Sample records for light absorption range

  1. Photoacoustic and filter measurements related to aerosol light absorption during the Northern Front Range Air Quality Study (Colorado 1996/1997)

    NASA Astrophysics Data System (ADS)

    Moosmüller, H.; Arnott, W. P.; Rogers, C. F.; Chow, J. C.; Frazier, C. A.; Sherman, L. E.; Dietrich, D. L.

    1998-11-01

    A new photoacoustic instrument for the measurement of aerosol light absorption was collocated with conventional aerosol instrumentation during the 1996-1997 winter intensive monitoring period of the Northern Front Range Air Quality Study. Measurements of the light absorption efficiency for black carbon were 5 m2/g at 685 nm and 10 m2/g at 532 nm, and for elemental carbon, they were 3.6 m2/g at 685 nm. We show that these values together with previous photoacoustic measurements of aerosol light absorption shed some light on the wavelength dependence of absorption efficiency for carbonaceous aerosol in the visible and near-visible region. Integrating plate type filter measurements of aerosol light absorption result in far larger values than those measured with the photoacoustic instrument. We demonstrate that a recently published correction technique [Horvath, 1997] can yield improved agreement.

  2. Direct and quantitative broadband absorptance spectroscopy with multilayer cantilever probes

    DOEpatents

    Hsu, Wei-Chun; Tong, Jonathan Kien-Kwok; Liao, Bolin; Chen, Gang

    2015-04-21

    A system for measuring the absorption spectrum of a sample is provided that includes a broadband light source that produces broadband light defined within a range of an absorptance spectrum. An interferometer modulates the intensity of the broadband light source for a range of modulation frequencies. A bi-layer cantilever probe arm is thermally connected to a sample arm having at most two layers of materials. The broadband light modulated by the interferometer is directed towards the sample and absorbed by the sample and converted into heat, which causes a temperature rise and bending of the bi-layer cantilever probe arm. A detector mechanism measures and records the deflection of the probe arm so as to obtain the absorptance spectrum of the sample.

  3. Analytical modeling of light transport in scattering materials with strong absorption.

    PubMed

    Meretska, M L; Uppu, R; Vissenberg, G; Lagendijk, A; Ijzerman, W L; Vos, W L

    2017-10-02

    We have investigated the transport of light through slabs that both scatter and strongly absorb, a situation that occurs in diverse application fields ranging from biomedical optics, powder technology, to solid-state lighting. In particular, we study the transport of light in the visible wavelength range between 420 and 700 nm through silicone plates filled with YAG:Ce 3+ phosphor particles, that even re-emit absorbed light at different wavelengths. We measure the total transmission, the total reflection, and the ballistic transmission of light through these plates. We obtain average single particle properties namely the scattering cross-section σ s , the absorption cross-section σ a , and the anisotropy factor µ using an analytical approach, namely the P3 approximation to the radiative transfer equation. We verify the extracted transport parameters using Monte-Carlo simulations of the light transport. Our approach fully describes the light propagation in phosphor diffuser plates that are used in white LEDs and that reveal a strong absorption (L/l a > 1) up to L/l a = 4, where L is the slab thickness, l a is the absorption mean free path. In contrast, the widely used diffusion theory fails to describe this parameter range. Our approach is a suitable analytical tool for industry, since it provides a fast yet accurate determination of key transport parameters, and since it introduces predictive power into the design process of white light emitting diodes.

  4. Omnidirectional light absorption of disordered nano-hole structure inspired from Papilio ulysses.

    PubMed

    Wang, Wanlin; Zhang, Wang; Fang, Xiaotian; Huang, Yiqiao; Liu, Qinglei; Bai, Mingwen; Zhang, Di

    2014-07-15

    Butterflies routinely produce nanostructured surfaces with useful properties. Here, we report a disordered nano-hole structure with ridges inspired by Papilio ulysses that produce omnidirectional light absorption compared with the common ordered structure. The result shows that the omnidirectional light absorption is affected by polarization, the incident angle, and the wavelength. Using the finite-difference time-domain (FDTD) method, the stable omnidirectional light absorption is achieved in the structure inspired from the Papilio ulysses over a wide incident angle range and with various wavelengths. This explains some of the mysteries of the structure of the Papilio ulysses butterfly. These conclusions can guide the design of omnidirectional absorption materials.

  5. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays.

    PubMed

    Yin, Xiang; Long, Chang; Li, Junhao; Zhu, Hua; Chen, Lin; Guan, Jianguo; Li, Xun

    2015-10-19

    Microwave absorbers have important applications in various areas including stealth, camouflage, and antenna. Here, we have designed an ultra-broadband light absorber by integrating two different-sized tapered hyperbolic metamaterial (HMM) waveguides, each of which has wide but different absorption bands due to broadband slow-light response, into a unit cell. Both the numerical and experimental results demonstrate that in such a design strategy, the low absorption bands between high absorption bands with a single-sized tapered HMM waveguide array can be effectively eliminated, resulting in a largely expanded absorption bandwidth ranging from 2.3 to 40 GHz. The presented ultra-broadband light absorber is also insensitive to polarization and robust against incident angle. Our results offer a further step in developing practical artificial electromagnetic absorbers, which will impact a broad range of applications at microwave frequencies.

  6. Multiple-Path-Length Optical Absorbance Cell

    NASA Technical Reports Server (NTRS)

    2001-01-01

    An optical absorbance cell that offers a selection of multiple optical path lengths has been developed as part of a portable spectrometric instrument that measures absorption spectra of small samples of water and that costs less than does a conventional, non-portable laboratory spectrometer. The instrument is intended, more specifically, for use in studying colored dissolved organic matter (CDOM) in seawater, especially in coastal regions. Accurate characterization of CDOM is necessary for building bio-optical mathematical models of seawater. The multiple path lengths of the absorption cell afford a wide range of sensitivity needed for measuring the optical absorbances associated with the wide range of concentrations of CDOM observed in nature. The instrument operates in the wavelength range of 370 to 725 nm. The major subsystems of the instrument (see figure) include a color-balanced light source; the absorption cell; a peristaltic pump; a high-precision, low-noise fiber optic spectrometer; and a laptop or other personal computer. A fiber-optic cable transmits light from the source to the absorption cell. Other optical fibers transmit light from the absorption cell to the spectrometer,

  7. Broadband Light Absorption and Efficient Charge Separation Using a Light Scattering Layer with Mixed Cavities for High-Performance Perovskite Photovoltaic Cells with Stability.

    PubMed

    Moon, Byeong Cheul; Park, Jung Hyo; Lee, Dong Ki; Tsvetkov, Nikolai; Ock, Ilwoo; Choi, Kyung Min; Kang, Jeung Ku

    2017-08-01

    CH 3 NH 3 PbI 3 is one of the promising light sensitizers for perovskite photovoltaic cells, but a thick layer is required to enhance light absorption in the long-wavelength regime ranging from PbI 2 absorption edge (500 nm) to its optical band-gap edge (780 nm) in visible light. Meanwhile, the thick perovskite layer suppresses visible-light absorption in the short wavelengths below 500 nm and charge extraction capability of electron-hole pairs produced upon light absorption. Herein, we find that a new light scattering layer with the mixed cavities of sizes in 100 and 200 nm between transparent fluorine-doped tin oxide and mesoporous titanium dioxide electron transport layer enables full absorption of short-wavelength photons (λ < 500 nm) to the perovskite along with enhanced absorption of long-wavelength photons (500 nm < λ < 780 nm). Moreover, the light-driven electric field is proven to allow efficient charge extraction upon light absorption, thereby leading to the increased photocurrent density as well as the fill factor prompted by the slow recombination rate. Additionally, the photocurrent density of the cell with a light scattering layer of mixed cavities is stabilized due to suppressed charge accumulation. Consequently, this work provides a new route to realize broadband light harvesting of visible light for high-performance perovskite photovoltaic cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Continuous light absorption photometer for long-term studies

    NASA Astrophysics Data System (ADS)

    Ogren, John A.; Wendell, Jim; Andrews, Elisabeth; Sheridan, Patrick J.

    2017-12-01

    A new photometer is described for continuous determination of the aerosol light absorption coefficient, optimized for long-term studies of the climate-forcing properties of aerosols. Measurements of the light attenuation coefficient are made at blue, green, and red wavelengths, with a detection limit of 0.02 Mm-1 and a precision of 4 % for hourly averages. The uncertainty of the light absorption coefficient is primarily determined by the uncertainty of the correction scheme commonly used to convert the measured light attenuation to light absorption coefficient and ranges from about 20 % at sites with high loadings of strongly absorbing aerosols up to 100 % or more at sites with low loadings of weakly absorbing aerosols. Much lower uncertainties (ca. 40 %) for the latter case can be achieved with an advanced correction scheme.

  9. Solar cells based on particulate structure of active layer: Investigation of light absorption by an ordered system of spherical submicron silicon particles

    NASA Astrophysics Data System (ADS)

    Miskevich, Alexander A.; Loiko, Valery A.

    2015-12-01

    Enhancement of the performance of photovoltaic cells through increasing light absorption due to optimization of an active layer is considered. The optimization consists in creation of particulate structure of active layer. The ordered monolayers and multilayers of submicron crystalline silicon (c-Si) spherical particles are examined. The quasicrystalline approximation (QCA) and the transfer matrix method (TMM) are used to calculate light absorption in the wavelength range from 0.28 μm to 1.12 μm. The integrated over the terrestial solar spectral irradiance "Global tilt" ASTM G173-03 absorption coefficient is calculated. In the wavelength range of small absorption index of c-Si (0.8-1.12 μm) the integral absorption coefficient of monolayer can be more than 20 times higher than the one of the plane-parallel plate of the equivalent volume of material. In the overall considered range (0.28-1.12 μm) the enhancement factor up to ~1.45 for individual monolayer is observed. Maximum value of the spectral absorption coefficient approaches unity for multilayers consisting of large amount of sparse monolayers of small particles. Multilayers with variable concentration and size of particles in the monolayer sequences are considered. Absorption increasing by such gradient multilayers as compared to the non-gradient ones is illustrated. The considered structures are promising for creation of high efficiency thin-film solar cells.

  10. Development of vacuum ultraviolet absorption spectroscopy system for wide measurement range of number density using a dual-tube inductively coupled plasma light source

    NASA Astrophysics Data System (ADS)

    Kuwahara, Akira; Matsui, Makoto; Yamagiwa, Yoshiki

    2012-12-01

    A vacuum ultraviolet absorption spectroscopy system for a wide measurement range of atomic number densities is developed. Dual-tube inductively coupled plasma was used as a light source. The probe beam profile was optimized for the target number density range by changing the mass flow rate of the inner and outer tubes. This system was verified using cold xenon gas. As a result, the measurement number density range was extended from the conventional two orders to five orders of magnitude.

  11. Absorption and emission spectroscopic characterisation of combined wildtype LOV1-LOV2 domain of phot from Chlamydomonas reinhardtii.

    PubMed

    Song, S-H; Dick, B; Zirak, P; Penzkofer, A; Schiereis, T; Hegemann, P

    2005-10-03

    An absorption and emission spectroscopic characterisation of the combined wild-type LOV1-LOV2 domain string (abbreviated LOV1/2) of phot from the green alga Chlamydomonas reinhardtii is carried out at pH 8. A LOV1/2-MBP fusion protein (MBP=maltose binding protein) and LOV1/2 with a His-tag at the C-terminus (LOV1/2-His) expressed in an Escherichia coli strain are investigated. Blue-light photo-excitation generates a non-fluorescent intermediate photoproduct (flavin-C(4a)-cysteinyl adduct with absorption peak at 390 nm). The photo-cycle dynamics is studied by dark-state absorption and fluorescence measurement, by following the temporal absorption and emission changes under blue and violet light exposure, and by measuring the temporal absorption and fluorescence recovery after light exposure. The fluorescence quantum yield, phi(F), of the dark adapted samples is phi(F)(LOV1/2-His) approximately 0.15 and phi(F)(LOV1/2-MBP) approximately 0.17. A bi-exponential absorption recovery after light exposure with a fast (in the several 10-s range) and a slow component (in the near 10-min range) are resolved. The quantum yield of photo-adduct formation, phi(Ad), is extracted from excitation intensity dependent absorption measurements. It decreases somewhat with rising excitation intensity. The behaviour of the combined wildtype LOV1-LOV2 double domains is compared with the behaviour of the separate LOV1 and LOV2 domains.

  12. Diffuse-light absorption spectroscopy by fiber optics for detecting and quantifying the adulteration of extra virgin olive oil

    NASA Astrophysics Data System (ADS)

    Mignani, A. G.; Ciaccheri, L.; Ottevaere, H.; Thienpont, H.; Conte, L.; Marega, M.; Cichelli, A.; Attilio, C.; Cimato, A.

    2010-09-01

    A fiber optic setup for diffuse-light absorption spectroscopy in the wide 400-1700 nm spectral range is experimented for detecting and quantifying the adulteration of extra virgin olive oil caused by lower-grade olive oils. Absorption measurements provide spectral fingerprints of authentic and adulterated oils. A multivariate processing of spectroscopic data is applied for discriminating the type of adulterant and for predicting its fraction.

  13. Broadband plasmonic perfect light absorber in the visible spectrum for solar cell applications

    NASA Astrophysics Data System (ADS)

    Mudachathi, Renilkumar; Tanaka, Takuo

    2018-03-01

    The coupling of electromagnetic waves with subwavelength metal structures results in the perfect light absorption and has been extensively explored in the recent years for many possible applications like photovoltaics, sensing, photodetectors, emitters and camouflaging systems to name a few. Herein we present the design and fabrication of a broadband plasmonic light absorber using aluminum as functional material for operation in the visible frequency range. The metal structures can be tuned in size to manipulate the plasmonic resonance; thereby light absorption at any desired wavelengths could be realized. Thus the broadband light absorber in the visible spectrum is designed using metal structures of different sizes supporting non-overlapping individual resonances at regular intervals of wavelengths. The metal structures of different sizes are grouped in to a single unit cell and the absorber is fabricated by periodically arranging these unit cells in a square lattice. Light absorption of more than 90% for over a broad wavelength range of 200 nm from 425 nm to 650 nm in the visible spectrum is demonstrated.

  14. Light absorption of organic aerosol from pyrolysis of corn stalk

    NASA Astrophysics Data System (ADS)

    Li, Xinghua; Chen, Yanju; Bond, Tami C.

    2016-11-01

    Organic aerosol (OA) can absorb solar radiation in the low-visible and ultra-violet wavelengths thereby modifying radiative forcing. Agricultural waste burning emits a large quantity of organic carbon in many developing countries. In this work, we improved the extraction and analysis method developed by Chen and Bond, and extended the spectral range of OC absorption. We examined light absorbing properties of primary OA from pyrolysis of corn stalk, which is a major type of agricultural wastes. Light absorption of bulk liquid extracts of OA was measured using a UV-vis recording spectrophotometer. OA can be extracted by methanol at 95%, close to full extent, and shows polar character. Light absorption of organic aerosol has strong spectral dependence (Absorption Ångström exponent = 7.7) and is not negligible at ultra-violet and low-visible regions. Higher pyrolysis temperature produced OA with higher absorption. Imaginary refractive index of organic aerosol (kOA) is 0.041 at 400 nm wavelength and 0.005 at 550 nm wavelength, respectively.

  15. Non-Destructive and Discriminating Identification of Illegal Drugs by Transient Absorption Spectroscopy in the Visible and Near-IR Wavelength Range

    NASA Astrophysics Data System (ADS)

    Sato, Chie; Furube, Akihiro; Katoh, Ryuzi; Nonaka, Hidehiko; Inoue, Hiroyuki

    2008-11-01

    We have tested the possibility of identifying illegal drugs by means of nanosecond transient absorption spectroscopy with a 10-ns UV-laser pulse for the excitation light and visible-to-near-IR light for the probe light. We measured the transient absorption spectra of acetonitrile solutions of d-methamphetamine, dl-3,4-methylenedioxymethamphetamine hydrochloride (MDMA), and dl-N-methyl-1-(1,3-benzodioxol-5-yl)-2-butanamine hydrochloride (MBDB), which are illegal drugs widely consumed in Japan. Transient absorption signals of these drugs were observed between 400 and 950 nm, a range in which they are transparent in the ground state. By analyzing the spectra in terms of exponential and Gaussian functions, we could identify the drugs and discriminate them from chemical substances having similar structures. We propose that transient absorption spectroscopy will be a useful, non-destructive method of inspecting for illegal drugs, especially when they are dissolved in liquids. Such a method may even be used for drugs packed in opaque materials if it is further extended to utilize intense femtosecond laser pulses.

  16. An Unusual Strong Visible-Light Absorption Band in Red Anatase TiO2 Photocatalyst Induced by Atomic Hydrogen-Occupied Oxygen Vacancies.

    PubMed

    Yang, Yongqiang; Yin, Li-Chang; Gong, Yue; Niu, Ping; Wang, Jian-Qiang; Gu, Lin; Chen, Xingqiu; Liu, Gang; Wang, Lianzhou; Cheng, Hui-Ming

    2018-02-01

    Increasing visible light absorption of classic wide-bandgap photocatalysts like TiO 2 has long been pursued in order to promote solar energy conversion. Modulating the composition and/or stoichiometry of these photocatalysts is essential to narrow their bandgap for a strong visible-light absorption band. However, the bands obtained so far normally suffer from a low absorbance and/or narrow range. Herein, in contrast to the common tail-like absorption band in hydrogen-free oxygen-deficient TiO 2 , an unusual strong absorption band spanning the full spectrum of visible light is achieved in anatase TiO 2 by intentionally introducing atomic hydrogen-mediated oxygen vacancies. Combining experimental characterizations with theoretical calculations reveals the excitation of a new subvalence band associated with atomic hydrogen filled oxygen vacancies as the origin of such band, which subsequently leads to active photo-electrochemical water oxidation under visible light. These findings could provide a powerful way of tailoring wide-bandgap semiconductors to fully capture solar light. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Method for measuring changes in light absorption of highly scattering media

    DOEpatents

    Bigio, Irving J.; Johnson, Tamara M.; Mourant, Judith R.

    2002-01-01

    The noninvasive measurement of variations in absorption that are due to changes in concentrations of biochemically relevant compounds in tissue is important in many clinical settings. One problem with such measurements is that the pathlength traveled by the collected light through the tissue depends on the scattering properties of the tissue. It is demonstrated, using both Monte Carlo simulations and experimental measurements, that for an appropriate separation between light-delivery and light-collection fibers, the pathlength of the collected photons is insensitive to scattering parameters for the range of parameters typically found in tissue. This is important for developing rapid, noninvasive, inexpensive, and accurate methods for measuring absorption changes in tissue.

  18. How plant architecture affects light absorption and photosynthesis in tomato: towards an ideotype for plant architecture using a functional–structural plant model

    PubMed Central

    Sarlikioti, V.; de Visser, P. H. B.; Buck-Sorlin, G. H.; Marcelis, L. F. M.

    2011-01-01

    Background and Aims Manipulation of plant structure can strongly affect light distribution in the canopy and photosynthesis. The aim of this paper is to find a plant ideotype for optimization of light absorption and canopy photosynthesis. Using a static functional structural plant model (FSPM), a range of different plant architectural characteristics was tested for two different seasons in order to find the optimal architecture with respect to light absorption and photosynthesis. Methods Simulations were performed with an FSPM of a greenhouse-grown tomato crop. Sensitivity analyses were carried out for leaf elevation angle, leaf phyllotaxis, leaflet angle, leaf shape, leaflet arrangement and internode length. From the results of this analysis two possible ideotypes were proposed. Four different vertical light distributions were also tested, while light absorption cumulated over the whole canopy was kept the same. Key Results Photosynthesis was augmented by 6 % in winter and reduced by 7 % in summer, when light absorption in the top part of the canopy was increased by 25 %, while not changing light absorption of the canopy as a whole. The measured plant structure was already optimal with respect to leaf elevation angle, leaflet angle and leaflet arrangement for both light absorption and photosynthesis while phyllotaxis had no effect. Increasing the length : width ratio of leaves by 1·5 or increasing internode length from 7 cm to 12 cm led to an increase of 6–10 % for light absorption and photosynthesis. Conclusions At high light intensities (summer) deeper penetration of light in the canopy improves crop photosynthesis, but not at low light intensities (winter). In particular, internode length and leaf shape affect the vertical distribution of light in the canopy. A new plant ideotype with more spacious canopy architecture due to long internodes and long and narrow leaves led to an increase in crop photosynthesis of up to 10 %. PMID:21865217

  19. How plant architecture affects light absorption and photosynthesis in tomato: towards an ideotype for plant architecture using a functional-structural plant model.

    PubMed

    Sarlikioti, V; de Visser, P H B; Buck-Sorlin, G H; Marcelis, L F M

    2011-10-01

    Manipulation of plant structure can strongly affect light distribution in the canopy and photosynthesis. The aim of this paper is to find a plant ideotype for optimization of light absorption and canopy photosynthesis. Using a static functional structural plant model (FSPM), a range of different plant architectural characteristics was tested for two different seasons in order to find the optimal architecture with respect to light absorption and photosynthesis. Simulations were performed with an FSPM of a greenhouse-grown tomato crop. Sensitivity analyses were carried out for leaf elevation angle, leaf phyllotaxis, leaflet angle, leaf shape, leaflet arrangement and internode length. From the results of this analysis two possible ideotypes were proposed. Four different vertical light distributions were also tested, while light absorption cumulated over the whole canopy was kept the same. Photosynthesis was augmented by 6 % in winter and reduced by 7 % in summer, when light absorption in the top part of the canopy was increased by 25 %, while not changing light absorption of the canopy as a whole. The measured plant structure was already optimal with respect to leaf elevation angle, leaflet angle and leaflet arrangement for both light absorption and photosynthesis while phyllotaxis had no effect. Increasing the length : width ratio of leaves by 1·5 or increasing internode length from 7 cm to 12 cm led to an increase of 6-10 % for light absorption and photosynthesis. At high light intensities (summer) deeper penetration of light in the canopy improves crop photosynthesis, but not at low light intensities (winter). In particular, internode length and leaf shape affect the vertical distribution of light in the canopy. A new plant ideotype with more spacious canopy architecture due to long internodes and long and narrow leaves led to an increase in crop photosynthesis of up to 10 %.

  20. Brown carbon absorption in the red and near-infrared spectral region

    NASA Astrophysics Data System (ADS)

    Hoffer, András; Tóth, Ádám; Pósfai, Mihály; Eddy Chung, Chul; Gelencsér, András

    2017-06-01

    Black carbon (BC) aerosols have often been assumed to be the only light-absorbing carbonaceous particles in the red and near-infrared spectral regions of solar radiation in the atmosphere. Here we report that tar balls (a specific type of organic aerosol particles from biomass burning) do absorb red and near-infrared radiation significantly. Tar balls were produced in a laboratory experiment, and their chemical and optical properties were measured. The absorption of these particles in the range between 470 and 950 nm was measured with an aethalometer, which is widely used to measure atmospheric aerosol absorption. We find that the absorption coefficient of tar balls at 880 nm is more than 10 % of that at 470 nm. The considerable absorption of red and infrared light by tar balls also follows from their relatively low absorption Ångström coefficient (and significant mass absorption coefficient) in the spectral range between 470 and 950 nm. Our results support the previous finding that tar balls may play an important role in global warming. Due to the non-negligible absorption of tar balls in the near-infrared region, the absorption measured in the field at near-infrared wavelengths cannot solely be due to soot particles.

  1. Temperature and salinity correction coefficients for light absorption by water in the visible to infrared spectral region.

    PubMed

    Röttgers, Rüdiger; McKee, David; Utschig, Christian

    2014-10-20

    The light absorption coefficient of water is dependent on temperature and concentration of ions, i.e. the salinity in seawater. Accurate knowledge of the water absorption coefficient, a, and/or its temperature and salinity correction coefficients, Ψ(T) and Ψ(S), respectively, is essential for a wide range of optical applications. Values are available from published data only at specific narrow wavelength ranges or at single wavelengths in the visible and infrared regions. Ψ(T) and Ψ(S) were therefore spectrophotometrically measured throughout the visible, near, and short wavelength infrared spectral region (400 to ~2700 nm). Additionally, they were derived from more precise measurements with a point-source integrating-cavity absorption meter (PSICAM) for 400 to 700 nm. When combined with earlier measurements from the literature in the range of 2600 - 14000 nm (wavenumber: 3800 - 700 cm(-1)), the coefficients are provided for 400 to 14000 nm (wavenumber: 25000 to 700 cm(-1)).

  2. Quantifying organic aerosol single scattering albedo over tropical biomass burning regions using ground-based observation

    NASA Astrophysics Data System (ADS)

    Chu, J. E.

    2016-12-01

    Despite growing evidence of light-absorbing organic aerosols (OAs), OA light absorption has been poorly understood due to difficulties in aerosol light absorption measurements. In this study, we developed an empirical method to quantify OA single scattering albedo (SSA), the ratio of light scattering to extinction, using ground-based Aerosol Robotic Network (AERONET) observation. Our method includes partitioning fine-mode aerosol optical depth (fAOD) to individual aerosol's optical depth (AOD), separating black carbon and OA absorption aerosol optical depths, and finally binding OA SSA and sulfate+nitrate AOD. Our best estimate of OA SSA over tropical biomass burning region is 0.91 at 550nm with a range of 0.82-0.93. It implies the common OA SSA values of 0.96-1.0 in aerosol CTMs and GCMs significantly underrepresent OA light absorption. Model experiments with prescribed OA SSA showed that the enhanced absorption of solar radiation due to light absorbing OA yields global mean radiative forcing is +0.09 Wm-2 at the TOA, +0.21 Wm-2 at the atmosphere, and -0.12 Wm-2 at the surface. Compared to the previous assessment of OA radiative forcing reported in AeroCom II project, our result indicate that OA light absorption causes TOA radiative forcing by OA to change from negative (i.e., cooling effect) to positive (warming effect).

  3. The characteristics of brown carbon aerosol during winter in Beijing

    NASA Astrophysics Data System (ADS)

    Cheng, Yuan; He, Ke-bin; Du, Zhen-yu; Engling, Guenter; Liu, Jiu-meng; Ma, Yong-liang; Zheng, Mei; Weber, Rodney J.

    2016-02-01

    Brown carbon (i.e., light-absorbing organic carbon, or BrC) exerts important effects on the environment and on climate in particular. Based on spectrophotometric absorption measurements on extracts of bulk aerosol samples, this study investigated the characteristics of BrC during winter in Beijing, China. Organic compounds extractable by methanol contributed approximately 85% to the organic carbon (OC) mass. Light absorption by the methanol extracts exhibited a strong wavelength dependence, with an average absorption Ångström exponent of 7.10 (fitted between 310 and 450 nm). Normalizing the absorption coefficient (babs) measured at 365 nm to the extractable OC mass yielded an average mass absorption efficiency (MAE) of 1.45 m2/g for the methanol extracts. This study suggests that light absorption by BrC could be comparable with black carbon in the spectral range of near-ultraviolet light. Our results also indicate that BrC absorption and thus BrC radiative forcing could be largely underestimated when using water-soluble organic carbon (WSOC) as a surrogate for BrC. Compared to previous work relying only on WSOC, this study provides a more comprehensive understanding of BrC aerosol based on methanol extraction.

  4. Zeroth order Fabry-Perot resonance enabled ultra-thin perfect light absorber using percolation aluminum and silicon nanofilms

    DOE PAGES

    Mirshafieyan, Seyed Sadreddin; Luk, Ting S.; Guo, Junpeng

    2016-03-04

    Here, we demonstrated perfect light absorption in optical nanocavities made of ultra-thin percolation aluminum and silicon films deposited on an aluminum surface. The total layer thickness of the aluminum and silicon films is one order of magnitude less than perfect absorption wavelength in the visible spectral range. The ratio of silicon cavity layer thickness to perfect absorption wavelength decreases as wavelength decreases due to the increased phase delays at silicon-aluminum boundaries at shorter wavelengths. It is explained that perfect light absorption is due to critical coupling of incident wave to the fundamental Fabry-Perot resonance mode of the structure where themore » round trip phase delay is zero. Simulations were performed and the results agree well with the measurement results.« less

  5. [Passive ranging of infrared target using oxygen A-band and Elsasser model].

    PubMed

    Li, Jin-Hua; Wang, Zhao-Ba; Wang Zhi

    2014-09-01

    Passive ranging method of short range and single band was developed based on target radiation and attenuation characteristic of oxygen spectrum absorption. The relation between transmittance of oxygen A band and range of measured target was analyzed. Radiation strength distribution of measured target can be obtained according to the distribution law of absorption coefficient with environmental parameters. Passive ranging mathematical model of short ranges was established using Elsasser model with Lorentz line shape based on the computational methods of band average transmittance and high-temperature gas radiation narrowband model. The range of measured object was obtained using transmittance fitting with test data calculation and theoretical model. Besides, ranging precision was corrected considering the influence of oxygen absorption with enviromental parameter. The ranging experiment platform was established. The source was a 10 watt black body, and a grating spectrometer with 17 cm(-1) resolution was used. In order to improve the light receiving efficiency, light input was collected with 23 mm calibre telescope. The test data was processed for different range in 200 m. The results show that the transmittance accuracy was better than 2.18% in short range compared to the test data with predicted value in the same conditions.

  6. Two-Photon Activation of p-Hydroxyphenacyl Phototriggers: Toward Spatially Controlled Release of Diethyl Phosphate and ATP.

    PubMed

    Houk, Amanda L; Givens, Richard S; Elles, Christopher G

    2016-03-31

    Two-photon activation of the p-hydroxyphenacyl (pHP) photoactivated protecting group is demonstrated for the first time using visible light at 550 nm from a pulsed laser. Broadband two-photon absorption measurements reveal a strong two-photon transition (>10 GM) near 4.5 eV that closely resembles the lowest-energy band at the same total excitation energy in the one-photon absorption spectrum of the pHP chromophore. The polarization dependence of the two-photon absorption band is consistent with excitation to the same S3 ((1)ππ*) excited state for both one- and two-photon activation. Monitoring the progress of the uncaging reaction under nonresonant excitation at 550 nm confirms a quadratic intensity dependence and that two-photon activation of the uncaging reaction is possible using visible light in the range 500-620 nm. Deprotonation of the pHP chromophore under mildly basic conditions shifts the absorption band to lower energy (3.8 eV) in both the one- and two-photon absorption spectra, suggesting that two-photon activation of the pHP chromophore may be possible using light in the range 550-720 nm. The results of these measurements open the possibility of spatially and temporally selective release of biologically active compounds from the pHP protecting group using visible light from a pulsed laser.

  7. Light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities based on hybrid simplified spherical harmonics with radiosity model

    PubMed Central

    Yang, Defu; Chen, Xueli; Peng, Zhen; Wang, Xiaorui; Ripoll, Jorge; Wang, Jing; Liang, Jimin

    2013-01-01

    Modeling light propagation in the whole body is essential and necessary for optical imaging. However, non-scattering, low-scattering and high absorption regions commonly exist in biological tissues, which lead to inaccuracy of the existing light transport models. In this paper, a novel hybrid light transport model that couples the simplified spherical harmonics approximation (SPN) with the radiosity theory (HSRM) was presented, to accurately describe light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities. In the model, the radiosity theory was used to characterize the light transport in non-scattering regions and the SPN was employed to handle the scattering problems, including subsets of low-scattering and high absorption. A Neumann source constructed by the light transport in the non-scattering region and formed at the interface between the non-scattering and scattering regions was superposed into the original light source, to couple the SPN with the radiosity theory. The accuracy and effectiveness of the HSRM was first verified with both regular and digital mouse model based simulations and a physical phantom based experiment. The feasibility and applicability of the HSRM was then investigated by a broad range of optical properties. Lastly, the influence of depth of the light source on the model was also discussed. Primary results showed that the proposed model provided high performance for light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities. PMID:24156077

  8. Light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities based on hybrid simplified spherical harmonics with radiosity model.

    PubMed

    Yang, Defu; Chen, Xueli; Peng, Zhen; Wang, Xiaorui; Ripoll, Jorge; Wang, Jing; Liang, Jimin

    2013-01-01

    Modeling light propagation in the whole body is essential and necessary for optical imaging. However, non-scattering, low-scattering and high absorption regions commonly exist in biological tissues, which lead to inaccuracy of the existing light transport models. In this paper, a novel hybrid light transport model that couples the simplified spherical harmonics approximation (SPN) with the radiosity theory (HSRM) was presented, to accurately describe light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities. In the model, the radiosity theory was used to characterize the light transport in non-scattering regions and the SPN was employed to handle the scattering problems, including subsets of low-scattering and high absorption. A Neumann source constructed by the light transport in the non-scattering region and formed at the interface between the non-scattering and scattering regions was superposed into the original light source, to couple the SPN with the radiosity theory. The accuracy and effectiveness of the HSRM was first verified with both regular and digital mouse model based simulations and a physical phantom based experiment. The feasibility and applicability of the HSRM was then investigated by a broad range of optical properties. Lastly, the influence of depth of the light source on the model was also discussed. Primary results showed that the proposed model provided high performance for light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities.

  9. Silver nanocube aggregation gradient materials in search for total internal reflection with high phase sensitivity

    NASA Astrophysics Data System (ADS)

    König, Tobias A. F.; Ledin, Petr A.; Russell, Michael; Geldmeier, Jeffrey A.; Mahmoud, Mahmoud. A.; El-Sayed, Mostafa A.; Tsukruk, Vladimir V.

    2015-03-01

    We fabricated monolayer coatings of a silver nanocube aggregation to create a step-wise optical strip by applying different surface pressures during slow Langmuir-Blodgett deposition. The varying amount of randomly distributed nanocube aggregates with different surface coverages in gradient manner due to changes in surface pressure allows for continuous control of the polarization sensitive absorption of the incoming light over a broad optical spectrum. Optical characterization under total internal reflection conditions combined with electromagnetic simulations reveal that the broadband light absorption depends on the relative orientation of the nanoparticles to the polarization of the incoming light. By using computer simulations, we found that the electric field vector of the s-polarized light interacts with the different types of silver nanocube aggregations to excite different plasmonic resonances. The s-polarization shows dramatic changes of the plasmonic resonances at different angles of incidence (shift of 64 nm per 10° angle of incidence). With a low surface nanocube coverage (from 5% to 20%), we observed a polarization-selective high absorption of 80% (with an average 75%) of the incoming light over a broad optical range in the visible region from 400 nm to 700 nm. This large-area gradient material with location-dependent optical properties can be of particular interest for broadband light absorption, phase-sensitive sensors, and imaging.We fabricated monolayer coatings of a silver nanocube aggregation to create a step-wise optical strip by applying different surface pressures during slow Langmuir-Blodgett deposition. The varying amount of randomly distributed nanocube aggregates with different surface coverages in gradient manner due to changes in surface pressure allows for continuous control of the polarization sensitive absorption of the incoming light over a broad optical spectrum. Optical characterization under total internal reflection conditions combined with electromagnetic simulations reveal that the broadband light absorption depends on the relative orientation of the nanoparticles to the polarization of the incoming light. By using computer simulations, we found that the electric field vector of the s-polarized light interacts with the different types of silver nanocube aggregations to excite different plasmonic resonances. The s-polarization shows dramatic changes of the plasmonic resonances at different angles of incidence (shift of 64 nm per 10° angle of incidence). With a low surface nanocube coverage (from 5% to 20%), we observed a polarization-selective high absorption of 80% (with an average 75%) of the incoming light over a broad optical range in the visible region from 400 nm to 700 nm. This large-area gradient material with location-dependent optical properties can be of particular interest for broadband light absorption, phase-sensitive sensors, and imaging. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06430e

  10. Estimation of alga growth stage and lipid content growth rate

    NASA Technical Reports Server (NTRS)

    Embaye, Tsegereda N. (Inventor); Trent, Jonathan D. (Inventor)

    2012-01-01

    Method and system for estimating a growth stage of an alga in an ambient fluid. Measured light beam absorption or reflection values through or from the alga and through an ambient fluid, in each of two or more wavelength sub-ranges, are compared with reference light beam absorption values for corresponding wavelength sub-ranges for in each alga growth stage to determine (1) which alga growth stage, if any, is more likely and (2) whether estimated lipid content of the alga is increasing or has peaked. Alga growth is preferably terminated when lipid content has approximately reached a maximum value.

  11. Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns.

    PubMed

    Bozzola, Angelo; Liscidini, Marco; Andreani, Lucio Claudio

    2012-03-12

    We theoretically investigate the light-trapping properties of one- and two-dimensional periodic patterns etched on the front surface of c-Si and a-Si thin film solar cells with a silver back reflector and an anti-reflection coating. For each active material and configuration, absorbance A and short-circuit current density Jsc are calculated by means of rigorous coupled wave analysis (RCWA), for different active materials thicknesses in the range of interest of thin film solar cells and in a wide range of geometrical parameters. The results are then compared with Lambertian limits to light-trapping for the case of zero absorption and for the general case of finite absorption in the active material. With a proper optimization, patterns can give substantial absorption enhancement, especially for 2D patterns and for thinner cells. The effects of the photonic patterns on light harvesting are investigated from the optical spectra of the optimized configurations. We focus on the main physical effects of patterning, namely a reduction of reflection losses (better impedance matching conditions), diffraction of light in air or inside the cell, and coupling of incident radiation into quasi-guided optical modes of the structure, which is characteristic of photonic light-trapping.

  12. Simulation of laser propagation through a three-layer human skin model in the spectral range from 1000 to 1900 nm.

    PubMed

    Nasouri, Babak; Murphy, Thomas E; Berberoglu, Halil

    2014-01-01

    For understanding the mechanisms of low-level laser/light therapy (LLLT), accurate knowledge of light interaction with tissue is necessary. We present a three-dimensional, multilayer reduced-variance Monte Carlo simulation tool for studying light penetration and absorption in human skin. Local profiles of light penetration and volumetric absorption were calculated for uniform as well as Gaussian profile beams with different spreads over the spectral range from 1000 to 1900 nm. The results showed that lasers within this wavelength range could be used to effectively and safely deliver energy to specific skin layers as well as achieve large penetration depths for treating deep tissues, without causing skin damage. In addition, by changing the beam profile from uniform to Gaussian, the local volumetric dosage could increase as much as three times for otherwise similar lasers. We expect that this tool along with the results presented will aid researchers in selecting wavelength and laser power in LLLT.

  13. Simulation of laser propagation through a three-layer human skin model in the spectral range from 1000 to 1900 nm

    NASA Astrophysics Data System (ADS)

    Nasouri, Babak; Murphy, Thomas E.; Berberoglu, Halil

    2014-07-01

    For understanding the mechanisms of low-level laser/light therapy (LLLT), accurate knowledge of light interaction with tissue is necessary. We present a three-dimensional, multilayer reduced-variance Monte Carlo simulation tool for studying light penetration and absorption in human skin. Local profiles of light penetration and volumetric absorption were calculated for uniform as well as Gaussian profile beams with different spreads over the spectral range from 1000 to 1900 nm. The results showed that lasers within this wavelength range could be used to effectively and safely deliver energy to specific skin layers as well as achieve large penetration depths for treating deep tissues, without causing skin damage. In addition, by changing the beam profile from uniform to Gaussian, the local volumetric dosage could increase as much as three times for otherwise similar lasers. We expect that this tool along with the results presented will aid researchers in selecting wavelength and laser power in LLLT.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirshafieyan, Seyed Sadreddin; Luk, Ting S.; Guo, Junpeng

    Here, we demonstrated perfect light absorption in optical nanocavities made of ultra-thin percolation aluminum and silicon films deposited on an aluminum surface. The total layer thickness of the aluminum and silicon films is one order of magnitude less than perfect absorption wavelength in the visible spectral range. The ratio of silicon cavity layer thickness to perfect absorption wavelength decreases as wavelength decreases due to the increased phase delays at silicon-aluminum boundaries at shorter wavelengths. It is explained that perfect light absorption is due to critical coupling of incident wave to the fundamental Fabry-Perot resonance mode of the structure where themore » round trip phase delay is zero. Simulations were performed and the results agree well with the measurement results.« less

  15. Visual Understanding of Light Absorption and Waveguiding in Standing Nanowires with 3D Fluorescence Confocal Microscopy

    PubMed Central

    2017-01-01

    Semiconductor nanowires are promising building blocks for next-generation photonics. Indirect proofs of large absorption cross sections have been reported in nanostructures with subwavelength diameters, an effect that is even more prominent in vertically standing nanowires. In this work we provide a three-dimensional map of the light around vertical GaAs nanowires standing on a substrate by using fluorescence confocal microscopy, where the strong long-range disruption of the light path along the nanowire is illustrated. We find that the actual long-distance perturbation is much larger in size than calculated extinction cross sections. While the size of the perturbation remains similar, the intensity of the interaction changes dramatically over the visible spectrum. Numerical simulations allow us to distinguish the effects of scattering and absorption in the nanowire leading to these phenomena. This work provides a visual understanding of light absorption in semiconductor nanowire structures, which is of high interest for solar energy conversion applications. PMID:28966933

  16. Visual Understanding of Light Absorption and Waveguiding in Standing Nanowires with 3D Fluorescence Confocal Microscopy.

    PubMed

    Frederiksen, Rune; Tutuncuoglu, Gozde; Matteini, Federico; Martinez, Karen L; Fontcuberta I Morral, Anna; Alarcon-Llado, Esther

    2017-09-20

    Semiconductor nanowires are promising building blocks for next-generation photonics. Indirect proofs of large absorption cross sections have been reported in nanostructures with subwavelength diameters, an effect that is even more prominent in vertically standing nanowires. In this work we provide a three-dimensional map of the light around vertical GaAs nanowires standing on a substrate by using fluorescence confocal microscopy, where the strong long-range disruption of the light path along the nanowire is illustrated. We find that the actual long-distance perturbation is much larger in size than calculated extinction cross sections. While the size of the perturbation remains similar, the intensity of the interaction changes dramatically over the visible spectrum. Numerical simulations allow us to distinguish the effects of scattering and absorption in the nanowire leading to these phenomena. This work provides a visual understanding of light absorption in semiconductor nanowire structures, which is of high interest for solar energy conversion applications.

  17. Absorption Ångström exponents of aerosols and light absorbing carbon (LAC) obtained from in situ data in Covilhã, central Portugal.

    PubMed

    Mogo, S; Cachorro, V E; de Frutos, A; Rodrigues, A

    2012-12-01

    A field campaign was conducted from October 2009 to July 2010 at Covilhã, a small town located in the region of Beira Interior (Portugal) in the interior of the Iberian Peninsula. The ambient light-absorption coefficient, σ(a) (522 nm), obtained from a Particle Soot Absorption Photometer (PSAP), presented a daily mean value of 12.1 Mm⁻¹ (StD = 7.3 Mm⁻¹). The wavelength dependence of aerosol light absorption is investigated through the Ångström parameter, α(a). The α(a) values for the pair of wavelengths 470-660 nm ranged from 0.86 to 1.47 during the period of measurements. The PSAP data were used to infer the mass of light absorbing carbon (LAC) and the daily mean varied from 0.1 to 6.8 μg m⁻³. A detailed study of special events with different aerosol characteristics is carried out and, to support data interpretation, air masses trajectory analysis is performed.

  18. Oxygen detection using the laser diode absorption technique

    NASA Technical Reports Server (NTRS)

    Disimile, P. J.; Fox, C. W.

    1991-01-01

    Accurate measurement of the concentration and flow rate of gaseous oxygen is becoming of greater importance. The detection technique presented is based on the principal of light absorption by the Oxygen A-Band. Oxygen molecules have characteristics which attenuate radiation in the 759-770 nm wavelength range. With an ability to measure changes in the relative light transmission to less than 0.01 percent, a sensitive optical gas detection system was configured. This system is smaller in size and light in weight, has low energy requirements and has a rapid response time. In this research program, the application of temperature tuning laser diodes and their ability to be wavelength shifted to a selected absorption spectral peak has allowed concentrations as low as 1300 ppm to be detected.

  19. Colored dissolved organic matter in shallow estuaries: relationships between carbon sources and light attenuation

    NASA Astrophysics Data System (ADS)

    Oestreich, W. K.; Ganju, N. K.; Pohlman, J. W.; Suttles, S. E.

    2016-02-01

    Light availability is of primary importance to the ecological function of shallow estuaries. For example, benthic primary production by submerged aquatic vegetation is contingent upon light penetration to the seabed. A major component that attenuates light in estuaries is colored dissolved organic matter (CDOM). CDOM is often measured via a proxy, fluorescing dissolved organic matter (fDOM), due to the ease of in situ fDOM sensor measurements. Fluorescence must be converted to CDOM absorbance for use in light attenuation calculations. However, this CDOM-fDOM relationship varies among and within estuaries. We quantified the variability in this relationship within three estuaries along the mid-Atlantic margin of the eastern United States: West Falmouth Harbor (MA), Barnegat Bay (NJ), and Chincoteague Bay (MD/VA). Land use surrounding these estuaries ranges from urban to developed, with varying sources of nutrients and organic matter. Measurements of fDOM (excitation and emission wavelengths of 365 nm (±5 nm) and 460 nm (±40 nm), respectively) and CDOM absorbance were taken along a terrestrial-to-marine gradient in all three estuaries. The ratio of the absorption coefficient at 340 nm (m-1) to fDOM (QSU) was higher in West Falmouth Harbor (1.22) than in Barnegat Bay (0.22) and Chincoteague Bay (0.17). The CDOM : fDOM absorption ratio was variable between sites within West Falmouth Harbor and Barnegat Bay, but consistent between sites within Chincoteague Bay. Stable carbon isotope analysis for constraining the source of dissolved organic matter (DOM) in West Falmouth Harbor and Barnegat Bay yielded δ13C values ranging from -19.7 to -26.1 ‰ and -20.8 to -26.7 ‰, respectively. Concentration and stable carbon isotope mixing models of DOC (dissolved organic carbon) indicate a contribution of 13C-enriched DOC in the estuaries. The most likely source of 13C-enriched DOC for the systems we investigated is Spartina cordgrass. Comparison of DOC source to CDOM : fDOM absorption ratios at each site demonstrates the relationship between source and optical properties. Samples with 13C-enriched carbon isotope values, indicating a greater contribution from marsh organic material, had higher CDOM : fDOM absorption ratios than samples with greater contribution from terrestrial organic material. Applying a uniform CDOM : fDOM absorption ratio and spectral slope within a given estuary yields errors in modeled light attenuation ranging from 11 to 33 % depending on estuary. The application of a uniform absorption ratio across all estuaries doubles this error. This study demonstrates that light attenuation coefficients for CDOM based on continuous fDOM records are highly dependent on the source of DOM present in the estuary. Thus, light attenuation models for estuaries would be improved by quantification of CDOM absorption and DOM source identification.

  20. Application of spatially modulated near-infrared structured light to study changes in optical properties of mouse brain tissue during heatstress.

    PubMed

    Shaul, Oren; Fanrazi-Kahana, Michal; Meitav, Omri; Pinhasi, Gad A; Abookasis, David

    2017-11-10

    Heat stress (HS) is a medical emergency defined by abnormally elevated body temperature that causes biochemical, physiological, and hematological changes. The goal of the present research was to detect variations in optical properties (absorption, reduced scattering, and refractive index coefficients) of mouse brain tissue during HS by using near-infrared (NIR) spatial light modulation. NIR spatial patterns with different spatial phases were used to differentiate the effects of tissue scattering from those of absorption. Decoupling optical scattering from absorption enabled the quantification of a tissue's chemical constituents (related to light absorption) and structural properties (related to light scattering). Technically, structured light patterns at low and high spatial frequencies of six wavelengths ranging between 690 and 970 nm were projected onto the mouse scalp surface while diffuse reflected light was recorded by a CCD camera positioned perpendicular to the mouse scalp. Concurrently to pattern projection, brain temperature was measured with a thermal camera positioned slightly off angle from the mouse head while core body temperature was monitored by thermocouple probe. Data analysis demonstrated variations from baseline measurements in a battery of intrinsic brain properties following HS.

  1. Oil and gas exploration system and method for detecting trace amounts of hydrocarbon gases in the atmosphere

    DOEpatents

    Wamsley, Paula R.; Weimer, Carl S.; Nelson, Loren D.; O'Brien, Martin J.

    2003-01-01

    An oil and gas exploration system and method for land and airborne operations, the system and method used for locating subsurface hydrocarbon deposits based upon a remote detection of trace amounts of gases in the atmosphere. The detection of one or more target gases in the atmosphere is used to indicate a possible subsurface oil and gas deposit. By mapping a plurality of gas targets over a selected survey area, the survey area can be analyzed for measurable concentration anomalies. The anomalies are interpreted along with other exploration data to evaluate the value of an underground deposit. The system includes a differential absorption lidar (DIAL) system with a spectroscopic grade laser light and a light detector. The laser light is continuously tunable in a mid-infrared range, 2 to 5 micrometers, for choosing appropriate wavelengths to measure different gases and avoid absorption bands of interference gases. The laser light has sufficient optical energy to measure atmospheric concentrations of a gas over a path as long as a mile and greater. The detection of the gas is based on optical absorption measurements at specific wavelengths in the open atmosphere. Light that is detected using the light detector contains an absorption signature acquired as the light travels through the atmosphere from the laser source and back to the light detector. The absorption signature of each gas is processed and then analyzed to determine if a potential anomaly exists.

  2. Structural Design Principle of Small-Molecule Organic Semiconductors for Metal-Free, Visible-Light-Promoted Photocatalysis.

    PubMed

    Wang, Lei; Huang, Wei; Li, Run; Gehrig, Dominik; Blom, Paul W M; Landfester, Katharina; Zhang, Kai A I

    2016-08-08

    Herein, we report on the structural design principle of small-molecule organic semiconductors as metal-free, pure organic and visible light-active photocatalysts. Two series of electron-donor and acceptor-type organic semiconductor molecules were synthesized to meet crucial requirements, such as 1) absorption range in the visible region, 2) sufficient photoredox potential, and 3) long lifetime of photogenerated excitons. The photocatalytic activity was demonstrated in the intermolecular C-H functionalization of electron-rich heteroaromates with malonate derivatives. A mechanistic study of the light-induced electron transport between the organic photocatalyst, substrate, and the sacrificial agent are described. With their tunable absorption range and defined energy-band structure, the small-molecule organic semiconductors could offer a new class of metal-free and visible light-active photocatalysts for chemical reactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Modelling the light absorption coefficients of oceanic waters: Implications for underwater optical applications

    NASA Astrophysics Data System (ADS)

    Prabhakaran, Sai Shri; Sahu, Sanjay Kumar; Dev, Pravin Jeba; Shanmugam, Palanisamy

    2018-05-01

    Spectral absorption coefficients of particulate (algal and non-algal components) and dissolved substances are modelled and combined with the pure seawater component to determine the total light absorption coefficients of seawater in the Bay of Bengal. Two parameters namely chlorophyll-a (Chl) concentration and turbidity were measured using commercially available instruments with high sampling rates. For modelling the light absorption coefficients of oceanic waters, the measured data are classified into two broad groups - algal dominant and non-algal particle (NAP) dominant. With these criteria the individual absorption coefficients of phytoplankton and NAP were established based on their concentrations using an iterative method. To account for the spectral dependence of absorption by phytoplankton, the wavelength-dependent coefficients were introduced into the model. The CDOM absorption was determined by subtracting the individual absorption coefficients of phytoplankton and NAP from the measured total absorption data and then related to the Chl concentration. Validity of the model is assessed based on independent in-situ data from certain discrete locations in the Bay of Bengal. The total absorption coefficients estimated using the new model by considering the contributions of algal, non-algal and CDOM have good agreement with the measured total absorption data with the error range of 6.9 to 28.3%. Results obtained by the present model are important for predicting the propagation of the radiant energy within the ocean and interpreting remote sensing observation data.

  4. Optical transmission radiation damage and recovery stimulation of DSB: Ce3+ inorganic scintillation material

    NASA Astrophysics Data System (ADS)

    Borisevich, A.; Dormenev, V.; Korjik, M.; Kozlov, D.; Mechinsky, V.; Novotny, R. W.

    2015-02-01

    Recently, a new scintillation material DSB: Ce3+ was announced. It can be produced in a form of glass or nano-structured glass ceramics with application of standard glass production technology with successive thermal annealing. When doped with Ce3+, material can be applied as scintillator. Light yield of scintillation is near 100 phe/MeV. Un-doped material has a wide optical window from 4.5eV and can be applied to detect Cherenkov light. Temperature dependence of the light yield LY(T) is 0.05% which is 40 times less than in case of PWO. It can be used for detectors tolerant to a temperature variation between -20° to +20°C. Several samples with dimensions of 15x15x7 mm3 have been tested for damage effects on the optical transmission under irradiation with γ-quanta. It was found that the induced absorption in the scintillation range depends on the doping concentration and varies in range of 0.5-7 m-1. Spontaneous recovery of induced absorption has fast initial component. Up to 25% of the damaged transmission is recuperated in 6 hours. Afterwards it remains practically constant if the samples are kept in the dark. However, induced absorption is reduced by a factor of 2 by annealing at 50°C and completely removed in a short time when annealing at 100°C. A significant acceleration of the induced absorption recovery is observed by illumination with visible and IR light. This effect is observed for the first time in a Ce-doped scintillation material. It indicates, that radiation induced absorption in DSB: Ce scintillation material can be retained at the acceptable level by stimulation with light in a strong irradiation environment of collider experiments.

  5. Bound-to-bound midinfrared intersubband absorption in carbon-doped GaAs /AlGaAs quantum wells

    NASA Astrophysics Data System (ADS)

    Malis, Oana; Pfeiffer, Loren N.; West, Kenneth W.; Sergent, A. Michael; Gmachl, Claire

    2005-08-01

    Bound-to-bound intersubband absorption in the valence band of modulation-doped GaAs quantum wells with digitally alloyed AlGaAs barriers was studied in the midinfrared wavelength range. A high-purity solid carbon source was used for the p-type doping. Strong narrow absorption peaks due to heavy-to-heavy hole transitions are observed with out-of-plane polarized light, and weaker broader features with in-plane polarized light. The heavy-to-heavy hole transition energy spans the spectral range between 206 to 126 meV as the quantum well width is increased from 25 to 45 Å. The experimental results are found to be in agreement with calculations of a six-band k •p model taking into account the full band structure of the digital alloy.

  6. Shock tube measurements of the optical absorption of triatomic carbon, C3

    NASA Technical Reports Server (NTRS)

    Jones, J. J.

    1977-01-01

    The spectral absorption of C3 has been measured in a shock tube using a test gas mixture of acetylene diluted with argon. The absorption of a pulsed xenon light source was measured by means of eight photomultiplier channels to a spectrograph and an accompanying drum camera. The postshock test gas temperature and pressure were varied over the range 3300-4300 K and 0.36 to 2.13 atmospheres, respectively. The results showed appreciable absorption from C3 for the wavelength range 300 to 540 nanometers. The computed electronic oscillator strength varied from 0.12 to 0.06 as a function of temperature.

  7. Absorption and emission spectroscopic characterisation of 8-amino-riboflavin

    NASA Astrophysics Data System (ADS)

    Tyagi, A.; Zirak, P.; Penzkofer, A.; Mathes, T.; Hegemann, P.; Mack, M.; Ghisla, S.

    2009-10-01

    The flavin dye 8-amino-8-demethyl- D-riboflavin (AF) in the solvents water, DMSO, methanol, and chloroform/DMSO was studied by absorption and fluorescence spectroscopy. The first absorption band is red-shifted compared to riboflavin, and blue-shifted compared to roseoflavin (8-dimethylamino-8-demethyl-D-riboflavin). The fluorescence quantum yield of AF in the studied solvents varies between 20% and 50%. The fluorescence lifetimes were found to be in the 2-5 ns range. AF is well soluble in DMSO, weakly soluble in water and methanol, and practically insoluble in chloroform. The limited solubility causes AF aggregation, which was seen in differences between measured absorption spectra and fluorescence excitation spectra. Light scattering in the dye absorption region is discussed and approximate absorption cross-section spectra are determined from the combined measurement of transmission and fluorescence excitation spectra. The photo-stability of AF was studied by prolonged light exposure. The photo-degradation routes of AF are discussed.

  8. Oxygen detection using evanescent fields

    DOEpatents

    Duan, Yixiang [Los Alamos, NM; Cao, Weenqing [Los Alamos, NM

    2007-08-28

    An apparatus and method for the detection of oxygen using optical fiber based evanescent light absorption. Methylene blue was immobilized using a sol-gel process on a portion of the exterior surface of an optical fiber for which the cladding has been removed, thereby forming an optical oxygen sensor. When light is directed through the optical fiber, transmitted light intensity varies as a result of changes in the absorption of evanescent light by the methylene blue in response to the oxygen concentration to which the sensor is exposed. The sensor was found to have a linear response to oxygen concentration on a semi-logarithmic scale within the oxygen concentration range between 0.6% and 20.9%, a response time and a recovery time of about 3 s, ant to exhibit good reversibility and repeatability. An increase in temperature from 21.degree. C. to 35.degree. C. does not affect the net absorption of the sensor.

  9. Light transfer in agar immobilized microalgae cell cultures

    NASA Astrophysics Data System (ADS)

    Kandilian, Razmig; Jesus, Bruno; Legrand, Jack; Pilon, Laurent; Pruvost, Jérémy

    2017-09-01

    This paper experimentally and theoretically investigates light transfer in agar-immobilized cell cultures. Certain biotechnological applications such as production of metabolites secreted by photosynthetic microorganisms require cells to be immobilized in biopolymers to minimize contamination and to facilitate metabolite recovery. In such applications, light absorption by cells is one of the most important parameters affecting cell growth or metabolite productivity. Modeling light transfer therein can aid design and optimize immobilized-cell reactors. In this study, Parachlorella kessleri cells with areal biomass concentrations ranging from 0.36 to 16.9 g/m2 were immobilized in 2.6 mm thick agar gels. The average absorption and scattering cross-sections as well as the scattering phase function of P. kessleri cells were measured. Then, the absorption and transport scattering coefficients of the agar gel were determined using an inverse method based on the modified two-flux approximation. The forward model was used to predict the normal-hemispherical transmittance and reflectance of the immobilized-cell films accounting for absorption and scattering by both microalgae and the agar gel. Good agreement was found between the measured and predicted normal-hemispherical transmittance and reflectance provided absorption and scattering by agar were taken into account. Moreover, good agreement was found between experimentally measured and predicted mean rate of photon absorption. Finally, optimal areal biomass concentration was determined to achieve complete absorption of the incident radiation.

  10. Dependence of Aerosol Light Absorption and Single-Scattering Albedo On Ambient Relative Humidity for Sulfate Aerosols with Black Carbon Cores

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Russell, Philip B.; Hamill, Patrick

    2001-01-01

    Atmospheric aerosols frequently contain hygroscopic sulfate species and black carbon (soot) inclusions. In this paper we report results of a modeling study to determine the change in aerosol absorption due to increases in ambient relative humidity (RH), for three common sulfate species, assuming that the soot mass fraction is present as a single concentric core within each particle. Because of the lack of detailed knowledge about various input parameters to models describing internally mixed aerosol particle optics, we focus on results that were aimed at determining the maximum effect that particle humidification may have on aerosol light absorption. In the wavelength range from 450 to 750 nm, maximum absorption humidification factors (ratio of wet to 'dry=30% RH' absorption) for single aerosol particles are found to be as large as 1.75 when the RH changes from 30 to 99.5%. Upon lesser humidification from 30 to 80% RH, absorption humidification for single particles is only as much as 1.2, even for the most favorable combination of initial ('dry') soot mass fraction and particle size. Integrated over monomodal lognormal particle size distributions, maximum absorption humidification factors range between 1.07 and 1.15 for humidification from 30 to 80% and between 1.1 and 1.35 for humidification from 30 to 95% RH for all species considered. The largest humidification factors at a wavelength of 450 nm are obtained for 'dry' particle size distributions that peak at a radius of 0.05 microns, while the absorption humidification factors at 700 nm are largest for 'dry' size distributions that are dominated by particles in the radius range of 0.06 to 0.08 microns. Single-scattering albedo estimates at ambient conditions are often based on absorption measurements at low RH (approx. 30%) and the assumption that aerosol absorption does not change upon humidification (i.e., absorption humidification equal to unity). Our modeling study suggests that this assumption alone can introduce absolute errors in estimates of the midvisible single-scattering albedo of up to 0.05 for realistic dry particle size distributions. Our study also indicates that this error increases with increasing wavelength. The potential errors in aerosol single-scattering albedo derived here are comparable in magnitude and in addition to uncertainties in single-scattering albedo estimates that are based on measurements of aerosol light absorption and scattering.

  11. Enhanced light absorption in an ultrathin silicon solar cell utilizing plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Xiao, Sanshui; Mortensen, Niels A.

    2012-10-01

    Nowadays, bringing photovoltaics to the market is mainly limited by high cost of electricity produced by the photovoltaic solar cell. Thin-film photovoltaics offers the potential for a significant cost reduction compared to traditional photovoltaics. However, the performance of thin-film solar cells is generally limited by poor light absorption. We propose an ultrathin-film silicon solar cell configuration based on SOI structure, where the light absorption is enhanced by use of plasmonic nanostructures. By placing a one-dimensional plasmonic nanograting on the bottom of the solar cell, the generated photocurrent for a 200 nm-thickness crystalline silicon solar cell can be enhanced by 90% in the considered wavelength range. These results are paving a promising way for the realization of high-efficiency thin-film solar cells.

  12. Light-trapping in perovskite solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Qing Guo; Shen, Guansheng; John, Sajeev

    We numerically demonstrate enhanced light harvesting efficiency in both CH 3NH 3PbI 3 and CH(NH 2) 2PbI 3-based perovskite solar cells using inverted verticalcone photonic-crystal nanostructures. For CH 3NH 3PbI 3 perovskite solar cells, the maximum achievable photocurrent density (MAPD) reaches 25.1 mA/cm 2, corresponding to 92% of the total available photocurrent in the absorption range of 300 nm to 800 nm. Our cell shows 6% absorption enhancement compared to the Lambertian limit (23.7 mA/cm 2) and has a projected power conversion efficiency of 12.9%. Excellent solar absorption is numerically demonstrated over a broad angular range from 0 to 60more » degree for both S- and P- polarizations. For the corresponding CH(NH 2) 2PbI 3 based perovskite solar cell, with absorption range of 300 nm to 850 nm, we find a MAPD of 29.1 mA/cm 2, corresponding to 95.4% of the total available photocurrent. Furthermore, the projected power conversion efficiency of the CH(NH 2) 2PbI 3 based photonic crystal solar cell is 23.4%, well above the current world record efficiency of 20.1%.« less

  13. Light-trapping in perovskite solar cells

    DOE PAGES

    Du, Qing Guo; Shen, Guansheng; John, Sajeev

    2016-06-01

    We numerically demonstrate enhanced light harvesting efficiency in both CH 3NH 3PbI 3 and CH(NH 2) 2PbI 3-based perovskite solar cells using inverted verticalcone photonic-crystal nanostructures. For CH 3NH 3PbI 3 perovskite solar cells, the maximum achievable photocurrent density (MAPD) reaches 25.1 mA/cm 2, corresponding to 92% of the total available photocurrent in the absorption range of 300 nm to 800 nm. Our cell shows 6% absorption enhancement compared to the Lambertian limit (23.7 mA/cm 2) and has a projected power conversion efficiency of 12.9%. Excellent solar absorption is numerically demonstrated over a broad angular range from 0 to 60more » degree for both S- and P- polarizations. For the corresponding CH(NH 2) 2PbI 3 based perovskite solar cell, with absorption range of 300 nm to 850 nm, we find a MAPD of 29.1 mA/cm 2, corresponding to 95.4% of the total available photocurrent. Furthermore, the projected power conversion efficiency of the CH(NH 2) 2PbI 3 based photonic crystal solar cell is 23.4%, well above the current world record efficiency of 20.1%.« less

  14. Modeling of light absorption in tissue during infrared neural stimulation.

    PubMed

    Thompson, Alexander C; Wade, Scott A; Brown, William G A; Stoddart, Paul R

    2012-07-01

    A Monte Carlo model has been developed to simulate light transport and absorption in neural tissue during infrared neural stimulation (INS). A range of fiber core sizes and numerical apertures are compared illustrating the advantages of using simulations when designing a light delivery system. A range of wavelengths, commonly used for INS, are also compared for stimulation of nerves in the cochlea, in terms of both the energy absorbed and the change in temperature due to a laser pulse. Modeling suggests that a fiber with core diameter of 200 μm and NA=0.22 is optimal for optical stimulation in the geometry used and that temperature rises in the spiral ganglion neurons are as low as 0.1°C. The results show a need for more careful experimentation to allow different proposed mechanisms of INS to be distinguished.

  15. Modeling of light absorption in tissue during infrared neural stimulation

    NASA Astrophysics Data System (ADS)

    Thompson, Alexander C.; Wade, Scott A.; Brown, William G. A.; Stoddart, Paul R.

    2012-07-01

    A Monte Carlo model has been developed to simulate light transport and absorption in neural tissue during infrared neural stimulation (INS). A range of fiber core sizes and numerical apertures are compared illustrating the advantages of using simulations when designing a light delivery system. A range of wavelengths, commonly used for INS, are also compared for stimulation of nerves in the cochlea, in terms of both the energy absorbed and the change in temperature due to a laser pulse. Modeling suggests that a fiber with core diameter of 200 μm and NA=0.22 is optimal for optical stimulation in the geometry used and that temperature rises in the spiral ganglion neurons are as low as 0.1°C. The results show a need for more careful experimentation to allow different proposed mechanisms of INS to be distinguished.

  16. CR-39 (PADC) Reflection and Transmission of Light in the Ultraviolet-Near-Infrared (UV-NIR) Range.

    PubMed

    Traynor, Nathan B J; McLauchlin, Christopher; Dodge, Kenneth; McGarrah, James E; Padalino, Stephen J; McCluskey, Michelle; Sangster, T C; McLean, James G

    2018-04-01

    The spectral reflection (specular and diffuse) and transmission of Columbia Resin 39 (CR-39) were measured for incoherent light with wavelengths in the range of 200-2500 nm. These results will be of use for the optical characterization of CR-39, as well as in investigations of the chemical modifications of the polymer caused by ultraviolet (UV) exposure. A Varian Cary 5000 was used to perform spectroscopy on several different thicknesses of CR-39. With proper analysis for the interdependence of reflectance and transmittance, results are consistent across all samples. The reflectivity from each CR-39-air boundary reveals an increase in the index of refraction in the near-UV. Absorption observations are consistent with the Beer-Lambert law. Strong absorption of UV light of wavelength shorter than 350 nm suggests an optical band gap of 3.5 eV, although the standard analysis is not conclusive. Absorption features observed in the near infrared are assigned to molecular vibrations, including some that are new to the literature.

  17. Colored dissolved organic matter in shallow estuaries: relationships between carbon sources and light attenuation

    USGS Publications Warehouse

    Oestreich, W.K.; Ganju, Neil K.; Pohlman, John; Suttles, Steven E.

    2016-01-01

    Light availability is of primary importance to the ecological function of shallow estuaries. For example, benthic primary production by submerged aquatic vegetation is contingent upon light penetration to the seabed. A major component that attenuates light in estuaries is colored dissolved organic matter (CDOM). CDOM is often measured via a proxy, fluorescing dissolved organic matter (fDOM), due to the ease of in situ fDOM sensor measurements. Fluorescence must be converted to CDOM absorbance for use in light attenuation calculations. However, this CDOM–fDOM relationship varies among and within estuaries. We quantified the variability in this relationship within three estuaries along the mid-Atlantic margin of the eastern United States: West Falmouth Harbor (MA), Barnegat Bay (NJ), and Chincoteague Bay (MD/VA). Land use surrounding these estuaries ranges from urban to developed, with varying sources of nutrients and organic matter. Measurements of fDOM (excitation and emission wavelengths of 365 nm (±5 nm) and 460 nm (±40 nm), respectively) and CDOM absorbance were taken along a terrestrial-to-marine gradient in all three estuaries. The ratio of the absorption coefficient at 340 nm (m−1) to fDOM (QSU) was higher in West Falmouth Harbor (1.22) than in Barnegat Bay (0.22) and Chincoteague Bay (0.17). The CDOM : fDOM absorption ratio was variable between sites within West Falmouth Harbor and Barnegat Bay, but consistent between sites within Chincoteague Bay. Stable carbon isotope analysis for constraining the source of dissolved organic matter (DOM) in West Falmouth Harbor and Barnegat Bay yielded δ13C values ranging from −19.7 to −26.1 ‰ and −20.8 to −26.7 ‰, respectively. Concentration and stable carbon isotope mixing models of DOC (dissolved organic carbon) indicate a contribution of 13C-enriched DOC in the estuaries. The most likely source of 13C-enriched DOC for the systems we investigated is Spartina cordgrass. Comparison of DOC source to CDOM : fDOM absorption ratios at each site demonstrates the relationship between source and optical properties. Samples with 13C-enriched carbon isotope values, indicating a greater contribution from marsh organic material, had higher CDOM : fDOM absorption ratios than samples with greater contribution from terrestrial organic material. Applying a uniform CDOM : fDOM absorption ratio and spectral slope within a given estuary yields errors in modeled light attenuation ranging from 11 to 33 % depending on estuary. The application of a uniform absorption ratio across all estuaries doubles this error. This study demonstrates that light attenuation coefficients for CDOM based on continuous fDOM records are highly dependent on the source of DOM present in the estuary. Thus, light attenuation models for estuaries would be improved by quantification of CDOM absorption and DOM source identification.

  18. Systematic determination of absolute absorption cross-section of individual carbon nanotubes.

    PubMed

    Liu, Kaihui; Hong, Xiaoping; Choi, Sangkook; Jin, Chenhao; Capaz, Rodrigo B; Kim, Jihoon; Wang, Wenlong; Bai, Xuedong; Louie, Steven G; Wang, Enge; Wang, Feng

    2014-05-27

    Optical absorption is the most fundamental optical property characterizing light-matter interactions in materials and can be most readily compared with theoretical predictions. However, determination of optical absorption cross-section of individual nanostructures is experimentally challenging due to the small extinction signal using conventional transmission measurements. Recently, dramatic increase of optical contrast from individual carbon nanotubes has been successfully achieved with a polarization-based homodyne microscope, where the scattered light wave from the nanostructure interferes with the optimized reference signal (the reflected/transmitted light). Here we demonstrate high-sensitivity absorption spectroscopy for individual single-walled carbon nanotubes by combining the polarization-based homodyne technique with broadband supercontinuum excitation in transmission configuration. To our knowledge, this is the first time that high-throughput and quantitative determination of nanotube absorption cross-section over broad spectral range at the single-tube level was performed for more than 50 individual chirality-defined single-walled nanotubes. Our data reveal chirality-dependent behaviors of exciton resonances in carbon nanotubes, where the exciton oscillator strength exhibits a universal scaling law with the nanotube diameter and the transition order. The exciton linewidth (characterizing the exciton lifetime) varies strongly in different nanotubes, and on average it increases linearly with the transition energy. In addition, we establish an empirical formula by extrapolating our data to predict the absorption cross-section spectrum for any given nanotube. The quantitative information of absorption cross-section in a broad spectral range and all nanotube species not only provides new insight into the unique photophysics in one-dimensional carbon nanotubes, but also enables absolute determination of optical quantum efficiencies in important photoluminescence and photovoltaic processes.

  19. Gravity-induced absorption changes in Phycomyces blakesleeanus during parabolic flights: first spectral approach in the visible.

    PubMed

    Schmidt, Werner

    2006-12-01

    Gravity-induced absorption changes as experienced during a series of parabolas on the Airbus 300 Zero-G have been measured previously pointwise on the basis of dual-wavelength spectroscopy. Only the two wavelengths of 460 and 665 nm as generated by light-emitting diodes have been utilised during our first two parabolic-flight campaigns. In order to gain complete spectral information throughout the wavelength range from 400 to 900 nm, a miniaturized rapid scan spectrophotometer was designed. The difference of spectra taken at 0 g and 1.8 g presents the first gravity-induced absorption change spectrum measured on wild-type Phycomyces blakesleeanus sporangiophores, exhibiting a broad positive hump in the visible range and negative values in the near infrared with an isosbestic point near 735 nm. The control experiment performed with the stiff mutant A909 of Phycomyces blakesleeanus does not show this structure. These results are in agreement with those obtained with an array spectrophotometer. In analogy to the more thoroughly understood so-called light-induced absorption changes, we assume that gravity-induced absorption changes reflect redox changes of electron transport components such as flavins and cytochromes localised within the plasma membrane.

  20. Light absorption and morphological properties of soot-containing aerosols observed at an East Asian outflow site, Noto Peninsula, Japan

    NASA Astrophysics Data System (ADS)

    Ueda, Sayako; Nakayama, Tomoki; Taketani, Fumikazu; Adachi, Kouji; Matsuki, Atsushi; Iwamoto, Yoko; Sadanaga, Yasuhiro; Matsumi, Yutaka

    2016-03-01

    The coating of black carbon (BC) with inorganic salts and organic compounds can enhance the magnitude of light absorption by BC. To elucidate the enhancement of light absorption of aged BC particles and its relation to the mixing state and morphology of individual particles, we conducted observations of particles at an Asian outflow site in Noto Peninsula, Japan, in the spring of 2013. Absorption and scattering coefficients at 405, 532, and 781 nm and mass concentrations/mixing states of refractory BC in PM2.5 were measured using a three-wavelength photoacoustic soot spectrometer and a single-particle soot photometer (SP2), respectively, after passage through a thermodenuder (TD) maintained at 300 or 400 °C or a bypass line maintained at room temperature (25 °C). The average enhancement factor of BC light absorption due to coating was estimated by comparing absorption coefficients at 781 nm for particles that with and without passing through the TD at 300 °C and was found to be 1.22. The largest enhancements (> 1.30) were observed under high absorption coefficient periods when the air mass was long-range transported from urban areas in China. Aerosol samples were also analyzed using a transmission electron microscope (TEM) equipped with an energy dispersive X-ray analyzer. The morphological features and mixing states of soot-containing particles of four samples collected during the high absorption events were analyzed by comparing microphotographs before and after the evaporation of beam-sensitive materials by irradiation with a high-density electron beam. The majority of the soot in all samples was found as mixed particles with sulfate-containing spherules or as clusters of such spherules. For samples showing high enhancement (> 1.30) of BC light absorption, the TEM showed that the internally mixed soot-containing particles tended to have a more spherical shape and to be thickly coated. The SP2 measurements also suggested that the proportion of thickly coated soot was greater. Thus, the observed enhancement of BC light absorption was found to differ according to the mixing states and morphology of soot-containing particles. The enhancement of BC light absorption in our in situ measurements and its relation with individual features of soot-containing particles will be useful to evaluate direct radiative forcing in the downwind areas of large emission sources of BC.

  1. Light absorption and morphological properties of soot-containing aerosols observed at an East Asian outflow site, Noto Peninsula, Japan

    NASA Astrophysics Data System (ADS)

    Ueda, S.; Nakayama, T.; Taketani, F.; Adachi, K.; Matsuki, A.; Iwamoto, Y.; Sadanaga, Y.; Matsumi, Y.

    2015-09-01

    The coating of black carbon (BC) with inorganic salts and organic compounds can enhance the magnitude of light absorption by BC. To elucidate the enhancement of light absorption of aged BC particles and its relation to the mixing state and morphology of individual particles, we conducted observations of particles at an Asian outflow site in Noto Peninsula, Japan, in the spring of 2013. Absorption and scattering coefficients at 405, 532, and 781 nm and mass concentrations/mixing states of refractory-BC in PM2.5 were measured using a three-wavelength photoacoustic soot spectrometer and a single-particle soot photometer (SP2), respectively, after passage through a heater maintained at 300 or 400 °C or a bypass line maintained at room temperature (25 °C). The average enhancement of BC light absorption due to coating was estimated by comparing absorption coefficients at 781 nm for particles that with and without passing through the heater and was found to be 22-23 %. The largest enhancements (> 30 %) were observed under high absorption coefficient conditions when the air mass was long-range transported from urban areas in China. Aerosol samples were also analyzed using a transmission electron microscope (TEM) equipped with an energy dispersive X-ray analyzer. The morphological features and mixing states of soot-containing particles of four samples collected during the high absorption coefficient events were analyzed by comparing microphotographs before and after the evaporation of beam-sensitive materials by irradiation with a high density electron beam. The majority of the soot in all samples was found as mixed particles with spherical sulfate or as clusters of sulfate spherules. For samples showing high enhancement (> 30 %) of BC light absorption, TEM showed that the internally mixed soot-containing particles tended to have a more spherical shape and to be embedded into the sulfate. The SP2 measurements also suggested that the proportion of thickly-coated soot was greater. Thus, the observed enhancement of BC light absorption was found to differ according to the mixing states and morphology of soot-containing particles. The enhancement of BC light absorption in our in situ measurements and its relation with individual features of soot-containing particles will be useful to evaluate direct radiative forcing in the leeward areas of large emission sources of BC.

  2. Structural color printing based on plasmonic metasurfaces of perfect light absorption

    PubMed Central

    Cheng, Fei; Gao, Jie; Luk, Ting S.; Yang, Xiaodong

    2015-01-01

    Subwavelength structural color filtering and printing technologies employing plasmonic nanostructures have recently been recognized as an important and beneficial complement to the traditional colorant-based pigmentation. However, the color saturation, brightness and incident angle tolerance of structural color printing need to be improved to meet the application requirement. Here we demonstrate a structural color printing method based on plasmonic metasurfaces of perfect light absorption to improve color performances such as saturation and brightness. Thin-layer perfect absorbers with periodic hole arrays are designed at visible frequencies and the absorption peaks are tuned by simply adjusting the hole size and periodicity. Near perfect light absorption with high quality factors are obtained to realize high-resolution, angle-insensitive plasmonic color printing with high color saturation and brightness. Moreover, the fabricated metasurfaces can be protected with a protective coating for ambient use without degrading performances. The demonstrated structural color printing platform offers great potential for applications ranging from security marking to information storage. PMID:26047486

  3. Structural color printing based on plasmonic metasurfaces of perfect light absorption

    DOE PAGES

    Cheng, Fei; Gao, Jie; Luk, Ting S.; ...

    2015-06-05

    Subwavelength structural color filtering and printing technologies employing plasmonic nanostructures have recently been recognized as an important and beneficial complement to the traditional colorant-based pigmentation. However, the color saturation, brightness and incident angle tolerance of structural color printing need to be improved to meet the application requirement. Here we demonstrate a structural color printing method based on plasmonic metasurfaces of perfect light absorption to improve color performances such as saturation and brightness. Thin-layer perfect absorbers with periodic hole arrays are designed at visible frequencies and the absorption peaks are tuned by simply adjusting the hole size and periodicity. Near perfectmore » light absorption with high quality factors are obtained to realize high-resolution, angle-insensitive plasmonic color printing with high color saturation and brightness. Moreover, the fabricated metasurfaces can be protected with a protective coating for ambient use without degrading performances. The demonstrated structural color printing platform offers great potential for applications ranging from security marking to information storage.« less

  4. Heat meets light on the nanoscale

    DOE PAGES

    Boriskina, Svetlana V.; Tong, Jonathan K.; Hsu, Wei -Chun; ...

