Passive thermo-optic feedback for robust athermal photonic systems
Rakich, Peter T.; Watts, Michael R.; Nielson, Gregory N.
2015-06-23
Thermal control devices, photonic systems and methods of stabilizing a temperature of a photonic system are provided. A thermal control device thermally coupled to a substrate includes a waveguide for receiving light, an absorption element optically coupled to the waveguide for converting the received light to heat and an optical filter. The optical filter is optically coupled to the waveguide and thermally coupled to the absorption element. An operating point of the optical filter is tuned responsive to the heat from the absorption element. When the operating point is less than a predetermined temperature, the received light is passed to the absorption element via the optical filter. When the operating point is greater than or equal to the predetermined temperature, the received light is transmitted out of the thermal control device via the optical filter, without being passed to the absorption element.
NASA Astrophysics Data System (ADS)
Huh, Jae-Won; Yu, Byeong-Hun; Shin, Dong-Myung; Yoon, Tae-Hoon
2015-03-01
Recently, a transparent display has got much attention as one of the next generation display devices. Especially, active studies on a transparent display using organic light-emitting diodes (OLEDs) are in progress. However, since it is not possible to obtain black color using a transparent OLED, it suffers from poor visibility. This inevitable problem can be solved by using a light shutter. Light shutter technology can be divided into two types; light absorption and scattering. However, a light shutter based on light absorption cannot block the background image perfectly and a light shutter based on light scattering cannot provide black color. In this work we demonstrate a light shutter using two liquid crystal (LC) layers, a light absorption layer and a light scattering layer. To realize a light absorption layer and a light scattering layer, we use the planar state of a dye-doped chiral nematic LC (CNLC) cell and the focal-conic state of a long-pitch CNLC cell, respectively. The proposed light shutter device can block the background image perfectly and show black color. We expect that the proposed light shutter can increase the visibility of a transparent display.
Evaluation of absorption cycle for space station environmental control system application
NASA Technical Reports Server (NTRS)
Sims, W. H.; Oneill, M. J.; Reid, H. C.; Bisenius, P. M.
1972-01-01
The study to evaluate an absorption cycle refrigeration system to provide environmental control for the space stations is reported. A zero-gravity liquid/vapor separator was designed and tested. The results were used to design a light-weight, efficient generator for the absorption refrigeration system. It is concluded that absorption cycle refrigeration is feasible for providing space station environmental control.
Tan, Kok Hong; Lim, Fang Sheng; Toh, Alfred Zhen Yang; Zheng, Xia-Xi; Dee, Chang Fu; Majlis, Burhanuddin Yeop; Chai, Siang-Piao; Chang, Wei Sea
2018-04-17
Observation of visible light trapping in zinc oxide (ZnO) nanorods (NRs) correlated to the optical and photoelectrochemical properties is reported. In this study, ZnO NR diameter and c-axis length respond primarily at two different regions, UV and visible light, respectively. ZnO NR diameter exhibits UV absorption where large ZnO NR diameter area increases light absorption ability leading to high efficient electron-hole pair separation. On the other hand, ZnO NR c-axis length has a dominant effect in visible light resulting from a multiphoton absorption mechanism due to light reflection and trapping behavior in the free space between adjacent ZnO NRs. Furthermore, oxygen vacancies and defects in ZnO NRs are associated with the broad visible emission band of different energy levels also highlighting the possibility of the multiphoton absorption mechanism. It is demonstrated that the minimum average of ZnO NR c-axis length must satisfy the linear regression model of Z p,min = 6.31d to initiate the multiphoton absorption mechanism under visible light. This work indicates the broadening of absorption spectrum from UV to visible light region by incorporating a controllable diameter and c-axis length on vertically aligned ZnO NRs, which is important in optimizing the design and functionality of electronic devices based on light absorption mechanism. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Michael R. Olson; Mercedes Victoria Garcia; Michael A. Robinson; Paul Van Rooy; Mark A. Dietenberger; Michael Bergin; James Jay Schauer
2015-01-01
Quantification of the black carbon (BC) and brown carbon (BrC) components of source emissions is critical to understanding the impact combustion aerosols have on atmospheric light absorption. Multiple-wavelength absorption was measured from fuels including wood, agricultural biomass, coals, plant matter, and petroleum distillates in controlled combustion settings....
Light sensitive memristor with bi-directional and wavelength-dependent conductance control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maier, P.; Hartmann, F., E-mail: fabian.hartmann@physik.uni-wuerzburg.de; Emmerling, M.
2016-07-11
We report the optical control of localized charge on positioned quantum dots in an electro-photo-sensitive memristor. Interband absorption processes in the quantum dot barrier matrix lead to photo-generated electron-hole-pairs that, depending on the applied bias voltage, charge or discharge the quantum dots and hence decrease or increase the conductance. Wavelength-dependent conductance control is observed by illumination with red and infrared light, which leads to charging via interband and discharging via intraband absorption. The presented memristor enables optical conductance control and may thus be considered for sensory applications in artificial neural networks as light-sensitive synapses or optically tunable memories.
Coherent perfect absorption in deeply subwavelength films in the single-photon regime
Roger, Thomas; Vezzoli, Stefano; Bolduc, Eliot; Valente, Joao; Heitz, Julius J. F.; Jeffers, John; Soci, Cesare; Leach, Jonathan; Couteau, Christophe; Zheludev, Nikolay I.; Faccio, Daniele
2015-01-01
The technologies of heating, photovoltaics, water photocatalysis and artificial photosynthesis depend on the absorption of light and novel approaches such as coherent absorption from a standing wave promise total dissipation of energy. Extending the control of absorption down to very low light levels and eventually to the single-photon regime is of great interest and yet remains largely unexplored. Here we demonstrate the coherent absorption of single photons in a deeply subwavelength 50% absorber. We show that while the absorption of photons from a travelling wave is probabilistic, standing wave absorption can be observed deterministically, with nearly unitary probability of coupling a photon into a mode of the material, for example, a localized plasmon when this is a metamaterial excited at the plasmon resonance. These results bring a better understanding of the coherent absorption process, which is of central importance for light harvesting, detection, sensing and photonic data processing applications. PMID:25991584
NASA Astrophysics Data System (ADS)
Watanabe, Shohei; Laurion, Isabelle; Markager, Stiig; Vincent, Warwick F.
2015-08-01
In optically complex inland waters, the underwater attenuation of photosynthetically active radiation (PAR) is controlled by a variable combination of absorption and scattering components of the lake or river water. Here we applied a photon budget approach to identify the main optical components affecting PAR attenuation in Lake St. Charles, a drinking water reservoir for Québec City, Canada. This analysis showed the dominant role of colored dissolved organic matter (CDOM) absorption (average of 44% of total absorption during the sampling period), but with large changes over depth in the absolute and relative contribution of the individual absorption components (water, nonalgal particulates, phytoplankton and CDOM) to PAR attenuation. This pronounced vertical variation occurred because of the large spectral changes in the light field with depth, and it strongly affected the average in situ diffuse absorption coefficients in the water column. For example, the diffuse absorption coefficient for pure-water in the ambient light field was 10-fold higher than the value previously measured in the blue open ocean and erroneously applied to lakes and coastal waters. Photon absorption budget calculations for a range of limnological conditions confirmed that phytoplankton had little direct influence on underwater light, even at chlorophyll a values above those observed during harmful algal blooms in the lake. These results imply that traditional measures of water quality such as Secchi depth and radiometric transparency do not provide a meaningful estimate of the biological state of the water column in CDOM-colored lakes and reservoirs.
Enhanced light absorptivity of black carbon with air pollution development in urban Beijing, China
NASA Astrophysics Data System (ADS)
Zhang, Y.; Zhang, Q.; Cheng, Y.; Su, H.; He, K.
2017-12-01
The impacts of black carbon (BC) aerosols on air quality and climate are dependent on BC light absorptivity. However, the light absorptivity of ambient BC-containing particles remains conflicting. In this work, we investigated the evolution of BC light absorptivity with pollution development in urban Beijing, China. We found that the mass absorption cross-section (MAC) of ambient BC-containing particles measured during the campaign increased with BC mass concentration, which can be attributed to more coating materials on BC surface with pollution development. A single-particle soot photometer (SP2) measurement showed that the coating thickness (CT) of BC-containing particles increased by 48% with PM1 and BC mass concentration increasing from 10 μg m-3 and 0.3 μg m-3 to 230 μg m-3 and 12 μg m-3. Based on Mie calculation, the CT increase could led to light absorption enhancement (Eab) of BC-containing particles increasing by 22%, consistent with the increase of measured MAC. The relationship between growth rate of BC light absorptivity (kEab) and that of PM1 or rBC concentration (kPM1 or krBC) showed that kEab ≈ 4.8% kPM1 or kEab ≈ 2.5% krBC. The analysis of effective emission intensity (EEI) for BC revealed that the enhancement of BC light absorptivity with increasing pollution levels was dominated by regional transport. During the pollution period, 63% of BC over Beijing originated from regional sources. The aging of these regional BC during atmospheric transport controlled the increase of coating materials for BC-containing particles observed in Beijing. As a result of enhanced light absorptivity with pollution development, BC forcing efficiency could increase by 20% during polluted period. Our work identified the importance of BC on radiative forcing under polluted environment, which is determined by not only the increase of BC mass concentration, but also the enhancement of BC forcing efficiency due to more coating materials.
NASA Astrophysics Data System (ADS)
König, Tobias A. F.; Ledin, Petr A.; Russell, Michael; Geldmeier, Jeffrey A.; Mahmoud, Mahmoud. A.; El-Sayed, Mostafa A.; Tsukruk, Vladimir V.
2015-03-01
We fabricated monolayer coatings of a silver nanocube aggregation to create a step-wise optical strip by applying different surface pressures during slow Langmuir-Blodgett deposition. The varying amount of randomly distributed nanocube aggregates with different surface coverages in gradient manner due to changes in surface pressure allows for continuous control of the polarization sensitive absorption of the incoming light over a broad optical spectrum. Optical characterization under total internal reflection conditions combined with electromagnetic simulations reveal that the broadband light absorption depends on the relative orientation of the nanoparticles to the polarization of the incoming light. By using computer simulations, we found that the electric field vector of the s-polarized light interacts with the different types of silver nanocube aggregations to excite different plasmonic resonances. The s-polarization shows dramatic changes of the plasmonic resonances at different angles of incidence (shift of 64 nm per 10° angle of incidence). With a low surface nanocube coverage (from 5% to 20%), we observed a polarization-selective high absorption of 80% (with an average 75%) of the incoming light over a broad optical range in the visible region from 400 nm to 700 nm. This large-area gradient material with location-dependent optical properties can be of particular interest for broadband light absorption, phase-sensitive sensors, and imaging.We fabricated monolayer coatings of a silver nanocube aggregation to create a step-wise optical strip by applying different surface pressures during slow Langmuir-Blodgett deposition. The varying amount of randomly distributed nanocube aggregates with different surface coverages in gradient manner due to changes in surface pressure allows for continuous control of the polarization sensitive absorption of the incoming light over a broad optical spectrum. Optical characterization under total internal reflection conditions combined with electromagnetic simulations reveal that the broadband light absorption depends on the relative orientation of the nanoparticles to the polarization of the incoming light. By using computer simulations, we found that the electric field vector of the s-polarized light interacts with the different types of silver nanocube aggregations to excite different plasmonic resonances. The s-polarization shows dramatic changes of the plasmonic resonances at different angles of incidence (shift of 64 nm per 10° angle of incidence). With a low surface nanocube coverage (from 5% to 20%), we observed a polarization-selective high absorption of 80% (with an average 75%) of the incoming light over a broad optical range in the visible region from 400 nm to 700 nm. This large-area gradient material with location-dependent optical properties can be of particular interest for broadband light absorption, phase-sensitive sensors, and imaging. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06430e
Kaspar, Pavel; Prokopyeva, Elena; Tománek, Pavel; Grmela, Lubomír
2017-04-01
Meat as a rich source of protein is sought after by people from all over the world. It is also very susceptible to decay because of many internal and external processes affecting it. In this work an easy and quick method of detection of structural damage caused by decay or mishandling the meat is attempted by the method of angular absorption of light. The difference between structural changes due to aging, drying and freezing is explored and the resulting changes in light absorption in meat samples are presented. This work demonstrates that the measurement of optical angular dependency of absorption in relation to the muscle fibers in muscle tissue has the potential of detecting structural damage to the sample for meat quality control purposes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Coherent perfect absorbers: linear control of light with light
NASA Astrophysics Data System (ADS)
Baranov, Denis G.; Krasnok, Alex; Shegai, Timur; Alù, Andrea; Chong, Yidong
2017-12-01
The absorption of electromagnetic energy by a material is a phenomenon that underlies many applications, including molecular sensing, photocurrent generation and photodetection. Typically, the incident energy is delivered to the system through a single channel, for example, by a plane wave incident on one side of an absorber. However, absorption can be made much more efficient by exploiting wave interference. A coherent perfect absorber is a system in which the complete absorption of electromagnetic radiation is achieved by controlling the interference of multiple incident waves. Here, we review recent advances in the design and applications of such devices. We present the theoretical principles underlying the phenomenon of coherent perfect absorption and give an overview of the photonic structures in which it can be realized, including planar and guided-mode structures, graphene-based systems, parity-symmetric and time-symmetric structures, 3D structures and quantum-mechanical systems. We then discuss possible applications of coherent perfect absorption in nanophotonics, and, finally, we survey the perspectives for the future of this field.
Molecular Chemistry of Atmospheric Brown Carbon Inferred from a Nationwide Biomass Burning Event
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Peng; Bluvshtein, Nir; Rudich, Yinon
Lag Ba'Omer, a nationwide bonfire festival in Israel, was chosen as a case study to investigate the influence of a major biomass burning event on the light absorption properties of atmospheric brown carbon (BrC). The chemical composition and optical properties of BrC chromophores were investigated using a high performance liquid chromatography (HPLC) platform coupled to photo diode array (PDA) and high resolution mass spectrometry (HRMS) detectors. Substantial increase of BrC light absorption coefficient was observed during the night-long biomass burning event. Most chromophores observed during the event were attributed to nitroaromatic compounds, comprising 28 elemental formulas of at least 63more » structural isomers. The NAC, in combination, accounted for 50-80% of the total visible light absorption (> 400 nm) by solvent extractable BrC. The results highlight that NAC, particular nitrophenols, are important light absorption contributors of biomass burning organic aerosol (BBOA), suggesting that night time chemistry of ·NO 3 and N 2O 5 with particles may play a significant role in atmospheric transformations of BrC. Nitrophenols and related compounds were especially important chromophores of BBOA. The absorption spectra of the BrC chromophores are influenced by the extraction solvent and solution pH, implying that the aerosol acidity is an important factor controlling the light absorption properties of BrC.« less
Molecular Chemistry of Atmospheric Brown Carbon Inferred from a Nationwide Biomass Burning Event
Lin, Peng; Bluvshtein, Nir; Rudich, Yinon; ...
2017-08-26
Lag Ba'Omer, a nationwide bonfire festival in Israel, was chosen as a case study to investigate the influence of a major biomass burning event on the light absorption properties of atmospheric brown carbon (BrC). The chemical composition and optical properties of BrC chromophores were investigated using a high performance liquid chromatography (HPLC) platform coupled to photo diode array (PDA) and high resolution mass spectrometry (HRMS) detectors. Substantial increase of BrC light absorption coefficient was observed during the night-long biomass burning event. Most chromophores observed during the event were attributed to nitroaromatic compounds, comprising 28 elemental formulas of at least 63more » structural isomers. The NAC, in combination, accounted for 50-80% of the total visible light absorption (> 400 nm) by solvent extractable BrC. The results highlight that NAC, particular nitrophenols, are important light absorption contributors of biomass burning organic aerosol (BBOA), suggesting that night time chemistry of ·NO 3 and N 2O 5 with particles may play a significant role in atmospheric transformations of BrC. Nitrophenols and related compounds were especially important chromophores of BBOA. The absorption spectra of the BrC chromophores are influenced by the extraction solvent and solution pH, implying that the aerosol acidity is an important factor controlling the light absorption properties of BrC.« less
Performance of a newly designed continuous soot monitoring system (COSMOS).
Miyazaki, Yuzo; Kondo, Yutaka; Sahu, Lokesh K; Imaru, Junichi; Fukushima, Nobuhiko; Kano, Minoru
2008-10-01
We designed a continuous soot monitoring system (COSMOS) for fully automated, high-sensitivity, continuous measurement of light absorption by black carbon (BC) aerosols. The instrument monitors changes in transmittance across an automatically advancing quartz fiber filter tape using an LED at a 565 nm wavelength. To achieve measurements with high sensitivity and a lower detectable light absorption coefficient, COSMOS uses a double-convex lens and optical bundle pipes to maintain high light intensity and signal data are obtained at 1000 Hz. In addition, sampling flow rate and optical unit temperature are actively controlled. The inlet line for COSMOS is heated to 400 degrees C to effectively volatilize non-refractory aerosol components that are internally mixed with BC. In its current form, COSMOS provides BC light absorption measurements with a detection limit of 0.45 Mm(-1) (0.045 microg m(-3) for soot) for 10 min. The unit-to-unit variability is estimated to be within +/- 1%, demonstrating its high reproducibility. The absorption coefficients determined by COSMOS agreed with those by a particle soot absorption photometer (PSAP) to within 1% (r2 = 0.97). The precision (+/- 0.60 Mm(-1)) for 10 min integrated data was better than that of PSAP and an aethalometer under our operating conditions. These results showed that COSMOS achieved both an improved detection limit and higher precision for the filter-based light absorption measurements of BC compared to the existing methods.
Vincenti, M A; de Ceglia, D; Scalora, Michael
2016-08-01
We investigate nonlinear absorption in films of epsilon-near-zero materials. The combination of large local electric fields at the fundamental frequency and material losses at the harmonic frequencies induce unusual intensity-dependent phenomena. We predict that the second-order nonlinearity of a low-damping, epsilon-near-zero slab produces an optical limiting effect that mimics a two-photon absorption process. Anomalous absorption profiles that depend on low permittivity values at the pump frequency are also predicted for third-order nonlinearities. These findings suggest new opportunities for all-optical light control and novel ways to design reconfigurable and tunable nonlinear devices.
Enhanced light absorption of silicon solar cells with dielectric nanostructured back reflector
NASA Astrophysics Data System (ADS)
Ren, Rui; Zhong, Zheng
2018-06-01
This paper investigates the light absorption property of nanostructured dielectric reflectors in silicon thin film solar cells using numerical simulation. Flat thin film solar cell with ZnO nanostructured back reflector can produce comparable photocurrent to the control model with Ag nanostructured back reflector. Furthermore, when it is integrated with nano-pillar surface decoration, a photocurrent density of 29.5 mA/cm2 can be achieved, demonstrating a photocurrent enhancement of 5% as compared to the model with Ag nanostructured back reflector.
NASA Astrophysics Data System (ADS)
Liu, Yangyang; Shen, Fang; Li, Xiuzhen
2014-11-01
Light absorption properties of colored dissolved organic matter (CDOM) in adjacent waters of the Changjiang Estuary were investigated during the summer of 2013. CDOM absorption showed a substantial portion of the total absorption and clearly dominant among most investigation stations. It generally decreased from the northwest to the southeast, which controlled by physical mixing of fresh water and seawater as was indicated by a conservative behaviour of CDOM. CDOM absorption sharply increased during phytoplankton blooms. Similarly, dissolved organic carbon (DOC) also peaked during blooms period. However, DOC exhibited a more complex behavior relative to a simple conservative mixing, possibly attributed to multiple origins of DOC. CDOM absorption and DOC co-varied to some degree, implying a potential way of DOC estimation from CDOM absorption. However, more detailed information such as CDOM and DOC composition and more validation data were required to obtain a stable CDOM - DOC pattern. Lastly, empirical algorithms with limited data were developed to retrieve CDOM absorption. Further validation of the algorithms were needed when they were to be commonly applied.
Two-photon or higher-order absorbing optical materials and methods of use
NASA Technical Reports Server (NTRS)
Marder, Seth (Inventor); Perry, Joseph (Inventor)
2012-01-01
Compositions capable of simultaneous two-photon absorption and higher order absorptivities are provided. Compounds having a donor-pi-donor or acceptor-pi-acceptor structure are of particular interest, where the donor is an electron donating group, acceptor is an electron accepting group, and pi is a pi bridge linking the donor and/or acceptor groups. The pi bridge may additionally be substituted with electron donating or withdrawing groups to alter the absorptive wavelength of the structure. Also disclosed are methods of generating an excited state of such compounds through optical stimulation with light using simultaneous absorption of photons of energies individually insufficient to achieve an excited state of the compound, but capable of doing so upon simultaneous absorption of two or more such photons. Applications employing such methods are also provided, including controlled polymerization achieved through focusing of the light source(s) used.
Controlling coulomb interactions in infrared stereometamaterials for unity light absorption
NASA Astrophysics Data System (ADS)
Mudachathi, Renilkumar; Moritake, Yuto; Tanaka, Takuo
2018-05-01
We investigate the influence of near field interactions between the constituent 3D split ring resonators on the absorbance and resonance frequency of a stereo metamaterial based perfect light absorber. The experimental and theoretical analyses reveal that the magnetic resonance red shifts and broadens for both the decreasing vertical and lateral separations of the constituents within the metamaterial lattice, analogous to plasmon hybridization. The strong interparticle interactions for higher density reduce the effective cross-section per resonator, which results in weak light absorption observed in both experimental and theoretical analyses. The red shift of the magnetic resonance with increasing lattice density is an indication of the dominating electric dipole interactions and we analyzed the metamaterial system in an electrostatic point of view to explain the observed resonance shift and decreasing absorption peak. From these analyses, we found that the fill factor introduces two competing factors determining the absorption efficiency such as coulomb interactions between the constituent resonators and their number density in a given array structure. We predicted unity light absorption for a fill factor of 0.17 balancing these two opposing factors and demonstrate an experimental absorbance of 99.5% at resonance with our 3D device realized using residual stress induced bending of 2D patterns.
Imaging Plasmon Hybridization of Fano Resonances via Hot-Electron-Mediated Absorption Mapping.
Simoncelli, Sabrina; Li, Yi; Cortés, Emiliano; Maier, Stefan A
2018-06-13
The inhibition of radiative losses in dark plasmon modes allows storing electromagnetic energy more efficiently than in far-field excitable bright-plasmon modes. As such, processes benefiting from the enhanced absorption of light in plasmonic materials could also take profit of dark plasmon modes to boost and control nanoscale energy collection, storage, and transfer. We experimentally probe this process by imaging with nanoscale precision the hot-electron driven desorption of thiolated molecules from the surface of gold Fano nanostructures, investigating the effect of wavelength and polarization of the incident light. Spatially resolved absorption maps allow us to show the contribution of each element of the nanoantenna in the hot-electron driven process and their interplay in exciting a dark plasmon mode. Plasmon-mode engineering allows control of nanoscale reactivity and offers a route to further enhance and manipulate hot-electron driven chemical reactions and energy-conversion and transfer at the nanoscale.
NASA Astrophysics Data System (ADS)
Arju, Nihal; Ma, Tzuhsuan; Khanikaev, Alexander; Purtseladze, David; Shvets, Gennady
2015-06-01
Classical realization of a ubiquitous quantum mechanical phenomenon of double-continuum Fano interference using metasurfaces is experimentally demonstrated by engineering the near-field interaction between two bright and one dark plasmonic modes. The competition between the bright modes, one of them effectively suppressing the Fano interference for the orthogonal light polarization, is discovered. Coherent control of optical energy concentration and light absorption by the ellipticity of the incident light is theoretically predicted.
Heat meets light on the nanoscale
Boriskina, Svetlana V.; Tong, Jonathan K.; Hsu, Wei -Chun; ...
2016-06-11
We discuss the state-of-the-art and remaining challenges in the fundamental understanding and technology development for controlling light-matter interactions in nanophotonic environments in and away from thermal equilibrium. Furthermore, the topics covered range from the basics of the thermodynamics of light emission and absorption to applications in solar thermal energy generation, thermophotovoltaics, optical refrigeration, personalized cooling technologies, development of coherent incandescent light sources, and spinoptics.
NASA Astrophysics Data System (ADS)
Organelli, Emanuele; Bricaud, Annick; Antoine, David; Matsuoka, Atsushi
2014-09-01
We analyze a two-year time-series of chromophoric dissolved organic matter (CDOM) light absorption measurements in the upper 400 m of the water column at the BOUSSOLE site in the NW Mediterranean Sea. The seasonal dynamics of the CDOM light absorption coefficients at 440 nm (acdom(440)) is essentially characterized by (i) subsurface maxima forming in spring and progressively reinforcing throughout summer, (ii) impoverishment in the surface layer throughout summer and (iii) vertical homogeneity in winter. Seasonal variations of the spectral dependence of CDOM absorption, as described by the exponential slope value (Scdom), are characterized by highest values in summer and autumn at the surface and low values at the depths of acdom(440) subsurface maxima or just below them. Variations of acdom(440) are likely controlled by microbial digestion of phytoplankton cells, which leads to CDOM production, and by photochemical destruction (photobleaching), which leads to CDOM degradation. Photobleaching is also the main driver of Scdom variations. Consistently with previous observations, acdom(440) for a given chlorophyll a concentration is higher than expected from Case I waters bio-optical models. The total non-water light absorption budget shows that surface waters at the BOUSSOLE site are largely dominated by CDOM during all seasons but the algal bloom in March and April. These results improve the knowledge of CDOM absorption dynamics in the Mediterranean Sea, which is scarcely documented. In addition, they open the way to improved algorithms for the retrieval of CDOM absorption from field or satellite radiometric measurements.
Thermal emission and absorption of radiation in finite inverted-opal photonic crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Florescu, Marian; Stimpson, Andrew J.; Lee, Hwang
We study theoretically the optical properties of a finite inverted-opal photonic crystal. The light-matter interaction is strongly affected by the presence of the three-dimensional photonic crystal and the alterations of the light emission and absorption processes can be used to suppress or enhance the thermal emissivity and absorptivity of the dielectric structure. We investigate the influence of the absorption present in the system on the relevant band edge frequencies that control the optical response of the photonic crystal. Our study reveals that the absorption processes cause spectral broadening and shifting of the band edge optical resonances, and determine a strongmore » reduction of the photonic band gap spectral range. Using the angular and spectral dependence of the band edge frequencies for stop bands along different directions, we argue that by matching the blackbody emission spectrum peak with a prescribed maximum of the absorption coefficient, it is possible to achieve an angle-sensitive enhancement of the thermal emission/absorption of radiation. This result opens a way to realize a frequency-sensitive and angle-sensitive photonic crystal absorbers/emitters.« less
Three-dimensional radiation transfer modeling in a dicotyledon leaf
NASA Astrophysics Data System (ADS)
Govaerts, Yves M.; Jacquemoud, Stéphane; Verstraete, Michel M.; Ustin, Susan L.
1996-11-01
The propagation of light in a typical dicotyledon leaf is investigated with a new Monte Carlo ray-tracing model. The three-dimensional internal cellular structure of the various leaf tissues, including the epidermis, the palisade parenchyma, and the spongy mesophyll, is explicitly described. Cells of different tissues are assigned appropriate morphologies and contain realistic amounts of water and chlorophyll. Each cell constituent is characterized by an index of refraction and an absorption coefficient. The objective of this study is to investigate how the internal three-dimensional structure of the tissues and the optical properties of cell constituents control the reflectance and transmittance of the leaf. Model results compare favorably with laboratory observations. The influence of the roughness of the epidermis on the reflection and absorption of light is investigated, and simulation results confirm that convex cells in the epidermis focus light on the palisade parenchyma and increase the absorption of radiation.
Oh, Junghoon; Chang, Yun Hee; Kim, Yong-Hyun; Park, Sungjin
2016-04-28
Photocatalysts use sustainable solar light energy to trigger various catalytic reactions. Metal-free nanomaterials have been suggested as cost-effective and environmentally friendly photocatalysts. In this work, we propose thickness-controlled graphite oxide (GO) as a metal-free photocatalyst, which is produced by exfoliating thick GO particles via stirring and sonication. All GO samples exhibit photocatalytic activity for degrading an organic pollutant, rhodamine B under visible light, and the thickest sample shows the best catalytic performance. UV-vis-NIR diffuse reflectance absorption spectra indicate that thicker GO samples absorb more vis-NIR light than thinner ones. Density-functional theory calculations show that GO has a much smaller band gap than that of single-layer graphene oxide, and thus suggest that the largely-reduced band gap is responsible for this trend of light absorption.
NASA Astrophysics Data System (ADS)
Crescimanno, Michael; Dawson, Nathan; Andrews, James
2012-04-01
Two classes of conservative, linear, optical rotary effects (optical activity and Faraday rotation) are distinguished by their behavior under time reversal. In analogy with coherent perfect absorption, where counterpropagating light fields are controllably converted into other degrees of freedom, we show that in a linear-conservative medium only time-odd (Faraday) rotation is capable of coherent perfect rotation, by which we mean the complete transfer of counterpropagating coherent light fields into their orthogonal polarization. This highlights the necessity of time reversal odd processes (not just absorption) and coherence in perfect mode conversion and may inform device design.
Houk, Amanda L; Givens, Richard S; Elles, Christopher G
2016-03-31
Two-photon activation of the p-hydroxyphenacyl (pHP) photoactivated protecting group is demonstrated for the first time using visible light at 550 nm from a pulsed laser. Broadband two-photon absorption measurements reveal a strong two-photon transition (>10 GM) near 4.5 eV that closely resembles the lowest-energy band at the same total excitation energy in the one-photon absorption spectrum of the pHP chromophore. The polarization dependence of the two-photon absorption band is consistent with excitation to the same S3 ((1)ππ*) excited state for both one- and two-photon activation. Monitoring the progress of the uncaging reaction under nonresonant excitation at 550 nm confirms a quadratic intensity dependence and that two-photon activation of the uncaging reaction is possible using visible light in the range 500-620 nm. Deprotonation of the pHP chromophore under mildly basic conditions shifts the absorption band to lower energy (3.8 eV) in both the one- and two-photon absorption spectra, suggesting that two-photon activation of the pHP chromophore may be possible using light in the range 550-720 nm. The results of these measurements open the possibility of spatially and temporally selective release of biologically active compounds from the pHP protecting group using visible light from a pulsed laser.
Models of filter-based particle light absorption measurements
NASA Astrophysics Data System (ADS)
Hamasha, Khadeejeh M.
Light absorption by aerosol is very important in the visible, near UN, and near I.R region of the electromagnetic spectrum. Aerosol particles in the atmosphere have a great influence on the flux of solar energy, and also impact health in a negative sense when they are breathed into lungs. Aerosol absorption measurements are usually performed by filter-based methods that are derived from the change in light transmission through a filter where particles have been deposited. These methods suffer from interference between light-absorbing and light-scattering aerosol components. The Aethalometer is the most commonly used filter-based instrument for aerosol light absorption measurement. This dissertation describes new understanding of aerosol light absorption obtained by the filter method. The theory uses a multiple scattering model for the combination of filter and particle optics. The theory is evaluated using Aethalometer data from laboratory and ambient measurements in comparison with photoacoustic measurements of aerosol light absorption. Two models were developed to calculate aerosol light absorption coefficients from the Aethalometer data, and were compared to the in-situ aerosol light absorption coefficients. The first is an approximate model and the second is a "full" model. In the approximate model two extreme cases of aerosol optics were used to develop a model-based calibration scheme for the 7-wavelength Aethalometer. These cases include those of very strong scattering aerosols (Ammonium sulfate sample) and very absorbing aerosols (kerosene soot sample). The exponential behavior of light absorption in the strong multiple scattering limit is shown to be the square root of the total absorption optical depth rather than linear with optical depth as is commonly assumed with Beer's law. 2-stream radiative transfer theory was used to develop the full model to calculate the aerosol light absorption coefficients from the Aethalometer data. This comprehensive model allows for studying very general cases of particles of various sizes embedded on arbitrary filter media. Application of this model to the Reno Aerosol Optics Study (Laboratory data) shows that the aerosol light absorption coefficients are about half of the Aethalometer attenuation coefficients, and there is a reasonable agreement between the model calculated absorption coefficients at 521 nm and the measured photoacoustic absorption coefficients at 532 nm. For ambient data obtained during the Las Vegas study, it shows that the model absorption coefficients at 521 nm are larger than the photoacoustic coefficients at 532 nm. Use of the 2-stream model shows that particle penetration depth into the filter has a strong influence on the interpretation of filter-based aerosol light absorption measurements. This is likely explanation for the difference found between model results for filter-based aerosol light absorption and those from photoacoustic measurements for ambient and laboratory aerosol.
Kocer, Hasan; Butun, Serkan; Palacios, Edgar; Liu, Zizhuo; Tongay, Sefaattin; Fu, Deyi; Wang, Kevin; Wu, Junqiao; Aydin, Koray
2015-01-01
Plasmonic and metamaterial based nano/micro-structured materials enable spectrally selective resonant absorption, where the resonant bandwidth and absorption intensity can be engineered by controlling the size and geometry of nanostructures. Here, we demonstrate a simple, lithography-free approach for obtaining a resonant and dynamically tunable broadband absorber based on vanadium dioxide (VO2) phase transition. Using planar layered thin film structures, where top layer is chosen to be an ultrathin (20 nm) VO2 film, we demonstrate broadband IR light absorption tuning (from ~90% to ~30% in measured absorption) over the entire mid-wavelength infrared spectrum. Our numerical and experimental results indicate that the bandwidth of the absorption bands can be controlled by changing the dielectric spacer layer thickness. Broadband tunable absorbers can find applications in absorption filters, thermal emitters, thermophotovoltaics and sensing. PMID:26294085
Effective light absorption and its enhancement factor for silicon nanowire-based solar cell.
Duan, Zhiqiang; Li, Meicheng; Mwenya, Trevor; Fu, Pengfei; Li, Yingfeng; Song, Dandan
2016-01-01
Although nanowire (NW) antireflection coating can enhance light trapping capability, which is generally used in crystal silicon (CS) based solar cells, whether it can improve light absorption in the CS body depends on the NW geometrical shape and their geometrical parameters. In order to conveniently compare with the bare silicon, two enhancement factors E(T) and E(A) are defined and introduced to quantitatively evaluate the efficient light trapping capability of NW antireflective layer and the effective light absorption capability of CS body. Five different shapes (cylindrical, truncated conical, convex conical, conical, and concave conical) of silicon NW arrays arranged in a square are studied, and the theoretical results indicate that excellent light trapping does not mean more light can be absorbed in the CS body. The convex conical NW has the best light trapping, but the concave conical NW has the best effective light absorption. Furthermore, if the cross section of silicon NW is changed into a square, both light trapping and effective light absorption are enhanced, and the Eiffel Tower shaped NW arrays have optimal effective light absorption.
Charge Transfer from Carbon Nanotubes to Silicon in Flexible Carbon Nanotube/Silicon Solar Cells
Li, Xiaokai; Mariano, Marina; McMillon-Brown, Lyndsey; ...
2017-11-10
Mechanical fragility and insufficient light absorption are two major challenges for thin flexible crystalline Si-based solar cells. Flexible hybrid single-walled carbon nanotube (SWNT)/Si solar cells are demonstrated by applying scalable room-temperature processes for the fabrication of solar-cell components (e.g., preparation of SWNT thin films and SWNT/Si p–n junctions). The flexible SWNT/Si solar cells present an intrinsic efficiency ≈7.5% without any additional light-trapping structures. By using these solar cells as model systems, the charge transport mechanisms at the SWNT/Si interface are investigated using femtosecond transient absorption. Although primary photon absorption occurs in Si, transient absorption measurements show that SWNTs also generatemore » and inject excited charge carriers to Si. Such effects can be tuned by controlling the thickness of the SWNTs. Thus, findings from this study could open a new pathway for designing and improving the efficiency of photocarrier generation and absorption for high-performance ultrathin hybrid SWNT/Si solar cells.« less
Charge Transfer from Carbon Nanotubes to Silicon in Flexible Carbon Nanotube/Silicon Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xiaokai; Mariano, Marina; McMillon-Brown, Lyndsey
Mechanical fragility and insufficient light absorption are two major challenges for thin flexible crystalline Si-based solar cells. Flexible hybrid single-walled carbon nanotube (SWNT)/Si solar cells are demonstrated by applying scalable room-temperature processes for the fabrication of solar-cell components (e.g., preparation of SWNT thin films and SWNT/Si p–n junctions). The flexible SWNT/Si solar cells present an intrinsic efficiency ≈7.5% without any additional light-trapping structures. By using these solar cells as model systems, the charge transport mechanisms at the SWNT/Si interface are investigated using femtosecond transient absorption. Although primary photon absorption occurs in Si, transient absorption measurements show that SWNTs also generatemore » and inject excited charge carriers to Si. Such effects can be tuned by controlling the thickness of the SWNTs. Thus, findings from this study could open a new pathway for designing and improving the efficiency of photocarrier generation and absorption for high-performance ultrathin hybrid SWNT/Si solar cells.« less
Moon, Byeong Cheul; Park, Jung Hyo; Lee, Dong Ki; Tsvetkov, Nikolai; Ock, Ilwoo; Choi, Kyung Min; Kang, Jeung Ku
2017-08-01
CH 3 NH 3 PbI 3 is one of the promising light sensitizers for perovskite photovoltaic cells, but a thick layer is required to enhance light absorption in the long-wavelength regime ranging from PbI 2 absorption edge (500 nm) to its optical band-gap edge (780 nm) in visible light. Meanwhile, the thick perovskite layer suppresses visible-light absorption in the short wavelengths below 500 nm and charge extraction capability of electron-hole pairs produced upon light absorption. Herein, we find that a new light scattering layer with the mixed cavities of sizes in 100 and 200 nm between transparent fluorine-doped tin oxide and mesoporous titanium dioxide electron transport layer enables full absorption of short-wavelength photons (λ < 500 nm) to the perovskite along with enhanced absorption of long-wavelength photons (500 nm < λ < 780 nm). Moreover, the light-driven electric field is proven to allow efficient charge extraction upon light absorption, thereby leading to the increased photocurrent density as well as the fill factor prompted by the slow recombination rate. Additionally, the photocurrent density of the cell with a light scattering layer of mixed cavities is stabilized due to suppressed charge accumulation. Consequently, this work provides a new route to realize broadband light harvesting of visible light for high-performance perovskite photovoltaic cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Hamedi, H. R.; Ruseckas, J.; Juzeliūnas, G.
2017-09-01
We consider propagation of a probe pulse in an atomic medium characterized by a combined tripod and Lambda (Λ) atom-light coupling scheme. The scheme involves three atomic ground states coupled to two excited states by five light fields. It is demonstrated that dark states can be formed for such an atom-light coupling. This is essential for formation of the electromagnetically induced transparency (EIT) and slow light. In the limiting cases the scheme reduces to conventional Λ- or N-type atom-light couplings providing the EIT or absorption, respectively. Thus, the atomic system can experience a transition from the EIT to the absorption by changing the amplitudes or phases of control lasers. Subsequently the scheme is employed to analyze the nonlinear pulse propagation using the coupled Maxwell-Bloch equations. It is shown that a generation of stable slow light optical solitons is possible in such a five-level combined tripod and Λ atomic system.
Wang, Gang; Huang, Baibiao; Li, Zhujie; Lou, Zaizhu; Wang, Zeyan; Dai, Ying; Whangbo, Myung-Hwan
2015-01-01
Controlling amount of intrinsic S vacancies was achieved in ZnS spheres which were synthesized by a hydrothermal method using Zn and S powders in concentrated NaOH solution with NaBH4 added as reducing agent. These S vacancies efficiently extend absorption spectra of ZnS to visible region. Their photocatalytic activities for H2 production under visible light were evaluated by gas chromatograph, and the midgap states of ZnS introduced by S vacancies were examined by density functional calculations. Our study reveals that the concentration of S vacancies in the ZnS samples can be controlled by varying the amount of the reducing agent NaBH4 in the synthesis, and the prepared ZnS samples exhibit photocatalytic activity for H2 production under visible-light irradiation without loading noble metal. This photocatalytic activity of ZnS increases steadily with increasing the concentration of S vacancies until the latter reaches an optimum value. Our density functional calculations show that S vacancies generate midgap defect states in ZnS, which lead to visible-light absorption and responded. PMID:25712901
Plasmonic Control of Radiation and Absorption Processes in Semiconductor Quantum Dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paiella, Roberto; Moustakas, Theodore D.
This document reviews a research program funded by the DOE Office of Science, which has been focused on the control of radiation and absorption processes in semiconductor photonic materials (including III-nitride quantum wells and quantum dots), through the use of specially designed metallic nanoparticles (NPs). By virtue of their strongly confined plasmonic resonances (i.e., collective oscillations of the electron gas), these nanostructures can concentrate incident radiation into sub-wavelength “hot spots” of highly enhanced field intensity, thereby increasing optical absorption by suitably positioned absorbers. By reciprocity, the same NPs can also dramatically increase the spontaneous emission rate of radiating dipoles locatedmore » within their hot spots. The NPs can therefore be used as optical antennas to enhance the radiation output of the underlying active material and at the same time control the far-field pattern of the emitted light. The key accomplishments of the project include the demonstration of highly enhanced light emission efficiency as well as plasmonic collimation and beaming along geometrically tunable directions, using a variety of plasmonic excitations. Initial results showing the reverse functionality (i.e., plasmonic unidirectional absorption and photodetection) have also been generated with similar systems. Furthermore, a new paradigm for the near-field control of light emission has been introduced through rigorous theoretical studies, based on the use of gradient metasurfaces (i.e., optical nanoantenna arrays with spatially varying shape, size, and/or orientation). These activities have been complemented by materials development efforts aimed at the synthesis of suitable light-emitting samples by molecular beam epitaxy. In the course of these efforts, a novel technique for the growth of III-nitride quantum dots has also been developed (droplet heteroepitaxy), with several potential advantages in terms of compositional and geometrical control. The results of these studies provide fundamental new understanding of optical processes at the nanoscale, including near-field energy transfer between quantum emitters and photonic nanostructures, dissipation phenomena of plasmonic excitations, and radiation from nanoantennas. Furthermore, they may open the way to entirely new device concepts and applications, in a broad range of disciplines including optoelectronics, sensing, spectroscopy, photovoltaics, and quantum information science. A specific application of particularly strong relevance to the DOE mission is the development of energy efficient LED active materials for solid-state lighting, based on plasmonic enhancement effects.« less
Pompidor, Guillaume; Dworkowski, Florian S. N.; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R.
2013-01-01
The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years. PMID:23955041
Linder, Jacob; Halterman, Klaus
2016-01-01
Exerting well-defined control over the reflection (R), absorption (A), and transmission (T) of electromagnetic waves is a key objective in quantum optics. To this end, one often utilizes hybrid structures comprised of elements with different optical properties in order to achieve features such as high R or high A for incident light. A desirable goal would be the possibility to tune between all three regimes of nearly perfect reflection, absorption, and transmission within the same device, thus swapping between the cases R → 1, A → 1, and T → 1 dynamically. We here show that a dielectric interfaced with a graphene layer on each side allows for precisely this: by tuning only the Fermi level of graphene, all three regimes can be reached in the THz regime and below. Moreover, we show that the inclusion of cylindrical defects in the system offers a different type of control of the scattering of electromagnetic waves by means of the graphene layers. PMID:27917886
Pompidor, Guillaume; Dworkowski, Florian S N; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R
2013-09-01
The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years.
NASA Astrophysics Data System (ADS)
Jo, Hang Chan; Kim, Jae Hun; Kim, Dae Yu
2018-02-01
Dermatologic patients have various skin characteristics such as skin tone and pigmentation color. However most studies on laser ablation and treatment only considered laser operating conditions like wavelength, output power and pulse duration. The laser ablation arises from photothermal effect by photon energy absorption. Chromophores like melanin exist as the absorber in the skin. In this study, we painted color to mimic chromophores on in-vivo and in-vitro skin models to demonstrate influence on the laser ablation by skin color. Water-based pens were used to paint color. Cross sectional images of the laser ablation were acquired by Fourier-domain optical coherence tomography (Fd-OCT). Light source to make ablation was a Q-switch diode-pumped Nd:YVO4 nanosecond laser (532nm central wavelength). Irradiated light energy dose of the laser could not make ablation craters in the control group. However experimental groups showed craters with same irradiation light energy dose. These results show painting on skin increased tissue damage by absorption in painted color without dyeing cells or tissues.
Contribution of particulate brown carbon to light absorption in the rural and urban Southeast US
NASA Astrophysics Data System (ADS)
Devi, J. Jai; Bergin, Michael H.; Mckenzie, Michael; Schauer, James J.; Weber, Rodney J.
2016-07-01
Measurements of wavelength dependent aerosol light absorption coefficients were carried out as part of the Southern Oxidant and Aerosol Study (SOAS) during the summer of 2013 to determine the contribution of light absorbing organic carbon (BrC) to total aerosol light absorption in a rural location (Centreville, AL) and an urban area (Atlanta, GA). The light absorption coefficients in the near UV and visible wavelengths were measured for both ambient air, as well as ambient air heated in a thermal denuder to 200 °C to remove the semi-volatile organic compounds. Atlanta measurements show dominance of semi-volatile brown carbon with an average absorption angstrom exponent (AAE) of 1.4 before heating and about 1.0 after heating. In urban Atlanta, a decrease of about ∼35% in the light absorption coefficient at 370 nm after heating indicates that light absorbing organic compounds are a substantial fraction of the light absorption budget. Furthermore, a considerable increase in the fraction of light absorption by the semi-volatile aerosol occurs during the daytime, likely linked with photochemistry. Measurements at rural Centerville, on the other hand, do not show any major change in AAE with values before and after heating of 0.99 and 0.98, respectively. Overall the results suggest that photochemical aged urban emissions result in the presence of light absorbing BrC, while at rural locations which are dominated by aged aerosol and local biogenic emissions (based on measurements of Angstrom exponents) BrC does not significantly contribute to light absorption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leong, Kah Hon; Sim, Lan Ching; Jang, Min
2015-10-01
A well-organised reduced graphene oxide (RGO) and silver (Ag) wrapped TiO{sub 2} nano-hybrid was successfully achieved through a facile and easy route. The inherent characteristics of the synthesized RGO-Ag/TiO{sub 2} were revealed through crystalline phase, morphology, chemical composition, Raman scattering, UV-visible absorption, and photoluminescence analyses. The adopted synthesis route significantly controlled the uniform formation of silver nanoparticles and contributed for the absorption of light in the visible spectrum through localized surface plasmon resonance effects. The wrapped RGO nanosheets triggered the electron mobility and promoted visible light shift towards red spectrum. The accomplishment of synergised effect of RGO and Ag wellmore » degraded Bisphenol A under visible light irradiation with a removal efficiency of 61.9%.« less
Renschler, C.L.
1986-11-25
Photoresist techniques and compositions are provided employing curcumin as an absorptive dye for the purpose of reducing linewidth non-uniformity caused by scattered and reflective light from the substrate-resist interface. The photoresist compositions containing curcumin as the absorptive dye are used in the production of microelectronic circuitry by both single layer and multilayer photoresist techniques.
Kume, Atsushi
2017-05-01
Terrestrial green plants absorb photosynthetically active radiation (PAR; 400-700 nm) but do not absorb photons evenly across the PAR waveband. The spectral absorbance of photosystems and chloroplasts is lowest for green light, which occurs within the highest irradiance waveband of direct solar radiation. We demonstrate a close relationship between this phenomenon and the safe and efficient utilization of direct solar radiation in simple biophysiological models. The effects of spectral absorptance on the photon and irradiance absorption processes are evaluated using the spectra of direct and diffuse solar radiation. The radiation absorption of a leaf arises as a consequence of the absorption of chloroplasts. The photon absorption of chloroplasts is strongly dependent on the distribution of pigment concentrations and their absorbance spectra. While chloroplast movements in response to light are important mechanisms controlling PAR absorption, they are not effective for green light because chloroplasts have the lowest spectral absorptance in the waveband. With the development of palisade tissue, the incident photons per total palisade cell surface area and the absorbed photons per chloroplast decrease. The spectral absorbance of carotenoids is effective in eliminating shortwave PAR (<520 nm), which contains much of the surplus energy that is not used for photosynthesis and is dissipated as heat. The PAR absorptance of a whole leaf shows no substantial difference based on the spectra of direct or diffuse solar radiation. However, most of the near infrared radiation is unabsorbed and heat stress is greatly reduced. The incident solar radiation is too strong to be utilized for photosynthesis under the current CO 2 concentration in the terrestrial environment. Therefore, the photon absorption of a whole leaf is efficiently regulated by photosynthetic pigments with low spectral absorptance in the highest irradiance waveband and through a combination of pigment density distribution and leaf anatomical structures.
A plant canopy light absorption model with application to wheat
NASA Technical Reports Server (NTRS)
Chance, J. E.; Lemaster, E. W.
1977-01-01
From the light absorption model the absorption of light in the photosynthetically active region of the spectrum was calculated for a Penjamo wheat crop for several situations including: (1) the percent absorption of the incident radiation by a canopy having a four layer structure; (2) the percent absorption of light by the individual layers within a four layer canopy and by the underlying soil; (3) the percent absorption of light by each vegetative canopy layer for variable sun angle; and (4) the cumulative solar energy absorbed by the developing wheat canopy as it progresses from a single layer through its growth stages to a three layer canopy. This calculation was also presented as a function of the leaf area index.
Light absorption and excitation energy transfer calculations in primitive photosynthetic bacteria
NASA Astrophysics Data System (ADS)
Komatsu, Yu; Kayanuma, Megumi; Shoji, Mitsuo; Yabana, Kazuhiro; Shiraishi, Kenji; Umemura, Masayuki
2015-06-01
In photosynthetic organisms, light energy is converted into chemical energy through the light absorption and excitation energy transfer (EET) processes. These processes start in light-harvesting complexes, which contain special photosynthetic pigments. The exploration of unique mechanisms in light-harvesting complexes is directly related to studies, such as artificial photosynthesis or biosignatures in astrobiology. We examined, through ab initio calculations, the light absorption and EET processes using cluster models of light-harvesting complexes in purple bacteria (LH2). We evaluated absorption spectra and energy transfer rates using the LH2 monomer and dimer models to reproduce experimental results. After the calibration tests, a LH2 aggregation model, composed of 7 or 19 LH2s aligned in triangle lattice, was examined. We found that the light absorption is red shifted and the energy transfer becomes faster as the system size increases. We also found that EET is accelerated by exchanging the central pigments to lower energy excited pigments. As an astrobiological application, we calculated light absorptions efficiencies of the LH2 in different photoenvironments.
NASA Astrophysics Data System (ADS)
Moosmüller, H.; Arnott, W. P.; Rogers, C. F.; Chow, J. C.; Frazier, C. A.; Sherman, L. E.; Dietrich, D. L.
1998-11-01
A new photoacoustic instrument for the measurement of aerosol light absorption was collocated with conventional aerosol instrumentation during the 1996-1997 winter intensive monitoring period of the Northern Front Range Air Quality Study. Measurements of the light absorption efficiency for black carbon were 5 m2/g at 685 nm and 10 m2/g at 532 nm, and for elemental carbon, they were 3.6 m2/g at 685 nm. We show that these values together with previous photoacoustic measurements of aerosol light absorption shed some light on the wavelength dependence of absorption efficiency for carbonaceous aerosol in the visible and near-visible region. Integrating plate type filter measurements of aerosol light absorption result in far larger values than those measured with the photoacoustic instrument. We demonstrate that a recently published correction technique [Horvath, 1997] can yield improved agreement.
Method and apparatus for aerosol particle absorption spectroscopy
Campillo, Anthony J.; Lin, Horn-Bond
1983-11-15
A method and apparatus for determining the absorption spectra, and other properties, of aerosol particles. A heating beam source provides a beam of electromagnetic energy which is scanned through the region of the spectrum which is of interest. Particles exposed to the heating beam which have absorption bands within the band width of the heating beam absorb energy from the beam. The particles are also illuminated by light of a wave length such that the light is scattered by the particles. The absorption spectra of the particles can thus be determined from an analysis of the scattered light since the absorption of energy by the particles will affect the way the light is scattered. Preferably the heating beam is modulated to simplify the analysis of the scattered light. In one embodiment the heating beam is intensity modulated so that the scattered light will also be intensity modulated when the particles absorb energy. In another embodiment the heating beam passes through an interferometer and the scattered light reflects the Fourier Transform of the absorption spectra.
Charge Transfer from Carbon Nanotubes to Silicon in Flexible Carbon Nanotube/Silicon Solar Cells.
Li, Xiaokai; Mariano, Marina; McMillon-Brown, Lyndsey; Huang, Jing-Shun; Sfeir, Matthew Y; Reed, Mark A; Jung, Yeonwoong; Taylor, André D
2017-12-01
Mechanical fragility and insufficient light absorption are two major challenges for thin flexible crystalline Si-based solar cells. Flexible hybrid single-walled carbon nanotube (SWNT)/Si solar cells are demonstrated by applying scalable room-temperature processes for the fabrication of solar-cell components (e.g., preparation of SWNT thin films and SWNT/Si p-n junctions). The flexible SWNT/Si solar cells present an intrinsic efficiency ≈7.5% without any additional light-trapping structures. By using these solar cells as model systems, the charge transport mechanisms at the SWNT/Si interface are investigated using femtosecond transient absorption. Although primary photon absorption occurs in Si, transient absorption measurements show that SWNTs also generate and inject excited charge carriers to Si. Such effects can be tuned by controlling the thickness of the SWNTs. Findings from this study could open a new pathway for designing and improving the efficiency of photocarrier generation and absorption for high-performance ultrathin hybrid SWNT/Si solar cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resonant Absorption in GaAs-Based Nanowires by Means of Photo-Acoustic Spectroscopy
NASA Astrophysics Data System (ADS)
Petronijevic, E.; Leahu, G.; Belardini, A.; Centini, M.; Li Voti, R.; Hakkarainen, T.; Koivusalo, E.; Guina, M.; Sibilia, C.
2018-03-01
Semiconductor nanowires made of high refractive index materials can couple the incoming light to specific waveguide modes that offer resonant absorption enhancement under the bandgap wavelength, essential for light harvesting, lasing and detection applications. Moreover, the non-trivial ellipticity of such modes can offer near field interactions with chiral molecules, governed by near chiral field. These modes are therefore very important to detect. Here, we present the photo-acoustic spectroscopy as a low-cost, reliable, sensitive and scattering-free tool to measure the spectral position and absorption efficiency of these modes. The investigated samples are hexagonal nanowires with GaAs core; the fabrication by means of lithography-free molecular beam epitaxy provides controllable and uniform dimensions that allow for the excitation of the fundamental resonant mode around 800 nm. We show that the modulation frequency increase leads to the discrimination of the resonant mode absorption from the overall absorption of the substrate. As the experimental data are in great agreement with numerical simulations, the design can be optimized and followed by photo-acoustic characterization for a specific application.
NASA Astrophysics Data System (ADS)
Liu, Bo; Tang, Chaojun; Chen, Jing; Xie, Ningyan; Tang, Huang; Zhu, Xiaoqin; Park, Gun-sik
2018-05-01
It is well known that a suspended monolayer graphene has a weak light absorption efficiency of about 2.3% at normal incidence, which is disadvantageous to some applications in optoelectronic devices. In this work, we will numerically study multiband and broadband absorption enhancement of monolayer graphene over the whole visible spectrum, due to multiple magnetic dipole resonances in metamaterials. The unit cell of the metamaterials is composed of a graphene monolayer sandwiched between four Ag nanodisks with different diameters and a SiO2 spacer on an Ag substrate. The near-field plasmon hybridizations between individual Ag nanodisks and the Ag substrate form four independent magnetic dipole modes, which result into multiband absorption enhancement of monolayer graphene at optical frequencies. When the resonance wavelengths of the magnetic dipole modes are tuned to approach one another by changing the diameters of the Ag nanodisks, a broadband absorption enhancement can be achieved. The position of the absorption band in monolayer graphene can be also controlled by varying the thickness of the SiO2 spacer or the distance between the Ag nanodisks. Our designed graphene light absorber may find some potential applications in optoelectronic devices, such as photodetectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renschler, C.L.
1988-10-17
Photoresist techniques and compositions are provided employing curcumin as an absorptive dye for the purpose of reducing linewidth non-uniformity caused by scattered and reflective light from the substrate-resist interface. The photoresist compositions containing curcumin as the absorptive dye are used in the production of microelectronic circuitry by both single layer and multilayer photoresist techniques. 2 figs.
Carambola optics for recycling of light.
Leutz, Ralf; Fu, Ling; Ries, Harald
2006-04-20
Recycling of light allows the luminance (radiance) emitted by a light source to be increased at the cost of reducing the total luminous flux (radiant power). Recycling of light means returning part of the emitted light to the source, where part of it will escape absorption. An optical design that is suitable for multiple and controlled recycling is described. Carambola optics is named for its resemblance to star fruit. Several pairs of mirrors or prisms redirect light repeatedly onto the source, thus achieving multiple transits of the light through the source. This recycled light exits the carambola in the same phase space as light directly emitted and not recycled.
Smart Nanostructures for Cargo Delivery: Uncaging and Activating by Light.
Karimi, Mahdi; Sahandi Zangabad, Parham; Baghaee-Ravari, Soodeh; Ghazadeh, Mehdi; Mirshekari, Hamid; Hamblin, Michael R
2017-04-05
Nanotechnology has begun to play a remarkable role in various fields of science and technology. In biomedical applications, nanoparticles have opened new horizons, especially for biosensing, targeted delivery of therapeutics, and so forth. Among drug delivery systems (DDSs), smart nanocarriers that respond to specific stimuli in their environment represent a growing field. Nanoplatforms that can be activated by an external application of light can be used for a wide variety of photoactivated therapies, especially light-triggered DDSs, relying on photoisomerization, photo-cross-linking/un-cross-linking, photoreduction, and so forth. In addition, light activation has potential in photodynamic therapy, photothermal therapy, radiotherapy, protected delivery of bioactive moieties, anticancer drug delivery systems, and theranostics (i.e., real-time monitoring and tracking combined with a therapeutic action to different diseases sites and organs). Combinations of these approaches can lead to enhanced and synergistic therapies, employing light as a trigger or for activation. Nonlinear light absorption mechanisms such as two-photon absorption and photon upconversion have been employed in the design of light-responsive DDSs. The integration of a light stimulus into dual/multiresponsive nanocarriers can provide spatiotemporal controlled delivery and release of therapeutic agents, targeted and controlled nanosystems, combined delivery of two or more agents, their on-demand release under specific conditions, and so forth. Overall, light-activated nanomedicines and DDSs are expected to provide more effective therapies against serious diseases such as cancers, inflammation, infections, and cardiovascular disease with reduced side effects and will open new doors toward the treatment of patients worldwide.
Measuring the Photocatalytic Breakdown of Crystal Violet Dye using a Light Emitting Diode Approach
NASA Technical Reports Server (NTRS)
Ryan, Robert E.; Underwood, Lauren W.; O'Neal, Duane; Pagnutti, Mary; Davis, Bruce A.
2009-01-01
A simple method to estimate the photocatalytic reactivity performance of spray-on titanium dioxide coatings for transmissive glass surfaces was developed. This novel technique provides a standardized method to evaluate the efficiency of photocatalytic material systems over a variety of illumination levels. To date, photocatalysis assessments have generally been conducted using mercury black light lamps. Illumination levels for these types of lamps are difficult to vary, consequently limiting their use for assessing material performance under a diverse range of simulated environmental conditions. This new technique uses an ultraviolet (UV) gallium nitride (GaN) light emitting diode (LED) array instead of a traditional black light to initiate and sustain photocatalytic breakdown. This method was tested with a UV-resistant dye (crystal violet) applied to a titanium dioxide coated glass slide. Experimental control is accomplished by applying crystal violet to both titanium dioxide coated slides and uncoated control slides. A slide is illuminated by the UV LED array, at various light levels representative of outdoor and indoor conditions, from the dye side of the slide. To monitor degradation of the dye over time, a temperature-stabilized white light LED, whose emission spectrum overlaps with the dye absorption spectrum, is used to illuminate the opposite side of the slide. Using a spectrometer, the amount of light from the white light LED transmitted through the slide as the dye degrades is monitored as a function of wavelength and time and is subsequently analyzed. In this way, the rate of degradation for photocatalytically coated versus uncoated slide surfaces can be compared. Results demonstrate that the dye absorption decreased much more rapidly on the photocatalytically coated slides than on the control uncoated slides, and that dye degradation is dependent on illumination level. For photocatalytic activity assessment purposes, this experimental configuration and methodology minimizes many external variable effects and enables small changes in absorption to be measured. This research also compares the advantages of this innovative LED light source design over traditional mercury black light systems and non- LED lamp approaches. This novel technology begins to address the growing need for a standard method that can assess the performance of photocatalytic materials before deployment for large scale, real world use.
Sarlikioti, V.; de Visser, P. H. B.; Buck-Sorlin, G. H.; Marcelis, L. F. M.
2011-01-01
Background and Aims Manipulation of plant structure can strongly affect light distribution in the canopy and photosynthesis. The aim of this paper is to find a plant ideotype for optimization of light absorption and canopy photosynthesis. Using a static functional structural plant model (FSPM), a range of different plant architectural characteristics was tested for two different seasons in order to find the optimal architecture with respect to light absorption and photosynthesis. Methods Simulations were performed with an FSPM of a greenhouse-grown tomato crop. Sensitivity analyses were carried out for leaf elevation angle, leaf phyllotaxis, leaflet angle, leaf shape, leaflet arrangement and internode length. From the results of this analysis two possible ideotypes were proposed. Four different vertical light distributions were also tested, while light absorption cumulated over the whole canopy was kept the same. Key Results Photosynthesis was augmented by 6 % in winter and reduced by 7 % in summer, when light absorption in the top part of the canopy was increased by 25 %, while not changing light absorption of the canopy as a whole. The measured plant structure was already optimal with respect to leaf elevation angle, leaflet angle and leaflet arrangement for both light absorption and photosynthesis while phyllotaxis had no effect. Increasing the length : width ratio of leaves by 1·5 or increasing internode length from 7 cm to 12 cm led to an increase of 6–10 % for light absorption and photosynthesis. Conclusions At high light intensities (summer) deeper penetration of light in the canopy improves crop photosynthesis, but not at low light intensities (winter). In particular, internode length and leaf shape affect the vertical distribution of light in the canopy. A new plant ideotype with more spacious canopy architecture due to long internodes and long and narrow leaves led to an increase in crop photosynthesis of up to 10 %. PMID:21865217
Sarlikioti, V; de Visser, P H B; Buck-Sorlin, G H; Marcelis, L F M
2011-10-01
Manipulation of plant structure can strongly affect light distribution in the canopy and photosynthesis. The aim of this paper is to find a plant ideotype for optimization of light absorption and canopy photosynthesis. Using a static functional structural plant model (FSPM), a range of different plant architectural characteristics was tested for two different seasons in order to find the optimal architecture with respect to light absorption and photosynthesis. Simulations were performed with an FSPM of a greenhouse-grown tomato crop. Sensitivity analyses were carried out for leaf elevation angle, leaf phyllotaxis, leaflet angle, leaf shape, leaflet arrangement and internode length. From the results of this analysis two possible ideotypes were proposed. Four different vertical light distributions were also tested, while light absorption cumulated over the whole canopy was kept the same. Photosynthesis was augmented by 6 % in winter and reduced by 7 % in summer, when light absorption in the top part of the canopy was increased by 25 %, while not changing light absorption of the canopy as a whole. The measured plant structure was already optimal with respect to leaf elevation angle, leaflet angle and leaflet arrangement for both light absorption and photosynthesis while phyllotaxis had no effect. Increasing the length : width ratio of leaves by 1·5 or increasing internode length from 7 cm to 12 cm led to an increase of 6-10 % for light absorption and photosynthesis. At high light intensities (summer) deeper penetration of light in the canopy improves crop photosynthesis, but not at low light intensities (winter). In particular, internode length and leaf shape affect the vertical distribution of light in the canopy. A new plant ideotype with more spacious canopy architecture due to long internodes and long and narrow leaves led to an increase in crop photosynthesis of up to 10 %.
Band-engineering of TiO2 as a wide-band gap semiconductor using organic chromophore dyes
NASA Astrophysics Data System (ADS)
Wahyuningsih, S.; Kartini, I.; Ramelan, A. H.; Saputri, L. N. M. Z.; Munawaroh, H.
2017-07-01
Bond-engineering as applied to semiconductor materials refers to the manipulation of the energy bands in order to control charge transfer processes in a device. When the device in question is a photoelectrochemical cell, the charges affected by drift become the focus of the study. The ideal band gap of semiconductors for enhancement of photocatalyst activity can be lowered to match with visible light absorption and the location of conduction Band (CB) should be raised to meet the reducing capacity. Otherwise, by the addition of the chromofor organic dyes, the wide-band gab can be influences by interacation resulting between TiO2 surface and the dyes. We have done the impruvisation wide-band gap of TiO2 by the addition of organic chromophore dye, and the addition of transition metal dopand. The TiO2 morphology influence the light absorption as well as the surface modification. The organic chromophore dye was syntesized by formation complexes compound of Co(PAR)(SiPA)(PAR)= 4-(2-piridylazoresorcinol), SiPA = Silyl propil amine). The result showed that the chromophore groups adsorbed onto TiO2 surface can increase the visible light absorption of wide-band gab semiconductor. Initial absorption of a chromophore will affect light penetration into the material surfaces. The use of photonic material as a solar cell shows this phenomenon clearly from the IPCE (incident photon to current conversion efficiency) measurement data. Organic chromophore dyes of Co(PAR)(SiPA) exhibited the long wavelength absorption character compared to the N719 dye (from Dyesol).
Strong-field two-photon transition by phase shaping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sangkyung; Lim, Jongseok; Ahn, Jaewook
2010-08-15
We demonstrate the ultrafast coherent control of a nonlinear two-photon absorption in a dynamically shifted energy level structure. We use a spectrotemporal laser-pulse shaping that is programed to preserve the resonant absorption condition during the intense laser-field interaction. Experiments carried out in the strong-field regime of two-photon absorption in the ground state of atomic cesium reveal that the analytically obtained offset and curvature of a laser spectrum compensate the effect of both static and dynamic energy shifts of the given light-atom interaction.
Non-destructive plant health sensing using absorption spectroscopy
NASA Technical Reports Server (NTRS)
Bledsoe, Jim; Manukian, Ara; Pearce, Michael; Weiss, Lee
1988-01-01
The sensor group of the 1988 EGM 4001 class, working on NASA's Controlled Ecological Life Support Systems (CELSS) project, investigated many different plant health indicators and the technologies used to test them. The project selected by the group was to measure chlorophyll levels using absorption spectroscopy. The spectrometer measures the amount of chlorophyll in a leaf by measuring the intensity of light of a specific wavelength that is passed through a leaf. The three wavelengths of light being used corresponded to the near-IR absorption peaks of chlorophyll a, chlorophyll b, and chlorophyll-free structures. Experimentation showed that the sensor is indeed measuring levels of chlorophyll a and b and their changes before the human eye can see any changes. The detector clamp causes little damage to the leaf and will give fairly accurate readings on similar locations on a leaf, freeing the clamp from having to remain on the same spot of a leaf for all measurements. External light affects the readings only slightly so that measurements may be taken in light or dark environments. Future designs and experimentation will concentrate on reducing the size of the sensor and adapting it to a wider range of plants.
Investigating the variability in brown carbon light-absorption properties
NASA Astrophysics Data System (ADS)
Saleh, R.; Cheng, Z.; Atwi, K.
2017-12-01
Combustion of biomass fuels contributes a significant portion of brown carbon (BrC), the light-absorbing fraction of organic aerosols. BrC exhibits highly variable light-absorption properties, with imaginary part of the refractive indices (k) reported in the literature varying over two orders of magnitude. This high variability in k is attributed to the chaotic nature of combustion; however, there is a major gap in the fundamental understanding of this variability. To address this gap, we hypothesize that BrC is comprised of black carbon (BC) precursors whose transformation to BC has not seen fruition. Depending on the combustion conditions, these BC precursors exhibit different maturity levels which dictate their light-absorption properties (k). The more mature are the precursors, the more absorptive (or BC-like) they are. Therefore, k of BrC obtained from a certain measurement depends on the specific combustion conditions associated with the measurement, leading to the aforementioned variability in the literature. To test this hypothesis, we performed controlled combustion experiments in which the combustion conditions (temperature and air/fuel ratio) were varied and k was retrieved from real-time multi-wavelength light-absorption measurements at each condition. We used benzene, the inception of which during combustion is the initial critical step leading to BC formation, as a model fuel. By varying the combustion conditions from relatively inefficient (low temperature and/or air/fuel ratio) to relatively efficient (high temperature and/or air/fuel ratio), we isolated BrC components with progressively increasing k, spanning the wide range reported in the literature. We also performed thermodenuder measurements to constrain the volatility of the BrC, as well as laser desorption ionization mass spectrometry analysis to constrain its molecular mass. We found that as the combustion conditions approached the BC-formation threshold, the increase in k was associated with an increase in molecular mass and decrease in volatility. This confirms our hypothesis, since the BC precursors are expected to grow in size and become less volatile as they mature. These results provide the first correlation between the BrC physical, chemical, and consequent light-absorption properties.
Fast photoacoustic imaging system based on 320-element linear transducer array.
Yin, Bangzheng; Xing, Da; Wang, Yi; Zeng, Yaguang; Tan, Yi; Chen, Qun
2004-04-07
A fast photoacoustic (PA) imaging system, based on a 320-transducer linear array, was developed and tested on a tissue phantom. To reconstruct a test tomographic image, 64 time-domain PA signals were acquired from a tissue phantom with embedded light-absorption targets. A signal acquisition was accomplished by utilizing 11 phase-controlled sub-arrays, each consisting of four transducers. The results show that the system can rapidly map the optical absorption of a tissue phantom and effectively detect the embedded light-absorbing target. By utilizing the multi-element linear transducer array and phase-controlled imaging algorithm, we thus can acquire PA tomography more efficiently, compared to other existing technology and algorithms. The methodology and equipment thus provide a rapid and reliable approach to PA imaging that may have potential applications in noninvasive imaging and clinic diagnosis.
NASA Astrophysics Data System (ADS)
Imhan, Khalil Ibraheem; Baharudin, B. T. H. T.; Zakaria, Azmi; Ismail, Mohd Idris Shah B.; Alsabti, Naseer Mahdi Hadi; Ahmad, Ahmad Kamal
2018-02-01
Laser forming is a flexible control process that has a wide spectrum of applications; particularly, laser tube bending. It offers the perfect solution for many industrial fields, such as aerospace, engines, heat exchangers, and air conditioners. A high power pulsed Nd-YAG laser with a maximum average power of 300 W emitting at 1064 nm and fiber-coupled is used to irradiate stainless steel 304 (SS304) tubes of 12.7 mm diameter, 0.6 mm thickness and 70 mm length. Moreover, a motorized rotation stage with a computer controller is employed to hold and rotate the tube. In this paper, an experimental investigation is carried out to improve the laser tube bending process by enhancing the absorption coefficient of the material and the mechanical formability using laser softening heat treatment. The material surface is coated with an oxidization layer; hence, the material absorption of laser light is increased and the temperature rapidly rises. The processing speed is enhanced and the output bending angle is increased to 1.9° with an increment of 70% after the laser softening heat treatment.
Finch, Anthony J; Benson, Jamie M; Donnelly, Patrick E; Torzilli, Peter A
2017-06-01
Objective Many in vivo procedures to repair chondral defects use ultraviolet (UV)-photoinitiated in situ polymerization within the cartilage matrix. Chemical species that absorb UV light might reduce the effectiveness of these procedures by acting as light absorption barriers. This study evaluated whether any of the individual native biochemical components in cartilage and synovial fluid interfered with the absorption of light by common scaffolding photosensitizers. Materials UV-visible spectroscopy was performed on each major component of cartilage in solution, on bovine synovial fluid, and on four photosensitizers, riboflavin, Irgacure 2959, quinine, and riboflavin-5'-phosphate. Molar extinction and absorption coefficients were calculated at wavelengths of maximum absorbance and 365 nm. Intact articular cartilage was also examined. Results The individual major biochemical components of cartilage, Irgacure 2959, and quinine did not exhibit a significant absorption at 365 nm. Riboflavin and riboflavin-5'-phosphate were more effectual light absorbers at 365 nm, compared with the individual native species. Intact cartilage absorbed a significantly greater amount of UV light in comparison with the native species. Conclusion Our results indicate that none of the individual native species in cartilage will interfere with the absorption of UV light at 365 nm by these commonly used photoinitiators. Intact cartilage slices exhibited significant light absorption at 365 nm, while also having distinct absorbance peaks at wavelengths less than 300 nm. Determining the UV absorptive properties of the biomolecules native to articular cartilage and synovial fluid will aid in optimizing scaffolding procedures to ensure sufficient scaffold polymerization at a minimum UV intensity.
