, which resolved spontaneously. In spite of rapid and massive removal of ascitic fluid (maximum 2.0 litres per 15 min), significant changes in blood pressure were not noted during EUA. In three patients (hepatic cirrhosis, lupus nephritis, and diabetic nephropathy), de novo production of ascitic fluid disappeared. In one patient with hepatic cirrhosis and chronic renal failure on haemodialysis, 67 sessions of EUA have been performed under stable conditions. Three patients (one case of hepatic cirrhosis and two cases of carcinomatous peritonitis) died of their primary diseases. We conclude that EUA is a useful method for the treatment of massive refractory ascites.

  9. Ultrafiltration in patients with decompensated heart failure and diuretic resistance: an Asian centre’s experience

    PubMed Central

    Teo, Loon Yee Louis; Lim, Choon Pin; Neo, Chia Lee; Teo, Lee Wah; Ng, Swee Ling Elaine; Chan, Laura Lihua; Kaushik, Manish; Sim, Kheng Leng David

    2016-01-01

    INTRODUCTION Diuretics are the mainstay of therapy for restoring the euvolaemic state in patients with decompensated heart failure. However, diuretic resistance remains a challenge. METHODS We conducted a retrospective cohort study to examine the efficacy and safety of ultrafiltration (UF) in 44 hospitalised patients who had decompensated heart failure and diuretic resistance between October 2011 and July 2013. RESULTS Among the 44 patients, 18 received UF (i.e. UF group), while 26 received diuretics (i.e. standard care group). After 48 hours, the UF group achieved lower urine output (1,355 mL vs. 3,815 mL, p = 0.0003), greater fluid loss (5,058 mL vs. 1,915 mL, p < 0.0001) and greater weight loss (5.0 kg vs. 1.0 kg, p < 0.0001) than the standard care group. The UF group also had a shorter duration of hospitalisation (5.0 days vs. 9.5 days, p = 0.0010). There were no differences in the incidence of 30-day emergency department visits and rehospitalisations for heart failure between the two groups. At 90 days, the UF group had fewer emergency department visits (0.2 vs. 0.8, p = 0.0500) and fewer rehospitalisations for heart failure (0.3 vs. 1.0, p = 0.0442). Reduction in EQ-5D™ scores was greater in the UF group, both at discharge (2.7 vs. 1.4, p = 0.0283) and 30 days (2.5 vs. 0.3, p = 0.0033). No adverse events were reported with UF. CONCLUSION UF is an effective and safe treatment that can improve the health outcomes of Asian patients with decompensated heart failure and diuretic resistance. PMID:26778634

  10. Improvement of virus removal using ultrafiltration membranes modified with grafted zwitterionic polymer hydrogels.

    PubMed

    Lu, Ruiqing; Zhang, Chang; Piatkovsky, Maria; Ulbricht, Mathias; Herzberg, Moshe; Nguyen, Thanh H

    2017-06-01

    Potable water reuse has been adopted by cities suffering water scarcity in recent years. The microbial safety in water reuse, especially with respect to pathogenic viruses, is still a concern for water consumers. Membrane filtration can achieve sufficient removal of pathogenic viruses without disinfection byproducts, but the required energy is intensive. In this study, we graft-polymerized zwitterionic SPP ([3-(methacryloylamino) propyl] dimethyl (3-sulfopropyl) ammonium hydroxide) on a 150 kDa ultrafiltration polyethersulfone membrane to achieve a significantly higher virus removal. The redox-initiated graft-polymerization was performed in an aqueous solution during filtration of the monomer and initiators, allowing for functionalizing the membrane pores with hydrophilic polySPP. Bacteriophage MS2 and human adenovirus type 2 (HAdV-2) were used as surrogates for pathogenic human norovirus and human adenovirus. The grafting resulted in ∼18% loss of the membrane permeability but an increase of 4 log10 in HAdV-2 removal and 3 log10 in MS2 removal. The pristine and the grafted membranes were both conditioned with soluble microbial products (SMP) extracted from a full-scale membrane bioreactor (MBR) in order to test the virus removal after fouling the membranes. After fouling, the HAdV-2 removal by the grafted membrane was 1 log10 higher than that of the pristine membrane. For MS2, the grafted membrane after fouling with SMP achieved an additional 5 log10 removal compared to the unmodified membrane. The simple graft-polymerization functionalization of commercialized membrane achieving enhanced virus removal efficiency highlights the promise of membrane filtration for pathogen control in potable water reuse. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Graphene oxide based ultrafiltration membranes for photocatalytic degradation of organic pollutants in salty water.

    PubMed

    Pastrana-Martínez, Luisa M; Morales-Torres, Sergio; Figueiredo, José L; Faria, Joaquim L; Silva, Adrián M T

    2015-06-15

    Flat sheet ultrafiltration (UF) membranes with photocatalytic properties were prepared with lab-made TiO2 and graphene oxide-TiO2 (GOT), and also with a reference TiO2 photocatalyst from Evonik (P25). These membranes were tested in continuous operation mode for the degradation and mineralization of a pharmaceutical compound, diphenhydramine (DP), and an organic dye, methyl orange (MO), under both near-UV/Vis and visible light irradiation. The effect of NaCl was investigated considering simulated brackish water (NaCl 0.5 g L(-1)) and simulated seawater (NaCl 35 g L(-1)). The results indicated that the membranes prepared with the GOT composite (M-GOT) exhibited the highest photocatalytic activity, outperforming those prepared with bare TiO2 (M-TiO2) and P25 (M-P25), both inactive under visible light illumination. The best performance of M-GOT may be due to the lower band-gap energy (2.9 eV) of GOT. In general, the permeate flux was also higher for M-GOT probably due to a combined effect of its highest photocatalytic activity, highest hydrophilicity (contact angles of 11°, 17° and 18° for M-GOT, M-TiO2 and M-P25, respectively) and higher porosity (71%). The presence of NaCl had a detrimental effect on the efficiency of the membranes, since chloride anions can act as hole and hydroxyl radical scavengers, but it did not affect the catalytic stability of these membranes. A hierarchically ordered membrane was also prepared by intercalating a freestanding GO membrane in the structure of the M-GOT membrane (M-GO/GOT). The results showed considerably higher pollutant removal in darkness and good photocatalytic activity under near-UV/Vis and visible light irradiation in continuous mode experiments.

  12. Arsenic removal from water by coupling photocatalysis and complexation-ultrafiltration processes: A preliminary study.

    PubMed

    Molinari, R; Argurio, P

    2017-02-01

    Inorganic As removal from contaminated water has been studied by off-line coupling of photocatalysis and complexation-ultrafiltration (CP-UF), showing that this combination permits to obtain a quite complete arsenic removal from the treated water. Two commercial polymers, poly(dimethylamine-coepichlorohydrin-coethylenediamine) (PDEHED) and poly(diallyl dimethyl amnmonium chloride) (PolyDADMAC) have been tested in the CP-UF process. The operating conditions (pH and polymer/As weight ratio) for As(V) complexation were determined finding values of 7.5/20 and 9.2/30 for PDEHED and polyDADMAC, respectively. The UF tests were performed by continuous diafiltration and diafiltration with volume reduction modes. The latter method permits to save the volume of washing solution during polymer regeneration. As(III) was not complexed, operating under the As(V) complexation conditions, thus a pre-oxidation step by using the photocatalytic approach was carried out to remove As(III) species. As(III) conversion to As(V) was evaluated by As speciation by using the CP-UF process for analytical purposes. Photocatalytic oxidation was successfully performed under UV radiation by using TiO2 (0.05 mg L(-1)), O2 and pH = 9. The oxidation was very fast during the first 10 min following a zero order kinetics (k = 0.83 mg L(-1) min(-1)) and reaching 90% As(III) oxidation. A conceptual scheme coupling photocatalysis and CP-UF and some criteria to operate the CP-UF process, useful to address it towards application, are reported.

  13. Towards field trace metal speciation using electroanalytical techniques and tangential ultrafiltration.

    PubMed

    Monteiro, Adnívia Santos Costa; Parat, Corinne; Rosa, André Henrique; Pinheiro, José Paulo

    2016-05-15

    In this work we propose a trace metal speciation methodology to determine the total, free and ultrafiltered (<1 KDa) metal fractions using electrochemical methods (SCP and AGNES) and tangential ultrafiltration (UF) experiments that can easily be carried out on-site. We tested our methodology spiking Cadmium ions into two natural waters samples from Itapanhau and Sorocabinha rivers in Sao Paulo State, Brazil. The limits of detection (LOD) was 1.6×10(-9) M for the total Cd(2+) determination performed by Stripping Chronopotentiometry (SCP) in the source and acidified ultrafiltered solution and 1.9×10(-9) M for the free Cd(2+) determination using Absence of gradients and Nernstian equilibrium stripping (AGNES), using a thin mercury film electrode. The total metal determination was performed by SCP in acidified samples and the results compared with graphite furnace atomic absorption spectroscopy (GF-AAS). The SCP results were adequate with a 96% of recovery from the known metal spike for the 12 samples tested. For the Itapanhau sample the free metal determined by AGNES and the ultrafiltered fraction are identical, while for the Sorocabinha the free metal in the source is significantly smaller than the ultrafiltered fraction, indicating that this sample must be rich in metal complexes with small inorganic ligands that are able to permeate the 1kDa membrane. The proposed metal speciation methodology validated in the laboratory combining UF and SCP/AGNES is able to be used in on-site experiments providing valid information regarding the total and free metal concentrations and additionally some insight on the role of small inorganic ligands to the metal complexation.

  14. The composition and compression of biofilms developed on ultrafiltration membranes determine hydraulic biofilm resistance.

