NASA Astrophysics Data System (ADS)
Hohmann, Martin; Lengenfelder, B.; Kanawade, R.; Klämpfl, F.; Schmidt, Michael
2015-12-01
Coherent light propagating through turbid media is attenuated due to scattering and absorption. The decrease of the intensity of the coherent light is described by the attenuation coefficient. The measured decay of the coherent light through turbid media with optical coherence tomography (OCT) can be used to reconstruct the attenuation coefficient. Since most of the OCT systems work in the near-infrared region, they are the optical window from 800-1400 nm in tissue. Hence, the most part of the attenuation coefficient is caused due to the scattering. Therefore, deriving the attenuation coefficient is one way to get an approximation of the scattering coefficient which is difficult to access even up to day. Moreover, OCT measurements are one of the few possibilities to derive physical properties with micrometre resolution of the media under investigation.
Light attenuation characteristics of glacially-fed lakes
NASA Astrophysics Data System (ADS)
Rose, Kevin C.; Hamilton, David P.; Williamson, Craig E.; McBride, Chris G.; Fischer, Janet M.; Olson, Mark H.; Saros, Jasmine E.; Allan, Mathew G.; Cabrol, Nathalie
2014-07-01
Transparency is a fundamental characteristic of aquatic ecosystems and is highly responsive to changes in climate and land use. The transparency of glacially-fed lakes may be a particularly sensitive sentinel characteristic of these changes. However, little is known about the relative contributions of glacial flour versus other factors affecting light attenuation in these lakes. We sampled 18 glacially-fed lakes in Chile, New Zealand, and the U.S. and Canadian Rocky Mountains to characterize how dissolved absorption, algal biomass (approximated by chlorophyll a), water, and glacial flour contributed to attenuation of ultraviolet radiation (UVR) and photosynthetically active radiation (PAR, 400-700 nm). Variation in attenuation across lakes was related to turbidity, which we used as a proxy for the concentration of glacial flour. Turbidity-specific diffuse attenuation coefficients increased with decreasing wavelength and distance from glaciers. Regional differences in turbidity-specific diffuse attenuation coefficients were observed in short UVR wavelengths (305 and 320 nm) but not at longer UVR wavelengths (380 nm) or PAR. Dissolved absorption coefficients, which are closely correlated with diffuse attenuation coefficients in most non-glacially-fed lakes, represented only about one quarter of diffuse attenuation coefficients in study lakes here, whereas glacial flour contributed about two thirds across UVR and PAR. Understanding the optical characteristics of substances that regulate light attenuation in glacially-fed lakes will help elucidate the signals that these systems provide of broader environmental changes and forecast the effects of climate change on these aquatic ecosystems.
Continuous light absorption photometer for long-term studies
NASA Astrophysics Data System (ADS)
Ogren, John A.; Wendell, Jim; Andrews, Elisabeth; Sheridan, Patrick J.
2017-12-01
A new photometer is described for continuous determination of the aerosol light absorption coefficient, optimized for long-term studies of the climate-forcing properties of aerosols. Measurements of the light attenuation coefficient are made at blue, green, and red wavelengths, with a detection limit of 0.02 Mm-1 and a precision of 4 % for hourly averages. The uncertainty of the light absorption coefficient is primarily determined by the uncertainty of the correction scheme commonly used to convert the measured light attenuation to light absorption coefficient and ranges from about 20 % at sites with high loadings of strongly absorbing aerosols up to 100 % or more at sites with low loadings of weakly absorbing aerosols. Much lower uncertainties (ca. 40 %) for the latter case can be achieved with an advanced correction scheme.
Attenuation coefficient of the light in skin of BALB/c and C57BL/6 mice
NASA Astrophysics Data System (ADS)
Silva, C. R.; Camargo, C. F. M.; Aureliano, D. P.; De Pretto, L. R.; Freitas, A. Z.; Ribeiro, M. S.
2015-06-01
Optical properties of the biological tissue play an important role to a correct use of optical techniques for therapy and diagnosis. The mice skin presents morphological differences due to characteristics such as gender, body mass and age. Murine models are frequently used in pre-clinical trials in optical therapy and diagnosis. Therefore, the assessment of the skin tissue in animal models is needed for a proper understanding of how light interacts with skin. Noninvasive techniques such as optical coherence tomography (OCT) have been used to obtain optical information of the tissue, as the attenuation coefficient, with the advantage of obtaining sectional images in real time. In this study, eight female BALB/c albino mice (twenty-four weeks old) and eight male C57BL/6 black mice (eight weeks old) were used to measure the attenuation coefficient of the light in the skin, utilizing the OCT technique, aiming to check for influence of the aging process. Two moments were assessed twenty-two weeks apart from each other. Our data show that the aging process significantly affects the light attenuation coefficient in mice skin. Twenty-two weeks after, statistical significant differences were observed between groups within a same strain. We conclude that light attenuation coefficient of mice skin may be influenced by factors such as disorganization of the dermis. Morphological aspects of skin should be taken into account in studies that involve optical strategies in murine models.
Nanocomposite Interphases for Improved Transparent Polymer Composite Materials
2008-08-01
intensity of the incident light, A is the attenuation coefficient , and t is the part thickness. The intensity attenuation coefficient is a function of...index that is fairly close to that of fused silica. Most importantly, it has a high thermo- optic coefficient , dn/dt, which results in a large change in...35765K164, McMaster -Carr, Robbinsville, NJ) were attached on the outer side of both aluminum plates as shown, and the temperature was controlled
NASA Astrophysics Data System (ADS)
Bakshi, A. K.; Chatterjee, S.; Palani Selvam, T.; Joshi, V. J.; Chougaonkar, M. P.
2011-10-01
Self attenuation of TL and relative TL efficiency of polytetra fluoro ethylene (PTFE) embedded CaSO 4:Dy disc, LiF:Mg,Ti (MTS) disc and LiF:Mg,Cu,P (MCP-N) chip were determined in the present study for photons of energy 10-34 keV. The relative TL efficiency was determined using an alternative approach in which ratio of experimental response and corrected theoretical response was used instead of measuring the absolute TL emission in photon counting mode. For CaSO 4:Dy disc, it was found that with increasing the proportion of CaSO 4:Dy phosphor in the disc, the light attenuation coefficient increases. The light attenuation coefficient of MTS disc and MCP-N chip was found to be 23.4 and 45.5 cm -1, respectively. The relative TL efficiency in the photon energy range of 10-34 keV for MTS discs and MCP-N chips, evaluated in the present study matches well with the reported values in the literature.
Deep seawater inherent optical properties in the Southern Ionian Sea
NASA Astrophysics Data System (ADS)
Riccobene, G.; Capone, A.; Aiello, S.; Ambriola, M.; Ameli, F.; Amore, I.; Anghinolfi, M.; Anzalone, A.; Avanzini, C.; Barbarino, G.; Barbarito, E.; Battaglieri, M.; Bellotti, R.; Beverini, N.; Bonori, M.; Bouhadef, B.; Brescia, M.; Cacopardo, G.; Cafagna, F.; Caponetto, L.; Castorina, E.; Ceres, A.; Chiarusi, T.; Circella, M.; Cocimano, R.; Coniglione, R.; Cordelli, M.; Costa, M.; Cuneo, S.; D'Amico, A.; de Bonis, G.; de Marzo, C.; de Rosa, G.; de Vita, R.; Distefano, C.; Falchini, E.; Fiorello, C.; Flaminio, V.; Fratini, K.; Gabrielli, A.; Galeotti, S.; Gandolfi, E.; Grimaldi, A.; Habel, R.; Leonora, E.; Lonardo, A.; Longo, G.; Lo Presti, D.; Lucarelli, F.; Maccioni, E.; Margiotta, A.; Martini, A.; Masullo, R.; Megna, R.; Migneco, E.; Mongelli, M.; Montaruli, T.; Morganti, M.; Musumeci, M.; Nicolau, C. A.; Orlando, A.; Osipenko, M.; Osteria, G.; Papaleo, R.; Pappalardo, V.; Petta, C.; Piattelli, P.; Raffaelli, F.; Raia, G.; Randazzo, N.; Reito, S.; Ricco, G.; Ripani, M.; Rovelli, A.; Ruppi, M.; Russo, G. V.; Russo, S.; Russo, S.; Sapienza, P.; Sedita, M.; Schuller, J.-P.; Shirokov, E.; Simeone, F.; Sipala, V.; Spurio, M.; Taiuti, M.; Terreni, G.; Trasatti, L.; Urso, S.; Valente, V.; Vicini, P.
2007-02-01
The NEMO (NEutrino Mediterranean Observatory) Collaboration has been carrying out since 1998 an evaluation programme of deep sea sites suitable for the construction of the future Mediterranean km3 Čerenkov neutrino telescope. We investigated the seawater optical and oceanographic properties of several deep sea marine areas close to the Italian Coast. Inherent optical properties (light absorption and attenuation coefficients) have been measured as a function of depth using an experimental apparatus equipped with standard oceanographic probes and the commercial transmissometer AC9 manufactured by WETLabs. This paper reports on the visible light absorption and attenuation coefficients measured in deep seawater of a marine region located in the Southern Ionian Sea, 60 100 km SE of Capo Passero (Sicily). Data show that blue light absorption coefficient is about 0.015 m-1 (corresponding to an absorption length of 67 m) close to the one of optically pure water and it does not show seasonal variation.
Airborne Polarized Lidar Detection of Scattering Layers in the Ocean
NASA Astrophysics Data System (ADS)
Vasilkov, Alexander P.; Goldin, Yury A.; Gureev, Boris A.; Hoge, Frank E.; Swift, Robert N.; Wright, C. Wayne
2001-08-01
A polarized lidar technique based on measurements of waveforms of the two orthogonal-polarized components of the backscattered light pulse is proposed to retrieve vertical profiles of the seawater scattering coefficient. The physical rationale for the polarized technique is that depolarization of backscattered light originating from a linearly polarized laser beam is caused largely by multiple small-angle scattering from particulate matter in seawater. The magnitude of the small-angle scattering is determined by the scattering coefficient. Therefore information on the vertical distribution of the scattering coefficient can be derived potentially from measurements of the timedepth dependence of depolarization in the backscattered laser pulse. The polarized technique was verified by field measurements conducted in the Middle Atlantic Bight of the western North Atlantic Ocean that were supported by in situ measurements of the beam attenuation coefficient. The airborne polarized lidar measured the timedepth dependence of the backscattered laser pulse in two orthogonal-polarized components. Vertical profiles of the scattering coefficient retrieved from the timedepth depolarization of the backscattered laser pulse were compared with measured profiles of the beam attenuation coefficient. The comparison showed that retrieved profiles of the scattering coefficient clearly reproduce the main features of the measured profiles of the beam attenuation coefficient. Underwater scattering layers were detected at depths of 2025 m in turbid coastal waters. The improvement in dynamic range afforded by the polarized lidar technique offers a strong potential benefit for airborne lidar bathymetric applications.
The relationship between phytoplankton concentration and light attenuation in ocean waters
NASA Technical Reports Server (NTRS)
Phinney, David A.; Yentsch, Charles S.
1986-01-01
The accuracy of chlorophyll estimates by ocean color algorithms is affected by the variability of particulate attenuation; the presence of dissolved organic matter; and the nonlinear inverse relationship between the attenuation coefficient, K, and chlorophyll. Data collected during the Warm Core Rings Program were used to model the downwelling light field and determine the impact of these errors. A possible mechanism for the nonlinearity of K and chlorophyll is suggested; namely, that changing substrate from nitrate-nitrogen to ammonium causes enhanced blue absorption by photosynthetic phytoplankton in oligotrophic surface waters.
Stavn, R H
1988-01-15
The role of the Lambert-Beer law in ocean optics is critically examined. The Lambert-Beer law and the three-parameter model of the submarine light field are used to construct an optical energy budget for any hydrosol. It is further applied to the analytical exponential decay coefficient of the light field and used to estimate the optical properties and effects of the dissolved/suspended component in upper ocean layers. The concepts of the empirical exponential decay coefficient (diffuse attenuation coefficient) of the light field and a constant exponential decay coefficient for molecular water are analyzed quantitatively. A constant exponential decay coefficient for water is rejected. The analytical exponential decay coefficient is used to analyze optical gradients in ocean waters.
Quick and Easy Measurements of the Inherent Optical Property of Water by Laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izadi, Dina; Hajiesmaeilbaigi, Fereshteh
2009-04-19
To generate realistic images of natural waters, one must consider in some detail the interaction of light with the water body. The reflectance and attenuation coefficient of the second harmonic of Nd:YAG laser light through distilled water and a sample of water from the Oman Sea were measured in a solid-state laser laboratory to estimate inherent optical properties of natural waters. These measurements determined the bottom conditions and the impurities of the water. The water's reflectivity varied depending on the angle of incidence, height of the laser from water surface, wavelength of laser light, radiant intensities, and depth of water.more » In these experiments laser light propagated through the water nonlinearly, and different reflectance showed different bottom slopes. The differences among various water samples were obtained taking into account the exponential equation in attenuation coefficient versus depth graphs.« less
Optical properties of tissue, experimental results
NASA Astrophysics Data System (ADS)
Beek, Johan F.
1993-08-01
The effective attenuation coefficient of piglet lung was measured in vitro at 632.8 nm. Interstial fibres with isotropic tips were used to measure the fluence rate as a function of the distance from an isotropic light source. In vitro measurements at 632.8 nm on a lung that was insufflated with oxygen from 50 to 150 ml showed that the effective attenuation coefficient decreases as a function of the volume of air in the lung (at 50 ml /Jeff = 0.297 + 0.011 mnf1, at 100 ml lice 0.150 ± 0.007 mm-1, and at 150 ml /Jeff= 0.1136 + 0.015 mm-1). A single in vitro measurement at 790 nm at an insufflated lung volume of 100 ml gave a comparable result (ii ie = 0.175 + 0.004 mm-1). A ff decrease in effective attenuation coefficient with an ncrease in lung volume was explained by Mie-theory. The effective attenuation coefficient, calculated with 11, and g from Mie-theory, showed a deviation < 22% from the measured in vitro values.
Chantler, C T; Islam, M T; Rae, N A; Tran, C Q; Glover, J L; Barnea, Z
2012-03-01
An extension of the X-ray extended-range technique is described for measuring X-ray mass attenuation coefficients by introducing absolute measurement of a number of foils - the multiple independent foil technique. Illustrating the technique with the results of measurements for gold in the 38-50 keV energy range, it is shown that its use enables selection of the most uniform and well defined of available foils, leading to more accurate measurements; it allows one to test the consistency of independently measured absolute values of the mass attenuation coefficient with those obtained by the thickness transfer method; and it tests the linearity of the response of the counter and counting chain throughout the range of X-ray intensities encountered in a given experiment. In light of the results for gold, the strategy to be ideally employed in measuring absolute X-ray mass attenuation coefficients, X-ray absorption fine structure and related quantities is discussed.
Analysis of the Light Transmission Ability of Reinforcing Glass Fibers Used in Polymer Composites.
Hegedűs, Gergely; Sarkadi, Tamás; Czigány, Tibor
2017-06-10
This goal of our research was to show that E-glass fiber bundles used for reinforcing composites can be enabled to transmit light in a common resin without any special preparation (without removing the sizing). The power of the transmitted light was measured and the attenuation coefficient, which characterizes the fiber bundle, was determined. Although the attenuation coefficient depends on temperature and the wavelength of the light, it is independent of the power of incident light, the quality of coupling, and the length of the specimen. The refractive index of commercially available transparent resins was measured and it was proved that a resin with a refractive index lower than that of the fiber can be used to make a composite whose fibers are capable of transmitting light. The effects of temperature, compression of the fibers, and the shape of fiber ends on the power of transmitted light were examined. The measurement of emitted light can provide information about the health of the fibers. This can be the basis of a simple health monitoring system in the case of general-purpose composite structures.
Analysis of the Light Transmission Ability of Reinforcing Glass Fibers Used in Polymer Composites
Hegedűs, Gergely; Sarkadi, Tamás; Czigány, Tibor
2017-01-01
This goal of our research was to show that E-glass fiber bundles used for reinforcing composites can be enabled to transmit light in a common resin without any special preparation (without removing the sizing). The power of the transmitted light was measured and the attenuation coefficient, which characterizes the fiber bundle, was determined. Although the attenuation coefficient depends on temperature and the wavelength of the light, it is independent of the power of incident light, the quality of coupling, and the length of the specimen. The refractive index of commercially available transparent resins was measured and it was proved that a resin with a refractive index lower than that of the fiber can be used to make a composite whose fibers are capable of transmitting light. The effects of temperature, compression of the fibers, and the shape of fiber ends on the power of transmitted light were examined. The measurement of emitted light can provide information about the health of the fibers. This can be the basis of a simple health monitoring system in the case of general-purpose composite structures. PMID:28772996
A discussion on validity of the diffusion theory by Monte Carlo method
NASA Astrophysics Data System (ADS)
Peng, Dong-qing; Li, Hui; Xie, Shusen
2008-12-01
Diffusion theory was widely used as a basis of the experiments and methods in determining the optical properties of biological tissues. A simple analytical solution could be obtained easily from the diffusion equation after a series of approximations. Thus, a misinterpret of analytical solution would be made: while the effective attenuation coefficient of several semi-infinite bio-tissues were the same, the distribution of light fluence in the tissues would be the same. In order to assess the validity of knowledge above, depth resolved internal fluence of several semi-infinite biological tissues which have the same effective attenuation coefficient were simulated with wide collimated beam in the paper by using Monte Carlo method in different condition. Also, the influence of bio-tissue refractive index on the distribution of light fluence was discussed in detail. Our results showed that, when the refractive index of several bio-tissues which had the same effective attenuation coefficient were the same, the depth resolved internal fluence would be the same; otherwise, the depth resolved internal fluence would be not the same. The change of refractive index of tissue would have affection on the light depth distribution in tissue. Therefore, the refractive index is an important optical property of tissue, and should be taken in account while using the diffusion approximation theory.
Chiarelli, Antonio M.; Maclin, Edward L.; Low, Kathy A.; Fantini, Sergio; Fabiani, Monica; Gratton, Gabriele
2017-01-01
Abstract. Near infrared (NIR) light has been widely used for measuring changes in hemoglobin concentration in the human brain (functional NIR spectroscopy, fNIRS). fNIRS is based on the differential measurement and estimation of absorption perturbations, which, in turn, are based on correctly estimating the absolute parameters of light propagation. To do so, it is essential to accurately characterize the baseline optical properties of tissue (absorption and reduced scattering coefficients). However, because of the diffusive properties of the medium, separate determination of absorption and scattering across the head is challenging. The effective attenuation coefficient (EAC), which is proportional to the geometric mean of absorption and reduced scattering coefficients, can be estimated in a simpler fashion by multidistance light decay measurements. EAC mapping could be of interest for the scientific community because of its absolute information content, and because light propagation is governed by the EAC for source–detector distances exceeding 1 cm, which sense depths extending beyond the scalp and skull layers. Here, we report an EAC mapping procedure that can be applied to standard fNIRS recordings, yielding topographic maps with 2- to 3-cm resolution. Application to human data indicates the importance of venous sinuses in determining regional EAC variations, a factor often overlooked. PMID:28466026
Chiarelli, Antonio M; Maclin, Edward L; Low, Kathy A; Fantini, Sergio; Fabiani, Monica; Gratton, Gabriele
2017-04-01
Near infrared (NIR) light has been widely used for measuring changes in hemoglobin concentration in the human brain (functional NIR spectroscopy, fNIRS). fNIRS is based on the differential measurement and estimation of absorption perturbations, which, in turn, are based on correctly estimating the absolute parameters of light propagation. To do so, it is essential to accurately characterize the baseline optical properties of tissue (absorption and reduced scattering coefficients). However, because of the diffusive properties of the medium, separate determination of absorption and scattering across the head is challenging. The effective attenuation coefficient (EAC), which is proportional to the geometric mean of absorption and reduced scattering coefficients, can be estimated in a simpler fashion by multidistance light decay measurements. EAC mapping could be of interest for the scientific community because of its absolute information content, and because light propagation is governed by the EAC for source-detector distances exceeding 1 cm, which sense depths extending beyond the scalp and skull layers. Here, we report an EAC mapping procedure that can be applied to standard fNIRS recordings, yielding topographic maps with 2- to 3-cm resolution. Application to human data indicates the importance of venous sinuses in determining regional EAC variations, a factor often overlooked.
Light attenuation and submersed macrophyte distribution in the tidal Potomac River and estuary
Carter, V.; Rybicki, N.B.
1990-01-01
Changing light availability may be responsible for the discontinuous distribution of submersed aquatic macrophytes in the freshwater tidal Potomac River. During the 1985-1986 growing seasons, light attenuation and chlorophyll a and suspended particulate material concentrations were measured in an unvegetated reach (B) and in two adjacent vegetated reaches (A and C). Light attenuation in reach B (the lower, fresh to oligohaline tidal river) was greater than that in reach A (the recently revegetated, upper, freshwater tidal river) in both years. Reach B light attenuation was greater than that in reach C (the vegetated, oligohaline to mesohaline transition zone of the Potomac Estuary) in 1985 and similar to that in reach C in 1986. In reach B, 5% of total below-surface light penetrated only an average of 1.3 m in 1985 and 1.0m in 1986, compared with 1.9 m and 1.4 m in reach A in 1985 and 1986, respectively. Water column chlorophyll a concentration controlled light availability in reaches A and B in 1985, whereas both chlorophyll a and suspended particulate material concentrations were highly correlated with attenuation in both reaches in 1986. Reach C light attenuation was correlated with suspended particulate material in 1986. The relationship between attenuation coefficient and Secchi depth was KPAR=1.38/Secchi depth. The spectral distribution of light at 1 m was shifted toward the red portion of the visible spectrum compared to surface light. Blue light was virtually absent at 1.0 m in reach B during July and August 1986. Tidal range is probably an important factor in determining light availability for submersed macrophyte propagule survival at the sediment-water interface in this shallow turbid system. ?? 1990 Estuarine Research Federation.
Light extinction method for diagnostics of particles sizes formed in magnetic field
NASA Astrophysics Data System (ADS)
Myshkin, Vyacheslav; Izhoykin, Dmitry; Grigoriev, Alexander; Gamov, Denis; Leonteva, Daria
2018-03-01
The results of laser diagnostics of dispersed particles formed upon cooling of Zn vapor are presented. The radiation attenuation in the wavelength range 420-630 nm with a step of 0.3 nm was registered. The attenuation coefficients spectral dependence was processed using known algorithms for integral equation solving. The 10 groups of 8 attenuation coefficients were formed. Each group was processed taking with considering of previous decisions. After processing of the 10th group of data, calculations were repeated from the first one. Data of the particles sizes formed in a magnetic field of 0, 44 and 76 mT are given. A model of physical processes in a magnetic field is discussed.
The water column diffuse attenuation coefficient (Kd) of the Louisiana Continental Shelf (LCS) was examined during ten years to characterize the spatial and temporal variations on monthly scales from 1998 to 2007. This region is well-known for summer hypoxia (dissolved oxygen < 2...
Intrinsic light yield and light loss coefficient of Bi4Ge3O12 single crystals
NASA Astrophysics Data System (ADS)
Yawai, Nattasuda; Chewpraditkul, Weerapong; Wanarak, Chalerm; Nikl, Martin; Ratanatongchai, Wichian
2014-10-01
In this paper we present the scintillation properties of polished Bi4Ge3O12 (BGO) crystals grown by the Bridgman method. The light yield (LY) and energy resolution were measured using XP5200B photomultiplier. At 662 keV γ-rays, high LY of 9680 photons/MeV and good energy resolution of 8.6% were obtained for a 5 × 5 × 1 mm3 BGO sample. The intrinsic LY and light loss coefficient were evaluated. The photofraction in pulse height spectrum of 662 keV γ-rays and the mass attenuation coefficient at 59.5 and 662 keV γ-rays were also determined and compared with the theoretical ones calculated using the WinXCom program.
NASA Technical Reports Server (NTRS)
Usry, J. W.; Whitlock, C. H.
1981-01-01
Management of water resources such as a reservoir requires using analytical models which describe such parameters as the suspended sediment field. To select or develop an appropriate model requires making many measurements to describe the distribution of this parameter in the water column. One potential method for making those measurements expeditiously is to measure light transmission or turbidity and relate that parameter to total suspended solids concentrations. An instrument which may be used for this purpose was calibrated by generating curves of transmission measurements plotted against measured values of total suspended solids concentrations and beam attenuation coefficients. Results of these experiments indicate that field measurements made with this instrument using curves generated in this study should correlate with total suspended solids concentrations and beam attenuation coefficients in the water column within 20 percent.
Attenuation of near-IR light through dentin at wavelengths from 1300–1650-nm
Chan, Andrew C.; Darling, Cynthia L.; Chan, Kenneth H.; Fried, Daniel
2014-01-01
Light scattering in dental enamel decreases markedly from the UV to the near-IR and recent studies employing near-IR transillumination and reflectance imaging including optical coherence tomography indicate that this wavelength region is ideally suited for imaging dental caries due to the high transparency of enamel. The opacity of dentin is an important factor in optimizing the contrast of demineralization in reflectance measurements. It also influences the contrast of occlusal lesions in transillumination. Light scattering in dentin is an order of magnitude larger than in enamel, it is highly anisotropic and has a different spectral light scattering dependence than enamel. The objective of this study was to measure the optical attenuation of near-IR light through dentin at near-IR wavelengths from 1300–1650-nm. In this study the collimated transmission of near-IR light through polished thin sections of dentin of 0.05 to 0.6 mm thickness was measured. Beer-Lambert plots show that the attenuation coefficients range in magnitude from 20 to 40 cm−1. Attenuation increased significantly with increasing wavelength and the increases were not entirely consistent with increased water absorption. PMID:24839373
Maia, Ana Marly Araújo; de Freitas, Anderson Zanardi; de L Campello, Sergio; Gomes, Anderson Stevens Leônidas; Karlsson, Lena
2016-06-01
An in vitro study of morphological alterations between sound dental structure and artificially induced white spot lesions in human teeth, was performed through the loss of fluorescence by Quantitative Light-Induced Fluorescence (QLF) and the alterations of the light attenuation coefficient by Optical Coherence Tomography (OCT). To analyze the OCT images using a commercially available system, a special algorithm was applied, whereas the QLF images were analyzed using the software available in the commercial system employed. When analyzing the sound region against white spot lesions region by QLF, a reduction in the fluorescence intensity was observed, whilst an increase of light attenuation by the OCT system occurred. Comparison of the percentage of alteration between optical properties of sound and artificial enamel caries regions showed that OCT processed images through the attenuation of light enhanced the tooth optical alterations more than fluorescence detected by QLF System. QLF versus OCT imaging of enamel caries: a photonics assessment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
An assessment of optical and biogeochemical multi-decadal trends in the Sargasso Sea
NASA Astrophysics Data System (ADS)
Allen, J. G.; Siegel, D.; Nelson, N. B.
2016-02-01
Observations of optical and biogeochemical data, made as part of the Bermuda Bio-Optics Project (BBOP) at the Bermuda Atlantic Time-series Study (BATS) site in the Sargasso Sea, allow for the examination of temporal trends in vertical light attenuation and their potential controls. Trends in both the magnitude and spectral slope of the diffuse attenuation coefficient should reflect changes in chlorophyll and chromophoric dissolved organic matter (CDOM) concentrations in the Sargasso Sea. The length and methodological consistency of this time series provides an excellent opportunity to extend analyses of seasonal cycles of apparent optical properties to interannual and multi-year time scales. Here, we characterize changes in the size and shape of diffuse attenuation coefficient spectra and compare them to temperature, chlorophyll a concentration, and to discrete measurements of phytoplankton and CDOM absorption. The time series analyses reveal up to a 1.2% annual increase of the magnitude of the diffuse attenuation coefficient over the upper 70 m of the water column while showing no significant change in the spectral slope of diffuse attenuation over the course of the study. These observations indicate that increases in phytoplankton pigment concentration rather than changes in CDOM are the primary driver for the attenuation trends on multi-year timescales for this region.
NASA Technical Reports Server (NTRS)
Ibrahim, Amir; Gilerson, Alexander; Chowdhary, Jacek; Ahmed, Samir
2016-01-01
Remote sensing has mainly relied on measurements of scalar radiance and its spectral and angular features to retrieve micro- and macro-physical properties of aerosols/hydrosols. However, it is recognized that measurements that include the polarimetric characteristics of light provide more intrinsic information about particulate scattering. To take advantage of this, we used vector radiative transfer (VRT) simulations and developed an analytical relationship to retrieve the macro and micro-physical properties of the oceanic hydrosols. Specifically, we investigated the relationship between the observed degree of linear polarization (DoLP) and the ratio of attenuation-to- absorption coefficients (c/a) in water, from which the scattering coefficient can be readily computed (b equals c minus a), after retrieving a. This relationship was parameterized for various scattering geometries, including sensor zenith/azimuth angles relative to the Sun's principal plane, and for varying Sun zenith angles. An inversion method was also developed for the retrieval of the microphysical properties of hydrosols, such as the bulk refractive index and the particle size distribution. The DoLP vs c/a relationship was tested and validated against in-situ measurements of underwater light polarization obtained by a custom-built polarimeter and measurements of the coefficients a and c, obtained using an in-water WET (Western Environmental Technologies) Labs ac-s (attenuation coefficients In-Situ Spectrophotometer) instrument package. These measurements confirmed the validity of the approach, with retrievals of attenuation coefficients showing a high coefficient of determination depending on the wavelength. We also performed a sensitivity analysis of the DoLP at the Top of Atmosphere (TOA) over coastal waters showing the possibility of polarimetric remote sensing application for ocean color.
Propagation of laser beams in scattering media.
Zuev, V E; Kabanov, M V; Savelev, B A
1969-01-01
Experimental investigations have been undertaken of some aspects of the propagation of helium-neon gas laser radiation at lambda = 0.63 micro for different scattering media (artificial water fogs, wood smokes, model media). It has been shown that the attenuation coefficients practically coincide when coherent and incoherent radiation is scattered. The applicability limits of Bouguer-Beer's law for describing the attenuation of radiation in scattering media are investigated and the intensity of multiple forward-scattered light for different geometrical parameters of the source and radiation receiver are measured. The applicability of single scattering theory formulas for describing forward-scattered light intensity are discussed.
Light attenuation in a shallow, turbid reservoir, Lake Houston, Texas
Lee, Roger W.; Rast, Walter
1997-01-01
with an average error of the computed coefficient to measured value of ±13 percent. The model can be useful in computing the thickness of the euphotic zone to determine primary productivity in the reservoir.
Haltrin, V I
1998-06-20
A self-consistent variant of the two-flow approximation that takes into account strong anisotropy of light scattering in seawater of finite depth and arbitrary turbidity is presented. To achieve an appropriate accuracy, this approach uses experimental dependencies between downward and total mean cosines. It calculates irradiances, diffuse attenuation coefficients, and diffuse reflectances in waters with arbitrary values of scattering, backscattering, and attenuation coefficients. It also takes into account arbitrary conditions of illumination and reflection from the bottom with the Lambertian albedo. This theory can be used for the calculation of apparent optical properties in both open and coastal oceanic waters, lakes, and rivers. It can also be applied to other types of absorbing and scattering medium such as paints, photographic emulsions, and biological tissues.
NASA Astrophysics Data System (ADS)
Korchemkina, E. N.; Latushkin, A. A.; Lee, M. E.
2017-11-01
The methods of determination of concentration and scattering by suspended particles in seawater are compared. The methods considered include gravimetric measurements of the mass concentration of suspended matter, empirical and analytical calculations based on measurements of the light beam attenuation coefficient (BAC) in 4 spectral bands, calculation of backscattering by particles using satellite measurements in the visible spectral range. The data were obtained in two cruises of the R/V "Professor Vodyanitsky" in the deep-water part of the Black Sea in July and October 2016., Spatial distribution of scattering by marine particles according to satellite data is in good agreement with the contact measurements.
Lin, Junfang; Lee, Zhongping; Ondrusek, Michael; Liu, Xiaohan
2018-01-22
Absorption (a) and backscattering (bb) coefficients play a key role in determining the light field; they also serve as the link between remote sensing and concentrations of optically active water constituents. Here we present an updated scheme to derive hyperspectral a and bb with hyperspectral remote-sensing reflectance (Rrs) and diffuse attenuation coefficient (Kd) as the inputs. Results show that the system works very well from clear open oceans to highly turbid inland waters, with an overall difference less than 25% between these retrievals and those from instrument measurements. This updated scheme advocates the measurement and generation of hyperspectral a and bb from hyperspectral Rrs and Kd, as an independent data source for cross-evaluation of in situ measurements of a and bb and for the development and/or evaluation of remote sensing algorithms for such optical properties.
NASA Astrophysics Data System (ADS)
Kim, G. E.; Pradal, M.-A.; Gnanadesikan, A.
2015-08-01
Light attenuation by colored detrital material (CDM) was included in a fully coupled Earth system model (ESM). This study presents a modified parameterization for shortwave attenuation, which is an empirical relationship between 244 concurrent measurements of the diffuse attenuation coefficient for downwelling irradiance, chlorophyll concentration and light absorption by CDM. Two ESM model runs using this parameterization were conducted, with and without light absorption by CDM. The light absorption coefficient for CDM was prescribed as the average of annual composite MODIS Aqua satellite data from 2002 to 2013. Comparing results from the two model runs shows that changes in light limitation associated with the inclusion of CDM decoupled trends between surface biomass and nutrients. Increases in surface biomass were expected to accompany greater nutrient uptake and therefore diminish surface nutrients. Instead, surface chlorophyll, biomass and nutrients increased together. These changes can be attributed to the different impact of light limitation on surface productivity versus total productivity. Chlorophyll and biomass increased near the surface but decreased at greater depths when CDM was included. The net effect over the euphotic zone was less total biomass leading to higher nutrient concentrations. Similar results were found in a regional analysis of the oceans by biome, investigating the spatial variability of response to changes in light limitation using a single parameterization for the surface ocean. In coastal regions, surface chlorophyll increased by 35 % while total integrated phytoplankton biomass diminished by 18 %. The largest relative increases in modeled surface chlorophyll and biomass in the open ocean were found in the equatorial biomes, while the largest decreases in depth-integrated biomass and chlorophyll were found in the subpolar and polar biomes. This mismatch of surface and subsurface trends and their regional dependence was analyzed by comparing the competing factors of diminished light availability and increased nutrient availability on phytoplankton growth in the upper 200 m. Understanding changes in biological productivity requires both surface and depth-resolved information. Surface trends may be minimal or of the opposite sign than depth-integrated amounts, depending on the vertical structure of phytoplankton abundance.
Corneal permeability for cement dust: prognosis for occupational safety
NASA Astrophysics Data System (ADS)
Kalmykov, R. V.; Popova, D. V.; Kamenskikh, T. G.; Genina, E. A.; Tuchin, V. V.; Bashkatov, A. N.
2018-02-01
The high dust content in air of a working zone causes prevalence of pathologies of the anterior segment of the eye of workers of cement production. Therefore, studying of features of cement dust impact on structure of a cornea and development of ways of eye protection from this influence is relevant. In this work experimental studies were carried out with twenty eyes of ten rabbits. OCTtomography was used to monitor the light attenuation coefficient of the cornea in vitro during the permeability of cement dust and/or keratoprotector (Systein Ultra). The permeability coefficients of the cornea for water, cement dust and keratoprotector were measured. A computer model allowing one to analyze the diffusion of these substances in the eye cornea was developed. It was shown that 1) the cement dust falling on the eye cornea caused pronounced dehydration of the tissue (thickness decreasing) and led to the increase of the attenuation coefficient, which could affect the deterioration of the eyesight of workers in the conditions of cement production; 2) the application of the keratoprotector to the eye cornea when exposed by cement dust, slowed significantly the dehydration process and did not cause the increase of the attenuation coefficient that characterized the stabilization of visual functions. At this, the keratoprotector itself did not cause dehydration and led to the decrease of the attenuation coefficient, which could allow it to be used for a long time in the order to protect the organ of vision from the negative effects of cement dust.
Optical coherence tomography for blood glucose monitoring through signal attenuation
NASA Astrophysics Data System (ADS)
De Pretto, Lucas R.; Yoshimura, Tania M.; Ribeiro, Martha S.; de Freitas, Anderson Z.
2016-03-01
Development of non-invasive techniques for glucose monitoring is crucial to improve glucose control and treatment adherence in patients with diabetes. Hereafter, Optical Coherence Tomography (OCT) may offer a good alternative for portable glucometers, since it uses light to probe samples. Changes in the object of interest can alter the intensity of light returning from the sample and, through it, one can estimate the sample's attenuation coefficient (μt) of light. In this work, we aimed to explore the behavior of μt of mouse's blood under increasing glucose concentrations. Different samples were prepared in four glucose concentrations using a mixture of heparinized blood, phosphate buffer saline and glucose. Blood glucose concentrations were measured with a blood glucometer, for reference. We have also prepared other samples diluting the blood in isotonic saline solution to check the effect of a higher multiple-scattering component on the ability of the technique to differentiate glucose levels based on μt. The OCT system used was a commercial Spectral Radar OCT with 930 nm central wavelength and spectral bandwidth (FWHM) of 100 nm. The system proved to be sensitive for all blood glucose concentrations tested, with good correlations with the obtained attenuation coefficients. A linear tendency was observed, with an increase in attenuation with higher values of glucose. Statistical difference was observed between all groups (p<0.001). This work opens the possibility towards a non-invasive diagnostic modality using OCT for glycemic control, which eliminates the use of analytes and/or test strips, as in the case with commercially available glucometers.
Atmospheric aerosols: Their Optical Properties and Effects (supplement)
NASA Technical Reports Server (NTRS)
1976-01-01
A digest of technical papers is presented. Topics include aerosol size distribution from spectral attenuation with scattering measurements; comparison of extinction and backscattering coefficients for measured and analytic stratospheric aerosol size distributions; using hybrid methods to solve problems in radiative transfer and in multiple scattering; blue moon phenomena; absorption refractive index of aerosols in the Denver pollution cloud; a two dimensional stratospheric model of the dispersion of aerosols from the Fuego volcanic eruption; the variation of the aerosol volume to light scattering coefficient; spectrophone in situ measurements of the absorption of visible light by aerosols; a reassessment of the Krakatoa volcanic turbidity, and multiple scattering in the sky radiance.
NASA Astrophysics Data System (ADS)
Watanabe, Shohei; Laurion, Isabelle; Markager, Stiig; Vincent, Warwick F.
2015-08-01
In optically complex inland waters, the underwater attenuation of photosynthetically active radiation (PAR) is controlled by a variable combination of absorption and scattering components of the lake or river water. Here we applied a photon budget approach to identify the main optical components affecting PAR attenuation in Lake St. Charles, a drinking water reservoir for Québec City, Canada. This analysis showed the dominant role of colored dissolved organic matter (CDOM) absorption (average of 44% of total absorption during the sampling period), but with large changes over depth in the absolute and relative contribution of the individual absorption components (water, nonalgal particulates, phytoplankton and CDOM) to PAR attenuation. This pronounced vertical variation occurred because of the large spectral changes in the light field with depth, and it strongly affected the average in situ diffuse absorption coefficients in the water column. For example, the diffuse absorption coefficient for pure-water in the ambient light field was 10-fold higher than the value previously measured in the blue open ocean and erroneously applied to lakes and coastal waters. Photon absorption budget calculations for a range of limnological conditions confirmed that phytoplankton had little direct influence on underwater light, even at chlorophyll a values above those observed during harmful algal blooms in the lake. These results imply that traditional measures of water quality such as Secchi depth and radiometric transparency do not provide a meaningful estimate of the biological state of the water column in CDOM-colored lakes and reservoirs.
NASA Astrophysics Data System (ADS)
Oestreich, W. K.; Ganju, N. K.; Pohlman, J. W.; Suttles, S. E.
2016-02-01
Light availability is of primary importance to the ecological function of shallow estuaries. For example, benthic primary production by submerged aquatic vegetation is contingent upon light penetration to the seabed. A major component that attenuates light in estuaries is colored dissolved organic matter (CDOM). CDOM is often measured via a proxy, fluorescing dissolved organic matter (fDOM), due to the ease of in situ fDOM sensor measurements. Fluorescence must be converted to CDOM absorbance for use in light attenuation calculations. However, this CDOM-fDOM relationship varies among and within estuaries. We quantified the variability in this relationship within three estuaries along the mid-Atlantic margin of the eastern United States: West Falmouth Harbor (MA), Barnegat Bay (NJ), and Chincoteague Bay (MD/VA). Land use surrounding these estuaries ranges from urban to developed, with varying sources of nutrients and organic matter. Measurements of fDOM (excitation and emission wavelengths of 365 nm (±5 nm) and 460 nm (±40 nm), respectively) and CDOM absorbance were taken along a terrestrial-to-marine gradient in all three estuaries. The ratio of the absorption coefficient at 340 nm (m-1) to fDOM (QSU) was higher in West Falmouth Harbor (1.22) than in Barnegat Bay (0.22) and Chincoteague Bay (0.17). The CDOM : fDOM absorption ratio was variable between sites within West Falmouth Harbor and Barnegat Bay, but consistent between sites within Chincoteague Bay. Stable carbon isotope analysis for constraining the source of dissolved organic matter (DOM) in West Falmouth Harbor and Barnegat Bay yielded δ13C values ranging from -19.7 to -26.1 ‰ and -20.8 to -26.7 ‰, respectively. Concentration and stable carbon isotope mixing models of DOC (dissolved organic carbon) indicate a contribution of 13C-enriched DOC in the estuaries. The most likely source of 13C-enriched DOC for the systems we investigated is Spartina cordgrass. Comparison of DOC source to CDOM : fDOM absorption ratios at each site demonstrates the relationship between source and optical properties. Samples with 13C-enriched carbon isotope values, indicating a greater contribution from marsh organic material, had higher CDOM : fDOM absorption ratios than samples with greater contribution from terrestrial organic material. Applying a uniform CDOM : fDOM absorption ratio and spectral slope within a given estuary yields errors in modeled light attenuation ranging from 11 to 33 % depending on estuary. The application of a uniform absorption ratio across all estuaries doubles this error. This study demonstrates that light attenuation coefficients for CDOM based on continuous fDOM records are highly dependent on the source of DOM present in the estuary. Thus, light attenuation models for estuaries would be improved by quantification of CDOM absorption and DOM source identification.
Investigation of attenuation coefficients of some stainless steel and aluminum alloys
NASA Astrophysics Data System (ADS)
Caner, Zafer; Tufan, Mustafa ćaǧatay
2018-02-01
In this study, attenuation coefficients of two different stainless steel alloys (AISI 304 and AISI 310), which have a wide range of applications from home appliances to the automotive sector, and two different aluminum alloys (6013 and 5083), which have a high mechanical strength and a light weight structure and are used in many fields from aviation to military vehicles, has been determined. For this purpose, we used gamma spectrometer system with NaI(Tl) detector. In our measurements, we used Eu-152, Ra-226 and Co-60 as gamma ray sources. To narrow the beam of gamma rays, we designed the new steel based collimator. We also investigated the effect of using collimator. Obtained results were compared with the NIST XCOM values.
Linear Electrooptic Effect In Sputtered Polycrystalline LiNbO3 Films
NASA Astrophysics Data System (ADS)
Griffel, G.; Ruschin, Shlomo; Croitoru, Nathan I.
1989-02-01
Light guiding and modulation was demonstrated in sputtered LiNbO3 films deposited on glass substrates. The films exhibit exceptionally low attenuation (< 2dB/cm) and the highest electrooptical coefficient reported so far for this kind of films (1.34 x 10-12 m/V).
NASA Astrophysics Data System (ADS)
Wiberg, Patricia L.; Drake, David E.; Cacchione, David A.
1994-08-01
Geoprobe bottom tripods were deployed during the winter of 1990-1991 on the northern California inner continental shelf as part of the STRESS field experiment. Transmissometer measurements of light beam attenuation were made at two levels and current velocity was measured at four levels in the bottom 1.2 m of water. Intervals of high measured bottom wave velocity were generally correlated with times of both high attenuation and high attenuation gradient in the bottom meter of the water column. Measured time series of light attenuation and attenuation gradient are compared to values computed using a modified version of the SMITH [(1977) The sea, Vol. 6, Wiley-Interscience, New York, pp. 539-577] steady wave-current bottom-boundary-layer model. Size-dependent transmissometer calibrations, which show significantly enhanced attenuation with decreasing grain size, are used to convert calculated suspended sediment concentration to light attenuation. The finest fractions of the bed, which are the most easily suspended and attenuate the most light, dominate the computed attenuation signal although they comprise only about 5-7% of the bed sediment. The calculations indicate that adjusting the value of the coefficient γ 0 in the expression for near-bed sediment concentration cannot in itself give both the correct magnitudes of light attenuation and attenuation gradient. To supply the volumes of fine sediment computed to be in suspension during peak events, even with values of γ 0 as low as 5 × 10 -5, requires suspension of particles from unreasonably large depths in the bed. A limit on the depth of sediment availability is proposed as a correction to suspended sediment calculations. With such a limit, reasonable attenuation values are computed with γ 0 ≈ 0.002. The effects of limiting availability and employing a higher γ 0 are to reduce the volume of the finest sediment in suspension and to increase the suspended volumes of the coarser fractions. As a consequence, the average size and settling velocity of suspended sediment increases as bottom shear stress increases, with accompanying increases in near-bed concentration gradients. Higher concentration gradients produce larger stratification effects, particularly near the top of the wave boundary layer at times when wave shear velocities are high and current shear velocities are low. These are the conditions under which maximum attenuation gradients are observed.
Wiberg, P.L.; Drake, D.E.; Cacchione, D.A.
1994-01-01
Geoprobe bottom tripods were deployed during the winter of 1990-1991 on the northern California inner continental shelf as part of the STRESS field experiment. Transmissometer measurements of light beam attenuation were made at two levels and current velocity was measured at four levels in the bottom 1.2 m of water. Intervals of high measured bottom wave velocity were generally correlated with times of both high attenuation and high attenuation gradient in the bottom meter of the water column. Measured time series of light attenuation and attenuation gradient are compared to values computed using a modified version of the Smith [(1977) The sea, Vol. 6, Wiley-Interscience, New York, pp. 539-577] steady wave-current bottom-boundary-layer model. Size-dependent transmissometer calibrations, which show significantly enhanced attenuation with decreasing grain size, are used to convert calculated suspended sediment concentration to light attenuation. The finest fractions of the bed, which are the most easily suspended and attenuate the most light, dominate the computed attenuation signal although they comprise only about 5-7% of the bed sediment. The calculations indicate that adjusting the value of the coefficient ??0 in the expression for near-bed sediment concentration cannot in itself give both the correct magnitudes of light attenuation and attenuation gradient. To supply the volumes of fine sediment computed to be in suspension during peak events, even with values of ??0 as low as 5 ?? 10-5, requires suspension of particles from unreasonably large depths in the bed. A limit on the depth of sediment availability is proposed as a correction to suspended sediment calculations. With such a limit, reasonable attenuation values are computed with ??0 ??? 0.002. The effects of limiting availability and employing a higher ??0 are to reduce the volume of the finest sediment in suspension and to increase the suspended volumes of the coarser fractions. As a consequence, the average size and settling velocity of suspended sediment increases as bottom shear stress increases, with accompanying increases in near-bed concentration gradients. Higher concentration gradients produce larger stratification effects, particularly near the top of the wave boundary layer at times when wave shear velocities are high and current shear velocities are low. These are the conditions under which maximum attenuation gradients are observed. ?? 1994.
Cost-Effective Hyperspectral Transmissometers for Oceanographic Applications: Performance Analysis
Ramírez-Pérez, Marta; Röttgers, Rüdiger; Torrecilla, Elena; Piera, Jaume
2015-01-01
The recent development of inexpensive, compact hyperspectral transmissometers broadens the research capabilities of oceanographic applications. These developments have been achieved by incorporating technologies such as micro-spectrometers as detectors as well as light emitting diodes (LEDs) as light sources. In this study, we evaluate the performance of the new commercial LED-based hyperspectral transmissometer VIPER (TriOS GmbH, Rastede, Germany), which combines different LEDs to emulate the visible light spectrum, aiming at the determination of attenuation coefficients in coastal environments. For this purpose, experimental uncertainties related to the instrument stability, the effect of ambient light and derived temperature, and salinity correction factors are analyzed. Our results identify some issues related to the thermal management of the LEDs and the contamination of ambient light. Furthermore, the performance of VIPER is validated against other transmissometers through simultaneous field measurements. It is demonstrated that VIPER provides a compact and cost-effective alternative for beam attenuation measurements in coastal waters, but it requires the consideration of several optimizations. PMID:26343652
Laser microbeam CT scanning of dosimetry gels
NASA Astrophysics Data System (ADS)
Maryanski, Marek J.; Ranade, Manisha K.
2001-06-01
A novel design of an optical tomographic scanner is described that can be used for 3D mapping of optical attenuation coefficient within translucent cylindrical objects with spatial resolution on the order of 100 microns. Our scanner design utilizes the cylindrical geometry of the imaged object to obtain the desired paths of the scanning light rays. A rotating mirror and a photodetector are placed at two opposite foci of the translucent cylinder that acts as a cylindrical lens. A He-Ne laser beam passes first through a focusing lens and then is reflected by the rotating mirror, so as to scan the interior of the cylinder with focused and parallel paraxial rays that are subsequently collected by the photodetector to produce the projection data, as the cylinder rotates in small angle increments between projections. Filtered backprojection is then used to reconstruct planar distributions of optical attenuation coefficient in the cylinder. Multiplanar scans are used to obtain a complete 3D tomographic reconstruction. Among other applications, the scanner can be used in radiation therapy dosimetry and quality assurance for mapping 3D radiation dose distributions in various types of tissue-equivalent gel phantoms that change their optical attenuation coefficients in proportion to the absorbed radiation dose.
Moody, J.A.; Butman, B.; Bothner, Michael H.
1987-01-01
A laboratory calibration of Sea Tech and Montedoro-Whitney beam transmissometers shows a linear relation between light attenuation coefficient (cp) and suspended matter concentration (SMC) for natural sediments and for glass beads. However the proportionality constant between cp and SMC depends on the particle diameter and particle type. Thus, to measure SMC, observations of light attenuation must be used with a time-variable calibration when suspended particle characteristics change with time. Because of this variable calibration, time series of light attenuation alone may not directly reflect SMC and must be interpreted with care.The near-bottom concentration of suspended matter during winter storms on the U.S. East Coast Continental Shelf is estimated from light transmission measurements made 2 m above the bottom and from the size distribution of suspended material collected simultaneously in sediment traps 3 m above the bottom. The average concentrations during six storms between December 1979 and February 1980 in the Middle Atlantic Bight ranged from 2 to 4 mg l1 (maximum concentration of 7 mg l1) and 8 to 12 mg l1 (maximum concentration of 22 mg l1) on the south flank of Georges Bank.
Burger, C; Goerres, G; Schoenes, S; Buck, A; Lonn, A H R; Von Schulthess, G K
2002-07-01
The CT data acquired in combined PET/CT studies provide a fast and essentially noiseless source for the correction of photon attenuation in PET emission data. To this end, the CT values relating to attenuation of photons in the range of 40-140 keV must be transformed into linear attenuation coefficients at the PET energy of 511 keV. As attenuation depends on photon energy and the absorbing material, an accurate theoretical relation cannot be devised. The transformation implemented in the Discovery LS PET/CT scanner (GE Medical Systems, Milwaukee, Wis.) uses a bilinear function based on the attenuation of water and cortical bone at the CT and PET energies. The purpose of this study was to compare this transformation with experimental CT values and corresponding PET attenuation coefficients. In 14 patients, quantitative PET attenuation maps were calculated from germanium-68 transmission scans, and resolution-matched CT images were generated. A total of 114 volumes of interest were defined and the average PET attenuation coefficients and CT values measured. From the CT values the predicted PET attenuation coefficients were calculated using the bilinear transformation. When the transformation was based on the narrow-beam attenuation coefficient of water at 511 keV (0.096 cm(-1)), the predicted attenuation coefficients were higher in soft tissue than the measured values. This bias was reduced by replacing 0.096 cm(-1) in the transformation by the linear attenuation coefficient of 0.093 cm(-1) obtained from germanium-68 transmission scans. An analysis of the corrected emission activities shows that the resulting transformation is essentially equivalent to the transmission-based attenuation correction for human tissue. For non-human material, however, it may assign inaccurate attenuation coefficients which will also affect the correction in neighbouring tissue.
Linear electro-optic effect in sputtered polycrystalline LiNbO3 films
NASA Astrophysics Data System (ADS)
Griffel, G.; Ruschin, S.; Croitoru, N.
1989-04-01
Light guiding and modulation was demonstrated in sputtered LiNbO3 films deposited on glass substrates. We report on films' exceptionally low attenuation (<2 dB/cm) and the highest electro-optical coefficient reported so far for this kind of film (1.34×10-12 m/V).
System for testing optical fibers
Davies, Terence J.; Franks, Larry A.; Nelson, Melvin A.
1981-01-01
A system for nondestructively determining the attenuation coefficient, .alpha.(.lambda.), of low-loss optical fiber wave guides. Cerenkov light pulses are generated at a plurality of locations in the fiber by a beam of charged particles. The transit times of selected spectral components and their intensities are utilized to unfold the .alpha.(.lambda.) values over the measured spectrum.
Oestreich, W.K.; Ganju, Neil K.; Pohlman, John; Suttles, Steven E.
2016-01-01
Light availability is of primary importance to the ecological function of shallow estuaries. For example, benthic primary production by submerged aquatic vegetation is contingent upon light penetration to the seabed. A major component that attenuates light in estuaries is colored dissolved organic matter (CDOM). CDOM is often measured via a proxy, fluorescing dissolved organic matter (fDOM), due to the ease of in situ fDOM sensor measurements. Fluorescence must be converted to CDOM absorbance for use in light attenuation calculations. However, this CDOM–fDOM relationship varies among and within estuaries. We quantified the variability in this relationship within three estuaries along the mid-Atlantic margin of the eastern United States: West Falmouth Harbor (MA), Barnegat Bay (NJ), and Chincoteague Bay (MD/VA). Land use surrounding these estuaries ranges from urban to developed, with varying sources of nutrients and organic matter. Measurements of fDOM (excitation and emission wavelengths of 365 nm (±5 nm) and 460 nm (±40 nm), respectively) and CDOM absorbance were taken along a terrestrial-to-marine gradient in all three estuaries. The ratio of the absorption coefficient at 340 nm (m−1) to fDOM (QSU) was higher in West Falmouth Harbor (1.22) than in Barnegat Bay (0.22) and Chincoteague Bay (0.17). The CDOM : fDOM absorption ratio was variable between sites within West Falmouth Harbor and Barnegat Bay, but consistent between sites within Chincoteague Bay. Stable carbon isotope analysis for constraining the source of dissolved organic matter (DOM) in West Falmouth Harbor and Barnegat Bay yielded δ13C values ranging from −19.7 to −26.1 ‰ and −20.8 to −26.7 ‰, respectively. Concentration and stable carbon isotope mixing models of DOC (dissolved organic carbon) indicate a contribution of 13C-enriched DOC in the estuaries. The most likely source of 13C-enriched DOC for the systems we investigated is Spartina cordgrass. Comparison of DOC source to CDOM : fDOM absorption ratios at each site demonstrates the relationship between source and optical properties. Samples with 13C-enriched carbon isotope values, indicating a greater contribution from marsh organic material, had higher CDOM : fDOM absorption ratios than samples with greater contribution from terrestrial organic material. Applying a uniform CDOM : fDOM absorption ratio and spectral slope within a given estuary yields errors in modeled light attenuation ranging from 11 to 33 % depending on estuary. The application of a uniform absorption ratio across all estuaries doubles this error. This study demonstrates that light attenuation coefficients for CDOM based on continuous fDOM records are highly dependent on the source of DOM present in the estuary. Thus, light attenuation models for estuaries would be improved by quantification of CDOM absorption and DOM source identification.
NASA Astrophysics Data System (ADS)
Giese, A.; Böhringer, H. J.; Leppert, J.; Kantelhardt, S. R.; Lankenau, E.; Koch, P.; Birngruber, R.; Hüttmann, G.
2006-02-01
Optical coherence tomography (OCT) is a non-invasive imaging technique with a micrometer resolution. It allows non-contact / non-invasive analysis of central nervous system tissues with a penetration depth of 1-3,5 mm reaching a spatial resolution of approximately 4-15 μm. We have adapted spectral-domain OCT (SD-OCT) and time-domain OCT (TD-OCT) for intraoperative detection of residual tumor during brain tumor surgery. Human brain tumor tissue and areas of the resection cavity were analyzed during the resection of gliomas using this new technology. The site of analysis was registered using a neuronavigation system and biopsies were taken and submitted to routine histology. We have used post image acquisition processing to compensate for movements of the brain and to realign A-scan images for calculation of a light attenuation factor. OCT imaging of normal cortex and white matter showed a typical light attenuation profile. Tumor tissue depending on the cellularity of the specimen showed a loss of the normal light attenuation profile resulting in altered light attenuation coefficients compared to normal brain. Based on this parameter and the microstructure of the tumor tissue, which was entirely absent in normal tissue, OCT analysis allowed the discrimination of normal brain tissue, invaded brain, solid tumor tissue, and necrosis. Following macroscopically complete resections OCT analysis of the resection cavity displayed the typical microstructure and light attenuation profile of tumor tissue in some specimens, which in routine histology contained microscopic residual tumor tissue. We have demonstrated that this technology may be applied to the intraoperative detection of residual tumor during resection of human gliomas.
Seasonal to multi-decadal trends in apparent optical properties in the Sargasso Sea
NASA Astrophysics Data System (ADS)
Allen, James G.; Nelson, Norman B.; Siegel, David A.
2017-01-01
Multi-decadal, monthly observations of optical and biogeochemical properties, made as part of the Bermuda Bio-Optics Project (BBOP) at the Bermuda Atlantic Time-series Study (BATS) site in the Sargasso Sea, allow for the examination of temporal trends in vertical light attenuation and their potential controls. Trends in the magnitude of the diffuse attenuation coefficient, Kd(λ), and a proxy for its spectral shape reflect changes in phytoplankton and chromophoric dissolved organic matter (CDOM) characteristics. The length and methodological consistency of this time series provide an excellent opportunity to extend analyses of seasonal cycles of apparent optical properties to interannual and decadal time scales. Here, we characterize changes in the magnitude and spectral shape proxy of diffuse attenuation coefficient spectra and compare them to available biological and optical data from the BATS time series program. The time series analyses reveal a 1.01%±0.18% annual increase of the magnitude of the diffuse attenuation coefficient at 443 nm over the upper 75 m of the water column while showing no significant change in selected spectral characteristics over the study period. These and other observations indicate that changes in phytoplankton rather than changes in CDOM abundance are the primary driver for the diffuse attenuation trends on multi-year timescales for this region. Our findings are inconsistent with previous decadal-scale global ocean water clarity and global satellite ocean color analyses yet are consistent with recent analyses of the BATS time series and highlight the value of long-term consistent observation at ocean time series sites.
Generalized Beer-Lambert model for near-infrared light propagation in thick biological tissues
NASA Astrophysics Data System (ADS)
Bhatt, Manish; Ayyalasomayajula, Kalyan R.; Yalavarthy, Phaneendra K.
2016-07-01
The attenuation of near-infrared (NIR) light intensity as it propagates in a turbid medium like biological tissue is described by modified the Beer-Lambert law (MBLL). The MBLL is generally used to quantify the changes in tissue chromophore concentrations for NIR spectroscopic data analysis. Even though MBLL is effective in terms of providing qualitative comparison, it suffers from its applicability across tissue types and tissue dimensions. In this work, we introduce Lambert-W function-based modeling for light propagation in biological tissues, which is a generalized version of the Beer-Lambert model. The proposed modeling provides parametrization of tissue properties, which includes two attenuation coefficients μ0 and η. We validated our model against the Monte Carlo simulation, which is the gold standard for modeling NIR light propagation in biological tissue. We included numerous human and animal tissues to validate the proposed empirical model, including an inhomogeneous adult human head model. The proposed model, which has a closed form (analytical), is first of its kind in providing accurate modeling of NIR light propagation in biological tissues.
NASA Astrophysics Data System (ADS)
Le, Chengfeng; Hu, Chuanmin; English, David; Cannizzaro, Jennifer; Chen, Zhiqiang; Kovach, Charles; Anastasiou, Christopher J.; Zhao, Jun; Carder, Kendall L.
2013-01-01
Inherent and apparent optical properties (IOPs and AOPs) of Tampa Bay (Florida, USA) were measured during fourteen cruises between February 1998 and October 2010 to understand how these properties relate to one another and what controls light absorption and diffuse attenuation in this moderately sized (˜1000 km2), shallow estuary (average depth ˜4 m). The IOPs and AOPs included: 1) absorption coefficients of three optically significant constituents: phytoplankton pigments, detrital particles, and colored dissolved organic matter (CDOM); 2) particulate backscattering coefficients; 3) chlorophyll-a concentrations; 4) above-water remote sensing reflectance; 5) downwelling diffuse attenuation coefficients (Kd) at eight wavelengths and photosynthetically active radiation (PAR). Results showed substantial variability in all IOPs and AOPs in both space and time, with most IOPs spanning more than two orders of magnitude and showing strong co-variations. Of all four bay segments, Old Tampa Bay showed unique optical characteristics. During the wet season, the magnitude of blue-green-light absorption was dominated by CDOM, while during the dry season all three constituents contributed significantly. However, the variability in Kd (PAR, 490 nm, 555 nm) was driven mainly by the variability of detrital particles and phytoplankton as opposed to CDOM. This observation explained, at least to first order, why a nutrient reduction management strategy used by the Tampa Bay Estuary Program since the 1990s led to improved water clarity in most of Tampa Bay. The findings of this study provided the optical basis to fine tune existing or develop new algorithms to estimate the various optical water quality parameters from space.