Polarization-controlled optimal scatter suppression in transient absorption spectroscopy
Malý, Pavel; Ravensbergen, Janneke; Kennis, John T. M.; van Grondelle, Rienk; Croce, Roberta; Mančal, Tomáš; van Oort, Bart
2017-01-01
Ultrafast transient absorption spectroscopy is a powerful technique to study fast photo-induced processes, such as electron, proton and energy transfer, isomerization and molecular dynamics, in a diverse range of samples, including solid state materials and proteins. Many such experiments suffer from signal distortion by scattered excitation light, in particular close to the excitation (pump) frequency. Scattered light can be effectively suppressed by a polarizer oriented perpendicular to the excitation polarization and positioned behind the sample in the optical path of the probe beam. However, this introduces anisotropic polarization contributions into the recorded signal. We present an approach based on setting specific polarizations of the pump and probe pulses, combined with a polarizer behind the sample. Together, this controls the signal-to-scatter ratio (SSR), while maintaining isotropic signal. We present SSR for the full range of polarizations and analytically derive the optimal configuration at angles of 40.5° between probe and pump and of 66.9° between polarizer and pump polarizations. This improves SSR by (or compared to polarizer parallel to probe). The calculations are validated by transient absorption experiments on the common fluorescent dye Rhodamine B. This approach provides a simple method to considerably improve the SSR in transient absorption spectroscopy. PMID:28262765
Sculpting with light: Light/matter interactions in biocompatible polymers
NASA Astrophysics Data System (ADS)
Applegate, Matthew B.
When light interacts with matter either the light or the material can be changed. This dissertation focuses on light/matter interaction in silk fibroin and its utility for biomedical applications. Silk, a natural biocompatible, biodegradable polymer, has a large 3-photon absorption cross-section which allows modest peak intensity light to cause significant multiphoton absorption. This absorption allows voids to be formed with three dimensional control within soft, transparent silk hydrogels. A theoretical model of the void formation process is developed to allow the size of the voids to be predicted for a range of laser and sample parameters. Arbitrary 3D patterns are created in silk gels that allow cells to penetrate into the bulk of the gel both in vitro and in vivo. To explore how silk can be used to alter light, the creation of step-index optical waveguides, formed by encapsulating a silk film within a silk hydrogel, is described. These waveguides allow light to be delivered to targets through several centimeters of highly scattering biological tissue. Finally, the interaction of light with riboflavin is used to photocrosslink silk to form solid structures, rather than voids. The mechanism of crosslinking to be driven by radicalized tyrosine residues resulting in the formation of dityrosine bonds which lead to the gelation of a liquid silk solution. Riboflavin is a versatile photoinitiator and can be used to crosslink collagen as well as silk, which allows silk to be crosslinked directly to corneal collagen. When applied to the eye, an artificial corneal layer is formed which has the potential to treat various corneal diseases and allow for risk-free laser vision correction. These studies show the versatility of light-based processing of silk for a wide variety of medical applications.
NASA Astrophysics Data System (ADS)
Moiseeva, N.; Churilova, T.; Efimova, T.; Krivenko, O.; Latushkin, A.
2017-11-01
Variability of the bio-optical properties of the Crimean coastal waters in June 2016 has been analyzed. The type of vertical distribution chlorophyll a concentration and phytoplankton light absorption coefficients and spectra shape differed between shallow and deeper water. In the deeper water seasonal stratification divided euphotic zone into layers with different environmental conditions. In the deeper part of the euphotic zone (below the thermocline) phytoplankton absorption spectra had local maximum at 550 nm, which was likely to be associated with high abundance of cyanobacteria (Synechococcus sps.) in the phytoplankton community. The concentration of chlorophyll a specific light absorption coefficient of phytoplankton decreased with depth (especially pronounced in the blue domain of the spectrum). In the shallow water the vertical distributions of all absorption properties were relatively homogeneous due to vertical water mixing. In the shallow water non-algal particles light absorption coefficient and its contribution to total particulate absorption were higher than those in the deeper water. The non-algal particles (NAP) and colored dissolved organic matter (CDOM) light absorption spectra were well described by an exponential function with a slope averaging 0.010 nm-1 (SD = 0.001 nm-1) and 0.022 nm-1 (SD = 0.0060 nm-1), correspondingly. The CDOM absorption at 440 nm and slope coefficient varied significantly across the investigated area, which was possibly associated with the terrestrial influences. The assessment of the contribution of phytoplankton, NAP and CDOM to total light absorption showed that CDOM dominated in the absorption at 440 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mashooq, Kishwar; Talukder, Muhammad Anisuzzaman, E-mail: anis@eee.buet.ac.bd
2016-05-21
Although ultra-thin-film solar cells can be attractive in reducing the cost, they suffer from low absorption as the thickness of the active layer is usually much smaller than the wavelength of incident light. Different nano-photonic techniques, including plasmonic structures, are being explored to increase the light absorption in ultra-thin-film solar cells. More than one layer of active materials with different energy bandgaps can be used in tandem to increase the light absorption as well. However, due to different amount of light absorption in different active layers, photo-generated currents in different active layers will not be the same. The current mismatchmore » between the tandem layers makes them ineffective in increasing the efficiency. In this work, we investigate the light absorption properties of tandem solar cells with two ultra-thin active layers working as two subcells and a metal layer with periodically perforated holes in-between the two subcells. While the metal layer helps to overcome the current mismatch, the periodic holes increase the absorption of incident light by helping extraordinary optical transmission of the incident light from the top to the bottom subcell, and by coupling the incident light to plasmonic and photonic modes within ultra-thin active layers. We extensively study the effects of the geometry of holes in the intermediate metal layer on the light absorption properties of tandem solar cells with ultra-thin active layers. We also study how different metals in the intermediate layer affect the light absorption; how the geometry of holes in the intermediate layer affects the absorption when the active layer materials are changed; and how the intermediate metal layer affects the collection of photo-generated electron-hole pairs at the terminals. We find that in a solar cell with 6,6-phenyl C61-butyric acid methyl ester top subcell and copper indium gallium selenide bottom subcell, if the periodic holes in the metal layer are square or polygon, total absorption remains approximately the same. However, the total absorption suffers significantly if the holes are triangle. The transmission spectra of incident light into the bottom subcell, and hence the absorption, change significantly for square and circle holes if the active materials change to cadmium selenide (CdSe) and cadmium telluride (CdTe) in the top and bottom subcells, respectively. Although the intermediate metal layer may induce electron-hole pair recombination due to surface defects, the short-circuit current density of an ultra-thin plasmonic solar cell with an intermediate metal layer with two-dimensional hole array is >9% of that of a structure without the intermediate metal layer.« less
Carim, Azhar I.; Batara, Nicolas A.; Premkumar, Anjali; ...
2015-11-23
The template-free growth of well ordered, highly anisotropic lamellar structures has been demonstrated during the photoelectrodeposition of Se–Te films, wherein the orientation of the pattern can be directed by orienting the linear polarization of the incident light. This control mechanism was investigated further herein by examining the morphologies of films grown photoelectrochemically using light from two simultaneous sources that had mutually different linear polarizations. Photoelectrochemical growth with light from two nonorthogonally polarized same-wavelength sources generated lamellar morphologies in which the long axes of the lamellae were oriented parallel to the intensity-weighted average polarization orientation. Simulations of light scattering at themore » solution–film interface were consistent with this observation. Computer modeling of these growths using combined full-wave electromagnetic and Monte Carlo growth simulations successfully reproduced the experimental morphologies and quantitatively agreed with the pattern orientations observed experimentally by considering only the fundamental light-material interactions during growth. Deposition with light from two orthogonally polarized same-wavelength as well as different-wavelength sources produced structures that consisted of two intersecting sets of orthogonally oriented lamellae in which the relative heights of the two sets could be varied by adjusting the relative source intensities. Simulations of light absorption were performed in analogous, idealized intersecting lamellar structures and revealed that the lamellae preferentially absorbed light polarized with the electric field vector along their long axes. In conclusion, these data sets cumulatively indicate that anisotropic light scattering and light absorption generated by the light polarization produces the anisotropic morphology and that the resultant morphology is a function of all illumination inputs despite differing polarizations.« less
Marcano, Aristides; Alvarado, Salvador; Meng, Junwei; Caballero, Daniel; Moares, Ernesto Marín; Edziah, Raymond
2014-01-01
We developed a pump-probe photothermal lens spectrophotometer that uses a broadband arc-lamp and a set of interference filters to provide tunable, nearly monochromatic radiation between 370 and 730 nm as the pump light source. This light is focused onto an absorbing sample, generating a photothermal lens of millimeter dimensions. A highly collimated monochromatic probe light from a low-power He-Ne laser interrogates the generated lens, yielding a photothermal signal proportional to the absorption of light. We measure the absorption spectra of scattering dye solutions using the device. We show that the spectra are not affected by the presence of scattering, confirming that the method only measures the absorption of light that results in generation of heat. By comparing the photothermal spectra with the usual absorption spectra determined using commercial transmission spectrophotometers, we estimate the quantum yield of scattering of the sample. We discuss applications of the device for spectroscopic characterization of samples such as blood and gold nanoparticles that exhibit a complex behavior upon interaction with light.
Kuzmenko, Paul J
2013-10-01
An optical system according to one embodiment includes a substrate; and an optical absorption layer coupled to the substrate, wherein the optical absorption layer comprises a layer of diamond-like carbon, wherein the optical absorption layer absorbs at least 50% of mid wave infrared light (3-5 .mu.m wavelength) and at least 50% of long wave infrared light (8-13 .mu.m wavelength). A method for applying an optical absorption layer to an optical system according to another embodiment includes depositing a layer of diamond-like carbon of an optical absorption layer above a substrate using plasma enhanced chemical vapor deposition, wherein the optical absorption layer absorbs at least 50% of mid wave infrared light (3-5 .mu.m wavelength) and at least 50% of long wave infrared light (8-13 .mu.m wavelength). Additional systems and methods are also presented.
Backscatter absorption gas imaging systems and light sources therefore
Kulp, Thomas Jan [Livermore, CA; Kliner, Dahv A. V. [San Ramon, CA; Sommers, Ricky [Oakley, CA; Goers, Uta-Barbara [Campbell, NY; Armstrong, Karla M [Livermore, CA
2006-12-19
The location of gases that are not visible to the unaided human eye can be determined using tuned light sources that spectroscopically probe the gases and cameras that can provide images corresponding to the absorption of the gases. The present invention is a light source for a backscatter absorption gas imaging (BAGI) system, and a light source incorporating the light source, that can be used to remotely detect and produce images of "invisible" gases. The inventive light source has a light producing element, an optical amplifier, and an optical parametric oscillator to generate wavelength tunable light in the IR. By using a multi-mode light source and an amplifier that operates using 915 nm pump sources, the power consumption of the light source is reduced to a level that can be operated by batteries for long periods of time. In addition, the light source is tunable over the absorption bands of many hydrocarbons, making it useful for detecting hazardous gases.
Light absorption cell combining variable path and length pump
Prather, William S.
1993-01-01
A device for use in making spectrophotometric measurements of fluid samples. In particular, the device is a measurement cell containing a movable and a fixed lens with a sample of the fluid therebetween and through which light shines. The cell is connected to a source of light and a spectrophotometer via optic fibers. Movement of the lens varies the path length and also pumps the fluid into and out of the cell. Unidirectional inlet and exit valves cooperate with the movable lens to assure a one-way flow of fluid through the cell. A linear stepper motor controls the movement of the lens and cycles it from a first position closer to the fixed lens and a second position farther from the fixed lens, preferably at least 10 times per minute for a nearly continuous stream of absorption spectrum data.
Omnidirectional light absorption of disordered nano-hole structure inspired from Papilio ulysses.
Wang, Wanlin; Zhang, Wang; Fang, Xiaotian; Huang, Yiqiao; Liu, Qinglei; Bai, Mingwen; Zhang, Di
2014-07-15
Butterflies routinely produce nanostructured surfaces with useful properties. Here, we report a disordered nano-hole structure with ridges inspired by Papilio ulysses that produce omnidirectional light absorption compared with the common ordered structure. The result shows that the omnidirectional light absorption is affected by polarization, the incident angle, and the wavelength. Using the finite-difference time-domain (FDTD) method, the stable omnidirectional light absorption is achieved in the structure inspired from the Papilio ulysses over a wide incident angle range and with various wavelengths. This explains some of the mysteries of the structure of the Papilio ulysses butterfly. These conclusions can guide the design of omnidirectional absorption materials.
Smart Nanostructures for Cargo Delivery: Uncaging and Activating by Light
Karimi, Mahdi; Zangabad, Parham Sahandi; Baghaee-Ravari, Soodeh; Ghazadeh, Mehdi; Mirshekari, Hamid; Hamblin, Michael R.
2017-01-01
Nanotechnology has begun to play a remarkable role in various fields of science and technology. In biomedical applications, nanoparticles have opened new horizons, especially for biosensing, targeted delivery of therapeutics, and so forth. Among drug delivery systems (DDSs), smart nanocarriers that respond to specific stimuli in their environment represent a growing field. Nanoplatforms that can be activated by an external application of light can be used for a wide variety of photoactivated therapies, especially light-triggered DDSs, relying on photoisomerization, photo-cross-linking/un-cross-linking, photoreduction, and so forth. In addition, light activation has potential in photodynamic therapy, photothermal therapy, radiotherapy, protected delivery of bioactive moieties, anticancer drug delivery systems, and theranostics (i.e., real-time monitoring and tracking combined with a therapeutic action to different diseases sites and organs). Combinations of these approaches can lead to enhanced and synergistic therapies, employing light as a trigger or for activation. Nonlinear light absorption mechanisms such as two-photon absorption and photon upconversion have been employed in the design of light-responsive DDSs. The integration of a light stimulus into dual/multiresponsive nanocarriers can provide spatiotemporal controlled delivery and release of therapeutic agents, targeted and controlled nanosystems, combined delivery of two or more agents, their on-demand release under specific conditions, and so forth. Overall, light-activated nanomedicines and DDSs are expected to provide more effective therapies against serious diseases such as cancers, inflammation, infections, and cardiovascular disease with reduced side effects and will open new doors toward the treatment of patients worldwide. PMID:28192672
Biological optimization systems for enhancing photosynthetic efficiency and methods of use
Hunt, Ryan W.; Chinnasamy, Senthil; Das, Keshav C.; de Mattos, Erico Rolim
2012-11-06
Biological optimization systems for enhancing photosynthetic efficiency and methods of use. Specifically, methods for enhancing photosynthetic efficiency including applying pulsed light to a photosynthetic organism, using a chlorophyll fluorescence feedback control system to determine one or more photosynthetic efficiency parameters, and adjusting one or more of the photosynthetic efficiency parameters to drive the photosynthesis by the delivery of an amount of light to optimize light absorption of the photosynthetic organism while providing enough dark time between light pulses to prevent oversaturation of the chlorophyll reaction centers are disclosed.
LED Systems Target Plant Growth
NASA Technical Reports Server (NTRS)
2010-01-01
To help develop technologies for growing edible biomass (food crops) in space, Kennedy Space Center partnered with Orbital Technologies Corporation (ORBITEC), of Madison, Wisconsin, through the Small Business Innovation Research (SBIR) program. One result of this research was the High Efficiency Lighting with Integrated Adaptive Control (HELIAC) system, components of which have been incorporated into a variety of agricultural greenhouse and consumer aquarium lighting features. The new lighting systems can be adapted to a specific plant species during a specific growth stage, allowing maximum efficiency in light absorption by all available photosynthetic tissues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Youwen; Kitamura, Kenji; Takekawa, Shunji
2005-04-01
The steady-state light-induced absorption and the temporal relaxation behavior under illumination of cw ultraviolet light in Mn-doped near-stoichiometric LiNbO{sub 3} with different crystal compositions are investigated. The ultraviolet-light-induced absorption has been assigned to small polarons Nb{sub Li}{sup 4+} by measuring the absorption spectra at room temperature. The dependences of relaxation behaviors (time constant and stretching factor) of light-induced absorption on various illumination conditions (intensity, polarization) and temperature are presented, which are very different from those observed in Fe-doped LiNbO{sub 3} illuminated with highly intense light pulse, though the temporal relaxation follows the same stretched-exponential decay behavior in both cases. Themore » results are explained reasonably by using the model of distance-dependent electron transition probabilities between localized deep traps and small polarons without any additional assumptions, and discussed to tailor doped near-stoichiometric LiNbO{sub 3} crystals for two-color holographic recording with cw laser light.« less
Photovoltaic device with increased light absorption and method for its manufacture
Glatfelter, Troy; Vogeli, Craig; Call, Jon; Hammond, Ginger
1993-07-20
A photovoltaic cell having a light-directing optical element integrally formed in an encapsulant layer thereof. The optical element redirects light to increase the internal absorption of light incident on the photovoltaic device.
Schmidt, Werner
2006-12-01
Gravity-induced absorption changes as experienced during a series of parabolas on the Airbus 300 Zero-G have been measured previously pointwise on the basis of dual-wavelength spectroscopy. Only the two wavelengths of 460 and 665 nm as generated by light-emitting diodes have been utilised during our first two parabolic-flight campaigns. In order to gain complete spectral information throughout the wavelength range from 400 to 900 nm, a miniaturized rapid scan spectrophotometer was designed. The difference of spectra taken at 0 g and 1.8 g presents the first gravity-induced absorption change spectrum measured on wild-type Phycomyces blakesleeanus sporangiophores, exhibiting a broad positive hump in the visible range and negative values in the near infrared with an isosbestic point near 735 nm. The control experiment performed with the stiff mutant A909 of Phycomyces blakesleeanus does not show this structure. These results are in agreement with those obtained with an array spectrophotometer. In analogy to the more thoroughly understood so-called light-induced absorption changes, we assume that gravity-induced absorption changes reflect redox changes of electron transport components such as flavins and cytochromes localised within the plasma membrane.
Assessment of the actual light dose in photodynamic therapy.
Schaberle, Fabio A
2018-06-09
Photodynamic therapy (PDT) initiates with the absorption of light, which depends on the spectral overlap between the light source emission and the photosensitizer absorption, resulting in the number of photons absorbed, the key parameter starting PDT processes. Most papers report light doses regardless if the light is only partially absorbed or shifted relatively to the absorption peak, misleading the actual light dose value and not allowing quantitative comparisons between photosensitizers and light sources. In this manuscript a method is presented to calculate the actual light dose delivered by any light source for a given photosensitizer. This method allows comparing light doses delivered for any combination of light source (broad or narrow band or daylight) and photosensitizer. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Olson, Michael R.
The optical properties of carbonaceous aerosols were investigated to understand the impact source emissions and ambient particulate matter (PM) have on atmospheric radiative forcing. Black carbon (BC) is a strong absorber of visible light and contributes highly to atmospheric radiative forcing, therefore it is important to link BC properties to combustion emission sources. Brown carbon (BrC) is poorly understood and may be an important contributor to both positive and negative radiative forcing. The research investigates these primary knowledge gaps. The optical properties of carbonaceous aerosols were investigated to understand the impact source emissions and ambient particulate matter (PM) have on atmospheric radiative forcing. Black carbon (BC) is a strong absorber of visible light and contributes highly to atmospheric radiative forcing, therefore it is important to link BC properties to combustion emission sources. Brown carbon (BrC) is poorly understood and may be an important contributor to both positive and negative radiative forcing. The research investigates these primary knowledge gaps. Multiple methods were developed and applied to quantify the mass absorption cross-section (MAC) at multiple wavelengths of source and ambient samples. The MAC of BC was determined to be approximately 7.5 m2g-1 at 520nm. However, the MAC was highly variable with OC fraction and wavelength. The BrC MAC was similar for all sources, with the highest absorption in the UV at 370nm; the MAC quickly decreases at larger wavelengths. In the UV, the light absorption by BrC could exceed BC contribution by over 100 times, but only when the OC fraction is large (>90%) as compared to the total carbon. BrC was investigated by measuring the light absorption of solvent extracted fractions in water, dichloromethane, and methanol. Source emissions exhibited greater light absorption in methanol extractions as compared to water and DCM extracts. The BrC MAC was 2.4 to 3.7 m2g-1 at 370nm in methanol. Ambient samples showed similar MACs for the water and methanol extracts. Dichloromethane extracts did not have a significant light absorption characteristics for ambient samples. BrC and BC were measured in Beijing, China. Both were reduced significantly when restrictive air pollution controls were put in place. The industrial regions south and east of Beijing were the highest contributors to ambient BrC and BC. The controls reduced BrC more than BC as compared to observations during the regions heating period. Using the color characteristics of ambient PM, a model was developed to estimate elemental and organic carbon (EC/OC). The method will allow fast and cost effective quantification of PM composition in combination with large climate and health studies, especially in the developing world.
Spatial and directional control of self-assembled wrinkle patterns by UV light absorption
NASA Astrophysics Data System (ADS)
Kortz, C.; Oesterschulze, E.
2017-12-01
Wrinkle formation on surfaces is a phenomenon that is observed in layered systems with a compressed elastic thin capping layer residing on a viscoelastic film. So far, the properties of the viscoelastic material could only be changed replacing it by another material. Here, we propose to use a photosensitive material whose viscoelastic properties, Young's modulus, and glass transition temperature can easily be adjusted by the absorption of UV light. Employing UV lithography masks during the exposure, we gain additionally spatial and directional control of the self-assembled wrinkle pattern formation that relies on a spinodal decomposition process. Inspired by the results on surface wrinkling and its dependence on the intrinsic stress, we also derive a method to avoid wrinkling locally by tailoring the mechanical stress distribution in the layered system choosing UV masks with convex patterns. This is of particular interest in technical applications where the buckling of surfaces is undesirable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Chen; Gyawali, Madhu; Zaveri, Rahul A.
2013-10-25
It is well known that light absorption from dust and black carbon aerosols has a warming effect on climate while light scattering from sulfate, nitrate, and sea salt aerosols has a cooling effect. However, there are large uncertainties associated with light absorption and scattering by different types of organic aerosols, especially in the near-UV and UV spectral regions. In this paper, we present the results from a systematic laboratory study focused on measuring light absorption by secondary organic aerosols (SOAs) generated from dark α-pinene + O 3 and α-pinene + NO x + O 3 systems in the presence ofmore » neutral and acidic sulfate seed aerosols. Light absorption was monitored using photoacoustic spectrometers at four different wavelengths: 355, 405, 532, and 870 nm. Significant light absorption at 355 and 405 nm was observed for the SOA formed from α-pinene + O 3 + NO 3 system only in the presence of highly acidic sulfate seed aerosols under dry conditions. In contrast, no absorption was observed when the relative humidity was elevated to greater than 27% or in the presence of neutral sulfate seed aerosols. Organic nitrates in the SOA formed in the presence of neutral sulfate seed aerosols were found to be nonabsorbing, while the light-absorbing compounds are speculated to be aldol condensation oligomers with nitroxy organosulfate groups that are formed in highly acidic sulfate aerosols. Finally and overall, these results suggest that dark α-pinene + O 3 and α-pinene + NO x + O 3 systems do not form light-absorbing SOA under typical atmospheric conditions.« less
Niedzwiedzki, Dariusz M; Bina, David; Picken, Nichola; Honkanen, Suvi; Blankenship, Robert E; Holten, Dewey; Cogdell, Richard J
2012-09-01
Two spectral forms of the peripheral light-harvesting complex (LH2) from the purple sulfur photosynthetic bacterium Allochromatium vinosum were purified and their photophysical properties characterized. The complexes contain bacteriochlorophyll a (BChl a) and multiple species of carotenoids. The composition of carotenoids depends on the light conditions applied during growth of the cultures. In addition, LH2 grown under high light has a noticeable split of the B800 absorption band. The influence of the change of carotenoid distribution as well as the spectral change of the excitonic absorption of the bacteriochlorophylls on the light-harvesting ability was studied using steady-state absorption, fluorescence and femtosecond time-resolved absorption at 77K. The results demonstrate that the change of the distribution of the carotenoids when cells were grown at low light adapts the absorptive properties of the complex to the light conditions and maintains maximum photon-capture performance. In addition, an explanation for the origin of the enigmatic split of the B800 absorption band is provided. This spectral splitting is also observed in LH2 complexes from other photosynthetic sulfur purple bacterial species. According to results obtained from transient absorption spectroscopy, the B800 band split originates from two spectral forms of the associated BChl a monomeric molecules bound within the same complex. Copyright © 2012 Elsevier B.V. All rights reserved.
Continuous light absorption photometer for long-term studies
NASA Astrophysics Data System (ADS)
Ogren, John A.; Wendell, Jim; Andrews, Elisabeth; Sheridan, Patrick J.
2017-12-01
A new photometer is described for continuous determination of the aerosol light absorption coefficient, optimized for long-term studies of the climate-forcing properties of aerosols. Measurements of the light attenuation coefficient are made at blue, green, and red wavelengths, with a detection limit of 0.02 Mm-1 and a precision of 4 % for hourly averages. The uncertainty of the light absorption coefficient is primarily determined by the uncertainty of the correction scheme commonly used to convert the measured light attenuation to light absorption coefficient and ranges from about 20 % at sites with high loadings of strongly absorbing aerosols up to 100 % or more at sites with low loadings of weakly absorbing aerosols. Much lower uncertainties (ca. 40 %) for the latter case can be achieved with an advanced correction scheme.
MoS2 monolayers on nanocavities: enhancement in light-matter interaction
NASA Astrophysics Data System (ADS)
Janisch, Corey; Song, Haomin; Zhou, Chanjing; Lin, Zhong; Elías, Ana Laura; Ji, Dengxin; Terrones, Mauricio; Gan, Qiaoqiang; Liu, Zhiwen
2016-06-01
Two-dimensional (2D) atomic crystals and van der Waals heterostructures constitute an emerging platform for developing new functional ultra-thin electronic and optoelectronic materials for novel energy-efficient devices. However, in most thin-film optical applications, there is a long-existing trade-off between the effectiveness of light-matter interactions and the thickness of semiconductor materials, especially when the materials are scaled down to atom thick dimensions. Consequently, enhancement strategies can introduce significant advances to these atomically thick materials and devices. Here we demonstrate enhanced absorption and photoluminescence generation from MoS2 monolayers coupled with a planar nanocavity. This nanocavity consists of an alumina nanolayer spacer sandwiched between monolayer MoS2 and an aluminum reflector, and can strongly enhance the light-matter interaction within the MoS2, increasing the exclusive absorption of monolayer MoS2 to nearly 70% at a wavelength of 450 nm. The nanocavity also modifies the spontaneous emission rate, providing an additional design freedom to control the interaction between light and 2D materials.
Pound--Drever--Hall error signals for the length control of three-port grating coupled cavities
NASA Astrophysics Data System (ADS)
Britzger, Michael; Friedrich, Daniel; Kroker, Stefanie; Brückner, Frank; Burmeister, Oliver; Kley, Ernst-Bernhard; Tünnermann, Andreas; Danzmann, Karsten; Schnabel, Roman
2011-08-01
Gratings enable light coupling into an optical cavity without transmission through any substrate. This concept reduces light absorption and substrate heating and was suggested for light coupling into the arm cavities of future gravitational wave detectors. One particularly interesting approach is based on all-reflective gratings with low diffraction efficiencies and three diffraction orders (three ports). However, it was discovered that, generally, three-port grating coupled cavities show an asymmetric resonance profile that results in asymmetric and low quality Pound--Drever--Hall error signals for cavity length control. We experimentally demonstrate that this problem is solved by the detection of light at both reflection ports of the cavity and the postprocessing of the two demodulated electronic signals.
Nanoimprint-Transfer-Patterned Solids Enhance Light Absorption in Colloidal Quantum Dot Solar Cells.
Kim, Younghoon; Bicanic, Kristopher; Tan, Hairen; Ouellette, Olivier; Sutherland, Brandon R; García de Arquer, F Pelayo; Jo, Jea Woong; Liu, Mengxia; Sun, Bin; Liu, Min; Hoogland, Sjoerd; Sargent, Edward H
2017-04-12
Colloidal quantum dot (CQD) materials are of interest in thin-film solar cells due to their size-tunable bandgap and low-cost solution-processing. However, CQD solar cells suffer from inefficient charge extraction over the film thicknesses required for complete absorption of solar light. Here we show a new strategy to enhance light absorption in CQD solar cells by nanostructuring the CQD film itself at the back interface. We use two-dimensional finite-difference time-domain (FDTD) simulations to study quantitatively the light absorption enhancement in nanostructured back interfaces in CQD solar cells. We implement this experimentally by demonstrating a nanoimprint-transfer-patterning (NTP) process for the fabrication of nanostructured CQD solids with highly ordered patterns. We show that this approach enables a boost in the power conversion efficiency in CQD solar cells primarily due to an increase in short-circuit current density as a result of enhanced absorption through light-trapping.
Perfect absorption in nanotextured thin films via Anderson-localized photon modes
NASA Astrophysics Data System (ADS)
Aeschlimann, Martin; Brixner, Tobias; Differt, Dominik; Heinzmann, Ulrich; Hensen, Matthias; Kramer, Christian; Lükermann, Florian; Melchior, Pascal; Pfeiffer, Walter; Piecuch, Martin; Schneider, Christian; Stiebig, Helmut; Strüber, Christian; Thielen, Philip
2015-10-01
The enhancement of light absorption in absorber layers is crucial in a number of applications, including photovoltaics and thermoelectrics. The efficient use of natural resources and physical constraints such as limited charge extraction in photovoltaic devices require thin but efficient absorbers. Among the many different strategies used, light diffraction and light localization at randomly nanotextured interfaces have been proposed to improve absorption. Although already exploited in commercial devices, the enhancement mechanism for devices with nanotextured interfaces is still subject to debate. Using coherent two-dimensional nanoscopy and coherent light scattering, we demonstrate the existence of localized photonic states in nanotextured amorphous silicon layers as used in commercial thin-film solar cells. Resonant absorption in these states accounts for the enhanced absorption in the long-wavelength cutoff region. Our observations establish that Anderson localization—that is, strong localization—is a highly efficient resonant absorption enhancement mechanism offering interesting opportunities for the design of efficient future absorber layers.
Simple route to (NH4)xWO3 nanorods for near infrared absorption
NASA Astrophysics Data System (ADS)
Guo, Chongshen; Yin, Shu; Dong, Qiang; Sato, Tsugio
2012-05-01
Described here is how to synthesize one-dimensional ammonium tungsten bronze ((NH4)xWO3) by a facile solvothermal approach in which ethylene glycol and acetic acid were employed as solvents and ammonium paratungstate was used as a starting material, as well as how to develop the near infrared absorption properties of (NH4)xWO3 nanorods for application as a solar light control filter. The as-obtained product was characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetry (TG), atomic force microscope (AFM) and UV-Vis-NIR spectra. The SEM and TEM images clearly revealed that the obtained sample possessed rod/fiber-like morphologies with diameters around 120 nm. As determined by UV-Vis-NIR optical measurement, the thin film consisted of (NH4)xWO3 nanoparticles, which can selectively transmit most visible lights, but strongly absorb the near-infrared (NIR) lights and ultraviolet rays. These interesting optical properties make the (NH4)xWO3 nanorods suitable for the solar control windows.Described here is how to synthesize one-dimensional ammonium tungsten bronze ((NH4)xWO3) by a facile solvothermal approach in which ethylene glycol and acetic acid were employed as solvents and ammonium paratungstate was used as a starting material, as well as how to develop the near infrared absorption properties of (NH4)xWO3 nanorods for application as a solar light control filter. The as-obtained product was characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetry (TG), atomic force microscope (AFM) and UV-Vis-NIR spectra. The SEM and TEM images clearly revealed that the obtained sample possessed rod/fiber-like morphologies with diameters around 120 nm. As determined by UV-Vis-NIR optical measurement, the thin film consisted of (NH4)xWO3 nanoparticles, which can selectively transmit most visible lights, but strongly absorb the near-infrared (NIR) lights and ultraviolet rays. These interesting optical properties make the (NH4)xWO3 nanorods suitable for the solar control windows. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30612c
Yeung, Edward S.; Gong, Xiaoyi
2004-09-07
The present invention provides a method of analyzing multiple samples simultaneously by absorption detection. The method comprises: (i) providing a planar array of multiple containers, each of which contains a sample comprising at least one absorbing species, (ii) irradiating the planar array of multiple containers with a light source and (iii) detecting absorption of light with a detetion means that is in line with the light source at a distance of at leaat about 10 times a cross-sectional distance of a container in the planar array of multiple containers. The absorption of light by a sample indicates the presence of an absorbing species in it. The method can further comprise: (iv) measuring the amount of absorption of light detected in (iii) indicating the amount of the absorbing species in the sample. Also provided by the present invention is a system for use in the abov metho.The system comprises; (i) a light source comrnpising or consisting essentially of at leaat one wavelength of light, the absorption of which is to be detected, (ii) a planar array of multiple containers, and (iii) a detection means that is in line with the light source and is positioned in line with and parallel to the planar array of multiple contiainers at a distance of at least about 10 times a cross-sectional distance of a container.
NASA Technical Reports Server (NTRS)
Brown, William (Inventor); Yu, Zhenhong (Inventor); Kebabian, Paul L. (Inventor); Assif, James (Inventor)
2017-01-01
In one embodiment, a photoacoustic effect measurement instrument for measuring a species (e.g., a species of PM) in a gas employs a pair of differential acoustic cells including a sample cell that receives sample gas including the species, and a reference cell that receives a filtered version of the sample gas from which the species has been substantially removed. An excitation light source provides an amplitude modulated beam to each of the acoustic cells. An array of multiple microphones is mounted to each of the differential acoustic cells, and measures an acoustic wave generated in the respective acoustic cell by absorption of light by sample gas therein to produce a respective signal. The microphones are isolated from sample gas internal to the acoustic cell by a film. A preamplifier determines a differential signal and a controller calculates concentration of the species based on the differential signal.
Light absorption cell combining variable path and length pump
Prather, W.S.
1993-12-07
A device is described for use in making spectrophotometric measurements of fluid samples. In particular, the device is a measurement cell containing a movable and a fixed lens with a sample of the fluid there between and through which light shines. The cell is connected to a source of light and a spectrophotometer via optic fibers. Movement of the lens varies the path length and also pumps the fluid into and out of the cell. Unidirectional inlet and exit valves cooperate with the movable lens to assure a one-way flow of fluid through the cell. A linear stepper motor controls the movement of the lens and cycles it from a first position closer to the fixed lens and a second position farther from the fixed lens, preferably at least 10 times per minute for a nearly continuous stream of absorption spectrum data. 2 figures.
Skogen, Erik J.
2013-01-29
An optical set-reset (SR) latch is formed from a first electroabsorption modulator (EAM), a second EAM and a waveguide photodetector (PD) which are arranged in an optical and electrical feedback loop which controls the transmission of light through the first EAM to latch the first EAM in a light-transmissive state in response to a Set light input. A second waveguide PD controls the transmission of light through the second EAM and is used to switch the first EAM to a light-absorptive state in response to a Reset light input provided to the second waveguide PD. The optical SR latch, which may be formed on a III-V compound semiconductor substrate (e.g. an InP or a GaAs substrate) as a photonic integrated circuit (PIC), stores a bit of optical information and has an optical output for the logic state of that bit of information.
NASA Astrophysics Data System (ADS)
Zand, Iman; Dalir, Hamed; Chen, Ray T.; Dowling, Jonathan P.
2018-03-01
We investigate one-dimensional aperiodic multilayer microstructures in order to achieve near-total absorptions at preselected wavelengths in a graphene monolayer. The proposed structures are designed using a genetic optimization algorithm coupled to a transfer matrix code. Coupled-mode-theory analysis, consistent with transfer matrix method results, indicates the existence of a critical coupling in the graphene monolayer for perfect absorptions. Our findings show that the near-total-absorption peaks are highly tunable and can be controlled simultaneously or independently in a wide range of wavelengths in the near-infrared and visible ranges. The proposed approach is metal-free, does not require surface texturing or patterning, and can be also applied for other two-dimensional materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thappily, Praveen, E-mail: pravvmon@gmail.com, E-mail: shiiuvenus@gmail.com; Shiju, K., E-mail: pravvmon@gmail.com, E-mail: shiiuvenus@gmail.com
Green synthesis of silver nanoparticles was achieved by simple visible light irradiation using aloe barbadensis leaf extract as reducing agent. UV-Vis spectroscopic analysis was used for confirmation of the successful formation of nanoparticles. Investigated the effect of light irradiation time on the light absorption of the nanoparticles. It is observed that upto 25 minutes of light irradiation, the absorption is linearly increasing with time and after that it becomes saturated. Finally, theoretically fitted the time-absorption graph and modeled a relation between them with the help of simulation software.
Universal Parameterization of Absorption Cross Sections
NASA Technical Reports Server (NTRS)
Tripathi, R. K.; Cucinotta, Francis A.; Wilson, John W.
1999-01-01
Our prior nuclear absorption cross sections model is extended for light systems (A less than or equal to 4) where either both projectile and target are light particles or one is a light particle and the other is a medium or heavy nucleus. The agreement with experiment is excellent for these cases as well. Present work in combination with our original model provides a comprehensive picture of absorption cross sections for light, medium, and heavy systems, a very valuable input for radiation protection studies.
NASA Astrophysics Data System (ADS)
Feng, Guang; Wu, Botao; Qayyum Khan, Abdul; Zeng, Heping
2018-05-01
Reduced titanium dioxide (TiO2‑x) due to its extraordinary visible light absorption has been widely investigated in photodegradation and water splitting nowadays. However, conventional routes to synthesize reduced TiO2 usually demand multiple preparation steps, harsh controlled conditions or expensive facilities. Here we developed a single-step in situ approach to prepare the gray TiO2‑x nanoparticles (sub-10 nm) effectively by the glow discharge plasma electrolysis (GDPE) under atmospheric pressure. The co-existence of self-doped oxygen vacancies and Ti3+ in the generated TiO2‑x nanoparticles is demonstrated by electron paramagnetic resonance (EPR). The tunable ratio of bulk/surface defect can be realized by controlling the glow discharge power directly. It should be noticed that Ti3+ in the synthesized TiO2‑x are quite stable in ambient air. The UV–vis spectra of gray TiO2‑x show an enhanced visible light absorption, which leads to high visible-light photocatalytic activity. Moreover, the as-prepared TiO2‑x after 6 months storage still shows excellent stability during photocatalytic reactions. Owing to its simplicity and effectivity, this preparation method with GDPE should provide a large-scale production for TiO2‑x with high photoactivity.
Surface tension mediated conversion of light to work
Okawa, David; Pastine, Stefan J; Zettl, Alexander K; Frechet, Jean M. J
2014-12-02
Disclosed are a method and apparatus for converting light energy to mechanical energy by modification of surface tension on a supporting fluid. The apparatus comprises an object which may be formed as a composite object comprising a support matrix and a highly light absorptive material. The support matrix may comprise a silicon polymer. The highly light absorptive material may comprise vertically aligned carbon nanotubes (VANTs) embedded in the support matrix. The composite object is supported on a fluid. By exposing the highly light absorptive material to light, heat is generated, which changes the surface tension of the composite object, causing it to move physically within the fluid.
Accurate universal parameterization of absorption cross sections III--light systems
NASA Technical Reports Server (NTRS)
Tripathi, R. K.; Cucinotta, F. A.; Wilson, J. W.
1999-01-01
Our prior nuclear absorption cross sections model [R.K. Tripathi, F.A. Cucinotta, J.W. Wilson, Nucl. Instr. and Meth. B 117 (1996) 347; R.K. Tripathi, J.W. Wilson, F.A. Cucinotta, Nucl. Instr. and Meth. B 129 (1997) 11] is extended for light systems (A < or = 4) where either both projectile and target are light particles or one is light particle and the other is medium or heavy nucleus. The agreement with experiment is excellent for these cases as well. Present work in combination with our original model provides a comprehensive picture of absorption cross sections for light, medium and heavy systems. As a result the extended model can reliably be used in all studies where there is a need for absorption cross sections.
Evolution of opto-electronic properties during film formation of complex semiconductors
NASA Astrophysics Data System (ADS)
Heinemann, M. D.; Mainz, R.; Österle, F.; Rodriguez-Alvarez, H.; Greiner, D.; Kaufmann, C. A.; Unold, T.
2017-04-01
Optical and electrical properties of complex semiconducting alloys like Cu(In,Ga)Se2 (CIGS) are strongly influenced by the reaction pathways occurring during their deposition process. This makes it desirable to observe and control these properties in real-time during the deposition. Here we show for the first time the evolution of the band gap and the sub-band-gap defect absorption of CIGS thin film as well as surface roughness during a three-stage co-evaporation process by means of an optical analysis technique, based on white light reflectometry (WLR). By simultaneously recording structural information with in-situ energy dispersive X-ray diffraction and X-ray fluorescence we can directly correlate the evolution of opto-electronic material parameters with the structural properties of the film during growth. We find that the surface roughness and the sub-gap light absorption can be correlated with the phase evolution during the transformation from (In,Ga)2Se3 to Cu(In,Ga)Se2 by the incorporation of Cu into the film. Sub-bandgap light absorption is found to be influenced by the Cu-saturated growth phase and is lowered close to the points of stoichiometry, allowing for an advanced process design.
Scattering and absorption control in biocompatible fibers towards equalized photobiomodulation.
George, J; Haghshenas, H; d'Hemecourt, D; Zhu, W; Zhang, L; Sorger, V
2017-03-01
Transparent tissue scaffolds enable illumination of growing tissue to accelerate cell proliferation and improve other cell functions through photobiomodulation. The biphasic dose response of cells exposed to photobiomodulating light dictates that the illumination be evenly distributed across the scaffold such that the cells are neither under nor over exposed to light. However, equalized illumination has not been sufficiently addressed. Here we analyze and experimentally demonstrate spatially equalizing illumination by three methods, namely: engineered surface scattering, reflection by a gold mirror, and traveling-waves in a ring mesh. Our results show that nearly equalized illumination is achievable by controlling the light scattering-to-loss ratio. This demonstration furthers opportunities for dose-optimized photobiomodulation in tissue regeneration.
Yang, Yongqiang; Yin, Li-Chang; Gong, Yue; Niu, Ping; Wang, Jian-Qiang; Gu, Lin; Chen, Xingqiu; Liu, Gang; Wang, Lianzhou; Cheng, Hui-Ming
2018-02-01
Increasing visible light absorption of classic wide-bandgap photocatalysts like TiO 2 has long been pursued in order to promote solar energy conversion. Modulating the composition and/or stoichiometry of these photocatalysts is essential to narrow their bandgap for a strong visible-light absorption band. However, the bands obtained so far normally suffer from a low absorbance and/or narrow range. Herein, in contrast to the common tail-like absorption band in hydrogen-free oxygen-deficient TiO 2 , an unusual strong absorption band spanning the full spectrum of visible light is achieved in anatase TiO 2 by intentionally introducing atomic hydrogen-mediated oxygen vacancies. Combining experimental characterizations with theoretical calculations reveals the excitation of a new subvalence band associated with atomic hydrogen filled oxygen vacancies as the origin of such band, which subsequently leads to active photo-electrochemical water oxidation under visible light. These findings could provide a powerful way of tailoring wide-bandgap semiconductors to fully capture solar light. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermal tuning of infrared resonant absorbers based on hybrid gold-VO{sub 2} nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocer, Hasan; Department of Electrical Engineering, Turkish Military Academy, 06654 Ankara; Butun, Serkan
2015-04-20
Resonant absorbers based on plasmonic materials, metamaterials, and thin films enable spectrally selective absorption filters, where absorption is maximized at the resonance wavelength. By controlling the geometrical parameters of nano/microstructures and materials' refractive indices, resonant absorbers are designed to operate at wide range of wavelengths for applications including absorption filters, thermal emitters, thermophotovoltaic devices, and sensors. However, once resonant absorbers are fabricated, it is rather challenging to control and tune the spectral absorption response. Here, we propose and demonstrate thermally tunable infrared resonant absorbers using hybrid gold-vanadium dioxide (VO{sub 2}) nanostructure arrays. Absorption intensity is tuned from 90% to 20%more » and 96% to 32% using hybrid gold-VO{sub 2} nanowire and nanodisc arrays, respectively, by heating up the absorbers above the phase transition temperature of VO{sub 2} (68 °C). Phase change materials such as VO{sub 2} deliver useful means of altering optical properties as a function of temperature. Absorbers with tunable spectral response can find applications in sensor and detector applications, in which external stimulus such as heat, electrical signal, or light results in a change in the absorption spectrum and intensity.« less
NASA Astrophysics Data System (ADS)
Chu, J. E.
2016-12-01
Despite growing evidence of light-absorbing organic aerosols (OAs), OA light absorption has been poorly understood due to difficulties in aerosol light absorption measurements. In this study, we developed an empirical method to quantify OA single scattering albedo (SSA), the ratio of light scattering to extinction, using ground-based Aerosol Robotic Network (AERONET) observation. Our method includes partitioning fine-mode aerosol optical depth (fAOD) to individual aerosol's optical depth (AOD), separating black carbon and OA absorption aerosol optical depths, and finally binding OA SSA and sulfate+nitrate AOD. Our best estimate of OA SSA over tropical biomass burning region is 0.91 at 550nm with a range of 0.82-0.93. It implies the common OA SSA values of 0.96-1.0 in aerosol CTMs and GCMs significantly underrepresent OA light absorption. Model experiments with prescribed OA SSA showed that the enhanced absorption of solar radiation due to light absorbing OA yields global mean radiative forcing is +0.09 Wm-2 at the TOA, +0.21 Wm-2 at the atmosphere, and -0.12 Wm-2 at the surface. Compared to the previous assessment of OA radiative forcing reported in AeroCom II project, our result indicate that OA light absorption causes TOA radiative forcing by OA to change from negative (i.e., cooling effect) to positive (warming effect).
During air cool process aerosol absorption detection with photothermal interferometry
NASA Astrophysics Data System (ADS)
Li, Baosheng; Xu, Limei; Huang, Junling; Ma, Fei; Wang, Yicheng; Li, Zhengqiang
2014-11-01
This paper studies the basic principle of laser photothermal interferometry method of aerosol particles absorption coefficient. The photothermal interferometry method with higher accuracy and lower uncertainty can directly measure the absorption coefficient of atmospheric aerosols and not be affected by scattered light. With Jones matrix expression, the math expression of a special polarization interferometer is described. This paper using folded Jamin interferometer, which overcomes the influence of vibration on measuring system. Interference come from light polarization beam with two orthogonal and then combine to one beam, finally aerosol absorption induced refractive index changes can be gotten with four beam of phase orthogonal light. These kinds of styles really improve the stability of system and resolution of the system. Four-channel detections interact with interference fringes, to reduce the light intensity `zero drift' effect on the system. In the laboratory, this device typical aerosol absorption index, it shows that the result completely agrees with actual value. After heated by laser, cool process of air also show the process of aerosol absorption. This kind of instrument will be used to monitor ambient aerosol absorption and suspended particulate matter chemical component. Keywords: Aerosol absorption coefficient; Photothermal interferometry; Suspended particulate matter.
Hirota, Naoko; Sone, Yoshiaki; Tokura, Hiromi
2010-01-01
We had previously reported on the effect of exposure to light on the human digestive system: daytime bright light exposure has a positive effect, whereas, evening bright light exposure has a negative effect on the efficiency of dietary carbohydrate absorption from the evening meal. These results prompted us to examine whether the light intensity to which subjects are exposed in the evening affects the efficiency of dietary carbohydrate absorption the following morning. In this study, subjects were exposed to either 50 lux (dim light conditions) or 2,000 lux (bright light conditions) in the evening for 9 h (from 15:00 to 24:00) after staying under bright light in the daytime (under 2,000 lux from 07:00 to 15:00). We measured unabsorbed dietary carbohydrates using the breath-hydrogen test the morning after exposure to either bright light or dim light the previous evening. Results showed that there was no significant difference between the two conditions in the amount of breath hydrogen. This indicates that evening exposure to bright or dim light after bright light exposure in the daytime has no varying effect on digestion or absorption of dietary carbohydrates in the following morning's breakfast.
Chan, Christabel Y L; Hiong, Kum C; Boo, Mel V; Choo, Celine Y L; Wong, Wai P; Chew, Shit F; Ip, Yuen K
2018-04-19
Giant clams live in nutrient-poor reef waters of the Indo-Pacific and rely on symbiotic dinoflagellates ( Symbiodinium spp., also known as zooxanthellae) for nutrients. As the symbionts are nitrogen deficient, the host clam has to absorb exogenous nitrogen and supply it to them. This study aimed to demonstrate light-enhanced urea absorption in the fluted giant clam, Tridacna squamosa , and to clone and characterize the urea active transporter DUR3-like from its ctenidium (gill). The results indicate that T. squamosa absorbs exogenous urea, and the rate of urea uptake in the light was significantly higher than that in darkness. The DUR3-like coding sequence obtained from its ctenidium comprised 2346 bp, encoding a protein of 782 amino acids and 87.0 kDa. DUR3-like was expressed strongly in the ctenidium, outer mantle and kidney. Twelve hours of exposure to light had no significant effect on the transcript level of ctenidial DUR3-like However, between 3 and 12 h of light exposure, DUR3-like protein abundance increased progressively in the ctenidium, and became significantly greater than that in the control at 12 h. DUR3-like had an apical localization in the epithelia of the ctenidial filaments and tertiary water channels. Taken together, these results indicate that DUR3-like might participate in light-enhanced urea absorption in the ctenidium of T. squamosa When made available to the symbiotic zooxanthellae that are known to possess urease, the absorbed urea can be metabolized to NH 3 and CO 2 to support amino acid synthesis and photosynthesis, respectively, during insolation. © 2018. Published by The Company of Biologists Ltd.
Family of BODIPY Photocages Cleaved by Single Photons of Visible/Near-Infrared Light.
Peterson, Julie A; Wijesooriya, Chamari; Gehrmann, Elizabeth J; Mahoney, Kaitlyn M; Goswami, Pratik P; Albright, Toshia R; Syed, Aleem; Dutton, Andrew S; Smith, Emily A; Winter, Arthur H
2018-06-13
Photocages are light-sensitive chemical protecting groups that provide external control over when, where, and how much of a biological substrate is activated in cells using targeted light irradiation. Regrettably, most popular photocages (e.g., o-nitrobenzyl groups) absorb cell-damaging ultraviolet wavelengths. A challenge with achieving longer wavelength bond-breaking photochemistry is that long-wavelength-absorbing chromophores have shorter excited-state lifetimes and diminished excited-state energies. However, here we report the synthesis of a family of BODIPY-derived photocages with tunable absorptions across the visible/near-infrared that release chemical cargo under irradiation. Derivatives with appended styryl groups feature absorptions above 700 nm, yielding photocages cleaved with the highest known wavelengths of light via a direct single-photon-release mechanism. Photorelease with red light is demonstrated in living HeLa cells, Drosophila S2 cells, and bovine GM07373 cells upon ∼5 min irradiation. No cytotoxicity is observed at 20 μM photocage concentration using the trypan blue exclusion assay. Improved B-alkylated derivatives feature improved quantum efficiencies of photorelease ∼20-fold larger, on par with the popular o-nitrobenzyl photocages (εΦ = 50-100 M -1 cm -1 ), but absorbing red/near-IR light in the biological window instead of UV light.
NASA Astrophysics Data System (ADS)
Zhou, Yaqing; Wang, Qiyuan; Huang, Rujin; Liu, Suixin; Tie, Xuexi; Su, Xiaoli; Niu, Xinyi; Zhao, Zhuzi; Ni, Haiyan; Wang, Meng; Zhang, Yonggang; Cao, Junji
2017-09-01
An intensive measurement campaign was conducted in Beijing during the Asia-Pacific Economic Cooperation (APEC) Summit 2014 to investigate the effectiveness of stringent emission controls on aerosol optical properties and direct radiative forcing (DRF). Average values of PM2.5, light scattering (bscat), and light absorption (babs) coefficients decreased by 40, 64, and 56%, respectively, during the APEC control period compared with noncontrol periods. For the APEC control period, the PM2.5 mass scattering and absorption efficiencies were both smaller than the noncontrol period by a factor of 2. Calculations based on a revised IMPROVE method and linear regression showed that sulfate, nitrate, organic matter, elemental carbon, and fine soil contributed comparably to the light extinction coefficient (bext) in both periods, but the bext values were 27-64% lower during the APEC period. A positive matrix factorization receptor model showed that bext from two secondary aerosol sources, biomass burning, traffic-related emissions, and coal burning decreased by 26-87% during the APEC control period. The average DRF calculated from the Tropospheric Ultraviolet and Visible radiation model was -11.9 and -4.6 W m-2 at the surface during the noncontrol and APEC control periods, respectively, suggesting an overall cooling effect. The reduction of DRF from each emission source ranged from 30-80% during the APEC control period. The results suggest that the pollution control measures implemented for APEC substantially reduced air pollution and could help mitigate the cooling effects of aerosols at the surface in Beijing.
A Low-Cost Quantitative Absorption Spectrophotometer
ERIC Educational Resources Information Center
Albert, Daniel R.; Todt, Michael A.; Davis, H. Floyd
2012-01-01
In an effort to make absorption spectrophotometry available to high school chemistry and physics classes, we have designed an inexpensive visible light absorption spectrophotometer. The spectrophotometer was constructed using LEGO blocks, a light emitting diode, optical elements (including a lens), a slide-mounted diffraction grating, and a…
Light absorption of organic aerosol from pyrolysis of corn stalk
NASA Astrophysics Data System (ADS)
Li, Xinghua; Chen, Yanju; Bond, Tami C.
2016-11-01
Organic aerosol (OA) can absorb solar radiation in the low-visible and ultra-violet wavelengths thereby modifying radiative forcing. Agricultural waste burning emits a large quantity of organic carbon in many developing countries. In this work, we improved the extraction and analysis method developed by Chen and Bond, and extended the spectral range of OC absorption. We examined light absorbing properties of primary OA from pyrolysis of corn stalk, which is a major type of agricultural wastes. Light absorption of bulk liquid extracts of OA was measured using a UV-vis recording spectrophotometer. OA can be extracted by methanol at 95%, close to full extent, and shows polar character. Light absorption of organic aerosol has strong spectral dependence (Absorption Ångström exponent = 7.7) and is not negligible at ultra-violet and low-visible regions. Higher pyrolysis temperature produced OA with higher absorption. Imaginary refractive index of organic aerosol (kOA) is 0.041 at 400 nm wavelength and 0.005 at 550 nm wavelength, respectively.
NASA Technical Reports Server (NTRS)
Garrett, M. H.; Tayebati, P.; Chang, J. Y.; Jenssen, H. P.; Warde, C.
1992-01-01
The asymmetry of beam coupling with respect to the orientation of the polar axis in a nominally undoped barium titanate crystal is used to determine the electro-optic and absorptive 'gain' in the usual beam-coupling geometry. For small grating wave vectors, the electrooptic coupling vanishes but the absorptive coupling remains finite and positive. Positive absorptive coupling at small grating wave vectors is correlated with the light-induced transparency of the crystal described herein. The intensity and grating wave vector dependence of the electrooptic and absorptive coupling, and the light-induced transparency are consistent with a model incorporating deep and shallow levels.
A contribution of black and brown carbon to the aerosol light absorption
NASA Astrophysics Data System (ADS)
Kim, Sang-Woo; Cho, Chaeyoon; Jo, Duseong; Park, Rokjin
2017-04-01
Black carbon (BC) is functionally defined as the absorbing component of atmospheric total carbonaceous aerosols and is typically dominated by soot-like elemental carbon (EC). Organic carbon (OC) has also been shown to absorb strongly at visible to UV wavelengths and the absorbing organics are referred to as brown carbon (BrC; Alexander et al., 2008). These two aerosols contribute to solar radiative forcing through absorption of solar radiation and heating of the absorbing aerosol layer, but most optical instruments that quantify light absorption are unable to distinguish one type of absorbing aerosol from another (Moosmüller et al. 2009). In this study, we separate total aerosol absorption from these two different light absorbers from co-located simultaneous in-situ measurements, such as Continuous Soot Monitoring System (COSMOS), Continuous Light Absorption Photometer (CLAP) and Sunset EC/OC analyzer, at Gosan climate observatory, Korea. We determine the mass absorption cross-section (MAC) of BC, and then estimate the contribution of BC and BrC on aerosol light absorption, together with a global 3-D chemical transport model (GEOS-Chem) simulation. At 565 nm wavelength, BC MAC is found to be about 5.4±2.8 m2 g-1 from COSMOS and Sunset EC/OC analyzer measurements during January-May 2012. This value is similar to those from Alexander et al. (2008; 4.3 ˜ 4.8 m2 g-1 at 550 nm) and Chung et al. (2012; 5.1 m2 g-1 at 520 nm), but slightly lower than Bond and Bergstrom (2006; 7.5±1.2 m2 g-1 at 550 nm). The COMOS BC mass concentration calculated with 5.4 m2 g-1 of BC MAC shows a good agreement with thermal EC concentration, with a good slope (1.1). Aerosol absorption coefficient and BC mass concentration from COSMOS, meanwhile, are approximately 25 ˜ 30 % lower than those of CLAP. This difference can be attributable to the contribution of volatile light-absorbing aerosols (i.e., BrC). The absorption coefficient of BrC, which is determined by the difference of absorption coefficients from CLAP and COSMOS measurements, increases with increasing thermal OC mass concentration. Monthly variation of BC and BrC absorption coefficients estimated from in-situ measurements and GEOS-Chem model simulation are generally well agreed, even though GEOS-Chem simulation overestimates BC absorption coefficient while underestimates BrC absorption coefficient. Here, we note that MAC of 5.4 m2 g-1 and3.8 m2 g-1 (taken from Alexander et al., 2008) are used to calculate aerosol absorption coefficient of BC and BrC, respectively. The contribution of BC to aerosol light absorption is estimated to be about 70˜75%, while BrC accounts for about 25˜30% of total aerosol light absorption, having a significant climatic implication in East Asia.
3D-printed external light trap for solar cells.
van Dijk, Lourens; Paetzold, Ulrich W; Blab, Gerhard A; Schropp, Ruud E I; di Vece, Marcel
2016-05-01
We present a universally applicable 3D-printed external light trap for enhanced absorption in solar cells. The macroscopic external light trap is placed at the sun-facing surface of the solar cell and retro-reflects the light that would otherwise escape. The light trap consists of a reflective parabolic concentrator placed on top of a reflective cage. Upon placement of the light trap, an improvement of 15% of both the photocurrent and the power conversion efficiency in a thin-film nanocrystalline silicon (nc-Si:H) solar cell is measured. The trapped light traverses the solar cell several times within the reflective cage thereby increasing the total absorption in the cell. Consequently, the trap reduces optical losses and enhances the absorption over the entire spectrum. The components of the light trap are 3D printed and made of smoothened, silver-coated thermoplastic. In contrast to conventional light trapping methods, external light trapping leaves the material quality and the electrical properties of the solar cell unaffected. To explain the theoretical operation of the external light trap, we introduce a model that predicts the absorption enhancement in the solar cell by the external light trap. The corresponding calculated path length enhancement shows good agreement with the empirically derived value from the opto-electrical data of the solar cell. Moreover, we analyze the influence of the angle of incidence on the parasitic absorptance to obtain full understanding of the trap performance. © 2015 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons, Ltd.
Teaching the Absorption of Light Colours Using an Artificial Rainbow
ERIC Educational Resources Information Center
Yurumezoglu, Kemal; Isik, Hakan; Arikan, Gizem; Kabay, Gozde
2015-01-01
This paper presents an experimental activity based on the absorption of light colours by pigments. The activity is constructed using a stepwise design and offers an opportunity for students and teachers to compare and generalize the interactions between light and pigment colours. The light colours composing an artificial rainbow produced in the…
Whiteside, Paul J D; Qian, Chenxi; Golda, Nicholas; Hunt, Heather K
2017-09-01
Applications of light-based energy devices involving optical targets within the dermis frequently experience negative side-effects resultant from surface scattering and excess optical absorption by epidermal melanin. As a broadband optical absorber, melanin decreases the efficacy of light-based treatments throughout the ultraviolet, visible, and near-infrared spectra while also generating additional heat within the surface tissue that can lead to inflammation or tissue damage. Consequently, procedures may be performed using greater energy densities to ensure that the target receives a clinically relevant dose of light; however, such practices are limited, as doing so tends to exacerbate the detrimental complications resulting from melanin absorption of treatment light. The technique presented herein represents an alternative method of operation aimed at increasing epidermal energy fluence while mitigating excess absorption by unintended chromophores. The approach involves the application of continuously pulsed ultrasound to modulate the tissue's optical properties and thereby improve light transmission through the epidermis. To demonstrate the change in optical properties, pulsed light at a wavelength of 532 nm from a Q-switched Nd:YAG laser was transmitted into 4 mm thick samples of porcine skin, comprised of both epidermal and dermal tissue. The light was transmitted using an optical waveguide, which allowed for an ultrasonic transducer to be incorporated for simultaneous paraxial pulsation in parallel with laser operation. Light transmitted through the tissue was measured by a photodiode attached to an integrating sphere. Increasing the driving voltage of ultrasonic pulsation resulted in an increase in mean transmitted optical power of up to a factor of 1.742 ± 0.0526 times the control, wherein no ultrasound was applied, after which the optical power increase plateaued to an average amplification factor of 1.733 ± 0.549 times the control. The increase implies a reduction in light either back-scattered or absorbed within the tissue, which would allow for a greater proportion of incident energy to be delivered to the clinical target, thereby improving procedural efficacy and potentially reducing the severity of detrimental side-effects. Apparatus Lasers Surg. Med. 49:666-674, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Yang, Defu; Chen, Xueli; Peng, Zhen; Wang, Xiaorui; Ripoll, Jorge; Wang, Jing; Liang, Jimin
2013-01-01
Modeling light propagation in the whole body is essential and necessary for optical imaging. However, non-scattering, low-scattering and high absorption regions commonly exist in biological tissues, which lead to inaccuracy of the existing light transport models. In this paper, a novel hybrid light transport model that couples the simplified spherical harmonics approximation (SPN) with the radiosity theory (HSRM) was presented, to accurately describe light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities. In the model, the radiosity theory was used to characterize the light transport in non-scattering regions and the SPN was employed to handle the scattering problems, including subsets of low-scattering and high absorption. A Neumann source constructed by the light transport in the non-scattering region and formed at the interface between the non-scattering and scattering regions was superposed into the original light source, to couple the SPN with the radiosity theory. The accuracy and effectiveness of the HSRM was first verified with both regular and digital mouse model based simulations and a physical phantom based experiment. The feasibility and applicability of the HSRM was then investigated by a broad range of optical properties. Lastly, the influence of depth of the light source on the model was also discussed. Primary results showed that the proposed model provided high performance for light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities. PMID:24156077
Yang, Defu; Chen, Xueli; Peng, Zhen; Wang, Xiaorui; Ripoll, Jorge; Wang, Jing; Liang, Jimin
2013-01-01
Modeling light propagation in the whole body is essential and necessary for optical imaging. However, non-scattering, low-scattering and high absorption regions commonly exist in biological tissues, which lead to inaccuracy of the existing light transport models. In this paper, a novel hybrid light transport model that couples the simplified spherical harmonics approximation (SPN) with the radiosity theory (HSRM) was presented, to accurately describe light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities. In the model, the radiosity theory was used to characterize the light transport in non-scattering regions and the SPN was employed to handle the scattering problems, including subsets of low-scattering and high absorption. A Neumann source constructed by the light transport in the non-scattering region and formed at the interface between the non-scattering and scattering regions was superposed into the original light source, to couple the SPN with the radiosity theory. The accuracy and effectiveness of the HSRM was first verified with both regular and digital mouse model based simulations and a physical phantom based experiment. The feasibility and applicability of the HSRM was then investigated by a broad range of optical properties. Lastly, the influence of depth of the light source on the model was also discussed. Primary results showed that the proposed model provided high performance for light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities.
NASA Astrophysics Data System (ADS)
Puķīte, Jānis; Wagner, Thomas
2016-05-01
We address the application of differential optical absorption spectroscopy (DOAS) of scattered light observations in the presence of strong absorbers (in particular ozone), for which the absorption optical depth is a non-linear function of the trace gas concentration. This is the case because Beer-Lambert law generally does not hold for scattered light measurements due to many light paths contributing to the measurement. While in many cases linear approximation can be made, for scenarios with strong absorptions non-linear effects cannot always be neglected. This is especially the case for observation geometries, for which the light contributing to the measurement is crossing the atmosphere under spatially well-separated paths differing strongly in length and location, like in limb geometry. In these cases, often full retrieval algorithms are applied to address the non-linearities, requiring iterative forward modelling of absorption spectra involving time-consuming wavelength-by-wavelength radiative transfer modelling. In this study, we propose to describe the non-linear effects by additional sensitivity parameters that can be used e.g. to build up a lookup table. Together with widely used box air mass factors (effective light paths) describing the linear response to the increase in the trace gas amount, the higher-order sensitivity parameters eliminate the need for repeating the radiative transfer modelling when modifying the absorption scenario even in the presence of a strong absorption background. While the higher-order absorption structures can be described as separate fit parameters in the spectral analysis (so-called DOAS fit), in practice their quantitative evaluation requires good measurement quality (typically better than that available from current measurements). Therefore, we introduce an iterative retrieval algorithm correcting for the higher-order absorption structures not yet considered in the DOAS fit as well as the absorption dependence on temperature and scattering processes.
NASA Astrophysics Data System (ADS)
Patil, S. D.; Valkunde, A. T.; Vhanmore, B. D.; Urunkar, T. U.; Gavade, K. M.; Takale, M. V.
2018-05-01
When inter particle distance is comparable to the de Broglies wavelength of charged particles, quantum effects in plasmas are unavoidable. We have exploited an influence of light absorption on self-focusing of Gaussian laser beam in cold quantum plasma by considering relativistic nonlinearity. Nonlinear differential equation governing beam-width parameter has been established by using parabolic equation approach under paraxial and WKB approximations. The effect of light absorption on variation of beam-width parameter with dimensionless distance of propagation is presented graphically and discussed. It is found that light absorption plays vital role in weakening the relativistic self-focusing of laser beam during propagation in cold quantum plasma and gives reasonably interesting results.
Direct and quantitative broadband absorptance spectroscopy with multilayer cantilever probes
Hsu, Wei-Chun; Tong, Jonathan Kien-Kwok; Liao, Bolin; Chen, Gang
2015-04-21
A system for measuring the absorption spectrum of a sample is provided that includes a broadband light source that produces broadband light defined within a range of an absorptance spectrum. An interferometer modulates the intensity of the broadband light source for a range of modulation frequencies. A bi-layer cantilever probe arm is thermally connected to a sample arm having at most two layers of materials. The broadband light modulated by the interferometer is directed towards the sample and absorbed by the sample and converted into heat, which causes a temperature rise and bending of the bi-layer cantilever probe arm. A detector mechanism measures and records the deflection of the probe arm so as to obtain the absorptance spectrum of the sample.
Diagnostics for Hypersonic Engine Control
2015-02-01
modeling efforts and/or lead to the development of sensors that can be used as part of scramjet engine control strategies. Activities included work on...of a model scramjet engine cannot rely on the presence of water. Instead, light sources operating at wavelengths resonant with molecular oxygen are...transmitted beam amplitude fluctuations (scintillation). Frequency axis is normalized. Figure 3. Oxygen absorption feature recorded using direct
Broadband light absorption enhancement in moth's eye nanostructured organic solar cells
NASA Astrophysics Data System (ADS)
Lan, Weixia; Cui, Yanxia; Yang, Qingyi; Lo, Ming-Fai; Lee, Chun-Sing; Zhu, Furong
2015-05-01
A comprehensive study on inverted organic solar cells (OSCs) with a moth's eye nanostructured (MEN) active layer was carried out. Performance of the MEN-based OSCs and the corresponding control planar cells, fabricated with blend of poly[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-bA] dithiophene-2, 6-diyl][3-fluoro-2-[(2- ethylhexyl) carbonyl]thieno[3,4-b]-thiophenediyl] (PTB7):[6,6]- phenyl-C70- butyric-acid-methyl-ester (PC70BM) was analyzed. The efficiency of the MEN-based OSCs was optimized by adjusting the height of MEN pattern in the active layer. Our experimental and theoretical results reveal that the MEN pattern enhances light absorption in the PTB7:PC70BM active layer, especially over the long wavelength region. This leads to a 7.8% increase in short circuit current density and a 6.1% increase in power conversion efficiency over those of the control planar cell.
Yang, Yong; Yang, Yang; Chen, Shuangming; Lu, Qichen; Song, Li; Wei, Yen; Wang, Xun
2017-11-16
Superthin nanostructures, particularly with atomic-level thicknesses, typically display unique optical properties because of their exceptional light-matter interactions. Here, we report a facile strategy for the synthesis of sulfur-doped molybdenum oxide nanorings with an atomic-level size (thickness of 0.5 nm) and a tunable ring-in-ring architecture. These atomic-level nanorings displayed strong photo-absorption in both the visible and infrared-light ranges and acted as a photothermal agent. Under irradiation with an 808 nm laser with an intensity of 1 W/cm 2 , a composite of the nanorings embedded in polydimethylsiloxane showed an ultrafast photothermal effect, delivering a local temperature of up to 400 °C within 20 s, which to the best of our knowledge is the highest temperature by light irradiation reported to date. Meanwhile, the resulting nanorings were also employed as a photoinitiator to remotely induce a visible-light shape memory response, self-healing, reshaping performance and reversible actuation of dynamic three-dimensional structures. This study demonstrates an advancement towards controlling atomic-level-sized nanostructures and achieving greatly enhanced optical performances for optoelectronics.
Soleymani, A
2017-08-01
Crop response to light is an important parameter determining crop growth. Three field (split plots) experiments were conducted to investigate the effects of plant density, plant genotype and N fertilization on the light absorption and light extinction of sunflower (Helianthus annuus L.) and canola (Brassica napus L.). A detailed set of plant growth, light absorption and crop yield and oil related parameters were determined. Light was measured at noon during the sunny days with clear sky. In experiment I, although the plant density (PD) of 14 resulted in the highest rate of sunflower light absorption (31.37%) and light extinction (0.756), the highest rate of grain yield and grain oil yield was resulted at PD12 at 3639 and 1457.9kg/ha, respectively; as well as by genotype SUP.A. In experiment II (canola), PD80 resulted in the highest rate of light absorption (13.13%), light extinction (0.63), grain yield (2189.4kg/ha) and grain oil yield (556.54kg/ha). This was also the case for Genotype H. In experiment III (canola), although N150 resulted in the highest rate of light absorption (10.74%) and light extinction (0.48), the highest rate of grain yield (3413.6kg/ha) and grain oil yield (891.86kg/ha) was resulted at N100 as well as by Genotype H401. Results indicate how light properties, crop growth and yield of sunflower and canola can be affected by plant and environmental parameters, which are also of practical use by farmers. Copyright © 2017 Elsevier B.V. All rights reserved.
Multi-wavelength aerosol light absorption measurements in the Amazon rainforest
NASA Astrophysics Data System (ADS)
Saturno, Jorge; Chi, Xuguang; Pöhlker, Christopher; Morán, Daniel; Ditas, Florian; Massabò, Dario; Prati, Paolo; Rizzo, Luciana; Artaxo, Paulo; Andreae, Meinrat
2015-04-01
The most important light-absorbing aerosol is black carbon (BC), which is emitted by incomplete combustion of fossil fuels and biomass. BC is considered the second anthropogenic contributor to global warming. Beyond BC, other aerosols like some organics, dust, and primary biological aerosol particles are able to absorb radiation. In contrast to BC, the light absorption coefficient of these aerosols is wavelength dependent. Therefore, multi-wavelength measurements become important in environments where BC is not the predominant light-absorbing aerosol like in the Amazon. The Amazon Tall Tower Observatory (ATTO) site is located in the remote Amazon rainforest, one of the most pristine continental sites in the world during the wet season. In the dry season, winds coming from the southern hemisphere are loaded with biomass burning aerosol particles originated by farming-related deforestation. BC and aerosol number concentration data from the last two years indicate this is the most polluted period. Two different techniques have been implemented to measure the light absorption at different wavelengths; one of them is the 7-wavelengths Aethalometer, model AE30, an instrument that measures the light attenuation on a filter substrate and requires multiple scattering and filter-loading corrections to retrieve the light absorption coefficient. The other method is an offline technique, the Multi-Wavelength Absorbance Analysis (MWAA), which is able to measure reflectance and absorbance by aerosols collected on a filter and, by means of a radiative model, can retrieve the light absorption coefficient. Filters collected during May-September 2014, comprehending wet-to-dry transition and most of the dry season, were analyzed. The results indicate that the Absorption Ångström Exponent (AAE), a parameter that is directly proportional to the wavelength dependence of the aerosol light absorption, is close to 1.0 during the transition period and slightly decreases in the beginning of the dry season. However, during strong biomass burning episodes in the dry season, the AAE increases significantly, and reaches values higher than 1.3, indicating the presence of wavelength dependent light-absorbing aerosols like organics (brown carbon). The present study is a contribution to the understanding of the optical properties of light-absorbing aerosol particles under pristine and biomass-burning conditions.