    PubMed

    Derlon, Nicolas; Grütter, Alexander; Brandenberger, Fabienne; Sutter, Anja; Kuhlicke, Ute; Neu, Thomas R; Morgenroth, Eberhard

    2016-10-01

    This study aimed at identifying how to improve the level of permeate flux stabilisation during gravity-driven membrane filtration without control of biofilm formation. The focus was therefore on understanding (i) how the different fractions of the biofilms (inorganics particles, bacterial cells, EPS matrix) influence its hydraulic resistance and (ii) how the compression of biofilms impacts its hydraulic resistance, i.e., can water head be increased to increase the level of permeate flux stabilisation. Biofilms were developed on ultrafiltration membranes at 88 and 284 cm water heads with dead-end filtration for around 50 days. A larger water head resulted in a smaller biofilm permeability (150 and 50 L m(-2) h(-1) bar(-1) for biofilms grown at 88 cm and 284 cm water head, respectively). Biofilms were mainly composed of EPS (>90% in volume). The comparison of the hydraulic resistances of biofilms to model fouling layers indicated that most of the hydraulic resistance is due to the EPS matrix. The compressibility of the biofilm was also evaluated by subjecting the biofilms to short-term (few minutes) and long-term variations of transmembrane pressures (TMP). A sudden change of TMP resulted in an instantaneous and reversible change of biofilm hydraulic resistance. A long-term change of TMP induced a slow change in the biofilm hydraulic resistance. Our results demonstrate that the response of biofilms to a TMP change has two components: an immediate variation of resistance (due to compression/relaxation) and a long-term response (linked to biofilm adaptation/growth). Our results provide relevant information about the relationship between the operating conditions in terms of TMP, the biofilm structure and composition and the resulting biofilm hydraulic resistance. These findings have practical implications for a broad range of membrane systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. [Effect of a dialysis solution with icodextrin on ultrafiltration and selected metabolic parameters in patients treated with peritoneal dialysis].

    PubMed

    Opatrná, S; Racek, J; Stehlík, P; Senft, V; Sefrna, F; Topolcan, O; Opatrný, K

    2002-05-10

    To date, peritoneal dialysis has been performed almost exclusively using dialysis solutions containing glucose as the osmotic agent. Use of these solutions is fraught with problems regarding adequate fluid removal from the body and is also associated with undesirable metabolic effects; hence the search for alternative osmotic agents. A dialysis solution with the glucose polymer icodextrin generates ultrafiltration on the principle of colloidal osmosis. The aim of the study was to establish the effect of icodextrin-base dialysis solution on the magnitude of ultrafiltration and evaluate selected metabolic parameters of patients treated by ambulatory peritoneal dialysis. A total of 9 patients whose glucose-based solution was replaced by an icodextrin-based solution during the night-time exchange were evaluated. A control group of 9 patients used glucose-solution during all exchanges. Night-time bag ultrafiltration, blood pressure, and the serum levels of lipids, insulin, leptin, maltose, and amylase were determined before icodextrin administration (time 0), at one-month intervals (time 1, 2, 3), and one month after study completion (time 4). In icodextrin-treated patients, ultrafiltration rose from 246.5 +/- 60.5 ml (mean +/- SEM) at time 0 to 593.1 +/- 87.4 ml; p < 0.01, at time 1, to 547 +/- 67 ml; p < 0.05, at time 2, and to 586.7 +/- 58.8 ml; p < 0.01, at time 3, the icodextrin administration led to a rise in maltose from 0.02 +/- 0.01 g/l at time 0 to 0.1 +/- 0.1 g/l; p < 0.01, at time 1, to 1.0 +/- 0.09 g/l; p < 0.01, at time 2, and to 1.1 +/- 0.09 g/l; p < 0.01, at time 3, with a fall to zero values at time 4 (NS). Icodextrin administration was followed by a decrease in leptinemia from 34.6 +/- 17.2 ng/ml at time 0 to 21.7 +/- 8.9 ng/ml; p < 0.05, at time 1, to 21.4 +/- 9.5 ng/ml; p < 0.05, at time 2, and to 15.9 +/- 24.1 ng/ml; p < 0.05 at time 4. Insulin and lipid levels were not affected. There was no change in the above parameters in the control group

  16. The Ultra-filtration of Macromolecules with Different Conformations and Configurations through Nanopores

    NASA Astrophysics Data System (ADS)

    Ge, Hui

    This Ph. D. thesis presents our study on the ultrafiltration of polymers with different configurations and conformations; namly, theoretically, the passing of polymer chains through a nanopore under an elongational flow filed has been studied for years, but experimental studies are rare because of two following reasons: (1) lacks a precise method to investigate how individual single polymer chain pass through a nanopore; (2) it is difficult, if not impossible, to obtain a set of polymer samples with a narrow molar mass distribution and a uniform structures; except for linear chains. The central question in this study is to find the critical (minimum) flow rate (qc) for each kind of chains, at which the chains can pass through a given nanopore. A comparison of the measured and calculated qc leads to a better understanding how different chains are deformed, stretched and pulled through a nanopore. We have developed a novel method of combinating static and dynamic laser light scattering (LLS) to precisely measure the relative retention concentration ((C0 - C)/C0). Chapter 1 briefly introduces the theoretical background of how applications and lists some of resent research progresses in this area. Polymer with various configurations and conformations pass through nanopores; including polymer linear chains, stars polymer, branched polymers, polymer micelles are introduced. Among them, the de Gennes and Brochard-Wyart's predictions of polymer linear and star chains passing through nanopores are emphasized, in which they predicted that qc of linear chain is qc ≃ kBT/(3pieta), where kB, T and eta are the Boltzmann constant, the absolutely temperature, and the viscosity of solvent, respectively, independent of both the chain length and the pore size; and for star chains passing through nanopores, there exist a optimal entering arm numbers, namely, the star chains passing through nanopores. Chapter 2 details basic theory of static and dynamic laser light scattering (LLS

  17. Ozonation and ultrafiltration for the treatment of olive mill wastewaters: effect of key operating conditions and integration schemes.

    PubMed

    Martins, Rui C; Ferreira, Ana M; Gando-Ferreira, Licínio M; Quinta-Ferreira, Rosa M

    2015-10-01

    With the objective of reaching suitable techniques for olive mill wastewater treatment, ozonation and ultrafiltration were studied individually and combined. A continuous reactor was run for the treatment of a phenolic mixture mimicking an actual olive mill wastewater (OMW) by ozonation. The effect of the main operating parameters was analysed (pH, liquid flow rate and ozone inlet concentration). The increase of pH and ozone dose improved ozonation efficiency. As expected, the highest residence time led to higher steady-state degradation (35 % of chemical oxygen demand (COD) abatement). Even if the rise on ozone inlet gas concentration was able to remove COD in a higher extent, it should be taken into consideration that with the lowest oxidant load (15 g O3/m(3)), the maximum steady-state biochemical oxygen demand (BOD5)/COD ratio was reached which would reduce the process costs. These operating conditions (pH 9, 1 mL/min of liquid flow rate and 15 g O3/m(3)) were applied to an actual OMW leading to 80 % of phenolic content abatement and 12 % of COD removal at the steady state. Regarding ultrafiltration, it was concluded that the best total phenolic content (TPh) and COD abatement results (55 and 15 %) are attained for pH 9 and using a transmembrane pressure drop of 1 bar. Among the integration schemes that were tested, ultrafiltration followed by ozonation was able to reach 93 and 20 % of TPh and COD depletion, respectively. Moreover, this sequence led to an effluent with a BOD5/COD ratio of about 0.55 which means that it likely can be posteriorly refined in a municipal wastewater treatment plant.

  18. Unbound fraction of fluconazole and linezolid in human plasma as determined by ultrafiltration: Impact of membrane type.

    PubMed

    Kratzer, Alexander; Kees, Frieder; Dorn, Christoph

    2016-12-15

    Ultrafiltration is a rapid and convenient method to determine the free concentrations of drugs in plasma. Several ultrafiltration devices based on Eppendorf cups are commercially available, but are not validated for such use by the manufacturer. Plasma pH, temperature and relative centrifugal force as well as membrane type can influence the results. In the present work, we developed an ultrafiltration method in order to determine the free concentrations of linezolid or fluconazole, both neutral and moderately lipophilic antiinfective drugs for parenteral as well as oral administration, in plasma of patients. Whereas both substances behaved relatively insensitive in human plasma regarding variations in pH (7.0-8.5), temperature (5-37°C) or relative centrifugal force (1000-10.000xg), losses of linezolid were observed with the Nanosep Omega device due to adsorption onto the polyethersulfone membrane (unbound fraction 75% at 100mg/L and 45% at 0.1mg/L, respectively). No losses were observed with Vivacon which is equipped with a membrane of regenerated cellulose. With fluconazole no differences between Nanosep and Vivacon were observed. Applying standard conditions (pH 7.4/37°C/1000xg/20min), the mean unbound fraction of linezolid in pooled plasma from healthy volunteers was 81.5±2.8% using Vivacon, that of fluconazole was 87.9±3.5% using Nanosep or 89.4±3.3% using Vivacon. The unbound fraction of linezolid was 85.4±3.7% in plasma samples from surgical patients and 92.1±6.2% in ICU patients, respectively. The unbound fraction of fluconazole was 93.9±3.3% in plasma samples from ICU patients.

  19. Antibacterial Electrospun Poly(vinyl alcohol)/Enzymatic Synthesized Poly(catechol) Nanofibrous Midlayer Membrane for Ultrafiltration.

    PubMed

    Coelho, Dora; Sampaio, Ana; Silva, Carla J S M; Felgueiras, Helena P; Amorim, M Teresa P; Zille, Andrea

    2017-09-27

    Two different nanofibrous antibacterial membranes containing enzymatically synthesized poly(catechol) (PC) or silver nitrate (AgNO3, positive control) blended with poly(vinyl alcohol) (PVA) and electrospun onto a poly(vinylidene fluoride) (PVDF) basal disc to generate thin-film composite midlayers were produced for water ultrafiltration applications. The developed membranes were thoroughly characterized in terms of morphology, chemical composition, and general mechanical and thermal features, antimicrobial activity, and ultrafiltration capabilities. The electrospun blends were recognized as homogeneous. Data revealed relevant conformational changes in the PVA side groups, attributed to hydrogen bonding, high thermal stability, and residual mass. PVDF+PVA/AgNO3 membrane displayed 100% growth inhibition of both Gram-positive and Gram-negative bacteria strains, despite the wide range of fiber diameters generated, from 24 to 125 nm, formation of numerous beads, and irregular morphology. The PVDF+PVA/PC membrane showed a good growth inhibition of Staphylococcus aureus (92%) and revealed a smooth morphology with no relevant bead formations and diameters ranging from 68 to 131 nm. The ultrafiltration abilities of the membrane containing PVA/PC were tested in a dead-end high-pressure cell (4 bar) using a reactive dye in distilled water and seawater. After 5 cycles, a maximum rejection of ≈85% with an average flux rate of 70 L m(-2) h(-1) for distilled water and ≈64% with an average flux rate of 62 L m(-2) h(-1) for seawater were determined with an overall salt rejection of ≈5%.