    2016-06-11

    We discuss the state-of-the-art and remaining challenges in the fundamental understanding and technology development for controlling light-matter interactions in nanophotonic environments in and away from thermal equilibrium. Furthermore, the topics covered range from the basics of the thermodynamics of light emission and absorption to applications in solar thermal energy generation, thermophotovoltaics, optical refrigeration, personalized cooling technologies, development of coherent incandescent light sources, and spinoptics.

  5. Optical absorption characteristics in the assessment of powder phosphor-based x-ray detectors: from nano- to micro-scale.

    PubMed

    Liaparinos, P F

    2015-11-21

    X-ray phosphor-based detectors have enormously improved the quality of medical imaging examinations through the optimization of optical diffusion. In recent years, with the development of science and technology in the field of materials, improved powder phosphors require structural and optical properties that contribute to better optical signal propagation. The purpose of this paper was to provide a quantitative and qualitative understanding of the optical absorption characteristics in the assessment of powder phosphor-based detectors (from nano- scale up to micro-scale). Variations on the optical absorption parameters (i.e. the light extinction coefficient [Formula: see text] and the percentage probability of light absorption p%) were evaluated based on Mie calculations examining a wide range of light wavelengths, particle refractive indices and sizes. To model and assess the effects of the aforementioned parameters on optical diffusion, Monte Carlo simulation techniques were employed considering: (i) phosphors of different layer thickness, 100 μm (thin layer) and 300 μm (thick layer), respectively, (ii) light extinction coefficient values, 1, 3 and 6 μm(-1), and (iii) percentage probability of light absorption p% in the range 10(-4)-10(-2). Results showed that the [Formula: see text] coefficient is high for phosphor grains in the submicron scale and for low light wavelengths. At higher wavelengths (above 650 nm), optical quanta follow approximately similar depths until interaction for grain diameter 500 nm and 1 μm. Regarding the variability of the refractive index, high variations of the [Formula: see text] coefficient occurred above 1.6. Furthermore, results derived from Monte Carlo modeling showed that high spatial resolution phosphors can be accomplished by increasing the [Formula: see text] parameter. More specifically, the FWHM was found to decrease (i.e. higher resolution): (i) 4.8% at 100 μm and (ii) 9.5%, at 300 μm layer thickness. This study attempted to examine the role of the optical absorption parameters on optical diffusion studies. A significant outcome of the present investigation was that the improvement of phosphor spatial resolution without decreasing the light collection efficiency too much can be better achieved by increasing the parameter [Formula: see text] rather than the parameter p%.

  6. Light-absorption of dust and elemental carbon in snow in the Indian Himalayas and the Finnish Arctic

    NASA Astrophysics Data System (ADS)

    Svensson, Jonas; Ström, Johan; Kivekäs, Niku; Dkhar, Nathaniel B.; Tayal, Shresth; Sharma, Ved P.; Jutila, Arttu; Backman, John; Virkkula, Aki; Ruppel, Meri; Hyvärinen, Antti; Kontu, Anna; Hannula, Henna-Reetta; Leppäranta, Matti; Hooda, Rakesh K.; Korhola, Atte; Asmi, Eija; Lihavainen, Heikki

    2018-03-01

    Light-absorbing impurities (LAIs) deposited in snow have the potential to substantially affect the snow radiation budget, with subsequent implications for snow melt. To more accurately quantify the snow albedo, the contribution from different LAIs needs to be assessed. Here we estimate the main LAI components, elemental carbon (EC) (as a proxy for black carbon) and mineral dust in snow from the Indian Himalayas and paired the results with snow samples from Arctic Finland. The impurities are collected onto quartz filters and are analyzed thermal-optically for EC, as well as with an additional optical measurement to estimate the light-absorption of dust separately on the filters. Laboratory tests were conducted using substrates containing soot and mineral particles, especially prepared to test the experimental setup. Analyzed ambient snow samples show EC concentrations that are in the same range as presented by previous research, for each respective region. In terms of the mass absorption cross section (MAC) our ambient EC surprisingly had about half of the MAC value compared to our laboratory standard EC (chimney soot), suggesting a less light absorptive EC in the snow, which has consequences for the snow albedo reduction caused by EC. In the Himalayan samples, larger contributions by dust (in the range of 50 % or greater for the light absorption caused by the LAI) highlighted the importance of dust acting as a light absorber in the snow. Moreover, EC concentrations in the Indian samples, acquired from a 120 cm deep snow pit (possibly covering the last five years of snow fall), suggest an increase in both EC and dust deposition. This work emphasizes the complexity in determining the snow albedo, showing that LAI concentrations alone might not be sufficient, but additional transient effects on the light-absorbing properties of the EC need to be considered and studied in the snow. Equally as imperative is the confirmation of the spatial and temporal representativeness of these data by comparing data from several and deeper pits explored at the same time.

  7. Photo-oxidation of Nitrophenols in the Aqueous Phase: Reaction Kinetics, Mechanistic Insights, and Evolution of Light Absorption

    NASA Astrophysics Data System (ADS)

    Hems, R.; Abbatt, J.

    2017-12-01

    Nitrophenols are a class of water soluble, light absorbing compounds which can make up a significant fraction of biomass burning brown carbon. The atmospheric lifetime and aging of these compounds can have important implications for their impact on climate through the aerosol direct effect. Recent studies have shown that brown carbon aerosols can be bleached of their colour by direct photolysis and photo-oxidation reactions on the timescale of hours to days. However, during aqueous phase photo-oxidation of nitrophenol compounds light absorption is sustained or enhanced, even after the parent nitrophenol molecule has been depleted. In this work, we use online aerosol chemical ionization mass spectrometry (aerosol-CIMS) to investigate the aqueous phase photo-oxidation mechanism and determine the second order rate constants for the reaction of OH radicals with three commonly detected nitrophenol compounds: nitrocatechol, nitroguaiacol, and dinitrophenol. These nitrophenol compounds are found to have aqueous phase lifetimes with respect to oxidation by the OH radical ranging between 5 - 11 hours. Our results indicate that functionalization of the parent nitrophenol molecule by addition of hydroxyl groups leads to the observed absorption enhancement. Further photo-oxidation forms breakdown products that no longer absorb significantly in the visible light range.

  8. Spectral- and size-resolved mass absorption efficiency of mineral dust aerosols in the shortwave spectrum: a simulation chamber study

    NASA Astrophysics Data System (ADS)

    Caponi, Lorenzo; Formenti, Paola; Massabó, Dario; Di Biagio, Claudia; Cazaunau, Mathieu; Pangui, Edouard; Chevaillier, Servanne; Landrot, Gautier; Andreae, Meinrat O.; Kandler, Konrad; Piketh, Stuart; Saeed, Thuraya; Seibert, Dave; Williams, Earle; Balkanski, Yves; Prati, Paolo; Doussin, Jean-François

    2017-06-01

    This paper presents new laboratory measurements of the mass absorption efficiency (MAE) between 375 and 850 nm for 12 individual samples of mineral dust from different source areas worldwide and in two size classes: PM10. 6 (mass fraction of particles of aerodynamic diameter lower than 10.6 µm) and PM2. 5 (mass fraction of particles of aerodynamic diameter lower than 2.5 µm). The experiments were performed in the CESAM simulation chamber using mineral dust generated from natural parent soils and included optical and gravimetric analyses. The results show that the MAE values are lower for the PM10. 6 mass fraction (range 37-135 × 10-3 m2 g-1 at 375 nm) than for the PM2. 5 (range 95-711 × 10-3 m2 g-1 at 375 nm) and decrease with increasing wavelength as λ-AAE, where the Ångström absorption exponent (AAE) averages between 3.3 and 3.5, regardless of size. The size independence of AAE suggests that, for a given size distribution, the dust composition did not vary with size for this set of samples. Because of its high atmospheric concentration, light absorption by mineral dust can be competitive with black and brown carbon even during atmospheric transport over heavy polluted regions, when dust concentrations are significantly lower than at emission. The AAE values of mineral dust are higher than for black carbon (˜ 1) but in the same range as light-absorbing organic (brown) carbon. As a result, depending on the environment, there can be some ambiguity in apportioning the aerosol absorption optical depth (AAOD) based on spectral dependence, which is relevant to the development of remote sensing of light-absorbing aerosols and their assimilation in climate models. We suggest that the sample-to-sample variability in our dataset of MAE values is related to regional differences in the mineralogical composition of the parent soils. Particularly in the PM2. 5 fraction, we found a strong linear correlation between the dust light-absorption properties and elemental iron rather than the iron oxide fraction, which could ease the application and the validation of climate models that now start to include the representation of the dust composition, as well as for remote sensing of dust absorption in the UV-vis spectral region.

  9. Simple Hydrogen Plasma Doping Process of Amorphous Indium Gallium Zinc Oxide-Based Phototransistors for Visible Light Detection.

    PubMed

    Kang, Byung Ha; Kim, Won-Gi; Chung, Jusung; Lee, Jin Hyeok; Kim, Hyun Jae

    2018-02-28

    A homojunction-structured amorphous indium gallium zinc oxide (a-IGZO) phototransistor that can detect visible light is reported. The key element of this technology is an absorption layer composed of hydrogen-doped a-IGZO. This absorption layer is fabricated by simple hydrogen plasma doping, and subgap states are induced by increasing the amount of hydrogen impurities. These subgap states, which lead to a higher number of photoexcited carriers and aggravate the instability under negative bias illumination stress, enabled the detection of a wide range of visible light (400-700 nm). The optimal condition of the hydrogen-doped absorption layer (HAL) is fabricated at a hydrogen partial pressure ratio of 2%. As a result, the optimized a-IGZO phototransistor with the HAL exhibits a high photoresponsivity of 1932.6 A/W, a photosensitivity of 3.85 × 10 6 , and a detectivity of 6.93 × 10 11 Jones under 635 nm light illumination.

  10. Far wing depolarization of light - Generalized absorption profiles. [in laser fluorescence spectroscopy of Sr vapor

    NASA Technical Reports Server (NTRS)

    Thomann, P.; Burnett, K.; Cooper, J.

    1981-01-01

    An absorption (and/or emission) event which takes place during a strong collision is called a 'correlated event'. It is discussed how correlated events affect the far red wing depolarization of fluorescence. Attention is given to an atomic vapor which is irradiated by linearly polarized light of a frequency on the red side of the resonance line. Two limiting cases are considered, corresponding to excitation in the impact region and in the quasi-static wing. In the quasi-static wing, absorption of a photon followed by fluorescence (rather than Rayleigh scattering), occurs mostly during a collision. Correlated events dominate the scattering process. Expressions derived for the polarization of the fluorescent light are applied to far red wing depolarization. It is found that the polarization of the fluorescent light does not go to zero in the far wing, but depends crucially on the detailed nature of the anisotropy in the long-range part of the interatomic potential.

  11. Rogue wave train generation in a metamaterial induced by cubic-quintic nonlinearities and second-order dispersion

    NASA Astrophysics Data System (ADS)

    Essama, Bedel Giscard Onana; Atangana, Jacques; Frederick, Biya Motto; Mokhtari, Bouchra; Eddeqaqi, Noureddine Cherkaoui; Kofane, Timoleon Crepin

    2014-09-01

    We investigate the behavior of the electromagnetic wave that propagates in a metamaterial for negative index regime. Second-order dispersion and cubic-quintic nonlinearities are taken into account. The behavior obtained for negative index regime is compared to that observed for absorption regime. The collective coordinates technique is used to characterize the light pulse intensity profile at some frequency ranges. Five frequency ranges have been pointed out. The perfect combination of second-order dispersion and cubic nonlinearity leads to a robust soliton at each frequency range for negative index regime. The soliton peak power progressively decreases for absorption regime. Further, this peak power also decreases with frequency. We show that absorption regime can induce rogue wave trains generation at a specific frequency range. However, this rogue wave trains generation is maintained when the quintic nonlinearity comes into play for negative index regime and amplified for absorption regime at a specific frequency range. It clearly appears that rogue wave behavior strongly depends on the frequency and the regime considered. Furthermore, the stability conditions of the electromagnetic wave have also been discussed at frequency ranges considered for both negative index and absorption regimes.

  12. Rogue wave train generation in a metamaterial induced by cubic-quintic nonlinearities and second-order dispersion.

    PubMed

    Essama, Bedel Giscard Onana; Atangana, Jacques; Frederick, Biya Motto; Mokhtari, Bouchra; Eddeqaqi, Noureddine Cherkaoui; Kofane, Timoleon Crepin

    2014-09-01

    We investigate the behavior of the electromagnetic wave that propagates in a metamaterial for negative index regime. Second-order dispersion and cubic-quintic nonlinearities are taken into account. The behavior obtained for negative index regime is compared to that observed for absorption regime. The collective coordinates technique is used to characterize the light pulse intensity profile at some frequency ranges. Five frequency ranges have been pointed out. The perfect combination of second-order dispersion and cubic nonlinearity leads to a robust soliton at each frequency range for negative index regime. The soliton peak power progressively decreases for absorption regime. Further, this peak power also decreases with frequency. We show that absorption regime can induce rogue wave trains generation at a specific frequency range. However, this rogue wave trains generation is maintained when the quintic nonlinearity comes into play for negative index regime and amplified for absorption regime at a specific frequency range. It clearly appears that rogue wave behavior strongly depends on the frequency and the regime considered. Furthermore, the stability conditions of the electromagnetic wave have also been discussed at frequency ranges considered for both negative index and absorption regimes.

  13. Experimental study on the sensitive depth of backwards detected light in turbid media.

    PubMed

    Zhang, Yunyao; Huang, Liqing; Zhang, Ning; Tian, Heng; Zhu, Jingping

    2018-05-28

    In the recent past, optical spectroscopy and imaging methods for biomedical diagnosis and target enhancing have been widely researched. The challenge to improve the performance of these methods is to know the sensitive depth of the backwards detected light well. Former research mainly employed a Monte Carlo method to run simulations to statistically describe the light sensitive depth. An experimental method for investigating the sensitive depth was developed and is presented here. An absorption plate was employed to remove all the light that may have travelled deeper than the plate, leaving only the light which cannot reach the plate. By measuring the received backwards light intensity and the depth between the probe and the plate, the light intensity distribution along the depth dimension can be achieved. The depth with the maximum light intensity was recorded as the sensitive depth. The experimental results showed that the maximum light intensity was nearly the same in a short depth range. It could be deduced that the sensitive depth was a range, rather than a single depth. This sensitive depth range as well as its central depth increased consistently with the increasing source-detection distance. Relationships between sensitive depth and optical properties were also investigated. It also showed that the reduced scattering coefficient affects the central sensitive depth and the range of the sensitive depth more than the absorption coefficient, so they cannot be simply added as reduced distinct coefficients to describe the sensitive depth. This study provides an efficient method for investigation of sensitive depth. It may facilitate the development of spectroscopy and imaging techniques for biomedical diagnosis and underwater imaging.

  14. Multispectral selective near-perfect light absorption by graphene monolayer using aperiodic multilayer microstructures

    NASA Astrophysics Data System (ADS)

    Zand, Iman; Dalir, Hamed; Chen, Ray T.; Dowling, Jonathan P.

    2018-03-01

    We investigate one-dimensional aperiodic multilayer microstructures in order to achieve near-total absorptions at preselected wavelengths in a graphene monolayer. The proposed structures are designed using a genetic optimization algorithm coupled to a transfer matrix code. Coupled-mode-theory analysis, consistent with transfer matrix method results, indicates the existence of a critical coupling in the graphene monolayer for perfect absorptions. Our findings show that the near-total-absorption peaks are highly tunable and can be controlled simultaneously or independently in a wide range of wavelengths in the near-infrared and visible ranges. The proposed approach is metal-free, does not require surface texturing or patterning, and can be also applied for other two-dimensional materials.

  15. Contribution of nitrated phenols to wood burning brown carbon light absorption in Detling, United Kingdom during winter time.

    PubMed

    Mohr, Claudia; Lopez-Hilfiker, Felipe D; Zotter, Peter; Prévôt, André S H; Xu, Lu; Ng, Nga L; Herndon, Scott C; Williams, Leah R; Franklin, Jonathan P; Zahniser, Mark S; Worsnop, Douglas R; Knighton, W Berk; Aiken, Allison C; Gorkowski, Kyle J; Dubey, Manvendra K; Allan, James D; Thornton, Joel A

    2013-06-18

    We show for the first time quantitative online measurements of five nitrated phenol (NP) compounds in ambient air (nitrophenol C6H5NO3, methylnitrophenol C7H7NO3, nitrocatechol C6H5NO4, methylnitrocatechol C7H7NO4, and dinitrophenol C6H4N2O5) measured with a micro-orifice volatilization impactor (MOVI) high-resolution chemical ionization mass spectrometer in Detling, United Kingdom during January-February, 2012. NPs absorb radiation in the near-ultraviolet (UV) range of the electromagnetic spectrum and thus are potential components of poorly characterized light-absorbing organic matter ("brown carbon") which can affect the climate and air quality. Total NP concentrations varied between less than 1 and 98 ng m(-3), with a mean value of 20 ng m(-3). We conclude that NPs measured in Detling have a significant contribution from biomass burning with an estimated emission factor of 0.2 ng (ppb CO)(-1). Particle light absorption measurements by a seven-wavelength aethalometer in the near-UV (370 nm) and literature values of molecular absorption cross sections are used to estimate the contribution of NP to wood burning brown carbon UV light absorption. We show that these five NPs are potentially important contributors to absorption at 370 nm measured by an aethalometer and account for 4 ± 2% of UV light absorption by brown carbon. They can thus affect atmospheric radiative transfer and photochemistry and with that climate and air quality.

  16. Function of terahertz spectra in monitoring the decomposing process of biological macromolecules and in investigating the causes of photoinhibition.

    PubMed

    Qu, Yuangang; Zhang, Shuai; Lian, Yuji; Kuang, Tingyun

    2017-03-01

    Chlorophyll a and β-carotene play an important role in harvesting light energy, which is used to drive photosynthesis in plants. In this study, terahertz (THz) and visible range spectra of chlorophyll a and β-carotene and their changes under light treatment were investigated. The results show that the all THz transmission and absorption spectra of chlorophyll a and β-carotene changed upon light treatment, with the maximum changes at 15 min of illumination indicating the greatest changes of the collective vibrational mode of chlorophyll a and β-carotene. The absorption spectra of chlorophyll a in the visible light region decreased upon light treatment, signifying the degradation of chlorophyll a molecules. It can be inferred from these results that the THz spectra are very sensitive in monitoring the changes of the collective vibrational mode, despite the absence of changes in molecular configuration. The THz spectra can therefore be used to monitor the decomposing process of biological macromolecules; however, visible absorption spectra can only be used to monitor the breakdown extent of biological macromolecules.

  17. Near infrared laser penetration and absorption in human skin

    NASA Astrophysics Data System (ADS)

    Nasouri, Babak; Murphy, Thomas E.; Berberoglu, Halil

    2014-02-01

    For understanding the mechanisms of low level laser/light therapy (LLLT), accurate knowledge of light interaction with tissue is necessary. In this paper, we present a three dimensional, multi-layer Monte Carlo simulation tool for studying light penetration and absorption in human skin. The skin is modeled as a three-layer participating medium, namely epidermis, dermis, and subcutaneous, where its geometrical and optical properties are obtained from the literature. Both refraction and reflection are taken into account at the boundaries according to Snell's law and Fresnel relations. A forward Monte Carlo method was implemented and validated for accurately simulating light penetration and absorption in absorbing and anisotropically scattering media. Local profiles of light penetration and volumetric absorption densities were simulated for uniform as well as Gaussian profile beams with different spreads at 155 mW average power over the spectral range from 1000 nm to 1900 nm. The results show the effects of beam profiles and wavelength on the local fluence within each skin layer. Particularly, the results identify different wavelength bands for targeted deposition of power in different skin layers. Finally, we show that light penetration scales well with the transport optical thickness of skin. We expect that this tool along with the results presented will aid researchers resolve issues related to dose and targeted delivery of energy in tissues for LLLT.

  18. Thermal emission and absorption of radiation in finite inverted-opal photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Florescu, Marian; Stimpson, Andrew J.; Lee, Hwang

    We study theoretically the optical properties of a finite inverted-opal photonic crystal. The light-matter interaction is strongly affected by the presence of the three-dimensional photonic crystal and the alterations of the light emission and absorption processes can be used to suppress or enhance the thermal emissivity and absorptivity of the dielectric structure. We investigate the influence of the absorption present in the system on the relevant band edge frequencies that control the optical response of the photonic crystal. Our study reveals that the absorption processes cause spectral broadening and shifting of the band edge optical resonances, and determine a strongmore » reduction of the photonic band gap spectral range. Using the angular and spectral dependence of the band edge frequencies for stop bands along different directions, we argue that by matching the blackbody emission spectrum peak with a prescribed maximum of the absorption coefficient, it is possible to achieve an angle-sensitive enhancement of the thermal emission/absorption of radiation. This result opens a way to realize a frequency-sensitive and angle-sensitive photonic crystal absorbers/emitters.« less

  19. Steady increase of secondary organic aerosol mass concentration and light extinction during the CARES 2010 Field Campaign

    NASA Astrophysics Data System (ADS)

    Gyawali, M. S.; Arnott, W. P.; Flowers, B. A.; Dubey, M. K.; Atkinson, D. B.; Song, C.; Zaveri, R. A.; Setyan, A.; Zhang, Q.; Mazzoleni, C.; Gorkowski, K.

    2011-12-01

    We present multispectral (355, 375, 405, 532, 870, 781, and 1047 nm) aerosol light absorption and scattering measurements for the 2010 Carbonaceous Aerosols and Radiative Effects (CARES) campaign in Sacramento, CA and the Sierra Nevada foothills. The short wavelength scattering at both sites gradually increased during the last 10 days of the campaign as diagnosed by a systematic increase in the Ångström exponent of scattering. The UV and near UV enhanced scattering was likely a consequence of the ultra and sub-micron aerosol which began to grow vigorously in the size range where scattering at shorter wavelengths begins to increase. Multispectral aerosol light absorption coefficients suggest the absence of short wavelength light absorption by brown carbon. Aerosol mass spectrometer data also shows the steady increase of secondary organic aerosol during the last 10 days of CARES. The time series of the measurements made between the two sites (T0 and T1) separated by the slope of the foothills are strikingly similar, except for isolated night time episodes of enhanced absorption at T0. This is possibly due to paving events or other nocturnal emissions markers

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Applegate, Matthew B.; Alonzo, Carlo; Georgakoudi, Irene

    High resolution three-dimensional voids can be directly written into transparent silk fibroin hydrogels using ultrashort pulses of near-infrared (NIR) light. Here, we propose a simple finite-element model that can be used to predict the size and shape of individual features under various exposure conditions. We compare predicted and measured feature volumes for a wide range of parameters and use the model to determine optimum conditions for maximum material removal. The simplicity of the model implies that the mechanism of multiphoton induced void creation in silk is due to direct absorption of light energy rather than diffusion of heat or othermore » photoproducts, and confirms that multiphoton absorption of NIR light in silk is purely a 3-photon process.« less

  1. Abiotic control of underwater light in a drinking water reservoir: Photon budget analysis and implications for water quality monitoring

    NASA Astrophysics Data System (ADS)

    Watanabe, Shohei; Laurion, Isabelle; Markager, Stiig; Vincent, Warwick F.

    2015-08-01

    In optically complex inland waters, the underwater attenuation of photosynthetically active radiation (PAR) is controlled by a variable combination of absorption and scattering components of the lake or river water. Here we applied a photon budget approach to identify the main optical components affecting PAR attenuation in Lake St. Charles, a drinking water reservoir for Québec City, Canada. This analysis showed the dominant role of colored dissolved organic matter (CDOM) absorption (average of 44% of total absorption during the sampling period), but with large changes over depth in the absolute and relative contribution of the individual absorption components (water, nonalgal particulates, phytoplankton and CDOM) to PAR attenuation. This pronounced vertical variation occurred because of the large spectral changes in the light field with depth, and it strongly affected the average in situ diffuse absorption coefficients in the water column. For example, the diffuse absorption coefficient for pure-water in the ambient light field was 10-fold higher than the value previously measured in the blue open ocean and erroneously applied to lakes and coastal waters. Photon absorption budget calculations for a range of limnological conditions confirmed that phytoplankton had little direct influence on underwater light, even at chlorophyll a values above those observed during harmful algal blooms in the lake. These results imply that traditional measures of water quality such as Secchi depth and radiometric transparency do not provide a meaningful estimate of the biological state of the water column in CDOM-colored lakes and reservoirs.

  2. Sensitive singular-phase optical detection without phase measurements with Tamm plasmons.

    PubMed

    Boriskina, Svetlana V; Tsurimaki, Yoichiro

    2018-06-06

    Spectrally-tailored interactions of light with material interfaces offer many exciting applications in sensing, photo-detection, and optical energy conversion. In particular, complete suppression of light reflectance at select frequencies accompanied by sharp phase variations in the reflected signal forms the basis for the development of ultra-sensitive singular-phase optical detection schemes such as Brewster and surface plasmon interferometry. However, both the Brewster effect and surface-plasmon-mediated absorption on planar interfaces are limited to one polarization of the incident light and oblique excitation angles, and may have limited bandwidth dictated by the material dielectric index and plasma frequency. To alleviate these limitations, we design narrow-band super-absorbers composed of plasmonic materials embedded into dielectric photonic nanostructures with topologically-protected interfacial Tamm plasmon states. These structures have planar geometry and do not require nanopatterning to achieve perfect absorption of both polarizations of the incident light in a wide range of incident angles, including the normal incidence. Their absorption lines are tunable across a very broad spectral range via engineering of the photon bandstructure of the dielectric photonic nanostructures to achieve reversal of the geometrical phase across the interface with the plasmonic absorber. We outline the design strategy to achieve perfect absorptance in Tamm structures with dissipative losses via conjugate impedance matching. We further demonstrate via modeling how these structures can be engineered to support sharp asymmetric amplitude resonances, which can be used to improve the sensitivity of optical sensors in the amplitude-only detection scheme that does not require use of bulky and expensive ellipsometry equipment.

  3. Sensitive singular-phase optical detection without phase measurements with Tamm plasmons

    NASA Astrophysics Data System (ADS)

    Boriskina, Svetlana V.; Tsurimaki, Yoichiro

    2018-06-01

    Spectrally-tailored interactions of light with material interfaces offer many exciting applications in sensing, photo-detection, and optical energy conversion. In particular, complete suppression of light reflectance at select frequencies accompanied by sharp phase variations in the reflected signal forms the basis for the development of ultra-sensitive singular-phase optical detection schemes such as Brewster and surface plasmon interferometry. However, both the Brewster effect and surface-plasmon-mediated absorption on planar interfaces are limited to one polarization of the incident light and oblique excitation angles, and may have limited bandwidth dictated by the material dielectric index and plasma frequency. To alleviate these limitations, we design narrow-band super-absorbers composed of plasmonic materials embedded into dielectric photonic nanostructures with topologically-protected interfacial Tamm plasmon states. These structures have planar geometry and do not require nanopatterning to achieve perfect absorption of both polarizations of the incident light in a wide range of incident angles, including the normal incidence. Their absorption lines are tunable across a very broad spectral range via engineering of the photon bandstructure of the dielectric photonic nanostructures to achieve reversal of the geometrical phase across the interface with the plasmonic absorber. We outline the design strategy to achieve perfect absorptance in Tamm structures with dissipative losses via conjugate impedance matching. We further demonstrate via modeling how these structures can be engineered to support sharp asymmetric amplitude resonances, which can be used to improve the sensitivity of optical sensors in the amplitude-only detection scheme that does not require use of bulky and expensive ellipsometry equipment.

  4. Refractive index measurements in absorbing media with white light spectral interferometry.

    PubMed

    Arosa, Yago; Lago, Elena López; de la Fuente, Raúl

    2018-03-19

    White light spectral interferometry is applied to measure the refractive index in absorbing liquids in the spectral range of 400-1000 nm. We analyze the influence of absorption on the visibility of interferometric fringes and, accordingly, on the measurement of the refractive index. Further, we show that the refractive index in the absorption band can be retrieved by a two-step process. The procedure requires the use of two samples of different thickness, the thicker one to retrieve the refractive index in the transparent region and the thinnest to obtain the data in the absorption region. First, the refractive index values are retrieved with good accuracy in the transparent region of the material for 1-mm-thick samples. Second, these refractive index values serve also to precisely calculate the thickness of a thinner sample (~150 µm) since the accuracy of the methods depends strongly on the thickness of the sample. Finally, the refractive index is recovered for the entire spectral range.

  5. Porphyrin-based polymeric nanostructures for light harvesting applications: Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Orellana, Walter

    The capture and conversion of solar energy into electricity is one of the most important challenges to the sustainable development of mankind. Among the large variety of materials available for this purpose, porphyrins concentrate great attention due to their well-known absorption properties in the visible range. However, extended materials like polymers with similar absorption properties are highly desirable. In this work, we investigate the stability, electronic and optical properties of polymeric nanostructures based on free-base porphyrins and phthalocyanines (H2P, H2Pc), within the framework of the time-dependent density functional perturbation theory. The aim of this work is the stability, electronic, and optical characterization of polymeric sheets and nanotubes obtained from H2P and H2Pc monomers. Our results show that H2P and H2Pc sheets exhibit absorption bands between 350 and 400 nm, slightly different that the isolated molecules. However, the H2P and H2Pc nanotubes exhibit a wide absorption in the visible and near-UV range, with larger peaks at 600 and 700 nm, respectively, suggesting good characteristic for light harvesting. The stability and absorption properties of similar structures obtained from ZnP and ZnPc molecules is also discussed. Departamento de Ciencias Físicas, República 220, 037-0134 Santiago, Chile.

  6. Ultrawide Spectral Response of CIGS Solar Cells Integrated with Luminescent Down-Shifting Quantum Dots.

    PubMed

    Jeong, Ho-Jung; Kim, Ye-Chan; Lee, Soo Kyung; Jeong, Yonkil; Song, Jin-Won; Yun, Ju-Hyung; Jang, Jae-Hyung

    2017-08-02

    Conventional Cu(In 1-x ,Ga x )Se 2 (CIGS) solar cells exhibit poor spectral response due to parasitic light absorption in the window and buffer layers at the short wavelength range between 300 and 520 nm. In this study, the CdSe/CdZnS core/shell quantum dots (QDs) acting as a luminescent down-shifting (LDS) layer were inserted between the MgF 2 antireflection coating and the window layer of the CIGS solar cell to improve light harvesting in the short wavelength range. The LDS layer absorbs photons in the short wavelength range and re-emits photons in the 609 nm range, which are transmitted through the window and buffer layer and absorbed in the CIGS layer. The average external quantum efficiency in the parasitic light absorption region (300-520 nm) was enhanced by 51%. The resulting short circuit current density of 34.04 mA/cm 2 and power conversion efficiency of 14.29% of the CIGS solar cell with the CdSe/CdZnS QDs were improved by 4.35 and 3.85%, respectively, compared with those of the conventional solar cells without QDs.

  7. Designing graphene absorption in a multispectral plasmon-enhanced infrared detector

    DOE PAGES

    Goldflam, Michael D.; Fei, Zhe; Ruiz, Isaac; ...

    2017-05-18

    Here, we have examined graphene absorption in a range of graphene-based infrared devices that combine either monolayer or bilayer graphene with three different gate dielectrics. Electromagnetic simulations show that the optical absorption in graphene in these devices, an important factor in a functional graphene-based detector, is strongly dielectric-dependent. Our simulations reveal that plasmonic excitation in graphene can significantly influence the percentage of light absorbed in the entire device, as well as the graphene layer itself, with graphene absorption exceeding 25% in regions where plasmonic excitation occurs. Notably, the dielectric environment of graphene has a dramatic influence on the strength andmore » wavelength range over which the plasmons can be excited, making dielectric choice paramount to final detector tunability and sensitivity.« less

  8. Designing graphene absorption in a multispectral plasmon-enhanced infrared detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldflam, Michael D.; Fei, Zhe; Ruiz, Isaac

    Here, we have examined graphene absorption in a range of graphene-based infrared devices that combine either monolayer or bilayer graphene with three different gate dielectrics. Electromagnetic simulations show that the optical absorption in graphene in these devices, an important factor in a functional graphene-based detector, is strongly dielectric-dependent. Our simulations reveal that plasmonic excitation in graphene can significantly influence the percentage of light absorbed in the entire device, as well as the graphene layer itself, with graphene absorption exceeding 25% in regions where plasmonic excitation occurs. Notably, the dielectric environment of graphene has a dramatic influence on the strength andmore » wavelength range over which the plasmons can be excited, making dielectric choice paramount to final detector tunability and sensitivity.« less

  9. Actively coupled cavity ringdown spectroscopy with low-power broadband sources.

    PubMed

    Petermann, Christian; Fischer, Peer

    2011-05-23

    We demonstrate a coupling scheme for cavity enhanced absorption spectroscopy that makes use of an intracavity acousto-optical modulator to actively switch light into (and out of) a resonator. This allows cavity ringdown spectroscopy (CRDS) to be implemented with broadband nonlaser light sources with spectral power densities of less than 30μW/nm. Although the acousto-optical element reduces the ultimate detection limit by introducing additional losses, it permits absorptivities to be measured with a high dynamic range, especially in lossy environments. Absorption measurements for the forbidden transition of gaseous oxygen in air at ∼760nm are presented using a low-coherence cw-superluminescent diode. The same setup was electronically configured to cover absorption losses from 1.8×10-8cm-1 to 7.5% per roundtrip. This could be of interest in process analytical applications.

  10. Broad band nonlinear optical absorption measurements of the laser dye IR26 using white light continuum Z-scan

    NASA Astrophysics Data System (ADS)

    Dey, Soumyodeep; Bongu, Sudhakara Reddy; Bisht, Prem Ballabh

    2017-03-01

    We study the nonlinear optical response of a standard dye IR26 using the Z-scan technique, but with the white light continuum. The continuum source of wavelength from 450 nm to 1650 nm has been generated from the photonic crystal fiber on pumping with 772 nm of Ti:Sapphire oscillator. The use of broadband incident pulse enables us to probe saturable absorption (SA) and reverse saturable absorption (RSA) over the large spectral range with a single Z-scan measurement. The system shows SA in the resonant region while it turns to RSA in the non-resonant regions. The low saturation intensity of the dye can be explained based on the simultaneous excitation from ground states to various higher energy levels with the help of composite energy level diagram. The cumulative effects of excited state absorption and thermal induced nonlinear optical effects are responsible for the observed RSA.

  11. Strong light absorption capability directed by structured profile of vertical Si nanowires

    NASA Astrophysics Data System (ADS)

    Chaliyawala, Harsh A.; Ray, Abhijit; Pati, Ranjan K.; Mukhopadhyay, Indrajit

    2017-11-01

    Si nanowire arrays (SiNWAs) with random fractal geometry was fabricated using fast, mask-less, non-lithographic and facile approach by incorporating metal assisted electroless etching of n-type Si (111) substrates. The FESEM images demonstrate the formation of nano-porous surfaces that provide effective path for the incoming light to get trapped into the cavity of nanowires. The length of NWs increases from ∼1 to 10 μm with increase in the etching time having a diameter in the range of ∼25-82 nm. A transformation from zero to first order kinetics after a prolonged etching has been determined. The synthesized SiNWAs show high light trapping properties, including a maximum photon absorption across the entire visible and near IR range below the band gap of Si. The SiNWAs etched for 15 min exhibit extremely low specular and total reflectance of ∼0.2% and 4.5%, respectively over a broadband of wavelength. The reduction in the reflection loss is accompanied with the gradient of refractive index from air to Si substrate as well as due to the sub-wavelength structures, which manifests the light scattering effect. The COMSOL multiphysics simulation has been performed to study the high broadband light absorption capability in terms of the strong localized light field confinement by varying the length of the nanowire. Moreover, the SiNWs induces the dewetting ability at the solid/liquid interface and enhances the superhydrophobicity. Furthermore, a maximum length scale of 100-200 nm manifests a strong heterogeneity along the planar section of the surface of SiNWs. The study thus provides an insight on the light propagation into the random fractal geometries of Si nanowires. These outstanding properties should contribute to the structural optimization of various optoelectronic and photonic devices.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, A.M.L.M., E-mail: anmlmc@gmail.com; Marinkovic, B.A.; Suguihiro, N.M.

    In this research nanostructured titanates, containing iron in the structure, were obtained through a single-step alkaline hydrothermal route aiming at reduction of band-gap energy. In the process, a Fe–Ti rich Brazilian mineral sand was mixed with 10 M of NaOH and then submitted to isothermal treatments at temperatures ranging from 110 to 190 °C in an autoclave. The as-obtained products were water-washed and then characterized by transmission electron and scanning transmission electron microscopies, X-ray photoelectron, Mössbauer and diffuse reflectance spectroscopies. Transmission electron microscopy analyses showed a morphological dependence of the product as a function of the temperature, i.e., titanate nanosheetsmore » were predominantly formed at lower temperatures (110 °C–150 °C), while nanoribbons, with some nanosheets and nanoparticles, were the main products at higher temperatures (> 150 °C). Using energy dispersive X-ray it was determined that iron was incorporated into nanosheets. On the other hand, the as-obtained nanoribbons were Fe-free, while iron was principally associated with nanoparticles attached to the nanoribbons. By means of X-ray photoelectron and Mössbauer spectroscopies, it was elucidated that iron adopted Fe{sup 3} {sup +} form in the as-prepared nanosheets, occupying octahedral sites inside the titanate lepidocrocite-like structure. Diffuse reflectance spectroscopy showed a change of absorption pattern from nanosheets to nanoribbon/nanoparticle assembly: nanosheets exhibited high absorption from ultraviolet up to the visible light range, while the nanoribbon/nanoparticle assembly demonstrated a drop in absorption in the visible light range. These results suggest that Fe{sup 3} {sup +} incorporation inside the titanate structure is responsible for enhancing the visible light absorption, making these nanosheets potentially suitable for applications in photoinduced processes. - Highlights: • Mineral sand has been used as the precursor for the synthesis of nanotitanates. • Fe-doped nanotitanates have been prepared in a single step wet chemistry route. • The morphology of the nanometric titanates is a function of the temperature. • Mössbauer spectroscopy reveals Fe{sup 3} {sup +} in octahedral sites inside nanosheets. • The Fe incorporation in nanosheets improved the visible light absorption.« less

  13. Distinctive effects of allochthonous and autochthonous organic matter on CDOM spectra in a tropical lake

    NASA Astrophysics Data System (ADS)

    Pena Mello Brandão, Luciana; Silva Brighenti, Ludmila; Staehr, Peter Anton; Asmala, Eero; Massicotte, Philippe; Tonetta, Denise; Antônio Rodrigues Barbosa, Francisco; Pujoni, Diego; Fernandes Bezerra-Neto, José

    2018-05-01

    Despite the increasing understanding about differences in carbon cycling between temperate and tropical freshwater systems, our knowledge on the importance of organic matter (OM) pools on light absorption properties in tropical lakes is very scarce. We performed a factorial mesocosm experiment in a tropical lake (Minas Gerais, Brazil) to evaluate the effects of increased concentrations of allochthonous and autochthonous OM, and differences in light availability on the light absorption characteristics of chromophoric dissolved organic matter (CDOM). Autochthonous OM deriving from phytoplankton ( ˜ Chl a) was stimulated by addition of nutrients, while OM from degradation of terrestrial leaves increased allochthonous OM, and neutral shading was used to manipulate light availability. Effects of the additions and shading on DOC, Chl a, nutrients, total suspended solid concentrations (TSM) and spectral CDOM absorption were monitored every 3 days. CDOM quality was characterized by spectral indices (S250-450, S275-295, S350-450, SR and SUVA254). Effects of carbon sources and shading on the spectral CDOM absorption was investigated through principal component (PCA) and redundancy (RDA) analyses. The two different OM sources affected CDOM quality very differently and shading had minor effects on OM levels, but significant effects on OM quality, especially in combination with nutrient additions. Spectral indices (S250-450 and SR) were mostly affected by allochthonous OM addition. The PCA showed that enrichment by allochthonous carbon had a strong effect on the CDOM spectra in the range between 300 and 400 nm, while the increase in autochthonous carbon increased absorption at wavelengths below 350 nm. Our study shows that small inputs of allochthonous OM can have large effects on the spectral light absorption compared to large production of autochthonous OM, with important implications for carbon cycling in tropical lakes.

  14. Intense pulse light and 5-ALA PDT: phototoxic effects in vitro depend on the spectral overlap with protoporphyrine IX but do not match cut-off filter notations.

    PubMed

    Maisch, Tim; Moor, Anne C E; Regensburger, Johannes; Ortland, Christoph; Szeimies, Rolf-Markus; Bäumler, Wolfgang

    2011-02-01

    Successful photodynamic therapy (PDT) requires a light source by which light is absorbed by the photosensitizer. Such absorption is achieved by adapting the emission spectrum of the lamp to the absorption-spectrum of the photosensitizer. Intense pulsed light sources (IPLs) are widely used in dermatology, but a standardized protocol for IPL-PDT is not available. Five different IPLs were chosen to evaluate their efficacy for PDT in vitro and the possibility for developing a standard protocol for PDT. Emission-spectra of IPLs were measured with an optical spectrograph and compared with the absorption spectrum of protoporphyrine IX (PpIX). Keratinocytes were incubated with 5-ALA and illuminated with the IPLs. Cell viability was determined for radiant exposures ranging from 0 to 504 J/cm(2) and pulse durations from 8 to 100 milliseconds. A standard LED light source was used as a reference. Cell viability is less effectively reduced by 5-ALA-PDT with IPLs than by a LED light source. Radiant exposures of the five IPLs ranged between 80 and 311 J/cm(2) to achieve the EC(50) value. This value correlated with the spectral overlap of the respective IPL and the absorption-spectrum of PpIX but not with the cut-off filter notations supplied by the manufacturer. All IPLs assessed emit different spectra because of different filter technologies. Different radiant exposures (J/cm(2) ) were necessary to achieve a photodynamic effect with 5-ALA in vitro depending on these spectra similar to the photodynamic effect of the standard LED light source. IPLs may be applicable in clinical PDT but radiant exposure protocols must be separately evaluated for each single IPL despite similar cut-off filter specifications. Such protocols are highly important for clinical practice to avoid a potential mismatch of excitation wavelengths and to prevent photothermal side effects when light intensities of up to hundreds of W/cm(2) are applied. Copyright © 2011 Wiley-Liss, Inc.

  15. Viewer Makes Radioactivity "Visible"

    NASA Technical Reports Server (NTRS)

    Yin, L. I.

    1983-01-01

    Battery operated viewer demonstrates feasibility of generating threedimensional visible light simulations of objects that emit X-ray or gamma rays. Ray paths are traced for two pinhold positions to show location of reconstructed image. Images formed by pinholes are converted to intensified visible-light images. Applications range from radioactivity contamination surveys to monitoring radioisotope absorption in tumors.

  16. Laser Illumination Modality of Photoacoustic Imaging Technique for Prostate Cancer

    NASA Astrophysics Data System (ADS)

    Peng, Dong-qing; Peng, Yuan-yuan; Guo, Jian; Li, Hui

    2016-02-01

    Photoacoustic imaging (PAI) has recently emerged as a promising imaging technique for prostate cancer. But there was still a lot of challenge in the PAI for prostate cancer detection, such as laser illumination modality. Knowledge of absorbed light distribution in prostate tissue was essential since the distribution characteristic of absorbed light energy would influence the imaging depth and range of PAI. In order to make a comparison of different laser illumination modality of photoacoustic imaging technique for prostate cancer, optical model of human prostate was established and combined with Monte Carlo simulation method to calculate the light absorption distribution in the prostate tissue. Characteristic of light absorption distribution of transurethral and trans-rectal illumination case, and of tumor at different location was compared with each other.The relevant conclusions would be significant for optimizing the light illumination in a PAI system for prostate cancer detection.

  17. Geometrical optics, electrostatics, and nanophotonic resonances in absorbing nanowire arrays.

    PubMed

    Anttu, Nicklas

    2013-03-01

    Semiconductor nanowire arrays have shown promise for next-generation photovoltaics and photodetection, but enhanced understanding of the light-nanowire interaction is still needed. Here, we study theoretically the absorption of light in an array of vertical InP nanowires by moving continuously, first from the electrostatic limit to the nanophotonic regime and then to the geometrical optics limit. We show how the absorption per volume of semiconductor material in the array can be varied by a factor of 200, ranging from 10 times weaker to 20 times stronger than in a bulk semiconductor sample.

  18. Light Coupling and Trapping in Ultrathin Cu(In,Ga)Se2 Solar Cells Using Dielectric Scattering Patterns.

    PubMed

    van Lare, Claire; Yin, Guanchao; Polman, Albert; Schmid, Martina

    2015-10-27

    We experimentally demonstrate photocurrent enhancement in ultrathin Cu(In,Ga)Se2 (CIGSe) solar cells with absorber layers of 460 nm by nanoscale dielectric light scattering patterns printed by substrate conformal imprint lithography. We show that patterning the front side of the device with TiO2 nanoparticle arrays results in a small photocurrent enhancement in almost the entire 400-1200 nm spectral range due to enhanced light coupling into the cell. Three-dimensional finite-difference time-domain simulations are in good agreement with external quantum efficiency measurements. Patterning the Mo/CIGSe back interface using SiO2 nanoparticles leads to strongly enhanced light trapping, increasing the efficiency from 11.1% for a flat to 12.3% for a patterned cell. Simulations show that optimizing the array geometry could further improve light trapping. Including nanoparticles at the Mo/CIGSe interface leads to substantially reduced parasitic absorption in the Mo back contact. Parasitic absorption in the back contact can be further reduced by fabricating CIGSe cells on top of a SiO2-patterned In2O3:Sn (ITO) back contact. Simulations show that these semitransparent cells have similar spectrally averaged reflection and absorption in the CIGSe active layer as a Mo-based patterned cell, demonstrating that the absorption losses in the Mo can be partially turned into transmission through the semitransparent geometry.

  19. Laser therapy by noncoherent light field of radiation.

    PubMed

    Djibladze, M I; Melikishvili, Z G; Uchaneishvili, S D

    1997-01-01

    Conducted researches on study of interaction of radiation with blood have shown, that the interaction is the most effective for light with wavelengths in the range of 600-1000 nm that corresponds to the minimum absorption factor of the whole blood. Calculations show, that at interaction of radiation with blood considerably grows effective (electronic) temperature of biological environment, that results in sharp increase of speed of biochemical reactions. The absence of necessity of application of laser radiation coherence in lasertherapy permits to create high efficient noncoherent sources of light on the basis of the GaALAs(Zn) crystals, radiating with two maxima of wavelengths 675 and 900 nm. The radiation spectrum of GaALAs(Zn) crystals falls in the most favourable area of a blood absorption spectrum.

  20. Black TiO2 synthesized via magnesiothermic reduction for enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Wang, Xiangdong; Fu, Rong; Yin, Qianqian; Wu, Han; Guo, Xiaoling; Xu, Ruohan; Zhong, Qianyun

    2018-04-01

    Utilizing solar energy for hydrogen evolution is a great challenge for its insufficient visible-light power conversion. In this paper, we report a facile magnesiothermic reduction of commercial TiO2 nanoparticles under Ar atmosphere and at 550 °C followed by acid treatment to synthesize reduced black TiO2 powders, which possesses a unique crystalline core-amorphous shell structure composed of disordered surface and oxygen vacancies and shows significantly improved optical absorption in the visible region. The unique core-shell structure and high absorption enable the reduced black TiO2 powders to exhibit enhanced photocatalytic activity, including splitting of water in the presence of Pt as a cocatalyst and degradation of methyl blue (MB) under visible light irradiation. Photocatalytic evaluations indicate that the oxygen vacancies play key roles in the catalytic process. The maximum hydrogen production rates are 16.1 and 163 μmol h-1 g-1 under the full solar wavelength range of light and visible light, respectively. This facile and versatile method could be potentially used for large scale production of colored TiO2 with remarkable enhancement in the visible light absorption and solar-driven hydrogen production.

  1. Multi-wavelength Characterization of Brown and Black Carbon from Filter Samples

    NASA Astrophysics Data System (ADS)

    Johnson, M. M.; Yatavelli, R. L. N.; Chen, L. W. A. A.; Gyawali, M. S.; Arnott, W. P.; Wang, X.; Chakrabarty, R. K.; Moosmüller, H.; Watson, J. G.; Chow, J. C.

    2014-12-01

    Particulate matter (PM) scatters and absorbs solar radiation and thereby affects visibility, the Earth's radiation balance, and properties and lifetimes of clouds. Understanding the radiative forcing (RF) of PM is essential to reducing the uncertainty in total anthropogenic and natural RF. Many instruments that measure light absorption coefficients (βabs [λ], Mm-1) of PM have used light at near-infrared (NIR; e.g., 880 nm) or red (e.g., 633 nm) wavelengths. Measuring βabs over a wider wavelength range, especially including the ultraviolet (UV) and visible, allows for contributions from black carbon (BC), brown carbon (BrC), and mineral dust (MD) to be differentiated. This will help to determine PM RF and its emission sources. In this study, source and ambient samples collected on Teflon-membrane and quartz-fiber filters are used to characterize and develop a multi-wavelength (250 - 1000 nm) filter-based measurement method of PM light absorption. A commercially available UV-visible spectrometer coupled with an integrating sphere is used for quantifying diffuse reflectance and transmittance of filter samples, from which βabs and absorption Ǻngström exponents (AAE) of the PM deposits are determined. The filter-based light absorption measurements of laboratory generated soot and biomass burning aerosol are compared to 3-wavelength photoacoustic absorption measurements to evaluate filter media and loading effects. Calibration factors are developed to account for differences between filter types (Teflon-membrane vs. quartz-fiber), and between filters and in situ photoacoustic absorption values. Application of multi-spectral absorption measurements to existing archived filters, including specific source samples (e.g. diesel and gasoline engines, biomass burning, dust), will also be discussed.

  2. EGR distribution and fluctuation probe based on CO2 measurements

    DOEpatents

    Parks, II, James E.; Partridge, Jr., William P.; Yoo, Ji Hyung

    2015-06-30

    A diagnostic system having a laser, an EGR probe, a detector and a processor. The laser may be a swept-.lamda. laser having a sweep range including a significant CO.sub.2 feature and substantially zero absorption regions. The sweep range may extend from about 2.708 .mu.m to about 2.7085 .mu.m. The processor may determine CO.sub.2 concentration as a function of the detector output signal. The processor may normalize the output signal as a function of the zero absorption regions. The system may include a plurality of EGR probes receiving light from a single laser. The system may include a separate detector for each probe. Alternatively, the system may combine the light returning from the different probes into a composite beam that is measured by a single detector. A unique modulation characteristic may be introduced into each light beam before combination so that the processor can discriminate between them in the composite beam.

  3. Impact of one-dimensional photonic crystal back reflector in thin-film c-Si solar cells on efficiency

    NASA Astrophysics Data System (ADS)

    Jalali, Tahmineh

    2018-05-01

    In this work, the effect of one-dimensional photonic crystal on optical absorption, which is implemented at the back side of thin-film crystalline silicon (c-Si) solar cells, is extensively discussed. The proposed structure acts as a Bragg reflector which reflects back light to the active layer as well as nanograting which couples the incident light to enhance optical absorption. To understand the optical mechanisms responsible for the enhancement of optical absorption, quantum efficiency and current density for all structures are calculated and the effect of influential parameters, such as grating period is investigated. The results confirm that our proposed structure have a great deal for substantial efficiency enhancement in a broad range from 400 to 1100 nm.

  4. Computer simulation of selective absorption of radiation by the components of a light-scattering layer

    NASA Astrophysics Data System (ADS)

    Kozakov, O. N.

    2002-10-01

    A method of calculating the partial characteristics of radiation absorption by the components of light-scattering disperse layers is proposed. This method is based on statistical modeling (the Monte Carlo method). The absorptivities of photographic gelatin and silver bromide microcrystals and the corresponding distributions of the absorbed energy over the layer thickness are calculated using the example of an interaction between actinic radiation and silver halide photographic layers in the wavelength range λ=200 440 nm. The following structural parameters of the photographic layer are used in the calculation: the mean size of emulsion crystals d=0.5 μm; the polydispersity C V =25%; the volume concentrations C V =10, 20, and 30%; and the thickness of the emulsion layer H=10 μm.

  5. Laboratory measurement of the absorption coefficient of riboflavin for ultraviolet light (365 nm).

    PubMed

    Iseli, Hans Peter; Popp, Max; Seiler, Theo; Spoerl, Eberhard; Mrochen, Michael

    2011-03-01

    Corneal cross-linking (CXL) is an increasingly used treatment technique for stabilizing the cornea in keratoconus. Cross-linking (polymerization) between collagen fibrils is induced by riboflavin (vitamin B2) and ultraviolet light (365 nm). Although reported to reach a constant value at higher riboflavin concentrations, the Lambert-Beer law predicts a linear increase in the absorption coefficient. This work was carried out to determine absorption behavior at different riboflavin concentrations and to further investigate the purported plateau absorption coefficient value of riboflavin and to identify possible bleaching effects. The Lambert-Beer law was used to calculate the absorption coefficient at various riboflavin concentrations. The following investigated concentrations of riboflavin solutions were prepared using a mixture of 0.5% riboflavin and 20% Dextran T500 dissolved in 0.9% sodium chloride solution: 0%, 0.02%, 0.03%, 0.04%, 0.05%, 0.06%, 0.08%, 0.1%, 0.2%, 0.3%, 0.4%, and 0.5%, and were investigated with and without aperture plate implementation. An additional test series measured the transmitted power at selected riboflavin concentrations over time. In diluted solutions, a linear correlation exists between the absorption coefficient and riboflavin concentration. The absorption coefficient reaches a plateau, but this occurs at a higher riboflavin concentration (0.1%) than previously reported (just above 0.04%). Transmitted light power increases over time, indicating a bleaching effect of riboflavin. The riboflavin concentration can be effectively varied as a treatment parameter in a considerably broader range than previously thought. Copyright 2011, SLACK Incorporated.

  6. Surface-plasmon-enhanced photoluminescence of quantum dots based on open-ring nanostructure array

    NASA Astrophysics Data System (ADS)

    Kannegulla, Akash; Liu, Ye; Cheng, Li-Jing

    2016-03-01

    Enhanced photoluminescence (PL) of quantum dots (QD) in visible range using plasmonic nanostructures has potential to advance several photonic applications. The enhancement effect is, however, limited by the light coupling efficiency to the nanostructures. Here we demonstrate experimentally a new open-ring nanostructure (ORN) array 100 nm engraved into a 200 nm thick silver thin film to maximize light absorption and, hence, PL enhancement at a broadband spectral range. The structure is different from the traditional isolated or through-hole split-ring structures. Theoretical calculations based on FDTD method show that the absorption peak wavelength can be adjusted by their period and dimension. A broadband absorption of about 60% was measured at the peak wavelength of 550 nm. The emission spectrum of CdSe/ZnS core-shell quantum dots was chosen to match the absorption band of the ORN array to enhance its PL. The engraved silver ORN array was fabricated on a silver thin film deposited on a silicon substrate using focus ion beam (FIB) patterning. The device was characterized by using a thin layer of QD water dispersion formed between the ORN substrate and a cover glass. The experimental results show the enhanced PL for the QD with emission spectrum overlapping the absorption band of ORN substrate and quantum efficiency increases from 50% to 70%. The ORN silver substrate with high absorption over a broadband spectrum enables the PL enhancement and will benefit applications in biosensing, wavelength tunable filters, and imaging.

  7. The optical absorption of triatomic carbon C3 for the wavelength range 260 to 560 nm

    NASA Technical Reports Server (NTRS)

    Jones, J. J.

    1978-01-01

    The spectral absorption properties of C3 have been measured in a shock tube containing a test gas mixture of acetylene diluted with argon. The absorption of a pulsed xenon light source was measured by means of eight photomultiplier channels to a spectrograph and an accompanying drum camera. The postshock test gas temperature and pressure were varied over the range 3240 to 4300 K and 37 to 229 kPa, respectively. The results showed appreciable absorption by C3 for the wavelength range 300 to 540 nm. The various reported measurements of the heat of formation of C3 which are available in the open literature were reviewed, and a value of 198 kcal/mol is recommended. This value, along with best available values for other species, was used to calculate the number density of C3 for the conditions of the present experiments in order to compute absorption cross section or electronic oscillator strength. The computed electronic oscillator strength varied from a high of 0.062 at 3300 K to a low of 0.036 at 3900 K.

  8. Single-shot transient absorption spectroscopy with a 45  ps pump-probe time delay range.

    PubMed

    Wilson, Kelly S; Wong, Cathy Y

    2018-02-01

    We report a single-shot transient absorption apparatus that successfully uses a tilted pump pulse to spatially encode a 45 ps pump-probe time delay. The time delay range is significantly improved over other reported instruments by using a spatial light modulator to flatten the intensity of the excitation field at the sample position. The full time delay range of the instrument is demonstrated by measuring a long-lived dye. A signal-to-noise ratio of >35 is attained in 8 s. This advance will enable the measurement of excited state dynamics of systems that are not at structural equilibrium.

  9. The modification of spectral characteristics of cytostatics by optical beams

    NASA Astrophysics Data System (ADS)

    Pascu, Mihail Lucian; Brezeanu, Mihail; Carstocea, Benone D.; Voicu, Letitia; Gazdaru, Doina M.; Smarandache, Adriana A.

    2004-10-01

    Besides the biochemical action of methotrexate (MTX) and 5-fluorouracil (FU) their effect in destroying cancer tumours could be enhanced by exposure to light at different doses. Absorption, excitation and emission spectra of 10-4M - 10-5M MTX solutions in natural saline and sodium hydroxide at pH = 8.4 were measured, while their exposure to coherent and uncoherent light in the visible and near ultraviolet (UV) spectral ranges was made (Hg lamps and Nitrogen pulsed laser radiation were used). Absorption spectra exhibit spectral bands in the range 200 nm - 450 nm. The 200 - 450 nm excitation spectra were measured with emission centered on 470 nm; MTX fluorescence excitation was measured at 390 nm and the emission was detected between 400 nm and 600 nm showing a maximum at 470 nm. Spectra modifications, nonlinearly depending on exposure time (varying from 1 min to 20 min), evidenced MTX photo-dissociation to the fluorescent compound 2,4 diamino-formylpteridine. In the 5-FU case the absorption spectra exhibit bands between 200 nm and 450 nm. The emission fluorescence spectra were measured between 400 nm and 600 nm, with λex = 350 nm for UV Hg lamp and with λex = 360 nm for laser irradiated samples; at irradiation with N2 laser emitted radiation the excitation spectra were measured in the range of 200 nm - 400 nm, with λem = 440 nm. New vascularity rapid destruction was observed for conjunctive impregnated with 5-FU solution whilst exposed to incoherent UV and visible light.

  10. Gamma ray evaluation of fast neutron irradiated on topaz from Sri Lanka by HPGe gamma ray spectrometry

    NASA Astrophysics Data System (ADS)

    Boonsook, K.; Kaewwiset, W.; Limsuwan, P.; Naemchanthara, K.

    2017-09-01

    The purpose of this study was to evaluate the radionuclide concentrations of London blue topaz after fast neutron irradiation. The London blue topaz was obtained from Sri Lanka which classified into dark and light colors in the shape of an oval and rectangle with small, medium and large size. The optical property and radionuclide concentrations of London blue topaz have been examine by UV-Visible spectroscopy and HPGe gamma ray spectrometry, respectively. The UV-absorption spectra of topaz was taken in the range of 300 to 800 nm at room temperature. The results showed that the absorption peak of topaz was observed with only broad peaks in the range of 550 to 700 nm and 630 nm that correlated to the O - center in hydroxyl sites which substitutes for fluorine in topaz structure. The radioactivity of dark and light colors in the shape of an oval and rectangle London blue topaz was in the range of 1.437 ± 0.014 to 21.551 ± 0.037 nCi/g (oval dark), 2.958 ± 0.031 to 6.748 ± 0.054 nCi/g (oval light) and 2.350 ± 0.014 to 43.952 ± 0.088 nCi/g (rectangle dark), 1.442 ± 0.023 to 6.748 ± 0.054 nCi/g (rectangle light), respectively. The decay rates of 46Sc, 182Ta and 54Mn isotopes created by irradiation showed that the decay time of the radioactive element depended on the size of the topaz so increased with decreasing the size of topaz. Moreover, the size of topaz also affect the absorption coefficient. This study is applied to predict time of residue dose of topaz for enhancement colorless topaz by neutron radiation treatment.

  11. Large-scale cauliflower-shaped hierarchical copper nanostructures for efficient photothermal conversion

    NASA Astrophysics Data System (ADS)

    Fan, Peixun; Wu, Hui; Zhong, Minlin; Zhang, Hongjun; Bai, Benfeng; Jin, Guofan

    2016-07-01

    Efficient solar energy harvesting and photothermal conversion have essential importance for many practical applications. Here, we present a laser-induced cauliflower-shaped hierarchical surface nanostructure on a copper surface, which exhibits extremely high omnidirectional absorption efficiency over a broad electromagnetic spectral range from the UV to the near-infrared region. The measured average hemispherical absorptance is as high as 98% within the wavelength range of 200-800 nm, and the angle dependent specular reflectance stays below 0.1% within the 0-60° incident angle. Such a structured copper surface can exhibit an apparent heating up effect under the sunlight illumination. In the experiment of evaporating water, the structured surface yields an overall photothermal conversion efficiency over 60% under an illuminating solar power density of ~1 kW m-2. The presented technology provides a cost-effective, reliable, and simple way for realizing broadband omnidirectional light absorptive metal surfaces for efficient solar energy harvesting and utilization, which is highly demanded in various light harvesting, anti-reflection, and photothermal conversion applications. Since the structure is directly formed by femtosecond laser writing, it is quite suitable for mass production and can be easily extended to a large surface area.Efficient solar energy harvesting and photothermal conversion have essential importance for many practical applications. Here, we present a laser-induced cauliflower-shaped hierarchical surface nanostructure on a copper surface, which exhibits extremely high omnidirectional absorption efficiency over a broad electromagnetic spectral range from the UV to the near-infrared region. The measured average hemispherical absorptance is as high as 98% within the wavelength range of 200-800 nm, and the angle dependent specular reflectance stays below 0.1% within the 0-60° incident angle. Such a structured copper surface can exhibit an apparent heating up effect under the sunlight illumination. In the experiment of evaporating water, the structured surface yields an overall photothermal conversion efficiency over 60% under an illuminating solar power density of ~1 kW m-2. The presented technology provides a cost-effective, reliable, and simple way for realizing broadband omnidirectional light absorptive metal surfaces for efficient solar energy harvesting and utilization, which is highly demanded in various light harvesting, anti-reflection, and photothermal conversion applications. Since the structure is directly formed by femtosecond laser writing, it is quite suitable for mass production and can be easily extended to a large surface area. Electronic supplementary information (ESI) available: XRD patterns of the fs laser structured Cu surface as produced and after the photothermal conversion test, directly measured temperature values on Cu surfaces, temperature rise on Cu surfaces at varied solar irradiation angles, comparison of the white light and IR images of the structured Cu surface with the polished Cu surface, temperature rise on the peripheral zones of the blue coating surface. See DOI: 10.1039/c6nr03662g

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grayson, Katie J.; Faries, Kaitlyn M.; Huang, Xia

    Photosynthesis uses a limited range of the solar spectrum, so enhancing spectral coverage could improve the efficiency of light capture. Here, we show that a hybrid reaction centre (RC)/yellow fluorescent protein (YFP) complex accelerates photosynthetic growth in the bacterium Rhodobacter sphaeroides. The structure of the RC/YFP-light-harvesting 1 (LH1) complex shows the position of YFP attachment to the RC-H subunit, on the cytoplasmic side of the RC complex. Fluorescence lifetime microscopy of whole cells and ultrafast transient absorption spectroscopy of purified RC/YFP complexes show that the YFP–RC intermolecular distance and spectral overlap between the emission of YFP and the visible-region (Qmore » X) absorption bands of the RC allow energy transfer via a Fo¨rster mechanism, with an efficiency of 40±10%. Finally, this proof-of-principle study demonstrates the feasibility of increasing spectral coverage for harvesting light using non-native genetically-encoded light-absorbers, thereby augmenting energy transfer and trapping in photosynthesis.« less

  13. Techniques For Measuring Absorption Coefficients In Crystalline Materials

    NASA Astrophysics Data System (ADS)

    Klein, Philipp H.

    1981-10-01

    Absorption coefficients smaller than 0.001 cm-1 can, with more or less difficulty, be measured by several techniques. With diligence, all methods can be refined to permit measurement of absorption coefficients as small as 0.00001 cm-1. Spectral data are most readily obtained by transmission (spectrophotometric) methods, using multiple internal reflection to increase effective sample length. Emissivity measurements, requiring extreme care in the elimination of detector noise and stray light, nevertheless afford the most accessible spectral data in the 0.0001 to 0.00001 cm-1 range. Single-wavelength informa-tion is most readily obtained with modifications of laser calorimetry. Thermo-couple detection of energy absorbed from a laser beam is convenient, but involves dc amplification techniques and is susceptible to stray-light problems. Photoacoustic detection, using ac methods, tends to diminish errors of these types, but at some expense in experimental complexity. Laser calorimetry has been used for measurements of absorption coefficients as small as 0.000003 cm-1. Both transmission and calorimetric data, taken as functions of intensity, have been used for measurement of nonlinear absorption coefficients.

  14. Polarization-controlled optimal scatter suppression in transient absorption spectroscopy

    PubMed Central

    Malý, Pavel; Ravensbergen, Janneke; Kennis, John T. M.; van Grondelle, Rienk; Croce, Roberta; Mančal, Tomáš; van Oort, Bart

    2017-01-01

    Ultrafast transient absorption spectroscopy is a powerful technique to study fast photo-induced processes, such as electron, proton and energy transfer, isomerization and molecular dynamics, in a diverse range of samples, including solid state materials and proteins. Many such experiments suffer from signal distortion by scattered excitation light, in particular close to the excitation (pump) frequency. Scattered light can be effectively suppressed by a polarizer oriented perpendicular to the excitation polarization and positioned behind the sample in the optical path of the probe beam. However, this introduces anisotropic polarization contributions into the recorded signal. We present an approach based on setting specific polarizations of the pump and probe pulses, combined with a polarizer behind the sample. Together, this controls the signal-to-scatter ratio (SSR), while maintaining isotropic signal. We present SSR for the full range of polarizations and analytically derive the optimal configuration at angles of 40.5° between probe and pump and of 66.9° between polarizer and pump polarizations. This improves SSR by (or compared to polarizer parallel to probe). The calculations are validated by transient absorption experiments on the common fluorescent dye Rhodamine B. This approach provides a simple method to considerably improve the SSR in transient absorption spectroscopy. PMID:28262765

  15. SLOW $pi$$sup +$-MESON CAPTURE BY LIGHT NUCLEI IN THE CORRELATIONAL NUCLEAR MODEL (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shklyarevskii, G.M.

    Absorption of slow pi /sup +/-mesons by light nuclei in the pi /sup +/ + A yields A' + 2p reaction is considered. It is shown that an investigation of the proton spectra permits one to study small range pair correlation between nuclear nucleons. Conditions in which the corresponding experiments should be carried out are indicated. (auth)

  16. Augmenting light coverage for photosynthesis through YFP-enhanced charge separation at the Rhodobacter sphaeroides reaction centre

    DOE PAGES

    Grayson, Katie J.; Faries, Kaitlyn M.; Huang, Xia; ...

    2017-01-05

    Photosynthesis uses a limited range of the solar spectrum, so enhancing spectral coverage could improve the efficiency of light capture. Here, we show that a hybrid reaction centre (RC)/yellow fluorescent protein (YFP) complex accelerates photosynthetic growth in the bacterium Rhodobacter sphaeroides. The structure of the RC/YFP-light-harvesting 1 (LH1) complex shows the position of YFP attachment to the RC-H subunit, on the cytoplasmic side of the RC complex. Fluorescence lifetime microscopy of whole cells and ultrafast transient absorption spectroscopy of purified RC/YFP complexes show that the YFP–RC intermolecular distance and spectral overlap between the emission of YFP and the visible-region (Qmore » X) absorption bands of the RC allow energy transfer via a Fo¨rster mechanism, with an efficiency of 40±10%. Finally, this proof-of-principle study demonstrates the feasibility of increasing spectral coverage for harvesting light using non-native genetically-encoded light-absorbers, thereby augmenting energy transfer and trapping in photosynthesis.« less

  17. Augmenting light coverage for photosynthesis through YFP-enhanced charge separation at the Rhodobacter sphaeroides reaction centre

    PubMed Central

    Grayson, Katie J.; Faries, Kaitlyn M.; Huang, Xia; Qian, Pu; Dilbeck, Preston; Martin, Elizabeth C.; Hitchcock, Andrew; Vasilev, Cvetelin; Yuen, Jonathan M.; Niedzwiedzki, Dariusz M.; Leggett, Graham J.; Holten, Dewey; Kirmaier, Christine; Neil Hunter, C.

    2017-01-01

    Photosynthesis uses a limited range of the solar spectrum, so enhancing spectral coverage could improve the efficiency of light capture. Here, we show that a hybrid reaction centre (RC)/yellow fluorescent protein (YFP) complex accelerates photosynthetic growth in the bacterium Rhodobacter sphaeroides. The structure of the RC/YFP-light-harvesting 1 (LH1) complex shows the position of YFP attachment to the RC-H subunit, on the cytoplasmic side of the RC complex. Fluorescence lifetime microscopy of whole cells and ultrafast transient absorption spectroscopy of purified RC/YFP complexes show that the YFP–RC intermolecular distance and spectral overlap between the emission of YFP and the visible-region (QX) absorption bands of the RC allow energy transfer via a Förster mechanism, with an efficiency of 40±10%. This proof-of-principle study demonstrates the feasibility of increasing spectral coverage for harvesting light using non-native genetically-encoded light-absorbers, thereby augmenting energy transfer and trapping in photosynthesis. PMID:28054547

  18. Augmenting light coverage for photosynthesis through YFP-enhanced charge separation at the Rhodobacter sphaeroides reaction centre

    NASA Astrophysics Data System (ADS)

    Grayson, Katie J.; Faries, Kaitlyn M.; Huang, Xia; Qian, Pu; Dilbeck, Preston; Martin, Elizabeth C.; Hitchcock, Andrew; Vasilev, Cvetelin; Yuen, Jonathan M.; Niedzwiedzki, Dariusz M.; Leggett, Graham J.; Holten, Dewey; Kirmaier, Christine; Neil Hunter, C.

    2017-01-01

    Photosynthesis uses a limited range of the solar spectrum, so enhancing spectral coverage could improve the efficiency of light capture. Here, we show that a hybrid reaction centre (RC)/yellow fluorescent protein (YFP) complex accelerates photosynthetic growth in the bacterium Rhodobacter sphaeroides. The structure of the RC/YFP-light-harvesting 1 (LH1) complex shows the position of YFP attachment to the RC-H subunit, on the cytoplasmic side of the RC complex. Fluorescence lifetime microscopy of whole cells and ultrafast transient absorption spectroscopy of purified RC/YFP complexes show that the YFP-RC intermolecular distance and spectral overlap between the emission of YFP and the visible-region (QX) absorption bands of the RC allow energy transfer via a Förster mechanism, with an efficiency of 40+/-10%. This proof-of-principle study demonstrates the feasibility of increasing spectral coverage for harvesting light using non-native genetically-encoded light-absorbers, thereby augmenting energy transfer and trapping in photosynthesis.

  19. Reaction CH3 + OH studied over the 294-714 K temperature and 1-100 bar pressure ranges.

    PubMed

    Sangwan, Manuvesh; Chesnokov, Evgeni N; Krasnoperov, Lev N

    2012-08-30

    Reaction of methyl radicals with hydroxyl radicals, CH(3) + OH → products (1) was studied using pulsed laser photolysis coupled to transient UV-vis absorption spectroscopy over the 294-714 K temperature and 1-100 bar pressure ranges (bath gas He). Methyl radicals were produced by photolysis of acetone at 193.3 nm. Hydroxyl radicals were generated in reaction of electronically excited oxygen atoms O((1)D), produced in the photolysis of N(2)O at 193.3 nm, with H(2)O. Temporal profiles of CH(3) were recorded via absorption at 216.4 nm using xenon arc lamp and a spectrograph; OH radicals were monitored via transient absorption of light from a dc discharge H(2)O/Ar low pressure resonance lamp at ca. 308 nm. The absolute intensity of the photolysis light inside the reactor was determined by an accurate in situ actinometry based on the ozone formation in the presence of molecular oxygen. The results of this study indicate that the rate constant of reaction 1 is pressure independent within the studied pressure and temperature ranges and has slight negative temperature dependence, k(1) = (1.20 ± 0.20) × 10(-10)(T/300)(-0.49) cm(3) molecule(-1) s(-1).

  20. Impact of long-pass interferential filters on dark current and background light rejection in Silicon Photomultipliers

    NASA Astrophysics Data System (ADS)

    Mazzillo, M.; Sciuto, A.; Libertino, S.; Lombardo, S.; Fallica, G.

    2018-02-01

    There is an increasing interest in using Silicon Photomultipliers (SiPMs) in emerging applications where the detectors have to operate in ambient environment with high sensitivity and fast timing response in combination with narrow bandwidth light emitting sources like LEDs or VCSELs. The need to use large area detectors for optimizing the light collection efficiency, due to the low optical fluxes to be usually detected, imposes the optimization of the SiPM performance in specific wavelength ranges (usually visible or near infrared), to fully exploit the single photon sensitivity of these detectors and not to reduce at the same time their dynamic range. The use of proper optical long-pass filters on the detector's package can represent a suitable way to reach both these targets, through the reduction of environmental light absorption. Here we present the preliminary results obtained from the characterization of n+-p SiPMs with commercial long-pass filters with increasing cut-on wavelength in the range 500 nm-900 nm glued on the top side of the detector's package. The performance of the detectors has been evaluated in terms of dark current variation induced by the use of the filters and background light rejection under the illumination of white fluorescent lamps. The relevant reduction observed in the dark current (up to 90% at 13 V overvoltage) and the consistent reduction of stray light absorption (up to 90% at 3 V overvoltage with a 900 nm cut-on wavelength long-pass filter) are the main characterization results obtained and shown in this paper.

  1. Black thin film silicon

    NASA Astrophysics Data System (ADS)

    Koynov, Svetoslav; Brandt, Martin S.; Stutzmann, Martin

    2011-08-01

    "Black etching" has been proposed previously as a method for the nanoscale texturing of silicon surfaces, which results in an almost complete suppression of reflectivity in the spectral range of absorption relevant for photovoltaics. The method modifies the topmost 150 to 300 nm of the material and thus also is applicable for thin films of silicon. The present work is focused on the optical effects induced by the black-etching treatment on hydrogenated amorphous and microcrystalline silicon thin films, in particular with respect to their application in solar cells. In addition to a strong reduction of the reflectivity, efficient light trapping within the modified thin films is found. The enhancement of the optical absorption due to the light trapping is investigated via photometric measurements and photothermal deflection spectroscopy. The correlation of the texture morphology (characterized via atomic force microscopy) with the optical effects is discussed in terms of an effective medium with gradually varying optical density and in the framework of the theory of statistical light trapping. Photoconductivity spectra directly show that the light trapping causes a significant prolongation of the light path within the black silicon films by up to 15 μm for ˜1 μm thick films, leading to a significant increase of the absorption in the red.

  2. Surface plasmon enhanced SWIR absorption at the ultra n-doped substrate/PbSe nanostructure layer interface

    NASA Astrophysics Data System (ADS)

    Wittenberg, Vladimir; Rosenblit, Michael; Sarusi, Gabby

    2017-08-01

    This work presents simulation results of the plasmon enhanced absorption that can be achieved in the short wavelength infrared (SWIR - 1200 nm to 1800 nm) spectral range at the interface between ultra-heavily doped substrates and a PbSe nanostructure non-epitaxial growth absorbing layer. The absorption enhancement simulated in this study is due to surface plasmon polariton (SPP) excitation at the interface between these ultra-heavily n-doped GaAs or GaN substrates, which are nearly semimetals to SWIR light, and an absorption layer made of PbSe nano-spheres or nano-columns. The ultra-heavily doped GaAs or GaN substrates are simulated as examples, based on the Drude-Lorentz permittivity model. In the simulation, the substrates and the absorption layer were patterned jointly to forma blazed lattice, and then were back-illuminated using SWIR with a central wavelength of 1500 nm. The maximal field enhancement achieved was 17.4 with a penetration depth of 40 nm. Thus, such architecture of an ultra-heavily doped semiconductor and infrared absorbing layer can further increase the absorption due to the plasmonic enhanced absorption effect in the SWIR spectral band without the need to use a metallic layer as in the case of visible light.