Comparison of RNFL thickness and RPE-normalized RNFL attenuation coefficient for glaucoma diagnosis
NASA Astrophysics Data System (ADS)
Vermeer, K. A.; van der Schoot, J.; Lemij, H. G.; de Boer, J. F.
2013-03-01
Recently, a method to determine the retinal nerve fiber layer (RNFL) attenuation coefficient, based on normalization on the retinal pigment epithelium, was introduced. In contrast to conventional RNFL thickness measures, this novel measure represents a scattering property of the RNFL tissue. In this paper, we compare the RNFL thickness and the RNFL attenuation coefficient on 10 normal and 8 glaucomatous eyes by analyzing the correlation coefficient and the receiver operator curves (ROCs). The thickness and attenuation coefficient showed moderate correlation (r=0.82). Smaller correlation coefficients were found within normal (r=0.55) and glaucomatous (r=0.48) eyes. The full separation between normal and glaucomatous eyes based on the RNFL attenuation coefficient yielded an area under the ROC (AROC) of 1.0. The AROC for the RNFL thickness was 0.9875. No statistically significant difference between the two measures was found by comparing the AROC. RNFL attenuation coefficients may thus replace current RNFL thickness measurements or be combined with it to improve glaucoma diagnosis.
Laser induced heat source distribution in bio-tissues
NASA Astrophysics Data System (ADS)
Li, Xiaoxia; Fan, Shifu; Zhao, Youquan
2006-09-01
During numerical simulation of laser and tissue thermal interaction, the light fluence rate distribution should be formularized and constituted to the source term in the heat transfer equation. Usually the solution of light irradiative transport equation is given in extreme conditions such as full absorption (Lambert-Beer Law), full scattering (Lubelka-Munk theory), most scattering (Diffusion Approximation) et al. But in specific conditions, these solutions will induce different errors. The usually used Monte Carlo simulation (MCS) is more universal and exact but has difficulty to deal with dynamic parameter and fast simulation. Its area partition pattern has limits when applying FEM (finite element method) to solve the bio-heat transfer partial differential coefficient equation. Laser heat source plots of above methods showed much difference with MCS. In order to solve this problem, through analyzing different optical actions such as reflection, scattering and absorption on the laser induced heat generation in bio-tissue, a new attempt was made out which combined the modified beam broaden model and the diffusion approximation model. First the scattering coefficient was replaced by reduced scattering coefficient in the beam broaden model, which is more reasonable when scattering was treated as anisotropic scattering. Secondly the attenuation coefficient was replaced by effective attenuation coefficient in scattering dominating turbid bio-tissue. The computation results of the modified method were compared with Monte Carlo simulation and showed the model provided reasonable predictions of heat source term distribution than past methods. Such a research is useful for explaining the physical characteristics of heat source in the heat transfer equation, establishing effective photo-thermal model, and providing theory contrast for related laser medicine experiments.
Models of filter-based particle light absorption measurements
NASA Astrophysics Data System (ADS)
Hamasha, Khadeejeh M.
Light absorption by aerosol is very important in the visible, near UN, and near I.R region of the electromagnetic spectrum. Aerosol particles in the atmosphere have a great influence on the flux of solar energy, and also impact health in a negative sense when they are breathed into lungs. Aerosol absorption measurements are usually performed by filter-based methods that are derived from the change in light transmission through a filter where particles have been deposited. These methods suffer from interference between light-absorbing and light-scattering aerosol components. The Aethalometer is the most commonly used filter-based instrument for aerosol light absorption measurement. This dissertation describes new understanding of aerosol light absorption obtained by the filter method. The theory uses a multiple scattering model for the combination of filter and particle optics. The theory is evaluated using Aethalometer data from laboratory and ambient measurements in comparison with photoacoustic measurements of aerosol light absorption. Two models were developed to calculate aerosol light absorption coefficients from the Aethalometer data, and were compared to the in-situ aerosol light absorption coefficients. The first is an approximate model and the second is a "full" model. In the approximate model two extreme cases of aerosol optics were used to develop a model-based calibration scheme for the 7-wavelength Aethalometer. These cases include those of very strong scattering aerosols (Ammonium sulfate sample) and very absorbing aerosols (kerosene soot sample). The exponential behavior of light absorption in the strong multiple scattering limit is shown to be the square root of the total absorption optical depth rather than linear with optical depth as is commonly assumed with Beer's law. 2-stream radiative transfer theory was used to develop the full model to calculate the aerosol light absorption coefficients from the Aethalometer data. This comprehensive model allows for studying very general cases of particles of various sizes embedded on arbitrary filter media. Application of this model to the Reno Aerosol Optics Study (Laboratory data) shows that the aerosol light absorption coefficients are about half of the Aethalometer attenuation coefficients, and there is a reasonable agreement between the model calculated absorption coefficients at 521 nm and the measured photoacoustic absorption coefficients at 532 nm. For ambient data obtained during the Las Vegas study, it shows that the model absorption coefficients at 521 nm are larger than the photoacoustic coefficients at 532 nm. Use of the 2-stream model shows that particle penetration depth into the filter has a strong influence on the interpretation of filter-based aerosol light absorption measurements. This is likely explanation for the difference found between model results for filter-based aerosol light absorption and those from photoacoustic measurements for ambient and laboratory aerosol.
Light distribution properties in spinal cord for optogenetic stimulation (Conference Presentation)
NASA Astrophysics Data System (ADS)
GÄ secka, Alicja; Bahdine, Mohamed; Lapointe, Nicolas; Rioux, Veronique; Perez-Sanchez, Jimena; Bonin, Robert P.; De Koninck, Yves; Côté, Daniel
2016-03-01
Optogenetics is currently one of the most popular technique in neuroscience. It enables cell-selective and temporally-precise control of neuronal activity. Good spatial control of the stimulated area and minimized tissue damage requires a specific knowledge about light scattering properties. Light propagation in cell cultures and brain tissue is relatively well documented and allows for a precise and reliable delivery of light to the neurons. In spinal cord, light must pass through highly organized white matter before reaching cell bodies present in grey matter, this heterogenous structure makes it difficult to predict the propagation pattern. In this work we investigate the light distribution properties through mouse and monkey spinal cord. The light propagation depends on a fibers orientation, leading to less deep penetration profile in the direction perpendicular to the fibers and lower attenuation in the direction parallel to the fibers. Additionally, the use of different illumination wavelengths results in variations of the attenuation coefficient. Next, we use Monte-Carlo simulation to study light transport. The model gives a full 3-D simulation of light distribution in spinal cord and takes into account different scattering properties related to the fibers orientation. These studies are important to estimate the minimum optical irradiance required at the fiber tip to effectively excite the optogenetic proteins in a desired region of spinal cord.
Measurement of attenuation coefficients of the fundamental and second harmonic waves in water
NASA Astrophysics Data System (ADS)
Zhang, Shuzeng; Jeong, Hyunjo; Cho, Sungjong; Li, Xiongbing
2016-02-01
Attenuation corrections in nonlinear acoustics play an important role in the study of nonlinear fluids, biomedical imaging, or solid material characterization. The measurement of attenuation coefficients in a nonlinear regime is not easy because they depend on the source pressure and requires accurate diffraction corrections. In this work, the attenuation coefficients of the fundamental and second harmonic waves which come from the absorption of water are measured in nonlinear ultrasonic experiments. Based on the quasilinear theory of the KZK equation, the nonlinear sound field equations are derived and the diffraction correction terms are extracted. The measured sound pressure amplitudes are adjusted first for diffraction corrections in order to reduce the impact on the measurement of attenuation coefficients from diffractions. The attenuation coefficients of the fundamental and second harmonics are calculated precisely from a nonlinear least squares curve-fitting process of the experiment data. The results show that attenuation coefficients in a nonlinear condition depend on both frequency and source pressure, which are much different from a linear regime. In a relatively lower drive pressure, the attenuation coefficients increase linearly with frequency. However, they present the characteristic of nonlinear growth in a high drive pressure. As the diffraction corrections are obtained based on the quasilinear theory, it is important to use an appropriate source pressure for accurate attenuation measurements.
Imaging of polarized target in underwater environment
NASA Astrophysics Data System (ADS)
Carrizo, Carlos; Foster, Robert; El-Habashi, Ahmed; Gray, Deric; Gilerson, Alex
2017-10-01
Imaging of underwater targets is challenging because of the significant attenuation of the propagating light field due to the absorption and scattering by water and suspended/dissolved matter. Some living and manmade objects in water have surfaces which partially polarize the light, whose properties can be used to camouflage or, conversely, to detect such objects. The attenuation of light by the intervening water (so-called veiling light) changes both the intensity and polarization characteristics at each pixel of the image, but does not contain any information about the target and contributes to image degradation and blurring. Its properties need to be understood in order to isolate the true optical signature of the target. The main goal of this study is to retrieve the polarization characteristics of the target from the image in different water environmental and illumination conditions by taking into account coincidentally measured inherent water optical properties (IOPs) during recent field campaigns outside the Chesapeake Bay and in New York Bight. Data, in the form of images and videos, were acquired using a green-band full-Stokes polarimetric video camera. Analysis of the acquired images show reasonable agreement in Stokes vector components with the measurements by the underwater polarimeter and modeled polarized signals. In addition, Stokes vector components of the veiling light were also estimated and compared with the models. Finally, retrieval of the attenuation coefficient for the light from the target is attempted from the measurements and compared with the results of the independent measurements of IOPs.
Load-based approaches for modelling visual clarity in streams at regional scale.
Elliott, A H; Davies-Colley, R J; Parshotam, A; Ballantine, D
2013-01-01
Reduction of visual clarity in streams by diffuse sources of fine sediment is a cause of water quality impairment in New Zealand and internationally. In this paper we introduce the concept of a load of optical cross section (LOCS), which can be used for load-based management of light-attenuating substances and for water quality models that are based on mass accounting. In this approach, the beam attenuation coefficient (units of m(-1)) is estimated from the inverse of the visual clarity (units of m) measured with a black disc. This beam attenuation coefficient can also be considered as an optical cross section (OCS) per volume of water, analogous to a concentration. The instantaneous 'flux' of cross section is obtained from the attenuation coefficient multiplied by the water discharge, and this can be accumulated over time to give an accumulated 'load' of cross section (LOCS). Moreover, OCS is a conservative quantity, in the sense that the OCS of two combined water volumes is the sum of the OCS of the individual water volumes (barring effects such as coagulation, settling, or sorption). The LOCS can be calculated for a water quality station using rating curve methods applied to measured time series of visual clarity and flow. This approach was applied to the sites in New Zealand's National Rivers Water Quality Network (NRWQN). Although the attenuation coefficient follows roughly a power relation with flow at some sites, more flexible loess rating curves are required at other sites. The hybrid mechanistic-statistical catchment model SPARROW (SPAtially Referenced Regressions On Watershed attributes), which is based on a mass balance for mean annual load, was then applied to the NRWQN dataset. Preliminary results from this model are presented, highlighting the importance of factors related to erosion, such as rainfall, slope, hardness of catchment rock types, and the influence of pastoral development on the load of optical cross section.
NASA Astrophysics Data System (ADS)
Granton, Patrick V.; Dekker, Kurtis H.; Battista, Jerry J.; Jordan, Kevin J.
2016-04-01
Optical cone-beam computed tomographic (CBCT) scanning of 3D radiochromic dosimeters may provide a practical method for 3D dose verification in radiation therapy. However, in cone-beam geometry stray light contaminates the projection images, degrading the accuracy of reconstructed linear attenuation coefficients. Stray light was measured using a beam pass aperture array (BPA) and structured illumination methods. The stray-to-primary ray ratio (SPR) along the central axis was found to be 0.24 for a 5% gelatin hydrogel, representative of radiochromic hydrogels. The scanner was modified by moving the spectral filter from the detector to the source, changing the light’s spatial fluence pattern and lowering the acceptance angle by extending distance between the source and object. These modifications reduced the SPR significantly from 0.24 to 0.06. The accuracy of the reconstructed linear attenuation coefficients for uniform carbon black liquids was compared to independent spectrometer measurements. Reducing the stray light increased the range of accurate transmission readings. In order to evaluate scanner performance for the more challenging application to small field dosimetry, a carbon black finger gel phantom was prepared. Reconstructions of the phantom from CBCT and fan-beam CT scans were compared. The modified source resulted in improved agreement. Subtraction of residual stray light, measured with BPA or structured illumination from each projection further improved agreement. Structured illumination was superior to BPA for measuring stray light for the smaller 1.2 and 0.5 cm diameter phantom fingers. At the costs of doubling the scanner size and tripling the number of scans, CBCT reconstructions of low-scattering hydrogel dosimeters agreed with those of fan-beam CT scans.
NASA Astrophysics Data System (ADS)
Almeida Junior, T. Airton; Nogueira, M. S.; Vivolo, V.; Potiens, M. P. A.; Campos, L. L.
2017-11-01
The probability of a photon interacting in a particular way with a given material, per unit path length, is usually called the linear attenuation coefficient (μ), and it is of great importance in radiation shielding. Plates of barite concrete with different thickness were fabricated in order to determining their mass attenuation coefficients at different energies. The plates were irradiated with ISO X-ray beams (N60, N80, N110 and N150), generated by Pantak HF320 X-ray equipment, at the IPEN laboratory. The mass attenuation coefficients of barite concrete have been measured using X-ray attenuation for different thicknesses of barite concrete qualities of the ISO. The attenuator material issued from different regions of Brazil. The experimental procedure in this research was validated by comparison between the experimental measurements of mass attenuation coefficients and coefficients determined by the same atomic composition, using as a tool to XCOM. The highest value of (μ/ρ) found experimentally was in the energy of 48 keV, in ISO 60 N quality, being 1.32(±0.49) for purple barite; 1.47(±0.41) for white barite and 1.75(±0.41) for cream barite. The determination of the chemical composition of the barite samples was of fundamental importance for the characterization of these materials. It can be seen that both calculated and measured data for the linear attenuation coefficients increase with the increasing materials density, as it is expected. It can be concluded that the photon attenuation coefficients depends on the photon energy and the materials density is the main contribution to the photon attenuation coefficients, which is important for radiation shielding.
NASA Astrophysics Data System (ADS)
Nakazawa, Haruna; Doi, Marika; Ogawa, Emiyu; Arai, Tsunenori
2018-02-01
To avoid an instability of the optical coefficient measurement using sliced tissue preparation, we proposed the combination of light intensity measurement through an optical fiber puncturing into a bulk tissue varying field of view (FOV) and ray tracing calculation using Monte-Carlo method. The optical coefficients of myocardium such as absorption coefficient μa, scattering coefficient μs, and anisotropic parameter g are used in the myocardium optical propagation. Since optical coefficients obtained using thin sliced tissue could be instable because they are affected by dehydration and intracellular fluid effusion on the sample surface, variety of coefficients have been reported over individual optical differences of living samples. The proposed method which combined the experiment using the bulk tissue with ray tracing calculation were performed. In this method, a 200 μmΦ high-NA silica fiber installed in a 21G needle was punctured up to the bottom of the myocardial bulk tissue over 3 cm in thickness to measure light intensity changing the fiber-tip depth and FOV. We found that the measured attenuation coefficients decreased as the FOV increased. The ray trace calculation represented the same FOV dependence in above mentioned experimental result. We think our particular fiber punctured measurement using bulk tissue varying FOV with Inverse Monte-Carlo method might be useful to obtain the optical coefficients to avoid sample preparation instabilities.
X-ray tube voltage and image quality in adult and pediatric CT
NASA Astrophysics Data System (ADS)
Huda, W.; Ogden, K. M.; Scalzetti, E. M.; Lavallee, R. L.; Samei, E.
2006-03-01
The purpose of this study was to investigate how tissue x-ray attenuation coefficients, and their uncertainties, vary with x-ray tube voltage in different sized patients. Anthropomorphic phantoms (newborn, 10 year old, adult) were scanned a GE LightSpeed scanner at four x-ray tube voltages. Measurements were made of tissue attenuation in the head, chest and abdomen regions, as well as the corresponding noise values. Tissue signal to noise ratios (SNR) were obtained by dividing the average attenuation coefficient by the corresponding standard deviation. Soft tissue attenuation coefficients, relative to water, showed little variation with patient location or x-ray voltage (< 0.5%), but increasing the x-ray tube voltage from 80 to 140 kV reduced bone x-ray attenuation by ~14%. All tissues except adult bone showed a reduction of noise with increasing x-ray tube voltage (kV); the noise was found to be proportional to kV n and the average value of n for all tissues was -1.19 +/- 0.57. In pediatric patients at a constant x-ray tube voltage, SNR values were approximately independent of the body region, but the adult abdomen soft tissue SNR values were ~40% lower than the adult head. SNR values in the newborn were more than double the corresponding SNR soft tissue values in adults. SNR values for lung and bone were generally lower than those for soft tissues. For soft tissues, increasing the x-ray tube voltage from 80 to 140 kV increased the SNR by an average of ~90%. Data in this paper can be used to help design CT imaging protocols that take into account patient size and diagnostic imaging task.
The Study of Rain Specific Attenuation for the Prediction of Satellite Propagation in Malaysia
NASA Astrophysics Data System (ADS)
Mandeep, J. S.; Ng, Y. Y.; Abdullah, H.; Abdullah, M.
2010-06-01
Specific attenuation is the fundamental quantity in the calculation of rain attenuation for terrestrial path and slant paths representing as rain attenuation per unit distance (dB/km). Specific attenuation is an important element in developing the predicted rain attenuation model. This paper deals with the empirical determination of the power law coefficients which allow calculating the specific attenuation in dB/km from the knowledge of the rain rate in mm/h. The main purpose of the paper is to obtain the coefficients of k and α of power law relationship between specific attenuation. Three years (from 1st January 2006 until 31st December 2008) rain gauge and beacon data taken from USM, Nibong Tebal have been used to do the empirical procedure analysis of rain specific attenuation. The data presented are semi-empirical in nature. A year-to-year variation of the coefficients has been indicated and the empirical measured data was compared with ITU-R provided regression coefficient. The result indicated that the USM empirical measured data was significantly vary from ITU-R predicted value. Hence, ITU-R recommendation for regression coefficients of rain specific attenuation is not suitable for predicting rain attenuation at Malaysia.
Laser Doppler Radar System Calibration and Rainfall Attenuation Measurements
DOT National Transportation Integrated Search
1978-10-01
The atmospheric attenuation and backscatter coefficients have been measured at the 10.6-micrometers wavelength of the CO2 laser in rainstorms. Data are presented to show the increase in attenuation coefficient with rainfall rate. Backscatter coeffici...
The Reduced Effectiveness of EGR to Mitigate Knock at High Loads in Boosted SI Engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szybist, James P.; Wagnon, Scott W.; Splitter, Derek A.
Numerous studies have demonstrated that exhaust gas recirculation (EGR) can attenuate knock propensity in spark ignition (SI) engines at naturally aspirated or lightly boosted conditions. In this paper, we investigate the role of cooled EGR under higher load conditions with multiple fuel compositions, where highly retarded combustion phasing typical of modern SI engines was used. It was found that under these conditions, EGR attenuation of knock is greatly reduced, where EGR doesn’t allow significant combustion phasing advance as it does under lighter load conditions. Detailed combustion analysis shows that when EGR is added, the polytropic coefficient increases causing the compressivemore » pressure and temperature to increase. At sufficiently highly boosted conditions, the increase in polytropic coefficient and additional trapped mass from EGR can sufficiently reduce fuel ignition delay to overcome knock attenuation effects. Kinetic modeling demonstrates that the effectiveness of EGR to mitigate knock is highly dependent on the pressure-temperature condition. Experiments at 2000 rpm have confirmed reduced fuel ignition delay under highly boosted conditions relevant to modern downsized boosted SI engines, where in-cylinder pressure is higher and the temperature is cooler. Finally, at these conditions, charge reactivity increases compared to naturally aspirated conditions, and attenuation of knock by EGR is reduced.« less
The Reduced Effectiveness of EGR to Mitigate Knock at High Loads in Boosted SI Engines
Szybist, James P.; Wagnon, Scott W.; Splitter, Derek A.; ...
2017-09-04
Numerous studies have demonstrated that exhaust gas recirculation (EGR) can attenuate knock propensity in spark ignition (SI) engines at naturally aspirated or lightly boosted conditions. In this paper, we investigate the role of cooled EGR under higher load conditions with multiple fuel compositions, where highly retarded combustion phasing typical of modern SI engines was used. It was found that under these conditions, EGR attenuation of knock is greatly reduced, where EGR doesn’t allow significant combustion phasing advance as it does under lighter load conditions. Detailed combustion analysis shows that when EGR is added, the polytropic coefficient increases causing the compressivemore » pressure and temperature to increase. At sufficiently highly boosted conditions, the increase in polytropic coefficient and additional trapped mass from EGR can sufficiently reduce fuel ignition delay to overcome knock attenuation effects. Kinetic modeling demonstrates that the effectiveness of EGR to mitigate knock is highly dependent on the pressure-temperature condition. Experiments at 2000 rpm have confirmed reduced fuel ignition delay under highly boosted conditions relevant to modern downsized boosted SI engines, where in-cylinder pressure is higher and the temperature is cooler. Finally, at these conditions, charge reactivity increases compared to naturally aspirated conditions, and attenuation of knock by EGR is reduced.« less
NASA Astrophysics Data System (ADS)
Ammerlaan, B. A. J.; Holzinger, R.; Jedynska, A. D.; Henzing, J. S.
2017-09-01
Equivalent Black Carbon (EBC) and Elemental Carbon (EC) are different mass metrics to quantify the amount of combustion aerosol. Both metrics have their own measurement technique. In state-of-the-art carbon analysers, optical measurements are used to correct for organic carbon that is not evolving because of pyrolysis. These optical measurements are sometimes used to apply the technique of absorption photometers. Here, we use the transmission measurements of our carbon analyser for simultaneous determination of the elemental carbon concentration and the absorption coefficient. We use MAAP data from the CESAR observatory, the Netherlands, to correct for aerosol-filter interactions by linking the attenuation coefficient from the carbon analyser to the absorption coefficient measured by the MAAP. Application of the calibration to an independent data set of MAAP and OC/EC observations for the same location shows that the calibration is applicable to other observation periods. Because of simultaneous measurements of light absorption properties of the aerosol and elemental carbon, variation in the mass absorption efficiency (MAE) can be studied. We further show that the absorption coefficients and MAE in this set-up are determined within a precision of 10% and 12%, respectively. The precisions could be improved to 4% and 8% when the light transmission signal in the carbon analyser is very stable.
NASA Astrophysics Data System (ADS)
Revathy, J. S.; Anooja, J.; Krishnaveni, R. B.; Gangadathan, M. P.; Varier, K. M.
2018-06-01
A light-weight multichannel analyser (MCA)-based γ -ray spectrometer, developed earlier at the Inter University Accelerator Centre, New Delhi, has been used as part of the PG curriculum, to determine the effective atomic numbers for γ attenuation of ^{137}Cs γ -ray in different types of samples. The samples used are mixtures of graphite, aluminum and selenium powders in different proportions, commercial and home-made edible powders, fruit and vegetable juices as well as certain allopathic and ayurvedic medications. A narrow beam good geometry set-up has been used in the experiments. The measured attenuation coefficients have been used to extract effective atomic numbers in the samples. The results are consistent with XCOM values wherever available. The present results suggest that the γ attenuation technique can be used as an effective non-destructive method for finding adulteration of food materials.
On Aethalometer measurement uncertainties and an instrument correction factor for the Arctic
NASA Astrophysics Data System (ADS)
Backman, John; Schmeisser, Lauren; Virkkula, Aki; Ogren, John A.; Asmi, Eija; Starkweather, Sandra; Sharma, Sangeeta; Eleftheriadis, Konstantinos; Uttal, Taneil; Jefferson, Anne; Bergin, Michael; Makshtas, Alexander; Tunved, Peter; Fiebig, Markus
2017-12-01
Several types of filter-based instruments are used to estimate aerosol light absorption coefficients. Two significant results are presented based on Aethalometer measurements at six Arctic stations from 2012 to 2014. First, an alternative method of post-processing the Aethalometer data is presented, which reduces measurement noise and lowers the detection limit of the instrument more effectively than boxcar averaging. The biggest benefit of this approach can be achieved if instrument drift is minimised. Moreover, by using an attenuation threshold criterion for data post-processing, the relative uncertainty from the electronic noise of the instrument is kept constant. This approach results in a time series with a variable collection time (Δt) but with a constant relative uncertainty with regard to electronic noise in the instrument. An additional advantage of this method is that the detection limit of the instrument will be lowered at small aerosol concentrations at the expense of temporal resolution, whereas there is little to no loss in temporal resolution at high aerosol concentrations ( > 2.1-6.7 Mm-1 as measured by the Aethalometers). At high aerosol concentrations, minimising the detection limit of the instrument is less critical. Additionally, utilising co-located filter-based absorption photometers, a correction factor is presented for the Arctic that can be used in Aethalometer corrections available in literature. The correction factor of 3.45 was calculated for low-elevation Arctic stations. This correction factor harmonises Aethalometer attenuation coefficients with light absorption coefficients as measured by the co-located light absorption photometers. Using one correction factor for Arctic Aethalometers has the advantage that measurements between stations become more inter-comparable.
Inhomogeneity in optical properties of rat brain: a study for LLLT dosimetry
NASA Astrophysics Data System (ADS)
Sousa, Marcelo V. P.; Prates, Renato; Kato, Ilka T.; Sabino, Caetano P.; Yoshimura, Tania M.; Suzuki, Luis C.; Magalhães, Ana C.; Yoshimura, Elisabeth M.; Ribeiro, Martha S.
2013-03-01
Over the last few years, low-level light therapy (LLLT) has shown an incredible suitability for a wide range of applications for central nervous system (CNS) related diseases. In this therapeutic modality light dosimetry is extremely critical so the study of light propagation through the CNS organs is of great importance. To better understand how light intensity is delivered to the most relevant neural sites we evaluated optical transmission through slices of rat brain point by point. We experimented red (λ = 660 nm) and near infrared (λ = 808 nm) diode laser light analyzing the light penetration and distribution in the whole brain. A fresh Wistar rat (Rattus novergicus) brain was cut in sagittal slices and illuminated with a broad light beam. A high-resolution digital camera was employed to acquire data of transmitted light. Spatial profiles of the light transmitted through the sample were obtained from the images. Peaks and valleys in the profiles show sites where light was less or more attenuated. The peak intensities provide information about total attenuation and the peak widths are correlated to the scattering coefficient at that individual portion of the sample. The outcomes of this study provide remarkable information for LLLT dose-dependent studies involving CNS and highlight the importance of LLLT dosimetry in CNS organs for large range of applications in animal and human diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huesemann, Michael H.; Crowe, Braden J.; Waller, Peter
Here, a microalgae biomass growth model was developed for screening novel strains for their potential to exhibit high biomass productivities under nutrient-replete conditions in outdoor ponds subjected to fluctuating light intensities and water temperatures. Growth is modeled by first estimating the light attenuation by biomass according to a scatter-corrected Beer-Lambert Law, and then calculating the specific growth rate in discretized culture volume slices that receive declining light intensities due to attenuation. The model requires the following experimentally determined strain-specific input parameters: specific growth rate as a function of light intensity and temperature, biomass loss rate in the dark as amore » function of temperature and average light intensity during the preceding light period, and the scatter-corrected biomass light absorption coefficient. The model was successful in predicting the growth performance and biomass productivity of three different microalgae species (Chlorella sorokiniana, Nannochloropsis salina, and Picochlorum sp.) in raceway pond cultures (batch and semi-continuous) subjected to diurnal sunlight intensity and water temperature variations. Model predictions were moderately sensitive to minor deviations in input parameters. To increase the predictive power of this and other microalgae biomass growth models, a better understanding of the effects of mixing-induced rapid light dark cycles on photo-inhibition and short-term biomass losses due to dark respiration in the aphotic zone of the pond is needed.« less
Huesemann, Michael H.; Crowe, Braden J.; Waller, Peter; ...
2015-12-11
Here, a microalgae biomass growth model was developed for screening novel strains for their potential to exhibit high biomass productivities under nutrient-replete conditions in outdoor ponds subjected to fluctuating light intensities and water temperatures. Growth is modeled by first estimating the light attenuation by biomass according to a scatter-corrected Beer-Lambert Law, and then calculating the specific growth rate in discretized culture volume slices that receive declining light intensities due to attenuation. The model requires the following experimentally determined strain-specific input parameters: specific growth rate as a function of light intensity and temperature, biomass loss rate in the dark as amore » function of temperature and average light intensity during the preceding light period, and the scatter-corrected biomass light absorption coefficient. The model was successful in predicting the growth performance and biomass productivity of three different microalgae species (Chlorella sorokiniana, Nannochloropsis salina, and Picochlorum sp.) in raceway pond cultures (batch and semi-continuous) subjected to diurnal sunlight intensity and water temperature variations. Model predictions were moderately sensitive to minor deviations in input parameters. To increase the predictive power of this and other microalgae biomass growth models, a better understanding of the effects of mixing-induced rapid light dark cycles on photo-inhibition and short-term biomass losses due to dark respiration in the aphotic zone of the pond is needed.« less
Attenuation Coefficient Estimation of the Healthy Human Thyroid In Vivo
NASA Astrophysics Data System (ADS)
Rouyer, J.; Cueva, T.; Portal, A.; Yamamoto, T.; Lavarello, R.
Previous studies have demonstrated that attenuation coefficients can be useful towards characterizing thyroid tissues. In this work, ultrasonic attenuation coefficients were estimated from healthy human thyroids in vivo using a clinical scanner. The selected subjects were five young, healthy volunteers (age: 26 ± 6 years old, gender: three females, two males) with no reported history of thyroid diseases, no palpable thyroid nodules, no smoking habits, and body mass index less than 30 kg/m2. Echographic examinations were conducted by a trained sonographer using a SonixTouch system (Ultrasonix Medical Corporation, Richmond, BC) equipped with an L14-5 linear transducer array (nominal center frequency of 10 MHz, transducer footprint of 3.8 cm). Radiofrequency data corresponding to the collected echographic images in both transverse and longitudinal views were digitized at a sampling rate of 40 MHz and processed with Matlab codes (MathWorks, Natick, MA) to estimate attenuation coefficients using the spectral log difference method. The estimation was performed using an analysis bandwidth spanning from 4.0 to 9.0 MHz. The average value of the estimated ultrasonic attenuation coefficients was equal to 1.34 ± 0.15 dB/(cm.MHz). The standard deviation of the estimated average attenuation coefficient across different volunteers suggests a non-negligible inter-subject variability in the ultrasonic attenuation coefficient of the human thyroid.
Paige, Jeremy S.; Bernstein, Gregory S.; Heba, Elhamy; Costa, Eduardo A. C.; Fereirra, Marilia; Wolfson, Tanya; Gamst, Anthony C.; Valasek, Mark A.; Lin, Grace Y.; Han, Aiguo; Erdman, John W.; O’Brien, William D.; Andre, Michael P.; Loomba, Rohit; Sirlin, Claude B.
2017-01-01
OBJECTIVE The purpose of this study is to explore the diagnostic performance of two investigational quantitative ultrasound (QUS) parameters, attenuation coefficient and backscatter coefficient, in comparison with conventional ultrasound (CUS) and MRI-estimated proton density fat fraction (PDFF) for predicting histology-confirmed steatosis grade in adults with nonalcoholic fatty liver disease (NAFLD). SUBJECTS AND METHODS In this prospectively designed pilot study, 61 adults with histology-confirmed NAFLD were enrolled from September 2012 to February 2014. Subjects underwent QUS, CUS, and MRI examinations within 100 days of clinical-care liver biopsy. QUS parameters (attenuation coefficient and backscatter coefficient) were estimated using a reference phantom technique by two analysts independently. Three-point ordinal CUS scores intended to predict steatosis grade (1, 2, or 3) were generated independently by two radiologists on the basis of QUS features. PDFF was estimated using an advanced chemical shift–based MRI technique. Using histologic examination as the reference standard, ROC analysis was performed. Optimal attenuation coefficient, backscatter coefficient, and PDFF cutoff thresholds were identified, and the accuracy of attenuation coefficient, backscatter coefficient, PDFF, and CUS to predict steatosis grade was determined. Interobserver agreement for attenuation coefficient, backscatter coefficient, and CUS was analyzed. RESULTS CUS had 51.7% grading accuracy. The raw and cross-validated steatosis grading accuracies were 61.7% and 55.0%, respectively, for attenuation coefficient, 68.3% and 68.3% for backscatter coefficient, and 76.7% and 71.3% for MRI-estimated PDFF. Interobserver agreements were 53.3% for CUS (κ = 0.61), 90.0% for attenuation coefficient (κ = 0.87), and 71.7% for backscatter coefficient (κ = 0.82) (p < 0.0001 for all). CONCLUSION Preliminary observations suggest that QUS parameters may be more accurate and provide higher interobserver agreement than CUS for predicting hepatic steatosis grade in patients with NAFLD. PMID:28267360
Paige, Jeremy S; Bernstein, Gregory S; Heba, Elhamy; Costa, Eduardo A C; Fereirra, Marilia; Wolfson, Tanya; Gamst, Anthony C; Valasek, Mark A; Lin, Grace Y; Han, Aiguo; Erdman, John W; O'Brien, William D; Andre, Michael P; Loomba, Rohit; Sirlin, Claude B
2017-05-01
The purpose of this study is to explore the diagnostic performance of two investigational quantitative ultrasound (QUS) parameters, attenuation coefficient and backscatter coefficient, in comparison with conventional ultrasound (CUS) and MRI-estimated proton density fat fraction (PDFF) for predicting histology-confirmed steatosis grade in adults with nonalcoholic fatty liver disease (NAFLD). In this prospectively designed pilot study, 61 adults with histology-confirmed NAFLD were enrolled from September 2012 to February 2014. Subjects underwent QUS, CUS, and MRI examinations within 100 days of clinical-care liver biopsy. QUS parameters (attenuation coefficient and backscatter coefficient) were estimated using a reference phantom technique by two analysts independently. Three-point ordinal CUS scores intended to predict steatosis grade (1, 2, or 3) were generated independently by two radiologists on the basis of QUS features. PDFF was estimated using an advanced chemical shift-based MRI technique. Using histologic examination as the reference standard, ROC analysis was performed. Optimal attenuation coefficient, backscatter coefficient, and PDFF cutoff thresholds were identified, and the accuracy of attenuation coefficient, backscatter coefficient, PDFF, and CUS to predict steatosis grade was determined. Interobserver agreement for attenuation coefficient, backscatter coefficient, and CUS was analyzed. CUS had 51.7% grading accuracy. The raw and cross-validated steatosis grading accuracies were 61.7% and 55.0%, respectively, for attenuation coefficient, 68.3% and 68.3% for backscatter coefficient, and 76.7% and 71.3% for MRI-estimated PDFF. Interobserver agreements were 53.3% for CUS (κ = 0.61), 90.0% for attenuation coefficient (κ = 0.87), and 71.7% for backscatter coefficient (κ = 0.82) (p < 0.0001 for all). Preliminary observations suggest that QUS parameters may be more accurate and provide higher interobserver agreement than CUS for predicting hepatic steatosis grade in patients with NAFLD.
NASA Technical Reports Server (NTRS)
Ohi, Nobuaki; Makinen, Carla P.; Mitchell, Richard; Moisan, Tiffany A.
2008-01-01
Ocean color algorithms are based on the parameterization of apparent optical properties as a function of inherent optical properties. WET Labs underwater absorption and attenuation meters (ac-9 and ac-s) measure both the spectral beam attenuation [c (lambda)] and absorption coefficient [a (lambda)]. The ac-s reports in a continuous range of 390-750 nm with a band pass of 4 nm, totaling approximately 83 distinct wavelengths, while the ac-9 reports at 9 wavelengths. We performed the ac-s field measurements at nine stations in the Mid-Atlantic Bight from water calibrations to data analysis. Onboard the ship, the ac-s was calibrated daily using Milli Q-water. Corrections for the in situ temperature and salinity effects on optical properties of water were applied. Corrections for incomplete recovery of the scattered light in the ac-s absorption tube were performed. The fine scale of spectral and vertical distributions of c (lambda) and a (lambda) were described from the ac-s. The significant relationships between a (674) and that of spectrophotometric analysis and chlorophyll a concentration of discrete water samples were observed.
NASA Astrophysics Data System (ADS)
Huang, Yimei; Yang, Hongqin; Wang, Yuhua; Zheng, Liqin; Xie, Shusen
2010-11-01
The physical properties of acupuncture point were important to discover the mechanism of acupuncture meridian. In this paper, we used an optical coherence tomography to monitor in vivo the changes of optical attenuation coefficients of Hegu acupuncture point and non-acupuncture point during laser irradiation on Yangxi acupuncture point. The optical attenuation coefficients of Hegu acupuncture point and non-acupuncture point were obtained by fitting the raw data according to the Beer-Lambert's law. The experimental results showed that the optical attenuation coefficient of Hegu acupuncture point decreased during the laser acupuncture, in contrast to a barely changed result in that of non-acupuncture point. The significant change of optical attenuation coefficient of Hegu acupuncture point indicated that there was a correlation between Hegu and Yangxi acupuncture points to some extent.
Technical insight on the requirements for CO2-saturated growth of microalgae in photobioreactors.
Yuvraj; Padmanabhan, Padmini
2017-06-01
Microalgal cultures are usually sparged with CO 2 -enriched air to preclude CO 2 limitation during photoautotrophic growth. However, the CO 2 vol% specifically required at operating conditions to meet the carbon requirement of algal cells in photobioreactor is never determined and 1-10% v/v CO 2 -enriched air is arbitrarily used. A scheme is proposed and experimentally validated for Chlorella vulgaris that allows computing CO 2 -saturated growth feasible at given CO 2 vol% and volumetric O 2 mass-transfer coefficient (k L a) O . CO 2 sufficiency in an experiment can be theoretically established to adjust conditions for CO 2 -saturated growth. The methodology completely eliminates the requirement of CO 2 electrode for online estimation of dissolved CO 2 to determine critical CO 2 concentration (C crit ), specific CO 2 uptake rate (SCUR), and volumetric CO 2 mass-transfer coefficient (k L a) C required for the governing CO 2 mass-transfer equation. C crit was estimated from specific O 2 production rate (SOPR) measurements at different dissolved CO 2 concentrations. SCUR was calculated from SOPR and photosynthetic quotient (PQ) determined from the balanced stoichiometric equation of growth. Effect of light attenuation and nutrient depletion on biomass estimate is also discussed. Furthermore, a simple design of photosynthetic activity measurement system was used, which minimizes light attenuation by hanging a low depth (ca. 10 mm) culture over the light source.
Yang, Hui; Zhou, Yan; Wu, Xiuli; Su, Chengkang; Long, Jia; Lin, Jin
2016-01-01
This study aimed to investigate the effect of electroacupuncture (EA) treatment through optical coherence tomography (OCT) in vivo on rats with adjuvant-induced arthritis. OCT images were obtained from the ankle of the right hind paws of the rats in control, model, and EA groups before modelling and 1 day, 8 days, 15 days, 22 days, and 29 days after modelling. Results demonstrated that the OCT signal of the ankle of the right hind paws of the rats was indistinct compared to 1 day after modelling and before modelling in the EA group. In the EA group, the light averaged attenuation coefficients of the ankle tissues decreased as treatment duration was prolonged after EA was administered (3.43, 2.96, 2.61, 2.42, and 2.29 mm−1, resp.). There was a significant difference in attenuation coefficient decrease between the 29th d and the 1st d for EA group compared with control group (P < 0.01). This condition indicated that the light absorption of the ankle of the treated rats in the EA group decreased. Therefore, OCT can be used to monitor the effect of treatment on rats with arthritis in vivo. PMID:27981046
NASA Astrophysics Data System (ADS)
Abdu Mustapa, U. A.; Yusof, M. F. Mohd; Hamid, P. N. K. Abd; Hashim, R.; Ahmad, M. Z.; Aziz, M. Z. Abd
2018-01-01
Particleboards made of oil palm with addition of polylactic acid (PLA), starch, and fish oil were fabricated with target density of 1.0 g/cm3. The mass attenuation coefficients of the particleboards were measured using x-ray fluorescence (XRF) configuration in conjunction with niobium, molybdenum, palladium and tin metal plates that provided Kα1 photon energies between 16.59 and 25.26 keV. The results were compared to the calculated value of water using XCOM. The results showed that all particleboards having mass attenuation coefficients near to the value of water with the mass attenuation coefficient different less than 0.25. The method of fabrication did not give significant different to the mass attenuation coefficients of the particleboards. The results had indicated the potential of bio-adhesive based palm oil particleboards to be developed as phantoms for low energy photons.
NASA Astrophysics Data System (ADS)
Kohl-Bareis, Matthias; Nolte, Christian; Heekeren, Hauke R.; Horst, Susanne; Scholz, J.; Obrig, Hellmuth; Villringer, Arno
1998-01-01
In this study we assess changes in the hemoglobin oxygenation (oxy-Hb, deoxy-Hb) and the Cytochrome-C-Oxidase redox state (Cyt-ox) in the occipital cortex during visual stimulation by near infrared spectroscopy. For the calculation of changes in oxy-Hb, deoxy-Hb and Cyt-ox from attenuation data via a modified Beer-Lambert equation, the wavelength dependence of the differential pathlength factor (DPF), i.e. the ratio of the mean optical pathlength and the physical light-source-detector separation, has to be taken into account. The wavelength dependence of the DPF determines the crosstalk between the different concentrations and is therefore essential for a high sensitivity. Here a simple method is suggested to estimate the wavelength dependence of the DPF((lambda) ) from pulse induced attenuation changes measured on the head of adult humans. The essence is that the DPF is the ratio of the attenuation changes over absorption coefficient changes and the spectral form of the pulse correlated absorption coefficient change is proportional to the extinction coefficient of blood. Indicators for the validity of the DPF((lambda) ) derived for wavelengths between 700 and 970 nm are the stability of the calculated oxy-Hb, deoxy-Hb and Cyt-ox signals with variations of the wavelength range included for their calculation and its overall agreement with the data available from the literature. The DPF derived from pulse measurements was used for the analysis of attenuation data from cortical stimulations. We show that Cyt-ox in the occipital cortex of human subjects is transiently oxidized during visual stimulation.
NASA Astrophysics Data System (ADS)
Kohl, Matthias; Nolte, Christian; Heekeren, Hauke R.; Horst, Susanne; Scholz, Udo; Obrig, Hellmuth; Villringer, Arno
1997-12-01
In this study we assess changes in the hemoglobin oxygenation (oxy-Hb, deoxy-Hb) and the Cytochrome-C-Oxidase redox state (Cyt-ox) in the occipital cortex during visual stimulation by near infrared spectroscopy. For the calculation of changes in oxy-Hb, deoxy-Hb and Cyt-ox from attenuation data via a modified Beer-Lambert equation, the wavelength dependence of the differential pathlength factor (DPF), i.e. the ratio of the mean optical pathlength and the physical light-source-detector separation, has to be taken into account. The wavelength dependence of the DPF determines the crosstalk between the different concentrations and is therefore essential for a high sensitivity. Here a simple method is suggested to estimate the wavelength dependence of the DPF((lambda) ) from pulse induced attenuation changes measured on the head of adult humans. The essence is that the DPF is the ratio of the attenuation changes over absorption coefficient changes and the spectral form of the pulse correlated absorption coefficient change is proportional to the extinction coefficient of blood. Indicators for the validity of the DPF((lambda) ) derived for wavelengths between 700 and 970 nm are the stability of the calculated oxy-Hb, deoxy-Hb and Cyt-ox signals with variations of the wavelength range included for their calculation and its overall agreement with the data available from the literature. The DPF derived from pulse measurements was used for the analysis of attenuation data from cortical stimulations. We show that Cyt-ox in the occipital cortex of human subjects is transiently oxidized during visual stimulation.
Crystal-free Formation of Non-Oxide Optical Fiber
NASA Technical Reports Server (NTRS)
Nabors, Sammy A.
2015-01-01
Researchers at NASA Marshall Space Flight Center have devised a method for the creation of crystal-free nonoxide optical fiber preforms. Non-oxide fiber optics are extensively used in infrared transmitting applications such as communication systems, chemical sensors, and laser fiber guides for cutting, welding and medical surgery. However, some of these glasses are very susceptible to crystallization. Even small crystals can lead to light scatter and a high attenuation coefficient, limiting their usefulness. NASA has developed a new method of non-oxide fiber formation that uses axial magnetic fields to suppress crystallization. The resulting non-oxide fibers are crystal free and have lower signal attenuation rates than silica based optical fibers.
NASA Astrophysics Data System (ADS)
Julian, J. P.; Doyle, M. W.; Stanley, E. H.
2006-12-01
Light is vital to the dynamics of aquatic ecosystems. It drives photosynthesis and photochemical reactions, affects thermal structure, and influences behavior of aquatic biota. Despite the fundamental role of light to riverine ecosystems, light studies in rivers have been mostly neglected because i) boundary conditions (e.g., banks, riparian vegetation) make ambient light measurements difficult, and ii) the optical water quality of rivers is highly variable and difficult to characterize. We propose a benthic light availability model (BLAM) that predicts the percent of incoming photosynthetically active radiation (PAR) available at the river bed. BLAM was developed by quantifying light attenuation of the five hydrogeomorphic controls that dictate riverine light availability: topography, riparian vegetation, channel geometry, optical water quality, and water depth. BLAM was calibrated using hydrogeomorphic data and light measurements from two rivers: Deep River - a 5th-order, turbid river in central North Carolina, and Big Spring Creek - a 2nd-order, optically clear stream in central Wisconsin. We used a series of four PAR sensors to measure i) above-canopy PAR, ii) PAR above water surface, iii) PAR below water surface, and iv) PAR on stream bed. These measurements were used to develop empirical light attenuation coefficients, which were then used in combination with optical water quality measurements, shading analyses, channel surveys, and flow records to quantify the spatial and temporal variability in riverine light availability. Finally, we apply BLAM to the Baraboo River - a 6th-order, 120-mile, unimpounded river in central Wisconsin - in order to characterize light availability along the river continuum (from headwaters to mouth).
Trunova, Valentina; Sidorina, Anna; Kriventsov, Vladimir
2015-01-01
Information about X-ray mass attenuation coefficients in different materials is necessary for accurate X-ray fluorescent analysis. The X-ray mass attenuation coefficients for energy of 7-12keV were measured in biological (Mussel and Oyster tissues, blood, hair, liver, and Cabbage leaves) and geological (Baikal sludge, soil, and Alaskite granite) samples. The measurements were carried out at the EXAFS Station of Siberian Synchrotron Radiation Center (VEPP-3). Obtained experimental mass attenuation coefficients were compared with theoretical values calculated for some samples. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mass attenuation coefficient of chromium and manganese compounds around absorption edge.
Sharanabasappa; Kaginelli, S B; Kerur, B R; Anilkumar, S; Hanumaiah, B
2009-01-01
The total mass attenuation coefficient for Potassium dichromate, Potassium chromate and Manganese acetate compounds are measured at different photon energies 5.895, 6.404, 6.490, 7.058, 8.041 and 14.390 keV using Fe-55, Co-57 and 241Am source with Copper target, radioactive sources. The photon intensity is analyzed using a high resolution HPGe detector system coupled to MCA under good geometrical arrangement. The obtained values of mass attenuation coefficient values are compared with theoretical values. This study suggests that measured mass attenuation coefficient values at and near absorption edges differ from the theoretical value by about 5-28%.
NASA Astrophysics Data System (ADS)
Kohl, Matthias; Nolte, Christian; Heekeren, Hauke R.; Horst, Susanne; Scholz, Udo; Obrig, Hellmuth; Villringer, Arno
1998-06-01
For the calculation of changes in oxyhaemoglobin, deoxyhaemoglobin and the redox state of cytochrome-c-oxidase from attenuation data via a modified Beer-Lambert equation the wavelength dependence of the differential pathlength factor (DPF
) has to be taken into account. The DPF, i.e. the ratio of the mean optical pathlength and the physical light source-detector separation at each wavelength, determines the crosstalk between the different concentrations and is therefore essential for a sensitive detection of chromophore changes. Here a simple method is suggested to estimate the wavelength dependence of the DPF
from pulse-induced attenuation changes measured on the head of adult humans. The essence is that the DPF is the ratio of the attenuation changes over absorption coefficient changes, and that the spectral form of the pulse correlated absorption coefficient change can be assumed to be proportional to the extinction coefficient of blood. Indicators for the validity of the DPF
derived for wavelengths between 700 and 970 nm are the stability of the calculated haemoglobin and cytochrome signals with variations of the wavelength range included for their calculation and its overall agreement with the data available from the literature.
Tomography using monochromatic thermal neutrons with attenuation and phase contrast
NASA Astrophysics Data System (ADS)
Dubus, Francois; Bonse, Ulrich; Biermann, Theodor; Baron, Matthias; Beckmann, Felix; Zawisky, Michael
2002-01-01
Attenuation-contrast tomography with monochromatic thermal neutrons was developed and operated at guide station S18 of the institute Laue-Langevin in Grenoble. From the S18 spectrum the neutron wavelength (lambda) equals 0.18 nm was selected by employing a fore crystal with the silicon 220 reflection at a Bragg angle (Theta) equals 30 degrees. Projections were registered by a position sensitive detector (PSD) consisting of a neutron-to-visible-light converter coupled to a CCD detector. Neutron tomography and its comparison with X-ray tomography is studied. This is of special interest since the cross section for neutron attenuation ((sigma) atom) and the cross section for neutron phase shift (bc) are isotope specific and, in addition, by no means mostly monotonous functions of atomic number Z as are attenuation coefficient ((mu) x) and atomic scattering amplitude (f) in the case of X-rays. Results obtained with n-attenuation tomography will be presented. Possibilities and the setup of an instrument for neutron phase-contrast tomography based on single-crystal neutron interferometry will be described.
The role of the reflection coefficient in precision measurement of ultrasonic attenuation
NASA Technical Reports Server (NTRS)
Generazio, E. R.
1984-01-01
Ultrasonic attenuation measurements using contact, pulse-echo techniques are sensitive to surface roughness and couplant thickness variations. This can reduce considerable inaccuracies in the measurement of the attenuation coefficient for broadband pulses. Inaccuracies arise from variations in the reflection coefficient at the buffer-couplant-sample interface. The reflection coefficient is examined as a function of the surface roughness and corresponding couplant thickness variations. Interrelations with ultrasonic frequency are illustrated. Reliable attenuation measurements are obtained only when the frequency dependence of the reflection coefficient is incorporated in signal analysis. Data are given for nickel 200 samples and a silicon nitride ceramic bar having surface roughness variations in the 0.3 to 3.0 microns range for signal bandwidths in the 50 to 100 MHz range.
Optical characteristics of waste stabilization ponds: recommendations for monitoring.
Davies-Colley, R J; Craggs, R J; Park, J; Nagels, J W
2005-01-01
The optical character of waste stabilization ponds (WSPs) is of concern for several reasons. Algal photosynthesis, which produces oxygen for waste oxidation in WSPs, is influenced by attenuation of sunlight in ponds. Disinfection in WSPs is influenced by optical characteristics because solar UV exposure usually dominates inactivation. The optical nature of WSPs effluent also affects assimilation by receiving waters. Despite the importance of light behaviour in WSPs, few studies have been made of their optical characteristics. We discuss simple optical measures suitable for routine monitoring of WSPs (including at sites remote from laboratories): optical density of filtrates - an index of dissolved coloured organic (humic) matter, visual clarity - to provide an estimate of the beam attenuation coefficient (a fundamental quantity needed for optical modelling) colour (hue) - as an indicator of general WSP 'condition' and irradiance attenuation quantifying depth of light penetration. The value of optical characterisation of WSPs is illustrated with reference to optical data for WSPs in NZ (including high-rate algal ponds) treating dairy cattle wastewater versus domestic sewage. We encourage increased research on optical characteristics of WSPs and the incorporation of optical measures in monitoring and modelling of WSP performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puckett, T.M.
1991-05-01
The presence of abundant and diverse sighted ostracodes in chalk and marl of the Demopolis Chalk (Campanian and Maastrichtian) in Alabama and Mississippi strongly suggests that the Late Cretaceous sea floor was within the photic zone. The maximum depth of deposition is calculated from an equation based on eye morphology and efficiency and estimates of the vertical light attenuation. In this equation, K, the vertical light attenuation coefficient, is the most critical variable because it is the divisor for the rest of the equation. Rates of accumulation of coccoliths during the Cretaceous are estimated and are on the same ordermore » as those in modern areas of high phytoplankton production, suggesting similar pigment and coccolith concentrations in the water column. Values of K are known for a wide range of water masses and pigment concentrations, including areas of high phytoplankton production; thus light attenuation through the Cretaceous seas can be estimated reliably. Waters in which attenuation is due only to biogenic matter-conditions that result in deposition of relatively pure chalk-have values of K ranging between 0.2 and 0.3. Waters rich in phytoplankton and mud-conditions that result in deposition of marl-have K values as great as 0.5. Substituting these values for K results in depth range of 65 to 90 m for deposition of chalk and depth of 35 m for deposition of marl. These depth values suggest that deposition of many Cretaceous chalks and marls around the world were deposited under relatively shallow conditions.« less
NASA Astrophysics Data System (ADS)
Canion, Andy; MacIntyre, Hugh L.; Phipps, Scott
2013-10-01
The inputs of primary productivity models may be highly variable on short timescales (hourly to daily) in turbid estuaries, but modeling of productivity in these environments is often implemented with data collected over longer timescales. Daily, seasonal, and spatial variability in primary productivity model parameters: chlorophyll a concentration (Chla), the downwelling light attenuation coefficient (kd), and photosynthesis-irradiance response parameters (Pmchl, αChl) were characterized in Weeks Bay, a nitrogen-impacted shallow estuary in the northern Gulf of Mexico. Variability in primary productivity model parameters in response to environmental forcing, nutrients, and microalgal taxonomic marker pigments were analysed in monthly and short-term datasets. Microalgal biomass (as Chla) was strongly related to total phosphorus concentration on seasonal scales. Hourly data support wind-driven resuspension as a major source of short-term variability in Chla and light attenuation (kd). The empirical relationship between areal primary productivity and a combined variable of biomass and light attenuation showed that variability in the photosynthesis-irradiance response contributed little to the overall variability in primary productivity, and Chla alone could account for 53-86% of the variability in primary productivity. Efforts to model productivity in similar shallow systems with highly variable microalgal biomass may benefit the most by investing resources in improving spatial and temporal resolution of chlorophyll a measurements before increasing the complexity of models used in productivity modeling.
Storlazzi, Curt; Norris, Benjamin; Rosenberger, Kurt
2015-01-01
Sediment has been shown to be a major stressor to coral reefs globally. Although many researchers have tested the impact of sedimentation on coral reef ecosystems in both the laboratory and the field and some have measured the impact of suspended sediment on the photosynthetic response of corals, there has yet to be a detailed investigation on how properties of the sediment itself can affect light availability for photosynthesis. We show that finer-grained and darker-colored sediment at higher suspended-sediment concentrations attenuates photosynthetically active radiation (PAR) significantly more than coarser, lighter-colored sediment at lower concentrations and provide PAR attenuation coefficients for various grain sizes, colors, and suspended-sediment concentrations that are needed for biophysical modeling. Because finer-grained sediment particles settle more slowly and are more susceptible to resuspension, they remain in the water column longer, thus causing greater net impact by reducing light essential for photosynthesis over a greater duration. This indicates that coral reef monitoring studies investigating sediment impacts should concentrate on measuring fine-grained lateritic and volcanic soils, as opposed to coarser-grained siliceous and carbonate sediment. Similarly, coastal restoration efforts and engineering solutions addressing long-term coral reef ecosystem health should focus on preferentially retaining those fine-grained soils rather than coarse silt and sand particles.
Determining the Viscosity Coefficient for Viscoelastic Wave Propagation in Rock Bars
NASA Astrophysics Data System (ADS)
Niu, Leilei; Zhu, Wancheng; Li, Shaohua; Guan, Kai
2018-05-01
Rocks with microdefects exhibit viscoelastic behavior during stress wave propagation. The viscosity coefficient of the wave can be used to characterize the attenuation as the wave propagates in rock. In this study, a long artificial bar with a readily adjustable viscosity coefficient was fabricated to investigate stress wave attenuation. The viscoelastic behavior of the artificial bar under dynamic loading was investigated, and the initial viscoelastic coefficient was obtained based on the amplitude attenuation of the incident harmonic wave. A one-dimensional wave propagation program was compiled to reproduce the time history of the stress wave measured during the experiments, and the program was well fitted to the Kelvin-Voigt model. The attenuation and dispersion of the stress wave in long artificial viscoelastic bars were quantified to accurately determine the viscoelastic coefficient. Finally, the method used to determine the viscoelastic coefficient of a long artificial bar based on the experiments and numerical simulations was extended to determine the viscoelastic coefficient of a short rock bar. This study provides a new method of determining the viscosity coefficient of rock.
NASA Astrophysics Data System (ADS)
Panin, V. Y.; Aykac, M.; Casey, M. E.
2013-06-01
The simultaneous PET data reconstruction of emission activity and attenuation coefficient distribution is presented, where the attenuation image is constrained by exploiting an external transmission source. Data are acquired in time-of-flight (TOF) mode, allowing in principle for separation of emission and transmission data. Nevertheless, here all data are reconstructed at once, eliminating the need to trace the position of the transmission source in sinogram space. Contamination of emission data by the transmission source and vice versa is naturally modeled. Attenuated emission activity data also provide additional information about object attenuation coefficient values. The algorithm alternates between attenuation and emission activity image updates. We also proposed a method of estimation of spatial scatter distribution from the transmission source by incorporating knowledge about the expected range of attenuation map values. The reconstruction of experimental data from the Siemens mCT scanner suggests that simultaneous reconstruction improves attenuation map image quality, as compared to when data are separated. In the presented example, the attenuation map image noise was reduced and non-uniformity artifacts that occurred due to scatter estimation were suppressed. On the other hand, the use of transmission data stabilizes attenuation coefficient distribution reconstruction from TOF emission data alone. The example of improving emission images by refining a CT-based patient attenuation map is presented, revealing potential benefits of simultaneous CT and PET data reconstruction.
Experimental wave attenuation study over flexible plants on a submerged slope
NASA Astrophysics Data System (ADS)
Yin, Zegao; Yang, Xiaoyu; Xu, Yuanzhao; Ding, Meiling; Lu, Haixiang
2017-12-01
Using plants is a kind of environmentally-friendly coastal protection to attenuate wave energy. In this paper, a set of experiments were conducted to investigate the wave attenuation performance using flexible grasses on a submerged slope, and the wave attenuation coefficient for these experiments was calculated for different still water depths, slope and grass configurations. It was found that the slope plays a significant role in wave attenuation. The wave attenuation coefficient increases with increasing relative row number and relative density. For a small relative row number, the two configurations from the slope top to its toe and from the slope toe to its top performed equally to a large extent. For a medium relative row number, the configuration from the slope toe to its top performed more poorly than that from the slope top to its toe; however, it performed better than that from the slope top to its toe for a high relative row number. With a single row of grasses close to the slope top from the slope toe, the wave attenuation coefficient shows double peaks. With increasing grass rows or still water depth, the grass location corresponding to the maximum wave attenuation coefficient is close to the slope top. The dimensional analysis and the least square method were used to derive an empirical equation of the wave attenuation coefficient considering the effect of relative density, the slope, the relative row number and the relative location of the middle row, and the equation was validated to experimental data.
Cabello-Pasini, Alejandro; Munoz-Salazar, R.; Ward, D.H.
2003-01-01
Density, biomass, morphology, phenology and photosynthetic characteristics of Zostera marina were related to continuous measurements of in situ irradiance, attenuation coefficient and temperature at three coastal lagoons in Baja California, Mexico. In situ irradiance was approximately two-fold lower at San Quintin Bay (SQ) than at Ojo de Liebre Lagoon (OL) and San Ignacio Lagoon (SI). As a consequence of the greater irradiance plants at OL and SI were established 1 m deeper within the water column than those at SQ. At SQ, there was a four-fold variation in biomass of Z. marina caused by changes on shoot length and not shoot density, while at OL and SI biomass and shoot length did not fluctuate significantly throughout the year. Reproductive shoot density reached maximum values concomitantly with the greater irradiance during spring-summer, however, the density was approximately three-fold greater at SQ than at the southern coastal lagoons. While irradiance levels were two-fold greater at the southern lagoons, in general, photosynthetic characteristics were similar among all three lagoons. The hours of light saturated photosynthesis, calculated from their photosynthetic characteristics and irradiance measurements, suggest that photosynthesis of shoots from OL and SI are saturated for more than 6 h per day throughout the year, while shoots from SQ are likely light limited during approximately 15% of the year. Consequently, an increase in attenuation coefficient values in the water column will likely decrease light availability to Z. marina plants at SQ, potentially decreasing their survival.