  20. ETV REPORT - PHYSICAL REMOVAL OF CRYPTOSPORIDIUM OOCYSTS AND GIARDIA CYSTS IN DRINKING WATER, LEOPOLD MEMBRANE SYSTEMS ULTRABAR ULTRAFILTRATION SYSTEM WITH 60 INCH MARK III ELEMENT AT PITTSBURG, PA - NSF/00/10/EPADW395

    EPA Science Inventory

    Verification testing of the Leopold Ultrabar Mark III Ultrafiltration Systems was conducted from February 3-March9, 1999. The performance claim evaluated during field testing of the Leopold Ultrabar Mark III Ultrafiltration system was that the system is capable of a minimum 3 log...

  1. AMS radiocarbon dating of Middle and Upper Palaeolithic bone in the British Isles: improved reliability using ultrafiltration

    NASA Astrophysics Data System (ADS)

    Jacobi, R. M.; Higham, T. F. G.; Bronk Ramsey, C.

    2006-07-01

    Recent research at the Oxford Radiocarbon Accelerator Unit (ORAU) has shown that ultrafiltration of gelatin from archaeological bone can, in many instances, remove low molecular weight contaminants. These can sometimes be of a different radiocarbon age and, unless removed, may severely influence results, particularly when dating bones greater than two to three half-lives of 14C. In this study this methodology is applied to samples of Late Middle and Early Upper Palaeolithic age from the British Isles. In many instances the results of redating invite serious reconsideration of the chronology for these periods. Copyright

  2. Glomerular ultrafiltration and apical tubular action of IGF-I, TGF-beta, and HGF in nephrotic syndrome.

    PubMed

    Wang, S N; Lapage, J; Hirschberg, R

    1999-10-01

    In nephrotic glomerulopathies, there is ultrafiltration of high molecular weight forms of insulin-like growth factor-I (IGF-I), hepatocyte growth factor (HGF), and transforming growth factor-beta (TGF-beta), which are bioactive in tubular fluid and act through apical tubular receptors. Experimental evidence indicates that ultrafiltered IGF-I, HGF, and TGF-beta may contribute to increased tubular phosphate and sodium absorption, synthesis of extracellular matrix proteins, and secretion of chemokines such as monocyte chemoattractant protein-1 (MCP-1). Through these mechanisms, glomerular proteinuria may contribute to tubulointerstitial pathobiology in nephrotic syndrome.

  3. Randomized Crossover Trial of Blood Volume Monitoring-Guided Ultrafiltration Biofeedback to Reduce Intradialytic Hypotensive Episodes with Hemodialysis.

    PubMed

    Leung, Kelvin C W; Quinn, Robert R; Ravani, Pietro; Duff, Henry; MacRae, Jennifer M

    2017-10-10

    Intradialytic hypotension (IDH) is associated with morbidity. The effect of blood volume-guided ultrafiltration biofeedback, which automatically adjusts fluid removal rate on the basis of blood volume parameters, on the reduction of IDH was tested in a randomized crossover trial. We performed a 22-week, single blind, randomized crossover trial in patients receiving maintenance hemodialysis who had >30% of sessions complicated by symptomatic IDH in five centers in Calgary, Alberta, Canada. Participants underwent a 4-week run-in period to standardize dialysis prescription and dry weight on the basis of clinical examination. Those meeting inclusion criteria were randomized to best clinical practice hemodialysis (control) or best clinical practice plus blood volume-guided ultrafiltration biofeedback (intervention) for 8 weeks, followed by a 2-week washout and subsequent crossover for a second 8-week phase. The primary outcome was rate of symptomatic IDH. Thirty-five participants entered, 32 were randomized, and 26 completed the study. The rate of symptomatic IDH with biofeedback was 0.10/h (95% confidence interval, 0.06 to 0.14) and 0.07/h (95% confidence interval, 0.05 to 0.10) during control (P=0.29). There were no differences in the rate or proportion of sessions with asymptomatic IDH or symptoms alone. Results remained consistent when adjusted for randomization order and study week. There were no differences between intervention and control in the last study week in interdialytic weight gain (difference [SD], -0.02 [0.8] kg), brain natriuretic peptide (1460 [19,052] ng/L), cardiac troponins (3 [86] ng/L), extracellular water-to-intracellular water ratio (0.05 [0.33]), ultrafiltration rate (1.1 [7.0] ml/kg per hour), and dialysis recovery time (0.43 [19.25] hours). The use of blood volume monitoring-guided ultrafiltration biofeedback in patients prone to IDH did not reduce the rate of symptomatic IDH events. Copyright © 2017 by the American Society of Nephrology.

  4. The use of chelating water-soluble polymers and ultrafiltration for the removal of lead from contaminated soil

    SciTech Connect

    Ehler, D.S.; Duran, B.L.; Sauer, S.N.

    1995-12-01

    Soils contaminated with lead represent a significant national and industrial problem. More than one-third of the 1200 Superfund sites contain lead as a contaminant. In small batch-scale experiments, we have achieved efficient removal of lead from a highly contaminated, weathered soil using a chelating water-soluble polymer and ultrafiltration. We have been able to regenerate and re-use the polymer. To scale up our soil washing efforts, we have designed and built a small pilot-scale unit that we are using to optimize conditions for large-scale soil decontamination.

  5. Recovery of Bacillus licheniformis Alkaline Protease from Supernatant of Fermented Wastewater Sludge Using Ultrafiltration and Its Characterization

    PubMed Central

    Bezawada, Jyothi; Yan, S.; John, Rojan P.; Tyagi, R. D.; Surampalli, R. Y.

    2011-01-01

    Investigation on recovery of alkaline protease from B. licheniformis ATCC 21424 fermented wastewater sludge was carried out by centrifugation and ultrafiltration. Optimization of ultrafiltration parameters (transmembrane pressure (TMP) and feed flux) was carried out with 10 kDa membrane. TMP of 90 kPa and feed flux of 714 L/h/m2 gave highest recovery (83%) of the enzyme from the centrifuged supernatant. The recovered enzyme had given maximum activity at temperature of 60°C and at pH 10. It was stable between pH 8 to 10 and retained 97% activity at 60°C after 180 min of incubation. Enzyme activity was significantly augmented by metal ions like Ca2+ and Mn2+. Protease inhibitors like phenylmethyl sulphonyl fluoride (PMSF) and diisopropyl fluorophosphates (DFPs) completely inhibited the enzyme activity. The partially purified protease showed excellent stability and compatibility with various commercial detergents. The detergent (Sunlight) removed the blood stains effectively along with the enzyme as additive. PMID:21876816

  6. Influence of hydrophobic/hydrophilic fractions of extracellular organic matters of Microcystis aeruginosa on ultrafiltration membrane fouling.

    PubMed

    Zhou, Shiqing; Shao, Yisheng; Gao, Naiyun; Li, Lei; Deng, Jing; Tan, Chaoqun; Zhu, Mingqiu

    2014-02-01

    Fouling is a major obstacle to maintain the efficiency of ultrafiltration-based drinking water treatment process. Algal extracellular organic matters (EOMs) are currently considered as one of the major sources of membrane fouling. The objective of this study was to investigate the influence of different hydrophobic/hydrophilic fractions of EOM extracted from Microcystis aeruginosa on ultrafiltration membrane fouling at lab scale. The experimental data indicated that EOM exhibited similar flux decline trends on polyethersulfone (PES) and regenerated cellulose (RC) membranes but caused greater irreversible fouling on PES membrane than RC membrane due to its hydrophobic property. It was also observed that charged hydrophilic (CHPI) and neutral hydrophilic (NHPI) fractions caused greater flux decline over hydrophobic (HPO) and transphilic (TPI) fractions. For PES membrane, the order of the irreversible fouling potentials for the four fractions was HPO>TPI>CHPI>NHPI, while the irreversible fouling potentials of RC membrane were tiny and could be ignored. Fluorescence excitation-emission matrix (EEM) spectra and Fourier transform infrared (FTIR) spectra suggested that protein-like, polysaccharide-like and humic-like substances were the major components responsible for membrane fouling. The results also indicated that the irreversible fouling increased as the pH decreased. The addition of calcium to feed solutions led to more severe flux decline and irreversible fouling. © 2013.

  7. Enrichment and separation of acidic and basic proteins using the centrifugal ultrafiltration followed by nanoparticle-filled capillary electrophoresis.

    PubMed

    Lin, Chin-Yu; Liu, Chun-Hung; Chang, Hui-Chiu; Tseng, Wei-Lung

    2008-07-01

    This report describes a method for enrichment and separation of acidic and basic proteins using the centrifugal ultrafiltration followed by nanoparticle-filled capillary electrophoresis. To improve stacking and separation efficiencies of proteins, the separation buffer containing 1.6% poly(diallyldimethylammonium chloride) was added with gold nanoparticles (AuNP), poly(ethylene oxide), cetyltrimethylammonium bromide, and poly(vinyl alcohol). As a result, the use of AuNP as additives exhibited better efficiency in separation, stacking, and analysis time. Even for large-volume samples (110 nL), the separation efficiencies of acidic and basic proteins remained greater than 10(4) and 10(5) plates/m, respectively. To further enhance detection sensitivity, protein samples were enriched using the centrifugal ultrafiltration, followed by our proposed stacking method. The detection sensitivity was improved up to 314-fold compared to normal hydrodynamic injection. Additionally, the limits of detection at a signal-to-noise of 3 for most proteins were down to nanomolar range. We have validated the application of our method by means of analyses of 50 nM lysozyme in saliva samples. The proposed method was also successfully applied to the analyses of egg-white proteins, which have large differences in molecular weight and pI.