  3. Systematic determination of absolute absorption cross-section of individual carbon nanotubes

    PubMed Central

    Liu, Kaihui; Hong, Xiaoping; Choi, Sangkook; Jin, Chenhao; Capaz, Rodrigo B.; Kim, Jihoon; Wang, Wenlong; Bai, Xuedong; Louie, Steven G.; Wang, Enge; Wang, Feng

    2014-01-01

    Optical absorption is the most fundamental optical property characterizing light–matter interactions in materials and can be most readily compared with theoretical predictions. However, determination of optical absorption cross-section of individual nanostructures is experimentally challenging due to the small extinction signal using conventional transmission measurements. Recently, dramatic increase of optical contrast from individual carbon nanotubes has been successfully achieved with a polarization-based homodyne microscope, where the scattered light wave from the nanostructure interferes with the optimized reference signal (the reflected/transmitted light). Here we demonstrate high-sensitivity absorption spectroscopy for individual single-walled carbon nanotubes by combining the polarization-based homodyne technique with broadband supercontinuum excitation in transmission configuration. To our knowledge, this is the first time that high-throughput and quantitative determination of nanotube absorption cross-section over broad spectral range at the single-tube level was performed for more than 50 individual chirality-defined single-walled nanotubes. Our data reveal chirality-dependent behaviors of exciton resonances in carbon nanotubes, where the exciton oscillator strength exhibits a universal scaling law with the nanotube diameter and the transition order. The exciton linewidth (characterizing the exciton lifetime) varies strongly in different nanotubes, and on average it increases linearly with the transition energy. In addition, we establish an empirical formula by extrapolating our data to predict the absorption cross-section spectrum for any given nanotube. The quantitative information of absorption cross-section in a broad spectral range and all nanotube species not only provides new insight into the unique photophysics in one-dimensional carbon nanotubes, but also enables absolute determination of optical quantum efficiencies in important photoluminescence and photovoltaic processes. PMID:24821815

  4. Impact of natural photosensitizer extraction solvent upon light absorbance in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Suhaimi, Suriati; Mohamed Siddick, Siti Zubaidah; Ahmad Hambali, Nor Azura Malini; Retnasamy, Vithyacharan; Abdul Wahid, Mohamad Halim; Mohamad Shahimin, Mukhzeer

    2017-02-01

    Natural pigmentations of Ardisia, Bawang Sabrang, Harum Manis mango, Oxalis Triangularis and Rosella were used to study the general trend in performance of dyes as a photosensitizer in the application of dye-sensitized solar cells (DSSCs) based on optical light absorbance and photoelectrochemical characteristics. From the Ultraviolet-Visible Spectrophotometer with the recorded absorption measurements in the range between 400 nm to 800 nm, the dyes extracted from Rosella and Oxalis Triangularis in water solvent exhibited the conversion efficiency up to 0.68% and 0.67%, respectively. The light absorbance peak for dye extracted from Ardisia, Bawang Sabrang, Oxalis Triangularis and Rosella in water and ethanol solvent resulted in the range between 500 nm to 650 nm, while the Harum Manis mango resulted in the broader spectra in both water and ethanol solvent. The light absorbance spectra of each the dyes shows shifted wavelength spectrum when the extracted dye is adsorbed onto TiO2 film surface that might influenced the absorption of light by TiO2 particle in the visible region. The capabilities of the dyes to absorb light when bonded onto the TiO2 photoanode was found to be significant with the current-voltage conversion of the cell. The results demonstrates just the tip of the vastness of natural dyes' (native to tropical region) feasibility and applicability as a photosensitizer.

  5. Non-destructive plant health sensing using absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Bledsoe, Jim; Manukian, Ara; Pearce, Michael; Weiss, Lee

    1988-01-01

    The sensor group of the 1988 EGM 4001 class, working on NASA's Controlled Ecological Life Support Systems (CELSS) project, investigated many different plant health indicators and the technologies used to test them. The project selected by the group was to measure chlorophyll levels using absorption spectroscopy. The spectrometer measures the amount of chlorophyll in a leaf by measuring the intensity of light of a specific wavelength that is passed through a leaf. The three wavelengths of light being used corresponded to the near-IR absorption peaks of chlorophyll a, chlorophyll b, and chlorophyll-free structures. Experimentation showed that the sensor is indeed measuring levels of chlorophyll a and b and their changes before the human eye can see any changes. The detector clamp causes little damage to the leaf and will give fairly accurate readings on similar locations on a leaf, freeing the clamp from having to remain on the same spot of a leaf for all measurements. External light affects the readings only slightly so that measurements may be taken in light or dark environments. Future designs and experimentation will concentrate on reducing the size of the sensor and adapting it to a wider range of plants.

  6. Models of filter-based particle light absorption measurements

    NASA Astrophysics Data System (ADS)

    Hamasha, Khadeejeh M.

    Light absorption by aerosol is very important in the visible, near UN, and near I.R region of the electromagnetic spectrum. Aerosol particles in the atmosphere have a great influence on the flux of solar energy, and also impact health in a negative sense when they are breathed into lungs. Aerosol absorption measurements are usually performed by filter-based methods that are derived from the change in light transmission through a filter where particles have been deposited. These methods suffer from interference between light-absorbing and light-scattering aerosol components. The Aethalometer is the most commonly used filter-based instrument for aerosol light absorption measurement. This dissertation describes new understanding of aerosol light absorption obtained by the filter method. The theory uses a multiple scattering model for the combination of filter and particle optics. The theory is evaluated using Aethalometer data from laboratory and ambient measurements in comparison with photoacoustic measurements of aerosol light absorption. Two models were developed to calculate aerosol light absorption coefficients from the Aethalometer data, and were compared to the in-situ aerosol light absorption coefficients. The first is an approximate model and the second is a "full" model. In the approximate model two extreme cases of aerosol optics were used to develop a model-based calibration scheme for the 7-wavelength Aethalometer. These cases include those of very strong scattering aerosols (Ammonium sulfate sample) and very absorbing aerosols (kerosene soot sample). The exponential behavior of light absorption in the strong multiple scattering limit is shown to be the square root of the total absorption optical depth rather than linear with optical depth as is commonly assumed with Beer's law. 2-stream radiative transfer theory was used to develop the full model to calculate the aerosol light absorption coefficients from the Aethalometer data. This comprehensive model allows for studying very general cases of particles of various sizes embedded on arbitrary filter media. Application of this model to the Reno Aerosol Optics Study (Laboratory data) shows that the aerosol light absorption coefficients are about half of the Aethalometer attenuation coefficients, and there is a reasonable agreement between the model calculated absorption coefficients at 521 nm and the measured photoacoustic absorption coefficients at 532 nm. For ambient data obtained during the Las Vegas study, it shows that the model absorption coefficients at 521 nm are larger than the photoacoustic coefficients at 532 nm. Use of the 2-stream model shows that particle penetration depth into the filter has a strong influence on the interpretation of filter-based aerosol light absorption measurements. This is likely explanation for the difference found between model results for filter-based aerosol light absorption and those from photoacoustic measurements for ambient and laboratory aerosol.

  7. Effective light absorption and its enhancement factor for silicon nanowire-based solar cell.

    PubMed

    Duan, Zhiqiang; Li, Meicheng; Mwenya, Trevor; Fu, Pengfei; Li, Yingfeng; Song, Dandan

    2016-01-01

    Although nanowire (NW) antireflection coating can enhance light trapping capability, which is generally used in crystal silicon (CS) based solar cells, whether it can improve light absorption in the CS body depends on the NW geometrical shape and their geometrical parameters. In order to conveniently compare with the bare silicon, two enhancement factors E(T) and E(A) are defined and introduced to quantitatively evaluate the efficient light trapping capability of NW antireflective layer and the effective light absorption capability of CS body. Five different shapes (cylindrical, truncated conical, convex conical, conical, and concave conical) of silicon NW arrays arranged in a square are studied, and the theoretical results indicate that excellent light trapping does not mean more light can be absorbed in the CS body. The convex conical NW has the best light trapping, but the concave conical NW has the best effective light absorption. Furthermore, if the cross section of silicon NW is changed into a square, both light trapping and effective light absorption are enhanced, and the Eiffel Tower shaped NW arrays have optimal effective light absorption.

  8. Detection of wavelengths in the visible range using fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Díaz, Leonardo; Morales, Yailteh; Mattos, Lorenzo; Torres, Cesar O.

    2013-11-01

    This paper shows the design and implementation of a fiber optic sensor for detecting and identifying wavelengths in the visible range. The system consists of a diffuse optical fiber, a conventional laser diode 650nm, 2.5mW of power, an ambient light sensor LX1972, a PIC 18F2550 and LCD screen for viewing. The principle used in the detection of the lambda is based on specular reflection and absorption. The optoelectronic device designed and built used the absorption and reflection properties of the material under study, having as active optical medium a bifurcated optical fiber, which is optically coupled to an ambient light sensor, which makes the conversion of light signals to electricas, procedure performed by a microcontroller, which acquires and processes the signal. To verify correct operation of the assembly were utilized the color cards of sewing thread and nail polish as samples for analysis. This optoelectronic device can be used in many applications such as quality control of industrial processes, classification of corks or bottle caps, color quality of textiles, sugar solutions, polymers and food among others.

  9. Laser Radar Study Using Resonance Absorption for Remote Detection Of Air Pollutants

    NASA Technical Reports Server (NTRS)

    Igarashi, Takashi

    1973-01-01

    A laser radar using resonance absorption has an advantage of increased detection range and sensitivity compared with that achieved by Raman or resonance back scattering. In this paper, new laser radar system using resonance absorption is proposed and results obtained from this laser radar system are discussed. NO2, SO2 gas has an absorption spectrum at 4500 A and 3000 A respectively as shown in Fig. 1. A laser light including at least a set of an absorption peak (lambda)1 and a valley (lambda)2 is emitted into a pollutant atmosphere. The light reflected with a topographical reflector or an atmospheric Mie scattering as distributed reflectors is received and divided into two wavelength components (lambda)1 and (lambda)2. The laser radar system used in the investigation is shown in Fig', 2 and consists of a dye laser transmitter, an optical receiver with a special monochrometer and a digital processer. Table 1 shows the molecular constants of NO2, and SO2 and the dye laser used in this experiment. In this system, the absolute concentration of the pollutant gas can be measured in comparison with a standard gas cell. The concentration of NO2, SO2 as low as 0.1 ppm have been measured at 100 m depth resolution. For a 1 mJ laser output, the observable range of this system achieved up to 300 m using the distributed Mie reflector. The capability and technical limitation of the system will be discussed in detail.

  10. Spectral changes induced by pH variation of aqueous extracts derived from biomass burning aerosols: Under dark and in presence of simulated sunlight irradiation

    NASA Astrophysics Data System (ADS)

    Cai, Jing; Zhi, Guorui; Yu, Zhiqiang; Nie, Peng; Gligorovski, Sasho; Zhang, Yuzhe; Zhu, Like; Guo, Xixiang; Li, Pei; He, Tan; He, Youjiang; Sun, Jianzhong; Zhang, Yang

    2018-07-01

    Water soluble organic carbon (WSOC) can significantly influence the aerosol optical properties and the aqueous phase chemistry in cloudwater, fogwater and aerosol liquid water. Here, we examine how the changing pH (in acidic range) affects the absorption spectra of aqueous extracts from field biomass burning aerosols, under dark conditions and in presence of simulated sunlight illumination. The observation under dark conditions indicates that pH variation from 2 to 5 induces significantly enhanced light absorbance in the wavelength ranges of 235-270 nm and 300-550 nm, whereas the light absorbance decreased in the range of 270-300 nm, which might be partially ascribed to the deprotonation of carboxylic acids and phenols. During the extract photolysis, light absorption exhibits photo-bleaching below 380 nm and photo-enhancement above 380 nm, indicating that at acidic levels (pH = 2-5), the particle extracts could undergo a significant composition evolution leading to a modification of absorptive properties. Meanwhile, after 12 h-photolysis, the acidity ([H+]) normalized by WSOC concentration in aqueous extracts ([WSOCae]) increased with a variation of Δ[H+]/[WSOCae]=(3.7 ± 0.7) × 10-7 mol mgC-1 (mean ± standard deviation), suggesting the formation of new acidic substances. Although these findings were acquired in aqueous solutions more relevant to cloud and fog water, the similar evolution likely occurs in wetted aerosols. This calls more attention to the effect of acidity on the wetted aerosols in order to better estimate the aerosol radiative forcing.

  11. Design and performance of 10-Gb/s L-band REAM-SOA for OLT Transmitter in next generation access networks.

    PubMed

    Lee, Dong-Hun; Jeong, Jong Sool; Kim, Ki-Soo; Kim, Hyun-Soo; Kim, Dong Churl; Park, Mi-Ran; Han, Yong-Tak; Kwon, Oh Kee; Kwon, O-Kyun

    2015-02-09

    We present a 10-Gb/s L-band reflective electro-absorption modulator integrated with a semiconductor optical amplifier (REAM-SOA) having improved transmission performance at very low input power of seed light. To decrease the input power of seed light, the absorption characteristics of the REAM are adjusted to reduce the amplified spontaneous emission light returned into the SOA, suppressing the gain saturation effect of the SOA. At a considerably low input power of -16 dBm, the REAM-SOA exhibits a low transmission penalty of about 1.2 dB after 50-km SMF transmission. Over a wide input power range from -16 dBm to 5 dBm, a penalty of less than 1.6 dB is achieved at 50-km transmission.

  12. In situ optical measurements of bacterial endospore breakdown in a shock tube

    NASA Astrophysics Data System (ADS)

    McCartt, A. D.; Gates, S.; Lappas, P.; Jeffries, J. B.; Hanson, R. K.

    2012-03-01

    The interaction of endospore-laden bioaerosols and shock waves is monitored with a combination of laser absorption and scattering. Tests are performed in the Stanford aerosol shock tube for post-shock temperatures ranging from 400-1100 K. In situ laser measurements at 266 and 665 nm provide a real-time monitor of endospore morphology. Scatter of visible light measures the integrity of endospore structure, while absorption of UV light provides a monitor of biochemicals released by endospore rupture. For post-shock temperatures greater than 750 K endospore morphological breakdown is observed. A simple theoretical model is employed to quantify the optical measurements, and mechanisms leading to the observed data are discussed.

  13. Rapid Three-Dimensional Printing in Water Using Semiconductor-Metal Hybrid Nanoparticles as Photoinitiators.

    PubMed

    Pawar, Amol Ashok; Halivni, Shira; Waiskopf, Nir; Ben-Shahar, Yuval; Soreni-Harari, Michal; Bergbreiter, Sarah; Banin, Uri; Magdassi, Shlomo

    2017-07-12

    Additive manufacturing processes enable fabrication of complex and functional three-dimensional (3D) objects ranging from engine parts to artificial organs. Photopolymerization, which is the most versatile technology enabling such processes through 3D printing, utilizes photoinitiators that break into radicals upon light absorption. We report on a new family of photoinitiators for 3D printing based on hybrid semiconductor-metal nanoparticles. Unlike conventional photoinitiators that are consumed upon irradiation, these particles form radicals through a photocatalytic process. Light absorption by the semiconductor nanorod is followed by charge separation and electron transfer to the metal tip, enabling redox reactions to form radicals in aerobic conditions. In particular, we demonstrate their use in 3D printing in water, where they simultaneously form hydroxyl radicals for the polymerization and consume dissolved oxygen that is a known inhibitor. We also demonstrate their potential for two-photon polymerization due to their giant two-photon absorption cross section.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Fei; Gao, Jie; Luk, Ting S.

    Subwavelength structural color filtering and printing technologies employing plasmonic nanostructures have recently been recognized as an important and beneficial complement to the traditional colorant-based pigmentation. However, the color saturation, brightness and incident angle tolerance of structural color printing need to be improved to meet the application requirement. Here we demonstrate a structural color printing method based on plasmonic metasurfaces of perfect light absorption to improve color performances such as saturation and brightness. Thin-layer perfect absorbers with periodic hole arrays are designed at visible frequencies and the absorption peaks are tuned by simply adjusting the hole size and periodicity. Near perfectmore » light absorption with high quality factors are obtained to realize high-resolution, angle-insensitive plasmonic color printing with high color saturation and brightness. Moreover, the fabricated metasurfaces can be protected with a protective coating for ambient use without degrading performances. The demonstrated structural color printing platform offers great potential for applications ranging from security marking to information storage.« less

  15. Structural studies on serum albumins under green light irradiation.

    PubMed

    Comorosan, Sorin; Polosan, Silviu; Popescu, Irinel; Ionescu, Elena; Mitrica, Radu; Cristache, Ligia; State, Alina Elena

    2010-10-01

    This paper presents two new experimental results: the protective effect of green light (GL) on ultraviolet (UV) denaturation of proteins, and the effect of GL on protein macromolecular structures. The protective effect of GL was revealed on two serum albumins, bovine (BSA) and human (HSA), and recorded by electrophoresis, absorption, and circular dichroism spectra. The effect of GL irradiation on protein structure was recorded by using fluorescence spectroscopy and electrophoresis. These new effects were modeled by quantum-chemistry computation using Gaussian 03 W, leading to good fit between theoretical and experimental absorption and circular dichroism spectra. A mechanism for these phenomena is suggested, based on a double-photon absorption process. This nonlinear effect may lead to generation of long-lived Rydberg macromolecular systems, capable of long-range interactions. These newly suggested systems, with macroscopic quantum coherence behaviors, may block the UV denaturation processes.

  16. Growth, properties, and applications of potassium niobate single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizell, G.; Fay, W.R.; Alekel, T. III

    1994-12-31

    Production refinements and pragmatic optical properties of the frequency converter crystal KNbO{sub 3} (KN) are highlighted regarding its commercialization. The growth, morphological orientation, and processing of KN crystals into devices are outlined. Passive absorption data are presented that define the effective window range for KN devices. An absorption band at 2.85 {mu}m is attributed to the presence of OH groups in the crystal, and its vibrational strength varies with crystal growth conditions and incident polarized light orientation. Although blue light induced infrared absorption (BLIRA) can reduce second harmonic generation (SHG) efficiency at high power, single-pass conversion efficiencies of 1%/W{center_dot}cm maymore » be achieved with incident fundamental powers of 10 W. The ability of KN to non-critically phasematch by temperature tuning provides blue-green wavelengths; together with critical angle-tuned phasematching, the entire visible spectrum may be accessed with efficient SHG conversion.« less

  17. Superior plasmon absorption in iron-doped gold nanoparticles.

    PubMed

    Amendola, Vincenzo; Saija, Rosalba; Maragò, Onofrio M; Iatì, Maria Antonia

    2015-05-21

    Although the excitation of localized surface plasmons is associated with enhanced scattering and absorption of incoming photons, only the latter is relevant for the efficient conversion of light into heat. Here we show that the absorption cross section of gold nanoparticles is sensibly increased when iron is included in the lattice as a substitutional dopant, i.e. in a gold-iron nanoalloy. Such an increase is size and shape dependent, with the best performance observed in nanoshells where a 90-190% improvement is found in a size range that is crucial for practical applications. Our findings are unexpected according to the common belief and previous experimental observations that alloys of Au with transition metals show a depressed plasmonic response. These results are promising for the design of efficient plasmonic converters of light into heat and pave the way to more in-depth investigations of the plasmonic properties in noble metal nanoalloys.

  18. Parameterization of light absorption by components of seawater in optically complex coastal waters of the Crimea Peninsula (Black Sea).

    PubMed

    Dmitriev, Egor V; Khomenko, Georges; Chami, Malik; Sokolov, Anton A; Churilova, Tatyana Y; Korotaev, Gennady K

    2009-03-01

    The absorption of sunlight by oceanic constituents significantly contributes to the spectral distribution of the water-leaving radiance. Here it is shown that current parameterizations of absorption coefficients do not apply to the optically complex waters of the Crimea Peninsula. Based on in situ measurements, parameterizations of phytoplankton, nonalgal, and total particulate absorption coefficients are proposed. Their performance is evaluated using a log-log regression combined with a low-pass filter and the nonlinear least-square method. Statistical significance of the estimated parameters is verified using the bootstrap method. The parameterizations are relevant for chlorophyll a concentrations ranging from 0.45 up to 2 mg/m(3).

  19. Helium broadened propane absorption cross sections in the far-IR

    NASA Astrophysics Data System (ADS)

    Wong, A.; Billinghurst, B.; Bernath, P. F.

    2017-09-01

    Infrared absorption spectra for pure and He broadened propane have been recorded in the far-IR region (650-1300 cm-1) at the Canadian Light Source (CLS) facility using either the synchrotron or internal glowbar source depending on the required resolution. The measurements were made for 4 temperatures in the range 202-292 K and for 3 pressures of He broadening gas up to 100 Torr. Infrared absorption cross sections are derived from the spectra and the integrated cross sections are within 10 % of the corresponding values from the Pacific Northwest National Laboratory (PNNL) for all temperatures and pressures.

  20. Investigating the variability in brown carbon light-absorption properties

    NASA Astrophysics Data System (ADS)

    Saleh, R.; Cheng, Z.; Atwi, K.

    2017-12-01

    Combustion of biomass fuels contributes a significant portion of brown carbon (BrC), the light-absorbing fraction of organic aerosols. BrC exhibits highly variable light-absorption properties, with imaginary part of the refractive indices (k) reported in the literature varying over two orders of magnitude. This high variability in k is attributed to the chaotic nature of combustion; however, there is a major gap in the fundamental understanding of this variability. To address this gap, we hypothesize that BrC is comprised of black carbon (BC) precursors whose transformation to BC has not seen fruition. Depending on the combustion conditions, these BC precursors exhibit different maturity levels which dictate their light-absorption properties (k). The more mature are the precursors, the more absorptive (or BC-like) they are. Therefore, k of BrC obtained from a certain measurement depends on the specific combustion conditions associated with the measurement, leading to the aforementioned variability in the literature. To test this hypothesis, we performed controlled combustion experiments in which the combustion conditions (temperature and air/fuel ratio) were varied and k was retrieved from real-time multi-wavelength light-absorption measurements at each condition. We used benzene, the inception of which during combustion is the initial critical step leading to BC formation, as a model fuel. By varying the combustion conditions from relatively inefficient (low temperature and/or air/fuel ratio) to relatively efficient (high temperature and/or air/fuel ratio), we isolated BrC components with progressively increasing k, spanning the wide range reported in the literature. We also performed thermodenuder measurements to constrain the volatility of the BrC, as well as laser desorption ionization mass spectrometry analysis to constrain its molecular mass. We found that as the combustion conditions approached the BC-formation threshold, the increase in k was associated with an increase in molecular mass and decrease in volatility. This confirms our hypothesis, since the BC precursors are expected to grow in size and become less volatile as they mature. These results provide the first correlation between the BrC physical, chemical, and consequent light-absorption properties.

  1. Photo-ignition process of multiwall carbon nanotubes and ferrocene by continuous wave Xe lamp illumination.

    PubMed

    Visconti, Paolo; Primiceri, Patrizio; Longo, Daniele; Strafella, Luciano; Carlucci, Paolo; Lomascolo, Mauro; Cretì, Arianna; Mele, Giuseppe

    2017-01-01

    This work aims to investigate and characterize the photo-ignition phenomenon of MWCNT/ferrocene mixtures by using a continuous wave (CW) xenon (Xe) light source, in order to find the power ignition threshold by employing a different type of light source as was used in previous research (i.e., pulsed Xe lamp). The experimental photo-ignition tests were carried out by varying the weight ratio of the used mixtures, luminous power, and wavelength range of the incident Xe light by using selective optical filters. For a better explanation of the photo-induced ignition process, the absorption spectra of MWCNT/ferrocene mixtures and ferrocene only were obtained. The experimental results show that the luminous power (related to the entire spectrum of the Xe lamp) needed to trigger the ignition of MWCNT/ferrocene mixtures decreases with increasing metal nanoparticles content according to previously published results when using a different type of light source (i.e., pulsed vs CW Xe light source). Furthermore, less light power is required to trigger photo-ignition when moving towards the ultraviolet (UV) region. This is in agreement with the measured absorption spectra, which present higher absorption values in the UV-vis region for both MWCNT/ferrocene mixtures and ferrocene only diluted in toluene. Finally, a chemo-physical interpretation of the ignition phenomenon is proposed whereby ferrocene photo-excitation, due to photon absorption, produces ferrocene itself in its excited form and is thus capable of promoting electron transfer to MWCNTs. In this way, the resulting radical species, FeCp2 +∙ and MWCNT - , easily react with oxygen giving rise to the ignition of MWCNT/ferrocene samples.

  2. Photo-ignition process of multiwall carbon nanotubes and ferrocene by continuous wave Xe lamp illumination

    PubMed Central

    Primiceri, Patrizio; Longo, Daniele; Strafella, Luciano; Carlucci, Paolo; Lomascolo, Mauro; Cretì, Arianna; Mele, Giuseppe

    2017-01-01

    This work aims to investigate and characterize the photo-ignition phenomenon of MWCNT/ferrocene mixtures by using a continuous wave (CW) xenon (Xe) light source, in order to find the power ignition threshold by employing a different type of light source as was used in previous research (i.e., pulsed Xe lamp). The experimental photo-ignition tests were carried out by varying the weight ratio of the used mixtures, luminous power, and wavelength range of the incident Xe light by using selective optical filters. For a better explanation of the photo-induced ignition process, the absorption spectra of MWCNT/ferrocene mixtures and ferrocene only were obtained. The experimental results show that the luminous power (related to the entire spectrum of the Xe lamp) needed to trigger the ignition of MWCNT/ferrocene mixtures decreases with increasing metal nanoparticles content according to previously published results when using a different type of light source (i.e., pulsed vs CW Xe light source). Furthermore, less light power is required to trigger photo-ignition when moving towards the ultraviolet (UV) region. This is in agreement with the measured absorption spectra, which present higher absorption values in the UV–vis region for both MWCNT/ferrocene mixtures and ferrocene only diluted in toluene. Finally, a chemo-physical interpretation of the ignition phenomenon is proposed whereby ferrocene photo-excitation, due to photon absorption, produces ferrocene itself in its excited form and is thus capable of promoting electron transfer to MWCNTs. In this way, the resulting radical species, FeCp2+∙ and MWCNT−, easily react with oxygen giving rise to the ignition of MWCNT/ferrocene samples. PMID:28144572

  3. Optical absorption of carbon and hydrocarbon species from shock heated acetylene and methane in the 135-220 nm wavelength range

    NASA Technical Reports Server (NTRS)

    Shinn, J. L.

    1981-01-01

    Absorption spectroscopy of carbon and hydrocarbon species has been performed in a shock tube at an incident shock condition for a wavelength range of 135-220 nm, in order to obtain information needed for calculating radiation blockage ahead of a planetary probe. Instrumentation consisted of high frequency response pressure transducers, thin-film heat transfer gages, or photomultipliers coupled by light pipes. Two test-gas mixtures, one with acetylene and the other with methane, both diluted with argon, were used to provide a reliable variation of C3 and C2H concentration ratio. Comparison of tests results of the two mixtures, in the temperature range of 3750 + or - 100 K, showed the main absorbing species to be C3. The wavelength for maximum absorption agrees well with the theoretical values of 7.68 eV and 8.03 eV for the vertical excitation energy, and a value of 0.90 for the electronic oscillator strength, obtained from the measured absorption band, is also in good agreement with the predicted value of 0.92.

  4. Optical properties of cytostatic drugs used in cancer treatment

    NASA Astrophysics Data System (ADS)

    Pascu, Mihail-Lucian; Mogos, Ioan; Enescu, Mironel; Staicu, Angela; Truica, Sorina; Voicu, Letitia; Gazdaru, Doina M.; Pascu, Mihaela O.; Radu, Alina

    2001-10-01

    A spectroscopical characterization of methotrexate, cytostatic drug used frequently in cancer therapy, was performed. The absorption, emission and excitation spectra were measured for methotrexate solutions in natural saline and sodium hydroxide at concentration in the range 10-5 M -10-6 M and pH 8.4. The absorption bands are noticed in the spectral range 250 nm - 450 nm. The fluorescence excitation was made at 340 nm and 370 nm; the fluorescence emission was detected in the spectral range 400 nm - 500 nm with a maximum at 450 nm. The behavior of absorption and fluorescence spectra of methotrexate solution exposed to uv-visible light was investigated. The irradiation was made using an Xe lamp (emission between 325 nm and 420 nm and power density of 11 mW/cm2). The exposure time was between 15 min. and 3 h. Major modifications on absorption bands for irradiation times longer than 1 hour were observed. Furthermore, the methotrexate solutions become strongly fluorescent after irradiation. The observed changes are not linear with the exposure time indicating complex photochemical processes which implies, at least, one intermediate product.

  5. Petawatt laser absorption bounded

    PubMed Central

    Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.

    2014-01-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials. PMID:24938656

  6. Contribution of particulate brown carbon to light absorption in the rural and urban Southeast US

    NASA Astrophysics Data System (ADS)

    Devi, J. Jai; Bergin, Michael H.; Mckenzie, Michael; Schauer, James J.; Weber, Rodney J.

    2016-07-01

    Measurements of wavelength dependent aerosol light absorption coefficients were carried out as part of the Southern Oxidant and Aerosol Study (SOAS) during the summer of 2013 to determine the contribution of light absorbing organic carbon (BrC) to total aerosol light absorption in a rural location (Centreville, AL) and an urban area (Atlanta, GA). The light absorption coefficients in the near UV and visible wavelengths were measured for both ambient air, as well as ambient air heated in a thermal denuder to 200 °C to remove the semi-volatile organic compounds. Atlanta measurements show dominance of semi-volatile brown carbon with an average absorption angstrom exponent (AAE) of 1.4 before heating and about 1.0 after heating. In urban Atlanta, a decrease of about ∼35% in the light absorption coefficient at 370 nm after heating indicates that light absorbing organic compounds are a substantial fraction of the light absorption budget. Furthermore, a considerable increase in the fraction of light absorption by the semi-volatile aerosol occurs during the daytime, likely linked with photochemistry. Measurements at rural Centerville, on the other hand, do not show any major change in AAE with values before and after heating of 0.99 and 0.98, respectively. Overall the results suggest that photochemical aged urban emissions result in the presence of light absorbing BrC, while at rural locations which are dominated by aged aerosol and local biogenic emissions (based on measurements of Angstrom exponents) BrC does not significantly contribute to light absorption.

  7. Molecular Characterization of Brown Carbon in Biomass Burning Aerosol Particles.

    PubMed

    Lin, Peng; Aiona, Paige K; Li, Ying; Shiraiwa, Manabu; Laskin, Julia; Nizkorodov, Sergey A; Laskin, Alexander

    2016-11-01

    Emissions from biomass burning are a significant source of brown carbon (BrC) in the atmosphere. In this study, we investigate the molecular composition of freshly emitted biomass burning organic aerosol (BBOA) samples collected during test burns of sawgrass, peat, ponderosa pine, and black spruce. We demonstrate that both the BrC absorption and the chemical composition of light-absorbing compounds depend significantly on the type of biomass fuels. Common BrC chromophores in the selected BBOA samples include nitro-aromatics, polycyclic aromatic hydrocarbon derivatives, and polyphenols spanning a wide range of molecular weights, structures, and light absorption properties. A number of biofuel-specific BrC chromophores are observed, indicating that some of them may be used as source-specific markers of BrC. On average, ∼50% of the light absorption in the solvent-extractable fraction of BBOA can be attributed to a limited number of strong BrC chromophores. The absorption coefficients of BBOA are affected by solar photolysis. Specifically, under typical atmospheric conditions, the 300 nm absorbance decays with a half-life of ∼16 h. A "molecular corridor" analysis of the BBOA volatility distribution suggests that many BrC compounds in the fresh BBOA have low saturation mass concentration (<1 μg m -3 ) and will be retained in the particle phase under atmospherically relevant conditions.

  8. Exploring the effective photon management by InP nanoparticles: Broadband light absorption enhancement of InP/In{sub 0.53}Ga{sub 0.47}As/InP thin-film photodetectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Dong; Zhu, Xi; Li, Jian

    2015-05-28

    High-index dielectric and semiconductor nanoparticles with the characteristics of low absorption loss and strong scattering have attracted more and more attention for improving performance of thin-film photovoltaic devices. In this paper, we focus our attention on InP nanoparticles and study the influence of the substrate and the geometrical configurations on their scattering properties. We demonstrate that, compared with the InP sphere, the InP cylinder has higher coupling efficiency due to the stronger interactions between the optical mode in the nanoparticle and its induced mirror image in the substrate. Moreover, we propose novel thin-film InGaAs photodetectors integrated with the periodically arrangedmore » InP nanoparticles on the substrate. Broadband light absorption enhancement is achieved over the wavelength range between 1.0 μm and 1.7 μm. The highest average absorption enhancement of 59.7% is realized for the photodetector with the optimized cylinder InP nanoparticles. These outstanding characteristics attribute to the preferentially forward scattering of single InP nanoparticle along with the effective coupling of incident light into the guided modes through the collective diffraction effect of InP nanoparticles array.« less

  9. Photothermal effects from Au-Cu2O core-shell nanocubes, octahedra, and nanobars with broad near-infrared absorption tunability

    NASA Astrophysics Data System (ADS)

    Wang, Hsiang-Ju; Yang, Kung-Hsun; Hsu, Shih-Chen; Huang, Michael H.

    2015-12-01

    Other than the display of purely optical phenomenon, the recently-discovered facet-dependent optical properties of metal-Cu2O nanocrystals have become useful by illuminating Au-Cu2O nanocubes and octahedra having a surface plasmon resonance (SPR) absorption band in the near-infrared (NIR) region from octahedral Au cores with 808 nm light for heat generation. After 5 min of light irradiation, a solution of Au-Cu2O nanocubes can reach 65 °C with their Au SPR band matching the illuminating light wavelength. Photothermal efficiency has been found to be facet-dependent. In addition, short gold nanorods were employed to synthesize {100}-bound rectangular Au-Cu2O nanobars with a tunable longitudinal Au SPR absorption band covering a broad NIR range from ~1050 to 1400 nm. Because the Au SPR bands can become fixed with relatively thin Cu2O shells of less than 15 nm, ultrasmall nanobars having a size of 61 nm directly red-shift the Au SPR band to 1047 nm. And 73 nm nanobars can give a Au SPR band at 1390 nm. Truncated nanobars exposing {100}, {110}, and {111} facets give a very blue-shifted Au SPR band. The nanobars also exhibit photothermal activity when illuminated by 1064 nm light. These small Au-Cu2O nanocrystals represent the simplest nanostructure design to absorb light covering the entire NIR wavelengths.Other than the display of purely optical phenomenon, the recently-discovered facet-dependent optical properties of metal-Cu2O nanocrystals have become useful by illuminating Au-Cu2O nanocubes and octahedra having a surface plasmon resonance (SPR) absorption band in the near-infrared (NIR) region from octahedral Au cores with 808 nm light for heat generation. After 5 min of light irradiation, a solution of Au-Cu2O nanocubes can reach 65 °C with their Au SPR band matching the illuminating light wavelength. Photothermal efficiency has been found to be facet-dependent. In addition, short gold nanorods were employed to synthesize {100}-bound rectangular Au-Cu2O nanobars with a tunable longitudinal Au SPR absorption band covering a broad NIR range from ~1050 to 1400 nm. Because the Au SPR bands can become fixed with relatively thin Cu2O shells of less than 15 nm, ultrasmall nanobars having a size of 61 nm directly red-shift the Au SPR band to 1047 nm. And 73 nm nanobars can give a Au SPR band at 1390 nm. Truncated nanobars exposing {100}, {110}, and {111} facets give a very blue-shifted Au SPR band. The nanobars also exhibit photothermal activity when illuminated by 1064 nm light. These small Au-Cu2O nanocrystals represent the simplest nanostructure design to absorb light covering the entire NIR wavelengths. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06847a

  10. Sculpting with light: Light/matter interactions in biocompatible polymers

    NASA Astrophysics Data System (ADS)

    Applegate, Matthew B.

    When light interacts with matter either the light or the material can be changed. This dissertation focuses on light/matter interaction in silk fibroin and its utility for biomedical applications. Silk, a natural biocompatible, biodegradable polymer, has a large 3-photon absorption cross-section which allows modest peak intensity light to cause significant multiphoton absorption. This absorption allows voids to be formed with three dimensional control within soft, transparent silk hydrogels. A theoretical model of the void formation process is developed to allow the size of the voids to be predicted for a range of laser and sample parameters. Arbitrary 3D patterns are created in silk gels that allow cells to penetrate into the bulk of the gel both in vitro and in vivo. To explore how silk can be used to alter light, the creation of step-index optical waveguides, formed by encapsulating a silk film within a silk hydrogel, is described. These waveguides allow light to be delivered to targets through several centimeters of highly scattering biological tissue. Finally, the interaction of light with riboflavin is used to photocrosslink silk to form solid structures, rather than voids. The mechanism of crosslinking to be driven by radicalized tyrosine residues resulting in the formation of dityrosine bonds which lead to the gelation of a liquid silk solution. Riboflavin is a versatile photoinitiator and can be used to crosslink collagen as well as silk, which allows silk to be crosslinked directly to corneal collagen. When applied to the eye, an artificial corneal layer is formed which has the potential to treat various corneal diseases and allow for risk-free laser vision correction. These studies show the versatility of light-based processing of silk for a wide variety of medical applications.

  11. Two-dimensional wide-band-gap nitride semiconductors: Single-layer 1 T -X N2 (X =S ,Se , and Te )

    NASA Astrophysics Data System (ADS)

    Lin, Jia-He; Zhang, Hong; Cheng, Xin-Lu; Miyamoto, Yoshiyuki

    2016-11-01

    Recently, the two-dimensional (2D) semiconductors arsenene and antimonene, with band gaps larger than 2.0 eV, have attracted tremendous interest, especially for potential applications in optoelectronic devices with a photoresponse in the blue and UV range. Motivated by this exciting discovery, types of highly stable wide-band-gap 2D nitride semiconductors were theoretically designed. We propose single-layer 1 T -X N2 (X =S , Se, and Te) via first-principles simulations. We compute 1 T -X N2 (X =S , Se, and Te) with indirect band gaps of 2.825, 2.351, and 2.336 eV, respectively. By applying biaxial strain, they are able to induce the transition from a wide-band-gap semiconductor to a metal, and the range of absorption spectra of 1 T -X N2 (X =S , Se, and Te) obviously extend from the ultraviolet region to the blue-purple light region. With an underlying graphene, we find that 1 T -X N2 can completely shield the light absorption of graphene in the range of 1-1.6 eV. Our research paves the way for optoelectronic devices working under blue or UV light, and mechanical sensors based on these 2D crystals.

  12. Large-scale cauliflower-shaped hierarchical copper nanostructures for efficient photothermal conversion.

    PubMed

    Fan, Peixun; Wu, Hui; Zhong, Minlin; Zhang, Hongjun; Bai, Benfeng; Jin, Guofan

    2016-08-14

    Efficient solar energy harvesting and photothermal conversion have essential importance for many practical applications. Here, we present a laser-induced cauliflower-shaped hierarchical surface nanostructure on a copper surface, which exhibits extremely high omnidirectional absorption efficiency over a broad electromagnetic spectral range from the UV to the near-infrared region. The measured average hemispherical absorptance is as high as 98% within the wavelength range of 200-800 nm, and the angle dependent specular reflectance stays below 0.1% within the 0-60° incident angle. Such a structured copper surface can exhibit an apparent heating up effect under the sunlight illumination. In the experiment of evaporating water, the structured surface yields an overall photothermal conversion efficiency over 60% under an illuminating solar power density of ∼1 kW m(-2). The presented technology provides a cost-effective, reliable, and simple way for realizing broadband omnidirectional light absorptive metal surfaces for efficient solar energy harvesting and utilization, which is highly demanded in various light harvesting, anti-reflection, and photothermal conversion applications. Since the structure is directly formed by femtosecond laser writing, it is quite suitable for mass production and can be easily extended to a large surface area.

  13. Gold reflective metallic gratings with high absorption efficiency

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaojian; Liang, Linmei; Yang, Junbo

    2017-10-01

    Electromagnetic (EM) wave absorbers are devices in which the incident radiation at the operating wavelengths can be efficiently absorbed and then transformed into ohmic heat or other forms of energy. Especially, EM absorbers based on metallic structures have distinct advantages in comparison with the traditional counterparts. Thus, they have different potential applications at different frequency ranges such as absorbing devices in solar energy harvesting systems. The reflective metallic grating is a kind of metallic EM absorbers and has the fascinating property of efficiently absorbing the incident light due to the excitation of surface plasmon polaritons (SPPs), consequently drawing more and more attention. In this paper, the absorption effect of a reflective metallic grating made of gold is studied by changing grating parameters such as the period, polarization direction of the incident light and so on. We use finite difference time-domain (FDTD) method to design the grating, and simulate the process and detect the absorption spectrum. In our design, the grating has rectangular shaped grooves and has the absorption efficiency 99% for the vertically incident transverse magnetic (TM) light at the wavelength of 818nm with the period of 800 nm, the width of 365 nm and the height of 34 nm. And then we find that the absorption spectrum is blue-shifted about 87 nm with decreasing period from 800 nm to700 nm and red-shifted about 14 nm with increasing the width of the block from 305 nm to 405 nm. The absorption becomes gradually weaker from 98% to almost zero with the polarization angle from 0° to 90°. Finally, we make a theoretical explanation to these phenomena in details. It is believed that the results may provide useful guidance for the design of EM wave absorbers with high absorption efficiency.

  14. [Photooxidation of P700 in photosystem 1 preparations with various amounts of antenna chlorophyll a].

    PubMed

    Il'ina, M D; Borisov, A Iu

    1982-12-01

    A number of membrane fragments and pigment-protein complexes of photosystem 1 was obtained from pea chloroplasts, using ionic and non-ionic detergents (SDS, digitonin, Triton X-100, lauryldimethylamine-N-oxide). The ratio of chlorophyll (Chl) a to P700 varied from 220 to 30. For non-dialyzed preparations the quantum yield of P700 photooxidation (phi e) measured by the initial rate of photobleaching at 696-698 nm with excitation at the Soret band of Chla was equal to 40-60%. When the P700 photooxidation was measured at 432 nm, the phi e value showed a further decrease to 20-40% during red light excitation over the range of 660-680 nm but rose to 70-90% at the exciting light wavelengths of greater than or equal to 695 nm. On the basis of the observed dependences the red absorption band was approximated by a sum of two spectra: the spectrum of Chla photoactive in P700 photooxidation and that of photoinactive Chla. Both spectra had maxima near the absorption peak of the object. The photoinactive fraction was additionally enriched by the long-wavelength absorption forms of Chla with an absorption maximum over the range of 684-690 nm. The amount of the bulk Chla in the photoinactive fraction was no less than 40%. The phi e value for freshly dialyzed preparation at a Chla/P700 ratio of 30 was equal to 50-60% independent of the exciting light wavelength. An addition of 0.05% Triton X-100 to this preparation caused: i) a blue shift of the absorption and fluorescence maxima; ii) a decrease of the long-wavelength absorption forms content of Chla and, iii) a considerable increase in fluorescence lifetime and quantum yield due to deaggregation of Chla and its solubilization by detergent micelles. The same phenomenon seems to be responsible for the formation of photoinactive fraction of a pigment, since after addition of a detergent the above-mentioned spectral dependence of phi e appeared, i.e. phi e showed a 3-fold decrease (down to 18%) within the region of 660-680 nm and a 1,6-fold increase (up to 90%) at 705-730 nm. These results suggest that the detergents destroy the intact construction of a light-harvesting antenna rather than that of the photosystem 1 reaction center.

  15. Increased absorption by coarse aerosol particles over the Gangetic–Himalayan region

    DOE PAGES

    Manoharan, Vani Starry; Kotamarthi, R.; Feng, Yan; ...

    2014-02-03

    Each atmospheric aerosol type has distinctive light-absorption characteristics related to its physical/chemical properties. Climate models treat black carbon as the main light-absorbing component of carbonaceous atmospheric aerosols, while absorption by some organic aerosols is also considered, particularly at ultraviolet wavelengths. Most absorbing aerosols are assumed to be < 1 μm in diameter (sub-micron). Here we present results from a recent field study in India, primarily during the post-monsoon season (October–November), suggesting the presence of absorbing aerosols sized 1–10 μm. Absorption due to super-micron-sized particles was nearly 30% greater than that due to smaller particles. Periods of increased absorption by largermore » particles ranged from a week to a month. Radiative forcing calculations under clear-sky conditions show that super-micron particles account for nearly 44% of the total aerosol forcing. The origin of the large aerosols is unknown, but meteorological conditions indicate that they are of local origin. Such economic and habitation conditions exist throughout much of the developing world. Furthermore, large absorbing particles could be an important component of the regional-scale atmospheric energy balance.« less

  16. UV laser long-path absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Dorn, Hans-Peter; Brauers, Theo; Neuroth, Rudolf

    1994-01-01

    Long path Differential Optical Absorption Spectroscopy (DOAS) using a picosecond UV laser as a light source was developed in our institute. Tropospheric OH radicals are measured by their rotational absorption lines around 308 nm. The spectra are obtained using a high resolution spectrograph. The detection system has been improved over the formerly used optomechanical scanning device by application of a photodiode array which increased the observed spectral range by a factor of 6 and which utilizes the light much more effectively leading to a considerable reduction of the measurement time. This technique provides direct measurements of OH because the signal is given by the product of the absorption coefficient and the OH concentration along the light path according to Lambert-Beers law. No calibration is needed. Since the integrated absorption coefficient is well known the accuracy of the measurement essentially depends on the extent to which the OH absorption pattern can be detected in the spectra. No interference by self generated OH radicals in the detection lightpath has been observed. The large bandwidth (greater than 0.15 nm) and the high spectral resolution (1.5 pm) allows absolute determination of interferences by other trace gas absorptions. The measurement error is directly accessible from the absorption-signal to baseline-noise ratio in the spectra. The applicability of the method strongly depends on visibility. Elevated concentrations of aerosols lead to considerable attenuation of the laser light which reduces the S/N-ratio. In the moderately polluted air of Julich, where we performed a number of OH measurement spectra. In addition absorption features of unidentified species were frequently detected. A quantitative deconvolution even of the known species is not easy to achieve and can leave residual structures in the spectra. Thus interferences usually increase the noise and deteriorate the OH detection sensitivity. Using diode arrays for sensitive absorption measurements some specific problems of those detectors have to be solved experimentally (i.e. fixed pattern noise, dark signal noise, nonuniform efficiency of individual elements, spatial sensitivity variations). In order to improve the low spatial resolution we performed laboratory studies using a multiple reflection cell to convert the long path technique to a real in situ point measurement. Under the conditions of field experiments in Julich residual absorbance signals at present are about 1.5x10(exp -4) corresponding to an OH detection sensitivity of 2x10(exp 6) OH/cm(exp 3) using a light path of 5.8 km. Total integration times for one measurement point vary between a few minutes and an hour.

  17. Observation of Reverse Saturable Absorption of an X-ray Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, B. I.; Cho, M. S.; Kim, M.

    A nonlinear absorber in which the excited state absorption is larger than the ground state can undergo a process called reverse saturable absorption. It is a well-known phenomenon in laser physics in the optical regime, but is more difficult to generate in the x-ray regime, where fast nonradiative core electron transitions typically dominate the population kinetics during light matter interactions. Here, we report the first observation of decreasing x-ray transmission in a solid target pumped by intense x-ray free electron laser pulses. The measurement has been made below the K-absorption edge of aluminum, and the x-ray intensity ranges are 10more » 16 –10 17 W=cm 2. It has been confirmed by collisional radiative population kinetic calculations, underscoring the fast spectral modulation of the x-ray pulses and charge states relevant to the absorption and transmission of x-ray photons. The processes shown through detailed simulations are consistent with reverse saturable absorption, which would be the first observation of this phenomena in the x-ray regime. These light matter interactions provide a unique opportunity to investigate optical transport properties in the extreme state of matters, as well as affording the potential to regulate ultrafast x-ray freeelectron laser pulses.« less

  18. Observation of Reverse Saturable Absorption of an X-ray Laser

    DOE PAGES

    Cho, B. I.; Cho, M. S.; Kim, M.; ...

    2017-08-16

    A nonlinear absorber in which the excited state absorption is larger than the ground state can undergo a process called reverse saturable absorption. It is a well-known phenomenon in laser physics in the optical regime, but is more difficult to generate in the x-ray regime, where fast nonradiative core electron transitions typically dominate the population kinetics during light matter interactions. Here, we report the first observation of decreasing x-ray transmission in a solid target pumped by intense x-ray free electron laser pulses. The measurement has been made below the K-absorption edge of aluminum, and the x-ray intensity ranges are 10more » 16 –10 17 W=cm 2. It has been confirmed by collisional radiative population kinetic calculations, underscoring the fast spectral modulation of the x-ray pulses and charge states relevant to the absorption and transmission of x-ray photons. The processes shown through detailed simulations are consistent with reverse saturable absorption, which would be the first observation of this phenomena in the x-ray regime. These light matter interactions provide a unique opportunity to investigate optical transport properties in the extreme state of matters, as well as affording the potential to regulate ultrafast x-ray freeelectron laser pulses.« less

  19. Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Langford, A. O.; Fuchs, H.; Brown, S. S.

    2008-08-01

    We describe an instrument for simultaneous measurements of glyoxal (CHOCHO) and nitrogen dioxide (NO2) using cavity enhanced absorption spectroscopy with a broadband light source. The output of a Xenon arc lamp is coupled into a 1 m optical cavity, and the spectrum of light exiting the cavity is recorded by a grating spectrometer with a charge-coupled device (CCD) array detector. The mirror reflectivity and effective path lengths are determined from the known Rayleigh scattering of He and dry zero air (N2+O2). Least-squares fitting, using published reference spectra, allow the simultaneous retrieval of CHOCHO, NO2, O4, and H2O in the 441 to 469 nm spectral range. For a 1-min sampling time, the minimum detectable absorption is 4×10-10 cm-1, and the precision (±1σ) on signal for measurements of CHOCHO and NO2 is 29 pptv and 20 pptv, respectively. We directly compare the incoherent broadband cavity enhanced absorption spectrometer to 404 and 532 nm cavity ringdown instruments for CHOCHO and NO2 detection, and find linear agreement over a wide range of concentrations. The instrument has been tested in the laboratory with both synthetic and real air samples, and the demonstrated sensitivity and specificity suggest a strong potential for field measurements of both CHOCHO and NO2.

  20. Performance Improvement of Polymer Solar Cells by Surface-Energy-Induced Dual Plasmon Resonance.

    PubMed

    Yao, Mengnan; Shen, Ping; Liu, Yan; Chen, Boyuan; Guo, Wenbin; Ruan, Shengping; Shen, Liang

    2016-03-09

    The surface plasmon resonance (SPR) effect of metal nanoparticles (MNPs) is effectively applied on polymer solar cells (PSCs) to improve power conversion efficiency (PCE). However, universality of the reported results mainly focused on utilizing single type of MNPs to enhance light absorption only in specific narrow wavelength range. Herein, a surface-energy-induced dual MNP plasmon resonance by thermally evaporating method was presented to achieve the absorption enhancement in wider range. The differences of surface energy between silver (Ag), gold (Au), and tungsten trioxide (WO3) compared by contact angle images enable Ag and Au prefer to respectively aggregate into isolated islands rather than films at the initial stage of the evaporation process, which was clearly demonstrated in the atomic force microscopy (AFM) measurement. The sum of plasmon-enhanced wavelength range induced by both Ag NPs (350-450 nm) and Au NPs (450-600 nm) almost cover the whole absorption spectra of active layers, which compatibly contribute a significant efficiency improvement from 4.57 ± 0.16 to 6.55 ± 0.12% compared to the one without MNPs. Besides, steady state photoluminescence (PL) measurements provide strong evidence that the SPR induced by the Ag-Au NPs increase the intensity of light absorption. Finally, ultraviolet photoelectron spectroscopy (UPS) reveals that doping Au and Ag causes upper shift of both the work function and valence band of WO3, which is directly related to hole collection ability. We believe the surface-energy-induced dual plasmon resonance enhancement by simple thermally evaporating technique might pave the way toward higher-efficiency PSCs.

  1. Effect of nanosecond UV laser irradiation on luminescence and absorption in silver- and copper-containing phosphate glasses

    NASA Astrophysics Data System (ADS)

    Murashov, A. A.; Sidorov, A. I.; Stoliarchuk, M. V.

    2018-03-01

    Experimental evidence is presented that nanosecond UV laser irradiation of silver- and copper-containing barium phosphate glasses leads to luminescence quenching in the visible range. Subsequent heat treatment induces an absorption in the range 350–500 nm. These effects are due to the ionisation and fragmentation of subnanometre molecular clusters by laser radiation and subsequent (heat treatment-induced) formation of nanoparticles possessing plasmon resonance. Our numerical modelling results demonstrate the feasibility of producing stable AgnCum hybrid molecular clusters in glass. Local modification of the optical properties of glass by laser light can be used for optical information recording.

  2. Surface Defects Enhanced Visible Light Photocatalytic H2 Production for Zn-Cd-S Solid Solution.

    PubMed

    Zhang, Xiaoyan; Zhao, Zhao; Zhang, Wanwan; Zhang, Guoqiang; Qu, Dan; Miao, Xiang; Sun, Shaorui; Sun, Zaicheng

    2016-02-10

    In order to investigate the defect effect on photocatalytic performance of the visible light photocatalyst, Zn-Cd-S solid solution with surface defects is prepared in the hydrazine hydrate. X-ray photoelectron spectra and photoluminescence results confirm the existence of defects, such as sulfur vacancies, interstitial metal, and Zn and Cd in the low valence state on the top surface of solid solutions. The surface defects can be effectively removed by treating with sulfur vapor. The solid solution with surface defect exhibits a narrower band gap, wider light absorption range, and better photocatalytic perfomance. The optimized solid solution with defects exhibits 571 μmol h(-1) for 50 mg photocatalyst without loading Pt as cocatalyst under visible light irradiation, which is fourfold better than that of sulfur vapor treated samples. The wavelength dependence of photocatalytic activity discloses that the enhancement happens at each wavelength within the whole absorption range. The theoretical calculation shows that the surface defects induce the conduction band minimum and valence band maximum shift downward and upward, respectively. This constructs a type I junction between bulk and surface of solid solution, which promotes the migration of photogenerated charges toward the surface of nanostructure and leads to enhanced photocatalytic activity. Thus a new method to construct highly efficient visible light photocatalysts is opened. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Bio-Inspired Photon Absorption and Energy Transfer for Next Generation Photovoltaic Devices

    NASA Astrophysics Data System (ADS)

    Magsi, Komal

    Nature's solar energy harvesting system, photosynthesis, serves as a model for photon absorption, spectra broadening, and energy transfer. Photosynthesis harvests light far differently than photovoltaic cells. These differences offer both engineering opportunity and scientific challenges since not all of the natural photon absorption mechanisms have been understood. In return, solar cells can be a very sensitive probe for the absorption characteristics of molecules capable of transferring charge to a conductive interface. The objective of this scientific work is the advancement of next generation photovoltaics through the development and application of natural photo-energy transfer processes. Two scientific methods were used in the development and application of enhancing photon absorption and transfer. First, a detailed analysis of photovoltaic front surface fluorescent spectral modification and light scattering by hetero-structure was conducted. Phosphor based spectral down-conversion is a well-known laser technology. The theoretical calculations presented here indicate that parasitic losses and light scattering within the spectral range are large enough to offset any expected gains. The second approach for enhancing photon absorption is based on bio-inspired mechanisms. Key to the utilization of these natural processes is the development of a detailed scientific understanding and the application of these processes to cost effective systems and devices. In this work both aspects are investigated. Dye type solar cells were prepared and tested as a function of Chlorophyll (or Sodium-Copper Chlorophyllin) and accessory dyes. Forster has shown that the fluorescence ratio of Chlorophyll is modified and broadened by separate photon absorption (sensitized absorption) through interaction with nearby accessory pigments. This work used the dye type solar cell as a diagnostic tool by which to investigate photon absorption and photon energy transfer. These experiments shed some doubt on the Foster Resonant Energy Transfer mechanism since energy relay dye architecture-photosensitizer mixtures do not broaden the response of solar cells. Spectral absorption characterization of chromophore-Chlorophyll solutions in varying solvent polarity confirm the lack of cooperative absorption via a Foster-like mechanism and point the way to new concepts of cooperative absorption in natural systems and the development of a new photovoltaic paradigm.

  4. A plant canopy light absorption model with application to wheat

    NASA Technical Reports Server (NTRS)

    Chance, J. E.; Lemaster, E. W.

    1977-01-01

    From the light absorption model the absorption of light in the photosynthetically active region of the spectrum was calculated for a Penjamo wheat crop for several situations including: (1) the percent absorption of the incident radiation by a canopy having a four layer structure; (2) the percent absorption of light by the individual layers within a four layer canopy and by the underlying soil; (3) the percent absorption of light by each vegetative canopy layer for variable sun angle; and (4) the cumulative solar energy absorbed by the developing wheat canopy as it progresses from a single layer through its growth stages to a three layer canopy. This calculation was also presented as a function of the leaf area index.

  5. Organic and inorganic matter in Louisiana coastal waters: Vermilion, Atchafalaya, Terrebonne, Barataria, and Mississippi regions.

    PubMed

    Schaeffer, Blake A; Conmy, Robyn N; Aukamp, Jessica; Craven, George; Ferer, Erin J

    2011-02-01

    Chromophoric dissolved organic matter (CDOM) spectral absorption, dissolved organic carbon (DOC) concentration, and the particulate fraction of inorganic (PIM) and organic matter (POM) were measured in Louisiana coastal waters at Vermilion, Atchafalaya, Terrebonne, Barataria, and Mississippi River locations, in 2007-2008. The range of CDOM was 0.092 m⁻¹ at Barataria in June 2008 to 11.225 m⁻¹ at Mississippi in February 2008. An indicator of organic matter quality was predicted by the spectral slope of absorption coefficients from 350 to 412nm which was between 0.0087 m⁻¹ at Mississippi in May 2008 and 0.0261 m⁻¹ at Barataria in June 2008. CDOM was the dominant component of light attenuation at Terrebonne and Barataria. Detritus and CDOM were the primary components of light attenuation at Vermilion, Atchafalaya, and Mississippi. DOC ranged between 65 and 1235 μM. PIM ranged between 1.1 and 426.3 mg L⁻¹ and POM was between 0.3 and 49.6 mg L⁻¹. Published by Elsevier Ltd.

  6. High resolution spectroscopic optical coherence tomography in the 900-1100 nm wavelength range

    NASA Astrophysics Data System (ADS)

    Bizheva, Kostadinka K.; Povazay, Boris; Apolonski, Alexander A.; Unterhuber, Angelika; Hermann, Boris; Sattmann, Harald; Russell, Phillip S. J.; Krausz, Ferenc; Fercher, Adolf F.; Drexler, Wolfgang

    2002-06-01

    We demonstrate for the first time optical coherence tomography (OCT) in the 900-1100 nm wavelength range. A photonic crystal fiber (PCF) in combination with a sub-15fs Ti:sapphire laser is used to produce an emission spectrum with an optical bandwidth of 35 nm centered at ~1070 nm. Coupling the light from the PCF based source to an optimized free space OCT system results in ~15 micrometers axial resolution in air, corresponding to ~10 micrometers in biological tissue. The near infrared wavelength range around 1100 nm is very attractive for high resolution ophthalmologic OCT imaging of the anterior and posterior eye segment with enhanced penetration. The emission spectrum of the PCF based light source can also be reshaped and tuned to cover the wavelength region around 950-970 nm, where water absorption has a local peak. Therefore, the OCT system described in this paper can also be used for spatially resolved water absorption measurements in non-transparent biological tissue. A preliminary qualitative spectroscopic Oct measurement in D2O and H2 O phantoms is described in this paper.

  7. Measurement of urinary calcium using AT89C51RD2 microcontroller.

    PubMed

    Neelamegam, P; Jamaludeen, A; Rajendran, A; Raghunathan, R

    2009-04-01

    A simple and inexpensive absorption technique for determination of calcium ion in urine samples is developed, comprising a light emitting diode (650 nm) as the light source and photodiode as the detector with AT89C51RD2 microcontroller. The design of the system and details of interface, calibration, and procedure of operation are explained in this paper. Software is developed to monitor sample processing and to display the results in liquid crystal display screen. With 15 microl sample volume, a linear output is obtained in the range of 2.5-7.5 mM calcium with a detection limit of 0.06 mM. Interferences from other cations such as monovalent ion and divalent ion are investigated in the expected range, which are normally present in clinical samples, and absorption changes over the pH range of 3-12 are also determined. This system has been demonstrated successfully for the successive assay of calcium in urine samples, with the results comparing well to those achieved and in good agreement with values obtained with the current clinical spectrophotometric method at 95% of confidence level.

  8. Cassini-VIMS at Jupiter: Solar occultation measurements using Io

    USGS Publications Warehouse

    Formisano, V.; D'Aversa, E.; Bellucci, G.; Baines, K.H.; Bibring, J.-P.; Brown, R.H.; Buratti, B.J.; Capaccioni, F.; Cerroni, P.; Clark, R.N.; Coradini, A.; Cruikshank, D.P.; Drossart, P.; Jaumann, R.; Langevin, Y.; Matson, D.L.; McCord, T.B.; Mennella, V.; Nelson, R.M.; Nicholson, P.D.; Sicardy, B.; Sotin, Christophe; Chamberlain, M.C.; Hansen, G.; Hibbits, K.; Showalter, M.; Filacchione, G.

    2003-01-01

    We report unusual and somewhat unexpected observations of the jovian satellite Io, showing strong methane absorption bands. These observations were made by the Cassini VIMS experiment during the Jupiter flyby of December/January 2000/2001. The explanation is straightforward: Entering or exiting from Jupiter's shadow during an eclipse, Io is illuminated by solar light which has transited the atmosphere of Jupiter. This light, therefore becomes imprinted with the spectral signature of Jupiter's upper atmosphere, which includes strong atmospheric methane absorption bands. Intercepting solar light refracted by the jovian atmosphere, Io essentially becomes a "miffor" for solar occultation events of Jupiter. The thickness of the layer where refracted solar light is observed is so large (more than 3000 km at Io's orbit), that we can foresee a nearly continuous multi-year period of similar events at Saturn, utilizing the large and bright ring system. During Cassini's 4-year nominal mission, this probing tecnique should reveal information of Saturn's atmosphere over a large range of southern latitudes and times. ?? 2003 Elsevier Inc. All rights reserved.

  9. CdS nanoparticles/CeO2 nanorods composite with high-efficiency visible-light-driven photocatalytic activity

    NASA Astrophysics Data System (ADS)

    You, Daotong; Pan, Bao; Jiang, Fan; Zhou, Yangen; Su, Wenyue

    2016-02-01

    Different mole ratios of CdS nanoparticles (NPs)/CeO2 nanorods (NRs) composites with effective contacts were synthesized through a two-step hydrothermal method. The crystal phase, microstructure, optical absorption properties, electrochemical properties and photocatalytic H2 production activity of these composites were investigated. It was concluded that the photogenerated charge carriers in the CdS NPs/CeO2 NRs composite with a proper mole ratio (1:1) exhibited the longest lifetime and highest separation efficiency, which was responsible for the highest H2-production rate of 8.4 mmol h-1 g-1 under visible-light irradiation (λ > 420 nm). The superior photocatalytic H2 evolution properties are attributed to the transfer of visible-excited electrons of CdS NPs to CeO2 NRs, which can effectively extend the light absorption range of wide-band gap CeO2 NRs. This work provides feasible routes to develop visible-light responsive CeO2-based nanomaterial for efficient solar utilization.

  10. Advances in OLED/OPD-based sensors and spectrometer-on-a-chip (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shinar, Joseph; Kaudal, Rajiv; Manna, Eeshita; Fungura, Fadzai; Shinar, Ruth

    2016-09-01

    We describe ongoing advances toward achieving all-organic optical sensors and a spectrometer on a chip. Two-dimensional combinatorial arrays of microcavity OLEDs (μcOLEDs) with systematically varying optical cavity lengths are fabricated on a single chip by changing the thickness of different organic and/or spacer layers sandwiched between two metal electrodes (one very thin) that form the cavity. The broad spectral range is achieved by utilizing materials that result in white OLEDs (WOLEDs) when fabricated on a standard ITO substrate. The tunable and narrower emissions from the μcOLEDs serve as excitation sources in luminescent sensors and in monitoring light absorption. For each wavelength, the light from the μcOLED is partially absorbed by a sample under study and the light emitted by an electronically excited sample, or the transmitted light is detected by a photodetector (PD). To obtain a compact monitor, an organic PD (OPD) or a perovskite-based PD is integrated with the μcOLED array. We show the potential of encompassing a broader wavelength range by using WOLED materials to fabricate the μcOLEDs. The utility of the all-organic analytical devices is demonstrated by monitoring oxygen, and bioanalytes based on oxygen detection, as well as the absorption spectra of dyes.

  11. Broadband All-Polymer Phototransistors with Nanostructured Bulk Heterojunction Layers of NIR-Sensing n-Type and Visible Light-Sensing p-Type Polymers

    PubMed Central

    Han, Hyemi; Nam, Sungho; Seo, Jooyeok; Lee, Chulyeon; Kim, Hwajeong; Bradley, Donal D. C.; Ha, Chang-Sik; Kim, Youngkyoo

    2015-01-01

    We report ‘broadband light-sensing’ all-polymer phototransistors with the nanostructured bulk heterojunction (BHJ) layers of visible (VIS) light-sensing electron-donating (p-type) polymer and near infrared (NIR) light-sensing electron-accepting (n-type) polymer. Poly[{2,5-bis-(2-ethylhexyl)-3,6-bis-(thien-2-yl)-pyrrolo[3,4-c]pyrrole-1,4-diyl}-co-{2,2′-(2,1,3-benzothiadiazole)]-5,5′-diyl}] (PEHTPPD-BT), which is synthesized via Suzuki coupling and employed as the n-type polymer, shows strong optical absorption in the NIR region (up to 1100 nm) in the presence of weak absorption in the VIS range (400 ~ 600 nm). To strengthen the VIS absorption, poly(3-hexylthiophene) (P3HT) is introduced as the p-type polymer. All-polymer phototransistors with the BHJ (P3HT:PEHTPPD-BT) layers, featuring a peculiar nano-domain morphology, exhibit typical p-type transistor characteristics and efficiently detect broadband (VIS ~ NIR) lights. The maximum corrected responsivity (without contribution of dark current) reaches up to 85 ~ 88% (VIS) and 26 ~ 40% (NIR) of theoretical responsivity. The charge separation process between P3HT and PEHTPPD-BT components in the highest occupied molecular orbital is proposed as a major working mechanism for the effective NIR sensing. PMID:26563576

  12. Double-layered liquid crystal light shutter for control of absorption and scattering of the light incident to a transparent display device

    NASA Astrophysics Data System (ADS)

    Huh, Jae-Won; Yu, Byeong-Hun; Shin, Dong-Myung; Yoon, Tae-Hoon

    2015-03-01

    Recently, a transparent display has got much attention as one of the next generation display devices. Especially, active studies on a transparent display using organic light-emitting diodes (OLEDs) are in progress. However, since it is not possible to obtain black color using a transparent OLED, it suffers from poor visibility. This inevitable problem can be solved by using a light shutter. Light shutter technology can be divided into two types; light absorption and scattering. However, a light shutter based on light absorption cannot block the background image perfectly and a light shutter based on light scattering cannot provide black color. In this work we demonstrate a light shutter using two liquid crystal (LC) layers, a light absorption layer and a light scattering layer. To realize a light absorption layer and a light scattering layer, we use the planar state of a dye-doped chiral nematic LC (CNLC) cell and the focal-conic state of a long-pitch CNLC cell, respectively. The proposed light shutter device can block the background image perfectly and show black color. We expect that the proposed light shutter can increase the visibility of a transparent display.

  13. Light absorption and excitation energy transfer calculations in primitive photosynthetic bacteria

    NASA Astrophysics Data System (ADS)

    Komatsu, Yu; Kayanuma, Megumi; Shoji, Mitsuo; Yabana, Kazuhiro; Shiraishi, Kenji; Umemura, Masayuki

    2015-06-01

    In photosynthetic organisms, light energy is converted into chemical energy through the light absorption and excitation energy transfer (EET) processes. These processes start in light-harvesting complexes, which contain special photosynthetic pigments. The exploration of unique mechanisms in light-harvesting complexes is directly related to studies, such as artificial photosynthesis or biosignatures in astrobiology. We examined, through ab initio calculations, the light absorption and EET processes using cluster models of light-harvesting complexes in purple bacteria (LH2). We evaluated absorption spectra and energy transfer rates using the LH2 monomer and dimer models to reproduce experimental results. After the calibration tests, a LH2 aggregation model, composed of 7 or 19 LH2s aligned in triangle lattice, was examined. We found that the light absorption is red shifted and the energy transfer becomes faster as the system size increases. We also found that EET is accelerated by exchanging the central pigments to lower energy excited pigments. As an astrobiological application, we calculated light absorptions efficiencies of the LH2 in different photoenvironments.

  14. Tunable Spectrum Selectivity for Multiphoton Absorption with Enhanced Visible Light Trapping in ZnO Nanorods.

    PubMed

    Tan, Kok Hong; Lim, Fang Sheng; Toh, Alfred Zhen Yang; Zheng, Xia-Xi; Dee, Chang Fu; Majlis, Burhanuddin Yeop; Chai, Siang-Piao; Chang, Wei Sea

    2018-04-17

    Observation of visible light trapping in zinc oxide (ZnO) nanorods (NRs) correlated to the optical and photoelectrochemical properties is reported. In this study, ZnO NR diameter and c-axis length respond primarily at two different regions, UV and visible light, respectively. ZnO NR diameter exhibits UV absorption where large ZnO NR diameter area increases light absorption ability leading to high efficient electron-hole pair separation. On the other hand, ZnO NR c-axis length has a dominant effect in visible light resulting from a multiphoton absorption mechanism due to light reflection and trapping behavior in the free space between adjacent ZnO NRs. Furthermore, oxygen vacancies and defects in ZnO NRs are associated with the broad visible emission band of different energy levels also highlighting the possibility of the multiphoton absorption mechanism. It is demonstrated that the minimum average of ZnO NR c-axis length must satisfy the linear regression model of Z p,min = 6.31d to initiate the multiphoton absorption mechanism under visible light. This work indicates the broadening of absorption spectrum from UV to visible light region by incorporating a controllable diameter and c-axis length on vertically aligned ZnO NRs, which is important in optimizing the design and functionality of electronic devices based on light absorption mechanism. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Modeling investigation of light-absorbing aerosols in the Amazon Basin during the wet season

    NASA Astrophysics Data System (ADS)

    Wang, Qiaoqiao; Saturno, Jorge; Chi, Xuguang; Walter, David; Lavric, Jost; Moran-Zuloaga, Daniel; Ditas, Florian; Pöhlker, Christopher; Brito, Joel; Carbone, Samara; Artaxo, Paulo; Andreae, Meinrat

    2017-04-01

    We use a global chemical transport model (GEOS-Chem) to interpret observed light-absorbing aerosols in Amazonia during the wet season. Observed aerosol properties, including black carbon (BC) concentration and light absorption, at the Amazon Tall Tower Observatory (ATTO) site in the central Amazon have relatively low background levels but frequently show high peaks during the study period of January-April 2014. With daily temporal resolution for open fire emissions and modified aerosol optical properties, our model successfully captures the observed variation in fine/coarse aerosol and BC concentrations as well as aerosol light absorption and its wavelength dependence over the Amazon Basin. The source attribution in the model indicates the important influence of open fire on the observed variances of aerosol concentrations and absorption, mainly from regional sources (northern South America) and from northern Africa. The contribution of open fires from these two regions is comparable, with the latter becoming more important in the late wet season. The analysis of correlation and enhancement ratios of BC versus CO suggests transport times of < 3 days for regional fires and 11 days for African plumes arriving at ATTO during the wet season. The model performance of long-range transport of African plumes is also evaluated with observations from AERONET, MODIS, and CALIOP. Simulated absorption aerosol optical depth (AAOD) averaged over the wet season is lower than 0.0015 over the central Amazon, including the ATTO site. We find that more than 50% of total absorption at 550 nm is from BC, except for the northeastern Amazon and the Guianas, where the influence of dust becomes significant (up to 35 %). The brown carbon contribution is generally between 20 and 30 %. The distribution of absorption Ångström exponents (AAE) suggests more influence from fossil fuel combustion in the southern part of the basin (AAE 1) but more open fire and dust influence in the northern part (AAE > 1.8). Uncertainty analysis shows that accounting for absorption due to secondary organic aerosol (SOA) and primary biogenic aerosol (PBA) particles could result in differences of < 8 and 5-40% in total absorption, respectively.

  16. Imaginary part of Hall conductivity in a tilted doped Weyl semimetal with both broken time-reversal and inversion symmetry

    NASA Astrophysics Data System (ADS)

    Mukherjee, S. P.; Carbotte, J. P.

    2018-01-01

    We consider a Weyl semimetal with finite doping and tilt within a continuum model Hamiltonian with both broken time-reversal and inversion symmetry. We calculate the absorptive part of the anomalous ac Hall conductivity as a function of photon energy Ω for both type-I and type-II Weyl semimetals. For a given Weyl node, changing the sign of its chirality or of its tilt changes the sign of its contribution to the absorptive Hall conductivity with no change in magnitude. For a noncentrosymmetric system we find that there are ranges of photon energies for which only the positive or only the negative-chirality node contributes to the imaginary (absorptive) part of the Hall conductivity. There are also other photon energies where both chiralities contribute, and there can be other ranges of Ω where there is no absorption associated with the ac Hall conductivity in type-I semimetals and regions where it is instead constant for type-II semimetals. We comment on implications for the absorption of circularly polarized light.

  17. Wavelength dependence and multiple-induced states in photoresponses of copper phthalocyanine-doped gold nanoparticle single-electron device

    NASA Astrophysics Data System (ADS)

    Yamamoto, Makoto; Ueda, Rieko; Terui, Toshifumi; Imazu, Keisuke; Tamada, Kaoru; Sakano, Takeshi; Matsuda, Kenji; Ishii, Hisao; Noguchi, Yutaka

    2014-01-01

    We have proposed a gold nanoparticle (GNP)-based single-electron transistor (SET) doped with a dye molecule, where the molecule works as a photoresponsive floating gate. Here, we examined the source-drain current (I_{\\text{SD}}) at a constant drain voltage under light irradiation with various wavelengths ranging from 400 to 700 nm. Current change was enhanced at the wavelengths of 600 and 700 nm, corresponding to the optical absorption band of the doped molecule (copper phthalocyanine: CuPc). Moreover, several peaks appear in the histograms of I_{\\text{SD}} during light irradiation, indicating that multiple discrete states were induced in the device. The results suggest that the current change was initiated by the light absorption of CuPc and multiple CuPc molecules near the GNP working as a floating gate. Molecular doping can activate advanced device functions in GNP-based SETs.

  18. Photocatalysis using a Wide Range of the Visible Light Spectrum: Hydrogen Evolution from Doped AgGaS2.

    PubMed

    Yamato, Kohei; Iwase, Akihide; Kudo, Akihiko

    2015-09-07

    Doping of nickel into AgGaS2 yields a new absorption band, at a wavelength longer than the intrinsic absorption band of the AgGaS2 host. The doped nickel forms an electron donor level in a forbidden band of AgGaS2 . The nickel-doped AgGaS2 with rhodium co-catalyst shows photocatalytic activity for sacrificial H2 evolution under the light of up to 760 nm due to the transition from the electron donor level consisting of Ni(2+) to the conduction band of AgGaS2 . Apparent quantum yields for the sacrificial H2 evolution at 540-620 nm are about 1 %. Moreover, the nickel-doped AgGa0.75 In0.25 S2 also responds to near-IR light, up to 900 nm. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. An instrumentation project for measuring weak and broadband ultrafast laser signals

    NASA Astrophysics Data System (ADS)

    Ellis, Armin T.

    From our everyday experiences, we know that as light travels through a medium it attenuates due to absorption and scattering. Absorption is the cause of color in tea or grape juice, and it is described by Beer's law. Scattering is the reason why scuba divers have a limited range of vision and why mountain peaks become harder to see the further away they are. Precursors, although not fully understood, are transient light transmission effects and have been shown to exhibit lower attenuation through media than that predicted by Beer's law for steady-state light. In this thesis we present an instrumentation based approach for studying precursors by measuring spectral evolution and pure attenuation over distance. We will also introduce a new instrument concept, RotaryFROG, capable of simultaneous measurement of intensity, phase, and polarization versus frequency of low-intensity broadband pulses for use with ultrafast lasers.

  20. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation.

    PubMed

    Zhou, Lin; Tan, Yingling; Ji, Dengxin; Zhu, Bin; Zhang, Pei; Xu, Jun; Gan, Qiaoqiang; Yu, Zongfu; Zhu, Jia

    2016-04-01

    The study of ideal absorbers, which can efficiently absorb light over a broad range of wavelengths, is of fundamental importance, as well as critical for many applications from solar steam generation and thermophotovoltaics to light/thermal detectors. As a result of recent advances in plasmonics, plasmonic absorbers have attracted a lot of attention. However, the performance and scalability of these absorbers, predominantly fabricated by the top-down approach, need to be further improved to enable widespread applications. We report a plasmonic absorber which can enable an average measured absorbance of ~99% across the wavelengths from 400 nm to 10 μm, the most efficient and broadband plasmonic absorber reported to date. The absorber is fabricated through self-assembly of metallic nanoparticles onto a nanoporous template by a one-step deposition process. Because of its efficient light absorption, strong field enhancement, and porous structures, which together enable not only efficient solar absorption but also significant local heating and continuous stream flow, plasmonic absorber-based solar steam generation has over 90% efficiency under solar irradiation of only 4-sun intensity (4 kW m(-2)). The pronounced light absorption effect coupled with the high-throughput self-assembly process could lead toward large-scale manufacturing of other nanophotonic structures and devices.

  1. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation

    PubMed Central

    Zhou, Lin; Tan, Yingling; Ji, Dengxin; Zhu, Bin; Zhang, Pei; Xu, Jun; Gan, Qiaoqiang; Yu, Zongfu; Zhu, Jia

    2016-01-01

    The study of ideal absorbers, which can efficiently absorb light over a broad range of wavelengths, is of fundamental importance, as well as critical for many applications from solar steam generation and thermophotovoltaics to light/thermal detectors. As a result of recent advances in plasmonics, plasmonic absorbers have attracted a lot of attention. However, the performance and scalability of these absorbers, predominantly fabricated by the top-down approach, need to be further improved to enable widespread applications. We report a plasmonic absorber which can enable an average measured absorbance of ~99% across the wavelengths from 400 nm to 10 μm, the most efficient and broadband plasmonic absorber reported to date. The absorber is fabricated through self-assembly of metallic nanoparticles onto a nanoporous template by a one-step deposition process. Because of its efficient light absorption, strong field enhancement, and porous structures, which together enable not only efficient solar absorption but also significant local heating and continuous stream flow, plasmonic absorber–based solar steam generation has over 90% efficiency under solar irradiation of only 4-sun intensity (4 kW m−2). The pronounced light absorption effect coupled with the high-throughput self-assembly process could lead toward large-scale manufacturing of other nanophotonic structures and devices. PMID:27152335

  2. Depth distributions of light action spectra for skin chromophores

    NASA Astrophysics Data System (ADS)

    Barun, V. V.; Ivanov, A. P.

    2010-03-01

    Light action spectra over wavelengths of 300-1000 nm are calculated for components of the human cutaneous covering: melanin, basal (bloodless) tissue, and blood oxy- and deoxyhemoglobin. The transformation of the spectra with depth in biological tissue results from two factors. The first is the wavelength dependence of the absorption coefficient corresponding to a particular skin chromophore and the second is the spectral selectivity of the radiation flux in biological tissue. This factor is related to the optical properties of all chromophores. A significant change is found to take place in the spectral distribution of absorbed radiant power with increasing depth. The action spectrum of light for the molecular oxygen contained in all components of biological tissue is also studied in the 625-645 nm range. The spectra are found to change with both the volume fraction of blood vessels and the degree of oxygenation of the blood. These results are useful for analyzing processes associated with optical absorption that are possible mechanisms for the interaction of light with biological tissues: photodissociation of oxyhemoglobin and the light-oxygen effect.