Cabello-Pasini, Alejandro; Munoz-Salazar, R.; Ward, D.H.
2003-01-01
Density, biomass, morphology, phenology and photosynthetic characteristics of Zostera marina were related to continuous measurements of in situ irradiance, attenuation coefficient and temperature at three coastal lagoons in Baja California, Mexico. In situ irradiance was approximately two-fold lower at San Quintin Bay (SQ) than at Ojo de Liebre Lagoon (OL) and San Ignacio Lagoon (SI). As a consequence of the greater irradiance, plants at OL and SI were established 1 m deeper within the water column than those at SQ. At SQ, there was a four-fold variation in biomass of Z. marina caused by changes on shoot length and not shoot density, while at OL and SI biomass and shoot length did not fluctuate significantly throughout the year. Reproductive shoot density reached maximum values concomitantly with the greatest irradiance during spring-summer, however, the density was approximately three-fold greater at SQ than at the southern coastal lagoons. While irradiance levels were two-fold greater at the southern lagoons, in general, photosynthetic characteristics were similar among all three lagoons. The hours of light saturated photosynthesis, calculated from their photosynthetic characteristics and irradiance measurements, suggest that photosynthesis of shoots from OL and SI are saturated for more than 6 h per day throughout the year, while shoots from SQ are likely light limited during approximately 15% of the year. Consequently, an increase in attenuation coefficient values in the water column will likely decrease light availability to Z. marina plants at SQ, potentially decreasing their survival. ?? 2003 Elsevier Science B.V. All rights reserved.
Treeby, Bradley E; Zhang, Edward Z; Thomas, Alison S; Cox, Ben T
2011-02-01
The ultrasound attenuation coefficient and dispersion from 0-70 MHz in whole human blood and its components (red blood cells and plasma) at 37°C is reported. The measurements are made using a fixed path substitution technique that exploits optical mechanisms for the generation and detection of ultrasound. This allows the measurements to cover a broad frequency range with a single source and receiver. The measured attenuation coefficient and dispersion in solutions of red blood cells and physiological saline for total haemoglobin concentrations of 10, 15 and 20 g/dL are presented. The attenuation coefficient and dispersion in whole human blood taken from four healthy volunteers by venipuncture is also reported. The power law dependence of the attenuation coefficient is shown to vary across the measured frequency range. This is due to the varying frequency dependence of the different mechanisms responsible for the attenuation. The attenuation coefficient measured at high frequencies is found to be significantly higher than that predicted by historical power law parameters. A review of the attenuation mechanisms in blood along with previously reported experimental measurements is given. Values for the sound speed and density in the tested samples are also presented. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Petzold, A.; Perim de Faria, J.; Berg, M.; Bundke, U.; Freedman, A.
2015-12-01
Monitoring the direct impact of aerosol particles on climate requires the continuous measurement of aerosol optical parameters like the aerosol extinction coefficient on a regular basis. Remote sensing and ground-based networks are well in place (e.g., AERONET, ACTRIS), whereas the regular in situ measurement of vertical profiles of atmospheric aerosol optical properties remains still an important challenge in quantifying climate change. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in situ observational data by using commercial passenger aircraft as measurement platform. However, scientific instrumentation for the measurement of atmospheric constituents requires major modifications before being deployable aboard in-service passenger aircraft. Recently, a compact and robust family of optical instruments based on the cavity attenuated phase shift (CAPS) technique has become available for measuring aerosol light extinction. While this technique was successfully deployed for ground-based atmospheric measurements under various conditions, its suitability for operation aboard aircraft in the free and upper free troposphere still has to be demonstrated. In this work, the modifications of a CAPS PMex instrument for measuring aerosol light extinction on aircraft, the results from subsequent laboratory tests for evaluating the modified instrument prototype, and first results from a field deployment aboard a research aircraft will be covered. In laboratory studies, the instrument showed excellent agreement (deviation < 5%) with theoretical values calculated from Rayleigh scattering cross-sections, when operated on pressurized air and CO2 at ambient and low pressure (~200 hPa). For monodisperse and polydisperse aerosols, reference aerosol extinction coefficients were calculated from measured size distributions and agreed with the CAPS PMex instrument response within 10% deviation. During the field deployment, aerosol extinction coefficients and associated aerosol size distributions have been measured and will be presented as comparison studies between measured and calculated data.
NOTE: The modified Beer Lambert law revisited
NASA Astrophysics Data System (ADS)
Kocsis, L.; Herman, P.; Eke, A.
2006-03-01
The modified Beer Lambert law (MBLL) is the basis of continuous-wave near-infrared tissue spectroscopy (cwNIRS). The differential form of MBLL (dMBLL) states that the change in light attenuation is proportional to the changes in the concentrations of tissue chromophores, mainly oxy- and deoxyhaemoglobin. If attenuation changes are measured at two or more wavelengths, concentration changes can be calculated. The dMBLL is based on two assumptions: (1) the absorption of the tissue changes homogeneously, and (2) the scattering loss is constant. It is known that absorption changes are usually inhomogeneous, and therefore dMBLL underestimates the changes in concentrations (partial volume effect) and every calculated value is influenced by the change in the concentration of other chromophores (cross-talk between chromophores). However, the error introduced by the second assumption (cross-talk of scattering changes) has not been assessed previously. An analytically treatable special case (semi-infinite, homogeneous medium, with optical properties of the cerebral cortex) is utilized here to estimate its order of magnitude. We show that the per cent change of the transport scattering coefficient and that of the absorption coefficient have an approximately equal effect on the changes of attenuation, and a 1% increase in scattering increases the estimated concentration changes by about 0.5 µM.
The modified Beer-Lambert law revisited.
Kocsis, L; Herman, P; Eke, A
2006-03-07
The modified Beer-Lambert law (MBLL) is the basis of continuous-wave near-infrared tissue spectroscopy (cwNIRS). The differential form of MBLL (dMBLL) states that the change in light attenuation is proportional to the changes in the concentrations of tissue chromophores, mainly oxy- and deoxyhaemoglobin. If attenuation changes are measured at two or more wavelengths, concentration changes can be calculated. The dMBLL is based on two assumptions: (1) the absorption of the tissue changes homogeneously, and (2) the scattering loss is constant. It is known that absorption changes are usually inhomogeneous, and therefore dMBLL underestimates the changes in concentrations (partial volume effect) and every calculated value is influenced by the change in the concentration of other chromophores (cross-talk between chromophores). However, the error introduced by the second assumption (cross-talk of scattering changes) has not been assessed previously. An analytically treatable special case (semi-infinite, homogeneous medium, with optical properties of the cerebral cortex) is utilized here to estimate its order of magnitude. We show that the per cent change of the transport scattering coefficient and that of the absorption coefficient have an approximately equal effect on the changes of attenuation, and a 1% increase in scattering increases the estimated concentration changes by about 0.5 microM.
NASA Astrophysics Data System (ADS)
Hu, Yongxiang; Behrenfeld, Mike; Hostetler, Chris; Pelon, Jacques; Trepte, Charles; Hair, John; Slade, Wayne; Cetinic, Ivona; Vaughan, Mark; Lu, Xiaomei; Zhai, Pengwang; Weimer, Carl; Winker, David; Verhappen, Carolus C.; Butler, Carolyn; Liu, Zhaoyan; Hunt, Bill; Omar, Ali; Rodier, Sharon; Lifermann, Anne; Josset, Damien; Hou, Weilin; MacDonnell, David; Rhew, Ray
2016-06-01
Beam attenuation coefficient, c, provides an important optical index of plankton standing stocks, such as phytoplankton biomass and total particulate carbon concentration. Unfortunately, c has proven difficult to quantify through remote sensing. Here, we introduce an innovative approach for estimating c using lidar depolarization measurements and diffuse attenuation coefficients from ocean color products or lidar measurements of Brillouin scattering. The new approach is based on a theoretical formula established from Monte Carlo simulations that links the depolarization ratio of sea water to the ratio of diffuse attenuation Kd and beam attenuation C (i.e., a multiple scattering factor). On July 17, 2014, the CALIPSO satellite was tilted 30° off-nadir for one nighttime orbit in order to minimize ocean surface backscatter and demonstrate the lidar ocean subsurface measurement concept from space. Depolarization ratios of ocean subsurface backscatter are measured accurately. Beam attenuation coefficients computed from the depolarization ratio measurements compare well with empirical estimates from ocean color measurements. We further verify the beam attenuation coefficient retrievals using aircraft-based high spectral resolution lidar (HSRL) data that are collocated with in-water optical measurements.
Amirrezvani, Ali
2017-01-01
This work analyzes the mortality, recovery, and shifts in the composition of scleractinian corals from Puerto Rico one decade after the 2005 regional coral bleaching event. Temporal and spatial patterns of coral community structure were examined using a stratified, non-random sampling approach based on five permanent transects per reef at 16 reef stations. A negative correlation between percent coral cover loss and light attenuation coefficient (Kd490) was observed, suggesting that light attenuation, as influenced by water turbidity and depth, played a major role in coral protection during the bleaching event (“sunblock effect”). Responses of coral assemblages varied after the bleaching event, including shifts of cover from massive corals (Orbicella spp.) to opportunistic (Porites astreoides) and branching corals (Madracis auretenra, P. porites) and/or turf algae; partial recovery of reef substrate cover by O. annularis complex; and no measurable changes in coral assemblages before and after the event. PMID:28761791
García-Sais, Jorge R; Williams, Stacey M; Amirrezvani, Ali
2017-01-01
This work analyzes the mortality, recovery, and shifts in the composition of scleractinian corals from Puerto Rico one decade after the 2005 regional coral bleaching event. Temporal and spatial patterns of coral community structure were examined using a stratified, non-random sampling approach based on five permanent transects per reef at 16 reef stations. A negative correlation between percent coral cover loss and light attenuation coefficient (Kd 490 ) was observed, suggesting that light attenuation, as influenced by water turbidity and depth, played a major role in coral protection during the bleaching event ("sunblock effect"). Responses of coral assemblages varied after the bleaching event, including shifts of cover from massive corals ( Orbicella spp.) to opportunistic ( Porites astreoides ) and branching corals ( Madracis auretenra , P. porites ) and/or turf algae; partial recovery of reef substrate cover by O. annularis complex; and no measurable changes in coral assemblages before and after the event.
NASA Astrophysics Data System (ADS)
Bonczyk, Michal
2018-07-01
This article deals with the problem of the self-attenuation of low-energy gamma-rays from the isotope of lead 210Pb (46.5 keV) in industrial waste. The 167 samples of industrial waste, belonging to nine categories, were tested by means of gamma spectrometry in order to determine 210Pb activity concentration. The experimental method for self-attenuation corrections for gamma rays emitted by lead isotope was applied. Mass attenuation coefficients were determined for energy of 46.5 keV. Correction factors were calculated based on mass attenuation coefficients, sample density and thickness. A mathematical formula for correction calculation was evaluated. The 210Pb activity concentration obtained varied in the range from several Bq·kg-1 up to 19,810 Bq kg-1. The mass attenuation coefficients varied across the range of 0.19-4.42 cm2·g-1. However, the variation of mass attenuation coefficient within some categories of waste was relatively small. The calculated corrections for self-attenuation were 0.98 - 6.97. The high value of correction factors must not be neglect in radiation risk assessment.
McPherson, B.F.; Miller, R.L.
1987-01-01
The relative contribution of different components to the attenuation of photosynthetically active radiation was determined in the Charlotte Harbor estuarine system based on laboratory and in situ measurements. Agreement between laboratory and in situ measurements of the attenuation coefficient (kt) was good (r2 = 0??92). For all in situ measurements (n = 100), suspended, non-chlorophyll matter accounted for an average of 72% of kt, dissolved matter accounted for 21%, suspended chlorophyll for 4%, and water for the remaining 3%. For individual determinations, suspended non-chlorophyll matter, dissolved matter, suspended chlorophyll, and water, each accounted for as much as 99%, 79%, 21%, and 18% of kt. Attenuation by suspended matter was greatest near the mouth of the northern tidal rivers and was variable over the rest of the estuarine system. Attenuation by dissolved matter was greatest in the brackish tidal rivers and decreased with increasing salinity. Attenuation due to dissolved matter was positively correlated with water color. The source of the color was basin runoff. Wavelength transmittance changed along the salinity gradient. Maximum transmittance shifted from 500 to 600 nm in gulf waters to 650 to 700 nm in colored, brackish waters. Dissolved matter was primarily responsible for the large attenuation at short wavelengths (400-500 nm). ?? 1987.
Imaging System Performance and Visibility as Affected by the Physical Environment
2013-09-30
devoted to the topic of light propagation and imaging across the air-sea interface and within the surface boundary layer of natural water bodies...Zaneveld and Pegau (2003) was used to estimate the horizontal visibility of a black target, y: y = 4.8 / α, (2) where α is the...attenuation coefficient at 532 nm, was necessary for predictions of horizontal visibility of a black target. Equations (2) and (3) were applied to IOP data
Effect of interstitial low level laser therapy on tibial defect
NASA Astrophysics Data System (ADS)
Lee, Sangyeob; Ha, Myungjin; Hwang, Donghyun; Yu, Sungkon; Jang, Seulki; Park, Jihoon; Radfar, Edalat; Kim, Hansung; Jung, Byungjo
2016-03-01
Tibial defect is very common musculoskeletal disorder which makes patient painful and uncomfortable. Many studies about bone regeneration tried to figure out fast bone healing on early phase. It is already known that low level laser therapy (LLLT) is very convenient and good for beginning of bone disorder. However, light scattering and absorption obstruct musculoskeletal therapy which need optimal photon energy delivery. This study has used an interstitial laser probe (ILP) to overcome the limitations of light penetration depth and scattering. Animals (mouse, C57BL/6) were divided into three groups: laser treated test group 1 (660 nm; power 10 mW; total energy 5 J) and test group 2 (660 nm; power 20 mW; total energy 10 J); and untreated control group. All animals were taken surgical operation to make tibial defect on right crest of tibia. The test groups were treated every 48 hours with ILP. Bone volume and X-ray attenuation coefficient were measured on 0, 14th and 28th day with u-CT after treatment and were used to evaluate effect of LLLT. Results show that bone volume of test groups has been improved more than control group. X-ray attenuation coefficients of each groups have slightly different. The results suggest that LLLT combined with ILP may affect on early phase of bone regeneration and may be used in various musculoskeletal disease in deep tissue layer.
NASA Astrophysics Data System (ADS)
Ermis, Elif Ebru
2017-02-01
The photon mass attenuation coefficients of LiF, BaSO4, CaCO3 and CaSO4 thermoluminescent dosimetric compounds at 100; 300; 500; 600; 800; 1,000; 1,500; 2,000; 3,000 and 5,000 keV gamma-ray energies were calculated. For this purpose, FLUKA Monte Carlo (MC) program which is one of the well-known MC codes was used in this study. Furthermore, obtained results were analyzed by means of ROOT program. National Institute of Standards and Technology (NIST) values were also used to compare the obtained theoretical values because the mass attenuation values of the used compounds could not found in the literature. Calculated mass attenuation coefficients were highly in accordance with the NIST values. As a consequence, FLUKA was successful in calculating the mass attenuation coefficients of the most used thermoluminescent compound.
Effective atomic numbers and electron density of dosimetric material
Kaginelli, S. B.; Rajeshwari, T.; Sharanabasappa; Kerur, B. R.; Kumar, Anil S.
2009-01-01
A novel method for determination of mass attenuation coefficient of x-rays employing NaI (Tl) detector system and radioactive sources is described.in this paper. A rigid geometry arrangement and gating of the spectrometer at FWHM position and selection of absorber foils are all done following detailed investigation, to minimize the effect of small angle scattering and multiple scattering on the mass attenuation coefficient, μ/ρ, value. Firstly, for standardization purposes the mass attenuation coefficients of elemental foils such as Aluminum, Copper, Molybdenum, Tantalum and Lead are measured and then, this method is utilized for dosimetric interested material (sulfates). The experimental mass attenuation coefficient values are compared with the theoretical values to find good agreement between the theory and experiment within one to two per cent. The effective atomic numbers of the biological substitute material are calculated by sum rule and from the graph. The electron density of dosimetric material is calculated using the effective atomic number. The study has discussed in detail the attenuation coefficient, effective atomic number and electron density of dosimetric material/biological substitutes. PMID:20098566
NASA Astrophysics Data System (ADS)
Ménesguen, Y.; Gerlach, M.; Pollakowski, B.; Unterumsberger, R.; Haschke, M.; Beckhoff, B.; Lépy, M.-C.
2016-02-01
The knowledge of atomic fundamental parameters such as mass attenuation coefficients with low uncertainties, is of decisive importance in elemental quantification using x-ray fluorescence analysis techniques. Several databases are accessible and frequently used within a large community of users. These compilations are most often in good agreement for photon energies in the hard x-ray ranges. However, they significantly differ for low photon energies and around the absorption edges of any element. In a joint cooperation of the metrology institutes of France and Germany, mass attenuation coefficients of copper and zinc were determined experimentally in the photon energy range from 100 eV to 30 keV by independent approaches using monochromatized synchrotron radiation at SOLEIL (France) and BESSY II (Germany), respectively. The application of high-accuracy experimental techniques resulted in mass attenuation coefficient datasets determined with low uncertainties that are directly compared to existing databases. The novel datasets are expected to enhance the reliability of mass attenuation coefficients.
Impact of errors in short wave radiation and its attenuation on modeled upper ocean heat content
Photosynthetically available radiation (PAR) and its attenuation with the depth represent a forcing (source) term in the governing equation for the...and vertical attenuation of PAR have on the upper ocean model heat content. In the Monterey Bay area, we show that with a decrease in water clarity...attenuation coefficient. For Jerlov’s type IA water (attenuation coefficient is 0.049 m1), the relative error in surface PAR introduces an error
NASA Astrophysics Data System (ADS)
Cory, R. M.; Harrold, K. H.; Neilson, B. T.; Kling, G. W.
2015-11-01
We investigated how absorption of sunlight by chromophoric dissolved organic matter (CDOM) controls the degradation and export of DOM from Imnavait Creek, a beaded stream in the Alaskan Arctic. We measured concentrations of dissolved organic carbon (DOC), as well as concentrations and characteristics of CDOM and fluorescent dissolved organic matter (FDOM), during ice-free periods of 2011-2012 in the pools of Imnavait Creek and in soil waters draining to the creek. Spatial and temporal patterns in CDOM and FDOM in Imnavait Creek were analyzed in conjunction with measures of DOM degradation by sunlight and bacteria and assessments of hydrologic residence times and in situ UV exposure. CDOM was the dominant light attenuating constituent in the UV and visible portion of the solar spectrum, with high attenuation coefficients ranging from 86 ± 12 m-1 at 305 nm to 3 ± 1 m-1 in the photosynthetically active region (PAR). High rates of light absorption and thus light attenuation by CDOM contributed to thermal stratification in the majority of pools in Imnavait Creek under low-flow conditions. In turn, thermal stratification increased the residence time of water and DOM, and resulted in a separation of water masses distinguished by contrasting UV exposure (i.e., UV attenuation by CDOM with depth resulted in bottom waters receiving less UV than surface waters). When the pools in Imnavait Creek were stratified, DOM in the pool bottom water closely resembled soil water DOM in character, while the concentration and character of DOM in surface water was reproduced by experimental photo-degradation of bottom water. These results, in combination with water column rates of DOM degradation by sunlight and bacteria, suggest that photo-degradation is the dominant process controlling DOM fate and export in Imnavait Creek. A conceptual model is presented showing how CDOM amount and lability interact with incident UV light and water residence time to determine whether photo-degradation is "light-limited" or "substrate-limited". We suggest that degradation of DOM in CDOM-rich streams or ponds similar to Imnavait is typically light-limited under most flow conditions. Thus, export of DOM from this stream will be less under conditions that increase the light available for DOM photo-degradation (i.e., low flows, sunny days).
NASA Astrophysics Data System (ADS)
Habte, Frezghi; Natarajan, Arutselvan; Paik, David S.; Gambhir, Sanjiv S.
2014-03-01
Cerenkov luminescence imaging (CLI) is an emerging cost effective modality that uses conventional small animal optical imaging systems and clinically available radionuclide probes for light emission. CLI has shown good correlation with PET for organs of high uptake such as kidney, spleen, thymus and subcutaneous tumors in mouse models. However, CLI has limitations for deep tissue quantitative imaging since the blue-weighted spectral characteristics of Cerenkov radiation attenuates highly by mammalian tissue. Large organs such as the liver have also shown higher signal due to the contribution of emission of light from a greater thickness of tissue. In this study, we developed a simple model that estimates the effective tissue attenuation coefficient in order to correct the CLI signal intensity with a priori estimated depth and thickness of specific organs. We used several thin slices of ham to build a phantom with realistic attenuation. We placed radionuclide sources inside the phantom at different tissue depths and imaged it using an IVIS Spectrum (Perkin-Elmer, Waltham, MA, USA) and Inveon microPET (Preclinical Solutions Siemens, Knoxville, TN). We also performed CLI and PET of mouse models and applied the proposed attenuation model to correct CLI measurements. Using calibration factors obtained from phantom study that converts the corrected CLI measurements to %ID/g, we obtained an average difference of less that 10% for spleen and less than 35% for liver compared to conventional PET measurements. Hence, the proposed model has a capability of correcting the CLI signal to provide comparable measurements with PET data.
Yusof, Mohd Fahmi Mohd; Hamid, Puteri Nor Khatijah Abd; Tajuddin, Abd Aziz; Hashim, Rokiah; Bauk, Sabar; Isa, Norriza Mohd; Isa, Muhammad Jamal Md
2017-09-01
The aim of this study was to determine the suitability of tannin-added Rhizophora spp. particleboards as phantom materials in the application of low- and high-energy photons. The tannin-added Rhizophora spp. particleboards and density plug phantoms were created with a target density of 1.0 g/cm 3 . The elemental composition and effective atomic number of the particleboards were measured using energy dispersive X-ray analysis. The mass attenuation coefficient of the particleboards for low-energy photons were measured using the attenuation of X-ray fluorescence. The mass attenuation coefficients of high-energy photons were measured using the attenuation of 137 Cs and 60 Co gamma energies. The results were compared to the calculated value of water using XCOM calculations. The results showed that the effective atomic number and mass attenuation coefficients of tannin-added Rhizophora spp. particleboards were similar to those of water, indicating the suitability of tannin-added Rhizophora spp. particleboards as phantom materials for low- and high-energy photons.
An Innovative Concept for Spacebased Lidar Measurement of Ocean Carbon Biomass
NASA Technical Reports Server (NTRS)
Hu, Yongxiang; Behrenfeld, Michael; Hostetler, Chris; Pelon, Jacques; Trepte, Charles; Hair, John; Slade, Wayne; Cetinic, Ivona; Vaughan, Mark; Lu, Xiaomei;
2015-01-01
Beam attenuation coefficient, c, provides an important optical index of plankton standing stocks, such as phytoplankton biomass and total particulate carbon concentration. Unfortunately, c has proven difficult to quantify through remote sensing. Here, we introduce an innovative approach for estimating c using lidar depolarization measurements and diffuse attenuation coefficients from ocean color products or lidar measurements of Brillouin scattering. The new approach is based on a theoretical formula established from Monte Carlo simulations that links the depolarization ratio of sea water to the ratio of diffuse attenuation Kd and beam attenuation C (i.e., a multiple scattering factor). On July 17, 2014, the CALIPSO satellite was tilted 30Âdeg off-nadir for one nighttime orbit in order to minimize ocean surface backscatter and demonstrate the lidar ocean subsurface measurement concept from space. Depolarization ratios of ocean subsurface backscatter are measured accurately. Beam attenuation coefficients computed from the depolarization ratio measurements compare well with empirical estimates from ocean color measurements. We further verify the beam attenuation coefficient retrievals using aircraft-based high spectral resolution lidar (HSRL) data that are collocated with in-water optical measurements.
A Screening Model to Predict Microalgae Biomass Growth in Photobioreactors and Raceway Ponds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huesemann, Michael H.; Van Wagenen, Jonathan M.; Miller, Tyler W.
A microalgae biomass growth model was developed for screening novel strains for their potential to exhibit high biomass productivities under nutrient-replete conditions in photobioreactors or outdoor ponds. Growth is modeled by first estimating the light attenuation by biomass according to Beer-Lambert’s law, and then calculating the specific growth rate in discretized culture volume slices that receive declining light intensities due to attenuation. The model requires only two physical and two species-specific biological input parameters, all of which are relatively easy to determine: incident light intensity, culture depth, as well as the biomass light absorption coefficient and the specific growth ratemore » as a function of light intensity. Roux bottle culture experiments were performed with Nannochloropsis salina at constant temperature (23 °C) at six different incident light intensities (5, 10, 25, 50, 100, 250, and 850 μmol/m2∙ sec) to determine both the specific growth rate under non-shading conditions and the biomass light absorption coefficient as a function of light intensity. The model was successful in predicting the biomass growth rate in these Roux bottle cultures during the light-limited linear phase at different incident light intensities. Model predictions were moderately sensitive to minor variations in the values of input parameters. The model was also successful in predicting the growth performance of Chlorella sp. cultured in LED-lighted 800 L raceway ponds operated at constant temperature (30 °C) and constant light intensity (1650 μmol/m2∙ sec). Measurements of oxygen concentrations as a function of time demonstrated that following exposure to darkness, it takes at least 5 seconds for cells to initiate dark respiration. As a result, biomass loss due to dark respiration in the aphotic zone of a culture is unlikely to occur in highly mixed small-scale photobioreactors where cells move rapidly in and out of the light. By contrast, as supported also by the growth model, biomass loss due to dark respiration occurs in the dark zones of the relatively less well mixed pond cultures. In addition to screening novel microalgae strains for high biomass productivities, the model can also be used for optimizing the pond design and operation. Additional research is needed to validate the biomass growth model for other microalgae species and for the more realistic case of fluctuating temperatures and light intensities observed in outdoor pond cultures.« less
A screening model to predict microalgae biomass growth in photobioreactors and raceway ponds.
Huesemann, M H; Van Wagenen, J; Miller, T; Chavis, A; Hobbs, S; Crowe, B
2013-06-01
A microalgae biomass growth model was developed for screening novel strains for their potential to exhibit high biomass productivities under nutrient-replete conditions in photobioreactors or outdoor ponds. Growth is modeled by first estimating the light attenuation by biomass according to Beer-Lambert's Law, and then calculating the specific growth rate in discretized culture volume slices that receive declining light intensities due to attenuation. The model uses only two physical and two species-specific biological input parameters, all of which are relatively easy to determine: incident light intensity, culture depth, as well as the biomass light absorption coefficient and the specific growth rate as a function of light intensity. Roux bottle culture experiments were performed with Nannochloropsis salina at constant temperature (23°C) at six different incident light intensities (10, 25, 50, 100, 250, and 850 µmol/m(2) s) to determine both the specific growth rate under non-shading conditions and the biomass light absorption coefficient as a function of light intensity. The model was successful in predicting the biomass growth rate in these Roux bottle batch cultures during the light-limited linear phase at different incident light intensities. Model predictions were moderately sensitive to minor variations in the values of input parameters. The model was also successful in predicting the growth performance of Chlorella sp. cultured in LED-lighted 800 L raceway ponds operated in batch mode at constant temperature (30°C) and constant light intensity (1,650 µmol/m(2) s). Measurements of oxygen concentrations as a function of time demonstrated that following exposure to darkness, it takes at least 5 s for cells to initiate dark respiration. As a result, biomass loss due to dark respiration in the aphotic zone of a culture is unlikely to occur in highly mixed small-scale photobioreactors where cells move rapidly in and out of the light. By contrast, as supported also by the growth model, biomass loss due to dark respiration occurs in the dark zones of the relatively less well-mixed pond cultures. In addition to screening novel microalgae strains for high biomass productivities, the model can also be used for optimizing the pond design and operation. Additional research is needed to validate the biomass growth model for other microalgae species and for the more realistic case of fluctuating temperatures and light intensities observed in outdoor pond cultures. Copyright © 2012 Wiley Periodicals, Inc.
Su, Ya; Yao, X. Steve; Li, Zhihong; Meng, Zhuo; Liu, Tiegen; Wang, Longzhi
2015-01-01
We present detailed measurement results of optical attenuation’s thermal coefficients (referenced to the temperature of the skin surface) in different depth regions of in vivo human forearm skins using optical coherence tomography (OCT). We first design a temperature control module with an integrated optical probe to precisely control the surface temperature of a section of human skin. We propose a method of using the correlation map to identify regions in the skin having strong correlations with the surface temperature of the skin and find that the attenuation coefficient in these regions closely follows the variation of the surface temperature without any hysteresis. We observe a negative thermal coefficient of attenuation in the epidermis. While in dermis, the slope signs of the thermal coefficient of attenuation are different at different depth regions for a particular subject, however, the depth regions with a positive (or negative) slope are different in different subjects. We further find that the magnitude of the thermal coefficient of attenuation coefficient is greater in epidermis than in dermis. We believe the knowledge of such thermal properties of skins is important for several noninvasive diagnostic applications, such as OCT glucose monitoring, and the method demonstrated in this paper is effective in studying the optical and biological properties in different regions of skin. PMID:25780740
ERIC Educational Resources Information Center
Wilson, Celia M.
2010-01-01
Research pertaining to the distortion of the squared canonical correlation coefficient has traditionally been limited to the effects of sampling error and associated correction formulas. The purpose of this study was to compare the degree of attenuation of the squared canonical correlation coefficient under varying conditions of score reliability.…
Determination of Dimensionless Attenuation Coefficient in Shaped Resonators
NASA Technical Reports Server (NTRS)
Daniels, C.; Steinetz, B.; Finkbeiner, J.; Raman, G.; Li, X.
2003-01-01
The value of dimensionless attenuation coefficient is an important factor when numerically predicting high-amplitude acoustic waves in shaped resonators. Both the magnitude of the pressure waveform and the quality factor rely heavily on this dimensionless parameter. Previous authors have stated the values used, but have not completely explained their methods. This work fully describes the methodology used to determine this important parameter. Over a range of frequencies encompassing the fundamental resonance, the pressure waves were experimentally measured at each end of the shaped resonators. At the corresponding dimensionless acceleration, the numerical code modeled the acoustic waveforms generated in the resonator using various dimensionless attenuation coefficients. The dimensionless attenuation coefficient that most closely matched the pressure amplitudes and quality factors of the experimental and numerical results was determined to be the value to be used in subsequent studies.
Effect of an external magnetic field on the mass attenuation coefficients of p-Si and n-Si
NASA Astrophysics Data System (ADS)
Yılmaz, D.; Önder, P.
2018-05-01
In this study, the mass attenuation coefficients of p-Si and n-Si semiconductor samples have been determined in an external magnetic field. The semiconductor samples were located to the external magnetic field of intensities 0.2 T, 0.4 T, 0.6 T and 0.8 T. The samples were bombarded by 59.5 keV, 80.1 keV, 121.8 keV and 244.7 keV gamma-rays emitted from Am241, Ba133 and Eu152 radioactive sources. The transmitted photons were detected by a CdTe detector. It was observed that the mass attenuation coefficients of p-Si and n-Si semiconductor samples decrease with increasing gamma-ray energy. Also, the mass attenuation coefficients of the samples increase with applying magnetic field intensity.
Gamma dosimetric parameters in some skeletal muscle relaxants
NASA Astrophysics Data System (ADS)
Manjunatha, H. C.
2017-09-01
We have studied the attenuation of gamma radiation of energy ranging from 84 keV to 1330 keV (^{170}Tm, ^{22}Na,^{137}Cs, and ^{60}Co) in some commonly used skeletal muscle relaxants such as tubocurarine chloride, gallamine triethiodide, pancuronium bromide, suxamethonium bromide and mephenesin. The mass attenuation coefficient is measured from the attenuation experiment. In the present work, we have also proposed the direct relation between mass attenuation coefficient (μ /ρ ) and mass energy absorption coefficient (μ _{en}/ρ ) based on the nonlinear fitting procedure. The gamma dosimetric parameters such as mass energy absorption coefficient (μ _{en}/ρ ), effective atomic number (Z_{eff}), effective electron density (N_{el}), specific γ-ray constant, air kerma strength and dose rate are evaluated from the measured mass attentuation coefficient. These measured gamma dosimetric parameters are compared with the theoretical values. The measured values agree with the theoretical values. The studied gamma dosimetric values for the relaxants are useful in medical physics and radiation medicine.
NASA Astrophysics Data System (ADS)
Zhang, L.; Jia, M. C.; Gong, J. J.; Xia, W. M.
2017-12-01
The mass attenuation coefficient of various Lead-Boron Polyethylene samples which can be used as the photon shielding materials in marine reactor, have been simulated using the MCNP-5 code, and compared with the theoretical values at the photon energy range 0.001MeV—20MeV. A good agreement has been observed. The variations of mass attenuation coefficient, linear attenuation coefficient and mean free path with photon energy between 0.001MeV to 100MeV have been plotted. The result shows that all the coefficients strongly depends on the photon energy, material atomic composition and density. The dose transmission factors for source Cesium-137 and Cobalt-60 have been worked out and their variations with the thickness of various sample materials have also been plotted. The variations show that with the increase of materials thickness the dose transmission factors decrease continuously. The results of this paper can provide some reference for the use of the high effective shielding material Lead-Boron Polyethyene.
A new Monte Carlo code for light transport in biological tissue.
Torres-García, Eugenio; Oros-Pantoja, Rigoberto; Aranda-Lara, Liliana; Vieyra-Reyes, Patricia
2018-04-01
The aim of this work was to develop an event-by-event Monte Carlo code for light transport (called MCLTmx) to identify and quantify ballistic, diffuse, and absorbed photons, as well as their interaction coordinates inside the biological tissue. The mean free path length was computed between two interactions for scattering or absorption processes, and if necessary scatter angles were calculated, until the photon disappeared or went out of region of interest. A three-layer array (air-tissue-air) was used, forming a semi-infinite sandwich. The light source was placed at (0,0,0), emitting towards (0,0,1). The input data were: refractive indices, target thickness (0.02, 0.05, 0.1, 0.5, and 1 cm), number of particle histories, and λ from which the code calculated: anisotropy, scattering, and absorption coefficients. Validation presents differences less than 0.1% compared with that reported in the literature. The MCLTmx code discriminates between ballistic and diffuse photons, and inside of biological tissue, it calculates: specular reflection, diffuse reflection, ballistics transmission, diffuse transmission and absorption, and all parameters dependent on wavelength and thickness. The MCLTmx code can be useful for light transport inside any medium by changing the parameters that describe the new medium: anisotropy, dispersion and attenuation coefficients, and refractive indices for specific wavelength.
NASA Astrophysics Data System (ADS)
Cory, R. M.; Harrold, K. H.; Neilson, B. T.; Kling, G. W.
2015-07-01
We investigated how absorption of sunlight by chromophoric dissolved organic matter (CDOM) controls the degradation and export of DOM from Imnavait Creek, a beaded stream in the Alaskan Arctic. We measured concentrations of dissolved organic carbon (DOC), as well as concentrations and characteristics of CDOM and fluorescent dissolved organic matter (FDOM), during ice-free periods of 2011-2012 in the pools of Imnavait Creek and in soil waters draining to the creek. Spatial and temporal patterns in CDOM and FDOM in Imnavait Creek were analyzed in conjunction with measures of DOM degradation by sunlight and bacteria and assessments of hydrologic residence times and in situ UV exposure. CDOM was the dominant light attenuating constituent in the UV and visible portion of the solar spectrum, with high attenuation coefficients ranging from 86 ± 12 m-1 at 305 nm to 3 ± 1 m-1 in the photosynthetically active region (PAR). High rates of light absorption and thus light attenuation by CDOM contributed to thermal stratification in the majority of pools in Imnavait Creek under low-flow conditions. In turn, thermal stratification increased the residence time of water and DOM, and resulted in a separation of water masses distinguished by contrasting UV exposure (i.e., UV attenuation by CDOM with depth resulted in bottom waters receiving less UV than surface waters). When the pools in Imnavait Creek were stratified, DOM in the pool bottom water closely resembled soil water DOM in character, while the concentration and character of DOM in surface water was reproduced by experimental photo-degradation of bottom water. These results, in combination with water column rates of DOM degradation by sunlight and bacteria, suggest that photo-degradation is the dominant process controlling DOM fate and export in Imnavait Creek. A conceptual model is presented showing how CDOM amount and lability interact with incident UV light and water residence time to determine whether photo-degradation is "light-limited" or "substrate-limited". We suggest that degradation, and thus export, of DOM in CDOM-rich streams or ponds similar to Imnavait is typically light-limited under most flow conditions.
A method for estimating the diffuse attenuation coefficient (KdPAR)from paired temperature sensors
Read, Jordan S.; Rose, Kevin C.; Winslow, Luke A.; Read, Emily K.
2015-01-01
A new method for estimating the diffuse attenuation coefficient for photosynthetically active radiation (KdPAR) from paired temperature sensors was derived. We show that during cases where the attenuation of penetrating shortwave solar radiation is the dominant source of temperature changes, time series measurements of water temperatures at multiple depths (z1 and z2) are related to one another by a linear scaling factor (a). KdPAR can then be estimated by the simple equation KdPAR ln(a)/(z2/z1). A suggested workflow is presented that outlines procedures for calculating KdPAR according to this paired temperature sensor (PTS) method. This method is best suited for conditions when radiative temperature gains are large relative to physical noise. These conditions occur frequently on water bodies with low wind and/or high KdPARs but can be used for other types of lakes during time periods of low wind and/or where spatially redundant measurements of temperatures are available. The optimal vertical placement of temperature sensors according to a priori knowledge of KdPAR is also described. This information can be used to inform the design of future sensor deployments using the PTS method or for campaigns where characterizing sub-daily changes in temperatures is important. The PTS method provides a novel method to characterize light attenuation in aquatic ecosystems without expensive radiometric equipment or the user subjectivity inherent in Secchi depth measurements. This method also can enable the estimation of KdPAR at higher frequencies than many manual monitoring programs allow.
Measurement of aerosol optical properties by cw cavity enhanced spectroscopy
NASA Astrophysics Data System (ADS)
Jie, Guo; Ye, Shan-Shan; Yang, Xiao; Han, Ye-Xing; Tang, Huai-Wu; Yu, Zhi-Wei
2016-10-01
The CAPS (Cavity Attenuated Phase shift Spectroscopy) system, which detects the extinction coefficients within a 10 nm bandpass centered at 532 nm, comprises a green LED with center wavelength in 532nm, a resonant optical cavity (36 cm length), a Photo Multiplier Tube detector, and a lock in amplifier. The square wave modulated light from the LED passes through the optical cavity and is detected as a distorted waveform which is characterized by a phase shift with respect to the initial modulation. Extinction coefficients are determined from changes in the phase shift of the distorted waveform of the square wave modulated LED light that is transmitted through the optical cavity. The performance of the CAPS system was evaluated by using measurements of the stability and response of the system. The minima ( 0.1 Mm-1) in the Allan plots show the optimum average time ( 100s) for optimum detection performance of the CAPS system. In the paper, it illustrates that extinction coefficient was correlated with PM2.5 mass (0.91). These figures indicate that this method has the potential to become one of the most sensitive on-line analytical techniques for extinction coefficient detection. This work aims to provide an initial validation of the CAPS extinction monitor in laboratory and field environments. Our initial results presented in this paper show that the CAPS extinction monitor is capable of providing state-of-the-art performance while dramatically reducing the complexity of optical instrumentation for directly measuring the extinction coefficients.
The origin of blue-green window and the propagation of radiation in ocean waters
NASA Astrophysics Data System (ADS)
Reghunath, A. T.; Venkataramanan, V.; Suviseshamuthu, D. Victor; Krishnamohan, R.; Prasad, B. Raghavendra
1991-01-01
A review of the present knowledge about the origin of blue-green window in the attenuation spectrum of ocean waters is presented. The various physical mechanisms which contribute to the formation of the window are dealt separately and discussed. The typical values of attenuation coefficient arising out of the various processes are compiled to obtain the total beam attenuation coefficient. These values are then compared with measured values of attenuation coefficient for ocean waters collected from Arabian sea and Bay of Bengal. The region of minimum attenuation in pure particle-free sea water is found to be at 450 to 500 nm. It is shown that in the presence of suspended particles and chlorophyll, the window shifts to longer wavelength side. Some suggestions for future work in this area are also given in the concluding section.
Schaeffer, Blake A; Conmy, Robyn N; Aukamp, Jessica; Craven, George; Ferer, Erin J
2011-02-01
Chromophoric dissolved organic matter (CDOM) spectral absorption, dissolved organic carbon (DOC) concentration, and the particulate fraction of inorganic (PIM) and organic matter (POM) were measured in Louisiana coastal waters at Vermilion, Atchafalaya, Terrebonne, Barataria, and Mississippi River locations, in 2007-2008. The range of CDOM was 0.092 m⁻¹ at Barataria in June 2008 to 11.225 m⁻¹ at Mississippi in February 2008. An indicator of organic matter quality was predicted by the spectral slope of absorption coefficients from 350 to 412nm which was between 0.0087 m⁻¹ at Mississippi in May 2008 and 0.0261 m⁻¹ at Barataria in June 2008. CDOM was the dominant component of light attenuation at Terrebonne and Barataria. Detritus and CDOM were the primary components of light attenuation at Vermilion, Atchafalaya, and Mississippi. DOC ranged between 65 and 1235 μM. PIM ranged between 1.1 and 426.3 mg L⁻¹ and POM was between 0.3 and 49.6 mg L⁻¹. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Pérez, Gonzalo L.; Galí, Martí; Royer, Sarah-Jeanne; Sarmento, Hugo; Gasol, Josep M.; Marrasé, Cèlia; Simó, Rafel
2016-08-01
We investigated the peculiar bio-optical characteristics of the Mediterranean Sea focusing on the spectral diffuse attenuation coefficient [Kd (λ)] and its relationship with chlorophyll a concentration (Chl a), complemented with measurements of light absorption by chromophoric dissolved organic matter (CDOM) and the optical properties of particulate material. The non-water absorption budget showed that CDOM was the largest contributor in the 300-600 nm range (>60% of the absorption at 443 nm in the euphotic layer), increasing to 80% within the first optical depth (FOD). This translated into CDOM accounting for >50% of KdBio (λ) (the irradiance attenuation coefficient caused by all non-water absorptions) between 320 and 555 nm and throughout both layers (FOD and euphotic). Indeed, we tested three Chl a-based bio-optical models and all three underestimated Kd (λ), evidencing the importance of CDOM beside Chl a to fully account for light attenuation. The Morel & Maritorena (2001) model (M&M 01) underestimated Kd (λ) in the UV and blue spectral regions within the FOD layer, showing lower differences with increasing wavelengths. The Morel et al. (2007a) model (BGS 07) also underestimated Kd (λ) in the FOD layer, yet it performed much better in the 380-555 nm range. In the euphotic layer, the Morel (1988) model (JGR 88) underestimated Kd (λ) showing higher differences at 412 and 443 nm and also performed better at higher wavelengths. Observed euphotic layer depths (Z1%) were 28 m shallower than those predicted with the M&M 01 empirical relationship, further highlighting the role of CDOM in the bio-optical peculiarity of Mediterranean Sea. In situ measurements of the CDOM index (Φ), an indicator of the deviation of the CDOM-Chl a average relationship for Case 1 waters, gave a mean of 5.9 in the FOD, consistent with simultaneous estimates from MODIS (4.8±0.4). The implications of the bio-optical anomaly for ecological and biogeochemical inferences in the Mediterranean Sea are discussed.
NASA Astrophysics Data System (ADS)
Gil, Daniel A.; Bow, Hansen C.; Shen, Jin-H.; Joos, Karen M.; Skala, Melissa C.
2017-02-01
The human brain is made up of functional regions governing movement, sensation, language, and cognition. Unintentional injury during neurosurgery can result in significant neurological deficits and morbidity. The current standard for localizing function to brain tissue during surgery, intraoperative electrical stimulation or recording, significantly increases the risk, time, and cost of the procedure. There is a need for a fast, cost-effective, and high-resolution intraoperative technique that can avoid damage to functional brain regions. We propose that optical coherence tomography (OCT) can fill this niche by imaging differences in the cellular composition and organization of functional brain areas. We hypothesized this would manifest as differences in the attenuation coefficient measured using OCT. Five functional regions (prefrontal, somatosensory, auditory, visual, and cerebellum) were imaged in ex vivo porcine brains (n=3), a model chosen due to a similar white/gray matter ratio as human brains. The attenuation coefficient was calculated using a depth-resolved model and quantitatively validated with Intralipid phantoms across a physiological range of attenuation coefficients (absolute difference < 0.1cm-1). Image analysis was performed on the attenuation coefficient images to derive quantitative endpoints. We observed a statistically significant difference among the median attenuation coefficients of these five regions (one-way ANOVA, p<0.05). Nissl-stained histology will be used to validate our results and correlate OCT-measured attenuation coefficients to neuronal density. Additional development and validation of OCT algorithms to discriminate brain regions are planned to improve the safety and efficacy of neurosurgical procedures such as biopsy, electrode placement, and tissue resection.
Quantitative determination of radio-opacity: equivalence of digital and film X-ray systems.
Nomoto, R; Mishima, A; Kobayashi, K; McCabe, J F; Darvell, B W; Watts, D C; Momoi, Y; Hirano, S
2008-01-01
To evaluate the equivalence of a digital X-ray system (DenOptix) to conventional X-ray film in terms of the measured radio-opacity of known filled-resin materials and the suitability of attenuation coefficient for radio-opacity determination. Discs of five thicknesses (0.5-2.5mm) and step-wedges of each of three composite materials of nominal aluminum-equivalence of 50%, 200% and 450% were used. X-ray images of a set of discs (or step-wedge), an aluminum step-wedge, and a lead block were taken at 65 kV and 10 mA at a focus-film distance of 400 mm for 0.15s and 1.6s using an X-ray film or imaging plate. Radio-opacity was determined as equivalent aluminum thickness and attenuation coefficient. The logarithm of the individual optical density or gray scale value, corrected for background, was plotted against thickness, and the attenuation coefficient determined from the slope. The method of ISO 4049 was used for equivalent aluminum thickness. The equivalent aluminum thickness method is not suitable for materials of low radio-opacity, while the attenuation coefficient method could be used for all without difficulty. The digital system gave attenuation coefficients of greater precision than did film, but the use of automatic gain control (AGC) distorted the outcome unusably. Attenuation coefficient is a more precise and generally applicable approach to the determination of radio-opacity. The digital system was equivalent to film but with less noise. The use of AGC is inappropriate for such determinations.
Multi-wavelength aerosol light absorption measurements in the Amazon rainforest
NASA Astrophysics Data System (ADS)
Saturno, Jorge; Chi, Xuguang; Pöhlker, Christopher; Morán, Daniel; Ditas, Florian; Massabò, Dario; Prati, Paolo; Rizzo, Luciana; Artaxo, Paulo; Andreae, Meinrat
2015-04-01
The most important light-absorbing aerosol is black carbon (BC), which is emitted by incomplete combustion of fossil fuels and biomass. BC is considered the second anthropogenic contributor to global warming. Beyond BC, other aerosols like some organics, dust, and primary biological aerosol particles are able to absorb radiation. In contrast to BC, the light absorption coefficient of these aerosols is wavelength dependent. Therefore, multi-wavelength measurements become important in environments where BC is not the predominant light-absorbing aerosol like in the Amazon. The Amazon Tall Tower Observatory (ATTO) site is located in the remote Amazon rainforest, one of the most pristine continental sites in the world during the wet season. In the dry season, winds coming from the southern hemisphere are loaded with biomass burning aerosol particles originated by farming-related deforestation. BC and aerosol number concentration data from the last two years indicate this is the most polluted period. Two different techniques have been implemented to measure the light absorption at different wavelengths; one of them is the 7-wavelengths Aethalometer, model AE30, an instrument that measures the light attenuation on a filter substrate and requires multiple scattering and filter-loading corrections to retrieve the light absorption coefficient. The other method is an offline technique, the Multi-Wavelength Absorbance Analysis (MWAA), which is able to measure reflectance and absorbance by aerosols collected on a filter and, by means of a radiative model, can retrieve the light absorption coefficient. Filters collected during May-September 2014, comprehending wet-to-dry transition and most of the dry season, were analyzed. The results indicate that the Absorption Ångström Exponent (AAE), a parameter that is directly proportional to the wavelength dependence of the aerosol light absorption, is close to 1.0 during the transition period and slightly decreases in the beginning of the dry season. However, during strong biomass burning episodes in the dry season, the AAE increases significantly, and reaches values higher than 1.3, indicating the presence of wavelength dependent light-absorbing aerosols like organics (brown carbon). The present study is a contribution to the understanding of the optical properties of light-absorbing aerosol particles under pristine and biomass-burning conditions.
Diel Variations in Optical Properties of Micromonas pusilla, a Prasinophyte
NASA Technical Reports Server (NTRS)
DuRand, Michele D.; Green, Rebecca E.; Sosik, Heidi M.; Olson, Robert J.
2001-01-01
A laboratory experiment was conducted on cultures of Micromonas pusilla, a marine prasinophyte, to investigate how cell growth and division affect the optical properties over the light:dark cycle. Measurements were made of cell size and concentration, attenuation and absorption coefficients, flow cytometric light scattering (in forward and side directions), chlorophyll and carbon content. Refractive index was calculated using the anomalous diffraction approximation Cells were about 1.5 micrometers in diameter and exhibited phased division, with the major division burst occurring during the night. Typical diel variations were observed, with cells increasing in size and light scattering during the day as they photosynthesize and decreasing at night upon division. The cells were in ultradian growth, with more than one division per day, at a light level of 120 Mu-mol photons m/sq/sec. Since these cells are similar in size to small phytoplankton that are typically abundant in field samples, these results can be used in the interpretation of diel variations in light scattering in natural populations of phytoplankton.
Matsumoto, Keiichi; Kitamura, Keishi; Mizuta, Tetsuro; Shimizu, Keiji; Murase, Kenya; Senda, Michio
2006-02-20
Transmission scanning can be successfully performed with a Cs-137 single-photon-emitting point source for three-dimensional PET imaging. This method was effective for postinjection transmission scanning because of differences in physical energy. However, scatter contamination in the transmission data lowers measured attenuation coefficients. The purpose of this study was to investigate the accuracy of the influence of object scattering by measuring the attenuation coefficients on the transmission images. We also compared the results with the conventional germanium line source method. Two different types of PET scanner, the SET-3000 G/X (Shimadzu Corp.) and ECAT EXACT HR(+) (Siemens/CTI) , were used. For the transmission scanning, the SET-3000 G/X and ECAT HR(+) were the Cs-137 point source and Ge-68/Ga-68 line source, respectively. With the SET-3000 G/X, we performed transmission measurement at two energy gate settings, the standard 600-800 keV as well as 500-800 keV. The energy gate setting of the ECAT HR(+) was 350-650 keV. The effects of scattering in a uniform phantom with different cross-sectional areas ranging from 201 cm(2) to 314 cm(2) to 628 cm(2) (apposition of the two 20 cm diameter phantoms) and 943 cm(2) (stacking of the three 20 cm diameter phantoms) were acquired without emission activity. First, we evaluated the attenuation coefficients of the two different types of transmission scanning using region of interest (ROI) analysis. In addition, we evaluated the attenuation coefficients with and without segmentation for Cs-137 transmission images using the same analysis. The segmentation method was a histogram-based soft-tissue segmentation process that can also be applied to reconstructed transmission images. In the Cs-137 experiment, the maximum underestimation was 3% without segmentation, which was reduced to less than 1% with segmentation at the center of the largest phantom. In the Ge-68/Ga-68 experiment, the difference in mean attenuation coefficients was stable with all phantoms. We evaluated the accuracy of attenuation coefficients of Cs-137 single-transmission scans. The results for Cs-137 suggest that scattered photons depend on object size. Although Cs-137 single-transmission scans contained scattered photons, attenuation coefficient error could be reduced using by the segmentation method.
NASA Astrophysics Data System (ADS)
Suslin, V. V.; Slabakova, V. K.; Churilova, T. Ya.
2017-11-01
Vertical diffuse attenuation coefficient, Kd(490), is one of the key parameter required for water quality modeling, hydrodynamic and biological processes in the sea. We showed that standard level-2 product of Kd(490) was underestimated in comparison with Kd(490) values simulated by the regional model during the diatom bloom in the Black Sea. Using data of SeaWiFS, MERIS and MODIS color scanners, a regional relationship between the model value of Kd(490) and the ratio of remote sensing reflectances has been obtained. Based on the bulgarian argo-bio-buoy dataset, the relationship between the attenuation coefficient of photosynthetically active radiation and attenuation coefficient at a wavelength of 490 nm is obtained. The simplified model, below as the S-model, of the diffuse attenuation coefficient spectrum for downwelling irradiance in the Black Sea upper layer is described. As a consequence of the S-model, the link between the depth of the euphotic zone and Kd(490) has been obtained. It is shown that the Kd(490) values, retrieved from ocean color data with using the regional link and from argo-bio-buoy measurements at depths between 6-20 m, are close to each other.
Hull, C C; Crofts, N C
1996-03-01
The Beer-Lambert law has been used to determine the total attenuation coefficient, mu t, of three hard and three soft contact lens materials. The three hard contact lens materials were PMMA, Polycon II and Boston IV whereas the 3 soft materials were chosen with differing water contents of 38, 55 and 70%, respectively. The total attenuation coefficients of all six materials were obtained from measurements of the axial transmission at 632.8 nm of a series of plano powered lenses varying in axial thickness from 0.5 to 3.5 mm. The value of the total attenuation coefficient depends on both scattering and absorption and hence PMMA and Boston IV, which both incorporated a handling tint, showed significantly higher values (P < 0.0001) of mu t (0.562 +/- 0.010 mm-1 and 0.820 +/- 0.008 mm-1, respectively) than Polycon II (mu t = 0.025 +/- 0.005 mm-1). A comparison between Polycon II and the three hydrated soft contact lens materials showed a significant increase (P < 0.02) in the total attenuation coefficients for the 38% and 55% water content materials, and a weakly significant increase for the 70% water content soft lens material (P < 0.1). On the assumption that the absorption coefficients of these four materials are approximately constant, then this change would be due to an increase in the scattering coefficient of the material and could contribute to an increase in intraocular scatter. No significant difference (P > 0.5) was found between any of the hydrated soft contact lens materials tested.
Study on laser and infrared attenuation performance of carbon nanotubes
NASA Astrophysics Data System (ADS)
Liu, Xiang-cui; Liu, Qing-hai; Dai, Meng-yan; Cheng, Xiang; Fang, Guo-feng; Zhang, Tong; Liu, Haifeng
2014-11-01
In recent years, the weapon systems of laser and infrared (IR) imaging guidance have been widely used in modern warfare because of their high precision and strong anti-interference. However, military smoke, a rapid and effective passive jamming method, can effectively counteract the attack of precision-guided weapons by their scattering and absorbing effects. The traditional smoke has good visible light (0.4-0.76μm) obscurant performance, but hardly any effects to other electromagnetic wave bands while the weapon systems of laser and IR imaging guidance usually work in broad band, including the near-infrared (1-3μm), middle-infrared (3-5μm), far-infrared (8-14μm), and so on. Accordingly, exploiting new effective obscurant materials has attracted tremendous interest worldwide nowadays. As is known, the nano-structured materials have lots of unique properties comparing with the traditional materials suggesting that they might be the perfect alternatives to solve the problems above. Carbon nanotubes (CNTs) are well-ordered, all-carbon hollow graphitic nano-structured materials with a high aspect ratio, lengths from several hundred nanometers to several millimeters. CNTs possess many unique intrinsic physical-chemical properties and are investigated in many areas reported by the previous studies. However, no application research about CNTs in smoke technology field is reported yet. In this paper, the attenuation performances of CNTs smoke to laser and IR were assessed in 20m3 smoke chamber. The testing wavebands employed in experiments are 1.06μm and 10.6μm laser, 3-5μm and 8-14μm IR radiation. The main parameters were obtained included the attenuation rate, transmission rate, mass extinction coefficient, etc. The experimental results suggest that CNTs smoke exhibits excellent attenuation ability to the broadband IR radiation. Their mass extinction coefficients are all above 1m2·g-1. Nevertheless, the mass extinction coefficients vary with the sampling time and smoke particles concentrations, even in the same testing waveband. With the time going the mass extinction coefficients will increase gradually. Based on the above results, theoretical calculations are also carried out for further exploitations. In general, CNTs smoke behaves excellent attenuation ability toward laser and IR under the experimental conditions. Therefore, they have great potentials to develop new smoke obscurant materials which could effectively interfere with broadband IR radiation including 1.06μm, 10.6μm, 3-5μm and 8-12μm IR waveband.
NASA Astrophysics Data System (ADS)
Oestreich, W. K.; Ganju, N. K.; Pohlman, J.; Suttles, S. E.
2014-12-01
Light is of great importance to the health and ecological function of shallow estuaries. Primary production in such estuaries, which is typically dominated by seagrass, is contingent upon light penetration to the deeper part of the estuarine water column. A major component contributing to light attenuation in these systems is colored dissolved organic matter (CDOM). CDOM is most often measured via a proxy, fluorescing dissolved organic matter (fDOM), due to the ease of taking rapid, accurate fDOM measurements. Fluorescence data can then be converted to absorbance by CDOM for use in light attenuation models. However, this fDOM-CDOM conversion has proven to be quite variable between estuaries, and even between sites along a given estuary. We displayed and attempted to explain this variability through the study of three diverse estuaries: West Falmouth Harbor (MA), Barnegat Bay (NJ), and Chincoteague Bay (MD/VA). Land use surrounding these estuaries ranges from wastewater treatment to agricultural operations and residential communities. Measurements of fDOM and absorbance by CDOM (quantified via spectrophotometer measurement of 0.2μm-filtered samples) were taken along a gradient from terrestrial to oceanic end-members. These measurements yielded highly variable fDOM-CDOM relationships between estuaries. The mean ratio of absorption coefficient at 340nm (m-1) to fDOM (QSU) was much higher in West Falmouth Harbor (0.874) than in Barnegat Bay (0.227) and Chincoteague Bay (0.173). This fDOM-CDOM relationship was also observed to be variable between sites within West Falmouth Harbor and Barnegat Bay, but consistent throughout sites along Chincoteague Bay. This variability, both within and between estuaries, is likely due to differing CDOM sources as a result of differences in land use in the areas surrounding these estuaries. Stable carbon isotope analysis of DOC from each site and hydrodynamic model results will be used to differentiate sources and further elucidate the fDOM-CDOM relationship.
NASA Astrophysics Data System (ADS)
Tarim, Urkiye Akar; Ozmutlu, Emin N.; Yalcin, Sezai; Gundogdu, Ozcan; Bradley, D. A.; Gurler, Orhan
2017-11-01
A Monte Carlo method was developed to investigate radiation shielding properties of bismuth borate glass. The mass attenuation coefficients and half-value layer parameters were determined for different fractional amounts of Bi2O3 in the glass samples for the 356, 662, 1173 and 1332 keV photon energies. A comparison of the theoretical and experimental attenuation coefficients is presented.
NASA Astrophysics Data System (ADS)
Kaur, Rajnish; Kumar, Anil; Osan, Janos; Czyzycki, M.; Karydas, A. G.; Puri, Sanjiv
2017-07-01
The absolute values of the mass attenuation coefficients have been measured at sixty two photon energies across the Li (i=1-3) sub-shell absorption edges of 66Dy covering the region 7.6-14.0 keV in order to investigate the influence of near-edge processes on the attenuation coefficients. The present measured attenuation coefficients are found to be higher by up to 10% than the theoretical values evaluated from the computer code XCOM (Berger et al., 2010) and the self-consistent Dirac-Hartree-Slater (DHS) model based values tabulated by Chantler (1995) over the energy region 7.6-14.0 keV, except at energies in vicinity (few eV) of the Li (i=1-3) sub-shell absorption edge energies where the measured values are significantly higher (up to 37%) than both the sets of theoretical values. Further, the Li (i=1-3) sub-shell photoionization cross sections, (σLiP)exp, deduced from the present measured mass attenuation coefficients are compared with the non-relativistic Hartree-Fock-Slater (HFS) model based values tabulated by Scofield (1973) and those evaluated from the theoretical total photoionization attenuation coefficients tabulated by Chantler (1995). The deduced (σLiP)exp(i=1-3) values are found to be in better agreement with those evaluated from the tabulations given by Chantler (1995) than the values given by Scofield (1973) over the energy region 7.8 - 14.0 keV included in this study. However, at photon energies up to few eV above the Li edges, the deduced (σLiP)exp(i=1-3) values are found to be significantly higher (up to 32%) than both the sets of theoretical values.