  8. Factors affecting the attachment of micro-organisms isolated from ultrafiltration and reverse osmosis membranes in dairy processing plants.

    PubMed

    Tang, X; Flint, S H; Brooks, J D; Bennett, R J

    2009-08-01

    To identify the types of micro-organisms involved in the formation of biofilms on dairy ultrafiltration and reverse osmosis membranes and investigate factors affecting the attachment of those isolates. Micro-organisms isolated from industrial membranes following standard cleaning were identified using the API culture identification system. Thirteen different isolates representing eight genera were isolated and their ability to attach to surfaces was compared using a microtitre plate assay. Three Klebsiella strains attached best, while mixed strains of Pseudomonas and Klebsiella attached better than individual strains. Whey enhanced the attachment of the isolates. The micro-organisms were characterized according to cell surface hydrophobicity using the microbial adhesion to hydrocarbon (MATH) test, and cell surface charge by measuring the zeta potential. These cell surface characteristics did not show a clear relationship with the attachment of our strains. A variety of different micro-organisms is associated with dairy ultrafiltration and reverse osmosis membranes after cleaning, suggesting several possible sources of contamination. The cleaning of these membranes may be inadequate. The attachment of the different isolates is highly variable and enhanced in the presence of whey. Knowledge of persistent microflora colonizing dairy membrane systems will help develop strategies to mitigate biofilm development in this environment, improving hygiene in membrane processing plants.

  9. Fabrication of TiO2-modified polytetrafluoroethylene ultrafiltration membranes via plasma-enhanced surface graft pretreatment

    NASA Astrophysics Data System (ADS)

    Qian, Yingjia; Chi, Lina; Zhou, Weili; Yu, Zhenjiang; Zhang, Zhongzhi; Zhang, Zhenjia; Jiang, Zheng

    2016-01-01

    Surface hydrophilic modification of polymer ultrafiltration membrane using metal oxide represents an effective yet highly challenging solution to improve water flux and antifouling performance. Via plasma-enhanced graft of poly acryl acid (PAA) prior to coating TiO2, we successfully fixed TiO2 functional thin layer on super hydrophobic polytetrafluoroethylene (PTFE) ultrafiltration (UF) membranes. The characterization results evidenced TiO2 attached on the PTFE-based UF membranes through the chelating bidentate coordination between surface-grafted carboxyl group and Ti4+. The TiO2 surface modification may greatly reduce the water contact angle from 115.8° of the PTFE membrane to 35.0° without degradation in 30-day continuous filtration operations. The novel TiO2/PAA/PTFE membranes also exhibited excellent antifouling and self-cleaning performance due to the intrinsic hydrophilicity and photocatalysis properties of TiO2, which was further confirmed by the photo-degradation of MB under Xe lamp irradiation.

  10. Integration of polyelectrolyte enhanced ultrafiltration and chemical reduction for metal-containing wastewater treatment and metal recovery.

    PubMed

    Yu, Jui-Hsuan; Chou, Yi-Hsuan; Liang, Yang-Min; Li, Chi-Wang

    2015-01-01

    Chemical reduction was firstly employed to treat synthetic wastewaters of various compositions prepared to simulate the retentate stream of polyelectrolyte enhanced ultrafiltration (PEUF). With fixed Cu:polyethylenimine (PEI) monomer:dithionite molar ratio, increasing copper concentration increases copper removal efficiency. Under fixed Cu:dithionite molar ratio and fixed Cu concentration, increasing PEI monomer:copper molar ratio decreases copper removal efficiency. The formation of nano-sized copper particles, which readily pass through 0.45 μm filter used for sample pretreatment before residual copper analysis, might be the reason behind the decreasing copper removal efficiency observed. Particle size analysis shows that the size of copper particles, which are formed through reduction reaction, increases with decreasing pH value and increasing reaction time. As ultrafiltration is capable of removing these nano-sized particles, integration of chemical reduction and PEUF is proposed to simultaneously achieve regeneration of polyelectrolyte and recovery of copper in one process. Results show that the proposed process could achieve almost complete copper removal without being affected by reaction pH.

  11. Using ultrafiltration to concentrate and detect Bacillus anthracis, Bacillus atrophaeus subspecies globigii, and Cryptosporidium parvum in 100-liter water samples.

    PubMed

    Lindquist, H D Alan; Harris, Stephanie; Lucas, Sasha; Hartzel, Margaret; Riner, Diana; Rochele, Paul; Deleon, Ricardo

    2007-09-01

    A strategy that uses ultrafiltration (UF) to concentrate microorganisms from water samples has been developed and tested. This strategy was tested using 100-liter water samples with volume reduction achieved through ultrafiltration and recycling the microorganisms of interest through a retentate vessel, rather than returning them to the sample container, where they might pose an incremental hazard to sample takers or the environment. Three protocols based on this strategy were tested. The first protocol entailed sample volume reduction and collection of the final reduced sample. The second and third protocols both incorporated pretreatment of the filter and fluid lines with a solution to prevent microorganisms from adhering. In the second protocol, the filter was back flushed with a surfactant solution to recover microorganisms. The third protocol used recirculation of a surfactant solution to recover microorganisms. Tests were undertaken using 100-liter water samples spiked with approximately 100 or 1000 microorganisms (1 or 10 per liter). Test microorganisms included Bacillus anthracis Sterne strain, Bacillus atrophaeus subsp. globigii, and Cryptosporidium parvum. The first protocol had significantly lower recovery than the other two. Back flushing resulted in higher recovery than forward flushing, but the difference was not statistically significant.

  12. Identification of Eupatilin from Artemisia argyi as a Selective PPARα Agonist Using Affinity Selection Ultrafiltration LC-MS.

    PubMed

    Choi, Yongsoo; Jung, Yujung; Kim, Su-Nam

    2015-07-28

    Peroxisome proliferator-activated receptors (PPARs) are key nuclear receptors and therapeutic targets for the treatment of metabolic diseases through the regulation of insulin resistance, diabetes, and dyslipidemia. Although a few drugs that target PPARs have been approved, more diverse and novel PPAR ligands are necessary to improve the safety and efficacy of available drugs. To expedite the search for new natural agonists of PPARs, we developed a screening assay based on ultrafiltration liquid chromatography-mass spectrometry (LC-MS) that is compatible with complex samples such as dietary foods or botanical extracts. The known PPARα and/or PPARγ ligands resveratrol and rosiglitazone were used as positive controls to validate the developed method. When applied to the screening of an Artemisia argyi extract, eupatilin was identified as a selective PPARα ligand. A PPAR competitive binding assay based on FRET detection also confirmed eupatilin as a selective PPARα agonist exhibiting a binding affinity of 1.18 μM (IC50). Furthermore, eupatilin activation of the transcriptional activity of PPARα was confirmed using a cell-based transactivation assay. Thus, ultrafiltration LC-MS is a suitable assay for the identification of PPAR ligands in complex matrixes such as extracts of dietary foods and botanicals.

  13. Effectiveness of haemodiafiltration with ultrafiltrate regeneration in the reduction of light chains in multiple myeloma with renal failure.

    PubMed

    Pendón-Ruiz de Mier, María Victoria; Alvarez-Lara, María Antonia; Ojeda-López, Raquel; Martín-Malo, Alejandro; Carracedo, Julia; Caballero-Villarraso, Javier; Alonso, Corona; Aljama, Pedro

    2013-11-13

    Acute kidney failure in multiple myeloma (MM) occurs in 12%-20% of patients and is a poor prognostic factor for patient survival. Recent studies have shown that dialysis with a High-Cut-Off membrane (HCO) removes free light chains (FLC) effectively although with significant albumin loss. Other adsorption-based techniques, such as haemodiafiltration with ultrafiltrate regeneration by adsorption in resin (SUPRA-HFR), have not been studied. We present three cases of MM, all haemodialysis-dependent since diagnosis. Two cases were IgG kappa and one was IgA lambda. All patients were treated with chemotherapy and SUPRA-HFR. The aim of this study was to evaluate the effectiveness of SUPRA-HFR in the reduction of FLC and its effect on albumin. We collected blood samples pre- and post-dialysis, and ultrafiltrate (UF) samples pre- and post-resin 5 minutes into the session and 5 minutes from the end. The mean reduction rate of FLC in blood per session in the three patients was 53% and 63% (kappa) and 38% (lambda). In the UF, the mean FLC reduction rate was close to 99%, both at the start and at the end of dialysis, without the removal of albumin. With the results obtained we can conclude that this technique achieves an effective reduction of FLC, which is maintained throughout the session, without resin saturation and without albumin loss. Therefore, SUPRA-HFR is effective as an adjunctive therapy for MM.

  14. Tangential Flow Ultrafiltration Allows Purification and Concentration of Lauric Acid-/Albumin-Coated Particles for Improved Magnetic Treatment.

    PubMed

    Zaloga, Jan; Stapf, Marcus; Nowak, Johannes; Pöttler, Marina; Friedrich, Ralf P; Tietze, Rainer; Lyer, Stefan; Lee, Geoffrey; Odenbach, Stefan; Hilger, Ingrid; Alexiou, Christoph

    2015-08-14

    Superparamagnetic iron oxide nanoparticles (SPIONs) are frequently used for drug targeting, hyperthermia and other biomedical purposes. Recently, we have reported the synthesis of lauric acid-/albumin-coated iron oxide nanoparticles SEON(LA-BSA), which were synthesized using excess albumin. For optimization of magnetic treatment applications, SPION suspensions need to be purified of excess surfactant and concentrated. Conventional methods for the purification and concentration of such ferrofluids often involve high shear stress and low purification rates for macromolecules, like albumin. In this work, removal of albumin by low shear stress tangential ultrafiltration and its influence on SEON(LA-BSA) particles was studied. Hydrodynamic size, surface properties and, consequently, colloidal stability of the nanoparticles remained unchanged by filtration or concentration up to four-fold (v/v). Thereby, the saturation magnetization of the suspension can be increased from 446.5 A/m up to 1667.9 A/m. In vitro analysis revealed that cellular uptake of SEON(LA-BSA) changed only marginally. The specific absorption rate (SAR) was not greatly affected by concentration. In contrast, the maximum temperature Tmax in magnetic hyperthermia is greatly enhanced from 44.4 °C up to 64.9 °C by the concentration of the particles up to 16.9 mg/mL total iron. Taken together, tangential ultrafiltration is feasible for purifying and concentrating complex hybrid coated SPION suspensions without negatively influencing specific particle characteristics. This enhances their potential for magnetic treatment.