  3. Optical leak detection of oxygen using IR-laser diodes

    NASA Technical Reports Server (NTRS)

    Disimile, P. J.; Fox, C.; Toy, N.

    1991-01-01

    The ability to accurately measure the concentration of gaseous oxygen and its corresponding flow rate is becoming of greater importance. The technique being presented is based on the principal of light attenuation due to the absorption of radiation by the A-band of oxygen which is located in the 759-770 nm wavelength range. With an ability to measure the change in the light transmission to 0.05 percent, a sensitive optical leak detection system which has a rapid time response is possible. In this research program, the application of laser diode technology and its ability to be temperature tuned to a selected oxygen absorption spectral peak has allowed oxygen concentrations as low as 16,000 ppm to be detected.

  4. Method and apparatus for aerosol particle absorption spectroscopy

    DOEpatents

    Campillo, Anthony J.; Lin, Horn-Bond

    1983-11-15

    A method and apparatus for determining the absorption spectra, and other properties, of aerosol particles. A heating beam source provides a beam of electromagnetic energy which is scanned through the region of the spectrum which is of interest. Particles exposed to the heating beam which have absorption bands within the band width of the heating beam absorb energy from the beam. The particles are also illuminated by light of a wave length such that the light is scattered by the particles. The absorption spectra of the particles can thus be determined from an analysis of the scattered light since the absorption of energy by the particles will affect the way the light is scattered. Preferably the heating beam is modulated to simplify the analysis of the scattered light. In one embodiment the heating beam is intensity modulated so that the scattered light will also be intensity modulated when the particles absorb energy. In another embodiment the heating beam passes through an interferometer and the scattered light reflects the Fourier Transform of the absorption spectra.

  5. Emission Rates and Optical Properties of Pollutants Emitted from a Traditional and an Improved Wood-Burning Cookstove

    NASA Astrophysics Data System (ADS)

    Kirchstetter, T.; Hadley, O. L.; Preble, C.; Gadgil, A.

    2010-12-01

    Traditional cooking methods in developing regions of the world generate gas and particle phase pollutants that endanger the lives of more than a billion people and contribute appreciably to the burden of climate-changing particles in the atmosphere. This presentation compares pollutant emissions from the traditional “three-stone fire” and an improved cookstove developed for refugees in Darfur: the Berkeley-Darfur Stove (BDS). The BDS was designed for increased fuel efficiency to decrease the risk of assault that women often face when gathering fuel wood. Reduced pollutant exposure and climate impact are potential co-benefits. Testing of these stoves at the Lawrence Berkeley National Laboratory facility includes 1-Hz measurements of concentrations of particulate matter, black carbon, carbon monoxide, and carbon dioxide; coefficients of particle light absorption and scattering; and absorption Angstrom exponent. Absorption and scattering coefficients were measured at 532 nm using a photoacoustic absorption instrument equipped with a reciprocal nephelometer. The BDS heated food faster and consumed less wood in cooking tests compared to the three-stone fire. The BDS emitted less carbon monoxide and particulate matter but comparable mass of black carbon compared to the three-stone fire for the same cooking task. Values of the absorption Angstrom exponent ranged from about 1 - 3, indicating the emission of both black carbon and light-absorbing organic carbon (i.e., brown carbon). Values of (dry) aerosol single scattering albedo were mostly in the range of 0.25 - 0.55, indicating that the emitted particles tend to absorb more light than they scatter. Our analysis considered the variability of pollutant emissions during different phases of the fire. Particulate matter emissions were highest during the first several minutes of cooking, which included igniting the wood, whereas carbon monoxide emissions were highest during the last several minutes of cooking when smoldering became more dominant. Comparison of photoacoustic absorption and aethalometer black carbon provided an easy means of correcting black carbon concentrations, which were low by a factor of 2 at the end of the aethalometer sampling cycle if uncorrected.

  6. A theoretical/experimental program to develop active optical pollution sensors

    NASA Technical Reports Server (NTRS)

    Mills, F. S.; Blais, R. N.; Kindle, E. C.

    1977-01-01

    Light detection and ranging (LIDAR) technology was applied to the assessment of air quality, and its usefulness was evaluated by actual field tests. Necessary hardware was successfully constructed and operated in the field. Measurements of necessary physical parameters, such as SO2 absorption coefficients were successfully completed and theoretical predictions of differential absorption performance were reported. Plume modeling improvements were proposed. A full scale field test of equipment, data analysis and auxiliary data support was conducted in Maryland during September 1976.

  7. A light-emitting diode- (LED-) based absorption sensor for simultaneous detection of carbon monoxide and carbon dioxide

    DOE PAGES

    Thurmond, Kyle; Loparo, Zachary; Partridge, Jr., William P.; ...

    2016-04-18

    Here, a sensor was developed for simultaneous measurements of carbon monoxide (CO) and carbon dioxide (CO 2) fluctuations in internal combustion engine exhaust gases. This sensor utilizes low-cost and compact light-emitting diodes (LEDs) that emit in the 3–5 µm wavelength range. An affordable, fast response sensor that can measure these gases has a broad application that can lead to more efficient, fuel-flexible engines and regulation of harmful emissions. Light emission from LEDs is spectrally broader and more spatially divergent when compared to that of lasers, which presented many design challenges. Optical design studies addressed some of the non-ideal characteristics ofmore » the LED emissions. Measurements of CO and CO 2 were conducted using their fundamental absorption bands centered at 4.7 µm and 4.3 µm, respectively, while a 3.6 µm reference LED was used to account for scattering losses (due to soot, window deposits, etc.) common to the three measurement LEDs. Instrument validation and calibration was performed using a laboratory flow cell and bottled-gas mixtures. The sensor was able to detect CO 2 and CO concentration changes as small as 30 ppm and 400 ppm, respectively. Because of the many control and monitor species with infra-red absorption features, which can be measured using the strategy described, this work demonstrates proof of concept for a wider range of fast (250 Hz) and low-cost sensors for gas measurement and process monitoring.« less

  8. Light-induced Changes in Allophycocyanin 1

    PubMed Central

    Ohad, Itzhak; Schneider, Hans-Jörg A. W.; Gendel, Steven; Bogorad, Lawrence

    1980-01-01

    Several lines of evidence indicate that allophycocyanin is the previously unidentified “phycochrome” observed in extracts of blue-green algae. Fractions containing phycoerythrin, phycocyanin, and allophycocyanin and exhibiting light-induced absorbance changes were prepared from extracts of Nostoc muscorum and Fremyella diplosiphon by isoelectric focusing. Illumination of such fractions with red light (650 nanometers) causes a reduction in absorbance at 620 nm (≃1 to 2%) and an increase at 560 nm. The effect, (previously observed by Björn and Björn [1976 Physiol Plant 36: 297-304]) is reversible, upon illumination with green light (550 nm). Selective immunoprecipitation of the phycobiliproteins indicates that allophycocyanin is the photoresponsive pigment. At pH 4.0 to 4.2, allophycocyanin purified from the same algae or from Phormidium luridum exhibits a light-induced absorbance change at 620 nm, which coincides with its absorption maximum at this pH; the fluorescence emission of allophycocyanin under these conditions is at 647 nm and its S20,w is 2.28, compatible with an α1β1 polypeptide composition. At neutral pH (5.8 to 7.0), allophycocyanin aggregates have a sedimentation coefficient of 4.8 (≃α3β3) and an additional absorption peak at 640 nm appears while that at 620 nm remains unaffected. The fluorescence emission maximum of the larger aggregate is at 667 nm and the light-induced change in its absorption is shifted to 650 nm. The effect of pH changes in the range 4.0 to 7.0 on the spectral and aggregation properties of allophycocyanin is completely reversible. Changes in pH which affect allophycocyanin aggregation have parallel effects on absorption and fluorescence maxima as well as on the light-induced absorbance changes of the biliprotein. No evidence is provided to resolve whether this phycochrome plays the role of an adaptochrome. PMID:16661143

  9. Impact of Chromophoric dissolved organic matter on light absorption in lake water on the Tibetan Plateau, China

    NASA Astrophysics Data System (ADS)

    Nima, Ciren; Hamre, Børge; Frette, Øyvind; Erga, Svein Rune; Chen, Yi-Chun; Zhao, Lu; Sørensen, Kai; Norli, Marit; Stamnes, Jakob J.

    2017-02-01

    Ground-based measurements of optical properties are rare for water in lakes on the Tibetan Plateau (TP). We analyzed the spectral absorption of Chromophoric Dissolved Organic Matter (CDOM) for water samples from Lake Namtso (LN) on the TP. The mean value of the spectral slope S280-500 for CDOM absorption was found to be 0.036 nm-1, whereas the corresponding mean value for S350-500 was found to be 0.015 nm-1, implying that when comparing spectral slope values with published values, the wavelength range used for deriving them should be considered.

  10. Far-Field to Near-Field Coupling for Enhancing Light-Matter Interaction

    NASA Astrophysics Data System (ADS)

    Bonakdar, Alireza

    This thesis reports on theoretical, modeling, and experimental research within the framework of a key scientific question, which is enhancing the coupling between diffraction-limited far-field and sub-wavelength quantum emitter/absorber. A typical optoelectronic device delivers an optical process such as light detection (e.g. photodetector) or light intensity modulation (e.g. electro-absorptive modulator). In conventional devices, optical process is in the form of far-field or guided wave modes. The main aim of this thesis is to show that converting these modes into near-field domain can enhance the performance of the optoelectronic device. Light in the form of far-field can be converted into near-field domain by the optical antenna. Among different optoelectronic devices, this thesis focuses mainly on integrating the optical antenna with infrared photodetectors. The available semiconductors have weak infrared absorption that reduces light detection efficiency. Integration of the optical antenna with infrared absorber (such as quantum wells in quantum well infrared photodetector (QWIP)) increases the infrared absorption. Particularly this integration is favorable as the optical antenna has low metallic loss in infrared region. The author of this thesis believes that optical antenna has unique properties in confining light on the scale of deep sub-wavelength, enhancing electric field intensity and delivering optical energy to semiconductor absorbers. These properties are reaching into practical applications only if overall optical performance is low loss, parameter free (independent of optical parameters such a polarization and angle of incident) and broadband. In this thesis, the integration of optical antenna with infrared photodetectors and thermophotovoltaic are researched and developed which satisfy the aforementioned criteria. In addition, several different optical antennas have been designed, fabricated and characterized in order to analyze and demonstrate the improvement of infrared absorption. In terms of design, novel optical antennas were simulated and proposed for a variety of infrared photodetectors such as a quantum well infrared photodetector, metal-insulator-metal detector, Schottky infrared photodetector, and two-photon absorption infrared detector. Antenna analyzes are not limited to light detection as a chapter of this thesis devoted on design and develop of a low power and ultrafast all-optical/optomechanical switchable antenna. The rest of the manuscript contains the novel lithography method in order to fabricate optical antennas with low cost and in cm-scale area. The method is based on the microsphere photolithography that expose photoresist underneath each microsphere with a focused intensive light -so called photonic nanojet. The developed lithography method takes advantage of microscopic range of optical path (micro-optics) in microsphere lenses that allows to push the exposure wavelength beyond deep UV region, where the refractive optics becomes impractical due to severe material absorption. The author believes that micro-optics lithography is an excellent candidate for large area and high throughput fabrication of sub-100-nm feature sizes in periodic array. In particular, this method facilitates the feasibility of metasurfaces and metamaterials, optical coating with efficient photon extraction/trapping, and highly sensitive bio-sensors in near IR and visible ranges of spectrum.

  11. Aqueous glucose measurement using differential absorption-based frequency domain optical coherence tomography at wavelengths of 1310 nm and 1625 nm

    NASA Astrophysics Data System (ADS)

    John, Pauline; Manoj, Murali; Sujatha, N.; Vasa, Nilesh J.; Rao, Suresh R.

    2015-07-01

    This work presents a combination of differential absorption technique and frequency domain optical coherence tomography for detection of glucose, which is an important analyte in medical diagnosis of diabetes. Differential absorption technique is used to detect glucose selectively in the presence of interfering species especially water and frequency domain optical coherence tomography (FDOCT) helps to obtain faster acquisition of depth information. Two broadband super-luminescent diode (SLED) sources with centre wavelengths 1586 nm (wavelength range of 1540 to 1640 nm) and 1312 nm (wavelength range of 1240 to 1380 nm) and a spectral width of ≍ 60 nm (FWHM) are used. Preliminary studies on absorption spectroscopy using various concentrations of aqueous glucose solution gave promising results to distinguish the absorption characteristics of glucose at two wavelengths 1310 nm (outside the absorption band of glucose) and 1625 nm (within the absorption band of glucose). In order to mimic the optical properties of biological skin tissue, 2% and 10% of 20% intralipid with various concentrations of glucose (0 to 4000 mg/dL) was prepared and used as sample. Using OCT technique, interference spectra were obtained using an optical spectrum analyzer with a resolution of 0.5 nm. Further processing of the interference spectra provided information on reflections from the surfaces of the cuvette containing the aqueous glucose sample. Due to the absorption of glucose in the wavelength range of 1540 nm to 1640 nm, a trend of reduction in the intensity of the back reflected light was observed with increase in the concentration of glucose.

  12. [Chromophoric dissolved organic matter absorption characteristics with relation to fluorescence in typical macrophyte, algae lake zones of Lake Taihu].

    PubMed

    Zhang, Yun-lin; Qin, Bo-qiang; Ma, Rong-hua; Zhu, Guang-wei; Zhang, Lu; Chen, Wei-min

    2005-03-01

    Chromophoric dissolved organic matter (CDOM) represents one of the primary light-absorbing species in natural waters and plays a critical in determining the aquatic light field. CDOM shows a featureless absorption spectrum that increases exponentially with decreasing wavelength, which limits the penetration of biologically damaging UV-B radiation (wavelength from 280 to 320 nm) in the water column, thus shielding aquatic organisms. CDOM absorption measurements and their relationship with dissolved organic carbon (DOC), and fluorescence are presented in typical macrophyte and algae lake zone of Lake Taihu based on a field investigation in April in 2004 and lab analysis. Absorption spectral of CDOM was measured from 240 to 800 nm using a Shimadzu UV-2401PC UV-Vis recording spectrophotometer. Fluorescence with an excitation wavelength of 355 nm, an emission wavelength of 450 nm is measured using a Shimadzu 5301 spectrofluorometer. Concentrations of DOC ranged from 6.3 to 17.2 mg/L with an average of 9.08 +/- 2.66 mg/L. CDOM absorption coefficients at 280 nm and 355 nm were in the range of 11.2 - 32.6 m(-1) (average 17.46m(-1) +/- 5.75 m(-1) and 2.4 - 8.3 m(-1) (average 4.17m(-1) +/- 1.47 m(-l)), respectively. The values of the DOC-specific absorption coefficient at 355 nm ranged from 0.31 to 0.64 L x (mg x m)-1. Fluorescence emission at 450 nm, excited at 355 nm, had a mean value of 1.32nm(-1) +/- 0.84 nm(-1). A significant lake zone difference is found in DOC concentration, CDOM absorption coefficient and fluorescence, but not in DOC-specific absorption coefficient and spectral slope coefficient. This regional distribution pattern is in agreement with the location of sources of yellow substance: highest concentrations close to river mouth under the influence of river inflow, lower values in East Lake Taihu. The values of algae lake zone are obvious larger than those of macrophyte lake zone. In Meiliang Bay, CDOM absorption, DOC concentration and fluorescence tend to decreasing from inside to mouth of the Bay. The results show a good correlation between CDOM absorption and DOC coefficients during 280 - 500 nm short wavelength intervals. The R-square coefficient between CDOM absorption and DOC concentration decreases with the increase of wavelength from 280 to 500 nm. The significant linear regression correlations between fluorescence, DOC concentration and absorption coefficients were found at 355 nm. The exponential slope coefficients ranged from 13.0 to 16.4 microm(-1) with a mean value 14.37microm(-1) +/- 0.73microm(-1), 17.3microm(-1) - 20.3microm(-1) with a mean value 19.17microm(-1) +/- 0.84microm(-1) and 12.0microm(-1) - 15.8microm(-1) with a mean value 13.38microm(-1) +/- 0.82microm(-1) over the 280 - 500 nm, 280 - 360 nm and 360 - 440 nm intervals.

  13. Multiple resonant absorber with prism-incorporated graphene and one-dimensional photonic crystals in the visible and near-infrared spectral range

    NASA Astrophysics Data System (ADS)

    Zou, X. J.; Zheng, G. G.; Chen, Y. Y.; Xu, L. H.; Lai, M.

    2018-04-01

    A multi-band absorber constructed from prism-incorporated one-dimensional photonic crystal (1D-PhC) containing graphene defects is achieved theoretically in the visible and near-infrared (vis-NIR) spectral range. By means of the transfer matrix method (TMM), the effect of structural parameters on the optical response of the structure has been investigated. It is possible to achieve multi-peak and complete optical absorption. The simulations reveal that the light intensity is enhanced at the graphene plane, and the resonant wavelength and the absorption intensity can also be tuned by tilting the incidence angle of the impinging light. In particular, multiple graphene sheets are embedded in the arrays, without any demand of manufacture process to cut them into periodic patterns. The proposed concept can be extended to other two-dimensional (2D) materials and engineered for promising applications, including selective or multiplex filters, multiple channel sensors, and photodetectors.

  14. Recent Advances in Inorganic Nanoparticle-Based NIR Luminescence Imaging: Semiconductor Nanoparticles and Lanthanide Nanoparticles.

    PubMed

    Kim, Dokyoon; Lee, Nohyun; Park, Yong Il; Hyeon, Taeghwan

    2017-01-18

    Several types of nanoparticle-based imaging probes have been developed to replace conventional luminescent probes. For luminescence imaging, near-infrared (NIR) probes are useful in that they allow deep tissue penetration and high spatial resolution as a result of reduced light absorption/scattering and negligible autofluorescence in biological media. They rely on either an anti-Stokes or a Stokes shift process to generate luminescence. For example, transition metal-doped semiconductor nanoparticles and lanthanide-doped inorganic nanoparticles have been demonstrated as anti-Stokes shift-based agents that absorb NIR light through two- or three-photon absorption process and upconversion process, respectively. On the other hand, quantum dots (QDs) and lanthanide-doped nanoparticles that emit in NIR-II range (∼1000 to ∼1350 nm) were suggested as promising Stokes shift-based imaging agents. In this topical review, we summarize and discuss the recent progress in the development of inorganic nanoparticle-based luminescence imaging probes working in NIR range.

  15. Quantitative NO-LIF imaging in high-pressure flames

    NASA Astrophysics Data System (ADS)

    Bessler, W. G.; Schulz, C.; Lee, T.; Shin, D.-I.; Hofmann, M.; Jeffries, J. B.; Wolfrum, J.; Hanson, R. K.

    2002-07-01

    Planar laser-induced fluorescence (PLIF) images of NO concentration are reported in premixed laminar flames from 1-60 bar exciting the A-X(0,0) band. The influence of O2 interference and gas composition, the variation with local temperature, and the effect of laser and signal attenuation by UV light absorption are investigated. Despite choosing a NO excitation and detection scheme with minimum O2-LIF contribution, this interference produces errors of up to 25% in a slightly lean 60 bar flame. The overall dependence of the inferred NO number density with temperature in the relevant (1200-2500 K) range is low (<±15%) because different effects cancel. The attenuation of laser and signal light by combustion products CO2 and H2O is frequently neglected, yet such absorption yields errors of up to 40% in our experiment despite the small scale (8 mm flame diameter). Understanding the dynamic range for each of these corrections provides guidance to minimize errors in single shot imaging experiments at high pressure.

  16. Wavelength-dependent degradation of ochratoxin and citrinin by light in vitro and in vivo and its implications on Penicillium.

    PubMed

    Schmidt-Heydt, Markus; Cramer, Benedikt; Graf, Irina; Lerch, Sandra; Humpf, Hans-Ulrich; Geisen, Rolf

    2012-12-14

    It has previously been shown that the biosynthesis of the mycotoxins ochratoxin A and B and of citrinin by Penicillium is regulated by light. However, not only the biosynthesis of these mycotoxins, but also the molecules themselves are strongly affected by light of certain wavelengths. The white light and blue light of 470 and 455 nm are especially able to degrade ochratoxin A, ochratoxin B and citrinin after exposure for a certain time. After the same treatment of the secondary metabolites with red (627 nm), yellow (590 nm) or green (530 nm) light or in the dark, almost no degradation occurred during that time indicating the blue light as the responsible part of the spectrum. The two derivatives of ochratoxin (A and B) are degraded to certain definitive degradation products which were characterized by HPLC-FLD-FTMS. The degradation products of ochratoxin A and B did no longer contain phenylalanine however were still chlorinated in the case of ochratoxin A. Citrinin is completely degraded by blue light. A fluorescent band was no longer visible after detection by TLC suggesting a higher sensitivity and apparently greater absorbance of energy by citrinin. The fact that especially blue light degrades the three secondary metabolites is apparently attributed to the absorption spectra of the metabolites which all have an optimum in the short wave length range. The absorption range of citrinin is, in particular, broader and includes the wave length of blue light. In wheat, which was contaminated with an ochratoxin A producing culture of Penicillium verrucosum and treated with blue light after a pre-incubation by the fungus, the concentration of the preformed ochratoxin A reduced by roughly 50% compared to the control and differed by > 90% compared to the sample incubated further in the dark. This indicates that the light degrading effect is also exerted in vivo, e.g., on food surfaces. The biological consequences of the light instability of the toxins are discussed.

  17. Photoionization in the time and frequency domain

    NASA Astrophysics Data System (ADS)

    Isinger, M.; Squibb, R. J.; Busto, D.; Zhong, S.; Harth, A.; Kroon, D.; Nandi, S.; Arnold, C. L.; Miranda, M.; Dahlström, J. M.; Lindroth, E.; Feifel, R.; Gisselbrecht, M.; L'Huillier, A.

    2017-11-01

    Ultrafast processes in matter, such as the electron emission after light absorption, can now be studied using ultrashort light pulses of attosecond duration (10-18 seconds) in the extreme ultraviolet spectral range. The lack of spectral resolution due to the use of short light pulses has raised issues in the interpretation of the experimental results and the comparison with theoretical calculations. We determine photoionization time delays in neon atoms over a 40-electron volt energy range with an interferometric technique combining high temporal and spectral resolution. We spectrally disentangle direct ionization from ionization with shake-up, in which a second electron is left in an excited state, and obtain excellent agreement with theoretical calculations, thereby solving a puzzle raised by 7-year-old measurements.

  18. Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells.

    PubMed

    Mendes, Manuel J; Hernández, Estela; López, Esther; García-Linares, Pablo; Ramiro, Iñigo; Artacho, Irene; Antolín, Elisa; Tobías, Ignacio; Martí, Antonio; Luque, Antonio

    2013-08-30

    A colloidal deposition technique is presented to construct long-range ordered hybrid arrays of self-assembled quantum dots and metal nanoparticles. Quantum dots are promising for novel opto-electronic devices but, in most cases, their optical transitions of interest lack sufficient light absorption to provide a significant impact in their implementation. A potential solution is to couple the dots with localized plasmons in metal nanoparticles. The extreme confinement of light in the near-field produced by the nanoparticles can potentially boost the absorption in the quantum dots by up to two orders of magnitude.In this work, light extinction measurements are employed to probe the plasmon resonance of spherical gold nanoparticles in lead sulfide colloidal quantum dots and amorphous silicon thin-films. Mie theory computations are used to analyze the experimental results and determine the absorption enhancement that can be generated by the highly intense near-field produced in the vicinity of the gold nanoparticles at their surface plasmon resonance.The results presented here are of interest for the development of plasmon-enhanced colloidal nanostructured photovoltaic materials, such as colloidal quantum dot intermediate-band solar cells.

  19. Quantifying black carbon light absorption enhancement with a novel statistical approach

    NASA Astrophysics Data System (ADS)

    Wu, Cheng; Wu, Dui; Zhen Yu, Jian

    2018-01-01

    Black carbon (BC) particles in the atmosphere can absorb more light when coated by non-absorbing or weakly absorbing materials during atmospheric aging, due to the lensing effect. In this study, the light absorption enhancement factor, Eabs, was quantified using a 1-year measurement of mass absorption efficiency (MAE) in the Pearl River Delta region (PRD). A new approach for calculating primary MAE (MAEp), the key for Eabs estimation, is demonstrated using the minimum R squared (MRS) method, exploring the inherent source independency between BC and its coating materials. A unique feature of Eabs estimation with the MRS approach is its insensitivity to systematic biases in elemental carbon (EC) and σabs measurements. The annual average Eabs550 is found to be 1.50 ± 0.48 (±1 SD) in the PRD region, exhibiting a clear seasonal pattern with higher values in summer and lower in winter. Elevated Eabs in the summertime is likely associated with aged air masses, predominantly of marine origin, along with long-range transport of biomass-burning-influenced air masses from Southeast Asia. Core-shell Mie simulations along with measured Eabs and absorption Ångström exponent (AAE) constraints suggest that in the PRD, the coating materials are unlikely to be dominated by brown carbon and the coating thickness is higher in the rainy season than in the dry season.

  20. Broadband mid-infrared measurements for shock induced chemistry

    NASA Astrophysics Data System (ADS)

    McGrane, Shawn; Bowlan, Pamela; Brown, Kathryn; Bolme, Cynthia; Cawkwell, Marc

    2017-06-01

    Vibrational absorption spectroscopy across the mid-infrared range is a ubiquitous diagnostic of chemical effects due to its sensitivity to small variations in bonding. At the high temperatures and pressures relevant to shock induced chemistry, vibrational spectral peaks become very broad, and accessing as much spectral range as possible with high time resolution can significantly aid in deducing chemical dynamics. Here, we report experiments using broadband (<500 cm-1 to >2000 cm-1) mid-infrared femtosecond supercontinua created by four wave mixing in filaments to perform absorption spectroscopy. These broadband mid-infrared supercontinua are detected through upconversion to visible light. Initial efforts to utilize these methods for measurement of chemical dynamics in shocked nitromethane will be reported.

  1. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source

    PubMed Central

    Pompidor, Guillaume; Dworkowski, Florian S. N.; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R.

    2013-01-01

    The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years. PMID:23955041

  2. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source.

    PubMed

    Pompidor, Guillaume; Dworkowski, Florian S N; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R

    2013-09-01

    The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years.

  3. Toothbrush abrasion of paint-on resins for shade modification and crown resins: effect of water absorption.

    PubMed

    Fujii, Koichi; Arikawa, Hiroyuki; Kanie, Takahito; Ban, Seiji

    2004-06-01

    In order to investigate the clinical application of paint-on resins, the effect of water absorption on toothbrush abrasion and light transmittance of ten crown resins including three paint-on resins was examined. Water absorption into each material ranged from 0.29 to 0.89 mg/cm2 after storage in distilled-water for 6 weeks and their hardnesses decreased by 3.5-22.3%. Maximum surface roughness (Rmax) of the materials stored in distilled water for 6 weeks increased with an increasing number of toothbrush abrasion cycles and ranged from 1.9 to 10.5 microm after 100,000 cycles. Also, Maximum depth and weight loss as an indicator of the amount of each material lost by abrasion showed similar behaviors similar to Rmax. These results indicated that the abrasion resistance of paint-on resins was located in the middle among all materials examined.

  4. Relationship between the Kubelka-Munk scattering and radiative transfer coefficients.

    PubMed

    Thennadil, Suresh N

    2008-07-01

    The relationship between the Kubelka-Munk (K-M) and the transport scattering coefficient is obtained through a semi-empirical approach. This approach gives the same result as that given by Gate [Appl. Opt.13, 236 (1974)] when the incident beam is diffuse. This result and those given by Star et al. [Phys. Med. Biol.33, 437 (1988)] and Brinkworth [Appl. Opt.11, 1434 (1972)] are compared with the exact solution of the radiative transfer equation over a large range of optical properties. It is found that the latter expressions, which include an absorption component, do not give accurate results over the range considered. Using the semi-empirical approach, the relationship between the K-M and the transport scattering coefficient is derived for the case where the incident light is collimated. It is shown that although the K-M equation is derived based on diffuse incident light, it can also represent very well the reflectance from a slab of infinite thickness when the incident light is collimated. However, in this case the relationship between the coefficients has to include a function that is dependent on the anisotropy factor. Analysis indicates that the K-M transform achieves the objective of obtaining a measure that gives the ratio of absorption to scattering effects for both diffuse and collimated incident beams over a large range of optical properties.

  5. An experimental and numerical study of the light scattering properties of ice crystals with black carbon inclusions

    NASA Astrophysics Data System (ADS)

    Arienti, Marco; Geier, Manfred; Yang, Xiaoyuan; Orcutt, John; Zenker, Jake; Brooks, Sarah D.

    2018-05-01

    We investigate the optical properties of ice crystals nucleated on atmospheric black carbon (BC). The parameters examined in this study are the shape of the ice crystal, the volume fraction of the BC inclusion, and its location inside the crystal. We report on new spectrometer measurements of forward scattering and backward polarization from ice crystals nucleated on BC particles and grown under laboratory-controlled conditions. Data from the Cloud and Aerosol Spectrometer with Polarization (CASPOL) are used for direct comparison with single-particle calculations of the scattering phase matrix. Geometrical optics and discrete dipole approximation techniques are jointly used to provide the best compromise of flexibility and accuracy over a broad range of size parameters. Together with the interpretation of the trends revealed by the CASPOL measurements, the numerical results confirm previous reports on absorption cross-section magnification in the visible light range. Even taking into account effects of crystal shape and inclusion position, the ratio between absorption cross-section of the compound particle and the absorption cross-section of the BC inclusion alone (the absorption magnification) has a lower bound of 1.5; this value increases to 1.7 if the inclusion is centered with respect to the crystal. The simple model of BC-ice particle presented here also offers new insights on the effect of the relative position of the BC inclusion with respect to the crystal's outer surfaces, the shape of the crystal, and its size.

  6. Light Absorptive Properties of Articular Cartilage, ECM Molecules, Synovial Fluid, and Photoinitiators as Potential Barriers to Light-Initiated Polymer Scaffolding Procedures.

    PubMed

    Finch, Anthony J; Benson, Jamie M; Donnelly, Patrick E; Torzilli, Peter A

    2017-06-01

    Objective Many in vivo procedures to repair chondral defects use ultraviolet (UV)-photoinitiated in situ polymerization within the cartilage matrix. Chemical species that absorb UV light might reduce the effectiveness of these procedures by acting as light absorption barriers. This study evaluated whether any of the individual native biochemical components in cartilage and synovial fluid interfered with the absorption of light by common scaffolding photosensitizers. Materials UV-visible spectroscopy was performed on each major component of cartilage in solution, on bovine synovial fluid, and on four photosensitizers, riboflavin, Irgacure 2959, quinine, and riboflavin-5'-phosphate. Molar extinction and absorption coefficients were calculated at wavelengths of maximum absorbance and 365 nm. Intact articular cartilage was also examined. Results The individual major biochemical components of cartilage, Irgacure 2959, and quinine did not exhibit a significant absorption at 365 nm. Riboflavin and riboflavin-5'-phosphate were more effectual light absorbers at 365 nm, compared with the individual native species. Intact cartilage absorbed a significantly greater amount of UV light in comparison with the native species. Conclusion Our results indicate that none of the individual native species in cartilage will interfere with the absorption of UV light at 365 nm by these commonly used photoinitiators. Intact cartilage slices exhibited significant light absorption at 365 nm, while also having distinct absorbance peaks at wavelengths less than 300 nm. Determining the UV absorptive properties of the biomolecules native to articular cartilage and synovial fluid will aid in optimizing scaffolding procedures to ensure sufficient scaffold polymerization at a minimum UV intensity.

  7. Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Langford, A. O.; Fuchs, H.; Brown, S. S.

    2008-12-01

    We describe an instrument for simultaneous measurements of glyoxal (CHOCHO) and nitrogen dioxide (NO2) using cavity enhanced absorption spectroscopy with a broadband light source. The output of a Xenon arc lamp is coupled into a 1 m optical cavity, and the spectrum of light exiting the cavity is recorded by a grating spectrometer with a charge-coupled device (CCD) array detector. The mirror reflectivity and effective path lengths are determined from the known Rayleigh scattering of He and dry zero air (N2+O2). Least-squares fitting, using published reference spectra, allow the simultaneous retrieval of CHOCHO, NO2, O4, and H2O in the 441 to 469 nm spectral range. For a 1-min sampling time, the precision (±1σ) on signal for measurements of CHOCHO and NO2 is 29 pptv and 20 pptv, respectively. We directly compare measurements made with the incoherent broadband cavity enhanced absorption spectrometer with those from cavity ringdown instruments detecting CHOCHO and NO2 at 404 and 532 nm, respectively, and find linear agreement over a wide range of concentrations. The instrument has been tested in the laboratory with both synthetic and real air samples, and the demonstrated sensitivity and specificity suggest a strong potential for field measurements of both CHOCHO and NO2.

  8. Enhanced photothermal lens using a photonic crystal surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Yunfei; Liu, Longju; Zhao, Xiangwei

    2016-08-15

    A photonic crystal (PC)-enhanced photothermal lens (PTL) is demonstrated for the detection of optically thin light absorption materials. The PC-enhanced PTL system is based on a pump-probe scheme consisting of a PC surface, pump laser beam, and probe laser beam. Heated by the pump beam, light absorption materials on the PC surface generate the PTL and cause a substantial change to the guided-mode resonance supported by the PC structure. The change of the PC resonance is detected using the probe laser beam by measuring its reflectivity from the PC surface. When applied to analyze dye molecules deposited on the PCmore » substrate, the developed system is capable of enhancing the PTL signal by 10-fold and reducing the lowest distinguishable concentration by 8-fold, in comparison to measuring without utilizing the PC resonance. The PC-enhanced PTL was also used to detect gold nanoparticles on the PC surface and exhibited a 20-fold improvement of the lowest distinguishable concentration. The PC-enhanced PTL technology offers a potential tool to obtain the absorption signatures of thin films in a broad spectral range with high sensitivity and inexpensive instrumentation. As a result, this technology will enable a broad range of applications of photothermal spectroscopy in chemical analysis and biomolecule sensing.« less

  9. Complete erasing of ghost images caused by deeply trapped electrons on computed radiography plates

    NASA Astrophysics Data System (ADS)

    Ohuchi, H.; Kondo, Y.

    2011-03-01

    The ghost images, i.e., latent image that is unerasable with visible light (LIunVL) and reappearing image appeared on computed radiography (CR) plates were completely erased by simultaneous exposing them to filtered ultraviolet light and visible light. Three different types of CR plates (Agfa, Kodak, and Fuji) were irradiated with 50 kV X-ray beams in the dose range 8.1 mGy to 8.0 Gy, and then conventionally erased for 2 h with visible light. The remaining LIunVL could be erased by repeating 6 h simultaneous exposures to filtered ultraviolet light and visible light. After the sixth round of exposure, all the LIunVL in the three types of CR plates were erased to the same level as in an unirradiated plate and no latent images reappeared after storage at 0°C for 14 days. The absorption spectra of deep centers were specified using polychromatic ultraviolet light from a deep-ultraviolet lamp. It was found that deep centers showed a dominant peak in the absorption spectra at around 324 nm for the Agfa and Kodak plates, and at around 320 nm for the Fuji plate, in each case followed by a few small peaks. After completely erasing CR plates, these peaks were no longer observed.

  10. Catheter based mid-infrared reflectance and reflectance generated absorption spectroscopy

    DOEpatents

    Holman, Hoi-Ying N

    2013-10-29

    A method of characterizing conditions in a tissue, by (a) providing a catheter that has a light source that emits light in selected wavenumbers within the range of mid-IR spectrum; (b) directing the light from the catheter to an area of tissue at a location inside a blood vessel of a subject; (c) collecting light reflected from the location and generating a reflectance spectra; and (d) comparing the reflectance spectra to a reference spectra of normal tissue, whereby a location having an increased number of absorbance peaks at said selected wavenumbers indicates a tissue inside the blood vessel containing a physiological marker for atherosclerosis.

  11. Nanoparticle-enhanced x-ray therapy for cancer

    NASA Astrophysics Data System (ADS)

    Letfullin, Renat R.; Rice, Colin E. W.; George, Thomas F.

    2016-03-01

    Photothermal therapies of nanophotohyperthermia and nanophotothermolysis utilize the light absorptive properties of nanoparticles to create heat and free radicals in a small localized region. Conjugating nanoparticles with various biomolecules allows for targeted delivery to specific tissues or even specific cells, cancerous cells being of particular interest. Previous studies have investigated nanoparticles at visible and infrared wavelengths where surface plasmon resonance leads to unique absorption characteristics. However, issues such as poor penetration depth of the visible light through biological tissues limits the effectiveness of delivery by noninvasive means. In other news, various nanoparticles have been investigated as contrast agents for traditional X-ray procedures, utilizing the strong absorption characteristics of the nanoparticles to enhance contrast of the detected X-ray image. Using X-rays to power photothermal therapies has three main advantages over visiblespectra wavelengths: the high penetration depth of X-rays through biological media makes noninvasive treatments very feasible; the high energy of individual photons means nanoparticles can be heated to desired temperatures with lower beam intensities, or activated to produce the free radicals; and X-ray sources are already common throughout the medical industry, making future implementation on existing equipment possible. This paper uses Lorenz-Mie theory to investigate the light absorption properties of various size gold nanoparticles over photon energies in the 1-100 keV range. These absorption values are then plugged into a thermal model to determine the temperatures reached by the nanoparticles for X-ray exposures of differing time and intensity. The results of these simulations are discussed in relation to the effective implementation of nanophotohyperthermia and nanophotothermolysis treatments.

  12. Contribution to a bio-optical model for remote sensing of Lena River water

    NASA Astrophysics Data System (ADS)

    Örek, H.; Doerffer, R.; Röttgers, R.; Boersma, M.; Wiltshire, K. H.

    2013-11-01

    Bio-optical measurements and sampling were carried out in the delta of the Lena River (northern Siberia, Russia) between 26 June and 4 July 2011. The aim of this study was to determine the inherent optical properties of the Lena water, i.e., absorption, attenuation, and scattering coefficients, during the period of maximum runoff. This aimed to contribute to the development of a bio-optical model for use as the basis for optical remote sensing of coastal water of the Arctic. In this context the absorption by CDOM (colored dissolved organic matter) and particles, and the concentrations of total suspended matter, phytoplankton-pigments, and carbon were measured. CDOM was found to be the most dominant parameter affecting the optical properties of the river, with an absorption coefficient of 4.5-5 m-1 at 442 nm, which was almost four times higher than total particle absorption values at visible wavelength range. The wavelenght-dependence of absorption of the different water constituents was chracterized by determining the semi logarithmic spectral slope. Mean CDOM, and detritus slopes were 0.0149 nm-1(standard deviation (stdev) = 0.0003, n = 18), and 0.0057 nm-1 (stdev = 0.0017, n = 19), respectively, values which are typical for water bodies with high concentrations of dissolved and particulate carbon. Mean chlorophyll a and total suspended matter were 1.8 mg m-3 (stdev = 0.734 n = 18) and 31.9 g m-3 (stdev = 19.94, n = 27), respectively. DOC (dissolved organic carbon) was in the range 8-10 g m-3 and the total particulate carbon (PC) in the range 0.25-1.5 g m-3. The light penetration depth (Secchi disc depth) was in the range 30-90 cm and was highly correlated with the suspended matter concentration. The period of maximum river runoff in June was chosen to obtain bio-optical data when maximum water constituents are transported into the Laptev Sea. However, we are aware that more data from other seasons and other years need to be collected to establish a general bio-optical model of the Lena water and conclusively characterize the light climate with respect to primary production.

  13. Colloidal silver nanoparticles prepared by UV-light induced citrate reduction technique for the quantitative detection of uric acid

    NASA Astrophysics Data System (ADS)

    Maity, Anupam; Panda, Sovan Kumar

    2018-04-01

    Reddish-yellow color colloid consisting of silver nanoparticles (Ag NPs) has been synthesized by reducing aqueous AgNO3 solution by photo-induced citrate reduction technique under UV light. As prepared colloid exhibits single and intense plasmonic absorption peak in the violet region of the visible spectra with the peak centered at 405 nm. The NPs are fine and spherical with diameter ranging from 5 to 10 nm. These colloidal NPs have been used for the quantitative detection of uric acid by UV-VIS spectroscopy. A linear red shifting of the characteristics Plasmonic absorption peak of Ag NPs is observed with uric acid concentration. Uric acid can be detected by UV-VIS spectroscopy down to 5 nM limit using the prepared colloid.

  14. Transmission versus reflectance spectroscopy for quantitation

    NASA Astrophysics Data System (ADS)

    Gardner, Craig M.

    2018-01-01

    The objective of this work was to compare the accuracy of analyte concentration estimation when using transmission versus diffuse reflectance spectroscopy of a scattering medium. Monte Carlo ray tracing of light through the medium was used in conjunction with pure component absorption spectra and Beer-Lambert absorption along each ray's pathlength to generate matched sets of pseudoabsorbance spectra, containing water and six analytes present in skin. PLS regression models revealed an improvement in accuracy when using transmission compared to reflectance for a range of medium thicknesses and instrument noise levels. An analytical expression revealed the source of the accuracy degradation with reflectance was due both to the reduced collection efficiency for a fixed instrument etendue and to the broad pathlength distribution that detected light travels in the medium before exiting from the incident side.

  15. Optical and electrical measurement of energy transfer between nanocrystalline quantum dots and photosystem I.

    PubMed

    Jung, Hyeson; Gulis, Galina; Gupta, Subhadra; Redding, Kevin; Gosztola, David J; Wiederrecht, Gary P; Stroscio, Michael A; Dutta, Mitra

    2010-11-18

    In the natural photosynthesis process, light harvesting complexes (LHCs) absorb light and pass excitation energy to photosystem I (PSI) and photosystem II (PSII). In this study, we have used nanocrystalline quantum dots (NQDs) as an artificial LHC by integrating them with PSI to extend their spectral range. We have performed photoluminescence (PL) and ultrafast time-resolved absorption measurements to investigate this process. Our PL experiments showed that emission from the NQDs is quenched, and the fluorescence from PSI is enhanced. Transient absorption and bleaching results can be explained by fluorescence resonance energy transfer (FRET) from the NQDs to the PSI. This nonradiative energy transfer occurs in ∼6 ps. Current-voltage (I-V) measurements on the composite NQD-PSI samples demonstrate a clear photoresponse.

  16. Surface plasmon coupling for suppressing p-GaN absorption and TM-polarized emission in a deep-UV light-emitting diode.

    PubMed

    Kuo, Yang; Su, Chia-Ying; Hsieh, Chieh; Chang, Wen-Yen; Huang, Chu-An; Kiang, Yean-Woei; Yang, C C

    2015-09-15

    The radiated power enhancement (suppression) of an in- (out-of-) plane-oriented radiating dipole at a desired emission wavelength in the deep-ultraviolet (UV) range when it is coupled with a surface plasmon (SP) resonance mode induced on a nearby Al nanoparticle (NP) is demonstrated. Also, it is found that the enhanced radiated power propagates mainly in the direction from the Al NP toward the dipole. Such SP coupling behaviors can be used for suppressing the transverse-magnetic (TM)-polarized emission, enhancing the transverse-electric-polarized emission, and reducing the UV absorption of the p-GaN layer in an AlGaN-based deep-UV light-emitting diode by embedding a sphere-like Al NP in its p-AlGaN layer.

  17. Enhancement of light absorption in polyazomethines due to plasmon excitation on randomly distributed metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Wróbel, P.; Antosiewicz, T. J.; Stefaniuk, T.; Ciesielski, A.; Iwan, A.; Wronkowska, A. A.; Wronkowski, A.; Szoplik, T.

    2015-05-01

    In photovoltaic devices, metal nanoparticles embedded in a semiconductor layer allow the enhancement of solar-toelectric energy conversion efficiency due to enhanced light absorption via a prolonged optical path, enhanced electric fields near the metallic inclusions, direct injection of hot electrons, or local heating. Here we pursue the first two avenues. In the first, light scattered at an angle beyond the critical angle for reflection is coupled into the semiconductor layer and confined within such planar waveguide up to possible exciton generation. In the second, light is trapped by the excitation of localized surface plasmons on metal nanoparticles leading to enhanced near-field plasmon-exciton coupling at the peak of the plasmon resonance. We report on results of a numerical experiment on light absorption in polymer- (fullerene derivative) blends, using the 3D FDTD method, where exact optical parameters of the materials involved are taken from our recent measurements. In simulations we investigate light absorption in randomly distributed metal nanoparticles dispersed in polyazomethine-(fullerene derivative) blends, which serve as active layers in bulkheterojunction polymer solar cells. In the study Ag and Al nanoparticles of different diameters and fill factors are diffused in two air-stable aromatic polyazomethines with different chemical structures (abbreviated S9POF and S15POF) mixed with phenyl-C61-butyric acid methyl ester (PCBM) or [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM). The mixtures are spin coated on a 100 nm thick Al layer deposited on a fused silica substrate. Optical constants of the active layers are taken from spectroscopic ellipsometry and reflectance measurements using a rotating analyzer type ellipsometer with auto-retarder performed in the wavelength range from 225 nm to 2200 nm. The permittivities of Ag and Al particles of diameters from 20 to 60 nm are assumed to be equal to those measured on 100 to 200 nm thick metal films.

  18. Light absorption coefficients by phytoplankton pigments, suspended particles and colored dissolved organic matter in the Crimea coastal water (the Black sea) in June 2016

    NASA Astrophysics Data System (ADS)

    Moiseeva, N.; Churilova, T.; Efimova, T.; Krivenko, O.; Latushkin, A.

    2017-11-01

    Variability of the bio-optical properties of the Crimean coastal waters in June 2016 has been analyzed. The type of vertical distribution chlorophyll a concentration and phytoplankton light absorption coefficients and spectra shape differed between shallow and deeper water. In the deeper water seasonal stratification divided euphotic zone into layers with different environmental conditions. In the deeper part of the euphotic zone (below the thermocline) phytoplankton absorption spectra had local maximum at 550 nm, which was likely to be associated with high abundance of cyanobacteria (Synechococcus sps.) in the phytoplankton community. The concentration of chlorophyll a specific light absorption coefficient of phytoplankton decreased with depth (especially pronounced in the blue domain of the spectrum). In the shallow water the vertical distributions of all absorption properties were relatively homogeneous due to vertical water mixing. In the shallow water non-algal particles light absorption coefficient and its contribution to total particulate absorption were higher than those in the deeper water. The non-algal particles (NAP) and colored dissolved organic matter (CDOM) light absorption spectra were well described by an exponential function with a slope averaging 0.010 nm-1 (SD = 0.001 nm-1) and 0.022 nm-1 (SD = 0.0060 nm-1), correspondingly. The CDOM absorption at 440 nm and slope coefficient varied significantly across the investigated area, which was possibly associated with the terrestrial influences. The assessment of the contribution of phytoplankton, NAP and CDOM to total light absorption showed that CDOM dominated in the absorption at 440 nm.

  19. Management of light absorption in extraordinary optical transmission based ultra-thin-film tandem solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mashooq, Kishwar; Talukder, Muhammad Anisuzzaman, E-mail: anis@eee.buet.ac.bd

    2016-05-21

    Although ultra-thin-film solar cells can be attractive in reducing the cost, they suffer from low absorption as the thickness of the active layer is usually much smaller than the wavelength of incident light. Different nano-photonic techniques, including plasmonic structures, are being explored to increase the light absorption in ultra-thin-film solar cells. More than one layer of active materials with different energy bandgaps can be used in tandem to increase the light absorption as well. However, due to different amount of light absorption in different active layers, photo-generated currents in different active layers will not be the same. The current mismatchmore » between the tandem layers makes them ineffective in increasing the efficiency. In this work, we investigate the light absorption properties of tandem solar cells with two ultra-thin active layers working as two subcells and a metal layer with periodically perforated holes in-between the two subcells. While the metal layer helps to overcome the current mismatch, the periodic holes increase the absorption of incident light by helping extraordinary optical transmission of the incident light from the top to the bottom subcell, and by coupling the incident light to plasmonic and photonic modes within ultra-thin active layers. We extensively study the effects of the geometry of holes in the intermediate metal layer on the light absorption properties of tandem solar cells with ultra-thin active layers. We also study how different metals in the intermediate layer affect the light absorption; how the geometry of holes in the intermediate layer affects the absorption when the active layer materials are changed; and how the intermediate metal layer affects the collection of photo-generated electron-hole pairs at the terminals. We find that in a solar cell with 6,6-phenyl C61-butyric acid methyl ester top subcell and copper indium gallium selenide bottom subcell, if the periodic holes in the metal layer are square or polygon, total absorption remains approximately the same. However, the total absorption suffers significantly if the holes are triangle. The transmission spectra of incident light into the bottom subcell, and hence the absorption, change significantly for square and circle holes if the active materials change to cadmium selenide (CdSe) and cadmium telluride (CdTe) in the top and bottom subcells, respectively. Although the intermediate metal layer may induce electron-hole pair recombination due to surface defects, the short-circuit current density of an ultra-thin plasmonic solar cell with an intermediate metal layer with two-dimensional hole array is >9% of that of a structure without the intermediate metal layer.« less

  20. Broadening microwave absorption via a multi-domain structure

    NASA Astrophysics Data System (ADS)

    Liu, Zhengwang; Che, Renchao; Wei, Yong; Liu, Yupu; Elzatahry, Ahmed A.; Dahyan, Daifallah Al.; Zhao, Dongyuan

    2017-04-01

    Materials with a high saturation magnetization have gained increasing attention in the field of microwave absorption; therefore, the magnetization value depends on the magnetic configuration inside them. However, the broad-band absorption in the range of microwave frequency (2-18 GHz) is a great challenge. Herein, the three-dimensional (3D) Fe/C hollow microspheres are constructed by iron nanocrystals permeating inside carbon matrix with a saturation magnetization of 340 emu/g, which is 1.55 times as that of bulk Fe, unexpectedly. Electron tomography, electron holography, and Lorentz transmission electron microscopy imaging provide the powerful testimony about Fe/C interpenetration and multi-domain state constructed by vortex and stripe domains. Benefiting from the unique chemical and magnetic microstructures, the microwave minimum absorption is as strong as -55 dB and the bandwidth (<-10 dB) spans 12.5 GHz ranging from 5.5 to 18 GHz. Morphology and distribution of magnetic nano-domains can be facilely regulated by a controllable reduction sintering under H2/Ar gas and an optimized temperature over 450-850 °C. The findings might shed new light on the synthesis strategies of the materials with the broad-band frequency and understanding the association between multi-domain coupling and microwave absorption performance.

  1. White light photothermal lens spectrophotometer for the determination of absorption in scattering samples.

    PubMed

    Marcano, Aristides; Alvarado, Salvador; Meng, Junwei; Caballero, Daniel; Moares, Ernesto Marín; Edziah, Raymond

    2014-01-01

    We developed a pump-probe photothermal lens spectrophotometer that uses a broadband arc-lamp and a set of interference filters to provide tunable, nearly monochromatic radiation between 370 and 730 nm as the pump light source. This light is focused onto an absorbing sample, generating a photothermal lens of millimeter dimensions. A highly collimated monochromatic probe light from a low-power He-Ne laser interrogates the generated lens, yielding a photothermal signal proportional to the absorption of light. We measure the absorption spectra of scattering dye solutions using the device. We show that the spectra are not affected by the presence of scattering, confirming that the method only measures the absorption of light that results in generation of heat. By comparing the photothermal spectra with the usual absorption spectra determined using commercial transmission spectrophotometers, we estimate the quantum yield of scattering of the sample. We discuss applications of the device for spectroscopic characterization of samples such as blood and gold nanoparticles that exhibit a complex behavior upon interaction with light.

  2. Two-photon absorption in layered transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Dong, Ningning; Zhang, Saifeng; Li, Yuanxin; Wang, Jun

    2018-02-01

    Two-dimensional (2D) layered transition metal dichalcogenides (TMDCs) exhibit unique nonlinear optical (NLO) features and have becoming intriguing and promising candidate materials for photonic and optoelectronic devices with high performance and unique functions. Owing to layered geometry and the thickness-dependent bandgap, we studied the ultrafast NLO properties of a range of TMDCs. TMDCs with high-quality layered nanosheets were prepared through chemical vapor deposition (CVD) technique and vapor-phase growth method. Saturable absorption, two photon absorption (TPA) and two photon pumped frequency up-converted luminescence were observed from these 2D nanostructures. The exciting results open up the door to 2D photonic devices, such as passive mode-lockers, Q-switchers, optical limiters, light emitters, etc.

  3. Differential Optical Absorption Spectroscopy (DOAS) using Targets: SO2 and NO2 Measurements in Montevideo City

    NASA Astrophysics Data System (ADS)

    Louban, Ilia; Píriz, Gustavo; Platt, Ulrich; Frins, Erna

    2008-04-01

    SO2 and NO2 were remotely measured in a main street of Montevideo city using Multiaxis-Differential Optical Absorption Spectroscopy (MAX-DOAS) combined with on-field selected targets. Target-based measurements are the basis of a new experimental procedure called Topographic Target Light scattering-DOAS (TOTAL-DOAS) that provides a well define absorption path to measure the near surface distribution of trace gases in the boundary layer. It combines the measurement principles of the long-path DOAS and zenith-scattered sunlight DOAS, within the near UV and VIS spectral range. We give a general description of the procedure and present first results of the 2006 campaign at Montevideo.

  4. Systems having optical absorption layer for mid and long wave infrared and methods for making the same

    DOEpatents

    Kuzmenko, Paul J

    2013-10-01

    An optical system according to one embodiment includes a substrate; and an optical absorption layer coupled to the substrate, wherein the optical absorption layer comprises a layer of diamond-like carbon, wherein the optical absorption layer absorbs at least 50% of mid wave infrared light (3-5 .mu.m wavelength) and at least 50% of long wave infrared light (8-13 .mu.m wavelength). A method for applying an optical absorption layer to an optical system according to another embodiment includes depositing a layer of diamond-like carbon of an optical absorption layer above a substrate using plasma enhanced chemical vapor deposition, wherein the optical absorption layer absorbs at least 50% of mid wave infrared light (3-5 .mu.m wavelength) and at least 50% of long wave infrared light (8-13 .mu.m wavelength). Additional systems and methods are also presented.

  5. Backscatter absorption gas imaging systems and light sources therefore

    DOEpatents

    Kulp, Thomas Jan [Livermore, CA; Kliner, Dahv A. V. [San Ramon, CA; Sommers, Ricky [Oakley, CA; Goers, Uta-Barbara [Campbell, NY; Armstrong, Karla M [Livermore, CA

    2006-12-19

    The location of gases that are not visible to the unaided human eye can be determined using tuned light sources that spectroscopically probe the gases and cameras that can provide images corresponding to the absorption of the gases. The present invention is a light source for a backscatter absorption gas imaging (BAGI) system, and a light source incorporating the light source, that can be used to remotely detect and produce images of "invisible" gases. The inventive light source has a light producing element, an optical amplifier, and an optical parametric oscillator to generate wavelength tunable light in the IR. By using a multi-mode light source and an amplifier that operates using 915 nm pump sources, the power consumption of the light source is reduced to a level that can be operated by batteries for long periods of time. In addition, the light source is tunable over the absorption bands of many hydrocarbons, making it useful for detecting hazardous gases.

  6. Characterization of Structural and Pigmentary Colors in Common Emigrant (Catopsilia Pomona) Butterfly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghate, Ekata; Kulkarni, G. R.; Bhoraskar, S. V.

    2011-10-20

    Study of structural colors in case of insects and butterflies is important for their biomimic and biophotonics applications. Structural color is the color which is produced by physical structures and their interaction with light while pigmentary color is produced by absorption of light by pigments. Common Emigrant butterfly is widely distributed in India. It is of moderate size with wing span of about 60-80 mm. The wings are broadly white with yellow or sulphur yellow coloration at places as well as few dark black patches. It belongs to family Pieridae. A study of structural color in case of Common Emigrantmore » butterfly has been carried out in the present work. The characterization of wing color was performed using absorption spectroscopy. Scanning electron microscopic study of the wings of Common Emigrant butterfly showed that three different types of scales are present on the wing surface dorsally. Diffracting structures are present in certain parts of the surfaces of the various scales. Bead like structures are embedded in the intricate structures of the scales. Absorption spectra revealed that a strong absorption peak is seen in the UV-range. Crystalline structure of beads was confirmed by the X-ray diffraction analysis.« less

  7. Inactivation of Salmonella enterica by UV-C Light Alone and in Combination with Mild Temperatures

    PubMed Central

    Gayán, E.; Serrano, M. J.; Raso, J.; Álvarez, I.

    2012-01-01

    The aim of this investigation was to study the efficacy of the combined processes of UV light and mild temperatures for the inactivation of Salmonella enterica subsp. enterica and to explore the mechanism of inactivation. The doses to inactivate the 99.99% (4D) of the initial population ranged from 18.03 (Salmonella enterica serovar Typhimurium STCC 878) to 12.75 J ml−1 (Salmonella enterica serovar Enteritidis ATCC 13076). The pH and water activity of the treatment medium did not change the UV tolerance, but it decreased exponentially by increasing the absorption coefficient. An inactivating synergistic effect was observed by applying simultaneous UV light and heat treatment (UV-H). A less synergistic effect was observed by applying UV light first and heat subsequently. UV did not damage cell envelopes, but the number of injured cells was higher after a UV-H treatment than after heating. The synergistic effect observed by combining simultaneous UV and heat treatment opens the possibility to design combined treatments for pasteurization of liquid food with high UV absorptivity, such as fruit juices. PMID:23001665

  8. Atomic-level molybdenum oxide nanorings with full-spectrum absorption and photoresponsive properties.

    PubMed

    Yang, Yong; Yang, Yang; Chen, Shuangming; Lu, Qichen; Song, Li; Wei, Yen; Wang, Xun

    2017-11-16

    Superthin nanostructures, particularly with atomic-level thicknesses, typically display unique optical properties because of their exceptional light-matter interactions. Here, we report a facile strategy for the synthesis of sulfur-doped molybdenum oxide nanorings with an atomic-level size (thickness of 0.5 nm) and a tunable ring-in-ring architecture. These atomic-level nanorings displayed strong photo-absorption in both the visible and infrared-light ranges and acted as a photothermal agent. Under irradiation with an 808 nm laser with an intensity of 1 W/cm 2 , a composite of the nanorings embedded in polydimethylsiloxane showed an ultrafast photothermal effect, delivering a local temperature of up to 400 °C within 20 s, which to the best of our knowledge is the highest temperature by light irradiation reported to date. Meanwhile, the resulting nanorings were also employed as a photoinitiator to remotely induce a visible-light shape memory response, self-healing, reshaping performance and reversible actuation of dynamic three-dimensional structures. This study demonstrates an advancement towards controlling atomic-level-sized nanostructures and achieving greatly enhanced optical performances for optoelectronics.

  9. Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells.

    PubMed

    Boccard, Mathieu; Battaglia, Corsin; Hänni, Simon; Söderström, Karin; Escarré, Jordi; Nicolay, Sylvain; Meillaud, Fanny; Despeisse, Matthieu; Ballif, Christophe

    2012-03-14

    The challenge for all photovoltaic technologies is to maximize light absorption, to convert photons with minimal losses into electric charges, and to efficiently extract them to the electrical circuit. For thin-film solar cells, all these tasks rely heavily on the transparent front electrode. Here we present a multiscale electrode architecture that allows us to achieve efficiencies as high as 14.1% with a thin-film silicon tandem solar cell employing only 3 μm of silicon. Our approach combines the versatility of nanoimprint lithography, the unusually high carrier mobility of hydrogenated indium oxide (over 100 cm(2)/V/s), and the unequaled light-scattering properties of self-textured zinc oxide. A multiscale texture provides light trapping over a broad wavelength range while ensuring an optimum morphology for the growth of high-quality silicon layers. A conductive bilayer stack guarantees carrier extraction while minimizing parasitic absorption losses. The tunability accessible through such multiscale electrode architecture offers unprecedented possibilities to address the trade-off between cell optical and electrical performance. © 2012 American Chemical Society

  10. A Light-Emitting Diode- (LED-) Based Absorption Sensor for Simultaneous Detection of Carbon Monoxide and Carbon Dioxide.

    PubMed

    Thurmond, Kyle; Loparo, Zachary; Partridge, William; Vasu, Subith S

    2016-06-01

    A sensor was developed for simultaneous measurements of carbon monoxide (CO) and carbon dioxide (CO2) fluctuations in internal combustion engine exhaust gases. This sensor utilizes low-cost and compact light-emitting diodes (LEDs) that emit in the 3-5 µm wavelength range. An affordable, fast response sensor that can measure these gases has a broad application that can lead to more efficient, fuel-flexible engines and regulation of harmful emissions. Light emission from LEDs is spectrally broader and more spatially divergent when compared to that of lasers, which presented many design challenges. Optical design studies addressed some of the non-ideal characteristics of the LED emissions. Measurements of CO and CO2 were conducted using their fundamental absorption bands centered at 4.7 µm and 4.3 µm, respectively, while a 3.6 µm reference LED was used to account for scattering losses (due to soot, window deposits, etc.) common to the three measurement LEDs. Instrument validation and calibration was performed using a laboratory flow cell and bottled-gas mixtures. The sensor was able to detect CO2 and CO concentration changes as small as 30 ppm and 400 ppm, respectively. Because of the many control and monitor species with infra-red absorption features, which can be measured using the strategy described, this work demonstrates proof of concept for a wider range of fast (250 Hz) and low-cost sensors for gas measurement and process monitoring. © The Author(s) 2016.

  11. Light-induced absorption and its relaxation under illumination of continuous wave ultraviolet light in Mn-doped near-stoichiometric LiNbO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Youwen; Kitamura, Kenji; Takekawa, Shunji

    2005-04-01

    The steady-state light-induced absorption and the temporal relaxation behavior under illumination of cw ultraviolet light in Mn-doped near-stoichiometric LiNbO{sub 3} with different crystal compositions are investigated. The ultraviolet-light-induced absorption has been assigned to small polarons Nb{sub Li}{sup 4+} by measuring the absorption spectra at room temperature. The dependences of relaxation behaviors (time constant and stretching factor) of light-induced absorption on various illumination conditions (intensity, polarization) and temperature are presented, which are very different from those observed in Fe-doped LiNbO{sub 3} illuminated with highly intense light pulse, though the temporal relaxation follows the same stretched-exponential decay behavior in both cases. Themore » results are explained reasonably by using the model of distance-dependent electron transition probabilities between localized deep traps and small polarons without any additional assumptions, and discussed to tailor doped near-stoichiometric LiNbO{sub 3} crystals for two-color holographic recording with cw laser light.« less

  12. Wide-angle, polarization-insensitive and broadband absorber based on eight-fold symmetric SRRs metamaterial

    NASA Astrophysics Data System (ADS)

    Wu, Dong; Liu, Yumin; Yu, Zhongyuan; Chen, Lei; Ma, Rui; Li, Yutong; Li, Ruifang; Ye, Han

    2016-12-01

    In this paper, we propose a novel three dimensional metamaterial design with eight-fold rotational symmetry that shows a polarization-insensitive, wide-angle and broadband perfect absorption in the microwave band. By simulation, the polarization-insensitive absorption is over 90% between 26.9 GHz to 32.9 GHz, and the broadband absorption remains a good absorption performance to a wide incident angles for both TE and TM polarizations. The magnetic field distribution are investigated to interpret the physical mechanism of broadband absorption. The broadband absorption is based on overlapping the multiple magnetic resonances at the neighboring frequencies by coupling effects of multiple metallic split-ring resonators (SRRs). Moreover, it is demonstrate that the designed structure can be extended to other frequencies by scale down the size of the unit cell, such as the visible frequencies. The simulated results show that the absorption of the smaller absorber is above 90% in the frequency range from 467 THz to 765 THz(392-642 nm), which include orange to purple light in visible region(400-760nm). The wide-angle and polarization-insensitive stabilities of the smaller absorber is also demonstrated at visible region. The proposed work provides a new design of realization of a polarization-insensitive, wide-angle and broadband absorber ranging different frequency bands, and such a structure has potential application in the fields of solar cell, imaging and detection.

  13. Laboratory Measurements of Mass Specific Absorption Spectra for Suites of Black Carbon-like, Biomass Burning and Mineral Dust Aerosols

    NASA Astrophysics Data System (ADS)

    Radney, J.; Zangmeister, C.

    2017-12-01

    Light-absorbing atmospheric aerosols can be grouped into three categories: black carbon (BC), brown carbon (BrC) or mineral dust (MD). In many cases, the absorption of these species is best quantified using a mass-specific absorption cross section (MAC) since the particles are in the Rayleigh regime (BC) or optically thin (BrC and MD); notably, MAC values are both traceable to the SI and transferrable between photoacoustic spectroscopy and filter-based absorption measurements. Here, we present laboratory measurements of MAC for all three light-absorbing aerosol classes. Particles were size- and mass-selected using a differential mobility analyzer and aerosol particle mass analyzer, respectively, with absorption coefficients (αabs) and number concentrations (N) being measured by a broadband photoacoustic spectrometer and condensation particle counter, respectively. This suite of instrumentation allows for direct quantification of MAC from the measured parameters (MAC = αabs/Nmp). Further, the measurements contained > 8 data points spanning λ = 405 nm to 840 nm allowing for spectral curvatures (i.e. the Absorption Angstrom Exponent or AAE) to be fit from many data points versus the more common 2-point interpolations. For the carbonaceous, BC-like aerosols - five samples generated from flames, spark discharge soot (i.e. fullerene soot), graphene, reduced graphene oxide (rGO), and fullerene (C60) - we found: 1) measured MAC ranged between 2.4 m2 g-1 and 8.6 m2 g-1 at λ = 550 nm, 2) most AAEs ranged between 0.5 and 1.3; C60 AAE was 7.5 ± 0.9 and 3) MAC spectra were dependent on fuel type and formation conditions. For BrC particles generated from smoldering combustion of 3 hardwood (Oak, Hickory and Mesquite) and 3 softwood species (Western redcedar, Blue spruce and Baldcypress), we found: 1) median MAC values ranged from 1.4 x 10-2 m2 g-1 to 7.9 x 10-2 m2 g-1 at λ = 550 nm, 2) AAE values ranged between 3.5 and 6.2, and 3) Oak, Western redcedar and Blue spruce possessed statistically similar (p > 0.05) spectra while Hickory, Mesquite and Baldcypress were distinct (p < 0.01). Last, we measured seven dust and soil samples collected from across the continental U.S. and found: 1) absorption spectra can be classified as either brown/grey (AAE ≈ 3.5) or red (AAE > 4) and 2) the highest MAC at λ = 405 nm for all samples was ≈ 0.5 m2 g-1.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ling; Kolle, Stefan; Weaver, James C.

    Many species rely on diverse selections of entirely organic photonic structures for the manipulation of light and the display of striking colours. Here we report the discovery of a mineralized hierarchical photonic architecture embedded within the translucent shell of the blue-rayed limpet Patella pellucida. The bright colour of the limpet’s stripes originates from light interference in a periodically layered zig-zag architecture of crystallographically co-oriented calcite lamellae. Beneath the photonic multilayer, a disordered array of light-absorbing particles provides contrast for the blue colour. This unique mineralized manifestation of a synergy of two distinct optical elements at specific locations within the continuummore » of the limpet’s translucent protective shell ensures the vivid shine of the blue stripes, which can be perceived under water from a wide range of viewing angles. The stripes’ reflection band coincides with the spectral range of minimal light absorption in sea water, raising intriguing questions regarding their functional significance.« less

  15. Photovoltaic device with increased light absorption and method for its manufacture

    DOEpatents

    Glatfelter, Troy; Vogeli, Craig; Call, Jon; Hammond, Ginger

    1993-07-20

    A photovoltaic cell having a light-directing optical element integrally formed in an encapsulant layer thereof. The optical element redirects light to increase the internal absorption of light incident on the photovoltaic device.

  16. Development of a real-time reflectance and transmittance monitoring system for the manufacturing of metaldielectric light absorbers

    NASA Astrophysics Data System (ADS)

    Badoil, Bruno; Cathelinaud, Michel; Lemarchand, Fabien; Lemarquis, Frédéric; Lequime, Michel

    2017-11-01

    Metal-dielectric light absorbers are of great interest for suppressing stray light in optical systems. Such coatings can give an absorption level greater than 99.9% over a broad spectral range provided that the complex refractive index of metallic films is accurately known. For this purpose we developed a new real-time monitoring system that allows to measure in situ both reflectance and transmittance of the coating during manufacturing in the deposition chamber. This paper describes the system design and its characteristics and gives some preliminary results concerning metallic thin film characterizations.

  17. Assessment of the actual light dose in photodynamic therapy.

    PubMed

    Schaberle, Fabio A

    2018-06-09

    Photodynamic therapy (PDT) initiates with the absorption of light, which depends on the spectral overlap between the light source emission and the photosensitizer absorption, resulting in the number of photons absorbed, the key parameter starting PDT processes. Most papers report light doses regardless if the light is only partially absorbed or shifted relatively to the absorption peak, misleading the actual light dose value and not allowing quantitative comparisons between photosensitizers and light sources. In this manuscript a method is presented to calculate the actual light dose delivered by any light source for a given photosensitizer. This method allows comparing light doses delivered for any combination of light source (broad or narrow band or daylight) and photosensitizer. Copyright © 2018. Published by Elsevier B.V.

  18. New Triplet Sensitization Routes for Photon Upconversion: Thermally Activated Delayed Fluorescence Molecules, Inorganic Nanocrystals, and Singlet-to-Triplet Absorption.

    PubMed

    Yanai, Nobuhiro; Kimizuka, Nobuo

    2017-10-17

    Photon upconversion based on triplet-triplet annihilation (TTA-UC) has attracted much interest because of its possible applications to renewable energy production and biological fields. In particular, the UC of near-infrared (NIR) light to visible (vis) light is imperative to overcome the Shockley-Queisser limit of single-junction photovoltaic cells, and the efficiency of photocatalytic hydrogen production from water can also be improved with the aid of vis-to-ultraviolet (UV) UC. However, both processes have met limitations in the wavelength range, efficiency, and sensitivity for weak incident light. This Account describes recent breakthroughs that solve these major problems, new triplet sensitization routes to significantly enlarge the range of conversion wavelength by minimizing the energy loss during intersystem crossing (ISC) of triplet sensitizers or bypassing the ISC process. The photochemical processes of TTA-UC in general start with the absorption of longer wavelength incident light by triplet sensitizers, which generate the triplet states via ISC. This ISC inevitably accompanies the energy loss of hundreds of millielectronvolts, which significantly limits the TTA-UC with large anti-Stokes shifts. The small S 1 -T 1 gap of molecules showing thermally activated delayed fluorescence (TADF) allows the sensitization of emitters with the highest T 1 and S 1 energy levels ever employed in TTA-UC, which results in efficient vis-to-UV UC. As alternatives to molecular sensitizers in the NIR region, inorganic nanocrystals with broad NIR absorption bands have recently been shown to work as effective sensitizers for NIR-to-vis TTA-UC. Their small exchange splitting minimizes the energy loss during triplet sensitization. The modification of nanocrystal surfaces with organic acceptors via coordination bonds allows efficient energy transfer between the components and succeeding TTA processes. To remove restrictions on the energy loss during ISC, molecules with direct singlet-to-triplet (S-T) excitation are employed as triplet sensitizers. Although the S-T absorption is spin forbidden, large spin-orbital coupling occurs for appropriately designed metal complexes, which allow S-T absorption in the NIR region with large absorption coefficients. While the triplet lifetime of such S-T absorption sensitizers is often short (less than microsecond), the integration of the molecular sensitizers with emitter assemblies allows facile Dexter energy transfer to the surrounding emitter molecules, leading to efficient NIR-to-vis UC emission through triplet energy migration (TEM) in the condensed state. By judicious modification of the chromophore structures, the first example of NIR-to-blue UC has also been achieved. It is essential to combine these new triplet sensitization routes with an upconverted energy collection (UPCON) approach in molecular assemblies to effectively populate emitter triplets and to overcome remaining issues including back energy transfer. We propose two overall materials designs for the TEM-UPCON strategy, core-shell-shell structures and trilayer structures composed of triplet donor, acceptor, and energy collector. The fusion between triplet science and chemistry of self-assembly would overcome previous difficulties of NIR-to-vis and vis-to-UV TTA-UC toward real-world applications ranging from energy to biology.

  19. Resonantly enhanced multiple exciton generation through below-band-gap multi-photon absorption in perovskite nanocrystals.

    PubMed

    Manzi, Aurora; Tong, Yu; Feucht, Julius; Yao, En-Ping; Polavarapu, Lakshminarayana; Urban, Alexander S; Feldmann, Jochen

    2018-04-17

    Multi-photon absorption and multiple exciton generation represent two separate strategies for enhancing the conversion efficiency of light into usable electric power. Targeting below-band-gap and above-band-gap energies, respectively, to date these processes have only been demonstrated independently. Here we report the combined interaction of both nonlinear processes in CsPbBr 3 perovskite nanocrystals. We demonstrate nonlinear absorption over a wide range of below-band-gap excitation energies (0.5-0.8 E g ). Interestingly, we discover high-order absorption processes, deviating from the typical two-photon absorption, at specific energetic positions. These energies are associated with a strong enhancement of the photoluminescence intensity by up to 10 5 . The analysis of the corresponding energy levels reveals that the observed phenomena can be ascribed to the resonant creation of multiple excitons via the absorption of multiple below-band-gap photons. This effect may open new pathways for the efficient conversion of optical energy, potentially also in other semiconducting materials.

  20. Type-II GaSb/GaAs quantum-dot intermediate band with extended optical absorption range for efficient solar cells

    NASA Astrophysics Data System (ADS)

    Boustanji, Hela; Jaziri, Sihem

    2018-02-01

    GaSb/GaAs type-II quantum-dot solar cells (QD SCs) have attracted attention as highly efficient intermediate band SCs due to their infrared absorption. Type-II QDs exhibited a staggered confinement potential, where only holes are strongly confined within the dots. Long wavelength light absorption of the QDSCs is enhanced through the improved carriers number in the IB. The absorption of dots depends on their shape, material quality, and composition. Therefore, the optical properties of the GaSbGaAs QDs before and after thermal treatment are studied. Our intraband studies have shown an extended absorption into the long wavelength region 1.77 μ {m}. The annealed QDs have shown significantly more infrared response of 7.2 μ {m} compared to as-grown sample. The photon absorption and hole extraction depend strongly on the thermal annealing process. In this context, emission of holes from localized states in GaSb QDs has been studied using conductance-voltage ( G- V ) characteristics.

  1. Intravital Fluorescence Excitation in Whole-Animal Optical Imaging.

    PubMed

    Nooshabadi, Fatemeh; Yang, Hee-Jeong; Bixler, Joel N; Kong, Ying; Cirillo, Jeffrey D; Maitland, Kristen C

    2016-01-01

    Whole-animal fluorescence imaging with recombinant or fluorescently-tagged pathogens or cells enables real-time analysis of disease progression and treatment response in live animals. Tissue absorption limits penetration of fluorescence excitation light, particularly in the visible wavelength range, resulting in reduced sensitivity to deep targets. Here, we demonstrate the use of an optical fiber bundle to deliver light into the mouse lung to excite fluorescent bacteria, circumventing tissue absorption of excitation light in whole-animal imaging. We present the use of this technology to improve detection of recombinant reporter strains of tdTomato-expressing Mycobacterium bovis BCG (Bacillus Calmette Guerin) bacteria in the mouse lung. A microendoscope was integrated into a whole-animal fluorescence imager to enable intravital excitation in the mouse lung with whole-animal detection. Using this technique, the threshold of detection was measured as 103 colony forming units (CFU) during pulmonary infection. In comparison, the threshold of detection for whole-animal fluorescence imaging using standard epi-illumination was greater than 106 CFU.

  2. Intravital Fluorescence Excitation in Whole-Animal Optical Imaging

    PubMed Central

    Bixler, Joel N.; Kong, Ying; Cirillo, Jeffrey D.; Maitland, Kristen C.

    2016-01-01

    Whole-animal fluorescence imaging with recombinant or fluorescently-tagged pathogens or cells enables real-time analysis of disease progression and treatment response in live animals. Tissue absorption limits penetration of fluorescence excitation light, particularly in the visible wavelength range, resulting in reduced sensitivity to deep targets. Here, we demonstrate the use of an optical fiber bundle to deliver light into the mouse lung to excite fluorescent bacteria, circumventing tissue absorption of excitation light in whole-animal imaging. We present the use of this technology to improve detection of recombinant reporter strains of tdTomato-expressing Mycobacterium bovis BCG (Bacillus Calmette Guerin) bacteria in the mouse lung. A microendoscope was integrated into a whole-animal fluorescence imager to enable intravital excitation in the mouse lung with whole-animal detection. Using this technique, the threshold of detection was measured as 103 colony forming units (CFU) during pulmonary infection. In comparison, the threshold of detection for whole-animal fluorescence imaging using standard epi-illumination was greater than 106 CFU. PMID:26901051

  3. The influence of UV laser radiation on the absorption and luminescence of photothermorefractive glasses containing silver ions

    NASA Astrophysics Data System (ADS)

    Ignat'ev, A. I.; Ignat'ev, D. A.; Nikonorov, N. V.; Sidorov, A. I.

    2015-08-01

    It is experimentally shown that irradiation of silver-containing glasses by nanosecond laser pulses with a wavelength of 248 nm leads to the formation of unstable point defects (having absorption bands in the UV and visible spectral ranges) in the irradiated region and causes the transition of ions and charged molecular silver clusters to the neutral state, which is accompanied by an increase in the luminescence intensity in the visible spectral range. The influence of pulsed laser irradiation is compared with the effect of exposure to cw UV light of a mercury lamp. Some models are proposed to explain the influence of the laser effect on the optical properties of glasses.

  4. Light absorption by secondary organic aerosol from α-pinene: Effects of oxidants, seed aerosol acidity, and relative humidity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Chen; Gyawali, Madhu; Zaveri, Rahul A.

    2013-10-25

    It is well known that light absorption from dust and black carbon aerosols has a warming effect on climate while light scattering from sulfate, nitrate, and sea salt aerosols has a cooling effect. However, there are large uncertainties associated with light absorption and scattering by different types of organic aerosols, especially in the near-UV and UV spectral regions. In this paper, we present the results from a systematic laboratory study focused on measuring light absorption by secondary organic aerosols (SOAs) generated from dark α-pinene + O 3 and α-pinene + NO x + O 3 systems in the presence ofmore » neutral and acidic sulfate seed aerosols. Light absorption was monitored using photoacoustic spectrometers at four different wavelengths: 355, 405, 532, and 870 nm. Significant light absorption at 355 and 405 nm was observed for the SOA formed from α-pinene + O 3 + NO 3 system only in the presence of highly acidic sulfate seed aerosols under dry conditions. In contrast, no absorption was observed when the relative humidity was elevated to greater than 27% or in the presence of neutral sulfate seed aerosols. Organic nitrates in the SOA formed in the presence of neutral sulfate seed aerosols were found to be nonabsorbing, while the light-absorbing compounds are speculated to be aldol condensation oligomers with nitroxy organosulfate groups that are formed in highly acidic sulfate aerosols. Finally and overall, these results suggest that dark α-pinene + O 3 and α-pinene + NO x + O 3 systems do not form light-absorbing SOA under typical atmospheric conditions.« less

  5. Spectroscopic studies of two spectral variants of light-harvesting complex 2 (LH2) from the photosynthetic purple sulfur bacterium Allochromatium vinosum.