NASA Astrophysics Data System (ADS)
Jeon, Sung W.; Shure, Mark A.; Baker, Kenneth B.; Chahlavi, Ali; Hatoum, Nagi; Turbay, Massud; Rollins, Andrew M.; Rezai, Ali R.; Huang, David
2005-04-01
Deep Brain Stimulation (DBS) is FDA-approved for the treatment of Parkinson's disease and essential tremor. Currently, placement of DBS leads is guided through a combination of anatomical targeting and intraoperative microelectrode recordings. The physiological mapping process requires several hours, and each pass of the microelectrode into the brain increases the risk of hemorrhage. Optical Coherence Domain Reflectometry (OCDR) in combination with current methodologies could reduce surgical time and increase accuracy and safety by providing data on structures some distance ahead of the probe. For this preliminary study, we scanned a rat brain in vitro using polarization-insensitive Optical Coherence Tomography (OCT). For accurate measurement of intensity and attenuation, polarization effects arising from tissue birefringence are removed by polarization diversity detection. A fresh rat brain was sectioned along the coronal plane and immersed in a 5 mm cuvette with saline solution. OCT images from a 1294 nm light source showed depth profiles up to 2 mm. Light intensity and attenuation rate distinguished various tissue structures such as hippocampus, cortex, external capsule, internal capsule, and optic tract. Attenuation coefficient is determined by linear fitting of the single scattering regime in averaged A-scans where Beer"s law is applicable. Histology showed very good correlation with OCT images. From the preliminary study using OCT, we conclude that OCDR is a promising approach for guiding DBS probe placement.
NASA Astrophysics Data System (ADS)
Goulart, Viviane P.; dos Santos, Moisés O.; Latrive, Anne; Freitas, Anderson Z.; Correa, Luciana; Zezell, Denise M.
2015-05-01
Photodynamic therapy (PDT) has become a promising alternative for treatment of skin lesions such as squamous cell carcinoma. We propose a method to monitor the effects of PDT in a noninvasive way by using the optical attenuation coefficient (OAC) calculated from optical coherence tomography (OCT) images. We conducted a study on mice with chemically induced neoplastic lesions and performed PDT on these lesions using homemade photosensitizers. The response of neoplastic lesions to therapy was monitored using, at the same time, macroscopic clinical visualization, histopathological analysis, OCT imaging, and OCT-based attenuation coefficient measurement. Results with all four modalities demonstrated a positive response to treatment. The attenuation coefficient was found to be 1.4 higher in skin lesions than in healthy tissue and it decreased after therapy. This study shows that the OAC is a potential tool to noninvasively assess the evolution of skin neoplastic lesions with time after treatment.
Klyen, Blake R.; Scolaro, Loretta; Shavlakadze, Tea; Grounds, Miranda D.; Sampson, David D.
2014-01-01
We present the assessment of ex vivo mouse muscle tissue by quantitative parametric imaging of the near-infrared attenuation coefficient µt using optical coherence tomography. The resulting values of the local total attenuation coefficient µt (mean ± standard error) from necrotic lesions in the dystrophic skeletal muscle tissue of mdx mice are higher (9.6 ± 0.3 mm−1) than regions from the same tissue containing only necrotic myofibers (7.0 ± 0.6 mm−1), and significantly higher than values from intact myofibers, whether from an adjacent region of the same sample (4.8 ± 0.3 mm−1) or from healthy tissue of the wild-type C57 mouse (3.9 ± 0.2 mm−1) used as a control. Our results suggest that the attenuation coefficient could be used as a quantitative means to identify necrotic lesions and assess skeletal muscle tissue in mouse models of human Duchenne muscular dystrophy. PMID:24761302
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuschareon, S., E-mail: tuscharoen@hotmail.com; Limkitjaroenporn, P., E-mail: tuscharoen@hotmail.com; Kaewkhao, J., E-mail: tuscharoen@hotmail.com
2014-03-24
Topaz occurs in a wide range of colors, including yellow, orange, brown, pink-to-violet and blue. All of these color differences are due to color centers. In order to improve the color of natural colorless topaz, the most commonly used is irradiated with x- or gamma-rays, indicated that attenuation parameters is important to enhancements by irradiation. In this work, the mass attenuation coefficients of blue topaz were measured at the different energy of γ-rays using the Compton scattering technique. The results show that, the experimental values of mass attenuation coefficient are in good agreement with the theoretical values. The mass attenuationmore » coefficients increase with the decrease in gamma rays energies. This may be attributed to the higher photon interaction probability of blue topaz at lower energy. This result is a first report of mass attenuation coefficient of blue topaz at different gamma rays energies.« less
Light attenuation in estuarine mangrove lakes
NASA Astrophysics Data System (ADS)
Frankovich, Thomas A.; Rudnick, David T.; Fourqurean, James W.
2017-01-01
Submerged aquatic vegetation (SAV) cover has declined in brackish lakes in the southern Everglades characterized by low water transparencies, emphasizing the need to evaluate the suitability of the aquatic medium for SAV growth and to identify the light attenuating components that contribute most to light attenuation. Underwater attenuation of downwards irradiance of photosynthetically active radiation (PAR) was determined over a three year period at 42 sites in shallow (<2 m depth) mangrove-surrounded lakes in two sub-estuaries in the coastal Everglades, Florida USA. Turbidity, chromophoric dissolved organic matter (CDOM), and phytoplankton chlorophyll a (chl a) were measured concurrently and their respective contributions to the light attenuation rate were estimated. Light transmission to the benthos relative to literature estimates of minimum requirements for SAV growth indicated that the underwater light environment was often unsuitable for SAV. Light attenuation rates (n = 417) corrected for solar elevation angles ranged from 0.16 m-1 to 9.83 m-1 with a mean of 1.73 m-1. High concentrations of CDOM with high specific light absorption contributed the most to light attenuation followed by turbidity and chl a. CDOM alone sufficiently reduces light transmission beyond the estimated limits for SAV growth, making it difficult for ecosystem managers to increase SAV abundance by management activities. Light limitation of SAV in these areas may be a persistent feature because of their proximity to CDOM source materials from the surrounding mangrove swamp. Increasing freshwater flow into these areas may dilute CDOM concentrations and improve the salinity and light climate for SAV communities.
A summary of Selected Data: DSDP Legs 20-44,
1980-09-01
water X 100 minerals may be applied in the future density water when the mineralogy and attenuation wt. wate r \\+ wt r ed. + salIt coefficients...in the future when densities of some common minerals are the exact quantitative mineralogy and listed in Harms and Choquette (1965), attenuation...different attenuation coefficient than were used to get a " ball park" answer that of calcite. for a particular sediment type, or for drilling
Investigation of photon attenuation coefficient of some building materials used in Turkey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dogan, B.; Altinsoy, N.
In this study, some building materials regularly used in Turkey, such as concrete, gas concrete, pumice and brick have been investigated in terms of mass attenuation coefficient at different gamma-ray energies. Measurements were carried out by gamma spectrometry containing NaI(Tl) detector. Narrow beam gamma-ray transmission geometry was used for the attenuation measurements. The results are in good agreement with the theoretical calculation of XCOM code.
X-Ray Attenuation and Absorption for Materials of Dosimetric Interest
National Institute of Standards and Technology Data Gateway
SRD 126 X-Ray Attenuation and Absorption for Materials of Dosimetric Interest (Web, free access) Tables and graphs of the photon mass attenuation coefficient and the mass energy-absorption coefficient are presented for all of the elements Z = 1 to 92, and for 48 compounds and mixtures of radiological interest. The tables cover energies of the photon (x-ray, gamma ray, bremsstrahlung) from 1 keV to 20 MeV.
Perturbed effects at radiation physics
NASA Astrophysics Data System (ADS)
Külahcı, Fatih; Şen, Zekâi
2013-09-01
Perturbation methodology is applied in order to assess the linear attenuation coefficient, mass attenuation coefficient and cross-section behavior with random components in the basic variables such as the radiation amounts frequently used in the radiation physics and chemistry. Additionally, layer attenuation coefficient (LAC) and perturbed LAC (PLAC) are proposed for different contact materials. Perturbation methodology provides opportunity to obtain results with random deviations from the average behavior of each variable that enters the whole mathematical expression. The basic photon intensity variation expression as the inverse exponential power law (as Beer-Lambert's law) is adopted for perturbation method exposition. Perturbed results are presented not only in terms of the mean but additionally the standard deviation and the correlation coefficients. Such perturbation expressions provide one to assess small random variability in basic variables.
NASA Astrophysics Data System (ADS)
Kurudirek, M.; Medhat, M. E.
2014-07-01
An alternative approach is used to measure normalized mass attenuation coefficients (μ/ρ) of materials with unknown thickness and density. The adopted procedure is based on the use of simultaneous emission of Kα and Kβ X-ray lines as well as gamma peaks from radioactive sources in transmission geometry. 109Cd and 60Co radioactive sources were used for the purpose of the investigation. It has been observed that using the simultaneous X- and/or gamma rays of different energy allows accurate determination of relative mass attenuation coefficients by eliminating the dependence of μ/ρ on thickness and density of the material.
Sabetghadam, Samaneh; Ahmadi-Givi, Farhang
2014-01-01
Light extinction, which is the extent of attenuation of light signal for every distance traveled by light in the absence of special weather conditions (e.g., fog and rain), can be expressed as the sum of scattering and absorption effects of aerosols. In this paper, diurnal and seasonal variations of the extinction coefficient are investigated for the urban areas of Tehran from 2007 to 2009. Cases of visibility impairment that were concurrent with reports of fog, mist, precipitation, or relative humidity above 90% are filtered. The mean value and standard deviation of daily extinction are 0.49 and 0.39 km(-1), respectively. The average is much higher than that in many other large cities in the world, indicating the rather poor air quality over Tehran. The extinction coefficient shows obvious diurnal variations in each season, with a peak in the morning that is more pronounced in the wintertime. Also, there is a very slight increasing trend in the annual variations of atmospheric extinction coefficient, which suggests that air quality has regressed since 2007. The horizontal extinction coefficient decreased from January to July in each year and then increased between July and December, with the maximum value in the winter. Diurnal variation of extinction is often associated with small values for low relative humidity (RH), but increases significantly at higher RH. Annual correlation analysis shows that there is a positive correlation between the extinction coefficient and RH, CO, PM10, SO2, and NO2 concentration, while negative correlation exists between the extinction and T, WS, and O3, implying their unfavorable impact on extinction variation. The extinction budget was derived from multiple regression equations using the regression coefficients. On average, 44% of the extinction is from suspended particles, 3% is from air molecules, about 5% is from NO2 absorption, 0.35% is from RH, and approximately 48% is unaccounted for, which may represent errors in the data as well as contribution of other atmospheric constituents omitted from the analysis. Stronger regression equation is achieved in the summer, meaning that the extinction is more predictable in this season using pollutant concentrations.
NASA Astrophysics Data System (ADS)
Verdipoor, Khatibeh; Alemi, Abdolali; Mesbahi, Asghar
2018-06-01
Novel shielding materials for photons based on silicon resin and WO3, PbO, and Bi2O3 Micro and Nano-particles were designed and their mass attenuation coefficients were calculated using Monte Carlo (MC) method. Using lattice cards in MCNPX code, micro and nanoparticles with sizes of 100 nm and 1 μm was designed inside a silicon resin matrix. Narrow beam geometry was simulated to calculate the attenuation coefficients of samples against mono-energetic beams of Co60 (1.17 and 1.33 MeV), Cs137 (663.8 KeV), and Ba133 (355.9 KeV). The shielding samples made of nanoparticles had higher mass attenuation coefficients, up to 17% relative to those made of microparticles. The superiority of nano-shields relative to micro-shields was dependent on the filler concentration and the energy of photons. PbO, and Bi2O3 nanoparticles showed higher attenuation compared to WO3 nanoparticles in studied energies. Fabrication of novel shielding materials using PbO, and Bi2O3 nanoparticles is recommended for application in radiation protection against photon beams.
Physical and biogeochemical controls on light attenuation in a eutrophic, back-barrier estuary
Ganju, Neil K.; Miselis, Jennifer L.; Aretxabaleta, Alfredo L.
2014-01-01
Light attenuation is a critical parameter governing the ecological function of shallow estuaries. In these systems primary production is often dominated by benthic macroalgae and seagrass; thus light penetration to the bed is of primary importance. We quantified light attenuation in three seagrass meadows in Barnegat Bay, New Jersey, a shallow eutrophic back-barrier estuary; two of the sites were located within designated Ecologically Sensitive Areas (ESAs). We sequentially deployed instrumentation measuring photosynthetically active radiation, chlorophyll-a (chl-a) fluorescence, dissolved organic matter fluorescence (fDOM; a proxy for colored DOM absorbance), turbidity, pressure, and water velocity at 10 min intervals over three week periods at each site. At the southernmost site, where sediment availability was highest, light attenuation was highest and dominated by turbidity and to a lesser extent chl-a and CDOM. At the central site, chl-a dominated followed by turbidity and CDOM, and at the northernmost site turbidity and CDOM contributed equally to light attenuation. At a given site, the temporal variability of light attenuation exceeded the difference in median light attenuation at the three sites, indicating the need for continuous high-temporal resolution measurements. Vessel wakes, anecdotally implicated in increasing sediment resuspension, did not contribute to local resuspension within the seagrass beds, though frequent vessel wakes were observed in the channels. With regards to light attenuation and water clarity, physical and biogeochemical variables appear to outweigh any regulation of boat traffic within the ESAs.
NASA Astrophysics Data System (ADS)
Peinado, Liliana M.; Bloemen, Paul R.; Almasian, Mitra; van Leeuwen, Ton G.; Faber, Dirk J.
2016-03-01
Despite the improvements in early cancer diagnosis, adequate diagnostic tools for early staging of bladder cancer tumors are lacking [1]. MEMS-probes based on optical coherence tomography (OCT) provide cross-sectional imaging with a high-spatial resolution at a high-imaging speed, improving visualization of cancerous tissue [2-3]. Additionally, studies show that the measurement of localized attenuation coefficient allows discrimination between healthy and cancerous tissue [4]. We have designed a new miniaturized MEMS-probe based on OCT that will optimize early diagnosis by improving functional visualization of suspicious lesions in bladder. During the optical design phase of the probe, we have studied the effect of the numerical aperture (NA) on the OCT signal attenuation. For this study, we have employed an InnerVision Santec OCT system with several numerical apertures (25mm, 40mm, 60mm, 100mm, 150mm and 200mm using achromatic lenses). The change in attenuation coefficient was studied using 15 dilutions of intralipid ranging between 6*10-5 volume% and 20 volume%. We obtained the attenuation coefficient from the OCT images at several fixed positions of the focuses using established OCT models (e.g. single scattering with known confocal point spread function (PSF) [5] and multiple scattering using the Extended Huygens Fresnel model [6]). As a result, a non-linear increase of the scattering coefficient as a function of intralipid concentration (due to dependent scattering) was obtained for all numerical apertures. For all intralipid samples, the measured attenuation coefficient decreased with a decrease in NA. Our results suggest a non-negligible influence of the NA on the measured attenuation coefficient. [1] Khochikar MV. Rationale for an early detection program for bladder cancer. Indian J Urol 2011 Apr-Jun; 27(2): 218-225. [2] Sun J and Xie H. Review Article MEMS-Based Endoscopic Optical Coherence Tomography. IJO 2011, Article ID 825629, 12 pages. doi:10.1155/2011/825629. [3] Jung W and Boppart S. Optical coherence tomography for rapid tissue screening and directed histological sectioning. Anal Cell Pathol (Amst). 2012; 35(3): 129-143. [4] R. Wessels et al. Optical coherence tomography in vulvar intraepithelial neoplasia. J Biomed Opt 2012 Nov; 17(11): 116022. [5] Faber D, van der Meer F, Aalders M, van Leeuwen T. Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography. OPT EXPRESS 2004; 12 (19): 4353-43. [6] Thrane L, Yura HT, and Andersen PE. Analysis of optical coherence tomography systems based on the extended Huygens-Fresnel principle. JOSA 2000; 17(3): 484-490.
NASA Astrophysics Data System (ADS)
Lee, Zhongping; Hu, Chuanmin; Shang, Shaoling; Du, Keping; Lewis, Marlon; Arnone, Robert; Brewin, Robert
2013-09-01
Penetration of solar radiation in the ocean is determined by the attenuation coefficient (Kd(λ)). Following radiative transfer theory, Kd is a function of angular distribution of incident light and water's absorption and backscattering coefficients. Because these optical products are now generated routinely from satellite measurements, it is logical to evolve the empirical Kd to a semianalytical Kd that is not only spectrally flexible, but also the sun-angle effect is accounted for explicitly. Here, the semianalytical model developed in Lee et al. (2005b) is revised to account for the shift of phase function between molecular and particulate scattering from the short to long wavelengths. Further, using field data collected independently from oligotrophic ocean to coastal waters covering >99% of the Kd range for the global oceans, the semianalytically derived Kd was evaluated and found to agree with measured data within ˜7-26%. The updated processing system was applied to MODIS measurements to reveal the penetration of UVA-visible radiation in the global oceans, where an empirical procedure to correct Raman effect was also included. The results indicated that the penetration of the blue-green radiation for most oceanic waters is ˜30-40% deeper than the commonly used euphotic zone depth; and confirmed that at a depth of 50-70 m there is still ˜10% of the surface UVA radiation (at 360 nm) in most oligotrophic waters. The results suggest a necessity to modify or expand the light attenuation product from satellite ocean-color measurements in order to be more applicable for studies of ocean physics and biogeochemistry.
Quantitative RNFL attenuation coefficient measurements by RPE-normalized OCT data
NASA Astrophysics Data System (ADS)
Vermeer, K. A.; van der Schoot, J.; Lemij, H. G.; de Boer, J. F.
2012-03-01
We demonstrate significantly different scattering coefficients of the retinal nerve fiber layer (RNFL) between normal and glaucoma subjects. In clinical care, SD-OCT is routinely used to assess the RNFL thickness for glaucoma management. In this way, the full OCT data set is conveniently reduced to an easy to interpret output, matching results from older (non- OCT) instruments. However, OCT provides more data, such as the signal strength itself, which is due to backscattering in the retinal layers. For quantitative analysis, this signal should be normalized to adjust for local differences in the intensity of the beam that reaches the retina. In this paper, we introduce a model that relates the OCT signal to the attenuation coefficient of the tissue. The average RNFL signal (within an A-line) was then normalized based on the observed RPE signal, resulting in normalized RNFL attenuation coefficient maps. These maps showed local defects matching those found in thickness data. The average (normalized) RNFL attenuation coefficient of a fixed band around the optic nerve head was significantly lower in glaucomatous eyes than in normal eyes (3.0mm-1 vs. 4.9mm-1, P<0.01, Mann-Whitney test).
Quantifying contributions to light attenuation in estuaries and ...
In Narragansett Bay, light attenuation by total suspended sediments (TSS), colored dissolved organic matter (CDOM), and phytoplankton chlorophyll-a (chl-a) pigment is 129, 97, and 70%, respectively, of that by pure seawater. Spatial distribution of light attenuation indicates higher values in the upper Bay, where rivers with sediment and nutrient-rich waters enter and elevate TSS, CDOM, and chl-a concentrations. The temporal trends of light attenuation during the summer months (July–August) differed at various locations in the Bay, having the highest values in July. For the same period, spectral methods overestimated attenuation throughout the Bay. These findings quantify the behavior of light attenuation in space and time, providing information that can guide decisions related to improving water clarity and help understanding the effects of various environmental and management scenarios on it. The methods developed can be used to study the effect of various environmental and management scenarios on the recovery efforts for SAV beds in estuarine and coastal systems. An innovative normalization for light attenuation is presented to validate comparison between water clarity of the same or different systems in space and time.
I Vivo Quantitative Ultrasound Imaging and Scatter Assessments.
NASA Astrophysics Data System (ADS)
Lu, Zheng Feng
There is evidence that "instrument independent" measurements of ultrasonic scattering properties would provide useful diagnostic information that is not available with conventional ultrasound imaging. This dissertation is a continuing effort to test the above hypothesis and to incorporate quantitative ultrasound methods into clinical examinations for early detection of diffuse liver disease. A well-established reference phantom method was employed to construct quantitative ultrasound images of tissue in vivo. The method was verified by extensive phantom tests. A new method was developed to measure the effective attenuation coefficient of the body wall. The method relates the slope of the difference between the echo signal power spectrum from a uniform region distal to the body wall and the echo signal power spectrum from a reference phantom to the body wall attenuation. The accuracy obtained from phantom tests suggests further studies with animal experiments. Clinically, thirty-five healthy subjects and sixteen patients with diffuse liver disease were studied by these quantitative ultrasound methods. The average attenuation coefficient in normals agreed with previous investigators' results; in vivo backscatter coefficients agreed with the results from normals measured by O'Donnell. Strong discriminating power (p < 0.001) was found for both attenuation and backscatter coefficients between fatty livers and normals; a significant difference (p < 0.01) was observed in the backscatter coefficient but not in the attenuation coefficient between cirrhotic livers and normals. An in vivo animal model of steroid hepatopathy was used to investigate the system sensitivity in detecting early changes in canine liver resulting from corticosteroid administration. The average attenuation coefficient slope increased from 0.7 dB/cm/MHz in controls to 0.82 dB/cm/MHz (at 6 MHz) in treated animals on day 14 into the treatment, and the backscatter coefficient was 26times 10^{ -4}cm^{-1}sr^{-1} in controls compared with 74times 10^{-4}cm^{-1}sr^ {-1} (at 6 MHz) in treated animals. A simplified quantitative approach using video image signals was developed. Results derived both from the r.f. signal analysis and from the video signal analysis are sensitive to the changes in the liver in this animal model.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Jia, Mingchun; Gong, Junjun; Xia, Wenming
2017-08-01
The linear attenuation coefficient, mass attenuation coefficient and mean free path of various Lead-Boron Polyethylene (PbBPE) samples which can be used as the photon shielding materials in marine reactor have been simulated using the Monte Carlo N-Particle (MCNP)-5 code. The MCNP simulation results are in good agreement with the XCOM values and the reported experimental data for source Cesium-137 and Cobalt-60. Thus, this method based on MCNP can be used to simulate the photon attenuation characteristics of various types of PbBPE materials.
Inferential Procedures for Correlation Coefficients Corrected for Attenuation.
ERIC Educational Resources Information Center
Hakstian, A. Ralph; And Others
1988-01-01
A model and computation procedure based on classical test score theory are presented for determination of a correlation coefficient corrected for attenuation due to unreliability. Delta and Monte Carlo method applications are discussed. A power analysis revealed no serious loss in efficiency resulting from correction for attentuation. (TJH)
Positional glow curve simulation for thermoluminescent detector (TLD) system design
NASA Astrophysics Data System (ADS)
Branch, C. J.; Kearfott, K. J.
1999-02-01
Multi- and thin element dosimeters, variable heating rate schemes, and glow-curve analysis have been employed to improve environmental and personnel dosimetry using thermoluminescent detectors (TLDs). Detailed analysis of the effects of errors and optimization of techniques would be highly desirable. However, an understanding of the relationship between TL light production, light attenuation, and precise heating schemes is made difficult because of experimental challenges involved in measuring positional TL light production and temperature variations as a function of time. This work reports the development of a general-purpose computer code, thermoluminescent detector simulator, TLD-SIM, to simulate the heating of any TLD type using a variety of conventional and experimental heating methods including pulsed focused or unfocused lasers with Gaussian or uniform cross sections, planchet, hot gas, hot finger, optical, infrared, or electrical heating. TLD-SIM has been used to study the impact on the TL light production of varying the input parameters which include: detector composition, heat capacity, heat conductivity, physical size, and density; trapped electron density, the frequency factor of oscillation of electrons in the traps, and trap-conduction band potential energy difference; heating scheme source terms and heat transfer boundary conditions; and TL light scatter and attenuation coefficients. Temperature profiles and glow curves as a function of position time, as well as the corresponding temporally and/or spatially integrated glow values, may be plotted while varying any of the input parameters. Examples illustrating TLD system functions, including glow curve variability, will be presented. The flexible capabilities of TLD-SIM promises to enable improved TLD system design.
Empirical algorithms for ocean optics parameters
NASA Astrophysics Data System (ADS)
Smart, Jeffrey H.
2007-06-01
As part of the Worldwide Ocean Optics Database (WOOD) Project, The Johns Hopkins University Applied Physics Laboratory has developed and evaluated a variety of empirical models that can predict ocean optical properties, such as profiles of the beam attenuation coefficient computed from profiles of the diffuse attenuation coefficient. In this paper, we briefly summarize published empirical optical algorithms and assess their accuracy for estimating derived profiles. We also provide new algorithms and discuss their applicability for deriving optical profiles based on data collected from a variety of locations, including the Yellow Sea, the Sea of Japan, and the North Atlantic Ocean. We show that the scattering coefficient (b) can be computed from the beam attenuation coefficient (c) to about 10% accuracy. The availability of such relatively accurate predictions is important in the many situations where the set of data is incomplete.
Nicolucci, P; Schuch, F
2012-06-01
To use the Monte Carlo code PENELOPE to study attenuation and tissue equivalence properties of a-Al2O3:C for OSL dosimetry. Mass attenuation coefficients of α-Al2O3 and α-Al2O3:C with carbon percent weight concentrations from 1% to 150% were simulated with PENELOPE Monte Carlo code and compared to mass attenuation coefficients from soft tissue for photon beams ranging from 50kV to 10MV. Also, the attenuation of primary photon beams of 6MV and 10MV and the generation of secondary electrons by α-Al2O3 :C dosimeters positioned on the entrance surface of a water phantom were studied. A difference of up to 90% was found in the mass attenuation coefficient between the pure \\agr;-A12O3 and the material with 150% weight concentration of dopant at 1.5 keV, corresponding to the K-edge photoelectric absorption of aluminum. However for energies above 80 keV the concentration of carbon does not affect the mass attenuation coefficient and the material presents tissue equivalence for the beams studied. The ratio between the mass attenuation coefficients for \\agr-A12O3:C and for soft tissue are less than unit due to the higher density of the \\agr-A12O3 (2.12 g/cm s ) and its tissue equivalence diminishes to lower concentrations of carbon and for lower energies due to the relation of the radiation interaction effects with atomic number. The larger attenuation of the primary photon beams by the dosimeter was 16% at 250 keV and the maximum increase in secondary electrons fluence to the entrance surface of the phantom was found as 91% at 2MeV. The use of the OSL dosimeters in radiation therapy can be optimized by use of PENELOPE Monte Carlo simulation to provide a study of the attenuation and response characteristics of the material. © 2012 American Association of Physicists in Medicine.
Deriving Hounsfield units using grey levels in cone beam computed tomography
Mah, P; Reeves, T E; McDavid, W D
2010-01-01
Objectives An in vitro study was performed to investigate the relationship between grey levels in dental cone beam CT (CBCT) and Hounsfield units (HU) in CBCT scanners. Methods A phantom containing 8 different materials of known composition and density was imaged with 11 different dental CBCT scanners and 2 medical CT scanners. The phantom was scanned under three conditions: phantom alone and phantom in a small and large water container. The reconstructed data were exported as Digital Imaging and Communications in Medicine (DICOM) and analysed with On Demand 3D® by Cybermed, Seoul, Korea. The relationship between grey levels and linear attenuation coefficients was investigated. Results It was demonstrated that a linear relationship between the grey levels and the attenuation coefficients of each of the materials exists at some “effective” energy. From the linear regression equation of the reference materials, attenuation coefficients were obtained for each of the materials and CT numbers in HU were derived using the standard equation. Conclusions HU can be derived from the grey levels in dental CBCT scanners using linear attenuation coefficients as an intermediate step. PMID:20729181
In Narragansett Bay, light attenuation by total suspended sediments (TSS), colored dissolved organic matter (CDOM), and phytoplankton chlorophyll-a (chl-a) pigment is 129, 97, and 70%, respectively, of that by pure seawater. Spatial distribution of light attenuation indicates hig...
NASA Astrophysics Data System (ADS)
Ladhaf, Bibifatima M.; Pawar, Pravina P.
2015-04-01
We measured here the mass attenuation coefficients (μ/ρ) of carbohydrates, Esculine (C15H16O9), Sucrose (C12H22O11), Sorbitol (C6H14O6), D-Galactose (C6H12O6), Inositol (C6H12O6), D-Xylose (C5H10O5) covering the energy range from 122 keV up to 1330 keV photon energies by using gamma ray transmission method in a narrow beam good geometry set-up. The gamma-rays were detected using NaI(Tl) scintillation detection system with a resolution of 8.2% at 662 keV. The attenuation coefficient data were then used to obtain the total attenuation cross-section (σtot), molar extinction coefficients (ε), mass-energy absorption coefficients (μen/ρ) and effective (average) atomic energy-absorption cross section (σa,en) of the compounds. These values are found to be in good agreement with the theoretical values calculated based on XCOM data.
Fractal ladder models and power law wave equations
Kelly, James F.; McGough, Robert J.
2009-01-01
The ultrasonic attenuation coefficient in mammalian tissue is approximated by a frequency-dependent power law for frequencies less than 100 MHz. To describe this power law behavior in soft tissue, a hierarchical fractal network model is proposed. The viscoelastic and self-similar properties of tissue are captured by a constitutive equation based on a lumped parameter infinite-ladder topology involving alternating springs and dashpots. In the low-frequency limit, this ladder network yields a stress-strain constitutive equation with a time-fractional derivative. By combining this constitutive equation with linearized conservation principles and an adiabatic equation of state, a fractional partial differential equation that describes power law attenuation is derived. The resulting attenuation coefficient is a power law with exponent ranging between 1 and 2, while the phase velocity is in agreement with the Kramers–Kronig relations. The fractal ladder model is compared to published attenuation coefficient data, thus providing equivalent lumped parameters. PMID:19813816
NASA Astrophysics Data System (ADS)
Tian, Zhen; Huo, Linsheng; Gao, Weihang; Li, Hongnan; Song, Gangbing
2017-10-01
Wave-based concrete structural health monitoring has attracted much attention. A stress wave experiences significant attenuation in concrete, however there is a lack of a unified method for predicting the attenuation coefficient of the stress wave. In this paper, a simple and effective absorption attenuation model of stress waves in concrete is developed based on the Rayleigh damping model, which indicates that the absorption attenuation coefficient of stress waves in concrete is directly proportional to the square of the stress wave frequency when the damping ratio is small. In order to verify the theoretical model, related experiments were carried out. During the experiments, a concrete beam was designed in which the d33-model piezoelectric smart aggregates were embedded to detect the propagation of stress waves. It is difficult to distinguish direct stress waves due to the complex propagation paths and the reflection and scattering of stress waves in concrete. Hence, as another innovation of this paper, a new method for computing the absorption attenuation coefficient based on the time-reversal method is developed. Due to the self-adaptive focusing properties of the time-reversal method, the time-reversed stress wave focuses and generates a peak value. The time-reversal method eliminates the adverse effects of multipaths, reflection, and scattering. The absorption attenuation coefficient is computed by analyzing the peak value changes of the time-reversal focused signal. Finally, the experimental results are found to be in good agreement with the theoretical model.
Physical and biogeochemical controls on polymictic behavior in Sierra Nevada stream pools
NASA Astrophysics Data System (ADS)
Lucas, R. G.; Conklin, M. H.; Tyler, S. W.; Suarez, F. I.; Moran, J. E.; Esser, B. K.
2011-12-01
We observed polymictic behavior in stream pools in a low gradient montane meadow in the southern Sierra Nevada mountains, California. Thermal stratification in stream pools has been observed in various environments; stratification generally persists where the buoyancy forces created by a variation in water density, as a function of water temperature, are able to overcome turbulent forces resulting from stream flow. Because the density gradient creates a relatively weak buoyancy force, low flow conditions are generally required in order to overcome the turbulent forces. In some studies, a cold water source in to the pool bottoms can help to increase the density gradient and perpetuate thermal stratification. Our study took place in Long Meadow, Sequoia National Park, California. Long Meadow lies in the Wolverton Creek watershed and is part of the Southern Sierra Critical Zone Observatory. The 1-4 m diameter and 1-2 m deep pools in our study stratified thermally during the day and mixed completely at night. The low gradient of the meadow provided low stream flows. Piezometers in the meadow indicated groundwater discharge into the meadow in the months during which stratification was observed. Radon 222 activity measured in the pools also indicated groundwater influx to the pool bottoms. We used Fluent, a computational fluid dynamics equation solver, to construct a model of one of the observed pools. Initially we attempted to model the physical mechanisms controlling thermal stratification in the pool including stream flow, groundwater discharge, solar radiation, wind speed, and air, stream and ground water temperatures. Ultimately we found the model best agreed with our observed pool temperatures when we considered the light attenuation coefficients as a function of the dissolve organic carbon (DOC) concentration. Elevated DOC concentrations are expected in low stream flow regimes associated with highly organic soils such as a montane meadow. DOC concentrations measured in samples collected from the meadow stream, pools, and ground water wells ranged from 3.09 to 5.25 mg/L. We used a power equation taken from the literature to vary the visible light attenuation with DOC values measured in the meadow system. Light attenuation coefficients determined from measured DOC concentrations ranged from 0.507 m-1 to 0.899 m-1. The results from our modeling efforts indicate that in low flow streams and rivers elevated concentrations of DOC can increase the potential for thermal stratification in stream pools.
Viscothermal Coupling Effects on Sound Attenuation in Concentrated Colloidal Dispersions.
NASA Astrophysics Data System (ADS)
Han, Wei
1995-11-01
This thesis describes a Unified Coupled Phase Continuum (UCPC) model to analyze sound propagation through aerosols, emulsions and suspensions in terms of frequency dependent attenuation coefficient and sound speed. Expressions for the viscous and thermal coupling coefficients explicitly account for the effects of particle size, shape factor, orientation as well as concentration and the sound frequency. The UCPC model also takes into account the intrinsic acoustic absorption within the fluid medium due to its viscosity and heat conductivity. The effective complex wave number as a function of frequency is derived. A frequency- and concentration-dependent complex Nusselt number for the interfacial thermal coupling coefficient is derived using an approximate similarity between the 'viscous skin drag' and 'heat conduction flux' associated with the discontinuous suspended phase, on the basis of a cell model. The theoretical predictions of attenuation spectra provide satisfactory agreement with reported experimental data on two concentrated suspensions (polystyrene latex and kaolin pigment), two concentrated emulsions (toluene -in-water, n-hexadecane-in-water), and two aerosols (oleic acid droplets-in-nitrogen, alumina-in-air), covering a wide range of relative magnitudes (from 10^ {-3} to 10^{3}) of thermal versus viscous contributions, for dispersed phase volume fractions as high as 50%. The relative differences between the additive result of separate viscous and thermal loss estimates and combined viscothermal absorption results are also presented. Effects of particle shape on viscous attenuation of sound in concentrated suspensions of non-spherical clay particles are studied. Attenuation spectra for 18 frequencies from 3 to 100 MHz are measured and analyzed for eleven kaolin clay slurries with solid concentrations ranging from 0.6% to 35% (w/w). A modified viscous drag coefficient that considers frequency, concentration, particle size, shape and orientation of spheroids, is developed and applied to estimate the viscous attenuation coefficients. With incorporation of particle size and shape distributions (PSSD), predictions agree quantitatively with observed attenuation coefficients. The effects of particle aspect ratio and orientation become more evident as particle concentrations and frequencies are increased. The UCPC model combined with the ultrasonic spectroscopy techniques can provide for theoretical and experimental frameworks in characterization of concentrated colloidal dispersions.
NASA Technical Reports Server (NTRS)
Atlas, David; Rosenfeld, Daniel; Wolff, David B.
1993-01-01
The probability matching method (PMM) is used as a basis for estimating attenuation in tropical rains near Darwin, Australia. PMM provides a climatological relationship between measured radar reflectivity and rain rate, which includes the effects of rain and cloud attenuation. When the radar sample is representative, PMM estimates the rainfall without bias. When the data are stratified for greater than average rates, the method no longer compensates for the higher attenuation and the radar rainfall estimates are biased low. The uncompensated attenuation is used to estimate the climatological attenuation coefficient. The two-way attenuation coefficient was found to be 0.0085 dB/km ( mm/h) exp -1.08 for the tropical rains and associated clouds in Darwin for the first two months of the year for horizontally polarized radiation at 5.63 GHz. This unusually large value is discussed. The risks of making real-time corrections for attenuation are also treated.
NASA Technical Reports Server (NTRS)
Roth, Don J.; Kiser, James D.; Swickard, Suzanne M.; Szatmary, Steven A.; Kerwin, David P.
1993-01-01
An ultrasonic scan procedure using the pulse-echo contact configuration was employed to obtain maps of pore fraction variations in sintered silicon nitride samples in terms of ultrasonic material properties. Ultrasonic velocity, attenuation coefficient, and reflection coefficient images were obtained simultaneously over a broad band of frequencies (e.g., 30 to 110 MHz) by using spectroscopic analysis. Liquid and membrane (dry) coupling techniques and longitudinal and shear-wave energies were used. The major results include the following: Ultrasonic velocity (longitudinal and shear wave) images revealed and correlated with the extent of average through-thickness pore fraction variations in the silicon nitride disks. Attenuation coefficient images revealed pore fraction nonuniformity due to the scattering that occurred at boundaries between regions of high and low pore fraction. Velocity and attenuation coefficient images were each nearly identical for machined and polished disks, making the method readily applicable to machined materials. Velocity images were similar for wet and membrane coupling. Maps of apparent Poisson's ratio constructed from longitudinal and shear-wave velocities quantified Poisson's ratio variations across a silicon nitride disk. Thermal wave images of a disk indicated transient thermal behavior variations that correlated with observed variations in pore fraction and velocity and attenuation coefficients.
Sensitivity study on durability variables of marine concrete structures
NASA Astrophysics Data System (ADS)
Zhou, Xin'gang; Li, Kefei
2013-06-01
In order to study the influence of parameters on durability of marine concrete structures, the parameter's sensitivity analysis was studied in this paper. With the Fick's 2nd law of diffusion and the deterministic sensitivity analysis method (DSA), the sensitivity factors of apparent surface chloride content, apparent chloride diffusion coefficient and its time dependent attenuation factor were analyzed. The results of the analysis show that the impact of design variables on concrete durability was different. The values of sensitivity factor of chloride diffusion coefficient and its time dependent attenuation factor were higher than others. Relative less error in chloride diffusion coefficient and its time dependent attenuation coefficient induces a bigger error in concrete durability design and life prediction. According to probability sensitivity analysis (PSA), the influence of mean value and variance of concrete durability design variables on the durability failure probability was studied. The results of the study provide quantitative measures of the importance of concrete durability design and life prediction variables. It was concluded that the chloride diffusion coefficient and its time dependent attenuation factor have more influence on the reliability of marine concrete structural durability. In durability design and life prediction of marine concrete structures, it was very important to reduce the measure and statistic error of durability design variables.
Acoustic characterization of Thiel liver for magnetic resonance-guided focused ultrasound treatment.
Karakitsios, Ioannis; Joy, Joyce; Mihcin, Senay; Melzer, Andreas
2017-04-01
The purpose of this work was to measure the essential acoustic parameters, i.e., acoustic impedance, reflection coefficient, attenuation coefficient, of Thiel embalmed human and animal liver. The Thiel embalmed tissue can be a promising, pre-clinical model to study liver treatment with Magnetic Resonance-guided Focused Ultrasound (MRgFUS). Using a single-element transducer and the contact pulse-echo method, the acoustic parameters, i.e., acoustic impedance, reflection coefficient and attenuation coefficient of Thiel embalmed human and animal liver were measured. The Thiel embalmed livers had higher impedance, similar reflection and lower attenuation compared to the fresh tissue. Embalming liver with Thiel fluid affects its acoustic properties. During MRgFUS sonication of a Thiel organ, more focused ultrasound (FUS) will be backscattered by the organ, and higher acoustic powers are required to reach coagulation levels (temperatures >56 °C).
NASA Astrophysics Data System (ADS)
De Pretto, Lucas Ramos; Yoshimura, Tania Mateus; Ribeiro, Martha Simões; Zanardi de Freitas, Anderson
2016-08-01
As diabetes causes millions of deaths worldwide every year, new methods for blood glucose monitoring are in demand. Noninvasive approaches may increase patient adherence to treatment while reducing costs, and optical coherence tomography (OCT) may be a feasible alternative to current invasive diagnostics. This study presents two methods for blood sugar monitoring with OCT in vitro. The first, based on spatial statistics, exploits changes in the light total attenuation coefficient caused by different concentrations of glucose in the sample using a 930-nm commercial OCT system. The second, based on temporal analysis, calculates differences in the decorrelation time of the speckle pattern in the OCT signal due to blood viscosity variations with the addition of glucose with data acquired by a custom built Swept Source 1325-nm OCT system. Samples consisted of heparinized mouse blood, phosphate buffer saline, and glucose. Additionally, further samples were prepared by diluting mouse blood with isotonic saline solution to verify the effect of higher multiple scattering components on the ability of the methods to differentiate glucose levels. Our results suggest a direct relationship between glucose concentration and both decorrelation rate and attenuation coefficient, with our systems being able to detect changes of 65 mg/dL in glucose concentration.
ERIC Educational Resources Information Center
Nicewander, W. Alan
2018-01-01
Spearman's correction for attenuation (measurement error) corrects a correlation coefficient for measurement errors in either-or-both of two variables, and follows from the assumptions of classical test theory. Spearman's equation removes all measurement error from a correlation coefficient which translates into "increasing the reliability of…
NASA Astrophysics Data System (ADS)
Wall, R. Andrew; Barton, Jennifer K.
2014-06-01
A side-viewing, 2.3-mm diameter oblique incidence reflectometry endoscope has been designed to obtain optical property measurements of turbid samples. Light from a single-mode fiber is relayed obliquely onto the tissue with a gradient index lens-based distal optics assembly and the resulting diffuse reflectance profile is imaged and collected with a 30,000 element, 0.72 mm clear aperture fiber bundle. Sampling the diffuse reflectance in two-dimensions allows for fitting of the reflected intensity profile to a well-known theoretical model, permitting the extraction of both absorption and reduced scattering coefficients of the tissue sample. Models and measurements of the endoscopic imaging system are presented in tissue phantoms and in vivo mouse colon, verifying the endoscope's capabilities to accurately measure effective attenuation coefficient and differentiate diseased from normal colon.
NASA Technical Reports Server (NTRS)
Kandula, Max
2012-01-01
The Sound attenuation and dispersion in saturated gas-vapor-droplet mixture in the presence of evaporation has been investigated theoretically. The theory is based on an extension of the work of Davidson to accommodate the effects of nonlinear particle relaxation processes of mass, momentum and energy transfer on sound attenuation and dispersion. The results indicate the existence of a spectral broadening effect in the attenuation coefficient (scaled with respect to the peak value) with a decrease in droplet mass concentration. It is further shown that for large values of the droplet concentration the scaled attenuation coefficient is characterized by a universal spectrum independent of droplet mass concentration.
NASA Astrophysics Data System (ADS)
Fuente, David; Lizama, Carlos; Urchueguía, Javier F.; Conejero, J. Alberto
2018-01-01
Light attenuation within suspensions of photosynthetic microorganisms has been widely described by the Lambert-Beer equation. However, at depths where most of the light has been absorbed by the cells, light decay deviates from the exponential behaviour and shows a lower attenuation than the corresponding from the purely exponential fall. This discrepancy can be modelled through the Mittag-Leffler function, extending Lambert-Beer law via a tuning parameter α that takes into account the attenuation process. In this work, we describe a fractional Lambert-Beer law to estimate light attenuation within cultures of model organism Synechocystis sp. PCC 6803. Indeed, we benchmark the measured light field inside cultures of two different Synechocystis strains, namely the wild-type and the antenna mutant strain called Olive at five different cell densities, with our in silico results. The Mittag-Leffler hyper-parameter α that best fits the data is 0.995, close to the exponential case. One of the most striking results to emerge from this work is that unlike prior literature on the subject, this one provides experimental evidence on the validity of fractional calculus for determining the light field. We show that by applying the fractional Lambert-Beer law for describing light attenuation, we are able to properly model light decay in photosynthetic microorganisms suspensions.
X-Ray Form Factor, Attenuation and Scattering Tables
National Institute of Standards and Technology Data Gateway
SRD 66 X-Ray Form Factor, Attenuation and Scattering Tables (Web, free access) This database collects tables and graphs of the form factors, the photoabsorption cross section, and the total attenuation coefficient for any element (Z <= 92).
Backscatter and attenuation properties of mammalian brain tissues
NASA Astrophysics Data System (ADS)
Wijekularatne, Pushpani Vihara
Traumatic Brain Injury (TBI) is a common category of brain injuries, which contributes to a substantial number of deaths and permanent disability all over the world. Ultrasound technology plays a major role in tissue characterization due to its low cost and portability that could be used to bridge a wide gap in the TBI diagnostic process. This research addresses the ultrasonic properties of mammalian brain tissues focusing on backscatter and attenuation. Orientation dependence and spatial averaging of data were analyzed using the same method resulting from insertion of tissue sample between a transducer and a reference reflector. Apparent backscatter transfer function (ABTF) at 1 to 10 MHz, attenuation coefficient and backscatter coefficient (BSC) at 1 to 5 MHz frequency ranges were measured on ovine brain tissue samples. The resulting ABTF was a monotonically decreasing function of frequency and the attenuation coefficient and BSC generally were increasing functions of frequency, results consistent with other soft tissues such as liver, blood and heart.
A Photometric Technique for Determining Fluid Concentration using Consumer-Grade Hardware
NASA Technical Reports Server (NTRS)
Leslie, F.; Ramachandran, N.
1999-01-01
In support of a separate study to produce an exponential concentration gradient in a magnetic fluid, a noninvasive technique for determining, species concentration from off-the-shelf hardware has been developed. The approach uses a backlighted fluid test cell photographed with a commercial digital camcorder. Because the light extinction coefficient is wavelength dependent, tests were conducted to determine the best filter color to use, although some guidance was also provided using an absorption spectrophotometer. With the appropriate filter in place, the provide attenuation of the light passing, through the test cell was captured by the camcorder. The digital image was analyzed for intensity using, software from Scion Image Corp. downloaded from the Internet. The analysis provides a two-dimensional array of concentration with an average error of 0.0095 ml/ml. This technique is superior to invasive techniques, which require extraction of a sample that disturbs the concentration distribution in the test cell. Refinements of this technique using a true monochromatic laser light Source are also discussed.
NASA Astrophysics Data System (ADS)
Tang, Junqi; Gao, Kunpeng; Ou, Quanhong; Fu, Xuewen; Man, Shi-Qing; Guo, Jie; Liu, Yingkai
2018-02-01
Gold nanoparticles (AuNPs) have been researched extensively, such as applied in various biosensors, biomedical imaging and diagnosis, catalysis and physico-chemical analysis. These applications usually required to know the nanoparticle size or concentration. Researchers have been studying a simply and quick way to estimate the concentration or size of nanoparticles from their optical spectra and SPR feature for several years. The extinction cross-sections and the molar attenuation coefficient were one of the key parameters. In this study, we calculated the extinction cross-sections and molar attenuation coefficient (decadic molar extinction coefficient) of small gold nanoparticles by dipole approximation method and modified Beer-Lambert law. The theoretical result showed that the surface plasmon resonance peak of small gold nanoparticles was blueshift with an increase size. Moreover, small AuNPs (sub-10 nm) were prepared by using of dextran or trisodium citrate as reducing agent and capping agent. The experimental synthesized AuNPs was also shows a blueshift as increasing particle size in a certain range. And the concentration of AuNPs was calculated based on the obtained molar attenuation coefficient. For small nanoparticles, the size of nanoparticles and surface plasmon resonance property was not showed a positive correlation compared to larger nanoparticles. These results suggested that SPR peak depended not only on the nanoparticle size and shape but also on the nanoparticles environment.
NASA Astrophysics Data System (ADS)
Mashin, N. I.; Chernyaeva, E. A.; Tumanova, A. N.; Gafarova, L. M.
2016-03-01
A new XRF procedure for the determination of the mass absorption coefficient in thin film Ti/V and V/Ti two-layer systems has been proposed. The procedure uses easy-to-make thin-film layers of sputtered titanium and vanadium on a polymer film substrate. Correction coefficients have been calculated that take into account attenuation of primary radiation of the X-ray tube, as well as attenuation of the spectral line of the bottom layer element in the top layer.
Poppenga, Sandra K.; Palaseanu-Lovejoy, Monica; Gesch, Dean B.; Danielson, Jeffrey J.; Tyler, Dean J.
2018-04-16
Satellite-derived near-shore bathymetry (SDB) is becoming an increasingly important method for assessing vulnerability to climate change and natural hazards in low-lying atolls of the northern tropical Pacific Ocean. Satellite imagery has become a cost-effective means for mapping near-shore bathymetry because ships cannot collect soundings safely while operating close to the shore. Also, green laser light detection and ranging (lidar) acquisitions are expensive in remote locations. Previous research has demonstrated that spectral band ratio-based techniques, commonly called the natural logarithm approach, may lead to more precise measurements and modeling of bathymetry because of the phenomenon that different substrates at the same depth have approximately equal ratio values. The goal of this research was to apply the band ratio technique to Landsat 8 at-sensor radiance imagery and WorldView-3 atmospherically corrected imagery in the coastal waters surrounding the Majuro Atoll, Republic of the Marshall Islands, to derive near-shore bathymetry that could be incorporated into a seamless topobathymetric digital elevation model of Majuro. Attenuation of light within the water column was characterized by measuring at-sensor radiance and reflectance at different depths and calculating an attenuation coefficient. Bathymetric lidar data, collected by the U.S. Naval Oceanographic Office in 2006, were used to calibrate the SDB results. The bathymetric lidar yielded a strong linear relation with water depths. The Landsat 8-derived SDB estimates derived from the blue/green band ratio exhibited a water attenuation extinction depth of 6 meters with a coefficient of determination R2=0.9324. Estimates derived from the coastal/red band ratio had an R2=0.9597. At the same extinction depth, SDB estimates derived from WorldView-3 imagery exhibited an R2=0.9574. Because highly dynamic coastal shorelines can be affected by erosion, wetland loss, hurricanes, sea-level rise, urban development, and population growth, consistent bathymetric data are needed to better understand sensitive coastal land/water interfaces in areas subject to coastal disasters.
NASA Astrophysics Data System (ADS)
Zhu, W.; Cheng, Z.; Lou, S.
2017-12-01
Despite of extensive efforts into characterization of the sources in severe haze pollution periods in the megacity of Shanghai, the study of aerosol composition, mass-size distribution and optical properties to PM1 in the pollution periods remain poorly understood. Here we conducted a 47days real-time measurement of submicron aerosol (PM1) composition and size distribution by a High-Resolution Time-of-Flight Aerosol Mass spectrometer (HR-TOF-AMS), particle light scattering by a Cavity Attenuated Phase Shift ALBedo monitor (CAPS-ALB) and Photoacoustic Extinctionmeter (PAX) in Shanghai, China, from November 28, 2016 to January 12, 2017. The average PM1 concentration was 85.9(±14.7) μg/m3 during the pollution period, which was nearly 4 times higher than that of clean period. Increased scattering coefficient during EP was associated with higher secondary inorganic aerosols and organics. We also observed organics mass size distribution for different pollution extents showing different distribution characteristics. There were no obvious differences for ammonium nitrate and ammonium sulfate among the pollution periods, which represented single peak distributions, and peaks ranged at 650-700nm and 700nm, respectively. A strong relationship can be expected between PM1 compounds mass concentration size distribution and scattering coefficient, suggesting that chemical composition, size distribution of the particles and their variations could also contribute to the extinction coefficients. Organics and secondary inorganic species to particle light scattering were quantified. The results showed that organics and ammonium nitrate were the largest contribution to scattering coefficients of PM1. The contribution of (NH4)2SO4 to the light scattering exceeded that of NH4NO3 during clean period due to the enhanced sulfate concentrations. Our results elucidate substantial changes of aerosol composition, formation mechanisms, size distribution and optical properties due to local emissions, region transports and meteorological changes in the pollution period.
The atmospheric transparency measured with a LIDAR system at the Telescope Array experiment
NASA Astrophysics Data System (ADS)
Tomida, Takayuki; Tsuyuguchi, Yusuke; Arai, Takahito; Benno, Takuya; Chikawa, Michiyuki; Doura, Koji; Fukushima, Masaki; Hiyama, Kazunori; Honda, Ken; Ikeda, Daisuke; Matthews, John N.; Nakamura, Toru; Oku, Daisuke; Sagawa, Hiroyuki; Tokuno, Hisao; Tameda, Yuichiro; Thomson, Gordon B.; Tsunesada, Yoshiki; Udo, Shigeharu; Ukai, Hisashi
2011-10-01
An atmospheric transparency was measured using a LIDAR with a pulsed UV laser (355 nm) at the observation site of Telescope Array in Utah, USA. The measurement at night for two years in 2007-2009 revealed that the extinction coefficient by aerosol at the ground level is 0.033-0.012+0.016km-1 and the vertical aerosol optical depth at 5 km above the ground is 0.035-0.013+0.019. A model of the altitudinal aerosol distribution was built based on these measurements for the analysis of atmospheric attenuation of the fluorescence light generated by ultra high energy cosmic rays.
Measurements of the hard-x-ray reflectivity of iridium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romaine, S.; Bruni, R.; Gorenstein, P.
2007-01-10
In connection with the design of a hard-x-ray telescope for the Constellation X-Ray Observatory we measured the reflectivity of an iridium-coated zerodur substrate as a function of angle at 55, 60, 70, and 80 keV at the National Synchrotron Light Source of Brookhaven National Laboratory. The optical constants were derived from the reflectivity data. The real component of the index of refraction is in excellent agreement with theoretical values at all four energies. However, the imaginary component, which is related to the mass attenuation coefficient, is 50% to 70% larger at 55, 60, and 70 keV than theoretical values.
Measurements of the hard-x-ray reflectivity of iridium.
Romaine, S; Bruni, R; Gorenstein, P; Zhong, Z
2007-01-10
In connection with the design of a hard-x-ray telescope for the Constellation X-Ray Observatory we measured the reflectivity of an iridium-coated zerodur substrate as a function of angle at 55, 60, 70, and 80 keV at the National Synchrotron Light Source of Brookhaven National Laboratory. The optical constants were derived from the reflectivity data. The real component of the index of refraction is in excellent agreement with theoretical values at all four energies. However, the imaginary component, which is related to the mass attenuation coefficient, is 50% to 70% larger at 55, 60, and 70 keV than theoretical values.
NASA Astrophysics Data System (ADS)
Catalán-Torrecilla, C.; Gil de Paz, A.; Castillo-Morales, A.; Iglesias-Páramo, J.; Sánchez, S. F.; Kennicutt, R. C.; Pérez-González, P. G.; Marino, R. A.; Walcher, C. J.; Husemann, B.; García-Benito, R.; Mast, D.; González Delgado, R. M.; Muñoz-Mateos, J. C.; Bland-Hawthorn, J.; Bomans, D. J.; Del Olmo, A.; Galbany, L.; Gomes, J. M.; Kehrig, C.; López-Sánchez, Á. R.; Mendoza, M. A.; Monreal-Ibero, A.; Pérez-Torres, M.; Sánchez-Blázquez, P.; Vilchez, J. M.; Califa Collaboration
2015-12-01
Context. The star formation rate (SFR) is one of the main parameters used to analyze the evolution of galaxies through time. The need for recovering the light reprocessed by dust commonly requires the use of low spatial resolution far-infrared data. Recombination line luminosities provide an alternative, although uncertain dust-extinction corrections based on narrowband imaging or long-slit spectroscopy have traditionally posed a limit to their applicability. Integral field spectroscopy (IFS) is clearly the way to overcome this kind of limitation. Aims: We obtain integrated Hα, ultraviolet (UV) and infrared (IR)-based SFR measurements for 272 galaxies from the CALIFA survey at 0.005
Comparison of x-ray cross sections for diagnostic and therapeutic medical physics.
Boone, J M; Chavez, A E
1996-12-01
The purpose of this technical report is to make available an up-to-date source of attenuation coefficient data to the medical physics community, and to compare these data with other more familiar sources. Data files from Lawrence Livermore National Laboratory (in Livermore, CA) were truncated to match the needs of the medical physics community, and an interpolation routine was written to calculate a continuous set of cross sections spanning energies from 1 keV to 50 MeV. Coefficient data are available for elements Z = 1 through Z = 100. Values for mass attenuation coefficients, mass-energy-transfer coefficients, and mass-energy absorption coefficients are produced by a single computer subroutine. In addition to total interaction cross sections, the cross sections for photoelectric, Rayleigh, Compton, pair, and some triplet interactions are also produced by this single program. The coefficients were compared to the 1970 data of Storm and Israel over the energy interval from 1 to 1000 keV; for elements 10, 20, 30, 40, 50, 60, 70, and 80, the average positive difference between the Storm and Israel coefficients and the coefficients reported here are 1.4%, 2.7%, and 2.6%, for the mass attenuation, mass energy-transfer, and mass-energy absorption coefficients, respectively. The 1969 data compilation of mass attenuation coefficients from McMaster et al. were also compared with the newer LLNL data. Over the energy region from 10 keV to 1000 keV, and from elements Z = 1 to Z = 82 (inclusive), the overall average difference was 1.53% (sigma = 0.85%). While the overall average difference was small, there was larger variation (> 5%) between cross sections for some elements. In addition to coefficient data, other useful data such as the density, atomic weight, K, L1, L2, L3, M, and N edges, and numerous characteristic emission energies are output by the program, depending on a single input variable. The computer source code, written in C, can be accessed and downloaded from the World Wide Web at: http:@www.aip.org/epaps/epaps.html [E-MPHSA-23-1977].
Photon interaction study of organic nonlinear optical materials in the energy range 122-1330 keV
NASA Astrophysics Data System (ADS)
Awasarmol, Vishal V.; Gaikwad, Dhammajyot K.; Raut, Siddheshwar D.; Pawar, Pravina P.
2017-01-01
In the present study, the mass attenuation coefficient (μm) of six organic nonlinear optical materials has been calculated in the energy range 122-1330 keV and compared with the obtained values from the WinXCOM program. It is found that there is a good agreement between theoretical and experimental values (<3%). The linear attenuation coefficients (μ) total atomic cross section (σt, a), and total electronic cross section (σt, el) have also been calculated from the obtained μm values and their variations with photon energy have been plotted. From the present work, it is observed that the variation of obtained values of μm, μ, σt, a, and σt, el strongly depends on the photon energy and decreases or increases due to chemical composition and density of the sample. All the samples have been studied extensively using transmission method with a view to utilize the material for radiation dosimetry. Investigated samples are good material for radiation dosimetry due their low effective atomic number. The mass attenuation coefficient (μm), linear attenuation coefficients (μ), total atomic cross section (σt, a), total electronic cross section (σt, el), effective atomic numbers (Zeff), molar extinction coefficient (ε), mass energy absorption coefficient (μen/ρ) and effective atomic energy absorption cross section (σa, en) of all sample materials have been carried out and transmission curves have been plotted. The transmission curve shows that the variation of all sample materials decreases with increasing photon energy.
Kisch-Wedel, H; Bernreuter, P; Kemming, G; Albert, M; Zwissler, B
2009-09-01
A new technique was validated in vivo in reflectance pulse oximetry for measuring low oxygen saturations. Two pairs of light emitter/detector diodes allow for estimation of light attenuation (LA) in tissue, which is assumed to be responsible for the inaccuracy of pulse oximetry at less than 70 % arterial oxygen saturation. For validation, 17 newborn piglets were desaturated stepwise from 21 % to 1.25 % inspiratory oxygen concentration during general anesthesia, and arterial oxygen saturation was measured with the reflectance pulse oximeter adjusted for LA in tissue, with a standard transmission pulse oximeter and a hemoximeter. LA in tissue could be quantified and was different between snout and foreleg (probability level (p) < 0.05). At arterial oxygen saturations above 70 %, the bias between the methods was at 0 %-1 % and the variability 4 %-5 %. From 2 % to 100 % arterial oxygen saturation, the reflectance pulse oximeter estimated oxyhemoglobin saturation more accurately than a conventional transmission pulse oximeter (p < 0.05). At low oxygen saturations below 70 %, the bias and variability of the reflectance pulse oximeter calibration were closer to the hemoximeter measurements than the transmission pulse oximeter (p < 0.05). The variability of the reflectance pulse oximeter was slightly lower than the traditional oximeter by taking into account the LA in tissue (9 % versus 11 % -15 %, ns), and thus, the quality of the individual calibration lines improved (correlation coefficient, p < 0.05).
Instrument for underwater high-angular resolution volume scattering function measurements
NASA Astrophysics Data System (ADS)
Dueweke, Paul W.; Bolstad, Jay; Leonard, Donald A.; Sweeney, Harold E.; Boyer, Philip A.; Winkler, Erik M.
1997-02-01
A prototype instrument for in situ measurements of the volume scattering function (VSF) and the beam attenuation of water has been built and tested in the EOO laboratory. The intended application of the instrument is the enhancement of Navy operational optical systems for finding and imaging underwater objects such as mines. A description of the apparatus that was built and preliminary laboratory data will be presented. The instrument measures the VSF, (beta) ((theta) ), near the optical axis in both the forward and back directions from approximately 0.2 degrees off axis to approximately 5 degrees in 0.1 degree steps and at side angles of 45 degrees, 90 degrees, and 135 degrees. A diode- pumped, frequency-doubled, Nd:YAG laser provides the 532 nm light. This is the most used wavelength for underwater optical systems. The forward and back scattered light is collected and focused to a plane where scattering angles in the water are mapped onto concentric rings. At this focal plane, a conical reflector compresses the annular optical data onto a line along the cone axis where it is read by a MOS linear image array providing over 500 separate angular measurements. The beam attenuation coefficient, c, is also measured by means of a unique dual path configuration.