  15. Use of micellar-enhanced ultrafiltration at low surfactant concentrations and with anionic-nonionic surfactant mixtures

    SciTech Connect

    Fillipi, B.R.; Brant, L.W.; Scamehorn, J.F.; Christian, S.D.

    1999-05-01

    Micellar-enhanced ultrafiltration is a separation technique which can be used to remove metal ions or dissolved organics from water. Metal ions bind to the surface of negatively charged micelles of an anionic surfactant while organic solutes tend to dissolve or solubilized within the micelles. The mixture is then forced through an ultrafiltration membrane with pore sizes small enough to block passage of the micelles and associated metal ions and/or dissolved organics. Monomeric or unassociated surfactant passes through the membrane and does not contribute to the separation. This paper considers advantages of addition of small concentrations of nonionic surfactant to an anionic surfactant; the resulting anionic-nonionic mixed micelles exhibit negative deviation from ideality of mixing which leads to a smaller fraction of the surfactant being present as monomer and a subsequently larger fraction present in the micellar form. The addition of nonionic surfactant improved the separation of divalent zinc substantially at total concentrations above the critical micelle concentration (cmc) of the anionic surfactant. Both zinc and tert-butylphenol (a nonionic organic solute) show unexpected rejection at surfactant concentrations moderately below the cmc, where micelles are absent. This is considered as due to a higher surfactant concentration in the gel layer adjacent to the membrane where micelles are present. Reduction of this rejection at lower transmembrane pressure drops supports this mechanism. Some rejection of zinc was observed in the absence of surfactant but not of tert-butylphenol, indicating an additional effect of membrane charge for ionic solutes.

  16. Purification, characterization and application of dual coagulants containing chitosan and different Al species in coagulation and ultrafiltration process.

    PubMed

    Wang, Wenyu; Zhao, Shuang; Yue, Qinyan; Gao, Baoyu; Song, Wen; Feng, Lijuan

    2017-01-01

    The objective of this study was to investigate the effect of different Al species and chitosan (CS) dosages on coagulation performance, floc characteristics (floc sizes, strength and regrowth ability and fractal dimension) and membrane resistance in a coagulation-ultrafiltration hybrid process. Results showed that different Al species combined with humic acid in diverse ways. Ala had better removal efficiency, as determined by UV254 and dissolved organic carbon, which could be further improved by the addition of CS. In addition, the optimal dosage of different Al species was determined to be 4.0mg/L with the CS concentration of 1.0mg/L, by orthogonal coagulation experiments. Combining Ala/Alb/Alc with CS resulted in larger flocs, higher recovery, and higher fractal dimension values corresponding to denser flocs; in particular, the floc size at the steady state stage was four times larger than that obtained with Al species coagulants alone. The results of ultrafiltration experiments indicated that the external fouling percentage was significantly higher than that of internal fouling, at around 85% and 15%, respectively. In addition, the total membrane resistance was significantly decreased due to CS addition.

  17. Ultrafiltration by a compacted clay membrane. I - Oxygen and hydrogen isotopic fractionation. II - Sodium ion exclusion at various ionic strengths.

    NASA Technical Reports Server (NTRS)

    Coplen, T. B.; Hanshaw, B. B.

    1973-01-01

    Laboratory experiments were carried out to determine the magnitude of the isotopic fractionation of distilled water and of 0.01N NaCl forced to flow at ambient temperature under a hydraulic pressure drop of 100 bars across a montmorillonite disk compacted to a porosity of 35% by a pressure of 330 bars. The ultrafiltrates in both experiments were depleted in D by 2.5% and in O-18 by 0.8% relative to the residual solution. No additional isotopic fractionation due to a salt-filtering mechanism was observed at NaCl concentrations up to 0.01N. Adsorption is most likely the principal mechanism which produces isotopic fractionation, but molecular diffusion may play a minor role. The results suggest that oxygen and hydrogen isotopic fractionation of ground water during passage through compacted clayey sediments should be a common occurrence, in accord with published interpretations of isotopic data from the Illinois and Alberta basins. It is shown how it is possible to proceed from the ion exchange capacity of clay minerals and, by means of the Donnan membrane equilibrium concept and the Teorell-Meyer-Siever theory, develop a theory to explain why and to what extent ultrafiltration occurs when solutions of known concentration are forced to flow through a clay membrane.

  18. Using an improved 1D boundary layer model with CFD for flux prediction in gas-sparged tubular membrane ultrafiltration.

    PubMed

    Smith, R; Taha, T; Cui, Z F

    2005-01-01

    Tubular membrane ultrafiltration and microfiltration are important industrial separation and concentration processes. Process optimisation requires reduction of membrane build-up. Gas slug introduction has been shown to be a useful approach for flux enhancement. However, process quantification is required for design and optimisation. In this work we employ a non-porous wall CFD model to quantify hydrodynamics in the two-phase slug flow process. Mass transfer is subsequently quantified from wall shear stress, which was determined from the CFD. The mass transfer model is an improved one-dimensional boundary layer model, which empirically incorporates effects of wall suction and analytically includes edge effects for circular conduits. Predicted shear stress profiles are in agreement with experimental results and flux estimates prove more reliable than that from previous models. Previous models ignored suction effects and employed less rigorous fluid property inclusion, which ultimately led to under-predictive flux estimates. The presented model offers reliable process design and optimisation criteria for gas-sparged tubular membrane ultrafiltration.

  19. Coupling ultrafiltration with an activated carbon cloth for the treatment of highly coloured wastewaters: a techno-economic study.

    PubMed

    Métivier-Pignon, H; Faur-Brasquet, C; Jaouen, P; Le Cloirec, P

    2003-06-01

    This work investigates the coupling of a membrane technique, ultrafiltration, with a recent adsorbent, activated carbon cloth for the treatment of industrial highly coloured wastewaters. A first experimental part shows the high treatment ability of this process for fountain-pen inks effluents arising from the rinsing of vats in which inks were produced. Whereas ultrafiltration enables more than 97% of colour removal, COD and DOC are not completely retained and a residual value of 1,700 mg l(-1) of DOC is obtained in the permeate. The second step of the process, activated carbon cloth, allows residual organic matter to be removed and a complete discolouring of the permeate. Adsorption capacities of COD and DOC are high, equal to 500 and 250 mg g(-1) respectively. Furthermore, this adsorbent induces a complete removal of glycol compounds (acting as antifreeze) which were not retined by a nanofiltration technique. A second part is an evaluation of the economic feasibility of such an integrated process. Only direct costs are considered at this phase of the study, and are divided into fixed costs (equipment, depreciation, maintenance), variable costs (electricity and consumption) and labour costs. The technical-economic study is carried out for two configurations: a low capacity unit (the UF membrane area is 2.4 m2) and an industrial capacity unit (with a 100 m2 UF membrane). Costs per treated m3 are respectively 111 and 32 euros, with costs partitioning which are dependent on the unit capacity.

  20. [Investigation of the copper content in blood serum and its ultrafiltrate in the conditions of experimental space flight simulation].

    PubMed

    Piruzian, L A; Protasova, O V; Maksimova, I A; Morukov, B V; Protasov, S V; Ushakov, I B

    2013-01-01

    In experiment MARS-500 on remote space flight simulation, atomic emission spectral analysis with inductively coupled argon plasma was used to measure serum copper and its ultrafiltration fraction. It was shown that, in contrast to baseline data, the Cu serum level varied within the normal physiological boundaries throughout the entire simulation experiment. These variations were sync in all the serum samples. In several periods in the experiment reductions in serum Cu within the baseline range were equivalent to simultaneous reductions in ceruloplasmin. Amount of the free Cu (ultrafiltration) fraction, i.e. not bound to proteins in blood serum, was constant at all times. Since the simulation experiment is not a perfect analogy of space flight because of nonreproducibility of some factors, ionizing radiation specifically, we should take into consideration shifts in the serum copper balance caused by the action of space radiation on human organism. Radiation-induced imbalance is not only a marker of disturbed oxidase function of blood but also points to a mechanism of potential pathological outcome of toxic excessive copper accumulated in the brain, liver and kidney.

  1. Physicochemical and functional properties of a protein isolate produced from safflower (Carthamus tinctorius L.) meal by ultrafiltration.

    PubMed

    Ulloa, José A; Rosas-Ulloa, Petra; Ulloa-Rangel, Blanca E

    2011-02-01

    The protein isolate obtained from safflower meal by aqueous extraction and ultrafiltration was evaluated for its physicochemical and functional properties. Protein, ash and moisture contents of the safflower protein isolate were 901, 51 and 45 g kg(-1) respectively. Its water and oil absorption capacities were 2.22 mL H(2) O g(-1) protein and 2.77 mL oil g(-1) protein respectively. Least gelation concentration was 20 g kg(-1) at pH 2, 6, 8 and 10 but 100 g kg(-1) at pH 4. Emulsifying properties were also affected by the pH: emulsifying activity and emulsion stability at pH 6 were 82.5 and 100% respectively. The highest foaming capacity (126%) occurred at pH 2; however, it increased by 104% with the addition of 0.25 g glucose g(-1) protein to the foam system. In the light of its functional properties found in this study, safflower protein isolate produced by ultrafiltration is recommended for use as an ingredient in food products such as salad dressing, meat products, mayonnaise, cakes, ice cream and desserts. 2010 Society of Chemical Industry.