Unified Electromagnetic-Electronic Design of Light Trapping Silicon Solar Cells
Boroumand, Javaneh; Das, Sonali; Vázquez-Guardado, Abraham; Franklin, Daniel; Chanda, Debashis
2016-01-01
A three-dimensional unified electromagnetic-electronic model is developed in conjunction with a light trapping scheme in order to predict and maximize combined electron-photon harvesting in ultrathin crystalline silicon solar cells. The comparison between a bare and light trapping cell shows significant enhancement in photon absorption and electron collection. The model further demonstrates that in order to achieve high energy conversion efficiency, charge separation must be optimized through control of the doping profile and surface passivation. Despite having a larger number of surface defect states caused by the surface patterning in light trapping cells, we show that the higher charge carrier generation and collection in this design compensates the absorption and recombination losses and ultimately results in an increase in energy conversion efficiency. The fundamental physics behind this specific design approach is validated through its application to a 3 μm thick functional light trapping solar cell which shows 192% efficiency enhancement with respect to the bare cell of same thickness. Such a unified design approach will pave the path towards achieving the well-known Shockley-Queisser (SQ) limit for c-Si in thin-film (<30 μm) geometries. PMID:27499446
NASA Astrophysics Data System (ADS)
Mascarenhas, V. J.; Voß, D.; Wollschlaeger, J.; Zielinski, O.
2017-05-01
Optically active constituents (OACs) in addition to water molecules attenuate light via processes of absorption and scattering and thereby determine underwater light availability. An analysis of their optical properties helps in determining the contribution of each of these to light attenuation. With an aim to study the bio-optical variability, absorption budget and 1% spectral light availability, hydrographical (temperature and salinity), and hyperspectral optical (downwelling irradiance and upwelling radiance) profiles were measured along fjord transects in Sognefjord and Trondheimsfjord, Norway. Optical water quality observations were also performed using Secchi disc and Forel-Ule scale. In concurrence, water samples were collected and analyzed via visible spectrophotometry, fluorometry, and gravimetry to quantify and derive inherent optical properties of the water constituents. An absorption model (R2 = 0.91, n = 36, p < 0.05) as a function of OACs is developed for Sognefjord using multiple regression analysis. Influenced by glacial meltwater, Sognefjord had higher concentration of inorganic suspended matter, while Trondheimsfjord had higher concentrations of CDOM. Increase in turbidity caused increased attenuation of light upstream, as a result of which the euphotic depth decreased from outer to inner fjord sections. Triangular representation of absorption budget revealed dominant absorption by CDOM at 443-555 nm, while that by phytoplankton at 665 nm. Sognefjord however exhibited much greater optical complexity. A significantly strong correlation between salinity and acdom440 is used to develop an algorithm to estimate acdom440 using salinity in Trondheimsfjord.
Slow light enhanced gas sensing in photonic crystals
NASA Astrophysics Data System (ADS)
Kraeh, Christian; Martinez-Hurtado, J. L.; Popescu, Alexandru; Hedler, Harry; Finley, Jonathan J.
2018-02-01
Infrared spectroscopy allows for highly selective and highly sensitive detection of gas species and concentrations. Conventional gas spectrometers are generally large and unsuitable for on-chip applications. Long absorption path lengths are usually required and impose a challenge for miniaturization. In this work, a gas spectrometer is developed consisting of a microtube photonic crystal structure. This structure of millimetric form factors minimizes the required absorption path length due to slow light effects. The microtube photonic crystal allows for strong transmission in the mid-infrared and, due to its large void space fraction, a strong interaction between light and gas molecules. As a result, enhanced absorption of light increases the gas sensitivity of the device. Slow light enhanced gas absorption by a factor of 5.8 in is experimentally demonstrated at 5400 nm. We anticipate small form factor gas sensors on silicon to be a starting point for on-chip gas sensing architectures.
Designing metal hemispheres on silicon ultrathin film solar cells for plasmonic light trapping.
Gao, Tongchuan; Stevens, Erica; Lee, Jung-kun; Leu, Paul W
2014-08-15
We systematically investigate the design of two-dimensional silver (Ag) hemisphere arrays on crystalline silicon (c-Si) ultrathin film solar cells for plasmonic light trapping. The absorption in ultrathin films is governed by the excitation of Fabry-Perot TEMm modes. We demonstrate that metal hemispheres can enhance absorption in the films by (1) coupling light to c-Si film waveguide modes and (2) exciting localized surface plasmon resonances (LSPRs). We show that hemisphere arrays allow light to couple to fundamental TEm and TMm waveguide modes in c-Si film as well as higher-order versions of these modes. The near-field light concentration of LSPRs also may increase absorption in the c-Si film, though these resonances are associated with significant parasitic absorption in the metal. We illustrate how Ag plasmonic hemispheres may be utilized for light trapping with 22% enhancement in short-circuit current density compared with that of a bare 100 nm thick c-Si ultrathin film solar cell.
A Single Optical Fiber Telephone System
1984-09-06
the photophones developed by A. 0, sel1 and his oolleagues. The recent advent of light 30 generators in the form of light eAitthg diodee (ZED@) and... photophone . Such a photophone is shown in Figure 7. I1t comprises a small chamber Ill which is filed with an optically absorptive material 113, which may be...carbonized cotton fiber. A 1 photo-acoustic effect takes place when light interacts with absorptive material of this types The absorption raises the 30
Light absorption properties of brown carbon over the southeastern Tibetan Plateau.
Zhu, Chong-Shu; Cao, Jun-Ji; Huang, Ru-Jin; Shen, Zhen-Xing; Wang, Qi-Yuan; Zhang, Ning-Ning
2018-06-01
We present a study of the light-absorbing properties of water-soluble brown carbon (WS-BrC) and methanol-soluble brown carbon (MeS-BrC) at a remote site (Lulang, 3326m above sea level) in the southeastern Tibetan Plateau during the period 2015-2016. The light absorption coefficients at 365nm (b abs365 ) of WS-BrC and MeS-BrC were the highest during winter and the lowest during monsoon season. MeS-BrC absorbs about 1.5 times higher at 365nm compared to WS-BrC. The absorption at 550nm appears lower compared to that of 365nm for WS-BrC and MeS-BrC, respectively. Higher average value of the absorption Ångström exponent (AAE, 365-550nm) was obtained for MeS-BrC (8.2) than that for WS-BrC (6.9). The values of the mass absorption cross section at 365nm (MAC 365 ) indicated that BrC in winter absorbs UV-visible light more efficiently than in monsoon. The results confirm the importance of BrC in contributing to light-absorbing aerosols in this region. The understanding of the light absorption properties of BrC is of great importance, especially in modeling studies for the climate effects and transport of BrC in the Tibetan Plateau. Copyright © 2017 Elsevier B.V. All rights reserved.
The characteristics of brown carbon aerosol during winter in Beijing
NASA Astrophysics Data System (ADS)
Cheng, Yuan; He, Ke-bin; Du, Zhen-yu; Engling, Guenter; Liu, Jiu-meng; Ma, Yong-liang; Zheng, Mei; Weber, Rodney J.
2016-02-01
Brown carbon (i.e., light-absorbing organic carbon, or BrC) exerts important effects on the environment and on climate in particular. Based on spectrophotometric absorption measurements on extracts of bulk aerosol samples, this study investigated the characteristics of BrC during winter in Beijing, China. Organic compounds extractable by methanol contributed approximately 85% to the organic carbon (OC) mass. Light absorption by the methanol extracts exhibited a strong wavelength dependence, with an average absorption Ångström exponent of 7.10 (fitted between 310 and 450 nm). Normalizing the absorption coefficient (babs) measured at 365 nm to the extractable OC mass yielded an average mass absorption efficiency (MAE) of 1.45 m2/g for the methanol extracts. This study suggests that light absorption by BrC could be comparable with black carbon in the spectral range of near-ultraviolet light. Our results also indicate that BrC absorption and thus BrC radiative forcing could be largely underestimated when using water-soluble organic carbon (WSOC) as a surrogate for BrC. Compared to previous work relying only on WSOC, this study provides a more comprehensive understanding of BrC aerosol based on methanol extraction.
Faraday-Active Fabry-Perot Resonator: Transmission, Reflection, and Emissivity
NASA Technical Reports Server (NTRS)
Liptuga, Anatoliy; Morozhenko, Vasyl; Pipa, Viktor; Venger, Evgen; Kostiuk, Theodor
2011-01-01
The propagation of light within a semiconductor Faraday-active Fabry-Perot resonator (FAFR) is investigated theoretically and experimentally. It is shown that an external magnetic field radically changes the angular and spectral characteristics of transmission, reflection and emissivity of the resonator not only for polarized, but also for unpolarized light. Suppression of interference patterns and phase inversion of the interference extrema were observed in both monochromatic and polychromatic light. The investigations were carried out for the plane-parallel plates of n-InAs in the spectral range of free charge carrier absorption. The results can be used to create new controllable optical and spectroscopic devices for investigation of Faraday-active material properties and for control of parameters of plane-parallel layers and structures.
NASA Astrophysics Data System (ADS)
Ueda, Sayako; Nakayama, Tomoki; Taketani, Fumikazu; Adachi, Kouji; Matsuki, Atsushi; Iwamoto, Yoko; Sadanaga, Yasuhiro; Matsumi, Yutaka
2016-03-01
The coating of black carbon (BC) with inorganic salts and organic compounds can enhance the magnitude of light absorption by BC. To elucidate the enhancement of light absorption of aged BC particles and its relation to the mixing state and morphology of individual particles, we conducted observations of particles at an Asian outflow site in Noto Peninsula, Japan, in the spring of 2013. Absorption and scattering coefficients at 405, 532, and 781 nm and mass concentrations/mixing states of refractory BC in PM2.5 were measured using a three-wavelength photoacoustic soot spectrometer and a single-particle soot photometer (SP2), respectively, after passage through a thermodenuder (TD) maintained at 300 or 400 °C or a bypass line maintained at room temperature (25 °C). The average enhancement factor of BC light absorption due to coating was estimated by comparing absorption coefficients at 781 nm for particles that with and without passing through the TD at 300 °C and was found to be 1.22. The largest enhancements (> 1.30) were observed under high absorption coefficient periods when the air mass was long-range transported from urban areas in China. Aerosol samples were also analyzed using a transmission electron microscope (TEM) equipped with an energy dispersive X-ray analyzer. The morphological features and mixing states of soot-containing particles of four samples collected during the high absorption events were analyzed by comparing microphotographs before and after the evaporation of beam-sensitive materials by irradiation with a high-density electron beam. The majority of the soot in all samples was found as mixed particles with sulfate-containing spherules or as clusters of such spherules. For samples showing high enhancement (> 1.30) of BC light absorption, the TEM showed that the internally mixed soot-containing particles tended to have a more spherical shape and to be thickly coated. The SP2 measurements also suggested that the proportion of thickly coated soot was greater. Thus, the observed enhancement of BC light absorption was found to differ according to the mixing states and morphology of soot-containing particles. The enhancement of BC light absorption in our in situ measurements and its relation with individual features of soot-containing particles will be useful to evaluate direct radiative forcing in the downwind areas of large emission sources of BC.
NASA Astrophysics Data System (ADS)
Ueda, S.; Nakayama, T.; Taketani, F.; Adachi, K.; Matsuki, A.; Iwamoto, Y.; Sadanaga, Y.; Matsumi, Y.
2015-09-01
The coating of black carbon (BC) with inorganic salts and organic compounds can enhance the magnitude of light absorption by BC. To elucidate the enhancement of light absorption of aged BC particles and its relation to the mixing state and morphology of individual particles, we conducted observations of particles at an Asian outflow site in Noto Peninsula, Japan, in the spring of 2013. Absorption and scattering coefficients at 405, 532, and 781 nm and mass concentrations/mixing states of refractory-BC in PM2.5 were measured using a three-wavelength photoacoustic soot spectrometer and a single-particle soot photometer (SP2), respectively, after passage through a heater maintained at 300 or 400 °C or a bypass line maintained at room temperature (25 °C). The average enhancement of BC light absorption due to coating was estimated by comparing absorption coefficients at 781 nm for particles that with and without passing through the heater and was found to be 22-23 %. The largest enhancements (> 30 %) were observed under high absorption coefficient conditions when the air mass was long-range transported from urban areas in China. Aerosol samples were also analyzed using a transmission electron microscope (TEM) equipped with an energy dispersive X-ray analyzer. The morphological features and mixing states of soot-containing particles of four samples collected during the high absorption coefficient events were analyzed by comparing microphotographs before and after the evaporation of beam-sensitive materials by irradiation with a high density electron beam. The majority of the soot in all samples was found as mixed particles with spherical sulfate or as clusters of sulfate spherules. For samples showing high enhancement (> 30 %) of BC light absorption, TEM showed that the internally mixed soot-containing particles tended to have a more spherical shape and to be embedded into the sulfate. The SP2 measurements also suggested that the proportion of thickly-coated soot was greater. Thus, the observed enhancement of BC light absorption was found to differ according to the mixing states and morphology of soot-containing particles. The enhancement of BC light absorption in our in situ measurements and its relation with individual features of soot-containing particles will be useful to evaluate direct radiative forcing in the leeward areas of large emission sources of BC.
Magdaong, Nikki M; LaFountain, Amy M; Hacking, Kirsty; Niedzwiedzki, Dariusz M; Gibson, George N; Cogdell, Richard J; Frank, Harry A
2016-02-01
Photosynthetic organisms produce a vast array of spectral forms of antenna pigment-protein complexes to harvest solar energy and also to adapt to growth under the variable environmental conditions of light intensity, temperature, and nutrient availability. This behavior is exemplified by Allochromatium (Alc.) vinosum, a photosynthetic purple sulfur bacterium that produces different types of LH2 light-harvesting complexes in response to variations in growth conditions. In the present work, three different spectral forms of LH2 from Alc. vinosum, B800-820, B800-840, and B800-850, were isolated, purified, and examined using steady-state absorption and fluorescence spectroscopy, and ultrafast time-resolved absorption spectroscopy. The pigment composition of the LH2 complexes was analyzed by high-performance liquid chromatography, and all were found to contain five carotenoids: lycopene, anhydrorhodovibrin, spirilloxanthin, rhodopin, and rhodovibrin. Spectral reconstructions of the absorption and fluorescence excitation spectra based on the pigment composition revealed significantly more spectral heterogeneity in these systems compared to LH2 complexes isolated from other species of purple bacteria. The data also revealed the individual carotenoid-to-bacteriochlorophyll energy transfer efficiencies which were correlated with the kinetic data from the ultrafast transient absorption spectroscopic experiments. This series of LH2 complexes allows a systematic exploration of the factors that determine the spectral properties of the bound pigments and control the rate and efficiency of carotenoid-to-bacteriochlorophyll energy transfer.
Light Absorption by Brown Carbon in the Southeastern United States is pH-dependent.
Phillips, Sabrina M; Bellcross, Aleia D; Smith, Geoffrey D
2017-06-20
Light-absorbing organic material, or "brown carbon" (BrC), can significantly influence the effect that aerosols have on climate. Here, we investigate how changing pH affects the absorption spectra of water-soluble BrC from ambient particulate matter smaller than 2.5 μm collected in Athens, Georgia, in the spring and fall of 2016, including samples from nearby wildfires. We find that absorption increases 10% per pH unit from pH 2 to pH 12 with a broad, featureless tail at visible wavelengths, where the largest fractional increase is also observed. The resulting change in the spectral shape causes the absorption Ångström exponent to decrease by 0.18 per unit increase in pH. Similar behavior with humic substances suggests that they and BrC share a common link between pH and absorption, which we propose could be a consequence of conformational changes in supramolecular assemblies thought to exist in humic substances. Specifically, we hypothesize that a wider variety and larger number of absorbing charge transfer complexes are formed as functional groups in these molecules, such as carboxylic acid and phenol moieties, become deprotonated. These findings suggest that (1) the pH of ambient particulate matter samples should be measured or controlled and (2) radiative forcing by BrC aerosols could be overestimated if their pH-dependent BrC absorption is not accounted for in models.
Absorption spectra and light penetration depth of normal and pathologically altered human skin
NASA Astrophysics Data System (ADS)
Barun, V. V.; Ivanov, A. P.; Volotovskaya, A. V.; Ulashchik, V. S.
2007-05-01
A three-layered skin model (stratum corneum, epidermis, and dermis) and engineering formulas for radiative transfer theory are used to study absorption spectra and light penetration depths of normal and pathologically altered skin. The formulas include small-angle and asymptotic approximations and a layer-addition method. These characteristics are calculated for wavelengths used for low-intensity laser therapy. We examined several pathologies such as vitiligo, edema, erythematosus lupus, and subcutaneous wound, for which the bulk concentrations of melanin and blood vessels or tissue structure (for subcutaneous wound) change compared with normal skin. The penetration depth spectrum is very similar to the inverted blood absorption spectrum. In other words, the depth is minimal at blood absorption maxima. The calculated absorption spectra enable the power and irradiation wavelength providing the required light effect to be selected. Relationships between the penetration depth and the diffuse reflectance coefficient of skin (unambiguously expressed through the absorption coefficient) are analyzed at different wavelengths. This makes it possible to find relationships between the light fields inside and outside the tissue.
Laser Ablated Carbon Nanodots for Light Emission.
Reyes, Delfino; Camacho, Marco; Camacho, Miguel; Mayorga, Miguel; Weathers, Duncan; Salamo, Greg; Wang, Zhiming; Neogi, Arup
2016-12-01
The synthesis of fluorescent carbon dots-like nanostructures (CNDs) obtained through the laser ablation of a carbon solid target in liquid environment is reported. The ablation process was induced in acetone with laser pulses of 1064, 532, and 355 nm under different irradiation times. Close-spherical amorphous CNDs with sizes between 5 and 20 nm, whose abundance strongly depends on the ablation parameters were investigated using electron microscopy and was confirmed using absorption and emission spectroscopies. The π- π* electronic transition at 3.76 eV dominates the absorption for all the CNDs species synthesized under different irradiation conditions. The light emission is most efficient due to excitation at 3.54 eV with the photoluminescence intensity centered at 3.23 eV. The light emission from the CNDs is most efficient due to ablation at 355 nm. The emission wavelength of the CNDs can be tuned from the near-UV to the green wavelength region by controlling the ablation time and modifying the ablation and excitation laser wavelength.
Önning, Gunilla; Hulthén, Lena
2017-01-01
Background The probiotic strain Lactobacillus plantarum 299v has earlier been shown to increase iron absorption when added to foods. However, it is not known if the same probiotic strain in a freeze-dried format included in a capsule increases the iron absorption. Objective The aim of this study was to test the hypotheses that non-heme iron absorption from a light meal is promoted by a simultaneous intake of freeze-dried Lactobacillus plantarum 299v (Lp299v, DSM 9843). Study design With a single blinded placebo controlled sequential design, iron absorption from a light breakfast meal administered with or without capsules containing 1010 cfu freeze-dried Lp299v was studied in healthy female volunteers of fertile age. The methodology used was a double isotope technique (59Fe and 55Fe). Two studies were performed using the same protocol. Results In study 1, the absorption of iron from a meal without Lp299v was found to be 17.4 ± 13.4%, and from an identical meal with Lp299v was found to be 22.4 ± 17.3% (mean ± SD). This difference was statistically significant (p = 0.040, n = 14). In study 2, the absorption of iron from a meal without Lp299v was found to be 20.9 ± 13.1%, and from an identical meal with Lp299v found to be 24.5 ± 12.0% (mean ± SD, n = 28), which again was statistically significant (p = 0.003). Conclusion Freeze-dried Lp299v enhances the absorption of iron when administered together with a meal with a high iron bioavailability. Trial registration ClinicalTrials.gov Identifier: NCT02131870 PMID:29236734
Light Trapping with Silicon Light Funnel Arrays
Nissan, Yuval; Gabay, Tamir; Shalev, Gil
2018-01-01
Silicon light funnels are three-dimensional subwavelength structures in the shape of inverted cones with respect to the incoming illumination. Light funnel (LF) arrays can serve as efficient absorbing layers on account of their light trapping capabilities, which are associated with the presence of high-density complex Mie modes. Specifically, light funnel arrays exhibit broadband absorption enhancement of the solar spectrum. In the current study, we numerically explore the optical coupling between surface light funnel arrays and the underlying substrates. We show that the absorption in the LF array-substrate complex is higher than the absorption in LF arrays of the same height (~10% increase). This, we suggest, implies that a LF array serves as an efficient surface element that imparts additional momentum components to the impinging illumination, and hence optically excites the substrate by near-field light concentration, excitation of traveling guided modes in the substrate, and mode hybridization. PMID:29562685
Tunable absorption enhancement in electric split-ring resonators-shaped graphene arrays
NASA Astrophysics Data System (ADS)
Liu, Lin; Chen, Jiajia; Zhou, Zigang; Yi, Zao; Ye, Xin
2018-04-01
In this paper, we propose a wavelength-tunable absorber consisting of electric split-ring resonators (eSRRs)-shaped graphene arrays deposited on a SiO2/Si substrate in the far-infrared and terahertz regions. The simulation results exhibit that two resonance modes are supported by the structure. In terms of the resonance at longer wavelength, the light absorption declines while the period a or length L increases. However, absorption contrarily improves with enlargement of incident angle under the transverse magnetic (TM) polarization. And in terms of resonance at shorter wavelengths, absorption enhances with increasing length L and incident angle θ. Generally, the light absorption enhances with Fermi level E F of graphene, accompanied by blue shift. The aforementioned results unquestionably provide a distinctive source of inspiration for how to design and manufacture devices related to absorption such as filters, spatial light modulator and sensors.
Near-infrared light absorption by brown carbon in the ambient atmosphere
NASA Astrophysics Data System (ADS)
Chung, C.; Hoffer, A.; Beres, N. D.; Moosmüller, H.; Liu, C.; Green, M.; Kim, S. W.; Engelbrecht, J. P.; Gelencser, A.
2017-12-01
Organic aerosols have been assumed to have little-to-no absorption in the red and near-infrared spectral regions of solar radiation, even though a class of organic aerosols were shown to absorb significantly in these spectral regions. Here, we show that ambient atmospheric data from commonly-used 7-wavelength aethalometers contain evidence of abundant near-infrared light absorption by organic aerosol. This evidence comes from the absorption Ångström exponent over 880 950 nm, which often exceeds values explainable by fresh or coated black carbon, or mineral dust. This evidence is not due to an artifact from the instrument random errors or biases, either. The best explanation for these large 880/950 nm absorption Ångström exponent values in the aethalometer data is near-infrared light absorption by tar balls. Tar balls are among common particles from forest fire.
Absorption of a laser light pulse in a dense plasma.
NASA Technical Reports Server (NTRS)
Mehlman-Balloffet, G.
1973-01-01
An experimental study of the absorption of a laser light pulse in a transient, high-density, high-temperature plasma is presented. The plasma is generated around a metallic anode tip by a fast capacitive discharge occurring in vacuum. The amount of transmitted light is measured for plasmas made of different metallic ions in the regions of the discharge of high electronic density. Variation of the transmission during the laser pulse is also recorded. Plasma electrons are considered responsible for the very high absorption observed.
NASA Astrophysics Data System (ADS)
Le, Chengfeng; Hu, Chuanmin; English, David; Cannizzaro, Jennifer; Chen, Zhiqiang; Kovach, Charles; Anastasiou, Christopher J.; Zhao, Jun; Carder, Kendall L.
2013-01-01
Inherent and apparent optical properties (IOPs and AOPs) of Tampa Bay (Florida, USA) were measured during fourteen cruises between February 1998 and October 2010 to understand how these properties relate to one another and what controls light absorption and diffuse attenuation in this moderately sized (˜1000 km2), shallow estuary (average depth ˜4 m). The IOPs and AOPs included: 1) absorption coefficients of three optically significant constituents: phytoplankton pigments, detrital particles, and colored dissolved organic matter (CDOM); 2) particulate backscattering coefficients; 3) chlorophyll-a concentrations; 4) above-water remote sensing reflectance; 5) downwelling diffuse attenuation coefficients (Kd) at eight wavelengths and photosynthetically active radiation (PAR). Results showed substantial variability in all IOPs and AOPs in both space and time, with most IOPs spanning more than two orders of magnitude and showing strong co-variations. Of all four bay segments, Old Tampa Bay showed unique optical characteristics. During the wet season, the magnitude of blue-green-light absorption was dominated by CDOM, while during the dry season all three constituents contributed significantly. However, the variability in Kd (PAR, 490 nm, 555 nm) was driven mainly by the variability of detrital particles and phytoplankton as opposed to CDOM. This observation explained, at least to first order, why a nutrient reduction management strategy used by the Tampa Bay Estuary Program since the 1990s led to improved water clarity in most of Tampa Bay. The findings of this study provided the optical basis to fine tune existing or develop new algorithms to estimate the various optical water quality parameters from space.
Enhanced light absorption by mixed source black and brown carbon particles in UK winter
Liu, Shang; Aiken, Allison C.; Gorkowski, Kyle; Dubey, Manvendra K.; Cappa, Christopher D.; Williams, Leah R.; Herndon, Scott C.; Massoli, Paola; Fortner, Edward C.; Chhabra, Puneet S.; Brooks, William A.; Onasch, Timothy B.; Jayne, John T.; Worsnop, Douglas R.; China, Swarup; Sharma, Noopur; Mazzoleni, Claudio; Xu, Lu; Ng, Nga L.; Liu, Dantong; Allan, James D.; Lee, James D.; Fleming, Zoë L.; Mohr, Claudia; Zotter, Peter; Szidat, Sönke; Prévôt, André S. H.
2015-01-01
Black carbon (BC) and light-absorbing organic carbon (brown carbon, BrC) play key roles in warming the atmosphere, but the magnitude of their effects remains highly uncertain. Theoretical modelling and laboratory experiments demonstrate that coatings on BC can enhance BC's light absorption, therefore many climate models simply assume enhanced BC absorption by a factor of ∼1.5. However, recent field observations show negligible absorption enhancement, implying models may overestimate BC's warming. Here we report direct evidence of substantial field-measured BC absorption enhancement, with the magnitude strongly depending on BC coating amount. Increases in BC coating result from a combination of changing sources and photochemical aging processes. When the influence of BrC is accounted for, observationally constrained model calculations of the BC absorption enhancement can be reconciled with the observations. We conclude that the influence of coatings on BC absorption should be treated as a source and regionally specific parameter in climate models. PMID:26419204
Enhanced light absorption by mixed source black and brown carbon particles in UK winter
Liu, Shang; Aiken, Allison C.; Gorkowski, Kyle; ...
2015-09-30
We report that black carbon (BC) and light-absorbing organic carbon (brown carbon, BrC) play key roles in warming the atmosphere, but the magnitude of their effects remains highly uncertain. Theoretical modelling and laboratory experiments demonstrate that coatings on BC can enhance BC’s light absorption, therefore many climate models simply assume enhanced BC absorption by a factor of ~1.5. However, recent field observations show negligible absorption enhancement, implying models may overestimate BC’s warming. Here we report direct evidence of substantial field-measured BC absorption enhancement, with the magnitude strongly depending on BC coating amount. Increases in BC coating result from a combinationmore » of changing sources and photochemical aging processes. When the influence of BrC is accounted for, observationally constrained model calculations of the BC absorption enhancement can be reconciled with the observations. In conclusion, we find that the influence of coatings on BC absorption should be treated as a source and regionally specific parameter in climate models.« less
Intersubband absorption in Si(1-x)Ge(x/Si superlattices for long wavelength infrared detectors
NASA Technical Reports Server (NTRS)
Rajakarunanayake, Yasantha; Mcgill, Tom C.
1990-01-01
Researchers calculated the absorption strengths for intersubband transitions in n-type Si(1-x)Ge(x)/Si superlattices. These transitions can be used for the detection of long-wavelength infrared radiation. A significant advantage in Si(1-x)Ge(x)/Si supperlattice detectors is the ability to detect normally incident light; in Ga(1-x)Al(x)As/GaAs superlattices, intersubband absorption is possible only if the incident light contains a polarization component in the growth direction of the superlattice. Researchers present detailed calculation of absorption coefficients, and peak absorption wavelengths for (100), (111) and (110) Si(1-x)Ge(x)/Si superlattices. Peak absorption strengths of about 2000 to 6000 cm(exp -1) were obtained for typical sheet doping concentrations (approx. equals 10(exp 12)cm(exp -2)). Absorption comparable to that in Ga(1-x)Al(x)As/GaAs superlattice detectors, compatibility with existing Si technology, and the ability to detect normally incident light make these devices promising for future applications.
Structuring β-Ga2O3 photonic crystal photocatalyst for efficient degradation of organic pollutants.
Li, Xiaofang; Zhen, Xiuzheng; Meng, Sugang; Xian, Jiangjun; Shao, Yu; Fu, Xianzhi; Li, Danzhen
2013-09-03
Coupling photocatalysts with photonic crystals structure is based on the unique property of photonic crystals in confining, controlling, and manipulating the incident photons. This combination enhances the light absorption in photocatalysts and thus greatly improves their photocatalytic performance. In this study, Ga2O3 photonic crystals with well-arranged skeleton structures were prepared via a dip-coating infiltration method. The positions of the electronic band absorption for Ga2O3 photonic crystals could be made to locate on the red edge, on the blue edge, and away from the edge of their photonic band gaps by changing the pore sizes of the samples, respectively. Particularly, the electronic band absorption of the Ga2O3 photonic crystal with a pore size of 135 nm was enhanced more than other samples by making it locate on the red edge of its photonic band gap, which was confirmed by the higher instantaneous photocurrent and photocatalytic activity for the degradation of various organic pollutants under ultraviolet light irradiation. Furthermore, the degradation mechanism over Ga2O3 photonic crystals was discussed. The design of Ga2O3 photonic crystals presents a prospective application of photonic crystals in photocatalysis to address light harvesting and quantum efficiency problems through manipulating photons or constructing photonic crystal structure as groundwork.
Wamsley, Paula R.; Weimer, Carl S.; Nelson, Loren D.; O'Brien, Martin J.
2003-01-01
An oil and gas exploration system and method for land and airborne operations, the system and method used for locating subsurface hydrocarbon deposits based upon a remote detection of trace amounts of gases in the atmosphere. The detection of one or more target gases in the atmosphere is used to indicate a possible subsurface oil and gas deposit. By mapping a plurality of gas targets over a selected survey area, the survey area can be analyzed for measurable concentration anomalies. The anomalies are interpreted along with other exploration data to evaluate the value of an underground deposit. The system includes a differential absorption lidar (DIAL) system with a spectroscopic grade laser light and a light detector. The laser light is continuously tunable in a mid-infrared range, 2 to 5 micrometers, for choosing appropriate wavelengths to measure different gases and avoid absorption bands of interference gases. The laser light has sufficient optical energy to measure atmospheric concentrations of a gas over a path as long as a mile and greater. The detection of the gas is based on optical absorption measurements at specific wavelengths in the open atmosphere. Light that is detected using the light detector contains an absorption signature acquired as the light travels through the atmosphere from the laser source and back to the light detector. The absorption signature of each gas is processed and then analyzed to determine if a potential anomaly exists.
Light Trapping, Absorption and Solar Energy Harvesting by Artificial Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
John, Sajeev
2014-06-04
We have studied light trapping in conical pore silicon photonic crystal architectures. We find considerable improvement in solar absorption (relative to nanowires) in a square lattice of conical nano-pores.
Control of NO concentration in solutions of nitrosothiol compounds by light.
Zhelyaskov, V R; Gee, K R; Godwin, D W
1998-03-01
We studied the thermal and photolytic decomposition of two S-nitrosothiols, S-nitrosoglutathione (GSNO) and S-nitroso-N-acetylpenicillamine (SNAP), in water or propanol solutions. A "concentration clamp" (relatively constant concentration of NO as a function of time) could be implemented in a closed volume by varying the pH, concentration of nitrovasodilator and intensity of the light source. Depending on the conditions, the light either stimulated NO release or sharply decreased NO concentration in the test solutions. Changes in the absorption spectra of GSNO solutions were monitored as a function of light exposure. Generation of superoxide as a product of a photolytic decomposition reaction of S-nitrosothiols and further oxidation of NO is the most likely mechanism for light suppression of NO concentration.
Are non-linearity effects of absorption important for MAX-DOAS observations?
NASA Astrophysics Data System (ADS)
Pukite, Janis; Wang, Yang; Wagner, Thomas
2017-04-01
For scattered light observations the absorption optical depth depends non-linearly on the trace gas concentrations if their absorption is strong. This is the case because the Beer-Lambert law is generally not applicable for scattered light measurements due to many (i.e. more than one) light paths contributing to the measurement. While in many cases a linear approximation can be made, for scenarios with strong absorption non-linear effects cannot always be neglected. This is especially the case for observation geometries with spatially extended and diffuse light paths, especially in satellite limb geometry but also for nadir measurements as well. Fortunately the effects of non-linear effects can be quantified by means of expanding the radiative transfer equation in a Taylor series with respect to the trace gas absorption coefficients. Herewith if necessary (1) the higher order absorption structures can be described as separate fit parameters in the DOAS fit and (2) the algorithm constraints of retrievals of VCDs and profiles can be improved by considering higher order sensitivity parameters. In this study we investigate the contribution of the higher order absorption structures for MAX-DOAS observation geometry for different atmospheric and ground properties (cloud and aerosol effects, trace gas amount, albedo) and geometry (different Sun and viewing angles).
Controlling Quantum-dot Light Absorption and Emission by a Surface-plasmon Field
2014-11-03
as well as photon conversion by a surface-plasmon- polariton near field is explored for a quantum dot located above a metal surface. In contrast to the...2009). 7. D. Dini, R. Köhler, A. Tredicucci, G. Biasiol, and L. Sorba, “Microcavity polariton splitting of intersubband transitions,” Phys. Rev. Lett...S. De Liberato, C. Ciuti, P. Klang, G. Strasser, and C. Sirtori, “Ultrastrong light-matter coupling regime with polariton dots,” Phys. Rev. Lett. 105
NASA Astrophysics Data System (ADS)
Wang, Gang; Liu, Zhiduo; Zhang, Nan; Li, Jiurong; Xu, Anli; Xiang, Pengcheng; Hu, Xurui; Guo, Qinglei; Chen, Da
2018-04-01
We demonstrate the ultra-light weight and super-hydrophilic hydroxyl modified poly (m-phenylenediamine) (Hy-PmPD) aerogel by utilizing simple oxygen plasma treatment. The average pore size and specific surface area are obtained as 5.21 nm and 671 m2 g‑1, respectively. Due to the large amount of oxygen-containing groups (e.g., C–OH and N–OH), the contact angle of Hy-PmPD for water is about 7.2°, which indicates the super-hydrophilic ability of Hy-PmPD. The large surface area and super-hydrophilic nature of ultra- light weight Hy-PmPD aerogel conclusively certify that high absorption capacities and ultrafast absorption rate for water. As a result, the Hy-PmPD aerogel enables to separate crude oil and water. Additionally, the Hy-PmPD aerogel indicates good biocompatibility that can be implanted as the bio-platform for monitoring the cell culture behavior. This work may provide a facile and effective strategy for the applications in the absorption or removal of organics, particularly in environmental protection, pollution control, as well as noninvasive to the microflora.
NASA Astrophysics Data System (ADS)
Wen, Z. D.; Song, K. S.; Zhao, Y.; Du, J.; Ma, J. H.
2015-06-01
Spectral characteristics of chromophoric dissolved organic matter (CDOM) were examined in conjunction with environmental factors in the waters of 22 rivers and 26 terminal waters in Hulun Buir plateau, northeast China. Dissolved organic carbon (DOC), total nitrogen (TN), and total phosphorous (TP) were significantly higher in terminal waters than rivers waters (p < 0.01). Principal component analysis (PCA) indicated that non-water light absorption and anthropogenic nutrient disturbances might be the causes of the diversity of water quality parameters in Hulun Buir plateau. CDOM absorption in river waters was significantly lower than terminal waters (p < 0.01). Analysis of ratio of absorption at 250-365 nm (E250 : 365), specific UV absorbance (SUVA254), and spectral slope ratio (Sr) indicated that CDOM in river waters had higher aromaticity, molecular weight, and vascular plant contribution than in terminal waters. Furthermore, results showed that DOC concentration, CDOM light absorption, and the proportion of autochthonous sources of CDOM in plateau waters were all higher than in other freshwater rivers reported in the literature. The strong evapoconcentration, intense ultraviolet irradiance and landscape features of Hulun Buir plateau may be responsible for the above phenomenon. Redundancy analysis (RDA) indicated that the environmental variables TSM, TN, and EC had a strong correlation with light absorption characteristics, followed by TDS and chlorophyll a. In most sampling locations, CDOM was the dominant non-water light-absorbing substance. Light absorption by non-algal particles often exceeded that by phytoplankton in the plateau waters. Study of these optical-physicochemical correlations is helpful in the evaluation of the potential influence of water quality factors on non-water light absorption in cold plateau water environments. And the study on organic carbon in plateau lakes had a vital contribution to global carbon balance estimation.
Chemical and Optical Properties of Water-Soluble Organic Aerosols from Biomass Burning Emissions
NASA Astrophysics Data System (ADS)
Yu, J. M.; Park, S.; Cho, S. Y.
2016-12-01
Light absorption property by organic aerosols is an important parameter to determine their radiative forcing on global and regional scales. However, the optical measurements by light absorbing aerosols from biomass burning emissions are rather lacking. This study explored the chemical and light-absorption properties of humic-like substances (HULIS) from biomass burning aerosols of three types; rice straw (RS), pine needles (PN), and sesame stem (SS). Water-soluble organic carbon (WSOC) contributed 42.5, 42.0, and 57.0% to the OC concentrations of the RS, PN, and SS emissions, respectively. Respective HULIS (=1.94´HULIS-C) concentrations accounted for 29.5±2.0, 15.3±3.1, and 25.8±4.0% of PM2.5, and contributed 63±5, 36±10, and 51±8% to WSOC concentration. Absorption Ångström exponents (AAEs) of the WSOC fitted between 300 and 400 nm wavelengths were 7.4-8.3, indicating no significant differences among the biomass types. These AAEs are similar to those reported for aqueous extracts of biomass burning HULIS and fresh secondary organic aerosols from ozonolysis of terpenes. HULIS, which is a hydrophobic part of WSOC and a significant fraction of brown carbon, showed absorption spectra similar to brown carbon. WSOC mass absorption efficiency (MAE365) at 365 nm were 1.37, 0.86, and 1.38 m2/g×C for RS, PN, and SS burning aerosols, respectively. The MAE values by WSOC were less than 10% of MAE caused by light-absorbing black carbon. The light absorption of the water extracts at 365 nm indicated that light absorption was more strongly associated with HULIS from biomass burning emissions than with the hydrophilic WSOC fraction.
Photodetector with enhanced light absorption
Kane, James
1985-01-01
A photodetector including a light transmissive electrically conducting layer having a textured surface with a semiconductor body thereon. This layer traps incident light thereby enhancing the absorption of light by the semiconductor body. A photodetector comprising a textured light transmissive electrically conducting layer of SnO.sub.2 and a body of hydrogenated amorphous silicon has a conversion efficiency about fifty percent greater than that of comparative cells. The invention also includes a method of fabricating the photodetector of the invention.
Light Absorption of Stratospheric Aerosols: Long-Term Trend and Contribution by Aircraft
NASA Technical Reports Server (NTRS)
Pueschel , R. F.; Gore, Waren J. Y. (Technical Monitor)
1997-01-01
Measurements of aerosol light-absorption coefficients are useful for studies of radiative transfer and heating rates. Ogren appears to have published the first light- absorption coefficients in the stratosphere in 1981, followed by Clarke in 1983 and Pueschel in 1992. Because most stratospheric soot appears to be due to aircraft operations, application of an aircraft soot aerosol emission index to projected fuel consumption suggests a threefold increase of soot loading and light absorption by 2025. Together, those four data sets indicate an increase in mid-visible light extinction at a rate of 6 % per year. This trend is similar to the increase per year of sulfuric acid aerosol and of commercial fleet size. The proportionality between stepped-up aircraft operations above the tropopause and increases in stratospheric soot and sulfuric acid aerosol implicate aircraft as a source of stratospheric pollution. Because the strongly light-absorbing soot and the predominantly light-scattering sulfuric acid aerosol increase at similar rates, however, the mid-visible stratospheric aerosol single scatter albedo is expected to remain constant and not approach a critical value of 0.98 at which stratospheric cooling could change to warming.
Photoswitchable non-fluorescent thermochromic dye-nanoparticle hybrid probes.
Harrington, Walter N; Haji, Mwafaq R; Galanzha, Ekaterina I; Nedosekin, Dmitry A; Nima, Zeid A; Watanabe, Fumiya; Ghosh, Anindya; Biris, Alexandru S; Zharov, Vladimir P
2016-11-08
Photoswitchable fluorescent proteins with controllable light-dark states and spectral shifts in emission in response to light have led to breakthroughs in the study of cell biology. Nevertheless, conventional photoswitching is not applicable for weakly fluorescent proteins and requires UV light with low depth penetration in bio-tissue. Here we introduce a novel concept of photoswitchable hybrid probes consisting of thermochromic dye and absorbing nanoparticles, in which temperature-sensitive light-dark states and spectral shifts in absorption can be switched through controllable photothermal heating of doped nanoparticles. The proof-of-concept is demonstrated through the use of two different types of temperature-sensitive dyes doped with magnetic nanoparticles and reversibly photoswitched by a near-infrared laser. Photoacoustic imaging revealed the high contrast of these probes, which is sufficient for their visualization in cells and deep tissue. Our results suggest that these new photoswitchable multicolour probes can be used for multimodal cellular diagnostics and potentially for magnetic and photothermal therapy.
Photoswitchable non-fluorescent thermochromic dye-nanoparticle hybrid probes
NASA Astrophysics Data System (ADS)
Harrington, Walter N.; Haji, Mwafaq R.; Galanzha, Ekaterina I.; Nedosekin, Dmitry A.; Nima, Zeid A.; Watanabe, Fumiya; Ghosh, Anindya; Biris, Alexandru S.; Zharov, Vladimir P.
2016-11-01
Photoswitchable fluorescent proteins with controllable light-dark states and spectral shifts in emission in response to light have led to breakthroughs in the study of cell biology. Nevertheless, conventional photoswitching is not applicable for weakly fluorescent proteins and requires UV light with low depth penetration in bio-tissue. Here we introduce a novel concept of photoswitchable hybrid probes consisting of thermochromic dye and absorbing nanoparticles, in which temperature-sensitive light-dark states and spectral shifts in absorption can be switched through controllable photothermal heating of doped nanoparticles. The proof-of-concept is demonstrated through the use of two different types of temperature-sensitive dyes doped with magnetic nanoparticles and reversibly photoswitched by a near-infrared laser. Photoacoustic imaging revealed the high contrast of these probes, which is sufficient for their visualization in cells and deep tissue. Our results suggest that these new photoswitchable multicolour probes can be used for multimodal cellular diagnostics and potentially for magnetic and photothermal therapy.
Inagaki, Yuki; Mutoh, Katsuya; Abe, Jiro
2018-06-07
Non-linear photoresponses against excitation light intensity are important for the development of attractive photofunctional materials exhibiting high spatial selective photoswitching that is not affected by weak background light. Biphotochromic systems composed of two fast photochromic units have the potential to show a stepwise two-photon absorption process in which the optical properties can be non-linearly controlled by changing the excitation light conditions. Herein, we designed and synthesized novel bisnaphthopyran derivatives containing fast photoswitchable naphthopyran units. The bisnaphthopyran derivatives show a stepwise two-photon-induced photochromic reaction upon UV light irradiation accompanied by a drastic color change due to a large change in the molecular structure between the one-photon product and the two-photon product. Consequently, the color of the bisnaphthopyran derivatives can be non-linearly controlled by changing the excitation intensity. This characteristic photochromic property of the biphotochromic system provides important insight into advanced photoresponsive materials.
Optical Addressing of Multi-Colour Photochromic Material Mixture for Volumetric Display.
Hirayama, Ryuji; Shiraki, Atsushi; Naruse, Makoto; Nakamura, Shinichiro; Nakayama, Hirotaka; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi
2016-08-16
This is the first study to demonstrate that colour transformations in the volume of a photochromic material (PM) are induced at the intersections of two control light channels, one controlling PM colouration and the other controlling decolouration. Thus, PM colouration is induced by position selectivity, and therefore, a dynamic volumetric display may be realised using these two control lights. Moreover, a mixture of multiple PM types with different absorption properties exhibits different colours depending on the control light spectrum. Particularly, the spectrum management of the control light allows colour-selective colouration besides position selectivity. Therefore, a PM-based, full-colour volumetric display is realised. We experimentally construct a mixture of two PM types and validate the operating principles of such a volumetric display system. Our system is constructed simply by mixing multiple PM types; therefore, the display hardware structure is extremely simple, and the minimum size of a volume element can be as small as the size of a molecule. Volumetric displays can provide natural three-dimensional (3D) perception; therefore, the potential uses of our system include high-definition 3D visualisation for medical applications, architectural design, human-computer interactions, advertising, and entertainment.
Optical Addressing of Multi-Colour Photochromic Material Mixture for Volumetric Display
NASA Astrophysics Data System (ADS)
Hirayama, Ryuji; Shiraki, Atsushi; Naruse, Makoto; Nakamura, Shinichiro; Nakayama, Hirotaka; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi
2016-08-01
This is the first study to demonstrate that colour transformations in the volume of a photochromic material (PM) are induced at the intersections of two control light channels, one controlling PM colouration and the other controlling decolouration. Thus, PM colouration is induced by position selectivity, and therefore, a dynamic volumetric display may be realised using these two control lights. Moreover, a mixture of multiple PM types with different absorption properties exhibits different colours depending on the control light spectrum. Particularly, the spectrum management of the control light allows colour-selective colouration besides position selectivity. Therefore, a PM-based, full-colour volumetric display is realised. We experimentally construct a mixture of two PM types and validate the operating principles of such a volumetric display system. Our system is constructed simply by mixing multiple PM types; therefore, the display hardware structure is extremely simple, and the minimum size of a volume element can be as small as the size of a molecule. Volumetric displays can provide natural three-dimensional (3D) perception; therefore, the potential uses of our system include high-definition 3D visualisation for medical applications, architectural design, human-computer interactions, advertising, and entertainment.
Suppression of population transport and control of exciton distributions by entangled photons
Schlawin, Frank; Dorfman, Konstantin E.; Fingerhut, Benjamin P.; Mukamel, Shaul
2013-01-01
Entangled photons provide an important tool for secure quantum communication, computing and lithography. Low intensity requirements for multi-photon processes make them idealy suited for minimizing damage in imaging applications. Here we show how their unique temporal and spectral features may be used in nonlinear spectroscopy to reveal properties of multiexcitons in chromophore aggregates. Simulations demostrate that they provide unique control tools for two-exciton states in the bacterial reaction centre of Blastochloris viridis. Population transport in the intermediate single-exciton manifold may be suppressed by the absorption of photon pairs with short entanglement time, thus allowing the manipulation of the distribution of two-exciton states. The quantum nature of the light is essential for achieving this degree of control, which cannot be reproduced by stochastic or chirped light. Classical light is fundamentally limited by the frequency-time uncertainty, whereas entangled photons have independent temporal and spectral characteristics not subjected to this uncertainty. PMID:23653194
Suspended-Sediment Impacts on Light-limited Productivity in the Delaware Estuary
NASA Astrophysics Data System (ADS)
McSweeney, J.; Chant, R. J.; Wilkin, J.; Sommerfield, C. K.
2016-12-01
The Delaware Estuary has a history of high anthropogenic nutrient loadings, but has been classified as a high-nutrient, low-growth system due persistent light limitations caused by turbidity. While the biogeochemical implications of light limitation in turbid estuaries has been well-studied, there has been minimal effort focused on the connectivity between hydrodynamics, sediment dynamics, and light-limitation. Our understanding of sediment dynamics in the Delaware Estuary has advanced significantly in the last decade, and this study provides insight about how the spatiotemporal variability of the estuarine turbidity maximum controls the light available for primary productivity. This analysis uses data from eight along-estuary cruises from March, June, September, and December 2010 and 2011 to look at the seasonality of suspended sediment and chlorophyll distributions. By estimating the absorption due to sediment under a range of environmental conditions, we describe how the movement of the turbidity maximum affects light availability. We also use an idealized 2-dimensional Regional Ocean Modeling System (ROMS) numerical model to evaluate how river discharge and spring-neap variability modulate the location of phytoplankton blooms. We conclude that high river flows and neap tides can drive stratification that is strong enough to prevent sediment from being resuspended into the surface layer, thus providing light conditions favorable for primary productivity. This study sheds light on the importance of sediment in the limiting primary productivity, and the role of stratification in promoting production, highlighting the potential limitations of biogeochemical models that do not account for sediment absorption.
Numerical modeling and analytical evaluation of light absorption by gold nanostars
NASA Astrophysics Data System (ADS)
Zarkov, Sergey; Akchurin, Georgy; Yakunin, Alexander; Avetisyan, Yuri; Akchurin, Garif; Tuchin, Valery
2018-04-01
In this paper, the regularity of local light absorption by gold nanostars (AuNSts) model is studied by method of numerical simulation. The mutual diffraction influence of individual geometric fragments of AuNSts is analyzed. A comparison is made with an approximate analytical approach for estimating the average bulk density of absorbed power and total absorbed power by individual geometric fragments of AuNSts. It is shown that the results of the approximate analytical estimate are in qualitative agreement with the numerical calculations of the light absorption by AuNSts.
Miniaturized differential optical absorption spectroscopy (DOAS) system for the analysis of NO2
NASA Astrophysics Data System (ADS)
Morales, J. Alberto; Walsh, James E.; Treacy, Jack E.; Garland, Wendy E.
2003-03-01
Current trends in optical design engineering are leading to the development of new systems which can analyze atmospheric pollutants in a fast and easy way, allowing remote-sensing and miniaturization at a low cost. A small portable fiber-optic based system is presented for the spectroscopic analysis of a common gas pollutant, NO2. The novel optical set-up described consists of a small telescope that collects ultraviolet-visible light from a xenon lamp located 600 m away. The light is coupled into a portable diode array spectrometer through a fiber-optic cable and the system is controlled by a lap-top computer where the spectra are recorded. Using the spectrum of the lamp as a reference, the absorption spectrum of the open path between the lamp and the telescope is calculated. Known absorption features in the NO2 spectrum are used to calculate the concentration of the pollutant using the principles of Differential Optical Absorption Spectroscopy (DOAS). Calibration is carried by using sample gas bags of known concentration of the pollutant. The results obtained demonstrate that it is possible to detect and determine NO2 concentrations directly from the atmosphere at typical environment levels by using an inexpensive field based fiber-optic spectrometer system.
[Construction and application of an onboard absorption analyzer device for CDOM].
Lin, Jun-Fang; Sun, Zhao-Hua; Cao, Wen-Xi; Hu, Shui-Bo; Xu, Zhan-Tang
2013-04-01
Colored dissolved organic matter (CDOM) plays an important role in marine ecosystems. In order to solve the current problems in measurement of CDOM absorption, an automated onboard analyzer based on liquid core waveguides (Teflon AF LWCC/LCW) was constructed. This analyzer has remarkable characteristics including adjusted optical pathlength, wide measurement range, and high sensitivity. The model of filtration and injection can implement the function of automated filtration, sample injection, and LWCC cleaning. The LabVIEW software platform can efficiently control the running state of the analyzer and acquire real time data including light absorption spectra, GPS data, and CTW data. By the comparison experiments and shipboard measurements, it was proved that the analyzer was reliable and robust.
Song, Jeong-Gyu; Ryu, Gyeong Hee; Lee, Su Jeong; Sim, Sangwan; Lee, Chang Wan; Choi, Taejin; Jung, Hanearl; Kim, Youngjun; Lee, Zonghoon; Myoung, Jae-Min; Dussarrat, Christian; Lansalot-Matras, Clement; Park, Jusang; Choi, Hyunyong; Kim, Hyungjun
2015-01-01
The effective synthesis of two-dimensional transition metal dichalcogenides alloy is essential for successful application in electronic and optical devices based on a tunable band gap. Here we show a synthesis process for Mo1−xWxS2 alloy using sulfurization of super-cycle atomic layer deposition Mo1−xWxOy. Various spectroscopic and microscopic results indicate that the synthesized Mo1−xWxS2 alloys have complete mixing of Mo and W atoms and tunable band gap by systematically controlled composition and layer number. Based on this, we synthesize a vertically composition-controlled (VCC) Mo1−xWxS2 multilayer using five continuous super-cycles with different cycle ratios for each super-cycle. Angle-resolved X-ray photoemission spectroscopy, Raman and ultraviolet–visible spectrophotometer results reveal that a VCC Mo1−xWxS2 multilayer has different vertical composition and broadband light absorption with strong interlayer coupling within a VCC Mo1−xWxS2 multilayer. Further, we demonstrate that a VCC Mo1−xWxS2 multilayer photodetector generates three to four times greater photocurrent than MoS2- and WS2-based devices, owing to the broadband light absorption. PMID:26204328
NASA Astrophysics Data System (ADS)
Gyawali, M.; Arnott, W. P.; Lewis, K.; Moosmüller, H.
2009-10-01
Hundreds of wildfires in Northern California were sparked by lightning during the summer of 2008, resulting in downwind smoke for the months of June and July. Comparisons are reported for aerosol optics measurements in Reno, Nevada made during the very smoky month of July and the relatively clean month of August. Photoacoustic instruments equipped with integrating nephelometers were used to measure aerosol light scattering and absorption coefficients at wavelengths of 405 nm and 870 nm, revealing a strong variation of aerosol light absorption with wavelength. Insight on fuels burned is gleaned from comparison of Ångström exponents of absorption (AEA) versus single scattering albedo (SSA) of the ambient measurements with laboratory biomass smoke measurements for many fuels. Measurements during the month of August, which were largely unaffected by fire smoke, exhibit surprisingly low AEA for aerosol light absorption when the SSA is highest, again likely as a consequence of the underappreciated wavelength dependence of aerosol light absorption by particles coated with non-absorbing organic and inorganic matter. Coated sphere calculations were used to show that AEA as large as 1.6 are possible for wood smoke even with non-absorbing organic coatings on black carbon cores, suggesting care be exercised when diagnosing AEA.
Wavefront control with a spatial light modulator containing dual-frequency liquid crystal
NASA Astrophysics Data System (ADS)
Gu, Dong-Feng; Winker, Bruce; Wen, Bing; Taber, Don; Brackley, Andrew; Wirth, Allan; Albanese, Marc; Landers, Frank
2004-10-01
A versatile, scalable wavefront control approach based upon proven liquid crystal (LC) spatial light modulator (SLM) technology was extended for potential use in high-energy near-infrared laser applications. The reflective LC SLM module demonstrated has a two-inch diameter active aperture with 812 pixels. Using an ultra-low absorption transparent conductor in the LC SLM, a high laser damage threshold was demonstrated. Novel dual frequency liquid crystal materials and addressing schemes were implemented to achieve fast switching speed (<1ms at 1.31 microns). Combining this LCSLM with a novel wavefront sensing method, a closed loop wavefront controller is being demonstrated. Compared to conventional deformable mirrors, this non-mechanical wavefront control approach offers substantial improvements in speed (bandwidth), resolution, power consumption and system weight/volume.
NASA Astrophysics Data System (ADS)
Prabhakaran, Sai Shri; Sahu, Sanjay Kumar; Dev, Pravin Jeba; Shanmugam, Palanisamy
2018-05-01
Spectral absorption coefficients of particulate (algal and non-algal components) and dissolved substances are modelled and combined with the pure seawater component to determine the total light absorption coefficients of seawater in the Bay of Bengal. Two parameters namely chlorophyll-a (Chl) concentration and turbidity were measured using commercially available instruments with high sampling rates. For modelling the light absorption coefficients of oceanic waters, the measured data are classified into two broad groups - algal dominant and non-algal particle (NAP) dominant. With these criteria the individual absorption coefficients of phytoplankton and NAP were established based on their concentrations using an iterative method. To account for the spectral dependence of absorption by phytoplankton, the wavelength-dependent coefficients were introduced into the model. The CDOM absorption was determined by subtracting the individual absorption coefficients of phytoplankton and NAP from the measured total absorption data and then related to the Chl concentration. Validity of the model is assessed based on independent in-situ data from certain discrete locations in the Bay of Bengal. The total absorption coefficients estimated using the new model by considering the contributions of algal, non-algal and CDOM have good agreement with the measured total absorption data with the error range of 6.9 to 28.3%. Results obtained by the present model are important for predicting the propagation of the radiant energy within the ocean and interpreting remote sensing observation data.
NASA Astrophysics Data System (ADS)
Liu, Songde; Smith, Zach; Xu, Ronald X.
2016-10-01
There is a pressing need for a phantom standard to calibrate medical optical devices. However, 3D printing of tissue-simulating phantom standard is challenged by lacking of appropriate methods to characterize and reproduce surface topography and optical properties accurately. We have developed a structured light imaging system to characterize surface topography and optical properties (absorption coefficient and reduced scattering coefficient) of 3D tissue-simulating phantoms. The system consisted of a hyperspectral light source, a digital light projector (DLP), a CMOS camera, two polarizers, a rotational stage, a translation stage, a motion controller, and a personal computer. Tissue-simulating phantoms with different structural and optical properties were characterized by the proposed imaging system and validated by a standard integrating sphere system. The experimental results showed that the proposed system was able to achieve pixel-level optical properties with a percentage error of less than 11% for absorption coefficient and less than 7% for reduced scattering coefficient for phantoms without surface curvature. In the meanwhile, 3D topographic profile of the phantom can be effectively reconstructed with an accuracy of less than 1% deviation error. Our study demonstrated that the proposed structured light imaging system has the potential to characterize structural profile and optical properties of 3D tissue-simulating phantoms.
Method for making a photodetector with enhanced light absorption
Kane, James
1987-05-05
A photodetector including a light transmissive electrically conducting layer having a textured surface with a semiconductor body thereon. This layer traps incident light thereby enhancing the absorption of light by the semiconductor body. A photodetector comprising a textured light transmissive electrically conducting layer of SnO.sub.2 and a body of hydrogenated amorphous silicon has a conversion efficiency about fifty percent greater than that of comparative cells. The invention also includes a method of fabricating the photodetector of the invention.
NASA Astrophysics Data System (ADS)
Zhou, Peng; Zheng, Gaige
2018-04-01
The efficiency of graphene-based optoelectronic devices is typically limited by the poor absolute absorption of light. A hybrid structure of monolayer graphene with cylindrical titanium dioxide (TiO2) array and aluminum oxide (Al2O3) spacer layer on aluminum (Al) substrate has been proposed to enhance the absorption for two-dimensional (2D) materials. By combining dielectric array with metal substrate, the structure achieves multiple absorption peaks with near unity absorbance at near-infrared wavelengths due to the resonant effect of dielectric array. Completed monolayer graphene is utilized in the design without any demand of manufacture process to form the periodic patterns. Further analysis indicates that the near-field enhancement induced by surface modes gives rise to the high absorption. This favorable field enhancement and tunability of absorption not only open up new approaches to accelerate the light-graphene interaction, but also show great potential for practical applications in high-performance optoelectronic devices, such as modulators and sensors.
Sensitivity of light interaction computer model to the absorption properties of skin
NASA Astrophysics Data System (ADS)
Karsten, A. E.; Singh, A.
2011-06-01
Light based treatments offer major benefits to patients. Many of the light based treatments or diagnostic techniques need to penetrate the skin to reach the site of interest. Human skin is a highly scattering medium and the melanin in the epidermal layer of the skin is a major absorber of light in the visible and near infrared wavelength bands. The effect of increasing absorption in the epidermis is tested on skin simulating phantoms as well as on a computer model. Changing the absorption coefficient between 0.1 mm-1 and 1.0 mm-1 resulted in a decrease of light reaching 1 mm into the sample. Transmission through a 1 mm thick sample decreased from 48% to 13% and from 31% to 2% for the different scattering coefficients.
Mapping Nanoscale Absorption of Femtosecond Laser Pulses Using Plasma Explosion Imaging
2014-08-06
Libby, S. B.; et al. Observation and Control of Shock Waves in Indivi- dual Nanoplasmas . Phys. Rev. Lett. 2014, 112, 115004. 17. Zhang, X.; Smith, K. a...Laser Light. Phys. Plasmas 2005, 12, 056703. 24. Lezius, M.; Dobosz, S. Hot Nanoplasmas from Intense Laser Irradiation of Argon Clusters. J. Phys. B
Method for measuring changes in light absorption of highly scattering media
Bigio, Irving J.; Johnson, Tamara M.; Mourant, Judith R.
2002-01-01
The noninvasive measurement of variations in absorption that are due to changes in concentrations of biochemically relevant compounds in tissue is important in many clinical settings. One problem with such measurements is that the pathlength traveled by the collected light through the tissue depends on the scattering properties of the tissue. It is demonstrated, using both Monte Carlo simulations and experimental measurements, that for an appropriate separation between light-delivery and light-collection fibers, the pathlength of the collected photons is insensitive to scattering parameters for the range of parameters typically found in tissue. This is important for developing rapid, noninvasive, inexpensive, and accurate methods for measuring absorption changes in tissue.
Analytical modeling of light transport in scattering materials with strong absorption.
Meretska, M L; Uppu, R; Vissenberg, G; Lagendijk, A; Ijzerman, W L; Vos, W L
2017-10-02
We have investigated the transport of light through slabs that both scatter and strongly absorb, a situation that occurs in diverse application fields ranging from biomedical optics, powder technology, to solid-state lighting. In particular, we study the transport of light in the visible wavelength range between 420 and 700 nm through silicone plates filled with YAG:Ce 3+ phosphor particles, that even re-emit absorbed light at different wavelengths. We measure the total transmission, the total reflection, and the ballistic transmission of light through these plates. We obtain average single particle properties namely the scattering cross-section σ s , the absorption cross-section σ a , and the anisotropy factor µ using an analytical approach, namely the P3 approximation to the radiative transfer equation. We verify the extracted transport parameters using Monte-Carlo simulations of the light transport. Our approach fully describes the light propagation in phosphor diffuser plates that are used in white LEDs and that reveal a strong absorption (L/l a > 1) up to L/l a = 4, where L is the slab thickness, l a is the absorption mean free path. In contrast, the widely used diffusion theory fails to describe this parameter range. Our approach is a suitable analytical tool for industry, since it provides a fast yet accurate determination of key transport parameters, and since it introduces predictive power into the design process of white light emitting diodes.
NASA Astrophysics Data System (ADS)
Paredes-Miranda, G.; Arnott, W. P.; Marley, N. A.; Gaffney, J. S.
2007-05-01
As part of the Megacity Impacts on Regional and Global Environments, MIRAGE-Mex deployment to Mexico City in the period of 30 days, March 2006, a suite of photoacoustic spectrometers (PAS; W. Arnott & G. Paredes), nephelometer scattering, and aetholemeter absorption instruments (N. Marley & J.Gaffney) were installed to measure at ground level the light absorption and scattering by aerosols at the urban site at Instituto Mexicano del Petroleo (Mexican Oil Institute, denoted by IMP). This IMP site gave in-situ characterization of the Mexico City plume under favorable wind conditions. The PAS used at IMP operates at 532 nm, and conveniently allowed for characterization of gaseous absorption at this wavelength as well. Light scattering measurements are accomplished within the PAS by the reciprocal nephelometery method. In the urban site the aerosol absorption coefficient typically varies between 20 and 180 Mm-1 during the course of the day and significant diurnal variation of the aerosol single scattering albedo was observed. The Las Vegas, NV site was located at East Charleston Street on January-February, 2003. In east Las Vegas typical westerly winds carry the city plume across the site. Comparisons of PAS aerosol light absorption and aetholemeter absorption measurements at 521 nm at both Las Vegas NV and Mexico City sites will be presented. We will also present a broad overview of the diurnal variation of the scattering and absorption as well as the single scattering albedo and fraction of absorption due to gases at the sites in relation to secondary aerosol formation.
NASA Astrophysics Data System (ADS)
Zhong, M.; Jang, M.
2013-08-01
Wood burning aerosol produced under smoldering conditions was photochemically aged with different relative humidity (RH) and NOx conditions using a 104 m3 dual outdoor chamber under natural sunlight. Light absorption of organic carbon (OC) was measured over the course of photooxidation using a UV-visible spectrometer connected to an integrating sphere. At high RH, the color decayed rapidly. NOx slightly prolonged the color of wood smoke, suggesting that NOx promotes the formation of chromophores via secondary processes. Overall, the mass absorption cross-section (integrated between 280 nm and 600 nm) of OC increased by 11-54% (except high RH) in the morning and then gradually decreased by 19-68% in the afternoon. This dynamic change in light absorption of wood burning OC can be explained by two mechanisms: chromophore formation and sunlight bleaching. To investigate the effect of chemical transformation on light absorption, wood smoke particles were characterized using various spectrometers. The intensity of fluorescence, which is mainly related to polycyclic aromatic hydrocarbons (PAHs), rapidly decreased with time indicating the potential bleaching of PAHs. A decline of levoglucosan concentrations evinced the change of POA with time. The aerosol water content measured by Fourier transform infrared spectroscopy showed that wood burning aerosol became less hygroscopic as photooxidation proceeded. A similar trend in light absorption changes has been observed in ambient smoke aerosol originating from the 2012 County Line Wildfire in Florida. We conclude that the biomass burning OC becomes less light absorbing after 8-9 h sunlight exposure compared to fresh wood burning OC.
NASA Astrophysics Data System (ADS)
Zhong, M.; Jang, M.
2014-02-01
Wood-burning aerosol produced under smoldering conditions was photochemically aged with different relative humidity (RH) and NOx conditions using a 104 m3 dual outdoor chamber under natural sunlight. Light absorption of organic carbon (OC) was measured over the course of photooxidation using a UV-visible spectrometer connected to an integrating sphere. At high RH, the color decayed rapidly. NOx slightly prolonged the color of wood smoke, suggesting that NOx promotes the formation of chromophores via secondary processes. Overall, the mass absorption cross section (integrated between 280 and 600 nm) of OC increased by 11-54% (except high RH) in the morning and then gradually decreased by 19-68% in the afternoon. This dynamic change in light absorption of wood-burning OC can be explained by two mechanisms: chromophore formation and sunlight bleaching. To investigate the effect of chemical transformation on light absorption, wood smoke particles were characterized using various spectrometers. The intensity of fluorescence, which is mainly related to polycyclic aromatic hydrocarbons (PAHs), rapidly decreased with time, indicating the potential bleaching of PAHs. A decline of levoglucosan concentrations evinced the change of primary organic aerosol with time. The aerosol water content measured by Fourier transform infrared spectroscopy showed that wood-burning aerosol became less hygroscopic as photooxidation proceeded. A similar trend in light absorption changes has been observed in ambient smoke aerosol originating from the 2012 County Line wildfire in Florida. We conclude that the biomass-burning OC becomes less light absorbing after 8-9 h sunlight exposure compared to fresh wood-burning OC.
NASA Astrophysics Data System (ADS)
Kawauchi, Satoko; Sato, Shunichi; Ooigawa, Hidetoshi; Nawashiro, Hiroshi; Ishihara, Miya; Kikuchi, Makoto
2008-02-01
We performed simultaneous measurement of light scattering and absorption due to reduction of cytochrome c oxidase as intrinsic optical signals that are related to morphological characteristics and energy metabolism, respectively, for rat brains after oxygen/glucose deprivation by saline infusion. To detect change in light scattering, we determined the wavelength that was the most insensitive to change in light absorption due to the reduction of cytochrome c oxidase on the basis of multiwavelength analysis of diffuse reflectance data set for each rat. Then the relationships between scattering signal and absorption signals related to the reductions of heme aa 3 (605 nm) and CuA (830 nm) in cytochrome c oxidase were examined. Measurements showed that after starting saline infusion, the reduction of heme aa 3 started first; thereafter triphasic, large scattering change occurred (200-300 s), during which the reduction of CuA started. Despite such complex behaviors of IOSs, almost linear correlations were seen between the scattering signal and the heme aa 3-related absorption signal, while a relatively large animal-to-animal variation was observed in the correlation between the scattering signal and CuA-related absorption signal. Transmission electron microscopic observation revealed that dendritic swelling and mitochondrial deformation occurred in the cortical surface tissue after the triphasic scattering change. These results suggest that mitochondrial energy failure accompanies morphological alteration in the brain tissue and results in change in light scattering; light scattering will become an important indicator of tissue viability in brain.
Song, S-H; Dick, B; Zirak, P; Penzkofer, A; Schiereis, T; Hegemann, P
2005-10-03
An absorption and emission spectroscopic characterisation of the combined wild-type LOV1-LOV2 domain string (abbreviated LOV1/2) of phot from the green alga Chlamydomonas reinhardtii is carried out at pH 8. A LOV1/2-MBP fusion protein (MBP=maltose binding protein) and LOV1/2 with a His-tag at the C-terminus (LOV1/2-His) expressed in an Escherichia coli strain are investigated. Blue-light photo-excitation generates a non-fluorescent intermediate photoproduct (flavin-C(4a)-cysteinyl adduct with absorption peak at 390 nm). The photo-cycle dynamics is studied by dark-state absorption and fluorescence measurement, by following the temporal absorption and emission changes under blue and violet light exposure, and by measuring the temporal absorption and fluorescence recovery after light exposure. The fluorescence quantum yield, phi(F), of the dark adapted samples is phi(F)(LOV1/2-His) approximately 0.15 and phi(F)(LOV1/2-MBP) approximately 0.17. A bi-exponential absorption recovery after light exposure with a fast (in the several 10-s range) and a slow component (in the near 10-min range) are resolved. The quantum yield of photo-adduct formation, phi(Ad), is extracted from excitation intensity dependent absorption measurements. It decreases somewhat with rising excitation intensity. The behaviour of the combined wildtype LOV1-LOV2 double domains is compared with the behaviour of the separate LOV1 and LOV2 domains.
Tandem resonator reflectance modulator
Fritz, I.J.; Wendt, J.R.
1994-09-06
A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors. 8 figs.
The Impact of parasitic loss on solar cells with plasmonic nano-textured rear reflectors.
Disney, Claire E R; Pillai, Supriya; Green, Martin A
2017-10-09
Significant photocurrent enhancement has been demonstrated using plasmonic light-trapping structures comprising nanostructured metallic features at the rear of the cell. These structures have conversely been identified as suffering heightened parasitic absorption into the metal at certain resonant wavelengths severely mitigating benefits of light trapping. In this study, we undertook simulations exploring the relationship between enhanced absorption into the solar cell, and parasitic losses in the metal. These simulations reveal that resonant wavelengths associated with high parasitic losses in the metal could also be associated with high absorption enhancement in the solar cell. We identify mechanisms linking these parasitic losses and absorption enhancements, but found that by ensuring correct design, the light trapping structures will have a positive impact on the overall solar cell performance. Our results clearly show that the large angle scattering provided by the plasmonic nanostructures is the reason for the enhanced absorption observed in the solar cells.
Yin, Xiang; Long, Chang; Li, Junhao; Zhu, Hua; Chen, Lin; Guan, Jianguo; Li, Xun
2015-10-19
Microwave absorbers have important applications in various areas including stealth, camouflage, and antenna. Here, we have designed an ultra-broadband light absorber by integrating two different-sized tapered hyperbolic metamaterial (HMM) waveguides, each of which has wide but different absorption bands due to broadband slow-light response, into a unit cell. Both the numerical and experimental results demonstrate that in such a design strategy, the low absorption bands between high absorption bands with a single-sized tapered HMM waveguide array can be effectively eliminated, resulting in a largely expanded absorption bandwidth ranging from 2.3 to 40 GHz. The presented ultra-broadband light absorber is also insensitive to polarization and robust against incident angle. Our results offer a further step in developing practical artificial electromagnetic absorbers, which will impact a broad range of applications at microwave frequencies.
Light transfer in agar immobilized microalgae cell cultures
NASA Astrophysics Data System (ADS)
Kandilian, Razmig; Jesus, Bruno; Legrand, Jack; Pilon, Laurent; Pruvost, Jérémy
2017-09-01
This paper experimentally and theoretically investigates light transfer in agar-immobilized cell cultures. Certain biotechnological applications such as production of metabolites secreted by photosynthetic microorganisms require cells to be immobilized in biopolymers to minimize contamination and to facilitate metabolite recovery. In such applications, light absorption by cells is one of the most important parameters affecting cell growth or metabolite productivity. Modeling light transfer therein can aid design and optimize immobilized-cell reactors. In this study, Parachlorella kessleri cells with areal biomass concentrations ranging from 0.36 to 16.9 g/m2 were immobilized in 2.6 mm thick agar gels. The average absorption and scattering cross-sections as well as the scattering phase function of P. kessleri cells were measured. Then, the absorption and transport scattering coefficients of the agar gel were determined using an inverse method based on the modified two-flux approximation. The forward model was used to predict the normal-hemispherical transmittance and reflectance of the immobilized-cell films accounting for absorption and scattering by both microalgae and the agar gel. Good agreement was found between the measured and predicted normal-hemispherical transmittance and reflectance provided absorption and scattering by agar were taken into account. Moreover, good agreement was found between experimentally measured and predicted mean rate of photon absorption. Finally, optimal areal biomass concentration was determined to achieve complete absorption of the incident radiation.