Characterizing light attenuation within Northwest Florida ...
Water Quality (WQ) condition is based on ecosystem stressor indicators (e.g. water clarity) which are biogeochemically important and critical when considering the Deepwater Horizon oil spill restoration efforts under the 2012 RESTORE Act. Nearly all of the proposed RESTORE projects list restoring WC as a goal, but 90% neglect water clarity. Here, dynamics of optical constituents impacting clarity are presented from a 2009-2011 study within Pensacola, Choctawhatchee, St. Andrew and St. Joseph estuaries (targeted RESTORE sites) in Northwest Florida. Phytoplankton were the smallest contribution to total absorption (at-wPAR) at 412 nm (5-11%), whereas colored dissolved organic matter was the largest (61-79%). Estuarine at-wPAR was significantly related to light attenuation (KdPAR), where individual contributors to clarity and the influence of climatic events were discerned. Provided are conversion equations demonstrating interoperability of clarity indicators between traditional State-measured WQ measures (e.g. secchi disc), optical constituents, and even satellite remote sensing for obtaining baseline assessments. This paper arose from efforts under SSWR and SHC to utilize water quality data as baseline measures for RESTORE Act monitoring in Florida estuaries. This paper aims to (1) describe dynamics of optical constituents that impact water clarity in four NW Florida estuaries, and (2) make a case for the total absorption coefficient (at-wPAR) as a valuable
Bezrukov, Ilja; Schmidt, Holger; Gatidis, Sergios; Mantlik, Frédéric; Schäfer, Jürgen F; Schwenzer, Nina; Pichler, Bernd J
2015-07-01
Pediatric imaging is regarded as a key application for combined PET/MR imaging systems. Because existing MR-based attenuation-correction methods were not designed specifically for pediatric patients, we assessed the impact of 2 potentially influential factors: inter- and intrapatient variability of attenuation coefficients and anatomic variability. Furthermore, we evaluated the quantification accuracy of 3 methods for MR-based attenuation correction without (SEGbase) and with bone prediction using an adult and a pediatric atlas (SEGwBONEad and SEGwBONEpe, respectively) on PET data of pediatric patients. The variability of attenuation coefficients between and within pediatric (5-17 y, n = 17) and adult (27-66 y, n = 16) patient collectives was assessed on volumes of interest (VOIs) in CT datasets for different tissue types. Anatomic variability was assessed on SEGwBONEad/pe attenuation maps by computing mean differences to CT-based attenuation maps for regions of bone tissue, lungs, and soft tissue. PET quantification was evaluated on VOIs with physiologic uptake and on 80% isocontour VOIs with elevated uptake in the thorax and abdomen/pelvis. Inter- and intrapatient variability of the bias was assessed for each VOI group and method. Statistically significant differences in mean VOI Hounsfield unit values and linear attenuation coefficients between adult and pediatric collectives were found in the lungs and femur. The prediction of attenuation maps using the pediatric atlas showed a reduced error in bone tissue and better delineation of bone structure. Evaluation of PET quantification accuracy showed statistically significant mean errors in mean standardized uptake values of -14% ± 5% and -23% ± 6% in bone marrow and femur-adjacent VOIs with physiologic uptake for SEGbase, which could be reduced to 0% ± 4% and -1% ± 5% using SEGwBONEpe attenuation maps. Bias in soft-tissue VOIs was less than 5% for all methods. Lung VOIs showed high SDs in the range of 15% for all methods. For VOIs with elevated uptake, mean and SD were less than 5% except in the thorax. The use of a dedicated atlas for the pediatric patient collective resulted in improved attenuation map prediction in osseous regions and reduced interpatient bias variation in femur-adjacent VOIs. For the lungs, in which intrapatient variation was higher for the pediatric collective, a patient- or group-specific attenuation coefficient might improve attenuation map accuracy. Mean errors of -14% and -23% in bone marrow and femur-adjacent VOIs can affect PET quantification in these regions when bone tissue is ignored. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Anomalous optical behavior of biological media: modifying the optical window of myocardial tissues
NASA Astrophysics Data System (ADS)
Splinter, Robert; Raja, M. Yasin A.; Svenson, Robert H.
1996-05-01
In medical experimental and clinical treatment modalities of light, laser photocoagulation of ventricular tachycardia amongst others, the success of the application relies on whether or not the procedure operates in the optical window of the light-tissue interaction. The optical window of biological tissues can be determined by spectral scans of the optical properties. Optical anomalies may result from the irradiance, the wavelength, or from the tissue composition itself. The transmission of cw Nd:YAG laser light on myocardial tissue showed a nonlinearity in the transmission curve at approximately 3 kW/mm2 irradiance. The total attenuation coefficient dropped sharp from 1.03 plus or minus 0.04 mm-1 to 0.73 plus or minus 0.05 mm-1 at this point in the curve. On the other hand, aneurysm tissue has a highly organized fiber structure, which serves as light-guides, since the transmission of light along the length of the collagen fibers is approximately 50% higher than the transmission perpendicular to the fiber orientation. In addition, changes in optical properties due to tissue phase changes also influence the penetration depth. These phenomena can be utilized to manipulate the optical penetration to an advantage.
Jaud, Thomas; Dragon, Anne-Cécile; Garcia, Jade Vacquie; Guinet, Christophe
2012-01-01
Recently, a number of Antarctic marine environmental studies have used oceanographic parameters collected from instrumented top predators for ecological and physical information. Phytoplankton concentration is generally quantified through active measurement of chlorophyll fluorescence. In this study, light absorption coefficient (K0.75) was used as an indicator of phytoplankton concentration. This measurement, easy to obtain and requiring low electric power, allows for assessing of the fine scale horizontal structuring of phytoplankton. As part of this study, Southern elephant seals (SES) were simultaneously equipped with a fluorometer and a light logger. Along the SES tracks, variations in K0.75 were strongly correlated with chlorophyll, a concentration measured by the fluorometer within the euphotic layer. With regards to SES foraging behaviour, bottom depth of the seal’s dive was highly dependent on light intensity at 150 m, indicating that the vertical distribution of SES’s prey such as myctophids is tightly related to light level. Therefore, change in phytoplankton concentration may not only have a direct effect on SES’s prey abundance but may also determine their vertical accessibility with likely consequences on SES foraging efficiency. PMID:23082166
NASA Astrophysics Data System (ADS)
Mohd Yusof, Mohd Fahmi; Hamid, Puteri Nor Khatijah Abdul; Bauk, Sabar; Hashim, Rokiah; Tajuddin, Abdul Aziz
2015-04-01
The Rhizophora spp. particleboards were fabricated using ≤ 104 µm particle size at three different fabrication methods; binderless, steam pre-treated and tannin-added. The mass attenuation coefficient of Rhizophora spp. particleboards were measured using x-ray fluorescent (XRF) photon from niobium, molybdenum, palladium, silver and tin metal plates that provided photon energy between 16.59 to 25.26 keV. The results were compared to theoretical values for water calculated using photon cross-section database (XCOM).The results showed that all Rhizophora spp. particleboards having mass attenuation coefficient close to calculated XCOM for water. Tannin-added Rizophora spp. particleboard was nearest to calculated XCOM for water with χ2 value of 13.008 followed by binderless Rizophora spp. (25.859) and pre-treated Rizophora spp. (91.941).
Legleiter, Carl J.; Kinzel, Paul J.; Overstreet, Brandon T.
2011-01-01
Remote sensing offers an efficient means of mapping bathymetry in river systems, but this approach has been applied primarily to clear-flowing, gravel bed streams. This study used field spectroscopy and radiative transfer modeling to assess the feasibility of spectrally based depth retrieval in a sand-bed river with a higher suspended sediment concentration (SSC) and greater water turbidity. Attenuation of light within the water column was characterized by measuring the amount of downwelling radiant energy at different depths and calculating a diffuse attenuation coefficient, Kd. Attenuation was strongest in blue and near-infrared bands due to scattering by suspended sediment and absorption by water, respectively. Even for red wavelengths with the lowest values of Kd, only a small fraction of the incident light propagated to the bed, restricting the range of depths amenable to remote sensing. Spectra recorded above the water surface were used to establish a strong, linear relationship (R2 = 0.949) between flow depth and a simple band ratio; even under moderately turbid conditions, depth remained the primary control on reflectance. Constraints on depth retrieval were examined via numerical modeling of radiative transfer within the atmosphere and water column. SSC and sensor radiometric resolution limited both the maximum detectable depth and the precision of image-derived depth estimates. Thus, although field spectra indicated that the bathymetry of turbid channels could be remotely mapped, model results implied that depth retrieval in sediment-laden rivers would be limited to shallow depths (on the order of 0.5 m) and subject to a significant degree of uncertainty.
Accuracy of CT-based attenuation correction in PET/CT bone imaging
NASA Astrophysics Data System (ADS)
Abella, Monica; Alessio, Adam M.; Mankoff, David A.; MacDonald, Lawrence R.; Vaquero, Juan Jose; Desco, Manuel; Kinahan, Paul E.
2012-05-01
We evaluate the accuracy of scaling CT images for attenuation correction of PET data measured for bone. While the standard tri-linear approach has been well tested for soft tissues, the impact of CT-based attenuation correction on the accuracy of tracer uptake in bone has not been reported in detail. We measured the accuracy of attenuation coefficients of bovine femur segments and patient data using a tri-linear method applied to CT images obtained at different kVp settings. Attenuation values at 511 keV obtained with a 68Ga/68Ge transmission scan were used as a reference standard. The impact of inaccurate attenuation images on PET standardized uptake values (SUVs) was then evaluated using simulated emission images and emission images from five patients with elevated levels of FDG uptake in bone at disease sites. The CT-based linear attenuation images of the bovine femur segments underestimated the true values by 2.9 ± 0.3% for cancellous bone regardless of kVp. For compact bone the underestimation ranged from 1.3% at 140 kVp to 14.1% at 80 kVp. In the patient scans at 140 kVp the underestimation was approximately 2% averaged over all bony regions. The sensitivity analysis indicated that errors in PET SUVs in bone are approximately proportional to errors in the estimated attenuation coefficients for the same regions. The variability in SUV bias also increased approximately linearly with the error in linear attenuation coefficients. These results suggest that bias in bone uptake SUVs of PET tracers ranges from 2.4% to 5.9% when using CT scans at 140 and 120 kVp for attenuation correction. Lower kVp scans have the potential for considerably more error in dense bone. This bias is present in any PET tracer with bone uptake but may be clinically insignificant for many imaging tasks. However, errors from CT-based attenuation correction methods should be carefully evaluated if quantitation of tracer uptake in bone is important.
NASA Technical Reports Server (NTRS)
Giulianelli, J.
1984-01-01
In order to predict the thermal efficiency of a solar pond it is necessary to know total average solar energy reaching the storage layer. One method for determining this energy for water containing dissolved colored species is based upon spectral transmission measurements using a laboratory spectrophotometer. This method is examined and some of the theoretical ground work needed to discuss the measurement of transmission of light water. Results of in situ irradiance measurements from oceanography research are presented and the difficulties inherent in extrapolating laboratory data obtained with ten centimeter cells to real three dimensional pond situations is discussed. Particular emphasis is put on the need to account for molecular and particulate scattering in measurements done on low absorbing solutions. Despite these considerations it is expected that attenuation calculations based upon careful measurements using a dual beam spectrophotometer technique combined with known attenuation coefficients will be useful in solar pond modeling and monitoring for color buildup. Preliminary results using the CSM method are presented.
NASA Astrophysics Data System (ADS)
Gowda, Shivalinge; Krishnaveni, S.; Yashoda, T.; Umesh, T. K.; Gowda, Ramakrishna
2004-09-01
Photon mass attenuation coefficients of some thermoluminescent dosimetric (TLD) compounds, such as LiF, CaCO_3, CaSO_4, CaSO_4\\cdot2H_2O, SrSO_4, CdSO_4, BaSO_4, C_4H_6BaO_4 and 3CdSO_4\\cdot8H_2O were determined at 279.2, 320.07, 514.0, 661.6, 1115.5, 1173.2 and 1332.5 keV in a well-collimated narrow beam good geometry set-up using a high resolution, hyper pure germanium detector. The attenuation coefficient data were then used to compute the effective atomic number and the electron density of TLD compounds. The interpolation of total attenuation cross-sections of photons of energy E in elements of atomic number Z was performed using the logarithmic regression analysis of the data measured by the authors and reported earlier. The best-fit coefficients so obtained in the photon energy range of 279.2 to 320.07 keV, 514.0 to 661.6 keV and 1115.5 to 1332.5 keV by a piece-wise interpolation method were then used to find the effective atomic number and electron density of the compounds. These values are found to be in agreement with other available published values.
Okunade, Akintunde A
2007-07-01
The mass attenuation and energy-absorption coefficients (radiation interaction data), which are widely used in the shielding and dosimetry of X-rays used for medical diagnostic and orthovoltage therapeutic procedures, are strongly dependent on the energy of photons, elements and percentage by weight of elements in body tissues and substitutes. Significant disparities exist in the values of percentage by weight of elements reported in literature for body tissues and substitutes for individuals of different ages, genders and states of health. Often, interested parties are in need of these radiation interaction data for body tissues or substitutes with percentage by weight of elements and intermediate energies that are not tabulated in literature. To provide for the use of more precise values of these radiation interaction data, parameters and computer programs, MUA_T and MUEN_T are presented for the computation of mass attenuation and energy-absorption coefficients for body tissues and substitutes of arbitrary percentage-by-weight elemental composition and photon energy ranging between 1 keV (or k-edge) and 400 keV. Results are presented, which show that the values of mass attenuation and energy-absorption coefficients obtained from computer programs are in good agreement with those reported in literature.
Fluorescence molecular imaging based on the adjoint radiative transport equation
NASA Astrophysics Data System (ADS)
Asllanaj, Fatmir; Addoum, Ahmad; Rodolphe Roche, Jean
2018-07-01
A new reconstruction algorithm for fluorescence diffuse optical tomography of biological tissues is proposed. The radiative transport equation in the frequency domain is used to model light propagation. The adjoint method studied in this work provides an efficient way for solving the inverse problem. The methodology is applied to a 2D tissue-like phantom subjected to a collimated laser beam. Indocyanine Green is used as fluorophore. Reconstructed images of the spatial fluorophore absorption distribution is assessed taking into account the residual fluorescence in the medium. We show that illuminating the tissue surface from a collimated centered direction near the inclusion gaves a better reconstruction quality. Two closely positioned inclusions can be accurately localized. Additionally, their fluorophore absorption coefficients can be quantified. However, the algorithm failes to reconstruct smaller or deeper inclusions. This is due to light attenuation in the medium. Reconstructions with noisy data are also achieved with a reasonable accuracy.
SeaWiFS Technical Report Series. Volume 41; Case Studies for SeaWiFS Calibration and Validation
NASA Technical Reports Server (NTRS)
Yeh, Eueng-nan; Barnes, Robert A.; Darzi, Michael; Kumar, Lakshmi; Early, Edward A.; Johnson, B. Carol; Mueller, James L.; Trees, Charles C.
1997-01-01
This document provides brief reports, or case studies, on a number of investigations sponsored by the Calibration and Validation Team (CVT) within the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Project. Chapter I describes the calibration and characterization of the GSFC sphere, which was used in the recent recalibration of the SeaWiFS instrument. Chapter 2 presents a revision of the diffuse attenuation coefficient, K(490), algorithm based on the SeaWiFS wavelengths. Chapter 3 provides an implementation scheme for an algorithm to remove out-of-band radiance when using a sensor calibration based on a finite width (truncated) spectral response function, e.g., between the 1% transmission points. Chapter 4 describes the implementation schemes for the stray light quality flag (local area coverage [LAC] and global area coverage [GAC]) and the LAC stray light correction.
Acoustic dynamics of supercooled indomethacin probed by Brillouin light scattering.
De Panfilis, S; Pogna, E A A; Virga, A; Scopigno, T
2014-07-21
Acoustics dynamics of the molecular glass-former indomethacin (IMC) have been investigated by Brillouin light scattering (BLS) at GHz frequencies. Elastic response of the system has been tracked from the melting temperature down to the glass transition through the supercooled liquid. Both the structural arrest and the vibrational dynamics are described by modeling the experimentally determined dynamic structure factor within the framework of the Langevin equation, through a simplified choice of memory function which allows one to determine sound velocity and the acoustic attenuation coefficient as a function of temperature. The density fluctuation spectra in the glassy phase, as probed by BLS, are compared with time-domain results from photoacoustics experiments. The arising scenario is discussed in the context of current literature reporting inelastic X-ray scattering and BLS in platelet geometry. The link between the probed elastic properties and the non-ergodicity factor of the glass phase is finally scrutinized.
Azeez, Ali Basheer; Mohammed, Kahtan S; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Sandu, Andrei Victor; Razak, Rafiza Abdul
2013-10-23
Samples of concrete contain various waste materials, such as iron particulates, steel balls of used ball bearings and slags from steel industry were assessed for their anti-radiation attenuation coefficient properties. The attenuation measurements were performed using gamma spectrometer of NaI (Tl) detector. The utilized radiation sources comprised 137 Cs and ⁶⁰Co radioactive elements with photon energies of 0.662 MeV for 137 Cs and two energy levels of 1.17 and 1.33 MeV for the ⁶⁰Co. Likewise the mean free paths for the tested samples were obtained. The aim of this work is to investigate the effect of the waste loading rates and the particulate dispersive manner within the concrete matrix on the attenuation coefficients. The maximum linear attenuation coefficient (μ) was attained for concrete incorporates iron filling wastes of 30 wt %. They were of 1.12 ± 1.31×10 -3 for 137 Cs and 0.92 ± 1.57 × 10 -3 for ⁶⁰Co. Substantial improvement in attenuation performance by 20%-25% was achieved for concrete samples incorporate iron fillings as opposed to that of steel ball samples at different (5%-30%) loading rates. The steel balls and the steel slags gave much inferior values. The microstructure, concrete-metal composite density, the homogeneity and particulate dispersion were examined and evaluated using different metallographic, microscopic and measurement facilities.
Tang, Junqi; Gao, Kunpeng; Ou, Quanhong; Fu, Xuewen; Man, Shi-Qing; Guo, Jie; Liu, Yingkai
2018-02-15
Gold nanoparticles (AuNPs) have been researched extensively, such as applied in various biosensors, biomedical imaging and diagnosis, catalysis and physico-chemical analysis. These applications usually required to know the nanoparticle size or concentration. Researchers have been studying a simply and quick way to estimate the concentration or size of nanoparticles from their optical spectra and SPR feature for several years. The extinction cross-sections and the molar attenuation coefficient were one of the key parameters. In this study, we calculated the extinction cross-sections and molar attenuation coefficient (decadic molar extinction coefficient) of small gold nanoparticles by dipole approximation method and modified Beer-Lambert law. The theoretical result showed that the surface plasmon resonance peak of small gold nanoparticles was blueshift with an increase size. Moreover, small AuNPs (sub-10nm) were prepared by using of dextran or trisodium citrate as reducing agent and capping agent. The experimental synthesized AuNPs was also shows a blueshift as increasing particle size in a certain range. And the concentration of AuNPs was calculated based on the obtained molar attenuation coefficient. For small nanoparticles, the size of nanoparticles and surface plasmon resonance property was not showed a positive correlation compared to larger nanoparticles. These results suggested that SPR peak depended not only on the nanoparticle size and shape but also on the nanoparticles environment. Copyright © 2017 Elsevier B.V. All rights reserved.
Midgley, S M
2004-01-21
A novel parameterization of x-ray interaction cross-sections is developed, and employed to describe the x-ray linear attenuation coefficient and mass energy absorption coefficient for both elements and mixtures. The new parameterization scheme addresses the Z-dependence of elemental cross-sections (per electron) using a simple function of atomic number, Z. This obviates the need for a complicated mathematical formalism. Energy dependent coefficients describe the Z-direction curvature of the cross-sections. The composition dependent quantities are the electron density and statistical moments describing the elemental distribution. We show that it is possible to describe elemental cross-sections for the entire periodic table and at energies above the K-edge (from 6 keV to 125 MeV), with an accuracy of better than 2% using a parameterization containing not more than five coefficients. For the biologically important elements 1 < or = Z < or = 20, and the energy range 30-150 keV, the parameterization utilizes four coefficients. At higher energies, the parameterization uses fewer coefficients with only two coefficients needed at megavoltage energies.
NASA Astrophysics Data System (ADS)
Schramm, G.; Maus, J.; Hofheinz, F.; Petr, J.; Lougovski, A.; Beuthien-Baumann, B.; Platzek, I.; van den Hoff, J.
2014-06-01
The aim of this paper is to describe a new automatic method for compensation of metal-implant-induced segmentation errors in MR-based attenuation maps (MRMaps) and to evaluate the quantitative influence of those artifacts on the reconstructed PET activity concentration. The developed method uses a PET-based delineation of the patient contour to compensate metal-implant-caused signal voids in the MR scan that is segmented for PET attenuation correction. PET emission data of 13 patients with metal implants examined in a Philips Ingenuity PET/MR were reconstructed with the vendor-provided method for attenuation correction (MRMaporig, PETorig) and additionally with a method for attenuation correction (MRMapcor, PETcor) developed by our group. MRMaps produced by both methods were visually inspected for segmentation errors. The segmentation errors in MRMaporig were classified into four classes (L1 and L2 artifacts inside the lung and B1 and B2 artifacts inside the remaining body depending on the assigned attenuation coefficients). The average relative SUV differences (\\varepsilon _{rel}^{av}) between PETorig and PETcor of all regions showing wrong attenuation coefficients in MRMaporig were calculated. Additionally, relative SUVmean differences (ɛrel) of tracer accumulations in hot focal structures inside or in the vicinity of these regions were evaluated. MRMaporig showed erroneous attenuation coefficients inside the regions affected by metal artifacts and inside the patients' lung in all 13 cases. In MRMapcor, all regions with metal artifacts, except for the sternum, were filled with the soft-tissue attenuation coefficient and the lung was correctly segmented in all patients. MRMapcor only showed small residual segmentation errors in eight patients. \\varepsilon _{rel}^{av} (mean ± standard deviation) were: ( - 56 ± 3)% for B1, ( - 43 ± 4)% for B2, (21 ± 18)% for L1, (120 ± 47)% for L2 regions. ɛrel (mean ± standard deviation) of hot focal structures were: ( - 52 ± 12)% in B1, ( - 45 ± 13)% in B2, (19 ± 19)% in L1, (51 ± 31)% in L2 regions. Consequently, metal-implant-induced artifacts severely disturb MR-based attenuation correction and SUV quantification in PET/MR. The developed algorithm is able to compensate for these artifacts and improves SUV quantification accuracy distinctly.
PET/MRI in the Presence of Metal Implants: Completion of the Attenuation Map from PET Emission Data.
Fuin, Niccolo; Pedemonte, Stefano; Catalano, Onofrio A; Izquierdo-Garcia, David; Soricelli, Andrea; Salvatore, Marco; Heberlein, Keith; Hooker, Jacob M; Van Leemput, Koen; Catana, Ciprian
2017-05-01
We present a novel technique for accurate whole-body attenuation correction in the presence of metallic endoprosthesis, on integrated non-time-of-flight (non-TOF) PET/MRI scanners. The proposed implant PET-based attenuation map completion (IPAC) method performs a joint reconstruction of radioactivity and attenuation from the emission data to determine the position, shape, and linear attenuation coefficient (LAC) of metallic implants. Methods: The initial estimate of the attenuation map was obtained using the MR Dixon method currently available on the Siemens Biograph mMR scanner. The attenuation coefficients in the area of the MR image subjected to metal susceptibility artifacts are then reconstructed from the PET emission data using the IPAC algorithm. The method was tested on 11 subjects presenting 13 different metallic implants, who underwent CT and PET/MR scans. Relative mean LACs and Dice similarity coefficients were calculated to determine the accuracy of the reconstructed attenuation values and the shape of the metal implant, respectively. The reconstructed PET images were compared with those obtained using the reference CT-based approach and the Dixon-based method. Absolute relative change (aRC) images were generated in each case, and voxel-based analyses were performed. Results: The error in implant LAC estimation, using the proposed IPAC algorithm, was 15.7% ± 7.8%, which was significantly smaller than the Dixon- (100%) and CT- (39%) derived values. A mean Dice similarity coefficient of 73% ± 9% was obtained when comparing the IPAC- with the CT-derived implant shape. The voxel-based analysis of the reconstructed PET images revealed quantification errors (aRC) of 13.2% ± 22.1% for the IPAC- with respect to CT-corrected images. The Dixon-based method performed substantially worse, with a mean aRC of 23.1% ± 38.4%. Conclusion: We have presented a non-TOF emission-based approach for estimating the attenuation map in the presence of metallic implants, to be used for whole-body attenuation correction in integrated PET/MR scanners. The Graphics Processing Unit implementation of the algorithm will be included in the open-source reconstruction toolbox Occiput.io. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
The Attenuation of Correlation Coefficients: A Statistical Literacy Issue
ERIC Educational Resources Information Center
Trafimow, David
2016-01-01
Much of the science reported in the media depends on correlation coefficients. But the size of correlation coefficients depends, in part, on the reliability with which the correlated variables are measured. Understanding this is a statistical literacy issue.
NASA Astrophysics Data System (ADS)
Limkitjaroenporn, P.; Kaewkhao, J.
2014-10-01
In this work, the gamma-rays interaction properties of zircons from Cambodia and South Africa have been studied. The densities of Cambodian and South African's zircons are 4.6716±0.0040 g/cm3 and 4.5505±0.0018 g/cm3, respectively. The mass attenuation coefficient and the effective atomic number of gemstones were measured with the gamma-ray in energies range 223-662 keV using the Compton scattering technique. The mass attenuation coefficients of both zircons decreased with the increasing of gamma-rays energies. The different mass attenuation coefficients between the two zircons observed at gamma-ray energies below 400 keV are attributed to the differences in the photoelectric interaction. The effective atomic number of zircons was decreased with the increasing of gamma-ray energies and showed totally different values between the Cambodia and South Africa sources. The origins of the two zircons could be successfully identified by the method based on gamma-rays interaction with matter with advantage of being a non-destructive testing.
FEASIBILITY STUDY AND DESIGN OF A SELF-ATTENUATING LIGHT VALVE
The use of phototropic materials as self-attenuating light valves has been re-evaluated in the light of additional information. Sunglass...application still appears to be feasible. As eye-protective devices to prevent flashblindness and retinal burns from nuclear detonations, phototropic
DOE Office of Scientific and Technical Information (OSTI.GOV)
More, Chaitali V., E-mail: chaitalimore89@gmail.com; Lokhande, Rajkumar M.; Pawar, Pravina P., E-mail: pravinapawar4@gmail.com
Mass attenuation coefficients of amino acids such as n-acetyl-l-tryptophan, n-acetyl-l-tyrosine and d-tryptophan were measured in the energy range 0.122-1.330 MeV. NaI (Tl) scintillation detection system was used to detect gamma rays with a resolution of 8.2% at 0.662 MeV. The measured attenuation coefficient values were then used to determine the mass energy-absorption coefficients (σ{sub a,en}) and average atomic energy-absorption cross sections (μ{sub en}/ρ) of the amino acids. Theoretical values were calculated based on XCOM data. Theoretical and experimental values are found to be in good agreement.
NASA Astrophysics Data System (ADS)
Antoine, D.; Hooker, S. B.; Bélanger, S.; Matsuoka, A.; Babin, M.
2013-07-01
A data set of radiometric measurements collected in the Beaufort Sea (Canadian Arctic) in August 2009 (Malina project) is analyzed in order to describe apparent optical properties (AOPs) in this sea, which has been subject to dramatic environmental changes for several decades. The two properties derived from the measurements are the spectral diffuse attenuation coefficient for downward irradiance, Kd, and the spectral remote sensing reflectance, Rrs. The former controls light propagation in the upper water column. The latter determines how light is backscattered out of the water and becomes eventually observable from a satellite ocean color sensor. The data set includes offshore clear waters of the Beaufort Basin as well as highly turbid waters of the Mackenzie River plumes. In the clear waters, we show Kd values that are much larger in the ultraviolet and blue parts of the spectrum than what could be anticipated considering the chlorophyll concentration. A larger contribution of absorption by colored dissolved organic matter (CDOM) is responsible for these high Kd values, as compared to other oligotrophic areas. In turbid waters, attenuation reaches extremely high values, driven by high loads of particulate materials and also by a large CDOM content. In these two extreme types of waters, current satellite chlorophyll algorithms fail. This questions the role of ocean color remote sensing in the Arctic when Rrs from only the blue and green bands are used. Therefore, other parts of the spectrum (e.g., the red) should be explored if one aims at quantifying interannual changes in chlorophyll in the Arctic from space. The very peculiar AOPs in the Beaufort Sea also advocate for developing specific light propagation models when attempting to predict light availability for photosynthesis at depth.
NASA Astrophysics Data System (ADS)
Antoine, D.; Hooker, S. B.; Belanger, S.; Matsuoka, A.; Babin, M.
2013-03-01
A data set of radiometric measurements collected in the Beaufort Sea (Canadian Arctic) in August 2009 (MALINA project) is analysed in order to describe apparent optical properties (AOPs) in this sea, which is subject to dramatic environmental changes for several decades. The two properties derived from the measurements are the spectral diffuse attenuation coefficient for downward irradiance, Kd, and the spectral remote sensing reflectance, Rrs. The former controls light propagation in the upper water column. The latter determines how light is backscattered out of the water and becomes eventually observable from a satellite ocean colour sensor. The data set includes offshore clear waters of the Beaufort basin as well as highly turbid waters of the Mackenzie River plumes. In the clear waters, we show Kd values that are much larger in the ultraviolet and blue parts of the spectrum than what could be anticipated considering the chlorophyll concentration. A larger contribution of absorption by coloured dissolved organic matter (CDOM) is responsible for this high Kd values, as compared to other oligotrophic areas. In turbid waters, attenuation reaches extremely high values, driven by high loads of particulate materials and also by a large CDOM content. In these two extreme types of waters, current satellite chlorophyll algorithms fail. This is questioning the role of ocean colour remote sensing in the Arctic when Rrs from only the blue and green bands are used. Therefore, other parts of the spectrum (e.g. the red) should be explored if one aims at quantifying interannual changes in chlorophyll in the Arctic from space. The very peculiar AOPs in the Beaufort Sea also advocate for developing specific light propagation models when attempting to predict light availability for photosynthesis at depth.
NASA Astrophysics Data System (ADS)
Kvale, Karin F.; Meissner, Katrin J.
2017-10-01
Treatment of the underwater light field in ocean biogeochemical models has been attracting increasing interest, with some models moving towards more complex parameterisations. We conduct a simple sensitivity study of a typical, highly simplified parameterisation. In our study, we vary the phytoplankton light attenuation parameter over a range constrained by data during both pre-industrial equilibrated and future climate scenario RCP8.5. In equilibrium, lower light attenuation parameters (weaker self-shading) shift net primary production (NPP) towards the high latitudes, while higher values of light attenuation (stronger shelf-shading) shift NPP towards the low latitudes. Climate forcing magnifies this relationship through changes in the distribution of nutrients both within and between ocean regions. Where and how NPP responds to climate forcing can determine the magnitude and sign of global NPP trends in this high CO2 future scenario. Ocean oxygen is particularly sensitive to parameter choice. Under higher CO2 concentrations, two simulations establish a strong biogeochemical feedback between the Southern Ocean and low-latitude Pacific that highlights the potential for regional teleconnection. Our simulations serve as a reminder that shifts in fundamental properties (e.g. light attenuation by phytoplankton) over deep time have the potential to alter global biogeochemistry.
A Summary of Selected Data: DSDP Legs 1-19,
1980-09-01
100 minerals may be applied in the future (densi ty water when the mineralogy and attenuation wt. water + wt. dry sed. + salt coefficients become...may be applied in the future when densities of some common minerals are the exact quantitative mineralogy and listed in Harms and Choquette (1965...calculation. These measurements different attenuation coefficient than were used to get a " ball park" answer that of calcite. for a particular sediment type
Water column attenuation coefficient estimations in Alqueva reservoir
NASA Astrophysics Data System (ADS)
Potes, Miguel; João Costa, Maria; Salgado, Rui; Rodrigues, Gonçalo; Bortoli, Daniele
2017-04-01
The vertical structure of the underwater radiative absorption plays an important role in the thermal dynamics of the water surface layer and consequently on the energy budget at the water-lake interface. Thus, a better estimation of the irradiance at different levels is relevant to understand the lake-air interactions. The main purpose of this dataset of measurements is to estimate the spectral attenuation coefficient of the water column. The apparatus exploited in this work are composed of an optical cable linked to a portable FieldSpec UV/VNIR (ASD). This version has hemispherical field-of-view (FOV) of 180° allowing for measurements under all range of solar zenith. In situ water spectral reflectances were also obtained to help in the validation of satellite water leaving reflectances obtained from satellite spectroradiometers. It is intention of the team to develop an algorithm to derive the attenuation coefficient from satellite data in this reservoir.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohd Yusof, Mohd Fahmi, E-mail: mfahmi@usm.my; Hamid, Puteri Nor Khatijah Abdul; Tajuddin, Abdul Aziz
2015-04-29
The Rhizophora spp. particleboards were fabricated using ≤ 104 µm particle size at three different fabrication methods; binderless, steam pre-treated and tannin-added. The mass attenuation coefficient of Rhizophora spp. particleboards were measured using x-ray fluorescent (XRF) photon from niobium, molybdenum, palladium, silver and tin metal plates that provided photon energy between 16.59 to 25.26 keV. The results were compared to theoretical values for water calculated using photon cross-section database (XCOM).The results showed that all Rhizophora spp. particleboards having mass attenuation coefficient close to calculated XCOM for water. Tannin-added Rizophora spp. particleboard was nearest to calculated XCOM for water with χ2 valuemore » of 13.008 followed by binderless Rizophora spp. (25.859) and pre-treated Rizophora spp. (91.941)« less
Comparison of W-VC-C composites against Co-60, Se-75 and Sb-125 for gamma radioisotope sources
NASA Astrophysics Data System (ADS)
Demir, Ertugrul; Tugrul, A. Beril; Buyuk, Bulent; Yilmaz, Ozan; Ovecoglu, Lutfi
2018-02-01
Tungsten based materials are considered to be the promising materials for nuclear applications due to the good properties. The tungsten composite materials have so many advantages in nuclear technological applications especially fusion reactor systems. In this paper, Tungsten-Vanadium carbide-Graphite (W-VC-C) which include 93% tungsten (W), 6% vanadium carbide (VC) and 1% graphite (C) also which has three different alloying time (6-12-24 hours) were produced by mechanical alloying method. Co-60, Se-75 and Sb-125 gamma radioisotopeswere used as a gamma sources in order to determine behavior of gamma attenuation properties of the composite materials. The experimental results were compared with each other to clarify effects of varying gamma energies on the tungsten based composite materials. The mass attenuation coefficients of the samples were obtained by using XCOM computer code and compared with experimental data. The gamma linear attenuation, the mass attenuation coefficients and half value thickness (HVL) of the samples were evaluated and compared with Co-60, Se-75 and Sb-125 for gamma radioisotopes. Results showed that gamma attenuation coefficients of the samples depend on gamma energies and mechanical alloying time has negatively effect on the gamma shielding properties for the all studied W-VC-C.
Lichtenberg, Mads; Kühl, Michael
2015-08-01
Macroalgae live in an ever-changing light environment affected by wave motion, self-shading and light-scattering effects, and on the thallus scale, gradients of light and chemical parameters influence algal photosynthesis. However, the thallus microenvironment and internal gradients remain underexplored. In this study, microsensors were used to quantify gradients of light, O2 concentration, variable chlorophyll fluorescence, photosynthesis and O2 consumption as a function of irradiance in the cortex and medulla layers of Fucus serratus. The two cortex layers showed more efficient light utilization compared to the medulla, calculated both from electron transport rates through photosystem II and from photosynthesis-irradiance curves. At moderate irradiance, the upper cortex exhibited onset of photosynthetic saturation, whereas lower thallus layers exhibited net O2 consumption. O2 consumption rates in light varied with depth and irradiance and were more than two-fold higher than dark respiration. We show that the thallus microenvironment of F. serratus exhibits a highly stratified balance of production and consumption of O2 , and when the frond was held in a fixed position, high incident irradiance levels on the upper cortex did not saturate photosynthesis in the lower thallus layers. We discuss possible photoadaptive responses and consequences for optimizing photosynthetic activity on the basis of vertical differences in light attenuation coefficients. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Effects of light attenuation on the sponge holobiont- implications for dredging management
Pineda, Mari-Carmen; Strehlow, Brian; Duckworth, Alan; Doyle, Jason; Jones, Ross; Webster, Nicole S.
2016-01-01
Dredging and natural sediment resuspension events can cause high levels of turbidity, reducing the amount of light available for photosynthetic benthic biota. To determine how marine sponges respond to light attenuation, five species were experimentally exposed to a range of light treatments. Tolerance thresholds and capacity for recovery varied markedly amongst species. Whilst light attenuation had no effect on the heterotrophic species Stylissa flabelliformis and Ianthella basta, the phototrophic species Cliona orientalis and Carteriospongia foliascens discoloured (bleached) over a 28 day exposure period to very low light (<0.8 mol photons m−2 d−1). In darkness, both species discoloured within a few days, concomitant with reduced fluorescence yields, chlorophyll concentrations and shifts in their associated microbiomes. The phototrophic species Cymbastela coralliophila was less impacted by light reduction. C. orientalis and C. coralliophila exhibited full recovery under normal light conditions, whilst C. foliascens did not recover and showed high levels of mortality. The light treatments used in the study are directly relevant to conditions that can occur in situ during dredging projects, indicating that light attenuation poses a risk to photosynthetic marine sponges. Examining benthic light levels over temporal scales would enable dredging proponents to be aware of conditions that could impact on sponge physiology. PMID:27958345
Effects of light attenuation on the sponge holobiont- implications for dredging management.
Pineda, Mari-Carmen; Strehlow, Brian; Duckworth, Alan; Doyle, Jason; Jones, Ross; Webster, Nicole S
2016-12-13
Dredging and natural sediment resuspension events can cause high levels of turbidity, reducing the amount of light available for photosynthetic benthic biota. To determine how marine sponges respond to light attenuation, five species were experimentally exposed to a range of light treatments. Tolerance thresholds and capacity for recovery varied markedly amongst species. Whilst light attenuation had no effect on the heterotrophic species Stylissa flabelliformis and Ianthella basta, the phototrophic species Cliona orientalis and Carteriospongia foliascens discoloured (bleached) over a 28 day exposure period to very low light (<0.8 mol photons m -2 d -1 ). In darkness, both species discoloured within a few days, concomitant with reduced fluorescence yields, chlorophyll concentrations and shifts in their associated microbiomes. The phototrophic species Cymbastela coralliophila was less impacted by light reduction. C. orientalis and C. coralliophila exhibited full recovery under normal light conditions, whilst C. foliascens did not recover and showed high levels of mortality. The light treatments used in the study are directly relevant to conditions that can occur in situ during dredging projects, indicating that light attenuation poses a risk to photosynthetic marine sponges. Examining benthic light levels over temporal scales would enable dredging proponents to be aware of conditions that could impact on sponge physiology.
Farooque, Mohammad; Yuh, Chao-Yi
1996-01-01
A carbonate fuel cell matrix comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles.
NASA Astrophysics Data System (ADS)
Ornelas, Danielle; Hasan, Md.; Gonzalez, Oscar; Krishnan, Giri; Szu, Jenny I.; Myers, Timothy; Hirota, Koji; Bazhenov, Maxim; Binder, Devin K.; Park, Boris H.
2017-02-01
Epilepsy is a chronic neurological disorder characterized by recurrent and unpredictable seizures. Electrophysiology has remained the gold standard of neural activity detection but its resolution and high susceptibility to noise and motion artifact limit its efficiency. Optical imaging techniques, including fMRI, intrinsic optical imaging, and diffuse optical imaging, have also been used to detect neural activity yet these techniques rely on the indirect measurement of changes in blood flow. A more direct optical imaging technique is optical coherence tomography (OCT), a label-free, high resolution, and minimally invasive imaging technique that can produce depth-resolved cross-sectional and 3D images. In this study, OCT was used to detect non-vascular depth-dependent optical changes in cortical tissue during 4-aminopyridine (4-AP) induced seizure onset. Calculations of localized optical attenuation coefficient (µ) allow for the assessment of depth-resolved volumetric optical changes in seizure induced cortical tissue. By utilizing the depth-dependency of the attenuation coefficient, we demonstrate the ability to locate and remove the optical effects of vasculature within the upper regions of the cortex on the attenuation calculations of cortical tissue in vivo. The results of this study reveal a significant depth-dependent decrease in attenuation coefficient of nonvascular cortical tissue both ex vivo and in vivo. Regions exhibiting decreased attenuation coefficient show significant temporal correlation to regions of increased electrical activity during seizure onset and progression. This study allows for a more thorough and biologically relevant analysis of the optical signature of seizure activity in vivo using OCT.
NASA Technical Reports Server (NTRS)
Lei, Ning; Chiang, Kwo-Fu; Oudrari, Hassan; Xiong, Xiaoxiong
2011-01-01
Optical sensors aboard Earth orbiting satellites such as the next generation Visible/Infrared Imager/Radiometer Suite (VIIRS) assume that the sensors radiometric response in the Reflective Solar Bands (RSB) is described by a quadratic polynomial, in relating the aperture spectral radiance to the sensor Digital Number (DN) readout. For VIIRS Flight Unit 1, the coefficients are to be determined before launch by an attenuation method, although the linear coefficient will be further determined on-orbit through observing the Solar Diffuser. In determining the quadratic polynomial coefficients by the attenuation method, a Maximum Likelihood approach is applied in carrying out the least-squares procedure. Crucial to the Maximum Likelihood least-squares procedure is the computation of the weight. The weight not only has a contribution from the noise of the sensor s digital count, with an important contribution from digitization error, but also is affected heavily by the mathematical expression used to predict the value of the dependent variable, because both the independent and the dependent variables contain random noise. In addition, model errors have a major impact on the uncertainties of the coefficients. The Maximum Likelihood approach demonstrates the inadequacy of the attenuation method model with a quadratic polynomial for the retrieved spectral radiance. We show that using the inadequate model dramatically increases the uncertainties of the coefficients. We compute the coefficient values and their uncertainties, considering both measurement and model errors.
High-frequency attenuation and backscatter measurements of rat blood between 30 and 60 MHz.
Huang, Chih-Chung
2010-10-07
There has recently been a great deal of interest in noninvasive high-frequency ultrasound imaging of small animals such as rats due to their being the preferred animal model for gene therapy and cancer research. Improving the interpretation of the obtained images and furthering the development of the imaging devices require a detailed knowledge of the ultrasound attenuation and backscattering of biological tissue (e.g. blood) at high frequencies. In the present study, the attenuation and backscattering coefficients of the rat red blood cell (RBC) suspensions and whole blood with hematocrits ranging from 6% to 40% were measured between 30 and 60 MHz using a modified substitution approach. The acoustic parameters of porcine blood under the same conditions were also measured in order to compare differences in the blood properties between these two animals. For porcine blood, both whole blood and RBC suspension were stirred at a rotation speed of 200 rpm. Three different rotation speeds of 100, 200 and 300 rpm were carried out for rat blood experiments. The attenuation coefficients of both rat and porcine blood were found to increase linearly with frequency and hematocrit (the values of coefficients of determination (r(2)) are around 0.82-0.97 for all cases). The average attenuation coefficient of rat whole blood with a hematocrit of 40% increased from 0.26 Nepers mm(-1) at 30 MHz to 0.47 Nepers mm(-1) at 60 MHz. The maximum backscattering coefficients of both rat and porcine RBC suspensions were between 10% and 15% hematocrits at all frequencies. The fourth-power dependence of backscatter on frequency was approximately valid for rat RBC suspensions with hematocrits between 6% and 40%. However, the frequency dependence of the backscatter estimate deviates from a fourth-power law for porcine RBC suspension with hematocrit higher than 20%. The backscattering coefficient plateaued for hematocrits higher than 15% in porcine blood, but for rat blood it was maximal around a hematocrit of 20% at the same rotation speed, and shifted to a hematocrit of 10% at a higher speed. The backscattering properties of rat RBCs in plasma are similar to those of RBCs in saline at a higher rotation speed. The differences in attenuation and backscattering between rat and porcine blood may be attributed to RBCs' being smaller and the RBC aggregation level being lower for rat blood than for porcine blood.
NASA Astrophysics Data System (ADS)
Meneghini, Robert
1998-09-01
A method is proposed for estimating the area-average rain-rate distribution from attenuating-wavelength spaceborne or airborne radar data. Because highly attenuated radar returns yield unreliable estimates of the rain rate, these are eliminated by means of a proxy variable, Q, derived from the apparent radar reflectivity factors and a power law relating the attenuation coefficient and the reflectivity factor. In determining the probability distribution function of areawide rain rates, the elimination of attenuated measurements at high rain rates and the loss of data at light rain rates, because of low signal-to-noise ratios, leads to truncation of the distribution at the low and high ends. To estimate it over all rain rates, a lognormal distribution is assumed, the parameters of which are obtained from a nonlinear least squares fit to the truncated distribution. Implementation of this type of threshold method depends on the method used in estimating the high-resolution rain-rate estimates (e.g., either the standard Z-R or the Hitschfeld-Bordan estimate) and on the type of rain-rate estimate (either point or path averaged). To test the method, measured drop size distributions are used to characterize the rain along the radar beam. Comparisons with the standard single-threshold method or with the sample mean, taken over the high-resolution estimates, show that the present method usually provides more accurate determinations of the area-averaged rain rate if the values of the threshold parameter, QT, are chosen in the range from 0.2 to 0.4.
NASA Astrophysics Data System (ADS)
Brill, Nicolai; Wirtz, Mathias; Merhof, Dorit; Tingart, Markus; Jahr, Holger; Truhn, Daniel; Schmitt, Robert; Nebelung, Sven
2016-07-01
Polarization-sensitive optical coherence tomography (PS-OCT) is a light-based, high-resolution, real-time, noninvasive, and nondestructive imaging modality yielding quasimicroscopic cross-sectional images of cartilage. As yet, comprehensive parameterization and quantification of birefringence and tissue properties have not been performed on human cartilage. PS-OCT and algorithm-based image analysis were used to objectively grade human cartilage degeneration in terms of surface irregularity, tissue homogeneity, signal attenuation, as well as birefringence coefficient and band width, height, depth, and number. Degeneration-dependent changes were noted for the former three parameters exclusively, thereby questioning the diagnostic value of PS-OCT in the assessment of human cartilage degeneration.
NASA Astrophysics Data System (ADS)
Ma, Wei-Ming
1997-06-01
An analytical two-flow model is derived from the radiative transfer equation to simulate the distribution of irradiance in coastal waters with a wind-roughed surface and bottom reflectance. The model utilizes unique boundary conditions, including the surface slope of the downwelling and upwelling irradiance as well as the influence of wind and bottom reflectance on simulated surface reflectance. The developed model provides a simple mathematical concept for understanding the irradiant light flux and associated processes in coastal or fresh water as well as turbid estuarine waters. The model is applied to data from the Banana River and coastal Atlantic Ocean water off the east coast of central Florida, USA. The two-flow irradiance model is capable of simulating realistic above-surface reflectance signatures under wind-roughened air-water surface given realistic input parameters including a specular flux conversion coefficient, absorption coefficient, backscattering coefficient, atmospheric visibility, bottom reflectance, and water depth. The root-mean-squared error of the calculated above-surface reflectances is approximately 3% in the Banana River and is less than 15% in coastal Atlantic Ocean off the east of Florida. Result of the subsurface reflectance sensitivity analysis indicates that the specular conversion coefficient is the most sensitive parameter in the model, followed by the beam attenuation coefficient, absorption coefficient, water depth, backscattering coefficient, specular irradiance, diffuse irradiance, bottom reflectance, and wind speed. On the other hand, result of the above-surface reflectance sensitivity analysis indicates that the wind speed is the most important parameter, followed by bottom reflectance, attenuation coefficient, water depth, conversion coefficient, specular irradiance, downwelling irradiance, absorption coefficient, and backscattering coefficient. Model results depend on the accuracy of these parameters to a large degree and more important the water depth and value of the bottom reflectance. The results of this work indicates little change of subsurface or in-water reflectances, due to variations of wind speed and observation angle. Simulations of the wind effect on the total downwelling irradiance from the two- flow model indicates that the total downwelling irradiance just below a wind-roughened water surface increases to about 1% of the total downwelling irradiance on a calm water surface when the sun is near zenith and increases to about 3% when the sun is near the horizon. This analytically based model, solved or developed utilizing the unique boundary conditions, can be applied to remote sensing of oceanic upper mixed layer dynamics, plant canopies, primary production, and shallow water environments with different bottom type reflectances. Future applications may include determining effects of sediment resuspension of bottom sediments in the bottom boundary layer on remotely sensed data.
Azeez, Ali Basheer; Mohammed, Kahtan S.; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Sandu, Andrei Victor; Razak, Rafiza Abdul
2013-01-01
Samples of concrete contain various waste materials, such as iron particulates, steel balls of used ball bearings and slags from steel industry were assessed for their anti-radiation attenuation coefficient properties. The attenuation measurements were performed using gamma spectrometer of NaI (Tl) detector. The utilized radiation sources comprised 137Cs and 60Co radioactive elements with photon energies of 0.662 MeV for 137Cs and two energy levels of 1.17 and 1.33 MeV for the 60Co. Likewise the mean free paths for the tested samples were obtained. The aim of this work is to investigate the effect of the waste loading rates and the particulate dispersive manner within the concrete matrix on the attenuation coefficients. The maximum linear attenuation coefficient (μ) was attained for concrete incorporates iron filling wastes of 30 wt %. They were of 1.12 ± 1.31×10−3 for 137Cs and 0.92 ± 1.57 × 10−3 for 60Co. Substantial improvement in attenuation performance by 20%–25% was achieved for concrete samples incorporate iron fillings as opposed to that of steel ball samples at different (5%–30%) loading rates. The steel balls and the steel slags gave much inferior values. The microstructure, concrete-metal composite density, the homogeneity and particulate dispersion were examined and evaluated using different metallographic, microscopic and measurement facilities. PMID:28788363
NASA Technical Reports Server (NTRS)
Tian, Lin; Heymsfield, G. M.; Srivastava, R. C.; O'C.Starr, D. (Technical Monitor)
2001-01-01
Observations by the airborne X-band Doppler radar (EDOP) and the NCAR S-band polarimetric (S-Pol) radar from two field experiments are used to evaluate the surface reference technique (SRT) for measuring the path integrated attenuation (PIA) and to study attenuation in deep convective storms. The EDOP, flying at an altitude of 20 km, uses a nadir beam and a forward pointing beam. It is found that over land, the surface scattering cross-section is highly variable at nadir incidence but relatively stable at forward incidence. It is concluded that measurement by the forward beam provides a viable technique for measuring PIA using the SRT. Vertical profiles of peak attenuation coefficient are derived in two deep convective storms by the dual-wavelength method. Using the measured Doppler velocity, the reflectivities at the two wavelengths, the differential reflectivity and the estimated attenuation coefficients, it is shown that: supercooled drops and (dry) ice particles probably co-existed above the melting level in regions of updraft, that water-coated partially melted ice particles probably contributed to high attenuation below the melting level.
MR-Consistent Simultaneous Reconstruction of Attenuation and Activity for Non-TOF PET/MR
NASA Astrophysics Data System (ADS)
Heußer, Thorsten; Rank, Christopher M.; Freitag, Martin T.; Dimitrakopoulou-Strauss, Antonia; Schlemmer, Heinz-Peter; Beyer, Thomas; Kachelrieß, Marc
2016-10-01
Attenuation correction (AC) is required for accurate quantification of the reconstructed activity distribution in positron emission tomography (PET). For simultaneous PET/magnetic resonance (MR), however, AC is challenging, since the MR images do not provide direct information on the attenuating properties of the underlying tissue. Standard MR-based AC does not account for the presence of bone and thus leads to an underestimation of the activity distribution. To improve quantification for non-time-of-flight PET/MR, we propose an algorithm which simultaneously reconstructs activity and attenuation distribution from the PET emission data using available MR images as anatomical prior information. The MR information is used to derive voxel-dependent expectations on the attenuation coefficients. The expectations are modeled using Gaussian-like probability functions. An iterative reconstruction scheme incorporating the prior information on the attenuation coefficients is used to update attenuation and activity distribution in an alternating manner. We tested and evaluated the proposed algorithm for simulated 3D PET data of the head and the pelvis region. Activity deviations were below 5% in soft tissue and lesions compared to the ground truth whereas standard MR-based AC resulted in activity underestimation values of up to 12%.
Wave-induced fluid flow in random porous media: Attenuation and dispersion of elastic waves
NASA Astrophysics Data System (ADS)
Müller, Tobias M.; Gurevich, Boris
2005-05-01
A detailed analysis of the relationship between elastic waves in inhomogeneous, porous media and the effect of wave-induced fluid flow is presented. Based on the results of the poroelastic first-order statistical smoothing approximation applied to Biot's equations of poroelasticity, a model for elastic wave attenuation and dispersion due to wave-induced fluid flow in 3-D randomly inhomogeneous poroelastic media is developed. Attenuation and dispersion depend on linear combinations of the spatial correlations of the fluctuating poroelastic parameters. The observed frequency dependence is typical for a relaxation phenomenon. Further, the analytic properties of attenuation and dispersion are analyzed. It is shown that the low-frequency asymptote of the attenuation coefficient of a plane compressional wave is proportional to the square of frequency. At high frequencies the attenuation coefficient becomes proportional to the square root of frequency. A comparison with the 1-D theory shows that attenuation is of the same order but slightly larger in 3-D random media. Several modeling choices of the approach including the effect of cross correlations between fluid and solid phase properties are demonstrated. The potential application of the results to real porous materials is discussed. .
Farooque, M.; Yuh, C.Y.
1996-12-03
A carbonate fuel cell matrix is described comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles. 8 figs.
Measurement of gas viscosity using photonic crystal fiber
NASA Astrophysics Data System (ADS)
Gao, R.-K.; Sheehe, S. L.; Kurtz, J.; O'Byrne, S.
2016-11-01
A new measurement technique for gas viscosity coefficient is designed and demonstrated using the technique of tunable diode laser absorption spectroscopy (TDLAS). Gas flow is driven by a pressure gradient between two gas cells, through a photonic crystal fiber (PCF) surrounded by a furnace for temperature adjustment. PCF with 20-micron diameter affords physical space for gas-light interaction and provides a basis for gas viscosity measurement by determining the time for flow to exit a capillary tube under the influence of a pressure gradient. Infrared radiation from a diode laser is coupled into the fiber to be guided through the gas, and the light attenuation due to absorption from the molecular absorbing species is measured by a photo detector placed at the exit of the fiber. A numerical model from Sharipov and Graur describing local number density distribution in a unsteady state is applied for the determination of gas viscosity, based on the number density of gas measured by the absorption of the laser light, using the Beer-Lambert law. The measurement system is confirmed by measuring the viscosity of CO2 as a reference gas.
Pechprasarn, Suejit; Chow, Terry W K; Somekh, Michael G
2018-06-04
In this paper, we present a direct method to measure surface wave attenuation arising from both ohmic and coupling losses using our recently developed phase spatial light modulator (phase-SLM) based confocal surface plasmon microscope. The measurement is carried out in the far-field using a phase-SLM to impose an artificial surface wave phase profile in the back focal plane (BFP) of a microscope objective. In other words, we effectively provide an artificially engineered backward surface wave by modulating the Goos Hänchen (GH) phase shift of the surface wave. Such waves with opposing phase and group velocities are well known in acoustics and electromagnetic metamaterials but usually require structured or layered surfaces, here the effective wave is produced externally in the microscope illumination path. Key features of the technique developed here are that it (i) is self-calibrating and (ii) can distinguish between attenuation arising from ohmic loss (k″ Ω ) and coupling (reradiation) loss (k″ c ). This latter feature has not been achieved with existing methods. In addition to providing a unique measurement the measurement occurs of over a localized region of a few microns. The results were then validated against the surface plasmons (SP) dip measurement in the BFP and a theoretical model based on a simplified Green's function.
Light Modulates Ocular Complications in an Albino Rat Model of Type 1 Diabetes Mellitus.
Andrawus, Elias; Veildbaum, Gizi; Zemel, Esther; Leibu, Rina; Perlman, Ido; Shehadeh, Naim
2017-07-01
The purpose of the study was to assess potential interactions of light exposure and hyperglycemia upon ocular complications in diabetic rats. Streptozotocin-induced (STZ-induced) diabetic rats ( N = 39) and non-diabetic rats ( N = 9) were distributed into eight groups according to the irradiance and color of the light phase during the 12/12-hour light/dark regime. Follow-up lasted 90 days and included assessment of cataract development and electroretinogram (ERG) recordings. Stress to the retina was also assessed by glial fibrillary acidic protein immunocytochemistry. Cataract development was fast in diabetic rats that were exposed to unattenuated white light or to bright colored lights during the light phase. Diabetic rats that were kept under attenuated brown or yellow light during the light phase exhibited slower rate of cataract development. Electroretinogram responses indicated very severe retinal damage in diabetic rats kept under bright colored lights in the blue-yellow range or bright white light during the light phase. Electroretinogram damage was milder in rats kept under bright red light or attenuated yellow or brown light during the light phase. Glial fibrillary acidic protein expression in retinal Müller cells was consistent with ERG assessment of retinal damage. Attenuating white light and filtering out short wavelengths have a protective effect on the eyes of diabetic rats as evident by slower rate of cataract formation and a smaller degree of retinal damage. Our findings suggest that special glasses attenuating light exposure and filtering out short wavelengths (400-530 nm) may be beneficial for diabetic patients.
Effect of antimony-oxide on the shielding properties of some sodium-boro-silicate glasses.
Zoulfakar, A M; Abdel-Ghany, A M; Abou-Elnasr, T Z; Mostafa, A G; Salem, S M; El-Bahnaswy, H H
2017-09-01
Some sodium-silicate-boro-antimonate glasses having the molecular composition [(20) Na 2 O - (20) SiO 2 - (60-x) B 2 O 3 - (x) Sb 2 O 3 (where x takes the values 0, 5 … or 20)] have been prepared by the melt quenching method. The melting and annealing temperatures were 1500 and 650K respectively. The amorphous nature of the prepared samples was confirmed by using X-ray diffraction analysis. Both the experimental and empirical density and molar volume values showed gradual increase with increasing Sb 2 O 3 content. The empirical densities showed higher values than those obtained experimentally, while the empirical molar volume values appeared lower than those obtained experimentally, which confirm the amorphous nature and randomness character of the studied samples. The experimentally obtained shielding parameters were approximately coincident with those obtained theoretically by applying WinXCom program. At low gamma-ray energies (0.356 and 0.662MeV) Sb 2 O 3 has approximately no effect on the total Mass Attenuation Coefficient, while at high energies it acts to increase the total Mass Attenuation Coefficient gradually. The obtained Half Value Layer and Mean Free Path values showed gradual decrease as Sb 2 O 3 was gradually increased. Also, the Total Mass Attenuation Coefficient values obtained between about 0.8 and 3.0MeV gamma-ray energy showed a slight decrease, as gamma-ray photon energy increased. This may be due to the differences between the Attenuation Coefficients of both antimony and boron oxides at various gamma-ray photon energies. However, it can be stated that the addition of Sb 2 O 3 into sodium-boro-silicate glasses increases the gamma-ray Attenuation Coefficient and the best sample is that contains 20 mol% of Sb 2 O 3 , which is operating well at 0.356 and 0.662MeV gamma-ray. Copyright © 2017 Elsevier Ltd. All rights reserved.
Legleiter, C.J.; Kinzel, P.J.; Overstreet, B.T.
2011-01-01
Remote sensing offers an efficient means of mapping bathymetry in river systems, but this approach has been applied primarily to clear-flowing, gravel bed streams. This study used field spectroscopy and radiative transfer modeling to assess the feasibility of spectrally based depth retrieval in a sand-bed river with a higher suspended sediment concentration (SSC) and greater water turbidity. Attenuation of light within the water column was characterized by measuring the amount of downwelling radiant energy at different depths and calculating a diffuse attenuation coefficient, Kd. Attenuation was strongest in blue and near-infrared bands due to scattering by suspended sediment and absorption by water, respectively. Even for red wavelengths with the lowest values of Kd, only a small fraction of the incident light propagated to the bed, restricting the range of depths amenable to remote sensing. Spectra recorded above the water surface were used to establish a strong, linear relationship (R2 = 0.949) between flow depth and a simple band ratio; even under moderately turbid conditions, depth remained the primary control on reflectance. Constraints on depth retrieval were examined via numerical modeling of radiative transfer within the atmosphere and water column. SSC and sensor radiometric resolution limited both the maximum detectable depth and the precision of image-derived depth estimates. Thus, although field spectra indicated that the bathymetry of turbid channels could be remotely mapped, model results implied that depth retrieval in sediment-laden rivers would be limited to shallow depths (on the order of 0.5 m) and subject to a significant degree of uncertainty. ?? 2011 by the American Geophysical Union.