  2. LDL and HDL transfer rates across peripheral microvascular endothelium agree with those predicted for passive ultrafiltration in humans.

    PubMed

    Michel, C Charles; Nanjee, M Nazeem; Olszewski, Waldemar L; Miller, Norman E

    2015-01-01

    The mechanisms by which LDLs and HDLs cross the vascular endothelium from plasma into interstitial fluid are not understood, and have never been studied in humans in vivo. We determined whether the plasma-to-lymph clearance rates of LDL and HDL conform with those predicted by passive ultrafiltration through intercellular pores, or if it is necessary to invoke an active process such as receptor-mediated transcytosis. Plasma and afferent peripheral lymph were collected under steady-state conditions from 30 healthy men, and assayed for seven globular proteins of molecular radii 2.89-8.95 nm, complement C3, and apo AI, apo AII, and apo B. Plasma-to-lymph clearance rates of the seven proteins fitted the relation expected for molecules of their size when transported through two populations of pores of radius 4.95 and 20.1 nm. The same model parameters were then found to accurately predict the clearance rates of both HDL and LDL. The apparent clearance of complement C3, previously shown to be secreted by cultured endothelium, exceeded that predicted by the model. We conclude that the transport of HDL and LDL from plasma into interstitial fluid across the peripheral vascular endothelium in healthy humans can be explained by ultrafiltration without invoking an additional active process such as transcytosis.

  3. Effluent treatment by multi-media filtration, microfiltration and ultrafiltration: results of a pilot investigation at WWTP Hoek van Holland.

    PubMed

    te Poele, S; Menkveld, W; Boom, J; van Bragt, W

    2005-01-01

    Upgrading of wastewater treatment plant (WWTP) effluent as a part of the Dutch governmental policy to close the water cycle has increasing interest now. The Water Board Hoogheemraadschap van Delfland together with the project team of Witteveen + Bos Consulting Engineers, Delft University of Technology and Rossmark water treatment investigated the reuse possibilities of WWTP effluent in the region of Delfland. Therefore pilot research was carried out at WWTP Hoek van Holland applying different filtration techniques: multi-media filtration, micro- and ultrafiltration. The results show stable process performances of the different filtration techniques when proper pre-treatment was applied. For microfiltration the filtration characteristics were strongly influenced by particles which were not retained in the multi-media filter. For ultrafiltration the filtration characteristics were strongly influenced by organic components < 0.2 microm. The upgraded WWTP effluent could not be used directly as process water or for agriculture purposes, due to high concentrations of COD and salts in the WWTP effluent and filtrates. However WWTP effluent or floc filtrate could be applied directly as water for the washing of sea-sand.

  4. Evaluation of Membrane Ultrafiltration and Residual Chlorination as a Decentralized Water Treatment Strategy for Ten Rural Healthcare Facilities in Rwanda.

    PubMed

    Huttinger, Alexandra; Dreibelbis, Robert; Roha, Kristin; Ngabo, Fidel; Kayigamba, Felix; Mfura, Leodomir; Moe, Christine

    2015-10-27

    There is a critical need for safe water in healthcare facilities (HCF) in low-income countries. HCF rely on water supplies that may require additional on-site treatment, and need sustainable technologies that can deliver sufficient quantities of water. Water treatment systems (WTS) that utilize ultrafiltration membranes for water treatment can be a useful technology in low-income countries, but studies have not systematically examined the feasibility of this technology in low-income settings. We monitored 22 months of operation of 10 WTS, including pre-filtration, membrane ultrafiltration, and chlorine residual disinfection that were donated to and operated by rural HCF in Rwanda. The systems were fully operational for 74% of the observation period. The most frequent reasons for interruption were water shortage (8%) and failure of the chlorination mechanism (7%). When systems were operational, 98% of water samples collected from the HCF taps met World Health Organization (WHO) guidelines for microbiological water quality. Water quality deteriorated during treatment interruptions and when water was stored in containers. Sustained performance of the systems depended primarily on organizational factors: the ability of the HCF technician to perform routine servicing and repairs, and environmental factors: water and power availability and procurement of materials, including chlorine and replacement parts in Rwanda.

  5. Ultrafiltration by a compacted clay membrane. I - Oxygen and hydrogen isotopic fractionation. II - Sodium ion exclusion at various ionic strengths.

    NASA Technical Reports Server (NTRS)

    Coplen, T. B.; Hanshaw, B. B.

    1973-01-01

    Laboratory experiments were carried out to determine the magnitude of the isotopic fractionation of distilled water and of 0.01N NaCl forced to flow at ambient temperature under a hydraulic pressure drop of 100 bars across a montmorillonite disk compacted to a porosity of 35% by a pressure of 330 bars. The ultrafiltrates in both experiments were depleted in D by 2.5% and in O-18 by 0.8% relative to the residual solution. No additional isotopic fractionation due to a salt-filtering mechanism was observed at NaCl concentrations up to 0.01N. Adsorption is most likely the principal mechanism which produces isotopic fractionation, but molecular diffusion may play a minor role. The results suggest that oxygen and hydrogen isotopic fractionation of ground water during passage through compacted clayey sediments should be a common occurrence, in accord with published interpretations of isotopic data from the Illinois and Alberta basins. It is shown how it is possible to proceed from the ion exchange capacity of clay minerals and, by means of the Donnan membrane equilibrium concept and the Teorell-Meyer-Siever theory, develop a theory to explain why and to what extent ultrafiltration occurs when solutions of known concentration are forced to flow through a clay membrane.

  6. Ultrafiltration of the priming blood before cardiopulmonary bypass attenuates inflammatory response and improves postoperative clinical course in pediatric patients.

    PubMed

    Shimpo, H; Shimamoto, A; Sawamura, Y; Fujinaga, K; Kanemitsu, S; Onoda, K; Takao, M; Mitani, Y; Yada, I

    2001-01-01

    The priming solution using in cardiopulmonary bypass (CPB) for infants undergoing cardiac surgery includes considerable amounts of stored blood. Our objective was to test the hypothesis that ultrafiltration (UF) of the stored blood before CPB reduces the unfavorable effects of stored blood and the production of inflammatory cytokines. Fifty pediatric patients with congenital heart defects took part in this study. The patients were randomly divided into two groups: the UF (27 pediatric patients who received UF) and control (23 pediatric patients who did not receive UF) groups. UF was performed with a polysulphone ultrafiltrator before CPB. Blood samples were collected immediately before, during, and 1 h after CPB. The levels of cytokines (TNF-alpha, IL-1beta, IL-8), NH3, and bradykinin were determined. The serum concentrations of NH3 and bradykinin decreased significantly after UF. Compared with the control group, the UF group had significantly lower cytokine production. Water balance in UF group was better than that of control group. The UF group received significantly less inotropic support and shorter duration of ventilator support and ICU stay. We conclude that removal of bradykinin and a decrease in the levels of NH3, potassium, and pH play a significant role in reducing water retention and postoperative lung injury. UF of the blood used to prime the circuit for CPB is a safe and efficient method for use in open heart surgery in small pediatric patients.

  7. Determination of total and unbound propofol in patients during intensive care sedation by ultrafiltration and LC-MS/MS.

    PubMed

    Eisenried, Andreas; Wehrfritz, Andreas; Ihmsen, Harald; Schüttler, Jürgen; Jeleazcov, Christian

    2016-07-15

    For the quantification of propofol total and unbound drug concentrations a sensitive and specific liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated. To separate unbound propofol an ultrafiltration step before sample preparation was performed. Both the ultrafiltrate and plasma samples were extracted with solid-phase extraction and substituted with deuterated propofol as an internal standard. Separation was performed by gradient elution using UPLC-like system and analyzed by MS/MS consisting of an electrospray ionization source. To detect low and high concentration levels of propofol two calibration curves were identified and showed linearity within the range of 1-50ng/ml and 50-20000ng/ml. The lower limit of quantification was 1ng/ml. Intra- and interassay precision and accuracy did not exceed ±15%. The method was applied to a clinical study during intensive care treatment of patients after coronary artery bypass grafting. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. LDL and HDL transfer rates across peripheral microvascular endothelium agree with those predicted for passive ultrafiltration in humans

    PubMed Central

    Michel, C. Charles; Nanjee, M. Nazeem; Olszewski, Waldemar L.; Miller, Norman E.

    2015-01-01

    The mechanisms by which LDLs and HDLs cross the vascular endothelium from plasma into interstitial fluid are not understood, and have never been studied in humans in vivo. We determined whether the plasma-to-lymph clearance rates of LDL and HDL conform with those predicted by passive ultrafiltration through intercellular pores, or if it is necessary to invoke an active process such as receptor-mediated transcytosis. Plasma and afferent peripheral lymph were collected under steady-state conditions from 30 healthy men, and assayed for seven globular proteins of molecular radii 2.89–8.95 nm, complement C3, and apo AI, apo AII, and apo B. Plasma-to-lymph clearance rates of the seven proteins fitted the relation expected for molecules of their size when transported through two populations of pores of radius 4.95 and 20.1 nm. The same model parameters were then found to accurately predict the clearance rates of both HDL and LDL. The apparent clearance of complement C3, previously shown to be secreted by cultured endothelium, exceeded that predicted by the model. We conclude that the transport of HDL and LDL from plasma into interstitial fluid across the peripheral vascular endothelium in healthy humans can be explained by ultrafiltration without invoking an additional active process such as transcytosis. PMID:25398615

  9. Ultrasonic assisted cross-flow ultrafiltration of starch and cellulose nanocrystals suspensions: characterization at multi-scales.