Graphene photonics for resonator-enhanced electro-optic devices and all-optical interactions
Englund, Dirk R.; Gan, Xuetao
2017-03-21
Techniques for coupling light into graphene using a planar photonic crystal having a resonant cavity characterized by a mode volume and a quality factor and at least one graphene layer positioned in proximity to the planar photonic crystal to at least partially overlap with an evanescent field of the resonant cavity. At least one mode of the resonant cavity can couple into the graphene layer via evanescent coupling. The optical properties of the graphene layer can be controlled, and characteristics of the graphene-cavity system can be detected. Coupling light into graphene can include electro-optic modulation of light, photodetection, saturable absorption, bistability, and autocorrelation.
Gold Nanorods as Nanodevices for Bioimaging, Photothermal Therapeutics, and Drug Delivery.
Haine, Aung Thu; Niidome, Takuro
2017-01-01
Gold nanorods are promising metals in several biomedical applications such as bioimaging, thermal therapy, and drug delivery. Gold nanorods have strong absorption bands in near-infrared (NIR) light region and show photothermal effects. Since NIR light can penetrate deeply into tissues, their unique optical, chemical, and biological properties have attracted considerable clinical interest. Gold nanorods are expected to act not only as on-demand thermal converters for photothermal therapy but also as mediators of a controlled drug-release system responding to light irradiation. In this review, we discuss current progress using gold nanorods as bioimaging platform, phototherapeutic agents, and drug delivery vehicles.
Final Project Report - ARM CLASIC CIRPAS Twin Otter Aerosol
DOE Office of Scientific and Technical Information (OSTI.GOV)
John A. Ogren
2010-04-05
The NOAA/ESRL/GMD aerosol group made three types of contributions related to airborne measurements of aerosol light scattering and absorption for the Cloud and Land Surface Interaction Campaign (CLASIC) in June 2007 on the Twin Otter research airplane operated by the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS). GMD scientists served as the instrument mentor for the integrating nephelometer and particle soot absorption photometer (PSAP) on the Twin Otter during CLASIC, and were responsible for (1) instrument checks/comparisons; (2) instrument trouble shooting/repair; and (3) data quality control (QC) and submittal to the archive.
Sensitive And Selective Chemical Sensor With Nanostructured Surfaces.
Pipino, Andrew C. R.
2003-02-04
A chemical sensor is provided which includes an optical resonator including a nanostructured surface comprising a plurality of nanoparticles bound to one or more surfaces of the resonator. The nanoparticles provide optical absorption and the sensor further comprises a detector for detecting the optical absorption of the nanoparticles or their environment. In particular, a selective chemical interaction is provided which modifies the optical absorption of the nanoparticles or their environment, and an analyte is detected based on the modified optical absorption. A light pulse is generated which enters the resonator to interrogate the modified optical absorption and the exiting light pulse is detected by the detector.
Fiber Laser methane sensor with the function of self-diagnose
NASA Astrophysics Data System (ADS)
Li, Yan-fang; Wei, Yu-bin; Shang, Ying; Wang, Chang; Liu, Tong-yu
2012-02-01
Using the technology of tunable diode laser absorption spectroscopy and the technology of micro-electronics, a fiber laser methane sensor based on the microprocessor C8051F410 is given. In this paper, we use the DFB Laser as the light source of the sensor. By tuning temperature and driver current of the DFB laser, we can scan the laser over the methane absorption line, Based on the Beer-Lambert law, through detect the variation of the light power before and after the absorption we realize the methane detection. It makes the real-time and online detection of methane concentration to be true, and it has the advantages just as high accuracy, immunity to other gases , long calibration cycle and so on. The sensor has the function of adaptive gain and self-diagnose. By introducing digital potentiometers, the gain of the photoelectric conversion operational amplifier can be controlled by the microprocessor according to the light power. When the gain and the conversion voltage achieve the set value, then we can consider the sensor in a fault status, and then the software will alarm us to check the status of the probe. So we improved the dependence and the stability of the measured results. At last we give some analysis on the sensor according the field application and according the present working, we have a look of our next work in the distance.
Modelling the effect of diffuse light on canopy photosynthesis in controlled environments
NASA Technical Reports Server (NTRS)
Cavazzoni, James; Volk, Tyler; Tubiello, Francesco; Monje, Oscar; Janes, H. W. (Principal Investigator)
2002-01-01
A layered canopy model was used to analyze the effects of diffuse light on canopy gross photosynthesis in controlled environment plant growth chambers, where, in contrast to the field, highly diffuse light can occur at high irradiance. The model suggests that high diffuse light fractions (approximately 0.7) and irradiance (1400 micromoles m-2 s-1) may enhance crop life-cycle canopy gross photosynthesis for hydroponic wheat by about 20% compared to direct light at the same irradiance. Our simulations suggest that high accuracy is not needed in specifying diffuse light fractions in chambers between approximately 0.7 and 1, because simulated photosynthesis for closed canopies plateau in this range. We also examined the effect of leaf angle distribution on canopy photosynthesis under growth chamber conditions, as these distributions determine canopy extinction coefficients for direct and diffuse light. We show that the spherical leaf angle distribution is not suitable for modeling photosynthesis of planophile canopies (e.g., soybean and peanut) in growth chambers. Also, the absorption of the light reflected from the surface below the canopy should generally be included in model simulations, as the corresponding albedo values in the photosynthetically active range may be quite high in growth chambers (e.g., approximately 0.5). In addition to the modeling implications, our results suggest that diffuse light conditions should be considered when drawing conclusions from experiments in controlled environments.
Shaul, Oren; Fanrazi-Kahana, Michal; Meitav, Omri; Pinhasi, Gad A; Abookasis, David
2017-11-10
Heat stress (HS) is a medical emergency defined by abnormally elevated body temperature that causes biochemical, physiological, and hematological changes. The goal of the present research was to detect variations in optical properties (absorption, reduced scattering, and refractive index coefficients) of mouse brain tissue during HS by using near-infrared (NIR) spatial light modulation. NIR spatial patterns with different spatial phases were used to differentiate the effects of tissue scattering from those of absorption. Decoupling optical scattering from absorption enabled the quantification of a tissue's chemical constituents (related to light absorption) and structural properties (related to light scattering). Technically, structured light patterns at low and high spatial frequencies of six wavelengths ranging between 690 and 970 nm were projected onto the mouse scalp surface while diffuse reflected light was recorded by a CCD camera positioned perpendicular to the mouse scalp. Concurrently to pattern projection, brain temperature was measured with a thermal camera positioned slightly off angle from the mouse head while core body temperature was monitored by thermocouple probe. Data analysis demonstrated variations from baseline measurements in a battery of intrinsic brain properties following HS.
Li, Lei; Sahi, Sunil K; Peng, Mingying; Lee, Eric B; Ma, Lun; Wojtowicz, Jennifer L; Malin, John H; Chen, Wei
2016-02-10
We developed new optic devices - singly-doped luminescence glasses and nanoparticle-coated lenses that convert UV light to visible light - for improvement of visual system functions. Tb(3+) or Eu(3+) singly-doped borate glasses or CdS-quantum dot (CdS-QD) coated lenses efficiently convert UV light to 542 nm or 613 nm wavelength narrow-band green or red light, or wide-spectrum white light, and thereby provide extra visible light to the eye. In zebrafish (wild-type larvae and adult control animals, retinal degeneration mutants, and light-induced photoreceptor cell degeneration models), the use of Tb(3+) or Eu(3+) doped luminescence glass or CdS-QD coated glass lenses provide additional visible light to the rod and cone photoreceptor cells, and thereby improve the visual system functions. The data provide proof-of-concept for the future development of optic devices for improvement of visual system functions in patients who suffer from photoreceptor cell degeneration or related retinal diseases.
Laser isotope separation by multiple photon absorption
Robinson, C. Paul; Rockwood, Stephen D.; Jensen, Reed J.; Lyman, John L.; Aldridge, III, Jack P.
1987-01-01
Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.
Laser isotope separation by multiple photon absorption
Robinson, C. Paul; Rockwood, Stephen D.; Jensen, Reed J.; Lyman, John L.; Aldridge, III, Jack P.
1977-01-01
Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, in the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.
NASA Astrophysics Data System (ADS)
Ran, L.; Deng, Z. Z.; Wang, P. C.; Xia, X. A.
2016-10-01
Light-absorbing components of atmospheric aerosols have gained particular attention in recent years due to their climatic and environmental effects. Based on two-year measurements of aerosol absorption at seven wavelengths, aerosol absorption properties and black carbon (BC) were investigated in the North China Plain (NCP), one of the most densely populated and polluted regions in the world. Aerosol absorption was stronger in fall and the heating season (from November to March) than in spring and summer at all seven wavelengths. Similar spectral dependence of aerosol absorption was observed in non-heating seasons despite substantially strong absorption in fall. With an average absorption Angström exponent (α) of 1.36 in non-heating seasons, freshly emitted BC from local fossil fuel burning was thought to be the major component of light-absorbing aerosols. In the heating season, strong ultraviolet absorption led to an average α of 1.81, clearly indicating the importance of non-BC light-absorbing components, which were possibly from coal burning for domestic heating and aging processes on a regional scale. Diurnally, the variation of BC mass concentrations experienced a double-peak pattern with a higher level at night throughout the year. However, the diurnal cycle of α in the heating season was distinctly different from that in non-heating seasons. α peaked in the late afternoon in non-heating seasons with concomitantly observed low valley in BC mass concentrations. In contrast, α peaked around the midnight in the heating season and lowered down during the daytime. The relationship of aerosol absorption and winds in non-heating seasons also differed from that in the heating season. BC mass concentrations declined while α increased with increasing wind speed in non-heating seasons, which suggested elevated non-BC light absorbers in transported aged aerosols. No apparent dependence of α on wind speed was found in the heating season, probably due to well mixed regional pollution. Pollution episodes were mostly encountered under low winds and had a low level of α, implying aerosol absorption should be largely attributed to freshly emitted BC from local sources under such conditions. Extensive field campaigns and long-term chemical and optical measurements of light-absorbing aerosols are needed in the future to further advance our understanding on optical properties of light-absorbing aerosols and their radiative forcing in this region.
Intraocular light scatter, reflections, fluorescence and absorption: what we see in the slit lamp.
van den Berg, Thomas J T P
2018-01-01
Much knowledge has been collected over the past 20 years about light scattering in the eye- in particular in the eye lens- and its visual effect, called straylight. It is the purpose of this review to discuss how these insights can be applied to understanding the slit lamp image. The slit lamp image mainly results from back scattering, whereas the effects on vision result mainly from forward scatter. Forward scatter originates from particles of about wavelength size distributed throughout the lens. Most of the slit lamp image originates from small particle scatter (Rayleigh scatter). For a population of middle aged lenses it will be shown that both these scatter components remove around 10% of the light from the direct beam. For slit lamp observation close to the reflection angles, zones of discontinuity (Wasserspalten) at anterior and posterior parts of the lens show up as rough surface reflections. All these light scatter effects increase with age, but the correlations with age, and also between the different components, are weak. For retro-illumination imaging it will be argued that the density or opacity seen in areas of cortical or posterior subcapsular cataract show up because of light scattering, not because of light loss. NOTES: (1) Light scatter must not be confused with aberrations. Light penetrating the eye is divided into two parts: a relatively small part is scattered, and removed from the direct beam. Most of the light is not scattered, but continues as the direct beam. This non-scattered part is the basis for functional imaging, but its quality is under the control of aberrations. Aberrations deflect light mainly over small angles (<1°), whereas light scatter is important because of the straylight effects over large angles (>1°), causing problems like glare and hazy vision. (2) The slit lamp image in older lenses and nuclear cataract is strongly influenced by absorption. However, this effect is greatly exaggerated by the light path lengths concerned. This obviates proper judgement of the functional importance of absorption, and hinders the appreciation of the Rayleigh nature of what is seen in the slit lamp image. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.
Detection of wavelengths in the visible range using fiber optic sensors
NASA Astrophysics Data System (ADS)
Díaz, Leonardo; Morales, Yailteh; Mattos, Lorenzo; Torres, Cesar O.
2013-11-01
This paper shows the design and implementation of a fiber optic sensor for detecting and identifying wavelengths in the visible range. The system consists of a diffuse optical fiber, a conventional laser diode 650nm, 2.5mW of power, an ambient light sensor LX1972, a PIC 18F2550 and LCD screen for viewing. The principle used in the detection of the lambda is based on specular reflection and absorption. The optoelectronic device designed and built used the absorption and reflection properties of the material under study, having as active optical medium a bifurcated optical fiber, which is optically coupled to an ambient light sensor, which makes the conversion of light signals to electricas, procedure performed by a microcontroller, which acquires and processes the signal. To verify correct operation of the assembly were utilized the color cards of sewing thread and nail polish as samples for analysis. This optoelectronic device can be used in many applications such as quality control of industrial processes, classification of corks or bottle caps, color quality of textiles, sugar solutions, polymers and food among others.
Tailorable Exciton Transport in Doped Peptide–Amphiphile Assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solomon, Lee A.; Sykes, Matthew E.; Wu, Yimin A.
Light-harvesting biomaterials are an attractive target in photovoltaics, photocatalysis, and artificial photosynthesis. Through peptide self-assembly, complex nanostructures can be engineered to study the role of chromophore organization during light absorption and energy transport. To this end, we demonstrate the one-dimensional transport of excitons along naturally occurring, light-harvesting, Zn-protoporphyrin IX chromophores within self-assembled peptide-amphiphile nanofibers. The internal structure of the nanofibers induces packing of the porphyrins into linear chains. We find that this peptide assembly can enable long-range exciton diffusion, yet it also induces the formation of excimers between adjacent molecules, which serve as exciton traps. Electronic coupling between neighboring porphyrinmore » molecules is confirmed by various spectroscopic methods. The exciton diffusion process is then probed through transient photoluminescence and absorption measurements and fit to a model for one-dimensional hopping. Because excimer formation impedes exciton hopping, increasing the interchromophore spacing allows for improved diffusivity, which we control through porphyrin doping levels. We show that diffusion lengths of over 60 nm are possible at low porphyrin doping, representing an order of magnitude improvement over the highest doping fractions.« less
Tunable broadband near-infrared absorber based on ultrathin phase-change material
NASA Astrophysics Data System (ADS)
Hu, Er-Tao; Gu, Tong; Guo, Shuai; Zang, Kai-Yan; Tu, Hua-Tian; Yu, Ke-Han; Wei, Wei; Zheng, Yu-Xiang; Wang, Song-You; Zhang, Rong-Jun; Lee, Young-Pak; Chen, Liang-Yao
2017-11-01
In this work, a tunable broadband near-infrared light absorber was designed and fabricated with a simple and lithography free approach by introducing an ultrathin phase-change material Ge2Sb2Te5 (GST) layer into the metal-dielectric multilayered film structure with the structure parameters as that: SiO2 (72.7 nm)/Ge2Sb2Te5 (6.0 nm)/SiO2 (70.2 nm)/Cu (>100.0 nm). The film structure exhibits a modulation depth of ∼72.6% and an extinction ratio of ∼8.8 dB at the wavelength of 1410 nm. The high light absorption (95%) of the proposed film structure at the wavelength of 450 nm in both of the amorphous and crystalline phase of GST, indicates that the intensity of the reflectance in the infrared region can be rapidly tuned by the blue laser pulses. The proposed planar layered film structure with layer thickness as the only controllable parameter and large reflectivity tuning range shows the potential for practical applications in near-infrared light modulation and absorption.
Enhancing energy transport in conjugated polymers
NASA Astrophysics Data System (ADS)
Holmes, Russell J.
2018-05-01
The conversion of light into usable chemical energy by plants is enabled by the precise spatial arrangement of light-absorbing photosynthetic systems and associated molecular complexes (1). In organic solar cells, there is also the need to control intermolecular spacing and molecular orientation, as well as thin-film crystallinity and morphology, so as to enable efficient energy migration and photoconversion (2). In an organic solar cell, light absorption creates excitons, tightly bound electron-hole pairs that must be efficiently dissociated into their component charge carriers in order to create an electrical current. Thus, long-range exciton migration must occur from the point of photogeneration to a dissociating site. On page 897 of this issue, Jin et al. (3) report on a conjugated polymer nanofiber system that yields exciton diffusion lengths greater than 200 nm. In comparison, organic solar cells are typically constructed with materials having exciton diffusion lengths one order of magnitude smaller than this value, which limits device thickness and optical absorption. Their approach exploits a sequential synthesis method that enables measurement of this long exciton diffusion length (see the figure).
Tailorable Exciton Transport in Doped Peptide-Amphiphile Assemblies.
Solomon, Lee A; Sykes, Matthew E; Wu, Yimin A; Schaller, Richard D; Wiederrecht, Gary P; Fry, H Christopher
2017-09-26
Light-harvesting biomaterials are an attractive target in photovoltaics, photocatalysis, and artificial photosynthesis. Through peptide self-assembly, complex nanostructures can be engineered to study the role of chromophore organization during light absorption and energy transport. To this end, we demonstrate the one-dimensional transport of excitons along naturally occurring, light-harvesting, Zn-protoporphyrin IX chromophores within self-assembled peptide-amphiphile nanofibers. The internal structure of the nanofibers induces packing of the porphyrins into linear chains. We find that this peptide assembly can enable long-range exciton diffusion, yet it also induces the formation of excimers between adjacent molecules, which serve as exciton traps. Electronic coupling between neighboring porphyrin molecules is confirmed by various spectroscopic methods. The exciton diffusion process is then probed through transient photoluminescence and absorption measurements and fit to a model for one-dimensional hopping. Because excimer formation impedes exciton hopping, increasing the interchromophore spacing allows for improved diffusivity, which we control through porphyrin doping levels. We show that diffusion lengths of over 60 nm are possible at low porphyrin doping, representing an order of magnitude improvement over the highest doping fractions.
Shamjad, P M; Tripathi, S N; Thamban, Navaneeth M; Vreeland, Heidi
2016-11-24
Atmospheric aerosols influence Earth's radiative balance, having both warming and cooling effects. Though many aerosols reflect radiation, carbonaceous aerosols such as black carbon and certain organic carbon species known as brown carbon have the potential to warm the atmosphere by absorbing light. Black carbon absorbs light over the entire solar spectrum whereas brown carbon absorbs near-UV wavelengths and, to a lesser extent, visible light. In developing countries, such as India, where combustion sources are prolific, the influence of brown carbon on absorption may be significant. In order to better characterize brown carbon, we present experimental and modeled absorption properties of submicron aerosols measured in an urban Indian city (Kanpur). Brown carbon here is found to be fivefold more absorbing at 365 nm wavelength compared to previous studies. Results suggest ~30% of total absorption in Kanpur is attributed to brown carbon, with primary organic aerosols contributing more than secondary organics. We report the spectral brown carbon refractive indices along with an experimentally constrained estimate of the influence of aerosol mixing state on absorption. We conclude that brown carbon in Kanpur is highly absorbing in nature and that the mixing state plays an important role in light absorption from volatile species.
Shamjad, P. M.; Tripathi, S. N.; Thamban, Navaneeth M.; Vreeland, Heidi
2016-01-01
Atmospheric aerosols influence Earth’s radiative balance, having both warming and cooling effects. Though many aerosols reflect radiation, carbonaceous aerosols such as black carbon and certain organic carbon species known as brown carbon have the potential to warm the atmosphere by absorbing light. Black carbon absorbs light over the entire solar spectrum whereas brown carbon absorbs near-UV wavelengths and, to a lesser extent, visible light. In developing countries, such as India, where combustion sources are prolific, the influence of brown carbon on absorption may be significant. In order to better characterize brown carbon, we present experimental and modeled absorption properties of submicron aerosols measured in an urban Indian city (Kanpur). Brown carbon here is found to be fivefold more absorbing at 365 nm wavelength compared to previous studies. Results suggest ~30% of total absorption in Kanpur is attributed to brown carbon, with primary organic aerosols contributing more than secondary organics. We report the spectral brown carbon refractive indices along with an experimentally constrained estimate of the influence of aerosol mixing state on absorption. We conclude that brown carbon in Kanpur is highly absorbing in nature and that the mixing state plays an important role in light absorption from volatile species. PMID:27883083
Slow and stored light by photo-isomerization induced transparency in dye doped chiral nematics.
Wei, D; Bortolozzo, U; Huignard, J P; Residori, S
2013-08-26
Decelerating and stopping light is fundamental for optical processing, high performance sensor technologies and digital signal treatment, many of these applications relying on the ability of controlling the amplitude and phase of coherent light pulses. In this context, slow-light has been achieved by various methods, as coupling light into resonant media, Brillouin scattering in optical fibers, beam coupling in photorefractive and liquid crystal media or engineered dispersion in photonic crystals. Here, we present a different mechanism for slowing and storing light, which is based on photo-isomerization induced transparency of azo-dye molecules hosted in a chiral liquid crystal structure. Sharp spectral features of the medium absorption/dispersion, and the long population lifetime of the dye metastable state, enable the storage of light pulses with a significant retrieval after times much longer than the medium response time.
Periodic molybdenum disc array for light trapping in amorphous silicon layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jiwei; Deng, Changkai; Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai, 201210 China
2016-05-15
We demonstrate the light trapping effect in amorphous silicon (a-Si:H) layer by inserting a layer of periodic molybdenum disc array (MDA) between the a-Si:H layer and the quartz substrate, which forms a three-layer structure of Si/MDA/SiO{sub 2}. The MDA layer was fabricated by a new cost-effective method based on nano-imprint technology. Further light absorption enhancement was realized through altering the topography of MDA by annealing it at 700°C. The mechanism of light absorption enhancement in a-Si:H interfaced with MDA was analyzed, and the electric field distribution and light absorption curve of the different layers in the Si/MDA structure under lightmore » illumination of different wavelengths were simulated by employing numerical finite difference time domain (FDTD) solutions.« less
NASA Technical Reports Server (NTRS)
Seasholtz, Richard G.; Buggele, Alvin E
1997-01-01
Filtered Rayleigh scattering using iodine absorption cells is an effective technique for obtaining density, temperature, and velocity measurements in high speed confined flows. By tuning a single frequency laser to a strong iodine absorption line, stray scattered laser light can be greatly suppressed. For example, the minimum transmission predicted by an iodine absorption model calculation is less than 10(exp -5) at the 18788.44/cm line using a 200 mm absorption cell containing iodine vapor at 0.46 T. Measurements obtained by other researches using a CW Nd:YAG laser agree with the model calculations. However, measurements made by us and by others using Q-switched, injection-seeded, frequency doubled Nd:YAG lasers only show minimum transmission of about 3 x 10(exp -3). This greatly reduces the applicability of the filtered Rayleigh scattering technique using these lasers in experiments having large amounts of stray scattered laser light. The purposes of the present study are to characterize the spectrum of the excess light transmitted by the iodine cell and to make changes to the laser to reduce the transmitted laser light. Transmission data as a function of laser frequency for the iodine absorption line at 18788.44/cm are presented. A planar mirror Fabry-Perot interferometer was used to characterize the frequency spectrum of the light passed through the cell. Measurements taken with the laser tuned to the center of the iodine absorption line show the light transmitted through the iodine cell to have a component with a bandwidth of about 40 GHz. This is probably caused by other modes in the laser that exist in spite of the single frequency injection beam. A second broadband component was also observed, possibly caused by the laser flash lamps or by fluorescence. An intracavity etalon was installed in the laser oscillator cavity to suppress the 40 GHz component. Measurements taken with the etalon tuned to the injection frequency showed a reduction in the transmitted laser light. This improvement allows the iodine cell to block significantly more of the stray laser light in filtered Rayleigh scattering experiments. Examples are given of filtered Rayleigh scattering measurements showing the effect of the etalon on measurements taken in a Mach 3 flow in the NASA Lewis 4 inch by 10 inch supersonic wind tunnel.
Canopy structural complexity predicts forest canopy light absorption at continental scales
NASA Astrophysics Data System (ADS)
Atkins, J. W.; Fahey, R. T.; Hardiman, B. S.; Gough, C. M.
2017-12-01
Understanding how the physical structure of forest canopies influence light acquisition is a long-standing area of inquiry fundamental to advancing understanding of many areas of the physical sciences, including the modeling and interpretation of biogeochemical cycles. Conventional measures of forest canopy structure employed in earth system models are often limited to leaf area index (LAI)—a measure of the quantity of leaves in the canopy. However, more novel multi-dimensional measures of canopy structural complexity (CSC) that describe the arrangement of vegetation are now possible because of technological advances, and may improve modeled estimates of canopy light absorption. During 2016 and 2017, we surveyed forests at sites from across the eastern, southern, and midwestern United States using portable canopy LiDAR (PCL). This survey included 14 National Ecological Observation Network (NEON), Long-Term Ecological Research Network (LTER,) Ameriflux, and University affiliated sites. Our findings show that a composite model including CSC parameters and LAI explains 96.8% of the variance in light acquisition, measured as the fraction of photosynthetically absorbed radiation (fPAR) at the continental scale, and improvement of 12% over an LAI only model. Under high light sky conditions, measures of CSC are more strongly coupled with light acquisition than under low light, possibly because light scattering partially decouples CSC from canopy light absorption under low, predominately diffuse light conditions. We conclude that scalable estimates of CSC metrics may improve continent-wide estimates of canopy light absorption and, therefore, carbon uptake, with implications for remote sensing and earth system modeling.
NASA Astrophysics Data System (ADS)
Lee, Ho Won; Lee, Ki-Heon; Lee, Jae Woo; Kim, Jong-Hoon; Yang, Heesun; Kim, Young Kwan
2015-02-01
In this work, the simple process of hybrid quantum dot (QD)/organic light-emitting diode (OLED) was proposed to apply a white illumination light by using QD plate and organic fluorescence. Conventional blue fluorescent OLEDs were firstly fabricated and then QD plates of various concentrations, which can be controlled of UV-vis absorption and photoluminescence spectrum, were attached under glass substrate of completed blue devices. The suggested process indicates that we could fabricate the white device through very simple process without any deposition of orange or red organic emitters. Therefore, this work would be demonstrated that the potential simple process for white applications can be applied and also can be extended to additional research on light applications.
Investigation of light induced effect on density of states of Pb doped CdSe thin films
NASA Astrophysics Data System (ADS)
Kaur, Jagdish; Singh, Baljinder; Tripathi, S. K.
2016-05-01
Thin films of Pb doped CdSe are deposited on the glass substrates by thermal evaporation technique using inert gas condensation method. The prepared thin films are light soaked under vacuum of 2×10-3 mbar for two hour. The absorption coefficient in the sub-band gap region has been studied using Constant Photocurrent Method (CPM). The absorption coefficient in the sub-band gap region follows an exponential Urbach tail. The value of Urbach energy and number density of defect states have been calculated from the absorption coefficient in the sub-band gap region and found to increase after light soaking treatment. The energy distribution of the occupied density of states below Fermi level has been evaluated using derivative procedure of the absorption coefficient.
Mirshafieyan, Seyed Sadreddin; Luk, Ting S.; Guo, Junpeng
2016-03-04
Here, we demonstrated perfect light absorption in optical nanocavities made of ultra-thin percolation aluminum and silicon films deposited on an aluminum surface. The total layer thickness of the aluminum and silicon films is one order of magnitude less than perfect absorption wavelength in the visible spectral range. The ratio of silicon cavity layer thickness to perfect absorption wavelength decreases as wavelength decreases due to the increased phase delays at silicon-aluminum boundaries at shorter wavelengths. It is explained that perfect light absorption is due to critical coupling of incident wave to the fundamental Fabry-Perot resonance mode of the structure where themore » round trip phase delay is zero. Simulations were performed and the results agree well with the measurement results.« less
Effects of Nanoimprinted Structures on the Performance of Organic Solar Cells
Gill, Hardeep Singh; Li, Lian; Ren, Haizhou; ...
2018-01-01
The effect of nanoimprinted structures on the performance of organic bulk heterojunction solar cells was investigated. The nanostructures were formed over the active layer employing the soft lithographic technique. The measured incident photon-to-current efficiency revealed that the nanostructured morphology over the active layer can efficiently enhance both light harvesting and charge carrier collection due to improvement of the absorption of incident light and the buried nanostructured cathode, respectively. The devices prepared with the imprinted nanostructures exhibited significantly higher power conversion efficiencies as compared to those of the control cells.
Effects of Nanoimprinted Structures on the Performance of Organic Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, Hardeep Singh; Li, Lian; Ren, Haizhou
The effect of nanoimprinted structures on the performance of organic bulk heterojunction solar cells was investigated. The nanostructures were formed over the active layer employing the soft lithographic technique. The measured incident photon-to-current efficiency revealed that the nanostructured morphology over the active layer can efficiently enhance both light harvesting and charge carrier collection due to improvement of the absorption of incident light and the buried nanostructured cathode, respectively. The devices prepared with the imprinted nanostructures exhibited significantly higher power conversion efficiencies as compared to those of the control cells.
Single-mode VCSEL operation via photocurrent feedback
NASA Astrophysics Data System (ADS)
Riyopoulos, Spilios
1999-04-01
On-axis channeling through the use of photoactive layers in VCSEL cavities is proposed to counteract hole burning and mode switching. The photoactive layers act as variable resistivity screens whose radial `aperture' is controlled by the light itself. It is numerically demonstrated that absorption of a small fraction of the light intensity suffices for significant on axis current peaking and single mode operation at currents many times threshold, with minimum efficiency loss and optical mode distortion. Fabrication is implemented during the molecular beam epitaxy phase without wafer post processing, as for oxide apertures.
NASA Astrophysics Data System (ADS)
Peng, Dong-qing; Zhu, Li-li; Li, Zhi-fang; Li, Hui
2017-09-01
Absorption coefficient of biological tissue is an important parameter in biomedicine, but its determination remains a challenge. In this paper, we propose a method using focusing photoacoustic imaging technique and internal light irradiation of cylindrical diffusing fiber (CDF) to quantify the target optical absorption coefficient. Absorption coefficients for ink absorbers are firstly determined through photoacoustic and spectrophotometric measurements at the same excitation, which demonstrates the feasibility of this method. Also, the optical absorption coefficients of ink absorbers with several concentrations are measured. Finally, the two-dimensional scanning photoacoustic image is obtained. Optical absorption coefficient measurement and simultaneous photoacoustic imaging of absorber non-invasively are the typical characteristics of the method. This method can play a significant role for non-invasive determination of blood oxygen saturation, the absorption-based imaging and therapy.
Gu, Junfei; Zhou, Zhenxiang; Li, Zhikang; Chen, Ying; Wang, Zhiqin; Zhang, Hao; Yang, Jianchang
2017-01-01
Light is the driving force of plant growth, providing the energy required for photosynthesis. However, photosynthesis is also vulnerable to light-induced damage caused by the production of reactive oxygen species (ROS). Plants have therefore evolved various protective mechanisms such as non-photochemical quenching (NPQ) to dissipate excessively absorbed solar energy as heat; however, photoinhibition and NPQ represent a significant loss in solar energy and photosynthetic efficiency, which lowers the yield potential in crops. To estimate light capture and light energy conversion in rice, a genotype with pale green leaves (pgl) and a normally pigmented control (Z802) were subjected to high (HL) and low light (LL). Chlorophyll content, light absorption, chloroplast micrographs, abundance of light-harvesting complex (LHC) binding proteins, electron transport rates (ETR), photochemical and non-photochemical quenching, and generation of ROS were subsequently examined. Pgl had a smaller size of light-harvesting chlorophyll antenna and absorbed less photons than Z802. NPQ and the generation of ROS were also low, while photosystem II efficiency and ETR were high, resulting in improved photosynthesis and less photoinhibition in pgl than Z802. Chlorophyll synthesis and solar conversion efficiency were higher in pgl under HL compared to LL treatment, while Z802 showed an opposite trend due to the high level of photoinhibition under HL. In Z802, excessive absorption of solar energy not only increased the generation of ROS and NPQ, but also exacerbated the effects of increases in temperature, causing midday depression in photosynthesis. These results suggest that photosynthesis and yield potential in rice could be enhanced by truncated light-harvesting chlorophyll antenna size. PMID:28676818
NASA Astrophysics Data System (ADS)
Wen, Z. D.; Song, K. S.; Zhao, Y.; Du, J.; Ma, J. H.
2016-02-01
Spectral characteristics of chromophoric dissolved organic matter (CDOM) were examined in conjunction with environmental factors in the waters of rivers and terminal lakes within the Hulun Buir plateau, northeast China. Dissolved organic carbon (DOC), total nitrogen (TN), and total phosphorous (TP) were significantly higher in terminal lakes than rivers waters (p < 0.01). Principal component analysis (PCA) indicated that non-water light absorption and anthropogenic nutrient disturbances were the likely causes of the diversity of water quality parameters. CDOM absorption in river waters was significantly lower than terminal lakes. Analysis of the ratio of absorption at 250 to 365 nm (E250 : 365), specific ultraviolet (UV) absorbance (SUVA254), and the spectral slope ratio (Sr) indicated that CDOM in river waters had higher aromaticity, molecular weight, and vascular plant contribution than in terminal lakes. Furthermore, results showed that DOC concentration, CDOM light absorption, and the proportion of autochthonous sources of CDOM in plateau waters were all higher than in other freshwater rivers reported in the literature. The strong evapoconcentration, intense ultraviolet irradiance, and landscape features of the Hulun Buir plateau may be responsible for the above phenomenon. Redundancy analysis (RDA) indicated that the environmental variables total suspended matter (TSM), TN, and electrical conductivity (EC) had a strong correlation with light absorption characteristics, followed by total dissolved solid (TDS) and chlorophyll a. In most sampling locations, CDOM was the dominant non-water light-absorbing substance. Light absorption by non-algal particles often exceeded that by phytoplankton in the plateau waters. Study of these optical-physicochemical correlations is helpful in the evaluation of the potential influence of water quality factors on non-water light absorption in cold plateau water environments. The construction of a correlation between DOC concentration and water quality factors may help contribute to regional estimates of carbon sources and fate for catchment carbon budget assessments.
Kristin Lewis; William P. Arnott; Hans Moosmuller; Cyle E. Wold
2008-01-01
A dual-wavelength photoacoustic instrument operating at 405 and 870 nm was used during the 2006 Fire Lab at Missoula Experiment to measure light scattering and absorption by smoke from the combustion of a variety of biomass fuels. Simultaneous measurements of aerosol light scattering by reciprocal nephelometry within the instrument's acoustic resonator accompany...
Jiang, Xiaoyun; Wang, Tao; Xiao, Shuyuan; Yan, Xicheng; Cheng, Le; Zhong, Qingfang
2018-08-17
A simple perfect absorption structure is proposed to achieve the high efficiency light absorption of monolayer molybdenum disulfide (MoS 2 ) by the critical coupling mechanism of guided resonances. The results of numerical simulation and theoretical analysis show that the light absorption in this atomically thin layer can be as high as 98.3% at the visible wavelengths, which is over 12 times more than that of a bare monolayer MoS 2 . In addition, the operating wavelength can be tuned flexibly by adjusting the radius of the air hole and the thickness of the dielectric layers, which is of great practical significance to improve the efficiency and selectivity of the absorption in monolayer MoS 2 . The novel idea of using critical coupling to enhance the light-MoS 2 interaction can be also adopted in other atomically thin materials. The meaningful improvement and tunability of the absorption in monolayer MoS 2 provides a good prospect for the realization of high-performance MoS 2 -based optoelectronic applications, such as photodetection and photoluminescence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ageeva, N. N.; Bronevoi, I. L., E-mail: bil@cplire.ru; Zabegaev, D. N.
2015-04-15
The self-modulation of absorption of a picosecond light pulse was observed earlier [1] in a thin (∼1-μm thick) GaAs layer pumped by a high-power picosecond pulse. Analysis of the characteristics of this self-modulation predicted [5] that the dependences of the probe pulse absorption on the pump pulse energy and picosecond delay between pump and probe pulses should be self-modulated by oscillations. Such self-modulation was experimentally observed in this work. Under certain conditions, absorption oscillations proved to be a function of part of the energy of picosecond stimulated emission of GaAs lying above a certain threshold in the region where themore » emission front overlapped the probe pulse front. Absorption oscillations are similar to self-modulation of the GaAs emission characteristics observed earlier [4]. This suggests that the self-modulation of absorption and emission is determined by the same type of interaction of light pulses in the active medium, the physical mechanism of which has yet to be determined.« less
Shamjad, P M; Tripathi, S N; Aggarwal, S G; Mishra, S K; Joshi, Manish; Khan, Arshad; Sapra, B K; Ram, Kirpa
2012-08-07
The quantification of the radiative impacts of light absorbing ambient black carbon (BC) particles strongly depends on accurate measurements of BC mass concentration and absorption coefficient (β(abs)). In this study, an experiment has been conducted to quantify the influence of hygroscopic growth of ambient particles on light absorption. Using the hygroscopic growth factor (i.e., Zdanovskii-Stokes-Robinson (ZSR) approach), a model has been developed to predict the chemical composition of particles based on measurements, and the absorption and scattering coefficients are derived using a core-shell assumption with light extinction estimates based on Mie theory. The estimated optical properties agree within 7% for absorption coefficient and 30% for scattering coefficient with that of measured values. The enhancement of absorption is found to vary according to the thickness of the shell and BC mass, with a maximum of 2.3 for a shell thickness of 18 nm for the particles. The findings of this study underline the importance of considering aerosol-mixing states while calculating their radiative forcing.
NASA Technical Reports Server (NTRS)
Fahr, A.; Braun, W.; Kurylo, M. J.
1993-01-01
Ultraviolet absorption cross sections of CH3CFCl2(HCFC-141b) were determined in the gas phase (190-260 nm) and liquid phase (230-260 mm) at 298 K. The liquid phase absorption cross sections were then converted into accurate gas phase values using a previously described procedure. It has been demonstrated that scattered light from the shorter-wavelength region (as little as several parts per thousand) can seriously compromise the absorption cross-section measurement, particularly at longer wavelengths where cross sections are low, and can be a source of discrepancies in the cross sections of weakly absorbing halocarbons reported in the literature. A modeling procedure was developed to assess the effect of scattered light on the measured absorption cross section in our experiments, thereby permitting appropriate corrections to be made on the experimental values. Modeled and experimental results were found to be in good agreement. Experimental results from this study were compared with other available determinations and provide accurate input for calculating the atmospheric lifetime of HCFC-141b.
NASA Astrophysics Data System (ADS)
Mignani, A. G.; Ciaccheri, L.; Ottevaere, H.; Thienpont, H.; Conte, L.; Marega, M.; Cichelli, A.; Attilio, C.; Cimato, A.
2010-09-01
A fiber optic setup for diffuse-light absorption spectroscopy in the wide 400-1700 nm spectral range is experimented for detecting and quantifying the adulteration of extra virgin olive oil caused by lower-grade olive oils. Absorption measurements provide spectral fingerprints of authentic and adulterated oils. A multivariate processing of spectroscopic data is applied for discriminating the type of adulterant and for predicting its fraction.
Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly
NASA Astrophysics Data System (ADS)
Lin, Qing-Yuan; Mason, Jarad A.; Li, Zhongyang; Zhou, Wenjie; O’Brien, Matthew N.; Brown, Keith A.; Jones, Matthew R.; Butun, Serkan; Lee, Byeongdu; Dravid, Vinayak P.; Aydin, Koray; Mirkin, Chad A.
2018-02-01
DNA programmable assembly has been combined with top-down lithography to construct superlattices of discrete, reconfigurable nanoparticle architectures on a gold surface over large areas. Specifically, the assembly of individual colloidal plasmonic nanoparticles with different shapes and sizes is controlled by oligonucleotides containing “locked” nucleic acids and confined environments provided by polymer pores to yield oriented architectures that feature tunable arrangements and independently controllable distances at both nanometer- and micrometer-length scales. These structures, which would be difficult to construct by other common assembly methods, provide a platform to systematically study and control light-matter interactions in nanoparticle-based optical materials. The generality and potential of this approach are explored by identifying a broadband absorber with a solvent polarity response that allows dynamic tuning of visible light absorption.
2017-01-01
Semiconductor nanowires are promising building blocks for next-generation photonics. Indirect proofs of large absorption cross sections have been reported in nanostructures with subwavelength diameters, an effect that is even more prominent in vertically standing nanowires. In this work we provide a three-dimensional map of the light around vertical GaAs nanowires standing on a substrate by using fluorescence confocal microscopy, where the strong long-range disruption of the light path along the nanowire is illustrated. We find that the actual long-distance perturbation is much larger in size than calculated extinction cross sections. While the size of the perturbation remains similar, the intensity of the interaction changes dramatically over the visible spectrum. Numerical simulations allow us to distinguish the effects of scattering and absorption in the nanowire leading to these phenomena. This work provides a visual understanding of light absorption in semiconductor nanowire structures, which is of high interest for solar energy conversion applications. PMID:28966933
Frederiksen, Rune; Tutuncuoglu, Gozde; Matteini, Federico; Martinez, Karen L; Fontcuberta I Morral, Anna; Alarcon-Llado, Esther
2017-09-20
Semiconductor nanowires are promising building blocks for next-generation photonics. Indirect proofs of large absorption cross sections have been reported in nanostructures with subwavelength diameters, an effect that is even more prominent in vertically standing nanowires. In this work we provide a three-dimensional map of the light around vertical GaAs nanowires standing on a substrate by using fluorescence confocal microscopy, where the strong long-range disruption of the light path along the nanowire is illustrated. We find that the actual long-distance perturbation is much larger in size than calculated extinction cross sections. While the size of the perturbation remains similar, the intensity of the interaction changes dramatically over the visible spectrum. Numerical simulations allow us to distinguish the effects of scattering and absorption in the nanowire leading to these phenomena. This work provides a visual understanding of light absorption in semiconductor nanowire structures, which is of high interest for solar energy conversion applications.
Mogo, S; Cachorro, V E; de Frutos, A; Rodrigues, A
2012-12-01
A field campaign was conducted from October 2009 to July 2010 at Covilhã, a small town located in the region of Beira Interior (Portugal) in the interior of the Iberian Peninsula. The ambient light-absorption coefficient, σ(a) (522 nm), obtained from a Particle Soot Absorption Photometer (PSAP), presented a daily mean value of 12.1 Mm⁻¹ (StD = 7.3 Mm⁻¹). The wavelength dependence of aerosol light absorption is investigated through the Ångström parameter, α(a). The α(a) values for the pair of wavelengths 470-660 nm ranged from 0.86 to 1.47 during the period of measurements. The PSAP data were used to infer the mass of light absorbing carbon (LAC) and the daily mean varied from 0.1 to 6.8 μg m⁻³. A detailed study of special events with different aerosol characteristics is carried out and, to support data interpretation, air masses trajectory analysis is performed.
Coherent Control About a Conical Intersection
NASA Astrophysics Data System (ADS)
Liekhus-Schmaltz, Chelsea; McCracken, Gregory; Kaldun, Andreas; Cryan, James P.; Bucksbaum, Philip H.
2017-04-01
Conical intersections (CIs) are degeneracies between molecular potential energy surfaces that occur in essentially all molecules with more than three atoms. Many studies have established that CIs allow for non-Born-Oppenheimer (non-adiabatic) molecular dynamics. In addition, CIs have many useful attributes for coherent control that have not been fully studied. Here we demonstrate two modes of control around a CI that make use of these properties. The first method uses a continuous light field, resonant absorption, and stimulated emission to control the population on two intersecting electronic states. The second method uses a pulsed light field and the geometric phase accumulated by a wavepacket traversing a CI to control the shape of the wavepacket. This work was supported by the National Science Foundation under Grant No. PHY-0649578, the DOE SCGSR fellowship program, and the DOE, Office of Science, BES, Chemical Sciences, Geosciences, and Biosciences Division.
Absolute determination of local tropospheric OH concentrations
NASA Technical Reports Server (NTRS)
Armerding, Wolfgang; Comes, Franz-Josef
1994-01-01
Long path absorption (LPA) according to Lambert Beer's law is a method to determine absolute concentrations of trace gases such as tropospheric OH. We have developed a LPA instrument which is based on a rapid tuning of the light source which is a frequency doubled dye laser. The laser is tuned across two or three OH absorption features around 308 nm with a scanning speed of 0.07 cm(exp -1)/microsecond and a repetition rate of 1.3 kHz. This high scanning speed greatly reduces the fluctuation of the light intensity caused by the atmosphere. To obtain the required high sensitivity the laser output power is additionally made constant and stabilized by an electro-optical modulator. The present sensitivity is of the order of a few times 10(exp 5) OH per cm(exp 3) for an acquisition time of a minute and an absorption path length of only 1200 meters so that a folding of the optical path in a multireflection cell was possible leading to a lateral dimension of the cell of a few meters. This allows local measurements to be made. Tropospheric measurements have been carried out in 1991 resulting in the determination of OH diurnal variation at specific days in late summer. Comparison with model calculations have been made. Interferences are mainly due to SO2 absorption. The problem of OH self generation in the multireflection cell is of minor extent. This could be shown by using different experimental methods. The minimum-maximum signal to noise ratio is about 8 x 10(exp -4) for a single scan. Due to the small size of the absorption cell the realization of an open air laboratory is possible in which by use of an additional UV light source or by additional fluxes of trace gases the chemistry can be changed under controlled conditions allowing kinetic studies of tropospheric photochemistry to be made in open air.
Depth Profiles in Maize ( Zea mays L.) Seeds Studied by Photoacoustic Spectroscopy
NASA Astrophysics Data System (ADS)
Hernández-Aguilar, C.; Domínguez-Pacheco, A.; Cruz-Orea, A.; Zepeda-Bautista, R.
2015-06-01
Photoacoustic spectroscopy (PAS) has been used to analyze agricultural seeds and can be applied to the study of seed depth profiles of these complex samples composed of different structures. The sample depth profile can be obtained through the photoacoustic (PA) signal, amplitude, and phase at different light modulation frequencies. The PA signal phase is more sensitive to changes of thermal properties in layered samples than the PA signal amplitude. Hence, the PA signal phase can also be used to characterize layers at different depths. Thus, the objective of the present study was to obtain the optical absorption spectra of maize seeds ( Zea mays L.) by means of PAS at different light modulation frequencies (17 Hz, 30 Hz, and 50 Hz) and comparing these spectra with the ones obtained from the phase-resolved method in order to separate the optical absorption spectra of seed pericarp and endosperm. The results suggest the possibility of using the phase-resolved method to obtain optical absorption spectra of different seed structures, at different depths, without damaging the seed. Thus, PAS could be a nondestructive method for characterization of agricultural seeds and thus improve quality control in the food industry.
Up Scalable Full Colour Plasmonic Pixels with Controllable Hue, Brightness and Saturation.
Mudachathi, Renilkumar; Tanaka, Takuo
2017-04-26
It has long been the interests of scientists to develop ink free colour printing technique using nano structured materials inspired by brilliant colours found in many creatures like butterflies and peacocks. Recently isolated metal nano structures exhibiting preferential light absorption and scattering have been explored as a promising candidate for this emerging field. Applying such structures in practical use, however, demands the production of individual colours with distinct reflective peaks, tunable across the visible wavelength region combined with controllable colour attributes and economically feasible fabrication. Herein, we present a simple yet efficient colour printing approach employing sub-micrometer scale plasmonic pixels of single constituent metal structure which supports near unity broadband light absorption at two distinct wavelengths, facilitating the creation of saturated colours. The dependence of these resonances on two different parameters of the same pixel enables controllable colour attributes such as hue, brightness and saturation across the visible spectrum. The linear dependence of colour attributes on the pixel parameters eases the automation; which combined with the use of inexpensive and stable aluminum as functional material will make this colour design strategy relevant for use in various commercial applications like printing micro images for security purposes, consumer product colouration and functionalized decoration to name a few.
III-V semiconductor resonators: A new strategy for broadband light perfect absorbers
NASA Astrophysics Data System (ADS)
Liu, Xiaoshan; Chen, Jian; Liu, Jiasong; Huang, Zhenping; Yu, Meidong; Pan, Pingping; Liu, Zhengqi
2017-11-01
Broadband light perfect absorbers (BPAs) are desirable for applications in numerous optoelectronics devices. In this work, a semiconductor-based broadband light perfect absorber (S-BPA) has been numerically demonstrated by utilizing plasmonlike resonances of high-index semiconductor resonators. A maximal absorption of 99.7% is observed in the near-infrared region. By taking the absorption above 80% into account, the spectral bandwidth reaches 340 nm. The absorption properties mainly originate from the optical cavity modes induced by the cylinder resonators and ultrathin semiconductor film. These optical properties and simple structural features can maintain the absorber platform with wide applications in semiconductor optoelectronics.
Differential optical absorption spectrometer for measurement of tropospheric pollutants
NASA Astrophysics Data System (ADS)
Evangelisti, F.; Baroncelli, A.; Bonasoni, P.; Giovanelli, G.; Ravegnani, F.
1995-05-01
Our institute has recently developed a differential optical absorption spectrometry system called the gas analyzer spectrometer correlating optical absorption differences (GASCOAD), which features as a detector a linear image sensor that uses an artificial light source for long-path tropospheric-pollution monitoring. The GASCOAD, its method of eliminating interference from background sky light, and subsequent spectral analysis are reported and discussed. The spectrometer was used from 7 to 22 February 1993 in Milan, a heavily polluted metropolitan area, to measure the concentrations of SO2, NO2, O3, and HNO2 averaged over a 1.7-km horizontal light path. The findings are reported and briefly discussed.
Laser isotope separation by multiple photon absorption
Robinson, C.P.; Rockwood, S.D.; Jensen, R.J.; Lyman, J.L.; Aldridge, J.P. III.
1987-04-07
Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO[sub 2] laser light may be used to highly enrich [sup 34]S in natural SF[sub 6] and [sup 11]B in natural BCl[sub 3]. 8 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Peng; Liu, Jiumeng; Shilling, John E.
Atmospheric Brown carbon (BrC) is a significant contributor to light absorption and climate forcing. However, little is known about a fundamental relationship between the chemical composition of BrC and its optical properties. In this work, light-absorbing secondary organic aerosol (SOA) was generated in the PNNL chamber from toluene photo-oxidation in the presence of NOx (Tol-SOA). Molecular structures of BrC components were examined using nanospray desorption electrospray ionization (nano-DESI) and liquid chromatography (LC) combined with UV/Vis spectroscopy and electrospray ionization (ESI) high-resolution mass spectrometry (HRMS). The chemical composition of BrC chromophores and the light absorption properties of toluene SOA (Tol-SOA) dependmore » strongly on the initial NOx concentration. Specifically, Tol-SOA generated under high-NOx conditions (defined here as initial NOx/toluene of 5/1) appears yellow and mass absorption coefficient of the bulk sample (MACbulk@365nm = 0.78 m2 g-1) is nearly 80 fold higher than that measured for the Tol-SOA sample generated under low-NOx conditions (NOx/toluene < 1/300). Fifteen compounds, most of which are nitrophenols, are identified as major BrC chromophores responsible for the enhanced light absorption of Tol-SOA material produced in the presence of NOx. The integrated absorbance of these fifteen chromophores accounts for 40-60% of the total light absorbance by Tol-SOA at wavelengths between 300 nm and 500 nm. The combination of tandem LC-UV/Vis-ESI/HRMS measurements provides an analytical platform for predictive understanding of light absorption properties by BrC and their relationship to the structure of individual chromophores. General trends in the UV/vis absorption by plausible isomers of the BrC chromophores were evaluated using theoretical chemistry calculations. The molecular-level understanding of BrC chemistry is helpful for better understanding the evolution and behavior of light absorbing aerosols in the atmosphere.« less
Z-scan measurements using femtosecond continuum generation
NASA Astrophysics Data System (ADS)
de Boni, Leonardo; Andrade, Acácio A.; Misoguti, Lino; Mendonça, Cléber R.; Zilio, Sérgio Carlos
2004-08-01
We present a single beam Z-scan technique using an intense, broadband, white-light continuum (WLC) beam for the direct measurement of nonlinear absorption spectra. In order to demonstrate the validity of our technique, we compared the results of tetraaniline and Sudan 3 solutions obtained with WLC and conventional single wavelength light sources. Both approaches lead to the same nonlinear spectrum, indicating that the association of the Z-scan technique and the WLC source results in an useful method for the measurement of nonlinear spectra of both absorbing (saturable absorption or reverse saturable absorption) and transparent (two-photon absorption) samples.
Special Features of Light Absorption by the Dimer of Bilayer Microparticles
NASA Astrophysics Data System (ADS)
Geints, Yu. É.; Panina, E. K.; Zemlyanov, A. A.
2018-05-01
Results of numerical simulation of light absorption by the dimer of bilayer spherical particles consisting of a water core and a polymer shell absorbing radiation are presented. The spatial distribution and the amplitude characteristics of the volume density of the absorbed power are investigated. It is shown that for a certain spatial dimer configuration, the maximal achievable density of the absorbed power is realized. It is also established that for closely spaced microcapsules with high shell absorption indices, the total power absorbed in the dimer volume can increase in comparison with the radiation absorption by two insulated microparticles.
Hirai, Kenji; Yeom, Bongjun; Sada, Kazuki
2017-06-27
Fabrication of chiroptical materials with broadband response in the visible light region is vital to fully realize their potential applications. One way to achieve broadband chiroptical activity is to fabricate chiral nanostructures from materials that exhibit broadband absorption in the visible light region. However, the compounds used for chiroptical materials have predominantly been limited to materials with narrowband spectral response. Here, we synthesize Ag 2 S-based nanohelices derived from helical coordination polymers. The right- and left-handed coordination helices used as precursors are prepared from l- and d-glutathione with Ag + and a small amount of Cu 2+ . The pyrolysis of the coordination helices yields right- and left-handed helices of Cu 0.12 Ag 1.94 S/C, which exhibit chiroptical activity spanning the entire visible light region. Finite element method simulations substantiate that the broadband chiroptical activity is attributed to synergistic broadband light absorption and light scattering. Furthermore, another series of Cu 0.10 Ag 1.90 S/C nanohelices are synthesized by choosing the l- or d-Glu-Cys as starting materials. The pitch length of nanohelicies is controlled by changing the peptides, which alters their chiroptical properties. The pyrolysis of coordination helices enables one to fabricate helical Ag 2 S-based materials that enable broadband chiroptical activity but have not been explored owing to the lack of synthetic routes.
Buoyancy-corrected gravimetric analysis of lightly loaded filters.
Rasmussen, Pat E; Gardner, H David; Niu, Jianjun
2010-09-01
Numerous sources of uncertainty are associated with the gravimetric analysis of lightly loaded air filter samples (< 100 microg). The purpose of the study presented here is to investigate the effectiveness and limitations of air buoyancy corrections over experimentally adjusted conditions of temperature (21-25 degrees C) and relative humidity (RH) (16-60% RH). Conditioning (24 hr) and weighing were performed inside the Archimedes M3 environmentally controlled chamber. The measurements were performed using 20 size-fractionated samples of resuspended house dust loaded onto Teflo (PTFE) filters using a Micro-Orifice Uniform Deposit Impactor representing a wide range of mass loading (7.2-3130 microg) and cut sizes (0.056-9.9 microm). By maintaining tight controls on humidity (within 0.5% RH of control setting) throughout pre- and postweighing at each stepwise increase in RH, it was possible to quantify error due to water absorption: 45% of the total mass change due to water absorption occurred between 16 and 50% RH, and 55% occurred between 50 and 60% RH. The buoyancy corrections ranged from -3.5 to +5.8 microg in magnitude and improved relative standard deviation (RSD) from 21.3% (uncorrected) to 5.6% (corrected) for a 7.2 microg sample. It is recommended that protocols for weighing low-mass particle samples (e.g., nanoparticle samples) should include buoyancy corrections and tight temperature/humidity controls. In some cases, conditioning times longer than 24 hr may be warranted.
Light-harvesting organic photoinitiators of polymerization.
Lalevée, Jacques; Tehfe, Mohamad-Ali; Dumur, Frédéric; Gigmes, Didier; Graff, Bernadette; Morlet-Savary, Fabrice; Fouassier, Jean-Pierre
2013-02-12
Two new photoinitiators with unprecedented light absorption properties are proposed on the basis of a suitable truxene skeleton where several UV photoinitiators PI units such as benzophenone and thioxanthone are introduced at the periphery and whose molecular orbitals MO can be coupled with those of the PI units: a red-shifted absorption and a strong increase of the molecular extinction coefficients (by a ≈ 20-1000 fold factor) are found. These compounds are highly efficient light-harvesting photoinitiators. The scope and practicality of these photoinitiators of polymerization can be dramatically expanded, that is, both radical and cationic polymerization processes are accessible upon very soft irradiation conditions (halogen lamp, LED…︁) thanks to the unique light absorption properties of the new proposed structures. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Characterizing caged molecules through flash photolysis and transient absorption spectroscopy.
Kao, Joseph P Y; Muralidharan, Sukumaran
2013-01-01
Caged molecules are photosensitive molecules with latent biological activity. Upon exposure to light, they are rapidly transformed into bioactive molecules such as neurotransmitters or second messengers. They are thus valuable tools for using light to manipulate biology with exceptional spatial and temporal resolution. Since the temporal performance of the caged molecule depends critically on the rate at which bioactive molecules are generated by light, it is important to characterize the kinetics of the photorelease process. This is accomplished by initiating the photoreaction with a very brief but intense pulse of light (i.e., flash photolysis) and monitoring the course of the ensuing reactions through various means, the most common of which is absorption spectroscopy. Practical guidelines for performing flash photolysis and transient absorption spectroscopy are described in this chapter.
Hägglund, Carl; Zeltzer, Gabriel; Ruiz, Ricardo; Thomann, Isabell; Lee, Han-Bo-Ram; Brongersma, Mark L; Bent, Stacey F
2013-07-10
Achieving complete absorption of visible light with a minimal amount of material is highly desirable for many applications, including solar energy conversion to fuel and electricity, where benefits in conversion efficiency and economy can be obtained. On a fundamental level, it is of great interest to explore whether the ultimate limits in light absorption per unit volume can be achieved by capitalizing on the advances in metamaterial science and nanosynthesis. Here, we combine block copolymer lithography and atomic layer deposition to tune the effective optical properties of a plasmonic array at the atomic scale. Critical coupling to the resulting nanocomposite layer is accomplished through guidance by a simple analytical model and measurements by spectroscopic ellipsometry. Thereby, a maximized absorption of light exceeding 99% is accomplished, of which up to about 93% occurs in a volume-equivalent thickness of gold of only 1.6 nm. This corresponds to a record effective absorption coefficient of 1.7 × 10(7) cm(-1) in the visible region, far exceeding those of solid metals, graphene, dye monolayers, and thin film solar cell materials. It is more than a factor of 2 higher than that previously obtained using a critically coupled dye J-aggregate, with a peak width exceeding the latter by 1 order of magnitude. These results thereby substantially push the limits for light harvesting in ultrathin, nanoengineered systems.
Peculiarities of light absorption by spherical microcapsules
NASA Astrophysics Data System (ADS)
Geints, Yurii E.; Panina, Ekaterina K.; Zemlyanov, Alexander A.
2018-04-01
Optical radiation absorption in the poly-layer spherical microparticles simulating the inorganic/organic polyshell absorbing microcapsules is considered. With the aim of the finite-difference time-domain technique, the spatial distribution of the absorbed light power in microcapsules of various sizes and internal structure is numerically calculated. For the purpose of light absorption enhancement, we have engineered the optimal structure of a capsule consisting of a strong-refracting transparent outer coating and an absorbing layer which covers a liquid core. The proposed microcapsule prototype provides for a manifold increase in the absorbed light power density in comparison with the usual single-layer absorbing capsule. We show that for light-wavelengths-scaled microcapsules it is optimal to use a material with the refractive index larger than two as an outer shell, for example, titanium dioxide (TiO2). The highest values of the absorbed power density can be obtained in microcapsules with absorbing shell thickness of approximately a tenth of a laser wavelength. When laser radiation is scattered by a dimer constituted by two identical absorbing microcapsules the absorbed power density can be maximized by the choosing of proper dimer spatial configuration. In the case of strongly absorbing particles, the absorption maximum corresponds to a shift of the capsules to a distance of about their diameter, and in the case of weakly absorbing particles the absorption is maximal when particles are in geometrical shades of each other.
Laser-induced micro-plasmas in air for incoherent broadband cavity-enhanced absorption spectroscopy
NASA Astrophysics Data System (ADS)
Ruth, Albert; Dixneuf, Sophie; Orphal, Johannes
2016-04-01
Incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) is an experimentally straightforward absorption method where the intensity of light transmitted by an optically stable (high finesse) cavity is measured. The technique is realized using broadband incoherent sources of radiation and therefore the amount of light transmitted by a cavity consisting of high reflectance mirrors (typically R > 99.9%) can be low. In order to find an alternative to having an incoherent light source outside the cavity, an experiment was devised, where a laser-induced plasma in ambient air was generated inside a quasi-confocal cavity by a high-power femtosecond laser. The emission from the laser-induced plasma was utilized as pulsed broadband light source. The time-dependent spectra of the light leaking from the cavity were compared with those of the laser-induced plasma emission without the cavity. It was found that the light emission was sustained by the cavity despite the initially large optical losses caused by the laser-induced plasma in the cavity. The light sustained by the cavity was used to measure part of the S1 ← S0 absorption spectrum of gaseous azulene at its vapour pressure at room temperature in ambient air, as well as the strongly forbidden γ-band in molecular oxygen (b1Σ(2,0) ← X3Σ(0,0)).
Mohr, Claudia; Lopez-Hilfiker, Felipe D; Zotter, Peter; Prévôt, André S H; Xu, Lu; Ng, Nga L; Herndon, Scott C; Williams, Leah R; Franklin, Jonathan P; Zahniser, Mark S; Worsnop, Douglas R; Knighton, W Berk; Aiken, Allison C; Gorkowski, Kyle J; Dubey, Manvendra K; Allan, James D; Thornton, Joel A
2013-06-18
We show for the first time quantitative online measurements of five nitrated phenol (NP) compounds in ambient air (nitrophenol C6H5NO3, methylnitrophenol C7H7NO3, nitrocatechol C6H5NO4, methylnitrocatechol C7H7NO4, and dinitrophenol C6H4N2O5) measured with a micro-orifice volatilization impactor (MOVI) high-resolution chemical ionization mass spectrometer in Detling, United Kingdom during January-February, 2012. NPs absorb radiation in the near-ultraviolet (UV) range of the electromagnetic spectrum and thus are potential components of poorly characterized light-absorbing organic matter ("brown carbon") which can affect the climate and air quality. Total NP concentrations varied between less than 1 and 98 ng m(-3), with a mean value of 20 ng m(-3). We conclude that NPs measured in Detling have a significant contribution from biomass burning with an estimated emission factor of 0.2 ng (ppb CO)(-1). Particle light absorption measurements by a seven-wavelength aethalometer in the near-UV (370 nm) and literature values of molecular absorption cross sections are used to estimate the contribution of NP to wood burning brown carbon UV light absorption. We show that these five NPs are potentially important contributors to absorption at 370 nm measured by an aethalometer and account for 4 ± 2% of UV light absorption by brown carbon. They can thus affect atmospheric radiative transfer and photochemistry and with that climate and air quality.
Zhang, Qian; Huang, Yu; Xu, Lifeng; Cao, Jun-ji; Ho, Wingkei; Lee, Shun Cheng
2016-02-17
Harnessing inexhaustible solar energy for photocatalytic disposal of nitrogen oxides is of great significance nowadays. In this study, Ag-SrTiO3 nanocomposites (Ag-STO) were synthesized via one-pot solvothermal method for the first time. The deposition of Ag nanoparticles incurs a broad plasmonic resonance absorption in the visible light range, resulting in enhanced visible light driven activity on NO removal in comparison with pristine SrTiO3. The Ag loading amount has a significant influence on light absorption properties of Ag-STO, which further affects the photocatalytic efficiency. It was shown that 0.5% Ag loading onto SrTiO3 (in mass ratio) could remove 30% of NO in a single reaction path under visible light irradiation, which is twice higher than that achieved on pristine SrTiO3. Most importantly, the generation of harmful intermediate (NO2) is largely inhibited over SrTiO3 and Ag-STO nanocomposites, which can be ascribed to the basic surface property of strontium sites. As identified by electron spin resonance (ESR) spectra,·O2(-) and ·OH radicals are the major reactive species for NO oxidation. Essentially speaking, the abundance of reactive oxygen radicals produced over Ag-STO nanocomposites are responsible for the improved photocatalytic activity. This work provides a facile and controllable route to fabricate plasmonic Ag-SrTiO3 nanocomposite photocatalyst featuring high visible light activity and selectivity for NO abatement.
Enhanced light absorption of solar cells and photodetectors by diffraction
Zaidi, Saleem H.; Gee, James M.
2005-02-22
Enhanced light absorption of solar cells and photodetectors by diffraction is described. Triangular, rectangular, and blazed subwavelength periodic structures are shown to improve performance of solar cells. Surface reflection can be tailored for either broadband, or narrow-band spectral absorption. Enhanced absorption is achieved by efficient optical coupling into obliquely propagating transmitted diffraction orders. Subwavelength one-dimensional structures are designed for polarization-dependent, wavelength-selective absorption in solar cells and photodetectors, while two-dimensional structures are designed for polarization-independent, wavelength-selective absorption therein. Suitable one and two-dimensional subwavelength periodic structures can also be designed for broadband spectral absorption in solar cells and photodetectors. If reactive ion etching (RIE) processes are used to form the grating, RIE-induced surface damage in subwavelength structures can be repaired by forming junctions using ion implantation methods. RIE-induced surface damage can also be removed by post RIE wet-chemical etching treatments.
Enhanced Photocatalytic Activity of La3+-Doped TiO2 Nanotubes with Full Wave-Band Absorption
NASA Astrophysics Data System (ADS)
Xia, Minghao; Huang, Lingling; Zhang, Yubo; Wang, Yongqian
2018-06-01
TiO2 nanotubes doped with La3+ were synthesized by anodic oxidation method and the photocatalytic activity was detected by photodegrading methylene blue. As-prepared samples improved the absorption of both ultraviolet light and visible light and have a great enhancement on the photocatalytic activity while contrasting with the pristine TiO2 nanotubes. A tentative mechanism for the enhancement of photocatalytic activity with full wave-band absorption is proposed.
A Simple Demonstration of Absorption Spectra Using Tungsten Holiday Lights
ERIC Educational Resources Information Center
Birriel, Jennifer J.
2009-01-01
In a previous paper submitted to the Demonstrations section (Birriel 2008, "Astronomy Education Review," 7, 147), I discussed using commercially available incandescent light bulbs for the purpose of demonstrating absorption spectra in the classroom or laboratory. This demonstration solved a long-standing problem that many of astronomy instructors…
Vertical Distribution of Black and Brown Carbon over Shanghai during Winter
NASA Astrophysics Data System (ADS)
Zheng, M.; Yan, C.; Wang, D.; Fu, Q.
2016-12-01
Carbonaceous aerosols (i.e., black carbon, BC, and organic aerosol, OA) have significant impact on Earth's energy budget by scattering and absorbing solar radiation. Extensive carbonaceous aerosols have been emitted in mainland China. It is essential to study the column burden of carbonaceous aerosol and associated light absorption to better understand its radiative forcing. In this study, a tethered balloon-based field campaign was conducted over a Chinese megacity, Shanghai, in December of 2015, with the primary goal to investigate the vertical profile of air pollutants within the lower troposphere, especially during the polluted days. A 7-wavelength Aethalometer (AE-31) were adopted in the observation to obtain vertical profiles of atmospheric carbonaceous aerosols within the lower troposphere. Light absorption by black and brown carbon, the light absorbing organic components, were distinguished and separated based on difference between light absorption at 450 nm versus 880 nm. Light absorption of brown carbon relative to black carbon were also estimated to pose the importance of brown carbon. Besides, diurnal variation of black and brown carbon vertical profiles would also be discussed, with consideration of variation of height of planetary boundary layer.
A novel screen design for anti-ambient light front projection display with angle-selective absorber
NASA Astrophysics Data System (ADS)
Liao, Tianju; Chen, Weigang; He, Kebo; Zhang, Zhaoyu
2016-03-01
Ambient light is destructive to the reflective type projection system's contrast ratio which has great influence on the image quality. In contrast to the conventional front projection, short-throw projection has its advantage to reject the ambient light. Fresnel lens-shaped reflection layer is adapted to direct light from a large angle due to the low lens throw ratio to the viewing area. The structure separates the path of the ambient light and projection light, creating the chance to solve the problem that ambient light is mixed with projection light. However, with solely the lens-shaped reflection layer is not good enough to improve the contrast ratio due to the scattering layer, which contributes a necessarily wide viewing angle, could interfere with both light paths before hitting the layer. So we propose a new design that sets the draft angle surface with absorption layer and adds an angle-selective absorber to separate these two kinds of light. The absorber is designed to fit the direction of the projection light, leading to a small absorption cross section for the projection light and respectfully big absorption cross section for the ambient light. We have calculated the design with Tracepro, a ray tracing program and find a nearly 8 times contrast ratio improvement against the current design in theory. This design can hopefully provide efficient display in bright lit situation with better viewer satisfaction.
NASA Astrophysics Data System (ADS)
Liu, Pei; Cheng, Wenjing; Yao, Yunhua; Xu, Cheng; Zheng, Ye; Deng, Lianzhong; Jia, Tianqing; Qiu, Jianrong; Sun, Zhenrong; Zhang, Shian
2017-11-01
Controlling the up-conversion luminescence of rare-earth ions in real-time, in a dynamical and reversible manner, is very important for their application in laser sources, fiber-optic communications, light-emitting diodes, color displays and biological systems. In previous studies, the up-conversion luminescence control mainly focused on the weak femtosecond laser field. Here, we further extend this control behavior from weak to intermediate femtosecond laser fields. In this work, we experimentally and theoretically demonstrate that the up-conversion luminescence in Dy3+ ion doped glass can be artificially controlled by a π phase step modulation, but the up-conversion luminescence control behavior will be affected by the femtosecond laser intensity, and the up-conversion luminescence is suppressed by lower laser intensity while enhanced by higher laser intensity. We establish a new theoretical model (i.e. the fourth-order perturbation theory) to explain the physical control mechanism by considering the two- and four-photon absorption processes, and the theoretical results show that the relative weight of four-photon absorption in the whole excitation process will increase with the increase in laser intensity, and the interference between two- and four-photon absorptions results in up-conversion luminescence control modulation under different laser intensities. These theoretical and experimental works can provide a new method to control and understand up-conversion luminescence in rare-earth ions, and also may open a new opportunity to the related application areas of rare-earth ions.
NASA Astrophysics Data System (ADS)
Zirino, Albert
1994-08-01
A transparent polyelectrolyte fiber or gel, such as crosslinked polyacrylic acid, which contracts and expands upon the addition of an acid or base to an aqueous medium solution, is placed in the same solution with a pH dependent dye, a colored photochromatic indicator dye. The dye preferably has a pAa value that is the same as the pH at a null contraction point of the fiber. By irradiating the solution with light of a wavelength of the absorption band of either the acid or base form of the dye, the solution pH is made to change, and the fiber is made to expand or contract, depending upon the wavelength. Thus, light energy is readily converted to work energy and may be used to power a pump, for example or an artificial muscle can be powered via an optical fiber.
Electrical characteristics of silicon nanowire CMOS inverters under illumination.
Yoo, Jeuk; Kim, Yoonjoong; Lim, Doohyeok; Kim, Sangsig
2018-02-05
In this study, we examine the electrical characteristics of complementary metal-oxide-semiconductor (CMOS) inverters with silicon nanowire (SiNW) channels on transparent substrates under illumination. The electrical characteristics vary with the wavelength and power of light due to the variation in the generation rates of the electric-hole pairs. Compared to conventional optoelectronic devices that sense the on/off states by the variation in the current, our device achieves the sensing of the on/off states with more precision by using the voltage variation induced by the wavelength or intensity of light. The device was fabricated on transparent substrates to maximize the light absorption using conventional CMOS technologies. The key difference between our SiNW CMOS inverters and conventional optoelectronic devices is the ability to control the flow of charge carriers more effectively. The improved sensitivity accomplished with the use of SiNW CMOS inverters allows better control of the on/off states.
Gardiner, A T; Niedzwiedzki, D M; Cogdell, R J
2018-04-01
Typical purple bacterial photosynthetic units consist of light harvesting one/reaction centre 'core' complexes surrounded by light harvesting two complexes. Factors such as the number and size of photosynthetic units per cell, as well as the type of light harvesting two complex that is produced, are controlled by environmental factors. In this paper, the change in the type of LH2 present in the Rhodopsuedomonas acidophila strain 7050 is described when cells are grown at a range of different light intensities. This species contains multiple pucBA genes that encode the apoproteins that form light-harvesting complex two, and a more complex mixture of spectroscopic forms of this complex has been found than was previously thought to be the case. Femto-second time resolved absorption has been used to investigate how the energy transfer properties in the membranes of high-light and low-light adapted cells change as the composition of the LH2 complexes varies.
NASA Astrophysics Data System (ADS)
Yamazaki, Mutsuo; Sato, Shunichi; Saito, Daizo; Fujita, Masanori; Okada, Yoshiaki; Kikuchi, Makoto; Ashida, Hiroshi; Obara, Minoru
2002-06-01
This paper reports the burn diagnosis that is based on the measurement of photoacoustic waves from skin, where the acoustic waves originate from the absorption of light by blood. For this purpose, a transducer composed of a ring-shaped piezoelectric film and a quartz fiber was made. An optical parametric oscillator (500 - 650 nm) was used as a light source and its output pulses were coupled to the quartz fiber. To investigate the optimum light wavelength, we conducted experiments using rat burn models. We demonstrated that the superficial dermal burn (SDB), deep dermal burn (DDB), deep burn (DB), and control (healthy skin) could be clearly differentiated based on the photoacoustic signals induced by the light of 532 - 580nm.