    PubMed

    Niedzwiedzki, Dariusz M; Bina, David; Picken, Nichola; Honkanen, Suvi; Blankenship, Robert E; Holten, Dewey; Cogdell, Richard J

    2012-09-01

    Two spectral forms of the peripheral light-harvesting complex (LH2) from the purple sulfur photosynthetic bacterium Allochromatium vinosum were purified and their photophysical properties characterized. The complexes contain bacteriochlorophyll a (BChl a) and multiple species of carotenoids. The composition of carotenoids depends on the light conditions applied during growth of the cultures. In addition, LH2 grown under high light has a noticeable split of the B800 absorption band. The influence of the change of carotenoid distribution as well as the spectral change of the excitonic absorption of the bacteriochlorophylls on the light-harvesting ability was studied using steady-state absorption, fluorescence and femtosecond time-resolved absorption at 77K. The results demonstrate that the change of the distribution of the carotenoids when cells were grown at low light adapts the absorptive properties of the complex to the light conditions and maintains maximum photon-capture performance. In addition, an explanation for the origin of the enigmatic split of the B800 absorption band is provided. This spectral splitting is also observed in LH2 complexes from other photosynthetic sulfur purple bacterial species. According to results obtained from transient absorption spectroscopy, the B800 band split originates from two spectral forms of the associated BChl a monomeric molecules bound within the same complex. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Estimation of the mass absorption cross-section of the black and brown carbon aerosols during GoPoEx 2014

    NASA Astrophysics Data System (ADS)

    Cho, C.; Kim, S. W.; Lee, M.; Gustafsson, O.; Fang, W.

    2017-12-01

    Black carbon (BC) is a major contributor to the atmospheric heating by absorbing the solar radiation. According to recent studies, the solar absorption of brown carbon (BrC) is not negligible and even comparable to that of BC at visible to UV wavelengths, but most optical instruments that quantify light absorption are unable to distinguish each other. Thus, light absorption properties of BC or BrC usually have been studied through modeling researches by using mass absorption cross-section (MAC). Although MAC has a large spatial and temporal variability, most modeling studies have used a specific value of BC MAC and even the absorption by BrC is seldom considered in most chemical and climate models. The generalization of modeling research can lead to serious errors of radiative forcing by BC and BrC. In this study, MAC of BC and BrC are separately determined and the contribution of BC and BrC on aerosol light absorption are estimated from co-located simultaneous in-situ measurements, COSMOS, CLAP and Sunset EC/OC analyzer, at Gosan climate observatory, Korea during Gosan Pollution Experiment in January 2014 (GoPoEx 2014). At 565 nm, MAC of BC is found to be about 6.4±1.5 m2 g-1 from COSMOS and Sunset EC/OC analyzer measurements. This value is similar to those from previous studies in China (Cui et al., STE, 2016), but lower than those observed to be ranged 10-18 m2 g-1 in America or Europe (Lack et al., PNAS, 2012). Aerosol absorption coefficient (AAC) and BC mass concentration from COSMOS, meanwhile, are approximately 15-20% lower than those of CLAP. This difference can be attributable to the contribution of BrC. The MAC of BrC was calculated using the absorption coefficient of BrC and by the following three methods: (1) the difference of mass concentration from Aethalometer and COSMOS applied new BC MAC of this study, (2) The mass concentration of water-soluble organic carbon, (3) a method using the mass concentration of organic carbon suggested by Chung et al. (ACP, 2012). The MAC of BrC values obtained from the three methods ranged from 1.0 m2 g-1 to 1.5 m2 g-1 at 565 nm which is slightly higher than those from previous studies (Srinivas et al., AE, 2016). The contribution of BC to AAC is estimated to be about 85-90%, while BrC accounts for about 10-15% of total AAC, having increases about 1% of BrC contribution when the BrC MAC value increases 10%.

  7. A short-wave infrared otoscope for middle ear disease diagnostics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Carr, Jessica A.; Valdez, Tulio; Bruns, Oliver; Bawendi, Moungi

    2016-02-01

    Otitis media, a range of inflammatory conditions of the middle ear, is the second most common illness diagnosed in children. However, the diagnosis can be challenging, particularly in pediatric patients. Otitis media is commonly over-diagnosed and over-treated and has been identified as one of the primary factors in increased antibiotic resistance. We describe the development of a short-wave infrared (SWIR) otoscope for objective middle ear effusion diagnosis. The SWIR otoscope can unambiguously detect the presence of middle ear fluid based on its strong light absorption in the SWIR. This absorption causes a stark, visual contrast between the presence and absence of fluid behind the tympanic membrane. Additionally, when there is no middle ear fluid, the deeper tissue penetration of SWIR light allows the SWIR otoscope to better visualize middle ear anatomy through the tympanic membrane than is possible with visible light. We demonstrate that in healthy, adult human ears, SWIR otoscopy can image a range of middle ear anatomy, including landmarks of the entire ossicular chain, the promontory, the round window niche, and the chorda tympani. We suggest that SWIR otoscopy can provide valuable diagnostic information complementary to that provided by visible pneumotoscopy in the diagnosis of middle ear effusions, otitis media, and other maladies of the middle ear.

  8. [Development of photothermal microactuator based on spectral analysis of photothermal expansion material].

    PubMed

    Liu, Chao; Zhang, Dong-Xian; Zhang, Hai-Jun

    2009-11-01

    The spectral characteristic of materials is the key factor of the photothermal microactuator's performance. The present article introduces the operating principle, and analyzes the relationship between the material spectral characteristic and its expansion. As the photothermal microactuator is an innovative microactuator based on photothermal expansion that absorbs the laser energy and converts it into internal energy to realize the microdrive, the optimal photothermal expansion material with proper absorption spectrum characteristic matching the spectrum of light driving source needs to be found. The reflection and absorption spectra of four types of polymeric material, including PVC, HDPE, LDPE and PET, were obtained by using the single integrating sphere method. The results indicate that the reflection spectrum of the dyed high-density polyethylene (HDPE) is of double-peak structure in visible band, and there is strong absorption within the range of 600-690 nm, which means it would match the light driving source quite well in the broad spectral range. Therefore, HDPE was chosen as the photothermal expansion material. In order to check out the feasibility and performance of the photothermal microactuactor based on HDPE, a prototyping microactuator 1 500 mm in length and 30 mm in thickness was manufactured by using an excimer laser micromachining system. With a laser diode (10 mW/650 nm) as the external power source to activate the microactuator, performance measurement experiments were carried out by using a self-produced video movement measurement system with a CCD-coupled microscope. The experiment results demonstrate that the deflection of the microactuator reaches 18.7 mm at 10 mW of laser power, showing that the characteristics of spectral absorption and light-heat transition are quite well at 650 nm. This novel photothermal microactuator has simple structure, adjustable displacement output, and more mobility, and can be controlled remotely, so it will be quite useful for applications in the fields of micro-optical-electro-mechanical systems (MOEMS).

  9. Broadband nonlinear optical response of monolayer MoSe2 under ultrafast excitation

    NASA Astrophysics Data System (ADS)

    Nie, Zhonghui; Trovatello, Chiara; Pogna, Eva A. A.; Dal Conte, Stefano; Miranda, Paulo B.; Kelleher, Edmund; Zhu, Chunhui; Turcu, Ion Crisitan Edmond; Xu, Yongbing; Liu, Kaihui; Cerullo, Giulio; Wang, Fengqiu

    2018-01-01

    Due to their strong light-matter interaction, monolayer transition metal dichalcogenides (TMDs) have proven to be promising candidates for nonlinear optics and optoelectronics. Here, we characterize the nonlinear absorption of chemical vapour deposition (CVD)-grown monolayer MoSe2 in the 720-810 nm wavelength range. Surprisingly, despite the presence of strong exciton resonances, monolayer MoSe2 exhibits a uniform modulation depth of ˜80 ± 3% and a saturation intensity of ˜2.5 ± 0.4 MW/cm2. In addition, pump-probe spectroscopy is performed to confirm the saturable absorption and reveal the photocarrier relaxation dynamics over hundreds of picoseconds. Our results unravel the unique broadband nonlinear absorptive behavior of monolayer MoSe2 under ultrafast excitation and highlight the potential of using monolayer TMDs as broadband ultrafast optical switches with customizable saturable absorption characteristics.

  10. Molecular Characterization of Brown Carbon in Biomass Burning Aerosol Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Peng; Aiona, Paige K.; Li, Ying

    Emissions from biomass burning are a significant source of brown carbon (BrC) in the atmosphere. In this study, we investigate the molecular composition of freshly-emitted biomass burning organic aerosol (BBOA) samples collected during test burns of selected biomass fuels: sawgrass, peat, ponderosa pine, and black spruce. We characterize individual BrC chromophores present in these samples using high performance liquid chromatography coupled to a photodiode array detector and a high-resolution mass spectrometer. We demonstrate that both the overall BrC absorption and the chemical composition of light-absorbing compounds depend significantly on the type of biomass fuels and burning conditions. Common BrC chromophoresmore » in the selected BBOA samples include nitro-aromatics, polycyclic aromatic hydrocarbon derivatives, and polyphenols spanning a wide range of molecular weights, structures, and light absorption properties. A number of biofuel-specific BrC chromophores are observed, indicating that some of them may be used as potential markers of BrC originating from different biomass burning sources. On average, ~50% of the light absorption above 300 nm can be attributed to a limited number of strong BrC chromophores, which may serve as representative light-absorbing species for studying atmospheric processing of BrC aerosol. The absorption coefficients of BBOA are affected by solar photolysis. Specifically, under typical atmospheric conditions, the 300 nm absorbance decays with a half-life of 16 hours. A “molecular corridors” analysis of the BBOA volatility distribution suggests that many BrC compounds in the fresh BBOA have low volatility (<1 g m-1) and will be retained in the particle phase under atmospherically relevant conditions.« less

  11. Enhancing the Photovoltaic Performance of Perovskite Solar Cells with a Down-Conversion Eu-Complex.

    PubMed

    Jiang, Ling; Chen, Wangchao; Zheng, Jiawei; Zhu, Liangzheng; Mo, Li'e; Li, Zhaoqian; Hu, Linhua; Hayat, Tasawar; Alsaedi, Ahmed; Zhang, Changneng; Dai, Songyuan

    2017-08-16

    Organometal halide perovskite solar cells (PSCs) have shown high photovoltaic performance but poor utilization of ultraviolet (UV) irradiation. Lanthanide complexes have a wide absorption range in the UV region and they can down-convert the absorbed UV light into visible light, which provides a possibility for PSCs to utilize UV light for higher photocurrent, efficiency, and stability. In this study, we use a transparent luminescent down-converting layer (LDL) of Eu-4,7-diphenyl-1,10-phenanthroline (Eu-complex) to improve the light utilization efficiency of PSCs. Compared with the uncoated PSC, the PSC coated with Eu-complex LDL on the reverse of the fluorine-doped tin oxide glass displayed an enhancement of 11.8% in short-circuit current density (J sc ) and 15.3% in efficiency due to the Eu-complex LDL re-emitting UV light (300-380 nm) in the visible range. It is indicated that the Eu-complex LDL plays the role of enhancing the power conversion efficiency as well as reducing UV degradation for PSCs.

  12. Nanoimprint-Transfer-Patterned Solids Enhance Light Absorption in Colloidal Quantum Dot Solar Cells.

    PubMed

    Kim, Younghoon; Bicanic, Kristopher; Tan, Hairen; Ouellette, Olivier; Sutherland, Brandon R; García de Arquer, F Pelayo; Jo, Jea Woong; Liu, Mengxia; Sun, Bin; Liu, Min; Hoogland, Sjoerd; Sargent, Edward H

    2017-04-12

    Colloidal quantum dot (CQD) materials are of interest in thin-film solar cells due to their size-tunable bandgap and low-cost solution-processing. However, CQD solar cells suffer from inefficient charge extraction over the film thicknesses required for complete absorption of solar light. Here we show a new strategy to enhance light absorption in CQD solar cells by nanostructuring the CQD film itself at the back interface. We use two-dimensional finite-difference time-domain (FDTD) simulations to study quantitatively the light absorption enhancement in nanostructured back interfaces in CQD solar cells. We implement this experimentally by demonstrating a nanoimprint-transfer-patterning (NTP) process for the fabrication of nanostructured CQD solids with highly ordered patterns. We show that this approach enables a boost in the power conversion efficiency in CQD solar cells primarily due to an increase in short-circuit current density as a result of enhanced absorption through light-trapping.

  13. Towards better light harvesting capability for DSSC (dye sensitized solar cells) through addition of Au@SiO2 core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Fadhilah, Nur; Alhadi, Emha Riyadhul Jinan; Risanti, Doty Dewi

    2018-04-01

    The Au nanoparticles as core can increase the light harvesting due to the strong near-field effect LSPR (Localized Surface Plasmon Resonance), effectively minimized the electron recombination process and also can improve the optical absorption of the dye sensitized. Au@SiO2 core-shell nanoparticles were prepared using SiO2 extracted from Sidoarjo mud volcano. In this work investigated the influence of pH solution and silica shell volume fraction in Au@SiO2 nanoparticles core-shell structure on DSSC loaded with Ru-based dye. From XRD characterization it was found that core-shell contains SiO2, Au, γAl2O3 and traces NaCl. UV-Vis absorption spectra of core-shell showed the position of the surface plasmon AuNP band in the range of 500-600 nm. The Au@SiO2 core-shell with volume fraction of 30ml silica has the highest peak absorbance. The enhanced light absorption is primarily attributed to the LSPR effect of the Au core. Our results on incident photon-to-current conversion efficiency indicates that the presence of SiO2 depending on its volume fraction tends to shift to longer wavelength.

  14. Properties of black carbon and other insoluble light-absorbing particles in seasonal snow of northwestern China

    NASA Astrophysics Data System (ADS)

    Pu, Wei; Wang, Xin; Wei, Hailun; Zhou, Yue; Shi, Jinsen; Hu, Zhiyuan; Jin, Hongchun; Chen, Quanliang

    2017-05-01

    A large field campaign was conducted and 284 snow samples were collected at 38 sites in Xinjiang Province and 6 sites in Qinghai Province across northwestern China from January to February 2012. A spectrophotometer combined with chemical analysis was used to measure the insoluble light-absorbing particles (ILAPs) and chemical components in seasonal snow. The results indicate that the cleanest snow was found in northeastern Xinjiang along the border of China, and it presented an estimated black carbon (CBCest) of approximately 5 ng g-1. The dirtiest snow presented a CBCest of approximately 450 ng g-1 near industrial cities in Xinjiang. Overall, the CBCest of most of the snow samples collected in this campaign was in the range of 10-150 ng g-1. Vertical variations in the snowpack ILAPs indicated a probable shift in emission sources with the progression of winter. An analysis of the fractional contributions to absorption implied that organic carbon (OC) dominated the 450 nm absorption in Qinghai, while the contributions from BC and OC were comparable in Xinjiang. Finally, a positive matrix factorization (PMF) model was run to explore the sources of particulate light absorption, and the results indicated an optimal three-factor/source solution that included industrial pollution, biomass burning, and soil dust.

  15. Transmission versus reflectance spectroscopy for quantitation.

    PubMed

    Gardner, Craig M

    2018-01-01

    The objective of this work was to compare the accuracy of analyte concentration estimation when using transmission versus diffuse reflectance spectroscopy of a scattering medium. Monte Carlo ray tracing of light through the medium was used in conjunction with pure component absorption spectra and Beer-Lambert absorption along each ray's pathlength to generate matched sets of pseudoabsorbance spectra, containing water and six analytes present in skin. PLS regression models revealed an improvement in accuracy when using transmission compared to reflectance for a range of medium thicknesses and instrument noise levels. An analytical expression revealed the source of the accuracy degradation with reflectance was due both to the reduced collection efficiency for a fixed instrument etendue and to the broad pathlength distribution that detected light travels in the medium before exiting from the incident side. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  16. Dynamics of defects in Ce³⁺ doped silica affecting its performance as protective filter in ultraviolet high-power lasers.

    PubMed

    Demos, Stavros G; Ehrmann, Paul R; Qiu, S Roger; Schaffers, Kathleen I; Suratwala, Tayyab I

    2014-11-17

    We investigate defects forming in Ce³⁺-doped fused silica samples following exposure to nanosecond ultraviolet laser pulses and their relaxation as a function of time and exposure to low intensity light at different wavelengths. A subset of these defects are responsible for inducing absorption in the visible and near infrared spectral range, which is of critical importance for the use of this material as ultraviolet light absorbing filter in high power laser systems. The dependence of the induced absorption as a function of laser fluence and methods to most efficiently mitigate this effect are presented. Experiments simulating the operation of the material as a UV protection filter for high power laser systems were performed in order to determine limitations and practical operational conditions.

  17. Cylindrical particle manipulation and negative spinning using a nonparaxial Hermite-Gaussian light-sheet beam

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2016-10-01

    Based on the angular spectrum decomposition method (ASDM), a nonparaxial solution for the Hermite-Gaussian (HG m ) light-sheet beam of any order m is derived. The beam-shape coefficients (BSCs) are expressed in a compact form and computed using the standard Simpson’s rule for numerical integration. Subsequently, the analysis is extended to evaluate the longitudinal and transverse radiation forces as well as the spin torque on an absorptive dielectric cylindrical particle in 2D without any restriction to a specific range of frequencies. The dynamics of the cylindrical particle are also examined based on Newton’s second law of motion. The numerical results show that a Rayleigh or Mie cylindrical particle can be trapped, pulled or propelled in the optical field depending on its initial position in the cross-sectional plane of the HG m light-sheet. Moreover, negative or positive axial spin torques can arise depending on the choice of the non-dimensional size parameter ka (where k is the wavenumber and a is the radius of the cylinder) and the location of the absorptive cylinder in the beam. This means that the HG m light-sheet beam can induce clockwise or anti-clockwise rotations depending on its shift from the center of the cylinder. In addition, individual vortex behavior can arise in the cross-sectional plane of wave propagation. The present analysis presents an analytical model to predict the optical radiation forces and torque induced by a HG m light-sheet beam on an absorptive cylinder for applications in optical light-sheet tweezers, optical micro-machines, particle manipulation and opto-fluidics to name a few areas of research.

  18. High light harvesting efficiency CuInS2 quantum dots/TiO2/MoS2 photocatalysts for enhanced visible light photocatalytic H2 production.

    PubMed

    Yuan, Yong-Jun; Fang, Gaoliang; Chen, Daqin; Huang, Yanwei; Yang, Ling-Xia; Cao, Da-Peng; Wang, Jingjing; Yu, Zhen-Tao; Zou, Zhi-Gang

    2018-04-24

    Expanding the photoresponse range of TiO2-based photocatalysts is of great interest for photocatalytic H2 production. Herein, noble-metal-free CuInS2 quantum dots were employed as a novel inorganic dye to expand the visible light absorption of TiO2/MoS2 for solar H2 generation. The as-prepared CuInS2/TiO2/MoS2 photocatalysts exhibit broad absorption from the ultraviolet to near-infrared region. Under visible light irradiation (λ > 420 nm), the CuInS2/TiO2/MoS2 photocatalyst with 0.6 mmol g-1 CuInS2 and 0.5 wt% MoS2 showed the highest H2 evolution rate with a value of 1034 μmol h-1 g-1. Moreover, a considerable H2 evolution rate of 141 μmol h-1 g-1 was obtained under the irradiation of the optimized CuInS2/TiO2/MoS2 photocatalyst with >500 nm light. The reaction mechanism of the CuInS2/TiO2/MoS2 photocatalyst for photocatalytic H2 evolution was investigated in detail by photoluminescence decay study, and the results showed that the photoexcited electrons of CuInS2 can be transferred efficiently through TiO2 to MoS2 and then react with the absorbed protons to generate H2. The reported sensitization strategy tremendously improves the visible light absorption capacity and the photocatalytic performance of TiO2-based photocatalysts.

  19. Perfect absorption in nanotextured thin films via Anderson-localized photon modes

    NASA Astrophysics Data System (ADS)

    Aeschlimann, Martin; Brixner, Tobias; Differt, Dominik; Heinzmann, Ulrich; Hensen, Matthias; Kramer, Christian; Lükermann, Florian; Melchior, Pascal; Pfeiffer, Walter; Piecuch, Martin; Schneider, Christian; Stiebig, Helmut; Strüber, Christian; Thielen, Philip

    2015-10-01

    The enhancement of light absorption in absorber layers is crucial in a number of applications, including photovoltaics and thermoelectrics. The efficient use of natural resources and physical constraints such as limited charge extraction in photovoltaic devices require thin but efficient absorbers. Among the many different strategies used, light diffraction and light localization at randomly nanotextured interfaces have been proposed to improve absorption. Although already exploited in commercial devices, the enhancement mechanism for devices with nanotextured interfaces is still subject to debate. Using coherent two-dimensional nanoscopy and coherent light scattering, we demonstrate the existence of localized photonic states in nanotextured amorphous silicon layers as used in commercial thin-film solar cells. Resonant absorption in these states accounts for the enhanced absorption in the long-wavelength cutoff region. Our observations establish that Anderson localization—that is, strong localization—is a highly efficient resonant absorption enhancement mechanism offering interesting opportunities for the design of efficient future absorber layers.

  20. Photoactive dye enhanced tissue ablation for endoscopic laser prostatectomy

    NASA Astrophysics Data System (ADS)

    Ahn, Minwoo; Nguyen, Trung Hau; Nguyen, Van Phuc; Oh, Junghwan; Kang, Hyun Wook

    2015-02-01

    Laser light has been widely used as a surgical tool to treat benign prostate hyperplasia with high laser power. The purpose of this study was to validate the feasibility of photoactive dye injection to enhance light absorption and eventually to facilitate tissue ablation with low laser power. The experiment was implemented on chicken breast due to minimal optical absorption Amaranth (AR), black dye (BD), hemoglobin powder (HP), and endoscopic marker (EM), were selected and tested in vitro with a customized 532-nm laser system with radiant exposure ranging from 0.9 to 3.9 J/cm2. Light absorbance and ablation threshold were measured with UV-VIS spectrometer and Probit analysis, respectively, and compared to feature the function of the injected dyes. Ablation performance with dye-injection was evaluated in light of radiant exposure, dye concentration, and number of injection. Higher light absorption by injected dyes led to lower ablation threshold as well as more efficient tissue removal in the order of AR, BD, HP, and EM. Regardless of the injected dyes, ablation efficiency principally increased with input parameter. Among the dyes, AR created the highest ablation rate of 44.2+/-0.2 μm/pulse due to higher absorbance and lower ablation threshold. Preliminary tests on canine prostate with a hydraulic injection system demonstrated that 80 W with dye injection yielded comparable ablation efficiency to 120 W with no injection, indicating 33 % reduced laser power with almost equivalent performance. In-depth comprehension on photoactive dye-enhanced tissue ablation can help accomplish efficient and safe laser treatment for BPH with low power application.

  1. Imaging of gaseous oxygen through DFB laser illumination

    NASA Astrophysics Data System (ADS)

    Cocola, L.; Fedel, M.; Tondello, G.; Poletto, L.

    2016-05-01

    A Tunable Diode Laser Absorption Spectroscopy setup with Wavelength Modulation has been used together with a synchronous sampling imaging sensor to obtain two-dimensional transmission-mode images of oxygen content. Modulated laser light from a 760nm DFB source has been used to illuminate a scene from the back while image frames were acquired with a high dynamic range camera. Thanks to synchronous timing between the imaging device and laser light modulation, the traditional lock-in approach used in Wavelength Modulation Spectroscopy was replaced by image processing techniques, and many scanning periods were averaged together to allow resolution of small intensity variation over the already weak absorption signals from oxygen absorption band. After proper binning and filtering, the time-domain waveform obtained from each pixel in a set of frames representing the wavelength scan was used as the single detector signal in a traditional TDLAS-WMS setup, and so processed through a software defined digital lock-in demodulation and a second harmonic signal fitting routine. In this way the WMS artifacts of a gas absorption feature were obtained from each pixel together with intensity normalization parameter, allowing a reconstruction of oxygen distribution in a two-dimensional scene regardless from broadband transmitted intensity. As a first demonstration of the effectiveness of this setup, oxygen absorption images of similar containers filled with either oxygen or nitrogen were acquired and processed.

  2. Influence of multiple scattering and absorption on the full scattering profile and the isobaric point in tissue

    NASA Astrophysics Data System (ADS)

    Duadi, Hamootal; Fixler, Dror

    2015-05-01

    Light reflectance and transmission from soft tissue has been utilized in noninvasive clinical measurement devices such as the photoplethysmograph (PPG) and reflectance pulse oximeter. Incident light on the skin travels into the underlying layers and is in part reflected back to the surface, in part transferred and in part absorbed. Most methods of near infrared (NIR) spectroscopy focus on the volume reflectance from a semi-infinite sample, while very few measure transmission. We have previously shown that examining the full scattering profile (angular distribution of exiting photons) provides more comprehensive information when measuring from a cylindrical tissue. Furthermore, an isobaric point was found which is not dependent on changes in the reduced scattering coefficient. The angle corresponding to this isobaric point depends on the tissue diameter. We investigated the role of multiple scattering and absorption on the full scattering profile of a cylindrical tissue. First, we define the range in which multiple scattering occurs for different tissue diameters. Next, we examine the role of the absorption coefficient in the attenuation of the full scattering profile. We demonstrate that the absorption linearly influences the intensity at each angle of the full scattering profile and, more importantly, the absorption does not change the position of the isobaric point. The findings of this work demonstrate a realistic model for optical tissue measurements such as NIR spectroscopy, PPG, and pulse oximetery.

  3. The complex refractive index of atmospheric and model humic-like substances (HULIS) retrieved by a cavity ring down aerosol spectrometer (CRD-AS).

    PubMed

    Dinar, E; Riziq, A Abo; Spindler, C; Erlick, C; Kiss, G; Rudich, Y

    2008-01-01

    Atmospheric aerosols absorb and reflect solar radiation causing surface cooling and heating of the atmosphere. The interaction between aerosols and radiation depends on their complex index of refraction, which is related to the particles' chemical composition. The contribution of light absorbing organic compounds, such as HUmic-LIke Substances (HULIS) to aerosol scattering and absorption is among the largest uncertainties in assessing the direct effect of aerosols on climate. Using a Cavity Ring Down Aerosol Spectrometer (CRD-AS), the complex index of refraction of aerosols containing HULIS extracted from pollution, smoke, and rural continental aerosols, and molecular weight-fractionated fulvic acid was measured at 390 nm and 532 nm. The imaginary part of the refractive index (absorption) substantially increases towards the UV range with increasing molecular weight and aromaticity. At both wavelengths, HULIS extracted from pollution and smoke particles absorb more than HULIS from the rural aerosol. Sensitivity calculations for a pollution-type aerosol containing ammonium sulfate, organic carbon (HULIS), and soot suggests that accounting for absorption by HULIS leads in most cases to a significant decrease in the single scattering albedo and to a significant increase in aerosol radiative forcing efficiency, towards more atmospheric absorption and heating. This indicates that HULIS in biomass smoke and pollution aerosols, in addition to black carbon, can contribute significantly to light absorption in the ultraviolet and visible spectral regions.

  4. Strong photocurrent enhancements in plasmonic organic photovoltaics by biomimetic nanoarchitectures with efficient light harvesting.

    PubMed

    Leem, Jung Woo; Kim, Sehwan; Park, Chihyun; Kim, Eunkyoung; Yu, Jae Su

    2015-04-01

    We propose the biomimetic moth-eye nanoarchitectures as a novel plasmonic light-harvesting structure for further enhancing the solar-generated photocurrents in organic photovoltaics (OPVs). The full moth-eye nanoarchitectures are composed of two-dimensional hexagonal periodic grating arrays on surfaces of both the front zinc oxide (ZnO) and rear active layers, which are prepared by a simple and cost-effective soft imprint nanopatterning technique. For the 380 nm period ZnO and 650 nm period active gratings (i.e., ZnO(P380)/Active(P650)), the poly(3-hexylthiophene-2,5-diyl):indene-C60 bis-adduct (P3HT:ICBA)-based plasmonic OPVs exhibit an improvement of the absorption spectrum compared to the pristine OPVs over a broad wavelength range of 350-750 nm, showing absorption enhancement peaks at wavelengths of ∼370, 450, and 670 nm, respectively. This leads to a considerable increase of short-circuit current density (Jsc) from 10.9 to 13.32 mA/cm(2), showing a large Jsc enhancement percentage of ∼22.2%. As a result, the strongly improved power conversion efficiency (PCE) of 6.28% is obtained compared to that (i.e., PCE = 5.12%) of the pristine OPVs. For the angle-dependent light-absorption characteristics, the plasmonic OPVs with ZnO(P380)/Active(P650) have a better absorption performance than that of the pristine OPVs at incident angles of 20-70°. For optical absorption characteristics and near-field intensity distributions of plasmonic OPVs, theoretical analyses are also performed by a rigorous coupled-wave analysis method, which gives a similar tendency with the experimentally measured data.

  5. Mid-infrared hyperspectral imaging for the detection of explosive compounds

    NASA Astrophysics Data System (ADS)

    Ruxton, K.; Robertson, G.; Miller, W.; Malcolm, G. P. A.; Maker, G. T.

    2012-10-01

    Active hyperspectral imaging is a valuable tool in a wide range of applications. A developing market is the detection and identification of energetic compounds through analysis of the resulting absorption spectrum. This work presents a selection of results from a prototype mid-infrared (MWIR) hyperspectral imaging instrument that has successfully been used for compound detection at a range of standoff distances. Active hyperspectral imaging utilises a broadly tunable laser source to illuminate the scene with light over a range of wavelengths. While there are a number of illumination methods, this work illuminates the scene by raster scanning the laser beam using a pair of galvanometric mirrors. The resulting backscattered light from the scene is collected by the same mirrors and directed and focussed onto a suitable single-point detector, where the image is constructed pixel by pixel. The imaging instrument that was developed in this work is based around a MWIR optical parametric oscillator (OPO) source with broad tunability, operating at 2.6 μm to 3.7 μm. Due to material handling procedures associated with explosive compounds, experimental work was undertaken initially using simulant compounds. A second set of compounds that was tested alongside the simulant compounds is a range of confusion compounds. By having the broad wavelength tunability of the OPO, extended absorption spectra of the compounds could be obtained to aid in compound identification. The prototype imager instrument has successfully been used to record the absorption spectra for a range of compounds from the simulant and confusion sets and current work is now investigating actual explosive compounds. The authors see a very promising outlook for the MWIR hyperspectral imager. From an applications point of view this format of imaging instrument could be used for a range of standoff, improvised explosive device (IED) detection applications and potential incident scene forensic investigation.

  6. The effects of titanium dioxide coatings on light-derived heating and transdermal heat transfer in bovine skin

    NASA Astrophysics Data System (ADS)

    Bartle, S. J.; Thomson, D. U.; Gehring, R.; van der Merwe, D.

    2017-11-01

    The effects of titanium dioxide coatings of bovine hides on light absorption and transdermal transfer of light-derived heat were investigated. Four hair-on rug hides from Holstein cattle were purchased. Twelve samples about 20 cm on a side were cut from each hide; nine from the black-colored areas, and three from the white areas. Samples were randomized and assigned to four coating treatments: (1) white hide with no coating (White), (2) black hide with no coating (Black), (3) black hide with 50% coating (Mid), and (4) black hide with 100% coating (High). Coatings were applied to the black hide samples using a hand sprayer. Lux measurements were taken using a modified lux meter at three light intensities generated with a broad spectrum, cold halogen light source. Reflectance over a wavelength range of 380 to 900 nm was measured using a spectroradiometer. The transdermal transfer of heat derived from absorbed light was measured by applying a broad spectrum, cold halogen light source to the stratum corneum (coated) side of the sample and recording the temperature of the dermis-side using a thermal camera for 10 min at 30-s intervals. At the high light level, the White, Black, Mid, and High coating treatments had different ( P < 0.001) lux values of 64,945, 1741, 15,978, and 40,730 lx, respectively. In the visible wavelength range (400 to 750 nm), Black hides reflected 10 to 15% of the light energy, hides with the Mid coating treatment reflected 35 to 40%, and hides with the High coating treatment reflected 70 to 80% of the light energy. The natural White hide samples reflected 60 to 80% of the light energy. The average maximum temperatures at the dermis-side of the hides due to transferred heat were 34.5, 70.1, 55.0, and 31.7, for the White, Black, Mid, and High treatments, respectively. Reflective coatings containing titanium dioxide on cattle hides were effective in reducing light energy absorption and reduced light-derived heat transfer from the skin surface to deeper skin layers.

  7. Method of analyzing multiple sample simultaneously by detecting absorption and systems for use in such a method

    DOEpatents

    Yeung, Edward S.; Gong, Xiaoyi

    2004-09-07

    The present invention provides a method of analyzing multiple samples simultaneously by absorption detection. The method comprises: (i) providing a planar array of multiple containers, each of which contains a sample comprising at least one absorbing species, (ii) irradiating the planar array of multiple containers with a light source and (iii) detecting absorption of light with a detetion means that is in line with the light source at a distance of at leaat about 10 times a cross-sectional distance of a container in the planar array of multiple containers. The absorption of light by a sample indicates the presence of an absorbing species in it. The method can further comprise: (iv) measuring the amount of absorption of light detected in (iii) indicating the amount of the absorbing species in the sample. Also provided by the present invention is a system for use in the abov metho.The system comprises; (i) a light source comrnpising or consisting essentially of at leaat one wavelength of light, the absorption of which is to be detected, (ii) a planar array of multiple containers, and (iii) a detection means that is in line with the light source and is positioned in line with and parallel to the planar array of multiple contiainers at a distance of at least about 10 times a cross-sectional distance of a container.

  8. Enhanced light absorptivity of black carbon with air pollution development in urban Beijing, China

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Zhang, Q.; Cheng, Y.; Su, H.; He, K.

    2017-12-01

    The impacts of black carbon (BC) aerosols on air quality and climate are dependent on BC light absorptivity. However, the light absorptivity of ambient BC-containing particles remains conflicting. In this work, we investigated the evolution of BC light absorptivity with pollution development in urban Beijing, China. We found that the mass absorption cross-section (MAC) of ambient BC-containing particles measured during the campaign increased with BC mass concentration, which can be attributed to more coating materials on BC surface with pollution development. A single-particle soot photometer (SP2) measurement showed that the coating thickness (CT) of BC-containing particles increased by 48% with PM1 and BC mass concentration increasing from 10 μg m-3 and 0.3 μg m-3 to 230 μg m-3 and 12 μg m-3. Based on Mie calculation, the CT increase could led to light absorption enhancement (Eab) of BC-containing particles increasing by 22%, consistent with the increase of measured MAC. The relationship between growth rate of BC light absorptivity (kEab) and that of PM1 or rBC concentration (kPM1 or krBC) showed that kEab ≈ 4.8% kPM1 or kEab ≈ 2.5% krBC. The analysis of effective emission intensity (EEI) for BC revealed that the enhancement of BC light absorptivity with increasing pollution levels was dominated by regional transport. During the pollution period, 63% of BC over Beijing originated from regional sources. The aging of these regional BC during atmospheric transport controlled the increase of coating materials for BC-containing particles observed in Beijing. As a result of enhanced light absorptivity with pollution development, BC forcing efficiency could increase by 20% during polluted period. Our work identified the importance of BC on radiative forcing under polluted environment, which is determined by not only the increase of BC mass concentration, but also the enhancement of BC forcing efficiency due to more coating materials.

  9. Photoproduction of hydrated electrons from natural organic solutes in aquatic environments

    USGS Publications Warehouse

    Zepp, R.G.; Braun, A.M.; Hoigne, J.; Leenheer, J.A.

    1987-01-01

    Laser flash photolysis was used to investigate the transients formed on absorption of 355-nm light by dissolved organic matter (DOM) from natural water bodies and from soil. Absorption spectra and quenching studies of the transients provided confirming evidence that hydrated electrons were formed by all of the DOM that were studied. The DOM from the Suwannee River in Georgia and from the Greifensee, a Swiss lake, exhibited great variability in light-absorbing properties. Despite this high variability in absorption coefficients, the primary quantum yields for electron ejection from the Greifensee and Suwannee DOM fell in a narrow range (0.005-0.008). Steady-state irradiations (355 nm) of the DOM with 2-chloroethanol (0.02 M) present as an electron scavenger produced chloride ions with quantum yields that were about 2 orders of magnitude lower than the primary quantum yields. This result indicates that most of the photoejected electrons recombine with cations before escaping into bulk solution. Irradiations of DOM solutions under sunlight (April, latitude 34?? N) photoproduced electrons at rates falling in the range of 0.2-0.4 ??mol/[(mg of DOC) h]. These results indicate that hydrated electrons can play a significant role in the environmental photoreduction of persistent, electronegative pollutants but may be relatively unimportant in the environmental production of hydrogen peroxide. ?? 1987 American Chemical Society.

  10. [Construction and application of an onboard absorption analyzer device for CDOM].

    PubMed

    Lin, Jun-Fang; Sun, Zhao-Hua; Cao, Wen-Xi; Hu, Shui-Bo; Xu, Zhan-Tang

    2013-04-01

    Colored dissolved organic matter (CDOM) plays an important role in marine ecosystems. In order to solve the current problems in measurement of CDOM absorption, an automated onboard analyzer based on liquid core waveguides (Teflon AF LWCC/LCW) was constructed. This analyzer has remarkable characteristics including adjusted optical pathlength, wide measurement range, and high sensitivity. The model of filtration and injection can implement the function of automated filtration, sample injection, and LWCC cleaning. The LabVIEW software platform can efficiently control the running state of the analyzer and acquire real time data including light absorption spectra, GPS data, and CTW data. By the comparison experiments and shipboard measurements, it was proved that the analyzer was reliable and robust.

  11. Curcumin based optical sensing of fluoride in organo-aqueous media using irradiation technique

    NASA Astrophysics Data System (ADS)

    Venkataraj, Roopa; Radhakrishnan, P.; Kailasnath, M.

    2017-06-01

    The present work describes the degradation of natural dye Curcumin in organic-aqueous media upon irradiation by a multi-wavelength source of light like mercury lamp. The presence of anions in the solution leads to degradation of Curcumin and this degradation is especially enhanced in the case of fluoride ion. The degradation of Curcumin is investigated by studying the change in its absorption and fluorescence characteristics in organoaqueous solution upon irradiation. A broad detection range of fluoride ranging from 2.3×10-6-2.22×10-3 M points to the potential of the method of visible light irradiation enabling aqueous based sensing of fluoride using Curcumin.

  12. Photodegradation of methylene blue with PVA/PVP blend under UV light irradiation

    NASA Astrophysics Data System (ADS)

    Zidan, H. M.; El-Ghamaz, N. A.; Abdelghany, A. M.; Waly, A. L.

    2018-06-01

    Homogenous films of PVA/PVP blend (1:1) doped with different levels of methylene blue dye (MB) were prepared using the casting technique. The absorption spectra of doped PVA/PVP blend showed two absorption peaks due to the chromophor groups of MB while the pure PVA/PVP blend does not. The UV irradiation causes photodegradation of MB dye. The recovery of photodegraded MB is observed after keeping the sample 3 h in atmospheric air. The value of the optical energy gap (Eg) decreases with increasing the doping levels with MB. The spectral distribution of absorption index (k) and refractive index (n) are determined from the reflection and transmission spectra in the spectral range 200-2500 nm. The dependence of both n and k on wavelength of the incident light and the wt% content of MB in PVA/PVP blend is discussed. A normal dispersion observed at wavelength λ > 370 nm for pure PVA/PVP blend and λ > 800 nm for MB doped samples. The obtained results suggest the possible use of the studied system in many applications.

  13. Superabsorbing, Artificial Metal Films Constructed from Semiconductor Nanoantennas.

    PubMed

    Kim, Soo Jin; Park, Junghyun; Esfandyarpour, Majid; Pecora, Emanuele F; Kik, Pieter G; Brongersma, Mark L

    2016-06-08

    In 1934, Wilhelm Woltersdorff demonstrated that the absorption of light in an ultrathin, freestanding film is fundamentally limited to 50%. He concluded that reaching this limit would require a film with a real-valued sheet resistance that is exactly equal to R = η/2 ≈ 188.5Ω/□, where [Formula: see text] is the impedance of free space. This condition can be closely approximated over a wide frequency range in metals that feature a large imaginary relative permittivity εr″, that is, a real-valued conductivity σ = ε0εr″ω. A thin, continuous sheet of semiconductor material does not facilitate such strong absorption as its complex-valued permittivity with both large real and imaginary components preclude effective impedance matching. In this work, we show how a semiconductor metafilm constructed from optically resonant semiconductor nanostructures can be created whose optical response mimics that of a metallic sheet. For this reason, the fundamental absorption limit mentioned above can also be reached with semiconductor materials, opening up new opportunities for the design of ultrathin optoelectronic and light harvesting devices.

  14. Listening to light scattering in turbid media: quantitative optical scattering imaging using photoacoustic measurements with one-wavelength illumination

    NASA Astrophysics Data System (ADS)

    Yuan, Zhen; Li, Xiaoqi; Xi, Lei

    2014-06-01

    Biomedical photoacoustic tomography (PAT), as a potential imaging modality, can visualize tissue structure and function with high spatial resolution and excellent optical contrast. It is widely recognized that the ability of quantitatively imaging optical absorption and scattering coefficients from photoacoustic measurements is essential before PAT can become a powerful imaging modality. Existing quantitative PAT (qPAT), while successful, has been focused on recovering absorption coefficient only by assuming scattering coefficient a constant. An effective method for photoacoustically recovering optical scattering coefficient is presently not available. Here we propose and experimentally validate such a method for quantitative scattering coefficient imaging using photoacoustic data from one-wavelength illumination. The reconstruction method developed combines conventional PAT with the photon diffusion equation in a novel way to realize the recovery of scattering coefficient. We demonstrate the method using various objects having scattering contrast only or both absorption and scattering contrasts embedded in turbid media. The listening-to-light-scattering method described will be able to provide high resolution scattering imaging for various biomedical applications ranging from breast to brain imaging.

  15. Optical characteristics of butyl rubber loaded with general purpose furnace (GPF) carbon black

    NASA Astrophysics Data System (ADS)

    Alfaramawi, K.

    2018-06-01

    Optical characteristics of butyl rubber/GPF carbon black (BR/GPFCB) composites with carbon black (CB) concentrations 40, 60, 80 and 100 phr (part per hundred part of rubber) were investigated. The structure of the BR/GPFCB composites was analyzed by x-ray diffraction (XRD). All samples with various CB showed diffraction peaks around 2θ = 14°, 25° and 44° which correspond to interlayer spacing of 6.23 Å, 3.62 Å and 2.10 Å respectively. The peaks were shifted toward larger 2θ angles with increasing CB concentration, indicating a decrease in layer spacing. Ultraviolet and visible (UV–vis) absorbance spectra in the range from 200 nm to 800 nm of the BR/GPFCB composites were studied. In the UV range of the spectra, an absorption edge was recorded. Direct and indirect optical band gaps for the composites were evaluated. The direct band gap values were found-as shown to be slightly greater than that of the indirect ones. The reflectance spectra in the UV optical range were demonstrated. Most of the incident UV light was absorbed inside the composites while a very small fraction was reflected and transmitted. This was attributed to the high UV absorption property of the CB filler. The refractive index of the composite was calculated from the reflectance data. The dependence of the real and imaginary parts of the complex dielectric constant on the incident light energy was characterized. The dielectric loss factor was found to decrease with increasing incident photon energy until approximately 5.5 eV (around the absorption edge) and then it increased rapidly.

  16. Coherent perfect absorption in deeply subwavelength films in the single-photon regime

    PubMed Central

    Roger, Thomas; Vezzoli, Stefano; Bolduc, Eliot; Valente, Joao; Heitz, Julius J. F.; Jeffers, John; Soci, Cesare; Leach, Jonathan; Couteau, Christophe; Zheludev, Nikolay I.; Faccio, Daniele

    2015-01-01

    The technologies of heating, photovoltaics, water photocatalysis and artificial photosynthesis depend on the absorption of light and novel approaches such as coherent absorption from a standing wave promise total dissipation of energy. Extending the control of absorption down to very low light levels and eventually to the single-photon regime is of great interest and yet remains largely unexplored. Here we demonstrate the coherent absorption of single photons in a deeply subwavelength 50% absorber. We show that while the absorption of photons from a travelling wave is probabilistic, standing wave absorption can be observed deterministically, with nearly unitary probability of coupling a photon into a mode of the material, for example, a localized plasmon when this is a metamaterial excited at the plasmon resonance. These results bring a better understanding of the coherent absorption process, which is of central importance for light harvesting, detection, sensing and photonic data processing applications. PMID:25991584

  17. Differential phase contrast with a segmented detector in a scanning X-ray microprobe

    PubMed Central

    Hornberger, B.; de Jonge, M. D.; Feser, M.; Holl, P.; Holzner, C.; Jacobsen, C.; Legnini, D.; Paterson, D.; Rehak, P.; Strüder, L.; Vogt, S.

    2008-01-01

    Scanning X-ray microprobes are unique tools for the nanoscale investigation of specimens from the life, environmental, materials and other fields of sciences. Typically they utilize absorption and fluorescence as contrast mechanisms. Phase contrast is a complementary technique that can provide strong contrast with reduced radiation dose for weakly absorbing structures in the multi-keV range. In this paper the development of a segmented charge-integrating silicon detector which provides simultaneous absorption and differential phase contrast is reported. The detector can be used together with a fluorescence detector for the simultaneous acquisition of transmission and fluorescence data. It can be used over a wide range of photon energies, photon rates and exposure times at third-generation synchrotron radiation sources, and is currently operating at two beamlines at the Advanced Photon Source. Images obtained at around 2 keV and 10 keV demonstrate the superiority of phase contrast over absorption for specimens composed of light elements. PMID:18552427

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thappily, Praveen, E-mail: pravvmon@gmail.com, E-mail: shiiuvenus@gmail.com; Shiju, K., E-mail: pravvmon@gmail.com, E-mail: shiiuvenus@gmail.com

    Green synthesis of silver nanoparticles was achieved by simple visible light irradiation using aloe barbadensis leaf extract as reducing agent. UV-Vis spectroscopic analysis was used for confirmation of the successful formation of nanoparticles. Investigated the effect of light irradiation time on the light absorption of the nanoparticles. It is observed that upto 25 minutes of light irradiation, the absorption is linearly increasing with time and after that it becomes saturated. Finally, theoretically fitted the time-absorption graph and modeled a relation between them with the help of simulation software.

  19. Universal Parameterization of Absorption Cross Sections

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Cucinotta, Francis A.; Wilson, John W.

    1999-01-01

    Our prior nuclear absorption cross sections model is extended for light systems (A less than or equal to 4) where either both projectile and target are light particles or one is a light particle and the other is a medium or heavy nucleus. The agreement with experiment is excellent for these cases as well. Present work in combination with our original model provides a comprehensive picture of absorption cross sections for light, medium, and heavy systems, a very valuable input for radiation protection studies.

  20. Surface tension mediated conversion of light to work

    DOEpatents

    Okawa, David; Pastine, Stefan J; Zettl, Alexander K; Frechet, Jean M. J

    2014-12-02

    Disclosed are a method and apparatus for converting light energy to mechanical energy by modification of surface tension on a supporting fluid. The apparatus comprises an object which may be formed as a composite object comprising a support matrix and a highly light absorptive material. The support matrix may comprise a silicon polymer. The highly light absorptive material may comprise vertically aligned carbon nanotubes (VANTs) embedded in the support matrix. The composite object is supported on a fluid. By exposing the highly light absorptive material to light, heat is generated, which changes the surface tension of the composite object, causing it to move physically within the fluid.

  1. Quantitative photoplethysmography: Lambert-Beer law or inverse function incorporating light scatter.

    PubMed

    Cejnar, M; Kobler, H; Hunyor, S N

    1993-03-01

    Finger blood volume is commonly determined from measurement of infra-red (IR) light transmittance using the Lambert-Beer law of light absorption derived for use in non-scattering media, even when such transmission involves light scatter around the phalangeal bone. Simultaneous IR transmittance and finger volume were measured over the full dynamic range of vascular volumes in seven subjects and outcomes compared with data fitted according to the Lambert-Beer exponential function and an inverse function derived for light attenuation by scattering materials. Curves were fitted by the least-squares method and goodness of fit was compared using standard errors of estimate (SEE). The inverse function gave a better data fit in six of the subjects: mean SEE 1.9 (SD 0.7, range 0.7-2.8) and 4.6 (2.2, 2.0-8.0) respectively (p < 0.02, paired t-test). Thus, when relating IR transmittance to blood volume, as occurs in the finger during measurements of arterial compliance, an inverse function derived from a model of light attenuation by scattering media gives more accurate results than the traditional exponential fit.

  2. Optical, physical, and chemical properties of springtime aerosol over Barrow Alaska in 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shantz, Nicole C.; Gultepe, Ismail; Andrews, Elisabeth

    2014-03-06

    Airborne observations from four flights during the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) are used to examine some cloud-free optical, physical, and chemical properties of aerosol particles in the springtime Arctic troposphere. The number concentrations of particles larger than 0.12 μm (Na>120), important for light extinction and cloud droplet formation, ranged from 15 to 2260 cm -3, with the higher Na>120 cases dominated by measurements from two flights of long-range transported biomass burning (BB) aerosols. The two other flights examined here document a relatively clean aerosol and an Arctic Haze aerosol impacted by larger particles largely composed of dust.more » For observations from the cleaner case and the BB cases, the particle light scattering coefficients at low relative humidity (RH<20%) increased nonlinearly with increasing Na>120, driven mostly by an increase in mean sizes of particles with increasing Na>120 (BB cases). For those three cases, particle light absorption coefficients also increased nonlinearly with increasing Na>120 and linearly with increasing submicron particle volume concentration. In addition to black carbon, brown carbon was estimated to have increased light absorption coefficients by 27% (450 nm wavelength) and 14% (550 nm) in the BB cases. For the case with strong dust influence, the absorption relative to submicron particle volume was small compared with the other cases. There was a slight gradient of Passive Cavity Aerosol Spectrometer Probe (PCASP) mean volume diameter (MVD) towards smaller sizes with increasing height, which suggests more scavenging of the more elevated particles, consistent with a typically longer lifetime of particles higher in the atmosphere. However, in approximately 10% of the cases, the MVD increased (>0.4 μm) with increasing altitude, suggesting transport of larger fine particle mass (possibly coarse particle mass) at high levels over the Arctic. This may be because of transport of larger particles at higher elevations and relatively slow deposition to the surface.« less

  3. Plasmonic near-touching titanium oxide nanoparticles to realize solar energy harvesting and effective local heating.

    PubMed

    Yan, Jiahao; Liu, Pu; Ma, Churong; Lin, Zhaoyong; Yang, Guowei

    2016-04-28

    Through the excitation of plasmon resonance, the energy of plasmonic nanoparticles either reradiates through light scattering or decays into energetic electrons (absorption). The plasmon-induced absorption can greatly enhance the efficiency of solar energy harvesting, local heating, photodetection and photocatalysis. Here, we demonstrate that heavily self-doped titanium oxide nanoparticles (TiO1.67 analogue arising from oxygen vacancies in rutile TiO2) with the plasmon resonance dominated by an interband transition shows strong absorption to build a broadband perfect absorber in the wavelength range from 300 to 2000 nm covering the solar irradiation spectrum completely. The absorptivity of the fabricated array is greater than 90% in the whole spectral range. And the broadband and strong absorption is due to the plasmon hybridization and hot spot generation from near-touching TiO1.67 nanoparticles with different sizes. What is more, the local heating of a TiO1.67 nanoparticle layer is fast and effective. The temperature increases quickly from 30 °C to 80 °C within 200 seconds. This local heating can realize rapid solar-enabled evaporation which can find applications in large-scale distillation and seawater desalination. These findings actually open a pathway for applications of these newly developed plasmonic materials in the energy and environment fields.

  4. Achieving an Accurate Surface Profile of a Photonic Crystal for Near-Unity Solar Absorption in a Super Thin-Film Architecture.

    PubMed

    Kuang, Ping; Eyderman, Sergey; Hsieh, Mei-Li; Post, Anthony; John, Sajeev; Lin, Shawn-Yu

    2016-06-28

    In this work, a teepee-like photonic crystal (PC) structure on crystalline silicon (c-Si) is experimentally demonstrated, which fulfills two critical criteria in solar energy harvesting by (i) its Gaussian-type gradient-index profile for excellent antireflection and (ii) near-orthogonal energy flow and vortex-like field concentration via the parallel-to-interface refraction effect inside the structure for enhanced light trapping. For the PC structure on 500-μm-thick c-Si, the average reflection is only ∼0.7% for λ = 400-1000 nm. For the same structure on a much thinner c-Si ( t = 10 μm), the absorption is near unity (A ∼ 99%) for visible wavelengths, while the absorption in the weakly absorbing range (λ ∼ 1000 nm) is significantly increased to 79%, comparing to only 6% absorption for a 10-μm-thick planar c-Si. In addition, the average absorption (∼94.7%) of the PC structure on 10 μm c-Si for λ = 400-1000 nm is only ∼3.8% less than the average absorption (∼98.5%) of the PC structure on 500 μm c-Si, while the equivalent silicon solid content is reduced by 50 times. Furthermore, the angular dependence measurements show that the high absorption is sustained over a wide angle range (θinc = 0-60°) for teepee-like PC structure on both 500 and 10-μm-thick c-Si.

  5. Role of Short-Range Chemical Ordering in (GaN) 1–x (ZnO) x for Photodriven Oxygen Evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Dennis P.; Neuefeind, Joerg C.; Koczkur, Kallum M.

    (GaN)1–x(ZnO)x (GZNO) is capable of visible-light driven water splitting, but its bandgap at x ≤ 0.15 (>2.7 eV) results in poor visible-light absorption. Unfortunately, methods to narrow its bandgap by incorporating higher ZnO concentrations are accompanied by extensive Urbach tailing near the absorption-edge, which is indicative of structural disorder or chemical inhomogeneities. We evaluated whether this disorder is intrinsic to the bond-length distribution in GZNO or is a result of defects introduced from the loss of Zn during nitridation. Here, the synthesis of GZNO derived from layered double hydroxide (LDH) precursors is described which minimizes Zn loss and chemical inhomogeneitiesmore » and enhances visible-light absorption. The average and local atomic structures of LDH-derived GZNO were investigated using X-ray and neutron scattering and are correlated with their oxygen evolution rates. An isotope-contrasted neutron-scattering experiment was conducted in conjunction with reverse Monte Carlo (RMC) simulations. We showed that a bond-valence bias in the RMC refinements reproduces the short-range ordering (SRO) observed in structure refinements using isotope-contrasted neutron data. The findings suggest that positional disorder of cation–anion pairs in GZNO partially arises from SRO and influences local bond relaxations. Furthermore, particle-based oxygen evolution reactions (OERs) in AgNO3 solution reveal that the crystallite size of GZNO correlates more than positional disorder with oxygen evolution rate. These findings illustrate the importance of examining the local structure of multinary photocatalysts to identify dominant factors in particulate-based photodriven oxygen evolution.« less

  6. Accurate universal parameterization of absorption cross sections III--light systems

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Cucinotta, F. A.; Wilson, J. W.

    1999-01-01

    Our prior nuclear absorption cross sections model [R.K. Tripathi, F.A. Cucinotta, J.W. Wilson, Nucl. Instr. and Meth. B 117 (1996) 347; R.K. Tripathi, J.W. Wilson, F.A. Cucinotta, Nucl. Instr. and Meth. B 129 (1997) 11] is extended for light systems (A < or = 4) where either both projectile and target are light particles or one is light particle and the other is medium or heavy nucleus. The agreement with experiment is excellent for these cases as well. Present work in combination with our original model provides a comprehensive picture of absorption cross sections for light, medium and heavy systems. As a result the extended model can reliably be used in all studies where there is a need for absorption cross sections.

  7. Solar energy conversion with tunable plasmonic nanostructures for thermoelectric devices.

    PubMed

    Xiong, Yujie; Long, Ran; Liu, Dong; Zhong, Xiaolan; Wang, Chengming; Li, Zhi-Yuan; Xie, Yi

    2012-08-07

    The photothermal effect in localized surface plasmon resonance (LSPR) should be fully utilized when integrating plasmonics into solar technologies for improved light absorption. In this communication, we demonstrate that the photothermal effect of silver nanostructures can provide a heat source for thermoelectric devices for the first time. The plasmonic band of silver nanostructures can be facilely manoeuvred by tailoring their shapes, enabling them to interact with photons in different spectral ranges for the efficient utilization of solar light. It is anticipated that this concept can be extended to design a photovoltaic-thermoelectric tandem cell structure with plasmonics as mediation for light harvesting.

  8. Impacts of Brown Carbon from Biomass Burning on Surface UV and Ozone Photochemistry in the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Mok, Jungbin; Krotkov, Nickolay A.; Arola, Antti; Torres, Omar; Jethva, Hiren; Andrade, Marcos; Labow, Gordon; Eck, Thomas F.; Li, Zhangqing; Dickerson, Russell R.; hide

    2016-01-01

    The spectral dependence of light absorption by atmospheric particulate matter has major implications for air quality and climate forcing, but remains uncertain especially in tropical areas with extensive biomass burning. In the September-October 2007 biomass-burning season in Santa Cruz, Bolivia, we studied light absorbing (chromophoric) organic or brown carbon (BrC) with surface and space-based remote sensing. We found that BrC has negligible absorption at visible wavelengths, but significant absorption and strong spectral dependence at UV wavelengths. Using the ground-based inversion of column effective imaginary refractive index in the range 305368nm, we quantified a strong spectral dependence of absorption by BrC in the UV and diminished ultraviolet B (UV-B) radiation reaching the surface. Reduced UV-B means less erythema, plant damage, and slower photolysis rates. We use a photochemical box model to show that relative to black carbon (BC) alone, the combined optical properties of BrC and BC slow the net rate of production of ozone by up to 18 and lead to reduced concentrations of radicals OH, HO2, and RO2 by up to 17, 15, and 14, respectively. The optical properties of BrC aerosol change in subtle ways the generally adverse effects of smoke from biomass burning.

  9. Impacts of brown carbon from biomass burning on surface UV and ozone photochemistry in the Amazon Basin.

    PubMed

    Mok, Jungbin; Krotkov, Nickolay A; Arola, Antti; Torres, Omar; Jethva, Hiren; Andrade, Marcos; Labow, Gordon; Eck, Thomas F; Li, Zhanqing; Dickerson, Russell R; Stenchikov, Georgiy L; Osipov, Sergey; Ren, Xinrong

    2016-11-11

    The spectral dependence of light absorption by atmospheric particulate matter has major implications for air quality and climate forcing, but remains uncertain especially in tropical areas with extensive biomass burning. In the September-October 2007 biomass-burning season in Santa Cruz, Bolivia, we studied light absorbing (chromophoric) organic or "brown" carbon (BrC) with surface and space-based remote sensing. We found that BrC has negligible absorption at visible wavelengths, but significant absorption and strong spectral dependence at UV wavelengths. Using the ground-based inversion of column effective imaginary refractive index in the range 305-368 nm, we quantified a strong spectral dependence of absorption by BrC in the UV and diminished ultraviolet B (UV-B) radiation reaching the surface. Reduced UV-B means less erythema, plant damage, and slower photolysis rates. We use a photochemical box model to show that relative to black carbon (BC) alone, the combined optical properties of BrC and BC slow the net rate of production of ozone by up to 18% and lead to reduced concentrations of radicals OH, HO 2 , and RO 2 by up to 17%, 15%, and 14%, respectively. The optical properties of BrC aerosol change in subtle ways the generally adverse effects of smoke from biomass burning.

  10. Wavelength modulation spectroscopy near 5 μm for carbon monoxide sensing in a high-pressure kerosene-fueled liquid rocket combustor

    NASA Astrophysics Data System (ADS)

    Lee, Daniel D.; Bendana, Fabio A.; Schumaker, S. Alexander; Spearrin, R. Mitchell

    2018-05-01

    A laser absorption sensor was developed for carbon monoxide (CO) sensing in high-pressure, fuel-rich combustion gases associated with the internal conditions of hydrocarbon-fueled liquid bipropellant rockets. An absorption feature near 4.98 μm, comprised primarily of two rovibrational lines from the P-branch of the fundamental band, was selected to minimize temperature sensitivity and spectral interference with other combustion gas species at the extreme temperatures (> 3000 K) and pressures (> 50 atm) in the combustion chamber environment. A scanned wavelength modulation spectroscopy technique (1 f-normalized 2 f detection) is utilized to infer species concentration from CO absorption, and mitigate the influence of non-absorption transmission losses and noise associated with the harsh sooting combustor environment. To implement the sensing strategy, a continuous-wave distributed-feedback (DFB) quantum cascade laser (QCL) was coupled to a hollow-core optical fiber for remote mid-infrared light delivery to the test article, with high-bandwidth light detection by a direct-mounted photovoltaic detector. The method was demonstrated to measure time-resolved CO mole fraction over a range of oxidizer-to-fuel ratios and pressures (20-70 atm) in a single-element-injector RP-2-GOx rocket combustor.

  11. Enhanced broadband absorption in nanowire arrays with integrated Bragg reflectors

    NASA Astrophysics Data System (ADS)

    Aghaeipour, Mahtab; Pettersson, Håkan

    2018-05-01

    A near-unity unselective absorption spectrum is desirable for high-performance photovoltaics. Nanowire (NW) arrays are promising candidates for efficient solar cells due to nanophotonic absorption resonances in the solar spectrum. The absorption spectra, however, display undesired dips between the resonance peaks. To achieve improved unselective broadband absorption, we propose to enclose distributed Bragg reflectors (DBRs) in the bottom and top parts of indium phosphide (InP) NWs, respectively. We theoretically show that by enclosing only two periods of In0.56Ga0.44As/InP DBRs, an unselective 78% absorption efficiency (72% for NWs without DBRs) is obtained at normal incidence in the spectral range from 300 nm to 920 nm. Under oblique light incidence, the absorption efficiency is enhanced up to about 85% at an incidence angle of 50°. By increasing the number of DBR periods from two to five, the absorption efficiency is further enhanced up to 95% at normal incidence. In this work, we calculated optical spectra for InP NWs, but the results are expected to be valid for other direct band gap III-V semiconductor materials. We believe that our proposed idea of integrating DBRs in NWs offers great potential for high-performance photovoltaic applications.

  12. Structural and optical properties of furfurylidenemalononitrile thin films

    NASA Astrophysics Data System (ADS)

    Ali, H. A. M.

    2013-03-01

    Thin films of furfurylidenemalononitrile (FMN) were deposited on different substrates at room temperature by thermal evaporation technique under a high vacuum. The structure of the powder was confirmed by Fourier transformation infrared (FTIR) technique. The unit cell dimensions were determined from X-ray diffraction (XRD) studies. The optical properties were investigated using spectrophotometric measurements of the transmittance and reflectance at normal incidence of light in the wavelength range from 200 to 2500 nm. The refractive index (n), the absorption index (k) and the absorption coefficient (α) were calculated. The analysis of the spectral behavior of the absorption coefficient in the absorption region revealed an indirect allowed transition. The refractive index dispersion was analyzed using the single oscillator model. Some dispersion parameters were estimated. Complex dielectric function and optical conductivity were determined. The influence of the irradiation with high-energy X-rays (6 MeV) on the studied properties was also investigated.

  13. Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube

    NASA Technical Reports Server (NTRS)

    Meyer, Scott Andrew

    1995-01-01

    The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3 x 10(exp 17) and 9 x 10(exp 17)/cu cm. The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.

  14. Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube

    NASA Technical Reports Server (NTRS)

    Meyer, Scott Andrew

    1995-01-01

    The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3x10(exp 17) and 9x10(exp 17) cm(exp -3). The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.

  15. Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube

    NASA Technical Reports Server (NTRS)

    Meyer, Scott Andrew

    1995-01-01

    The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3 x 10(exp 17) and 9 x 10(exp 17) cm(exp -3). The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.

  16. The effect of Cd substitution doping on the bandgap and absorption spectrum of ZnO

    NASA Astrophysics Data System (ADS)

    Hou, Qingyu; Li, Yong; Qu, Lingfeng; Zhao, Chunwang

    2016-08-01

    Many research papers have reported that in the ultraviolet area of 290-360 nm wavelength range, blueshift and redshift in the absorption spectrum occurred in ZnO with Cd doping; however, there is no reasonable theoretical explanation to this so far. To solve this problem, this study investigates the differences of blueshift and redshift in doping system by adopting plane-wave ultrasoft pseudopotential technology based on the density functional theory and applying LDA + U method to calculate band structures, density of states and absorption spectrum distribution of the models, which is on the basis of model geometry optimization. By increasing the Cd doping concentration, the following results are obtained: increased volume of the mixed system, raised total energy, a decrease in stability, narrowed bandgaps and a significant redshift in the absorption spectrum in the ultraviolet or visible light area.

  17. Suspended-Sediment Impacts on Light-limited Productivity in the Delaware Estuary

    NASA Astrophysics Data System (ADS)

    McSweeney, J.; Chant, R. J.; Wilkin, J.; Sommerfield, C. K.

    2016-12-01

    The Delaware Estuary has a history of high anthropogenic nutrient loadings, but has been classified as a high-nutrient, low-growth system due persistent light limitations caused by turbidity. While the biogeochemical implications of light limitation in turbid estuaries has been well-studied, there has been minimal effort focused on the connectivity between hydrodynamics, sediment dynamics, and light-limitation. Our understanding of sediment dynamics in the Delaware Estuary has advanced significantly in the last decade, and this study provides insight about how the spatiotemporal variability of the estuarine turbidity maximum controls the light available for primary productivity. This analysis uses data from eight along-estuary cruises from March, June, September, and December 2010 and 2011 to look at the seasonality of suspended sediment and chlorophyll distributions. By estimating the absorption due to sediment under a range of environmental conditions, we describe how the movement of the turbidity maximum affects light availability. We also use an idealized 2-dimensional Regional Ocean Modeling System (ROMS) numerical model to evaluate how river discharge and spring-neap variability modulate the location of phytoplankton blooms. We conclude that high river flows and neap tides can drive stratification that is strong enough to prevent sediment from being resuspended into the surface layer, thus providing light conditions favorable for primary productivity. This study sheds light on the importance of sediment in the limiting primary productivity, and the role of stratification in promoting production, highlighting the potential limitations of biogeochemical models that do not account for sediment absorption.

  18. Passive thermo-optic feedback for robust athermal photonic systems

    DOEpatents

    Rakich, Peter T.; Watts, Michael R.; Nielson, Gregory N.

    2015-06-23

    Thermal control devices, photonic systems and methods of stabilizing a temperature of a photonic system are provided. A thermal control device thermally coupled to a substrate includes a waveguide for receiving light, an absorption element optically coupled to the waveguide for converting the received light to heat and an optical filter. The optical filter is optically coupled to the waveguide and thermally coupled to the absorption element. An operating point of the optical filter is tuned responsive to the heat from the absorption element. When the operating point is less than a predetermined temperature, the received light is passed to the absorption element via the optical filter. When the operating point is greater than or equal to the predetermined temperature, the received light is transmitted out of the thermal control device via the optical filter, without being passed to the absorption element.

  19. Absorption of light dark matter in semiconductors

    DOE PAGES

    Hochberg, Yonit; Lin, Tongyan; Zurek, Kathryn M.

    2017-01-01

    Semiconductors are by now well-established targets for direct detection of MeV to GeV dark matter via scattering off electrons. We show that semiconductor targets can also detect significantly lighter dark matter via an absorption process. When the dark matter mass is above the band gap of the semiconductor (around an eV), absorption proceeds by excitation of an electron into the conduction band. Below the band gap, multiphonon excitations enable absorption of dark matter in the 0.01 eV to eV mass range. Energetic dark matter particles emitted from the sun can also be probed for masses below an eV. We derivemore » the reach for absorption of a relic kinetically mixed dark photon or pseudoscalar in germanium and silicon, and show that existing direct detection results already probe new parameter space. Finally, with only a moderate exposure, low-threshold semiconductor target experiments can exceed current astrophysical and terrestrial constraints on sub-keV bosonic dark matter.« less

  20. Wafer-scale metasurface for total power absorption, local field enhancement and single molecule Raman spectroscopy

    PubMed Central

    Wang, Dongxing; Zhu, Wenqi; Best, Michael D.; Camden, Jon P.; Crozier, Kenneth B.

    2013-01-01

    The ability to detect molecules at low concentrations is highly desired for applications that range from basic science to healthcare. Considerable interest also exists for ultrathin materials with high optical absorption, e.g. for microbolometers and thermal emitters. Metal nanostructures present opportunities to achieve both purposes. Metal nanoparticles can generate gigantic field enhancements, sufficient for the Raman spectroscopy of single molecules. Thin layers containing metal nanostructures (“metasurfaces”) can achieve near-total power absorption at visible and near-infrared wavelengths. Thus far, however, both aims (i.e. single molecule Raman and total power absorption) have only been achieved using metal nanostructures produced by techniques (high resolution lithography or colloidal synthesis) that are complex and/or difficult to implement over large areas. Here, we demonstrate a metasurface that achieves the near-perfect absorption of visible-wavelength light and enables the Raman spectroscopy of single molecules. Our metasurface is fabricated using thin film depositions, and is of unprecedented (wafer-scale) extent. PMID:24091825

  1. Photodeposition of Ag2S on TiO2 nanorod arrays for quantum dot-sensitized solar cells

    PubMed Central

    2013-01-01

    Ag2S quantum dots were deposited on the surface of TiO2 nanorod arrays by a two-step photodeposition. The prepared TiO2 nanorod arrays as well as the Ag2S deposited electrodes were characterized by X-ray diffraction, scanning electron microscope, and transmission electron microscope, suggesting a large coverage of Ag2S quantum dots on the ordered TiO2 nanorod arrays. UV–vis absorption spectra of Ag2S deposited electrodes show a broad absorption range of the visible light. The quantum dot-sensitized solar cells (QDSSCs) based on these electrodes were fabricated, and the photoelectrochemical properties were examined. A high photocurrent density of 10.25 mA/cm2 with a conversion efficiency of 0.98% at AM 1.5 solar light of 100 mW/cm2 was obtained with an optimal photodeposition time. The performance of the QDSSC at different incident light intensities was also investigated. The results display a better performance at a lower incident light level with a conversion efficiency of 1.25% at 47 mW/cm2. PMID:23286551

  2. Hybrid dielectric light trapping designs for thin-film CdZnTe/Si tandem cells

    DOE PAGES

    Chung, H.; Zhou, C.; Tee, X. T.; ...

    2016-05-20

    Tandem solar cells consisting of high bandgap cadmium telluride alloys atop crystalline silicon have potential for high efficiencies exceeding the Shockley-Queisser limit. However, experimental results have fallen well below this goal significantly because of non-ideal current matching and light trapping. In this work, we simulate cadmium zinc telluride (CZT) and crystalline silicon (c-Si) tandems as an exemplary system to show the role that a hybrid light trapping and bandgap engineering approach can play in improving performance and lowering materials costs for tandem solar cells incorporating crystalline silicon. This work consists of two steps. First, we optimize absorption in the crystallinemore » silicon layer with front pyramidal texturing and asymmetric dielectric back gratings, which results in 121% absorption enhancement from a planar structure. Then, using this pre-optimized light trapping scheme, we model the dispersion of the Cd xZn 1-xTe alloys, and then adjust the bandgap to realize the best current matching for a range of CZT thicknesses. Using experimental parameters, the corresponding maximum efficiency is predicted to be 16.08 % for a total tandem cell thickness of only 2.2 μm.« less

  3. Femtosecond laser texturing of glass substrates for improved light in-coupling in thin-film photovoltaics

    NASA Astrophysics Data System (ADS)

    Imgrunt, J.; Chakanga, K.; von Maydell, K.; Teubner, U.

    2017-12-01

    Due to their low thickness, thin-film solar cells usually suffer from poor light absorption. To improve this situation, light-management is necessary. Within the present work, in order to enhance light coupling, an ultra-short-pulse laser is used for texturing substrates. Here commercially available multi component soda lime glass substrates are patterned with a dot grid at ambient air pressure with 150 fs pulses, centered at a wavelength of 775 nm. The structures consist of small depressions with approximately 3 μ m diameter. Varying depths of around 300 nm could be well reproduced. Reducing the pitch (distance between structure-to-structure centers), from ten to approximately one times the crater diameter, influences the structure quality and increases the deformation of the surface in the vicinity of the depressions. Consequently, the diffuse light scattering is improved from 0 to 30% haze. Overall, the presented approach is quite simple. This single-step texturing technique which can be easily used on different substrates is applicable in a wide range of thin-film solar cells. It has the advantage that ultra-thin electrodes can be used as the front contact as well as the potential to be integrated into a PV production line. Thus, complicated layer stacks for absorption enhancement can be avoided.

  4. Light distribution modulated diffuse reflectance spectroscopy.

    PubMed

    Huang, Pin-Yuan; Chien, Chun-Yu; Sheu, Chia-Rong; Chen, Yu-Wen; Tseng, Sheng-Hao

    2016-06-01

    Typically, a diffuse reflectance spectroscopy (DRS) system employing a continuous wave light source would need to acquire diffuse reflectances measured at multiple source-detector separations for determining the absorption and reduced scattering coefficients of turbid samples. This results in a multi-fiber probe structure and an indefinite probing depth. Here we present a novel DRS method that can utilize a few diffuse reflectances measured at one source-detector separation for recovering the optical properties of samples. The core of innovation is a liquid crystal (LC) cell whose scattering property can be modulated by the bias voltage. By placing the LC cell between the light source and the sample, the spatial distribution of light in the sample can be varied as the scattering property of the LC cell modulated by the bias voltage, and this would induce intensity variation of the collected diffuse reflectance. From a series of Monte Carlo simulations and phantom measurements, we found that this new light distribution modulated DRS (LDM DRS) system was capable of accurately recover the absorption and scattering coefficients of turbid samples and its probing depth only varied by less than 3% over the full bias voltage variation range. Our results suggest that this LDM DRS platform could be developed to various low-cost, efficient, and compact systems for in-vivo superficial tissue investigation.

  5. Light distribution modulated diffuse reflectance spectroscopy

    PubMed Central

    Huang, Pin-Yuan; Chien, Chun-Yu; Sheu, Chia-Rong; Chen, Yu-Wen; Tseng, Sheng-Hao

    2016-01-01

    Typically, a diffuse reflectance spectroscopy (DRS) system employing a continuous wave light source would need to acquire diffuse reflectances measured at multiple source-detector separations for determining the absorption and reduced scattering coefficients of turbid samples. This results in a multi-fiber probe structure and an indefinite probing depth. Here we present a novel DRS method that can utilize a few diffuse reflectances measured at one source-detector separation for recovering the optical properties of samples. The core of innovation is a liquid crystal (LC) cell whose scattering property can be modulated by the bias voltage. By placing the LC cell between the light source and the sample, the spatial distribution of light in the sample can be varied as the scattering property of the LC cell modulated by the bias voltage, and this would induce intensity variation of the collected diffuse reflectance. From a series of Monte Carlo simulations and phantom measurements, we found that this new light distribution modulated DRS (LDM DRS) system was capable of accurately recover the absorption and scattering coefficients of turbid samples and its probing depth only varied by less than 3% over the full bias voltage variation range. Our results suggest that this LDM DRS platform could be developed to various low-cost, efficient, and compact systems for in-vivo superficial tissue investigation. PMID:27375931

  6. Light Absorption Enhancement of Silicon-Based Photovoltaic Devices with Multiple Bandgap Structures of Porous Silicon

    PubMed Central

    Wu, Kuen-Hsien; Li, Chong-Wei

    2015-01-01

    Porous-silicon (PS) multi-layered structures with three stacked PS layers of different porosity were prepared on silicon (Si) substrates by successively tuning the electrochemical-etching parameters in an anodization process. The three PS layers have different optical bandgap energy and construct a triple-layered PS (TLPS) structure with multiple bandgap energy. Photovoltaic devices were fabricated by depositing aluminum electrodes of Schottky contacts on the surfaces of the developed TLPS structures. The TLPS-based devices exhibit broadband photoresponses within the spectrum of the solar irradiation and get high photocurrent for the incident light of a tungsten lamp. The improved spectral responses of devices are owing to the multi-bandgap structures of TLPS, which are designed with a layered configuration analog to a tandem cell for absorbing a wider energy range of the incidental sun light. The large photocurrent is mainly ascribed to an enhanced light-absorption ability as a result of applying nanoporous-Si thin films as the surface layers to absorb the short-wavelength light and to improve the Schottky contacts of devices. Experimental results reveal that the multi-bandgap PS structures produced from electrochemical-etching of Si wafers are potentially promising for development of highly efficient Si-based solar cells. PMID:28793542

  7. Deriving brown carbon from multiwavelength absorption measurements: Method and application to AERONET and Aethalometer observations

    DOE PAGES

    Wang, X.; Heald, C. L.; Sedlacek, A.; ...