Mode-independent attenuation in evanescent-field sensors
NASA Astrophysics Data System (ADS)
Gnewuch, Harald; Renner, Hagen
1995-03-01
Generally, the total power attenuation in multimode evanescent-field sensor waveguides is nonproportional to the bulk absorbance because the modal attenuation constants differ. Hence a direct measurement is difficult and is additionally aggravated because the waveguide absorbance is highly sensitive to the specific launching conditions at the waveguide input. A general asymptotic formula for the modal power attenuation in strongly asymmetric inhomogeneous planar waveguides with arbitrarily distributed weak absorption in the low-index superstrate is derived. Explicit expressions for typical refractive-index profiles are given. Except when very close to the cutoff, the predicted asymptotic attenuation behavior agrees well with exact calculations. The ratio of TM versus TE absorption has been derived to be (2 - n0 2/nf2 ) for arbitrary profiles. Waveguides with a linear refractive-index profile show mode-independent attenuation coefficients within each polarization. Further, the asymptotic sensitivity is independent of the wavelength, so that it should be possible to directly measure the spectral variation of the bulk absorption. The mode independence of the attenuation has been verified experimentally for a second-order polynomial profile, which is close to a linear refractive-index distribution. In contrast, the attenuation in the step-profile waveguide has been found to depend strongly on the mode number, as predicted by theory. A strong spread of the modal attenuation coefficients is also predicted for the parabolic-profile waveguide sensor.
FDTD simulation of amorphous silicon waveguides for microphotonics applications
NASA Astrophysics Data System (ADS)
Fantoni, A.; Lourenço, P.; Pinho, P.; Vieira, M.,
2017-05-01
In this work we correlate the dimension of the waveguide with small variations of the refractive index of the material used for the waveguide core. We calculate the effective modal refractive index for different dimensions of the waveguide and with slightly variation of the refractive index of the core material. These results are used as an input for a set of Finite Difference Time Domain simulation, directed to study the characteristics of amorphous silicon waveguides embedded in a SiO2 cladding. The study considers simple linear waveguides with rectangular section for studying the modal attenuation expected at different wavelengths. Transmission efficiency is determined analyzing the decay of the light power along the waveguides. As far as near infrared wavelengths are considered, a-Si:H shows a behavior highly dependent on the light wavelength and its extinction coefficient rapidly increases as operating frequency goes into visible spectrum range. The simulation results show that amorphous silicon can be considered a good candidate for waveguide material core whenever the waveguide length is as short as a few centimeters. The maximum transmission length is highly affected by the a-Si:H defect density, the mid-gap density of states and by the waveguide section area. The simulation results address a minimum requirement of 300nm×400nm waveguide section in order to keep attenuation below 1 dB cm-1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plelnevaux, C.
The computer program DIFF, in Fortran for the IBM 7090, for calculating the neutron diffusion coefficients and attenuation areas (L/sup 2/) necessary for multigroup diffusion calculations for reactor shielding is described. Diffusion coefficients and values of the inverse attenuation length are given for a six group calculation for several interesting shielding materials. (D.C.W.)
X-Ray Attenuation Coefficients from 10 Kev to 100 Mev,
1957-04-30
is u&Ung"w APR n 4 1994 94-10025 0 Z1UNITED STATES DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS 94 .4 1 096 Data on Radiation Physics Graphs...OF COMMERCE • Sinclair Weeks, Secretary NATIONAL BUREAU OF STANDARDS , A. V. Astin, Dirvcew X-ray Attenuation Coefficients From 10 key to 100 Mev...Dit. ibtion I Availabiilty Codes Avai# and/or Dist Special National Bureau of Standards Circular 583 Issuw1 April 30, 1957 Fo e teSpr dt
Coastal Zone Color Scanner data of rich coastal waters
NASA Technical Reports Server (NTRS)
Wrigley, R. C.; Klooster, S. A.
1983-01-01
Comparisons of chlorophyll concentrations and diffuse attenuation coefficients measured from ships off the central California coast were made with satellite derived estimates of the same parameters using data from the Coastal Zone Color Scanner. Very high chlorophyll concentrations were encountered in Monterey Bay. Although lower chlorophyll values acquired off Pt. Sur agreed satisfactorily with the satellite data, the high chlorophyll values departed markedly from agreement. Two possible causes for the disagreement are suggested. Comparison of diffuse attenuation coefficients from the same data sets showed closer agreement.
Diffuse attenuation of solar light (Kd, m−1) determines the percentage of light penetrating the water column and available for benthic organisms. Therefore, Kd can be used as an index of water quality for coastal ecosystems that are dependent on photosynthesis, such as the coral ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alhamami, Mosa; Kolios, Michael C.; Tavakkoli, Jahan, E-mail: jtavakkoli@ryerson.ca
Purpose: The aims of this study are: (a) to investigate the capability of photoacoustic (PA) method in detecting high-intensity focused ultrasound (HIFU) treatments in muscle tissuesin vitro; and (b) to determine the optical properties of HIFU-treated and native tissues in order to assist in the interpretation of the observed contrast in PA detection of HIFU treatments. Methods: A single-element, spherically concaved HIFU transducer with a centre frequency of 1 MHz was utilized to create thermal lesions in chicken breast tissuesin vitro. To investigate the detectability of HIFU treatments photoacoustically, PA detection was performed at 720 and 845 nm on sevenmore » HIFU-treated tissue samples. Within each tissue sample, PA signals were acquired from 22 locations equally divided between two regions of interest within two volumes in tissue – a HIFU-treated volume and an untreated volume. Optical spectroscopy was then carried out on 10 HIFU-treated chicken breast specimens in the wavelength range of 500–900 nm, in 1-nm increments, using a spectrophotometer with an integrating sphere attachment. The authors’ optical spectroscopy raw data (total transmittance and diffuse reflectance) were used to obtain the optical absorption and reduced scattering coefficients of HIFU-induced thermal lesions and native tissues by employing the inverse adding-doubling method. The aforementioned interaction coefficients were subsequently used to calculate the effective attenuation coefficient and light penetration depth of HIFU-treated and native tissues in the wavelength range of 500–900 nm. Results: HIFU-treated tissues produced greater PA signals than native tissues at 720 and 845 nm. At 720 nm, the averaged ratio of the peak-to-peak PA signal amplitude of HIFU-treated tissue to that of native tissue was 3.68 ± 0.25 (mean ± standard error of the mean). At 845 nm, the averaged ratio of the peak-to-peak PA signal amplitude of HIFU-treated tissue to that of native tissue was 3.75 ± 0.26 (mean ± standard error of the mean). The authors’ spectroscopic investigation has shown that HIFU-treated tissues have a greater optical absorption and reduced scattering coefficients than native tissues in the wavelength range of 500–900 nm. In fact, at 720 and 845 nm, the ratio of the optical absorption coefficient of HIFU-treated tissues to that of native tissues was 1.13 and 1.17, respectively; on the other hand, the ratio of the reduced scattering coefficient of HIFU-treated tissues to that of native tissues was 13.22 and 14.67 at 720 and 845 nm, respectively. Consequently, HIFU-treated tissues have a higher effective attenuation coefficient and a lower light penetration depth than native tissues in the wavelength range 500–900 nm. Conclusions: Using a PA approach, HIFU-treated tissues interrogated at 720 and 845 nm optical wavelengths can be differentiated from untreated tissues. Based on the authors’ spectroscopic investigation, the authors conclude that the observed PA contrast between HIFU-induced thermal lesions and untreated tissue is due, in part, to the increase in the optical absorption coefficient, the reduced scattering coefficient and, therefore, the deposited laser energy fluence in HIFU-treated tissues.« less
First evidence for high anelastic attenuation beneath the Red Sea from Love wave analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadiouche, Ouiza
Attenuation coefficients of Love waves are determined for two seismic paths along the Red Sea. The attenuation coefficients are obtained using the multiple filter method for periods from 25 to 130 s along one path and from 40 to 130 s along the second one. The two sets of observations are in good agreement with anomalously high attenuation coefficients similar to those reported across a young part of the Pacific Ocean. Indeed, the values lie on average between 3.3 {plus minus} 0.6 and 1.1 {plus minus} 0.3 (10{sup {minus}4}km{sup {minus}1}) higher values being observed at shorter periods. In a secondmore » part of the paper, these apparent attenuation observations are interpreted in terms of a distribution of intrinsic absorption in the upper mantle. A frequency independent Q{sub {beta}} model is obtained using a trial-and-error method. The best fit to the data required a large and very low Q{sub {beta}} (30-50) zone below a depth of 50 km, underlying a thin and high Q{sub {beta}} (200-300) lid. These results are consistent with high heat flows and low velocities which characterize this tectonically active area, and corroborate the inference of anomalously high temperatures and low viscosity in the upper mantle beneath the Red Sea from recent seismological results.« less
Mehnati, Parinaz; Arash, Mehran; Akhlaghi, Parisa
2018-01-01
The article aims at constructing protective composite shields for breasts in chest computed tomography and investigating the effects of applying these new bismuth composites on dose and image quality. Polyurethane and silicon with 5% of bismuth were fabricated as a protective shield. At first, their efficiency in attenuating the X-ray beam was investigated by calculating the total attenuation coefficients at diagnostic energy range. Then, a physical chest phantom was scanned without and with these shields at tube voltage of 120 kVp, and image parameters together with dose values were studied. The results showed that these two shields have great effects on attenuating the X-ray beam, especially for lower energies (<40 kV), and in average, the attenuation coefficients of bismuth-polyurethane composite are higher in this energy range. The maximum relative differences between the average Hounsfield units (HUs) and noises of images without and with shield for both composites in 13 regions of interest were 4.5% and 15.7%, respectively. Moreover, primary investigation confirmed the ability of both shields (especially polyurethane-bismuth composite) in dose reduction. Comparing these two composites regarding the amount of dose reduction, the changes in HU and noise, and attenuation coefficients in diagnostic energy range, it seems that polyurethane composite is more useful for dose reduction, especially for higher tube voltages. PMID:29628636
NASA Astrophysics Data System (ADS)
Ciraolo, Giuseppe; La Loggia, Goffredo; Maltese, Antonino
2010-10-01
In December 2006 blooms of Oscillatoria rubescens were found in the reservoir Prizzi in Sicily. Oscillatoria is a genus of filamentous alga comprising approximately 6 species, between these the O. rubescens is sadly famous since this organism produces microcystins which are powerful hepatotoxins. Firstly found in Europe in 1825 on Geneva lake, recently (2006) those algae has been find out in Pozzillo, Nicoletti e Ancipa reservoirs (Enna Province), as well as in Prizzi (Palermo Province) and Garcia reservoirs (Trapani Province). Toxins produced by those bacteria (usually called microcystine LR-1 and LR-2) are highly toxic since they can activate oncogenes cells causing cancer pathologies on liver and gastrointestinal tract. Even if water treatment plants should ensure the provision of safe drinking water from surface waters contaminated with those toxic algae blooms, the contamination of reservoirs used for civil and agricultural supply highlights human health risks. International literature suggests a threshold value of 0.01 μgl-1 to avoid liver cancer using water coming from contaminated water bodies for a long period. Since O. rubescens activities is strongly related to phosphate and nitrogen compounds as well as to temperature and light transmission within water, the paper presents the comparison between optical properties of the water of an infested reservoir and those of a reservoir characterized by clear water. Field campaigns were carried out in February-March 2008 in order to quantify the spectral transparencies of two water bodies through the calculation of the diffuse attenuation coefficient, measuring underwater downwelling irradiance at different depths as well as water spectral reflectance. Results show that diffuse attenuation coefficient is reduced by approximately 15% reducing light penetration in the water column; coherently reflectance spectral signature generally decreases, exhibiting a characteristic peak around 703 nm not present in uncontaminated waters. Latter findings highlight the possibility to detect O. rubescens infestations using their spectral characteristics by means of multitemporal remote sensing techniques.
A comparison of methods using optical coherence tomography to detect demineralized regions in teeth
Sowa, Michael G.; Popescu, Dan P.; Friesen, Jeri R.; Hewko, Mark D.; Choo-Smith, Lin-P’ing
2013-01-01
Optical coherence tomography (OCT) is a three- dimensional optical imaging technique that can be used to identify areas of early caries formation in dental enamel. The OCT signal at 850 nm back-reflected from sound enamel is attenuated stronger than the signal back-reflected from demineralized regions. To quantify this observation, the OCT signal as a function of depth into the enamel (also known as the A-scan intensity), the histogram of the A-scan intensities and three summary parameters derived from the A-scan are defined and their diagnostic potential compared. A total of 754 OCT A-scans were analyzed. The three summary parameters derived from the A-scans, the OCT attenuation coefficient as well as the mean and standard deviation of the lognormal fit to the histogram of the A-scan ensemble show statistically significant differences (p < 0.01) when comparing parameters from sound enamel and caries. Furthermore, these parameters only show a modest correlation. Based on the area under the curve (AUC) of the receiver operating characteristics (ROC) plot, the OCT attenuation coefficient shows higher discriminatory capacity (AUC=0.98) compared to the parameters derived from the lognormal fit to the histogram of the A-scan. However, direct analysis of the A-scans or the histogram of A-scan intensities using linear support vector machine classification shows diagnostic discrimination (AUC = 0.96) comparable to that achieved using the attenuation coefficient. These findings suggest that either direct analysis of the A-scan, its intensity histogram or the attenuation coefficient derived from the descending slope of the OCT A-scan have high capacity to discriminate between regions of caries and sound enamel. PMID:22052833
Bio-Optical Properties of the Arabian Sea as Determined by In Situ and Sea WiFS Data
NASA Technical Reports Server (NTRS)
Trees, Charles C.
1997-01-01
The overall objective of this work was to characterize optical and fluorescence properties in the euphotic zone during two British Ocean Flux Study (BOFS) Arabian Sea cruises. This was later expanded in 1995 to include three U.S. JGOFS Arabian Sea Cruises. The region was to be divided into one or more "bio-optical provinces," within each of which a single set of regression models was to be developed to relate the vertical distribution of irradiance attenuation and normalized fluorescence (SF and NF) to remote sensing reflectance and diffuse attenuation coefficient. The working hypothesis was that over relatively large spatial and temporal scales, the vertical profiles of bio-optical properties were predictable. The specific technical objectives were: (1) To characterize the vertical distribution of the inherent and apparent optical properties by measuring downwelling and upwelling irradiances, upwelling radiances, scalar irradiance of PAR, and beam transmissions at each station - from these data, spectral diffuse attenuation coefficients, irradiance reflectances, remote sensing reflectances, surface-leaving radiances and beam attenuation coefficients were determined; (2) To characterize the spectral absorption of total particulate, detrital, and dissolved organic material at each station from discrete water samples; (3) To describe the vertical distribution of photoadaptive properties in the water column by measuring profiles of stimulated (SF) and natural (NF) fluorescence and examining relationships between SF and NF as a function of diffuse optical depth, pigment biomass and primary productivity; and (4) To establish locally derived, in-water algorithms relating remote sensing reflectance spectra to diffuse attenuation coefficients, phytoplankton pigment concentrations and primary productivity, through intercomparisons with in situ measurements, for application to SeaWiFS data.
NASA Technical Reports Server (NTRS)
Stramski, Dariusz; Shalapyonok, Alexi; Reynolds, Rick A.
1995-01-01
The optical properties of the ocenanic cyanobacterium Synechococcus (clone WH8103) were examined in a nutrient-replete laboratory culture grown under a day-night cycle in natural irradiance. Measurements of the spectral absorption and beam attenuation coefficients, the size distribution of cells in suspension, and microscopic analysis of samples were made at intervals of 2-4 hours for 2 days. These measurements were used to calculate the optical properties at the level of a single 'mean' cell representative of the acutal population, specifically, the optical cross sections for spectral absorption bar-(sigma(sub a)), scattering bar-sigma(sub b))(lambda), and attentuation bar-(sigma(sub c))(lambda). In addition, concurrent determinations of chlorophyll a and particulate organic carbon allowed calculation of the Chl a- and C-specific optical coefficients. The refractive index of cells was derived from the observed data using a theory of light absorption and scattering by homogeneous spheres. Low irradiance because of cloudy skies resulted in slow division rates of cells in the culture. The percentage of dividing cells was unusually high (greater than 30%) throughout the experiment. The optical cross sections varied greatly over a day-night cycle, with a minimum near dawn or midmorning and maximum near dusk. During daylight hours, bar-(sigma(sub b)) and bar-(sigma(sub c)) can increase more than twofold and bar-(sigma(sub a) by as much as 45%. The real part of the refractive index n increaed during the day; changes in n had equal or greater effect than the varying size distribution on changes in bar-(sigma(sub c)) and bar-(sigma(sub b)). The contribution of changes in n to the increase of bar-(sigma(sub c))(660) during daylight hours was 65.7% and 45.1% on day 1 and 2, respectively. During the dark period, when bar-(sigma(sub c))(660) decreased by a factor of 2.9, the effect of decreasing n was dominant (86.3%). With the exception of a few hours during the second light period, the imaginary part of the refractive index n' showed little variation over a day-night cycle, and bar-(sigma(sub a)) was largely controlled by variations in cell size. The real part of the refractive index at lambda = 660 nm was correlated with the intracellular C concentration and the imaginary part at lambda = 678 nm with the intracellular Chl a concentration. The C-specfic attenuation coefficient showed significant diel variability, which has implications for the estimation of oceanic primary production from measurements of diel variability in beam attenuation. This study provides strong evidence that diel variability is an important component of the optical characterization of marine phytoplankton.
Siipola, Sari M; Kotilainen, Titta; Sipari, Nina; Morales, Luis O; Lindfors, Anders V; Robson, T Matthew; Aphalo, Pedro J
2015-05-01
Plants synthesize phenolic compounds in response to certain environmental signals or stresses. One large group of phenolics, flavonoids, is considered particularly responsive to ultraviolet (UV) radiation. However, here we demonstrate that solar blue light stimulates flavonoid biosynthesis in the absence of UV-A and UV-B radiation. We grew pea plants (Pisum sativum cv. Meteor) outdoors, in Finland during the summer, under five types of filters differing in their spectral transmittance. These filters were used to (1) attenuate UV-B; (2) attenuate UV-B and UV-A < 370 nm; (3) attenuate UV-B and UV-A; (4) attenuate UV-B, UV-A and blue light; and (5) as a control not attenuating these wavebands. Attenuation of blue light significantly reduced the flavonoid content in leaf adaxial epidermis and reduced the whole-leaf concentrations of quercetin derivatives relative to kaempferol derivatives. In contrast, UV-B responses were not significant. These results show that pea plants regulate epidermal UV-A absorbance and accumulation of individual flavonoids by perceiving complex radiation signals that extend into the visible region of the solar spectrum. Furthermore, solar blue light instead of solar UV-B radiation can be the main regulator of phenolic compound accumulation in plants that germinate and develop outdoors. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Nishino, Hideo; Tateishi, Kohei; Ishikawa, Masashi; Furukawa, Takashi; Goka, Motoki
2018-07-01
Guided wave inspection is expected especially for buried piping because it can be applied easily to such piping requiring only its partial digging from the ground. However, in buried piping, the attenuation coefficient is extremely large compared with that in above-ground piping because the leaky \\text{T}(0,1) mode guided wave (LTGW) propagates in buried piping and its energy leaks into the adjacent surrounding material as a bulk shear wave. Petrolatum anticorrosion grease (PAG) is the most widely used as the coating material on the pipe surface before burying piping in sand or soil, which is a viscous material with a temperature-dependent shear wave velocity. In this paper, attenuation characteristics of the LTGW are shown theoretically and experimentally. The theoretical calculations explain very well the experimental results measured. The temperature dependence of the attenuation coefficient is discussed with the theoretical outcomes.
Generalized local emission tomography
Katsevich, Alexander J.
1998-01-01
Emission tomography enables locations and values of internal isotope density distributions to be determined from radiation emitted from the whole object. In the method for locating the values of discontinuities, the intensities of radiation emitted from either the whole object or a region of the object containing the discontinuities are inputted to a local tomography function .function..sub..LAMBDA..sup.(.PHI.) to define the location S of the isotope density discontinuity. The asymptotic behavior of .function..sub..LAMBDA..sup.(.PHI.) is determined in a neighborhood of S, and the value for the discontinuity is estimated from the asymptotic behavior of .function..sub..LAMBDA..sup.(.PHI.) knowing pointwise values of the attenuation coefficient within the object. In the method for determining the location of the discontinuity, the intensities of radiation emitted from an object are inputted to a local tomography function .function..sub..LAMBDA..sup.(.PHI.) to define the location S of the density discontinuity and the location .GAMMA. of the attenuation coefficient discontinuity. Pointwise values of the attenuation coefficient within the object need not be known in this case.
Mesbahi, Asghar; Ghiasi, Hosein
2018-06-01
The shielding properties of ordinary concrete doped with some micro and nano scaled materials were studied in the current study. Narrow beam geometry was simulated using MCNPX Monte Carlo code and the mass attenuation coefficient of ordinary concrete doped with PbO 2 , Fe 2 O 3 , WO 3 and H 4 B (Boronium) in both nano and micro scales was calculated for photon and neutron beams. Mono-energetic beams of neutrons (100-3000 keV) and photons (142-1250 keV) were used for calculations. The concrete doped with nano-sized particles showed higher neutron removal cross section (7%) and photon attenuation coefficient (8%) relative to micro-particles. Application of nano-sized material in the composition of new concretes for dual protection against neutrons and photons are recommended. For further studies, the calculation of attenuation coefficients of these nano-concretes against higher energies of neutrons and photons and different particles are suggested. Copyright © 2018 Elsevier Ltd. All rights reserved.
Active microwave measurement of soil water content
NASA Technical Reports Server (NTRS)
Ulaby, F. T.; Cihlar, J.; Moore, R. K.
1974-01-01
Measurements of radar backscatter from bare soil at 4.7, 5.9, and 7.1 GHz for incident angles of 0-70 deg have been analyzed to determine sensitivity to soil moisture. Because the effective depth of penetration of the radar signal is only about one skin depth, the observed signals were correlated with the moisture in a skin depth as characterized by the attenuation coefficient (reciprocal of skin depth). Since the attenuation coefficient is a monotonically increasing function of moisture density, it may also be used as a measure of moisture content over the distance involved, which varies with frequency and moisture content. The measurements show an approximately linear increase in scattering with attenuation coefficient of the soil at angles within 10 deg of vertical and all frequencies. At 4.7 GHz this increase continues relatively large out to 70 deg incidence, but by 7.1 GHz the sensitivity is much less even at 20 deg and practically gone at 50 deg.
X-ray dual energy spectral parameter optimization for bone Calcium/Phosphorus mass ratio estimation
NASA Astrophysics Data System (ADS)
Sotiropoulou, P. I.; Fountos, G. P.; Martini, N. D.; Koukou, V. N.; Michail, C. M.; Valais, I. G.; Kandarakis, I. S.; Nikiforidis, G. C.
2015-09-01
Calcium (Ca) and Phosphorus (P) bone mass ratio has been identified as an important, yet underutilized, risk factor in osteoporosis diagnosis. The purpose of this simulation study is to investigate the use of effective or mean mass attenuation coefficient in Ca/P mass ratio estimation with the use of a dual-energy method. The investigation was based on the minimization of the accuracy of Ca/P ratio, with respect to the Coefficient of Variation of the ratio. Different set-ups were examined, based on the K-edge filtering technique and single X-ray exposure. The modified X-ray output was attenuated by various Ca/P mass ratios resulting in nine calibration points, while keeping constant the total bone thickness. The simulated data were obtained considering a photon counting energy discriminating detector. The standard deviation of the residuals was used to compare and evaluate the accuracy between the different dual energy set-ups. The optimum mass attenuation coefficient for the Ca/P mass ratio estimation was the effective coefficient in all the examined set-ups. The variation of the residuals between the different set-ups was not significant.
NASA Astrophysics Data System (ADS)
Mueller, James L.; Trees, Charles C.; Arnone, Robert A.
1990-09-01
The Coastal Zone Color Scannez (ZCS) and associated atmospheric and in-water algorithms have allowed synoptic analyses of regional and large scale variability of bio-optical properties [phytoplankton pigments and diffuse auenuation coefficient K(490)}. Austin and Petzold (1981) developed a robust in-water K(490) algorithm which related the diffuse attenuation coefficient at one optical depth [1/K(490)] to the ratio of the water-leaving radiances at 443 and 550 nm. Their regression analysis included diffuse attenuation coefficients K(490) up to 0.40 nm, but excluded data from estuarine areas, and other Case II waters, where the optical properties are not predominantly determined by phytoplankton. In these areas, errors are induced in the retrieval of remote sensing K(490) by extremely low water-leaving radiance at 443 nm [Lw(443) as viewed at the sensor may only be 1 or 2 digital counts], and improved cury can be realized using algorithms based on wavelengths where Lw(λ) is larger. Using ocean optical profiles quired by the Visibility Laboratory, algorithms are developed to predict K(490) from ratios of water leaving radiances at 520 and 670, as well as 443 and 550 nm.
Wang, Yong; Huo, Yazhen; Zhao, Liang; Lu, Feng; Wang, Ou; Yang, Xue; Ji, Baoping; Zhou, Feng
2016-07-01
Cyanidin-3-glucoside (C3G) is a major anthocyanin in berries and a potential nutritional supplement for preventing retinal degeneration. However, the protective mechanism of C3G and its metabolites, protocatechuic acid (PCA) and ferulic acid (FA), remain unclear. The molecular mechanisms of C3G and its metabolites against retinal photooxidative damage in vivo are investigated. Pigmented rabbits were orally administered C3G, PCA, and FA (0.11 mmol/kg/day) for 3 weeks. Electroretinography, histological analysis, and TUNEL assay showed that C3G and its metabolites attenuated retinal cell apoptosis. The expression of oxidative stress markers were upregulated after light exposure but attenuated by C3G and FA, which may be attributed to the elevated secretion and expression of heme oxygenase (HO-1) and nuclear factor erythroid-2 related factor 2 (Nrf2). C3G, PCA, and FA attenuated the secretion or expression of inflammation-related genes; FA suppressed nuclear factor kappa B (NF-κB) activation. The treatments attenuated the light-induced changes on certain apoptotic proteins and angiogenesis-related cytokines. C3G and FA reduced light-induced retinal oxidative stress by activating the Nrf2/HO-1 antioxidant pathway. FA attenuated the light-induced retinal inflammation by suppressing NF-κB activation. C3G and its metabolites attenuated the photooxidation-induced apoptosis and angiogenesis in the retina. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
CALIOP near-real-time backscatter products compared to EARLINET data
NASA Astrophysics Data System (ADS)
Grigas, T.; Hervo, M.; Gimmestad, G.; Forrister, H.; Schneider, P.; Preißler, J.; Tarrason, L.; O'Dowd, C.
2015-03-01
The expedited near-real-time Level 1.5 Cloud-Aerosol Lidar (Light Detection and Ranging) with Orthogonal Polarization (CALIOP) products were evaluated against data from the ground-based European Aerosol Research Lidar Network (EARLINET). Over a period of three years, lidar data from 48 CALIOP overpasses with ground tracks within a 100 km distance from an operating EARLINET station were deemed suitable for analysis and they included a valid aerosol classification type (e.g. dust, polluted dust, clean marine, clean continental, polluted continental, mixed and/or smoke/biomass burning). For the complete dataset comprising both PBL and FT data, the correlation coefficient was 0.86, and when separated into separate layers, the PBL and FT correlation coefficients were 0.6 and 0.85 respectively. The presence of FT layers with high attenuated backscatter led to poor agreement in PBL backscatter profiles between the CALIOP and EARLINET measurements and prompted a further analysis filtering out such cases. However, the correlation coefficient value for the complete dataset decreased marginally from 0.86 to 0.84 while the PBL coefficient increased from 0.6 up to 0.65 and the FT coefficient also decreased from 0.85 to 0.79. For specific aerosol types, the correlation coefficient between CALIOP backscatter profiles and ground-based lidar data ranged from 0.37 for polluted continental aerosol in the planetary boundary layer (PBL) to 0.57 for dust in the free troposphere (FT). The results suggest different levels of agreement based on the location of the dominant aerosol layer and the aerosol type.
Light Attenuation in a 14-year-old Loblolly Pine Stand as Influenced by Fertilization and Irrigation
D.A. Sampson; H. Lee Allen
1998-01-01
We examined empirical and simulated estimates of canopy light attenuation at SETRES (Southeast Tree Research and Education Site) a 2x2 factorial study of water and nutrients. Fertilized plots had signiticantly lower under-canopy PAR transmittance (Tc) when compared to non-fertilized plots. Light interception efftciency as measured by the...
Huang, Chih-Chung; Chen, Ruimin; Tsui, Po-Hsiang; Zhou, Qifa; Humayun, Mark S; Shung, K Kirk
2009-10-07
A cataract is a clouding of the lens in the eye that affects vision. Phacoemulsification is the mostly common surgical method for treating cataracts, and determining that the optimal phacoemulsification energy is dependent on measuring the hardness of the lens. This study explored the use of an ultrasound needle transducer for invasive measurements of ultrasound attenuation coefficient to evaluate the hardness of the cataract lens. A 47 MHz high-frequency needle transducer with a diameter of 0.9 mm was fabricated by a polarized PMN-33%PT single crystal in the present study. The attenuation coefficients at different stages of an artificial porcine cataract lens were measured using the spectral shift approach. The hardness of the cataract lens was also evaluated by mechanical measurement of its elastic properties. The results demonstrated that the ultrasonic attenuation coefficient was increased from 0.048 +/- 0.02 to 0.520 +/- 0.06 dB mm(-1) MHz(-1) corresponding to an increase in Young's modulus from 6 +/- 0.4 to 96 +/- 6.2 kPa as the cataract further developed. In order to evaluate the feasibility of combining needle transducer and phacoemulsification probe for real-time measurement during cataract surgery, the needle transducer was mounted on the phacoemulsification probe for a vibration test. The results indicated that there was no apparent damage to the tip of the needle transducer and the pulse-echo test showed that a good performance in sensitivity was maintained after the vibration test.
NASA Astrophysics Data System (ADS)
Haendel, A.; Ohrnberger, M.; Krüger, F.
2016-11-01
Knowledge of the quality factor of near-surface materials is of fundamental interest in various applications. Attenuation can be very strong close to the surface and thus needs to be properly assessed. In recent years, several researchers have studied the retrieval of attenuation coefficients from the cross correlation of ambient seismic noise. Yet, the determination of exact amplitude information from noise-correlation functions is, in contrast to the extraction of traveltimes, not trivial. Most of the studies estimated attenuation coefficients on the regional scale and within the microseism band. In this paper, we investigate the possibility to derive attenuation coefficients from seismic noise at much shallower depths and higher frequencies (>1 Hz). The Euroseistest area in northern Greece offers ideal conditions to study quality factor retrieval from ambient noise for different rock types. Correlations are computed between the stations of a small scale array experiment (station spacings <2 km) that was carried out in the Euroseistest area in 2011. We employ the correlation of the coda of the correlation (C3) method instead of simple cross correlations to mitigate the effect of uneven noise source distributions on the correlation amplitude. Transient removal and temporal flattening are applied instead of 1-bit normalization in order to retain relative amplitudes. The C3 method leads to improved correlation results (higher signal-to-noise ratio and improved time symmetry) compared to simple cross correlations. The C3 functions are rotated from the ZNE to the ZRT system and we focus on Love wave arrivals on the transverse component and on Love wave quality factors QL. The analysis is performed for selected stations being either situated on soft soil or on weathered rock. Phase slowness is extracted using a slant-stack method. Attenuation parameters are inferred by inspecting the relative amplitude decay of Love waves with increasing interstation distance. We observe that the attenuation coefficient γ and QL can be reliably extracted for stations situated on soft soil whereas the derivation of attenuation parameters is more problematic for stations that are located on weathered rock. The results are in acceptable conformance with theoretical Love wave attenuation curves that were computed using 1-D shear wave velocity and quality factor profiles from the Euroseistest area.
NASA Astrophysics Data System (ADS)
Chen, Yanhao; Lu, Qi; Jing, Bo; Zhang, Zhiyi
2016-09-01
This paper addresses dynamic modelling and experiments on a passive vibration isolator for application in the space environment. The isolator is composed of a pretensioned plane cable net structure and a fluid damper in parallel. Firstly, the frequency response function (FRF) of a single cable is analysed according to the string theory, and the FRF synthesis method is adopted to establish a dynamic model of the plane cable net structure. Secondly, the equivalent damping coefficient of the fluid damper is analysed. Thirdly, experiments are carried out to compare the plane cable net structure, the fluid damper and the vibration isolator formed by the net and the damper, respectively. It is shown that the plane cable net structure can achieve substantial vibration attenuation but has a great amplification at its resonance frequency due to the light damping of cables. The damping effect of fluid damper is acceptable without taking the poor carrying capacity into consideration. Compared to the plane cable net structure and the fluid damper, the isolator has an acceptable resonance amplification as well as vibration attenuation.
Attenuation of X and Gamma Rays in Personal Radiation Shielding Protective Clothing.
Kozlovska, Michaela; Cerny, Radek; Otahal, Petr
2015-11-01
A collection of personal radiation shielding protective clothing, suitable for use in case of accidents in nuclear facilities or radiological emergency situations involving radioactive agents, was gathered and tested at the Nuclear Protection Department of the National Institute for Nuclear, Chemical and Biological Protection, Czech Republic. Attenuating qualities of shielding layers in individual protective clothing were tested via spectra measurement of x and gamma rays, penetrating them. The rays originated from different radionuclide point sources, the gamma ray energies of which cover a broad energy range. The spectra were measured by handheld spectrometers, both scintillation and High Purity Germanium. Different narrow beam geometries were adjusted using a special testing bench and a set of various collimators. The main experimentally determined quantity for individual samples of personal radiation shielding protective clothing was x and gamma rays attenuation for significant energies of the spectra. The attenuation was assessed comparing net peak areas (after background subtraction) in spectra, where a tested sample was placed between the source and the detector, and corresponding net peak areas in spectra, measured without the sample. Mass attenuation coefficients, which describe attenuating qualities of shielding layers materials in individual samples, together with corresponding lead equivalents, were determined as well. Experimentally assessed mass attenuation coefficients of the samples were compared to the referred ones for individual heavy metals.
Yoon, In-Young; Jeong, Do-Un; Kwon, Ki-Bum; Kang, Sang-Bum; Song, Byoung-Gun
2002-05-01
With practical applicability in mind, we wanted to observe whether nocturnal alertness, performance, and daytime sleep could be improved by light exposure of tolerable intensity and duration in a real work place. We also evaluated whether attenuating morning light was important in adaptation of real night shift workers. Twelve night shift nurses participated in this study. The study consisted of three different treatment procedures: Room Light (RL), Bright Light (BL), and Bright Light with Sunglasses (BL/S). In RL, room light exposure was given during the night shift and followed by 1 hr exposure to sunlight or 10,000 lux light the next morning (from 08:30 to 09:30). In BL, a 4-hour nocturnal light exposure of 4,000-6,000 lux (from 01:00 to 05:00) was applied and followed by the same morning light exposure as in RL. In BL/S, the same nocturnal light exposure as in BL was done with light attenuation in the morning. Each treatment procedure was continued for 4 days in a repeated measures, cross-over design. Nocturnal alertness was measured by a visual analog scale. Computerized performance tests were done. Daytime sleep was recorded with actigraphy. The most significant overall improvement of sleep was noted in BL/S. BL showed less improvement than BL/S but more than RL. Comparison of nocturnal alertness among the 3 treatments produced similar results: during BL/S, the subjects were most alert, followed by BL and then by RL. Real night shift workers can improve nocturnal alertness and daytime sleep by bright light exposure in their work place. These improvements can be maximized by attenuating morning light on the way home.
Dickhudt, Patrick J.; Ganju, Neil K.; Montgomery, Ellyn T.
2015-08-28
The U.S. Geological Survey, in cooperation with the New Jersey Department of Environmental Protection, measured suspended-sediment concentrations, currents, waves, light attenuation, and a variety of other water-quality parameters in the summer of 2013 in Barnegat Bay-Little Egg Harbor, New Jersey. These measurements quantified light attenuation and sediment resuspension in three seagrass meadows. Data were acquired sequentially at three paired channel-shoal sites, as the equipment was moved from south to north in the estuary. Data were collected for approximately 3 weeks at each site.
Harder, Timm C.; Hufnagel, Markus; Zahn, Katrin; Beutel, Karin; Schmitt, Heinz-Josef; Ullmann, Uwe; Rautenberg, Peter
2001-01-01
Detection of parvovirus B19 DNA offers diagnostic advantages over serology, particularly in persistent infections of immunocompromised patients. A rapid, novel method of B19 DNA detection and quantification is introduced. This method, a quantitative PCR assay, is based on real-time glass capillary thermocycling (LightCycler [LC]) and fluorescence resonance energy transfer (FRET). The PCR assay allowed quantification over a dynamic range of over 7 logs and could quantify as little as 250 B19 genome equivalents (geq) per ml as calculated for plasmid DNA (i.e., theoretically ≥5 geq per assay). Interrater agreement analysis demonstrated equivalence of LC-FRET PCR and conventional nested PCR in the diagnosis of an active B19 infection (kappa coefficient = 0.83). The benefit of the new method was demonstrated in an immunocompromised child with a relapsing infection, who required an attenuation of the immunosuppressive therapy in addition to repeated doses of immunoglobulin to eliminate the virus. PMID:11724854
Factors That Attenuate the Correlation Coefficient and Its Analogs.
ERIC Educational Resources Information Center
Dolenz, Beverly
The correlation coefficient is an integral part of many other statistical techniques (analysis of variance, t-tests, etc.), since all analytic methods are actually correlational (G. V. Glass and K. D. Hopkins, 1984). The correlation coefficient is a statistical summary that represents the degree and direction of relationship between two variables.…
GPR measurements of attenuation in concrete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisenmann, David, E-mail: djeisen@cnde.iastate.edu; Margetan, Frank J., E-mail: djeisen@cnde.iastate.edu; Pavel, Brittney, E-mail: djeisen@cnde.iastate.edu
2015-03-31
Ground-penetrating radar (GPR) signals from concrete structures are affected by several phenomenon, including: (1) transmission and reflection coefficients at interfaces; (2) the radiation patterns of the antenna(s) being used; and (3) the material properties of concrete and any embedded objects. In this paper we investigate different schemes for determining the electromagnetic (EM) attenuation of concrete from measured signals obtained using commercially-available GPR equipment. We adapt procedures commonly used in ultrasonic inspections where one compares the relative strengths of two or more signals having different travel paths through the material of interest. After correcting for beam spread (i.e., diffraction), interface phenomena,more » and equipment amplification settings, any remaining signal differences are assumed to be due to attenuation thus allowing the attenuation coefficient (say, in dB of loss per inch of travel) to be estimated. We begin with a brief overview of our approach, and then discuss how diffraction corrections were determined for our two 1.6 GHz GPR antennas. We then present results of attenuation measurements for two types of concrete using both pulse/echo and pitch/catch measurement setups.« less
NASA Astrophysics Data System (ADS)
Marashdeh, Mohammad W.; Al-Hamarneh, Ibrahim F.; Abdel Munem, Eid M.; Tajuddin, A. A.; Ariffin, Alawiah; Al-Omari, Saleh
Rhizophora spp. wood has the potential to serve as a solid water or tissue equivalent phantom for photon and electron beam dosimetry. In this study, the effective atomic number (Zeff) and effective electron density (Neff) of raw wood and binderless Rhizophora spp. particleboards in four different particle sizes were determined in the 10-60 keV energy region. The mass attenuation coefficients used in the calculations were obtained using the Monte Carlo N-Particle (MCNP5) simulation code. The MCNP5 calculations of the attenuation parameters for the Rhizophora spp. samples were plotted graphically against photon energy and discussed in terms of their relative differences compared with those of water and breast tissue. Moreover, the validity of the MCNP5 code was examined by comparing the calculated attenuation parameters with the theoretical values obtained by the XCOM program based on the mixture rule. The results indicated that the MCNP5 process can be followed to determine the attenuation of gamma rays with several photon energies in other materials.
GPR measurements of attenuation in concrete
NASA Astrophysics Data System (ADS)
Eisenmann, David; Margetan, Frank J.; Pavel, Brittney
2015-03-01
Ground-penetrating radar (GPR) signals from concrete structures are affected by several phenomenon, including: (1) transmission and reflection coefficients at interfaces; (2) the radiation patterns of the antenna(s) being used; and (3) the material properties of concrete and any embedded objects. In this paper we investigate different schemes for determining the electromagnetic (EM) attenuation of concrete from measured signals obtained using commercially-available GPR equipment. We adapt procedures commonly used in ultrasonic inspections where one compares the relative strengths of two or more signals having different travel paths through the material of interest. After correcting for beam spread (i.e., diffraction), interface phenomena, and equipment amplification settings, any remaining signal differences are assumed to be due to attenuation thus allowing the attenuation coefficient (say, in dB of loss per inch of travel) to be estimated. We begin with a brief overview of our approach, and then discuss how diffraction corrections were determined for our two 1.6 GHz GPR antennas. We then present results of attenuation measurements for two types of concrete using both pulse/echo and pitch/catch measurement setups.
NASA Astrophysics Data System (ADS)
Chan, T. W.; Huang, L.; Leaitch, R.; Sharma, S.; Brook, J.; Slowik, J.; Abbatt, J.
2008-05-01
Carbonaceous species (organic carbon (OC) and elemental carbon (EC)) contribute a large portion of atmospheric fine particle mass and influence air quality, human health, and climate forcing. However, their emission sources and atmospheric aging processes are not well understood. The OM/OC ratio, defined as the organic mass per unit OC mass, is useful to understand the degree of oxidation of aerosol particles in atmospheric processes. We define the modified BC/EC (mod BC/EC) ratio as the ratio of the non-scattering corrected absorption coefficient per unit mass of EC. The mod BC/EC ratio has a similar meaning as the site specific attenuation coefficient, which is an important parameter used to convert light absorption measurements to black carbon mass. The mod BC/EC ratio can vary due to light scattering effect on absorption measurements, in which the oxygenated organics may play a role. The pyrolysis organic carbon (POC) is defined as the carbon mass fraction obtained at T= 870°C under a pure helium environment using the thermal separation method [Huang et al., 2006]. Since POC mass is generally proportional to the amount of oxygenated OC, studying the relationships among OC, EC, POC, as well as OM/OC and mod BC/EC ratios may help us understand the mechanisms of aerosol aging from different emission sources. Two 1-month field studies were conducted at a rural site in southern Ontario (NW of Toronto) during fall 2005 and spring 2007. Quartz filter samples were collected and analyzed for OC, POC, and EC concentrations using a thermal/optical method [Huang et al., 2006]. Together with the total organic matter measured by an Aerodyne Aerosol Mass Spectrometer (AMS) and the absorption coefficient obtained from a Particle Soot Absorption Photometer (PSAP), the OM/OC and mod BC/EC ratios for ambient aerosols were obtained. Our results show that when air mass was mainly from south, OC, POC, and EC were relatively high, with average ratios of OC/EC, OM/OC, and POC/EC as 1.94, 1.41, and 0.52, respectively; this indicates significant anthropogenic impacts and relatively large portion of oxygenated OC, which might be due to either primary emissions or photo-chemical reactions occurred in a short period of time. When air mass was mainly from north, OC, POC, and EC were much lower, with average ratios of OC/EC, OM/OC, and POC/EC as 3.10, 1.20, and 0.79, respectively; this suggests less influence from anthropogenic emissions and relatively aged air mass from biogenic-source dominated clean air. Using POC, we estimate the specific attenuation at the site to be 5.8 m2 g-1 independent of the air mass origin. The relationships among OM/OC, mod BC/EC, and POC will be further discussed. References: Huang, L., Brook, J.R., Zhang, W., Li, S.M., Graham, L., Ernst, D., Chivulescu, A., and Lu, G. (2006) Stable isotope measurements of carbon fractions (OC/EC) in airborne particulate: a new dimension for source characterization and apportionment, Atmospheric Environment, 40, 2690-2705.
NASA Astrophysics Data System (ADS)
Qi, Yadong; Bai, Shuju; Vogelmann, Thomas C.; Heisler, Gordon M.
2003-11-01
The depth of light penetration from the adaxial surfaces of the mature leaves of pecan (Carya illinoensis) was measured using a fiber optic microprobe system at four wavelengths: UV-B (310nm), UV-A (360 nm), blue light (430nm), and red light (680nm). The average thickness of the leaf adaxial epidermal layer was 15um and the total leaf thickness was 219um. The patterns of the light attenuation by the leaf tissues exhibited strong wavelength dependence. The leaf adaxial epidermal layer was chiefly responsible for absorbing the UV-A UV-B radiation. About 98% of 310 nm light was steeply attenuated within the first 5 um of the adaxial epidermis; thus, very little UV-B radiation was transmitted to the mesophyll tissues where contain photosynthetically sensitive sites. The adaxial epidermis also attenuated 96% of the UV-A radiation. In contrast, the blue and red light penetrated much deeper and was gradually attenutated by the leaves. The mesophyll tissues attenuated 17% of the blue light and 42% of the red light, which were available for photosynthesis use. Since the epidermal layer absorbed nearly all UV-B light, it acted as an effective filter screening out the harmful radiation and protecting photosynthetically sensitive tissues from the UV-B damage. Therefore, the epidermal function of the UV-B screening effectiveness can be regarded as one of the UV-B protection mechanisms in pecan.
2010-02-19
attenuation is a function of the Hurst exponent which characterizes the fractal het- erogeneity. Muller and Gurevich15,16 used statistical smoothing of...modified Bessel function of the third kind, Γ denotes the gamma function, and ν is the Hurst coefficient which is assumed to be 0 < ν ≤ 1. The three...The Hurst coefficient, ν, is ν = 0.1 (long-dashed line), ν = 0.5 (short-dashed line), and ν = 0.9 (long-short dashed line). In (a) the sound speed
Transfer function concept for ultrasonic characterization of material microstructures
NASA Technical Reports Server (NTRS)
Vary, A.; Kautz, H. E.
1986-01-01
The approach given depends on treating material microstructures as elastomechanical filters that have analytically definable transfer functions. These transfer functions can be defined in terms of the frequency dependence of the ultrasonic attenuation coefficient. The transfer function concept provides a basis for synthesizing expressions that characterize polycrystalline materials relative to microstructural factors such as mean grain size, grain-size distribution functions, and grain boundary energy transmission. Although the approach is nonrigorous, it leads to a rational basis for combining the previously mentioned diverse and fragmented equations for ultrasonic attenuation coefficients.
Light-attenuating effect of dentin on the polymerization of light-activated restorative resins.
Arikawa, Hiroyuki; Kanie, Takahito; Fujii, Koichi; Ban, Seiji; Takahashi, Hideo
2004-12-01
The light-attenuating effect of dentin on the mechanical properties of light-activated composite resins was evaluated using a simple experimental filter. The filter was designed to simulate the light transmittance and light diffusion characteristics of 1.0-mm thick dentin. The depth of cure, surface hardness, and flexural strength for 13 shades of three light-activated restorative resins were examined. These resins were cured either using direct irradiation with a light source, or indirect irradiation through the filter. The attenuation of light intensity by 1.0-mm thick dentin reached 85-90% in the 400-550 nm wavelength region. For all materials, the values of depth of cure, surface hardness on the top and bottom surfaces, and flexural strength of specimens irradiated indirectly through the simulated 1.0-mm thick dentin filter decreased by 37-60%, 16-55%, 50-83%, and 44-82% in comparison with those by direct irradiation, respectively. Recovery from mechanical properties' reduction was achieved when materials were irradiated 1.5-4 times longer than the standard irradiation time.
NASA Astrophysics Data System (ADS)
Zhang, Y. Q.; Wei, H. J.; Yang, H. Q.; Guo, Z. Y.; Xie, S. S.; Gu, H. M.; Guo, X.; Zhu, Z. G.
2013-06-01
Previous studies from our group have demonstrated that glucose solution can induce optical clearing enhancement of esophageal tissues with optical coherence tomography (OCT). The aims of this study were to evaluate the optical clearing effects of ultrasound-mediated optical clearing agents (OCAs) and to find more effective methods to distinguish human normal esophageal tissues (NE) and cancerous esophageal tissues (CE). Here we used the OCT technique to investigate the optical attenuation of NE and CE in vitro after treatment with 30% glycerol alone and glycerol combined with ultrasound, respectively. Experimental results showed that the averaged attenuation coefficient of CE was significantly larger than that of NE. The maximal decreases of averaged attenuation coefficients of NE and CE were approximately 48.7% and 36.2% after treatment with 30% glycerol alone, and they were significantly lower than those treated with 30% glycerol and ultrasound (57.5% in NE and 44.8% in CE). Moreover, after treatment with 30% glycerol alone, the averaged attenuation coefficients of NE and CE reached their minima in about 80 min and 65 min, respectively. The times were much shorter in NE and CE after treatment with glycerol with ultrasound, being about 62 min and 50 min, respectively. The results suggest that there is a significant difference in the optical properties of NE and CE, and that OCT with an ultrasound-OCAs combination has the ability to distinguish CE from NE.
NASA Astrophysics Data System (ADS)
Duadi, Hamootal; Fixler, Dror
2015-05-01
Light reflectance and transmission from soft tissue has been utilized in noninvasive clinical measurement devices such as the photoplethysmograph (PPG) and reflectance pulse oximeter. Incident light on the skin travels into the underlying layers and is in part reflected back to the surface, in part transferred and in part absorbed. Most methods of near infrared (NIR) spectroscopy focus on the volume reflectance from a semi-infinite sample, while very few measure transmission. We have previously shown that examining the full scattering profile (angular distribution of exiting photons) provides more comprehensive information when measuring from a cylindrical tissue. Furthermore, an isobaric point was found which is not dependent on changes in the reduced scattering coefficient. The angle corresponding to this isobaric point depends on the tissue diameter. We investigated the role of multiple scattering and absorption on the full scattering profile of a cylindrical tissue. First, we define the range in which multiple scattering occurs for different tissue diameters. Next, we examine the role of the absorption coefficient in the attenuation of the full scattering profile. We demonstrate that the absorption linearly influences the intensity at each angle of the full scattering profile and, more importantly, the absorption does not change the position of the isobaric point. The findings of this work demonstrate a realistic model for optical tissue measurements such as NIR spectroscopy, PPG, and pulse oximetery.
The Physics Analysis of a Gas Attenuator with Argon as a Working Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryutov,, D.D.
2010-12-07
A gas attenuator is an important element of the LCLS facility. The attenuator must operate in a broad range of x-ray energies, provide attenuation coefficient between 1 and 10{sup 4} with the accuracy of 1% and, at the same time, be reliable and allow for many months of un-interrupted operation. S. Shen has recently carried out a detailed design study of the attenuator based on the use of nitrogen as a working gas. In this note we assess the features of the attenuator based on the use of argon. We concentrate on the physics issues, not the design features.
Bidirectional reflection functions from surface bump maps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabral, B.; Max, N.; Springmeyer, R.
1987-04-29
The Torrance-Sparrow model for calculating bidirectional reflection functions contains a geometrical attenuation factor to account for shadowing and occlusions in a hypothetical distribution of grooves on a rough surface. Using an efficient table-based method for determining the shadows and occlusions, we calculate the geometric attenuation factor for surfaces defined by a specific table of bump heights. Diffuse and glossy specular reflection of the environment can be handled in a unified manner by using an integral of the bidirectional reflection function times the environmental illumination, over the hemisphere of solid angle above a surface. We present a method of estimating themore » integral, by expanding the bidirectional reflection coefficient in spherical harmonics, and show how the coefficients in this expansion can be determined efficiently by reorganizing our geometric attenuation calculation.« less
Dependence of particle volume fraction on sound velocity and attenuation of EPDM composites.
Kim, K S; Lee, K I; Kim, H Y; Yoon, S W; Hong, S H
2007-05-01
The sound velocity and the attenuation coefficient of EPDM (Ethylene-propylene Diene Monomer) composites incorporated with Silicon Carbide particles (SiCp's) of various volume fractions (0-40%) were experimentally and theoretically investigated. For the experiment a through-transmission technique was used. For the theoretical prediction, some mechanical property models such as Reuss model and Coherent Potential Approximation (CPA) model etc. were employed. The experimental results showed that the sound velocity decreased with the increase of the SiCp volume fraction up to 30% and then increased with the 40 vol% specimen. The attenuation coefficient was increased with the increasing SiCp volume fractions. The modified Reuss model with a longitudinal elastic modulus predicted most well the experimental sound velocity and elastic modulus results.
Zhang, Y.; Xu, Y.; Xia, J.
2011-01-01
We analyse dispersion and attenuation of surface waves at free surfaces of possible vacuum/poroelastic media: permeable-'open pore', impermeable-'closed pore' and partially permeable boundaries, which have not been previously reported in detail by researchers, under different surface-permeable, viscous-damping, elastic and fluid-flowing conditions. Our discussion is focused on their characteristics in the exploration-seismic frequency band (a few through 200 Hz) for near-surface applications. We find two surface-wave modes exist, R1 waves for all conditions, and R2 waves for closed-pore and partially permeable conditions. For R1 waves, velocities disperse most under partially permeable conditions and least under the open-pore condition. High-coupling damping coefficients move the main dispersion frequency range to high frequencies. There is an f1 frequency dependence as a constant-Q model for attenuation at high frequencies. R1 waves for the open pore are most sensitive to elastic modulus variation, but least sensitive to tortuosities variation. R1 waves for partially permeable surface radiate as non-physical waves (Im(k) < 0) at low frequencies. For R2 waves, velocities are slightly lower than the bulk slow P2 waves. At low frequencies, both velocity and attenuation are diffusive of f1/2 frequency dependence, as P2 waves. It is found that for partially permeable surfaces, the attenuation displays -f1 frequency dependence as frequency increasing. High surface permeability, low-coupling damping coefficients, low Poisson's ratios, and low tortuosities increase the slope of the -f1 dependence. When the attenuation coefficients reach 0, R2 waves for partially permeable surface begin to radiate as non-physical waves. ?? 2011 The Authors Geophysical Journal International ?? 2011 RAS.
Relative validity of an FFQ to estimate daily food and nutrient intakes for Chilean adults.
Dehghan, Mahshid; Martinez, Solange; Zhang, Xiaohe; Seron, Pamela; Lanas, Fernando; Islam, Shofiqul; Merchant, Anwar T
2013-10-01
FFQ are commonly used to rank individuals by their food and nutrient intakes in large epidemiological studies. The purpose of the present study was to develop and validate an FFQ to rank individuals participating in an ongoing Prospective Urban and Rural Epidemiological (PURE) study in Chile. An FFQ and four 24 h dietary recalls were completed over 1 year. Pearson correlation coefficients, energy-adjusted and de-attenuated correlations and weighted kappa were computed between the dietary recalls and the FFQ. The level of agreement between the two dietary assessment methods was evaluated by Bland-Altman analysis. Temuco, Chile. Overall, 166 women and men enrolled in the present study. One hundred men and women participated in FFQ development and sixty-six individuals participated in FFQ validation. The FFQ consisted of 109 food items. For nutrients, the crude correlation coefficients between the dietary recalls and FFQ varied from 0.14 (protein) to 0.44 (fat). Energy adjustment and de-attenuation improved correlation coefficients and almost all correlation coefficients exceeded 0.40. Similar correlation coefficients were observed for food groups; the highest de-attenuated energy adjusted correlation coefficient was found for margarine and butter (0.75) and the lowest for potatoes (0.12). The FFQ showed moderate to high agreement for most nutrients and food groups, and can be used to rank individuals based on energy, nutrient and food intakes. The validation study was conducted in a unique setting and indicated that the tool is valid for use by adults in Chile.
NASA Astrophysics Data System (ADS)
Para, J.; Charrière, B.; Matsuoka, A.; Miller, W. L.; Rontani, J. F.; Sempéré, R.
2012-11-01
Water masses from the Beaufort Sea in the Arctic Ocean were evaluated for dissolved organic carbon (DOC), and optical characteristics including UV and PAR diffuse attenuation (Kd), and chromophoric and fluorescent dissolved organic matter (CDOM and FDOM) as part of the MALINA field campaign (30 July to 27 August). Even with relatively low mean daily solar radiation incident on the sea surface (0.12 ± 0.03, 8.46 ± 1.64 and 18.09 ± 4.20 kJ m-2 for UV-B (305 nm), UV-A (380 nm) and PAR, respectively), we report significant light penetration with 10% irradiance depths (Z10% (λ)) reaching 9.5 m for 340 nm (UV-A) radiation in the Eastern sector and 4.5 m in the Mackenzie River influenced area (Western sector). Spectral absorption coefficients (aCDOM (350 nm) (m-1)) were significantly correlated to both diffuse attenuation coefficients (Kd) in the UV-A and UV-B and to DOC concentrations. This indicates CDOM as the dominant attenuator of UV solar radiation and suggests its use as an optical proxy for DOC concentrations in this region. Extrapolating CDOM to DOC relationships, we estimate that ~ 16% of the DOC in the Mackenzie River does not absorb radiation at 350 nm. DOC and CDOM discharges by the Mackenzie River during the MALINA Cruise are estimated as ~ 0.22 TgC and 0.18 TgC, respectively. Three dissolved fluorescent components (C1-C3) were identified by fluorescence Excitation/Emission Matrix Spectroscopy (EEMS) and PARAFAC analysis. Our results showed an in-situ biological component (C1) that co-dominated with a terrestrial humic-like component (C2) in the Mackenzie Delta sector, whereas the protein-like (C3) component dominated in the saltiest waters of the North East sector.
Cavity Attenuated Phase Shift (CAPS) Monitor Instrument Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sedlacek, Arthur J.
2016-04-01
The CAPS PMex monitor is a cavity attenuated phase shift extinction instrument. It operates as an optical extinction spectrometer, using a visible-light-emitting diode (LED) as the light source, a sample cell incorporating two high-reflectivity mirrors centered at the wavelength of the LED, and a vacuum photodiode detector. Its efficacy is based on the fact that aerosols are broadband scatterers and absorbers of light.
PROPERTIES OF PHANTOM TISSUE-LIKE POLYMETHYLPENTENE IN THE FREQUENCY RANGE 20–70 MHZ
Madsen, Ernest L; Deaner, Meagan E; Mehi, James
2011-01-01
Quantitative ultrasound (QUS) has been employed to characterize soft tissues at ordinary abdominal ultrasound frequencies (2–15 MHz) and is beginning application at high frequencies (20–70 MHz). For example, backscatter and attenuation coefficients can be estimated in vivo using a reference phantom. At high frequencies it is crucial that reverberations do not compromise the measurements. Such reverberations can occur between the phantom's scanning window and transducer components as well as within the scanning window between its surfaces. Transducers are designed to minimize reverberations between the transducer and soft tissue. Thus, the acoustic impedance of a phantom scanning window should be tissue-like; polymethylpentene (TPX) is commonly used because of its tissue-like acoustic impedance. For QUS it is also crucial to correct for the transmission coefficient of the scanning window. Computation of the latter requires knowledge of the ultrasonic properties, viz, density, speed and attenuation coefficients. This work reports values for the ultrasonic properties of two versions of TPX over the high frequency range. One form (TPX film) is used as a scanning window on high frequency phantoms, and at 40 MHz and 22°C was found to have an attenuation coefficient of 120 dB/cm and a propagation speed of 2093 m/s. PMID:21723451
NASA Astrophysics Data System (ADS)
Eberle, Melissa M.; Thorn, Stephanie; Young, Lawerence; Pfau, Daniel; Madwed, Jeffrey; Small, Kersten; Kilmas, Michael; Choma, Michael A.; Sinusas, Albert J.
2017-02-01
Atrial fibrillation (AF) occurs following myocardial infarction (MI) and is associated with left ventricular dysfunction, which promotes the development of atrial remodeling and permanent atrial fibrosis. The purpose of this study was determining the effects of MI on left atrial (LA) remodeling with and without therapy with an angiotensin converting enzyme inhibition (ACEi) utilizing optical coherence tomography (OCT). As the composition of the myocardial tissue changes during LA remodeling the optical attenuation of the light will also change providing a metric to quantify the structural remodeling process. Lewis rats (240-275 g) underwent either surgical ligation of left coronary artery creating chronic MI, or SHAM surgery. 13 weeks post-surgery, ex vivo OCT imaging was performed of the LA appendage. Depth-resolved, attenuation coefficient volumes were calculated and the resulting atrial wall attenuation values were analyzed for four experimental groups: SHAM, SHAM with ACEi, MI no ACEi, and MI with ACEi. Quantification of tissue attenuation was performed and shown to significantly increase with MI in association with increases in collagen as verified with corresponding histological sectioning. Fractal analysis of the LA wall trabeculation patterns, 100 µm below the surface, was performed to quantify wall thickening associated with LA remodeling. A significant increase in fractal dimension was determined post MI compared to SHAM corresponding to a loss of the trabeculation pattern and wall thickening. The results from this study demonstrate OCT as an imaging technique capable of investigate LA remodeling with high resolution and label-free optical contrast processing.