Light Source Effects on Aerosol Photoacoustic Spectroscopy Measurements
Radney, James G.; Zangmeister, Christopher D.
2016-01-01
Photoacoustic spectroscopy measurements of flame-generated soot aerosol coated with small amounts of water yielded absorption enhancements that were dependent on the laser used: quasi-continuous wave (Q-CW, ≈ 650 ps pulse duration and 78 MHz repetition rate) versus continuous wave (CW). Water coating thickness was controlled by exposing the aerosol to a set relative humidity (RH). At ≈ 85 % RH, the mass of the soot particles increased by an amount comparable to a monolayer of water being deposited and enhanced the measured absorption by 36 % and 15 % for the Q-CW and CW lasers, respectively. Extinction measurements were also performed using a cavity ring-down spectrometer (extinction equals the sum of absorption and scattering) with a CW laser and negligible enhancement was observed at all RH. These findings demonstrate that source choice can impact measurements of aerosols with volatile coatings and that the absorption enhancements at high RH previously measured by Radney and Zangmeister (2015) [1] are the result of laser source used (Q-CW) and not from an increase in the particle absorption cross section. PMID:28066027
NASA Astrophysics Data System (ADS)
Cory, R. M.; Harrold, K. H.; Neilson, B. T.; Kling, G. W.
2015-11-01
We investigated how absorption of sunlight by chromophoric dissolved organic matter (CDOM) controls the degradation and export of DOM from Imnavait Creek, a beaded stream in the Alaskan Arctic. We measured concentrations of dissolved organic carbon (DOC), as well as concentrations and characteristics of CDOM and fluorescent dissolved organic matter (FDOM), during ice-free periods of 2011-2012 in the pools of Imnavait Creek and in soil waters draining to the creek. Spatial and temporal patterns in CDOM and FDOM in Imnavait Creek were analyzed in conjunction with measures of DOM degradation by sunlight and bacteria and assessments of hydrologic residence times and in situ UV exposure. CDOM was the dominant light attenuating constituent in the UV and visible portion of the solar spectrum, with high attenuation coefficients ranging from 86 ± 12 m-1 at 305 nm to 3 ± 1 m-1 in the photosynthetically active region (PAR). High rates of light absorption and thus light attenuation by CDOM contributed to thermal stratification in the majority of pools in Imnavait Creek under low-flow conditions. In turn, thermal stratification increased the residence time of water and DOM, and resulted in a separation of water masses distinguished by contrasting UV exposure (i.e., UV attenuation by CDOM with depth resulted in bottom waters receiving less UV than surface waters). When the pools in Imnavait Creek were stratified, DOM in the pool bottom water closely resembled soil water DOM in character, while the concentration and character of DOM in surface water was reproduced by experimental photo-degradation of bottom water. These results, in combination with water column rates of DOM degradation by sunlight and bacteria, suggest that photo-degradation is the dominant process controlling DOM fate and export in Imnavait Creek. A conceptual model is presented showing how CDOM amount and lability interact with incident UV light and water residence time to determine whether photo-degradation is "light-limited" or "substrate-limited". We suggest that degradation of DOM in CDOM-rich streams or ponds similar to Imnavait is typically light-limited under most flow conditions. Thus, export of DOM from this stream will be less under conditions that increase the light available for DOM photo-degradation (i.e., low flows, sunny days).
NASA Astrophysics Data System (ADS)
Miskevich, Alexander A.; Loiko, Valery A.
2015-12-01
Enhancement of the performance of photovoltaic cells through increasing light absorption due to optimization of an active layer is considered. The optimization consists in creation of particulate structure of active layer. The ordered monolayers and multilayers of submicron crystalline silicon (c-Si) spherical particles are examined. The quasicrystalline approximation (QCA) and the transfer matrix method (TMM) are used to calculate light absorption in the wavelength range from 0.28 μm to 1.12 μm. The integrated over the terrestial solar spectral irradiance "Global tilt" ASTM G173-03 absorption coefficient is calculated. In the wavelength range of small absorption index of c-Si (0.8-1.12 μm) the integral absorption coefficient of monolayer can be more than 20 times higher than the one of the plane-parallel plate of the equivalent volume of material. In the overall considered range (0.28-1.12 μm) the enhancement factor up to ~1.45 for individual monolayer is observed. Maximum value of the spectral absorption coefficient approaches unity for multilayers consisting of large amount of sparse monolayers of small particles. Multilayers with variable concentration and size of particles in the monolayer sequences are considered. Absorption increasing by such gradient multilayers as compared to the non-gradient ones is illustrated. The considered structures are promising for creation of high efficiency thin-film solar cells.
Computed tomography measurement of gaseous fuel concentration by infrared laser light absorption
NASA Astrophysics Data System (ADS)
Kawazoe, Hiromitsu; Inagaki, Kazuhisa; Emi, Y.; Yoshino, Fumio
1997-11-01
A system to measure gaseous hydrocarbon distributions was devised, which is based on IR light absorption by C-H stretch mode of vibration and computed tomography method. It is called IR-CT method in the paper. Affection of laser light power fluctuation was diminished by monitoring source light intensity by the second IR light detector. Calibration test for methane fuel was carried out to convert spatial data of line absorption coefficient into quantitative methane concentration. This system was applied to three flow fields. The first is methane flow with lifted flame which is generated by a gourd-shaped fuel nozzle. Feasibility of the IR-CT method was confirmed through the measurement. The second application is combustion field with diffusion flame. Calibration to determine absorptivity was undertaken, and measured line absorption coefficient was converted spatial fuel concentration using corresponding temperature data. The last case is modeled in cylinder gas flow of internal combustion engine, where gaseous methane was led to the intake valve in steady flow state. The fuel gas flow simulates behavior of gaseous gasoline which is evaporated at intake valve tulip. Computed tomography measurement of inner flow is essentially difficult because of existence of surrounding wall. In this experiment, IR laser beam was led to planed portion by IR light fiber. It is found that fuel convection by airflow takes great part in air-fuel mixture formation and the developed IR-CT system to measure fuel concentration is useful to analyze air-fuel mixture formation process and to develop new combustors.
Enhanced cooling of Yb:YLF using astigmatic Herriott cell (Conference Presentation)
NASA Astrophysics Data System (ADS)
Gragossian, Aram; Meng, Junwei; Ghasemkhani, Mohammadreza; Albrecht, Alexander R.; Tonelli, Mauro; Sheik-Bahae, Mansoor
2017-02-01
Optical refrigeration of solids requires crystals with exceptional qualities. Crystals with external quantum efficiencies (EQE) larger than 99% and background absorptions of 4×10-4cm-1 have been cooled to cryogenic temperatures using non resonant cavities. Estimating the cooling efficiency requires accurate measurements of the above mentioned quantities. Here we discuss measurements of EQE and background absorption for two high quality Yb:YLF samples. For any given sample, to reach minimum achievable temperatures heat generated by fluorescence must be removed from the surrounding clamshell and more importantly, absorption of the laser light must be maximized. Since the absorption coefficient drops at lower temperatures the only option is to confine laser light in a cavity until almost 100% of the light is absorbed. This can be achieved by placing the crystal between a cylindrical and spherical mirror to form an astigmatic Herriott cell. In this geometry light enters through a hole in the middle of the spherical mirror and if the entrance angle is correct, it can make as many round trips as required to absorb all the light. At 120 K 60 passes and 150 passes at 100K ensures more than 95% absorption of the laser light. 5 and 10% Yb:YLF crystals placed in such a cell cool to sub 90K temperatures. Non-contact temperature measurements are more challenging for such a geometry. Reabsorption of fluorescence for each pass must be taken into account for accurate temperature measurements by differential luminescence thermometry (DLT). Alternatively, we used part of the spectrum that is not affected by reabsorption.
Optical Properties and Aging of Light Absorbing Secondary Organic Aerosol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jiumeng; Lin, Peng; Laskin, Alexander
2016-10-14
The light-absorbing organic aerosol (OA), commonly referred to as “brown carbon (BrC)”, has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various VOC precursors, NOx concentrations, photolysis time and relative humidity (RH) on the lightmore » absorption of selected secondary organic aerosols (SOA). Light absorption of chamber generated SOA samples, especially aromatic SOA, was found to increase with NOx concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficients (MAC) value is observed from toluene SOA products formed under high NOx conditions at moderate RH, in which nitro-aromatics were previously identified as the major light absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organonitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible and UV light than SOA formed from aromatic precursors alone on a mass basis. However, the mixed-SOA absorption was underestimated when optical properties were predicted using a two-product SOA formation model, as done in many current climate models. Further investigation, including analysis on detailed mechanisms, are required to explain the discrepancy.« less
NASA Astrophysics Data System (ADS)
Lewis, K. A.; Arnott, W. P.; Moosmüller, H.; Chakrabarty, R. K.; Carrico, C. M.; Kreidenweis, S. M.; Day, D. E.; Malm, W. C.; Laskin, A.; Jimenez, J. L.; Ulbrich, I. M.; Huffman, J. A.; Onasch, T. B.; Trimborn, A.; Liu, L.; Mishchenko, M. I.
2009-07-01
Smoke particle emissions from the combustion of biomass fuels typical for the western and southeastern United States were studied and compared under high humidity and ambient conditions in the laboratory. The fuels used are Montana ponderosa pine (Pinus ponderosa), southern California chamise (Adenostoma fasciculatum), and Florida saw palmetto (Serenoa repens). Information on the non-refractory chemical composition of biomass burning aerosol from each fuel was obtained with an aerosol mass spectrometer and through estimation of the black carbon concentration from light absorption measurements at 870 nm. Changes in the optical and physical particle properties under high humidity conditions were observed for hygroscopic smoke particles containing substantial inorganic mass fractions that were emitted from combustion of chamise and palmetto fuels. Light scattering cross sections increased under high humidity for these particles, consistent with the hygroscopic growth measured for 100 nm particles in HTDMA measurements. Photoacoustic measurements of aerosol light absorption coefficients reveal a 20% reduction with increasing relative humidity, contrary to the expectation of light absorption enhancement by the liquid coating taken up by hygroscopic particles. This reduction is hypothesized to arise from two mechanisms: 1. Shielding of inner monomers after particle consolidation or collapse with water uptake; 2. The contribution of mass transfer through evaporation and condensation at high relative humidity to the usual heat transfer pathway for energy release by laser-heated particles in the photoacoustic measurement of aerosol light absorption. The mass transfer contribution is used to evaluate the fraction of aerosol surface covered with liquid water solution as a function of RH.
Microstructural Design for Stress Wave Energy Management
2013-04-01
Polyurea based foam 7 4) Controlling transmission and reflection of pressure and shear waves in a multilayered anisotropic structure 10 5... Polyurea based foam consists of several factors including high energy absorption, light weight, higher elastic modulus to density ratio (compared with... Polyurea ), and collapsible voids under extreme loading. Pure Polyurea offers unique properties such as increased shear stiffness under large pressure
Schmidt-Heydt, Markus; Cramer, Benedikt; Graf, Irina; Lerch, Sandra; Humpf, Hans-Ulrich; Geisen, Rolf
2012-12-14
It has previously been shown that the biosynthesis of the mycotoxins ochratoxin A and B and of citrinin by Penicillium is regulated by light. However, not only the biosynthesis of these mycotoxins, but also the molecules themselves are strongly affected by light of certain wavelengths. The white light and blue light of 470 and 455 nm are especially able to degrade ochratoxin A, ochratoxin B and citrinin after exposure for a certain time. After the same treatment of the secondary metabolites with red (627 nm), yellow (590 nm) or green (530 nm) light or in the dark, almost no degradation occurred during that time indicating the blue light as the responsible part of the spectrum. The two derivatives of ochratoxin (A and B) are degraded to certain definitive degradation products which were characterized by HPLC-FLD-FTMS. The degradation products of ochratoxin A and B did no longer contain phenylalanine however were still chlorinated in the case of ochratoxin A. Citrinin is completely degraded by blue light. A fluorescent band was no longer visible after detection by TLC suggesting a higher sensitivity and apparently greater absorbance of energy by citrinin. The fact that especially blue light degrades the three secondary metabolites is apparently attributed to the absorption spectra of the metabolites which all have an optimum in the short wave length range. The absorption range of citrinin is, in particular, broader and includes the wave length of blue light. In wheat, which was contaminated with an ochratoxin A producing culture of Penicillium verrucosum and treated with blue light after a pre-incubation by the fungus, the concentration of the preformed ochratoxin A reduced by roughly 50% compared to the control and differed by > 90% compared to the sample incubated further in the dark. This indicates that the light degrading effect is also exerted in vivo, e.g., on food surfaces. The biological consequences of the light instability of the toxins are discussed.
Thermal Cycling of Thermal Control Paints on Carbon-Carbon and Carbon-Polyimide Composites
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.
2006-01-01
Carbon-carbon composites and carbon-polyimide composites are being considered for space radiator applications owing to their light weight and high thermal conductivity. For those radiator applications where sunlight will impinge on the surface, it will be necessary to apply a white thermal control paint to minimize solar absorptance and enhance infrared emittance. Several currently available white thermal control paints were applied to candidate carbon-carbon and carbon-polyimide composites and were subjected to vacuum thermal cycling in the range of -100 C to +277 C. The optical properties of solar absorptance and infrared emittance were evaluated before and after thermal cycling. In addition, adhesion of the paints was evaluated utilizing a tape test. The test matrix included three composites: resin-derived carbon-carbon and vapor infiltrated carbon-carbon, both reinforced with pitch-based P-120 graphite fibers, and a polyimide composite reinforced with T-650 carbon fibers, and three commercially available white thermal control paints: AZ-93, Z-93-C55, and YB-71P.
Polarized XANES Monitors Femtosecond Structural Evolution of Photoexcited Vitamin B 12
Miller, Nicholas A.; Deb, Aniruddha; Alonso-Mori, Roberto; ...
2017-01-30
Ultrafast, polarization-selective time-resolved X-ray absorption near-edge structure (XANES) was used to characterize the photochemistry of vitamin B 12, cyanocobalamin (CNCbl), in solution. Cobalamins are important biological cofactors involved in methyl transfer, radical rearrangement, and light-activated gene regulation, while also holding promise as light-activated agents for spatiotemporal controlled delivery of therapeutics. We introduce polarized femtosecond XANES, combined with UV–visible spectroscopy, to reveal sequential structural evolution of CNCbl in the excited electronic state. Femtosecond polarized XANES provides the crucial structural dynamics link between computed potential energy surfaces and optical transient absorption spectroscopy. Polarization selectivity can be used to uniquely identify electronic contributionsmore » and structural changes, even in isotropic samples when well-defined electronic transitions are excited. Our XANES measurements reveal that the structural changes upon photoexcitation occur mainly in the axial direction, where elongation of the axial Co–CN bond and Co–N Im bond on a 110 fs time scale is followed by corrin ring relaxation on a 260 fs time scale. In conclusion, these observations expose features of the potential energy surfaces controlling cobalamin reactivity and deactivation.« less
Polarized XANES Monitors Femtosecond Structural Evolution of Photoexcited Vitamin B 12
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Nicholas A.; Deb, Aniruddha; Alonso-Mori, Roberto
Ultrafast, polarization-selective time-resolved X-ray absorption near-edge structure (XANES) was used to characterize the photochemistry of vitamin B 12, cyanocobalamin (CNCbl), in solution. Cobalamins are important biological cofactors involved in methyl transfer, radical rearrangement, and light-activated gene regulation, while also holding promise as light-activated agents for spatiotemporal controlled delivery of therapeutics. We introduce polarized femtosecond XANES, combined with UV–visible spectroscopy, to reveal sequential structural evolution of CNCbl in the excited electronic state. Femtosecond polarized XANES provides the crucial structural dynamics link between computed potential energy surfaces and optical transient absorption spectroscopy. Polarization selectivity can be used to uniquely identify electronic contributionsmore » and structural changes, even in isotropic samples when well-defined electronic transitions are excited. Our XANES measurements reveal that the structural changes upon photoexcitation occur mainly in the axial direction, where elongation of the axial Co–CN bond and Co–N Im bond on a 110 fs time scale is followed by corrin ring relaxation on a 260 fs time scale. In conclusion, these observations expose features of the potential energy surfaces controlling cobalamin reactivity and deactivation.« less
NASA Astrophysics Data System (ADS)
Ammerlaan, B. A. J.; Holzinger, R.; Jedynska, A. D.; Henzing, J. S.
2017-09-01
Equivalent Black Carbon (EBC) and Elemental Carbon (EC) are different mass metrics to quantify the amount of combustion aerosol. Both metrics have their own measurement technique. In state-of-the-art carbon analysers, optical measurements are used to correct for organic carbon that is not evolving because of pyrolysis. These optical measurements are sometimes used to apply the technique of absorption photometers. Here, we use the transmission measurements of our carbon analyser for simultaneous determination of the elemental carbon concentration and the absorption coefficient. We use MAAP data from the CESAR observatory, the Netherlands, to correct for aerosol-filter interactions by linking the attenuation coefficient from the carbon analyser to the absorption coefficient measured by the MAAP. Application of the calibration to an independent data set of MAAP and OC/EC observations for the same location shows that the calibration is applicable to other observation periods. Because of simultaneous measurements of light absorption properties of the aerosol and elemental carbon, variation in the mass absorption efficiency (MAE) can be studied. We further show that the absorption coefficients and MAE in this set-up are determined within a precision of 10% and 12%, respectively. The precisions could be improved to 4% and 8% when the light transmission signal in the carbon analyser is very stable.
Photo-oxidation of polymer-like amorphous hydrogenated carbon under visible light illumination
Baxamusa, Salmaan; Laurence, Ted; Worthington, Matthew; ...
2015-11-10
Amorphous hydrogenated carbon (a-C:H), a polymer-like network typically synthesized by plasma chemical vapor deposition, has long been understood to exhibit optical absorption of visible light (λ > 400 nm). In this report we explain that this absorption is accompanied by rapid photo-oxidation (within minutes) that behaves in most respects like classic polymer photo-oxidation with the exception that it occurs under visible light illumination rather than ultraviolet illumination.
Vishwanath, Karthik; Chang, Kevin; Klein, Daniel; Deng, Yu Feng; Chang, Vivide; Phelps, Janelle E; Ramanujam, Nimmi
2011-02-01
Steady-state diffuse reflection spectroscopy is a well-studied optical technique that can provide a noninvasive and quantitative method for characterizing the absorption and scattering properties of biological tissues. Here, we compare three fiber-based diffuse reflection spectroscopy systems that were assembled to create a light-weight, portable, and robust optical spectrometer that could be easily translated for repeated and reliable use in mobile settings. The three systems were built using a broadband light source and a compact, commercially available spectrograph. We tested two different light sources and two spectrographs (manufactured by two different vendors). The assembled systems were characterized by their signal-to-noise ratios, the source-intensity drifts, and detector linearity. We quantified the performance of these instruments in extracting optical properties from diffuse reflectance spectra in tissue-mimicking liquid phantoms with well-controlled optical absorption and scattering coefficients. We show that all assembled systems were able to extract the optical absorption and scattering properties with errors less than 10%, while providing greater than ten-fold decrease in footprint and cost (relative to a previously well-characterized and widely used commercial system). Finally, we demonstrate the use of these small systems to measure optical biomarkers in vivo in a small-animal model cancer therapy study. We show that optical measurements from the simple portable system provide estimates of tumor oxygen saturation similar to those detected using the commercial system in murine tumor models of head and neck cancer.
Thurmond, Kyle; Loparo, Zachary; Partridge, Jr., William P.; ...
2016-04-18
Here, a sensor was developed for simultaneous measurements of carbon monoxide (CO) and carbon dioxide (CO 2) fluctuations in internal combustion engine exhaust gases. This sensor utilizes low-cost and compact light-emitting diodes (LEDs) that emit in the 3–5 µm wavelength range. An affordable, fast response sensor that can measure these gases has a broad application that can lead to more efficient, fuel-flexible engines and regulation of harmful emissions. Light emission from LEDs is spectrally broader and more spatially divergent when compared to that of lasers, which presented many design challenges. Optical design studies addressed some of the non-ideal characteristics ofmore » the LED emissions. Measurements of CO and CO 2 were conducted using their fundamental absorption bands centered at 4.7 µm and 4.3 µm, respectively, while a 3.6 µm reference LED was used to account for scattering losses (due to soot, window deposits, etc.) common to the three measurement LEDs. Instrument validation and calibration was performed using a laboratory flow cell and bottled-gas mixtures. The sensor was able to detect CO 2 and CO concentration changes as small as 30 ppm and 400 ppm, respectively. Because of the many control and monitor species with infra-red absorption features, which can be measured using the strategy described, this work demonstrates proof of concept for a wider range of fast (250 Hz) and low-cost sensors for gas measurement and process monitoring.« less
Imaging-based molecular barcoding with pixelated dielectric metasurfaces
NASA Astrophysics Data System (ADS)
Tittl, Andreas; Leitis, Aleksandrs; Liu, Mingkai; Yesilkoy, Filiz; Choi, Duk-Yong; Neshev, Dragomir N.; Kivshar, Yuri S.; Altug, Hatice
2018-06-01
Metasurfaces provide opportunities for wavefront control, flat optics, and subwavelength light focusing. We developed an imaging-based nanophotonic method for detecting mid-infrared molecular fingerprints and implemented it for the chemical identification and compositional analysis of surface-bound analytes. Our technique features a two-dimensional pixelated dielectric metasurface with a range of ultrasharp resonances, each tuned to a discrete frequency; this enables molecular absorption signatures to be read out at multiple spectral points, and the resulting information is then translated into a barcode-like spatial absorption map for imaging. The signatures of biological, polymer, and pesticide molecules can be detected with high sensitivity, covering applications such as biosensing and environmental monitoring. Our chemically specific technique can resolve absorption fingerprints without the need for spectrometry, frequency scanning, or moving mechanical parts, thereby paving the way toward sensitive and versatile miniaturized mid-infrared spectroscopy devices.
Effects of surface roughness and absorption on light propagation in graded-profile waveguides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danilenko, S S; Osovitskii, A N
2011-06-30
This paper examines the effects of surface roughness and absorption on laser light propagation in graded-profile waveguiding structures. We derive analytical expressions for the scattering and absorption coefficients of guided waves and analyse these coefficients in relation to parameters of the waveguiding structure and the roughness of its boundary. A new approach is proposed to measuring roughness parameters of precision dielectric surfaces. Experimental evidence is presented which supports the main conclusions of the theory. (integraled-optical waweguides)
Mourot, Alexandre; Herold, Christian; Kienzler, Michael A; Kramer, Richard H
2017-06-20
The photo-isomerizable local anaesthetic, quaternary ammonium-azobenzene-quaternary ammonium (QAQ), provides rapid, optical control over pain signalling without involving genetic modification. In darkness or in green light, trans-QAQ blocks voltage-gated K + and Na + channels and silences action potentials in pain-sensing neurons. Upon photo-isomerization to cis with near UV light, QAQ blockade is rapidly relieved, restoring neuronal activity. However, the molecular mechanism of cis and trans QAQ blockade is not known. Moreover, the absorption spectrum of QAQ requires UV light for photo-control, precluding use deep inside neural tissue. Electrophysiology and molecular modelling were used to characterize the binding of cis and trans QAQ to voltage-gated K + channels and to develop quaternary ammonium-ethylamine-azobenzene-quaternary ammonium (QENAQ), a red-shifted QAQ derivative controlled with visible light. trans QAQ was sixfold more potent than cis QAQ, in blocking current through Shaker K + channels. Both isomers were use-dependent, open channel blockers, binding from the cytoplasmic side, but only trans QAQ block was slightly voltage dependent. QENAQ also blocked native K + and Na + channels preferentially in the trans state. QENAQ was photo-isomerized to cis with blue light and spontaneously reverted to trans within seconds in darkness, enabling rapid photo-control of action potentials in sensory neurons. Light-switchable local anaesthetics provide a means to non-invasively photo-control pain signalling with high selectivity and fast kinetics. Understanding the mode of action of QAQ and related compounds will help to design of drugs with improved photo-pharmacological properties. © 2017 The British Pharmacological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patil, S. D., E-mail: sdpatilphy@gmail.com; Takale, M. V.
2016-05-06
This paper presents an influence of light absorption on self-focusing of laser beam propagation in plasma. The differential equation for beam-width parameter is obtained using the Wentzel-Kramers-Brillouin and paraxial approximations through parabolic equation approach. The nonlinearity in dielectric function is assumed to be aroused due to the combined effect of weakly relativistic and ponderomotive regime. To highlight the nature of propagation, behavior of beam-width parameter with dimensionless distance of propagation is presented graphically and discussed. The present work is helpful to understand issues related to the beam propagation in laser plasma interaction experiments where light absorption plays a vital role.
Evanescent Wave Absorption Based Fiber Sensor for Measuring Glucose Solution Concentration
NASA Astrophysics Data System (ADS)
Marzuki, Ahmad; Candra Pratiwi, Arni; Suryanti, Venty
2018-03-01
An optical fiber sensor based on evanescent wave absorption designed for measuring glucose solution consentration was proposed. The sensor was made to detect absorbance of various wavelength in the glucose solution. The sensing element was fabricated by side polishing of multimode polymer optical fiber to form a D-shape. The sensing element was immersed in different concentration of glucoce solution. As light propagated through the optical fiber, the evanescent wave interacted with the glucose solution. Light was absorbed by the glucose solution. The larger concentration the glucose solution has, the more the evanescent wave was absorbed in particular wavelenght. Here in this paper, light absorbtion as function of glucose concentration was measured as function of wavelength (the color of LED). We have shown that the proposed sensor can demonstrated an increase of light absorption as function of glucose concentration.
Light absorption by coated nano-sized carbonaceous particles
NASA Astrophysics Data System (ADS)
Gangl, Martin; Kocifaj, Miroslav; Videen, Gorden; Horvath, Helmuth
The optical properties of strongly absorbing soot particles coated by transparent material are investigated experimentally and described by several modeling approaches. Soot is produced by spark discharge and passed through a Sinclair-La Mer generator where non-absorbing carnauba wax is condensed onto it to obtain internal soot-wax mixtures in a controlled way. Measurements of the extinction and volume scattering coefficient show an amplification of absorption by a factor of approximately 1.8. This behavior was described by different approaches of internally mixed materials for the modal diameters of the measured size distributions: concentric-sphere model, effective medium approximations and heterogeneous ellipsoids. The concentric-sphere model describes the absorption increase quantitatively; and hence, it is chosen to be applied to the entire particle population in the size distribution. The growth of the soot particles by condensing wax is described by a simplified growth model to estimate the different contributions of several soot particle diameters to the overall absorption cross-section.
Spectral analysis of scattered light from flowers' petals
NASA Astrophysics Data System (ADS)
Ozawa, Atsumi; Uehara, Tomomi; Sekiguchi, Fumihiko; Imai, Hajime
2009-07-01
A new method was developed for studying absorption characteristics of opaque samples based on the light scattering spectroscopy. Measurements were made in white, red and violet petals of Petunia hybrida, and gave the absorption spectra in a non-destructive manner without damaging the cell structures of the petal. The red petal has absorption peak at 550 nm and the violet has three absorption peaks: at 450, 670, and 550 nm. The results were discussed in correlation with the microscopic cell structures of the petal observed with optical microscope and transmission electron microscopy (TEM). Only the cells placed in the surface have the pigments giving the color of the petal.
Semiconductor meta-surface based perfect light absorber
NASA Astrophysics Data System (ADS)
Liu, Guiqiang; Nie, Yiyou; Fu, Guolan; Liu, Xiaoshan; Liu, Yi; Tang, Li; Liu, Zhengqi
2017-04-01
We numerically proposed and demonstrated a semiconductor meta-surface light absorber, which consists of a silicon patches array on a silicon thin-film and an opaque silver substrate. The Mie resonances of the silicon patches and the fundamental cavity mode of the ultra-thin silicon film couple strongly to the incident optical field, leading to a multi-band perfect absorption. The maximal absorption is above 99.5% and the absorption is polarization-independent. Moreover, the absorption behavior is scalable in the frequency region via tuning the structural parameters. These features hold the absorber platform with wide applications in optoelectronics such as hot-electron excitation and photo-detection.
Liu, Zhengqi; Liu, Guiqiang; Liu, Xiaoshan; Huang, Shan; Wang, Yan; Pan, Pingping; Liu, Mulin
2015-06-12
Resonant plasmonic and metamaterial absorbers are of particular interest for applications in a wide variety of nanotechnologies including thermophotovoltaics, photothermal therapy, hot-electron collection and biosensing. However, it is rather challenging to realize ultra-narrow absorbers using plasmonic materials due to large optical losses in metals that inevitably decrease the quality of optical resonators. Here, we theoretically report methods to achieve an ultra-narrow light absorption meta-surface by using photonic modes of the optical cavities, which strongly couple with the plasmon resonances of the metallic nanostructures. Multispectral light absorption with absorption amplitude exceeding 99% and a bandwidth approaching 10 nm is achieved at the optical frequencies. Moreover, by introducing a thick dielectric coupling cavity, the number of absorption bands can be strongly increased and the bandwidth can even be narrowed to less than 5 nm due to the resonant spectrum splitting enabled by strong coupling between the plasmon resonances and the optical cavity modes. Designing such optical cavity-coupled meta-surface structures is a promising route for achieving ultra-narrow multiband absorbers, which can be used in absorption filters, narrow-band multispectral thermal emitters and thermophotovoltaics.
Deep seawater inherent optical properties in the Southern Ionian Sea
NASA Astrophysics Data System (ADS)
Riccobene, G.; Capone, A.; Aiello, S.; Ambriola, M.; Ameli, F.; Amore, I.; Anghinolfi, M.; Anzalone, A.; Avanzini, C.; Barbarino, G.; Barbarito, E.; Battaglieri, M.; Bellotti, R.; Beverini, N.; Bonori, M.; Bouhadef, B.; Brescia, M.; Cacopardo, G.; Cafagna, F.; Caponetto, L.; Castorina, E.; Ceres, A.; Chiarusi, T.; Circella, M.; Cocimano, R.; Coniglione, R.; Cordelli, M.; Costa, M.; Cuneo, S.; D'Amico, A.; de Bonis, G.; de Marzo, C.; de Rosa, G.; de Vita, R.; Distefano, C.; Falchini, E.; Fiorello, C.; Flaminio, V.; Fratini, K.; Gabrielli, A.; Galeotti, S.; Gandolfi, E.; Grimaldi, A.; Habel, R.; Leonora, E.; Lonardo, A.; Longo, G.; Lo Presti, D.; Lucarelli, F.; Maccioni, E.; Margiotta, A.; Martini, A.; Masullo, R.; Megna, R.; Migneco, E.; Mongelli, M.; Montaruli, T.; Morganti, M.; Musumeci, M.; Nicolau, C. A.; Orlando, A.; Osipenko, M.; Osteria, G.; Papaleo, R.; Pappalardo, V.; Petta, C.; Piattelli, P.; Raffaelli, F.; Raia, G.; Randazzo, N.; Reito, S.; Ricco, G.; Ripani, M.; Rovelli, A.; Ruppi, M.; Russo, G. V.; Russo, S.; Russo, S.; Sapienza, P.; Sedita, M.; Schuller, J.-P.; Shirokov, E.; Simeone, F.; Sipala, V.; Spurio, M.; Taiuti, M.; Terreni, G.; Trasatti, L.; Urso, S.; Valente, V.; Vicini, P.
2007-02-01
The NEMO (NEutrino Mediterranean Observatory) Collaboration has been carrying out since 1998 an evaluation programme of deep sea sites suitable for the construction of the future Mediterranean km3 Čerenkov neutrino telescope. We investigated the seawater optical and oceanographic properties of several deep sea marine areas close to the Italian Coast. Inherent optical properties (light absorption and attenuation coefficients) have been measured as a function of depth using an experimental apparatus equipped with standard oceanographic probes and the commercial transmissometer AC9 manufactured by WETLabs. This paper reports on the visible light absorption and attenuation coefficients measured in deep seawater of a marine region located in the Southern Ionian Sea, 60 100 km SE of Capo Passero (Sicily). Data show that blue light absorption coefficient is about 0.015 m-1 (corresponding to an absorption length of 67 m) close to the one of optically pure water and it does not show seasonal variation.
Surface-plasmon mediated total absorption of light into silicon.
Yoon, Jae Woong; Park, Woo Jae; Lee, Kyu Jin; Song, Seok Ho; Magnusson, Robert
2011-10-10
We report surface-plasmon mediated total absorption of light into a silicon substrate. For an Au grating on Si, we experimentally show that a surface-plasmon polariton (SPP) excited on the air/Au interface leads to total absorption with a rate nearly 10 times larger than the ohmic damping rate of collectively oscillating free electrons in the Au film. Rigorous numerical simulations show that the SPP resonantly enhances forward diffraction of light to multiple orders of lossy waves in the Si substrate with reflection and ohmic absorption in the Au film being negligible. The measured reflection and phase spectra reveal a quantitative relation between the peak absorbance and the associated reflection phase change, implying a resonant interference contribution to this effect. An analytic model of a dissipative quasi-bound resonator provides a general formula for the resonant absorbance-phase relation in excellent agreement with the experimental results.
A Near-Infrared Spectrometer to Measure Zodiacal Light Absorption Spectrum
NASA Technical Reports Server (NTRS)
Kutyrev, A. S.; Arendt, R.; Dwek, E.; Kimble, R.; Moseley, S. H.; Rapchun, D.; Silverberg, R. F.
2010-01-01
We have developed a high throughput infrared spectrometer for zodiacal light fraunhofer lines measurements. The instrument is based on a cryogenic dual silicon Fabry-Perot etalon which is designed to achieve high signal to noise Fraunhofer line profile measurements. Very large aperture silicon Fabry-Perot etalons and fast camera optics make these measurements possible. The results of the absorption line profile measurements will provide a model free measure of the zodiacal Light intensity in the near infrared. The knowledge of the zodiacal light brightness is crucial for accurate subtraction of zodiacal light foreground for accurate measure of the extragalactic background light after the subtraction of zodiacal light foreground. We present the final design of the instrument and the first results of its performance.
Synthesis and energy applications of mesoporous titania thin films
NASA Astrophysics Data System (ADS)
Islam, Syed Z.
The optical and electronic properties of TiO2 thin films provide tremendous opportunities in several applications including photocatalysis, photovoltaics and photoconductors for energy production. Despite many attractive features of TiO2, critical challenges include the innate inability of TiO2 to absorb visible light and the fast recombination of photoexcited charge carriers. In this study, mesoporous TiO2 thin films are modified by doping using hydrogen and nitrogen, and sensitization using graphene quantum dot sensitization. For all of these modifiers, well-ordered mesoporous titania films were synthesized by surfactant templated sol-gel process. Two methods: hydrazine and plasma treatments have been developed for nitrogen and hydrogen doping in the mesoporous titania films for band gap reduction, visible light absorption and enhancement of photocatalytic activity. The hydrazine treatment in mesoporous titania thin films suggests that hydrazine induced doping is a promising approach to enable synergistic incorporation of N and Ti3+ into the lattice of surfactant-templated TiO2 films and enhanced visible light photoactivity, but that the benefits are limited by gradual mesostructure deterioration. The plasma treated nitrogen doped mesoporous titania showed about 240 times higher photoactivity compared to undoped film in hydrogen production from photoelectrochemical water splitting under visible light illumination. Plasma treated hydrogen doped mesoporous titania thin films has also been developed for enhancement of visible light absorption. Hydrogen treatment has been shown to turn titania (normally bright white) black, indicating vastly improved visible light absorption. The cause of the color change and its effectiveness for photocatalysis remain open questions. For the first time, we showed that a significant amount of hydrogen is incorporated in hydrogen plasma treated mesoporous titania films by neutron reflectometry measurements. In addition to the intrinsic modification of titania by doping, graphene quantum dot sensitization in mesoporous titania film was also investigated for visible light photocatalysis. Graphene quantum dot sensitization and nitrogen doping of ordered mesoporous titania films showed synergistic effect in water splitting due to high surface area, band gap reduction, enhanced visible light absorption, and efficient charge separation and transport. This study suggests that plasma based doping and graphene quantum dot sensitization are promising strategies to reduce band gap and enhance visible light absorption of high surface area surfactant templated mesoporous titania films, leading to superior visible-light driven photoelectrochemical hydrogen production. The results demonstrate the importance of designing and manipulating the energy band alignment in composite nanomaterials for fundamentally improving visible light absorption, charge separation and transport, and thereby photoelectrochemical properties.
Incipient fire detection system
Brooks, Jr., William K.
1999-01-01
A method and apparatus for an incipient fire detection system that receives gaseous samples and measures the light absorption spectrum of the mixture of gases evolving from heated combustibles includes a detector for receiving gaseous samples and subjecting the samples to spectroscopy and determining wavelengths of absorption of the gaseous samples. The wavelengths of absorption of the gaseous samples are compared to predetermined absorption wavelengths. A warning signal is generated whenever the wavelengths of absorption of the gaseous samples correspond to the predetermined absorption wavelengths. The method includes receiving gaseous samples, subjecting the samples to light spectroscopy, determining wavelengths of absorption of the gaseous samples, comparing the wavelengths of absorption of the gaseous samples to predetermined absorption wavelengths and generating a warning signal whenever the wavelengths of absorption of the gaseous samples correspond to the predetermined absorption wavelengths. In an alternate embodiment, the apparatus includes a series of channels fluidically connected to a plurality of remote locations. A pump is connected to the channels for drawing gaseous samples into the channels. A detector is connected to the channels for receiving the drawn gaseous samples and subjecting the samples to spectroscopy. The wavelengths of absorption are determined and compared to predetermined absorption wavelengths is provided. A warning signal is generated whenever the wavelengths correspond.
NASA Astrophysics Data System (ADS)
Gyawali, M.; Arnott, W. P.; Lewis, K.; Moosmüller, H.
2009-06-01
Hundreds of wildfires in Northern California were sparked by lightning during the summer of 2008, resulting in downwind smoke for the months of June and July. Comparisons are reported for aerosol optics measurements in Reno Nevada made during the very smoky summer month of July and the relatively clean month of August. Photoacoustic instruments equipped with integrating nephelometers were used to measure aerosol light scattering and absorption at wavelengths of 405 nm and 870 nm, revealing a strong variation of the aerosol light absorption with wavelength. Coated sphere calculations were used to show that Ångström exponents of absorption (AEA) as large as 1.6 are possible even with non-absorbing organic coatings on black carbon cores, suggesting care be exercised when diagnosing AEA. Insight on fuels burned is gleaned from comparison of AEA versus single scattering albedo (SSA) of the ambient measurements with laboratory biomass smoke measurements for many fuels. Measurements during the month of August, which were largely unaffected by fire smoke, exhibit surprisingly low AEA for aerosol light absorption when the SSA is highest, again likely as a consequence of the underappreciated wavelength dependence of aerosol light absorption by particles coated with non absorbing organic and inorganic matter.
NASA Astrophysics Data System (ADS)
Wang, Weiping; He, Jialun; Cao, Yiyan; Kong, Lijing; Zheng, Xuanli; Wu, Yaping; Chen, Xiaohong; Li, Shuping; Wu, Zhiming; Kang, Junyong
2017-03-01
Coaxial structures exhibit great potential for the application of high-efficiency solar cells due to the novel mechanism of radial charge separation. Here, we intensively investigate the nonuniform effect of carrier separation efficiency (CSE) and light absorption in perovskite-based type-II coaxial nanowire solar cells (ZnO/CH3NH3PbI3). Results show that the CSE rapidly decreases along the radial direction in the shell, and the value at the outer side becomes extremely low for the thick shell. Besides, the position of the main light absorption gradually moves to the outer side with the increase of the shell thickness. As a result, the external quantum efficiency shows a positional dependence with a maximal value close to the border of the nanowire. Eventually, in our case, it is found that the maximal power conversion efficiency of the solar cells reduces from 19.5 to 17.9% under the effect of the nonuniformity of CSE and light absorption. This work provides a basis for the design of high-efficiency solar cells, especially type-II nanowire solar cells.
Wang, Weiping; He, Jialun; Cao, Yiyan; Kong, Lijing; Zheng, Xuanli; Wu, Yaping; Chen, Xiaohong; Li, Shuping; Wu, Zhiming; Kang, Junyong
2017-12-01
Coaxial structures exhibit great potential for the application of high-efficiency solar cells due to the novel mechanism of radial charge separation. Here, we intensively investigate the nonuniform effect of carrier separation efficiency (CSE) and light absorption in perovskite-based type-II coaxial nanowire solar cells (ZnO/CH 3 NH 3 PbI 3 ). Results show that the CSE rapidly decreases along the radial direction in the shell, and the value at the outer side becomes extremely low for the thick shell. Besides, the position of the main light absorption gradually moves to the outer side with the increase of the shell thickness. As a result, the external quantum efficiency shows a positional dependence with a maximal value close to the border of the nanowire. Eventually, in our case, it is found that the maximal power conversion efficiency of the solar cells reduces from 19.5 to 17.9% under the effect of the nonuniformity of CSE and light absorption. This work provides a basis for the design of high-efficiency solar cells, especially type-II nanowire solar cells.
NASA Astrophysics Data System (ADS)
Vijselaar, Wouter; Westerik, Pieter; Veerbeek, Janneke; Tiggelaar, Roald M.; Berenschot, Erwin; Tas, Niels R.; Gardeniers, Han; Huskens, Jurriaan
2018-03-01
A solar-driven photoelectrochemical cell provides a promising approach to enable the large-scale conversion and storage of solar energy, but requires the use of Earth-abundant materials. Earth-abundant catalysts for the hydrogen evolution reaction, for example nickel-molybdenum (Ni-Mo), are generally opaque and require high mass loading to obtain high catalytic activity, which in turn leads to parasitic light absorption for the underlying photoabsorber (for example silicon), thus limiting production of hydrogen. Here, we show the fabrication of a highly efficient photocathode by spatially and functionally decoupling light absorption and catalytic activity. Varying the fraction of catalyst coverage over the microwires, and the pitch between the microwires, makes it possible to deconvolute the contributions of catalytic activity and light absorption to the overall device performance. This approach provided a silicon microwire photocathode that exhibited a near-ideal short-circuit photocurrent density of 35.5 mA cm-2, a photovoltage of 495 mV and a fill factor of 62% under AM 1.5G illumination, resulting in an ideal regenerative cell efficiency of 10.8%.
Measurements of Photo-induced Changes in Conjugated Polymers
DOE R&D Accomplishments Database
Seager, C. H.; Sinclair, M. B.; Mc Branch, D.; Heeger, A. J.; Baker, G. L.
1991-01-01
We have used the highly sensitive technique of Photothermal Deflection Spectroscopy (PDS) to measure changes in the infrared absorption spectra of MEHPPV, P3HT and Polydiacetylene-4BCMU induced by pumping these polymers with light above the {pi} - {pi}* transition energy. In contrast to previous chopped light transmission measurements of these effects, the PDS technique can directly measure the buildup or decay of the absorption coefficient, {alpha}, on the time scale of second to days. In the case of MEHPPV we observe that the time scale of seconds to days. In the case of MEHPPV we observe that above-gap light causes the appearance of a broad infrared peak in {alpha}, which continues to grow-in hours after the pump light is first applied. For this polymer the general shape of the absorption spectra in the unpumped state mimics the photo-induced changes, suggesting that remnant photo-induced states determine the maximum transparency observed under normal experimental conditions. For P3HT and to a lesser extent, MEHPPV, we also observe irreversible photo-induced absorption components which we tentatively identify with photo-induced oxidation of the polymer matrix.
Aerosol impacts on visible light extinction in the atmosphere of Mexico City.
Eidels-Dubovoi, Silvia
2002-03-27
Eleven diurnal aerosol visible light absorption and scattering patterns were obtained from measurements done with an aethalometer and an integrating nephelometer during 28 February-10 March 1997 at two different sites in the Mexico City basin. Both measurement sites, the Merced site affected by regional and urban-scale aerosol and the Pedregal site dominated by regional-scale aerosol, showed a variety of diurnal light absorption and scattering patterns. For the majority of the 11 studied days, the highest absorption peaks appeared in the early morning, 07.00-09.30 h while those of scattering appeared later, 09.30-11.00 h. The earlier absorption peaks could be attributed to the elevated elemental carbon vehicular emissions during the heavy traffic hours whereas the later scattering peaks could be attributed to secondary aerosols formed photochemically in the atmosphere. During the period examined, the Pedregal site exhibited on the average a lower aerosol scattering and a higher aerosol absorption contribution to the total aerosol visible light extinction and a better visibility than that of the Merced site. Hence, the impact of aerosol absorption on the visibility degradation due to aerosols was greater at the less hazy Pedregal site. The overall 11-day aerosol visibility average of 20.9 km found at La Merced site, was only 9.4 km lower than that of 30.3 km found at the Pedregal site. This small aerosol visibility difference, of the order of the standard deviation, led to the conclusion that besides the regional-scale aerosol impact, the urban-scale aerosol impact on aerosol visible light extinction is very similar at La Merced and Pedregal sites.
NASA Astrophysics Data System (ADS)
Pena Mello Brandão, Luciana; Silva Brighenti, Ludmila; Staehr, Peter Anton; Asmala, Eero; Massicotte, Philippe; Tonetta, Denise; Antônio Rodrigues Barbosa, Francisco; Pujoni, Diego; Fernandes Bezerra-Neto, José
2018-05-01
Despite the increasing understanding about differences in carbon cycling between temperate and tropical freshwater systems, our knowledge on the importance of organic matter (OM) pools on light absorption properties in tropical lakes is very scarce. We performed a factorial mesocosm experiment in a tropical lake (Minas Gerais, Brazil) to evaluate the effects of increased concentrations of allochthonous and autochthonous OM, and differences in light availability on the light absorption characteristics of chromophoric dissolved organic matter (CDOM). Autochthonous OM deriving from phytoplankton ( ˜ Chl a) was stimulated by addition of nutrients, while OM from degradation of terrestrial leaves increased allochthonous OM, and neutral shading was used to manipulate light availability. Effects of the additions and shading on DOC, Chl a, nutrients, total suspended solid concentrations (TSM) and spectral CDOM absorption were monitored every 3 days. CDOM quality was characterized by spectral indices (S250-450, S275-295, S350-450, SR and SUVA254). Effects of carbon sources and shading on the spectral CDOM absorption was investigated through principal component (PCA) and redundancy (RDA) analyses. The two different OM sources affected CDOM quality very differently and shading had minor effects on OM levels, but significant effects on OM quality, especially in combination with nutrient additions. Spectral indices (S250-450 and SR) were mostly affected by allochthonous OM addition. The PCA showed that enrichment by allochthonous carbon had a strong effect on the CDOM spectra in the range between 300 and 400 nm, while the increase in autochthonous carbon increased absorption at wavelengths below 350 nm. Our study shows that small inputs of allochthonous OM can have large effects on the spectral light absorption compared to large production of autochthonous OM, with important implications for carbon cycling in tropical lakes.
Enhanced Kerr nonlinearity in a quantized four-level graphene nanostructure
NASA Astrophysics Data System (ADS)
Ghahraman, Solookinejad; M, Panahi; E, Ahmadi; Seyyed, Hossein Asadpour
2016-07-01
In this paper, a new model is proposed for manipulating the Kerr nonlinearity of right-hand circular probe light in a monolayer of graphene nanostructure. By using the density matrix equations and quantum optical approach, the third-order susceptibility of probe light is explored numerically. It is realized that the enhanced Kerr nonlinearity with zero linear absorption can be provided by selecting the appropriate quantities of controllable parameters, such as Rabi frequency and elliptical parameter of elliptical polarized coupling field. Our results may be useful applications in future all-optical system devices in nanostructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang-Hasnain, Constance
2015-05-04
The ultimate goal of this project is to develop a photovoltaic system high conversion efficiency (>20%) using high quality III-V compound-based three-dimensional micro-structures on silicon and poly-silicon. Such a PV-system could be of very low cost due to minimum usages of III-V materials. This project will address the barriers that currently hamper the performance of solar cells based on three-dimensional micro-structures. To accomplish this goal the project is divided into 4 tasks, each dealing with a different aspect of the project: materials quality, micropillar growth control, light management, and pillar based solar cells. Materials Quality: the internal quantum efficiency (IQE)more » - by which is meant here the internal fluorescence yield - of the micro-pillars has to be increased. We aim at achieving an IQE of 45% by the end of the first year. By the end of the second year there will be a go-no-go milestone of 65% IQE. By the end of year 3 and 4 we aim to achieve 75% and 90% IQE, respectively. Micropillar growth control: dense forests of micropillars with high fill ratios need to be grown. Pillars within forests should show minimum variations in size. We aim at achieving fill ratios of 2%, 10%, >15%, >20% in years 1, 2, 3, and 4, respectively. Variations in dimension should be minimized by site-controlled growth of pillars. By the end of year 1 we will aim at achieving site-controlled growth with > 15% yield. By end of year 2 the variation of critical pillar dimensions should be less than 25%. Light management: high light absorption in the spectral range of the sun has been to be demonstrated for the micropillar forests. By the end of year 1 we will employ FDTD simulation techniques to demonstrate that pillar forests with fill ratios <20% can achieve 99% light absorption. By end of year 2 our original goal was to demonstrate >85% absorption. By end of year 3 > 90% absorption should be demonstrated. Pillar based solar cells: devices will be studied to explore ways to achieve high open-circuit voltages which will lead to high efficiency micropillar-based solar cells. We will start on single pillar devices and the findings in these studies should pave the way for devices based on forests/ arrays of pillars. By the end of the second year we aim to demonstrate a single pillar device with an open-circuit voltage of 0.7 V, as well as a pillar-forest based device with 8% conversion efficiency. By the end of year 3 these numbers should be improved to 0.9 V open-circuit voltage for single pillar devices and >15% efficiency for forest/array-based devices. We will aim to realize a device with 20% efficiency by the end of the project period.« less
On-chip skin color detection using a triple-well CMOS process
NASA Astrophysics Data System (ADS)
Boussaid, Farid; Chai, Douglas; Bouzerdoum, Abdesselam
2004-03-01
In this paper, a current-mode VLSI architecture enabling on read-out skin detection without the need for any on-chip memory elements is proposed. An important feature of the proposed architecture is that it removes the need for demosaicing. Color separation is achieved using the strong wavelength dependence of the absorption coefficient in silicon. This wavelength dependence causes a very shallow absorption of blue light and enables red light to penetrate deeply in silicon. A triple-well process, allowing a P-well to be placed inside an N-well, is chosen to fabricate three vertically integrated photodiodes acting as the RGB color detector for each pixel. Pixels of an input RGB image are classified as skin or non-skin pixels using a statistical skin color model, chosen to offer an acceptable trade-off between skin detection performance and implementation complexity. A single processing unit is used to classify all pixels of the input RGB image. This results in reduced mismatch and also in an increased pixel fill-factor. Furthermore, the proposed current-mode architecture is programmable, allowing external control of all classifier parameters to compensate for mismatch and changing lighting conditions.
Organic photochromics for spatial light modulation
NASA Astrophysics Data System (ADS)
Kirkby, C. J. G.; Bennion, I.
1986-02-01
The feasibility of using fulgide derivatives (FD), a class of thermally stable, fatigue-free photochromic materials (PM), as optically addressed spatial light modulators (SLIM) is analyzed. Photochromism is the property of a material that changes from one physicochemical state to another due to the impingement of light. The PMs are low-resolution but exhibit no granularity as photographic films do, therefore permitting the use of PMs as data or image recording media with direct-read-after-write capability. It is known that the properties of the FDs (of dimethyl succinic anhydride), i.e., the fatigue, thermal stability and absorption band location, can be tailored by control of the location of two of the oxygen links at two locations on the molecule. Manipulating the absorption spectra also allows manipulation of the refractive index, ergo the SLIM capability of the FDs. Molecular substitutions have proven effective for adjustments of the wavelength sensitivities of the FDs. Film thicknesses of 3-10 microns have been shown capable of supporting a practical resolution limit of 100-200 line pairs/mm, a 30 dB dynamic range, a Fourier plane SNR of 50, and an image recycle time of 40 msec.
Two-photon absorption in arsenic sulfide glasses
NASA Astrophysics Data System (ADS)
Chunaev, D. S.; Snopatin, G. E.; Plotnichenko, V. G.; Karasik, A. Ya.
2016-10-01
The two-photon absorption coefficient of 1047-{\\text{nm}} light in {\\text{As}}35{\\text{S}}65 chalcogenide glass has been measured. CW probe radiation has been used to observe the linear absorption in glass induced by two-photon excitation. The induced absorption lifetime was found to be ∼ 2 {\\text{ms}}.
Near infrared laser penetration and absorption in human skin
NASA Astrophysics Data System (ADS)
Nasouri, Babak; Murphy, Thomas E.; Berberoglu, Halil
2014-02-01
For understanding the mechanisms of low level laser/light therapy (LLLT), accurate knowledge of light interaction with tissue is necessary. In this paper, we present a three dimensional, multi-layer Monte Carlo simulation tool for studying light penetration and absorption in human skin. The skin is modeled as a three-layer participating medium, namely epidermis, dermis, and subcutaneous, where its geometrical and optical properties are obtained from the literature. Both refraction and reflection are taken into account at the boundaries according to Snell's law and Fresnel relations. A forward Monte Carlo method was implemented and validated for accurately simulating light penetration and absorption in absorbing and anisotropically scattering media. Local profiles of light penetration and volumetric absorption densities were simulated for uniform as well as Gaussian profile beams with different spreads at 155 mW average power over the spectral range from 1000 nm to 1900 nm. The results show the effects of beam profiles and wavelength on the local fluence within each skin layer. Particularly, the results identify different wavelength bands for targeted deposition of power in different skin layers. Finally, we show that light penetration scales well with the transport optical thickness of skin. We expect that this tool along with the results presented will aid researchers resolve issues related to dose and targeted delivery of energy in tissues for LLLT.
Light Absorption of Brown Carbon Aerosol in the Pearl River Delta Region of China
NASA Astrophysics Data System (ADS)
Huang, X.
2015-12-01
X.F. Huang, J.F. Yuan, L.M. Cao, J. Cui, C.N. Huang, Z.J. Lan and L.Y. He Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, ChinaCorresponding author. Tel.: +86 755 26032532; fax: +86 755 26035332. E-mail address: huangxf@pku.edu.cn (X. F. Huang). Abstract: The strong spectral dependence of light absorption of brown carbon (BrC) aerosol has been recognized in recent decades. The Absorption Angstrom Exponent (AAE) of ambient aerosol was widely used in previous studies to attribute light absorption of brown carbon at shorter wavelengths, with a theoretical assumption that the AAE of black carbon (BC) aerosol equals to unit. In this study, the AAE method was improved by statistical extrapolation based on ambient measurements in the polluted seasons in typical urban and rural areas in the Pearl River Delta (PRD) region of China. A three-wavelength photoacoustic soot spectrometer (PASS-3) and an aerosol mass spectrometer (AMS) were used to explore the relationship between the ambient measured AAE and the ratio of organic aerosol to BC aerosol, in order to extract the more realistic AAE by pure BC aerosol, which were found to be 0.86, 0.82 and 1.02 at 405nm and 0.70, 0.71, and 0.86 at 532nm in the campaigns of urban-winter, urban-fall, and rural-fall, respectively. Roadway tunnel experiment results further supported the effectiveness of the obtained AAE for pure BC aerosol. In addition, biomass burning experiments proved higher spectral dependence of more-BrC environment and further verified the reliability of the instruments' response. Then, the average light absorption contribution of BrC aerosol was calculated to be 11.7, 6.3 and 12.1% (with total relative uncertainty of 7.5, 6.9 and 10.0%) at 405nm and 10.0, 4.1 and 5.5% (with total relative uncertainty of 6.5, 8.6 and 15.4%) at 532nm of the three campaigns, respectively. These results indicate that the brown carbon contribution to the aerosol light absorption at shorter wavelengths is not negligible in the PRD region, with a rough magnitude of 10%. Key words: Light absorption, Absorption Angstrom Exponent (AAE), Brown carbon (BrC), Black carbon (BC)
Light-driven solute transport in Halobacterium halobium
NASA Technical Reports Server (NTRS)
Lanyi, J. K.
1979-01-01
The cell membrane of Halobacterium halobium exhibits differential regions which contain crystalline arrays of a single kind of protein, termed bacteriorhodopsin. This bacterial retinal-protein complex resembles the visual pigment and, after the absorption of protons, translocates H(+) across the cell membrane, leading to an electrochemical gradient for protons between the inside and the outside of the cell. Thus, light is an alternate source of energy in these bacteria, in addition to terminal oxidation. The paper deals with work on light-driven transport in H. halobium with cell envelope vesicles. The discussion covers light-driven movements of H(+), Na(+), and K(+); light-driven amino acid transport; and apparent allosteric control of amino acid transport. The scheme of energy coupling in H. halobium vesicles appears simple, its quantitative details are quite complex and reveal regulatory phenomena. More knowledge is required of the way the coupling components are regulated by the ion gradients present.
Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks
Heo, Hoseok; Sung, Ji Ho; Cha, Soonyoung; Jang, Bo-Gyu; Kim, Joo-Youn; Jin, Gangtae; Lee, Donghun; Ahn, Ji-Hoon; Lee, Myoung-Jae; Shim, Ji Hoon; Choi, Hyunyong; Jo, Moon-Ho
2015-01-01
Two-dimensional stacks of dissimilar hexagonal monolayers exhibit unusual electronic, photonic and photovoltaic responses that arise from substantial interlayer excitations. Interband excitation phenomena in individual hexagonal monolayer occur in states at band edges (valleys) in the hexagonal momentum space; therefore, low-energy interlayer excitation in the hexagonal monolayer stacks can be directed by the two-dimensional rotational degree of each monolayer crystal. However, this rotation-dependent excitation is largely unknown, due to lack in control over the relative monolayer rotations, thereby leading to momentum-mismatched interlayer excitations. Here, we report that light absorption and emission in MoS2/WS2 monolayer stacks can be tunable from indirect- to direct-gap transitions in both spectral and dynamic characteristics, when the constituent monolayer crystals are coherently stacked without in-plane rotation misfit. Our study suggests that the interlayer rotational attributes determine tunable interlayer excitation as a new set of basis for investigating optical phenomena in a two-dimensional hexagonal monolayer system. PMID:26099952
NASA Astrophysics Data System (ADS)
Kamaliya, Bhaveshkumar; Mote, Rakesh G.; Aslam, Mohammed; Fu, Jing
2018-03-01
In this paper, we demonstrate enhanced light trapping by self-organized nanoripples on the germanium surface. The enhanced light trapping leading to high absorption of light is confirmed by the experimental studies as well as the numerical simulations using the finite-difference time-domain method. We used gallium ion (Ga+) focused ion beam to enable the formation of the self-organized nanoripples on the germanium (100) surface. During the fabrication, the overlap of the scanning beam is varied from zero to negative value and found to influence the orientation of the nanoripples. Evolution of nanostructures with the variation of beam overlap is investigated. Parallel, perpendicular, and randomly aligned nanoripples with respect to the scanning direction are obtained via manipulation of the scanning beam overlap. 95% broadband absorptance is measured in the visible electromagnetic region for the nanorippled germanium surface. The reported light absorption enhancement can significantly improve the efficiency of germanium-silicon based photovoltaic systems.
Significantly enhanced visible light response in single TiO2 nanowire by nitrogen ion implantation
NASA Astrophysics Data System (ADS)
Wu, Pengcheng; Song, Xianyin; Si, Shuyao; Ke, Zunjian; Cheng, Li; Li, Wenqing; Xiao, Xiangheng; Jiang, Changzhong
2018-05-01
The metal-oxide semiconductor TiO2 shows enormous potential in the field of photoelectric detection; however, UV-light absorption only restricts its widespread application. It is considered that nitrogen doping can improve the visible light absorption of TiO2, but the effect of traditional chemical doping is far from being used for visible light detection. Herein, we dramatically broadened the absorption spectrum of the TiO2 nanowire (NW) by nitrogen ion implantation and apply the N-doped single TiO2 NW to visible light detection for the first time. Moreover, this novel strategy effectively modifies the surface states and thus regulates the height of Schottky barriers at the metal/semiconductor interface, which is crucial to realizing high responsivity and a fast response rate. Under the illumination of a laser with a wavelength of 457 nm, our fabricated photodetector exhibits favorable responsivity (8 A W-1) and a short response time (0.5 s). These results indicate that ion implantation is a promising method in exploring the visible light detection of TiO2.
Broadband plasmonic perfect light absorber in the visible spectrum for solar cell applications
NASA Astrophysics Data System (ADS)
Mudachathi, Renilkumar; Tanaka, Takuo
2018-03-01
The coupling of electromagnetic waves with subwavelength metal structures results in the perfect light absorption and has been extensively explored in the recent years for many possible applications like photovoltaics, sensing, photodetectors, emitters and camouflaging systems to name a few. Herein we present the design and fabrication of a broadband plasmonic light absorber using aluminum as functional material for operation in the visible frequency range. The metal structures can be tuned in size to manipulate the plasmonic resonance; thereby light absorption at any desired wavelengths could be realized. Thus the broadband light absorber in the visible spectrum is designed using metal structures of different sizes supporting non-overlapping individual resonances at regular intervals of wavelengths. The metal structures of different sizes are grouped in to a single unit cell and the absorber is fabricated by periodically arranging these unit cells in a square lattice. Light absorption of more than 90% for over a broad wavelength range of 200 nm from 425 nm to 650 nm in the visible spectrum is demonstrated.
Significantly enhanced visible light response in single TiO2 nanowire by nitrogen ion implantation.
Wu, Pengcheng; Song, Xianyin; Si, Shuyao; Ke, Zunjian; Cheng, Li; Li, Wenqing; Xiao, Xiangheng; Jiang, Changzhong
2018-05-04
The metal-oxide semiconductor TiO 2 shows enormous potential in the field of photoelectric detection; however, UV-light absorption only restricts its widespread application. It is considered that nitrogen doping can improve the visible light absorption of TiO 2 , but the effect of traditional chemical doping is far from being used for visible light detection. Herein, we dramatically broadened the absorption spectrum of the TiO 2 nanowire (NW) by nitrogen ion implantation and apply the N-doped single TiO 2 NW to visible light detection for the first time. Moreover, this novel strategy effectively modifies the surface states and thus regulates the height of Schottky barriers at the metal/semiconductor interface, which is crucial to realizing high responsivity and a fast response rate. Under the illumination of a laser with a wavelength of 457 nm, our fabricated photodetector exhibits favorable responsivity (8 A W -1 ) and a short response time (0.5 s). These results indicate that ion implantation is a promising method in exploring the visible light detection of TiO 2 .
Absorption and emission spectroscopic characterisation of 8-amino-riboflavin
NASA Astrophysics Data System (ADS)
Tyagi, A.; Zirak, P.; Penzkofer, A.; Mathes, T.; Hegemann, P.; Mack, M.; Ghisla, S.
2009-10-01
The flavin dye 8-amino-8-demethyl- D-riboflavin (AF) in the solvents water, DMSO, methanol, and chloroform/DMSO was studied by absorption and fluorescence spectroscopy. The first absorption band is red-shifted compared to riboflavin, and blue-shifted compared to roseoflavin (8-dimethylamino-8-demethyl-D-riboflavin). The fluorescence quantum yield of AF in the studied solvents varies between 20% and 50%. The fluorescence lifetimes were found to be in the 2-5 ns range. AF is well soluble in DMSO, weakly soluble in water and methanol, and practically insoluble in chloroform. The limited solubility causes AF aggregation, which was seen in differences between measured absorption spectra and fluorescence excitation spectra. Light scattering in the dye absorption region is discussed and approximate absorption cross-section spectra are determined from the combined measurement of transmission and fluorescence excitation spectra. The photo-stability of AF was studied by prolonged light exposure. The photo-degradation routes of AF are discussed.
NASA Astrophysics Data System (ADS)
Sato, Chie; Furube, Akihiro; Katoh, Ryuzi; Nonaka, Hidehiko; Inoue, Hiroyuki
2008-11-01
We have tested the possibility of identifying illegal drugs by means of nanosecond transient absorption spectroscopy with a 10-ns UV-laser pulse for the excitation light and visible-to-near-IR light for the probe light. We measured the transient absorption spectra of acetonitrile solutions of d-methamphetamine, dl-3,4-methylenedioxymethamphetamine hydrochloride (MDMA), and dl-N-methyl-1-(1,3-benzodioxol-5-yl)-2-butanamine hydrochloride (MBDB), which are illegal drugs widely consumed in Japan. Transient absorption signals of these drugs were observed between 400 and 950 nm, a range in which they are transparent in the ground state. By analyzing the spectra in terms of exponential and Gaussian functions, we could identify the drugs and discriminate them from chemical substances having similar structures. We propose that transient absorption spectroscopy will be a useful, non-destructive method of inspecting for illegal drugs, especially when they are dissolved in liquids. Such a method may even be used for drugs packed in opaque materials if it is further extended to utilize intense femtosecond laser pulses.
Laser Absorption by Over-Critical Plasmas
NASA Astrophysics Data System (ADS)
May, J.; Tonge, J.; Fiuza, F.; Fonseca, R. A.; Silva, L. O.; Mori, W. B.
2015-11-01
Absorption of high intensity laser light by matter has important applications to emerging sciences and technology, such as Fast Ignition ICF and ion acceleration. As such, understanding the underlying mechanisms of this absorption is key to developing these technologies. Critical features which distinguish the interaction of high intensity light - defined here as a laser field having a normalized vector potential greater than unity - are that the reaction of the material to the fields results in sharp high-density interfaces; and that the movement of the electrons is in general relativistic, both in a fluid and a thermal sense. The results of these features are that the absorption mechanisms are qualitatively distinct from those at lower intensities. We will review previous work, by our group and others, on the absorption mechanisms, and highlight current research. We will show that the standing wave structure of the reflected laser light is key to particle dynamics for normally incident lasers. The authors acknowledge the support of the Department of Energy under contract DE-NA 0001833 and the National Science Foundation under contract ACI 1339893.
Multiple-Path-Length Optical Absorbance Cell
NASA Technical Reports Server (NTRS)
2001-01-01
An optical absorbance cell that offers a selection of multiple optical path lengths has been developed as part of a portable spectrometric instrument that measures absorption spectra of small samples of water and that costs less than does a conventional, non-portable laboratory spectrometer. The instrument is intended, more specifically, for use in studying colored dissolved organic matter (CDOM) in seawater, especially in coastal regions. Accurate characterization of CDOM is necessary for building bio-optical mathematical models of seawater. The multiple path lengths of the absorption cell afford a wide range of sensitivity needed for measuring the optical absorbances associated with the wide range of concentrations of CDOM observed in nature. The instrument operates in the wavelength range of 370 to 725 nm. The major subsystems of the instrument (see figure) include a color-balanced light source; the absorption cell; a peristaltic pump; a high-precision, low-noise fiber optic spectrometer; and a laptop or other personal computer. A fiber-optic cable transmits light from the source to the absorption cell. Other optical fibers transmit light from the absorption cell to the spectrometer,
Jiang-Tao, Liu; Yun-Kai, Cao; Hong, Tong; Dai-Qiang, Wang; Zhen-Hua, Wu
2018-04-06
The optical absorption of graphene-molybdenum disulfide photovoltaic cells (GM-PVc) in wedge-shaped metal-mirror microcavities (w-MMCs) combined with a spectrum-splitting structure was studied. Results showed that the combination of spectrum-splitting structure and w-MMC can enable the light absorption of GM-PVcs to reach about 65% in the broad spectrum. The influence of processing errors on the absorption of GM-PVcs in w-MMCs was 3-14 times lower than that of GM-PVcs in wedge photonic crystal microcavities. The light absorption of GM-PVcs reached 60% in the broad spectrum, even with the processing errors. The proposed structure is easy to implement and may have potentially important applications in the development of ultra-thin and high-efficiency solar cells and optoelectronic devices.
NASA Astrophysics Data System (ADS)
Jiang-Tao, Liu; Yun-Kai, Cao; Hong, Tong; Dai-Qiang, Wang; Zhen-Hua, Wu
2018-04-01
The optical absorption of graphene-molybdenum disulfide photovoltaic cells (GM-PVc) in wedge-shaped metal-mirror microcavities (w-MMCs) combined with a spectrum-splitting structure was studied. Results showed that the combination of spectrum-splitting structure and w-MMC can enable the light absorption of GM-PVcs to reach about 65% in the broad spectrum. The influence of processing errors on the absorption of GM-PVcs in w-MMCs was 3-14 times lower than that of GM-PVcs in wedge photonic crystal microcavities. The light absorption of GM-PVcs reached 60% in the broad spectrum, even with the processing errors. The proposed structure is easy to implement and may have potentially important applications in the development of ultra-thin and high-efficiency solar cells and optoelectronic devices.
Laser absorption of carbon fiber reinforced polymer with randomly distributed carbon fibers
NASA Astrophysics Data System (ADS)
Hu, Jun; Xu, Hebing; Li, Chao
2018-03-01
Laser processing of carbon fiber reinforced polymer (CFRP) is a non-traditional machining method which has many prospective applications. The laser absorption characteristics of CFRP are analyzed in this paper. A ray tracing model describing the interaction of the laser spot with CFRP is established. The material model contains randomly distributed carbon fibers which are generated using an improved carbon fiber placement method. It was found that CFRP has good laser absorption due to multiple reflections of the light rays in the material’s microstructure. The randomly distributed carbon fibers make the absorptivity of the light rays change randomly in the laser spot. Meanwhile, the average absorptivity fluctuation is obvious during movement of the laser. The experimental measurements agree well with the values predicted by the ray tracing model.
Gilbert, Matthew E.; McElrone, Andrew J.
2017-01-01
In agricultural and natural systems, diffuse light can enhance plant primary productivity due to deeper penetration into and greater irradiance of the entire canopy. However, for individual sun-grown leaves from three species, photosynthesis is actually less efficient under diffuse compared with direct light. Despite its potential impact on canopy-level productivity, the mechanism for this leaf-level diffuse light photosynthetic depression effect is unknown. Here, we investigate if the spatial distribution of light absorption relative to electron transport capacity in sun- and shade-grown sunflower (Helianthus annuus) leaves underlies its previously observed diffuse light photosynthetic depression. Using a new one-dimensional porous medium finite element gas-exchange model parameterized with light absorption profiles, we found that weaker penetration of diffuse versus direct light into the mesophyll of sun-grown sunflower leaves led to a more heterogenous saturation of electron transport capacity and lowered its CO2 concentration drawdown capacity in the intercellular airspace and chloroplast stroma. This decoupling of light availability from photosynthetic capacity under diffuse light is sufficient to generate an 11% decline in photosynthesis in sun-grown but not shade-grown leaves, primarily because thin shade-grown leaves similarly distribute diffuse and direct light throughout the mesophyll. Finally, we illustrate how diffuse light photosynthetic depression could overcome enhancement in canopies with low light extinction coefficients and/or leaf area, pointing toward a novel direction for future research. PMID:28432257
Excess Diffuse Light Absorption in Upper Mesophyll Limits CO2 Drawdown and Depresses Photosynthesis.
Earles, J Mason; Théroux-Rancourt, Guillaume; Gilbert, Matthew E; McElrone, Andrew J; Brodersen, Craig R
2017-06-01
In agricultural and natural systems, diffuse light can enhance plant primary productivity due to deeper penetration into and greater irradiance of the entire canopy. However, for individual sun-grown leaves from three species, photosynthesis is actually less efficient under diffuse compared with direct light. Despite its potential impact on canopy-level productivity, the mechanism for this leaf-level diffuse light photosynthetic depression effect is unknown. Here, we investigate if the spatial distribution of light absorption relative to electron transport capacity in sun- and shade-grown sunflower ( Helianthus annuus ) leaves underlies its previously observed diffuse light photosynthetic depression. Using a new one-dimensional porous medium finite element gas-exchange model parameterized with light absorption profiles, we found that weaker penetration of diffuse versus direct light into the mesophyll of sun-grown sunflower leaves led to a more heterogenous saturation of electron transport capacity and lowered its CO 2 concentration drawdown capacity in the intercellular airspace and chloroplast stroma. This decoupling of light availability from photosynthetic capacity under diffuse light is sufficient to generate an 11% decline in photosynthesis in sun-grown but not shade-grown leaves, primarily because thin shade-grown leaves similarly distribute diffuse and direct light throughout the mesophyll. Finally, we illustrate how diffuse light photosynthetic depression could overcome enhancement in canopies with low light extinction coefficients and/or leaf area, pointing toward a novel direction for future research. © 2017 American Society of Plant Biologists. All Rights Reserved.
Optical properties and aging of light-absorbing secondary organic aerosol
Liu, Jiumeng; Lin, Peng; Laskin, Alexander; ...