    2016-10-13

    The radiative impact of organic aerosols (OA) is a large source of uncertainty in estimating the global direct radiative effect (DRE) of aerosols. This radiative impact includes not only light scattering but also light absorption from a subclass of OA referred to as brown carbon (BrC). However the absorption properties of BrC are poorly understood leading to large uncertainties in modelling studies. To obtain observational constraints from measurements, a simple Absorption Ångström Exponent (AAE) method is often used to separate the contribution of BrC absorption from that of black carbon (BC). However, this attribution method is based on assumptions regardingmore » the spectral dependence of BC that are often violated in the ambient atmosphere. Here we develop a new method that decreases the uncertainties associated with estimating BrC absorption. By applying this method to multi-wavelength absorption aerosol optical depth (AAOD) measurements at AERONET sites worldwide and surface aerosol absorption measurements at multiple ambient sites, we estimate that BrC globally contributes 6-40% of the absorption at 440nm. We find that the mass absorption coefficient of OA (OA-MAC) is positively correlated with BC/OA mass ratio. Based on the variability of BC properties and BC/OA emission ratio, we estimate a range of 0.05-1.2 m 2/g for OA-MAC at 440nm. Using the combination of AERONET and OMI UV absorption observations we estimate that the AAE 388/440nm for BrC is generally ~4 world-wide, with a smaller value in Europe (< 2). Our analyses of two surface sites (Cape Cod, to the southeast of Boston, and the GoAmazon2014/5 T3 site, to the west of Manaus, Brazil) reveal no significant relationship between BrC absorptivity and photochemical aging in typical urban influenced conditions. However, the absorption of BrC measured during the biomass burning season near Manaus is found to decrease with photochemical aging with a lifetime of ~1 day. This lifetime is comparable to previous observations within a biomass burning plume but much slower than estimated from laboratory studies.« less

  8. Broadband sensitive pump-probe setup for ultrafast optical switching of photonic nanostructures and semiconductors.

    PubMed

    Euser, Tijmen G; Harding, Philip J; Vos, Willem L

    2009-07-01

    We describe an ultrafast time resolved pump-probe spectroscopy setup aimed at studying the switching of nanophotonic structures. Both femtosecond pump and probe pulses can be independently tuned over broad frequency range between 3850 and 21,050 cm(-1). A broad pump scan range allows a large optical penetration depth, while a broad probe scan range is crucial to study strongly photonic crystals. A new data acquisition method allows for sensitive pump-probe measurements, and corrects for fluctuations in probe intensity and pump stray light. We observe a tenfold improvement of the precision of the setup compared to laser fluctuations, allowing a measurement accuracy of better than DeltaR=0.07% in a 1 s measurement time. Demonstrations of the improved technique are presented for a bulk Si wafer, a three-dimensional Si inverse opal photonic bandgap crystal, and z-scan measurements of the two-photon absorption coefficient of Si, GaAs, and the three-photon absorption coefficient of GaP in the infrared wavelength range.

  9. During air cool process aerosol absorption detection with photothermal interferometry

    NASA Astrophysics Data System (ADS)

    Li, Baosheng; Xu, Limei; Huang, Junling; Ma, Fei; Wang, Yicheng; Li, Zhengqiang

    2014-11-01

    This paper studies the basic principle of laser photothermal interferometry method of aerosol particles absorption coefficient. The photothermal interferometry method with higher accuracy and lower uncertainty can directly measure the absorption coefficient of atmospheric aerosols and not be affected by scattered light. With Jones matrix expression, the math expression of a special polarization interferometer is described. This paper using folded Jamin interferometer, which overcomes the influence of vibration on measuring system. Interference come from light polarization beam with two orthogonal and then combine to one beam, finally aerosol absorption induced refractive index changes can be gotten with four beam of phase orthogonal light. These kinds of styles really improve the stability of system and resolution of the system. Four-channel detections interact with interference fringes, to reduce the light intensity `zero drift' effect on the system. In the laboratory, this device typical aerosol absorption index, it shows that the result completely agrees with actual value. After heated by laser, cool process of air also show the process of aerosol absorption. This kind of instrument will be used to monitor ambient aerosol absorption and suspended particulate matter chemical component. Keywords: Aerosol absorption coefficient; Photothermal interferometry; Suspended particulate matter.

  10. An improved analytic function for predicting light fluence rate in circular fields on a semi-infinite geometry

    NASA Astrophysics Data System (ADS)

    Zhu, Timothy C.; Lu, Amy; Ong, Yi-Hong

    2016-03-01

    Accurate determination of in-vivo light fluence rate is critical for preclinical and clinical studies involving photodynamic therapy (PDT). This study compares the longitudinal light fluence distribution inside biological tissue in the central axis of a 1 cm diameter circular uniform light field for a range of in-vivo tissue optical properties (absorption coefficients (μa) between 0.01 and 1 cm-1 and reduced scattering coefficients (μs') between 2 and 40 cm-1). This was done using Monte-Carlo simulations for a semi-infinite turbid medium in an air-tissue interface. The end goal is to develop an analytical expression that would fit the results from the Monte Carlo simulation for both the 1 cm diameter circular beam and the broad beam. Each of these parameters is expressed as a function of tissue optical properties. These results can then be compared against the existing expressions in the literature for broad beam for analysis in both accuracy and applicable range. Using the 6-parameter model, the range and accuracy for light transport through biological tissue is improved and may be used in the future as a guide in PDT for light fluence distribution for known tissue optical properties.

  11. Active mode locking of quantum cascade lasers in an external ring cavity.

    PubMed

    Revin, D G; Hemingway, M; Wang, Y; Cockburn, J W; Belyanin, A

    2016-05-05

    Stable ultrashort light pulses and frequency combs generated by mode-locked lasers have many important applications including high-resolution spectroscopy, fast chemical detection and identification, studies of ultrafast processes, and laser metrology. While compact mode-locked lasers emitting in the visible and near infrared range have revolutionized photonic technologies, the systems operating in the mid-infrared range where most gases have their strong absorption lines, are bulky and expensive and rely on nonlinear frequency down-conversion. Quantum cascade lasers are the most powerful and versatile compact light sources in the mid-infrared range, yet achieving their mode-locked operation remains a challenge, despite dedicated effort. Here we report the demonstration of active mode locking of an external-cavity quantum cascade laser. The laser operates in the mode-locked regime at room temperature and over the full dynamic range of injection currents.

  12. Active mode locking of quantum cascade lasers in an external ring cavity

    PubMed Central

    Revin, D. G.; Hemingway, M.; Wang, Y.; Cockburn, J. W.; Belyanin, A.

    2016-01-01

    Stable ultrashort light pulses and frequency combs generated by mode-locked lasers have many important applications including high-resolution spectroscopy, fast chemical detection and identification, studies of ultrafast processes, and laser metrology. While compact mode-locked lasers emitting in the visible and near infrared range have revolutionized photonic technologies, the systems operating in the mid-infrared range where most gases have their strong absorption lines, are bulky and expensive and rely on nonlinear frequency down-conversion. Quantum cascade lasers are the most powerful and versatile compact light sources in the mid-infrared range, yet achieving their mode-locked operation remains a challenge, despite dedicated effort. Here we report the demonstration of active mode locking of an external-cavity quantum cascade laser. The laser operates in the mode-locked regime at room temperature and over the full dynamic range of injection currents. PMID:27147409

  13. Effect of evening exposure to bright or dim light after daytime bright light on absorption of dietary carbohydrates the following morning.

    PubMed

    Hirota, Naoko; Sone, Yoshiaki; Tokura, Hiromi

    2010-01-01

    We had previously reported on the effect of exposure to light on the human digestive system: daytime bright light exposure has a positive effect, whereas, evening bright light exposure has a negative effect on the efficiency of dietary carbohydrate absorption from the evening meal. These results prompted us to examine whether the light intensity to which subjects are exposed in the evening affects the efficiency of dietary carbohydrate absorption the following morning. In this study, subjects were exposed to either 50 lux (dim light conditions) or 2,000 lux (bright light conditions) in the evening for 9 h (from 15:00 to 24:00) after staying under bright light in the daytime (under 2,000 lux from 07:00 to 15:00). We measured unabsorbed dietary carbohydrates using the breath-hydrogen test the morning after exposure to either bright light or dim light the previous evening. Results showed that there was no significant difference between the two conditions in the amount of breath hydrogen. This indicates that evening exposure to bright or dim light after bright light exposure in the daytime has no varying effect on digestion or absorption of dietary carbohydrates in the following morning's breakfast.

  14. A Low-Cost Quantitative Absorption Spectrophotometer

    ERIC Educational Resources Information Center

    Albert, Daniel R.; Todt, Michael A.; Davis, H. Floyd

    2012-01-01

    In an effort to make absorption spectrophotometry available to high school chemistry and physics classes, we have designed an inexpensive visible light absorption spectrophotometer. The spectrophotometer was constructed using LEGO blocks, a light emitting diode, optical elements (including a lens), a slide-mounted diffraction grating, and a…

  15. Comparison of hatching egg characteristics, embryo development, yolk absorption, hatch window, and hatchability of Pekin Duck eggs of different weights.

    PubMed

    Ipek, A; Sozcu, A

    2017-10-01

    This study was carried out to determine the hatching egg characteristics, embryo development and yolk absorption during incubation, hatch window, and hatchability of Pekin duck eggs of different weights. A total of 960 hatching eggs was obtained from a breeder flock 35 to 36 wk of age. The eggs were classed into 3 weight categories: "light" (L; <75 g), "medium" (M; 76 to 82 g), and "heavy" (H; >83 g). The albumen weight was the highest in the heavy eggs, whereas the yolk weight was higher in the medium and heavy eggs. Egg breaking strength was the highest with a value of 2.5 kg/cm2 in light eggs, whereas the thinnest eggshell (0.3862 mm) was observed in heavy eggs. pH of albumen and yolk was similar and ranged from 8.8 to 8.9 and 5.9 to 6.0, respectively. On d 14 of incubation, yolk sac weight was found higher in the medium and heavy eggs. Additionally, the dry matter of the embryo and yolk sac differed among the egg weight groups during the incubation period. Interestingly, on d 25 of incubation, the embryo weight was higher in the light and heavy eggs (35.2 and 36.3 g, respectively) than in the medium eggs (29.8 g). These findings showed that embryo growth was affected by yolk absorption and dry matter accumulation. The hatchability of total and fertile eggs was lower for the heavy eggs than the light and medium eggs. The chick weight was 42.8, 48.4, and 54.9 g in light, medium, and heavy eggs, respectively. A percentage of 34.2, 36, and 31.6% of chicks from light, medium, and heavy eggs, hatched between 637 and 648 h, 39.6, 36.2, and 32.9% between 649 and 660 h, 26.2, 27.8, and 35.5% between 661 and 672 h of incubation, respectively. In conclusion, hatching egg quality, embryo development and yolk absorption during incubation, hatch window, and hatchability were affected by egg weight in Pekin ducks. © 2017 Poultry Science Association Inc.

  16. Full-spectrum light management by pseudo-disordered moth-eye structures for thin film solar cells.

    PubMed

    Liu, Xiaojun; Da, Yun; Xuan, Yimin

    2017-08-07

    In this paper, the role of pseudo-disordered moth-eye structures on the optical features for application to thin-film solar cells is investigated to realize the superior light management for the full-spectrum solar energy utilization, compared with some ordered structures. Without loss of generality, the c-Si thin film solar cell is taken as the example. The results demonstrate that the fluctuations introduced into the geometry parameters of moth-eye elements can lead to the remarkable absorption enhancement in the wavelength region of 0.3-1.1 μm and high transmission in the wavelength range of 1.1-2.5 μm. Two mechanisms including the increasing spectral density of modes and the intensive forescattering intensity are identified to be responsible for the absorption enhancement. In addition, the optical characteristics of the moth-eye surface with both disordered height and disordered diameter are insensitive to the incident angle.

  17. Dielectric-based subwavelength metallic meanders for wide-angle band absorbers.

    PubMed

    Shen, Su; Qiao, Wen; Ye, Yan; Zhou, Yun; Chen, Linsen

    2015-01-26

    We propose nano-meanders that can achieve wide-angle band absorption in visible regime. The nano-meander consists of a subwavelength dielectric grating covered by continuous ultra-thin Aluminum film (less than one tenth of the incident wavelength). The excited photonic resonant modes, such as cavity mode, surface plasmonic mode and Rayleigh-Wood anomaly, are discussed in detail. Nearly total resonant absorption due to funneling mechanism in the air nano-groove is almost invariant with large incident angle in transverse magnetic polarization. From both the structural geometry and the nanofabrication point of view, the light absorber has a very simple geometrical structure and it is easy to be integrated into complex photonic devices. The highly efficient angle-robust light absorber can be potential candidate for a range of passive and active photonic applications, including solar-energy harvesting as well as producing artificial colors on a large scale substrate.

  18. Laser measurements of bacterial endospore destruction from shock waves

    NASA Astrophysics Data System (ADS)

    Lappas, Petros P.; McCartt, A. Daniel; Gates, Sean D.; Jeffries, Jay B.; Hanson, Ronald K.

    2013-12-01

    The effects of shock waves on bioaerosols containing endospores were measured by combined laser absorption and scattering. Experiments were conducted in the Stanford aerosol shock tube for post-shock temperatures ranging from 400 K to 1100 K. Laser intensity measurements through the test section of the shock tube at wavelengths of 266 and 665 nm provided real-time monitoring of the morphological changes (includes changes in shape, structure and optical properties) in the endospores. Scatter of the visible light measured the integrity of endospore structure, while absorption of the UV light provided a measure of biochemicals released when endospores ruptured. For post-shock temperatures above 750 K the structural breakdown of Bacillus atrophaeus (BA) endospores was observed. A simple theoretical model using laser extinction is presented for determining the fraction of endospores that are ruptured by the shock waves. In addition, mechanisms of endospore mortality preceding their disintegration due to shock waves are discussed.

  19. Shallow-trap-induced positive absorptive two-beam coupling 'gain' and light-induced transparency in nominally undoped barium titanate

    NASA Technical Reports Server (NTRS)

    Garrett, M. H.; Tayebati, P.; Chang, J. Y.; Jenssen, H. P.; Warde, C.

    1992-01-01

    The asymmetry of beam coupling with respect to the orientation of the polar axis in a nominally undoped barium titanate crystal is used to determine the electro-optic and absorptive 'gain' in the usual beam-coupling geometry. For small grating wave vectors, the electrooptic coupling vanishes but the absorptive coupling remains finite and positive. Positive absorptive coupling at small grating wave vectors is correlated with the light-induced transparency of the crystal described herein. The intensity and grating wave vector dependence of the electrooptic and absorptive coupling, and the light-induced transparency are consistent with a model incorporating deep and shallow levels.

  20. Atomic Resonance Radiation Energetics Investigation as a Diagnostic Method for Non-Equilibrium Hypervelocity Flows

    NASA Technical Reports Server (NTRS)

    Meyer, Scott A.; Bershader, Daniel; Sharma, Surendra P.; Deiwert, George S.

    1996-01-01

    Absorption measurements with a tunable vacuum ultraviolet light source have been proposed as a concentration diagnostic for atomic oxygen, and the viability of this technique is assessed in light of recent measurements. The instrumentation, as well as initial calibration measurements, have been reported previously. We report here additional calibration measurements performed to study the resonance broadening line shape for atomic oxygen. The application of this diagnostic is evaluated by considering the range of suitable test conditions and requirements, and by identifying issues that remain to be addressed.

  1. Measurement of the dependence of the light yields of linear alkylbenzene-based and EJ-301 scintillators on electron energy

    NASA Astrophysics Data System (ADS)

    Wan Chan Tseung, H.; Kaspar, J.; Tolich, N.

    2011-10-01

    An experimental test of the electron energy scale linearities of SNO+ and EJ-301 scintillators was carried out using a Compton spectrometer with electrons in the energy range 0.09-3 MeV. The linearity of the apparatus was explicitly demonstrated. It was found that the response of both types of scintillators with respect to electrons becomes non-linear below ˜0.4 MeV. An explanation is given in terms of Cherenkov light absorption and re-emission by the scintillators.

  2. Highly vibrationally excited O2 molecules in low-pressure inductively-coupled plasmas detected by high sensitivity ultra-broad-band optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Foucher, Mickaël; Marinov, Daniil; Carbone, Emile; Chabert, Pascal; Booth, Jean-Paul

    2015-08-01

    Inductively-coupled plasmas in pure O2 (at pressures of 5-80 mTorr and radiofrequency power up to 500 W) were studied by optical absorption spectroscopy over the spectral range 200-450 nm, showing the presence of highly vibrationally excited O2 molecules (up to vʺ = 18) by Schumann-Runge band absorption. Analysis of the relative band intensities indicates a vibrational temperature up to 10,000 K, but these hot molecules only represent a fraction of the total O2 density. By analysing the (11-0) band at higher spectral resolution the O2 rotational temperature was also determined, and was found to increase with both pressure and power, reaching 900 K at 80 mTorr 500 W. These measurements were achieved using a new high-sensitivity ultra-broad-band absorption spectroscopy setup, based on a laser-plasma light source, achromatic optics and an aberration-corrected spectrograph. This setup allows the measurement of weak broadband absorbances due to a baseline variability lower than 2   ×   10-5 across a spectral range of 250 nm.

  3. Concentrating light in Cu(In,Ga)Se2 solar cells

    NASA Astrophysics Data System (ADS)

    Schmid, M.; Yin, G.; Song, M.; Duan, S.; Heidmann, B.; Sancho-Martinez, D.; Kämmer, S.; Köhler, T.; Manley, P.; Lux-Steiner, M. Ch.

    2016-09-01

    Light concentration has proven beneficial for solar cells, most notably for highly efficient but expensive absorber materials using high concentrations and large scale optics. Here we investigate light concentration for cost efficient thinfilm solar cells which show nano- or microtextured absorbers. Our absorber material of choice is Cu(In,Ga)Se2 (CIGSe) which has a proven stabilized record efficiency of 22.6% and which - despite being a polycrystalline thin-film material - is very tolerant to environmental influences. Taking a nanoscale approach, we concentrate light in the CIGSe absorber layer by integrating photonic nanostructures made from dielectric materials. The dielectric nanostructures give rise to resonant modes and field localization in their vicinity. Thus when inserted inside or adjacent to the absorber layer, absorption and efficiency enhancement are observed. In contrast to this internal absorption enhancement, external enhancement is exploited in the microscale approach: mm-sized lenses can be used to concentrate light onto CIGSe solar cells with lateral dimensions reduced down to the micrometer range. These micro solar cells come with the benefit of improved heat dissipation compared to the large scale concentrators and promise compact high efficiency devices. Both approaches of light concentration allow for reduction in material consumption by restricting the absorber dimension either vertically (ultra-thin absorbers for dielectric nanostructures) or horizontally (micro absorbers for concentrating lenses) and have significant potential for efficiency enhancement.

  4. Concentrating light in Cu(In,Ga)Se2 solar cells

    NASA Astrophysics Data System (ADS)

    Schmid, Martina; Yin, Guanchao; Song, Min; Duan, Shengkai; Heidmann, Berit; Sancho-Martinez, Diego; Kämmer, Steven; Köhler, Tristan; Manley, Phillip; Lux-Steiner, Martha Ch.

    2017-01-01

    Light concentration has proven beneficial for solar cells, most notably for highly efficient but expensive absorber materials using high concentrations and large scale optics. Here, we investigate the light concentration for cost-efficient thin-film solar cells that show nano- or microtextured absorbers. Our absorber material of choice is Cu(In,Ga)Se2 (CIGSe), which has a proven stabilized record efficiency of 22.6% and which-despite being a polycrystalline thin-film material-is very tolerant to environmental influences. Taking a nanoscale approach, we concentrate light in the CIGSe absorber layer by integrating photonic nanostructures made from dielectric materials. The dielectric nanostructures give rise to resonant modes and field localization in their vicinity. Thus, when inserted inside or adjacent to the absorber layer, absorption and efficiency enhancement are observed. In contrast to this internal absorption enhancement, external enhancement is exploited in the microscaled approach: mm-sized lenses can be used to concentrate light onto CIGSe solar cells with lateral dimensions reduced down to the micrometer range. These micro solar cells come with the benefit of improved heat dissipation compared with the large scale concentrators and promise compact high-efficiency devices. Both approaches of light concentration allow for reduction in material consumption by restricting the absorber dimension either vertically (ultrathin absorbers for dielectric nanostructures) or horizontally (microabsorbers for concentrating lenses) and have significant potential for efficiency enhancement.

  5. Multifunctional graphene optoelectronic devices capable of detecting and storing photonic signals.

    PubMed

    Jang, Sukjae; Hwang, Euyheon; Lee, Youngbin; Lee, Seungwoo; Cho, Jeong Ho

    2015-04-08

    The advantages of graphene photodetectors were utilized to design a new multifunctional graphene optoelectronic device. Organic semiconductors, gold nanoparticles (AuNPs), and graphene were combined to fabricate a photodetecting device with a nonvolatile memory function for storing photonic signals. A pentacene organic semiconductor acted as a light absorption layer in the device and provided a high hole photocurrent to the graphene channel. The AuNPs, positioned between the tunneling and blocking dielectric layers, acted as both a charge trap layer and a plasmonic light scatterer, which enable storing of the information about the incident light. The proposed pentacene-graphene-AuNP hybrid photodetector not only performed well as a photodetector in the visible light range, it also was able to store the photonic signal in the form of persistent current. The good photodetection performance resulted from the plasmonics-enabled enhancement of the optical absorption and from the photogating mechanisms in the pentacene. The device provided a photoresponse that depended on the wavelength of incident light; therefore, the signal information (both the wavelength and intensity) of the incident light was effectively committed to memory. The simple process of applying a negative pulse gate voltage could then erase the programmed information. The proposed photodetector with the capacity to store a photonic signal in memory represents a significant step toward the use of graphene in optoelectronic devices.

  6. A contribution of black and brown carbon to the aerosol light absorption

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Woo; Cho, Chaeyoon; Jo, Duseong; Park, Rokjin

    2017-04-01

    Black carbon (BC) is functionally defined as the absorbing component of atmospheric total carbonaceous aerosols and is typically dominated by soot-like elemental carbon (EC). Organic carbon (OC) has also been shown to absorb strongly at visible to UV wavelengths and the absorbing organics are referred to as brown carbon (BrC; Alexander et al., 2008). These two aerosols contribute to solar radiative forcing through absorption of solar radiation and heating of the absorbing aerosol layer, but most optical instruments that quantify light absorption are unable to distinguish one type of absorbing aerosol from another (Moosmüller et al. 2009). In this study, we separate total aerosol absorption from these two different light absorbers from co-located simultaneous in-situ measurements, such as Continuous Soot Monitoring System (COSMOS), Continuous Light Absorption Photometer (CLAP) and Sunset EC/OC analyzer, at Gosan climate observatory, Korea. We determine the mass absorption cross-section (MAC) of BC, and then estimate the contribution of BC and BrC on aerosol light absorption, together with a global 3-D chemical transport model (GEOS-Chem) simulation. At 565 nm wavelength, BC MAC is found to be about 5.4±2.8 m2 g-1 from COSMOS and Sunset EC/OC analyzer measurements during January-May 2012. This value is similar to those from Alexander et al. (2008; 4.3 ˜ 4.8 m2 g-1 at 550 nm) and Chung et al. (2012; 5.1 m2 g-1 at 520 nm), but slightly lower than Bond and Bergstrom (2006; 7.5±1.2 m2 g-1 at 550 nm). The COMOS BC mass concentration calculated with 5.4 m2 g-1 of BC MAC shows a good agreement with thermal EC concentration, with a good slope (1.1). Aerosol absorption coefficient and BC mass concentration from COSMOS, meanwhile, are approximately 25 ˜ 30 % lower than those of CLAP. This difference can be attributable to the contribution of volatile light-absorbing aerosols (i.e., BrC). The absorption coefficient of BrC, which is determined by the difference of absorption coefficients from CLAP and COSMOS measurements, increases with increasing thermal OC mass concentration. Monthly variation of BC and BrC absorption coefficients estimated from in-situ measurements and GEOS-Chem model simulation are generally well agreed, even though GEOS-Chem simulation overestimates BC absorption coefficient while underestimates BrC absorption coefficient. Here, we note that MAC of 5.4 m2 g-1 and3.8 m2 g-1 (taken from Alexander et al., 2008) are used to calculate aerosol absorption coefficient of BC and BrC, respectively. The contribution of BC to aerosol light absorption is estimated to be about 70˜75%, while BrC accounts for about 25˜30% of total aerosol light absorption, having a significant climatic implication in East Asia.

  7. Brown and black carbon in Beijing aerosol: Implications for the effects of brown coating on light absorption by black carbon.

    PubMed

    Cheng, Yuan; He, Ke-Bin; Engling, Guenter; Weber, Rodney; Liu, Jiu-Meng; Du, Zhen-Yu; Dong, Shu-Ping

    2017-12-01

    Brown carbon (BrC) is increasingly included in climate models as an emerging category of particulate organic compounds that can absorb solar radiation efficiently at specific wavelengths. Water-soluble organic carbon (WSOC) has been commonly used as a surrogate for BrC; however, it only represents a limited fraction of total organic carbon (OC) mass, which could be as low as about 20% in urban atmosphere. Using methanol as the extraction solvent, up to approximately 90% of the OC in Beijing aerosol was isolated and measured for absorption spectra over the ultraviolet-to-visible wavelength range. Compared to methanol-soluble OC (MSOC), WSOC underestimated BrC absorption by about 50% at 365nm. The mass absorption efficiencies measured for BrC in Beijing aerosol were converted to the imaginary refractive indices of BrC and subsequently used to compute BrC coating-induced enhancement of light absorption (E abs ) by black carbon. E abs attributed to lensing was reduced in the case of BrC coating relative to that caused by purely-scattering coating. However, this reduction was overwhelmed by the effect of BrC shell absorption, indicating that the overall effect of BrC coating was an increase in E abs . Methanol extraction significantly reduced charring of OC during thermal-optical analysis, leading to a large increase in the measured elemental carbon (EC) mass and an apparent improvement in the consistency of EC measurements by different thermal-optical methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Photochemical Construction of Carbonitride Structures for Red-Light Redox Catalysis.

    PubMed

    Yang, Pengju; Wang, Ruirui; Zhou, Min; Wang, Xinchen

    2018-05-22

    Metal-free carbonitride(CN) semiconductors are appealing light-transducers for photocatalytic redox reactions owing to the unique band gap and stability. To harness solar energy efficiently, CN catalysts that are active over a wider range of the visible spectrum are desired. Now a photochemical approach has been used to prepare a new-type triazine-based CN structure. The obtained CN shows extraordinary light-harvesting characteristics, with suitable semiconductor-redox potentials. The light absorption edge of the CN reaches up to 735 nm, which is significantly longer than that of the conventional CN semiconductor at about 460 nm. As expected, the CN can efficiently catalyze oxidation of alcohols and reduction of CO 2 with visible light, even under red-light irradiation. The results represent an important step toward the development of red-light-responsive triazine-based structures for solar applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. 3D-printed external light trap for solar cells.

    PubMed

    van Dijk, Lourens; Paetzold, Ulrich W; Blab, Gerhard A; Schropp, Ruud E I; di Vece, Marcel

    2016-05-01

    We present a universally applicable 3D-printed external light trap for enhanced absorption in solar cells. The macroscopic external light trap is placed at the sun-facing surface of the solar cell and retro-reflects the light that would otherwise escape. The light trap consists of a reflective parabolic concentrator placed on top of a reflective cage. Upon placement of the light trap, an improvement of 15% of both the photocurrent and the power conversion efficiency in a thin-film nanocrystalline silicon (nc-Si:H) solar cell is measured. The trapped light traverses the solar cell several times within the reflective cage thereby increasing the total absorption in the cell. Consequently, the trap reduces optical losses and enhances the absorption over the entire spectrum. The components of the light trap are 3D printed and made of smoothened, silver-coated thermoplastic. In contrast to conventional light trapping methods, external light trapping leaves the material quality and the electrical properties of the solar cell unaffected. To explain the theoretical operation of the external light trap, we introduce a model that predicts the absorption enhancement in the solar cell by the external light trap. The corresponding calculated path length enhancement shows good agreement with the empirically derived value from the opto-electrical data of the solar cell. Moreover, we analyze the influence of the angle of incidence on the parasitic absorptance to obtain full understanding of the trap performance. © 2015 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons, Ltd.

  10. Teaching the Absorption of Light Colours Using an Artificial Rainbow

    ERIC Educational Resources Information Center

    Yurumezoglu, Kemal; Isik, Hakan; Arikan, Gizem; Kabay, Gozde

    2015-01-01

    This paper presents an experimental activity based on the absorption of light colours by pigments. The activity is constructed using a stepwise design and offers an opportunity for students and teachers to compare and generalize the interactions between light and pigment colours. The light colours composing an artificial rainbow produced in the…

  11. A highly conspicuous mineralized composite photonic architecture in the translucent shell of the blue-rayed limpet.

    PubMed

    Li, Ling; Kolle, Stefan; Weaver, James C; Ortiz, Christine; Aizenberg, Joanna; Kolle, Mathias

    2015-02-26

    Many species rely on diverse selections of entirely organic photonic structures for the manipulation of light and the display of striking colours. Here we report the discovery of a mineralized hierarchical photonic architecture embedded within the translucent shell of the blue-rayed limpet Patella pellucida. The bright colour of the limpet's stripes originates from light interference in a periodically layered zig-zag architecture of crystallographically co-oriented calcite lamellae. Beneath the photonic multilayer, a disordered array of light-absorbing particles provides contrast for the blue colour. This unique mineralized manifestation of a synergy of two distinct optical elements at specific locations within the continuum of the limpet's translucent protective shell ensures the vivid shine of the blue stripes, which can be perceived under water from a wide range of viewing angles. The stripes' reflection band coincides with the spectral range of minimal light absorption in sea water, raising intriguing questions regarding their functional significance.

  12. A highly conspicuous mineralized composite photonic architecture in the translucent shell of the blue-rayed limpet

    NASA Astrophysics Data System (ADS)

    Li, Ling; Kolle, Stefan; Weaver, James C.; Ortiz, Christine; Aizenberg, Joanna; Kolle, Mathias

    2015-02-01

    Many species rely on diverse selections of entirely organic photonic structures for the manipulation of light and the display of striking colours. Here we report the discovery of a mineralized hierarchical photonic architecture embedded within the translucent shell of the blue-rayed limpet Patella pellucida. The bright colour of the limpet’s stripes originates from light interference in a periodically layered zig-zag architecture of crystallographically co-oriented calcite lamellae. Beneath the photonic multilayer, a disordered array of light-absorbing particles provides contrast for the blue colour. This unique mineralized manifestation of a synergy of two distinct optical elements at specific locations within the continuum of the limpet’s translucent protective shell ensures the vivid shine of the blue stripes, which can be perceived under water from a wide range of viewing angles. The stripes’ reflection band coincides with the spectral range of minimal light absorption in sea water, raising intriguing questions regarding their functional significance.

  13. A highly conspicuous mineralized composite photonic architecture in the translucent shell of the blue-rayed limpet

    DOE PAGES

    Li, Ling; Kolle, Stefan; Weaver, James C.; ...

    2015-02-26

    Many species rely on diverse selections of entirely organic photonic structures for the manipulation of light and the display of striking colours. Here we report the discovery of a mineralized hierarchical photonic architecture embedded within the translucent shell of the blue-rayed limpet Patella pellucida. The bright colour of the limpet’s stripes originates from light interference in a periodically layered zig-zag architecture of crystallographically co-oriented calcite lamellae. Beneath the photonic multilayer, a disordered array of light-absorbing particles provides contrast for the blue colour. This unique mineralized manifestation of a synergy of two distinct optical elements at specific locations within the continuummore » of the limpet’s translucent protective shell ensures the vivid shine of the blue stripes, which can be perceived under water from a wide range of viewing angles. The stripes’ reflection band coincides with the spectral range of minimal light absorption in sea water, raising intriguing questions regarding their functional significance.« less

  14. Using Methane Absorption to Probe Jupiter's Atmosphere

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mosaics of a belt-zone boundary near Jupiter's equator in near-infrared light moderately absorbed by atmospheric methane (top panel), and strongly absorbed by atmospheric methane (bottom panel). The four images that make up each of these mosaics were taken within a few minutes of each other. Methane in Jupiter's atmosphere absorbs light at specific wavelengths called absorption bands. By detecting light close and far from these absorption bands, Galileo can probe to different depths in Jupiter's atmosphere. Sunlight near 732 nanometers (top panel) is moderately absorbed by methane. Some of the light reflected from clouds deep in Jupiter's troposphere is absorbed, enhancing the higher features. Sunlight at 886 nanometers (bottom panel) is strongly absorbed by methane. Most of the light reflected from the deeper clouds is absorbed, making these clouds invisible. Features in the diffuse cloud layer higher in Jupiter's atmosphere are greatly enhanced.

    North is at the top. The mosaic covers latitudes -13 to +3 degrees and is centered at longitude 282 degrees West. The smallest resolved features are tens of kilometers in size. These images were taken on November 5th, 1996, at a range of 1.2 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  15. Vertical Profiles of Light-Absorbing Aerosol: A Combination of In-situ and AERONET Observations during NASA DISCOVER-AQ

    NASA Astrophysics Data System (ADS)

    Ziemba, L. D.; Beyersdorf, A. J.; Chen, G.; Corr, C.; Crumeyrolle, S.; Giles, D. M.; Holben, B. N.; Hudgins, C.; Martin, R.; Moore, R.; Shook, M.; Thornhill, K. L., II; Winstead, E.; Anderson, B. E.

    2014-12-01

    Understanding the vertical profile of atmospheric aerosols plays a vital role in utilizing spaceborne, column-integrated satellite observations. The properties and distribution of light-absorbing aerosol are particularly uncertain despite significant air quality and climate ramifications. Advanced retrieval algorithms are able to derive complex aerosol properties (e.g., wavelength-dependent absorption coefficient and single scattering albedo) from remote-sensing measurements, but quantitative relationships to surface conditions remain a challenge. Highly systematic atmospheric profiling during four unique deployments for the NASA DISCOVER-AQ project (Baltimore, MD, 2011; San Joaquin Valley, CA, 2013; Houston, TX, 2013; Denver, CO, 2014) allow statistical assessment of spatial, temporal, and source-related variability for light-absorbing aerosol properties in these distinct regions. In-situ sampling in conjunction with a dense network of AERONET sensors also allows evaluation of the sensitivity, limitations, and advantages of remote-sensing data products over a wide range of conditions. In-situ aerosol and gas-phase observations were made during DISCOVER-AQ aboard the NASA P-3B aircraft. Aerosol absorption coefficients were measured by a Particle Soot Absorption Photometer (PSAP). Approximately 200 profiles for each of the four deployments were obtained, from the surface (25-300m altitude) to 5 km, and are used to calculate absorption aerosol optical depths (AAODs). These are quantitatively compared to AAOD derived from AERONET Level 1.5 retrievals to 1) explore discrepancies between measurements, 2) quantify the fraction of AAOD that exists directly at the surface and is often missed by airborne sampling, and 3) evaluate the potential for deriving ground-level black carbon (BC) concentrations for air quality prediction. Aerosol size distributions are used to assess absorption contributions from mineral dust, both at the surface and aloft. SP2 (Single Particle Soot Photometer) mixing state and coating thickness analyses will be explored to explain in-situ/AERONET discrepancies, and ground-based absorption coefficient and BC-mass observations will be utilized whenever possible to fully obtain the true absorption vertical profile.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, X.; Heald, C. L.; Sedlacek, A.

    The radiative impact of organic aerosols (OA) is a large source of uncertainty in estimating the global direct radiative effect (DRE) of aerosols. This radiative impact includes not only light scattering but also light absorption from a subclass of OA referred to as brown carbon (BrC). However the absorption properties of BrC are poorly understood leading to large uncertainties in modelling studies. To obtain observational constraints from measurements, a simple Absorption Ångström Exponent (AAE) method is often used to separate the contribution of BrC absorption from that of black carbon (BC). However, this attribution method is based on assumptions regardingmore » the spectral dependence of BC that are often violated in the ambient atmosphere. Here we develop a new method that decreases the uncertainties associated with estimating BrC absorption. By applying this method to multi-wavelength absorption aerosol optical depth (AAOD) measurements at AERONET sites worldwide and surface aerosol absorption measurements at multiple ambient sites, we estimate that BrC globally contributes 6-40% of the absorption at 440nm. We find that the mass absorption coefficient of OA (OA-MAC) is positively correlated with BC/OA mass ratio. Based on the variability of BC properties and BC/OA emission ratio, we estimate a range of 0.05-1.2 m 2/g for OA-MAC at 440nm. Using the combination of AERONET and OMI UV absorption observations we estimate that the AAE 388/440nm for BrC is generally ~4 world-wide, with a smaller value in Europe (< 2). Our analyses of two surface sites (Cape Cod, to the southeast of Boston, and the GoAmazon2014/5 T3 site, to the west of Manaus, Brazil) reveal no significant relationship between BrC absorptivity and photochemical aging in typical urban influenced conditions. However, the absorption of BrC measured during the biomass burning season near Manaus is found to decrease with photochemical aging with a lifetime of ~1 day. This lifetime is comparable to previous observations within a biomass burning plume but much slower than estimated from laboratory studies.« less

  17. Plasmonic nanoparticles enhanced dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Xu, Qi; Liu, Fang; Meng, Weisi; Huang, Yidong

    2013-12-01

    Here we present investigations on utilizing two kinds of plasmonic nanoparticles (NPs) to enhance the efficiency of dye sensitized solar cells (DSCs). The Au@PVP NPs is proposed and present the specialty of adhesiveness to dye molecules, which could help to localize additional dye molecules near the plasmonic NPs, hence increasing the optical absorption consequently the power conversion efficiency (PCE) of the DSCs by 30% from 3.3% to 4.3%. Meanwhile, an irregular Au-Ag alloy popcorn-shaped NPs (popcorn NPs) with plenty of fine structures is also proposed and realized to enhance the light absorption of DSC. A pronounced absorption enhancement in a broadband wavelength range is observed due to the excitation of localized surface plasmon at different wavelengths. The PCE is enhanced by 32% from 5.94% to 7.85%.

  18. Monitoring atmospheric pollutants with a heterodyne radiometer transmitter-receiver

    NASA Technical Reports Server (NTRS)

    Menzies, R. T. (Inventor)

    1973-01-01

    The presence of selected atmospheric pollutants can be determined by transmitting an infrared beam of proper wavelength through the atmosphere, and detecting the reflections of the transmitted beam with a heterodyne radiometer transmitter-receiver using part of the laser beam as a local oscillator. The particular pollutant and its absorption line strength to be measured are selected by the laser beam wave length. When the round-trip path for the light is known or measured, concentration can be determined. Since pressure (altitude) will affect the shape of the molecular absorption line of a pollutant, tuning the laser through a range of frequencies, which includes a part of the absorption line of the pollutant of interest, yields pollutant altitude data from which the altitude and altitude profile is determined.

  19. LED-Absorption-QEPAS Sensor for Biogas Plants

    PubMed Central

    Köhring, Michael; Böttger, Stefan; Willer, Ulrike; Schade, Wolfgang

    2015-01-01

    A new sensor for methane and carbon dioxide concentration measurements in biogas plants is presented. LEDs in the mid infrared spectral region are implemented as low cost light source. The combination of quartz-enhanced photoacoustic spectroscopy with an absorption path leads to a sensor setup suitable for the harsh application environment. The sensor system contains an electronics unit and the two gas sensors; it was designed to work as standalone device and was tested in a biogas plant for several weeks. Gas concentration dependent measurements show a precision better than 1% in a range between 40% and 60% target gas concentration for both sensors. Concentration dependent measurements with different background gases show a considerable decrease in cross sensitivity against the major components of biogas in direct comparison to common absorption based sensors. PMID:26007746

  20. Tailorable Exciton Transport in Doped Peptide–Amphiphile Assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, Lee A.; Sykes, Matthew E.; Wu, Yimin A.

    Light-harvesting biomaterials are an attractive target in photovoltaics, photocatalysis, and artificial photosynthesis. Through peptide self-assembly, complex nanostructures can be engineered to study the role of chromophore organization during light absorption and energy transport. To this end, we demonstrate the one-dimensional transport of excitons along naturally occurring, light-harvesting, Zn-protoporphyrin IX chromophores within self-assembled peptide-amphiphile nanofibers. The internal structure of the nanofibers induces packing of the porphyrins into linear chains. We find that this peptide assembly can enable long-range exciton diffusion, yet it also induces the formation of excimers between adjacent molecules, which serve as exciton traps. Electronic coupling between neighboring porphyrinmore » molecules is confirmed by various spectroscopic methods. The exciton diffusion process is then probed through transient photoluminescence and absorption measurements and fit to a model for one-dimensional hopping. Because excimer formation impedes exciton hopping, increasing the interchromophore spacing allows for improved diffusivity, which we control through porphyrin doping levels. We show that diffusion lengths of over 60 nm are possible at low porphyrin doping, representing an order of magnitude improvement over the highest doping fractions.« less

  1. Tunable broadband near-infrared absorber based on ultrathin phase-change material

    NASA Astrophysics Data System (ADS)

    Hu, Er-Tao; Gu, Tong; Guo, Shuai; Zang, Kai-Yan; Tu, Hua-Tian; Yu, Ke-Han; Wei, Wei; Zheng, Yu-Xiang; Wang, Song-You; Zhang, Rong-Jun; Lee, Young-Pak; Chen, Liang-Yao

    2017-11-01

    In this work, a tunable broadband near-infrared light absorber was designed and fabricated with a simple and lithography free approach by introducing an ultrathin phase-change material Ge2Sb2Te5 (GST) layer into the metal-dielectric multilayered film structure with the structure parameters as that: SiO2 (72.7 nm)/Ge2Sb2Te5 (6.0 nm)/SiO2 (70.2 nm)/Cu (>100.0 nm). The film structure exhibits a modulation depth of ∼72.6% and an extinction ratio of ∼8.8 dB at the wavelength of 1410 nm. The high light absorption (95%) of the proposed film structure at the wavelength of 450 nm in both of the amorphous and crystalline phase of GST, indicates that the intensity of the reflectance in the infrared region can be rapidly tuned by the blue laser pulses. The proposed planar layered film structure with layer thickness as the only controllable parameter and large reflectivity tuning range shows the potential for practical applications in near-infrared light modulation and absorption.

  2. Design of differential optical absorption spectroscopy long-path telescopes based on fiber optics.

    PubMed

    Merten, André; Tschritter, Jens; Platt, Ulrich

    2011-02-10

    We present a new design principle of telescopes for use in the spectral investigation of the atmosphere and the detection of atmospheric trace gases with the long-path differential optical absorption spectroscopy (DOAS) technique. A combination of emitting and receiving fibers in a single bundle replaces the commonly used coaxial-Newton-type combination of receiving and transmitting telescope. This very simplified setup offers a higher light throughput and simpler adjustment and allows smaller instruments, which are easier to handle and more portable. The higher transmittance was verified by ray-tracing calculations, which result in a theoretical factor threefold improvement in signal intensity compared with the old setup. In practice, due to the easier alignment and higher stability, up to factor of 10 higher signal intensities were found. In addition, the use of a fiber optic light source provides a better spectral characterization of the light source, which results in a lower detection limit for trace gases studied with this instrument. This new design will greatly enhance the usability and the range of applications of active DOAS instruments.

  3. Enhancing energy transport in conjugated polymers

    NASA Astrophysics Data System (ADS)

    Holmes, Russell J.

    2018-05-01

    The conversion of light into usable chemical energy by plants is enabled by the precise spatial arrangement of light-absorbing photosynthetic systems and associated molecular complexes (1). In organic solar cells, there is also the need to control intermolecular spacing and molecular orientation, as well as thin-film crystallinity and morphology, so as to enable efficient energy migration and photoconversion (2). In an organic solar cell, light absorption creates excitons, tightly bound electron-hole pairs that must be efficiently dissociated into their component charge carriers in order to create an electrical current. Thus, long-range exciton migration must occur from the point of photogeneration to a dissociating site. On page 897 of this issue, Jin et al. (3) report on a conjugated polymer nanofiber system that yields exciton diffusion lengths greater than 200 nm. In comparison, organic solar cells are typically constructed with materials having exciton diffusion lengths one order of magnitude smaller than this value, which limits device thickness and optical absorption. Their approach exploits a sequential synthesis method that enables measurement of this long exciton diffusion length (see the figure).

  4. Chemometric Approach to the Calibration of Light Emitting Diode Based Optical Gas Sensors Using High-Resolution Transmission Molecular Absorption Data.

    PubMed

    Mahbub, Parvez; Leis, John; Macka, Mirek

    2018-05-15

    Modeling the propagation of light from LED sources is problematic since the emission covers a broad range of wavelengths and thus cannot be considered as monochromatic. Furthermore, the lack of directivity of such sources is also problematic. Both attributes are characteristic of LEDs. Here we propose a HITRAN ( high-resolution transmission molecular absorption database) based chemometric approach that incorporates not-perfect-monochromaticity and spatial directivity of near-infrared (NIR) LED for absorbance calculations in 1-6% methane (CH 4 ) in air, considering CH 4 as a model absorbing gas. We employed the absorbance thus calculated using HITRAN to validate the experimentally measured absorbance of CH 4 . The maximum error between the measured and calculated absorbance values were within 1%. The approach can be generalized as a chemometric calibration technique for measuring gases and gas mixtures that absorb emissions from polychromatic or not-perfect-monochromatic sources, provided the gas concentration, optical path length, as well as blank and attenuated emission spectra of the light source are incorporated into the proposed chemometric approach.

  5. Tailorable Exciton Transport in Doped Peptide-Amphiphile Assemblies.

    PubMed

    Solomon, Lee A; Sykes, Matthew E; Wu, Yimin A; Schaller, Richard D; Wiederrecht, Gary P; Fry, H Christopher

    2017-09-26

    Light-harvesting biomaterials are an attractive target in photovoltaics, photocatalysis, and artificial photosynthesis. Through peptide self-assembly, complex nanostructures can be engineered to study the role of chromophore organization during light absorption and energy transport. To this end, we demonstrate the one-dimensional transport of excitons along naturally occurring, light-harvesting, Zn-protoporphyrin IX chromophores within self-assembled peptide-amphiphile nanofibers. The internal structure of the nanofibers induces packing of the porphyrins into linear chains. We find that this peptide assembly can enable long-range exciton diffusion, yet it also induces the formation of excimers between adjacent molecules, which serve as exciton traps. Electronic coupling between neighboring porphyrin molecules is confirmed by various spectroscopic methods. The exciton diffusion process is then probed through transient photoluminescence and absorption measurements and fit to a model for one-dimensional hopping. Because excimer formation impedes exciton hopping, increasing the interchromophore spacing allows for improved diffusivity, which we control through porphyrin doping levels. We show that diffusion lengths of over 60 nm are possible at low porphyrin doping, representing an order of magnitude improvement over the highest doping fractions.

  6. Quantification and parametrization of non-linearity effects by higher-order sensitivity terms in scattered light differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Puķīte, Jānis; Wagner, Thomas

    2016-05-01

    We address the application of differential optical absorption spectroscopy (DOAS) of scattered light observations in the presence of strong absorbers (in particular ozone), for which the absorption optical depth is a non-linear function of the trace gas concentration. This is the case because Beer-Lambert law generally does not hold for scattered light measurements due to many light paths contributing to the measurement. While in many cases linear approximation can be made, for scenarios with strong absorptions non-linear effects cannot always be neglected. This is especially the case for observation geometries, for which the light contributing to the measurement is crossing the atmosphere under spatially well-separated paths differing strongly in length and location, like in limb geometry. In these cases, often full retrieval algorithms are applied to address the non-linearities, requiring iterative forward modelling of absorption spectra involving time-consuming wavelength-by-wavelength radiative transfer modelling. In this study, we propose to describe the non-linear effects by additional sensitivity parameters that can be used e.g. to build up a lookup table. Together with widely used box air mass factors (effective light paths) describing the linear response to the increase in the trace gas amount, the higher-order sensitivity parameters eliminate the need for repeating the radiative transfer modelling when modifying the absorption scenario even in the presence of a strong absorption background. While the higher-order absorption structures can be described as separate fit parameters in the spectral analysis (so-called DOAS fit), in practice their quantitative evaluation requires good measurement quality (typically better than that available from current measurements). Therefore, we introduce an iterative retrieval algorithm correcting for the higher-order absorption structures not yet considered in the DOAS fit as well as the absorption dependence on temperature and scattering processes.

  7. Influence of light absorption on relativistic self-focusing of Gaussian laser beam in cold quantum plasma

    NASA Astrophysics Data System (ADS)

    Patil, S. D.; Valkunde, A. T.; Vhanmore, B. D.; Urunkar, T. U.; Gavade, K. M.; Takale, M. V.

    2018-05-01

    When inter particle distance is comparable to the de Broglies wavelength of charged particles, quantum effects in plasmas are unavoidable. We have exploited an influence of light absorption on self-focusing of Gaussian laser beam in cold quantum plasma by considering relativistic nonlinearity. Nonlinear differential equation governing beam-width parameter has been established by using parabolic equation approach under paraxial and WKB approximations. The effect of light absorption on variation of beam-width parameter with dimensionless distance of propagation is presented graphically and discussed. It is found that light absorption plays vital role in weakening the relativistic self-focusing of laser beam during propagation in cold quantum plasma and gives reasonably interesting results.

  8. Luminescence and Luminescence Quenching of K2Bi(PO4)(MoO4):Eu3+ Phosphors with Efficiencies Close to Unity.

    PubMed

    Grigorjevaite, Julija; Katelnikovas, Arturas

    2016-11-23

    A very good light emitting diode (LED) phosphor must have strong absorption, high quantum efficiency, high color purity, and high quenching temperature. Our synthesized K 2 Bi(PO 4 )(MoO 4 ):Eu 3+ phosphors possess all of the mentioned properties. The excitation of these phosphors with the near-UV or blue radiation results in a bright red luminescence dominated by the 5 D 0 → 7 F 2 transition at ∼615 nm. Color coordinates are very stable when changing Eu 3+ concentration or temperature in the range of 77-500 K. Furthermore, samples doped with 50% and 75% Eu 3+ showed quantum efficiencies close to 100% which is a huge benefit for practical application. Temperature dependent luminescence measurements showed that phosphor performance increases with increasing Eu 3+ concentration. K 2 Eu(PO 4 )(MoO 4 ) sample at 400 K lost only 20% of the initial intensity at 77 K and would lose half of the intensity only at 578 K. Besides, the ceramic disks with thicknesses of 0.33 and 0.89 mm were prepared from K 2 Eu(PO 4 )(MoO 4 ) powder, and it turned out that they efficiently converted the radiation of 375 nm LED to the red light. The conversion of 400 nm LED radiation to the red light was not complete; thus, the light sources with various tints of purple color were obtained. The combination of ceramic disks with 455 nm LED yielded the light sources with tints of blue color due to the low absorption of ceramic disk in this spectral range. In addition, these phosphors possess a very unique emission spectra; thus, they could also be applied in luminescent security pigments.

  9. Novel Na(+) doped Alq3 hybrid materials for organic light-emitting diode (OLED) devices and flat panel displays.

    PubMed

    Bhagat, S A; Borghate, S V; Kalyani, N Thejo; Dhoble, S J

    2015-05-01

    Pure and Na(+) -doped Alq3 complexes were synthesized by a simple precipitation method at room temperature, maintaining a stoichiometric ratio. These complexes were characterized by X-ray diffraction, Fourier transform infrared (FTIR), UV/Vis absorption and photoluminescence (PL) spectra. The X-ray diffractogram exhibits well-resolved peaks, revealing the crystalline nature of the synthesized complexes, FTIR confirms the molecular structure and the completion of quinoline ring formation in the metal complex. UV/Vis absorption and PL spectra of sodium-doped Alq3 complexes exhibit high emission intensity in comparison with Alq3 phosphor, proving that when doped in Alq3 , Na(+) enhances PL emission intensity. The excitation spectra of the synthesized complexes lie in the range 242-457 nm when weak shoulders are also considered. Because the sharp excitation peak falls in the blue region of visible radiation, the complexes can be employed for blue chip excitation. The emission wavelength of all the synthesized complexes lies in the bluish green/green region ranging between 485 and 531 nm. The intensity of the emission wavelength was found to be elevated when Na(+) is doped into Alq3 . Because both the excitation and emission wavelengths fall in the visible region of electromagnetic radiation, these phosphors can also be employed to improve the power conversion efficiency of photovoltaic cells by using the solar spectral conversion principle. Thus, the synthesized phosphors can be used as bluish green/green light-emitting phosphors for organic light-emitting diodes, flat panel displays, solid-state lighting technology - a step towards the desire to reduce energy consumption and generate pollution free light. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Patterns in tropical seagrass photosynthesis in relation to light, depth and habitat

    NASA Astrophysics Data System (ADS)

    Campbell, Stuart J.; McKenzie, Len J.; Kerville, Simon P.; Bité, Juanita S.

    2007-07-01

    Seagrass meadows across north-eastern Australia, survive a range of environmental conditions in coastal bays, reefs, estuarine and deepwater habitats through adaptation of a range of structural, morphological and physiological features. The aim of this study was to investigate the influence of spatial features (habitat type, site and depth) and photon flux on the photosynthetic performance of 11 tropical seagrass species. Pulse amplitude modulated (PAM) fluorometry was used to generate rapid light curves from which measures of maximal electron transport rate (ETR max), photosynthetic efficiency ( α), saturating irradiance ( Ek) and effective quantum yield (Δ F/ Fm') were derived. The amount of light absorbed by leaves (absorption factor) was also determined for each population. In intertidal habitats many seagrass species exhibited typical sun-type responses with a close coupling of both ETR max and Ek with photon flux. Photosynthetic performance ranged from minima in Thalassodendron ciliatum to maxima in Syringodium isoetifolium. The absence of a coupling between photosynthetic performance and photon flux in subtidal populations was most likely due to highly variable light climates and possible light attenuation, and hence the photo-biology of estuarine and deepwater seagrasses exhibited photosynthetic responses indicative of light limitation. In contrast seagrass species from shallow reef and coastal habitats for the most part exhibited light saturation characteristics. Of all the variables examined ETR max, Ek and Δ F/ Fm' were most responsive to changing light climates and provide reliable physiological indicators of real-time photosynthetic performance of tropical seagrasses under different light conditions.

  11. Efficient generation of 1.9  W yellow light by cascaded frequency doubling of a distributed Bragg reflector tapered diode.

    PubMed

    Hansen, A K; Christensen, M; Noordegraaf, D; Heist, P; Papastathopoulos, E; Loyo-Maldonado, V; Jensen, O B; Skovgaard, P M W

    2016-11-10

    Watt-level yellow emitting lasers are interesting for medical applications, due to their high hemoglobin absorption, and for efficient detection of certain fluorophores. In this paper, we demonstrate a compact and robust diode-based laser system in the yellow spectral range. The system generates 1.9 W of single-frequency light at 562.4 nm by cascaded single-pass frequency doubling of the 1124.8 nm emission from a distributed Bragg reflector (DBR) tapered laser diode. The absence of a free-space cavity makes the system stable over a base-plate temperature range of 30 K. At the same time, the use of a laser diode enables the modulation of the pump wavelength by controlling the drive current. This is utilized to achieve a power modulation depth above 90% for the second harmonic light, with a rise time below 40  μs.

  12. Anomalous group velocity at the high energy range of real 3D photonic nanostructures

    NASA Astrophysics Data System (ADS)

    Botey, Muriel; Martorell, Jordi; Lozano, Gabriel; Míguez, Hernán; Dorado, Luis A.; Depine, Ricardo A.

    2010-05-01

    We perform a theoretical study on the group velocity for finite thin artificial opal slabs made of a reduced number of layers in the spectral range where the light wavelength is on the order of the lattice parameter. The vector KKR method including extinction allows us to evaluate the finite-size effects on light propagation in the ΓL and ΓX directions of fcc close-packed opal films made of dielectric spheres. The group is index determined from the phase delay introduced by the structure to the forwardly transmitted electric field. We show that for certain frequencies, light propagation can either be superluminal -positive or negative- or approach zero depending on the crystal size and absorption. Such anomalous behavior can be attributed to the finite character of the structure and provides confirmation of recently emerged experimental results.

  13. Photothermal Activation of Metal-Organic Frameworks Using a UV-Vis Light Source.

    PubMed

    Espín, Jordi; Garzón-Tovar, Luis; Carné-Sánchez, Arnau; Imaz, Inhar; Maspoch, Daniel

    2018-03-21

    Metal-organic frameworks (MOFs) usually require meticulous removal of the solvent molecules to unlock their potential porosity. Herein, we report a novel one-step method for activating MOFs based on the photothermal effect induced by directly irradiating them with a UV-vis lamp. The localized light-to-heat conversion produced in the MOF crystals upon irradiation enables a very fast solvent removal, thereby significantly reducing the activation time to as low as 30 min and suppressing the need for time-consuming solvent-exchange procedures and vacuum conditions. This approach is successful for a broad range of MOFs, including HKUST-1, UiO-66-NH 2 , ZIF-67, CPO-27-M (M = Zn, Ni, and Mg), Fe-MIL-101-NH 2 , and IRMOF-3, all of which exhibit absorption bands in the light emission range. In addition, we anticipate that this photothermal activation can also be used to activate covalent organic frameworks (COFs).

  14. Near-infrared optical properties of ex-vivo human skin and subcutaneous tissues using reflectance and transmittance measurements

    NASA Astrophysics Data System (ADS)

    Simpson, Rebecca; Laufer, Jan G.; Kohl-Bareis, Matthias; Essenpreis, Matthias; Cope, Mark

    1997-08-01

    The vast majority of 'non-invasive' measurements of human tissues using near infrared spectroscopy rely on passing light through the dermis and subdermis of the skin. Accurate knowledge of the optical properties of these tissues is essential to put into models of light transport and predict the effects of skin perfusion on measurements of deep tissue. Additionally, the skin could be a useful accessible organ for non-invasively determining the constituents of blood flowing through it. Samples of abdominal human skin (including subdermal tissue) were obtained from either post mortem examinations or plastic surgery. The samples were separated into a dermal layer (epidermis and dermis, 1.5 to 2 mm tick), and a sub-cutaneous layer comprised largely of fat. They were enclosed between two glass coverslips and placed in an integrating sphere to measure their reflectance and transmittance over a range of wavelengths from 600 to 1000 nm. The reflectance and transmittance values were converted into average absorption and reduced scattering coefficients by comparison with a Monte Carlo model of light transport. Improvements to the Monte Carlo model and measurement technique removed some previous uncertainties. The results show excellent separation of reduced scattering and absorption coefficient, with clear absorption peaks of hemoglobin, water and lipid. The effect of tissue storage upon measured optical properties was investigated.

  15. Strong transmittance above the light line in mid-infrared two-dimensional photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraeh, Christian, E-mail: christian.kraeh@tum.de; Walter Schottky Institut, Technische Universität München, Am Coulombwall 4, D-85748 Garching; Martinez-Hurtado, J. L.

    2015-06-14

    The mid-infrared region of the electromagnetic spectrum between 3 and 8 μm hosts absorption lines of gases relevant for chemical and biological sensing. 2D photonic crystal structures capable of guiding light in this region of the spectrum have been widely studied, and their implementation into miniaturized sensors has been proposed. However, light guiding in conventional 2D photonic crystals is usually restricted to a frequency range below the light line, which is the dispersion relation of light in the media surrounding the structures. These structures rely on total internal reflection for confinement of the light in z-direction normal to the lattice plane.more » In this work, 2D mid-infrared photonic crystals consisting of microtube arrays that mitigate these limitations have been developed. Due to their high aspect ratios of ∼1:30, they are perceived as semi-infinite in the z-direction. Light transmission experiments in the 5–8 μm range reveal attenuations as low as 0.27 dB/100 μm, surpassing the limitations for light guiding above the light line in conventional 2D photonic crystals. Fair agreement is obtained between these experiments, 2D band structure and transmission simulations.« less

  16. Fiber optic systems for colorimetry and scattered colorimetry

    NASA Astrophysics Data System (ADS)

    Mignani, Anna G.; Mencaglia, Andrea A.; Ciaccheri, Leonardo

    2005-09-01

    An innovative series of optical fiber sensors based on spectroscopic interrogation is presented. The sensors are custom-designed for a wide range of applications, including gasoline colorimetry, chromium monitoring of sewage, museum lighting control, for use with a platform for interrogating an array of absorption-based chemical sensors, as well as for color and turbidity measurements. Two types of custom-design instrumentation have been developed, both making use of LED light sources and a low-cost optical fiber spectrometer to perform broadband spectral measurements in the visible spectral range. The first was designed especially to address color-based sensors, while the second assessed the combined color and turbidity of edible liquids such as olive oil. Both are potentially exploitable in other industrial and environmental applications.

  17. Light response of sunflower and canola as affected by plant density, plant genotype and N fertilization.

    PubMed

    Soleymani, A

    2017-08-01

    Crop response to light is an important parameter determining crop growth. Three field (split plots) experiments were conducted to investigate the effects of plant density, plant genotype and N fertilization on the light absorption and light extinction of sunflower (Helianthus annuus L.) and canola (Brassica napus L.). A detailed set of plant growth, light absorption and crop yield and oil related parameters were determined. Light was measured at noon during the sunny days with clear sky. In experiment I, although the plant density (PD) of 14 resulted in the highest rate of sunflower light absorption (31.37%) and light extinction (0.756), the highest rate of grain yield and grain oil yield was resulted at PD12 at 3639 and 1457.9kg/ha, respectively; as well as by genotype SUP.A. In experiment II (canola), PD80 resulted in the highest rate of light absorption (13.13%), light extinction (0.63), grain yield (2189.4kg/ha) and grain oil yield (556.54kg/ha). This was also the case for Genotype H. In experiment III (canola), although N150 resulted in the highest rate of light absorption (10.74%) and light extinction (0.48), the highest rate of grain yield (3413.6kg/ha) and grain oil yield (891.86kg/ha) was resulted at N100 as well as by Genotype H401. Results indicate how light properties, crop growth and yield of sunflower and canola can be affected by plant and environmental parameters, which are also of practical use by farmers. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Multi-wavelength aerosol light absorption measurements in the Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Saturno, Jorge; Chi, Xuguang; Pöhlker, Christopher; Morán, Daniel; Ditas, Florian; Massabò, Dario; Prati, Paolo; Rizzo, Luciana; Artaxo, Paulo; Andreae, Meinrat

    2015-04-01

    The most important light-absorbing aerosol is black carbon (BC), which is emitted by incomplete combustion of fossil fuels and biomass. BC is considered the second anthropogenic contributor to global warming. Beyond BC, other aerosols like some organics, dust, and primary biological aerosol particles are able to absorb radiation. In contrast to BC, the light absorption coefficient of these aerosols is wavelength dependent. Therefore, multi-wavelength measurements become important in environments where BC is not the predominant light-absorbing aerosol like in the Amazon. The Amazon Tall Tower Observatory (ATTO) site is located in the remote Amazon rainforest, one of the most pristine continental sites in the world during the wet season. In the dry season, winds coming from the southern hemisphere are loaded with biomass burning aerosol particles originated by farming-related deforestation. BC and aerosol number concentration data from the last two years indicate this is the most polluted period. Two different techniques have been implemented to measure the light absorption at different wavelengths; one of them is the 7-wavelengths Aethalometer, model AE30, an instrument that measures the light attenuation on a filter substrate and requires multiple scattering and filter-loading corrections to retrieve the light absorption coefficient. The other method is an offline technique, the Multi-Wavelength Absorbance Analysis (MWAA), which is able to measure reflectance and absorbance by aerosols collected on a filter and, by means of a radiative model, can retrieve the light absorption coefficient. Filters collected during May-September 2014, comprehending wet-to-dry transition and most of the dry season, were analyzed. The results indicate that the Absorption Ångström Exponent (AAE), a parameter that is directly proportional to the wavelength dependence of the aerosol light absorption, is close to 1.0 during the transition period and slightly decreases in the beginning of the dry season. However, during strong biomass burning episodes in the dry season, the AAE increases significantly, and reaches values higher than 1.3, indicating the presence of wavelength dependent light-absorbing aerosols like organics (brown carbon). The present study is a contribution to the understanding of the optical properties of light-absorbing aerosol particles under pristine and biomass-burning conditions.

  19. Fjord light regime: Bio-optical variability, absorption budget, and hyperspectral light availability in Sognefjord and Trondheimsfjord, Norway

    NASA Astrophysics Data System (ADS)

    Mascarenhas, V. J.; Voß, D.; Wollschlaeger, J.; Zielinski, O.

    2017-05-01

    Optically active constituents (OACs) in addition to water molecules attenuate light via processes of absorption and scattering and thereby determine underwater light availability. An analysis of their optical properties helps in determining the contribution of each of these to light attenuation. With an aim to study the bio-optical variability, absorption budget and 1% spectral light availability, hydrographical (temperature and salinity), and hyperspectral optical (downwelling irradiance and upwelling radiance) profiles were measured along fjord transects in Sognefjord and Trondheimsfjord, Norway. Optical water quality observations were also performed using Secchi disc and Forel-Ule scale. In concurrence, water samples were collected and analyzed via visible spectrophotometry, fluorometry, and gravimetry to quantify and derive inherent optical properties of the water constituents. An absorption model (R2 = 0.91, n = 36, p < 0.05) as a function of OACs is developed for Sognefjord using multiple regression analysis. Influenced by glacial meltwater, Sognefjord had higher concentration of inorganic suspended matter, while Trondheimsfjord had higher concentrations of CDOM. Increase in turbidity caused increased attenuation of light upstream, as a result of which the euphotic depth decreased from outer to inner fjord sections. Triangular representation of absorption budget revealed dominant absorption by CDOM at 443-555 nm, while that by phytoplankton at 665 nm. Sognefjord however exhibited much greater optical complexity. A significantly strong correlation between salinity and acdom440 is used to develop an algorithm to estimate acdom440 using salinity in Trondheimsfjord.

  20. Slow light enhanced gas sensing in photonic crystals

    NASA Astrophysics Data System (ADS)

    Kraeh, Christian; Martinez-Hurtado, J. L.; Popescu, Alexandru; Hedler, Harry; Finley, Jonathan J.

    2018-02-01

    Infrared spectroscopy allows for highly selective and highly sensitive detection of gas species and concentrations. Conventional gas spectrometers are generally large and unsuitable for on-chip applications. Long absorption path lengths are usually required and impose a challenge for miniaturization. In this work, a gas spectrometer is developed consisting of a microtube photonic crystal structure. This structure of millimetric form factors minimizes the required absorption path length due to slow light effects. The microtube photonic crystal allows for strong transmission in the mid-infrared and, due to its large void space fraction, a strong interaction between light and gas molecules. As a result, enhanced absorption of light increases the gas sensitivity of the device. Slow light enhanced gas absorption by a factor of 5.8 in is experimentally demonstrated at 5400 nm. We anticipate small form factor gas sensors on silicon to be a starting point for on-chip gas sensing architectures.

  1. Designing metal hemispheres on silicon ultrathin film solar cells for plasmonic light trapping.

    PubMed

    Gao, Tongchuan; Stevens, Erica; Lee, Jung-kun; Leu, Paul W

    2014-08-15

    We systematically investigate the design of two-dimensional silver (Ag) hemisphere arrays on crystalline silicon (c-Si) ultrathin film solar cells for plasmonic light trapping. The absorption in ultrathin films is governed by the excitation of Fabry-Perot TEMm modes. We demonstrate that metal hemispheres can enhance absorption in the films by (1) coupling light to c-Si film waveguide modes and (2) exciting localized surface plasmon resonances (LSPRs). We show that hemisphere arrays allow light to couple to fundamental TEm and TMm waveguide modes in c-Si film as well as higher-order versions of these modes. The near-field light concentration of LSPRs also may increase absorption in the c-Si film, though these resonances are associated with significant parasitic absorption in the metal. We illustrate how Ag plasmonic hemispheres may be utilized for light trapping with 22% enhancement in short-circuit current density compared with that of a bare 100 nm thick c-Si ultrathin film solar cell.

  2. Light output measurements and computational models of microcolumnar CsI scintillators for x-ray imaging.

    PubMed

    Nillius, Peter; Klamra, Wlodek; Sibczynski, Pawel; Sharma, Diksha; Danielsson, Mats; Badano, Aldo

    2015-02-01

    The authors report on measurements of light output and spatial resolution of microcolumnar CsI:Tl scintillator detectors for x-ray imaging. In addition, the authors discuss the results of simulations aimed at analyzing the results of synchrotron and sealed-source exposures with respect to the contributions of light transport to the total light output. The authors measured light output from a 490-μm CsI:Tl scintillator screen using two setups. First, the authors used a photomultiplier tube (PMT) to measure the response of the scintillator to sealed-source exposures. Second, the authors performed imaging experiments with a 27-keV monoenergetic synchrotron beam and a slit to calculate the total signal generated in terms of optical photons per keV. The results of both methods are compared to simulations obtained with hybridmantis, a coupled x-ray, electron, and optical photon Monte Carlo transport package. The authors report line response (LR) and light output for a range of linear absorption coefficients and describe a model that fits at the same time the light output and the blur measurements. Comparing the experimental results with the simulations, the authors obtained an estimate of the absorption coefficient for the model that provides good agreement with the experimentally measured LR. Finally, the authors report light output simulation results and their dependence on scintillator thickness and reflectivity of the backing surface. The slit images from the synchrotron were analyzed to obtain a total light output of 48 keV -1 while measurements using the fast PMT instrument setup and sealed-sources reported a light output of 28 keV -1 . The authors attribute the difference in light output estimates between the two methods to the difference in time constants between the camera and PMT measurements. Simulation structures were designed to match the light output measured with the camera while providing good agreement with the measured LR resulting in a bulk absorption coefficient of 5 × 10 -5 μm -1 . The combination of experimental measurements for microcolumnar CsI:Tl scintillators using sealed-sources and synchrotron exposures with results obtained via simulation suggests that the time course of the emission might play a role in experimental estimates. The procedure yielded an experimentally derived linear absorption coefficient for microcolumnar Cs:Tl of 5 × 10 -5 μm -1 . To the author's knowledge, this is the first time this parameter has been validated against experimental observations. The measurements also offer insight into the relative role of optical transport on the effective optical yield of the scintillator with microcolumnar structure. © 2015 American Association of Physicists in Medicine.

  3. Light output measurements and computational models of microcolumnar CsI scintillators for x-ray imaging.

    PubMed

    Nillius, Peter; Klamra, Wlodek; Sibczynski, Pawel; Sharma, Diksha; Danielsson, Mats; Badano, Aldo

    2015-02-01

    The authors report on measurements of light output and spatial resolution of microcolumnar CsI:Tl scintillator detectors for x-ray imaging. In addition, the authors discuss the results of simulations aimed at analyzing the results of synchrotron and sealed-source exposures with respect to the contributions of light transport to the total light output. The authors measured light output from a 490-μm CsI:Tl scintillator screen using two setups. First, the authors used a photomultiplier tube (PMT) to measure the response of the scintillator to sealed-source exposures. Second, the authors performed imaging experiments with a 27-keV monoenergetic synchrotron beam and a slit to calculate the total signal generated in terms of optical photons per keV. The results of both methods are compared to simulations obtained with hybridmantis, a coupled x-ray, electron, and optical photon Monte Carlo transport package. The authors report line response (LR) and light output for a range of linear absorption coefficients and describe a model that fits at the same time the light output and the blur measurements. Comparing the experimental results with the simulations, the authors obtained an estimate of the absorption coefficient for the model that provides good agreement with the experimentally measured LR. Finally, the authors report light output simulation results and their dependence on scintillator thickness and reflectivity of the backing surface. The slit images from the synchrotron were analyzed to obtain a total light output of 48 keV−1 while measurements using the fast PMT instrument setup and sealed-sources reported a light output of 28 keV−1. The authors attribute the difference in light output estimates between the two methods to the difference in time constants between the camera and PMT measurements. Simulation structures were designed to match the light output measured with the camera while providing good agreement with the measured LR resulting in a bulk absorption coefficient of 5 × 10−5μm−1. The combination of experimental measurements for microcolumnar CsI:Tl scintillators using sealed-sources and synchrotron exposures with results obtained via simulation suggests that the time course of the emission might play a role in experimental estimates. The procedure yielded an experimentally derived linear absorption coefficient for microcolumnar Cs:Tl of 5 × 10−5μm−1. To the author’s knowledge, this is the first time this parameter has been validated against experimental observations. The measurements also offer insight into the relative role of optical transport on the effective optical yield of the scintillator with microcolumnar structure.

  4. A compact multi-wavelength optoacoustic system based on high-power diode lasers for characterization of double-walled carbon nanotubes (DWCNTs) for biomedical applications

    NASA Astrophysics Data System (ADS)

    Leggio, Luca; de Varona, Omar; Escudero, Pedro; Carpintero del Barrio, Guillermo; Osiński, Marek; Lamela Rivera, Horacio

    2015-06-01

    During the last decade, Optoacoustic Imaging (OAI), or Optoacoustic Tomography (OAT), has evolved as a novel imaging technique based on the generation of ultrasound waves with laser light. OAI may become a valid alternative to techniques currently used for the detection of diseases at their early stages. It has been shown that OAI combines the high contrast of optical imaging techniques with high spatial resolution of ultrasound systems in deep tissues. In this way, the use of nontoxic biodegradable contrast agents that mark the presence of diseases in near-infrared (NIR) wavelengths range (0.75-1.4 um) has been considered. The presence of carcinomas and harmful microorganisms can be revealed by means of the fluorescence effect exhibited by biopolymer nanoparticles. A different approach is to use carbon nanotubes (CNTs) which are a contrast agent in NIR range due to their absorption characteristics in the range between 800 to 1200 nm. We report a multi-wavelength (870 and 905 nm) laser diode-based optoacoustic (OA) system generating ultrasound signals from a double-walled carbon nanotubes (DWCNTs) solution arranged inside a tissue-like phantom, mimicking the scattering of a biological soft tissue. Optoacoustic signals obtained with DWCNTs inclusions within a tissue-like phantom are compared with the case of ink-filled inclusions, with the aim to assess their absorption. These measurements are done at both 870 and 905 nm, by using high power laser diodes as light sources. The results show that the absorption is relatively high when the inclusion is filled with ink and appreciable with DWCNTs.

  5. Evaluation of a HgCdTe e-APD based detector for 2  μm CO2 DIAL application.

    PubMed

    Dumas, Arnaud; Rothman, Johan; Gibert, Fabien; Édouart, Dimitri; Lasfargues, Gilles; Cénac, Claire; Mounier, Florian Le; Pellegrino, Jessica; Zanatta, Jean-Paul; Bardoux, Alain; Tinto, Francesc; Flamant, Pierre

    2017-09-20

    Benefiting from close to ideal amplification properties (high gain, low dark current, and low excess noise factor), HgCdTe electron initiated avalanche photodiode (e-APD) technology exhibits state of the art sensitivity, thus being especially relevant for applications relying on low light level detection, such as LIDAR (Light Detection And Ranging). In addition, the tunable gap of the Hg 1-x Cd x Te alloy enables coverage of the short wavelength infrared (SWIR) and especially the 2 μm spectral range. For these two reasons, a HgCdTe e-APD based detector is a promising candidate for future differential absorption LIDAR missions targeting greenhouse gas absorption bands in SWIR. In this study, we report on the design and evaluation of such a HgCdTe e-APD based detector. The first part focuses on detector architecture and performance. Key figures of merit are: 2.8 μm cutoff wavelength, 200 μm diameter almost circular sensitive area, 185 K operating temperature (thermo-electric cooling), 22 APD gain (at 12 V reverse bias), 360  kΩ transimpedance gain, and 60  fWHz -0.5 noise equivalent power (at 12 V reverse bias). The second part presents an analysis of atmospheric LIDAR signals obtained by mounting the HgCdTe e-APD based detector on the 2 μm differential absorption LIDAR developed at the Laboratoire de Météorologie Dynamique and dedicated to CO 2 monitoring. Discussion emphasizes random and systematic errors in LIDAR measurements regarding breadboard detector characterization. In particular, we investigate the influence of parasitic tails in detector impulse response on short range DIAL measurements.

  6. A Single Optical Fiber Telephone System

    DTIC Science & Technology

    1984-09-06

    the photophones developed by A. 0, sel1 and his oolleagues. The recent advent of light 30 generators in the form of light eAitthg diodee (ZED@) and... photophone . Such a photophone is shown in Figure 7. I1t comprises a small chamber Ill which is filed with an optically absorptive material 113, which may be...carbonized cotton fiber. A 1 photo-acoustic effect takes place when light interacts with absorptive material of this types The absorption raises the 30

  7. Application of a colorimeter for turbidity measurement

    NASA Astrophysics Data System (ADS)

    Wen, Yizhang; Hu, Yingtian; Wang, Xiaoping

    2016-02-01

    This paper describes a new turbidity transducer based on color measurement. The absorbance of solutions reflects the absorption and scattering of suspended particle for incident light which could determine the turbidity of solutions. The experimental results indicate that there are good linear relationships between chromaticity and turbidity. The new way is suitable for continuous monitoring of water turbidity in the wide range.

  8. Light absorption properties of brown carbon over the southeastern Tibetan Plateau.

    PubMed

    Zhu, Chong-Shu; Cao, Jun-Ji; Huang, Ru-Jin; Shen, Zhen-Xing; Wang, Qi-Yuan; Zhang, Ning-Ning

    2018-06-01

    We present a study of the light-absorbing properties of water-soluble brown carbon (WS-BrC) and methanol-soluble brown carbon (MeS-BrC) at a remote site (Lulang, 3326m above sea level) in the southeastern Tibetan Plateau during the period 2015-2016. The light absorption coefficients at 365nm (b abs365 ) of WS-BrC and MeS-BrC were the highest during winter and the lowest during monsoon season. MeS-BrC absorbs about 1.5 times higher at 365nm compared to WS-BrC. The absorption at 550nm appears lower compared to that of 365nm for WS-BrC and MeS-BrC, respectively. Higher average value of the absorption Ångström exponent (AAE, 365-550nm) was obtained for MeS-BrC (8.2) than that for WS-BrC (6.9). The values of the mass absorption cross section at 365nm (MAC 365 ) indicated that BrC in winter absorbs UV-visible light more efficiently than in monsoon. The results confirm the importance of BrC in contributing to light-absorbing aerosols in this region. The understanding of the light absorption properties of BrC is of great importance, especially in modeling studies for the climate effects and transport of BrC in the Tibetan Plateau. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Ferroelectrics under the Synchrotron Light: A Review.

    PubMed

    Fuentes-Cobas, Luis E; Montero-Cabrera, María E; Pardo, Lorena; Fuentes-Montero, Luis

    2015-12-30

    Currently, an intensive search for high-performance lead-free ferroelectric materials is taking place. ABO₃ perovskites (A = Ba, Bi, Ca, K and Na; B = Fe, Nb, Ti, and Zr) appear as promising candidates. Understanding the structure-function relationship is mandatory, and, in this field, the roles of long- and short-range crystal orders and interactions are decisive. In this review, recent advances in the global and local characterization of ferroelectric materials by synchrotron light diffraction, scattering and absorption are analyzed. Single- and poly-crystal synchrotron diffraction studies allow high-resolution investigations regarding the long-range average position of ions and subtle global symmetry break-downs. Ferroelectric materials, under the action of electric fields, undergo crystal symmetry, crystallite/domain orientation distribution and strain condition transformations. Methodological aspects of monitoring these processes are discussed. Two-dimensional diffraction clarify larger scale ordering: polycrystal texture is measured from the intensities distribution along the Debye rings. Local order is investigated by diffuse scattering (DS) and X-ray absorption fine structure (XAFS) experiments. DS provides information about thermal, chemical and displacive low-dimensional disorders. XAFS investigation of ferroelectrics reveals local B-cation off-centering and oxidation state. This technique has the advantage of being element-selective. Representative reports of the mentioned studies are described.