    PubMed

    Jin, Y; Hengl, N; Baup, S; Pignon, F; Gondrexon, N; Sztucki, M; Romdhane, A; Guillet, A; Aurousseau, M

    2015-06-25

    This study investigates for the first time the behaviors of starch and cellulose nanocrystals (SNC and CNC) suspensions which are simultaneously subjected to pressure, shear flow and ultrasound (US) during cross-flow ultrafiltration. This multi-forces process was characterized from macro-scales to nano-scales, with a custom designed "SAXS Cross-Flow US-coupled Filtration Cell". In addition, rheological behaviors of SNC samples at different concentrations/temperatures have been investigated. In both cases (ultrafiltration of SNC and CNC suspensions), better performances were observed with US. The in-situ SAXS measurements revealed that for SNC suspensions, no structure change occurred at the length scales range from 10 to 60nm in this multi-forces process, while CNC particles exhibited an ordered arrangement within the concentrated layer during the same process. SNC particles accumulated on the membrane surface forming a "fragile" concentrated layer which was removed very quickly by subsequent applied US. In contrary, the CNC particles accumulation was very severe, the additional ultrasonic force led to a disruption but not a totally removal of the CNC concentrated layer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Unmodified starch as water-soluble binding polymer for chromium ions removal via polymer enhanced ultrafiltration system

    PubMed Central

    2014-01-01

    Background In this study the removal of Chromium (III) and Chromium (VI) ions are investigated via polymer enhanced ultrafiltration under important process parameters. This study proposes the use of unmodified starch as a novel polymer in the ultrafiltration process and its performance on the removal of chromium ions was compared with a commonly used polymer, polyethylene glycol. Methods The experiments were carried out at 1.5 bar and different pH values by using 10 kDa hollow fiber membrane operating in a cross-flow mode. Results The best chromium ions removal obtained approached 99% for Chromium (III) ion by unmodified starch at alkaline pH region and at pH 7 for Chromium (VI) ions retention by polyethylene glycol. Permeate flux behavior are fluctuated for both chromium ions tested at high metal ion concentrations. Low concentration of unmodified starch is applied to reduce gelatinization behavior. Conclusions The findings suggest that binding of chromium ions by unmodified starch is related to granule structure which is probably a principal indicator of the non-ionic behavior of unmodified starch. PMID:24618019

  11. Anion Exchange on Cationic Surfactant Micelles, and a Speciation Model for Estimating Anion Removal on Micelles during Ultrafiltration of Water.

    PubMed

    Chen, Ming; Jafvert, Chad T

    2017-07-05

    Surfactant micelles combined with ultrafiltration can partially, or sometimes nearly completely, separate various ionic and nonionic pollutants from water. To this end, the selectivity of aqueous micelles composed of either cetyltrimethylammonium (CTA(+)) bromide or cetylpyridinium (CP(+)) chloride toward many environmentally relevant anions (IO3(-), F(-), Cl(-), HCO3(-), NO2(-), Br(-), NO3(-), H2PO4(-), HPO4(2-), SO4(2-), and CrO4(2-)) was investigated. Selectivity coefficients of CTA(+) micelles (with respect to Br(-)) and CP(+) micelle (with respect to Cl(-)) for these anions were evaluated using a simple thermodynamic ion exchange model. The sequence of anion affinity for the CTA(+) micelles and for the CP(+) micelles were the same, with decreasing affinity occurring in the order of: CrO4(2-) > SO4(2-) > HPO4(2-) > NO3(-) > Br(-) > NO2(-) > Cl(-) > HCO3(-) > H2PO4(-) ≈ F(-). From the associated component mass balance and ion exchange (i.e., mass action) equations, an overall speciation model was developed to predict the distribution of all anions between the aqueous and micellar pseudophase for complex ionic mixtures. Experimental results of both artificial and real surface waters were in good agreement to model predictions. Further, the results indicated that micelles combined with ultrafiltration may be a potential technology for nutrient and other pollutant removal from natural or effluent waters.

  12. Evaluation of Membrane Ultrafiltration and Residual Chlorination as a Decentralized Water Treatment Strategy for Ten Rural Healthcare Facilities in Rwanda

    PubMed Central

    Huttinger, Alexandra; Dreibelbis, Robert; Roha, Kristin; Ngabo, Fidel; Kayigamba, Felix; Mfura, Leodomir; Moe, Christine

    2015-01-01

    There is a critical need for safe water in healthcare facilities (HCF) in low-income countries. HCF rely on water supplies that may require additional on-site treatment, and need sustainable technologies that can deliver sufficient quantities of water. Water treatment systems (WTS) that utilize ultrafiltration membranes for water treatment can be a useful technology in low-income countries, but studies have not systematically examined the feasibility of this technology in low-income settings. We monitored 22 months of operation of 10 WTS, including pre-filtration, membrane ultrafiltration, and chlorine residual disinfection that were donated to and operated by rural HCF in Rwanda. The systems were fully operational for 74% of the observation period. The most frequent reasons for interruption were water shortage (8%) and failure of the chlorination mechanism (7%). When systems were operational, 98% of water samples collected from the HCF taps met World Health Organization (WHO) guidelines for microbiological water quality. Water quality deteriorated during treatment interruptions and when water was stored in containers. Sustained performance of the systems depended primarily on organizational factors: the ability of the HCF technician to perform routine servicing and repairs, and environmental factors: water and power availability and procurement of materials, including chlorine and replacement parts in Rwanda. PMID:26516883

  13. Tangential Flow Ultrafiltration Allows Purification and Concentration of Lauric Acid-/Albumin-Coated Particles for Improved Magnetic Treatment

    PubMed Central

    Zaloga, Jan; Stapf, Marcus; Nowak, Johannes; Pöttler, Marina; Friedrich, Ralf P.; Tietze, Rainer; Lyer, Stefan; Lee, Geoffrey; Odenbach, Stefan; Hilger, Ingrid; Alexiou, Christoph

    2015-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are frequently used for drug targeting, hyperthermia and other biomedical purposes. Recently, we have reported the synthesis of lauric acid-/albumin-coated iron oxide nanoparticles SEONLA-BSA, which were synthesized using excess albumin. For optimization of magnetic treatment applications, SPION suspensions need to be purified of excess surfactant and concentrated. Conventional methods for the purification and concentration of such ferrofluids often involve high shear stress and low purification rates for macromolecules, like albumin. In this work, removal of albumin by low shear stress tangential ultrafiltration and its influence on SEONLA-BSA particles was studied. Hydrodynamic size, surface properties and, consequently, colloidal stability of the nanoparticles remained unchanged by filtration or concentration up to four-fold (v/v). Thereby, the saturation magnetization of the suspension can be increased from 446.5 A/m up to 1667.9 A/m. In vitro analysis revealed that cellular uptake of SEONLA-BSA changed only marginally. The specific absorption rate (SAR) was not greatly affected by concentration. In contrast, the maximum temperature Tmax in magnetic hyperthermia is greatly enhanced from 44.4 °C up to 64.9 °C by the concentration of the particles up to 16.9 mg/mL total iron. Taken together, tangential ultrafiltration is feasible for purifying and concentrating complex hybrid coated SPION suspensions without negatively influencing specific particle characteristics. This enhances their potential for magnetic treatment. PMID:26287178

  14. A fence that eats the weed: Alginate lyase immobilization on ultrafiltration membrane for fouling mitigation and flux recovery.

    PubMed

    Meshram, Pradnya; Dave, Rachna; Joshi, Hiren; Dharani, Gopal; Kirubagaran, Ramalingam; Venugopalan, Vayalam P

    2016-12-01

    Polysaccharide fouling poses a significant challenge in the widespread application of membrane filtration for water purification. In order to mitigate the problem, a polysaccharide-degrading enzyme alginate lyase (Alg L; EC 4.2.2.3) was successfully immobilized on cellulose acetate ultrafiltration membrane using a dead-end filtration unit. Attenuated total reflectance Fourier transform infrared microscopy confirmed covalent linkage of the Alg L to the membrane. HPLC and Alg L activity studies confirmed that Alg L in immobilized form was enzymatically active. Even after 21 d, Alg L in immobilized form retained 80% of its original activity, compared to its free counterpart, which retained only 20% of its original activity. In fouling experiments using tap water containing 50 mg L(-1) alginate, a simple backwash could remove the fouling on Alg L immobilized membrane, but not that on the control membrane. Atomic force microscopic analysis and bright field microscopic images of the fouled test membrane after backwash showed significant removal of fouling, while fouling on the control membrane remained largely intact. The immobilized Alg L remained active even after 10 runs of fouling-backwash cycle. The present antifouling technology using immobilized enzyme is suitable for keeping ultrafiltration membranes clean without the use of toxic chemical biocides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Evaluation of Virus Reduction by Ultrafiltration with Coagulation-Sedimentation in Water Reclamation.

    PubMed

    Lee, Suntae; Hata, Akihiko; Yamashita, Naoyuki; Tanaka, Hiroaki

    2017-04-28

    The evaluation of virus reduction in water reclamation processes is essential for proper assessment and management of the risk of infection by enteric viruses. Ultrafiltration (UF) with coagulation-sedimentation (CS) is potentially effective for efficient virus removal. However, its performance at removing indigenous viruses has not been evaluated. In this study, we evaluated the reduction of indigenous viruses by UF with and without CS in a pilot-scale water reclamation plant in Okinawa, Japan, by measuring the concentration of viruses using the real-time polymerase chain reaction (qPCR). Aichi virus (AiV) and pepper mild mottle virus (PMMoV) were targeted in addition to the main enteric viruses of concern for risk management, namely, norovirus (NoV) genogroups I and II (GI and GII) and rotavirus (RoV). PMMoV, which is a plant pathogenic virus and is present at high concentrations in water contaminated by human feces, has been suggested as a useful viral indicator. We also investigated the reduction of a spiked model virus (F-specific RNA bacteriophage MS2) to measure the effect of viral inactivation by both qPCR and plaque assay. Efficiencies of removal of NoV GI, NoV GII, RoV, and AiV by UF with and without CS were >0.5 to 3.7 log10, although concentrations were below the detection limit in permeate water. PMMoV was the most prevalent virus in both feed and permeate water following UF, but CS pretreatment could not significantly improve its removal efficiency (mean removal efficiency: UF, 3.1 log10; CS + UF, 3.4 log10; t test, P > 0.05). CS increased the mean removal efficiency of spiked MS2 by only 0.3 log10 by qPCR (t-test, P > 0.05), but by 2.8 log10 by plaque assay (t-test, P < 0.01). This difference indicates that the virus was inactivated during CS + UF. Our results suggest that PMMoV could be used as an indicator of removal efficiency in water reclamation processes, but cultural assay is essential to understanding viral fate.