2016-10-14
The light-absorbing organic aerosol (OA) commonly referred to as “brown carbon” (BrC) has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various volatile organic carbon (VOC) precursors, NO x concentrations, photolysis time, and relative humidity (RH) on the lightmore » absorption of selected secondary organic aerosols (SOA). Light absorption of chamber-generated SOA samples, especially aromatic SOA, was found to increase with NO x concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficient (MAC) value is observed from toluene SOA products formed under high-NO x conditions at moderate RH, in which nitro-aromatics were previously identified as the major light-absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organic nitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible (Vis) and ultraviolet (UV) light than SOA formed from aromatic precursors alone on a mass basis. However, the mixed SOA absorption was underestimated when optical properties were predicted using a two-product SOA formation model, as done in many current climate models. Further investigation, including analysis on detailed mechanisms, are required to explain the discrepancy.« less
NASA Astrophysics Data System (ADS)
Lewis, K. A.; Arnott, W. P.; Moosmüller, H.; Chakrabarty, R. K.; Carrico, C. M.; Kreidenweis, S. M.; Day, D. E.; Malm, W. C.; Laskin, A.; Jimenez, J. L.; Ulbrich, I. M.; Huffman, J. A.; Onasch, T. B.; Trimborn, A.; Liu, L.; Mishchenko, M. I.
2009-11-01
Smoke particle emissions from the combustion of biomass fuels typical for the western and southeastern United States were studied and compared under high humidity and ambient conditions in the laboratory. The fuels used were Montana ponderosa pine (Pinus ponderosa), southern California chamise (Adenostoma fasciculatum), and Florida saw palmetto (Serenoa repens). Information on the non-refractory chemical composition of biomass burning aerosol from each fuel was obtained with an aerosol mass spectrometer and through estimation of the black carbon concentration from light absorption measurements at 870 nm. Changes in the optical and physical particle properties under high humidity conditions were observed for hygroscopic smoke particles containing substantial inorganic mass fractions that were emitted from combustion of chamise and palmetto fuels. Light scattering cross sections increased under high humidity for these particles, consistent with the hygroscopic growth measured for 100 nm particles in HTDMA measurements. Photoacoustic measurements of aerosol light absorption coefficients revealed a 20% reduction with increasing relative humidity, contrary to the expectation of light absorption enhancement by the liquid coating taken up by hygroscopic particles. This reduction is hypothesized to arise from two mechanisms: (1) shielding of inner monomers after particle consolidation or collapse with water uptake; (2) the lower case contribution of mass transfer through evaporation and condensation at high relative humidity (RH) to the usual heat transfer pathway for energy release by laser-heated particles in the photoacoustic measurement of aerosol light absorption. The mass transfer contribution is used to evaluate the fraction of aerosol surface covered with liquid water solution as a function of RH.
Visualization under ultraviolet light enhances 100-fold the sensitivity of peroxidase-stained blots.
Domingo, A; Marco, R
1989-10-01
As described in this article, visualization and/or photography under uv light of 4-chloro-1-naphthol-developed, peroxidase-marked immunoblots allows an increase in sensitivity of more than 100 times over the apparent staining results observable under normal visible white light. This increase in sensitivity can be obtained with the minimal additional requirement of an uv lamp, with the actual chloronaphthol staining procedure remaining unaltered and thereby allowing the monitoring of specific reactions with much smaller quantities of antigen or antibodies. Substantial shortening of the procedure is another advantage, making it possible to complete in 20 min or even less a procedure usually requiring 3 to 6 h. The phenomenon depends on the uv absorption and the fluorescence quenching properties of the products of the peroxidase reaction. The absorption spectra of the membranes with or without peroxidase products indicate that an intermediate in the peroxidase reaction is responsible for the absorption under uv light. This intermediate accumulates under conditions where the final product absorbing in the visible light has not begun to be produced, thus explaining the large increase in sensitivity. The behaviors of three types of membranes, nitrocellulose, nylon, and Immobilon (PVDF), are compared. Due to its lower uv absorption, PVDF gives by far the best results, followed by nitrocellulose.
NASA Astrophysics Data System (ADS)
Arienti, Marco; Geier, Manfred; Yang, Xiaoyuan; Orcutt, John; Zenker, Jake; Brooks, Sarah D.
2018-05-01
We investigate the optical properties of ice crystals nucleated on atmospheric black carbon (BC). The parameters examined in this study are the shape of the ice crystal, the volume fraction of the BC inclusion, and its location inside the crystal. We report on new spectrometer measurements of forward scattering and backward polarization from ice crystals nucleated on BC particles and grown under laboratory-controlled conditions. Data from the Cloud and Aerosol Spectrometer with Polarization (CASPOL) are used for direct comparison with single-particle calculations of the scattering phase matrix. Geometrical optics and discrete dipole approximation techniques are jointly used to provide the best compromise of flexibility and accuracy over a broad range of size parameters. Together with the interpretation of the trends revealed by the CASPOL measurements, the numerical results confirm previous reports on absorption cross-section magnification in the visible light range. Even taking into account effects of crystal shape and inclusion position, the ratio between absorption cross-section of the compound particle and the absorption cross-section of the BC inclusion alone (the absorption magnification) has a lower bound of 1.5; this value increases to 1.7 if the inclusion is centered with respect to the crystal. The simple model of BC-ice particle presented here also offers new insights on the effect of the relative position of the BC inclusion with respect to the crystal's outer surfaces, the shape of the crystal, and its size.
NASA Astrophysics Data System (ADS)
Ramírez-Pérez, M.; Twardowski, M.; Trees, C.; Piera, J.; McKee, D.
2018-01-01
A deconvolution approach is presented to use spectral light absorption and attenuation data to estimate the concentration of the major nonwater compounds in complex shelf sea waters. The inversion procedure requires knowledge of local material-specific inherent optical properties (SIOPs) which are determined from natural samples using a bio-optical model that differentiates between Case I and Case II waters and uses least squares linear regression analysis to provide optimal SIOP values. A synthetic data set is used to demonstrate that the approach is fundamentally consistent and to test the sensitivity to injection of controlled levels of artificial noise into the input data. Self-consistency of the approach is further demonstrated by application to field data collected in the Ligurian Sea, with chlorophyll (Chl), the nonbiogenic component of total suspended solids (TSSnd), and colored dissolved organic material (CDOM) retrieved with RMSE of 0.61 mg m-3, 0.35 g m-3, and 0.02 m-1, respectively. The utility of the approach is finally demonstrated by application to depth profiles of in situ absorption and attenuation data resulting in profiles of optically significant constituents with associated error bar estimates. The advantages of this procedure lie in the simple input requirements, the avoidance of error amplification, full exploitation of the available spectral information from both absorption and attenuation channels, and the reasonably successful retrieval of constituent concentrations in an optically complex shelf sea.
Oxygen detection using evanescent fields
Duan, Yixiang [Los Alamos, NM; Cao, Weenqing [Los Alamos, NM
2007-08-28
An apparatus and method for the detection of oxygen using optical fiber based evanescent light absorption. Methylene blue was immobilized using a sol-gel process on a portion of the exterior surface of an optical fiber for which the cladding has been removed, thereby forming an optical oxygen sensor. When light is directed through the optical fiber, transmitted light intensity varies as a result of changes in the absorption of evanescent light by the methylene blue in response to the oxygen concentration to which the sensor is exposed. The sensor was found to have a linear response to oxygen concentration on a semi-logarithmic scale within the oxygen concentration range between 0.6% and 20.9%, a response time and a recovery time of about 3 s, ant to exhibit good reversibility and repeatability. An increase in temperature from 21.degree. C. to 35.degree. C. does not affect the net absorption of the sensor.
Controlling the light shift of the CPT resonance by modulation technique
NASA Astrophysics Data System (ADS)
Tsygankov, E. A.; Petropavlovsky, S. V.; Vaskovskaya, M. I.; Zibrov, S. A.; Velichansky, V. L.; Yakovlev, V. P.
2017-12-01
Motivated by recent developments in atomic frequency standards employing the effect of coherent population trapping (CPT), we propose a theoretical framework for the frequency modulation spectroscopy of the CPT resonances. Under realistic assumptions we provide simple yet non-trivial analytical formulae for the major spectroscopic signals such as the CPT resonance line and the in-phase/quadrature responses. We discuss the influence of the light shift and, in particular, derive a simple expression for the displacement of the resonance as a function of modulation index. The performance of the model is checked against numerical simulations, the agreement is good to perfect. The obtained results can be used in more general models accounting for light absorption in the thick optical medium.
Color selective photodetector and methods of making
Walker, Brian J.; Dorn, August; Bulovic, Vladimir; Bawendi, Moungi G.
2013-03-19
A photoelectric device, such as a photodetector, can include a semiconductor nanowire electrostatically associated with a J-aggregate. The J-aggregate can facilitate absorption of a desired wavelength of light, and the semiconductor nanowire can facilitate charge transport. The color of light detected by the device can be chosen by selecting a J-aggregate with a corresponding peak absorption wavelength.
Oxygen detection using the laser diode absorption technique
NASA Technical Reports Server (NTRS)
Disimile, P. J.; Fox, C. W.
1991-01-01
Accurate measurement of the concentration and flow rate of gaseous oxygen is becoming of greater importance. The detection technique presented is based on the principal of light absorption by the Oxygen A-Band. Oxygen molecules have characteristics which attenuate radiation in the 759-770 nm wavelength range. With an ability to measure changes in the relative light transmission to less than 0.01 percent, a sensitive optical gas detection system was configured. This system is smaller in size and light in weight, has low energy requirements and has a rapid response time. In this research program, the application of temperature tuning laser diodes and their ability to be wavelength shifted to a selected absorption spectral peak has allowed concentrations as low as 1300 ppm to be detected.
Diffusive Propagation of Exciton-Polaritons through Thin Crystal Slabs
Zaitsev, D. A.; Il’ynskaya, N. D.; Koudinov, A. V.; Poletaev, N. K.; Nikitina, E. V.; Egorov, A. Yu.; Kavokin, A. V.; Seisyan, R. P.
2015-01-01
If light beam propagates through matter containing point impurity centers, the amount of energy absorbed by the media is expected to be either independent of the impurity concentration N or proportional to N, corresponding to the intrinsic absorption or impurity absorption, respectively. Comparative studies of the resonant transmission of light in the vicinity of exciton resonances measured for 15 few-micron GaAs crystal slabs with different values of N, reveal a surprising tendency. While N spans almost five decimal orders of magnitude, the normalized spectrally-integrated absorption of light scales with the impurity concentration as N1/6. We show analytically that this dependence is a signature of the diffusive mechanism of propagation of exciton-polaritons in a semiconductor. PMID:26088555
NASA Astrophysics Data System (ADS)
Bae, Gihyun; Huh, Hoon; Park, Sungho
This paper deals with a regression model for light weight and crashworthiness enhancement design of automotive parts in frontal car crash. The ULSAB-AVC model is employed for the crash analysis and effective parts are selected based on the amount of energy absorption during the crash behavior. Finite element analyses are carried out for designated design cases in order to investigate the crashworthiness and weight according to the material and thickness of main energy absorption parts. Based on simulations results, a regression analysis is performed to construct a regression model utilized for light weight and crashworthiness enhancement design of automotive parts. An example for weight reduction of main energy absorption parts demonstrates the validity of a regression model constructed.
Recent developments in luminescent solar concentrators
NASA Astrophysics Data System (ADS)
van Sark, W. G. J. H. M.
2014-10-01
High efficiency photovoltaic devices combine full solar spectrum absorption and effective generation and collection of charge carriers, while commercial success depends on cost effectiveness in manufacturing. Spectrum modification using down shifting has been demonstrated in luminescent solar concentrators (LSCs) since the 1970s, as a cheap alternative for standard c-Si technology. LSCs consist of a highly transparent plastic plate, in which luminescent species are dispersed, which absorb incident light and emit light at a red-shifted wavelength, with high quantum efficiency. Material issues have hampered efficiency improvements, in particular re-absorption of light emitted by luminescent species and stability of these species. In this contribution, approaches are reviewed on minimizing re-absorption, which should allow surpassing the 10% luminescent solar concentrator efficiency barrier.
Near unity ultraviolet absorption in graphene without patterning
NASA Astrophysics Data System (ADS)
Zhu, Jinfeng; Yan, Shuang; Feng, Naixing; Ye, Longfang; Ou, Jun-Yu; Liu, Qing Huo
2018-04-01
Enhancing the light-matter interaction of graphene is an important issue for related photonic devices and applications. In view of its potential ultraviolet applications, we aim to achieve extremely high ultraviolet absorption in graphene without any nanostructure or microstructure patterning. By manipulating the polarization and angle of incident light, the ultraviolet power can be sufficiently coupled to the optical dissipation of graphene based on single-channel coherent perfect absorption in an optimized multilayered thin film structure. The ultraviolet absorbance ratios of single and four atomic graphene layers are enhanced up to 71.4% and 92.2%, respectively. Our research provides a simple and efficient scheme to trap ultraviolet light for developing promising photonic and optoelectronic devices based on graphene and potentially other 2D materials.
The physical basis for absorption of light. [effects on wave functions of gas molecules and atoms
NASA Technical Reports Server (NTRS)
Pickett, H. M.
1979-01-01
The effects of light absorption on the wave functions of gas-phase molecules and atoms are investigated by high resolution spectral measurements of radiation emerging from a sample. A Stark-modulated sample of methyl fluoride was irradiated at the 102 GHz rotational transition and the emergent radiation was resolved by means of a spectrum analyzer. For signal oscillator frequencies below or above the molecular resonance by one modulation frequency, the amplitudes of the upper and lower modulation sidebands are found to be of nonuniform intensity, which is inconsistent with amplitude modulation. Emission due to polarization is, however, calculated to be consistent with the results observed, indicating that light absorption should be considered as a subtractive stimulated emission.
Multi-wavelength Characterization of Brown and Black Carbon from Filter Samples
NASA Astrophysics Data System (ADS)
Johnson, M. M.; Yatavelli, R. L. N.; Chen, L. W. A. A.; Gyawali, M. S.; Arnott, W. P.; Wang, X.; Chakrabarty, R. K.; Moosmüller, H.; Watson, J. G.; Chow, J. C.
2014-12-01
Particulate matter (PM) scatters and absorbs solar radiation and thereby affects visibility, the Earth's radiation balance, and properties and lifetimes of clouds. Understanding the radiative forcing (RF) of PM is essential to reducing the uncertainty in total anthropogenic and natural RF. Many instruments that measure light absorption coefficients (βabs [λ], Mm-1) of PM have used light at near-infrared (NIR; e.g., 880 nm) or red (e.g., 633 nm) wavelengths. Measuring βabs over a wider wavelength range, especially including the ultraviolet (UV) and visible, allows for contributions from black carbon (BC), brown carbon (BrC), and mineral dust (MD) to be differentiated. This will help to determine PM RF and its emission sources. In this study, source and ambient samples collected on Teflon-membrane and quartz-fiber filters are used to characterize and develop a multi-wavelength (250 - 1000 nm) filter-based measurement method of PM light absorption. A commercially available UV-visible spectrometer coupled with an integrating sphere is used for quantifying diffuse reflectance and transmittance of filter samples, from which βabs and absorption Ǻngström exponents (AAE) of the PM deposits are determined. The filter-based light absorption measurements of laboratory generated soot and biomass burning aerosol are compared to 3-wavelength photoacoustic absorption measurements to evaluate filter media and loading effects. Calibration factors are developed to account for differences between filter types (Teflon-membrane vs. quartz-fiber), and between filters and in situ photoacoustic absorption values. Application of multi-spectral absorption measurements to existing archived filters, including specific source samples (e.g. diesel and gasoline engines, biomass burning, dust), will also be discussed.
NASA Astrophysics Data System (ADS)
Liou, K. N.; Takano, Y.; He, C.; Yang, P.; Leung, L. R.; Gu, Y.; Lee, W. L.
2014-06-01
A stochastic approach has been developed to model the positions of BC (black carbon)/dust internally mixed with two snow grain types: hexagonal plate/column (convex) and Koch snowflake (concave). Subsequently, light absorption and scattering analysis can be followed by means of an improved geometric-optics approach coupled with Monte Carlo photon tracing to determine BC/dust single-scattering properties. For a given shape (plate, Koch snowflake, spheroid, or sphere), the action of internal mixing absorbs substantially more light than external mixing. The snow grain shape effect on absorption is relatively small, but its effect on asymmetry factor is substantial. Due to a greater probability of intercepting photons, multiple inclusions of BC/dust exhibit a larger absorption than an equal-volume single inclusion. The spectral absorption (0.2-5 µm) for snow grains internally mixed with BC/dust is confined to wavelengths shorter than about 1.4 µm, beyond which ice absorption predominates. Based on the single-scattering properties determined from stochastic and light absorption parameterizations and using the adding/doubling method for spectral radiative transfer, we find that internal mixing reduces snow albedo substantially more than external mixing and that the snow grain shape plays a critical role in snow albedo calculations through its forward scattering strength. Also, multiple inclusion of BC/dust significantly reduces snow albedo as compared to an equal-volume single sphere. For application to land/snow models, we propose a two-layer spectral snow parameterization involving contaminated fresh snow on top of old snow for investigating and understanding the climatic impact of multiple BC/dust internal mixing associated with snow grain metamorphism, particularly over mountain/snow topography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liou, K. N.; Takano, Y.; He, Cenlin
2014-06-27
A stochastic approach to model the positions of BC/dust internally mixed with two snow-grain types has been developed, including hexagonal plate/column (convex) and Koch snowflake (concave). Subsequently, light absorption and scattering analysis can be followed by means of an improved geometric-optics approach coupled with Monte Carlo photon tracing to determine their single-scattering properties. For a given shape (plate, Koch snowflake, spheroid, or sphere), internal mixing absorbs more light than external mixing. The snow-grain shape effect on absorption is relatively small, but its effect on the asymmetry factor is substantial. Due to a greater probability of intercepting photons, multiple inclusions ofmore » BC/dust exhibit a larger absorption than an equal-volume single inclusion. The spectral absorption (0.2 – 5 um) for snow grains internally mixed with BC/dust is confined to wavelengths shorter than about 1.4 um, beyond which ice absorption predominates. Based on the single-scattering properties determined from stochastic and light absorption parameterizations and using the adding/doubling method for spectral radiative transfer, we find that internal mixing reduces snow albedo more than external mixing and that the snow-grain shape plays a critical role in snow albedo calculations through the asymmetry factor. Also, snow albedo reduces more in the case of multiple inclusion of BC/dust compared to that of an equal-volume single sphere. For application to land/snow models, we propose a two-layer spectral snow parameterization containing contaminated fresh snow on top of old snow for investigating and understanding the climatic impact of multiple BC/dust internal mixing associated with snow grain metamorphism, particularly over mountains/snow topography.« less
Absorption properties of alternative chromophores for use in laser tissue soldering applications.
Byrd, Brian D; Heintzelman, Douglas L; McNally-Heintzelman, Karen M
2003-01-01
The feasibility of using alternative chromophores in laser tissue soldering applications was explored. Two commonly used chromophores, indocyanine green (ICG), and methylene blue (MB) were investigated, as well as three different food colorings: red #40 (RFC), blue #1 (BFC), and green consisting of yellow #5 and blue #1 (GFC). Three experimental studies were conducted: (i) The absorption profiles of the five chromophores, when diluted in deionized water and when bound to protein, were recorded; (ii) the effect of accumulated thermal dosages on the absorption profile of the chromophores was evaluated; and (iii) the stability of the absorption profiles of the chromophore-doped solutions when exposed to ambient light for extended time periods was measured. The peak absorption wavelengths of ICG, MB, RFC, and BFC, were found to be 805 nm, 665 nm, 503 nm, and 630 nm respectively in protein solder. The GFC had two absorption peaks at 426 nm and 630 nm, corresponding to the two dye components comprising this color. The peak absorption wavelength of ICG and MB was dependent on the choice of solvent (deionized water or protein). In contrast, the peak absorption wavelengths of the three chromophores were not dependent on the choice of solvent. ICG and MB showed a significant decrease in absorbance units with increased time and temperature when heated to temperature up to 100 degrees C. A significant decrease in the absorption peak occurred in the ICG and MB samples when exposed to ambient light for a period of 7 days. Negligible change in absorption with accumulated thermal dose up to 100 degrees C or light dose (over a period of 84 days) was observed for any of the three food colorings investigated.
NASA Astrophysics Data System (ADS)
Zhong, Fulin; Li, Ting; Pan, Boan; Wang, Pengbo
2017-02-01
Laser acupuncture is an effective photochemical and nonthermal stimulation of traditional acupuncture points with lowintensity laser irradiation, which is advantageous in painless, sterile, and safe compared to traditional acupuncture. Laser diode (LD) provides single wavelength and relatively-higher power light for phototherapy. The quantitative effect of illumination parameters of LD in use of laser acupuncture is crucial for practical operation of laser acupuncture. However, this issue is not fully demonstrated, especially since experimental methodologies with animals or human are pretty hard to address to this issue. For example, in order to protect viability of cells and tissue, and get better therapeutic effect, it's necessary to control the output power varied at 5mW 10mW range, while the optimized power is still not clear. This study aimed to quantitatively optimize the laser output power, wavelength, and irradiation direction with highly realistic modeling of light transport in acupunctured tissue. A Monte Carlo Simulation software for 3D vowelized media and the highest-precision human anatomical model Visible Chinese Human (VCH) were employed. Our 3D simulation results showed that longer wavelength/higher illumination power, larger absorption in laser acupuncture; the vertical direction emission of the acupuncture laser results in higher amount of light absorption in both the acupunctured voxel of tissue and muscle layer. Our 3D light distribution of laser acupuncture within VCH tissue model is potential to be used in optimization and real time guidance in clinical manipulation of laser acupuncture.
NASA Astrophysics Data System (ADS)
Cory, R. M.; Harrold, K. H.; Neilson, B. T.; Kling, G. W.
2015-07-01
We investigated how absorption of sunlight by chromophoric dissolved organic matter (CDOM) controls the degradation and export of DOM from Imnavait Creek, a beaded stream in the Alaskan Arctic. We measured concentrations of dissolved organic carbon (DOC), as well as concentrations and characteristics of CDOM and fluorescent dissolved organic matter (FDOM), during ice-free periods of 2011-2012 in the pools of Imnavait Creek and in soil waters draining to the creek. Spatial and temporal patterns in CDOM and FDOM in Imnavait Creek were analyzed in conjunction with measures of DOM degradation by sunlight and bacteria and assessments of hydrologic residence times and in situ UV exposure. CDOM was the dominant light attenuating constituent in the UV and visible portion of the solar spectrum, with high attenuation coefficients ranging from 86 ± 12 m-1 at 305 nm to 3 ± 1 m-1 in the photosynthetically active region (PAR). High rates of light absorption and thus light attenuation by CDOM contributed to thermal stratification in the majority of pools in Imnavait Creek under low-flow conditions. In turn, thermal stratification increased the residence time of water and DOM, and resulted in a separation of water masses distinguished by contrasting UV exposure (i.e., UV attenuation by CDOM with depth resulted in bottom waters receiving less UV than surface waters). When the pools in Imnavait Creek were stratified, DOM in the pool bottom water closely resembled soil water DOM in character, while the concentration and character of DOM in surface water was reproduced by experimental photo-degradation of bottom water. These results, in combination with water column rates of DOM degradation by sunlight and bacteria, suggest that photo-degradation is the dominant process controlling DOM fate and export in Imnavait Creek. A conceptual model is presented showing how CDOM amount and lability interact with incident UV light and water residence time to determine whether photo-degradation is "light-limited" or "substrate-limited". We suggest that degradation, and thus export, of DOM in CDOM-rich streams or ponds similar to Imnavait is typically light-limited under most flow conditions.
Song, Zhuoyi; Zhou, Yu; Juusola, Mikko
2016-01-01
Many diurnal photoreceptors encode vast real-world light changes effectively, but how this performance originates from photon sampling is unclear. A 4-module biophysically-realistic fly photoreceptor model, in which information capture is limited by the number of its sampling units (microvilli) and their photon-hit recovery time (refractoriness), can accurately simulate real recordings and their information content. However, sublinear summation in quantum bump production (quantum-gain-nonlinearity) may also cause adaptation by reducing the bump/photon gain when multiple photons hit the same microvillus simultaneously. Here, we use a Random Photon Absorption Model (RandPAM), which is the 1st module of the 4-module fly photoreceptor model, to quantify the contribution of quantum-gain-nonlinearity in light adaptation. We show how quantum-gain-nonlinearity already results from photon sampling alone. In the extreme case, when two or more simultaneous photon-hits reduce to a single sublinear value, quantum-gain-nonlinearity is preset before the phototransduction reactions adapt the quantum bump waveform. However, the contribution of quantum-gain-nonlinearity in light adaptation depends upon the likelihood of multi-photon-hits, which is strictly determined by the number of microvilli and light intensity. Specifically, its contribution to light-adaptation is marginal (≤ 1%) in fly photoreceptors with many thousands of microvilli, because the probability of simultaneous multi-photon-hits on any one microvillus is low even during daylight conditions. However, in cells with fewer sampling units, the impact of quantum-gain-nonlinearity increases with brightening light. PMID:27445779
Investigating the Spectral Dependence of Biomass Burning Aerosol Optical Properties
NASA Astrophysics Data System (ADS)
Odwuor, A.; Corr, C.; Pusede, S.
2016-12-01
Aerosol optical properties, such as light absorption and scattering, are important for understanding how aerosols affect the global radiation budget and for comparison with data gathered from remote sensing. It has been established that the optical properties of aerosols are wavelength dependent, although some remote sensing measurements do not consider this. Airborne measurements of these optical properties were used to calculate the absorption Angstrom exponent, a parameter that characterizes the wavelength dependence of light absorption by aerosols, and single scattering albedo, which measures the relative magnitude of light scattering to total extinction (scattering and absorption combined). Aerosols produced by biomass burning in Saskatchewan, Canada in July 2008 and a forest fire in Southern California, U.S. in June 2016 were included in this analysis. These wildfires were sampled by the NASA DC-8 aircraft during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) and NASA Student Airborne Research Program (SARP) missions, respectively. Aerosol absorption was measured using a particle soot photometer (PSAP) at 470, 532 and 660 nm. Scattering was measured using a 3-wavelength (450, 550 and 700 nm) nephelometer. Absorption Angstrom exponents were calculated at 470 and 660 nm and single scattering albedos were calculated at 450 and 550 nm. Results of this study indicate that disregarding the wavelength dependence of organic aerosol can understate the positive radiative forcing (warming) associated with aerosol absorption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirshafieyan, Seyed Sadreddin; Luk, Ting S.; Guo, Junpeng
Here, we demonstrated perfect light absorption in optical nanocavities made of ultra-thin percolation aluminum and silicon films deposited on an aluminum surface. The total layer thickness of the aluminum and silicon films is one order of magnitude less than perfect absorption wavelength in the visible spectral range. The ratio of silicon cavity layer thickness to perfect absorption wavelength decreases as wavelength decreases due to the increased phase delays at silicon-aluminum boundaries at shorter wavelengths. It is explained that perfect light absorption is due to critical coupling of incident wave to the fundamental Fabry-Perot resonance mode of the structure where themore » round trip phase delay is zero. Simulations were performed and the results agree well with the measurement results.« less
Effect of coulomb correlations on luminescence and absorption in compensated semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogoslovskiy, N. A., E-mail: nikitabogoslovskiy@gmail.com; Petrov, P. V.; Ivánov, Yu. L.
2016-07-15
The spectra of donor–acceptor light absorption and luminescence in lightly doped and lightly compensated semiconductors are calculated. In the photoluminescence calculation, two limiting cases of long and short carrier lifetimes relative to the carrier-energy relaxation time are considered. It is shown that, at long lifetimes, the photoluminescence spectrum is significantly shifted toward longer wavelengths due to the relaxation of minority charge carriers. At intermediate lifetimes, the photoluminescence spectrum consists of two peaks, which is in good agreement with the experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balagula, R. M., E-mail: rmbal@spbstu.ru; Vinnichenko, M. Ya., E-mail: mvin@spbstu.ru; Makhov, I. S.
The effect of a lateral electric field on the mid-infrared absorption and interband photoluminescence spectra in double tunnel-coupled GaAs/AlGaAs quantum wells is studied. The results obtained are explained by the redistribution of hot electrons between quantum wells and changes in the space charge in the structure. The hot carrier temperature is determined by analyzing the intersubband light absorption and interband photoluminescence modulation spectra under strong lateral electric fields.
UV filters for lighting of plants
NASA Astrophysics Data System (ADS)
Doehring, T.; Koefferlein, M.; Thiel, S.; Seidlitz, H. K.; Payer, H. D.
1994-03-01
The wavelength dependent interaction of biological systems with radiation is commonly described by appropriate action spectra. Particularly effective plant responses are obtained for ultraviolet (UV) radiation. Excess shortwave UV-B radiation will induce genetic defects and plant damage. Besides the ecological discussion of the deleterious effects of the excess UV radiation there is increasing interest in horticultural applications of this spectral region. Several metabolic pathways leading to valuable secondary plant products like colors, odors, taste, or resulting in mechanical strength and vitality are triggered by UV radiation. Thus, in ecologically as well as in economically oriented experiments the exact generation and knowledge of the spectral irradiance, particularly near the UV absorption edge, is essential. The ideal filter 'material' to control the UV absorption edge would be ozone itself. However, due to problems in controlling the toxic and chemically aggressive, instable gas, only rather 'small ozone filters' have been realized so far. In artificial plant lighting conventional solid filter materials such as glass sheets and plastic foils (celluloseacetate or cellulosetriacetate) which can be easily handled have been used to absorb the UV-C and the excess shortwave UV-B radiation of the lamp emissions. Different filter glasses are available which provide absorption properties suitable for gradual changes of the spectral UV-B illumination of artificial lighting. Using a distinct set of lamps and filter glasses an acceptable simulation of the UV-B part of natural global radiation can be achieved. The aging of these and other filter materials under the extreme UV radiation in the lamphouse of a solar simulator is presently unavoidable. This instability can be dealt with only by a precise spectral monitoring and by replacing the filters accordingly. For this reason attempts would be useful to develop real ozone filters which can replace glass filters. In any case chamber experiments require a careful selection of the filter material used and must be accompanied by a continuous UV-B monitoring.
NASA Astrophysics Data System (ADS)
Tsyshevsky, Roman V.; Rashkeev, Sergey N.; Kuklja, Maija M.
2015-07-01
Light-responsive organic-inorganic interfaces offer experimental opportunities that are otherwise difficult to achieve. Since laser light can be manipulated very precisely, it becomes possible to engineer selective, predictive, and highly controlled interface properties. Photochemistry of organic-inorganic energetic interfaces is a rapidly emerging research field in which energy absorption and interface stability mechanisms have yet to be established. To explore the interaction of the laser irradiation with molecular materials, we performed first principle calculations of a prototype organic-inorganic interface between a nitroester (pentaerythritol tetranitrate, PETN, C5H8N4O12) and a magnesium oxide (MgO) surface. We found that the light absorption is defined by the band alignment between interface components and interfacial charge transfer coupled with electronic states in the band gap, generated by oxide surface defects. Hence the choice of an oxide substrate and its morphology makes the optical absorption tunable and governs both the energy accumulation and energy release at the interface. The obtained results offer a possible consistent interpretation of experiments on selective laser initiation of energetic materials, which reported that the presence of metal oxide additives triggered the photoinitiation by excitation energy much lower than the band gap. We suggest that PETN photodecomposition is catalyzed by oxygen vacancies (F0 centers) at the MgO surface. Our conclusions predict ways for a complete separation of thermo- and photo-stimulated interface chemistry of molecular materials, which is imperative for highly controllable fast decomposition and was not attainable before. The methodology described here can be applied to any type of molecular material/wide band gap dielectric interfaces. It provides a solid basis for novel design and targeted improvements of organic-inorganic interfaces with desired properties that promise to enable vastly new concepts of energy storage and conversion, photocatalysis, and molecular electronics.
UV filters for lighting of plants
NASA Technical Reports Server (NTRS)
Doehring, T.; Koefferlein, M.; Thiel, S.; Seidlitz, H. K.; Payer, H. D.
1994-01-01
The wavelength dependent interaction of biological systems with radiation is commonly described by appropriate action spectra. Particularly effective plant responses are obtained for ultraviolet (UV) radiation. Excess shortwave UV-B radiation will induce genetic defects and plant damage. Besides the ecological discussion of the deleterious effects of the excess UV radiation there is increasing interest in horticultural applications of this spectral region. Several metabolic pathways leading to valuable secondary plant products like colors, odors, taste, or resulting in mechanical strength and vitality are triggered by UV radiation. Thus, in ecologically as well as in economically oriented experiments the exact generation and knowledge of the spectral irradiance, particularly near the UV absorption edge, is essential. The ideal filter 'material' to control the UV absorption edge would be ozone itself. However, due to problems in controlling the toxic and chemically aggressive, instable gas, only rather 'small ozone filters' have been realized so far. In artificial plant lighting conventional solid filter materials such as glass sheets and plastic foils (celluloseacetate or cellulosetriacetate) which can be easily handled have been used to absorb the UV-C and the excess shortwave UV-B radiation of the lamp emissions. Different filter glasses are available which provide absorption properties suitable for gradual changes of the spectral UV-B illumination of artificial lighting. Using a distinct set of lamps and filter glasses an acceptable simulation of the UV-B part of natural global radiation can be achieved. The aging of these and other filter materials under the extreme UV radiation in the lamphouse of a solar simulator is presently unavoidable. This instability can be dealt with only by a precise spectral monitoring and by replacing the filters accordingly. For this reason attempts would be useful to develop real ozone filters which can replace glass filters. In any case chamber experiments require a careful selection of the filter material used and must be accompanied by a continuous UV-B monitoring.
Two photon spectroscopy and microscopy of the fluorescent flavoprotein, iLOV.
Homans, Rachael J; Khan, Raja U; Andrews, Michael B; Kjeldsen, Annemette E; Natrajan, Louise S; Marsden, Steven; McKenzie, Edward A; Christie, John M; Jones, Alex R
2018-06-06
LOV-domains are ubiquitous photosensory proteins that are commonly re-engineered to serve as powerful and versatile fluorescent proteins and optogenetic tools. The photoactive, flavin chromophore, however, is excited using short wavelengths of light in the blue and UV regions, which have limited penetration into biological samples and can cause photodamage. Here, we have used non-linear spectroscopy and microscopy of the fluorescent protein, iLOV, to reveal that functional variants of LOV can be activated to great effect by two non-resonant photons of lower energy, near infrared light, not only in solution but also in biological samples. The two photon cross section of iLOV has a significantly blue-shifted S0 → S1 transition compared with the one photon absorption spectrum, suggesting preferential population of excited vibronic states. It is highly likely, therefore, that the two photon absorption wavelength of engineered, LOV-based tools is tuneable. We also demonstrate for the first time two photon imaging using iLOV in human epithelial kidney cells. Consequently, two photon absorption by engineered, flavin-based bio-molecular tools can enable non-invasive activation with high depth resolution and the potential for not only improved image clarity but also enhanced spatiotemporal control for optogenetic applications.
Polarized light scattering by macromolecular self-assembly of J-aggregates
NASA Astrophysics Data System (ADS)
Rebane, Aleksander; Mikhaylov, Alexander
2018-02-01
We have recently reported that by sending a tightly collimated (0.05 - 2 mm diameter) red- or near-IR laser beam through an aqueous solution of pseudoisocyanine (PIC) J-aggregates, a macroscopic tube-like structure is formed surrounding the laser beam on the time scale of minutes. This self-assembled structure is comprised of heterogeneous material containing micrometer-size rod-like strands or microcrystals. Because the illumination wavelength is far redshifted from the linear absorption range of the PIC and J-aggregates, the self-assembly is likely induced by some very weak background absorption or dissipation. Furthermore, strong correlation of the effect with the characteristic Jaggregate peak in the absorption spectrum and critical dependence of the "tube" formation on pH of the solution indicate molecular charge related non-equilibrium nature of the underlying mechanism. Most interestingly, the structure formation is accompanied by strongly polarized scattering. When observed between crossed polarizers, the angular intensity distribution of the scattered light resembles Maltese cross figure, indicating that the scattering rods are arranged in a circular pattern around the beam axis direction. It appears that the illumination is creating in the medium a radially directed gradient of either concentration-, temperature- or other type of parameter that controls the microcrystal formation.
Liu, Xujun; Guan, Leilei; Fu, Xiaoniu; Zhao, Yu; Wu, Jiada; Xu, Ning
2014-03-21
Light-absorbing and electrically conductive binary CNx nanocone (CNNC) arrays have been fabricated using a glow discharge plasma-assisted reaction deposition method. The intact CNNCs with amorphous structure and central nickel-filled pipelines could be vertically and neatly grown on nickel-covered substrates according to the catalyst-leading mode. The morphologies and composition of the as-grown CNNC arrays can be well controlled by regulating the methane/nitrogen mixture inlet ratio, and their optical absorption and resistivity strongly depend on their morphologies and composition. Beside large specific surface area, the as-grown CNNC arrays demonstrate high wideband absorption, good conduction, and nice wettability to polymer absorbers.
Xu, Xiaoji G; Tanur, Adrienne E; Walker, Gilbert C
2013-04-25
We propose a practical method to obtain near-field infrared absorption spectra in apertureless near-field scanning optical microscopy (aNSOM) through homodyne detection with a specific choice of reference phase. The underlying mechanism of the method is illustrated by theoretical and numeric models to show its ability to obtain absorptive rather than dispersive profiles in near-field infrared vibrational microscopy. The proposed near-field nanospectroscopic method is applied to obtain infrared spectra from regions of individual multiwall boron nitride nanotubes (BNNTs) in spatial regions smaller than the diffraction limit of the light source. The spectra suggest variations in interwall spacing within the individual tubes probed.
Limitation of Optical Enhancement in Ultra-thin Solar Cells Imposed by Contact Selectivity.
Islam, Raisul; Saraswat, Krishna
2018-06-11
Ultra-thin crystalline silicon (c-Si) solar cell suffers both from poor light absorption and minority carrier recombination at the contacts resulting in low contact selectivity. Yet most of the research focuses on improving the light absorption by introducing novel light trapping technique. Our work shows that for ultra-thin absorber, the benefit of optical enhancement is limited by low contact selectivity. Using simulation we observe that performance enhancement from light trapping starts to saturate as the absorber scales down because of the increase in probability of the photo-generated carriers to recombine at the metal contact. Therefore, improving the carrier selectivity of the contacts, which reduces the recombination at contacts, is important to improve the performance of the solar cell beyond what is possible by enhancing light absorption only. The impact of improving contact selectivity increases as the absorber thickness scales below 20 micrometer (μm). Light trapping provides better light management and improving contact selectivity provides better photo-generated carrier management. When better light management increases the number of photo-generated carriers, better carrier management is a useful optimization knob to achieve the efficiency close to the thermodynamic limit. Our work explores a design trade-off in detail which is often overlooked by the research community.
Lin, Ying-Hsuan; Budisulistiorini, Sri Hapsari; Chu, Kevin; Siejack, Richard A; Zhang, Haofei; Riva, Matthieu; Zhang, Zhenfa; Gold, Avram; Kautzman, Kathryn E; Surratt, Jason D
2014-10-21
Secondary organic aerosol (SOA) produced from reactive uptake and multiphase chemistry of isoprene epoxydiols (IEPOX) has been found to contribute substantially (upward of 33%) to the fine organic aerosol mass over the Southeastern U.S. Brown carbon (BrC) in rural areas of this region has been linked to secondary sources in the summer when the influence of biomass burning is low. We demonstrate the formation of light-absorbing (290 < λ < 700 nm) SOA constituents from reactive uptake of trans-β-IEPOX onto preexisting sulfate aerosols as a potential source of secondary BrC. IEPOX-derived BrC generated in controlled chamber experiments under dry, acidic conditions has an average mass absorption coefficient of ∼ 300 cm(2) g(-1). Chemical analyses of SOA constituents using UV-visible spectroscopy and high-resolution mass spectrometry indicate the presence of highly unsaturated oligomeric species with molecular weights separated by mass units of 100 (C5H8O2) and 82 (C5H6O) coincident with the observations of enhanced light absorption, suggesting such oligomers as chromophores, and potentially explaining one source of humic-like substances (HULIS) ubiquitously present in atmospheric aerosol. Similar light-absorbing oligomers were identified in fine aerosol collected in the rural Southeastern U.S., supporting their atmospheric relevance and revealing a previously unrecognized source of oligomers derived from isoprene that contributes to ambient fine aerosol mass.
Performance impact of novel polymeric dyes in photoresist applications
NASA Astrophysics Data System (ADS)
Lu, Ping-Hung; Mehtsun, Salem; Sagan, John P.; Shan, Jianhui; Gonzalez, Eleazar; Ding, Shuji; Khanna, Dinesh N.
1999-06-01
Dye compounds are commonly used in photoresists as a low cost and effective way to control swing and/or standing wave effect caused by thin film interference as well as reflective notching by reflective light from highly reflective substrate and topography. Convention dyes are typically a monomeric compound with high absorptivity at the wavelength of exposure light and compatible with the resist system selected. Because of the monomeric nature, conventional dyes are relatively low in molecular weight hence their thermal stability and sublimination propensity has always been an issue of concern. We recently synthesize several highly thermal stable diazotized polymeric dyes. Their thermal properties as well as compatibility with resist system were investigated. The impact of polymeric dyes on the resists lithographic performance, swing reduction and reflective notching control are discussed.
Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Qing-Yuan; Mason, Jarad A.; Li, Zhongyang
DNA programmable assembly has been combined with top-down lithography to construct superlattices of discrete, reconfigurable nanoparticle architectures on a gold surface over large areas. Specifically, individual colloidal plasmonic nanoparticles with different shapes and sizes are assembled with ‘locked” nucleic acids in polymer pores into oriented architectures that feature tunable arrangements and independently controllable distances at both nanometer and micrometer length scales. These structures, which would be difficult to construct via other common assembly methods, provide a platform to systematically study and control light-matter interactions in nanoparticle-based optical materials. The generality and potential of this approach is explored by identifying amore » broadband absorber with a solvent polarity response that allows dynamic tuning of the wavelength response and amplitude of visible light absorption.« less
Exploring the origin of high optical absorption in conjugated polymers.
Vezie, Michelle S; Few, Sheridan; Meager, Iain; Pieridou, Galatia; Dörling, Bernhard; Ashraf, Raja Shahid; Goñi, Alejandro R; Bronstein, Hugo; McCulloch, Iain; Hayes, Sophia C; Campoy-Quiles, Mariano; Nelson, Jenny
2016-07-01
The specific optical absorption of an organic semiconductor is critical to the performance of organic optoelectronic devices. For example, higher light-harvesting efficiency can lead to higher photocurrent in solar cells that are limited by sub-optimal electrical transport. Here, we compare over 40 conjugated polymers, and find that many different chemical structures share an apparent maximum in their extinction coefficients. However, a diketopyrrolopyrrole-thienothiophene copolymer shows remarkably high optical absorption at relatively low photon energies. By investigating its backbone structure and conformation with measurements and quantum chemical calculations, we find that the high optical absorption can be explained by the high persistence length of the polymer. Accordingly, we demonstrate high absorption in other polymers with high theoretical persistence length. Visible light harvesting may be enhanced in other conjugated polymers through judicious design of the structure.
Brown carbon absorption in the red and near-infrared spectral region
NASA Astrophysics Data System (ADS)
Hoffer, András; Tóth, Ádám; Pósfai, Mihály; Eddy Chung, Chul; Gelencsér, András
2017-06-01
Black carbon (BC) aerosols have often been assumed to be the only light-absorbing carbonaceous particles in the red and near-infrared spectral regions of solar radiation in the atmosphere. Here we report that tar balls (a specific type of organic aerosol particles from biomass burning) do absorb red and near-infrared radiation significantly. Tar balls were produced in a laboratory experiment, and their chemical and optical properties were measured. The absorption of these particles in the range between 470 and 950 nm was measured with an aethalometer, which is widely used to measure atmospheric aerosol absorption. We find that the absorption coefficient of tar balls at 880 nm is more than 10 % of that at 470 nm. The considerable absorption of red and infrared light by tar balls also follows from their relatively low absorption Ångström coefficient (and significant mass absorption coefficient) in the spectral range between 470 and 950 nm. Our results support the previous finding that tar balls may play an important role in global warming. Due to the non-negligible absorption of tar balls in the near-infrared region, the absorption measured in the field at near-infrared wavelengths cannot solely be due to soot particles.
UV laser long-path absorption spectroscopy
NASA Technical Reports Server (NTRS)
Dorn, Hans-Peter; Brauers, Theo; Neuroth, Rudolf
1994-01-01
Long path Differential Optical Absorption Spectroscopy (DOAS) using a picosecond UV laser as a light source was developed in our institute. Tropospheric OH radicals are measured by their rotational absorption lines around 308 nm. The spectra are obtained using a high resolution spectrograph. The detection system has been improved over the formerly used optomechanical scanning device by application of a photodiode array which increased the observed spectral range by a factor of 6 and which utilizes the light much more effectively leading to a considerable reduction of the measurement time. This technique provides direct measurements of OH because the signal is given by the product of the absorption coefficient and the OH concentration along the light path according to Lambert-Beers law. No calibration is needed. Since the integrated absorption coefficient is well known the accuracy of the measurement essentially depends on the extent to which the OH absorption pattern can be detected in the spectra. No interference by self generated OH radicals in the detection lightpath has been observed. The large bandwidth (greater than 0.15 nm) and the high spectral resolution (1.5 pm) allows absolute determination of interferences by other trace gas absorptions. The measurement error is directly accessible from the absorption-signal to baseline-noise ratio in the spectra. The applicability of the method strongly depends on visibility. Elevated concentrations of aerosols lead to considerable attenuation of the laser light which reduces the S/N-ratio. In the moderately polluted air of Julich, where we performed a number of OH measurement spectra. In addition absorption features of unidentified species were frequently detected. A quantitative deconvolution even of the known species is not easy to achieve and can leave residual structures in the spectra. Thus interferences usually increase the noise and deteriorate the OH detection sensitivity. Using diode arrays for sensitive absorption measurements some specific problems of those detectors have to be solved experimentally (i.e. fixed pattern noise, dark signal noise, nonuniform efficiency of individual elements, spatial sensitivity variations). In order to improve the low spatial resolution we performed laboratory studies using a multiple reflection cell to convert the long path technique to a real in situ point measurement. Under the conditions of field experiments in Julich residual absorbance signals at present are about 1.5x10(exp -4) corresponding to an OH detection sensitivity of 2x10(exp 6) OH/cm(exp 3) using a light path of 5.8 km. Total integration times for one measurement point vary between a few minutes and an hour.
Microlens array induced light absorption enhancement in polymer solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yuqing; Elshobaki, Moneim; Ye, Zhuo
2013-01-24
Over the last decade, polymer solar cells (PSCs) have attracted a lot of attention and highest power conversion efficiencies (PCE) are now close to 10%. Here we employ an optical structure – the microlens array (MLA) – to increase light absorption inside the active layer, and PCE of PSCs increased even for optimized devices. Normal incident light rays are refracted at the MLA and travel longer optical paths inside the active layers. Two PSC systems – poly(3-hexylthiophene-2,5-diyl):(6,6)-phenyl C61 butyric acid methyl ester (P3HT:PCBM) and poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl]:(6,6)-phenyl C71 butyric acid methyl ester (PCDTBT:PC70BM) – were investigated. In the P3HT:PCBM system, MLA increasedmore » the absorption, absolute external quantum efficiency, and the PCE of an optimized device by [similar]4.3%. In the PCDTBT:PC70BM system, MLA increased the absorption, absolute external quantum efficiency, and PCE by more than 10%. In addition, simulations incorporating optical parameters of all structural layers were performed and they support the enhancement of absorption in the active layer with the assistance of MLA. Our results show that utilizing MLA is an effective strategy to further increase light absorption in PSCs, in which optical losses account for [similar]40% of total losses. MLA also does not pose materials processing challenges to the active layers since it is on the other side of the transparent substrate.« less
Design of dual-diameter nanoholes for efficient solar-light harvesting
2014-01-01
A dual-diameter nanohole (DNH) photovoltaic system is proposed, where a top (bottom) layer with large (small) nanoholes is used to improve the absorption for the short-wavelength (long-wavelength) solar incidence, leading to a broadband light absorption enhancement. Through three-dimensional finite-element simulation, the core device parameters, including the lattice constant, nanohole diameters, and nanohole depths, are engineered in order to realize the best light-matter coupling between nanostructured silicon and solar spectrum. The designed bare DNH system exhibits an outstanding absorption capability with a photocurrent density (under perfect internal quantum process) predicted to be 27.93 mA/cm2, which is 17.39%, 26.17%, and over 100% higher than the best single-nanohole (SNH) system, SNH system with an identical Si volume, and equivalent planar configuration, respectively. Considering the fabrication feasibility, a modified DNH system with an anti-reflection coating and back silver reflector is examined by simulating both optical absorption and carrier transport in a coupled way in frequency and three-dimensional spatial domains, achieving a light-conversion efficiency of 13.72%. PACS 85.60.-q; Optoelectronic device; 84.60.Jt; Photovoltaic conversion PMID:25258605
NASA Astrophysics Data System (ADS)
Gyawali, M. S.; Arnott, W. P.; Flowers, B. A.; Dubey, M. K.; Atkinson, D. B.; Song, C.; Zaveri, R. A.; Setyan, A.; Zhang, Q.; Mazzoleni, C.; Gorkowski, K.
2011-12-01
We present multispectral (355, 375, 405, 532, 870, 781, and 1047 nm) aerosol light absorption and scattering measurements for the 2010 Carbonaceous Aerosols and Radiative Effects (CARES) campaign in Sacramento, CA and the Sierra Nevada foothills. The short wavelength scattering at both sites gradually increased during the last 10 days of the campaign as diagnosed by a systematic increase in the Ångström exponent of scattering. The UV and near UV enhanced scattering was likely a consequence of the ultra and sub-micron aerosol which began to grow vigorously in the size range where scattering at shorter wavelengths begins to increase. Multispectral aerosol light absorption coefficients suggest the absence of short wavelength light absorption by brown carbon. Aerosol mass spectrometer data also shows the steady increase of secondary organic aerosol during the last 10 days of CARES. The time series of the measurements made between the two sites (T0 and T1) separated by the slope of the foothills are strikingly similar, except for isolated night time episodes of enhanced absorption at T0. This is possibly due to paving events or other nocturnal emissions markers
Sutherland, Donna L; Howard-Williams, Clive; Turnbull, Matthew H; Broady, Paul A; Craggs, Rupert J
2015-03-01
Carbon limitation in domestic wastewater high rate algal ponds is thought to constrain microalgal photo-physiology and productivity, particularly in summer. This paper investigates the effects of CO₂ addition along a pH gradient on the performance of wastewater microalgae in high rate algal mesocosms. Performance was measured in terms of light absorption, electron transport rate, photosynthetic efficiency, biomass production and nutrient removal efficiency. Light absorption by the microalgae increased by up to 128% with increasing CO₂ supply, while a reduction in the package effect meant that there was less internal self-shading thereby increasing the efficiency of light absorption. CO₂ augmentation increased the maximum rate of both electron transport and photosynthesis by up to 256%. This led to increased biomass, with the highest yield occurring at the highest dissolved inorganic carbon/lowest pH combination tested (pH 6.5), with a doubling of chlorophyll-a (Chl-a) biomass while total microalgal biovolume increased by 660% in Micractinium bornhemiense and by 260% in Pediastrum boryanum dominated cultures. Increased microalgal biomass did not off-set the reduction in ammonia volatilisation in the control and overall nutrient removal was lower with CO₂ than without. Microalgal nutrient removal efficiency decreased as pH decreased and may have been related to decreased Chl-a per cell. This experiment demonstrated that CO₂ augmentation increased microalgal biomass in two distinct communities, however, care must be taken when interpreting results from standard biomass measurements with respect to CO₂ augmentation. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
See, S. W.; Balasubramanian, R.; Wang, W.
2006-05-01
Many Southeast Asian countries have been constantly plagued by recurring smoke haze episodes as a result of traditional slash-and-burn practices in agricultural areas to clear crop lands or uncontrolled forest fires. However, our current knowledge on the physiochemical and optical properties of ambient aerosols associated with regional haze phenomenon is still fairly limited. Therefore a comprehensive field study was carried out in Singapore from March 2001 to March 2002 under varying weather conditions to gain a better understanding of the characteristics. The physical (size distribution of mass and number concentrations), chemical (mass concentrations of chemical components: 14 ions, 24 metals, elemental carbon (EC) and organic carbon (OC)), and optical (light absorption (bap) and scattering (bsp) by particles) characteristics of ambient aerosol particles were investigated. The results are reported separately for clear and hazy days by categorizing the days as clear or hazy on the basis of visibility data. It was observed that the average concentrations of PM2.5 and most chemical components increased approximately by a factor of 2 on hazy days. Backward air trajectories together with the hot spot distributions in the region indicated that the degradation in Singapore's air quality on hazy days was attributable to large-scale forest fires in Sumatra. This visibility degradation was quantitatively measured on the basis of the light absorption and scattering by particles. As expected, scattering rather than absorption controlled atmospheric visibility, and PM2.5 particles present on hazy days were more efficient at scattering light than those found on clear days.
Thurmond, Kyle; Loparo, Zachary; Partridge, William; Vasu, Subith S
2016-06-01
A sensor was developed for simultaneous measurements of carbon monoxide (CO) and carbon dioxide (CO2) fluctuations in internal combustion engine exhaust gases. This sensor utilizes low-cost and compact light-emitting diodes (LEDs) that emit in the 3-5 µm wavelength range. An affordable, fast response sensor that can measure these gases has a broad application that can lead to more efficient, fuel-flexible engines and regulation of harmful emissions. Light emission from LEDs is spectrally broader and more spatially divergent when compared to that of lasers, which presented many design challenges. Optical design studies addressed some of the non-ideal characteristics of the LED emissions. Measurements of CO and CO2 were conducted using their fundamental absorption bands centered at 4.7 µm and 4.3 µm, respectively, while a 3.6 µm reference LED was used to account for scattering losses (due to soot, window deposits, etc.) common to the three measurement LEDs. Instrument validation and calibration was performed using a laboratory flow cell and bottled-gas mixtures. The sensor was able to detect CO2 and CO concentration changes as small as 30 ppm and 400 ppm, respectively. Because of the many control and monitor species with infra-red absorption features, which can be measured using the strategy described, this work demonstrates proof of concept for a wider range of fast (250 Hz) and low-cost sensors for gas measurement and process monitoring. © The Author(s) 2016.
Spectroscopic method for determination of the absorption coefficient in brain tissue
NASA Astrophysics Data System (ADS)
Johansson, Johannes D.
2010-09-01
I use Monte Carlo simulations and phantom measurements to characterize a probe with adjacent optical fibres for diffuse reflectance spectroscopy during stereotactic surgery in the brain. Simulations and measurements have been fitted to a modified Beer-Lambert model for light transport in order to be able to quantify chromophore content based on clinically measured spectra in brain tissue. It was found that it is important to take the impact of the light absorption into account when calculating the apparent optical path length, lp, for the photons in order to get good estimates of the absorption coefficient, μa. The optical path length was found to be well fitted to the equation lp=a+b ln(Is)+c ln(μa)+d ln(Is)ln(μa), where Is is the reflected light intensity for scattering alone (i.e., zero absorption). Although coefficients a-d calculated in this study are specific to the probe used here, the general form of the equation should be applicable to similar probes.
NASA Astrophysics Data System (ADS)
El-Kader, M. S. A.; Godet, J.-L.; El-Sadek, A. A.; Maroulis, G.
2017-10-01
Quantum mechanical line shapes of collision-induced light scattering at room temperature (295 K) and collision-induced absorption at T = 195 K are computed for gaseous mixtures of molecular hydrogen and argon using theoretical values for pair-polarisability trace and anisotropy and induced dipole moments as input. Comparison with other theoretical spectra of isotropic and anisotropic light scattering and measured spectra of absorption shows satisfactory agreement, for which the uncertainty in measurement of its spectral moments is seen to be large. Ab initio models of the trace and anisotropy polarisability which reproduce the recent spectra of scattering are given. Empirical model of the dipole moment which reproduce the experimental spectra and the first three spectral moments more closely than the fundamental theory are also given. Good agreement between computed and/or experimental line shapes of both absorption and scattering is obtained when the potential model which is constructed from the transport and thermo-physical properties is used.
Structural color printing based on plasmonic metasurfaces of perfect light absorption
Cheng, Fei; Gao, Jie; Luk, Ting S.; Yang, Xiaodong
2015-01-01
Subwavelength structural color filtering and printing technologies employing plasmonic nanostructures have recently been recognized as an important and beneficial complement to the traditional colorant-based pigmentation. However, the color saturation, brightness and incident angle tolerance of structural color printing need to be improved to meet the application requirement. Here we demonstrate a structural color printing method based on plasmonic metasurfaces of perfect light absorption to improve color performances such as saturation and brightness. Thin-layer perfect absorbers with periodic hole arrays are designed at visible frequencies and the absorption peaks are tuned by simply adjusting the hole size and periodicity. Near perfect light absorption with high quality factors are obtained to realize high-resolution, angle-insensitive plasmonic color printing with high color saturation and brightness. Moreover, the fabricated metasurfaces can be protected with a protective coating for ambient use without degrading performances. The demonstrated structural color printing platform offers great potential for applications ranging from security marking to information storage. PMID:26047486
Structural color printing based on plasmonic metasurfaces of perfect light absorption
Cheng, Fei; Gao, Jie; Luk, Ting S.; ...
2015-06-05
Subwavelength structural color filtering and printing technologies employing plasmonic nanostructures have recently been recognized as an important and beneficial complement to the traditional colorant-based pigmentation. However, the color saturation, brightness and incident angle tolerance of structural color printing need to be improved to meet the application requirement. Here we demonstrate a structural color printing method based on plasmonic metasurfaces of perfect light absorption to improve color performances such as saturation and brightness. Thin-layer perfect absorbers with periodic hole arrays are designed at visible frequencies and the absorption peaks are tuned by simply adjusting the hole size and periodicity. Near perfectmore » light absorption with high quality factors are obtained to realize high-resolution, angle-insensitive plasmonic color printing with high color saturation and brightness. Moreover, the fabricated metasurfaces can be protected with a protective coating for ambient use without degrading performances. The demonstrated structural color printing platform offers great potential for applications ranging from security marking to information storage.« less
Seasonal variability in bio-optical properties along the coastal waters off Cochin
NASA Astrophysics Data System (ADS)
Vishnu, P. S.; Shaju, S. S.; Tiwari, S. P.; Menon, Nandini; Nashad, M.; Joseph, C. Ajith; Raman, Mini; Hatha, Mohamed; Prabhakaran, M. P.; Mohandas, A.
2018-04-01
Strong seasonal upwelling, downwelling, changes in current patterns and the volume of freshwater discharge from Cochin Estuary defines the coastal waters off Cochin. These coastal waters were investigated through monthly sampling efforts during March 2015 to February 2016 to study the seasonal and spatial variability in bio-optical properties for the four different seasons mainly Spring Inter Monsoon (SIM), South West Monsoon (SWM), Fall Inter Monsoon (FIM) and Winter Monsoon (WM). The Barmouth region is the meeting place where freshwater from Cochin Estuary directly enters to the sea through a single narrow outlet, was dominated by highly turbid waters during the entire period of study. Among the four seasons, chlorophyll a (Chl_a) concentration showed a high value during SWM, ranged from 2.90 to 11.66 mg m-3 with an average value of 6.56 ± 3.51 mg m-3. During SIM the distribution of coloured dissolved organic matter (CDOM) is controlled by decomposition of phytoplankton biomass and the river discharge, whereas during SWM the temporal distribution of CDOM is controlled only by river discharge. The highest value for CDOM spectral slope (SCDOM) was observed during SWM, ranged from 0.013 to 0.020 nm-1 with an average value of 0.015 ± 0.002 nm-1. During WM, the high SCDOM with lower aCDOM (443) indicates the photo-degradation affects the absorption characteristics of CDOM. The observed nonlinearity between Chl_a and the ratio of phytoplankton absorption aph (443)/aph (670) indicating the packaging effect and changes in the intercellular composition of pigments. During the study period, aph (670) was strongly correlated with Chl_a than aph (443), which explains the accessory pigment absorption dominating more than Chl_a in the blue part of the spectrum. Similarly, the results obtained from seasonal bio-optical data indicating that Chl_a significantly contributes light attenuation of the water column during SIM, whereas detritus (ad) significantly contributes light attenuation during SIM and WM. During the study period, the relative absorption of detritus materials dominates the relative absorption of phytoplankton and CDOM at 443, 555 and 670 nm wavelengths.
Do Atoms Really "Emit" Absorption Lines?
ERIC Educational Resources Information Center
Brecher, Kenneth
1991-01-01
Presents three absorption line sources that enhance student understanding of the phenomena associated with the interaction of light with matter and help dispel the misconception that atoms "emit" absorption lines. Sources include neodymium, food coloring and other common household liquids, and fluorescent materials. (MDH)
Broadening microwave absorption via a multi-domain structure
NASA Astrophysics Data System (ADS)
Liu, Zhengwang; Che, Renchao; Wei, Yong; Liu, Yupu; Elzatahry, Ahmed A.; Dahyan, Daifallah Al.; Zhao, Dongyuan
2017-04-01
Materials with a high saturation magnetization have gained increasing attention in the field of microwave absorption; therefore, the magnetization value depends on the magnetic configuration inside them. However, the broad-band absorption in the range of microwave frequency (2-18 GHz) is a great challenge. Herein, the three-dimensional (3D) Fe/C hollow microspheres are constructed by iron nanocrystals permeating inside carbon matrix with a saturation magnetization of 340 emu/g, which is 1.55 times as that of bulk Fe, unexpectedly. Electron tomography, electron holography, and Lorentz transmission electron microscopy imaging provide the powerful testimony about Fe/C interpenetration and multi-domain state constructed by vortex and stripe domains. Benefiting from the unique chemical and magnetic microstructures, the microwave minimum absorption is as strong as -55 dB and the bandwidth (<-10 dB) spans 12.5 GHz ranging from 5.5 to 18 GHz. Morphology and distribution of magnetic nano-domains can be facilely regulated by a controllable reduction sintering under H2/Ar gas and an optimized temperature over 450-850 °C. The findings might shed new light on the synthesis strategies of the materials with the broad-band frequency and understanding the association between multi-domain coupling and microwave absorption performance.
Tunable UV-visible absorption of SnS2 layered quantum dots produced by liquid phase exfoliation.
Fu, Xiao; Ilanchezhiyan, P; Mohan Kumar, G; Cho, Hak Dong; Zhang, Lei; Chan, A Sattar; Lee, Dong J; Panin, Gennady N; Kang, Tae Won
2017-02-02
4H-SnS 2 layered crystals synthesized by a hydrothermal method were used to obtain via liquid phase exfoliation quantum dots (QDs), consisting of a single layer (SLQDs) or multiple layers (MLQDs). Systematic downshift of the peaks in the Raman spectra of crystals with a decrease in size was observed. The bandgap of layered QDs, estimated by UV-visible absorption spectroscopy and the tunneling current measurements using graphene probes, increases from 2.25 eV to 3.50 eV with decreasing size. 2-4 nm SLQDs, which are transparent in the visible region, show selective absorption and photosensitivity at wavelengths in the ultraviolet region of the spectrum while larger MLQDs (5-90 nm) exhibit a broad band absorption in the visible spectral region and the photoresponse under white light. The results show that the layered quantum dots obtained by liquid phase exfoliation exhibit well-controlled and regulated bandgap absorption in a wide tunable wavelength range. These novel layered quantum dots prepared using an inexpensive method of exfoliation and deposition from solution onto various substrates at room temperature can be used to create highly efficient visible-blind ultraviolet photodetectors and multiple bandgap solar cells.
Enhanced light absorption in an ultrathin silicon solar cell utilizing plasmonic nanostructures
NASA Astrophysics Data System (ADS)
Xiao, Sanshui; Mortensen, Niels A.
2012-10-01
Nowadays, bringing photovoltaics to the market is mainly limited by high cost of electricity produced by the photovoltaic solar cell. Thin-film photovoltaics offers the potential for a significant cost reduction compared to traditional photovoltaics. However, the performance of thin-film solar cells is generally limited by poor light absorption. We propose an ultrathin-film silicon solar cell configuration based on SOI structure, where the light absorption is enhanced by use of plasmonic nanostructures. By placing a one-dimensional plasmonic nanograting on the bottom of the solar cell, the generated photocurrent for a 200 nm-thickness crystalline silicon solar cell can be enhanced by 90% in the considered wavelength range. These results are paving a promising way for the realization of high-efficiency thin-film solar cells.
Photoprotection in plants: a new light on photosystem II damage.
Takahashi, Shunichi; Badger, Murray R
2011-01-01
Sunlight damages photosynthetic machinery, primarily photosystem II (PSII), and causes photoinhibition that can limit plant photosynthetic activity, growth and productivity. The extent of photoinhibition is associated with a balance between the rate of photodamage and its repair. Recent studies have shown that light absorption by the manganese cluster in the oxygen-evolving complex of PSII causes primary photodamage, whereas excess light absorbed by light-harvesting complexes acts to cause inhibition of the PSII repair process chiefly through the generation of reactive oxygen species. As we review here, PSII photodamage and the inhibition of repair are therefore alleviated by photoprotection mechanisms associated with avoiding light absorption by the manganese cluster and successfully consuming or dissipating the light energy absorbed by photosynthetic pigments, respectively. Copyright © 2010 Elsevier Ltd. All rights reserved.
Light-stimulated cargo release from a core–shell structured nanocomposite for site-specific delivery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Yun; Ling, Li; Li, Xiaofang
This paper reported a core–shell structured site-specific delivery system with a light switch triggered by low energy light (λ=510 nm). Its core was composed of supermagnetic Fe{sub 3}O{sub 4} nanoparticles for magnetic guiding and targeting. Its outer shell consisted of mesoporous silica molecular sieve MCM-41 which offered highly ordered hexagonal tunnels for cargo capacity. A light switch N1-(4aH-cyclopenta[1,2-b:5,4-b′]dipyridin-5(5aH)-ylidene)benzene-1, 4-diamine (CBD) was covalently grafted into these hexagonal tunnels, serving as light stimuli acceptor with loading content of 1.1 μM/g. This composite was fully characterized and confirmed by SEM, TEM, XRD patterns, N{sub 2} adsorption/desorption, thermogravimetric analysis, IR, UV–vis absorption and emissionmore » spectra. Experimental data suggested that this composite had a core as wide as 150 nm and could be magnetically guided to specific sites. Its hexagonal tunnels were as long as 180 nm. Upon light stimuli of “on” and “off” states, controllable release was observed with short release time of ~900 s (90% capacity). - Graphical abstract: A core–shell structured site-specific delivery system with a light switch triggered by yellow light was constructed. Controllable release was observed with short release time of ~900 s (90% capacity). - Highlights: • A core–shell structured site-specific delivery system was constructed. • It consisted of Fe{sub 3}O{sub 4} core and MCM-41 shell grafted with light switch. • This delivery system was triggered by low energy light. • Controllable release was observed with short release time of ~900 s.« less
Light absorption enhancement of black carbon from urban haze in Northern China winter.
Chen, Bing; Bai, Zhe; Cui, Xinjuan; Chen, Jianmin; Andersson, August; Gustafsson, Örjan
2017-02-01
Atmospheric black carbon (BC) is an important pollutant for both air quality and Earth's energy balance. Estimates of BC climate forcing remain highly uncertain, e.g., due to the mixing with non-absorbing components. Non-absorbing aerosols create a coating on BC and may thereby act as a lens which may enhance the light absorption. However, this absorption enhancement is poorly constrained. To this end a two-step solvent dissolution protocol was employed to remove both organic and inorganic coatings, and then investigate their effects on BC light absorption. Samples were collected at a severely polluted urban area, Jinan, in the North China Plain (NCP) during February 2014. The BC mass absorption cross-section (MAC) was measured for the aerosol samples before and after the solvent-decoating treatment, and the enhancement of MAC (E MAC ) from the coating effect was defined as the ratio. A distinct diurnal pattern for the enhancement was observed, with E MAC 1.3 ± 0.3 (1 S.D.) in the morning, increasing to 2.2 ± 1.0 in the afternoon, after that dropping to 1.5 ± 0.8 in the evening-night. The BC absorption enhancement primarily was associated with urban-scale photochemical production of nitrate and sulfate aerosols. In addition to that, regional-scale haze plume with increasing sulfate levels strengthened the absorption enhancement. These observations offer direct evidence for an increased absorption enhancement of BC due to severe air pollution in China. Copyright © 2016 Elsevier Ltd. All rights reserved.
Light management in perovskite solar cells and organic LEDs with microlens arrays
Peer, Akshit; Biswas, Rana; Park, Joong -Mok; ...
2017-04-28
Here, we demonstrate enhanced absorption in solar cells and enhanced light emission in OLEDs by light interaction with a periodically structured microlens array. We simulate n-i-p perovskite solar cells with a microlens at the air-glass interface, with rigorous scattering matrix simulations. The microlens focuses light in nanoscale regions within the absorber layer enhancing the solar cell. Optimal period of ~700 nm and microlens height of ~800-1000 nm, provides absorption (photocurrent) enhancement of 6% (6.3%). An external polymer microlens array on the air-glass side of the OLED generates experimental and theoretical enhancements >100%, by outcoupling trapped modes in the glass substrate.
NASA Astrophysics Data System (ADS)
Ouyang, B.; Jones, R. L.
2012-12-01
Cavity-enhanced absorption spectroscopy is now widely used as an ultrasensitive technique in observing weak spectroscopic absorptions. Photons inside the cavity are reflected back and forth between the mirrors with reflectivities R close to one and thus (on average) exploit an absorption pathlength L that is 1/(1 - R) longer than a single pass measurement. As suggested by the Beer-Lambert law, this increase in L results in enhanced absorbance A (given by αL with α being the absorption coefficient) which in turn favours the detection of weak absorptions. At the same time, however, only (1 - R) of the incident light can enter the cavity [assuming that mirror transmission T is equal to (1 - R)], so that the reduction in transmitted light intensity Δ I caused by molecular absorption equates to that would be obtained if in fact no cavity were present. The enhancement in A = Δ I/ I, where I is the total transmitted light intensity, achievable from CEAS therefore comes not from an increase in Δ I, but a sharp decrease in I. In this paper, we calculate the magnitudes of these two terms before and after a cavity is introduced, and aim at interpreting the sensitivity improvement offered by cavity-enhanced absorption spectroscopy from this observable-oriented (i.e. Δ I and I) perspective. It is first shown that photon energy stored in the cavity is at best as intense as the input light source, implying that any absorbing sample within the cavity is exposed to the same or even lower light intensity after the cavity is formed. As a consequence, the intensity of the light absorbed or scattered by the sample, which corresponds to the Δ I term aforementioned, is never greater than would be the case in a single pass measurement. It is then shown that while this "numerator" term is not improved, the "denominator" term, I, is reduced considerably; therefore, the increase in contrast ratio Δ I/ I is solely contributed by the attenuation of transmitted background light I and is ultimately down to the suppression of any measurement noise that is associated with it. The noise component that is most effectively suppressed is the type whose magnitude scales linearly with light intensity I, as is typical of noise caused by environmental instabilities, followed by the shot noise which scales as square root of I. No suppression is achievable for noise sources that are independent of I, a notable example being the thermal noise of a detector or of detection electronics. The usefulness of this "noise suppression" argument is that it links the sensitivity gain offered by a cavity with the property of measurement noise present in the system, and clearly suggests that the achievable sensitivity is dependent on how efficient the various noise components are "suppressed" by the cavity.
NASA Astrophysics Data System (ADS)
Harkema, Nathan; Liao, Chen-Ting; Sandhu, Arvinder
2017-04-01
Attosecond transient absorption spectroscopy (ATAS) enables the study of excited electron dynamics with unprecedented temporal and energy resolution. Many ATAS experiments use an extreme ultraviolet (XUV) pump pulse and a near-infrared (NIR) probe fixed at the fundamental laser frequency ( 800 nm) to study the light induced effects on electronic structure of atoms and molecules. We extend the technique by using an optical parametric amplifier in one arm of our setup, which allows us to independently tune the frequency of the probe pulse from 1200 to 1800 nm. These long-wavelength pulses allow us to explore a new regime, where we can control the couplings between nearby electronic states to alter the transient absorption lineshapes in atoms. We use this technique to investigate the 4p-3s detuning dependent Autler-Townes splitting of the 4p state in Helium. Light induced Floquet structures extending into the continuum are observed in our study. We demonstrate new tunable XUV emission channels from four-wave mixing processes, and the efficiency of these emissions can be strongly enhanced through resonant couplings. The tunable IR induced electronic couplings are also used to influence the autoionization dynamics in Argon. This work is supported by NSF Grant No. PHY-1505556 and ARO Grant No. W911NF-14-1-0383.
All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect.