  10. Detection of sub-MeV dark matter with three-dimensional Dirac materials

    NASA Astrophysics Data System (ADS)

    Hochberg, Yonit; Kahn, Yonatan; Lisanti, Mariangela; Zurek, Kathryn M.; Grushin, Adolfo G.; Ilan, Roni; Griffin, Sinéad M.; Liu, Zhen-Fei; Weber, Sophie F.; Neaton, Jeffrey B.

    2018-01-01

    We propose the use of three-dimensional Dirac materials as targets for direct detection of sub-MeV dark matter. Dirac materials are characterized by a linear dispersion for low-energy electronic excitations, with a small band gap of O (meV ) if lattice symmetries are broken. Dark matter at the keV scale carrying kinetic energy as small as a few meV can scatter and excite an electron across the gap. Alternatively, bosonic dark matter as light as a few meV can be absorbed by the electrons in the target. We develop the formalism for dark matter scattering and absorption in Dirac materials and calculate the experimental reach of these target materials. We find that Dirac materials can play a crucial role in detecting dark matter in the keV to MeV mass range that scatters with electrons via a kinetically mixed dark photon, as the dark photon does not develop an in-medium effective mass. The same target materials provide excellent sensitivity to absorption of light bosonic dark matter in the meV to hundreds of meV mass range, superior to all other existing proposals when the dark matter is a kinetically mixed dark photon.

  11. In situ construction of g-C3N4/TiO2 heterojunction films with enhanced photocatalytic activity over magnetic-driven rotating frame

    NASA Astrophysics Data System (ADS)

    Pan, Chao; Jia, Jia; Hu, Xiaoyun; Fan, Jun; Liu, Enzhou

    2018-02-01

    Corn-shaped TiO2 nanofilms were fabricated by a glycerol-assisted hydrothermal method, and then g-C3N4 was deposited on the surface of TiO2 films using melamine as precursor under air atmosphere by an in site microwave-heating technique. The investigations indicate that microwave-heating process is a facile strategy to obtain g-C3N4 by thermal polymerization of melamine, which can achieve in situ constructing of g-C3N4/TiO2 heterojunction films with high stability. The as-prepared TiO2 films with crack and holes have visible light scattering capability, and the scattering light overlaps with the intrinsic absorption of g-C3N4, leading to an absorption plateau in the range of 400-550 nm. Besides, a magnetic-driven rotating frame was developed to enhance the mass transfer processes during the photocatalytic water splitting. The result shows that g-C3N4/TiO2 films exhibit excellent activities under simulated-sunlight irradiation, in addition to the enhanced mass transfer, the overlapped visible light absorption, stable contact and effective charge transfer between g-C3N4 and TiO2 can facilitate the hydrogen production and light utilization efficiency as well. The hydrogen production rate can reach 13.8 mmol h-1 m-2 over g-C3N4/TiO2 films prepared using 0.5 g of melamine and 16.0 cm2 of TiO2.

  12. Nanostructured N-doped TiO2 marigold flowers for an efficient solar hydrogen production from H2S

    NASA Astrophysics Data System (ADS)

    Chaudhari, Nilima S.; Warule, Sambhaji S.; Dhanmane, Sushil A.; Kulkarni, Milind V.; Valant, Matjaz; Kale, Bharat B.

    2013-09-01

    Nitrogen-doped TiO2 nanostructures in the form of marigold flowers have been synthesized for the first time using a facile solvothermal method. The structural analysis has shown that such an N-doped TiO2 system crystallizes in the anatase structure. The optical absorption spectra have clearly shown the shift in the absorption edge towards the visible-light range, which indicates successful nitrogen doping. The nitrogen doping has been further confirmed by photoluminescence and photoemission spectroscopy. Microscopy studies have shown the thin nanosheets (petals) of N-TiO2 with a thickness of ~2-3 nm, assembled in the form of the marigold flower with a high surface area (224 m2 g-1). The N-TiO2 nanostructure with marigold flowers is an efficient photocatalyst for the decomposition of H2S and production of hydrogen under solar light. The maximum hydrogen evolution obtained is higher than other known N-TiO2 systems. It is noteworthy that photohydrogen production using the unique marigold flowers of N-TiO2 from abundant H2S under solar light is hitherto unattempted. The proposed synthesis method can also be utilized to design other hierarchical nanostructured N-doped metal oxides.Nitrogen-doped TiO2 nanostructures in the form of marigold flowers have been synthesized for the first time using a facile solvothermal method. The structural analysis has shown that such an N-doped TiO2 system crystallizes in the anatase structure. The optical absorption spectra have clearly shown the shift in the absorption edge towards the visible-light range, which indicates successful nitrogen doping. The nitrogen doping has been further confirmed by photoluminescence and photoemission spectroscopy. Microscopy studies have shown the thin nanosheets (petals) of N-TiO2 with a thickness of ~2-3 nm, assembled in the form of the marigold flower with a high surface area (224 m2 g-1). The N-TiO2 nanostructure with marigold flowers is an efficient photocatalyst for the decomposition of H2S and production of hydrogen under solar light. The maximum hydrogen evolution obtained is higher than other known N-TiO2 systems. It is noteworthy that photohydrogen production using the unique marigold flowers of N-TiO2 from abundant H2S under solar light is hitherto unattempted. The proposed synthesis method can also be utilized to design other hierarchical nanostructured N-doped metal oxides. Electronic supplementary information (ESI) available: GC-MS graph of the filtrate obtained in solvothermal reaction after 16 h and FESEM images without guanidine carbonate for 16 h. See DOI: 10.1039/c3nr02975a

  13. Quick-EXAFS setup at the SuperXAS beamline for in situ X-ray absorption spectroscopy with 10 ms time resolution

    PubMed Central

    Müller, Oliver; Nachtegaal, Maarten; Just, Justus; Lützenkirchen-Hecht, Dirk; Frahm, Ronald

    2016-01-01

    The quick-EXAFS (QEXAFS) method adds time resolution to X-ray absorption spectroscopy (XAS) and allows dynamic structural changes to be followed. A completely new QEXAFS setup consisting of monochromator, detectors and data acquisition system is presented, as installed at the SuperXAS bending-magnet beamline at the Swiss Light Source (Paul Scherrer Institute, Switzerland). The monochromator uses Si(111) and Si(311) channel-cut crystals mounted on one crystal stage, and remote exchange allows an energy range from 4.0 keV to 32 keV to be covered. The spectral scan range can be electronically adjusted up to several keV to cover multiple absorption edges in one scan. The determination of the Bragg angle close to the position of the crystals allows high-accuracy measurements. Absorption spectra can be acquired with fast gridded ionization chambers at oscillation frequencies of up to 50 Hz resulting in a time resolution of 10 ms, using both scan directions of each oscillation period. The carefully developed low-noise detector system yields high-quality absorption data. The unique setup allows both state-of-the-art QEXAFS and stable step-scan operation without the need to exchange whole monochromators. The long-term stability of the Bragg angle was investigated and absorption spectra of reference materials as well as of a fast chemical reaction demonstrate the overall capabilities of the new setup. PMID:26698072

  14. Quick-EXAFS setup at the SuperXAS beamline for in situ X-ray absorption spectroscopy with 10 ms time resolution.

    PubMed

    Müller, Oliver; Nachtegaal, Maarten; Just, Justus; Lützenkirchen-Hecht, Dirk; Frahm, Ronald

    2016-01-01

    The quick-EXAFS (QEXAFS) method adds time resolution to X-ray absorption spectroscopy (XAS) and allows dynamic structural changes to be followed. A completely new QEXAFS setup consisting of monochromator, detectors and data acquisition system is presented, as installed at the SuperXAS bending-magnet beamline at the Swiss Light Source (Paul Scherrer Institute, Switzerland). The monochromator uses Si(111) and Si(311) channel-cut crystals mounted on one crystal stage, and remote exchange allows an energy range from 4.0 keV to 32 keV to be covered. The spectral scan range can be electronically adjusted up to several keV to cover multiple absorption edges in one scan. The determination of the Bragg angle close to the position of the crystals allows high-accuracy measurements. Absorption spectra can be acquired with fast gridded ionization chambers at oscillation frequencies of up to 50 Hz resulting in a time resolution of 10 ms, using both scan directions of each oscillation period. The carefully developed low-noise detector system yields high-quality absorption data. The unique setup allows both state-of-the-art QEXAFS and stable step-scan operation without the need to exchange whole monochromators. The long-term stability of the Bragg angle was investigated and absorption spectra of reference materials as well as of a fast chemical reaction demonstrate the overall capabilities of the new setup.

  15. Self-organized nitrogen and fluorine co-doped titanium oxide nanotube arrays with enhanced visible light photocatalytic performance.

    PubMed

    Li, Qi; Shang, Jian Ku

    2009-12-01

    Self-organized nitrogen and fluorine co-doped titanium oxide (TiONF) nanotube arrays were created by anodizing titanium foil in a fluoride and ammoniate-based electrolyte, followed by calcination of the amorphous nanotube arrays under a nitrogen protective atmosphere for crystallization. TiONF nanotube arrays were found to have enhanced visible light absorption capability and photodegradation efficiency on methylene blue under visible light illumination over the TiO(2) nanotube arrays. The enhancement was dependent on both the nanotube structural architecture and the nitrogen and fluorine co-doping effect. TiONF nanotube arrays promise a wide range of technical applications, especially for environmental applications and solar cell devices.

  16. Long term measurements of light absorbing particles on tropical glaciers

    NASA Astrophysics Data System (ADS)

    Schmitt, C. G.; Sanchez Rodriguez, W.; Arnott, W. P.; All, J.; Schwarz, J. P.

    2016-12-01

    We present results of six years of measurements of light absorbing particles (LAP) on glaciers of the Cordillera Blanca mountain range in Peru. Tropical glaciers are important sources of water for human consumption, agriculture, and hydroelectric power in the region. Regular measurements in the dry season show that light absorbing particle concentrations are generally low (equivalent to the absorption equivalent of 5-30 nanograms of black carbon per gram of snow) during non-El Nino years while values increase substantially during the recent El Nino. Two years of monthly measurements at two glaciers show that fresh snow LAP concentration are very low while LAP levels increase dramatically during snow-less periods.

  17. Materials for Digital Optical Design:. a Survey Study

    NASA Astrophysics Data System (ADS)

    Ismail, Ayman Abdel Khader; Ismail, Imane Aly Saroit; Ahmed, S. H.

    2010-04-01

    In the last few years digital optical design had major attention in research fields. Many researches were published in the fields of optical materials, instruments, circuit design and devices. This is considered to be the most multidisciplinary field and requires for its success collaborative efforts of many disciplines, ranging from device and optical engineers to computer architects, chemists, material scientists, and optical physicists. In this study we will introduce a survey of the latest papers in the field of optical materials and its properties for light; this paper is organized in three major sections, optical glasses, compound materials and nonlinear absorption (multi photon absorption) and up-conversion.

  18. Monte Carlo simulation of cutaneous absorption and reflectance for clear, matt and dark biological tissue with varicosities: an investigation for dermatological laser

    NASA Astrophysics Data System (ADS)

    Klouch, Nawel; Riane, Houaria; Hamdache, Fatima; Addi, Djamel

    2013-05-01

    We are interested in modeling the interaction between light and biological tissue from the Monte Carlo method which is an approach used to solve modeling problems in different physical domains. Through the Monte Carlo approach we are going to try to interpret the spectral response absorption, reflectance, transmittance of normal human tissue under its three dominant tints in the visible range (350-700) nm. Then we will focus on the spectral response of the human tissue with varicosities in order to determinate the optimal conditions of operating the semiconductor laser for esthetic aim.

  19. Investigation of periodically driven systems by x-ray absorption spectroscopy using asynchronous data collection mode

    NASA Astrophysics Data System (ADS)

    Singh, H.; Donetsky, D.; Liu, J.; Attenkofer, K.; Cheng, B.; Trelewicz, J. R.; Lubomirsky, I.; Stavitski, E.; Frenkel, A. I.

    2018-04-01

    We report the development, testing, and demonstration of a setup for modulation excitation spectroscopy experiments at the Inner Shell Spectroscopy beamline of National Synchrotron Light Source - II. A computer algorithm and dedicated software were developed for asynchronous data processing and analysis. We demonstrate the reconstruction of X-ray absorption spectra for different time points within the modulation pulse using a model system. This setup and the software are intended for a broad range of functional materials which exhibit structural and/or electronic responses to the external stimulation, such as catalysts, energy and battery materials, and electromechanical devices.

  20. Generalizing the flash technique in the front-face configuration to measure the thermal diffusivity of semitransparent solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pech-May, Nelson Wilbur; Department of Applied Physics, CINVESTAV Unidad Mérida, carretera Antigua a Progreso km6, A.P. 73 Cordemex, Mérida Yucatán 97310, México; Mendioroz, Arantza

    2014-10-15

    In this work, we have extended the front-face flash method to retrieve simultaneously the thermal diffusivity and the optical absorption coefficient of semitransparent plates. A complete theoretical model that allows calculating the front surface temperature rise of the sample has been developed. It takes into consideration additional effects, such as multiple reflections of the heating light beam inside the sample, heat losses by convection and radiation, transparency of the sample to infrared wavelengths, and heating pulse duration. Measurements performed on calibrated solids, covering a wide range of absorption coefficients (from transparent to opaque) and thermal diffusivities, validate the proposed method.

  1. Kinetic modeling of the light-dependent photosynthetic activity of the green microalga Chlorella vulgaris.

    PubMed

    Yun, Yeoung-Sang; Park, Jong Moon

    2003-08-05

    Light-dependent photosynthesis of Chlorella vulgaris was investigated by using a novel photosynthesis measurement system that could cover wide ranges of incident light and cell density and reproduce accurate readings. Various photosynthesis models, which have been reported elsewhere, were classified and/or reformulated based upon the underlying hypotheses of the light dependence of the algal photosynthesis. Four types of models were derived, which contained distinct light-related variables such as the average or local photon flux density (APFD or LPFD) and the average or local photon absorption rate (APAR or LPAR). According to our experimental results, the LPFD and LPAR models could predict the experimental data more accurately although the APFD and APAR models have been widely used for the kinetic study of microalgal photosynthesis. Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 83: 303-311, 2003.

  2. Methods and apparatus for transparent display using scattering nanoparticles

    DOEpatents

    Hsu, Chia Wei; Qiu, Wenjun; Zhen, Bo; Shapira, Ofer; Soljacic, Marin

    2017-06-14

    Transparent displays enable many useful applications, including heads-up displays for cars and aircraft as well as displays on eyeglasses and glass windows. Unfortunately, transparent displays made of organic light-emitting diodes are typically expensive and opaque. Heads-up displays often require fixed light sources and have limited viewing angles. And transparent displays that use frequency conversion are typically energy inefficient. Conversely, the present transparent displays operate by scattering visible light from resonant nanoparticles with narrowband scattering cross sections and small absorption cross sections. More specifically, projecting an image onto a transparent screen doped with nanoparticles that selectively scatter light at the image wavelength(s) yields an image on the screen visible to an observer. Because the nanoparticles scatter light at only certain wavelengths, the screen is practically transparent under ambient light. Exemplary transparent scattering displays can be simple, inexpensive, scalable to large sizes, viewable over wide angular ranges, energy efficient, and transparent simultaneously.

  3. Mechanism of wavelength conversion in polystyrene doped with benzoxanthene: emergence of a complex.

    PubMed

    Nakamura, Hidehito; Shirakawa, Yoshiyuki; Kitamura, Hisashi; Sato, Nobuhiro; Shinji, Osamu; Saito, Katashi; Takahashi, Sentaro

    2013-01-01

    Fluorescent guest molecules doped in polymers have been used to convert ultraviolet light into visible light for applications ranging from optical fibres to filters for the cultivation of plants. The wavelength conversion process involves the absorption of light at short wavelengths followed by fluorescence emission at a longer wavelength. However, a precise understanding of the light conversion remains unclear. Here we show light responses for a purified polystyrene base substrates doped with fluorescent benzoxanthene in concentrations varied over four orders of magnitude. The shape of the excitation spectrum for fluorescence emission changes significantly with the concentration of the benzoxanthene, indicating formation of a base substrate/fluorescent molecule complex. Furthermore, the wavelength conversion light yield increases in three stages depending on the nature of the complex. These findings identify a mechanism that will have many applications in wavelength conversion materials.

  4. Mechanism of wavelength conversion in polystyrene doped with benzoxanthene: emergence of a complex

    PubMed Central

    Nakamura, Hidehito; Shirakawa, Yoshiyuki; Kitamura, Hisashi; Sato, Nobuhiro; Shinji, Osamu; Saito, Katashi; Takahashi, Sentaro

    2013-01-01

    Fluorescent guest molecules doped in polymers have been used to convert ultraviolet light into visible light for applications ranging from optical fibres to filters for the cultivation of plants. The wavelength conversion process involves the absorption of light at short wavelengths followed by fluorescence emission at a longer wavelength. However, a precise understanding of the light conversion remains unclear. Here we show light responses for a purified polystyrene base substrates doped with fluorescent benzoxanthene in concentrations varied over four orders of magnitude. The shape of the excitation spectrum for fluorescence emission changes significantly with the concentration of the benzoxanthene, indicating formation of a base substrate/fluorescent molecule complex. Furthermore, the wavelength conversion light yield increases in three stages depending on the nature of the complex. These findings identify a mechanism that will have many applications in wavelength conversion materials. PMID:23974205

  5. Methods and apparatus for transparent display using scattering nanoparticles

    DOEpatents

    Hsu, Chia Wei; Qiu, Wenjun; Zhen, Bo; Shapira, Ofer; Soljacic, Marin

    2016-05-10

    Transparent displays enable many useful applications, including heads-up displays for cars and aircraft as well as displays on eyeglasses and glass windows. Unfortunately, transparent displays made of organic light-emitting diodes are typically expensive and opaque. Heads-up displays often require fixed light sources and have limited viewing angles. And transparent displays that use frequency conversion are typically energy inefficient. Conversely, the present transparent displays operate by scattering visible light from resonant nanoparticles with narrowband scattering cross sections and small absorption cross sections. More specifically, projecting an image onto a transparent screen doped with nanoparticles that selectively scatter light at the image wavelength(s) yields an image on the screen visible to an observer. Because the nanoparticles scatter light at only certain wavelengths, the screen is practically transparent under ambient light. Exemplary transparent scattering displays can be simple, inexpensive, scalable to large sizes, viewable over wide angular ranges, energy efficient, and transparent simultaneously.

  6. Absorption spectra and light penetration depth of normal and pathologically altered human skin

    NASA Astrophysics Data System (ADS)

    Barun, V. V.; Ivanov, A. P.; Volotovskaya, A. V.; Ulashchik, V. S.

    2007-05-01

    A three-layered skin model (stratum corneum, epidermis, and dermis) and engineering formulas for radiative transfer theory are used to study absorption spectra and light penetration depths of normal and pathologically altered skin. The formulas include small-angle and asymptotic approximations and a layer-addition method. These characteristics are calculated for wavelengths used for low-intensity laser therapy. We examined several pathologies such as vitiligo, edema, erythematosus lupus, and subcutaneous wound, for which the bulk concentrations of melanin and blood vessels or tissue structure (for subcutaneous wound) change compared with normal skin. The penetration depth spectrum is very similar to the inverted blood absorption spectrum. In other words, the depth is minimal at blood absorption maxima. The calculated absorption spectra enable the power and irradiation wavelength providing the required light effect to be selected. Relationships between the penetration depth and the diffuse reflectance coefficient of skin (unambiguously expressed through the absorption coefficient) are analyzed at different wavelengths. This makes it possible to find relationships between the light fields inside and outside the tissue.

  7. Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays

    DOE PAGES

    Wang, Z. Y.; Zhang, R. J.; Wang, S. Y.; ...

    2015-01-15

    Nanostructure arrays such as nanowire, nanopillar, and nanocone arrays have been proposed to be promising antireflection structures for photovoltaic applications due to their great light trapping ability. In this paper, the optical properties of Si nanopillar and nanocone arrays in visible and infrared region were studied by both theoretical calculations and experiments. The results show that the Mie resonance can be continuously tuned across a wide range of wavelength by varying the diameter of the nanopillars. However, Si nanopillar array with uniform diameter exhibits only discrete resonance mode, thus can't achieve a high broadband absorption. On the other hand, themore » Mie resonance wavelength in a Si nanocone array can vary continuously as the diameters of the cross sections increase from the apex to the base. Therefore Si nanocone arrays can strongly interact with the incident light in the broadband spectrum and the absorbance by Si nanocone arrays is higher than 95% over the wavelength from 300 to 2000 nm. In addition to the Mie resonance, the broadband optical absorption of Si nanocone arrays is also affected by Wood-Rayleigh anomaly effect and metal impurities introduced in the fabrication process.« less

  8. Laser generated gold nanocorals with broadband plasmon absorption for photothermal applications

    NASA Astrophysics Data System (ADS)

    Poletti, Annamaria; Fracasso, Giulio; Conti, Giamaica; Pilot, Roberto; Amendola, Vincenzo

    2015-08-01

    Gold nanoparticles with efficient plasmon absorption in the visible and near infrared (NIR) regions, biocompatibility and easy surface functionalization are of interest for photothermal applications. Herein we describe the synthesis and photothermal properties of gold ``nanocorals'' (AuNC) obtained by laser irradiation of Au nanospheres (AuNS) dispersed in liquid solution. AuNC are formed in two stages: by photofragmentation of AuNS, followed by spontaneous unidirectional assembly of gold nanocrystals. The whole procedure is performed without chemicals or templating compounds, hence the AuNC can be coated with thiolated molecules in one step. We show that AuNC coated with thiolated polymers are easily dispersed in an aqueous environment or in organic solvents and can be included in polymeric matrixes to yield a plasmonic nanocomposite. AuNC dispersions exhibit flat broadband plasmon absorption ranging from the visible to the NIR and unitary light-to-heat conversion. Besides, in vitro biocompatibility experiments assessed the absence of cytotoxic effects even at a dose as high as 100 μg mL-1. These safe-by-designed AuNC are promising for use in various applications such as photothermal cancer therapy, light-triggered drug release, antimicrobial substrates, optical tomography, obscurant materials and optical coatings.

  9. Broadband optical properties of biomass burning aerosol and identification of brown carbon chromophores

    NASA Astrophysics Data System (ADS)

    Rudich, Y.; Bluvshtein, N.; Lin, P.; Flores, J. M.; Segey, L.; Tas, E.; Snider, G.; Weagle, C. L. M.; Brown, S. S.; Laskin, J.; Laskin, A.

    2017-12-01

    Accurate modeling of the radiative effects of smoke aerosols requires wavelength-dependent measurements and parameterizations of their optical properties in the UV and visible spectral ranges along with improved description of their chemical composition. To address this issue, we used a recently developed approach to retrieve the time- and spectral-dependent optical properties of ambient biomass burning aerosols from 300 to 650 nm wavelengths during a regional nighttime bonfire festival in Israel. During the biomass burning event, the overall absorption at 400 nm increased by about two orders of magnitude, changing the single scattering albedo from a background level of 0.95 to 0.7. In addition, PM2.5 filter samples were collected for detailed chemical analysis of the water soluble organics that contribute to light absorption. Nitroaromatic compounds were identified as major organic species responsible for the 50-80% of the total visible light absorption (> 400 nm). Typical chromophores include 4-nitrocatechol, 4-nitrophenol, nitro-syringol and nitro-guaiacol; oxidation-nitration products of methoxyphenols, and known products of lignin pyrolysis. Our results suggests that night time chemistry of nitrogen oxides with particles may play a significant role in atmospheric transformations of brown carbon.

  10. Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays

    PubMed Central

    Wang, Z. Y.; Zhang, R. J.; Wang, S. Y.; Lu, M.; Chen, X.; Zheng, Y. X.; Chen, L. Y.; Ye, Z.; Wang, C. Z.; Ho, K. M.

    2015-01-01

    Nanostructure arrays such as nanowire, nanopillar, and nanocone arrays have been proposed to be promising antireflection structures for photovoltaic applications due to their great light trapping ability. In this paper, the optical properties of Si nanopillar and nanocone arrays in visible and infrared region were studied by both theoretical calculations and experiments. The results show that the Mie resonance can be continuously tuned across a wide range of wavelength by varying the diameter of the nanopillars. However, Si nanopillar array with uniform diameter exhibits only discrete resonance mode, thus can't achieve a high broadband absorption. On the other hand, the Mie resonance wavelength in a Si nanocone array can vary continuously as the diameters of the cross sections increase from the apex to the base. Therefore Si nanocone arrays can strongly interact with the incident light in the broadband spectrum and the absorbance by Si nanocone arrays is higher than 95% over the wavelength from 300 to 2000 nm. In addition to the Mie resonance, the broadband optical absorption of Si nanocone arrays is also affected by Wood-Rayleigh anomaly effect and metal impurities introduced in the fabrication process. PMID:25589290

  11. Broadband dye-sensitized upconverting nanocrystals enabled near-infrared planar perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Lai, Xuesen; Li, Xitao; Lv, Xinding; Zheng, Yan-Zhen; Meng, Fanli; Tao, Xia

    2017-12-01

    Extending the spectral absorption of perovskite solar cells (PSCs) from visible into near-infrared (NIR) range is a promising strategy to minimize non-absorption loss of solar photons and enhance the cell photovoltaic performance. Herein, we report on for the first time a viable strategy of incorporating IR806 dye-sensitized upconversion nanocrystals (IR806-UCNCs) into planar PSC for broadband upconversion of NIR light (800-1000 nm) into perovskite absorber-responsive visible emissions. A smart trick is firstly adopted to prepare hydrophilic IR806-UCNCs via a NOBF4 assisted two-step ligand-exchange that allows incorporating with perovskite precursor for in-situ growth of upconverting planar perovskite film. Unlike typically reported upconverting nanoparticles with narrow NIR absorption, the as-prepared IR806-UCNCs are able to harvest NIR light broadly and then transfer the captured energy to the UCNCs for an efficient visible upconversion. The IR806-UCNCs-incorporated cell exhibits a power conversion efficiency of 17.49%, corresponding to 29% increment from that of the pristine cell (13.52%). This strategy provides a feasible way to enable the most efficient harvesting of NIR sunlight for solar cells and other optoelectric devices.

  12. Hybrid diffusion-P3 equation in N-layered turbid media: steady-state domain.

    PubMed

    Shi, Zhenzhi; Zhao, Huijuan; Xu, Kexin

    2011-10-01

    This paper discusses light propagation in N-layered turbid media. The hybrid diffusion-P3 equation is solved for an N-layered finite or infinite turbid medium in the steady-state domain for one point source using the extrapolated boundary condition. The Fourier transform formalism is applied to derive the analytical solutions of the fluence rate in Fourier space. Two inverse Fourier transform methods are developed to calculate the fluence rate in real space. In addition, the solutions of the hybrid diffusion-P3 equation are compared to the solutions of the diffusion equation and the Monte Carlo simulation. For the case of small absorption coefficients, the solutions of the N-layered diffusion equation and hybrid diffusion-P3 equation are almost equivalent and are in agreement with the Monte Carlo simulation. For the case of large absorption coefficients, the model of the hybrid diffusion-P3 equation is more precise than that of the diffusion equation. In conclusion, the model of the hybrid diffusion-P3 equation can replace the diffusion equation for modeling light propagation in the N-layered turbid media for a wide range of absorption coefficients.

  13. Enhanced light absorption due to the mixing state of black carbon in fresh biomass burning emissions

    NASA Astrophysics Data System (ADS)

    Wang, Qiyuan; Cao, Junji; Han, Yongming; Tian, Jie; Zhang, Yue; Pongpiachan, Siwatt; Zhang, Yonggang; Li, Li; Niu, Xinyi; Shen, Zhenxing; Zhao, Zhuzi; Tipmanee, Danai; Bunsomboonsakul, Suratta; Chen, Yang; Sun, Jian

    2018-05-01

    A lack of information on the radiative effects of refractory black carbon (rBC) emitted from biomass burning is a significant gap in our understanding of climate change. A custom-made combustion chamber was used to simulate the open burning of crop residues and investigate the impacts of rBC size and mixing state on the particles' optical properties. Average rBC mass median diameters ranged from 141 to 162 nm for the rBC produced from different types of crop residues. The number fraction of thickly-coated rBC varied from 53 to 64%, suggesting that a majority of the freshly emitted rBC were internally mixed. By comparing the result of observed mass absorption cross-section to that calculated with Mie theory, large light absorption enhancement factors (1.7-1.9) were found for coated particles relative to uncoated cores. These effects were strongly positively correlated with the percentage of coated particles but independent of rBC core size. We suggest that rBC from open biomass burning may have strong impact on air pollution and radiative forcing immediately after their production.

  14. High spatial resolution measurements of NO2 applying Topographic Target Light scattering-Differential Optical Absorption Spectroscopy (ToTaL-DOAS)

    NASA Astrophysics Data System (ADS)

    Frins, E.; Platt, U.; Wagner, T.

    2008-06-01

    Tomographic Target Light scattering - Differential Optical Absorption Spectroscopy (ToTaL-DOAS), also called Target-DOAS, is a novel experimental procedure to retrieve trace gas concentrations present in the low atmosphere. Scattered sunlight (partially or totally) reflected from natural or artificial targets of similar albedo located at different distances is analyzed to retrieve the concentration of different trace gases like NO2, SO2 and others. We report high spatial resolution measurements of NO2 mixing ratios in the city of Montevideo (Uruguay) observing three buildings as targets with a Mini-DOAS instrument. Our instrument was 146 m apart from the first building, 196 m from the second and 286 m from the third one. All three buildings are located along a main Avenue. We obtain temporal variation of NO2 mixing ratios between 30 ppb and 65 ppb (±2 ppb). Our measurements demonstrate that ToTaL-DOAS measurements can be made over very short distances. In polluted air masses, the retrieved absorption signal was found to be strong enough to allow measurements over distances in the range of several ten meters, and achieve a spatial resolution of 50 m approximately.

  15. High spatial resolution measurements of NO2 applying Topographic Target Light scattering-Differential Optical Absorption Spectroscopy (ToTaL-DOAS)

    NASA Astrophysics Data System (ADS)

    Frins, E.; Platt, U.; Wagner, T.

    2008-12-01

    Topographic Target Light scattering - Differential Optical Absorption Spectroscopy (ToTaL-DOAS), also called Target-DOAS, is a novel experimental procedure to retrieve trace gas concentrations present in the low atmosphere. Scattered sunlight (diffuse or specular) reflected from natural or artificial targets located at different distances are analyzed to retrieve the spatial distribution of the concentration of different trace gases like NO2, SO2 and others. We report high spatial resolution measurements of NO2 mixing ratios in the city of Montevideo (Uruguay) observing three buildings as targets with a Mini-DOAS instrument. Our instrument was 146 m, 196 m, and 280 m apart from three different buildings located along a main Avenue. We obtain temporal variation of NO2 mixing ratios between 30 ppb and 65 ppb from measurements of November 2007 and mixing ratios up to 50 ppb from measurements of August and September 2008. Our measurements demonstrate that ToTaL-DOAS observations can be made over relative short distances. In polluted air masses, the retrieved absorption signal was found to be sufficiently strong to allow measurements over distances in the range of several tens of meters.

  16. Light Trapping with Silicon Light Funnel Arrays

    PubMed Central

    Nissan, Yuval; Gabay, Tamir; Shalev, Gil

    2018-01-01

    Silicon light funnels are three-dimensional subwavelength structures in the shape of inverted cones with respect to the incoming illumination. Light funnel (LF) arrays can serve as efficient absorbing layers on account of their light trapping capabilities, which are associated with the presence of high-density complex Mie modes. Specifically, light funnel arrays exhibit broadband absorption enhancement of the solar spectrum. In the current study, we numerically explore the optical coupling between surface light funnel arrays and the underlying substrates. We show that the absorption in the LF array-substrate complex is higher than the absorption in LF arrays of the same height (~10% increase). This, we suggest, implies that a LF array serves as an efficient surface element that imparts additional momentum components to the impinging illumination, and hence optically excites the substrate by near-field light concentration, excitation of traveling guided modes in the substrate, and mode hybridization. PMID:29562685

  17. Studies on cytostatics used as photosensitizing material in photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Pascu, Mihail-Lucian; Danaila, Leon; Carstocea, Benone D.; Staicu, Angela; Truica, Sorina; Gazdaru, Doina M.

    2002-10-01

    Introduction of the photosensitizer properties of cytostatics drus was made, pointing out that the fact that besides the biochemical action of the cytostatics their effects could be enhanced by the exposure to light at different doses. A spectroscopical characterisation of methotrexate and fluorouracil, cytostatic drugs used frequently in cancer therpy was performed. The absorption, emission and excitation spectra were measured for methotrexate solutions in natural saline and sodium hydroxide at concentration in the range 10-5 -10-6M and pH 8.4. The absorption, emission and excitation spectra were measured for fluorouracil solutions in natural saline at concentration in the range 10-4 -10-5M. The absorption spectrum exhibits spectral bands in the range 250nm -450nm for both drugs. The fluorescence excitatioan for methotrexate was made at 340nm and 370nm, the fluorescence emission was detected in the spectral range 400nm - 500nm with a maximum at 470nm. The fluorescence excitation was measured in teh range 200nm-500nm with the emission centred on 530nm, for Xe lamp irradiation, and 300nm for Hg lamp and laser irradiation. The fluorescence emission spectra was monitored in the spectral range 400nm - 600nm. The effects of irradiation on spectroscopic characteristics of methrotrexate and fluorouracil were investigated. The irraditaion was made using a UV classic lamp with Xe, for the first experimental part and for the second one it was used both a class Hg lamp and a nytorgen pulsed laser.

  18. Tunable absorption enhancement in electric split-ring resonators-shaped graphene arrays

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Chen, Jiajia; Zhou, Zigang; Yi, Zao; Ye, Xin

    2018-04-01

    In this paper, we propose a wavelength-tunable absorber consisting of electric split-ring resonators (eSRRs)-shaped graphene arrays deposited on a SiO2/Si substrate in the far-infrared and terahertz regions. The simulation results exhibit that two resonance modes are supported by the structure. In terms of the resonance at longer wavelength, the light absorption declines while the period a or length L increases. However, absorption contrarily improves with enlargement of incident angle under the transverse magnetic (TM) polarization. And in terms of resonance at shorter wavelengths, absorption enhances with increasing length L and incident angle θ. Generally, the light absorption enhances with Fermi level E F of graphene, accompanied by blue shift. The aforementioned results unquestionably provide a distinctive source of inspiration for how to design and manufacture devices related to absorption such as filters, spatial light modulator and sensors.

  19. Near-infrared light absorption by brown carbon in the ambient atmosphere

    NASA Astrophysics Data System (ADS)

    Chung, C.; Hoffer, A.; Beres, N. D.; Moosmüller, H.; Liu, C.; Green, M.; Kim, S. W.; Engelbrecht, J. P.; Gelencser, A.

    2017-12-01

    Organic aerosols have been assumed to have little-to-no absorption in the red and near-infrared spectral regions of solar radiation, even though a class of organic aerosols were shown to absorb significantly in these spectral regions. Here, we show that ambient atmospheric data from commonly-used 7-wavelength aethalometers contain evidence of abundant near-infrared light absorption by organic aerosol. This evidence comes from the absorption Ångström exponent over 880 950 nm, which often exceeds values explainable by fresh or coated black carbon, or mineral dust. This evidence is not due to an artifact from the instrument random errors or biases, either. The best explanation for these large 880/950 nm absorption Ångström exponent values in the aethalometer data is near-infrared light absorption by tar balls. Tar balls are among common particles from forest fire.

  20. Absorption of a laser light pulse in a dense plasma.

    NASA Technical Reports Server (NTRS)

    Mehlman-Balloffet, G.

    1973-01-01

    An experimental study of the absorption of a laser light pulse in a transient, high-density, high-temperature plasma is presented. The plasma is generated around a metallic anode tip by a fast capacitive discharge occurring in vacuum. The amount of transmitted light is measured for plasmas made of different metallic ions in the regions of the discharge of high electronic density. Variation of the transmission during the laser pulse is also recorded. Plasma electrons are considered responsible for the very high absorption observed.

  1. Enhanced light absorption by mixed source black and brown carbon particles in UK winter

    PubMed Central

    Liu, Shang; Aiken, Allison C.; Gorkowski, Kyle; Dubey, Manvendra K.; Cappa, Christopher D.; Williams, Leah R.; Herndon, Scott C.; Massoli, Paola; Fortner, Edward C.; Chhabra, Puneet S.; Brooks, William A.; Onasch, Timothy B.; Jayne, John T.; Worsnop, Douglas R.; China, Swarup; Sharma, Noopur; Mazzoleni, Claudio; Xu, Lu; Ng, Nga L.; Liu, Dantong; Allan, James D.; Lee, James D.; Fleming, Zoë L.; Mohr, Claudia; Zotter, Peter; Szidat, Sönke; Prévôt, André S. H.

    2015-01-01

    Black carbon (BC) and light-absorbing organic carbon (brown carbon, BrC) play key roles in warming the atmosphere, but the magnitude of their effects remains highly uncertain. Theoretical modelling and laboratory experiments demonstrate that coatings on BC can enhance BC's light absorption, therefore many climate models simply assume enhanced BC absorption by a factor of ∼1.5. However, recent field observations show negligible absorption enhancement, implying models may overestimate BC's warming. Here we report direct evidence of substantial field-measured BC absorption enhancement, with the magnitude strongly depending on BC coating amount. Increases in BC coating result from a combination of changing sources and photochemical aging processes. When the influence of BrC is accounted for, observationally constrained model calculations of the BC absorption enhancement can be reconciled with the observations. We conclude that the influence of coatings on BC absorption should be treated as a source and regionally specific parameter in climate models. PMID:26419204

  2. Enhanced light absorption by mixed source black and brown carbon particles in UK winter

    DOE PAGES

    Liu, Shang; Aiken, Allison C.; Gorkowski, Kyle; ...

    2015-09-30

    We report that black carbon (BC) and light-absorbing organic carbon (brown carbon, BrC) play key roles in warming the atmosphere, but the magnitude of their effects remains highly uncertain. Theoretical modelling and laboratory experiments demonstrate that coatings on BC can enhance BC’s light absorption, therefore many climate models simply assume enhanced BC absorption by a factor of ~1.5. However, recent field observations show negligible absorption enhancement, implying models may overestimate BC’s warming. Here we report direct evidence of substantial field-measured BC absorption enhancement, with the magnitude strongly depending on BC coating amount. Increases in BC coating result from a combinationmore » of changing sources and photochemical aging processes. When the influence of BrC is accounted for, observationally constrained model calculations of the BC absorption enhancement can be reconciled with the observations. In conclusion, we find that the influence of coatings on BC absorption should be treated as a source and regionally specific parameter in climate models.« less

  3. Intersubband absorption in Si(1-x)Ge(x/Si superlattices for long wavelength infrared detectors

    NASA Technical Reports Server (NTRS)

    Rajakarunanayake, Yasantha; Mcgill, Tom C.

    1990-01-01

    Researchers calculated the absorption strengths for intersubband transitions in n-type Si(1-x)Ge(x)/Si superlattices. These transitions can be used for the detection of long-wavelength infrared radiation. A significant advantage in Si(1-x)Ge(x)/Si supperlattice detectors is the ability to detect normally incident light; in Ga(1-x)Al(x)As/GaAs superlattices, intersubband absorption is possible only if the incident light contains a polarization component in the growth direction of the superlattice. Researchers present detailed calculation of absorption coefficients, and peak absorption wavelengths for (100), (111) and (110) Si(1-x)Ge(x)/Si superlattices. Peak absorption strengths of about 2000 to 6000 cm(exp -1) were obtained for typical sheet doping concentrations (approx. equals 10(exp 12)cm(exp -2)). Absorption comparable to that in Ga(1-x)Al(x)As/GaAs superlattice detectors, compatibility with existing Si technology, and the ability to detect normally incident light make these devices promising for future applications.

  4. Impacts of brown carbon from biomass burning on surface UV and ozone photochemistry in the Amazon Basin

    PubMed Central

    Mok, Jungbin; Krotkov, Nickolay A.; Arola, Antti; Torres, Omar; Jethva, Hiren; Andrade, Marcos; Labow, Gordon; Eck, Thomas F.; Li, Zhanqing; Dickerson, Russell R.; Stenchikov, Georgiy L.; Osipov, Sergey; Ren, Xinrong

    2016-01-01

    The spectral dependence of light absorption by atmospheric particulate matter has major implications for air quality and climate forcing, but remains uncertain especially in tropical areas with extensive biomass burning. In the September-October 2007 biomass-burning season in Santa Cruz, Bolivia, we studied light absorbing (chromophoric) organic or “brown” carbon (BrC) with surface and space-based remote sensing. We found that BrC has negligible absorption at visible wavelengths, but significant absorption and strong spectral dependence at UV wavelengths. Using the ground-based inversion of column effective imaginary refractive index in the range 305–368 nm, we quantified a strong spectral dependence of absorption by BrC in the UV and diminished ultraviolet B (UV-B) radiation reaching the surface. Reduced UV-B means less erythema, plant damage, and slower photolysis rates. We use a photochemical box model to show that relative to black carbon (BC) alone, the combined optical properties of BrC and BC slow the net rate of production of ozone by up to 18% and lead to reduced concentrations of radicals OH, HO2, and RO2 by up to 17%, 15%, and 14%, respectively. The optical properties of BrC aerosol change in subtle ways the generally adverse effects of smoke from biomass burning. PMID:27833145

  5. The temperature measurement research for high-speed flow based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Di, Yue; Jin, Yi; Jiang, Hong-liang; Zhai, Chao

    2013-09-01

    Due to the particularity of the high-speed flow, in order to accurately obtain its' temperature, the measurement system should has some characteristics of not interfereing with the flow, non-contact measurement and high time resolution. The traditional measurement method cannot meet the above requirements, however the measurement method based on tunable diode laser absorption spectroscopy (TDLAS) technology can meet the requirements for high-speed flow temperature measurement. When the near-infared light of a specific frequency is through the media to be measured, it will be absorbed by the water vapor molecules and then the transmission light intensity is detected by the detector. The temperature of the water vapor which is also the high-speed flow temperature, can be accurately obtained by the Beer-Lambert law. This paper focused on the research of absorption spectrum method for high speed flow temperature measurement with the scope of 250K-500K. Firstly, spectral line selection method for low temperature measurement of high-speed flow is discussed. Selected absorption lines should be isolated and have a high peak absorption within the range of 250-500K, at the same time the interference of the other lines should be avoided, so that a high measurement accuracy can be obtained. According to the near-infrared absorption spectra characteristics of water vapor, four absorption lines at the near 1395 nm and 1409 nm are selected. Secondly, a system for the temperature measurement of the water vapor in the high-speed flow is established. Room temperature are measured through two methods, direct absorption spectroscopy (DAS) and wavelength modulation spectroscopy (WMS) ,the results show that this system can realize on-line measurement of the temperature and the measurement error is about 3%. Finally, the system will be used for temperature measurement of the high-speed flow in the shock tunnel, its feasibility of measurement is analyzed.

  6. Photoacoustic signal measurement for burned skins in the spectral range of 500-650 nm: experiment with rat burn models

    NASA Astrophysics Data System (ADS)

    Yamazaki, Mutsuo; Sato, Shunichi; Saito, Daizo; Fujita, Masanori; Okada, Yoshiaki; Kikuchi, Makoto; Ashida, Hiroshi; Obara, Minoru

    2002-06-01

    This paper reports the burn diagnosis that is based on the measurement of photoacoustic waves from skin, where the acoustic waves originate from the absorption of light by blood. For this purpose, a transducer composed of a ring-shaped piezoelectric film and a quartz fiber was made. An optical parametric oscillator (500 - 650 nm) was used as a light source and its output pulses were coupled to the quartz fiber. To investigate the optimum light wavelength, we conducted experiments using rat burn models. We demonstrated that the superficial dermal burn (SDB), deep dermal burn (DDB), deep burn (DB), and control (healthy skin) could be clearly differentiated based on the photoacoustic signals induced by the light of 532 - 580nm.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Li-Na; Wang, H.C.; Shen, Y.

    Nanostructured lead chalcogenides (PbX, X = Te, Se, S) were prepared via a simple hydrothermal method. The powder samples were characterized by XRD, SEM, SAED and DRS. Phase composition and microstructure analysis indicate that these samples are pure lead chalcogenides phases and have similar morphologies. These lead chalcogenides display efficient absorption in the UV-visible light range. The photocatalytic properties of lead chalcogenides nanoparticles were evaluated by the photodegradation of Congo red under UV-visible light irradiation in air atmosphere. The Congo red solution can be efficiently degraded under visible light in the presence of lead chalcogenides nanoparticles. The photocatalytic activities ofmore » lead chalcogenides generally increase with increasing their band gaps and shows no appreciable loss after repeated cycles. Our results may be useful for developing new photocatalyst systems responsive to visible light among narrow band gap semiconductors.« less

  8. Autoclave growth, magnetic, and optical properties of GdB6 nanowires

    NASA Astrophysics Data System (ADS)

    Han, Wei; Wang, Zhen; Li, Qidong; Liu, Huatao; Fan, Qinghua; Dong, Youzhong; Kuang, Quan; Zhao, Yanming

    2017-12-01

    High-quality single crystalline gadolinium hexaboride (GdB6) nanowires have been successfully prepared at very low temperatures of 200-240 °C by a high pressure solid state (HPSS) method in an autoclave with a new chemical reaction route, where Gd, H3BO3, Mg and I2 were used as raw materials. The crystal structure, morphology, valence, magnetic and optical absorption properties were investigated using XRD, FESEM, HRTEM, XPS, SQUID magnetometry and optical measurements. HRTEM images and SAED patterns reveal that the GdB6 nanowires are single crystalline with a preferred growth direction along [001]. The XPS spectrum suggests that the valence of Gd ion in GdB6 is trivalent. The effective magnetic momentum per Gd3+ in GdB6 is about 6.26 μB. The optical properties exhibit weak absorption in the visible light range, but relatively strong absorbance in the NIR and UV range. Low work function and high NIR absorption can make GdB6 nanowires a potential solar radiation shielding material for solar cells or other NIR blocking applications.

  9. Comparative study of absorption in tilted silicon nanowire arrays for photovoltaics

    PubMed Central

    2014-01-01

    Silicon nanowire arrays have been shown to demonstrate light trapping properties and promising potential for next-generation photovoltaics. In this paper, we show that the absorption enhancement in vertical nanowire arrays on a perfectly electric conductor can be further improved through tilting. Vertical nanowire arrays have a 66.2% improvement in ultimate efficiency over an ideal double-pass thin film of the equivalent amount of material. Tilted nanowire arrays, with the same amount of material, exhibit improved performance over vertical nanowire arrays across a broad range of tilt angles (from 38° to 72°). The optimum tilt of 53° has an improvement of 8.6% over that of vertical nanowire arrays and 80.4% over that of the ideal double-pass thin film. Tilted nanowire arrays exhibit improved absorption over the solar spectrum compared with vertical nanowires since the tilt allows for the excitation of additional modes besides the HE 1m modes that are excited at normal incidence. We also observed that tilted nanowire arrays have improved performance over vertical nanowire arrays for a large range of incidence angles (under about 60°). PMID:25435833

  10. Comparative study of absorption in tilted silicon nanowire arrays for photovoltaics.

    PubMed

    Kayes, Md Imrul; Leu, Paul W

    2014-01-01

    Silicon nanowire arrays have been shown to demonstrate light trapping properties and promising potential for next-generation photovoltaics. In this paper, we show that the absorption enhancement in vertical nanowire arrays on a perfectly electric conductor can be further improved through tilting. Vertical nanowire arrays have a 66.2% improvement in ultimate efficiency over an ideal double-pass thin film of the equivalent amount of material. Tilted nanowire arrays, with the same amount of material, exhibit improved performance over vertical nanowire arrays across a broad range of tilt angles (from 38° to 72°). The optimum tilt of 53° has an improvement of 8.6% over that of vertical nanowire arrays and 80.4% over that of the ideal double-pass thin film. Tilted nanowire arrays exhibit improved absorption over the solar spectrum compared with vertical nanowires since the tilt allows for the excitation of additional modes besides the HE 1m modes that are excited at normal incidence. We also observed that tilted nanowire arrays have improved performance over vertical nanowire arrays for a large range of incidence angles (under about 60°).

  11. The Investigation of Property of Radiation and Absorbed of Infrared Lights of the Biological Tissues

    NASA Astrophysics Data System (ADS)

    Pang, Xiao-Feng; Deng, Bo; Xiao, He-Lan; Cai, Guo-Ping

    2010-04-01

    The properties of absorption of infrared light for collagen, hemoglobin, bivine serum albumen (BSA) protein molecules with α- helix structure and water in the living systems as well as the infrared transmission spectra for person’s skins and finger hands of human body in the region of 400-4000 cm-1 (i.e., wavelengths of 2-20 μm) have been collected and determined by using a Nicolet Nexus 670 FT-IR Spectrometer, a Perkin Elmer GX FT-IR spectrometer, an OMA (optical multichannel analysis) and an infrared probe systems, respectively. The experimental results obtained show that the protein molecules and water can all absorb the infrared lights in the ranges of 600-1900 cm-1 and 2900-3900 cm-l, but their properties of absorption are somewhat different due to distinctions of their structure and conformation and molecular weight. We know from the transmission spectra of person’s finger hands and skin that the infrared lights with wavelengths of 2 μm-7 μm can not only transmit over the person’s skin and finger hands, but also be absorbed by the above proteins and water in the living systems. Thus, we can conclude from this study that the human beings and animals can absorb the infrared lights with wavelengths of 2 μm-7 μm.

  12. Active Stand-off Detection of Gas Leaks Using a Short Range Hard-target Backscatter Differential Optical Absorption System Based on a Quantum Cascade Laser Transmitter

    NASA Astrophysics Data System (ADS)

    Diaz, Adrian; Thomas, Benjamin; Castillo, Paulo; Gross, Barry; Moshary, Fred

    2016-06-01

    Fugitive gas emissions from agricultural or industrial plants and gas pipelines are an important environmental concern as they can contribute to the global increase of greenhouse gas concentration. Moreover, they are also a security and safety concern because of possible risk of fire/explosion or toxicity. This study presents gas concentration measurements using a quantum cascade laser open path system (QCLOPS). The system retrieves the pathaveraged concentration of N2O and CH4 by collecting the backscattered light from a scattering target. The gas concentration measurements have a high temporal resolution (68 ms) and are achieved at sufficient range (up to 40 m, ~ 130 feet) with a detection limit of 2.6 ppm CH4 and 0.4 ppm for N2O. Given these characteristics, this system is promising for mobile/multidirectional remote detection and evaluation of gas leaks. The instrument is monostatic with a tunable QCL emitting at ~ 7.7 μm wavelength range. The backscattered radiation is collected by a Newtonian telescope and focused on an infrared light detector. Puffs of N2O and CH4 are released along the optical path to simulate a gas leak. The measured absorption spectrum is obtained using the thermal intra-pulse frequency chirped DFB QCL and is analyzed to obtain path averaged gas concentrations.

  13. Adaptation of Rhodopseudomonas acidophila strain 7050 to growth at different light intensities: what are the benefits to changing the type of LH2?

    PubMed

    Gardiner, A T; Niedzwiedzki, D M; Cogdell, R J

    2018-04-01

    Typical purple bacterial photosynthetic units consist of light harvesting one/reaction centre 'core' complexes surrounded by light harvesting two complexes. Factors such as the number and size of photosynthetic units per cell, as well as the type of light harvesting two complex that is produced, are controlled by environmental factors. In this paper, the change in the type of LH2 present in the Rhodopsuedomonas acidophila strain 7050 is described when cells are grown at a range of different light intensities. This species contains multiple pucBA genes that encode the apoproteins that form light-harvesting complex two, and a more complex mixture of spectroscopic forms of this complex has been found than was previously thought to be the case. Femto-second time resolved absorption has been used to investigate how the energy transfer properties in the membranes of high-light and low-light adapted cells change as the composition of the LH2 complexes varies.

  14. Hazardous Gas Detection Sensor Using Broadband Light-Emitting Diode-Based Absorption Spectroscopy for Space Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terracciano, Anthony; Thurmond, Kyle; Villar, Michael

    As space travel matures and extended duration voyages become increasingly common, it will be necessary to include arrays of early fire detection systems aboard spacefaring vessels, space habitats, and in spacesuits. As gasses that are relevant to combustion and pyrolysis have absorption features in the midinfrared range, it is possible to utilize absorption spectroscopy as a means of detecting and quantifying the concentration of these hazardous compounds. Within this work, a sensor for detecting carbon dioxide has been designed and tested autonomously on a high-altitude balloon flight. The sensor utilizes a 4.2-mm lightemitting diode source, amplitude modulation to characterize speciesmore » concentrations, and frequency modulation to characterize ambient temperature. Future work will include expanding the sensor design to detect other gases, and demonstrating suborbital flight capability.« less

  15. Imaging-based molecular barcoding with pixelated dielectric metasurfaces

    NASA Astrophysics Data System (ADS)

    Tittl, Andreas; Leitis, Aleksandrs; Liu, Mingkai; Yesilkoy, Filiz; Choi, Duk-Yong; Neshev, Dragomir N.; Kivshar, Yuri S.; Altug, Hatice

    2018-06-01

    Metasurfaces provide opportunities for wavefront control, flat optics, and subwavelength light focusing. We developed an imaging-based nanophotonic method for detecting mid-infrared molecular fingerprints and implemented it for the chemical identification and compositional analysis of surface-bound analytes. Our technique features a two-dimensional pixelated dielectric metasurface with a range of ultrasharp resonances, each tuned to a discrete frequency; this enables molecular absorption signatures to be read out at multiple spectral points, and the resulting information is then translated into a barcode-like spatial absorption map for imaging. The signatures of biological, polymer, and pesticide molecules can be detected with high sensitivity, covering applications such as biosensing and environmental monitoring. Our chemically specific technique can resolve absorption fingerprints without the need for spectrometry, frequency scanning, or moving mechanical parts, thereby paving the way toward sensitive and versatile miniaturized mid-infrared spectroscopy devices.

  16. Hazardous Gas Detection Sensor Using Broadband Light-Emitting Diode-Based Absorption Spectroscopy for Space Applications

    DOE PAGES

    Terracciano, Anthony; Thurmond, Kyle; Villar, Michael; ...

    2018-03-12

    As space travel matures and extended duration voyages become increasingly common, it will be necessary to include arrays of early fire detection systems aboard spacefaring vessels, space habitats, and in spacesuits. As gasses that are relevant to combustion and pyrolysis have absorption features in the midinfrared range, it is possible to utilize absorption spectroscopy as a means of detecting and quantifying the concentration of these hazardous compounds. Within this work, a sensor for detecting carbon dioxide has been designed and tested autonomously on a high-altitude balloon flight. The sensor utilizes a 4.2-mm lightemitting diode source, amplitude modulation to characterize speciesmore » concentrations, and frequency modulation to characterize ambient temperature. Future work will include expanding the sensor design to detect other gases, and demonstrating suborbital flight capability.« less

  17. Ultraviolet absorption experiment MA-059

    NASA Technical Reports Server (NTRS)

    Donahue, T. M.; Hudson, R. D.; Anderson, J.; Kaufman, F.; Mcelroy, M. B.

    1976-01-01

    The ultraviolet absorption experiment performed during the Apollo Soyuz mission involved sending a beam of atomic oxygen and atomic nitrogen resonance radiation, strong unabsorbable oxygen and nitrogen radiation, and visual radiation, all filling the same 3 deg-wide field of view from the Apollo to the Soyuz. The radiation struck a retroreflector array on the Soyuz and was returned to a spectrometer onboard the Apollo. The density of atomic oxygen and atomic nitrogen between the two spacecraft was measured by observing the amount of resonance radiation absorbed when the line joining Apollo and Soyuz was perpendicular to their velocity with respect to the ambient atmosphere. Information concerning oxygen densities was also obtained by observation of resonantly fluorescent light. The absorption experiments for atomic oxygen and atomic nitrogen were successfully performed at a range of 500 meters, and abundant resonance fluorescence data were obtained.

  18. Geometric model from microscopic theory for nuclear absorption

    NASA Technical Reports Server (NTRS)

    John, Sarah; Townsend, Lawrence W.; Wilson, John W.; Tripathi, Ram K.

    1993-01-01

    A parameter-free geometric model for nuclear absorption is derived herein from microscopic theory. The expression for the absorption cross section in the eikonal approximation, taken in integral form, is separated into a geometric contribution that is described by an energy-dependent effective radius and two surface terms that cancel in an asymptotic series expansion. For collisions of light nuclei, an expression for the effective radius is derived from harmonic oscillator nuclear density functions. A direct extension to heavy nuclei with Woods-Saxon densities is made by identifying the equivalent half-density radius for the harmonic oscillator functions. Coulomb corrections are incorporated, and a simplified geometric form of the Bradt-Peters type is obtained. Results spanning the energy range from 1 MeV/nucleon to 1 GeV/nucleon are presented. Good agreement with experimental results is obtained.

  19. Geometric model for nuclear absorption from microscopic theory

    NASA Technical Reports Server (NTRS)

    John, S.; Townsend, L. W.; Wilson, J. W.; Tripathi, R. K.

    1993-01-01

    A parameter-free geometric model for nuclear absorption is derived from microscopic theory. The expression for the absorption cross section in the eikonal approximation taken in integral form is separated into a geometric contribution, described by an energy-dependent effective radius, and two surface terms which are shown to cancel in an asymptotic series expansion. For collisions of light nuclei, an expression for the effective radius is derived using harmonic-oscillator nuclear density functions. A direct extension to heavy nuclei with Woods-Saxon densities is made by identifying the equivalent half density radius for the harmonic-oscillator functions. Coulomb corrections are incorporated and a simplified geometric form of the Bradt-Peters type obtained. Results spanning the energy range of 1 MeV/nucleon to 1 GeV/nucleon are presented. Good agreement with experimental results are obtained.

  20. Transition-metal-substituted indium thiospinels as novel intermediate-band materials: prediction and understanding of their electronic properties.

    PubMed

    Palacios, P; Aguilera, I; Sánchez, K; Conesa, J C; Wahnón, P

    2008-07-25

    Results of density-functional calculations for indium thiospinel semiconductors substituted at octahedral sites with isolated transition metals (M=Ti,V) show an isolated partially filled narrow band containing three t2g-type states per M atom inside the usual semiconductor band gap. Thanks to this electronic structure feature, these materials will allow the absorption of photons with energy below the band gap, in addition to the normal light absorption of a semiconductor. To our knowledge, we demonstrate for the first time the formation of an isolated intermediate electronic band structure through M substitution at octahedral sites in a semiconductor, leading to an enhancement of the absorption coefficient in both infrared and visible ranges of the solar spectrum. This electronic structure feature could be applied for developing a new third-generation photovoltaic cell.

  1. Use of ruthenium dyes for subnanosecond detector fidelity testing in real time transient absorption

    NASA Astrophysics Data System (ADS)

    Byrdin, Martin; Thiagarajan, Viruthachalam; Villette, Sandrine; Espagne, Agathe; Brettel, Klaus

    2009-04-01

    Transient absorption spectroscopy is a powerful tool for the study of photoreactions on time scales from femtoseconds to seconds. Typically, reactions slower than ˜1 ns are recorded by the "classical" technique; the reaction is triggered by an excitation flash, and absorption changes accompanying the reaction are recorded in real time using a continuous monitoring light beam and a detection system with sufficiently fast response. The pico- and femtosecond region can be accessed by the more recent "pump-probe" technique, which circumvents the difficulties of real time detection on a subnanosecond time scale. This is paid for by accumulation of an excessively large number of shots to sample the reaction kinetics. Hence, it is of interest to extend the classical real time technique as far as possible to the subnanosecond range. In order to identify and minimize detection artifacts common on a subnanosecond scale, like overshoot, ringing, and signal reflections, rigorous testing is required of how the detection system responds to fast changes of the monitoring light intensity. Here, we introduce a novel method to create standard signals for detector fidelity testing on a time scale from a few picoseconds to tens of nanoseconds. The signals result from polarized measurements of absorption changes upon excitation of ruthenium complexes {[Ru(bpy)3]2+ and a less symmetric derivative} by a short laser flash. Two types of signals can be created depending on the polarization of the monitoring light with respect to that of the excitation flash: a fast steplike bleaching at magic angle and a monoexponentially decaying bleaching for parallel polarizations. The lifetime of the decay can be easily varied via temperature and viscosity of the solvent. The method is applied to test the performance of a newly developed real time transient absorption setup with 300 ps time resolution and high sensitivity.

  2. General point dipole theory for periodic metasurfaces: magnetoelectric scattering lattices coupled to planar photonic structures.

    PubMed

    Chen, Yuntian; Zhang, Yan; Femius Koenderink, A

    2017-09-04

    We study semi-analytically the light emission and absorption properties of arbitrary stratified photonic structures with embedded two-dimensional magnetoelectric point scattering lattices, as used in recent plasmon-enhanced LEDs and solar cells. By employing dyadic Green's function for the layered structure in combination with the Ewald lattice summation to deal with the particle lattice, we develop an efficient method to study the coupling between planar 2D scattering lattices of plasmonic, or metamaterial point particles, coupled to layered structures. Using the 'array scanning method' we deal with localized sources. Firstly, we apply our method to light emission enhancement of dipole emitters in slab waveguides, mediated by plasmonic lattices. We benchmark the array scanning method against a reciprocity-based approach to find that the calculated radiative rate enhancement in k-space below the light cone shows excellent agreement. Secondly, we apply our method to study absorption-enhancement in thin-film solar cells mediated by periodic Ag nanoparticle arrays. Lastly, we study the emission distribution in k-space of a coupled waveguide-lattice system. In particular, we explore the dark mode excitation on the plasmonic lattice using the so-called array scanning method. Our method could be useful for simulating a broad range of complex nanophotonic structures, i.e., metasurfaces, plasmon-enhanced light emitting systems and photovoltaics.

  3. Evaluating the Nature of So-Called S*-State Feature in Transient Absorption of Carotenoids in Light-Harvesting Complex 2 (LH2) from Purple Photosynthetic Bacteria.

    PubMed

    Niedzwiedzki, Dariusz M; Hunter, C Neil; Blankenship, Robert E

    2016-11-03

    Carotenoids are a class of natural pigments present in all phototrophic organisms, mainly in their light-harvesting proteins in which they play roles of accessory light absorbers and photoprotectors. Extensive time-resolved spectroscopic studies of these pigments have revealed unexpectedly complex photophysical properties, particularly for carotenoids in light-harvesting LH2 complexes from purple bacteria. An ambiguous, optically forbidden electronic excited state designated as S* has been postulated to be involved in carotenoid excitation relaxation and in an alternative carotenoid-to-bacteriochlorophyll energy transfer pathway, as well as being a precursor of the carotenoid triplet state. However, no definitive and satisfactory origin of the carotenoid S* state in these complexes has been established, despite a wide-ranging series of studies. Here, we resolve the ambiguous origin of the carotenoid S* state in LH2 complex from Rba. sphaeroides by showing that the S* feature can be seen as a combination of ground state absorption bleaching of the carotenoid pool converted to cations and the Stark spectrum of neighbor neutral carotenoids, induced by temporal electric field brought by the carotenoid cation-bacteriochlorophyll anion pair. These findings remove the need to assign an S* state, and thereby significantly simplify the photochemistry of carotenoids in these photosynthetic antenna complexes.

  4. Preparation of pectin/silver nanoparticles composite films with UV-light barrier and properties.

    PubMed

    Shankar, Shiv; Tanomrod, Nattareya; Rawdkuen, Saroat; Rhim, Jong-Whan

    2016-11-01

    Silver nanoparticles (AgNPs) was synthesized by a green method using an aqueous extract of Caesalpinia mimosoides Lamk (CMLE) as reducing and stabilizing agents, and they were used for the preparation of pectin-based antimicrobial composite films. The AgNPs were spherical in shape with the size in the range of 20-80nm and showed the absorption peak around 500nm. The pectin/AgNPs composite film exhibited characteristic absorption peak of AgNPs at 480nm. The surface color and light transmittance of the pectin films were greatly influenced by the addition of AgNPs. The lightness of the films decreased, however, redness and yellowness of the films increased after incorporation of AgNPs. UV-light barrier property of the pectin film increased significantly with a little decrease in the transparency. Though there were no structural changes in the pectin film by the incorporation of CMLE and AgNPs as indicated by the FTIR results, the film properties such as thermal stability, mechanical strength, and water vapor barrier properties of the pectin films increased. The pectin/AgNPs nanocomposite films exhibited strong antibacterial activity against food-borne pathogenic bacteria, Escherichia coli and Listeria monocytogenes. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Fried, Daniel; Glena, Richard E.; Featherstone, John D. B.; Seka, Wolf

    1995-03-01

    The light-scattering properties of dental enamel and dentin were measured at 543, 632, and 1053 nm. Angularly resolved scattering distributions for these materials were measured from 0 deg to 180 deg using a rotating goniometer. Surface scattering was minimized by immersing the samples in an index-matching bath. The scattering and absorption coefficients and the scattering phase function were deduced by comparing the measured scattering data with angularly resolved Monte Carlo light-scattering simulations. Enamel and dentin were best represented by a linear combination of a highly forward-peaked Henyey-Greenstein (HG) phase function and an isotropic phase function. Enamel weakly scatters light between 543 nm and 1.06 mu m, with the scattering coefficient ( mu s) ranging from mu s = 15 to 105 cm-1. The phase function is a combination of a HG function with g = 0.96 and a 30-60% isotropic phase function. For enamel, absorption is negligible. Dentin scatters strongly in the visible and near IR ( mu s approximately equals 260 cm-1) and absorbs weakly ( mu a approximately equals 4 cm-1). The scattering phase function for dentin is described by a HG function with g = 0.93 and a very weak isotropic scattering component ( approximately 2%).

  6. Highly sensitive mode mapping of whispering-gallery modes by scanning thermocouple-probe microscopy.

    PubMed

    Klein, Angela E; Schmidt, Carsten; Liebsch, Mattes; Janunts, Norik; Dobynde, Mikhail; Tünnermann, Andreas; Pertsch, Thomas

    2014-03-01

    We propose a method for mapping optical near-fields with the help of a thermocouple scanning-probe microscope tip. As the tip scans the sample surface, its apex is heated by light absorption, generating a thermovoltage. The thermovoltage map represents the intensity distribution of light at the sample surface. The measurement technique has been employed to map optical whispering-gallery modes in fused silica microdisk resonators operating at near-infrared wavelengths. The method could potentially be employed for near-field imaging of a variety of systems in the near-infrared and visible spectral range.

  7. Bistability By Self-Reflection In A Saturable Absorber

    NASA Astrophysics Data System (ADS)

    Roso-Franco, Luis

    1987-01-01

    Propagation of laser light through a saturable absorber is theoretically studied. Computed steady state solutions of the Maxwell equations describing the unidimensional propagation of a plane monochromatic wave without introducing the slowly-varying envelope approximation are presented showing how saturation effects can influence the absorption of the field. At a certain range of refractive index and extintion coefficients, computed solutions display a very susprising behaviour, and a self-reflected wave appears inside the absorber. This can be useful for a new kind of biestable device, similar to a standard bistable cavity but with the back mirror self-induced by the light.

  8. Light transport and lasing in complex photonic structures

    NASA Astrophysics Data System (ADS)

    Liew, Seng Fatt

    Complex photonic structures refer to composite optical materials with dielectric constant varying on length scales comparable to optical wavelengths. Light propagation in such heterogeneous composites is greatly different from homogeneous media due to scattering of light in all directions. Interference of these scattered light waves gives rise to many fascinating phenomena and it has been a fast growing research area, both for its fundamental physics and for its practical applications. In this thesis, we have investigated the optical properties of photonic structures with different degree of order, ranging from periodic to random. The first part of this thesis consists of numerical studies of the photonic band gap (PBG) effect in structures from 1D to 3D. From these studies, we have observed that PBG effect in a 1D photonic crystal is robust against uncorrelated disorder due to preservation of long-range positional order. However, in higher dimensions, the short-range positional order alone is sufficient to form PBGs in 2D and 3D photonic amorphous structures (PASS). We have identified several parameters including dielectric filling fraction and degree of order that can be tuned to create a broad isotropic PBG. The largest PBG is produced by the dielectric networks due to local uniformity in their dielectric constant distribution. In addition, we also show that deterministic aperiodic structures (DASs) such as the golden-angle spiral and topological defect structures can support a wide PBG and their optical resonances contain unexpected features compared to those in photonic crystals. Another growing research field based on complex photonic structures is the study of structural color in animals and plants. Previous studies have shown that non-iridescent color can be generated from PASs via single or double scatterings. For better understanding of the coloration mechanisms, we have measured the wavelength-dependent scattering length from the biomimetic samples. Our theoretical modeling and analysis explains why single scattering of light is dominant over multiple scattering in similar biological structures and is responsible for color generation. In collaboration with evolutionary biologists, we examine how closely-related species and populations of butterflies have evolved their structural color. We have used artificial selection on a lab model butterfly to evolve violet color from an ultra-violet brown color. The same coloration mechanism is found in other blue/violet species that have evolved their color in nature, which implies the same evolution path for their nanostructure. While the absorption of light is ubiquitous in nature and in applications, the question remains how absorption modifies the transmission in random media. Therefore, we numerically study the effects of optical absorption on the highest transmission states in a two-dimensional disordered waveguide. Our results show that strong absorption turns the highest transmission channel in random media from diffusive to ballistic-like transport. Finally, we have demonstrated lasing mode selection in a nearly circular semiconductor microdisk laser by shaping the spatial profile of the pump beam. Despite of strong mode overlap, selective pumping suppresses the competing lasing modes by either increasing their thresholds or reducing their power slopes. As a result, we can switch both the lasing frequency and the output direction. This powerful technique can have potential application as an on-chip tunable light source.

  9. Visible-Light-Active Plasmonic Ag-SrTiO3 Nanocomposites for the Degradation of NO in Air with High Selectivity.

    PubMed

    Zhang, Qian; Huang, Yu; Xu, Lifeng; Cao, Jun-ji; Ho, Wingkei; Lee, Shun Cheng

    2016-02-17

    Harnessing inexhaustible solar energy for photocatalytic disposal of nitrogen oxides is of great significance nowadays. In this study, Ag-SrTiO3 nanocomposites (Ag-STO) were synthesized via one-pot solvothermal method for the first time. The deposition of Ag nanoparticles incurs a broad plasmonic resonance absorption in the visible light range, resulting in enhanced visible light driven activity on NO removal in comparison with pristine SrTiO3. The Ag loading amount has a significant influence on light absorption properties of Ag-STO, which further affects the photocatalytic efficiency. It was shown that 0.5% Ag loading onto SrTiO3 (in mass ratio) could remove 30% of NO in a single reaction path under visible light irradiation, which is twice higher than that achieved on pristine SrTiO3. Most importantly, the generation of harmful intermediate (NO2) is largely inhibited over SrTiO3 and Ag-STO nanocomposites, which can be ascribed to the basic surface property of strontium sites. As identified by electron spin resonance (ESR) spectra,·O2(-) and ·OH radicals are the major reactive species for NO oxidation. Essentially speaking, the abundance of reactive oxygen radicals produced over Ag-STO nanocomposites are responsible for the improved photocatalytic activity. This work provides a facile and controllable route to fabricate plasmonic Ag-SrTiO3 nanocomposite photocatalyst featuring high visible light activity and selectivity for NO abatement.

  10. Upconversion induced enhancement of dye sensitized solar cells based on core-shell structured β-NaYF4:Er3+, Yb3+@SiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhou, Ziyao; Wang, Jiahong; Nan, Fan; Bu, Chenghao; Yu, Zhenhua; Liu, Wei; Guo, Shishang; Hu, Hao; Zhao, Xing-Zhong

    2014-01-01

    Upconversion materials have been employed as energy relay materials in dye sensitized solar cells (DSCs) to broaden the range of light absorption. However, the origin of the enhancements can be induced by both upconversion and size-dependent light scattering effects. To clarify the role of the upconversion material in the photoelectrode of DSCs, an upconversion induced device was realized here, which has the size-dependent light scattering effect eliminated via the application of NaYF4:Er3+, Yb3+@SiO2 upconversion nanoparticles (β-NYEY@SiO2 UCNPs). An enhancement of 6% in efficiency was observed for the device. This demonstration provided an insight into the possible further employment of upconversion in DSCs.Upconversion materials have been employed as energy relay materials in dye sensitized solar cells (DSCs) to broaden the range of light absorption. However, the origin of the enhancements can be induced by both upconversion and size-dependent light scattering effects. To clarify the role of the upconversion material in the photoelectrode of DSCs, an upconversion induced device was realized here, which has the size-dependent light scattering effect eliminated via the application of NaYF4:Er3+, Yb3+@SiO2 upconversion nanoparticles (β-NYEY@SiO2 UCNPs). An enhancement of 6% in efficiency was observed for the device. This demonstration provided an insight into the possible further employment of upconversion in DSCs. Electronic supplementary information (ESI) available: Details of preparations and characterizations; the TEM images, EDX measurements, XRD measurements and upconversion emission spectrum of bared β-NYEY nanocrystals; SEM and AFM images of the photoelectrode with different concentrations of β-NYEY nanocrystals; J-V characteristics, EIS measurements and fitted EIS parameters of the DSCs based on five different photoelectrodes. See DOI: 10.1039/c3nr04315k

  11. Light Trapping, Absorption and Solar Energy Harvesting by Artificial Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John, Sajeev

    2014-06-04

    We have studied light trapping in conical pore silicon photonic crystal architectures. We find considerable improvement in solar absorption (relative to nanowires) in a square lattice of conical nano-pores.

  12. Are non-linearity effects of absorption important for MAX-DOAS observations?

    NASA Astrophysics Data System (ADS)

    Pukite, Janis; Wang, Yang; Wagner, Thomas

    2017-04-01

    For scattered light observations the absorption optical depth depends non-linearly on the trace gas concentrations if their absorption is strong. This is the case because the Beer-Lambert law is generally not applicable for scattered light measurements due to many (i.e. more than one) light paths contributing to the measurement. While in many cases a linear approximation can be made, for scenarios with strong absorption non-linear effects cannot always be neglected. This is especially the case for observation geometries with spatially extended and diffuse light paths, especially in satellite limb geometry but also for nadir measurements as well. Fortunately the effects of non-linear effects can be quantified by means of expanding the radiative transfer equation in a Taylor series with respect to the trace gas absorption coefficients. Herewith if necessary (1) the higher order absorption structures can be described as separate fit parameters in the DOAS fit and (2) the algorithm constraints of retrievals of VCDs and profiles can be improved by considering higher order sensitivity parameters. In this study we investigate the contribution of the higher order absorption structures for MAX-DOAS observation geometry for different atmospheric and ground properties (cloud and aerosol effects, trace gas amount, albedo) and geometry (different Sun and viewing angles).

  13. Airborne Remote Sensing of Trafficability in the Coastal Zone

    DTIC Science & Technology

    2009-01-01

    validation instruments: Analytical Spectral Devices (ASD) full-range spectrometer; light weight deflectometer ( LWD ), which measures dynamic deflection...liquid water absorption features. The corresponding bearing strength measured by the LWD was high at the shoreline site and low at the backdune site...REVIEW REMOTE SENSING FIGURE 7 Correlation of in situ grain size, moisture, and bearing strength measurements. Scatterplot of percent moisture vs LWD

  14. Tailoring the light absorption of Ag-PZT thin films by controlling the growth of hexagonal- and cubic-phase Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Hu, Tao; Wang, Zongrong; Ma, Ning; Du, Piyi

    2017-12-01

    PbZr0.52Ti0.48O3 thin films containing hexagonal and cubic Ag nanoparticles (Ag NPs) of various sizes were prepared using the sol-gel technique. During the aging process, Ag ions were photo-reduced to form hexagonal Ag NPs. These NPs were uniform in size, and their uniformity was maintained in the thin films during the heat treatment process. Both the total volume and average size of the hexagonal Ag NPs increased with an increasing Ag ion concentration from 0.02 to 0.08 mol l-1. Meanwhile, the remaining Ag ions were reduced to form unstable Ag-Pb alloy particles with Pb ions during the early heating stage. During subsequent heat treatment, these alloys decomposed to form cubic Ag NPs in the thin films. The absorption range of the thin films, quantified as the full width at half maximum in the ultraviolet-visible absorption spectrum, expanded from 6.3 × 1013 Hz (390-425 nm) to 8.4 × 1013 Hz (383-429 nm) as the Ag NPs/PZT ratio increased from 0.2 to 0.8. This work provides an effective way to broaden the absorption range and enhance the optical properties of such films.

  15. Sulfates as chromophores for multiwavelength photoacoustic imaging phantoms

    NASA Astrophysics Data System (ADS)

    Fonseca, Martina; An, Lu; Beard, Paul; Cox, Ben

    2017-12-01

    As multiwavelength photoacoustic imaging becomes increasingly widely used to obtain quantitative estimates, the need for validation studies conducted on well-characterized experimental phantoms becomes ever more pressing. One challenge that such studies face is the design of stable, well-characterized phantoms and absorbers with properties in a physiologically realistic range. This paper performs a full experimental characterization of aqueous solutions of copper and nickel sulfate, whose properties make them close to ideal as chromophores in multiwavelength photoacoustic imaging phantoms. Their absorption varies linearly with concentration, and they mix linearly. The concentrations needed to yield absorption values within the physiological range are below the saturation limit. The shape of their absorption spectra makes them useful analogs for oxy- and deoxyhemoglobin. They display long-term photostability (no indication of bleaching) as well as resistance to transient effects (no saturable absorption phenomena), and are therefore suitable for exposure to typical pulsed photoacoustic light sources, even when exposed to the high number of pulses required in scanning photoacoustic imaging systems. In addition, solutions with tissue-realistic, predictable, and stable scattering can be prepared by mixing sulfates and Intralipid, as long as an appropriate emulsifier is used. Finally, the Grüneisen parameter of the sulfates was found to be larger than that of water and increased linearly with concentration.

  16. Unmixing chromophores in human skin with a 3D multispectral optoacoustic mesoscopy system

    NASA Astrophysics Data System (ADS)

    Schwarz, Mathias; Aguirre, Juan; Soliman, Dominik; Buehler, Andreas; Ntziachristos, Vasilis

    2016-03-01

    The absorption of visible light by human skin is governed by a number of natural chromophores: Eumelanin, pheomelanin, oxyhemoglobin, and deoxyhemoglobin are the major absorbers in the visible range in cutaneous tissue. Label-free quantification of these tissue chromophores is an important step of optoacoustic (photoacoustic) imaging towards clinical application, since it provides relevant information in diseases. In tumor cells, for instance, there are metabolic changes (Warburg effect) compared to healthy cells, leading to changes in oxygenation in the environment of tumors. In malignant melanoma changes in the absorption spectrum have been observed compared to the spectrum of nonmalignant nevi. So far, optoacoustic imaging has been applied to human skin mostly in single-wavelength mode, providing anatomical information but no functional information. In this work, we excited the tissue by a tunable laser source in the spectral range from 413-680 nm with a repetition rate of 50 Hz. The laser was operated in wavelengthsweep mode emitting consecutive pulses at various wavelengths that allowed for automatic co-registration of the multispectral datasets. The multispectral raster-scan optoacoustic mesoscopy (MSOM) system provides a lateral resolution of <60 μm independent of wavelength. Based on the known absorption spectra of melanin, oxyhemoglobin, and deoxyhemoglobin, three-dimensional absorption maps of all three absorbers were calculated from the multispectral dataset.