Photon interaction studies using 241Am g-rays
NASA Astrophysics Data System (ADS)
Ramachandran, N.; Karunakaran Nair, K.; Abdullah, K. K.; Varier, K. M.
2006-09-01
We have carried out some photon interaction measurements using 59.54 keV γ-rays from a ^{241}Am source. These include γ attenuation studies as well as photoelectric absorption studies in various samples. The attenuation studies have been made using leaf and wood samples, samples like sand, sugar etc., which contain particles of varying sizes as well as pellets and aqueous solutions of rare earth compounds. In the case of the leaf and wood samples, we have used the γ-ray attenuation technique for the determination of the water content in fresh and dried samples. The variation of the attenuation coefficient with particle size has been investigated for sand and sugar samples. The attenuation studies as well as the photoelectric studies in the case of rare earth elements have been carried out on samples containing such elements whose K-absorption edge energies lie below and close to the γ-energy used. Suitable compounds of the rare earth elements have been chosen as mixture absorbers in these investigations. A narrow beam good geometry set-up was used for the attenuation measurements. A well-shielded scattering geometry was used for the photoelectric measurements. The mixture rule was invoked to extract the values of the mass attenuation coefficients for the elements from those of the corresponding compounds. The results are consistent with theoretical values derived from the XCOM package.
NASA Astrophysics Data System (ADS)
Önder, P.; Turşucu, A.; Demir, D.; Gürol, A.
2012-12-01
Mass attenuation coefficient, μm , effective atomic number, Zeff, and effective electron density, Nel, were determined experimentally and theoretically for some thermoluminescent dosimetric (TLD) compounds such as MgSO4, CdSO4, Al2O3, Mg2SiO4, ZnSO4, CaSO4, CaF2, NaSO4, Na4P2O7, Ca5F(PO4)3, SiO2, CaCO3 and BaSO4 at 8.04, 8.91, 13.37, 14.97, 17.44, 19.63, 22.10, 24.90, 30.82, 32.06, 35.40, 36.39, 37.26, 43.74, 44.48, 50.38, 51.70, 53.16, 80.99, 276.40, 302.85, 356.01, 383.85 and 661.66 keV photon energies by using an HPGe detector with a resolution of 182 eV at 5.9 keV. The theoretical mass attenuation coefficients were estimated using mixture rule. The calculated values were compared with the experimental values for all compounds. Good agreement has been observed between experimental and theoretical values within experimental uncertainties.
Morrison, John L.; Stephens, Alan G.; Grover, S. Blaine
2001-11-20
An improved nuclear diagnostic method identifies a contained target material by measuring on-axis, mono-energetic uncollided particle radiation transmitted through a target material for two penetrating radiation beam energies, and applying specially developed algorithms to estimate a ratio of macroscopic neutron cross-sections for the uncollided particle radiation at the two energies, where the penetrating radiation is a neutron beam, or a ratio of linear attenuation coefficients for the uncollided particle radiation at the two energies, where the penetrating radiation is a gamma-ray beam. Alternatively, the measurements are used to derive a minimization formula based on the macroscopic neutron cross-sections for the uncollided particle radiation at the two neutron beam energies, or the linear attenuation coefficients for the uncollided particle radiation at the two gamma-ray beam energies. A candidate target material database, including known macroscopic neutron cross-sections or linear attenuation coefficients for target materials at the selected neutron or gamma-ray beam energies, is used to approximate the estimated ratio or to solve the minimization formula, such that the identity of the contained target material is discovered.
Pulse transducer with artifact signal attenuator. [heart rate sensors
NASA Technical Reports Server (NTRS)
Cash, W. H., Jr.; Polhemus, J. T. (Inventor)
1980-01-01
An artifact signal attenuator for a pulse rate sensor is described. The circuit for attenuating background noise signals is connected with a pulse rate transducer which has a light source and a detector for light reflected from blood vessels of a living body. The heart signal provided consists of a modulated dc signal voltage indicative of pulse rate. The artifact signal resulting from light reflected from the skin of the body comprises both a constant dc signal voltage and a modulated dc signal voltage. The amplitude of the artifact signal is greater and the frequency less than that of the heart signal. The signal attenuator circuit includes an operational amplifier for canceling the artifact signal from the output signal of the transducer and has the capability of meeting packaging requirements for wrist-watch-size packages.
NASA Astrophysics Data System (ADS)
Hosono, Satsuki; Sato, Shun; Ishida, Akane; Suzuki, Yo; Inohara, Daichi; Nogo, Kosuke; Abeygunawardhana, Pradeep K.; Suzuki, Satoru; Nishiyama, Akira; Wada, Kenji; Ishimaru, Ichiro
2015-07-01
For blood glucose level measurement of dialysis machines, we proposed AAA-battery-size ATR (Attenuated total reflection) Fourier spectroscopy in middle infrared light region. The proposed one-shot Fourier spectroscopic imaging is a near-common path and spatial phase-shift interferometer with high time resolution. Because numerous number of spectral data that is 60 (= camera frame rare e.g. 60[Hz]) multiplied by pixel number could be obtained in 1[sec.], statistical-averaging improvement realize high-accurate spectral measurement. We evaluated the quantitative accuracy of our proposed method for measuring glucose concentration in near-infrared light region with liquid cells. We confirmed that absorbance at 1600[nm] had high correlations with glucose concentrations (correlation coefficient: 0.92). But to measure whole-blood, complex light phenomenon caused from red blood cells, that is scattering and multiple reflection or so, deteriorate spectral data. Thus, we also proposed the ultrasound-assisted spectroscopic imaging that traps particles at standing-wave node. Thus, if ATR prism is oscillated mechanically, anti-node area is generated around evanescent light field on prism surface. By elimination complex light phenomenon of red blood cells, glucose concentration in whole-blood will be quantify with high accuracy. In this report, we successfully trapped red blood cells in normal saline solution with ultrasonic standing wave (frequency: 2[MHz]).
Apparatus and process for active pulse intensity control of laser beam
Wilcox, Russell B.
1992-01-01
An optically controlled laser pulse energy control apparatus and process is disclosed wherein variations in the energy of a portion of the laser beam are used to vary the resistance of a photodetector such as a photoresistor through which a control voltage is fed to a light intensity controlling device through which a second portion of the laser beam passes. Light attenuation means are provided to vary the intensity of the laser light used to control the resistance of the photodetector. An optical delay path is provided through which the second portion of the beam travels before reaching the light intensity controlling device. The control voltage is supplied by a variable power supply. The apparatus may be tuned to properly attenuate the laser beam passing through the intensity controlling device by adjusting the power supply, the optical delay path, or the light attenuating means.
Determining attenuation properties of interfering fast and slow ultrasonic waves in cancellous bone.
Nelson, Amber M; Hoffman, Joseph J; Anderson, Christian C; Holland, Mark R; Nagatani, Yoshiki; Mizuno, Katsunori; Matsukawa, Mami; Miller, James G
2011-10-01
Previous studies have shown that interference between fast waves and slow waves can lead to observed negative dispersion in cancellous bone. In this study, the effects of overlapping fast and slow waves on measurements of the apparent attenuation as a function of propagation distance are investigated along with methods of analysis used to determine the attenuation properties. Two methods are applied to simulated data that were generated based on experimentally acquired signals taken from a bovine specimen. The first method uses a time-domain approach that was dictated by constraints imposed by the partial overlap of fast and slow waves. The second method uses a frequency-domain log-spectral subtraction technique on the separated fast and slow waves. Applying the time-domain analysis to the broadband data yields apparent attenuation behavior that is larger in the early stages of propagation and decreases as the wave travels deeper. In contrast, performing frequency-domain analysis on the separated fast waves and slow waves results in attenuation coefficients that are independent of propagation distance. Results suggest that features arising from the analysis of overlapping two-mode data may represent an alternate explanation for the previously reported apparent dependence on propagation distance of the attenuation coefficient of cancellous bone. © 2011 Acoustical Society of America
Determining attenuation properties of interfering fast and slow ultrasonic waves in cancellous bone
Nelson, Amber M.; Hoffman, Joseph J.; Anderson, Christian C.; Holland, Mark R.; Nagatani, Yoshiki; Mizuno, Katsunori; Matsukawa, Mami; Miller, James G.
2011-01-01
Previous studies have shown that interference between fast waves and slow waves can lead to observed negative dispersion in cancellous bone. In this study, the effects of overlapping fast and slow waves on measurements of the apparent attenuation as a function of propagation distance are investigated along with methods of analysis used to determine the attenuation properties. Two methods are applied to simulated data that were generated based on experimentally acquired signals taken from a bovine specimen. The first method uses a time-domain approach that was dictated by constraints imposed by the partial overlap of fast and slow waves. The second method uses a frequency-domain log-spectral subtraction technique on the separated fast and slow waves. Applying the time-domain analysis to the broadband data yields apparent attenuation behavior that is larger in the early stages of propagation and decreases as the wave travels deeper. In contrast, performing frequency-domain analysis on the separated fast waves and slow waves results in attenuation coefficients that are independent of propagation distance. Results suggest that features arising from the analysis of overlapping two-mode data may represent an alternate explanation for the previously reported apparent dependence on propagation distance of the attenuation coefficient of cancellous bone. PMID:21973378
NASA Technical Reports Server (NTRS)
Tian, Lin; Heymsfield, G. M.; Srivastava, R. C.; Starr, D. OC. (Technical Monitor)
2001-01-01
Observations by the airborne X-band Doppler radar (EDOP) and the NCAR S-band polarimetric (S-POL) radar from two field experiments are used to evaluate the Surface ref'ercnce technique (SRT) for measuring the path integrated attenuation (PIA) and to study attenuation in deep convective storms. The EDOP, flying at an altitude of 20 km, uses a nadir beam and a forward pointing beam. It is found that over land, the surface scattering cross-section is highly variable at nadir incidence but relatively stable at forward incidence. It is concluded that measurement by the forward beam provides a viable technique for measuring PIA using the SRT. Vertical profiles of peak attenuation coefficient are derived in vxo deep convective storms by the dual-wavelength method. Using the measured Doppler velocity, the reflectivities at. the two wavelengths, the differential reflectivity and the estimated attenuation coefficients, it is shown that: supercooled drops and dry ice particles probably co-existed above the melting level in regions of updraft, that water-coated partially melted ice particles probably contributed to high attenuation below the melting level, and that the data are not readil explained in terms of a gamma function raindrop size distribution.
Impacts of PM concentrations on visibility impairment
NASA Astrophysics Data System (ADS)
Jie, Guo; Wang, Mei-mei; Han, Ye-Xing; Yu, Zhi-Wei; Tang, Huai-Wu
2016-11-01
In the paper, an accurate and sensitive cavity attenuated phase shift spectroscopy (CAPS) sensor was used to monitor the atmospheric visibility. The CAPS system mainly includes a LED light source, a band-pass filter, an optical resonant cavity (composed of two high mirror, reflectivity is greater than 99.99%), a photoelectric detector and a lock-in amplifier. The 2L/min flow rate, the optical sensor rise and fall response time is about 15 s, so as to realize the fast measurement of visibility. An Allan variance analysis was carried out evaluating the optical system stability (and hence the maximum averaging time for the minimum detection limit) of the CAPS system. The minima ( 0.1 Mm-1) in the Allan plots show the optimum average time ( 100s) for optimum detection performance of the CAPS system. During this period, the extinction coefficient was correlated with PM2.5 mass (0.88), the extinction coefficient was correlated with PM10 mass (0.85). The atmospheric visibility was correlated with PM2.5 mass (0.74). The atmospheric visibility was correlated with PM10 mass (0.66).
Eberle, Melissa M.; Hsu, Mike S.; Rodriguez, Carissa L.; Szu, Jenny I.; Oliveira, Michael C.; Binder, Devin K.; Park, B. Hyle
2015-01-01
Optical coherence tomography (OCT) is a high resolution, minimally invasive imaging technique, which can produce depth-resolved cross-sectional images. In this study, OCT was used to detect changes in the optical properties of cortical tissue in vivo in mice during the induction of global (pentylenetetrazol) and focal (4-aminopyridine) seizures. Through the use of a confidence interval statistical method on depth-resolved volumes of attenuation coefficient, we demonstrated localization of regions exhibiting both significant positive and negative changes in attenuation coefficient, as well as differentiating between global and focal seizure propagation. PMID:26137382
NASA Astrophysics Data System (ADS)
Hong-Chen, Zhang; Hai, Liu; Hui-Jie, Xue; Wen-Qiang, Qiao; Shi-Yu, He
2012-11-01
In this paper, effects of 160 keV electron irradiated "Panda" type Polarization-Maintaining optical fiber at 1310 nm are investigated by us. Attenuation coefficient induced in optical fiber by electron beams at 1310 nm increases with increase in electron fluence. Electron irradiation-induced damage mechanism are studied by means of CASINO simulation program, the X-ray photoelectron spectroscopy (XPS), electron spin resonance spectrometer (EPR) and Fourier transform infrared spectroscopy (FTIR). The results show that Si-OH impurity defect concentration is the main reason of increasing attenuation coefficient at 1310 nm.
Computed tomography of the liver and kidneys in glycogen storage disease.
Doppman, J L; Cornblath, M; Dwyer, A J; Adams, A J; Girton, M E; Sidbury, J
1982-02-01
Glycogen, in concentrations encountered in von Gierke's disease, has computed tomography (CT) attenuation coefficients in the 50 to 70 Hounsfield unit (HU: 1,000 scale) range and accounts for the increased density of the liver. However, in eight patients with Type I glycogen storage disease, simultaneous hepatic infiltration with fat and glycogen led to a range of liver CT densities from 13 to 80 HU. Fatty infiltration may facilitate the demonstration of hepatic tumors in older patients with this disease. Half the patients showed increased attenuation coefficients of the renal cortex, indicating glycogen deposition in the kidneys.
Photon Interaction Parameters for Some Borate Glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, Nisha; Kaur, Updesh; Singh, Tejbir
2010-11-06
Some photon interaction parameters of dosimetric interest such as mass attenuation coefficients, effective atomic number, electron density and KERMA relative to air have been computed in the wide energy range from 1 keV to 100 GeV for some borate glasses viz. barium-lead borate, bismuth-borate, calcium-strontium borate, lead borate and zinc-borate glass. It has been observed that lead borate glass and barium-lead borate glass have maximum values of mass attenuation coefficient, effective atomic number and KERMA relative to air. Hence, these borate glasses are suitable as gamma ray shielding material, packing of radioactive sources etc.
Modeling future scenarios of light attenuation and potential seagrass success in a eutrophic estuary
del Barrio, Pilar; Ganju, Neil K.; Aretxabaleta, Alfredo L.; Hayn, Melanie; García, Andrés; Howarth, Robert W.
2014-01-01
Estuarine eutrophication has led to numerous ecological changes, including loss of seagrass beds. One potential cause of these losses is a reduction in light availability due to increased attenuation by phytoplankton. Future sea level rise will also tend to reduce light penetration and modify seagrass habitat. In the present study, we integrate a spectral irradiance model into a biogeochemical model coupled to the Regional Ocean Model System (ROMS). It is linked to a bio-optical seagrass model to assess potential seagrass habitat in a eutrophic estuary under future nitrate loading and sea-level rise scenarios. The model was applied to West Falmouth Harbor, a shallow estuary located on Cape Cod (Massachusetts) where nitrate from groundwater has led to eutrophication and seagrass loss in landward portions of the estuary. Measurements of chlorophyll, turbidity, light attenuation, and seagrass coverage were used to assess the model accuracy. Mean chlorophyll based on uncalibrated in-situ fluorometry varied from 28 μg L−1 at the landward-most site to 6.5 μg L−1 at the seaward site, while light attenuation ranged from 0.86 to 0.45 m-1. The model reproduced the spatial variability in chlorophyll and light attenuation with RMS errors of 3.72 μg L−1 and 0.07 m-1 respectively. Scenarios of future nitrate reduction and sea-level rise suggest an improvement in light climate in the landward basin with a 75% reduction in nitrate loading. This coupled model may be useful to assess habitat availability changes due to eutrophication and sediment resuspension and fully considers spatial variability on the tidal timescale.
An underwater light attenuation scheme for marine ecosystem models.
Penta, Bradley; Lee, Zhongping; Kudela, Raphael M; Palacios, Sherry L; Gray, Deric J; Jolliff, Jason K; Shulman, Igor G
2008-10-13
Simulation of underwater light is essential for modeling marine ecosystems. A new model of underwater light attenuation is presented and compared with previous models. In situ data collected in Monterey Bay, CA. during September 2006 are used for validation. It is demonstrated that while the new light model is computationally simple and efficient it maintains accuracy and flexibility. When this light model is incorporated into an ecosystem model, the correlation between modeled and observed coastal chlorophyll is improved over an eight-year time period. While the simulation of a deep chlorophyll maximum demonstrates the effect of the new model at depth.
Spatial attenuation of different sound field components in a water layer and shallow-water sediments
NASA Astrophysics Data System (ADS)
Belov, A. I.; Kuznetsov, G. N.
2017-11-01
The paper presents the results of an experimental study of spatial attenuation of low-frequency vector-scalar sound fields in shallow water. The experiments employed a towed pneumatic cannon and spatially separated four-component vector-scalar receiver modules. Narrowband analysis of received signals made it possible to estimate the attenuation coefficients of the first three modes in the frequency of range of 26-182 Hz and calculate the frequency dependences of the sound absorption coefficients in the upper part of bottom sediments. We analyze the experimental and calculated (using acoustic calibration of the waveguide) laws of the drop in sound pressure and orthogonal vector projections of the oscillation velocity. It is shown that the vertical projection of the oscillation velocity vector decreases significantly faster than the sound pressure field.
Utilization of barite/cement composites for gamma rays attenuation
NASA Astrophysics Data System (ADS)
Sakr, Khaled; Ramadan, Wageeh; Sayed, Magda; El-Zakla, Tarek; El-Desouqy, Mohamed; El-Faramawy, Nabil
2018-04-01
The present work is directed to investigate the contribution of adding barite aggregates to cement as a shielding material for radioactive wastes disposal facilities. The percentages of barite from 5% up to 20% mixed with cement with different grain sizes were examined. Mechanical and physical properties such as compressive strength, wet and dry densities, water absorption, and porosity have been investigated. The thermogravimetric analysis and X-ray diffraction were used to examine the thermal stability and the characterizations of studied samples, respectively. The linear attenuation coefficient, mean free path, half value layer, and transmission fraction were evaluated. All the nuclear shielding parameters revealed the uppermost values for cement mixed with 5% barite of size range 250-600 µm. The attenuation coefficient of the investigated samples displayed an increase by more than 125% than that of neat cement.
NASA Astrophysics Data System (ADS)
Redfern, Simon
2015-04-01
Earth's inner core is elastically anisotropic, with seismology showing faster wave propagation along the polar axis compared to the equatorial plane. Some inner core studies report anisotropic seismic attenuation. Attenuation of body-waves has, previously, been postulated to be due to scattering by anisotropic microstructure, but recent normal mode studies also show strong anisotropic attenuation (Mäkinen et al. 2014). This suggests that the anisotropic attenuation is a result of the intrinsic (and anisotropic) anelastic properties of the solid iron alloy forming Earth's inner core. Here, I consider the origins of inner core anisotropic attenuation. Possibilities include grain boundary relaxation, dislocation bowing/glide, or point defect (alloying element) relaxations. The inner core is an almost perfect environment for near-equilibrium crystallisation, with very low temperature gradients across the inner core, low gravity, and slow crystallisation rates. It is assumed that grain sizes may be of the order of hundreds of metres. This implies vanishingly small volumes of grain boundary, and insignificant grain boundary relaxation. The very high homologous temperature and the absence of obvious deviatoric stress, also leads one to conclude that dislocation densities are low. On the other hand, estimates for light element concentrations are of the order of a few % with O, S, Si, C and H at various times being suggested as candidate elements. Light element solutes in hcp metals contribute to intrinsic anelastic attenuation if they occur in sufficient concentrations to pair and form elastic dipoles. Switching of dipoles under the stress of a passing seismic wave will result in anelastic mechanical loss. Such attenuation has been measured in hcp metals in the lab, and is anisotropic due to the intrinsic elastic anisotropy of the host lattice. Such solute pair relaxations result in a "Zener effect", which is suggested here to be responsible for observed anisotropic seismic attenuation. Zener relaxation magnitude scales with solute concentration and is consistent with around 5% light element. Variations in attenuation are expected in a core with spatially varying concentrations of light element, and attenuation tomography of the inner core could, therefore, be employed to map chemical heterogeneity.
Gong, Kuang; Yang, Jaewon; Kim, Kyungsang; El Fakhri, Georges; Seo, Youngho; Li, Quanzheng
2018-05-23
Positron Emission Tomography (PET) is a functional imaging modality widely used in neuroscience studies. To obtain meaningful quantitative results from PET images, attenuation correction is necessary during image reconstruction. For PET/MR hybrid systems, PET attenuation is challenging as Magnetic Resonance (MR) images do not reflect attenuation coefficients directly. To address this issue, we present deep neural network methods to derive the continuous attenuation coefficients for brain PET imaging from MR images. With only Dixon MR images as the network input, the existing U-net structure was adopted and analysis using forty patient data sets shows it is superior than other Dixon based methods. When both Dixon and zero echo time (ZTE) images are available, we have proposed a modified U-net structure, named GroupU-net, to efficiently make use of both Dixon and ZTE information through group convolution modules when the network goes deeper. Quantitative analysis based on fourteen real patient data sets demonstrates that both network approaches can perform better than the standard methods, and the proposed network structure can further reduce the PET quantification error compared to the U-net structure. © 2018 Institute of Physics and Engineering in Medicine.
Petus, Caroline; Devlin, Michelle; Teixera da Silva, Eduardo; Lewis, Stephen; Waterhouse, Jane; Wenger, Amelia; Bainbridge, Zoe; Tracey, Dieter
2018-05-01
Optically active water quality components (OAC) transported by flood plumes to nearshore marine environments affect light levels. The definition of minimum OAC concentrations that must be maintained to sustain sufficient light levels for conservation of light-dependant coastal ecosystems exposed to flood waters is necessary to guide management actions in adjacent catchments. In this study, a framework for defining OAC target concentrations using empirical light attenuation models is proposed and applied to the Wet Tropics region of the Great Barrier Reef (GBR) (Queensland, Australia). This framework comprises several steps: (i) light attenuation (Kd(PAR)) profiles and OAC measurements, including coloured dissolved organic matter (CDOM), chlorophyll-a (Chl-a) and suspended particulate matter (SPM) concentrations collected in flood waters; (ii) empirical light attenuation models used to define the contribution of CDOM, Chl-a and SPM to the light attenuation, and; (iii) translation of empirical models into manageable OAC target concentrations specific for wet season conditions. Results showed that (i) Kd(PAR) variability in the Wet Tropics flood waters is driven primarily by SPM and CDOM, with a lower contribution from Chl-a (r2 = 0.5, p < 0.01), (ii) the relative contributions of each OAC varies across the different water bodies existing along flood waters and strongest Kd(PAR) predictions were achieved when the in-situ data were clustered into water bodies with similar satellite-derived colour characteristics ('brownish flood waters', r2 = 0.8, p < 0.01, 'greenish flood waters', r2 = 0.5, p < 0.01), and (iii) that Kd(PAR) simulations are sensitive to the angular distribution of the light field in the clearest flood water bodies. Empirical models developed were used to translate regional light guidelines (established for the GBR) into manageable OAC target concentrations. Preliminary results suggested that a 90th percentile SPM concentration of 11.4 mg L -1 should be maintained during the wet season to sustain favourable light levels for Wet Tropics coral reefs and seagrass ecosystems exposed to 'brownish' flood waters. Additional data will be collected to validate the light attenuation models and the wet season target concentration which in future will be incorporated into wider catchment modelling efforts to improve coastal water quality in the Wet Tropics and the GBR. Copyright © 2018 Elsevier Ltd. All rights reserved.
Acoustic parameters inversion and sediment properties in the Yellow River reservoir
NASA Astrophysics Data System (ADS)
Li, Chang-Zheng; Yang, Yong; Wang, Rui; Yan, Xiao-Fei
2018-03-01
The physical properties of silt in river reservoirs are important to river dynamics. Unfortunately, traditional techniques yield insufficient data. Based on porous media acoustic theory, we invert the acoustic parameters for the top river-bottom sediments. An explicit form of the acoustic reflection coefficient at the water-sediment interface is derived based on Biot's theory. The choice of parameters in the Biot model is discussed and the relation between acoustic and geological parameters is studied, including that between the reflection coefficient and porosity and the attenuation coefficient and permeability. The attenuation coefficient of the sound wave in the sediments is obtained by analyzing the shift of the signal frequency. The acoustic reflection coefficient at the water-sediment interface is extracted from the sonar signal. Thus, an inversion method of the physical parameters of the riverbottom surface sediments is proposed. The results of an experiment at the Sanmenxia reservoir suggest that the estimated grain size is close to the actual data. This demonstrates the ability of the proposed method to determine the physical parameters of sediments and estimate the grain size.
Tekin, H O; Singh, V P; Manici, T
2017-03-01
In the present work the effect of tungsten oxide (WO 3 ) nanoparticles on mass attenauation coefficients of concrete has been investigated by using MCNPX (version 2.4.0). The validation of generated MCNPX simulation geometry has been provided by comparing the results with standard XCOM data for mass attenuation coefficients of concrete. A very good agreement between XCOM and MCNPX have been obtained. The validated geometry has been used for definition of nano-WO 3 and micro-WO 3 into concrete sample. The mass attenuation coefficients of pure concrete and WO 3 added concrete with micro-sized and nano-sized have been compared. It was observed that shielding properties of concrete doped with WO 3 increased. The results of mass attenauation coefficients also showed that the concrete doped with nano-WO 3 significanlty improve shielding properties than micro-WO 3 . It can be concluded that addition of nano-sized particles can be considered as another mechanism to reduce radiation dose. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mollet, Pieter; Keereman, Vincent; Bini, Jason; Izquierdo-Garcia, David; Fayad, Zahi A; Vandenberghe, Stefaan
2014-02-01
Quantitative PET imaging relies on accurate attenuation correction. Recently, there has been growing interest in combining state-of-the-art PET systems with MR imaging in a sequential or fully integrated setup. As CT becomes unavailable for these systems, an alternative approach to the CT-based reconstruction of attenuation coefficients (μ values) at 511 keV must be found. Deriving μ values directly from MR images is difficult because MR signals are related to the proton density and relaxation properties of tissue. Therefore, most research groups focus on segmentation or atlas registration techniques. Although studies have shown that these methods provide viable solutions in particular applications, some major drawbacks limit their use in whole-body PET/MR. Previously, we used an annulus-shaped PET transmission source inside the field of view of a PET scanner to measure attenuation coefficients at 511 keV. In this work, we describe the use of this method in studies of patients with the sequential time-of-flight (TOF) PET/MR scanner installed at the Icahn School of Medicine at Mount Sinai, New York, NY. Five human PET/MR and CT datasets were acquired. The transmission-based attenuation correction method was compared with conventional CT-based attenuation correction and the 3-segment, MR-based attenuation correction available on the TOF PET/MR imaging scanner. The transmission-based method overcame most problems related to the MR-based technique, such as truncation artifacts of the arms, segmentation artifacts in the lungs, and imaging of cortical bone. Additionally, the TOF capabilities of the PET detectors allowed the simultaneous acquisition of transmission and emission data. Compared with the MR-based approach, the transmission-based method provided average improvements in PET quantification of 6.4%, 2.4%, and 18.7% in volumes of interest inside the lung, soft tissue, and bone tissue, respectively. In conclusion, a transmission-based technique with an annulus-shaped transmission source will be more accurate than a conventional MR-based technique for measuring attenuation coefficients at 511 keV in future whole-body PET/MR studies.
Improved Modeling and Prediction of Surface Wave Amplitudes
2017-05-31
structures and derived attenuation coefficients from the Eurasian Q inversion study. 15. SUBJECT TERMS nuclear explosion monitoring, surface waves, membrane...24 4.6 Inversion of Eurasian Attenuation Data for Q Structure ........................................ 31 4.6.1 Data used in the Q Inversion ...33 4.6.2 Q Inversion Results
Testing the Fraunhofer line discriminator by sensing fluorescent dye
NASA Technical Reports Server (NTRS)
Stoertz, G. E.
1969-01-01
The experimental Fraunhofer Line Discriminator (FLD) has detected increments of Rhodamine WT dye as small as 1 ppb in 1/2 meter depths. It can be inferred that increments considerably smaller than 1 ppb will be detectable in depths considerably greater than 1/2 meter. Turbidity of the water drastically reduces luminescence or even completely blocks the transmission of detectable luminescence to the FLD. Attenuation of light within the water by turbidity and by the dye itself are the major factors to be considered in interpreting FLD records and in relating luminescence coefficient to dye concentration. An airborne test in an H-19 helicopter established feasibility of operating the FLD from the aircraft power supply, and established that the rotor blades do not visibly affect the monitoring of incident solar radiation.
Laboratory analysis of techniques for remote sensing of estuarine parameters using laser excitation
NASA Technical Reports Server (NTRS)
Exton, R. J.; Houghton, W. M.; Esaias, W.; Harriss, R. C.; Farmer, F. H.; White, H. H.
1983-01-01
The theoretical concepts underlying remote sensing of estuarine parameters using laser excitation are examined. The concepts are extended to include Mie scattering as a measure of the total suspended solids and to develop the water Raman signal as an internal standard. Experimental validation of the theory was performed using backscattered laser light from a laboratory tank to simulate a remote-sensing geometry. Artificially prepared sediments and biological cultures were employed to check specific aspects of the theory under controlled conditions. Natural samples gathered from a variety of water types were also analyzed in the tank to further enhance the simulation. The results indicate that it should be possible to remotely quantify total suspended solids, dissolved organics, attenuation coefficient, chlorophyll a, and phycoerythrin in estuarine water using laser excitation.
Seasonal variability of light availability and utilization in the Sargasso Sea
NASA Technical Reports Server (NTRS)
Siegel, David A.; Michaels, Anthony F.; Sorensen, Jens C.; O'Brein, Margaret C.; Hammer, Melodie A.
1995-01-01
A 2 year time series of optical, biogeochemical, and physical parameters, taken near the island of Bermuda, is used to evaluate the sources of temporal variability in light avaliability and utilization in the Sargasso Sea. Integrated assessments of light availability are made by examining the depth of constant percent incident photosynthetically available radiation (% PAR) isolumes. To first order, changes in the depth %PAR isolumes were caused by physical processes: deep convection mixing in the winter which led to the spring bloom and concurrent shallowing of %PAR depths and the occurrence of anomalous thermohaline water masses during the summer and fall seasons. Spectral light availability variations are assessed using determinations of diffuse attenuation coefficient spectra which illustrates a significant seasonal cycle in colored detrital particulate and/or dissolved materials that is unrelated to changes in chlorophyll pigment concentrations. Temporal variations in the photosynthetic light utilization index Psi are used to assess vertically intergrated light utilization variations. Values of Psi are highly variable and show no apparent seasonal pattern which indicates that Psi is not simply a 'biogeochemical constant.' Determinations of in situ primary production rates and daily mean PAR fluxes are used to diagnose the relative role of light limitation in determining vertically integrated rates of primary production integral PP. The mean depth of the light-saturated zone (the vertical region where the daily mean PAR flux was greater than or equal to the saturation irradiance) is only approximately 40 m, although more than one half of interal PP occurred within this zone. Production model results illustrate that accurate predictions of integral PP are dependent upon rates of light-saturated production rather than upon indices of light limitation. It seems unlikely that significant improvements in simple primary production models will come from the partitioning of the Earth's seas into biogeochemical provinces.
Turbidity in the southern Irish Sea
NASA Astrophysics Data System (ADS)
Bowers, D. G.; Gaffney, S.; White, M.; Bowyer, P.
2002-10-01
This paper presents new in situ optical and associated measurements from 85 stations in the central and southern Irish Sea. There is a strong linear relationship between the irradiance reflectance RA in the orange-red part of the spectrum (580-680 nm) and the diffuse attenuation coefficient, K, for white light: K=0.05+0.26 R A, where K is in m -1 and RA has been corrected to just above-surface reflectance and expressed as a percentage. The significance of this result is that this particular reflectance can be measured by the advanced very high resolution radiometer on board the NOAA series of satellites. In principle, therefore, cloud cover permitting, the transparency of the Irish Sea to sunlight, can be mapped from space. This result is shown to be consistent with a simple optical model in which light scattering is principally by mineral suspended solids, and light absorption is by water, mineral suspended solids and chlorophyll. Best fit between model and observations is achieved with a specific scattering coefficient of 0.5 m 2 g -1. The measurements were made during four cruises, at different times of year and across the range of turbidity found in the Irish Sea. The geographical distribution of suspended sediments confirms the presence, previously inferred from satellite imagery, of two separate turbidity maxima, one off Wicklow Head, the other off Anglesey. These correspond to the areas of strongest tidal currents. Yellow substance was found in highest concentration in a band along the Irish coast. Chlorophyll concentrations were generally low during these cruises. A residual problem is that a direct comparison of in situ reflectance and satellite measured reflectance possible on one of the cruises shows a serious discrepancy, although on average there appears to be a good agreement between satellite and in situ reflectance.
NASA Astrophysics Data System (ADS)
Mizubayashi, Keiko; Kuwahara, Victor S.; Segaran, Thirukanthan C.; Zaleha, Kassim; Effendy, A. W. M.; Kushairi, M. R. M.; Toda, Tatsuki
2013-07-01
The East coast of Peninsular Malaysia is strongly influenced by the North-East (NE) monsoon, and may significantly influence the optical environment of coral-reef ecosystems. However, our knowledge of temporal variability, including episodic events, of environmental factors in Asian tropical regions is still limited. The objectives of this study were to (1) observe temporal variability in ultraviolet radiation (UVR) and photosynthetically active radiation (PAR) attenuation and (2) determine the bio-optical factors regulating the optical environment in shallow coral-reef waters. Downwelling UVR and PAR irradiance and in situ bio-optical factors were measured monthly near Bidong Island on the East coast of Peninsular Malaysia from June 2010 to June 2011. The NE monsoon was recognized between November 2010 and January 2011. The highest diffuse attenuation coefficient at 305 nm was 2.05 ± 0.03 m-1 in a coral-reef area on December 2010. The most significant bio-optical factor at 305, 380, 440 nm during the NE monsoon season was CDOM (89 ± 8% at 305 nm, 84 ± 9% at 380 nm and 49 ± 17% at 440 nm). All UVR attenuation coefficients showed significant correlations with the CDOM absorption coefficients (aCDOM). CDOM with relatively low S275-295 during the NE monsoon season (0.0177 ± 0.0020 nm-1) suggests terrestrial sources, which is also supported by the correlation between salinity and aCDOM(305). A significant correlation between S275-295 and the carbon specific absorbance coefficient (a*(305)) suggest the potential to measure DOC optically in these waters. The high CDOM during the NE monsoon season may have an important role to reduce harmful UVR exposure reaching benthic communities.
NASA Astrophysics Data System (ADS)
Chi, Zhijun; Du, Yingchao; Huang, Wenhui; Tang, Chuanxiang
2017-12-01
The necessity for compact and relatively low cost x-ray sources with monochromaticity, continuous tunability of x-ray energy, high spatial coherence, straightforward polarization control, and high brightness has led to the rapid development of Thomson scattering x-ray sources. To meet the requirement of in-situ monochromatic computed tomography (CT) for large-scale and/or high-attenuation materials based on this type of x-ray source, there is an increasing demand for effective algorithms to correct the energy-angle correlation. In this paper, we take advantage of the parametrization of the x-ray attenuation coefficient to resolve this problem. The linear attenuation coefficient of a material can be decomposed into a linear combination of the energy-dependent photoelectric and Compton cross-sections in the keV energy regime without K-edge discontinuities, and the line integrals of the decomposition coefficients of the above two parts can be determined by performing two spectrally different measurements. After that, the line integral of the linear attenuation coefficient of an imaging object at a certain interested energy can be derived through the above parametrization formula, and monochromatic CT can be reconstructed at this energy using traditional reconstruction methods, e.g., filtered back projection or algebraic reconstruction technique. Not only can monochromatic CT be realized, but also the distributions of the effective atomic number and electron density of the imaging object can be retrieved at the expense of dual-energy CT scan. Simulation results validate our proposal and will be shown in this paper. Our results will further expand the scope of application for Thomson scattering x-ray sources.
Coastal Atmosphere and Sea Time Series (CoASTS)
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Berthon, Jean-Francoise; Zibordi, Giuseppe; Doyle, John P.; Grossi, Stefania; vanderLinde, Dirk; Targa, Cristina; McClain, Charles R. (Technical Monitor)
2002-01-01
In this document, the first three years of a time series of bio-optical marine and atmospheric measurements are presented and analyzed. These measurements were performed from an oceanographic tower in the northern Adriatic Sea within the framework of the Coastal Atmosphere and Sea Time Series (CoASTS) project, an ocean color calibration and validation activity. The data set collected includes spectral measurements of the in-water apparent (diffuse attenuation coefficient, reflectance, Q-factor, etc.) and inherent (absorption and scattering coefficients) optical properties, as well as the concentrations of the main optical components (pigment and suspended matter concentrations). Clear seasonal patterns are exhibited by the marine quantities on which an appreciable short-term variability (on the order of a half day to one day) is superimposed. This short-term variability is well correlated with the changes in salinity at the surface resulting from the southward transport of freshwater coming from the northern rivers. Concentrations of chlorophyll alpha and total suspended matter span more than two orders of magnitude. The bio-optical characteristics of the measurement site pertain to both Case-I (about 64%) and Case-II (about 36%) waters, based on a relationship between the beam attenuation coefficient at 660nm and the chlorophyll alpha concentration. Empirical algorithms relating in-water remote sensing reflectance ratios and optical components or properties of interest (chlorophyll alpha, total suspended matter, and the diffuse attenuation coefficient) are presented.
NASA Astrophysics Data System (ADS)
More, Chaitali V.; Lokhande, Rajkumar M.; Pawar, Pravina P.
2016-08-01
Photon attenuation coefficient calculation methods have been widely used to accurately study the properties of amino acids such as n-acetyl-L-tryptophan, n-acetyl-L-tyrosine, D-tryptophan, n-acetyl-L-glutamic acid, D-phenylalanine, and D-threonine. In this study, mass attenuation coefficients (μm) of these amino acids for 0.122-, 0.356-, 0.511-, 0.662-, 0.884-, 1.170, 1.275-, 1.330-MeV photons are determined using the radio-nuclides Co57, Ba133, Cs137, Na22, Mn54, and Co60. NaI (Tl) scintillation detection system was used to detect gamma rays with a resolution of 8.2% at 0.662 MeV. The calculated attenuation coefficient values were then used to determine total atomic cross sections (σt), molar extinction coefficients (ε), electronic cross sections (σe), effective atomic numbers (Zeff), and effective electron densities (Neff) of the amino acids. Theoretical values were calculated based on the XCOM data. Theoretical and experimental values are found to be in a good agreement (error<5%). The variations of μm, σt, ε, σe, Zeff, and Neff with energy are shown graphically. The values of μm, σt, ε, σe are higher at lower energies, and they decrease sharply as energy increases; by contrast, Zeff and Neff were found to be almost constant.
NASA Astrophysics Data System (ADS)
Guo, Zijian; Favazza, Christopher; Garcia-Uribe, Alejandro; Wang, Lihong V.
2012-06-01
Photoacoustic (PA) microscopy (PAM) can image optical absorption contrast with ultrasonic spatial resolution in the optical diffusive regime. Conventionally, accurate quantification in PAM requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. With the acoustic spectral method, the absorption coefficients of an oxygenated bovine blood phantom at 560, 565, 570, and 575 nm were quantified with errors of <3%. We also quantified the total hemoglobin concentration and hemoglobin oxygen saturation in a live mouse. Compared with the conventional amplitude method, the acoustic spectral method provides greater quantification accuracy in the optical diffusive regime. The limitations of the acoustic spectral method was also discussed.
Guo, Zijian; Favazza, Christopher; Garcia-Uribe, Alejandro
2012-01-01
Abstract. Photoacoustic (PA) microscopy (PAM) can image optical absorption contrast with ultrasonic spatial resolution in the optical diffusive regime. Conventionally, accurate quantification in PAM requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. With the acoustic spectral method, the absorption coefficients of an oxygenated bovine blood phantom at 560, 565, 570, and 575 nm were quantified with errors of <3%. We also quantified the total hemoglobin concentration and hemoglobin oxygen saturation in a live mouse. Compared with the conventional amplitude method, the acoustic spectral method provides greater quantification accuracy in the optical diffusive regime. The limitations of the acoustic spectral method was also discussed. PMID:22734767
Guo, Zijian; Favazza, Christopher; Garcia-Uribe, Alejandro; Wang, Lihong V
2012-06-01
Photoacoustic (PA) microscopy (PAM) can image optical absorption contrast with ultrasonic spatial resolution in the optical diffusive regime. Conventionally, accurate quantification in PAM requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. With the acoustic spectral method, the absorption coefficients of an oxygenated bovine blood phantom at 560, 565, 570, and 575 nm were quantified with errors of <3%. We also quantified the total hemoglobin concentration and hemoglobin oxygen saturation in a live mouse. Compared with the conventional amplitude method, the acoustic spectral method provides greater quantification accuracy in the optical diffusive regime. The limitations of the acoustic spectral method was also discussed.
Optical choppers with rotational elements: modeling, design and prototypes
NASA Astrophysics Data System (ADS)
Duma, Virgil-Florin; Cira, Octavian; Demian, Dorin
2017-05-01
We present a brief overview of our contributions regarding the analysis and design of optical choppers. Their applications range numerous domains, from optical sensing in radiometry or telescopes to laser manufacturing and biomedical imaging - for example for the controlled attenuation of light, the elimination of selected spectral domains, or the switching of optical paths. While these aspects are pointed out, the paper describes our analysis, modeling, and manufacturing of prototypes for choppers with: (a) wheels with windows with linear margins; (b) wheels with windows with non-linear margins (semi-circular or elliptical), outward or inward; (c) rotational shafts with different shapes, with slits or with holes. While variant (a) represents classical choppers, variant (b) represents the "eclipse" choppers that we have developed and also patented for the solution with two adjustable wheels that can produce circular windows. Variant (c), of choppers with shafts is also a patent application. Their transmission functions are discussed, for the shape of the laser pulses produced and for the attenuation coefficients obtained. While this discussion has been completed analytically for top-hat laser beams, it has been modeled using simulations for Gaussian and Bessel beams. Design, manufacturing aspects, and prototypes of the different chopper configurations complete the presentation.
Glacial influences on solar radiation in a subarctic sea.
Barron, Mace G; Barron, Kyle J
2005-01-01
Understanding macroscale processes controlling solar radiation in marine systems will be important in interpreting the potential effects of global change from increasing ultraviolet radiation (UV) and glacial retreat. This study provides the first quantitative assessment of UV in the water column of Prince William Sound, a subarctic, semienclosed sea surrounded by mountains, glaciers, rivers, bays and fjords in south central Alaska. Glacial influences on diffuse attenuation coefficients (Kd) were determined along an approximate 120 km transect running NE (61 degrees 07'43''N, 146 degrees 17'1''W) to SW (60 degrees 27'25''N, 148 degrees 05'27'' W). Glacial meltwater and flour caused a 10-fold increase in Kd for visible light, UV-A and UV-B, whereas high optical clarity was present in a diversity of areas away from glacial influences. Transition areas and locations affected by calving of a tidewater glacier had intermediate Kd values. Depths at 99% attenuation ranged from less than 0.2 m near glacial streams to greater than 5 m in bays and open ocean distant from sources of glacial sediments. These results suggest that potential global change from increasing UV and glacial retreat may have heterogeneous effects on subarctic marine systems.
NASA Astrophysics Data System (ADS)
Zhang, Hua; Yang, Hui; Li, Hongxing; Huang, Guangnan; Ding, Zheyi
2018-04-01
The attenuation of random noise is important for improving the signal to noise ratio (SNR). However, the precondition for most conventional denoising methods is that the noisy data must be sampled on a uniform grid, making the conventional methods unsuitable for non-uniformly sampled data. In this paper, a denoising method capable of regularizing the noisy data from a non-uniform grid to a specified uniform grid is proposed. Firstly, the denoising method is performed for every time slice extracted from the 3D noisy data along the source and receiver directions, then the 2D non-equispaced fast Fourier transform (NFFT) is introduced in the conventional fast discrete curvelet transform (FDCT). The non-equispaced fast discrete curvelet transform (NFDCT) can be achieved based on the regularized inversion of an operator that links the uniformly sampled curvelet coefficients to the non-uniformly sampled noisy data. The uniform curvelet coefficients can be calculated by using the inversion algorithm of the spectral projected-gradient for ℓ1-norm problems. Then local threshold factors are chosen for the uniform curvelet coefficients for each decomposition scale, and effective curvelet coefficients are obtained respectively for each scale. Finally, the conventional inverse FDCT is applied to the effective curvelet coefficients. This completes the proposed 3D denoising method using the non-equispaced curvelet transform in the source-receiver domain. The examples for synthetic data and real data reveal the effectiveness of the proposed approach in applications to noise attenuation for non-uniformly sampled data compared with the conventional FDCT method and wavelet transformation.
Intrinsic Aniostropic Anelasticity of Hcp Iron Due to Light Element Solute Atoms
NASA Astrophysics Data System (ADS)
Redfern, S. A. T.
2014-12-01
Earth's inner core is elastically anisotropic, with seismology showing faster wave propagation along the polar axis compared to the equatorial plane. Some inner core studies report anisotropic seismic attenuation. Attenuation of body-waves has, previously, been postulated to be due to scattering by anisotropic microstructure, but recent normal mode studies also show strong anisotropic attenuation (Mäkinen et al. 2014). This suggests that the anisotropic attenuation is a result of the intrinsic (and anisotropic) anelastic properties of the solid iron alloy forming Earth's inner core. Here, I consider the origins of inner core anisotropic attenuation. Possibilities include grain boundary relaxation, dislocation bowing/glide, or point defect (alloying element) relaxations. The inner core is an almost perfect environment for near-equilibrium crystallisation, with very low temperature gradients across the inner core, low gravity, and slow crystallisation rates. It is assumed that grain sizes may be of the order of hundreds of metres. This implies vanishingly small volumes of grain boundary, and insignificant grain boundary relaxation. The very high homologous temperature and the absence of obvious deviatoric stress, also leads one to conclude that dislocation densities are low. On the other hand, estimates for light element concentrations are of the order of a few % with O, S, Si, C and H at various times being suggested as candidate elements. Light element solutes in hcp metals contribute to intrinsic anelastic attenuation if they occur in sufficient concentrations to pair and form elastic dipoles. Switching of dipoles under the stress of a passing seismic wave will result in anelastic mechanical loss. Such attenuation has been measured in hcp metals in the lab, and is anisotropic due to the intrinsic elastic anisotropy of the host lattice. Such solute pair relaxations result in a "Zener effect", which is suggested here to be responsible for observed anisotropic seismic attenuation. Zener relaxation magnitude scales with solute concentrationand is consistent with around 5% loght element. Variations in attenuation are expected in a core with spatially varying concentrations of light element, and attenuation tomography of the inner core could, therefore, be employed to map chemical heterogeneity.
Measurement of the attenuation length of argon scintillation light in the ArDM LAr TPC
NASA Astrophysics Data System (ADS)
Calvo, J.; Cantini, C.; Crivelli, P.; Daniel, M.; Di Luise, S.; Gendotti, A.; Horikawa, S.; Molina-Bueno, L.; Montes, B.; Mu, W.; Murphy, S.; Natterer, G.; Nguyen, K.; Periale, L.; Quan, Y.; Radics, B.; Regenfus, C.; Romero, L.; Rubbia, A.; Santorelli, R.; Sergiampietri, F.; Viant, T.; Wu, S.
2018-01-01
We report on a measurement of the attenuation length for the scintillation light in the tonne size liquid argon target of the ArDM dark matter experiment. The data was recorded in the first underground operation of the experiment in single-phase operational mode. The results were achieved by comparing the light yield spectra from 39Ar and 83mKr to a description of the ArDM setup with a model of full light ray tracing. A relatively low value close to 0.5 m was found for the attenuation length of the liquid argon bulk to its own scintillation light. We interpret this result as a presence of optically active impurities in the liquid argon which are not filtered by the installed purification systems. We also present analyses of the argon gas employed for the filling and discuss cross sections in the vacuum ultraviolet of various molecules in respect to purity requirements in the context of large liquid argon installations.
Design and characterization of a dead-time regime enhanced early photon projection imaging system
NASA Astrophysics Data System (ADS)
Sinha, L.; Fogarty, M.; Zhou, W.; Giudice, A.; Brankov, J. G.; Tichauer, K. M.
2018-04-01
Scattering of visible and near-infrared light in biological tissue reduces spatial resolution for imaging of tissues thicker than 100 μm. In this study, an optical projection imaging system is presented and characterized that exploits the dead-time characteristics typical of photon counting modules based on single photon avalanche diodes (SPADs). With this system, it is possible to attenuate the detection of more scattered late-arriving photons, such that detection of less scattered early-arriving photons can be enhanced with increased light intensity, without being impeded by the maximum count rate of the SPADs. The system has the potential to provide transmittance-based anatomical information or fluorescence-based functional information (with slight modification in the instrumentation) of biological samples with improved resolution in the mesoscopic domain (0.1-2 cm). The system design, calibration, stability, and performance were evaluated using simulation and experimental phantom studies. The proposed system allows for the detection of very-rare early-photons at a higher frequency and with a better signal-to-noise ratio. The experimental results demonstrated over a 3.4-fold improvement in the spatial resolution using early photon detection vs. conventional detection, and a 1000-fold improvement in imaging time using enhanced early detection vs. conventional early photon detection in a 4-mm thick phantom with a tissue-equivalent absorption coefficient of μa = 0.05 mm-1 and a reduced scattering coefficient of μs' = 5 mm-1.
Sound propagation in urban areas: a periodic disposition of buildings.
Picaut, J; Hardy, J; Simon, L
1999-10-01
A numerical simulation of background noise propagation is performed for a network of hexagonal buildings. The obtained results suggest that the prediction of background noise in urban spaces is possible by means of a modified diffusion equation using two parameters: the diffusion coefficient that expresses the spreading out of noise resulting from diffuse scattering and multiple reflections by buildings, and an attenuation term accounting for the wall absorption, atmospheric attenuation, and absorption by the open top. The dependence of the diffusion coefficient with geometrical shapes and the diffusive nature of the buildings are investigated in the case of a periodic disposition of hexagonal buildings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Sandeep, E-mail: sandeep0078monu@gmail.com; Singh, Sukhpal, E-mail: sukhpal-78@rediffmail.com
2016-05-06
Five samples of Bismuth-Ground granulated blast furnace slag (Bi-GGBFS) concretes were prepared using composition (0.6 cement + x Bi{sub 2}O{sub 3} + (0.4-x) GGBFS, x = 0.05, 0.10, 0.15, 0.20 and 0.25) by keeping constant water (W) cement (C) ratio. Mass attenuation coefficients (μ{sub m}) of these prepared samples were calculated using a computer program winXCOM at different gamma ray energies, whereas effective atomic numbers (Z{sub eff}) is calculated using mathematical formulas. The radiation shielding properties of Bi-GGBFS concrete has been compared with standard radiation shielding concretes.
NASA Astrophysics Data System (ADS)
Kore, Prashant S.; Pawar, Pravina P.
2014-05-01
The mass attenuation coefficients of some amino acids, such as DL-aspartic acid-LR(C4H7NO4), L-glutamine (C4H10N2O3), creatine monohydrate LR(C4H9N3O2H2O), creatinine hydrochloride (C4H7N3O·HCl) L-asparagine monohydrate(C4H9N3O2H2O), L-methionine LR(C5H11NO2S), were measured at 122, 356, 511, 662, 1170, 1275 and 1330 keV photon energies using a well-collimated narrow beam good geometry set-up. The gamma-rays were detected using NaI (Tl) scintillation detection system with a resolution of 0.101785 at 662 keV. The attenuation coefficient data were then used to obtain the effective atomic numbers (Zeff), and effective electron densities (Neff) of amino acids. It was observed that the effective atomic number (Zeff) and effective electron densities (Neff) initially decrease and tend to be almost constant as a function of gamma-ray energy. Zeff and Neff experimental values showed good agreement with the theoretical values with less than 1% error for amino acids.
NASA Technical Reports Server (NTRS)
Usry, J. W.; Whitlock, C. H.; Poole, L. R.; Witte, W. G., Jr.
1981-01-01
Total suspended solids concentrations ranged from 6.1 ppm to 24.3 ppm and sizes ranged between 1.5 micrometers and 10 micrometers with the most frequently occurring size less than 2 micrometers. Iron concentration was less than 1 percent of the total suspended solids. Nonfluorescing dye concentrations of the two mixtures were 20 ppm and 40 ppm. Attenuation coefficient for the five mixtures ranged from 4.8/m to 21.3/m. Variations in volume scattering function with phase angle were typical. Variations in attenuation and absorption coefficient with wavelength were similar for the mixtures without the dye. Attenuation coefficient of the mixtures with the dye increased for wavelengths less than 600 nm due to the dye's strong absorption peak near 500 nm. Reflectance increased as the concentration of Calvert clay increased and peaked near 600 nm. The nonfluorescent dye decreased the magnitude of the peak, but had practically no effect on the variation for wavelengths greater than 640 nm. At wavelengths less than 600 nm, the spectral variations of the mixtures with the dye were significantly different from those mixtures without the dye.
NASA Astrophysics Data System (ADS)
Badran, H.; Yahia, I. S.; Hamdy, Mohamed S.; Awwad, N. S.
2017-01-01
Lithium-hydroxyapatite (0, 1, 5, 10, 20, 30 and 40 wt% Li-HAp) nano-composites were synthesized by sol-gel technique followed by microwave-hydrothermal treatment. The composites were characterized by X-ray diffraction (XRD), Field emission scanning electron microscope (FE-SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared (FTIR) and Raman techniques. Gamma attenuation coefficient and the dielectric properties for all composites were investigated. The crystallinity degree of Li-doped HAp was higher than that of un-doped HAp. Gamma attenuation coefficient values increased from 0.562 cm-1 for 0 wt% Li-HAp to 2.190 cm-1 for 40 wt% Li-HAp. The alternating current conductivity increased with increasing frequency. The concentration of Li affect the values of dielectric constant where Li doped HAp of low dielectric constant can have an advantage for healing in bone fractures. The calcium to phosphorus ratio decreased from 1.43 to 1.37 with the addition of lithium indicating the Ca deficiency in the studied composites. Our findings lead to the conclusion that Li-HAp is a new nano-composite useful for medical applications and could be doped with gamma shield materials.
NASA Astrophysics Data System (ADS)
Langeveld, Willem G. J.
The most widely used technology for the non-intrusive active inspection of cargo containers and trucks is x-ray radiography at high energies (4-9 MeV). Technologies such as dual-energy imaging, spectroscopy, and statistical waveform analysis can be used to estimate the effective atomic number (Zeff) of the cargo from the x-ray transmission data, because the mass attenuation coefficient depends on energy as well as atomic number Z. The estimated effective atomic number, Zeff, of the cargo then leads to improved detection capability of contraband and threats, including special nuclear materials (SNM) and shielding. In this context, the exact meaning of effective atomic number (for mixtures and compounds) is generally not well-defined. Physics-based parameterizations of the mass attenuation coefficient have been given in the past, but usually for a limited low-energy range. Definitions of Zeff have been based, in part, on such parameterizations. Here, we give an improved parameterization at low energies (20-1000 keV) which leads to a well-defined Zeff. We then extend this parameterization up to energies relevant for cargo inspection (10 MeV), and examine what happens to the Zeff definition at these higher energies.
Estimation of underwater visibility in coastal and inland waters using remote sensing data.
Kulshreshtha, Anuj; Shanmugam, Palanisamy
2017-04-01
An optical method is developed to estimate water transparency (or underwater visibility) in terms of Secchi depth (Z sd ), which follows the remote sensing and contrast transmittance theory. The major factors governing the variation in Z sd , namely, turbidity and length attenuation coefficient (1/(c + K d ), c = beam attenuation coefficient; K d = diffuse attenuation coefficient at 531 nm), are obtained based on band rationing techniques. It was found that the band ratio of remote sensing reflectance (expressed as (R rs (443) + R rs (490))/(R rs (555) + R rs (670)) contains essential information about the water column optical properties and thereby positively correlates to turbidity. The beam attenuation coefficient (c) at 531 nm is obtained by a linear relationship with turbidity. To derive the vertical diffuse attenuation coefficient (K d ) at 531 nm, K d (490) is estimated as a function of reflectance ratio (R rs (670)/R rs (490)), which provides the bio-optical link between chlorophyll concentration and K d (531). The present algorithm was applied to MODIS-Aqua images, and the results were evaluated by matchup comparisons between the remotely estimated Z sd and in situ Z sd in coastal waters off Point Calimere and its adjoining regions on the southeast coast of India. The results showed the pattern of increasing Z sd from shallow turbid waters to deep clear waters. The statistical evaluation of the results showed that the percent mean relative error between the MODIS-Aqua-derived Z sd and in situ Z sd values was within ±25%. A close agreement achieved in spatial contours of MODIS-Aqua-derived Z sd and in situ Z sd for the month of January 2014 and August 2013 promises the model capability to yield accurate estimates of Z sd in coastal, estuarine, and inland waters. The spatial contours have been included to provide the best data visualization of the measured, modeled (in situ), and satellite-derived Z sd products. The modeled and satellite-derived Z sd values were compared with measurement data which yielded RMSE = 0.079, MRE = -0.016, and R 2 = 0.95 for the modeled Z sd and RMSE = 0.075, MRE = 0.020, and R 2 = 0.95 for the satellite-derived Z sd products.
Wanniarachchi, W. A. M.; Perera, M. S. A.; Rathnaweera, T. D.; Lyu, Q.; Mahanta, B.
2017-01-01
The mechanical properties of any substance are essential facts to understand its behaviour and make the maximum use of the particular substance. Rocks are indeed an important substance, as they are of significant use in the energy industry, specifically for fossil fuels and geothermal energy. Attenuation of seismic waves is a non-destructive technique to investigate mechanical properties of reservoir rocks under different conditions. The attenuation characteristics of five different rock types, siltstone, shale, Australian sandstone, Indian sandstone and granite, were investigated in the laboratory using ultrasonic and acoustic emission instruments in a frequency range of 0.1–1 MHz. The pulse transmission technique and spectral ratios were used to calculate the attenuation coefficient (α) and quality factor (Q) values for the five selected rock types for both primary (P) and secondary (S) waves, relative to the reference steel sample. For all the rock types, the attenuation coefficient was linearly proportional to the frequency of both the P and S waves. Interestingly, the attenuation coefficient of granite is more than 22% higher than that of siltstone, sandstone and shale for both P and S waves. The P and S wave velocities were calculated based on their recorded travel time, and these velocities were then used to calculate the dynamic mechanical properties including elastic modulus (E), bulk modulus (K), shear modulus (µ) and Poisson's ratio (ν). The P and S wave velocities for the selected rock types varied in the ranges of 2.43–4.61 km s−1 and 1.43–2.41 km h−1, respectively. Furthermore, it was observed that the P wave velocity was always greater than the S wave velocity, and this confirmed the first arrival of P waves to the sensor. According to the experimental results, the dynamic E value is generally higher than the static E value obtained by unconfined compressive strength tests. PMID:29134090
Wanniarachchi, W A M; Ranjith, P G; Perera, M S A; Rathnaweera, T D; Lyu, Q; Mahanta, B
2017-10-01
The mechanical properties of any substance are essential facts to understand its behaviour and make the maximum use of the particular substance. Rocks are indeed an important substance, as they are of significant use in the energy industry, specifically for fossil fuels and geothermal energy. Attenuation of seismic waves is a non-destructive technique to investigate mechanical properties of reservoir rocks under different conditions. The attenuation characteristics of five different rock types, siltstone, shale, Australian sandstone, Indian sandstone and granite, were investigated in the laboratory using ultrasonic and acoustic emission instruments in a frequency range of 0.1-1 MHz. The pulse transmission technique and spectral ratios were used to calculate the attenuation coefficient ( α ) and quality factor ( Q ) values for the five selected rock types for both primary ( P ) and secondary ( S ) waves, relative to the reference steel sample. For all the rock types, the attenuation coefficient was linearly proportional to the frequency of both the P and S waves. Interestingly, the attenuation coefficient of granite is more than 22% higher than that of siltstone, sandstone and shale for both P and S waves. The P and S wave velocities were calculated based on their recorded travel time, and these velocities were then used to calculate the dynamic mechanical properties including elastic modulus ( E ), bulk modulus ( K ), shear modulus ( µ ) and Poisson's ratio ( ν ). The P and S wave velocities for the selected rock types varied in the ranges of 2.43-4.61 km s -1 and 1.43-2.41 km h -1 , respectively. Furthermore, it was observed that the P wave velocity was always greater than the S wave velocity, and this confirmed the first arrival of P waves to the sensor. According to the experimental results, the dynamic E value is generally higher than the static E value obtained by unconfined compressive strength tests.