Qiu, Ciyuan; Yang, Yuxing; Li, Chao; Wang, Yifang; Wu, Kan; Chen, Jianping
2017-12-06
All-optical signal processing avoids the conversion between optical signals and electronic signals and thus has the potential to achieve a power efficient photonic system. Micro-scale all-optical devices for light manipulation are the key components in the all-optical signal processing and have been built on the semiconductor platforms (e.g., silicon and III-V semiconductors). However, the two-photon absorption (TPA) effect and the free-carrier absorption (FCA) effect in these platforms deteriorate the power handling and limit the capability to realize complex functions. Instead, silicon nitride (Si 3 N 4 ) provides a possibility to realize all-optical large-scale integrated circuits due to its insulator nature without TPA and FCA. In this work, we investigate the physical dynamics of all-optical control on a graphene-on-Si 3 N 4 chip based on thermo-optic effect. In the experimental demonstration, a switching response time constant of 253.0 ns at a switching energy of ~50 nJ is obtained with a device dimension of 60 μm × 60 μm, corresponding to a figure of merit (FOM) of 3.0 nJ mm. Detailed coupled-mode theory based analysis on the thermo-optic effect of the device has been performed.
Sub-band-gap absorption in Ga2O3
NASA Astrophysics Data System (ADS)
Peelaers, Hartwin; Van de Walle, Chris G.
2017-10-01
β-Ga2O3 is a transparent conducting oxide that, due to its large bandgap of 4.8 eV, exhibits transparency into the UV. However, the free carriers that enable the conductivity can absorb light. We study the effect of free carriers on the properties of Ga2O3 using hybrid density functional theory. The presence of free carriers leads to sub-band-gap absorption and a Burstein-Moss shift in the onset of absorption. We find that for a concentration of 1020 carriers, the Fermi level is located 0.23 eV above the conduction-band minimum. This leads to an increase in the electron effective mass from 0.27-0.28 me to 0.35-0.37 me and a sub-band-gap absorption band with a peak value of 0.6 × 103 cm-1 at 3.37 eV for light polarized along the x or z direction. Both across-the-gap and free-carrier absorption depend strongly on the polarization of the incoming light. We also provide parametrizations of the conduction-band shape and the effective mass as a function of the Fermi level.
Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wenyi; Klots, Andrey; Bolotin, Kirill I.
2015-05-04
The use of two-dimensional (2D) materials in optoelectronics has attracted much attention due to their fascinating optical and electrical properties. However, the low optical absorption of 2D materials arising from their atomic thickness limits the maximum attainable external quantum efficiency. For example, in the visible and near-infrared regimes monolayer MoS{sub 2} and graphene absorb only ∼10% and 2.3% of incoming light, respectively. Here, we experimentally demonstrate the use of Fano-resonant photonic crystals to significantly boost absorption in atomically thin materials. Using graphene as a test bed, we demonstrate that absorption in the monolayer thick material can be enhanced to 77%more » within the telecommunications band, the highest value reported to date. We also show that the absorption in the Fano-resonant structure is non-local, with light propagating up to 16 μm within the structure. This property is particularly beneficial in harvesting light from large areas in field-effect-transistor based graphene photodetectors in which separation of photo-generated carriers only occurs ∼0.2 μm adjacent to the graphene/electrode interface.« less
Surface Tension Mediated Conversion of Light to Work
Okawa, David; Pastine, Stefan J.; Zettl, Alex; Fréchet, Jean M. J.
2009-01-01
As energy demands increase, new, more direct, energy collection and utilization processes must be explored. We present a system that intrinsically combines the absorption of sunlight with the production of useful work in the form of locomotion of objects on liquids. Focused sunlight is locally absorbed by a nanostructured composite, creating a thermal surface tension gradient and, subsequently, motion. Controlled linear motion and rotational motion are demonstrated. The system is scale independent, with remotely powered and controlled motion shown for objects in the milligram to tens of grams range. PMID:20560635
Numerical and experimental investigation of light trapping effect of nanostructured diatom frustules
NASA Astrophysics Data System (ADS)
Chen, Xiangfan; Wang, Chen; Baker, Evan; Sun, Cheng
2015-07-01
Recent advances in nanophotonic light-trapping technologies offer promising solutions in developing high-efficiency thin-film solar cells. However, the cost-effective scalable manufacturing of those rationally designed nanophotonic structures remains a critical challenge. In contrast, diatoms, the most common type of phytoplankton found in nature, may offer a very attractive solution. Diatoms exhibit high solar energy harvesting efficiency due to their frustules (i.e., hard porous cell wall made of silica) possessing remarkable hierarchical micro-/nano-scaled features optimized for the photosynthetic process through millions of years of evolution. Here we report numerical and experimental studies to investigate the light-trapping characteristic of diatom frustule. Rigorous coupled wave analysis (RCWA) and finite-difference time-domain (FDTD) methods are employed to investigate the light-trapping characteristics of the diatom frustules. In simulation, placing the diatom frustules on the surface of the light-absorption materials is found to strongly enhance the optical absorption over the visible spectrum. The absorption spectra are also measured experimentally and the results are in good agreement with numerical simulations.
Liang, Xing; Wang, Ken Kang-Hsin; Zhu, Timothy C.
2013-01-01
Interstitial diffuse optical tomography (DOT) has been used to characterize spatial distribution of optical properties for prostate photodynamic therapy (PDT) dosimetry. We have developed an interstitial DOT method using cylindrical diffuse fibers (CDFs) as light sources, so that the same light sources can be used for both DOT measurement and PDT treatment. In this novel interstitial CDF-DOT method, absolute light fluence per source strength (in unit of 1/cm2) is used to separate absorption and scattering coefficients. A mathematical phantom and a solid prostate phantom including anomalies with known optical properties were used, respectively, to test the feasibility of reconstructing optical properties using interstitial CDF-DOT. Three dimension spatial distributions of the optical properties were reconstructed for both scenarios. Our studies show that absorption coefficient can be reliably extrapolated while there are some cross talks between absorption and scattering properties. Even with the suboptimal reduced scattering coefficients, the reconstructed light fluence rate agreed with the measured values to within ±10%, thus the proposed CDF-DOT allows greatly improved light dosimetry calculation for interstitial PDT. PMID:23629149
Qu, Yuangang; Zhang, Shuai; Lian, Yuji; Kuang, Tingyun
2017-03-01
Chlorophyll a and β-carotene play an important role in harvesting light energy, which is used to drive photosynthesis in plants. In this study, terahertz (THz) and visible range spectra of chlorophyll a and β-carotene and their changes under light treatment were investigated. The results show that the all THz transmission and absorption spectra of chlorophyll a and β-carotene changed upon light treatment, with the maximum changes at 15 min of illumination indicating the greatest changes of the collective vibrational mode of chlorophyll a and β-carotene. The absorption spectra of chlorophyll a in the visible light region decreased upon light treatment, signifying the degradation of chlorophyll a molecules. It can be inferred from these results that the THz spectra are very sensitive in monitoring the changes of the collective vibrational mode, despite the absence of changes in molecular configuration. The THz spectra can therefore be used to monitor the decomposing process of biological macromolecules; however, visible absorption spectra can only be used to monitor the breakdown extent of biological macromolecules.
NASA Astrophysics Data System (ADS)
Matsuoka, A.; Babin, M.; Doxaran, D.; Hooker, S. B.; Mitchell, B. G.; Bélanger, S.; Bricaud, A.
2013-11-01
The light absorption coefficients of particulate and dissolved materials are the main factors determining the light propagation of the visible part of the spectrum and are, thus, important for developing ocean color algorithms. While these absorption properties have recently been documented by a few studies for the Arctic Ocean (e.g., Matsuoka et al., 2007, 2011; Ben Mustapha et al., 2012), the datasets used in the literature were sparse and individually insufficient to draw a general view of the basin-wide spatial and temporal variations in absorption. To achieve such a task, we built a large absorption database at the pan-Arctic scale by pooling the majority of published datasets and merging new datasets. Our results showed that the total non-water absorption coefficients measured in the Eastern Arctic Ocean (EAO; Siberian side) are significantly higher than in the Western Arctic Ocean (WAO; North American side). This higher absorption is explained by higher concentration of colored dissolved organic matter (CDOM) in watersheds on the Siberian side, which contains a large amount of dissolved organic carbon (DOC) compared to waters off North America. In contrast, the relationship between the phytoplankton absorption (aφ(λ)) and chlorophyll a (chl a) concentration in the EAO was not significantly different from that in the WAO. Because our semi-analytical CDOM absorption algorithm is based on chl a-specific aφ(λ) values (Matsuoka et al., 2013), this result indirectly suggests that CDOM absorption can be appropriately derived not only for the WAO but also for the EAO using ocean color data. Derived CDOM absorption values were reasonable compared to in situ measurements. By combining this algorithm with empirical DOC vs. CDOM relationships, a semi-analytical algorithm for estimating DOC concentrations for coastal waters at the Pan-Arctic scale is presented and applied to satellite ocean color data.
NASA Astrophysics Data System (ADS)
Matsuoka, A.; Babin, M.; Doxaran, D.; Hooker, S. B.; Mitchell, B. G.; Bélanger, S.; Bricaud, A.
2014-06-01
In addition to scattering coefficients, the light absorption coefficients of particulate and dissolved materials are the main factors determining the light propagation of the visible part of the spectrum and are, thus, important for developing ocean color algorithms. While these absorption properties have recently been documented by a few studies for the Arctic Ocean (e.g., Matsuoka et al., 2007, 2011; Ben Mustapha et al., 2012), the data sets used in the literature were sparse and individually insufficient to draw a general view of the basin-wide spatial and temporal variations in absorption. To achieve such a task, we built a large absorption database of the Arctic Ocean by pooling the majority of published data sets and merging new data sets. Our results show that the total nonwater absorption coefficients measured in the eastern Arctic Ocean (EAO; Siberian side) are significantly higher than in the western Arctic Ocean (WAO; North American side). This higher absorption is explained by higher concentration of colored dissolved organic matter (CDOM) in watersheds on the Siberian side, which contains a large amount of dissolved organic carbon (DOC) compared to waters off North America. In contrast, the relationship between the phytoplankton absorption (aϕ(λ)) and chlorophyll a (chl a) concentration in the EAO was not significantly different from that in the WAO. Because our semianalytical CDOM absorption algorithm is based on chl a-specific aϕ(λ) values (Matsuoka et al., 2013), this result indirectly suggests that CDOM absorption can be appropriately derived not only for the WAO but also for the EAO using ocean color data. Based on statistics, derived CDOM absorption values were reasonable compared to in situ measurements. By combining this algorithm with empirical DOC versus CDOM relationships, a semianalytical algorithm for estimating DOC concentrations for river-influenced coastal waters of the Arctic Ocean is presented and applied to satellite ocean color data.
NASA Technical Reports Server (NTRS)
Matsuoka, A.; Babin, M.; Doxaran, D.; Hooker, S. B.; Mitchell, B. G.; Belanger, S.; Bricaud, A.
2014-01-01
The light absorption coefficients of particulate and dissolved materials are the main factors determining the light propagation of the visible part of the spectrum and are, thus, important for developing ocean color algorithms. While these absorption properties have recently been documented by a few studies for the Arctic Ocean [e.g., Matsuoka et al., 2007, 2011; Ben Mustapha et al., 2012], the datasets used in the literature were sparse and individually insufficient to draw a general view of the basin-wide spatial and temporal variations in absorption. To achieve such a task, we built a large absorption database at the pan-Arctic scale by pooling the majority of published datasets and merging new datasets. Our results showed that the total non-water absorption coefficients measured in the Eastern Arctic Ocean (EAO; Siberian side) are significantly higher 74 than in the Western Arctic Ocean (WAO; North American side). This higher absorption is explained 75 by higher concentration of colored dissolved organic matter (CDOM) in watersheds on the Siberian 76 side, which contains a large amount of dissolved organic carbon (DOC) compared to waters off 77 North America. In contrast, the relationship between the phytoplankton absorption (a()) and chlorophyll a (chl a) concentration in the EAO was not significantly different from that in the WAO. Because our semi-analytical CDOM absorption algorithm is based on chl a-specific a() values [Matsuoka et al., 2013], this result indirectly suggests that CDOM absorption can be appropriately erived not only for the WAO but also for the EAO using ocean color data. Derived CDOM absorption values were reasonable compared to in situ measurements. By combining this algorithm with empirical DOC versus CDOM relationships, a semi-analytical algorithm for estimating DOC concentrations for coastal waters at the Pan-Arctic scale is presented and applied to satellite ocean color data.
Atomic structure, electronic properties, and band offsets of SrRuO3/TiO2 heterojunctions
NASA Astrophysics Data System (ADS)
Ferdous, Naheed; Ertekin, Elif
2015-03-01
Photocatalytic water splitting by sunlight can in principle be an environmentally green approach to hydrogen fuel production, but at present photocatalytic conversion efficiencies remain too small. In titanium dioxide (TiO2) , the most commonly used photocatalyst, the biggest limitation arises from poor absorption of visible light. One way to increase the visible light absorption is to create a composite heterojunction by integrating TiO2 with a strongly light absorbing material. Inspired by experimental results demonstrating good light absorption in the correlated metal oxide Strontium Ruthenate (SrRuO3) , as well as enhanced photocatalytic activity of SrRuO3/TiO2 heterojunctions, we have carried out electronic structure calculations based on density functional theory to explain and improve on the observed properties of such heterojunctions. Our calculations present that this heterojunction exhibits type-II band alignment which is necessary to transport optically excited electrons from the SrRuO3 to the TiO2, with calculated work functions in good agreement with experimental measurements. Also, DFT calculations help to explain the origin of large light absorption in the correlated metal oxide, which arises from electronic excitations from O 2p levels into the Ru d-orbital quasiparticle states in the material. The use of correlated metal oxide/ TiO2 heterojunctions is a potentially interesting approach to improved photocatalytic activity.
van Lare, Claire; Yin, Guanchao; Polman, Albert; Schmid, Martina
2015-10-27
We experimentally demonstrate photocurrent enhancement in ultrathin Cu(In,Ga)Se2 (CIGSe) solar cells with absorber layers of 460 nm by nanoscale dielectric light scattering patterns printed by substrate conformal imprint lithography. We show that patterning the front side of the device with TiO2 nanoparticle arrays results in a small photocurrent enhancement in almost the entire 400-1200 nm spectral range due to enhanced light coupling into the cell. Three-dimensional finite-difference time-domain simulations are in good agreement with external quantum efficiency measurements. Patterning the Mo/CIGSe back interface using SiO2 nanoparticles leads to strongly enhanced light trapping, increasing the efficiency from 11.1% for a flat to 12.3% for a patterned cell. Simulations show that optimizing the array geometry could further improve light trapping. Including nanoparticles at the Mo/CIGSe interface leads to substantially reduced parasitic absorption in the Mo back contact. Parasitic absorption in the back contact can be further reduced by fabricating CIGSe cells on top of a SiO2-patterned In2O3:Sn (ITO) back contact. Simulations show that these semitransparent cells have similar spectrally averaged reflection and absorption in the CIGSe active layer as a Mo-based patterned cell, demonstrating that the absorption losses in the Mo can be partially turned into transmission through the semitransparent geometry.
NASA Astrophysics Data System (ADS)
Li, David S.; Yoon, Soon Joon; Matula, Thomas J.; O'Donnell, Matthew; Pozzo, Lilo D.
2017-03-01
A new light and sound sensitive nanoemulsion contrast agent is presented. The agents feature a low boiling point liquid perfluorocarbon core and a broad light spectrum absorbing polypyrrole (PPy) polymer shell. The PPy coated nanoemulsions can reversibly convert from liquid to gas phase upon cavitation of the liquid perfluorocarbon core. Cavitation can be initiated using a sufficiently high intensity acoustic pulse or from heat generation due to light absorption from a laser pulse. The emulsions can be made between 150 and 350 nm in diameter and PPy has a broad optical absorption covering both the visible spectrum and extending into the near-infrared spectrum (peak absorption 1053 nm). The size, structure, and optical absorption properties of the PPy coated nanoemulsions were characterized and compared to PPy nanoparticles (no liquid core) using dynamic light scattering, ultraviolet-visible spectrophotometry, transmission electron microscopy, and small angle X-ray scattering. The cavitation threshold and signal intensity were measured as a function of both acoustic pressure and laser fluence. Overlapping simultaneous transmission of an acoustic and laser pulse can significantly reduce the activation energy of the contrast agents to levels lower than optical or acoustic activation alone. We also demonstrate that simultaneous light and sound cavitation of the agents can be used in a new sono-photoacoustic imaging method, which enables greater sensitivity than traditional photoacoustic imaging.
Liu, Chao; Zhang, Dong-Xian; Zhang, Hai-Jun
2009-11-01
The spectral characteristic of materials is the key factor of the photothermal microactuator's performance. The present article introduces the operating principle, and analyzes the relationship between the material spectral characteristic and its expansion. As the photothermal microactuator is an innovative microactuator based on photothermal expansion that absorbs the laser energy and converts it into internal energy to realize the microdrive, the optimal photothermal expansion material with proper absorption spectrum characteristic matching the spectrum of light driving source needs to be found. The reflection and absorption spectra of four types of polymeric material, including PVC, HDPE, LDPE and PET, were obtained by using the single integrating sphere method. The results indicate that the reflection spectrum of the dyed high-density polyethylene (HDPE) is of double-peak structure in visible band, and there is strong absorption within the range of 600-690 nm, which means it would match the light driving source quite well in the broad spectral range. Therefore, HDPE was chosen as the photothermal expansion material. In order to check out the feasibility and performance of the photothermal microactuactor based on HDPE, a prototyping microactuator 1 500 mm in length and 30 mm in thickness was manufactured by using an excimer laser micromachining system. With a laser diode (10 mW/650 nm) as the external power source to activate the microactuator, performance measurement experiments were carried out by using a self-produced video movement measurement system with a CCD-coupled microscope. The experiment results demonstrate that the deflection of the microactuator reaches 18.7 mm at 10 mW of laser power, showing that the characteristics of spectral absorption and light-heat transition are quite well at 650 nm. This novel photothermal microactuator has simple structure, adjustable displacement output, and more mobility, and can be controlled remotely, so it will be quite useful for applications in the fields of micro-optical-electro-mechanical systems (MOEMS).
Investigation into the absorptivity change in metals with increased laser power
NASA Astrophysics Data System (ADS)
Blidegn, M. Sc. K.; Olsen, Flemming O.
1997-04-01
At first glance the low absorptivity of metals in the infrared (IR) makes the use of YAG or carbon-dioxide lasers in metal processing very inefficient. However, it has been demonstrated that the absorptivity can reach significantly higher levels during the high power laser interaction. An increase which cannot be explained by the increase in temperature only. The interaction between laser light and metals is a major physical phenomena in laser material processing and when modeling processes the Drude free electron model or simplifications, such as the Hagen-Rubens relation, have often been used. This paper discusses the need to extend the Drude model taking into account interband transitions and anormal skin effect at low light intensities and a multiphoton absorption model in order to describe the increase in the absorptivity at high intensities. The model is compared with experimental results carried out at low power, and tested on experimental absorptivity measurements at high power YAG laser pulses, found in literature.
Laboratory measurement of the absorption coefficient of riboflavin for ultraviolet light (365 nm).
Iseli, Hans Peter; Popp, Max; Seiler, Theo; Spoerl, Eberhard; Mrochen, Michael
2011-03-01
Corneal cross-linking (CXL) is an increasingly used treatment technique for stabilizing the cornea in keratoconus. Cross-linking (polymerization) between collagen fibrils is induced by riboflavin (vitamin B2) and ultraviolet light (365 nm). Although reported to reach a constant value at higher riboflavin concentrations, the Lambert-Beer law predicts a linear increase in the absorption coefficient. This work was carried out to determine absorption behavior at different riboflavin concentrations and to further investigate the purported plateau absorption coefficient value of riboflavin and to identify possible bleaching effects. The Lambert-Beer law was used to calculate the absorption coefficient at various riboflavin concentrations. The following investigated concentrations of riboflavin solutions were prepared using a mixture of 0.5% riboflavin and 20% Dextran T500 dissolved in 0.9% sodium chloride solution: 0%, 0.02%, 0.03%, 0.04%, 0.05%, 0.06%, 0.08%, 0.1%, 0.2%, 0.3%, 0.4%, and 0.5%, and were investigated with and without aperture plate implementation. An additional test series measured the transmitted power at selected riboflavin concentrations over time. In diluted solutions, a linear correlation exists between the absorption coefficient and riboflavin concentration. The absorption coefficient reaches a plateau, but this occurs at a higher riboflavin concentration (0.1%) than previously reported (just above 0.04%). Transmitted light power increases over time, indicating a bleaching effect of riboflavin. The riboflavin concentration can be effectively varied as a treatment parameter in a considerably broader range than previously thought. Copyright 2011, SLACK Incorporated.
Light propagation and fluorescence quantum yields in liquid scintillators
NASA Astrophysics Data System (ADS)
Buck, C.; Gramlich, B.; Wagner, S.
2015-09-01
For the simulation of the scintillation and Cherenkov light propagation in large liquid scintillator detectors a detailed knowledge about the absorption and emission spectra of the scintillator molecules is mandatory. Furthermore reemission probabilities and quantum yields of the scintillator components influence the light propagation inside the liquid. Absorption and emission properties are presented for liquid scintillators using 2,5-Diphenyloxazole (PPO) and 4-bis-(2-Methylstyryl)benzene (bis-MSB) as primary and secondary wavelength shifter. New measurements of the quantum yields for various aromatic molecules are shown.
Bio-Optics and Bio-Inspired Optical Materials.
Tadepalli, Sirimuvva; Slocik, Joseph M; Gupta, Maneesh K; Naik, Rajesh R; Singamaneni, Srikanth
2017-10-25
Through the use of the limited materials palette, optimally designed micro- and nanostructures, and tightly regulated processes, nature demonstrates exquisite control of light-matter interactions at various length scales. In fact, control of light-matter interactions is an important element in the evolutionary arms race and has led to highly engineered optical materials and systems. In this review, we present a detailed summary of various optical effects found in nature with a particular emphasis on the materials and optical design aspects responsible for their optical functionality. Using several representative examples, we discuss various optical phenomena, including absorption and transparency, diffraction, interference, reflection and antireflection, scattering, light harvesting, wave guiding and lensing, camouflage, and bioluminescence, that are responsible for the unique optical properties of materials and structures found in nature and biology. Great strides in understanding the design principles adapted by nature have led to a tremendous progress in realizing biomimetic and bioinspired optical materials and photonic devices. We discuss the various micro- and nanofabrication techniques that have been employed for realizing advanced biomimetic optical structures.
Electrically tunable coherent optical absorption in graphene with ion gel.
Thareja, Vrinda; Kang, Ju-Hyung; Yuan, Hongtao; Milaninia, Kaveh M; Hwang, Harold Y; Cui, Yi; Kik, Pieter G; Brongersma, Mark L
2015-03-11
We demonstrate electrical control over coherent optical absorption in a graphene-based Salisbury screen consisting of a single layer of graphene placed in close proximity to a gold back reflector. The screen was designed to enhance light absorption at a target wavelength of 3.2 μm by using a 600 nm-thick, nonabsorbing silica spacer layer. An ionic gel layer placed on top of the screen was used to electrically gate the charge density in the graphene layer. Spectroscopic reflectance measurements were performed in situ as a function of gate bias. The changes in the reflectance spectra were analyzed using a Fresnel based transfer matrix model in which graphene was treated as an infinitesimally thin sheet with a conductivity given by the Kubo formula. The analysis reveals that a careful choice of the ionic gel layer thickness can lead to optical absorption enhancements of up to 5.5 times for the Salisbury screen compared to a suspended sheet of graphene. In addition to these absorption enhancements, we demonstrate very large electrically induced changes in the optical absorption of graphene of ∼3.3% per volt, the highest attained so far in a device that features an atomically thick active layer. This is attributable in part to the more effective gating achieved with the ion gel over the conventional dielectric back gates and partially by achieving a desirable coherent absorption effect linked to the presence of the thin ion gel that boosts the absorption by 40%.
USSR Report, Physics and Mathematics.
1987-03-12
reveal that the threshold of explosive absorption depends on both the laser beam diameter and the laser pulse duration. Estimates indicate the possi...Phenomena in Parametric Generators and Amplifiers of Ultrashort Light Pulses (A. Piskarkas, A. Stabinis, et al.; USPEKHI FIZICHESKIKH NAUK, No 1, Sep...Resolution of Picosecond Absorption Spectrometer by Selection of Length of Laser Light Pulses (B. N. Korvatovskiy, V. V. Gorokhov, et al.; KVANTOVAYA
NASA Astrophysics Data System (ADS)
Oestreich, W. K.; Ganju, N. K.; Pohlman, J. W.; Suttles, S. E.
2016-02-01
Light availability is of primary importance to the ecological function of shallow estuaries. For example, benthic primary production by submerged aquatic vegetation is contingent upon light penetration to the seabed. A major component that attenuates light in estuaries is colored dissolved organic matter (CDOM). CDOM is often measured via a proxy, fluorescing dissolved organic matter (fDOM), due to the ease of in situ fDOM sensor measurements. Fluorescence must be converted to CDOM absorbance for use in light attenuation calculations. However, this CDOM-fDOM relationship varies among and within estuaries. We quantified the variability in this relationship within three estuaries along the mid-Atlantic margin of the eastern United States: West Falmouth Harbor (MA), Barnegat Bay (NJ), and Chincoteague Bay (MD/VA). Land use surrounding these estuaries ranges from urban to developed, with varying sources of nutrients and organic matter. Measurements of fDOM (excitation and emission wavelengths of 365 nm (±5 nm) and 460 nm (±40 nm), respectively) and CDOM absorbance were taken along a terrestrial-to-marine gradient in all three estuaries. The ratio of the absorption coefficient at 340 nm (m-1) to fDOM (QSU) was higher in West Falmouth Harbor (1.22) than in Barnegat Bay (0.22) and Chincoteague Bay (0.17). The CDOM : fDOM absorption ratio was variable between sites within West Falmouth Harbor and Barnegat Bay, but consistent between sites within Chincoteague Bay. Stable carbon isotope analysis for constraining the source of dissolved organic matter (DOM) in West Falmouth Harbor and Barnegat Bay yielded δ13C values ranging from -19.7 to -26.1 ‰ and -20.8 to -26.7 ‰, respectively. Concentration and stable carbon isotope mixing models of DOC (dissolved organic carbon) indicate a contribution of 13C-enriched DOC in the estuaries. The most likely source of 13C-enriched DOC for the systems we investigated is Spartina cordgrass. Comparison of DOC source to CDOM : fDOM absorption ratios at each site demonstrates the relationship between source and optical properties. Samples with 13C-enriched carbon isotope values, indicating a greater contribution from marsh organic material, had higher CDOM : fDOM absorption ratios than samples with greater contribution from terrestrial organic material. Applying a uniform CDOM : fDOM absorption ratio and spectral slope within a given estuary yields errors in modeled light attenuation ranging from 11 to 33 % depending on estuary. The application of a uniform absorption ratio across all estuaries doubles this error. This study demonstrates that light attenuation coefficients for CDOM based on continuous fDOM records are highly dependent on the source of DOM present in the estuary. Thus, light attenuation models for estuaries would be improved by quantification of CDOM absorption and DOM source identification.
Light Trapping for Silicon Solar Cells: Theory and Experiment
NASA Astrophysics Data System (ADS)
Zhao, Hui
Crystalline silicon solar cells have been the mainstream technology for photovoltaic energy conversion since their invention in 1954. Since silicon is an indirect band gap material, its absorption coefficient is low for much of the solar spectrum, and the highest conversion efficiencies are achieved only in cells that are thicker than about 0.1 mm. Light trapping by total internal reflection is important to increase the optical absorption in silicon layers, and becomes increasingly important as the layers are thinned. Light trapping is typically characterized by the enhancement of the absorptance of a solar cell beyond the value for a single pass of the incident beam through an absorbing semiconductor layer. Using an equipartition argument, in 1982 Yablonovitch calculated an enhancement of 4n2 , where n is the refractive index. We have extracted effective light-trapping enhancements from published external quantum efficiency spectra in several dozen silicon solar cells. These results show that this "thermodynamic" enhancement has never been achieved experimentally. The reasons for incomplete light trapping could be poor anti-reflection coating, inefficient light scattering, and parasitic absorption. We report the light-trapping properties of nanocrystalline silicon nip solar cells deposited onto two types of Ag/ZnO backreflectors at United Solar Ovonic, LLC. We prepared the first type by first making silver nanparticles onto a stainless steel substrate, and then overcoating the nanoparticles with a second silver layer. The second type was prepared at United Solar using a continuous silver film. Both types were then overcoated with a ZnO film. The root mean square roughness varied from 27 to 61 nm, and diffuse reflectance at 1000 nm wavelength varied from 0.4 to 0.8. The finished cells have a thin, indium-tin oxide layer on the top that acts as an antireflection coating. For both backreflector types, the short-circuit photocurrent densities J SC for solar illumination were about 25 mA/cm2 for 1.5 micron cells. We also measured external quantum efficiency spectra and optical reflectance spectra, which were only slightly affected by the back reflector morphology. We performed a thermodynamic calculation for the optical absorptance in the silicon layer and the top oxide layer to explain the experimental results; the calculation is an extension of previous work by Stuart and Hall that incorporates the antireflection properties and absorption in the top oxide film. From our calculations and experimental measurements, we concluded that parasitic absorption in this film is the prominent reason for incomplete light trapping in these cells. To reduce the optical parasitic loss in the top oxide layer, we propose a bilayer design, and show the possible benefits to the photocurrent density.
NASA Technical Reports Server (NTRS)
Munson, C. D.; Choi, S. K.; Coughlin, K. P.; McMahon, J. J.; Miller, K. H.; Page, L. A.; Wollack, E. J.
2017-01-01
Infrared (IR)-blocking filters are crucial for controlling the radiative loading on cryogenic systems and for optimizing the sensitivity of bolometric detectors in the far-IR. We present a new IR filter approach based on a combination of patterned frequency-selective structures on silicon and a thin (2575 micron thick) absorptive composite based on powdered reststrahlen absorbing materials. For a 300 K blackbody, this combination reflects approximately 50% of the incoming light and blocks greater than.99.8% of the total power with negligible thermal gradients and excellent low-frequency transmission. This allows a reduction in the IR thermal loading to negligible levels in a single cold filter. These composite filters are fabricated on silicon substrates, which provide excellent thermal transport laterally through the filter and ensure that the entire area of the absorptive filter stays near the bath temperature. A metamaterial antireflection coating cut into these substrates reduces in-band reflections to below 1%, and the in-band absorption of the powder mix is below 1% for signal bands below 750 GHz. This type of filter can be directly incorporated into silicon refractive optical elements.
Perfect-absorption graphene metamaterials for surface-enhanced molecular fingerprint spectroscopy.
Guo, Xiangdong; Hu, Hai; Liao, Baoxin; Zhu, Xing; Yang, Xiaoxia; Dai, Qing
2018-05-04
Graphene plasmon with extremely strong light confinement and tunable resonance frequency represents a promising surface-enhanced infrared absorption (SEIRA) sensing platform. However, plasmonic absorption is relatively weak (approximately 1%-9%) in monolayer graphene nanostructures, which would limit its sensitivity. Here, we theoretically propose a hybrid plasmon-metamaterial structure that can realize perfect absorption in graphene with a low carrier mobility of 1000 cm 2 V -1 s -1 . This structure combines a gold reflector and a gold grating to the graphene plasmon structures, which introduce interference effect and the lightning-rod effect, respectively, and largely enhance the coupling of light to graphene. The vibration signal of trace molecules can be enhanced up to 2000-fold at the hotspot of the perfect-absorption structure, enabling the SEIRA sensing to reach the molecular level. This hybrid metal-graphene structure provides a novel path to generate high sensitivity in nanoscale molecular recognition for numerous applications.
Paper area density measurement from forward transmitted scattered light
Koo, Jackson C.
2001-01-01
A method whereby the average paper fiber area density (weight per unit area) can be directly calculated from the intensity of transmitted, scattered light at two different wavelengths, one being a non-absorpted wavelength. Also, the method makes it possible to derive the water percentage per fiber area density from a two-wavelength measurement. In the optical measuring technique optical transmitted intensity, for example, at 2.1 microns cellulose absorption line is measured and compared with another scattered, optical transmitted intensity reference in the nearby spectrum region, such as 1.68 microns, where there is no absorption. From the ratio of these two intensities, one can calculate the scattering absorption coefficient at 2.1 microns. This absorption coefficient at this wavelength is, then, experimentally correlated to the paper fiber area density. The water percentage per fiber area density can be derived from this two-wavelength measurement approach.
Perfect-absorption graphene metamaterials for surface-enhanced molecular fingerprint spectroscopy
NASA Astrophysics Data System (ADS)
Guo, Xiangdong; Hu, Hai; Liao, Baoxin; Zhu, Xing; Yang, Xiaoxia; Dai, Qing
2018-05-01
Graphene plasmon with extremely strong light confinement and tunable resonance frequency represents a promising surface-enhanced infrared absorption (SEIRA) sensing platform. However, plasmonic absorption is relatively weak (approximately 1%-9%) in monolayer graphene nanostructures, which would limit its sensitivity. Here, we theoretically propose a hybrid plasmon-metamaterial structure that can realize perfect absorption in graphene with a low carrier mobility of 1000 cm2 V-1 s-1. This structure combines a gold reflector and a gold grating to the graphene plasmon structures, which introduce interference effect and the lightning-rod effect, respectively, and largely enhance the coupling of light to graphene. The vibration signal of trace molecules can be enhanced up to 2000-fold at the hotspot of the perfect-absorption structure, enabling the SEIRA sensing to reach the molecular level. This hybrid metal-graphene structure provides a novel path to generate high sensitivity in nanoscale molecular recognition for numerous applications.
Filter-based measurement of light absorption by brown carbon in PM2.5 in a megacity in South China.
Li, Sheng; Zhu, Ming; Yang, Weiqiang; Tang, Mingjin; Huang, Xueliang; Yu, Yuegang; Fang, Hua; Yu, Xu; Yu, Qingqing; Fu, Xiaoxin; Song, Wei; Zhang, Yanli; Bi, Xinhui; Wang, Xinming
2018-08-15
Carbonaceous aerosols represent an important nexus between air pollution and climate change. Here we collected filter-based PM 2.5 samples during summer and autumn in 2015 at one urban and two rural sites in Guangzhou, a megacity in southern China, and got the light absorption by black carbon (BC) and brown carbon (BrC) resolved with a DRI Model 2015 multi-wavelength thermal/optical carbon analyzer apart from determining the organic carbon (OC) and elemental carbon (EC) contents. On average BrC contributed 12-15% of the measured absorption at 405nm (LA 405 ) during summer and 15-19% during autumn with significant increase in the LA 405 by BrC at the rural sites. Carbonaceous aerosols, identified as total carbon (TC), yielded average mass absorption efficiency at 405nm (MAE 405 ) that were approximately 45% higher in autumn than in summer, an 83% increase was noted in the average MAE 405 for OC, compared with an increase of only 14% in the average MAE 405 for EC. The LA 405 by BrC showed a good correlation (p<0.001) with the ratios of secondary OC to PM 2.5 in summer. However, this correlation was poor (p>0.1) in autumn, implying greater secondary formation of BrC in summer. The correlations between levoglucosan (a marker of biomass burning) and the LA 405 by BrC were significant during autumn but insignificant during summer, suggesting that the observed increase in the LA 405 by BrC during autumn in rural areas was largely related to biomass burning. The measurements of light absorption at 550nm presented in this study indicated that the use of the IMPROVE algorithm with an MAE value of 10m 2 /g for EC to approximate light absorption may be appropriate in areas not strongly affected by fossil fuel combustion; however, this practice would underestimate the absorption of light by PM 2.5 in areas heavily affected by vehicle exhausts and coal burning. Copyright © 2018 Elsevier B.V. All rights reserved.
Superabsorption of light via quantum engineering
Higgins, K. D. B.; Benjamin, S. C.; Stace, T. M.; Milburn, G. J.; Lovett, B. W.; Gauger, E. M.
2014-01-01
Almost 60 years ago Dicke introduced the term superradiance to describe a signature quantum effect: N atoms can collectively emit light at a rate proportional to N2. Structures that superradiate must also have enhanced absorption, but the former always dominates in natural systems. Here we show that this restriction can be overcome by combining several well-established quantum control techniques. Our analytical and numerical calculations show that superabsorption can then be achieved and sustained in certain simple nanostructures, by trapping the system in a highly excited state through transition rate engineering. This opens the prospect of a new class of quantum nanotechnology with potential applications including photon detection and light-based power transmission. An array of quantum dots or a molecular ring structure could provide a suitable platform for an experimental demonstration. PMID:25146588
Electromagnetic Field Enhancement on Axially Heterostructured NWs: The Role of the Heterojunctions
NASA Astrophysics Data System (ADS)
Pura, J. L.; Souto, J.; Periwal, P.; Baron, T.; Jiménez, J.
2018-05-01
Semiconductor nanowires are the building blocks of future nanoelectronic devices. The study of the interaction between nanowires and visible light reveals resonances that promise light absorption/scattering engineering for photonic applications. We carried out experimental measurements through the micro-Raman spectroscopy of different group IV nanowires, both homogeneous Si nanowires and axially heterostructured SiGe/Si nanowires. These experimental measurements show an enhancement of the Raman signal in the vicinity of the heterojunction of SiGe/Si nanowires. The results are analysed in terms of the electromagnetic modelling of the light/nanowire interaction using finite element methods. The presence of axial heterostructures is shown to produce electromagnetic resonances, and the results are understood as a consequence of a finite change in the relative permittivity of the material at the SiGe/Si heterojunction. This effect opens a path to controlling interactions between light and matter at the nanoscale with direct applications in photonic nanodevices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez, F.G.A.; Camacho, F.G.; Perez, J.A.S.
1997-09-05
A mathematical model to estimate the solar irradiance profile and average light intensity inside a tubular photobioreactor under outdoor conditions is proposed, requiring only geographic, geometric, and solar position parameters. First, the length of the path into the culture traveled by any direct or disperse ray of light was calculated as the function of three variables: day of year, solar hour, and geographic latitude. Then, the phenomenon of light attenuation by biomass was studied considering Lambert-Beer`s law (only considering absorption) and the monodimensional model of Cornet et al. (1900) (considering absorption and scattering phenomena). Due to the existence of differentialmore » wavelength absorption, none of the literature models are useful for explaining light attenuation by the biomass. Therefore, an empirical hyperbolic expression is proposed. The equations to calculate light path length were substituted in the proposed hyperbolic expression, reproducing light intensity data obtained in the center of the loop tubes. The proposed model was also likely to estimate the irradiance accurately at any point inside the culture. Calculation of the local intensity was thus extended to the full culture volume in order to obtain the average irradiance, showing how the higher biomass productivities in a Phaeodactylum tricornutum UTEX 640 outdoor chemostat culture could be maintained by delaying light limitation.« less
Kang, Byung Ha; Kim, Won-Gi; Chung, Jusung; Lee, Jin Hyeok; Kim, Hyun Jae
2018-02-28
A homojunction-structured amorphous indium gallium zinc oxide (a-IGZO) phototransistor that can detect visible light is reported. The key element of this technology is an absorption layer composed of hydrogen-doped a-IGZO. This absorption layer is fabricated by simple hydrogen plasma doping, and subgap states are induced by increasing the amount of hydrogen impurities. These subgap states, which lead to a higher number of photoexcited carriers and aggravate the instability under negative bias illumination stress, enabled the detection of a wide range of visible light (400-700 nm). The optimal condition of the hydrogen-doped absorption layer (HAL) is fabricated at a hydrogen partial pressure ratio of 2%. As a result, the optimized a-IGZO phototransistor with the HAL exhibits a high photoresponsivity of 1932.6 A/W, a photosensitivity of 3.85 × 10 6 , and a detectivity of 6.93 × 10 11 Jones under 635 nm light illumination.
NASA Technical Reports Server (NTRS)
Thomann, P.; Burnett, K.; Cooper, J.
1981-01-01
An absorption (and/or emission) event which takes place during a strong collision is called a 'correlated event'. It is discussed how correlated events affect the far red wing depolarization of fluorescence. Attention is given to an atomic vapor which is irradiated by linearly polarized light of a frequency on the red side of the resonance line. Two limiting cases are considered, corresponding to excitation in the impact region and in the quasi-static wing. In the quasi-static wing, absorption of a photon followed by fluorescence (rather than Rayleigh scattering), occurs mostly during a collision. Correlated events dominate the scattering process. Expressions derived for the polarization of the fluorescent light are applied to far red wing depolarization. It is found that the polarization of the fluorescent light does not go to zero in the far wing, but depends crucially on the detailed nature of the anisotropy in the long-range part of the interatomic potential.
Efficient light trapping in silicon inclined nanohole arrays for photovoltaic applications
NASA Astrophysics Data System (ADS)
Deng, Can; Tan, Xinyu; Jiang, Lihua; Tu, Yiteng; Ye, Mao; Yi, Yasha
2018-01-01
Structural design with high light absorption is the key challenge for thin film solar cells because of its poor absorption. In this paper, the light-trapping performance of silicon inclined nanohole arrays is systematically studied. The finite difference time domain method is used to calculate the optical absorption of different inclination angles in different periods and diameters. The results indicate that the inclined nanoholes with inclination angles between 5° and 45° demonstrate greater light-trapping ability than their counterparts of the vertical nanoholes, and they also show that by choosing the optimal parameters for the inclined nanoholes, a 31.2 mA/cm2 short circuit photocurrent density could be achieved, which is 10.25% higher than the best vertical nanohole system and 105.26% higher than bare silicon with a thickness of 2330 nm. The design principle proposed in this work gives a guideline for choosing reasonable parameters in the application of solar cells.
Liaparinos, P F
2015-11-21
X-ray phosphor-based detectors have enormously improved the quality of medical imaging examinations through the optimization of optical diffusion. In recent years, with the development of science and technology in the field of materials, improved powder phosphors require structural and optical properties that contribute to better optical signal propagation. The purpose of this paper was to provide a quantitative and qualitative understanding of the optical absorption characteristics in the assessment of powder phosphor-based detectors (from nano- scale up to micro-scale). Variations on the optical absorption parameters (i.e. the light extinction coefficient [Formula: see text] and the percentage probability of light absorption p%) were evaluated based on Mie calculations examining a wide range of light wavelengths, particle refractive indices and sizes. To model and assess the effects of the aforementioned parameters on optical diffusion, Monte Carlo simulation techniques were employed considering: (i) phosphors of different layer thickness, 100 μm (thin layer) and 300 μm (thick layer), respectively, (ii) light extinction coefficient values, 1, 3 and 6 μm(-1), and (iii) percentage probability of light absorption p% in the range 10(-4)-10(-2). Results showed that the [Formula: see text] coefficient is high for phosphor grains in the submicron scale and for low light wavelengths. At higher wavelengths (above 650 nm), optical quanta follow approximately similar depths until interaction for grain diameter 500 nm and 1 μm. Regarding the variability of the refractive index, high variations of the [Formula: see text] coefficient occurred above 1.6. Furthermore, results derived from Monte Carlo modeling showed that high spatial resolution phosphors can be accomplished by increasing the [Formula: see text] parameter. More specifically, the FWHM was found to decrease (i.e. higher resolution): (i) 4.8% at 100 μm and (ii) 9.5%, at 300 μm layer thickness. This study attempted to examine the role of the optical absorption parameters on optical diffusion studies. A significant outcome of the present investigation was that the improvement of phosphor spatial resolution without decreasing the light collection efficiency too much can be better achieved by increasing the parameter [Formula: see text] rather than the parameter p%.
Cheng, Zhongzhou; Wang, Fengmei; Shifa, Tofik Ahmed; Jiang, Chao; Liu, Quanlin; He, Jun
2017-11-01
Considering the sizable band gap and wide spectrum response of tin disulfide (SnS 2 ), ultrathin SnS 2 nanosheets are utilized as solar-driven photocatalyst for water splitting. Designing a heterostructure based on SnS 2 is believed to boost their catalytic performance. Unfortunately, it has been quite challenging to explore a material with suitable band alignment using SnS 2 nanomaterials for photocatalytic hydrogen generation. Herein, a new strategy is used to systematically tailor the band alignment in SnS 2 based heterostructure to realize efficient H 2 production under sunlight. A Type-I to Type-II band alignment transition is demonstrated via introducing an interlayer of Ce 2 S 3 , a potential photocatalyst for H 2 evolution, between SnS 2 and CeO 2 . Subsequently, this heterostructure demonstrates tunability in light absorption, charge transfer kinetics, and material stability. The optimized heterostructure (SnS 2 -Ce 2 S 3 -CeO 2 ) exhibits an incredibly strong light absorption ranging from deep UV to infrared light. Significantly, it also shows superior hydrogen generation with the rate of 240 µmol g -1 h -1 under the illumination of simulated sunlight with a very good stability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kong, Junhan; Zhang, Wei; Zhang, Yubo; Xia, Minghao; Wu, Xiuling; Wang, Yongqian
2018-02-01
Several semiconductor nanomaterial devices are increasingly being applied in a variety of fields, especially in the treating of environmental pollutants. We have fabricated (MnO@TNTAs):Mn2+ with sandwich-like nanostructures composed of TiO2 nanotube arrays (TNTAs), Mn-doped TNTAs and MnO. The experimental procedure was a two-step synthesis: first, using anodic oxidation methods and then hydrothermal methods. We carried out many characterizations of the "sandwiches" in the nanoscale. From the field emission scanning electron microscopy images we found nanofibers lying on the highly-ordered nanotube arrays. The diameter of the nanotubes was about 50 nm but the size of the nanofibers varied. Energy dispersive spectroscopy demonstrated that the nanofibers contained a manganese element and x-ray diffraction patterns showed the peak of the manganosite phase. From ultraviolet-visible light spectra, it was found that the nanostructures had strong absorption activities under both ultraviolet and visible light radiation, while pure TNTAs had absorption only under ultraviolet light. The photodegradation experiments proved that the sandwich-like nanostructures had an excellent photocatalytic activity (92.5% after 240 min), which was a great improvement compared with pure TNTAs. In this way, the structures as a device at the nanoscale have a huge potential in controlling environmental pollution.
Photonic bandgap narrowing in conical hollow core Bragg fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozturk, Fahri Emre; Yildirim, Adem; Kanik, Mehmet
2014-08-18
We report the photonic bandgap engineering of Bragg fibers by controlling the thickness profile of the fiber during the thermal drawing. Conical hollow core Bragg fibers were produced by thermal drawing under a rapidly alternating load, which was applied by introducing steep changes to the fiber drawing speed. In conventional cylindrical Bragg fibers, light is guided by omnidirectional reflections from interior dielectric mirrors with a single quarter wave stack period. In conical fibers, the diameter reduction introduced a gradient of the quarter wave stack period along the length of the fiber. Therefore, the light guided within the fiber encountered slightlymore » smaller dielectric layer thicknesses at each reflection, resulting in a progressive blueshift of the reflectance spectrum. As the reflectance spectrum shifts, longer wavelengths of the initial bandgap cease to be omnidirectionally reflected and exit through the cladding, which narrows the photonic bandgap. A narrow transmission bandwidth is particularly desirable in hollow waveguide mid-infrared sensing schemes, where broadband light is coupled to the fiber and the analyte vapor is introduced into the hollow core to measure infrared absorption. We carried out sensing simulations using the absorption spectrum of isopropyl alcohol vapor to demonstrate the importance of narrow bandgap fibers in chemical sensing applications.« less
NASA Astrophysics Data System (ADS)
Borisevich, A.; Dormenev, V.; Korjik, M.; Kozlov, D.; Mechinsky, V.; Novotny, R. W.
2015-02-01
Recently, a new scintillation material DSB: Ce3+ was announced. It can be produced in a form of glass or nano-structured glass ceramics with application of standard glass production technology with successive thermal annealing. When doped with Ce3+, material can be applied as scintillator. Light yield of scintillation is near 100 phe/MeV. Un-doped material has a wide optical window from 4.5eV and can be applied to detect Cherenkov light. Temperature dependence of the light yield LY(T) is 0.05% which is 40 times less than in case of PWO. It can be used for detectors tolerant to a temperature variation between -20° to +20°C. Several samples with dimensions of 15x15x7 mm3 have been tested for damage effects on the optical transmission under irradiation with γ-quanta. It was found that the induced absorption in the scintillation range depends on the doping concentration and varies in range of 0.5-7 m-1. Spontaneous recovery of induced absorption has fast initial component. Up to 25% of the damaged transmission is recuperated in 6 hours. Afterwards it remains practically constant if the samples are kept in the dark. However, induced absorption is reduced by a factor of 2 by annealing at 50°C and completely removed in a short time when annealing at 100°C. A significant acceleration of the induced absorption recovery is observed by illumination with visible and IR light. This effect is observed for the first time in a Ce-doped scintillation material. It indicates, that radiation induced absorption in DSB: Ce scintillation material can be retained at the acceptable level by stimulation with light in a strong irradiation environment of collider experiments.
Single-photon absorption by single photosynthetic light-harvesting complexes
NASA Astrophysics Data System (ADS)
Chan, Herman C. H.; Gamel, Omar E.; Fleming, Graham R.; Whaley, K. Birgitta
2018-03-01
We provide a unified theoretical approach to the quantum dynamics of absorption of single photons and subsequent excitonic energy transfer in photosynthetic light-harvesting complexes. Our analysis combines a continuous mode < n > -photon quantum optical master equation for the chromophoric system with the hierarchy of equations of motion describing excitonic dynamics in presence of non-Markovian coupling to vibrations of the chromophores and surrounding protein. We apply the approach to simulation of absorption of single-photon coherent states by pigment-protein complexes containing between one and seven chromophores, and compare with results obtained by excitation using a thermal radiation field. We show that the values of excitation probability obtained under single-photon absorption conditions can be consistently related to bulk absorption cross-sections. Analysis of the timescale and efficiency of single-photon absorption by light-harvesting systems within this full quantum description of pigment-protein dynamics coupled to a quantum radiation field reveals a non-trivial dependence of the excitation probability and the excited state dynamics induced by exciton-phonon coupling during and subsequent to the pulse, on the bandwidth of the incident photon pulse. For bandwidths equal to the spectral bandwidth of Chlorophyll a, our results yield an estimation of an average time of ˜0.09 s for a single chlorophyll chromophore to absorb the energy equivalent of one (single-polarization) photon under irradiation by single-photon states at the intensity of sunlight.
The Ascension Island Boundary Layer in the Remote Southeast Atlantic is Often Smoky
NASA Astrophysics Data System (ADS)
Zuidema, Paquita; Sedlacek, Arthur J.; Flynn, Connor; Springston, Stephen; Delgadillo, Rodrigo; Zhang, Jianhao; Aiken, Allison C.; Koontz, Annette; Muradyan, Paytsar
2018-05-01
Observations from June to October 2016, from a surface-based ARM Mobile Facility deployment on Ascension Island (8°S, 14.5°W) indicate that refractory black carbon (rBC) is almost always present within the boundary layer. The rBC mass concentrations, light absorption coefficients, and cloud condensation nuclei concentrations vary in concert and synoptically, peaking in August. Light absorption coefficients at three visible wavelengths as a function of rBC mass are approximately double that calculated from black carbon in lab studies. A spectrally-flat absorption angstrom exponent suggests most of the light absorption is from lens-coated black carbon. The single-scattering-albedo increases systematically from August to October in both 2016 and 2017, with monthly means of 0.78 ± 0.02 (August), 0.81 ± 0.03 (September), and 0.83 ± 0.03 (October) at the green wavelength. Boundary layer aerosol loadings are only loosely correlated with total aerosol optical depth, with smoke more likely to be present in the boundary layer earlier in the biomass burning season, evolving to smoke predominantly present above the cloud layers in September-October, typically resting upon the cloud top inversion. The time period with the campaign-maximum near-surface light absorption and column aerosol optical depth, on 13-16 August 2016, is investigated further. Backtrajectories that indicate more direct boundary layer transport westward from the African continent is central to explaining the elevated surface aerosol loadings.
NASA Astrophysics Data System (ADS)
Qi, Wenyuan; Zhang, Yuyin
2018-04-01
A three-color imaging technique was proposed for simultaneous measurements on distributions of fuel/air mixture temperature and fuel vapor/liquid concentrations in evaporating sprays. The idea is based on that the vapor concentration is proportional to the absorption of vapor to UV light, the liquid-phase concentration is related to the light extinction due to scattering of droplet to visible light, and the mixture temperature can be correlated to the absorbance ratio at two absorbing wavelengths or narrow bands. For verifying the imaging system, the molar absorption coefficients of p-xylene at the three narrow bands, which were centered respectively at 265, 289, and 532 nm with FWHM of 10 nm, were measured in a specially designed calibration chamber at different temperatures (423-606 K) and pressure of 3.6 bar. It was found that the ratio of the molar absorption coefficients of p-xylene at the two narrow bands centered at the two UV wavelengths is sensitive to the mixture temperature. On the other hand, the distributions of fuel vapor/liquid concentrations can be obtained by use of absorbance due to ultraviolet absorption of vapor and visible light scattering of droplets. Combining these two methods, a simultaneous measurement on distributions of mixture temperature and fuel vapor/liquid concentrations can be realized. In addition, the temperature field obtained from the ratio of the two absorbing narrow bands can be further used to improve the measurement accuracy of vapor/liquid concentrations, because the absorption coefficients depend on temperature. This diagnostic was applied to an evaporating spray inside a high-temperature and high-pressure constant volume chamber.
Nanoplasmon-enabled macroscopic thermal management
Jonsson, Gustav Edman; Miljkovic, Vladimir; Dmitriev, Alexandre
2014-01-01
In numerous applications of energy harvesting via transformation of light into heat the focus recently shifted towards highly absorptive nanoplasmonic materials. It is currently established that noble metals-based absorptive plasmonic platforms deliver significant light-capturing capability and can be viewed as super-absorbers of optical radiation. Naturally, approaches to the direct experimental probing of macroscopic temperature increase resulting from these absorbers are welcomed. Here we derive a general quantitative method of characterizing heat-generating properties of optically absorptive layers via macroscopic thermal imaging. We further monitor macroscopic areas that are homogeneously heated by several degrees with nanostructures that occupy a mere 8% of the surface, leaving it essentially transparent and evidencing significant heat generation capability of nanoplasmon-enabled light capture. This has a direct bearing to a large number of applications where thermal management is crucial. PMID:24870613
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. National Center for Research in Vocational Education.
This military-developed text consists of nine lessons dealing with investigative photography. Covered in the individual lessons are the following topics: light (light as the basis of photography, the behavior of light, the composition of white light, light transmission, reflection and absorption, illumination, and pinholes and light); camera…
Yang, Lu; Wang, Fazhou; Shu, Chang; Liu, Peng; Zhang, Wenqin; Hu, Shuguang
2016-01-01
The absorption ability and photocatalytic activity of photocatalytic materials play important roles in improving the pollutants removal effects. Herein, we reported a new kind of photocatalytic material, which was synthesized by simultaneously designing hierarchical porous magnesian (PM) substrate and TiO2 catalyst modification. Particularly, PM substrate could be facilely prepared by controlling its crystal phase (Phase 5, Mg3Cl(OH)5·4H2O), while Ag/AgCl particles modification of TiO2 could be achieved by in situ ion exchange between Ag+ and above crystal Phase. Physiochemical analysis shows that Ag/AgCl/TiO2/PM material has higher visible and ultraviolet light absorption response, and excellent gas absorption performance compared to other controls. These suggested that Ag/AgCl/TiO2/PM material could produce more efficient photocatalytic effects. Its photocatalytic reaction rate was 5.21 and 30.57 times higher than that of TiO2/PM and TiO2/imporous magnesian substrate, respectively. Thus, this material and its intergration synthesis method could provide a novel strategy for high-efficiency application and modification of TiO2 photocatalyst in engineering filed. PMID:26883972
Note: A flexible light emitting diode-based broadband transient-absorption spectrometer
NASA Astrophysics Data System (ADS)
Gottlieb, Sean M.; Corley, Scott C.; Madsen, Dorte; Larsen, Delmar S.
2012-05-01
This Note presents a simple and flexible ns-to-ms transient absorption spectrometer based on pulsed light emitting diode (LED) technology that can be incorporated into existing ultrafast transient absorption spectrometers or operate as a stand-alone instrument with fixed-wavelength laser sources. The LED probe pulses from this instrument exhibit excellent stability (˜0.5%) and are capable of producing high signal-to-noise long-time (>100 ns) transient absorption signals either in a broadband multiplexed (spanning 250 nm) or in tunable narrowband (20 ns) operation. The utility of the instrument is demonstrated by measuring the photoinduced ns-to-ms photodynamics of the red/green absorbing fourth GMP phosphodiesterase/adenylyl cyclase/FhlA domain of the NpR6012 locus of the nitrogen-fixing cyanobacterium Nostoc punctiforme.
Zhou, Yong; Zeng, Nan; Ji, Yanhong; Li, Yao; Dai, Xiangsong; Li, Peng; Duan, Lian; Ma, Hui; He, Yonghong
2011-01-01
We present a method of glucose concentration detection in the anterior chamber with a differential absorption optical low-coherent interferometry (LCI) technique. Back-reflected light from the iris, passing through the anterior chamber twice, was selectively obtained with the LCI technique. Two light sources, one centered within (1625 nm) and the other centered outside (1310 nm) of a glucose absorption band were used for differential absorption measurement. In the eye model and pig eye experiments, we obtained a resolution glucose level of 26.8 mg/dL and 69.6 mg/dL, respectively. This method has a potential application for noninvasive detection of glucose concentration in aqueous humor, which is related to the glucose concentration in blood. PMID:21280906
USDA-ARS?s Scientific Manuscript database
Light wavelengths preferentially absorbed by chlorophyll (chl) often display steep absorption gradients. This oversaturates photosynthesis in upper chloroplasts and deprives lower chloroplasts of blue and red light, causing a steep gradient in carbon fixation. Reducing chl content could create a mor...
Engineering light outcoupling in 2D materials.
Lien, Der-Hsien; Kang, Jeong Seuk; Amani, Matin; Chen, Kevin; Tosun, Mahmut; Wang, Hsin-Ping; Roy, Tania; Eggleston, Michael S; Wu, Ming C; Dubey, Madan; Lee, Si-Chen; He, Jr-Hau; Javey, Ali
2015-02-11
When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.
Nonlinear Optical Interactions in Semiconductors
1984-10-01
TACAN Aerospace Corporation. 6 V. Coupling A. C.N.R.S., Physique du Solide et Energie Solaire We have an on-going interaction with Dr. Christian...optical fiber to the semiconductor sample and back to the analyzing electronics. The band-gap energy of the semiconductor decreases with increasing...temperature. Consequently, the absorption of light in the energy region of the band-gap changes with temperature. From the measured light absorption, the
NASA Astrophysics Data System (ADS)
Karabutov, Aleksander A.; Pelivanov, Ivan M.; Podymova, N. B.; Skipetrov, S. E.
1999-12-01
A method, based on the optoacoustic effect for determination of the spatial distribution of the light intensity in turbid media and of the optical characteristics of such media was proposed (and implemented experimentally). A temporal profile of the pressure of a thermo-optically excited acoustic pulse was found to be governed by the absorption coefficient and by the spatial distribution of the light intensity in the investigated medium. The absorption coefficient and the reduced light-scattering coefficient of model turbid water-like media were measured by the optoacoustic method. The results of a direct determination of the spatial light-intensity distribution agreed with a theoretical calculation made in the diffusion approximation.
Multi-layer coating of SiO2 nanoparticles to enhance light absorption by Si solar cells
NASA Astrophysics Data System (ADS)
Nam, Yoon-Ho; Um, Han-Don; Park, Kwang-Tae; Shin, Sun-Mi; Baek, Jong-Wook; Park, Min-Joon; Jung, Jin-Young; Zhou, Keya; Jee, Sang-Won; Guo, Zhongyi; Lee, Jung-Ho
2012-06-01
We found that multi-layer coating of a Si substrate with SiO2 dielectric nanoparticles (NPs) was an effective method to suppress light reflection by silicon solar cells. To suppress light reflection, two conditions are required for the coating: 1) The difference of refractive indexes between air and Si should be alleviated, and 2) the quarter-wavelength antireflection condition should be satisfied while avoiding intrinsic absorption loss. Light reflection was reduced due to destructive interference at certain wavelengths that depended on the layer thickness. For the same thickness dielectric layer, smaller NPs enhanced antireflectance more than larger NPs due to a decrease in scattering loss by the smaller NPs.
Gas separation using ultrasound and light absorption
Sinha, Dipen N [Los Alamos, NM
2012-07-31
An apparatus and method for separating a chosen gas from a mixture of gases having no moving parts and utilizing no chemical processing is described. The separation of particulates from fluid carriers thereof has been observed using ultrasound. In a similar manner, molecular species may be separated from carrier species. It is also known that light-induced drift may separate light-absorbing species from carrier species. Therefore, the combination of temporally pulsed absorption of light with ultrasonic concentration is expected to significantly increase the efficiency of separation by ultrasonic concentration alone. Additionally, breaking the spatial symmetry of a cylindrical acoustic concentrator decreases the spatial distribution of the concentrated particles, and increases the concentration efficiency.
Chiarelli, Antonio M.; Maclin, Edward L.; Low, Kathy A.; Fantini, Sergio; Fabiani, Monica; Gratton, Gabriele
2017-01-01
Abstract. Near infrared (NIR) light has been widely used for measuring changes in hemoglobin concentration in the human brain (functional NIR spectroscopy, fNIRS). fNIRS is based on the differential measurement and estimation of absorption perturbations, which, in turn, are based on correctly estimating the absolute parameters of light propagation. To do so, it is essential to accurately characterize the baseline optical properties of tissue (absorption and reduced scattering coefficients). However, because of the diffusive properties of the medium, separate determination of absorption and scattering across the head is challenging. The effective attenuation coefficient (EAC), which is proportional to the geometric mean of absorption and reduced scattering coefficients, can be estimated in a simpler fashion by multidistance light decay measurements. EAC mapping could be of interest for the scientific community because of its absolute information content, and because light propagation is governed by the EAC for source–detector distances exceeding 1 cm, which sense depths extending beyond the scalp and skull layers. Here, we report an EAC mapping procedure that can be applied to standard fNIRS recordings, yielding topographic maps with 2- to 3-cm resolution. Application to human data indicates the importance of venous sinuses in determining regional EAC variations, a factor often overlooked. PMID:28466026
Chiarelli, Antonio M; Maclin, Edward L; Low, Kathy A; Fantini, Sergio; Fabiani, Monica; Gratton, Gabriele
2017-04-01
Near infrared (NIR) light has been widely used for measuring changes in hemoglobin concentration in the human brain (functional NIR spectroscopy, fNIRS). fNIRS is based on the differential measurement and estimation of absorption perturbations, which, in turn, are based on correctly estimating the absolute parameters of light propagation. To do so, it is essential to accurately characterize the baseline optical properties of tissue (absorption and reduced scattering coefficients). However, because of the diffusive properties of the medium, separate determination of absorption and scattering across the head is challenging. The effective attenuation coefficient (EAC), which is proportional to the geometric mean of absorption and reduced scattering coefficients, can be estimated in a simpler fashion by multidistance light decay measurements. EAC mapping could be of interest for the scientific community because of its absolute information content, and because light propagation is governed by the EAC for source-detector distances exceeding 1 cm, which sense depths extending beyond the scalp and skull layers. Here, we report an EAC mapping procedure that can be applied to standard fNIRS recordings, yielding topographic maps with 2- to 3-cm resolution. Application to human data indicates the importance of venous sinuses in determining regional EAC variations, a factor often overlooked.
Effects of compression on human skin optical properties
NASA Astrophysics Data System (ADS)
Chan, Eric K.; Sorg, Brian S.; Protsenko, Dmitry E.; O'Neil, Michael P.; Motamedi, Massoud; Welch, Ashley J.
1997-08-01
Tissue optical properties are necessary parameters for prescribing light dosimetry in photomedicine. In many diagnostic or therapeutic applications where optical fiber probes are used, pressure is often applied to the tissue to reduce index mismatch and increase light transmittance. In this study, we have measured in vitro optical properties as a function of pressure with a visible-IR spectrophotometer. A spectral range of 400 - 1800 nm with a spectral resolution of 5 nm was used for all measurements. Skin specimens of two Hispanic donors and three caucasian donors were obtained from the tissue bank. Each specimen, sandwiched between microscope slides, was compressed by a spring-loaded apparatus. Then diffuse reflectance and transmittance of each sample were measured at no load and at approximately 0.1 and 1 kgf/cm2. Under compression, tissue thicknesses were reduced up to 78%. Generally, reflectance decreased while the overall transmittance increased under compression. The absorption and reduced scattering coefficients were calculated using the inverse adding doubling method. Compared with the no-load controls, there was an increase in the absorption and scattering coefficients among most of the compressed specimens.
Rosati, Adolfo; Metcalf, Samuel G.; Buchner, Richard P.; Fulton, Allan E.; Lampinen, Bruce D.
2007-01-01
Background and Aims Kaolin applied as a suspension to plant canopies forms a film on leaves that increases reflection and reduces absorption of light. Photosynthesis of individual leaves is decreased while the photosynthesis of the whole canopy remains unaffected or even increases. This may result from a better distribution of light within the canopy following kaolin application, but this explanation has not been tested. The objective of this work was to study the effects of kaolin application on light distribution and absorption within tree canopies and, ultimately, on canopy photosynthesis and radiation use efficiency. Methods Photosynthetically active radiation (PAR) incident on individual leaves within the canopy of almond (Prunus dulcis) and walnut (Juglans regia) trees was measured before and after kaolin application in order to study PAR distribution within the canopy. The PAR incident on, and reflected and transmitted by, the canopy was measured on the same day for kaolin-sprayed and control trees in order to calculate canopy PAR absorption. These data were then used to model canopy photosynthesis and radiation use efficiency by a simple method proposed in previous work, based on the photosynthetic response to incident PAR of a top-canopy leaf. Key Results Kaolin increased incident PAR on surfaces of inner-canopy leaves, although there was an estimated 20 % loss in PAR reaching the photosynthetic apparatus, due to increased reflection. Assuming a 20 % loss of PAR, modelled photosynthesis and photosynthetic radiation use efficiency (PRUE) of kaolin-coated leaves decreased by only 6·3 %. This was due to (1) more beneficial PAR distribution within the kaolin-sprayed canopy, and (2) with decreasing PAR, leaf photosynthesis decreases less than proportionally, due to the curvature of the photosynthesis response-curve to PAR. The relatively small loss in canopy PRUE (per unit of incident PAR), coupled with the increased incident PAR on the leaf surface on inner-canopy leaves, resulted in an estimated increase in modelled photosynthesis of the canopy (+9 % in both walnut and almond). The small loss in PRUE (per unit of incident PAR) resulted in an increase in radiation use efficiency per unit of absorbed PAR, which more than compensated for the minor (7 %) reduction in canopy PAR absorption. Conclusions The results explain the apparently contradictory findings in the literature of positive or no effects of kaolin applications on canopy photosynthesis and yield, despite the decrease in photosynthesis by individual leaves when measured at the same PAR. PMID:17138580
Rosati, Adolfo; Metcalf, Samuel G; Buchner, Richard P; Fulton, Allan E; Lampinen, Bruce D
2007-02-01
Kaolin applied as a suspension to plant canopies forms a film on leaves that increases reflection and reduces absorption of light. Photosynthesis of individual leaves is decreased while the photosynthesis of the whole canopy remains unaffected or even increases. This may result from a better distribution of light within the canopy following kaolin application, but this explanation has not been tested. The objective of this work was to study the effects of kaolin application on light distribution and absorption within tree canopies and, ultimately, on canopy photosynthesis and radiation use efficiency. Photosynthetically active radiation (PAR) incident on individual leaves within the canopy of almond (Prunus dulcis) and walnut (Juglans regia) trees was measured before and after kaolin application in order to study PAR distribution within the canopy. The PAR incident on, and reflected and transmitted by, the canopy was measured on the same day for kaolin-sprayed and control trees in order to calculate canopy PAR absorption. These data were then used to model canopy photosynthesis and radiation use efficiency by a simple method proposed in previous work, based on the photosynthetic response to incident PAR of a top-canopy leaf. Kaolin increased incident PAR on surfaces of inner-canopy leaves, although there was an estimated 20 % loss in PAR reaching the photosynthetic apparatus, due to increased reflection. Assuming a 20 % loss of PAR, modelled photosynthesis and photosynthetic radiation use efficiency (PRUE) of kaolin-coated leaves decreased by only 6.3 %. This was due to (1) more beneficial PAR distribution within the kaolin-sprayed canopy, and (2) with decreasing PAR, leaf photosynthesis decreases less than proportionally, due to the curvature of the photosynthesis response-curve to PAR. The relatively small loss in canopy PRUE (per unit of incident PAR), coupled with the increased incident PAR on the leaf surface on inner-canopy leaves, resulted in an estimated increase in modelled photosynthesis of the canopy (+9 % in both walnut and almond). The small loss in PRUE (per unit of incident PAR) resulted in an increase in radiation use efficiency per unit of absorbed PAR, which more than compensated for the minor (7 %) reduction in canopy PAR absorption. The results explain the apparently contradictory findings in the literature of positive or no effects of kaolin applications on canopy photosynthesis and yield, despite the decrease in photosynthesis by individual leaves when measured at the same PAR.
Bio-Inspired Photon Absorption and Energy Transfer for Next Generation Photovoltaic Devices
NASA Astrophysics Data System (ADS)
Magsi, Komal
Nature's solar energy harvesting system, photosynthesis, serves as a model for photon absorption, spectra broadening, and energy transfer. Photosynthesis harvests light far differently than photovoltaic cells. These differences offer both engineering opportunity and scientific challenges since not all of the natural photon absorption mechanisms have been understood. In return, solar cells can be a very sensitive probe for the absorption characteristics of molecules capable of transferring charge to a conductive interface. The objective of this scientific work is the advancement of next generation photovoltaics through the development and application of natural photo-energy transfer processes. Two scientific methods were used in the development and application of enhancing photon absorption and transfer. First, a detailed analysis of photovoltaic front surface fluorescent spectral modification and light scattering by hetero-structure was conducted. Phosphor based spectral down-conversion is a well-known laser technology. The theoretical calculations presented here indicate that parasitic losses and light scattering within the spectral range are large enough to offset any expected gains. The second approach for enhancing photon absorption is based on bio-inspired mechanisms. Key to the utilization of these natural processes is the development of a detailed scientific understanding and the application of these processes to cost effective systems and devices. In this work both aspects are investigated. Dye type solar cells were prepared and tested as a function of Chlorophyll (or Sodium-Copper Chlorophyllin) and accessory dyes. Forster has shown that the fluorescence ratio of Chlorophyll is modified and broadened by separate photon absorption (sensitized absorption) through interaction with nearby accessory pigments. This work used the dye type solar cell as a diagnostic tool by which to investigate photon absorption and photon energy transfer. These experiments shed some doubt on the Foster Resonant Energy Transfer mechanism since energy relay dye architecture-photosensitizer mixtures do not broaden the response of solar cells. Spectral absorption characterization of chromophore-Chlorophyll solutions in varying solvent polarity confirm the lack of cooperative absorption via a Foster-like mechanism and point the way to new concepts of cooperative absorption in natural systems and the development of a new photovoltaic paradigm.
NASA Astrophysics Data System (ADS)
Sherkunov, Yury
2018-03-01
We study theoretically the van der Waals interaction between two atoms out of equilibrium with an isotropic electromagnetic field. We demonstrate that at large interatomic separations, the van der Waals forces are resonant, spatially oscillating, and nonreciprocal due to resonance absorption and emission of virtual photons. We suggest that the van der Waals forces can be controlled and manipulated by tuning the spectrum of artificially created random light.
A study of polaritonic transparency in couplers made from excitonic materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Mahi R.; Racknor, Chris
2015-03-14
We have studied light matter interaction in quantum dot and exciton-polaritonic coupler hybrid systems. The coupler is made by embedding two slabs of an excitonic material (CdS) into a host excitonic material (ZnO). An ensemble of non-interacting quantum dots is doped in the coupler. The bound exciton polariton states are calculated in the coupler using the transfer matrix method in the presence of the coupling between the external light (photons) and excitons. These bound exciton-polaritons interact with the excitons present in the quantum dots and the coupler is acting as a reservoir. The Schrödinger equation method has been used tomore » calculate the absorption coefficient in quantum dots. It is found that when the distance between two slabs (CdS) is greater than decay length of evanescent waves the absorption spectrum has two peaks and one minimum. The minimum corresponds to a transparent state in the system. However, when the distance between the slabs is smaller than the decay length of evanescent waves, the absorption spectra has three peaks and two transparent states. In other words, one transparent state can be switched to two transparent states when the distance between the two layers is modified. This could be achieved by applying stress and strain fields. It is also found that transparent states can be switched on and off by applying an external control laser field.« less
NASA Astrophysics Data System (ADS)
Huang, Fuxin; Wu, Yiqun; Gu, Donghong; Gan, Fuxi
2005-10-01
Two new azo dyes of α-isoxazolylazo-β-diketones and their Ni(II) and Cu(II) complexes with blue-violet light wavelength were synthesized using a coupling component, different diazo components and metal (II) ions (Ni 2+ and Cu 2+). Based on the elemental analysis, MS spectra and FT-IR spectral analyses, azo dyes were unequivocally shown to exist as hydrazoketo and azoenol forms which were respectively obtained from the solution forms and from the solid forms. The action of sodium methoxide (NaOMe) on azo dyes in solutions converts hydrazoketo form into azoenol form, so azo dyes are coordinated with metal (II) ions as co-ligands in the azoenol forms. The solubility of all the compounds in common organic solvents such as 2,2,3,3-tetrafluoro-1-propanol (TFP) or chloroform (CHCl 3) and absorption properties of spin-coating thin films were measured. The difference of absorption maxima from the complexes to their ligands was discussed. In addition, the TG analysis of the complexes was also determined, and their thermal stability was evaluated. It is found that these new metal (II) complexes had potential application for high-density digital versatile disc-recordable (HD-DVD-R) system due to their good solubility in organic solvents, reasonable and controllable absorption spectra in blue-violet light region and high thermal stability.