  16. Computer simulations of ultrafiltration profiles for an icodextrin-based peritoneal fluid in CAPD.

    PubMed

    Rippe, B; Levin, L

    2000-06-01

    The three-pore model of peritoneal transport has the ability to predict ultrafiltration (UF) profiles rather accurately, even when high molecular weight (MW) solutes are employed as osmotic agents in continuous ambulatory peritoneal dialysis (CAPD). In the present simulations, we wanted to assess, for various theoretical perturbations, the UF properties of a peritoneal dialysis (PD) solution with an osmotic agent having an average MW of 20 kD and a "number average MW" of 6.2 kD, which is similar to that of icodextrin (ICO). For a PD solution containing a completely monodispersed 20 kD MW osmotic agent, the degree of UF modeled is much higher than that reported for ICO. Hence, to model the behavior of ICO, we subdivided the ICO molecules into eight or more different MW size fractions. For simulations using six or eight subfractions, we obtained an excellent fit of simulated to reported UF data. More dispersed solutions produced UF profiles similar to that with eight fractions. A 2.05 L 7.5% ICO PD solution, despite being slightly hypotonic, yielded a UF volume of nearly 600 mL in 12 hours, modeled for patients not previously exposed for ICO. After nine hours, the UF volume exceeded that produced by 3.86% glucose. The UF rate and volumes increased in proportion to (1) the ICO concentration, (2) the peritoneal surface area, and (3) the peritoneal UF coefficient, but was almost insensitive to increases in the instilled fluid volume. Simulated for patients previously exposed to ICO, having steady-state plasma concentrations of ICO degradation products, the predicted UF volume at 12 hours was reduced to approximately 400 mL. Employing the three-pore model of peritoneal transport and taking into account the polydispersed nature of ICO, it was possible to accurately computer simulate the UF profiles of ICO in accordance with reported data. The simulations suggest an advantage of using ICO in patients with type I UF failure, where UF with a high-MW osmotic agent will exceed

  17. High-flux Thin-film Nanofibrous Composite Ultrafiltration Membranes Containing Cellulose Barrier Layer

    SciTech Connect

    Ma, H.; Yoon, K; Rong, L; Mao, Y; Mo, Z; Fang, D; Hollander, Z; Gaiteri, J; Hsiao , B; Chu, B

    2010-01-01

    A novel class of thin-film nanofibrous composite (TFNC) membrane consisting of a cellulose barrier layer, a nanofibrous mid-layer scaffold, and a melt-blown non-woven substrate was successfully fabricated and tested as an ultrafiltration (UF) filter to separate an emulsified oil and water mixture, a model bilge water for on-board ship bilge water purification. Two ionic liquids: 1-butyl-3-methylimidazolium chloride and 1-ethyl-3-methylimidazolium acetate, were chosen as the solvent to dissolve cellulose under mild conditions. The regenerated cellulose barrier layer exhibited less crystallinity (determined by wide-angle X-ray diffraction, WAXD) than the original cotton linter pulps, but good thermal stability (determined by thermal gravimetric analysis, TGA). The morphology, water permeation, and mechanical stability of the chosen TFNCmembranes were thoroughly investigated. The results indicated that the polyacrylonitrile (PAN) nanofibrous scaffold was partially imbedded in the cellulose barrier layer, which enhanced the mechanical strength of the top barrier layer. The permeation flux of the cellulose-based TFNCmembrane was significantly higher (e.g. 10x) than comparable commercial UFmembranes (PAN10 and PAN400, Sepro) with similar rejection ratios for separation of oil/water emulsions. The molecular weight cut-off (MWCO) of TFNC membranes with cellulose barrier layer was evaluated using dextran feed solutions. The rejection was found to be higher than 90% with a dextran molecular weight of 2000 KDa, implying that the nominal pore size of the membrane was less than 50 nm. High permeation flux was also observed in the filtration of an emulsified oil/water mixture as well as of a sodium alginate aqueous solution, while high rejection ratio (above 99.5%) was maintained after prolonged operation. A variation of the barrier layer thickness could dramatically affect the permeation flux and the rejection ratio of the TFNCmembranes, while different sources of cellulose

  18. Circadian variation in serum free ultrafiltrable insulin-like growth factor I concentrations in healthy children.

    PubMed

    Heuck, C; Skjaerbaek, C; Orskov, H; Wolthers, O D

    1999-05-01

    The aim of the present study was to assess 24-h free IGF-I profiles in serum in healthy children using an ultrafiltration method that approached in vivo conditions. Five girls and two boys aged 10.4 to 13.6 (mean 12.2) years with pubertal stages I to III were studied. A fasting blood sample was drawn at 0800 h, and thereafter samples were drawn at specific times every 20 min until 0800 h the next morning. Free IGF-I, IGF binding protein 1 (IGFBP-1), and insulin were analyzed in 1-h samples, total IGF-1 in 2-h samples, and GH in 20-min samples. A statistically significant diurnal variation in serum free IGF-I was seen (p < 0.001) with peak values between 0900 and 1200 h in the morning and a nocturnal decrease with a nadir at 0700 h (p < 0.05). Concomitantly with the decrease in free IGF-I an increase in IGFBP-1 was observed between 0200 and 0700 h (p < 0.001). Total IGF-I did not exhibit any diurnal variation. Inverse relationships between the 24-h area under the curve (24-hAUC) free IGF-I and 24-hAUC IGFBP-1 (p = 0.002) and between fasting free IGF-I and fasting IGFBP-1 levels (p-0.01) were observed. Furthermore, 24-hAUC GH correlated with fasting free IGF-I (p = 0.04), 24-hAUC free IGF-I (p = 0.03), fasting total IGF-I (p = 0.04), and 24-hAUC total IGF-I (p = 0.04). No phase relationship between free IGF-I and IGFBP-1 or insulin were seen. In healthy children, circulating free IGF-I exhibits a nocturnal decrease and an increase in the morning. The diurnal secretion of free IGF-I correlates with GH and is inversely related to IGFBP-1. The metabolic significance of these findings needs further study.

  19. Concentration of Rutin Model Solutions from Their Mixtures with Glucose Using Ultrafiltration

    PubMed Central

    Wei, Swallow; Hossain, Md. M.; Saleh, Zaid S.

    2010-01-01

    Separation of polyphenolic phytochemical compounds from their mixtures with sugars is necessary to produce an added-value sugar-reduced extract with high biological activity from fruit juice processing industry waste streams. The separation characteristics of a binary mixture of rutin and glucose using a Pellicon-2 regenerated cellulose ultrafiltration membrane with an area of 0.1 m2 having nominal MWCO of 1,000 Da were investigated, to demonstrate the separation of phenolic compounds from sugars. The effects of the operating variables–transmembrane pressure, feed solution temperature and pH, initial feed concentration and feed flow rate–on the permeate flux and enrichment of rutin, were determined. The permeate flux increased with the increase in transmembrane pressure up to a certain limit and after that the flux remained more or less constant. The optimum transmembrane pressure was within 4–5 bar. The flux increased with the increase in feed solution temperature because of reduced feed viscosity, and better solubility. The concentration of rutin was optimum at lower temperature (30°C), with an enrichment factor of 1.3. The effect of pH on permeate flux was less obvious. Lowering the feed solution pH increased the retention of rutin and the optimum separation was obtained within pH 3–4. The permeate flux decreased with the increase in feed concentration of rutin (concentration range 0.1–0.5 g/L). The enrichment of rutin was significant in the glucose concentration range 0.35–0.5 g/L. The feed flow rate had a significant effect on the flux and separation characteristics. Higher cross-flow through the membrane reduced the fouling by providing a shear force to sweep away deposited materials from the membrane surface. At high feed flow rate, more rutin was retained by the membrane with less sugar permeating through. The optimum feed flow rate was 1.5 L/min. For the separation of rutin (in the retentate) and glucose (in the permeate), the best results

  20. Relationship between malnutrition-inflammation syndrome and ultrafiltration volume in continuous ambulatory peritoneal dialysis patients.

    PubMed

    Tinroongroj, Nantawan; Jittikanont, Suparoek; Lumlertgul, Dusit

    2011-09-01

    Malnutrition inflammation syndrome may contribute to a change of peritoneum, leading to high peritoneal membrane transport, peritoneal albumin loss, and increased glucose uptake into systemic circulation and decreased ultrafiltration (UF) volume. Fluid overload is a common problem among CAPD patients which has an effect on morbidity and mortality in these patients. The present study was designed as a pilot to find out a correlation between malnutrition and UF volume in CAPD patients. A cross-sectional study was comducted in 42 stable CAPD cases at CAPD clinic, Maharaj Chiang Mai Hospital. Subjective global assessment score (SGA), malnutrition inflammation score (MIS), and laboratory values were utilized to identify nutritional and inflammatory status. Peritoneal equilibration test (PET) was performed to measure UF volume while bioelectrical impedance assay was determined to measure extracellular fluid volume (ECF), lean body mass (LBM), lean fat mass, and fluid status. Of 42 CAPD patients, 30 subjects were classified to have normal nutritional status while 12 patients were categorized to have malnutrition. Only 1 patient was classified to have malnutrition inflammation syndrome. MIS scores and serum albumin were significantly different between 2 groups (p < 0.001). PET-UF volume was significantly decreased in the malnutrition group (p < 0.05), especially when serum albumin was less than 3.0 g/dl. PET-UF volume was reduced 137.44 ml for every 1 g/dl of serum albumin below 3.0 g/dl. Residual renal function (RRF) was also significantly reduced in malnutrition group (p < 0.05). Malnutrition, decreased RRF and decreased UF volume led to ECF expansion, hypertension, and fluid overload. Other factors that were correlated with UF volume were ACEI and/or ARB use (p < 0.05) and total protein loss per day (p < 0.05). There was a significantly positive correlation between malnutrition and reduction of UF volume. Other factors that were correlated with UF volume were ACEI and