  17. High-performance dispersive Raman and absorption spectroscopy as tools for drug identification

    NASA Astrophysics Data System (ADS)

    Pawluczyk, Olga; Andrey, Sam; Nogas, Paul; Roy, Andrew; Pawluczyk, Romuald

    2009-02-01

    Due to increasing availability of pharmaceuticals from many sources, a need is growing to quickly and efficiently analyze substances in terms of the consistency and accuracy of their chemical composition. Differences in chemical composition occur at very low concentrations, so that highly sensitive analytical methods become crucial. Recent progress in dispersive spectroscopy with the use of 2-dimensional detector arrays, permits for signal integration along a long (up to 12 mm long) entrance slit of a spectrometer, thereby increasing signal to noise ratio and improving the ability to detect small concentration changes. This is achieved with a non-scanning, non-destructive system. Two different methods using P&P Optica high performance spectrometers were used. High performance optical dispersion Raman and high performance optical absorption spectroscopy were employed to differentiate various acetaminophen-containing drugs, such as Tylenol and other generic brands, which differ in their ingredients. A 785 nm excitation wavelength was used in Raman measurements and strong Raman signals were observed in the spectral range 300-1800 cm-1. Measurements with the absorption spectrometer were performed in the wavelength range 620-1020 nm. Both Raman and absorption techniques used transmission light spectrometers with volume phase holographic gratings and provided sufficient spectral differences, often structural, allowing for drug differentiation.

  18. Progress in thin-film silicon solar cells based on photonic-crystal structures

    NASA Astrophysics Data System (ADS)

    Ishizaki, Kenji; De Zoysa, Menaka; Tanaka, Yoshinori; Jeon, Seung-Woo; Noda, Susumu

    2018-06-01

    We review the recent progress in thin-film silicon solar cells with photonic crystals, where absorption enhancement is achieved by using large-area resonant effects in photonic crystals. First, a definitive guideline for enhancing light absorption in a wide wavelength range (600–1100 nm) is introduced, showing that the formation of multiple band edges utilizing higher-order modes confined in the thickness direction and the introduction of photonic superlattice structures enable significant absorption enhancement, exceeding that observed for conventional random scatterers. Subsequently, experimental evidence of this enhancement is demonstrated for a variety of thin-film Si solar cells: ∼500-nm-thick ultrathin microcrystalline silicon cells, few-µm-thick microcrystalline silicon cells, and ∼20-µm-thick thin single-crystalline silicon cells. The high short-circuit current densities and/or efficiencies observed for each cell structure confirm the effectiveness of using multiple band-edge resonant modes of photonic crystals for enhancing broadband absorption in actual solar cells.

  19. Broadband infrared absorption enhancement by electroless-deposited silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Gritti, Claudia; Raza, Søren; Kadkhodazadeh, Shima; Kardynal, Beata; Malureanu, Radu; Mortensen, N. Asger; Lavrinenko, Andrei V.

    2017-01-01

    Decorating semiconductor surfaces with plasmonic nanoparticles (NPs) is considered a viable solution for enhancing the absorptive properties of photovoltaic and photodetecting devices. We propose to deposit silver NPs on top of a semiconductor wafer by a cheap and fast electroless plating technique. Optical characterization confirms that the random array of electroless-deposited NPs improves absorption by up to 20% in a broadband of near-infrared frequencies from the bandgap edge to 2000 nm. Due to the small filling fraction of particles, the reflection in the visible range is practically unchanged, which points to the possible applications of such deposition method for harvesting photons in nanophotonics and photovoltaics. The broadband absorption is a consequence of the resonant behavior of particles with different shapes and sizes, which strongly localize the incident light at the interface of a high-index semiconductor substrate. Our hypothesis is substantiated by examining the plasmonic response of the electroless-deposited NPs using both electron energy loss spectroscopy and numerical calculations.

  20. Optical levitation of 10-ng spheres with nano-g acceleration sensitivity

    NASA Astrophysics Data System (ADS)

    Monteiro, Fernando; Ghosh, Sumita; Fine, Adam Getzels; Moore, David C.

    2017-12-01

    We demonstrate optical levitation of SiO2 spheres with masses ranging from 0.1 to 30 ng. In high vacuum, we observe that the measured acceleration sensitivity improves for larger masses and obtain a sensitivity of 0.4 ×10-6g /√{Hz } for a 12-ng sphere, more than an order of magnitude better than previously reported for optically levitated masses. In addition, these techniques permit long integration times and a mean acceleration of (-0.7 ±2.4 [stat] ±0.2 [syst] ) ×10-9g is measured in 1.4 ×104 s. Spheres larger than 10 ng are found to lose mass in high vacuum where heating due to absorption of the trapping laser dominates radiative cooling. This absorption constrains the maximum size of spheres that can be levitated and allows a measurement of the absorption of the trapping light for the commercially available spheres tested here. Spheres consisting of material with lower absorption may allow larger objects to be optically levitated in high vacuum.

  1. Myocardial temperature distribution under cw Nd:YAG laser irradiation in in vitro and in vivo situations: theory and experiment

    NASA Astrophysics Data System (ADS)

    Splinter, Robert; Littmann, Laszlo; Tuntelder, Jan R.; Svenson, Robert H.; Chuang, Chi Hui; Tatsis, George P.; Semenov, Serguei Y.; Nanney, Glenn A.

    1995-01-01

    Tissue samples ranging from 2 to 16 mm in thickness were irradiated at 1064 nm with energies ranging from 40 to 2400 J. Coagulation lesions of in vitro and in vivo experiments were subjected to temperature profiling and submitted for histology. Irreversible damage was calculated with the damage integral formalism, following the bioheat equation solved with Monte Carlo computer light-distribution simula-tions. Numerical temperature rise and coagulation depth compared well with the in vitro results. The in vivo data required a change in the optical properties based on integrating sphere measurements for high irradiance to make the experimental and numerical data converge. The computer model has successfully solved several light-tissue interaction situations in which scattering dominates over absorption.

  2. Thermal tuning of infrared resonant absorbers based on hybrid gold-VO{sub 2} nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocer, Hasan; Department of Electrical Engineering, Turkish Military Academy, 06654 Ankara; Butun, Serkan

    2015-04-20

    Resonant absorbers based on plasmonic materials, metamaterials, and thin films enable spectrally selective absorption filters, where absorption is maximized at the resonance wavelength. By controlling the geometrical parameters of nano/microstructures and materials' refractive indices, resonant absorbers are designed to operate at wide range of wavelengths for applications including absorption filters, thermal emitters, thermophotovoltaic devices, and sensors. However, once resonant absorbers are fabricated, it is rather challenging to control and tune the spectral absorption response. Here, we propose and demonstrate thermally tunable infrared resonant absorbers using hybrid gold-vanadium dioxide (VO{sub 2}) nanostructure arrays. Absorption intensity is tuned from 90% to 20%more » and 96% to 32% using hybrid gold-VO{sub 2} nanowire and nanodisc arrays, respectively, by heating up the absorbers above the phase transition temperature of VO{sub 2} (68 °C). Phase change materials such as VO{sub 2} deliver useful means of altering optical properties as a function of temperature. Absorbers with tunable spectral response can find applications in sensor and detector applications, in which external stimulus such as heat, electrical signal, or light results in a change in the absorption spectrum and intensity.« less

  3. Influence of environmental factors on spectral characteristic of chromophoric dissolved organic matter (CDOM) in Inner Mongolia Plateau, China

    NASA Astrophysics Data System (ADS)

    Wen, Z. D.; Song, K. S.; Zhao, Y.; Du, J.; Ma, J. H.

    2015-06-01

    Spectral characteristics of chromophoric dissolved organic matter (CDOM) were examined in conjunction with environmental factors in the waters of 22 rivers and 26 terminal waters in Hulun Buir plateau, northeast China. Dissolved organic carbon (DOC), total nitrogen (TN), and total phosphorous (TP) were significantly higher in terminal waters than rivers waters (p < 0.01). Principal component analysis (PCA) indicated that non-water light absorption and anthropogenic nutrient disturbances might be the causes of the diversity of water quality parameters in Hulun Buir plateau. CDOM absorption in river waters was significantly lower than terminal waters (p < 0.01). Analysis of ratio of absorption at 250-365 nm (E250 : 365), specific UV absorbance (SUVA254), and spectral slope ratio (Sr) indicated that CDOM in river waters had higher aromaticity, molecular weight, and vascular plant contribution than in terminal waters. Furthermore, results showed that DOC concentration, CDOM light absorption, and the proportion of autochthonous sources of CDOM in plateau waters were all higher than in other freshwater rivers reported in the literature. The strong evapoconcentration, intense ultraviolet irradiance and landscape features of Hulun Buir plateau may be responsible for the above phenomenon. Redundancy analysis (RDA) indicated that the environmental variables TSM, TN, and EC had a strong correlation with light absorption characteristics, followed by TDS and chlorophyll a. In most sampling locations, CDOM was the dominant non-water light-absorbing substance. Light absorption by non-algal particles often exceeded that by phytoplankton in the plateau waters. Study of these optical-physicochemical correlations is helpful in the evaluation of the potential influence of water quality factors on non-water light absorption in cold plateau water environments. And the study on organic carbon in plateau lakes had a vital contribution to global carbon balance estimation.

  4. Chemical and Optical Properties of Water-Soluble Organic Aerosols from Biomass Burning Emissions

    NASA Astrophysics Data System (ADS)

    Yu, J. M.; Park, S.; Cho, S. Y.

    2016-12-01

    Light absorption property by organic aerosols is an important parameter to determine their radiative forcing on global and regional scales. However, the optical measurements by light absorbing aerosols from biomass burning emissions are rather lacking. This study explored the chemical and light-absorption properties of humic-like substances (HULIS) from biomass burning aerosols of three types; rice straw (RS), pine needles (PN), and sesame stem (SS). Water-soluble organic carbon (WSOC) contributed 42.5, 42.0, and 57.0% to the OC concentrations of the RS, PN, and SS emissions, respectively. Respective HULIS (=1.94´HULIS-C) concentrations accounted for 29.5±2.0, 15.3±3.1, and 25.8±4.0% of PM2.5, and contributed 63±5, 36±10, and 51±8% to WSOC concentration. Absorption Ångström exponents (AAEs) of the WSOC fitted between 300 and 400 nm wavelengths were 7.4-8.3, indicating no significant differences among the biomass types. These AAEs are similar to those reported for aqueous extracts of biomass burning HULIS and fresh secondary organic aerosols from ozonolysis of terpenes. HULIS, which is a hydrophobic part of WSOC and a significant fraction of brown carbon, showed absorption spectra similar to brown carbon. WSOC mass absorption efficiency (MAE365) at 365 nm were 1.37, 0.86, and 1.38 m2/g×C for RS, PN, and SS burning aerosols, respectively. The MAE values by WSOC were less than 10% of MAE caused by light-absorbing black carbon. The light absorption of the water extracts at 365 nm indicated that light absorption was more strongly associated with HULIS from biomass burning emissions than with the hydrophilic WSOC fraction.

  5. Photodetector with enhanced light absorption

    DOEpatents

    Kane, James

    1985-01-01

    A photodetector including a light transmissive electrically conducting layer having a textured surface with a semiconductor body thereon. This layer traps incident light thereby enhancing the absorption of light by the semiconductor body. A photodetector comprising a textured light transmissive electrically conducting layer of SnO.sub.2 and a body of hydrogenated amorphous silicon has a conversion efficiency about fifty percent greater than that of comparative cells. The invention also includes a method of fabricating the photodetector of the invention.

  6. Optical Properties of the Organic Semiconductor Polyacetylene.

    NASA Astrophysics Data System (ADS)

    Feldblum, Avinoam Y.

    Polyacetylene is the prototype conducting organic polymer. In its pristine form, it exhibits physical properties closely resembling those of a conventional inorganic semiconductor. When chemically or electrochemically doped, the polymer undergoes a semiconductor-metal transition. The nature of lightly doped polyacetylene, prior to the metallic transition, is not well understood. In addition, there still remain questions as to the nature of the pristine film itself. In this thesis, optical absorption experiments were performed in order to gain a clearer understanding of the electronic structure of polyacetylene. To attain this understanding, opto-electrochemical spectroscopy (OES), a new technique combining optical measurements with in situ electrochemical doping was developed. Optical absorption measurements were performed on cis-(CH)(,x) in order to examine doping induced isomerization. When doped to metallic levels followed by compensation or undoping, cis-(CH)(,x) isomerizes to trans-(CH)(,x). Using OES, one finds that with light doping, the main contribution to the midgap transition comes from the small trans content in the film. Electrochemical cycling shows isomerization beginning below y = 0.01 and repeated cycling to different concentrations indicate that the total isomerization depends on the value of the highest dopant level. These results suggest that upon light doping, the trans-(CH)(,x) dopes first, followed by enough cis-(CH)(,x) isomerizing to accomodate the injected charge. A quantitative study of the effects of doping on the absorption coefficient of trans-(CH)(,x) was carried out using OES. Upon doping, the interband absorption uniformly decreases over an extremely wide range. A strong absorbtion appeared at mid-gap; its oscillator strength increasing linearly with dopant concentration. A weak shoulder is observed on the interband edge which grows at low concentrations and then decreases to zero by 4%. These results agree with the predictions of the soliton model--the midgap absorption is identified as a soliton level and the shoulder as a transition between localized polaron levels. The pressure dependence of the photoabsorption of cis- and trans-(CH)(,x) has been measured. In both cases the bandedge shifted to a lower energy, and the value of the peak absorption coefficient decreased. These results suggest that the observed bandwidth is due primarily to the transverse transfer integral.

  7. Black Carbon Emissions from Associated Natural Gas Flaring.

    PubMed

    Weyant, Cheryl L; Shepson, Paul B; Subramanian, R; Cambaliza, Maria O L; Heimburger, Alexie; McCabe, David; Baum, Ellen; Stirm, Brian H; Bond, Tami C

    2016-02-16

    Approximately 150 billion cubic meters (BCM) of natural gas is flared and vented in the world annually, emitting greenhouse gases and other pollutants with no energy benefit. About 7 BCM per year is flared in the United States, and half is from North Dakota alone. There are few emission measurements from associated gas flares and limited black carbon (BC) emission factors have been previously reported from the field. Emission plumes from 26 individual flares in the Bakken formation in North Dakota were sampled. Methane, carbon dioxide, and BC were measured simultaneously, allowing the calculation of BC mass emission factors using the carbon balance method. Particle optical absorption was measured using a three-wavelength particle soot absorption photometer (PSAP) and BC particle number and mass concentrations were measured with a single particle soot photometer. The BC emission factors varied over 2 orders of magnitude, with an average and uncertainty range of 0.14 ± 0.12 g/kg hydrocarbons in associated gas and a median of 0.07 g/kg which represents a lower bound on these measurements. An estimation of the BC emission factor derived from PSAP absorption provides an upper bound at 3.1 g/kg. These results are lower than previous estimations and laboratory measurements. The BC mass absorption cross section was 16 ± 12 m(2)/g BC at 530 nm. The average absorption Ångström exponent was 1.2 ± 0.8, suggesting that most of the light absorbing aerosol measured was black carbon and the contribution of light absorbing organic carbon was small.

  8. Light Absorption of Stratospheric Aerosols: Long-Term Trend and Contribution by Aircraft

    NASA Technical Reports Server (NTRS)

    Pueschel , R. F.; Gore, Waren J. Y. (Technical Monitor)

    1997-01-01

    Measurements of aerosol light-absorption coefficients are useful for studies of radiative transfer and heating rates. Ogren appears to have published the first light- absorption coefficients in the stratosphere in 1981, followed by Clarke in 1983 and Pueschel in 1992. Because most stratospheric soot appears to be due to aircraft operations, application of an aircraft soot aerosol emission index to projected fuel consumption suggests a threefold increase of soot loading and light absorption by 2025. Together, those four data sets indicate an increase in mid-visible light extinction at a rate of 6 % per year. This trend is similar to the increase per year of sulfuric acid aerosol and of commercial fleet size. The proportionality between stepped-up aircraft operations above the tropopause and increases in stratospheric soot and sulfuric acid aerosol implicate aircraft as a source of stratospheric pollution. Because the strongly light-absorbing soot and the predominantly light-scattering sulfuric acid aerosol increase at similar rates, however, the mid-visible stratospheric aerosol single scatter albedo is expected to remain constant and not approach a critical value of 0.98 at which stratospheric cooling could change to warming.

  9. Investigation of black and brown carbon multiple-wavelength-dependent light absorption from biomass and fossil fuel combustion source emissions

    Treesearch

    Michael R. Olson; Mercedes Victoria Garcia; Michael A. Robinson; Paul Van Rooy; Mark A. Dietenberger; Michael Bergin; James Jay Schauer

    2015-01-01

    Quantification of the black carbon (BC) and brown carbon (BrC) components of source emissions is critical to understanding the impact combustion aerosols have on atmospheric light absorption. Multiple-wavelength absorption was measured from fuels including wood, agricultural biomass, coals, plant matter, and petroleum distillates in controlled combustion settings....

  10. Modelling the effect of diffuse light on canopy photosynthesis in controlled environments

    NASA Technical Reports Server (NTRS)

    Cavazzoni, James; Volk, Tyler; Tubiello, Francesco; Monje, Oscar; Janes, H. W. (Principal Investigator)

    2002-01-01

    A layered canopy model was used to analyze the effects of diffuse light on canopy gross photosynthesis in controlled environment plant growth chambers, where, in contrast to the field, highly diffuse light can occur at high irradiance. The model suggests that high diffuse light fractions (approximately 0.7) and irradiance (1400 micromoles m-2 s-1) may enhance crop life-cycle canopy gross photosynthesis for hydroponic wheat by about 20% compared to direct light at the same irradiance. Our simulations suggest that high accuracy is not needed in specifying diffuse light fractions in chambers between approximately 0.7 and 1, because simulated photosynthesis for closed canopies plateau in this range. We also examined the effect of leaf angle distribution on canopy photosynthesis under growth chamber conditions, as these distributions determine canopy extinction coefficients for direct and diffuse light. We show that the spherical leaf angle distribution is not suitable for modeling photosynthesis of planophile canopies (e.g., soybean and peanut) in growth chambers. Also, the absorption of the light reflected from the surface below the canopy should generally be included in model simulations, as the corresponding albedo values in the photosynthetically active range may be quite high in growth chambers (e.g., approximately 0.5). In addition to the modeling implications, our results suggest that diffuse light conditions should be considered when drawing conclusions from experiments in controlled environments.

  11. Modulated Sine Waves for Differential Absorption Measurements Using a CW Laser System

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F. (Inventor); Lin, Bing (Inventor); Nehrir, Amin R. (Inventor)

    2015-01-01

    A continuous wave Light Detection and Ranging (CW LiDAR) system utilizes two or more laser frequencies and time or range shifted pseudorandom noise (PN) codes to discriminate between the laser frequencies. The performance of these codes can be improved by subtracting out the bias before processing. The CW LiDAR system may be mounted to an artificial satellite orbiting the earth, and the relative strength of the return signal for each frequency can be utilized to determine the concentration of selected gases or other substances in the atmosphere.

  12. Numerical modeling and analytical evaluation of light absorption by gold nanostars

    NASA Astrophysics Data System (ADS)

    Zarkov, Sergey; Akchurin, Georgy; Yakunin, Alexander; Avetisyan, Yuri; Akchurin, Garif; Tuchin, Valery

    2018-04-01

    In this paper, the regularity of local light absorption by gold nanostars (AuNSts) model is studied by method of numerical simulation. The mutual diffraction influence of individual geometric fragments of AuNSts is analyzed. A comparison is made with an approximate analytical approach for estimating the average bulk density of absorbed power and total absorbed power by individual geometric fragments of AuNSts. It is shown that the results of the approximate analytical estimate are in qualitative agreement with the numerical calculations of the light absorption by AuNSts.

  13. First-principle study of phosphors for white-LED applications : absorption and emission energies for Ce- and Eu-doped hosts.

    NASA Astrophysics Data System (ADS)

    Gonze, Xavier; Jia, Yongchao; Miglio, Anna; Giantomassi, Matteo; Ponce, Samuel; Mikami, Masayoshi

    After the invasion of compact fluorescent lamps, white LED lighting is becoming a major contender in ecofriendly light sources, with a combination of yellow-, green- and/or red-emitting phosphors partly absorbing the blue light emitted by an InGaN LED. After introducing the semi-empirical Dorenbos model for 4f' 5d transition energies of rare earth ions, I present a first-principle study of two dozen compounds, pristine as well as doped with Ce3+ or Eu2+ ions, in view of explaining their different emission color. The neutral excitation of the ions is simulated through a constrained density functional theory method coupled with a delta SCF analysis of total energies, yielding absorption energies. Then, atomic positions in the excited state are relaxed, yielding emission energies and Stokes shifts, and identification of luminescent centers. In case of the Ce doped materials, the first-principle approach matches experimental data within 0.3 eV for both absorption and emission energies, covering a range of values between 2.0 eV and 5.0 eV, and provides Stokes shifts within 30%, with two exceptions. This is significantly better than the semi-empirical Dorenbos model. A similar analysis is performed for Eu-doped materials, also examining the thermal quenching of two oxynitride hosts. The work was supported by the FRS-FNRS Belgium (PDR Grant T.0238.13 - AIXPHO).

  14. Magnetic Origin of Black Hole Winds Across the Mass Scale

    NASA Technical Reports Server (NTRS)

    Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Tombesi, Francesco; Contopoulos, Ioannis

    2017-01-01

    Black hole accretion disks appear to produce invariably plasma outflows that result in blue-shifted absorption features in their spectra. The X-ray absorption-line properties of these outflows are quite diverse, ranging in velocity from non-relativistic (approx. 300 km/sec) to sub-relativistic (approx. 0.1c where c is the speed of light) and a similarly broad range in the ionization states of the wind plasma. We report here that semi-analytic, self-similar magnetohydrodynamic (MHD) wind models that have successfully accounted for the X-ray absorber properties of supermassive black holes, also fit well the high-resolution X-ray spectrum of the accreting stellar-mass black hole, GRO J1655-40. This provides an explicit theoretical argument of their MHD origin (aligned with earlier observational claims) and supports the notion of a universal magnetic structure of the observed winds across all known black hole sizes.

  15. Absorption spectra of adenocarcinoma and squamous cell carcinoma cervical tissues

    NASA Astrophysics Data System (ADS)

    Ivashko, Pavlo; Peresunko, Olexander; Zelinska, Natalia; Alonova, Marina

    2014-08-01

    We studied a methods of assessment of a connective tissue of cervix in terms of specific volume of fibrous component and an optical density of staining of connective tissue fibers in the stroma of squamous cancer and cervix adenocarcinoma. An absorption spectra of blood plasma of the patients suffering from squamous cancer and cervix adenocarcinoma both before the surgery and in postsurgical periods were obtained. Linear dichroism measurements transmittance in polarized light at different orientations of the polarization plane relative to the direction of the dominant orientation in the structure of the sample of biotissues of stroma of squamous cancer and cervix adenocarcinoma were carried. Results of the investigation of the tumor tissues showed that the magnitude of the linear dichroism Δ is insignificant in the researched spectral range λ=280-840 nm and specific regularities in its change observed short-wave ranges.

  16. Comparison of absorption spectra of adenocarcinoma and squamous cell carcinoma cervical tissue

    NASA Astrophysics Data System (ADS)

    Peresunko, O. P.; Zelinska, N. V.; Prydij, O. G.; Zymnyakov, D. A.; Ushakova, O. V.

    2013-12-01

    We studied a methods of assessment of a connective tissue of cervix in terms of specific volume of fibrous component and an optical density of staining of connective tissue fibers in the stroma of squamous cancer and cervix adenocarcinoma. An absorption spectra of blood plasma of the patients suffering from squamous cancer and cervix adenocarcinoma both before the surgery and in postsurgical periods were obtained. Linear dichroism measurements transmittance in polarized light at different orientations of the polarization plane relative to the direction of the dominant orientation in the structure of the sample of biotissues of stroma of squamous cancer and cervix adenocarcinoma were carried. Results of the investigation of the tumor tissues showed that the magnitude of the linear dichroism Δ is insignificant in the researched spectral range λ=280-840 nm and specific regularities in its change observed short-wave ranges.

  17. Physical and optical properties of aged biomass burning aerosol from wildfires in Siberia and the Western USA at the Mt. Bachelor Observatory

    NASA Astrophysics Data System (ADS)

    Laing, James R.; Jaffe, Daniel A.; Hee, Jonathan R.

    2016-12-01

    The summer of 2015 was an extreme forest fire year in the Pacific Northwest. Our sample site at the Mt. Bachelor Observatory (MBO, 2.7 km a.s.l.) in central Oregon observed biomass burning (BB) events more than 50 % of the time during August. In this paper we characterize the aerosol physical and optical properties of 19 aged BB events during August 2015. Six of the 19 events were influenced by Siberian fires originating near Lake Baikal that were transported to MBO over 4-10 days. The remainder of the events resulted from wildfires in Northern California and Southwestern Oregon with transport times to MBO ranging from 3 to 35 h. Fine particulate matter (PM1), carbon monoxide (CO), aerosol light scattering coefficients (σscat), aerosol light absorption coefficients (σabs), and aerosol number size distributions were measured throughout the campaign. We found that the Siberian events had a significantly higher Δσabs/ΔCO enhancement ratio, higher mass absorption efficiency (MAE; Δσabs/ΔPM1), lower single scattering albedo (ω), and lower absorption Ångström exponent (AAE) when compared with the regional events. We suggest that the observed Siberian events represent that portion of the plume that has hotter flaming fire conditions and thus enabled strong pyroconvective lofting and long-range transport to MBO. The Siberian events observed at MBO therefore represent a selected portion of the original plume that would then have preferentially higher black carbon emissions and thus an enhancement in absorption. The lower AAE values in the Siberian events compared to regional events indicate a lack of brown carbon (BrC) production by the Siberian fires or a loss of BrC during transport. We found that mass scattering efficiencies (MSE) for the BB events ranged from 2.50 to 4.76 m2 g-1. We measured aerosol size distributions with a scanning mobility particle sizer (SMPS). Number size distributions ranged from unimodal to bimodal and had geometric mean diameters (Dpm) ranging from 138 to 229 nm and geometric standard deviations (σg) ranging from 1.53 to 1.89. We found MSEs for BB events to be positively correlated with the geometric mean of the aerosol size distributions (R2 = 0.73), which agrees with Mie theory. We did not find any dependence on event size distribution to transport time or fire source location.

  18. Remote sensing of atmospheric NO2 by employing the continuous-wave differential absorption lidar technique.

    PubMed

    Mei, Liang; Guan, Peng; Kong, Zheng

    2017-10-02

    Differential absorption lidar (DIAL) technique employed for remote sensing has been so far based on the sophisticated narrow-band pulsed laser sources, which require intensive maintenance during operation. In this work, a continuous-wave (CW) NO 2 DIAL system based on the Scheimpflug principle has been developed by employing a compact high-power CW multimode 450 nm laser diode as the light source. Laser emissions at the on-line and off-line wavelengths of the NO 2 absorption spectrum are implemented by tuning the injection current of the laser diode. Lidar signals are detected by a 45° tilted area CCD image sensor satisfying the Scheimpflug principle. Range-resolved NO 2 concentrations on a near-horizontal path are obtained by the NO 2 DIAL system in the range of 0.3-3 km and show good agreement with those measured by a conventional air pollution monitoring station. A detection sensitivity of ± 0.9 ppbv at 95% confidence level in the region of 0.3-1 km is achieved with 15-minute averaging and 700 m range resolution during hours of darkness, which allows accurate concentration measurement of ambient NO 2 . The low-cost and robust DIAL system demonstrated in this work opens up many possibilities for field NO 2 remote sensing applications.

  19. Molecular Chemistry of Atmospheric Brown Carbon Inferred from a Nationwide Biomass Burning Event

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Peng; Bluvshtein, Nir; Rudich, Yinon

    Lag Ba'Omer, a nationwide bonfire festival in Israel, was chosen as a case study to investigate the influence of a major biomass burning event on the light absorption properties of atmospheric brown carbon (BrC). The chemical composition and optical properties of BrC chromophores were investigated using a high performance liquid chromatography (HPLC) platform coupled to photo diode array (PDA) and high resolution mass spectrometry (HRMS) detectors. Substantial increase of BrC light absorption coefficient was observed during the night-long biomass burning event. Most chromophores observed during the event were attributed to nitroaromatic compounds, comprising 28 elemental formulas of at least 63more » structural isomers. The NAC, in combination, accounted for 50-80% of the total visible light absorption (> 400 nm) by solvent extractable BrC. The results highlight that NAC, particular nitrophenols, are important light absorption contributors of biomass burning organic aerosol (BBOA), suggesting that night time chemistry of ·NO 3 and N 2O 5 with particles may play a significant role in atmospheric transformations of BrC. Nitrophenols and related compounds were especially important chromophores of BBOA. The absorption spectra of the BrC chromophores are influenced by the extraction solvent and solution pH, implying that the aerosol acidity is an important factor controlling the light absorption properties of BrC.« less

  20. Molecular Chemistry of Atmospheric Brown Carbon Inferred from a Nationwide Biomass Burning Event

    DOE PAGES

    Lin, Peng; Bluvshtein, Nir; Rudich, Yinon; ...

    2017-08-26

    Lag Ba'Omer, a nationwide bonfire festival in Israel, was chosen as a case study to investigate the influence of a major biomass burning event on the light absorption properties of atmospheric brown carbon (BrC). The chemical composition and optical properties of BrC chromophores were investigated using a high performance liquid chromatography (HPLC) platform coupled to photo diode array (PDA) and high resolution mass spectrometry (HRMS) detectors. Substantial increase of BrC light absorption coefficient was observed during the night-long biomass burning event. Most chromophores observed during the event were attributed to nitroaromatic compounds, comprising 28 elemental formulas of at least 63more » structural isomers. The NAC, in combination, accounted for 50-80% of the total visible light absorption (> 400 nm) by solvent extractable BrC. The results highlight that NAC, particular nitrophenols, are important light absorption contributors of biomass burning organic aerosol (BBOA), suggesting that night time chemistry of ·NO 3 and N 2O 5 with particles may play a significant role in atmospheric transformations of BrC. Nitrophenols and related compounds were especially important chromophores of BBOA. The absorption spectra of the BrC chromophores are influenced by the extraction solvent and solution pH, implying that the aerosol acidity is an important factor controlling the light absorption properties of BrC.« less

  1. In situ aerosol optics in Reno, NV, USA during and after the summer 2008 California wildfires and the influence of absorbing and non-absorbing organic coatings on spectral light absorption

    NASA Astrophysics Data System (ADS)

    Gyawali, M.; Arnott, W. P.; Lewis, K.; Moosmüller, H.

    2009-10-01

    Hundreds of wildfires in Northern California were sparked by lightning during the summer of 2008, resulting in downwind smoke for the months of June and July. Comparisons are reported for aerosol optics measurements in Reno, Nevada made during the very smoky month of July and the relatively clean month of August. Photoacoustic instruments equipped with integrating nephelometers were used to measure aerosol light scattering and absorption coefficients at wavelengths of 405 nm and 870 nm, revealing a strong variation of aerosol light absorption with wavelength. Insight on fuels burned is gleaned from comparison of Ångström exponents of absorption (AEA) versus single scattering albedo (SSA) of the ambient measurements with laboratory biomass smoke measurements for many fuels. Measurements during the month of August, which were largely unaffected by fire smoke, exhibit surprisingly low AEA for aerosol light absorption when the SSA is highest, again likely as a consequence of the underappreciated wavelength dependence of aerosol light absorption by particles coated with non-absorbing organic and inorganic matter. Coated sphere calculations were used to show that AEA as large as 1.6 are possible for wood smoke even with non-absorbing organic coatings on black carbon cores, suggesting care be exercised when diagnosing AEA.

  2. Performance of a newly designed continuous soot monitoring system (COSMOS).

    PubMed

    Miyazaki, Yuzo; Kondo, Yutaka; Sahu, Lokesh K; Imaru, Junichi; Fukushima, Nobuhiko; Kano, Minoru

    2008-10-01

    We designed a continuous soot monitoring system (COSMOS) for fully automated, high-sensitivity, continuous measurement of light absorption by black carbon (BC) aerosols. The instrument monitors changes in transmittance across an automatically advancing quartz fiber filter tape using an LED at a 565 nm wavelength. To achieve measurements with high sensitivity and a lower detectable light absorption coefficient, COSMOS uses a double-convex lens and optical bundle pipes to maintain high light intensity and signal data are obtained at 1000 Hz. In addition, sampling flow rate and optical unit temperature are actively controlled. The inlet line for COSMOS is heated to 400 degrees C to effectively volatilize non-refractory aerosol components that are internally mixed with BC. In its current form, COSMOS provides BC light absorption measurements with a detection limit of 0.45 Mm(-1) (0.045 microg m(-3) for soot) for 10 min. The unit-to-unit variability is estimated to be within +/- 1%, demonstrating its high reproducibility. The absorption coefficients determined by COSMOS agreed with those by a particle soot absorption photometer (PSAP) to within 1% (r2 = 0.97). The precision (+/- 0.60 Mm(-1)) for 10 min integrated data was better than that of PSAP and an aethalometer under our operating conditions. These results showed that COSMOS achieved both an improved detection limit and higher precision for the filter-based light absorption measurements of BC compared to the existing methods.

  3. Optical band gap studies on lithium aluminum silicate glasses doped with Cr3+ ions

    NASA Astrophysics Data System (ADS)

    El-Diasty, Fouad; Abdel Wahab, Fathy A.; Abdel-Baki, Manal

    2006-11-01

    Lithium aluminum silicate glass system (LAS) implanted with chromium ions is prepared. The reflectance and transmittance measurements are used to determine the dispersion of absorption coefficient. The optical data are explained in terms of the different oxidation states adopted by the chromium ions into the glass network. It is found that the oxidation state of the chromium depends on its concentration. Across a wide spectral range, 0.2-1.6μm, analysis of the fundamental absorption edge provides values for the average energy band gaps for allowed direct and indirect transitions. The optical absorption coefficient just below the absorption edge varies exponentially with photon energy indicating the presence of Urbach's tail. Such tail is decreased with the increase of the chromium dopant. From the analysis of the optical absorption data, the absorption peak at ground state exciton energy, the absorption at band gap, and the free exciton binding energy are determined. The extinction coefficient data are used to determine the Fermi energy level of the studied glasses. The metallization criterion is obtained and discussed exploring the nature of the glasses. The measured IR spectra of the different glasses are used to throw some light on the optical properties of the present glasses correlating them with their structure and composition.

  4. Measuring the Photocatalytic Breakdown of Crystal Violet Dye using a Light Emitting Diode Approach

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; Underwood, Lauren W.; O'Neal, Duane; Pagnutti, Mary; Davis, Bruce A.

    2009-01-01

    A simple method to estimate the photocatalytic reactivity performance of spray-on titanium dioxide coatings for transmissive glass surfaces was developed. This novel technique provides a standardized method to evaluate the efficiency of photocatalytic material systems over a variety of illumination levels. To date, photocatalysis assessments have generally been conducted using mercury black light lamps. Illumination levels for these types of lamps are difficult to vary, consequently limiting their use for assessing material performance under a diverse range of simulated environmental conditions. This new technique uses an ultraviolet (UV) gallium nitride (GaN) light emitting diode (LED) array instead of a traditional black light to initiate and sustain photocatalytic breakdown. This method was tested with a UV-resistant dye (crystal violet) applied to a titanium dioxide coated glass slide. Experimental control is accomplished by applying crystal violet to both titanium dioxide coated slides and uncoated control slides. A slide is illuminated by the UV LED array, at various light levels representative of outdoor and indoor conditions, from the dye side of the slide. To monitor degradation of the dye over time, a temperature-stabilized white light LED, whose emission spectrum overlaps with the dye absorption spectrum, is used to illuminate the opposite side of the slide. Using a spectrometer, the amount of light from the white light LED transmitted through the slide as the dye degrades is monitored as a function of wavelength and time and is subsequently analyzed. In this way, the rate of degradation for photocatalytically coated versus uncoated slide surfaces can be compared. Results demonstrate that the dye absorption decreased much more rapidly on the photocatalytically coated slides than on the control uncoated slides, and that dye degradation is dependent on illumination level. For photocatalytic activity assessment purposes, this experimental configuration and methodology minimizes many external variable effects and enables small changes in absorption to be measured. This research also compares the advantages of this innovative LED light source design over traditional mercury black light systems and non- LED lamp approaches. This novel technology begins to address the growing need for a standard method that can assess the performance of photocatalytic materials before deployment for large scale, real world use.

  5. Room temperature exciton-polariton resonant reflection and suppressed absorption in periodic systems of InGaN quantum wells

    NASA Astrophysics Data System (ADS)

    Bolshakov, A. S.; Chaldyshev, V. V.; Zavarin, E. E.; Sakharov, A. V.; Lundin, W. V.; Tsatsulnikov, A. F.; Yagovkina, M. A.

    2017-04-01

    We studied the optical properties of periodic InGaN/GaN multiple quantum well systems with different numbers of periods. A resonant increase in the optical reflection and simultaneous suppression of the optical absorption have been revealed experimentally at room temperature when the Bragg and exciton resonances were tuned to each other. Numerical modeling with a single set of parameters gave a quantitatively accurate fit of the experimental reflection and transmission spectra in a wide wavelength range and various angles of the light incidence. The model included both exciton resonance and non-resonant band-to-band transitions in the InGaN quantum wells, as well as Rayleigh light scattering in the GaN buffer layer. The analysis also involved x-ray diffraction and photoluminescence data. It allowed us to determine the key parameters of the structure. In particular, the radiative broadening of the InGaN QW excitons was evaluated as 0.20 ± 0.02 meV.

  6. Review of Canadian Light Source facilities for biological applications

    NASA Astrophysics Data System (ADS)

    Grochulski, Pawel; Fodje, Michel; Labiuk, Shaun; Wysokinski, Tomasz W.; Belev, George; Korbas, Malgorzata; Rosendahl, Scott M.

    2017-11-01

    The newly-created Biological and Life Sciences Department at the Canadian Light Source (CLS) encompasses four sets of beamlines devoted to biological studies ranging in scope from the atomic scale to cells, tissues and whole organisms. The Canadian Macromolecular Crystallography Facility (CMCF) consists of two beamlines devoted primarily to crystallographic studies of proteins and other macromolecules. The Mid-Infrared Spectromicroscopy (Mid-IR) beamline focusses on using infrared energy to obtain biochemical, structural and dynamical information about biological systems. The Bio-Medical Imaging and Therapy (BMIT) facility consists of two beamlines devoted to advanced imaging and X-ray therapy techniques. The Biological X-ray Absorption Spectroscopy (BioXAS) facility is being commissioned and houses three beamlines devoted to X-ray absorption spectroscopy and multi-mode X-ray fluorescence imaging. Together, these beamlines provide CLS Users with a powerful array of techniques to study today's most pressing biological questions. We describe these beamlines along with their current powerful features and envisioned future capabilities.

  7. Optical limiting properties of 3,5-dipyrenylvinyleneBODIPY dyes at 532 nm

    NASA Astrophysics Data System (ADS)

    Kubheka, Gugu; Sanusi, Kayode; Mack, John; Nyokong, Tebello

    2018-02-01

    The optical limiting (OL) properties of 3,5-dipyrenylvinyleneBODIPY dyes that contain both electron withdrawing and donating moieties have been investigated by using the z-scan technique at 532 nm in the nanosecond pulse range. The extension of the π-conjugation at the 3,5-positions with pyrenylvinylene groups results in a ca. 200 nm red shift of the main BODIPY spectral band to ca. 700 nm, so there is relatively weak absorbance at 532 nm under ambient light conditions. Reverse saturable absorbance (RSA) profiles are observed in response to incident pulsed laser light that is consistent with a two photon absorption-assisted excited state absorption (ESA) mechanism in CH2Cl2 solution and when the dyes are embedded in poly(bisphenol carbonate A) (PBC) polymer thin films. This demonstrates that 3,5-divinyleneBODIPY dyes are potentially suitable for use in OL applications, since limiting threshold fluence (Ilim) values of below 0.95 J cm-2 are observed when thin films are prepared.

  8. Two-dimensional assembly structure of graphene and TiO2 nanosheets from titanic acid with enhanced visible-light photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Hao, Rong; Guo, Shien; Wang, Xiuwen; Feng, Tong; Feng, Qingmao; Li, Mingxia; Jiang, Baojiang

    2016-06-01

    The titanic acid sheets were prepared by one-step hydrazine hydrate-assisted hydrothermal process. Then the reduced graphite oxide (rGO)@TiO2 nanosheet composites were finally obtained through ultrasonic exfoliation and following calcination treatment process. rGO@TiO2 nanosheet composites show excellent hydrogen production performance under AM1.5 light source. The highest hydrogen evolution yield (923.23 μmol) is nearly two times higher than that of pure TiO2, mainly due to the special electron structure and more active sites for TiO2 nanosheet. The introduction of graphene could improve the TiO2 nanosheet stability and extend visible-light absorption range.

  9. A black body absorber from vertically aligned single-walled carbon nanotubes

    PubMed Central

    Mizuno, Kohei; Ishii, Juntaro; Kishida, Hideo; Hayamizu, Yuhei; Yasuda, Satoshi; Futaba, Don N.; Yumura, Motoo; Hata, Kenji

    2009-01-01

    Among all known materials, we found that a forest of vertically aligned single-walled carbon nanotubes behaves most similarly to a black body, a theoretical material that absorbs all incident light. A requirement for an object to behave as a black body is to perfectly absorb light of all wavelengths. This important feature has not been observed for real materials because materials intrinsically have specific absorption bands because of their structure and composition. We found a material that can absorb light almost perfectly across a very wide spectral range (0.2–200 μm). We attribute this black body behavior to stem from the sparseness and imperfect alignment of the vertical single-walled carbon nanotubes. PMID:19339498

  10. Faraday-Active Fabry-Perot Resonator: Transmission, Reflection, and Emissivity

    NASA Technical Reports Server (NTRS)

    Liptuga, Anatoliy; Morozhenko, Vasyl; Pipa, Viktor; Venger, Evgen; Kostiuk, Theodor

    2011-01-01

    The propagation of light within a semiconductor Faraday-active Fabry-Perot resonator (FAFR) is investigated theoretically and experimentally. It is shown that an external magnetic field radically changes the angular and spectral characteristics of transmission, reflection and emissivity of the resonator not only for polarized, but also for unpolarized light. Suppression of interference patterns and phase inversion of the interference extrema were observed in both monochromatic and polychromatic light. The investigations were carried out for the plane-parallel plates of n-InAs in the spectral range of free charge carrier absorption. The results can be used to create new controllable optical and spectroscopic devices for investigation of Faraday-active material properties and for control of parameters of plane-parallel layers and structures.

  11. Enhanced performances of dye-sensitized solar cells based on Au-TiO2 and Ag-TiO2 plasmonic hybrid nanocomposites

    NASA Astrophysics Data System (ADS)

    Ran, Huili; Fan, Jiajie; Zhang, Xiaoli; Mao, Jing; Shao, Guosheng

    2018-02-01

    Novel double-layer films were prepared and applied to dye-sensitized solar cells (DSSCs) using commercial TiO2 nanoparticles as a bonding underlayer and noble metal (Au and Ag) nanoparticles (NP) and nanowires (NW) incorporated to hybrid TiO2 composites, consisting of 3 dimensional (3D) hierarchical microspheres, 3D hollow spheres, 2 dimensional (2D) nanosheets and commercial P25 nanoparticles, as multifunctional light scattering overlayer. The influence of Au NP, Ag NP, Au NW, and Ag NW on of microstructures of the film electrodes and the photovoltaic (PV) performances of DSSCs was investigated. The result revealed that the ranges and intensity of sunlight absorption, the photo capture ability for dye molecules of the hybrid nanocomposite film electrodes, and the photoelectric conversion efficiency (PCE) of the cells were all significantly enhanced due to the plasmonic effect of the noble metal nanostructures. All composite DSSCs with noble metal nanostructures have higher PCE than the pure TiO2 solar cell. This is attributed the improved electron transport of the noble metal nanostructures, and the improvement of light absorption because of their local surface plasmon resonance (LSPR) effect. Under optical conditions, a PCE of 5.74% was obtained in the TiO2-AgNW DSSC, representing a 25.3% enhancement compared to a reference solar cell based on pure TiO2 film (4.58%). The main reason of the advancement is the improved electron transport of AgNW, the light absorption enhancement on account of the LSPR effect of AgNW, and increased light scattering due to the incorporation of the large one dimensional AgNWs within the photo-anode.

  12. Laser photolysis of caged compounds at 405 nm: photochemical advantages, localisation, phototoxicity and methods for calibration.

    PubMed

    Trigo, Federico F; Corrie, John E T; Ogden, David

    2009-05-30

    Rapid, localised photolytic release of neurotransmitters from caged precursors at synaptic regions in the extracellular space is greatly hampered at irradiation wavelengths in the near-UV, close to the wavelength of maximum absorption of the caged precursor, because of inner-filtering by strong absorption of light in the cage solution between the objective and cell. For this reason two-photon excitation is commonly used for photolysis, particularly at multiple points distributed over large fields; or, with near-UV, if combined with local perfusion of the cage. These methods each have problems: the small cross-sections of common cages with two-photon excitation require high cage concentrations and light intensities near the phototoxic limit, while local perfusion gives non-uniform cage concentrations over the field of view. Single-photon photolysis at 405 nm, although less efficient than at 330-350 nm, with present cages is more efficient than two-photon photolysis. The reduced light absorption in the bulk cage solution permits efficient wide-field uncaging at non-toxic intensities with uniform cage concentration. Full photolysis of MNI-glutamate with 100 micros pulses required intensities of 2 mW microm(-2) at the preparation, shown to be non-toxic with repeated exposures. Light scattering at 405 nm was estimated as 50% at 18 microm depth in 21-day rat cerebellum. Methods are described for: (1) varying the laser spot size; (2) photolysis calibration in the microscope with the caged fluorophore NPE-HPTS over the wavelength range 347-405 nm; and (3) determining the point-spread function of excitation. Furthermore, DM-Nitrophen photolysis at 405 nm was efficient for intracellular investigations of Ca2+-dependent processes.

  13. Organic photochromics for spatial light modulation

    NASA Astrophysics Data System (ADS)

    Kirkby, C. J. G.; Bennion, I.

    1986-02-01

    The feasibility of using fulgide derivatives (FD), a class of thermally stable, fatigue-free photochromic materials (PM), as optically addressed spatial light modulators (SLIM) is analyzed. Photochromism is the property of a material that changes from one physicochemical state to another due to the impingement of light. The PMs are low-resolution but exhibit no granularity as photographic films do, therefore permitting the use of PMs as data or image recording media with direct-read-after-write capability. It is known that the properties of the FDs (of dimethyl succinic anhydride), i.e., the fatigue, thermal stability and absorption band location, can be tailored by control of the location of two of the oxygen links at two locations on the molecule. Manipulating the absorption spectra also allows manipulation of the refractive index, ergo the SLIM capability of the FDs. Molecular substitutions have proven effective for adjustments of the wavelength sensitivities of the FDs. Film thicknesses of 3-10 microns have been shown capable of supporting a practical resolution limit of 100-200 line pairs/mm, a 30 dB dynamic range, a Fourier plane SNR of 50, and an image recycle time of 40 msec.

  14. Method for making a photodetector with enhanced light absorption

    DOEpatents

    Kane, James

    1987-05-05

    A photodetector including a light transmissive electrically conducting layer having a textured surface with a semiconductor body thereon. This layer traps incident light thereby enhancing the absorption of light by the semiconductor body. A photodetector comprising a textured light transmissive electrically conducting layer of SnO.sub.2 and a body of hydrogenated amorphous silicon has a conversion efficiency about fifty percent greater than that of comparative cells. The invention also includes a method of fabricating the photodetector of the invention.

  15. High-efficient light absorption of monolayer graphene via cylindrical dielectric arrays and the sensing application

    NASA Astrophysics Data System (ADS)

    Zhou, Peng; Zheng, Gaige

    2018-04-01

    The efficiency of graphene-based optoelectronic devices is typically limited by the poor absolute absorption of light. A hybrid structure of monolayer graphene with cylindrical titanium dioxide (TiO2) array and aluminum oxide (Al2O3) spacer layer on aluminum (Al) substrate has been proposed to enhance the absorption for two-dimensional (2D) materials. By combining dielectric array with metal substrate, the structure achieves multiple absorption peaks with near unity absorbance at near-infrared wavelengths due to the resonant effect of dielectric array. Completed monolayer graphene is utilized in the design without any demand of manufacture process to form the periodic patterns. Further analysis indicates that the near-field enhancement induced by surface modes gives rise to the high absorption. This favorable field enhancement and tunability of absorption not only open up new approaches to accelerate the light-graphene interaction, but also show great potential for practical applications in high-performance optoelectronic devices, such as modulators and sensors.

  16. Use of analyte-modulated modal power distribution in multimode optical fibers for simultaneous single-wavelength evanescent-wave refractometry and spectrometry.

    PubMed

    Potyrailo, R A; Ruddy, V P; Hieftje, G M

    1999-11-01

    A new method is described for the simultaneous determination of absorbance and refractive index of a sample medium. The method is based on measurement of the analyte-modulated modal power distribution (MPD) in a multimode waveguide. In turn, the MPD is quantified by the far-field spatial pattern and intensity of light, i.e., the Fraunhofer diffraction pattern (registered on a CCD camera), that emerges from a multimode optical fiber. Operationally, light that is sent down the fiber interacts with the surrounding analyte-containing medium by means of the evanescent wave at the fiber boundary. The light flux in the propagating beam and the internal reflection angles within the fiber are both affected by optical absorption connected with the analyte and by the refractive index of the analyte-containing medium. In turn, these angles are reflected in the angular divergence of the beam as it leaves the fiber. As a result, the Fraunhofer diffraction pattern of that beam yields two parameters that can, together, be used to deduce refractive index and absorbance. This MPD based detection offers important advantages over traditional evanescent-wave detection strategies which rely on recording only the total transmitted optical power or its lost fraction. First, simultaneous determination of sample refractive index and absorbance is possible at a single probe wavelength. Second, the sensitivity of refractometric and absorption measurements can be controlled simply, either by adjusting the distance between the end face of the fiber and the CCD detector or by monitoring selected modal groups at the fiber output. As a demonstration of these capabilities, several weakly absorbing solutions were examined, with refractive indices in the range from 1.3330 to 1.4553 and with absorption coefficients in the range 0-16 cm-1. The new detection strategy is likely to be important in applications in which sample coloration varies and when it is necessary to compensate for variations in the refractive index of a sample.

  17. Sensitivity of light interaction computer model to the absorption properties of skin

    NASA Astrophysics Data System (ADS)

    Karsten, A. E.; Singh, A.

    2011-06-01

    Light based treatments offer major benefits to patients. Many of the light based treatments or diagnostic techniques need to penetrate the skin to reach the site of interest. Human skin is a highly scattering medium and the melanin in the epidermal layer of the skin is a major absorber of light in the visible and near infrared wavelength bands. The effect of increasing absorption in the epidermis is tested on skin simulating phantoms as well as on a computer model. Changing the absorption coefficient between 0.1 mm-1 and 1.0 mm-1 resulted in a decrease of light reaching 1 mm into the sample. Transmission through a 1 mm thick sample decreased from 48% to 13% and from 31% to 2% for the different scattering coefficients.

  18. Time domain diffuse optical spectroscopy: In vivo quantification of collagen in breast tissue

    NASA Astrophysics Data System (ADS)

    Taroni, Paola; Pifferi, Antonio; Quarto, Giovanna; Farina, Andrea; Ieva, Francesca; Paganoni, Anna Maria; Abbate, Francesca; Cassano, Enrico; Cubeddu, Rinaldo

    2015-05-01

    Time-resolved diffuse optical spectroscopy provides non-invasively the optical characterization of highly diffusive media, such as biological tissues. Light pulses are injected into the tissue and the effects of light propagation on re-emitted pulses are interpreted with the diffusion theory to assess simultaneously tissue absorption and reduced scattering coefficients. Performing spectral measurements, information on tissue composition and structure is derived applying the Beer law to the measured absorption and an empiric approximation to Mie theory to the reduced scattering. The absorption properties of collagen powder were preliminarily measured in the range of 600-1100 nm using a laboratory set-up for broadband time-resolved diffuse optical spectroscopy. Optical projection images were subsequently acquired in compressed breast geometry on 218 subjects, either healthy or bearing breast lesions, using a portable instrument for optical mammography that operates at 7 wavelengths selected in the range 635-1060 nm. For all subjects, tissue composition was estimated in terms of oxy- and deoxy-hemoglobin, water, lipids, and collagen. Information on tissue microscopic structure was also derived. Good correlation was obtained between mammographic breast density (a strong risk factor for breast cancer) and an optical index based on collagen content and scattering power (that accounts mostly for tissue collagen). Logistic regression applied to all optically derived parameters showed that subjects at high risk for developing breast cancer for their high breast density can effectively be identified based on collagen content and scattering parameters. Tissue composition assessed in breast lesions with a perturbative approach indicated that collagen and hemoglobin content are significantly higher in malignant lesions than in benign ones.

  19. Differential photoacoustic spectroscopy with continuous wave lasers for non-invasive blood glucose monitoring

    NASA Astrophysics Data System (ADS)

    Tanaka, Y.; Tajima, T.; Seyama, M.

    2018-02-01

    We propose a differential photoacoustic spectroscopy (PAS), wherein two wavelengths of light with the same absorbance are selected, and differential signal is linearized by one of the two signals for a non-invasive blood glucose monitoring. PAS has the possibility to overcome the strong optical scattering in tissue, but there are still remaining issues: the water background and instability due to the variation in acoustic resonance conditions. A change in sample solution temperature is one of the causes of the variation in acoustic resonance conditions. Therefore, in this study, we investigated the sensitivity against glucose concentration under the condition where the temperature of the sample water solution ranges 30 to 40 °C. The glucose concentration change is simulated by shifting the wavelength of irradiated laser light, which can effectively change optical absorption. The temperature also affects optical absorption and the acoustic resonance condition (acoustic velocity). A distributed-feedback (DFB) laser, tunable wavelength laser (TWL) and an acoustic sensor were used to obtain the differential PAS signal. The wavelength of the DFB laser was 1.382 μm, and that of TWL was switched from 1.600 to 1.610 μm to simulate the glucose concentration change. Optical absorption by glucose occurs at around 1.600 μm. The sensitivities against temperature are almost the same: 1.9 and 1.8 %/°C for 1.600 and 1.610 μm. That is, the glucose dependence across the whole temperature range remains constant. This implies that temperature correction is available.

  20. General design method of ultra-broadband perfect absorbers based on magnetic polaritons.

    PubMed

    Liu, Yuanbin; Qiu, Jun; Zhao, Junming; Liu, Linhua

    2017-10-02

    Starting from one-dimensional gratings and the theory of magnetic polaritons (MPs), we propose a general design method of ultra-broadband perfect absorbers. Based on the proposed design method, the obtained absorber can keep the spectrum-average absorptance over 99% at normal incidence in a wide range of wavelengths; this work simultaneously reveals the robustness of the absorber to incident angles and polarization angles of incident light. Furthermore, this work shows that the spectral band of perfect absorption can be flexibly extended to near the infrared regime by adjusting the structure dimension. The findings of this work may facilitate the active design of ultra-broadband absorbers based on plasmonic nanostructures.

  1. Optical properties of C28 fullerene cage: A DFT study

    NASA Astrophysics Data System (ADS)

    Paul, Debolina; Bhattacharya, Barnali; Deb, Jyotirmoy; Sarkar, Utpal

    2018-05-01

    Density functional theory methodology have been used to study the optical properties of fullerene C28 with the application of average electric field. The static dielectric constant of C28 is recorded a low value of 1.4. It is observed that the fullerene shows a wide range of absorption in the UV region of the electromagnetic spectrum. The presence of the optical gap in the system as can be observed from the imaginary part of the dielectric function. The observation of small reflectivity suggests its possible uses in hybrid solar cell applications. In addition, due to strong absorption taking place in the UV region, the system could be used in the UV light protection devices.

  2. Nanoparticle optical notch filters

    NASA Astrophysics Data System (ADS)

    Kasinadhuni, Pradeep Kumar

    Developing novel light blocking products involves the design of a nanoparticle optical notch filter, working on the principle of localized surface plasmon resonance (LSPR). These light blocking products can be used in many applications. One such application is to naturally reduce migraine headaches and light sensitivity. Melanopsin ganglion cells present in the retina of the human eye, connect to the suprachiasmatic nucleus (SCN-the body's clock) in the brain, where they participate in the entrainment of the circadian rhythms. As the Melanopsin ganglion cells are involved in triggering the migraine headaches in photophobic patients, it is necessary to block the part of visible spectrum that activates these cells. It is observed from the action potential spectrum of the ganglion cells that they absorb light ranging from 450-500nm (blue-green part) of the visible spectrum with a λmax (peak sensitivity) of around 480nm (blue line). Currently prescribed for migraine patients is the FL-41 coating, which blocks a broad range of wavelengths, including wavelengths associated with melanopsin absorption. The nanoparticle optical notch filter is designed to block light only at 480nm, hence offering an effective prescription for the treatment of migraine headaches.

  3. A Tale of two Cities: Photoacoustic and Aethalometer Measurements Comparisons of Light Absorption in Mexico City and Las Vegas, NV, USA

    NASA Astrophysics Data System (ADS)

    Paredes-Miranda, G.; Arnott, W. P.; Marley, N. A.; Gaffney, J. S.

    2007-05-01

    As part of the Megacity Impacts on Regional and Global Environments, MIRAGE-Mex deployment to Mexico City in the period of 30 days, March 2006, a suite of photoacoustic spectrometers (PAS; W. Arnott & G. Paredes), nephelometer scattering, and aetholemeter absorption instruments (N. Marley & J.Gaffney) were installed to measure at ground level the light absorption and scattering by aerosols at the urban site at Instituto Mexicano del Petroleo (Mexican Oil Institute, denoted by IMP). This IMP site gave in-situ characterization of the Mexico City plume under favorable wind conditions. The PAS used at IMP operates at 532 nm, and conveniently allowed for characterization of gaseous absorption at this wavelength as well. Light scattering measurements are accomplished within the PAS by the reciprocal nephelometery method. In the urban site the aerosol absorption coefficient typically varies between 20 and 180 Mm-1 during the course of the day and significant diurnal variation of the aerosol single scattering albedo was observed. The Las Vegas, NV site was located at East Charleston Street on January-February, 2003. In east Las Vegas typical westerly winds carry the city plume across the site. Comparisons of PAS aerosol light absorption and aetholemeter absorption measurements at 521 nm at both Las Vegas NV and Mexico City sites will be presented. We will also present a broad overview of the diurnal variation of the scattering and absorption as well as the single scattering albedo and fraction of absorption due to gases at the sites in relation to secondary aerosol formation.

  4. Dynamic light absorption of biomass burning organic carbon photochemically aged under natural sunlight

    NASA Astrophysics Data System (ADS)

    Zhong, M.; Jang, M.

    2013-08-01

    Wood burning aerosol produced under smoldering conditions was photochemically aged with different relative humidity (RH) and NOx conditions using a 104 m3 dual outdoor chamber under natural sunlight. Light absorption of organic carbon (OC) was measured over the course of photooxidation using a UV-visible spectrometer connected to an integrating sphere. At high RH, the color decayed rapidly. NOx slightly prolonged the color of wood smoke, suggesting that NOx promotes the formation of chromophores via secondary processes. Overall, the mass absorption cross-section (integrated between 280 nm and 600 nm) of OC increased by 11-54% (except high RH) in the morning and then gradually decreased by 19-68% in the afternoon. This dynamic change in light absorption of wood burning OC can be explained by two mechanisms: chromophore formation and sunlight bleaching. To investigate the effect of chemical transformation on light absorption, wood smoke particles were characterized using various spectrometers. The intensity of fluorescence, which is mainly related to polycyclic aromatic hydrocarbons (PAHs), rapidly decreased with time indicating the potential bleaching of PAHs. A decline of levoglucosan concentrations evinced the change of POA with time. The aerosol water content measured by Fourier transform infrared spectroscopy showed that wood burning aerosol became less hygroscopic as photooxidation proceeded. A similar trend in light absorption changes has been observed in ambient smoke aerosol originating from the 2012 County Line Wildfire in Florida. We conclude that the biomass burning OC becomes less light absorbing after 8-9 h sunlight exposure compared to fresh wood burning OC.

  5. Dynamic light absorption of biomass-burning organic carbon photochemically aged under natural sunlight

    NASA Astrophysics Data System (ADS)

    Zhong, M.; Jang, M.

    2014-02-01

    Wood-burning aerosol produced under smoldering conditions was photochemically aged with different relative humidity (RH) and NOx conditions using a 104 m3 dual outdoor chamber under natural sunlight. Light absorption of organic carbon (OC) was measured over the course of photooxidation using a UV-visible spectrometer connected to an integrating sphere. At high RH, the color decayed rapidly. NOx slightly prolonged the color of wood smoke, suggesting that NOx promotes the formation of chromophores via secondary processes. Overall, the mass absorption cross section (integrated between 280 and 600 nm) of OC increased by 11-54% (except high RH) in the morning and then gradually decreased by 19-68% in the afternoon. This dynamic change in light absorption of wood-burning OC can be explained by two mechanisms: chromophore formation and sunlight bleaching. To investigate the effect of chemical transformation on light absorption, wood smoke particles were characterized using various spectrometers. The intensity of fluorescence, which is mainly related to polycyclic aromatic hydrocarbons (PAHs), rapidly decreased with time, indicating the potential bleaching of PAHs. A decline of levoglucosan concentrations evinced the change of primary organic aerosol with time. The aerosol water content measured by Fourier transform infrared spectroscopy showed that wood-burning aerosol became less hygroscopic as photooxidation proceeded. A similar trend in light absorption changes has been observed in ambient smoke aerosol originating from the 2012 County Line wildfire in Florida. We conclude that the biomass-burning OC becomes less light absorbing after 8-9 h sunlight exposure compared to fresh wood-burning OC.

  6. Relationship between light scattering and absorption due to cytochrome c oxidase reduction during loss of tissue viability in brains of rats

    NASA Astrophysics Data System (ADS)

    Kawauchi, Satoko; Sato, Shunichi; Ooigawa, Hidetoshi; Nawashiro, Hiroshi; Ishihara, Miya; Kikuchi, Makoto

    2008-02-01

    We performed simultaneous measurement of light scattering and absorption due to reduction of cytochrome c oxidase as intrinsic optical signals that are related to morphological characteristics and energy metabolism, respectively, for rat brains after oxygen/glucose deprivation by saline infusion. To detect change in light scattering, we determined the wavelength that was the most insensitive to change in light absorption due to the reduction of cytochrome c oxidase on the basis of multiwavelength analysis of diffuse reflectance data set for each rat. Then the relationships between scattering signal and absorption signals related to the reductions of heme aa 3 (605 nm) and CuA (830 nm) in cytochrome c oxidase were examined. Measurements showed that after starting saline infusion, the reduction of heme aa 3 started first; thereafter triphasic, large scattering change occurred (200-300 s), during which the reduction of CuA started. Despite such complex behaviors of IOSs, almost linear correlations were seen between the scattering signal and the heme aa 3-related absorption signal, while a relatively large animal-to-animal variation was observed in the correlation between the scattering signal and CuA-related absorption signal. Transmission electron microscopic observation revealed that dendritic swelling and mitochondrial deformation occurred in the cortical surface tissue after the triphasic scattering change. These results suggest that mitochondrial energy failure accompanies morphological alteration in the brain tissue and results in change in light scattering; light scattering will become an important indicator of tissue viability in brain.

  7. Light Absorption of Biogenic Aerosol Particles in Amazonia

    NASA Astrophysics Data System (ADS)

    Holanda, B. A.; Artaxo, P.; Ferreira De Brito, J.; Barbosa, H. M.; Andreae, M. O.; Saturno, J.; Pöhlker, C.; Holben, B. N.; Schafer, J.

    2014-12-01

    Aerosol absorption is a key issue in proper calculation of aerosol radiative forcing. Especially in the tropics with the dominance of natural biogenic aerosol and brown carbon, the so called anomalous absorption is of particular interest. A special experiment was designed to study the wavelength dependence of aerosol absorption for PM2.5 as well as for PM10 particles in the wet season in Central Amazonia. Aerosol analysis occurred from May to August 2014, in the ZF2 ecological reservation, situated at about 55 km North of Manaus in very pristine conditions Two 7 wavelengths AE33 Aethalometers were deployed measuring in parallel, but with a PM2.5 and PM10 inlets. Two MAAP (Multiangle Aerosol Absorption Photometer) were operated in parallel with the AE33 exactly at the same PM2.5 and PM10 inlets. Organic and elemental carbon was analyzed using collection with quartz filters and analysis using a Sunset OC/EC analyzer. Aerosol light scattering for 3 wavelengths was measured using Air Photon and TSI Nephelometers. Aerosol size distribution was measured with one TSI SMPS and a GRIMM OPC to have the size range from 10 nm to 10 micrometers. Particles were measured under dry conditions using diffusion dryers. Aerosol optical depth and absorption was also measured with an AERONET sunphotometer operated close to the site. As the experiment was run in the wet season, very low equivalent black carbon (EBC) were measured, with average concentrations around 50 ng/m³ during May, increasing to 130 ng/m³ in June and July. The measurements adjusted for similar wavelengths shows excellent agreement between the MAAP and AE33 for both inlets (PM2.5 and PM10). It was not possible statistically infer absorption from the coarse mode biogenic particles, since the absorption was completely dominated by fine mode particles. AERONET measurements shows very low values of AOD, at 0.17 at 500 nm and 0.13 at 870 nm, with very low absorption AOD values at 0.00086 at 676 nm and 0.0068 at 872 nm. Single scattering albedo values will be calculated.

  8. Tandem resonator reflectance modulator

    DOEpatents

    Fritz, I.J.; Wendt, J.R.

    1994-09-06

    A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors. 8 figs.

  9. The Impact of parasitic loss on solar cells with plasmonic nano-textured rear reflectors.

    PubMed

    Disney, Claire E R; Pillai, Supriya; Green, Martin A

    2017-10-09

    Significant photocurrent enhancement has been demonstrated using plasmonic light-trapping structures comprising nanostructured metallic features at the rear of the cell. These structures have conversely been identified as suffering heightened parasitic absorption into the metal at certain resonant wavelengths severely mitigating benefits of light trapping. In this study, we undertook simulations exploring the relationship between enhanced absorption into the solar cell, and parasitic losses in the metal. These simulations reveal that resonant wavelengths associated with high parasitic losses in the metal could also be associated with high absorption enhancement in the solar cell. We identify mechanisms linking these parasitic losses and absorption enhancements, but found that by ensuring correct design, the light trapping structures will have a positive impact on the overall solar cell performance. Our results clearly show that the large angle scattering provided by the plasmonic nanostructures is the reason for the enhanced absorption observed in the solar cells.

  10. Monolithically Integrated Metal/Semiconductor Tunnel Junction Nanowire Light-Emitting Diodes.

    PubMed

    Sadaf, S M; Ra, Y H; Szkopek, T; Mi, Z

    2016-02-10

    We have demonstrated for the first time an n(++)-GaN/Al/p(++)-GaN backward diode, wherein an epitaxial Al layer serves as the tunnel junction. The resulting p-contact free InGaN/GaN nanowire light-emitting diodes (LEDs) exhibited a low turn-on voltage (∼2.9 V), reduced resistance, and enhanced power, compared to nanowire LEDs without the use of Al tunnel junction or with the incorporation of an n(++)-GaN/p(++)-GaN tunnel junction. This unique Al tunnel junction overcomes some of the critical issues related to conventional GaN-based tunnel junction designs, including stress relaxation, wide depletion region, and light absorption, and holds tremendous promise for realizing low-resistivity, high-brightness III-nitride nanowire LEDs in the visible and deep ultraviolet spectral range. Moreover, the demonstration of monolithic integration of metal and semiconductor nanowire heterojunctions provides a seamless platform for realizing a broad range of multifunctional nanoscale electronic and photonic devices.

  11. A simple fiber-optic microprobe for high resolution light measurements: application in marine sediment

    NASA Technical Reports Server (NTRS)

    Jorgensen, B. B.; Des Marais, D. J.

    1986-01-01

    A fiber-optic microphobe is described which is inexpensive and simple to build and use. It consists of an 80-micrometers optical fiber which at the end is tapered down to a rounded sensing tip of 20-30-micrometers diameter. The detector is a hybrid photodiode/amplifier. The probe has a sensitivity of 0.01 microEinst m-2 s-1 and a spectral range of 300-1,100 nm. Spectral light gradients were measured in fine-grained San Francisco Bay sediment that had an undisturbed diatom coating on the surface. The photic zone of the mud was only 0.4 mm deep. Measured in situ spectra showed extinction maxima at 430-520, 620-630, 670, and 825-850 nm due to absorption by chlorophyll a, carotenoids, phycocyanin, and bacterio-chlorophyll a. Maximum light penetration in the visible range was found in both the violet and the red < or = 400 and > or = 700 nm.

  12. Coherent THz light source based on photo-mixing with a UTC-PD and ASE-free tunable diode laser

    NASA Astrophysics Data System (ADS)

    Fukuoka, D.; Muro, K.; Noda, K.

    2016-02-01

    A terahertz (THz) photo-mixing with a THz wave photo-mixer module using a uni-traveling-carrier photodiode (UTCPD) and home-built 1 μm-band ASE-free tunable external-cavity diode lasers (ECDLs) provides a narrow-band (40 MHz) wide range (up to 4.5 THz) coherent tunable THz light source system. Obtained THz-waves reach 100 nW at 0.9 THz and 100 pW at 4.0 THz. The difference frequency between mixing lights can be tuned over 20 THz, and the frequency tuning has a resettability and an accuracy corresponding to the estimation error of FSR 270 MHz hollow-core etalon as a frequency calibrator, around 1 MHz/THz. Some of dips in the frequency dependence of THz-waves caused by water vaper absorption reach a noise floor of this system, so the dynamic range of this system is demonstrated at least 40 dB in power ratio.

  13. CIE colorimetric system fails to calculate the chroma of a Nd:YAG crystal under the fluorescent illuminant F7

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Chen, Qinghan; Bu, Xianhui; Feng, Pingyun

    2002-06-01

    The rare earth element neodymium doped yttrium aluminum garnet (Nd:YAG) is a laser crystal widely used for producing laser in the infrared range. Neodymium causes many characteristic absorption peaks in the transmittance spectrum of the Nd:YAG crystal in the visible range. The crystal appears pink under daylight and incandescent light, and colorless under fluorescent light. The colorimetric calculation results of chroma under the CIE standard fluorescent illuminant F7 do not agree with the color appearance under fluorescent light. The calculated chroma values should be near zero to agree with a colorless appearance, but it is actually 11.79 in the CIELAB color space. This failure of the colorimetric calculation is caused by the color matching functions of the CIE colorimetric observers. The color matching functions do not agree with the spectral sensitivity curves of the human eye, especially the x(λ) function does not matches the spectral sensitivity curve of the long wavelength cone photoreceptors.

  14. Broadband light absorption enhancement in dye-sensitized solar cells with Au-Ag alloy popcorn nanoparticles

    NASA Astrophysics Data System (ADS)

    Xu, Qi; Liu, Fang; Liu, Yuxiang; Cui, Kaiyu; Feng, Xue; Zhang, Wei; Huang, Yidong

    2013-07-01

    In this paper, we present an investigation on the use of Au-Ag alloy popcorn-shaped nanoparticles (NPs) to realise the broadband optical absorption enhancement of dye-sensitized solar cells (DSCs). Both simulation and experimental results indicate that compared with regular plasmonic NPs, such as nano-spheres, irregular popcorn-shaped alloy NPs exhibit absorption enhancement over a broad wavelength range due to the excitation of localized surface plasmons (LSPs) at different wavelengths. The power conversion efficiency (PCE) of DSCs is enhanced by 16% from 5.26% to 6.09% by incorporating 2.38 wt% Au-Ag alloy popcorn NPs. Moreover, by adding a scattering layer on the exterior of the counter electrode, the popcorn NPs demonstrate an even stronger ability to increase the PCE by 32% from 5.94% to 7.85%, which results from the more efficient excitation of the LSP mode on the popcorn NPs.

  15. Broadband light absorption enhancement in dye-sensitized solar cells with Au-Ag alloy popcorn nanoparticles.

    PubMed

    Xu, Qi; Liu, Fang; Liu, Yuxiang; Cui, Kaiyu; Feng, Xue; Zhang, Wei; Huang, Yidong

    2013-01-01

    In this paper, we present an investigation on the use of Au-Ag alloy popcorn-shaped nanoparticles (NPs) to realise the broadband optical absorption enhancement of dye-sensitized solar cells (DSCs). Both simulation and experimental results indicate that compared with regular plasmonic NPs, such as nano-spheres, irregular popcorn-shaped alloy NPs exhibit absorption enhancement over a broad wavelength range due to the excitation of localized surface plasmons (LSPs) at different wavelengths. The power conversion efficiency (PCE) of DSCs is enhanced by 16% from 5.26% to 6.09% by incorporating 2.38 wt% Au-Ag alloy popcorn NPs. Moreover, by adding a scattering layer on the exterior of the counter electrode, the popcorn NPs demonstrate an even stronger ability to increase the PCE by 32% from 5.94% to 7.85%, which results from the more efficient excitation of the LSP mode on the popcorn NPs.

  16. Broadband light absorption enhancement in dye-sensitized solar cells with Au-Ag alloy popcorn nanoparticles

    PubMed Central

    Xu, Qi; Liu, Fang; Liu, Yuxiang; Cui, Kaiyu; Feng, Xue; Zhang, Wei; Huang, Yidong

    2013-01-01

    In this paper, we present an investigation on the use of Au-Ag alloy popcorn-shaped nanoparticles (NPs) to realise the broadband optical absorption enhancement of dye-sensitized solar cells (DSCs). Both simulation and experimental results indicate that compared with regular plasmonic NPs, such as nano-spheres, irregular popcorn-shaped alloy NPs exhibit absorption enhancement over a broad wavelength range due to the excitation of localized surface plasmons (LSPs) at different wavelengths. The power conversion efficiency (PCE) of DSCs is enhanced by 16% from 5.26% to 6.09% by incorporating 2.38 wt% Au-Ag alloy popcorn NPs. Moreover, by adding a scattering layer on the exterior of the counter electrode, the popcorn NPs demonstrate an even stronger ability to increase the PCE by 32% from 5.94% to 7.85%, which results from the more efficient excitation of the LSP mode on the popcorn NPs. PMID:23817586

  17. The variable He 10830 A line of Algol. [eclipsing binary star

    NASA Technical Reports Server (NTRS)

    Zirin, H.; Liggett, M. A.

    1982-01-01

    Spectra of several eclipses of Algol in the range 10500-11000 A where the line contribution of Algol B is important, are presented. Strong unshifted 10830 (2000 mA) absorption peaks at primary minimum but disappears between phases 0.3 and 0.7. At minimum the line must primarily arise in Algol B, but the presence of 10830 absorption just outside eclipse, when the contribution to the total light of Algol B is small, must be due to excitation of He in the atmosphere of the primary by X-ray irradiation from Algol B, a known X-ray source. A Si I line from Algol B is also detected, and the Pa-gamma line sometimes peaks during eclipse. Even if some of the 10830 absorption comes from Algol A, Algol B still has the strongest 10830 (3000 mA) yet measured in any star.

  18. On the accuracy of aerosol photoacoustic spectrometer calibrations using absorption by ozone

    NASA Astrophysics Data System (ADS)

    Davies, Nicholas W.; Cotterell, Michael I.; Fox, Cathryn; Szpek, Kate; Haywood, Jim M.; Langridge, Justin M.

    2018-04-01

    In recent years, photoacoustic spectroscopy has emerged as an invaluable tool for the accurate measurement of light absorption by atmospheric aerosol. Photoacoustic instruments require calibration, which can be achieved by measuring the photoacoustic signal generated by known quantities of gaseous ozone. Recent work has questioned the validity of this approach at short visible wavelengths (404 nm), indicating systematic calibration errors of the order of a factor of 2. We revisit this result and test the validity of the ozone calibration method using a suite of multipass photoacoustic cells operating at wavelengths 405, 514 and 658 nm. Using aerosolised nigrosin with mobility-selected diameters in the range 250-425 nm, we demonstrate excellent agreement between measured and modelled ensemble absorption cross sections at all wavelengths, thus demonstrating the validity of the ozone-based calibration method for aerosol photoacoustic spectroscopy at visible wavelengths.

  19. Real-time absorption and scattering characterization of slab-shaped turbid samples obtained by a combination of angular and spatially resolved measurements.

    PubMed

    Dam, Jan S; Yavari, Nazila; Sørensen, Søren; Andersson-Engels, Stefan

    2005-07-10

    We present a fast and accurate method for real-time determination of the absorption coefficient, the scattering coefficient, and the anisotropy factor of thin turbid samples by using simple continuous-wave noncoherent light sources. The three optical properties are extracted from recordings of angularly resolved transmittance in addition to spatially resolved diffuse reflectance and transmittance. The applied multivariate calibration and prediction techniques are based on multiple polynomial regression in combination with a Newton--Raphson algorithm. The numerical test results based on Monte Carlo simulations showed mean prediction errors of approximately 0.5% for all three optical properties within ranges typical for biological media. Preliminary experimental results are also presented yielding errors of approximately 5%. Thus the presented methods show a substantial potential for simultaneous absorption and scattering characterization of turbid media.

  20. COMPLEX RUTHENIUM ACIDO-NITROS COMPOUNDS (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zvyagintsev, O.E.; Starostin, S.M.

    1961-06-01

    The chemical nature of the water in the complex ruthenium acidonitroso compounds is studied by measuring certain acid properties, reactions, and behaviors of the compounds in aqueous solution. The dependence of molecular electrical conductivity on time and dilution, variations of specific electroconductivity, the optical density, and the light absorption of the compounds at 200 to 800 m mu wave range were investigated and the dissociation constants were calculated. (R.V.J.)

Top