NASA Astrophysics Data System (ADS)
Murakami, Noritake; Tango, Yuto; Miyake, Hideaki; Tajima, Tomoyuki; Nishina, Yuta; Kurashige, Wataru; Negishi, Yuichi; Takaguchi, Yutaka
2017-03-01
Single-walled carbon nanotubes (SWCNTs) are potentially strong optical absorbers with tunable absorption bands depending on their chiral indices (n, m). Their application for solar energy conversion is difficult because of the large binding energy (>100 meV) of electron-hole pairs, known as excitons, produced by optical absorption. Recent development of photovoltaic devices based on SWCNTs as light-absorbing components have shown that the creation of heterojunctions by pairing chirality-controlled SWCNTs with C60 is the key for high power conversion efficiency. In contrast to thin film devices, photocatalytic reactions in a dispersion/solution system triggered by the photoexcitation of SWCNTs have never been reported due to the difficulty of the construction of a well-ordered surface on SWCNTs. Here, we show a clear-cut example of a SWCNT photocatalyst producing H2 from water. Self-organization of a fullerodendron on the SWCNT core affords water-dispersible coaxial nanowires possessing SWCNT/C60 heterojunctions, of which a dendron shell can act as support of a co-catalyst for H2 evolution. Because the band offset between the LUMO levels of (8, 3)SWCNT and C60 satisfactorily exceeds the exciton binding energy to allow efficient exciton dissociation, the (8, 3)SWCNT/fullerodendron coaxial photocatalyst shows H2-evolving activity (QY = 0.015) upon 680-nm illumination, which is E22 absorption of (8, 3) SWCNT.
NASA Astrophysics Data System (ADS)
Li, Guijun; Ho, Jacob Y. L.; Li, He; Kwok, Hoi-Sing
2014-06-01
Light management through the intermediate reflector in the tandem cell configuration is of great practical importance for achieving high stable efficiency and also low cost production. So far, however, the intermediate reflectors employed currently are mainly focused on the light absorption enhancement of the top cell. Here, we present a diffractive intermediate layer that allows for light trapping over a broadband wavelength for the ultrathin c-Si tandem solar cell. Compared with the standard intermediate reflector, this nanoscale architectural intermediate layer results in a 35% and 21% remarkable enhancement of the light absorption in the top (400-800 nm) and bottom (800-1100 nm) cells simultaneously, and ultrathin c-Si tandem cells with impressive conversion efficiency of 13.3% are made on the glass substrate.
Yang, Liu; Kou, Pengfei; He, Nan; Dai, Hao; He, Sailing
2017-06-26
A facile polymethyl methacrylate-assisted turnover-transfer approach is developed to fabricate uniform hexagonal gold nanobowl arrays. The bare array shows inferior light trapping ability compared to its inverted counterpart (a gold nanospherical shell array). Surprisingly, after being coated with a 60-nm thick amorphous silicon film, an anomalous light trapping enhancement is observed with a significantly enhanced average absorption (82%), while for the inverted nanostructure, the light trapping becomes greatly weakened with an average absorption of only 66%. Systematic experimental and theoretical results show that the main reason for the opposite light trapping behaviors lies in the top amorphous silicon coating, which plays an important role in mediating the excitation of surface plasmon polaritons and the electric field distributions in both nanostructures.
NASA Astrophysics Data System (ADS)
Mani, Kamal P.; Sreekanth, Perumbilavil; Vimal, G.; Biju, P. R.; Unnikrishnan, N. V.; Ittyachen, M. A.; Philip, Reji; Joseph, Cyriac
2016-12-01
Photoluminescence properties and optical limiting behavior of pure and Sm3+/Eu3+ doped Tb2(MoO4)3 nanophosphors are investigated. The prepared nanophosphors exhibit excellent emission when excited by UV light. Color-tunable emissions in Tb2-xSmx(MoO4)3 and Tb2-xEux(MoO4)3 are realized by employing different excitation wavelengths or by controlling the doping concentration of Sm3+ and Eu3+. Luminescence quantum yield and CIE chromatic coordinates of the prepared phosphors were also presented. Optical limiting properties of the samples are investigated by open aperture Z-scan technique using 5 ns laser pulses at 532 nm. Numerical fitting of the measured Z-scan data to the relevant nonlinear transmission equations reveals that the nonlinear absorption is arising from strong excited state absorption, along with weak absorption saturation and it is found that the optical nonlinearity of Tb2(MoO4)3 increases with Sm3+/Eu3+doping. Parameters such as saturation fluence, excited state absorption cross section and ground state absorption cross section of the samples have been determined numerically, from which the figure of merit for nonlinear absorption is calculated. The excited state absorption cross-section of the samples is found to be one order of magnitude higher than that of the ground state absorption cross-section, indicating strong reverse saturable absorption. These results indicate that Sm3+/Eu3+ doped Tb2(MoO4)3 nanophosphors are efficient media for UV/n-UV pumped LEDs, and are also potential candidates for designing efficient optical limiting devices for the protection of human eyes and sensitive optical detectors from harmful laser radiation.
Fountaine, Katherine T; Atwater, Harry A
2014-10-20
We analyze mesoscale light absorption and carrier collection in a tandem junction photoelectrochemical device using electromagnetic simulations. The tandem device consists of silicon (E(g,Si) = 1.1 eV) and tungsten oxide (E(g,WO3) = 2.6 eV) as photocathode and photoanode materials, respectively. Specifically, we investigated Si microwires with lengths of 100 µm, and diameters of 2 µm, with a 7 µm pitch, covered vertically with 50 µm of WO3 with a thickness of 1 µm. Many geometrical variants of this prototypical tandem device were explored. For conditions of illumination with the AM 1.5G spectra, the nominal design resulted in a short circuit current density, J(SC), of 1 mA/cm(2), which is limited by the WO3 absorption. Geometrical optimization of photoanode and photocathode shape and contact material selection, enabled a three-fold increase in short circuit current density relative to the initial design via enhanced WO3 light absorption. These findings validate the usefulness of a mesoscale analysis for ascertaining optimum optoelectronic performance in photoelectrochemical devices.
Two-Photon Absorption in Organometallic Bromide Perovskites.
Walters, Grant; Sutherland, Brandon R; Hoogland, Sjoerd; Shi, Dong; Comin, Riccardo; Sellan, Daniel P; Bakr, Osman M; Sargent, Edward H
2015-09-22
Organometallic trihalide perovskites are solution-processed semiconductors that have made great strides in third-generation thin film light-harvesting and light-emitting optoelectronic devices. Recently, it has been demonstrated that large, high-purity single crystals of these perovskites can be synthesized from the solution phase. These crystals' large dimensions, clean bandgap, and solid-state order have provided us with a suitable medium to observe and quantify two-photon absorption in perovskites. When CH3NH3PbBr3 single crystals are pumped with intense 800 nm light, we observe band-to-band photoluminescence at 572 nm, indicative of two-photon absorption. We report the nonlinear absorption coefficient of CH3NH3PbBr3 perovskites to be 8.6 cm GW(-1) at 800 nm, comparable to epitaxial single-crystal semiconductors of similar bandgap. We have leveraged this nonlinear process to electrically autocorrelate a 100 fs pulsed laser using a two-photon perovskite photodetector. This work demonstrates the viability of organometallic trihalide perovskites as a convenient and low-cost nonlinear absorber for applications in ultrafast photonics.
Growth kinetics of the photosynthetic bacterium Chlorobium thiosulfatophilum in a fed-batch reactor.
Kim, B W; Chang, H N; Kim, I K; Lee, K S
1992-08-01
Hydrogen sulfide dissolved in water can be converted to elementary sulfur or sulfate by the photosynthetic bacterium Chlorobium thiosulfatophilum. Substrate inhibition occurred at sulfide concentrations above 5.7 mM. Light inhibition was found at average light intensities of 40,000 lux in a sulfide concentration of 5 mM, where no substrate inhibition occurred. Light intensity, the most important growth parameter, was attenuated through both scattering by sulfur particles and absorption by the cells. Average cell and sulfur particle sizes were 1.1 and 9.4 microm, respectively. Cells contributed 10 times as much to the turbidity as sulfur particles of the same weight concentration. The light attenuation factor was mathematically modeled, considering both the absorption and scattering effects based on the Beer-Lambert law and the Rayleigh theory, which were introduced to the cell growth model. Optimal operational conditions relating feed rate vs. light intensity were obtained to suppress the accumulation of sulfate and sulfide and save light energy for 2- and 4-L fed-batch reactors. Light intensity should be greater for the same performance (H(2)S removal rate/unit cell concentration) in larger reactors due to the scaleup effect on light transmission. Knowledge of appropriate growth kinetics in photosynthetic fed-batch reactors was essential to increase feed rate and light intensity and therefore cell growth. A mathematical model was developed that describes the cell growth by considering the light attenuation factor due to scattering and absorption and the crowding effect of the cells. This model was in good agreement with the experimental results. (c) 1992 John Wiley & Sons, Inc.
NASA Astrophysics Data System (ADS)
Varghese, Babu; Bonito, Valentina; Turco, Simona; Verhagen, Rieko
2016-03-01
Laser induced optical breakdown (LIOB) is a non-linear absorption process leading to plasma formation at locations where the threshold irradiance for breakdown is surpassed. In this paper we experimentally demonstrate the influence of polarization and absorption on laser induced breakdown threshold in transparent, absorbing and scattering phantoms made from water suspensions of polystyrene microspheres. We demonstrate that radially polarized light yields a lower irradiance threshold for creating optical breakdown compared to linearly polarized light. We also demonstrate that the thermal initiation pathway used for generating seed electrons results in a lower irradiance threshold compared to multiphoton initiation pathway used for optical breakdown.
NASA Astrophysics Data System (ADS)
Pu, Chenchen; Wan, Jun; Liu, Enzhou; Yin, Yunchao; Li, Juan; Ma, Yongning; Fan, Jun; Hu, Xiaoyun
2017-03-01
Herein, porous protonated graphitic carbon nitride (pGCN) is prepared from bulk g-C3N4 (GCN) directly by acidic cutting and hydrothermal process. The holey structure not only provides a lot of bounds on the accelerated and photo induced charge transfer and thus reduce the aggregation, but also endows the GCN with more exposure to the active site. The pGCN is obtained with an increased band gap of 2.91 eV together with a higher specific surface area of 82.76 m2g-1. Meanwhile, the positively charged GCN resulted from the protonation pretreatment is beneficial for improving the interaction with negatively charged GO sheets. Compared with GCN, pGCN-rGO displays a significant decrease of PL intensities and an apparently enhancement of visible-light absorption, resulting a lower charge recombination rate and a better light absorption. Besides, the enhanced charge separation is demonstrated by photoluminescence emission spectroscopy and the transient photocurrent measurement. The photocatalytic performance studies for the degradation of MB indicate that pGCN-rGO exhibits the highest adsorption ability towards dye molecules. In addition, the pGCN-5 wt% rGO composite shows the optimal photocatalytic activity, the photodegradation rate of MB is 99.4% after 80 min of irradiation and the H2 evolution performance up to 557 μmol g-1h-1 under visible light, which is much higher than the other control samples.
Iii-V Compound Multiple Quantum Well Based Modulator and Switching Devices.
NASA Astrophysics Data System (ADS)
Hong, Songcheol
A general formalism to study the absorption and photocurrent in multiple quantum well is provided with detailed consideration of quantum confined Stark shift, exciton binding energy, line broadening, tunneling, polarization, and strain effects. Results on variation of exciton size, binding energies and transition energies as a function electric field and well size have been presented. Inhomogeneous line broadening of exciton lines due to interface roughness, alloy disorder and well to well size fluctuation is calculated. The potential of material tailoring by introducing strain for specific optical response is discussed. Theoretical and experimental results on excitonic and band-to-band absorption spectra in strained multi-quantum well structures are shown. I also report on polarization dependent optical absorption for excitonic and interband transitions in lattice matched and strained multiquantum well structures in presence of transverse electric field. Photocurrent in a p-i(MQW)-n diode with monochromatic light is examined with respect to different temperatures and intensities. The negative resistance of I-V characteristic of the p-i-n diode is based on the quantum confined Stark effect of the heavy hole excitonic transition in a multiquantum well. This exciton based photocurrent characteristic allows efficient switching. A general purpose low power optical logic device using the controller-modulator concept bas been proposed and realized. The controller is a heterojunction phototransistor with multiquantum wells in the base-collector depletion region. This allows an amplified photocurrent controlled voltage feedback with low light intensity levels. Detailed analysis of the sensitivity of this device in various modes of operation is studied. Studies are also presented on the cascadability of the device as well as its integrating -thresholding properties. A multiquantum well heterojunction bipolar transistor (MHBT), which has N^+ -p^+-i(MQW)-N structure has been fabricated to test the concept. Gain (>30) is obtained in the MBE grown devices and efficient switching occurs due to the amplification of the exciton based photocurrent. The level shift operation of the base contacted MHBT are demonstrated.
Light-absorption of dust and elemental carbon in snow in the Indian Himalayas and the Finnish Arctic
NASA Astrophysics Data System (ADS)
Svensson, Jonas; Ström, Johan; Kivekäs, Niku; Dkhar, Nathaniel B.; Tayal, Shresth; Sharma, Ved P.; Jutila, Arttu; Backman, John; Virkkula, Aki; Ruppel, Meri; Hyvärinen, Antti; Kontu, Anna; Hannula, Henna-Reetta; Leppäranta, Matti; Hooda, Rakesh K.; Korhola, Atte; Asmi, Eija; Lihavainen, Heikki
2018-03-01
Light-absorbing impurities (LAIs) deposited in snow have the potential to substantially affect the snow radiation budget, with subsequent implications for snow melt. To more accurately quantify the snow albedo, the contribution from different LAIs needs to be assessed. Here we estimate the main LAI components, elemental carbon (EC) (as a proxy for black carbon) and mineral dust in snow from the Indian Himalayas and paired the results with snow samples from Arctic Finland. The impurities are collected onto quartz filters and are analyzed thermal-optically for EC, as well as with an additional optical measurement to estimate the light-absorption of dust separately on the filters. Laboratory tests were conducted using substrates containing soot and mineral particles, especially prepared to test the experimental setup. Analyzed ambient snow samples show EC concentrations that are in the same range as presented by previous research, for each respective region. In terms of the mass absorption cross section (MAC) our ambient EC surprisingly had about half of the MAC value compared to our laboratory standard EC (chimney soot), suggesting a less light absorptive EC in the snow, which has consequences for the snow albedo reduction caused by EC. In the Himalayan samples, larger contributions by dust (in the range of 50 % or greater for the light absorption caused by the LAI) highlighted the importance of dust acting as a light absorber in the snow. Moreover, EC concentrations in the Indian samples, acquired from a 120 cm deep snow pit (possibly covering the last five years of snow fall), suggest an increase in both EC and dust deposition. This work emphasizes the complexity in determining the snow albedo, showing that LAI concentrations alone might not be sufficient, but additional transient effects on the light-absorbing properties of the EC need to be considered and studied in the snow. Equally as imperative is the confirmation of the spatial and temporal representativeness of these data by comparing data from several and deeper pits explored at the same time.
Increased epidermal laser fluence through simultaneous ultrasonic microporation
NASA Astrophysics Data System (ADS)
Whiteside, Paul J. D.; Chininis, Jeff A.; Schellenberg, Mason W.; Qian, Chenxi; Hunt, Heather K.
2016-03-01
Lasers have demonstrated widespread applicability in clinical dermatology as minimally invasive instruments that achieve photogenerated responses within tissue. However, before reaching its target, the incident light must first transmit through the surface layer of tissue, which is interspersed with chromophores (e.g. melanin) that preferentially absorb the light and may also generate negative tissue responses. These optical absorbers decrease the efficacy of the procedures. In order to ensure that the target receives a clinically relevant dose, most procedures simply increase the incident energy; however, this tends to exacerbate the negative complications of melanin absorption. Here, we present an alternative solution aimed at increasing epidermal energy uence while mitigating excess absorption by unintended targets. Our technique involves the combination of a waveguide-based contact transmission modality with simultaneous high-frequency ultrasonic pulsation, which alters the optical properties of the tissue through the agglomeration of dissolved gasses into micro-bubbles within the tissue. Doing so effectively creates optically transparent pathways for the light to transmit unobstructed through the tissue, resulting in an increase in forward scattering and a decrease in absorption. To demonstrate this, Q-switched nanosecond-pulsed laser light at 532nm was delivered into pig skin samples using custom glass waveguides clad in titanium and silver. Light transmission through the tissue was measured with a photodiode and integrating sphere for tissue with and without continuous ultrasonic pulsation at 510 kHz. The combination of these techniques has the potential to improve the efficiency of laser procedures while mitigating negative tissue effects caused by undesirable absorption.
Titanium dioxide nanotube membranes for solar energy conversion: effect of deep and shallow dopants.
Ding, Yuchen; Nagpal, Prashant
2017-04-12
Nanostructured titanium dioxide (TiO 2 ) has been intensively investigated as a material of choice for solar energy conversion in photocatalytic, photoelectrochemical, photovoltaic, and other photosensitized devices for converting light into chemical feedstocks or electricity. Towards management of light absorption in TiO 2 , while the nanotubular structure improves light absorption and simultaneous charge transfer to mitigate problems due to the indirect bandgap of the semiconductor, typically dopants are used to improve light absorption of incident solar irradiation in the wide bandgap of TiO 2 . While these dopants can be critical to the success of these solar energy conversion devices, their effect on photophysical and photoelectrochemical properties and detailed photokinetics are relatively under-studied. Here, we show the effect of deep and shallow metal dopants on the kinetics of photogenerated charged carriers in TiO 2 and the resulting effect on photocatalytic and photoelectrochemical processes using these nanotube membranes. We performed a detailed optical, electronic, voltammetry and electrochemical impedance study to understand the effect of shallow and deep metal dopants (using undoped and niobium- and copper-doped TiO 2 nanotubes) on light absorption, charge transport and charge transfer processes. Using wireless photocatalytic methylene blue degradation and carbon dioxide reduction, and wired photoelectrochemical device measurements, we elucidate the effect of different dopants on solar-to-fuel conversion efficiency and simultaneously describe the photokinetics using a model, to help design better energy conversion devices.
Absorption and electrochromic modulation of near-infrared light: realized by tungsten suboxide
NASA Astrophysics Data System (ADS)
Li, Guilian; Zhang, Shouhao; Guo, Chongshen; Liu, Shaoqin
2016-05-01
In the present study, needle-like tungsten suboxide W18O49 nanocrystals were fabricated as the optical active substance to realize the aim of optical control of near-infrared light. The W18O49 nanocrystals were selected in this regard due to their unique optical performance. As revealed by the powder absorption result, the needle-like W18O49 nanocrystals show strong and wide photoabsorption in the entire near infrared region of 780-2500 nm, from which thin films with the W18O49 nanocrystal coating thus benefits and can strongly shield off almost all near infrared irradiation, whereas transmitting the majority of visible light. To make it more tunable, the W18O49 nanocrystals were finally assembled onto an ITO glass via the layer-by-layer strategy for later electrochromic investigation. The nanostructured architectures of the W18O49 nanocrystal electrochromic films exhibit high contrast, faster switching response, higher coloration efficiencies (150 cm2 C-1 at 650 nm and 255 cm2 C-1 at 1300 nm), better long-term redox switching stability (reversibility of 98% after 500 cycles) and wide electrochromic spectrum coverage of both the visible and infrared regions.In the present study, needle-like tungsten suboxide W18O49 nanocrystals were fabricated as the optical active substance to realize the aim of optical control of near-infrared light. The W18O49 nanocrystals were selected in this regard due to their unique optical performance. As revealed by the powder absorption result, the needle-like W18O49 nanocrystals show strong and wide photoabsorption in the entire near infrared region of 780-2500 nm, from which thin films with the W18O49 nanocrystal coating thus benefits and can strongly shield off almost all near infrared irradiation, whereas transmitting the majority of visible light. To make it more tunable, the W18O49 nanocrystals were finally assembled onto an ITO glass via the layer-by-layer strategy for later electrochromic investigation. The nanostructured architectures of the W18O49 nanocrystal electrochromic films exhibit high contrast, faster switching response, higher coloration efficiencies (150 cm2 C-1 at 650 nm and 255 cm2 C-1 at 1300 nm), better long-term redox switching stability (reversibility of 98% after 500 cycles) and wide electrochromic spectrum coverage of both the visible and infrared regions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr09147k
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yeping, E-mail: ypli@ujs.edu.cn; Huang, Liying; Xu, Jingbo
Highlights: • Novel MoO{sub 3}–C{sub 3}N{sub 4} composite was prepared by a mixing-calcination method. • The MoO{sub 3}–C{sub 3}N{sub 4} composite shows remarkably enhanced absorption of visible light. • The MoO{sub 3}–C{sub 3}N{sub 4} composite shows superior visible-light photocatalytic activity. - Abstract: Composite photocatalyst of blue MoO{sub 3}/g-C{sub 3}N{sub 4} (denoted as MoO{sub 3}–C{sub 3}N{sub 4}) was prepared by a simple mixing-calcination method. The obtained MoO{sub 3}–C{sub 3}N{sub 4} composite contains a low amount of molybdenum blue and shows remarkably enhanced absorption of visible light and high efficiency for the degradation of methylene blue dye (MB) under visible light. Themore » enhancement of visible light photocatalytic activity in MoO{sub 3}–C{sub 3}N{sub 4} is attributed to the synergetic effect: (i) the strong and wide absorption of visible light, (ii) the high separation and easy transfer of photogenerated electron–hole pairs at the heterojunction interfaces derived from the match of band position between the g-C{sub 3}N{sub 4} and MoO{sub 3}.« less
Bozzola, Angelo; Liscidini, Marco; Andreani, Lucio Claudio
2012-03-12
We theoretically investigate the light-trapping properties of one- and two-dimensional periodic patterns etched on the front surface of c-Si and a-Si thin film solar cells with a silver back reflector and an anti-reflection coating. For each active material and configuration, absorbance A and short-circuit current density Jsc are calculated by means of rigorous coupled wave analysis (RCWA), for different active materials thicknesses in the range of interest of thin film solar cells and in a wide range of geometrical parameters. The results are then compared with Lambertian limits to light-trapping for the case of zero absorption and for the general case of finite absorption in the active material. With a proper optimization, patterns can give substantial absorption enhancement, especially for 2D patterns and for thinner cells. The effects of the photonic patterns on light harvesting are investigated from the optical spectra of the optimized configurations. We focus on the main physical effects of patterning, namely a reduction of reflection losses (better impedance matching conditions), diffraction of light in air or inside the cell, and coupling of incident radiation into quasi-guided optical modes of the structure, which is characteristic of photonic light-trapping.
Zhou, Jian; Wu, Yonggang; Xia, Zihuan; Qin, Xuefei; Zhang, Zongyi
2017-11-27
Single nanowire solar cells show great promise for next-generation photovoltaics and for powering nanoscale devices. Here, we present a detailed study of light absorption in a single standing semiconductor-dielectric core-shell nanowire (CSNW). We find that the CSNW structure can not only concentrate the incident light into the structure, but also confine most of the concentrated light to the semiconductor core region, which boosts remarkably the light absorption cross-section of the semiconductor core. The CSNW can support multiple higher-order HE modes, as well as Fabry-Pérot (F-P) resonance, compared to the bare nanowire (BNW). Overlapping of the adjacent higher-order HE modes results in broadband light absorption enhancement in the solar radiation spectrum. Results based on detailed balance analysis demonstrate that the super light concentration of the single CSNW gives rise to higher short-circuit current and open-circuit voltage, and thus higher apparent power conversion efficiency (3644.2%), which goes far beyond that of the BNW and the Shockley-Queisser limit that restricts the performance of a planar counterparts. Our study shows that the single CSNW can be a promising platform for construction of high performance nanoscale photodetectors, nanoelectronic power sources, super miniature cells, and diverse integrated nanosystems.
Heat generation and light scattering of green fluorescent protein-like pigments in coral tissue
NASA Astrophysics Data System (ADS)
Lyndby, Niclas H.; Kühl, Michael; Wangpraseurt, Daniel
2016-05-01
Green fluorescent protein (GFP)-like pigments have been proposed to have beneficial effects on coral photobiology. Here, we investigated the relationships between green fluorescence, coral heating and tissue optics for the massive coral Dipsastraea sp. (previously Favia sp.). We used microsensors to measure tissue scalar irradiance and temperature along with hyperspectral imaging and combined imaging of variable chlorophyll fluorescence and green fluorescence. Green fluorescence correlated positively with coral heating and scalar irradiance enhancement at the tissue surface. Coral tissue heating saturated for maximal levels of green fluorescence. The action spectrum of coral surface heating revealed that heating was highest under red (peaking at 680 nm) irradiance. Scalar irradiance enhancement in coral tissue was highest when illuminated with blue light, but up to 62% (for the case of highest green fluorescence) of this photon enhancement was due to green fluorescence emission. We suggest that GFP-like pigments scatter the incident radiation, which enhances light absorption and heating of the coral. However, heating saturates, because intense light scattering reduces the vertical penetration depth through the tissue eventually leading to reduced light absorption at high fluorescent pigment density. We conclude that fluorescent pigments can have a central role in modulating coral light absorption and heating.
Zhou, Ji; He, Zhihong; Ma, Yu; Dong, Shikui
2014-09-20
This paper discusses Gaussian laser transmission in double-refraction crystal whose incident light wavelength is within its absorption wave band. Two scenarios for coupled radiation and heat conduction are considered: one is provided with an applied external electric field, the other is not. A circular heat source with a Gaussian energy distribution is introduced to present the crystal's light-absorption process. The electromagnetic field frequency domain analysis equation and energy equation are solved to simulate the phenomenon by using the finite element method. It focuses on the influence of different values such as wavelength, incident light intensity, heat transfer coefficient, ambient temperature, crystal thickness, and applied electric field strength. The results show that the refraction index of polarized light increases with the increase of crystal temperature. It decreases as the strength of the applied electric field increases if it is positive. The mechanism of electrical modulation for the thermo-optical effect is used to keep the polarized light's index of refraction constant in our simulation. The quantitative relation between thermal boundary condition and strength of applied electric field during electrical modulation is determined. Numerical results indicate a possible approach to removing adverse thermal effects such as depolarization and wavefront distortion, which are caused by thermal deposition during linear laser absorption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peer, Akshit; Biswas, Rana; Park, Joong -Mok
Here, we demonstrate enhanced absorption in solar cells and enhanced light emission in OLEDs by light interaction with a periodically structured microlens array. We simulate n-i-p perovskite solar cells with a microlens at the air-glass interface, with rigorous scattering matrix simulations. The microlens focuses light in nanoscale regions within the absorber layer enhancing the solar cell. Optimal period of ~700 nm and microlens height of ~800-1000 nm, provides absorption (photocurrent) enhancement of 6% (6.3%). An external polymer microlens array on the air-glass side of the OLED generates experimental and theoretical enhancements >100%, by outcoupling trapped modes in the glass substrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, R.A.; Berenbaum, M.R.
1988-04-01
Ultraviolet radiation appears to be toxic to all forms of unpigmented living cells, including bacteria, protozoa, nematodes, arthropods, fish, birds, and mammals. In addition to the direct absorption of solar energy by cellular constituents, toxicity may occur because of the absorption of sunlight by xenobiotics (or by naturally occurring compounds outside the target cell); these may be converted by light or by subsequent light-promoted reactions that induce cellular damage. This article describes the phototoxicity of photodynamic dyes, light-activated synthetic herbicides, petroleum and its constituents, and naturally occurring chemicals from plants. Detoxification mechanisms are also discussed.
Enhanced absorption of light by charged nanoparticles.
Rosenkrantz, Etai; Arnon, Shlomi
2010-04-15
We found that various charged nanoparticles (NPs) can raise the attenuation of electromagnetic (EM) radiation over 30 times more efficiently during resonance in comparison to equivalent noncharged particles for a given set of parameters. A condition that indicates a state of resonance between the incident EM radiation and the NP surface excitations is mathematically derived. Our results shed light on the mechanism responsible for the strong absorption of light by such charged NPs. The outcome of this research could help to design a new generation of communication devices as well as a new technique for biological cell imaging.
Sodium leak detection system for liquid metal cooled nuclear reactors
Modarres, Dariush
1991-01-01
A light source is projected across the gap between the containment vessel and the reactor vessel. The reflected light is then analyzed with an absorption spectrometer. The presence of any sodium vapor along the optical path results in a change of the optical transmissivity of the media. Since the absorption spectrum of sodium is well known, the light source is chosen such that the sensor is responsive only to the presence of sodium molecules. The optical sensor is designed to be small and require a minimum of amount of change to the reactor containment vessel.
Penzkofer, Alfons; Scheib, Ulrike; Stehfest, Katja; Hegemann, Peter
2017-01-01
The rhodopsin-guanylyl cyclase from the nematophagous fungus Catenaria anguillulae belongs to a recently discovered class of enzymerhodopsins and may find application as a tool in optogenetics. Here the rhodopsin domain CaRh of the rhodopsin-guanylyl cyclase from Catenaria anguillulae was studied by absorption and emission spectroscopic methods. The absorption cross-section spectrum and excitation wavelength dependent fluorescence quantum distributions of CaRh samples were determined (first absorption band in the green spectral region). The thermal stability of CaRh was studied by long-time attenuation measurements at room temperature (20.5 °C) and refrigerator temperature of 3.5 °C. The apparent melting temperature of CaRh was determined by stepwise sample heating up and cooling down (obtained apparent melting temperature: 62 ± 2 °C). The photocycle dynamics of CaRh was investigated by sample excitation to the first inhomogeneous absorption band of the CaRhda dark-adapted state around 590 nm (long-wavelength tail), 530 nm (central region) and 470 nm (short-wavelength tail) and following the absorption spectra development during exposure and after exposure (time resolution 0.0125 s). The original protonated retinal Schiff base PRSBall-trans in CaRhda photo-converted reversibly to protonated retinal Schiff base PRSBall-trans,la1 with restructured surroundings (CaRhla1 light-adapted state, slightly blue-shifted and broadened first absorption band, recovery to CaRhda with time constant of 0.8 s) and deprotonated retinal Schiff base RSB13-cis (CaRhla2 light-adapted state, first absorption band in violet to near ultraviolet spectral region, recovery to CaRhda with time constant of 0.35 s). Long-time light exposure of light-adapted CaRhla1 around 590, 530 and 470 nm caused low-efficient irreversible degradation to photoproducts CaRhprod. Schemes of the primary photocycle dynamics of CaRhda and the secondary photocycle dynamics of CaRhla1 are developed. PMID:28981475
Modeling investigation of light-absorbing aerosols in the Amazon Basin during the wet season
NASA Astrophysics Data System (ADS)
Wang, Qiaoqiao; Saturno, Jorge; Chi, Xuguang; Walter, David; Lavric, Jost; Moran-Zuloaga, Daniel; Ditas, Florian; Pöhlker, Christopher; Brito, Joel; Carbone, Samara; Artaxo, Paulo; Andreae, Meinrat
2017-04-01
We use a global chemical transport model (GEOS-Chem) to interpret observed light-absorbing aerosols in Amazonia during the wet season. Observed aerosol properties, including black carbon (BC) concentration and light absorption, at the Amazon Tall Tower Observatory (ATTO) site in the central Amazon have relatively low background levels but frequently show high peaks during the study period of January-April 2014. With daily temporal resolution for open fire emissions and modified aerosol optical properties, our model successfully captures the observed variation in fine/coarse aerosol and BC concentrations as well as aerosol light absorption and its wavelength dependence over the Amazon Basin. The source attribution in the model indicates the important influence of open fire on the observed variances of aerosol concentrations and absorption, mainly from regional sources (northern South America) and from northern Africa. The contribution of open fires from these two regions is comparable, with the latter becoming more important in the late wet season. The analysis of correlation and enhancement ratios of BC versus CO suggests transport times of < 3 days for regional fires and 11 days for African plumes arriving at ATTO during the wet season. The model performance of long-range transport of African plumes is also evaluated with observations from AERONET, MODIS, and CALIOP. Simulated absorption aerosol optical depth (AAOD) averaged over the wet season is lower than 0.0015 over the central Amazon, including the ATTO site. We find that more than 50% of total absorption at 550 nm is from BC, except for the northeastern Amazon and the Guianas, where the influence of dust becomes significant (up to 35 %). The brown carbon contribution is generally between 20 and 30 %. The distribution of absorption Ångström exponents (AAE) suggests more influence from fossil fuel combustion in the southern part of the basin (AAE 1) but more open fire and dust influence in the northern part (AAE > 1.8). Uncertainty analysis shows that accounting for absorption due to secondary organic aerosol (SOA) and primary biogenic aerosol (PBA) particles could result in differences of < 8 and 5-40% in total absorption, respectively.
Chen, Qingcai; Ikemori, Fumikazu; Mochida, Michihiro
2016-10-18
The present study used a combination of solvent and solid-phase extractions to fractionate organic compounds with different polarities from total suspended particulates in Nagoya, Japan, and their optical characteristics were obtained on the basis of their UV-visible absorption spectra and excitation-emission matrices (EEMs). The relationship between their optical characteristics and chemical structures was investigated based on high-resolution aerosol mass spectra (HR-AMS spectra), soft ionization mass spectra and Fourier transform infrared (FT-IR) spectra. The major light-absorption organics were less polar organic fractions, which tended to have higher mass absorption efficiencies (MAEs) and lower wavelength dependent Ångström exponents (Å) than the more polar organic fractions. Correlation analyses indicate that organic compounds with O and N atoms may contribute largely to the total light absorption and fluorescence of the organic aerosol components. The extracts from the aerosol samples were further characterized by a classification of the EEM profiles using a PARAFAC model. Different fluorescence components in the aerosol organic EEMs were associated with specific AMS ions and with different functional groups from the FT-IR analysis. These results may be useful to determine and further classify the chromophores in atmospheric organic aerosols using EEM spectroscopy.
Enhanced Absorption in 2D Materials Via Fano- Resonant Photonic Crystals
Wang, Wenyi; Klotz, Andrey; Yang, Yuanmu; ...
2015-05-01
The use of two-dimensional (2D) materials in optoelectronics has attracted much attention due to their fascinating optical and electrical properties. For instance, graphenebased devices have been employed for applications such as ultrafast and broadband photodetectors and modulators while transition metal dichalcogenide (TMDC) based photodetectors can be used for ultrasensitive photodetection. However, the low optical absorption of 2D materials arising from their atomic thickness limits the maximum attainable external quantum efficiency. For example, in the visible and NIR regimes monolayer MoS 2 and graphene absorb only ~10% and 2.3% of incoming light, respectively. Here, we experimentally demonstrate the use of Fano-resonantmore » photonic crystals to significantly boost absorption in atomically thin materials. Using graphene as a test bed, we demonstrate that absorption in the monolayer thick material can be enhanced to 77% within the telecommunications band, the highest value reported to date. We also show that the absorption in the Fano-resonant structure is non-local, with light propagating up to 16 μm within the structure. This property is particularly beneficial in harvesting light from large areas in field-effect-transistor based graphene photodetectors in which separation of photo-generated carriers only occurs ~0.2 μm adjacent to the graphene/electrode interface.« less
Booker, Edward P; Thomas, Tudor H; Quarti, Claudio; Stanton, Michael R; Dashwood, Cameron D; Gillett, Alexander J; Richter, Johannes M; Pearson, Andrew J; Davis, Nathaniel J L K; Sirringhaus, Henning; Price, Michael B; Greenham, Neil C; Beljonne, David; Dutton, Siân E; Deschler, Felix
2017-12-27
We investigate the origin of the broadband visible emission in layered hybrid lead-halide perovskites and its connection with structural and photophysical properties. We study ⟨001⟩ oriented thin films of hexylammonium (HA) lead iodide, (C 6 H 16 N) 2 PbI 4 , and dodecylammonium (DA) lead iodide, (C 12 H 28 N) 2 PbI 4 , by combining first-principles simulations with time-resolved photoluminescence, steady-state absorption and X-ray diffraction measurements on cooling from 300 to 4 K. Ultrafast transient absorption and photoluminescence measurements are used to track the formation and recombination of emissive states. In addition to the excitonic photoluminescence near the absorption edge, we find a red-shifted, broadband (full-width at half-maximum of about 0.4 eV), emission band below 200 K, similar to emission from ⟨110⟩ oriented bromide 2D perovskites at room temperature. The lifetime of this sub-band-gap emission exceeds that of the excitonic transition by orders of magnitude. We use X-ray diffraction measurements to study the changes in crystal lattice with temperature. We report changes in the octahedral tilt and lattice spacing in both materials, together with a phase change around 200 K in DA 2 PbI 4 . DFT simulations of the HA 2 PbI 4 crystal structure indicate that the low-energy emission is due to interstitial iodide and related Frenkel defects. Our results demonstrate that white-light emission is not limited to ⟨110⟩ oriented bromide 2D perovskites but a general property of this class of system, and highlight the importance of defect control for the formation of low-energy emissive sites, which can provide a pathway to design tailored white-light emitters.
NASA Astrophysics Data System (ADS)
Hosono, Satsuki; Qi, Wei; Sato, Shun; Suzuki, Yo; Fujiwara, Masaru; Hiramatsu, Hiroyuki; Suzuki, Satoru; Abeygunawardhana, P. K. W.; Wada, Kenji; Nishiyama, Akira; Ishimaru, Ichiro
2015-03-01
For simultaneous measurement of multi-components on-site like factories, the ultra-compact (diameter: 9[mm], length: 45[mm], weight: 200[g]) one-shot ATR (Attenuated Total Reflection) Fourier spectroscopic imager was proposed. Because the proposed one-shot Fourier spectroscopic imaging is based on spatial-phase-shift interferometer, interferograms could be obtained with simple optical configurations. We introduced the transmission-type relativeinclined phase-shifter, that was constructed with a cuboid prism and a wedge prism, onto the optical Fourier transform plane of infinity corrected optical systems. And also, small light-sources and cameras in the mid-infrared light region, whose size are several millimeter on a side, are essential components for the ultra-compact spectroscopic configuration. We selected the Graphite light source (light source area: 1.7×1.7[mm], maker: Hawkeye technologies) whose radiation factor was high. Fortunately, in these days we could apply the cost-effective 2-dimensional light receiving device for smartphone (e.g. product name: LEPTON, maker: FLIR, price: around 400USD). In the case of alcoholic drinks factory, conventionally workers measure glucose and ethanol concentrations by bringing liquid solution back to laboratories every day. The high portable spectroscopy will make it possible to measure multi-components simultaneously on manufacturing scene. But we found experimentally that absorption spectrum of glucose and water and ethanol were overlapped each other in near infrared light region. But for mid-infrared light region, we could distinguish specific absorption peaks of glucose (@10.5[μm]) and ethanol (@11.5[μm]) independently from water absorption. We obtained standard curve between absorption (@9.6[μm]) and ethanol concentration with high correlation coefficient 0.98 successfully by ATR imaging-type 2-dimensional Fourier spectroscopy (wavelength resolution: 0.057[μm]) with the graphite light source (maker: Hawkeye technologies, type: IR-75).
Understanding Light Harvesting in Radial Junction Amorphous Silicon Thin Film Solar Cells
Yu, Linwei; Misra, Soumyadeep; Wang, Junzhuan; Qian, Shengyi; Foldyna, Martin; Xu, Jun; Shi, Yi; Johnson, Erik; Cabarrocas, Pere Roca i
2014-01-01
The radial junction (RJ) architecture has proven beneficial for the design of a new generation of high performance thin film photovoltaics. We herein carry out a comprehensive modeling of the light in-coupling, propagation and absorption profile within RJ thin film cells based on an accurate set of material properties extracted from spectroscopic ellipsometry measurements. This has enabled us to understand and evaluate the impact of varying several key parameters on the light harvesting in radially formed thin film solar cells. We found that the resonance mode absorption and antenna-like light in-coupling behavior in the RJ cell cavity can lead to a unique absorption distribution in the absorber that is very different from the situation expected in a planar thin film cell, and that has to be taken into account in the design of high performance RJ thin film solar cells. When compared to the experimental EQE response of real RJ solar cells, this modeling also provides an insightful and powerful tool to resolve the wavelength-dependent contributions arising from individual RJ units and/or from strong light trapping due to the presence of the RJ cell array. PMID:24619197
Black TiO2 synthesized via magnesiothermic reduction for enhanced photocatalytic activity
NASA Astrophysics Data System (ADS)
Wang, Xiangdong; Fu, Rong; Yin, Qianqian; Wu, Han; Guo, Xiaoling; Xu, Ruohan; Zhong, Qianyun
2018-04-01
Utilizing solar energy for hydrogen evolution is a great challenge for its insufficient visible-light power conversion. In this paper, we report a facile magnesiothermic reduction of commercial TiO2 nanoparticles under Ar atmosphere and at 550 °C followed by acid treatment to synthesize reduced black TiO2 powders, which possesses a unique crystalline core-amorphous shell structure composed of disordered surface and oxygen vacancies and shows significantly improved optical absorption in the visible region. The unique core-shell structure and high absorption enable the reduced black TiO2 powders to exhibit enhanced photocatalytic activity, including splitting of water in the presence of Pt as a cocatalyst and degradation of methyl blue (MB) under visible light irradiation. Photocatalytic evaluations indicate that the oxygen vacancies play key roles in the catalytic process. The maximum hydrogen production rates are 16.1 and 163 μmol h-1 g-1 under the full solar wavelength range of light and visible light, respectively. This facile and versatile method could be potentially used for large scale production of colored TiO2 with remarkable enhancement in the visible light absorption and solar-driven hydrogen production.
The impact of cell culture equipment on energy loss.
Davies, Lleucu B; Kiernan, Michael N; Bishop, Joanna C; Thornton, Catherine A; Morgan, Gareth
2014-01-01
Light energy of discrete wavelengths supplied via lasers and broadband intense pulsed light have been used therapeutically for many years. In vitro models complement clinical studies, especially for the elucidation of underlying mechanisms of action. Clarification that light energy reaches the cells is necessary when developing protocols for the treatment of cells using in vitro models. Few studies report on energy loss in cell culture equipment. The ability of energy from light with therapeutic potential to reach cells in culture needs to be determined; this includes determining the proportion of light energy lost within standard cell culture media and cell culture vessels. The energy absorption of cell culture media, with/without the pH indicator dye phenol red, and the loss of energy within different plastics and glassware used typically for in vitro cell culture were investigated using intense pulsed light and a yellow pulsed dye laser. Media containing phenol red have a distinctive absorption peak (560 nm) absent in phenol red-free media and restored by the addition of phenol red. For both light sources, energy loss was lowest in standard polystyrene tissue culture flasks or multi-well plates and highest in polypropylene vessels or glass tubes. The effects of phenol red-free media on the absorption of energy varied with the light source used. Phenol red-free media are the media of choice; polystyrene vessels with flat surfaces such as culture flasks or multi-well plates should be used in preference to polypropylene or glass vessels.
Zhang, Ling; Wu, Yang; Deng, Lei; Zhou, Yi; Liu, Changhong; Fan, Shoushan
2016-10-12
Light polarization is extensively applied in optical detection, industry processing and telecommunication. Although aligned carbon nanotube naturally suppresses the transmittance of light polarized parallel to its axial direction, there is little application regarding the photodetection of carbon nanotube based on this anisotropic interaction with linearly polarized light. Here, we report a photodetection device realized by aligned carbon nanotube. Because of the different absorption behavior of polarized light with respect to polarization angles, such device delivers an explicit response to specific light wavelength regardless of its intensity. Furthermore, combining both experimental and mathematical analysis, we found that the light absorption of different wavelength causes characteristic thermoelectric voltage generation, which makes aligned carbon nanotube promising in optical detection. This work can also be utilized directly in developing new types of photoswitch that features a broad spectrum application from near-ultraviolet to intermediate infrared with easy integration into practical electric devices, for instance, a "wavelength lock".
NASA Astrophysics Data System (ADS)
Churilova, T.; Moiseeva, N.; Efimova, T.; Suslin, V.; Krivenko, O.; Zemlianskaia, E.
2017-11-01
Bio-optical studies were carried out in coastal waters around the Crimea peninsula in different seasons 2016. It was shown that variability of chlorophyll a concentration (Chl-a), light absorption by suspended particles (ap(λ)), phytoplankton pigments (aph(λ)), non-algal particles (aNAP(λ)) and by colored dissolved organic matter (aCDOM(λ)) in the Crimea coastal water was high ( order of magnitudes) in all seasons 2016. Relationships between ap(440), aph(440) and Chl-a were obtained and their seasonal differences were analyzed. Spectral distribution of aNAP(λ) and aCDOM(λ) were parameterized. Seasonality in aCDOM(λ) parameterization was revealed, but - in aNAP(λ) parameterization was not revealed. The budget of light absorption by aph(λ), aNAP(λ) i aCDOM(λ) at 440 nm was assessed and its seasonal dynamics was analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnott, W. Patrick; Moosmu''ller, Hans; Walker, John W.
2000-12-01
A nitrogen dioxide calibration method is developed to evaluate the theoretical calibration for a photoacoustic instrument used to measure light absorption by atmospheric aerosols at a laser wavelength of 532.0 nm. This method uses high concentrations of nitrogen dioxide so that both a simple extinction and the photoacoustically obtained absorption measurement may be performed simultaneously. Since Rayleigh scattering is much less than absorption for the gas, the agreement between the extinction and absorption coefficients can be used to evaluate the theoretical calibration, so that the laser gas spectra are not needed. Photoacoustic theory is developed to account for strong absorptionmore » of the laser beam power in passage through the resonator. Findings are that the photoacoustic absorption based on heat-balance theory for the instrument compares well with absorption inferred from the extinction measurement, and that both are well within values represented by published spectra of nitrogen dioxide. Photodissociation of nitrogen dioxide limits the calibration method to wavelengths longer than 398 nm. Extinction and absorption at 532 and 1047 nm were measured for kerosene-flame soot to evaluate the calibration method, and the single scattering albedo was found to be 0.31 and 0.20 at these wavelengths, respectively.« less
He, Yeyuan; Liu, Chunyu; Li, Jinfeng; Zhang, Xinyuan; Li, Zhiqi; Shen, Liang; Guo, Wenbin; Ruan, Shengping
2015-07-29
This Research Article describes a cooperative plasmonic effect on improving the performance of organic solar cells. When Au nanorods(NRs) are incorporated into the active layers, the designed project shows superior enhanced light absorption behavior comparing with control devices, which leads to the realization of organic solar cell with power conversion efficiency of 6.83%, accounting for 18.9% improvement. Further investigations unravel the influence of plasmonic nanostructures on light trapping, exciton generation, dissociation, and charge recombination and transport inside the thin films devices. Moreover, the introduction of high-conductivity Au NRs improves electrical conductivity of the whole device, which contributes to the enhanced fill factor.
Triplet diffusion leads to triplet-triplet annihilation in organic phosphorescent emitters
NASA Astrophysics Data System (ADS)
Zhang, Yifan; Forrest, Stephen R.
2013-12-01
In organic materials, triplet-triplet annihilation (TTA) can be dominated by triplet diffusion or triplet-to-triplet energy transfer. Here, we discuss the diffusion and transfer dominated mechanisms in the context of photoluminescence (PL) transient measurements from thin films of archetype phosphorescent organic light emitters based on Ir and Pt complexes. We find that TTA in these emitters is controlled by diffusion due to a Dexter-type exchange interaction, suggesting triplet radiative decay and TTA are independent processes. Minimizing the PL and absorption spectral overlap in phosphorescent emitters can lead to a significantly decreased TTA rate, and thus suppressed efficiency roll-off in phosphorescent organic light emitting diodes at high brightness.
Variable thickness double-refracting plate
Hadeishi, Tetsuo
1976-01-01
This invention provides an A.C., cyclic, current-controlled, phase retardation plate that uses a magnetic clamp to produce stress birefringence. It was developed for an Isotope-Zeeman Atomic Absorption Spectrometer that uses polarization modulation to effect automatic background correction in atomic absorption trace-element measurements. To this end, the phase retardation plate of the invention is a variable thickness, photoelastic, double-refracting plate that is alternately stressed and released by the magnetic clamp selectively to modulate specific components selected from the group consisting of circularly and plane polarized Zeeman components that are produced in a dc magnetic field so that they correspond respectively to Zeeman reference and transmission-probe absorption components. The polarization modulation changes the phase of these polarized Zeeman components, designated as .sigma. reference and .pi. absorption components, so that every half cycle the components change from a transmission mode to a mode in which the .pi. component is blocked and the .sigma. components are transmitted. Thus, the Zeeman absorption component, which corresponds in amplitude to the amount of the trace element to be measured in a sample, is alternately transmitted and blocked by a linear polarizer, while the circularly polarized reference components are continuously transmitted thereby. The result is a sinusoidally varying output light amplitude whose average corresponds to the amount of the trace element present in the sample.
Middle infrared optoelectronic absorption systems for monitoring physiological glucose solutions
NASA Astrophysics Data System (ADS)
Martin, W. Blake
Tight monitoring of the glucose levels for diabetic individuals is essential to control long-term complications. A definitive diabetes management system has yet to be developed for the diabetic. This research investigates the application of middle infrared absorption frequencies for monitoring glucose levels in biological solutions. Three frequencies were identified using a Fourier transform infrared spectrometer and correlated to changes in glucose concentrations. The 1035 +/- 1 cm-1 frequency was determined to be the best representative frequency. Other biological molecules contributed no significant interference to monitoring glucose absorption. A second frequency at 1193 cm-1 was suggested as a representative background absorption frequency, which could be used for more accurate glucose absorption values. Next, a quantum cascade laser optoelectronic absorption system was designed and developed to monitor glucose. After careful alignment and design, the system was used to monitor physiological glucose concentrations. Correlation at 1036 cm-1 with glucose changes was comparable to the previous results. The use of the background absorption frequency was verified. This frequency essentially acts as a calibrating frequency to adjust in real-time to any changes in the background absorption that may alter the accuracy of the predicted glucose value. An evanescent wave cavity ring-down spectroscopy technique was explored to monitor molecules in a biological solution. Visible light at 425 nm was used to monitor hemoglobin in control urine samples. An adsorption isotherm for hemoglobin was detectable to limit of 5.8 nM. Evanescent wave cavity ring-down spectroscopy would be useful for a glucose solution. Given an equivalent system designed for the middle infrared, the molar extinction coefficient of glucose allows for a detectable limit of 45 mg/dl for a free-floating glucose solution, which is below normal physiological concentrations. The future use of a hydrophobic coating could limit the adsorption of glucose to the surface but still allow physiological monitoring. Three middle infrared optoelectronic absorption systems have been designed for monitoring glucose in a physiological solution. The systems are applicable for the monitoring of glucose. These systems may lead to a useful monitoring device for the diabetic so that the universal complications associated with the disease may be limited.
Imaging-based molecular barcoding with pixelated dielectric metasurfaces.
Tittl, Andreas; Leitis, Aleksandrs; Liu, Mingkai; Yesilkoy, Filiz; Choi, Duk-Yong; Neshev, Dragomir N; Kivshar, Yuri S; Altug, Hatice
2018-06-08
Metasurfaces provide opportunities for wavefront control, flat optics, and subwavelength light focusing. We developed an imaging-based nanophotonic method for detecting mid-infrared molecular fingerprints and implemented it for the chemical identification and compositional analysis of surface-bound analytes. Our technique features a two-dimensional pixelated dielectric metasurface with a range of ultrasharp resonances, each tuned to a discrete frequency; this enables molecular absorption signatures to be read out at multiple spectral points, and the resulting information is then translated into a barcode-like spatial absorption map for imaging. The signatures of biological, polymer, and pesticide molecules can be detected with high sensitivity, covering applications such as biosensing and environmental monitoring. Our chemically specific technique can resolve absorption fingerprints without the need for spectrometry, frequency scanning, or moving mechanical parts, thereby paving the way toward sensitive and versatile miniaturized mid-infrared spectroscopy devices. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Oestreich, W.K.; Ganju, Neil K.; Pohlman, John; Suttles, Steven E.
2016-01-01
Light availability is of primary importance to the ecological function of shallow estuaries. For example, benthic primary production by submerged aquatic vegetation is contingent upon light penetration to the seabed. A major component that attenuates light in estuaries is colored dissolved organic matter (CDOM). CDOM is often measured via a proxy, fluorescing dissolved organic matter (fDOM), due to the ease of in situ fDOM sensor measurements. Fluorescence must be converted to CDOM absorbance for use in light attenuation calculations. However, this CDOM–fDOM relationship varies among and within estuaries. We quantified the variability in this relationship within three estuaries along the mid-Atlantic margin of the eastern United States: West Falmouth Harbor (MA), Barnegat Bay (NJ), and Chincoteague Bay (MD/VA). Land use surrounding these estuaries ranges from urban to developed, with varying sources of nutrients and organic matter. Measurements of fDOM (excitation and emission wavelengths of 365 nm (±5 nm) and 460 nm (±40 nm), respectively) and CDOM absorbance were taken along a terrestrial-to-marine gradient in all three estuaries. The ratio of the absorption coefficient at 340 nm (m−1) to fDOM (QSU) was higher in West Falmouth Harbor (1.22) than in Barnegat Bay (0.22) and Chincoteague Bay (0.17). The CDOM : fDOM absorption ratio was variable between sites within West Falmouth Harbor and Barnegat Bay, but consistent between sites within Chincoteague Bay. Stable carbon isotope analysis for constraining the source of dissolved organic matter (DOM) in West Falmouth Harbor and Barnegat Bay yielded δ13C values ranging from −19.7 to −26.1 ‰ and −20.8 to −26.7 ‰, respectively. Concentration and stable carbon isotope mixing models of DOC (dissolved organic carbon) indicate a contribution of 13C-enriched DOC in the estuaries. The most likely source of 13C-enriched DOC for the systems we investigated is Spartina cordgrass. Comparison of DOC source to CDOM : fDOM absorption ratios at each site demonstrates the relationship between source and optical properties. Samples with 13C-enriched carbon isotope values, indicating a greater contribution from marsh organic material, had higher CDOM : fDOM absorption ratios than samples with greater contribution from terrestrial organic material. Applying a uniform CDOM : fDOM absorption ratio and spectral slope within a given estuary yields errors in modeled light attenuation ranging from 11 to 33 % depending on estuary. The application of a uniform absorption ratio across all estuaries doubles this error. This study demonstrates that light attenuation coefficients for CDOM based on continuous fDOM records are highly dependent on the source of DOM present in the estuary. Thus, light attenuation models for estuaries would be improved by quantification of CDOM absorption and DOM source identification.
NASA Astrophysics Data System (ADS)
Paredes-Miranda, G.; Arnott, W. P.; Gaffney, J. S.; Marley, N. A.; Campbell, D.; Fujita, E.
2007-12-01
Aerosol light scattering and absorption measurements were deployed in and near Mexico City in March 2006 as part of the Megacity Impacts on Regional and Global Environments (MIRAGE). The primary site in Mexico City was an urban site at Instituto Mexicano del Petroleo (Mexican Oil Institute, denoted by IMP). Similar campaigns were held in Las Vegas, NV in January-February, 2003; and Los Angeles, CA at numerous sites during all seasons from 2003 through 2007. The IMP site gave in-situ characterization of the Mexico City plume under favorable wind conditions. The photoacoustic instrument (PAS) used at IMP operates at 532 nm, and conveniently allowed for characterization of gaseous absorption at this wavelength as well. Light scattering measurements are accomplished within the PAS by the reciprocal nephelometery method. In Mexico City the aerosol absorption coefficient typically varies between 20 and 180 Mm-1 during the course of the day and significant diurnal variation of the aerosol single scattering albedo was observed probably as a consequence of secondary aerosol formation. We will present the diurnal variation of the scattering and absorption as well as the single scattering albedo and fraction of absorption due to gases at the IMP site and compare with Las Vegas diurnal variation. Mexico City 'breaths' more during the course of the day than Las Vegas, Nevada in part because the latitude of Mexico City resulted in more direct solar radiation. Further insight on the meteorological connections and population dynamics will be discussed.
Focusing Light Beams To Improve Atomic-Vapor Optical Buffers
NASA Technical Reports Server (NTRS)
Strekalov, Dmitry; Matsko, Andrey; Savchenkov, Anatoliy
2010-01-01
Specially designed focusing of light beams has been proposed as a means of improving the performances of optical buffers based on cells containing hot atomic vapors (e.g., rubidium vapor). There is also a companion proposal to improve performance by use of incoherent optical pumping under suitable conditions. Regarding the proposal to use focusing: The utility of atomic-vapor optical buffers as optical storage and processing devices has been severely limited by nonuniform spatial distributions of intensity in optical beams, arising from absorption of the beams as they propagate in atomic-vapor cells. Such nonuniformity makes it impossible to optimize the physical conditions throughout a cell, thereby making it impossible to optimize the performance of the cell as an optical buffer. In practical terms simplified for the sake of brevity, "to optimize" as used here means to design the cell so as to maximize the group delay of an optical pulse while keeping the absorption and distortion of the pulse reasonably small. Regarding the proposal to use incoherent optical pumping: For reasons too complex to describe here, residual absorption of light is one of the main impediments to achievement of desirably long group delays in hot atomic vapors. The present proposal is directed toward suppressing residual absorption of light. The idea of improving the performance of slow-light optical buffers by use of incoherent pumping overlaps somewhat with the basic idea of Raman-based slow-light systems. However, prior studies of those systems did not quantitatively answer the question of whether the performance of an atomic vapor or other medium that exhibits electromagnetically induced transparency (EIT) with Raman gain is superior to that of a medium that exhibits EIT without Raman gain.
Visconti, Paolo; Primiceri, Patrizio; Longo, Daniele; Strafella, Luciano; Carlucci, Paolo; Lomascolo, Mauro; Cretì, Arianna; Mele, Giuseppe
2017-01-01
This work aims to investigate and characterize the photo-ignition phenomenon of MWCNT/ferrocene mixtures by using a continuous wave (CW) xenon (Xe) light source, in order to find the power ignition threshold by employing a different type of light source as was used in previous research (i.e., pulsed Xe lamp). The experimental photo-ignition tests were carried out by varying the weight ratio of the used mixtures, luminous power, and wavelength range of the incident Xe light by using selective optical filters. For a better explanation of the photo-induced ignition process, the absorption spectra of MWCNT/ferrocene mixtures and ferrocene only were obtained. The experimental results show that the luminous power (related to the entire spectrum of the Xe lamp) needed to trigger the ignition of MWCNT/ferrocene mixtures decreases with increasing metal nanoparticles content according to previously published results when using a different type of light source (i.e., pulsed vs CW Xe light source). Furthermore, less light power is required to trigger photo-ignition when moving towards the ultraviolet (UV) region. This is in agreement with the measured absorption spectra, which present higher absorption values in the UV-vis region for both MWCNT/ferrocene mixtures and ferrocene only diluted in toluene. Finally, a chemo-physical interpretation of the ignition phenomenon is proposed whereby ferrocene photo-excitation, due to photon absorption, produces ferrocene itself in its excited form and is thus capable of promoting electron transfer to MWCNTs. In this way, the resulting radical species, FeCp2 +∙ and MWCNT - , easily react with oxygen giving rise to the ignition of MWCNT/ferrocene samples.
Primiceri, Patrizio; Longo, Daniele; Strafella, Luciano; Carlucci, Paolo; Lomascolo, Mauro; Cretì, Arianna; Mele, Giuseppe
2017-01-01
This work aims to investigate and characterize the photo-ignition phenomenon of MWCNT/ferrocene mixtures by using a continuous wave (CW) xenon (Xe) light source, in order to find the power ignition threshold by employing a different type of light source as was used in previous research (i.e., pulsed Xe lamp). The experimental photo-ignition tests were carried out by varying the weight ratio of the used mixtures, luminous power, and wavelength range of the incident Xe light by using selective optical filters. For a better explanation of the photo-induced ignition process, the absorption spectra of MWCNT/ferrocene mixtures and ferrocene only were obtained. The experimental results show that the luminous power (related to the entire spectrum of the Xe lamp) needed to trigger the ignition of MWCNT/ferrocene mixtures decreases with increasing metal nanoparticles content according to previously published results when using a different type of light source (i.e., pulsed vs CW Xe light source). Furthermore, less light power is required to trigger photo-ignition when moving towards the ultraviolet (UV) region. This is in agreement with the measured absorption spectra, which present higher absorption values in the UV–vis region for both MWCNT/ferrocene mixtures and ferrocene only diluted in toluene. Finally, a chemo-physical interpretation of the ignition phenomenon is proposed whereby ferrocene photo-excitation, due to photon absorption, produces ferrocene itself in its excited form and is thus capable of promoting electron transfer to MWCNTs. In this way, the resulting radical species, FeCp2+∙ and MWCNT−, easily react with oxygen giving rise to the ignition of MWCNT/ferrocene samples. PMID:28144572
[The study of CO2 cavity enhanced absorption and highly sensitive absorption spectroscopy].
Pei, Shi-Xin; Gao, Xiao-Ming; Cui, Fen-Ping; Huang, Wei; Shao, Jie; Fan, Hong; Zhang, Wei-Jun
2005-12-01
Cavity enhanced absorption spectroscopy (CEAS) is a new spectral technology that is based on the cavity ring down absorption spectroscopy. In the present paper, a DFB encapsulation narrow line width tunable diode laser (TDL) was used as the light source. At the center output, the TDL radiation wavelength was 1.573 microm, and an optical cavity, which consisted of two high reflectivity mirrors (near 1.573 microm, the mirror reflectivity was about 0.994%), was used as a sample cell. A wavemeter was used to record the accurate frequency of the laser radiation. In the experiment, the method of scanning the optical cavity to change the cavity mode was used, when the laser frequency was coincident with one of the cavity mode; the laser radiation was coupled into the optical cavity and the detector could receive the light signals that escaped the optical cavity. As a result, the absorption spectrum of carbon dioxide weak absorption at low pressure was obtained with an absorption intensity of 1.816 x 10(-23) cm(-1) x (molecule x cm(-2)(-1) in a sample cell with a length of only 33.5 cm. An absorption sensitivity of about 3.62 x 10(-7) cm(-1) has been achieved. The experiment result indicated that the cavity enhanced absorption spectroscopy has the advantage of high sensivity, simple experimental setup, and easy operation.
Inverse Optimization of Plasmonic and Antireflective Grating in Thin Film PV Cells
NASA Astrophysics Data System (ADS)
Hajimirza, Shima; Howell, John
2012-06-01
This work addresses inverse optimization of three dimensional front and back surface texture grating specifications, for the purpose of shaping the absorptivity spectrum of silicon thin film cells in targeted ways. Periodic plasmonic gratings with dimensions comparable or less than the incident light wavelength are known to enhance light absorption. We consider surface patterning of amorphous silicon (a-Si) thin films using front and/or back metallic nanostrips and ITO coatings, and show that wideband enhancement in unpolarized absorptivity spectrum can be achieved when back reflectors are used. The overall short circuit current enhancement using such structures is significant and can be as high as 97%. For TM-polarized wave it can be even higher as reported in previous work. In this work however, we focus on the optimization for the more realistic unpolarized radiation which is of significantly higher complexity. In addition, optimization is done with respect to two objective functions independently: spectral absorptivity and gain-bandwidth product of the absorptivity spectrum.
Active terahertz metamaterials based on liquid-crystal induced transparency and absorption
NASA Astrophysics Data System (ADS)
Yang, Lei; Fan, Fei; Chen, Meng; Zhang, Xuanzhou; Chang, Sheng-Jiang
2017-01-01
An active terahertz (THz) liquid crystal (LC) metamaterial has been experimentally investigated for THz wave modulation. Some interesting phenomena of resonance shifting, tunable electromagnetically induced transparency (EIT) and electromagnetically induced absorption (EIA) have been observed in the same device structure under different DC bias directions and different incident wave polarization directions by the THz time domain spectroscopy. Further theoretical studies indicate that these effects originate from interference and coupling between bright and dark mode components of elliptically polarized modes in the LC metamaterial, which are induced by the optical activity of LC alignment controllable by the electric field as well as the changes of LC refractive index. The LC layer is indeed a phase retarder and polarization converter that is controlled by the DC bias. The THz modulation depth of the analogs of EIT and EIA effects are 18.3 dB and 10.5 dB in their frequency band, respectively. Electrical control, large modulation depth and feasible integration of this LC device make it an ideal candidate for THz tunable filter, intensity modulator and spatial light modulator.
NASA Astrophysics Data System (ADS)
Liu, Maochang; Yang, Yang; Li, Naixu; Du, Yuanchang; Song, Dongxing; Ma, Lijing; Wang, Yi; Zheng, Yiqun; Jing, Dengwei
2017-08-01
Plasmonic Ag nanostructures have been of great interest for such applications in cancer therapy and catalysis, etc. However, the relatively week Ag-Ag interaction and spontaneous atom diffusion make it very difficult to generate concaved or branched structures in Ag nanocrystals with sizes less than 100 nm, which has been considered very favorable for plasmonic effects. Herein, by employing a cubic Pd seed and a specific reducing agent to restrict the surface diffusion of Ag atoms, Pd@Ag core-shell nanooctapod structures where Ag atoms can be selectively deposited onto the corner sites of the Pd cubes were obtained. Such selective decoration enables us to precisely control the locations for the hot spot formation during light irradiation. We find that the branched nanooctapod structure shows strong absorption in the visible-light region and generates intense hot spots around the octapod arms of Ag. As such, the photothermal conversion efficiency could be significantly improved by more than 50% with a colloid solution containing only ppm-level nanooctapods compared with pure water. The reported nanostructure is expected to find extensive applications due to its controlled formation of light-induced hot spots at certain points on the crystal surface.
The application of UV LEDs for differential optical absorption spectroscopy
NASA Astrophysics Data System (ADS)
Geiko, Pavel P.; Smirnov, Sergey S.; Samokhvalov, Ignatii V.
2018-04-01
Modern UV LEDs represent a potentially very advantageous alternative to thermal light sources, in particular xenon arc lamps, which are the most common light sources in trace gas-analyzers. So, the light-emitting diodes are very attractive for use of as light sources for Long Path Differential Optical Absorption Spectroscopy (DOAS) measurements of trace gases in the open atmosphere. Recent developments in fibre-coupling telescope technology and the availability of ultraviolet light emitting diodes have now allowed us to construct a portable, long path DOAS instrument for use at remote locations and specifically for measuring degassing from active volcanic systems. First of all, we are talking about the measurement of sulphur dioxide, carbon disulphide and, oxides of chlorine and bromine. The parallel measurements of sulfur dioxide using a certified gas analyzer, were conducted and showed good correlation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhen, Aigong; Ma, Ping, E-mail: maping@semi.ac.cn; Zhang, Yonghui
2014-12-22
In this experiment, a flip-chip light-emitting diode with photonic crystal was fabricated at the interface of p-GaN and Ag reflector via nanospheres lithography technique. In this structure, photonic crystal could couple with the guide-light efficiently by reason of the little distance between photonic crystal and active region. The light output power of light emitting diode with embedded photonic crystal was 1.42 times larger than that of planar flip-chip light-emitting diode. Moreover, the embedded photonic crystal structure makes the far-field divergence angle decreased by 18° without spectra shift. The three-dimensional finite difference time domain simulation results show that photonic crystal couldmore » improve the light extraction, and enhance the light absorption caused by Ag reflector simultaneously, because of the roughed surface. The depth of photonic crystal is the key parameter affecting the light extraction and absorption. Light extraction efficiency increases with the depth photonic crystal structure rapidly, and reaches the maximum at the depth 80 nm, beyond which light extraction decrease drastically.« less
Chandra, Moumita; Bhunia, Kousik; Pradhan, Debabrata
2018-04-16
Photocatalytic hydrogen (H 2 ) generation through water splitting has attracted substantial attention as a clean and renewable energy generation process that has enormous potential in converting solar-to-chemical energy using suitable photocatalysts. The major bottleneck in the development of semiconductor-based photocatalysts lies in poor light absorption and fast recombination of photogenerated electron-hole pairs. Herein we report the synthesis of CuS/TiO 2 heterostructured nanocomposites with varied TiO 2 contents via simple hydrothermal and solution-based process. The morphology, crystal structure, composition, and optical properties of the as-synthesized CuS/TiO 2 hybrids are evaluated in detail. Controlling the CuS/TiO 2 ratio to an optimum value leads to the highest photocatalytic H 2 production rate of 1262 μmol h -1 g -1 , which is 9.7 and 9.3 times higher than that of pristine TiO 2 nanospindles and CuS nanoflakes under irradiation, respectively. The enhancement in the H 2 evolution rate is attributed to increased light absorption and efficient charge separation with an optimum CuS coverage on TiO 2 . The photoluminescence and photoelectrochemical measurements further confirm the efficient separation of charge carriers in the CuS/TiO 2 hybrid. The mechanism and synergistic role of CuS and TiO 2 semiconductors for enhanced photoactivity is further delineated.
Light absorption and the photoformation of hydroxyl radical and singlet oxygen in fog waters
NASA Astrophysics Data System (ADS)
Kaur, R.; Anastasio, C.
2017-09-01
The atmospheric aqueous-phase is a rich medium for chemical transformations of organic compounds, in part via photooxidants generated within the drops. Here we measure light absorption, photoformation rates and steady-state concentrations of two photooxidants - hydroxyl radical (•OH) and singlet molecular oxygen (1O2*) - in 8 illuminated fog waters from Davis, California and Baton Rouge, Louisiana. Mass absorption coefficients for dissolved organic compounds (MACDOC) in the samples are large, with typical values of 10,000-15,000 cm2 g-C-1 at 300 nm, and absorption extends to wavelengths as long as 450-600 nm. While nitrite and nitrate together account for an average of only 1% of light absorption, they account for an average of 70% of •OH photoproduction. Mean •OH photoproduction rates in fogs at the two locations are very similar, with an overall mean of 1.2 (±0.7) μM h-1 under Davis winter sunlight. The mean (±1σ) lifetime of •OH is 1.6 (±0.6) μs, likely controlled by dissolved organic compounds. Including calculated gas-to-drop partitioning of •OH, the average aqueous concentration of •OH is approximately 2 × 10-15 M (midday during Davis winter), with aqueous reactions providing approximately one-third of the hydroxyl radical source. At this concentration, calculated lifetimes of aqueous organics are on the order of 10 h for compounds with •OH rate constants of 1 × 1010 M-1 s-1 or higher (e.g., substituted phenols such as syringol (6.4 h) and guaiacol (8.4 h)), and on the order of 100 h for compounds with rate constants near 1 × 109 M-1 s-1 (e.g., isoprene oxidation products such as glyoxal (152 h), glyoxylic acid (58 h), and pyruvic acid (239 h)). Steady-state concentrations of 1O2* are approximately 100 times higher than those of •OH, in the range of (0.1-3.0) × 10-13 M. Since 1O2* is a more selective oxidant than •OH, it will only react appreciably with electron-rich species such as dimethyl furan (lifetime of 2.0 h) and substituted polycyclic aromatic hydrocarbons (e.g., 9,10-dimethylbenz[a]anthracene with a lifetime of 0.7 h). Comparing our current Davis samples with Davis fogs collected in the late 1990s shows a decrease in dissolved organic carbon content, similar mass absorption coefficients, lower •OH concentrations, but very similar 1O2* concentrations.
High Absorptance Coatings for THz Applications
NASA Technical Reports Server (NTRS)
Wollack, Edward J.
2012-01-01
High absorptance materials find application throughout the electromagnetic spectrum as radiation terminations, calibration standards, and glint reduction coatings. Successful use of materials at millimeter through submillimeter wavelengths requires an accurate knowledge and control over their thermal, mechanical, and electromagnetic properties in order to achieve the desired response while minimizing mass and volume. In practice, the achieved blackness is intimately linked to the material properties and geometry. Here, we summarize the characteristics of a variety of tunable artificial dielectric mixtures appropriate for THz applications at room and cryogenic temperatures. Theoretical guidelines for their application will be provided in the context of the effective-medium mean-field-approximation. The performance of these coatings as elements of reflectance standards, radiometric flux calibrators, passive thermal radiators, and stray light suppression baffles for imaging systems will be reviewed.
NASA Astrophysics Data System (ADS)
Manzhos, Sergei; Kotsis, Konstantinos
2016-09-01
Adsorption and light absorption properties of interfacial charge transfer complexes of 2-anthroic acid and titania, promising for direct-injection solar cells, are studied ab initio. The formation of interfacial charge transfer bands is observed. The intensity of visible absorption is relatively low, highlighting a key challenge facing direct injection cells. We show that the popular strategy of using a lower level of theory for geometry optimization followed by single point calculations of adsorption or optical properties introduces significant errors which have been underappreciated: by up to 3 eV in adsorption energies, by up to 5 times in light absorption intensity.