NASA Astrophysics Data System (ADS)
Wanniarachchi, W. A. M.; Ranjith, P. G.; Perera, M. S. A.; Rathnaweera, T. D.; Lyu, Q.; Mahanta, B.
2017-10-01
The mechanical properties of any substance are essential facts to understand its behaviour and make the maximum use of the particular substance. Rocks are indeed an important substance, as they are of significant use in the energy industry, specifically for fossil fuels and geothermal energy. Attenuation of seismic waves is a non-destructive technique to investigate mechanical properties of reservoir rocks under different conditions. The attenuation characteristics of five different rock types, siltstone, shale, Australian sandstone, Indian sandstone and granite, were investigated in the laboratory using ultrasonic and acoustic emission instruments in a frequency range of 0.1-1 MHz. The pulse transmission technique and spectral ratios were used to calculate the attenuation coefficient (α) and quality factor (Q) values for the five selected rock types for both primary (P) and secondary (S) waves, relative to the reference steel sample. For all the rock types, the attenuation coefficient was linearly proportional to the frequency of both the P and S waves. Interestingly, the attenuation coefficient of granite is more than 22% higher than that of siltstone, sandstone and shale for both P and S waves. The P and S wave velocities were calculated based on their recorded travel time, and these velocities were then used to calculate the dynamic mechanical properties including elastic modulus (E), bulk modulus (K), shear modulus (µ) and Poisson's ratio (ν). The P and S wave velocities for the selected rock types varied in the ranges of 2.43-4.61 km s-1 and 1.43-2.41 km h-1, respectively. Furthermore, it was observed that the P wave velocity was always greater than the S wave velocity, and this confirmed the first arrival of P waves to the sensor. According to the experimental results, the dynamic E value is generally higher than the static E value obtained by unconfined compressive strength tests.
Testing of a Fiber Optic Wear, Erosion and Regression Sensor
NASA Technical Reports Server (NTRS)
Korman, Valentin; Polzin, Kurt A.
2011-01-01
The nature of the physical processes and harsh environments associated with erosion and wear in propulsion environments makes their measurement and real-time rate quantification difficult. A fiber optic sensor capable of determining the wear (regression, erosion, ablation) associated with these environments has been developed and tested in a number of different applications to validate the technique. The sensor consists of two fiber optics that have differing attenuation coefficients and transmit light to detectors. The ratio of the two measured intensities can be correlated to the lengths of the fiber optic lines, and if the fibers and the host parent material in which they are embedded wear at the same rate the remaining length of fiber provides a real-time measure of the wear process. Testing in several disparate situations has been performed, with the data exhibiting excellent qualitative agreement with the theoretical description of the process and when a separate calibrated regression measurement is available good quantitative agreement is obtained as well. The light collected by the fibers can also be used to optically obtain the spectra and measure the internal temperature of the wear layer.
Baird, Mark E
2003-10-01
The size, shape, and absorption coefficient of a microalgal cell determines, to a first order approximation, the rate at which light is absorbed by the cell. The rate of absorption determines the maximum amount of energy available for photosynthesis, and can be used to calculate the attenuation of light through the water column, including the effect of packaging pigments within discrete particles. In this paper, numerical approximations are made of the mean absorption cross-section of randomly oriented cells, aA. The shapes investigated are spheroids, rectangular prisms with a square base, cylinders, cones and double cones with aspect ratios of 0.25, 0.5, 1, 2, and 4. The results of the numerical simulations are fitted to a modified sigmoid curve, and take advantage of three analytical solutions. The results are presented in a non-dimensionalised format and are independent of size. A simple approximation using a rectangular hyperbolic curve is also given, and an approach for obtaining the upper and lower bounds of aA for more complex shapes is outlined.
Structural and luminescent properties of a NaYF4-aerogel composite
NASA Astrophysics Data System (ADS)
Alattar, Ashraf M.; Drexler, Matthew; Twej, Wesam A. A.; Alamgir, Faisal M.
2018-07-01
Upconversion materials, capable of energy-shifting light, have direct application in devices where the tunability of the optical spectrum can result in higher performance. Due to the low transparency of upconversion nanomaterials, it is beneficial to disperse them in a medium with a low optical attenuation coefficient in order to allow light to reach and increase the contributions from each individual particle. Silica aerogels, with their high transparency and open porosity, are ideal media for the dispersion of the nanomaterials throughout a volume. NaYF4-based nanocrystals with differing dopants were incorporated into silica xerogels and aerogels to observe the effect of the composites on the properties of each. It was observed that, while the average surface area of the aerogel decreased in the composite, the shape and phase of the nanocrystals were preserved during xerogel processing. The luminescence of the nanoparticles increased upon incorporation into the xerogel composites. By accounting for effects emerging from collection geometry and the composite morphology, it is argued that the increase in the composite luminescent intensity is due to the nanoparticles being shielded from quenching effects by the silica matrix.
Ultrasonic attenuation in pearlitic steel.
Du, Hualong; Turner, Joseph A
2014-03-01
Expressions for the attenuation coefficients of longitudinal and transverse ultrasonic waves are developed for steel with pearlitic microstructure. This type of lamellar duplex microstructure influences attenuation because of the lamellar spacing. In addition, longitudinal attenuation measurements were conducted using an unfocused transducer with 10 MHz central frequency on the cross section of a quenched railroad wheel sample. The dependence of longitudinal attenuation on the pearlite microstructure is observed from the changes of longitudinal attenuation from the quenched tread surface to deeper locations. The results show that the attenuation value is lowest and relatively constant within the quench depth, then increases linearly. The experimental results demonstrate a reasonable agreement with results from the theoretical model. Ultrasonic attenuation provides an important non-destructive method to evaluate duplex microstructure within grains which can be implemented for quality control in conjunction with other manufacturing processes. Copyright © 2013 Elsevier B.V. All rights reserved.
2009-01-01
complementary description of CDOM photodegradation and, importantly, CDOM biomass and light absorption. As part of this work, we setup and run the new high...related loss terms from the ECOSIM 2.0 formulation (Bissett 2005 and FERI 2004) and included diffuse light attenuation in the water column based on...Huang, pers. comm.), c) we improved the photolysis rate equations and included light attenuation in the water column, and d) we expanded the limited
Zhu, Li-Hua; Tao, Jun; Chen, Zhong-Ming; Zhao, Yue; Zhang, Ren-Jian; Cao, Jun-Ji
2012-01-01
Aerosol samples for PM2.5 were collected from 1st January to 31st January 2010, in Beijing. The concentrations of organic carbon, elemental carbon, water-solubile ions and soil elements of all particle samples were determined by thermal/optical carbon analyzer, ion chromatography and X-ray fluorescence spectrometer, respectively. The scattering coefficients (b(sp)), absorbing coefficients (b(ap)) and meteorological parameters for this period were also measured. Ambient light extinction coefficients were reconstructed by IMPROVE formula and were compared with measured light extinction coefficients. The results showed that the average mass concentration of PM2.5 was (144.3 +/- 89.1) microg x m(-3) during campaigning period. The average values of measured b(ap), b(sp) and extinction coefficient (b(ext)) were (67.4 +/- 54.3), (328.5 +/- 353.8) and (395.9 +/- 405.2) Mm(-1), respectively. IMPROVE formula is suitable for source apportionment of light extinction coefficient in campaign period. The average value of calculated b'(ext) was (611 +/- 503) Mm(-1) in January, 2010. The major contributors to ambient light extinction coefficients included (NH4) 2SO4 (24.6%), NH4NO3 (11.6%), OM (45.5%), EC (11.9%) and FS (6.4%), respectively.
Measuring coronary calcium on CT images adjusted for attenuation differences.
Nelson, Jennifer Clark; Kronmal, Richard A; Carr, J Jeffrey; McNitt-Gray, Michael F; Wong, Nathan D; Loria, Catherine M; Goldin, Jonathan G; Williams, O Dale; Detrano, Robert
2005-05-01
To quantify scanner and participant variability in attenuation values for computed tomographic (CT) images assessed for coronary calcium and define a method for standardizing attenuation values and calibrating calcium measurements. Institutional review board approval and participant informed consent were obtained at all study sites. An image attenuation adjustment method involving the use of available calibration phantom data to define standard attenuation values was developed. The method was applied to images from two population-based multicenter studies: the Coronary Artery Risk Development in Young Adults study (3041 participants) and the Multi-Ethnic Study of Atherosclerosis (6814 participants). To quantify the variability in attenuation, analysis of variance techniques were used to compare the CT numbers of standardized torso phantom regions across study sites, and multivariate linear regression models of participant-specific calibration phantom attenuation values that included participant age, race, sex, body mass index (BMI), smoking status, and site as covariates were developed. To assess the effect of the calibration method on calcium measurements, Pearson correlation coefficients between unadjusted and attenuation-adjusted calcium measurements were computed. Multivariate models were used to examine the effect of sex, race, BMI, smoking status, unadjusted score, and site on Agatston score adjustments. Mean attenuation values (CT numbers) of a standard calibration phantom scanned beneath participants varied significantly according to scanner and participant BMI (P < .001 for both). Values were lowest for Siemens multi-detector row CT scanners (110.0 HU), followed by GE-Imatron electron-beam (116.0 HU) and GE LightSpeed multi-detector row scanners (121.5 HU). Values were also lower for morbidly obese (BMI, > or =40.0 kg/m(2)) participants (108.9 HU), followed by obese (BMI, 30.0-39.9 kg/m(2)) (114.8 HU), overweight (BMI, 25.0-29.9 kg/m(2)) (118.5 HU), and normal-weight or underweight (BMI, <25.0 kg/m(2)) (120.1 HU) participants. Agatston score calibration adjustments ranged from -650 to 1071 (mean, -8 +/- 50 [standard deviation]) and increased with Agatston score (P < .001). The direction and magnitude of adjustment varied significantly according to scanner and BMI (P < .001 for both) and were consistent with phantom attenuation results in that calibration resulted in score decreases for images with higher phantom attenuation values. Image attenuation values vary by scanner and participant body size, producing calcium score differences that are not due to true calcium burden disparities. Use of calibration phantoms to adjust attenuation values and calibrate calcium measurements in research studies and clinical practice may improve the comparability of such measurements between persons scanned with different scanners and within persons over time.
Adjustable Optical-Fiber Attenuator
NASA Technical Reports Server (NTRS)
Buzzetti, Mike F.
1994-01-01
Adjustable fiber-optic attenuator utilizes bending loss to reduce strength of light transmitted along it. Attenuator functions without introducing measurable back-reflection or insertion loss. Relatively insensitive to vibration and changes in temperature. Potential applications include cable television, telephone networks, other signal-distribution networks, and laboratory instrumentation.
Wu, Yao; Yang, Wei; Lu, Lijun; Lu, Zhentai; Zhong, Liming; Huang, Meiyan; Feng, Yanqiu; Feng, Qianjin; Chen, Wufan
2016-10-01
Attenuation correction is important for PET reconstruction. In PET/MR, MR intensities are not directly related to attenuation coefficients that are needed in PET imaging. The attenuation coefficient map can be derived from CT images. Therefore, prediction of CT substitutes from MR images is desired for attenuation correction in PET/MR. This study presents a patch-based method for CT prediction from MR images, generating attenuation maps for PET reconstruction. Because no global relation exists between MR and CT intensities, we propose local diffeomorphic mapping (LDM) for CT prediction. In LDM, we assume that MR and CT patches are located on 2 nonlinear manifolds, and the mapping from the MR manifold to the CT manifold approximates a diffeomorphism under a local constraint. Locality is important in LDM and is constrained by the following techniques. The first is local dictionary construction, wherein, for each patch in the testing MR image, a local search window is used to extract patches from training MR/CT pairs to construct MR and CT dictionaries. The k-nearest neighbors and an outlier detection strategy are then used to constrain the locality in MR and CT dictionaries. Second is local linear representation, wherein, local anchor embedding is used to solve MR dictionary coefficients when representing the MR testing sample. Under these local constraints, dictionary coefficients are linearly transferred from the MR manifold to the CT manifold and used to combine CT training samples to generate CT predictions. Our dataset contains 13 healthy subjects, each with T1- and T2-weighted MR and CT brain images. This method provides CT predictions with a mean absolute error of 110.1 Hounsfield units, Pearson linear correlation of 0.82, peak signal-to-noise ratio of 24.81 dB, and Dice in bone regions of 0.84 as compared with real CTs. CT substitute-based PET reconstruction has a regression slope of 1.0084 and R 2 of 0.9903 compared with real CT-based PET. In this method, no image segmentation or accurate registration is required. Our method demonstrates superior performance in CT prediction and PET reconstruction compared with competing methods. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Laser Measurement Of Convective-Heat-Transfer Coefficient
NASA Technical Reports Server (NTRS)
Porro, A. Robert; Hingst, Warren R.; Chriss, Randall M.; Seablom, Kirk D.; Keith, Theo G., Jr.
1994-01-01
Coefficient of convective transfer of heat at spot on surface of wind-tunnel model computed from measurements acquired by developmental laser-induced-heat-flux technique. Enables non-intrusive measurements of convective-heat-transfer coefficients at many points across surfaces of models in complicated, three-dimensional, high-speed flows. Measurement spot scanned across surface of model. Apparatus includes argon-ion laser, attenuator/beam splitter electronic shutter infrared camera, and subsystem.
NASA Astrophysics Data System (ADS)
Civale, John; Ter Haar, Gail; Rivens, Ian; Bamber, Jeff
2005-09-01
Currently, the intensity to be used in our clinical HIFU treatments is calculated from the acoustic path lengths in different tissues measured on diagnostic ultrasound images of the patient in the treatment position, and published values of ultrasound attenuation coefficients. This yields an approximate value for the acoustic power at the transducer required to give a stipulated focal intensity in situ. Estimation methods for the actual acoustic attenuation have been investigated in large parts of the tissue path overlying the target volume from the backscattered ultrasound signal for each patient (backscatter attenuation estimation: BAE). Several methods have been investigated. The backscattered echo information acquired from an Acuson scanner has been used to compute the diffraction-corrected attenuation coefficient at each frequency using two methods: a substitution method and an inverse diffraction filtering process. A homogeneous sponge phantom was used to validate the techniques. The use of BAE to determine the correct HIFU exposure parameters for lesioning has been tested in ex vivo liver. HIFU lesions created with a 1.7-MHz therapy transducer have been studied using a semiautomated image processing technique. The reproducibility of lesion size for given in situ intensities determined using BAE and empirical techniques has been compared.
Low-energy gamma ray attenuation characteristics of aviation fuels
NASA Technical Reports Server (NTRS)
Singh, Jag J.; Shen, Chih-Ping; Sprinkle, Danny R.
1990-01-01
Am241 (59.5 keV) gamma ray attenuation characteristics were investigated in 270 aviation fuel (Jet A and Jet A-1) samples from 76 airports around the world as a part of world wide study to measure the variability of aviation fuel properties as a function of season and geographical origin. All measurements were made at room temperature which varied from 20 to 27 C. Fuel densities (rho) were measured concurrently with their linear attenuation coefficients (mu), thus providing a measure of mass attenuation coefficient (mu/rho) for the test samples. In 43 fuel samples, rho and mu values were measured at more than one room temperature, thus providing mu/rho values for them at several temperatures. The results were found to be independent of the temperature at which mu and rho values were measured. It is noted that whereas the individual mu and rho values vary considerably from airport to airport as well as season to season, the mu/rho values for all samples are constant at 0.1843 + or - 0.0013 cu cm/gm. This constancy of mu/rho value for aviation fuels is significant since a nuclear fuel quantity gauging system based on low energy gamma ray attenuation will be viable throughout the world.
Wear, Keith A
2013-04-01
The presence of two longitudinal waves in poroelastic media is predicted by Biot's theory and has been confirmed experimentally in through-transmission measurements in cancellous bone. Estimation of attenuation coefficients and velocities of the two waves is challenging when the two waves overlap in time. The modified least squares Prony's (MLSP) method in conjuction with curve-fitting (MLSP + CF) is tested using simulations based on published values for fast and slow wave attenuation coefficients and velocities in cancellous bone from several studies in bovine femur, human femur, and human calcaneus. The search algorithm is accelerated by exploiting correlations among search parameters. The performance of the algorithm is evaluated as a function of signal-to-noise ratio (SNR). For a typical experimental SNR (40 dB), the root-mean-square errors (RMSEs) for one example (human femur) with fast and slow waves separated by approximately half of a pulse duration were 1 m/s (slow wave velocity), 4 m/s (fast wave velocity), 0.4 dB/cm MHz (slow wave attenuation slope), and 1.7 dB/cm MHz (fast wave attenuation slope). The MLSP + CF method is fast (requiring less than 2 s at SNR = 40 dB on a consumer-grade notebook computer) and is flexible with respect to the functional form of the parametric model for the transmission coefficient. The MLSP + CF method provides sufficient accuracy and precision for many applications such that experimental error is a greater limiting factor than estimation error.
Ultrasonic attenuation in superconducting molybdenum-rhenium alloys.
NASA Technical Reports Server (NTRS)
Ashkin, M.; Deis, D. W.; Gottlieb, M.; Jones, C. K.
1971-01-01
Investigation of longitudinal sound attenuation in superconducting Mo-Re alloys as a function of temperature, magnetic field, and frequency. Evaporated thin film CdS transducers were used for the measurements at frequencies up to 3 GHz. The normal state attenuation coefficient was found to be proportional to the square of frequency over this frequency range. Measurements in zero magnetic field yielded a value of the energy gap parameter close to the threshold value of 3.56 kTc, appropriate to a weakly coupled dirty limit superconductor.
Singh, M Suheshkumar; Yalavarthy, Phaneendra K; Vasu, R M; Rajan, K
2010-07-01
To assess the effect of ultrasound modulation of near infrared (NIR) light on the quantification of scattering coefficient in tissue-mimicking biological phantoms. A unique method to estimate the phase of the modulated NIR light making use of only time averaged intensity measurements using a charge coupled device camera is used in this investigation. These experimental measurements from tissue-mimicking biological phantoms are used to estimate the differential pathlength, in turn leading to estimation of optical scattering coefficient. A Monte-Carlo model based numerical estimation of phase in lieu of ultrasound modulation is performed to verify the experimental results. The results indicate that the ultrasound modulation of NIR light enhances the effective scattering coefficient. The observed effective scattering coefficient enhancement in tissue-mimicking viscoelastic phantoms increases with increasing ultrasound drive voltage. The same trend is noticed as the ultrasound modulation frequency approaches the natural vibration frequency of the phantom material. The contrast enhancement is less for the stiffer (larger storage modulus) tissue, mimicking tumor necrotic core, compared to the normal tissue. The ultrasound modulation of the insonified region leads to an increase in the effective number of scattering events experienced by NIR light, increasing the measured phase, causing the enhancement in the effective scattering coefficient. The ultrasound modulation of NIR light could provide better estimation of scattering coefficient. The observed local enhancement of the effective scattering coefficient, in the ultrasound focal region, is validated using both experimental measurements and Monte-Carlo simulations.
Aasamaa, Krõõt; Aphalo, Pedro José
2017-02-01
Stomatal anatomical traits and rapid responses to several components of visible light were measured in Tilia cordata Mill. seedlings grown in an open, fully sunlit field (C-set), or under different kinds of shade. The main questions were: (i) stomatal responses to which visible light spectrum regions are modified by growth-environment shade and (ii) which separate component of vegetational shade is most effective in eliciting the acclimation effects of the full vegetational shade. We found that stomatal opening in response to red or green light did not differ between the plants grown in the different environments. Stomatal response to blue light was increased (in comparison with that of C-set) in the leaves grown in full vegetational shade (IABW-set), in attenuated UVAB irradiance (AB-set) or in decreased light intensity (neutral shade) plus attenuated UVAB irradiance (IAB-set). In all sets, the addition of green light-two or four times stronger-into induction light barely changed the rate of the blue-light-stimulated stomatal opening. In the AB-set, stomatal response to blue light equalled the strong IABW-set response. In attenuated UVB-grown leaves, stomatal response fell midway between IABW- and C-set results. Blue light response by neutral shade-grown leaves did not differ from that of the C-set, and the response by the IAB-set did not differ from that of the AB-set. Stomatal size was not modified by growth environments. Stomatal density and index were remarkably decreased only in the IABW- and IAB-sets. It was concluded that differences in white light responses between T. cordata leaves grown in different light environments are caused only by their different blue light response. Differences in stomatal sensitivity are not dependent on altered stomatal anatomy. Attenuated UVAB irradiance is the most efficient component of vegetational shade in stimulating acclimation of stomata, whereas decreased light intensity plays a minor role. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Enríquez, Susana; Pantoja-Reyes, Norma I
2005-09-01
The variation in seagrass morphology and the magnitude of leaf self-shading within the canopy of Thalassia testudinum, were compared among nine sites in a fringing reef lagoon. We found a significant variation in the growth-form of T. testudinum reflected in a 5.4-fold variation in the attenuation coefficient (K (d)) within the canopy. The largest morphological variation was observed in shoot density. Leaf biomass, leaf area index (LAI), and shoot density were positively associated with canopy-K (d) and with the percentage of surface irradiance received by the top of the seagrass canopy (% Es). These results provide an explanation for the consistent pattern of depth reduction in seagrass leaf biomass and shoot density reported in the literature. Shoot density and shoot size are two descriptors of the growth-form of T. testudinum related to its clonal life-form. Shoot size was not significantly correlated with canopy-K (d), nevertheless, it showed a significant effect on the slope of the relationship between shoot density and canopy-K (d). According to this model, shoot size also contributes to light attenuation within the seagrass canopy by increasing the effect of shoot density. This form-function analysis suggests that light may have a relevant role in the regulation of the optimal plant balance between horizontal (variation in shoot density) and vertical (variation in shoot size) growth of seagrasses. Other environmental factors and interactions also need to be examined to fully understand the mechanistic bases of the morphological responses of seagrasses to the environment.
Yin, Lu; Yan, Mingjian; Han, Zhigang; Wang, Hailin; Shen, Hua; Zhu, Rihong
2017-04-17
We present the segmented corrosion method that uses hydrofluoric acid to etch the fiber of a fiber laser for removing high-power cladding light to improve stripping uniformity and power handling capability. For theoretical guidelines, we propose a simulation model of etched-fiber stripping to evaluate the relationship between the etched-fiber parameters and cladding light attenuation and to analyze the stripping uniformity achieved with segmented corrosion. A two-segment etched fiber is fabricated with cladding light attenuation of 19.8 dB and power handling capability up to 670 W. We find that the cladding light is stripped uniformly and the temperature distribution is uniform without the formation of hot spots.
Mullan, B F; Madsen, M T; Messerle, L; Kolesnichenko, V; Kruger, J
2000-04-01
The purpose of this study was to examine the radiologic attenuation properties of the parent cluster compounds, particularly attenuation as a function of discrete photon energy, before investigating ligand substitutions, which are necessary to improve cluster biocompatibility and to impart desirable physicochemical properties. The linear attenuation coefficients for solutions of the cluster compounds Ta6Br14, K8Ta6O19, and (H3O)2W6Cl14 were determined at 60, 80, 103, 122, and 140 keV from gamma-ray transmission measurements with americium-241, xenon-133, gadolinium-153, cobalt-57, and technetium-99m radioactive sources. Transmission measurements were obtained for a fixed time interval that ensured a statistically accurate count distribution exceeding 20,000 counts through the sample for each trial. On a strictly mole per liter basis, a 0.075 mol/L aqueous solution of K8Ta6O19 showed 1.08 times the attenuation of 0.063 mol/L aqueous iohexol at 60 keV and 3.30 times the attenuation at 80 keV. Similarly, a 0.05 mol/L methanolic solution of (H3O)2W6Cl4 showed 0.96 times (96%) the attenuation of 0.063 mol/L aqueous iohexol at 60 keV but 3.09 times the attenuation of the iohexol solution at 80 keV. Attenuations of 0.063 mol/L aqueous iohexol and 0.0125 mol/L Ta6Br14 (ie, at approximately one-fifth the iohexol concentration) were comparable at greater than 60 keV. These results confirm the theoretic potential for use of early transition metal cluster compounds as radiographic contrast agents. At higher x-ray energies, cluster compounds demonstrate multiplied x-ray attenuation relative to iodinated contrast agents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chevalier, S.; Banerjee, R.; Lee, J.
In this work, we investigated the dominating properties of the porous materials that impact water dynamics in a polymer electrolyte membrane fuel cell (PEMFC). Visualizations of liquid water in an operating PEMFC were performed at the Canadian Light Source. A miniature fuel cell was specifically designed for X-ray imaging investigations, and an in-house image processing algorithm based on the Beer-Lambert law was developed to extract quantities of liquid water thicknesses (cm) from raw X-ray radiographs. The X-ray attenuation coefficient of water at 24 keV was measured with a calibration device to ensure accurate measurements of the liquid water thicknesses. Frommore » this experiment, the through plane distribution of the liquid water in the fuel cell was obtained.« less
A ray tracing model for leaf bidirectional scattering studies
NASA Technical Reports Server (NTRS)
Brakke, T. W.; Smith, J. A.
1987-01-01
A leaf is modeled as a deterministic two-dimensional structure consisting of a network of circular arcs designed to represent the internal morphology of major species. The path of an individual ray through the leaf is computed using geometric optics. At each intersection of the ray with an arc, the specular reflected and transmitted rays are calculated according to the Snell and Fresnel equations. Diffuse scattering is treated according to Lambert's law. Absorption is also permitted but requires a detailed knowledge of the spectral attenuation coefficients. An ensemble of initial rays are chosen for each incident direction with the initial intersection points on the leaf surface selected randomly. The final equilibrium state after all interactions then yields the leaf bidirectional reflectance and transmittance distributions. The model also yields the internal two dimensional light gradient profile of the leaf.
Liaparinos, Panagiotis F; Kandarakis, Ioannis S; Cavouras, Dionisis A; Delis, Harry B; Panayiotakis, George S
2007-05-01
Lu2SiO5: Ce (LSO) scintillator is a relatively new luminescent material which has been successfully applied in positron emission tomography systems. Since it has been recently commercially available in powder form, it could be of value to investigate its performance for use in x-ray projection imaging as both physical and scintillating properties indicate a promising material for such applications. In the present study, a custom and validated Monte Carlo simulation code was used in order to examine the performance of LSO, under diagnostic radiology (mammography and general radiography) conditions. The Monte Carlo code was based on a model using Mie scattering theory for the description of light attenuation. Imaging characteristics, related to image brightness, spatial resolution and noise of LSO screens were predicted using only physical parameters of the phosphor. The overall performance of LSO powder phosphor screens was investigated in terms of the: (i) quantum detection efficiency (ii) emitted K-characteristic radiation (iii) luminescence efficiency (iv) modulation transfer function (v) Swank factor and (vi) zero-frequency detective quantum efficiency [DQE(0)]. Results were compared to the traditional rare-earth Gd2O2S:Tb (GOS) phosphor material. The relative luminescence efficiency of LSO phosphor was found inferior to that of GOS. This is due to the lower intrinsic conversion efficiency of LSO (0.08 instead of 0.15 of GOS) and the relatively high light extinction coefficient mext of this phosphor (0.239 mircom(-1) instead of 0.218 /microm(-1) for GOS). However, the property of increased light extinction combined with the rather sharp angular distribution of scattered light photons (anisotropy factor g=0.624 for LSO instead of 0.494 for GOS) reduce lateral light spreading and improve spatial resolution. In addition, LSO screens were found to exhibit better x-ray absorption as well as higher signal to noise transfer properties in the energy range from 18 keV up to 50.2 keV (e.g. DQE(0)=0.62 at 18 keV and for 34 mg/cm2, instead of 0.58 for GOS). The results indicate that certain optical properties of LSO (optical extinction coefficient, scattering anisotropy factor) combined with the relatively high x-ray coefficients, make this material a promising phosphor which, under appropriate conditions, could be considered for use in x-ray projection imaging detectors.
NASA Astrophysics Data System (ADS)
Jamet, C.; Loisel, H.; Dessailly, D.
2012-10-01
The diffuse attenuation coefficient, Kd(λ) is a fundamental radiometric parameter that is used to assess the light availability in the water column. A neural network approach is developed to assess Kd(λ) at any visible wavelengths from the remote sensing reflectances as measured by the SeaWiFS satellite sensor. The neural network (NN) inversion is trained using a combination of simulated and in-situ data sets covering a broad range ofKd(λ), between 0.0073 m-1 at 412 nm and 12.41 m-1at 510 nm. The performance of the retrieval is evaluated against two data sets, one consisting of mainly synthetic data while the other one contains in-situ data only and is compared to those obtained with previous published empirical (NASA, Morel and Maritorena (2001) and Zhang and Fell (2007)) and semi-analytical (Lee et al., 2005b) algorithms. On the in-situ data set from the COASTLOOC campaign, the retrieval accuracy of the present algorithm is quite similar to published algorithms for oligotrophic and mesotrophic ocean waters. But for Kd(490) > 0.25 m-1, the NN approach allows to retrieve Kd(490) with a much better accuracy than the four other methods. The results are consistent when compared with other SeaWiFS wavelengths. This new inversion is as suitable in the open ocean waters as in the turbid waters. The work here is straightforwardly applicable to the MERIS sensor and with few changes to the MODIS-AQUA sensor. The algorithm in matlab and C code is provided as auxiliary material.
NASA Astrophysics Data System (ADS)
Organelli, Emanuele; Claustre, Hervé; Bricaud, Annick; Barbieux, Marie; Uitz, Julia; D'Ortenzio, Fabrizio; Dall'Olmo, Giorgio
2017-05-01
Identification of oceanic regions characterized by particular optical properties is extremely important for ocean color applications. The departure from globally established bio-optical models (i.e., anomaly) introduces uncertainties in the retrieval of biogeochemical quantities from satellite observations. Thanks to an array of 105 Biogeochemical Argo floats acquiring almost daily downward irradiance measurements at selected wavelengths in the UV and blue region of the spectrum, we reexamined the natural variability of the spectral diffuse attenuation coefficients, Kd(λ), among the world's oceans and compared them to previously established bio-optical models. The analysis of 2847 measurements of Kd(λ) at 380 and 490 nm, within the first optical depth, provided a classification of the examined regions into three groups. The first one included the Black Sea, a water body characterized by a very high content of colored dissolved organic matter (CDOM). The second group was essentially composed by the subtropical gyres (Atlantic and Pacific Oceans), with optical properties consistent with previous models (i.e., no anomalies). High latitude (North Atlantic and Southern oceans) and temperate (Mediterranean Sea) seas formed the third group, in which optical properties departed from existing bio-optical models. Annual climatologies of the Kd(380)/Kd(490) ratio evidenced a persistent anomaly in the Mediterranean Sea, that we attributed to a higher-than-average CDOM contribution to total light absorption. In the North Atlantic subpolar gyre, anomalies were observed only in wintertime and were also attributed to high CDOM concentrations. In the Southern Ocean, the anomaly was likely related to high phytoplankton pigment packaging rather than to CDOM.
Method for transmittance measurements in sunglasses for a kiosk
NASA Astrophysics Data System (ADS)
Mello, Marcio M.; Figueiredo, M.; Konda, R. A.; Ventura, Liliane
2013-03-01
Light transmittance measurements through sunglasses lenses is one of the required tests of the Brazilian Standard NBR15111(2004). Its measurement establishes the category of the sample and determines the required ultraviolet, visible and infrared protection, as well as the attenuation coefficient for signal light recognition. However, these measurements are usually performed by spectrophotometers and educated users, who are acknowledged to manage the equipment, use the weighting functions (WF) and interpret the data. We propose an alternative method, which consists in having matching optics and electronics to obtain a close WF to be used in transmittance measurements, and create an accessible device, for public self-use, providing a simple way for measuring and educating the public about sunglasses protection. Measurements were made in 30 samples for UV test, performed for the 280 - 400nm range, where UVA and UVB light sources and two photodiode sensors with Erythema action response are assembled, and for traffic signal a visible light sensor was used with spectral human eye response and different LEDs. As for the visible test, the visible light sensor was used for different light sources: incandescent, fluorescent, and a set of LEDs, while the infrared test is performed by several LEDs that provide the 780 - 2000nm range, and an infrared sensor. For these tests, only the samples spectrum were used. The transmittances were within the deviation limit required by NBR15111. The results have led us to build a self service kiosk for public use providing the category, UV protection and IR protection of the sunglasses as well as the information regarding its use for driving.
NASA Astrophysics Data System (ADS)
Bassi, Rosane; Myakawa, Walter; Navarro, Ricardo S.; Baptista, Alessandra; Ribeiro, Martha Simões; Nunez, Silvia Cristina
2018-02-01
An endotracheal tube (ETT) is required for the management of critically ill, mechanically ventilated patients. Ventilatorassociated pneumonia (VAP) affects patients hospitalized in intensive care units; its risk of occurrence is 1% to up 3% for each day of mechanical ventilation. The polymicrobial nature of VAP is established with mixed bacterial-fungal biofilms colonizing the ETT. The microbial interaction enhances the microbial pathogenesis contributing to high indexes of morbidity/mortality. Antimicrobial Photodynamic Therapy (aPDT) could be a suitable therapy for decontamination of oral cavity and ETT at the same time, but the use of a fiber optics inside the ETT seems to not be appropriated since a cannula for secretion aspiration has to be introduced into the ETT to keep it's lumen. The aim of this study is to proof the concept that an external light source from a LED is capable of reach all areas of the ETT. We use a commercial ETT, 60μM methylene blue (MB), and a 660nm diode laser and calculated the transmission coefficient of light in different situations as only tube, tube with biofilm and biofilm+MB. The results prove that is possible to transmit light through the tube even in the presence of MB and biofilm although a high attenuation of about 60% was measured depending on the tested condition.
NASA Astrophysics Data System (ADS)
Yang, YuFeng; Li, Ting
2018-02-01
The study of the relationship between transmittance visibility and PM2.5 concentration under the haze conditions has important theoretical significance for Free Space Optical communication (FSO). In this paper, the influence of PM2.5 concentration on the transmittance, attenuation coefficient and visibility was studied by light scattering theory, and the results by Mie theory and Monte Carlo method were analyzed. At the same time, the effect of PM2.5 particle size distribution on visibility was also analyzed, and the visibility calculated by light scattering method was compared with the visibility measured in Beijing from 2014 to 2016. The result shows that the higher PM2.5 concentration is the more obvious the multiple scattering effect is. When the mass concentration of PM2.5 is constant, the larger the geometric mean of the particle diameter is, the larger the visibility is. By comparing the visibility measured and the visibility calculated, we can see that when PM2.5 concentration is higher than 100μg/m3 , PM2.5 is the main factor affecting the visibility; and when PM2.5 concentration is lower than 100μg/m3, other factors (such as PM10, wind speed, air pressure and gas molecules) should also need to be considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gjorgieva, Slavica, E-mail: slavicagjorgieva89@gmail.com; Institute of Physics, Faculty of Natural Sciences and Mathematics, Ss Cyril and Methodius University, POB 162, 1000 Skopje; Barandovski, Lambe, E-mail: lambe@pmf.ukim.mk
The mass attenuation coefficients (μ/ρ) for 3 high purity elemental materials Al, Cu and Pb were measured in the γ-ray energy range from 81 keV up to 1333 keV using {sup 22}Na, {sup 60}Co {sup 133}Ba and {sup 133}Cs as sources of gamma radiation. Well shielded detector (NaI (Tl) semiconductor detector) was used to measure the intensity of the transmitted beam. The measurements were made under condition of good geometry, assuring that any photon absorbed or deflected appreciably does not reach the detector. The measured values are compared with the theoretical ones obtained by Seltzer (1993).
Auxiliary basis expansions for large-scale electronic structure calculations.
Jung, Yousung; Sodt, Alex; Gill, Peter M W; Head-Gordon, Martin
2005-05-10
One way to reduce the computational cost of electronic structure calculations is to use auxiliary basis expansions to approximate four-center integrals in terms of two- and three-center integrals, usually by using the variationally optimum Coulomb metric to determine the expansion coefficients. However, the long-range decay behavior of the auxiliary basis expansion coefficients has not been characterized. We find that this decay can be surprisingly slow. Numerical experiments on linear alkanes and a toy model both show that the decay can be as slow as 1/r in the distance between the auxiliary function and the fitted charge distribution. The Coulomb metric fitting equations also involve divergent matrix elements for extended systems treated with periodic boundary conditions. An attenuated Coulomb metric that is short-range can eliminate these oddities without substantially degrading calculated relative energies. The sparsity of the fit coefficients is assessed on simple hydrocarbon molecules and shows quite early onset of linear growth in the number of significant coefficients with system size using the attenuated Coulomb metric. Hence it is possible to design linear scaling auxiliary basis methods without additional approximations to treat large systems.
Evaluation of fatty proportion in fatty liver using least squares method with constraints.
Li, Xingsong; Deng, Yinhui; Yu, Jinhua; Wang, Yuanyuan; Shamdasani, Vijay
2014-01-01
Backscatter and attenuation parameters are not easily measured in clinical applications due to tissue inhomogeneity in the region of interest (ROI). A least squares method(LSM) that fits the echo signal power spectra from a ROI to a 3-parameter tissue model was used to get attenuation coefficient imaging in fatty liver. Since fat's attenuation value is higher than normal liver parenchyma, a reasonable threshold was chosen to evaluate the fatty proportion in fatty liver. Experimental results using clinical data of fatty liver illustrate that the least squares method can get accurate attenuation estimates. It is proved that the attenuation values have a positive correlation with the fatty proportion, which can be used to evaluate the syndrome of fatty liver.
New limb-darkening coefficients for modeling binary star light curves
NASA Technical Reports Server (NTRS)
Van Hamme, W.
1993-01-01
We present monochromatic, passband-specific, and bolometric limb-darkening coefficients for a linear as well as nonlinear logarithmic and square root limb-darkening laws. These coefficients, including the bolometric ones, are needed when modeling binary star light curves with the latest version of the Wilson-Devinney light curve progam. We base our calculations on the most recent ATLAS stellar atmosphere models for solar chemical composition stars with a wide range of effective temperatures and surface gravitites. We examine how well various limb-darkening approximations represent the variation of the emerging specific intensity across a stellar surface as computed according to the model. For binary star light curve modeling purposes, we propose the use of a logarithmic or a square root law. We design our tables in such a manner that the relative quality of either law with respect to another can be easily compared. Since the computation of bolometric limb-darkening coefficients first requires monochromatic coefficients, we also offer tables of these coefficients (at 1221 wavelength values between 9.09 nm and 160 micrometer) and tables of passband-specific coefficients for commonly used photometric filters.
High-temperature effects on the light transmission through sapphire optical fiber
Wilson, Brandon A.; Petrie, Christian M.; Blue, Thomas E.
2018-03-13
Single crystal sapphire optical fiber was tested at high temperatures (1500°C) to determine its suitability for optical instrumentation in high-temperature environments. Broadband light transmission (450-2300 nm) through sapphire fiber was measured as a function of temperature as a test of the fiber's ability to survive and operate in high-temperature environments. Upon heating sapphire fiber to 1400°C, large amounts of light attenuation were measured across the entire range of light wavelengths that were tested. SEM and TEM images of the heated sapphire fiber indicated that a layer had formed at the surface of the fiber, most likely due to a chemicalmore » change at high temperatures. The microscopy results suggest that the surface layer may be in the form of aluminum hydroxide. Subsequent tests of sapphire fiber in an inert atmosphere showed minimal light attenuation at high temperatures along with the elimination of any surface layers on the fiber, indicating that the air atmosphere is indeed responsible for the increased attenuation and surface layer formation at high temperatures.« less
High-temperature effects on the light transmission through sapphire optical fiber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Brandon A.; Petrie, Christian M.; Blue, Thomas E.
Single crystal sapphire optical fiber was tested at high temperatures (1500°C) to determine its suitability for optical instrumentation in high-temperature environments. Broadband light transmission (450-2300 nm) through sapphire fiber was measured as a function of temperature as a test of the fiber's ability to survive and operate in high-temperature environments. Upon heating sapphire fiber to 1400°C, large amounts of light attenuation were measured across the entire range of light wavelengths that were tested. SEM and TEM images of the heated sapphire fiber indicated that a layer had formed at the surface of the fiber, most likely due to a chemicalmore » change at high temperatures. The microscopy results suggest that the surface layer may be in the form of aluminum hydroxide. Subsequent tests of sapphire fiber in an inert atmosphere showed minimal light attenuation at high temperatures along with the elimination of any surface layers on the fiber, indicating that the air atmosphere is indeed responsible for the increased attenuation and surface layer formation at high temperatures.« less
Code of Federal Regulations, 2011 CFR
2011-07-01
... impairment. A deciview is a haze index derived from calculated light extinction, such that uniform changes in... (for the purposes of calculating deciview, the atmospheric light extinction coefficient must be... light extinction coefficient, expressed in inverse megameters (Mm−1). Existing stationary facility means...
Code of Federal Regulations, 2010 CFR
2010-07-01
... impairment. A deciview is a haze index derived from calculated light extinction, such that uniform changes in... (for the purposes of calculating deciview, the atmospheric light extinction coefficient must be... light extinction coefficient, expressed in inverse megameters (Mm−1). Existing stationary facility means...
Code of Federal Regulations, 2012 CFR
2012-07-01
... impairment. A deciview is a haze index derived from calculated light extinction, such that uniform changes in... (for the purposes of calculating deciview, the atmospheric light extinction coefficient must be... light extinction coefficient, expressed in inverse megameters (Mm−1). Existing stationary facility means...
Code of Federal Regulations, 2013 CFR
2013-07-01
... impairment. A deciview is a haze index derived from calculated light extinction, such that uniform changes in... (for the purposes of calculating deciview, the atmospheric light extinction coefficient must be... light extinction coefficient, expressed in inverse megameters (Mm−1). Existing stationary facility means...
NASA Astrophysics Data System (ADS)
Perim de Faria, Julia; Bundke, Ulrich; Onasch, Timothy B.; Freedman, Andrew; Petzold, Andreas
2016-04-01
The necessity to quantify the direct impact of aerosol particles on climate forcing is already well known; assessing this impact requires continuous and systematic measurements of the aerosol optical properties. Two of the main parameters that need to be accurately measured are the aerosol optical depth and single scattering albedo (SSA, defined as the ratio of particulate scattering to extinction). The measurement of single scattering albedo commonly involves the measurement of two optical parameters, the scattering and the absorption coefficients. Although there are well established technologies to measure both of these parameters, the use of two separate instruments with different principles and uncertainties represents potential sources of significant errors and biases. Based on the recently developed cavity attenuated phase shift particle extinction monitor (CAPS PM_{ex) instrument, the CAPS PM_{ssa instrument combines the CAPS technology to measure particle extinction with an integrating sphere capable of simultaneously measuring the scattering coefficient of the same sample. The scattering channel is calibrated to the extinction channel, such that the accuracy of the single scattering albedo measurement is only a function of the accuracy of the extinction measurement and the nephelometer truncation losses. This gives the instrument an accurate and direct measurement of the single scattering albedo. In this study, we assess the measurements of both the extinction and scattering channels of the CAPS PM_{ssa through intercomparisons with Mie theory, as a fundamental comparison, and with proven technologies, such as integrating nephelometers and filter-based absorption monitors. For comparison, we use two nephelometers, a TSI 3563 and an Aurora 4000, and two measurements of the absorption coefficient, using a Particulate Soot Absorption Photometer (PSAP) and a Multi Angle Absorption Photometer (MAAP). We also assess the indirect absorption coefficient measurement from the CAPS PM_{ssa (calculated as the difference from the measured extinction and scattering). The study was carried out in the laboratory with controlled particle generation systems. We used both light absorbing aerosols (Regal 400R pigment black from Cabot Corp. and colloidal graphite - Aquadag - from Agar Scientific) and purely scattering aerosols (ammonium sulphate and polystyrene latex spheres), covering single scattering albedo values from approximately 0.4 to 1.0. A new truncation angle correction for the CAPS PM_{ssa integrated sphere is proposed.
The feasibility of ranking material fracture toughness by ultrasonic attenuation measurements
NASA Technical Reports Server (NTRS)
Vary, A.
1975-01-01
A preliminary study was conducted to assess the feasibility of ultrasonically ranking material fracture toughness. Specimens of two grades of maraging steel for which fracture toughness values were measured were subjected to ultrasonic probing. The slope of the attenuation coefficient vs frequency curve was empirically correlated with the plane strain fracture toughness value for each grade of steel.
The feasibility of ranking material fracture toughness by ultrasonic attenuation measurements
NASA Technical Reports Server (NTRS)
Vary, A.
1975-01-01
A preliminary study was conducted to assess the feasibility of ultrasonically ranking material fracture toughness. Specimens of two grades of maraging steel for which fracture toughness values were measured were subjected to ultrasonic probing. The slope of the attenuation coefficient versus frequency curve was empirically correlated with the plane strain fracture toughness value for each grade of steel.
Retarding field energy analyzer for high energy pulsed electron beam measurements.
Hu, Jing; Rovey, Joshua L; Zhao, Wansheng
2017-01-01
A retarding field energy analyzer (RFEA) designed specifically for high energy pulsed electron beam measurements is described in this work. By proper design of the entrance grid, attenuation grid, and beam collector, this RFEA is capable of determining the time-resolved energy distribution of high energy pulsed electron beams normally generated under "soft vacuum" environment. The performance of the RFEA is validated by multiple tests of the leakage current, attenuation coefficient, and response time. The test results show that the retarding potential in the RFEA can go up to the same voltage as the electron beam source, which is 20 kV for the maximum in this work. Additionally, an attenuation coefficient of 4.2 is obtained in the RFEA while the percent difference of the rise time of the electron beam pulse before and after attenuation is lower than 10%. When compared with a reference source, the percent difference of the RFEA response time is less than 10% for fall times greater than 35 ns. Finally, the test results of the 10 kV pseudospark-based pulsed electron beam currents collected under varying retarding potentials are presented in this paper.
Prediction of spectral acceleration response ordinates based on PGA attenuation
Graizer, V.; Kalkan, E.
2009-01-01
Developed herein is a new peak ground acceleration (PGA)-based predictive model for 5% damped pseudospectral acceleration (SA) ordinates of free-field horizontal component of ground motion from shallow-crustal earthquakes. The predictive model of ground motion spectral shape (i.e., normalized spectrum) is generated as a continuous function of few parameters. The proposed model eliminates the classical exhausted matrix of estimator coefficients, and provides significant ease in its implementation. It is structured on the Next Generation Attenuation (NGA) database with a number of additions from recent Californian events including 2003 San Simeon and 2004 Parkfield earthquakes. A unique feature of the model is its new functional form explicitly integrating PGA as a scaling factor. The spectral shape model is parameterized within an approximation function using moment magnitude, closest distance to the fault (fault distance) and VS30 (average shear-wave velocity in the upper 30 m) as independent variables. Mean values of its estimator coefficients were computed by fitting an approximation function to spectral shape of each record using robust nonlinear optimization. Proposed spectral shape model is independent of the PGA attenuation, allowing utilization of various PGA attenuation relations to estimate the response spectrum of earthquake recordings.
Quality control tool of electrode coating for lithium-ion batteries based on X-ray radiography
NASA Astrophysics Data System (ADS)
Etiemble, A.; Besnard, N.; Adrien, J.; Tran-Van, P.; Gautier, L.; Lestriez, B.; Maire, E.
2015-12-01
A simple and efficient method, based on X-ray radiography, is developed to check the quality (homogeneity of the thickness, presence of defects) of NMC-, LFP- and NMC/LFP-based electrode coating for Li-ion batteries at the scale of several cm2 with a resolution of 20 μm. As a first step, the attenuation coefficient of NMC- and LFP-based coating is experimentally determined according to the Beer-Lambert law. Then, the attenuation coefficient of each active material is estimated from these experimental results and X-ray attenuation databases, which allows establishing an attenuation law for any coating composition. Finally, thanks to this relationship, the thickness can be evaluated in each spot of the film and the defects, such as pinholes or broad edges with gradual decrease of the thickness coating, can be detected. The analysis of NMC-, LFP- and NMC/LFP-based electrodes shows that the coating quality decreases as coating thickness increases and as the nanometric vs. micrometric material content increases in the coating composition. This reveals detrimental aspects of nanomaterials with respect to their use in composite electrode manufactured through conventional slot-die or casting process.
Models for attenuation in marine sediments that incorporate structural relaxation processes
NASA Astrophysics Data System (ADS)
Pierce, Allan D.; Carey, William M.; Lynch, James F.
2005-04-01
Biot's model leads to an attenuation coefficient at low frequencies that is proportional to ω2, and such is consistent with physical models of viscous attenuation of fluid flows through narrow constrictions driven by pressure differences between larger fluid pockets within the granular configuration. Much data suggests, however, that the attenuation coefficient is linear in ω for some sediments and over a wide range of frequencies. A common model that predicts such a dependence stems from theoretical work by Stoll and Bryan [J. Acoust. Soc. Am. 47, 1440 (1970)], in which the elastic constants of the solid frame are taken to be complex numbers, with small constant imaginary parts. Such invariably leads to a linear ω dependence at sufficiently low frequencies and this conflicts with common intuitive notions. The present paper incorporates structural relaxation, with a generalization of the formulations of Hall [Phys. Rev. 73, 775 (1948)] and Nachman, Smith, and Waag [J. Acoust. Soc. Am. 88, 1584 (1990)]. The mathematical form and plausibility of such is established, and it is shown that the dependence is as ω2 at low frequencies, and that a likely realization is one where the dependence is linear in ω at intermediate frequency ranges.
NASA Astrophysics Data System (ADS)
Guz, A. N.; Bagno, A. M.
2017-07-01
The dispersion curves are constructed and propagation of quasi-Lamb waves are studied for wide range of frequencies based on the Navier -Stokes three-dimensional linearized equations for a viscous liquid and linear equations of the classical theory of elasticity for an elastic layer. For a thick liquid layer, the effect of the viscosity of the liquid and the thickness of elastic and liquid layers on the phase velocities and attenuation coefficients of quasi-Lamb modes is analyzed. It is shown that in the case of a thick liquid layer for all modes, there are elastic layers of certain thickness with minimal effect of liquid viscosity on the phase velocities and attenuation coefficients of modes. It is also discovered that for some modes, there are both certain thicknesses and certain ranges of thickness where the effect of liquid viscosity on the phase velocities and attenuation coefficients of these modes is considerable. We ascertain that liquid viscosity promotes decrease of the penetration depth of the lowest quasi-Lamb mode into the liquid. The developed approach and the obtained results make it possible to ascertain for wave processes the limits of applicability of the model of ideal compressible fluid. Numerical results in the form of graphs are adduced and analyzed.
Bardaji, Raul; Sánchez, Albert-Miquel; Simon, Carine; Wernand, Marcel R; Piera, Jaume
2016-03-15
A critical parameter to assess the environmental status of water bodies is the transparency of the water, as it is strongly affected by different water quality related components (such as the presence of phytoplankton, organic matter and sediment concentrations). One parameter to assess the water transparency is the diffuse attenuation coefficient. However, the number of subsurface irradiance measurements obtained with conventional instrumentation is relatively low, due to instrument costs and the logistic requirements to provide regular and autonomous observations. In recent years, the citizen science concept has increased the number of environmental observations, both in time and space. The recent technological advances in embedded systems and sensors also enable volunteers (citizens) to create their own devices (known as Do-It-Yourself or DIY technologies). In this paper, a DIY instrument to measure irradiance at different depths and automatically calculate the diffuse attenuation Kd coefficient is presented. The instrument, named KdUINO, is based on an encapsulated low-cost photonic sensor and Arduino (an open-hardware platform for the data acquisition). The whole instrument has been successfully operated and the data validated comparing the KdUINO measurements with the commercial instruments. Workshops have been organized with high school students to validate its feasibility.
Bardaji, Raul; Sánchez, Albert-Miquel; Simon, Carine; Wernand, Marcel R.; Piera, Jaume
2016-01-01
A critical parameter to assess the environmental status of water bodies is the transparency of the water, as it is strongly affected by different water quality related components (such as the presence of phytoplankton, organic matter and sediment concentrations). One parameter to assess the water transparency is the diffuse attenuation coefficient. However, the number of subsurface irradiance measurements obtained with conventional instrumentation is relatively low, due to instrument costs and the logistic requirements to provide regular and autonomous observations. In recent years, the citizen science concept has increased the number of environmental observations, both in time and space. The recent technological advances in embedded systems and sensors also enable volunteers (citizens) to create their own devices (known as Do-It-Yourself or DIY technologies). In this paper, a DIY instrument to measure irradiance at different depths and automatically calculate the diffuse attenuation Kd coefficient is presented. The instrument, named KdUINO, is based on an encapsulated low-cost photonic sensor and Arduino (an open-hardware platform for the data acquisition). The whole instrument has been successfully operated and the data validated comparing the KdUINO measurements with the commercial instruments. Workshops have been organized with high school students to validate its feasibility. PMID:26999132
NASA Astrophysics Data System (ADS)
Yoshizawa, Masasumi; Nakamura, Yuuta; Ishiguro, Masataka; Moriya, Tadashi
2007-07-01
In this paper, we describe a method of compensating the attenuation of the ultrasound caused by soft tissue in the transducer vibration method for the measurement of the acoustic impedance of in vivo bone. In the in vivo measurement, the acoustic impedance of bone is measured through soft tissue; therefore, the amplitude of the ultrasound reflected from the bone is attenuated. This attenuation causes an error of the order of -20 to -30% when the acoustic impedance is determined from the measured signals. To compensate the attenuation, the attenuation coefficient and length of the soft tissue are measured by the transducer vibration method. In the experiment using a phantom, this method allows the measurement of the acoustic impedance typically with an error as small as -8 to 10%.
Toro-Farmer, Gerardo; Muller-Karger, Frank E.; Vega-Rodriguez, Maria; Melo, Nelson; Yates, Kimberly K.; Johns, Elizabeth; Cerdeira-Estrada, Sergio; Herwitz, Stan R.
2016-01-01
Light availability is an important factor driving primary productivity in benthic ecosystems, but in situ and remote sensing measurements of light quality are limited for coral reefs and seagrass beds. We evaluated the productivity responses of a patch reef and a seagrass site in the Lower Florida Keys to ambient light availability and spectral quality. In situ optical properties were characterized utilizing moored and water column bio-optical and hydrographic measurements. Net ecosystem productivity (NEP) was also estimated for these study sites using benthic productivity chambers. Our results show higher spectral light attenuation and absorption, and lower irradiance during low tide in the patch reef, tracking the influx of materials from shallower coastal areas. In contrast, the intrusion of clearer surface Atlantic Ocean water caused lower values of spectral attenuation and absorption, and higher irradiance in the patch reef during high tide. Storms during the studied period, with winds >10 m·s−1, caused higher spectral attenuation values. A spatial gradient of NEP was observed, from high productivity in the shallow seagrass area, to lower productivity in deeper patch reefs. The highest daytime NEP was observed in the seagrass, with values of almost 0.4 g·O2·m−2·h−1. Productivity at the patch reef area was lower in May than during October 2012 (mean = 0.137 and 0.177 g·O2·m−2·h−1, respectively). Higher photosynthetic active radiation (PAR) levels measured above water and lower light attenuation in the red region of the visible spectrum (~666 to ~699 nm) had a positive correlation with NEP. Our results indicate that changes in light availability and quality by suspended or resuspended particles limit benthic productivity in the Florida Keys.
Shi, Hongli; Yang, Zhi; Luo, Shuqian
2017-01-01
The beam hardening artifact is one of most important modalities of metal artifact for polychromatic X-ray computed tomography (CT), which can impair the image quality seriously. An iterative approach is proposed to reduce beam hardening artifact caused by metallic components in polychromatic X-ray CT. According to Lambert-Beer law, the (detected) projections can be expressed as monotonic nonlinear functions of element geometry projections, which are the theoretical projections produced only by the pixel intensities (image grayscale) of certain element (component). With help of a prior knowledge on spectrum distribution of X-ray beam source and energy-dependent attenuation coefficients, the functions have explicit expressions. Newton-Raphson algorithm is employed to solve the functions. The solutions are named as the synthetical geometry projections, which are the nearly linear weighted sum of element geometry projections with respect to mean of each attenuation coefficient. In this process, the attenuation coefficients are modified to make Newton-Raphson iterative functions satisfy the convergence conditions of fixed pointed iteration(FPI) so that the solutions will approach the true synthetical geometry projections stably. The underlying images are obtained using the projections by general reconstruction algorithms such as the filtered back projection (FBP). The image gray values are adjusted according to the attenuation coefficient means to obtain proper CT numbers. Several examples demonstrate the proposed approach is efficient in reducing beam hardening artifacts and has satisfactory performance in the term of some general criteria. In a simulation example, the normalized root mean square difference (NRMSD) can be reduced 17.52% compared to a newest algorithm. Since the element geometry projections are free from the effect of beam hardening, the nearly linear weighted sum of them, the synthetical geometry projections, are almost free from the effect of beam hardening. By working out the synthetical geometry projections, the proposed approach becomes quite efficient in reducing beam hardening artifacts.
NASA Astrophysics Data System (ADS)
Yusof, M. F. Mohd; Abdullah, R.; Tajuddin, A. A.; Hashim, R.; Bauk, S.
2016-01-01
A set of tannin-based Rhizophora spp. particleboard phantoms with dimension of 30 cm x 30 cm was fabricated at target density of 1.0 g/cm3. The mass attenuation coefficient of the phantom was measured using 60Co gamma source. The phantoms were scanned using Computed Tomography (CT) scanner and the percentage depth dose (PDD) of the phantom was calculated using treatment planning system (TPS) at 6 MV and 10 MV x-ray and compared to that in solid water phantoms. The result showed that the mass attenuation coefficient of tannin-based Rhizohora spp. phantoms was near to the value of water with χ2 value of 1.2. The measured PDD also showed good agreement with solid water phantom at both 6 MV and 10 MV x-ray with percentage deviation below 8% at depth beyond the maximum dose, Zmax.
Seismic Rheological Model and Reflection Coefficients of the Brittle-Ductile Transition
NASA Astrophysics Data System (ADS)
Carcione, José M.; Poletto, Flavio
2013-12-01
It is well established that the upper—cooler—part of the crust is brittle, while deeper zones present ductile behaviour. In some cases, this brittle-ductile transition is a single seismic reflector with an associated reflection coefficient. We first develop a stress-strain relation including the effects of crust anisotropy, seismic attenuation and ductility in which deformation takes place by shear plastic flow. Viscoelastic anisotropy is based on the eigenstrain model and the Zener and Burgers mechanical models are used to model the effects of seismic attenuation, velocity dispersion, and steady-state creep flow, respectively. The stiffness components of the brittle and ductile media depend on stress and temperature through the shear viscosity, which is obtained by the Arrhenius equation and the octahedral stress criterion. The P- and S-wave velocities decrease as depth and temperature increase due to the geothermal gradient, an effect which is more pronounced for shear waves. We then obtain the reflection and transmission coefficients of a single brittle-ductile interface and of a ductile thin layer. The PP scattering coefficient has a Brewster angle (a sign change) in both cases, and there is substantial PS conversion at intermediate angles. The PP coefficient is sensitive to the layer thickness, unlike the SS coefficient. Thick layers have a well-defined Brewster angle and show higher reflection amplitudes. Finally, we compute synthetic seismograms in a homogeneous medium as a function of temperature.
NASA Astrophysics Data System (ADS)
Szczepura, Katy; Thompson, John; Manning, David
2017-03-01
In computed tomography the Hounsfield Units (HU) are used as an indicator of the tissue type based on the linear attenuation coefficients of the tissue. HU accuracy is essential when this metric is used in any form to support diagnosis. In hybrid imaging, such as SPECT/CT and PET/CT, the information is used for attenuation correction (AC) of the emission images. This work investigates the HU accuracy of nodules of known size and HU, comparing diagnostic quality (DQ) images with images used for AC.
Determining paediatric patient thickness from a single digital radiograph-a proof of principle.
Worrall, Mark; Vinnicombe, Sarah; Sutton, David G
2018-04-05
This work presents a proof of principle for a method of estimating the thickness of an attenuator from a single radiograph using the image, the exposure factors with which it was acquired and a priori knowledge of the characteristics of the X-ray unit and detector used for the exposure. It is intended this could be developed into a clinical tool to assist with paediatric patient dose audit, for which a measurement of patient size is required. The proof of principle used measured pixel value and effective linear attenuation coefficient to estimate the thickness of a Solid Water attenuator. The kerma at the detector was estimated using a measurement of pixel value on the image and measured detector calibrations. The initial kerma was estimated using a lookup table of measured output values. The effective linear attenuation coefficient was measured for Solid Water at varying kV p . 11 test images of known and varying thicknesses of Solid Water were acquired at 60, 70 and 81 kV p . Estimates of attenuator thickness were made using the model and the results compared to the known thickness. Estimates of attenuator thickness made using the model differed from the known thickness by 3.8 mm (3.2%) on average, with a range of 0.5-10.8 mm (0.5-9%). A proof of principle is presented for a method of estimating the thickness of an attenuator using a single radiograph of the attenuator. The method has been shown to be accurate using a Solid Water attenuator, with a maximum difference between estimated and known attenuator thickness of 10.8 mm (9%). The method shows promise as a clinical tool for estimating abdominal paediatric patient thickness for paediatric patient dose audit, and is only contingent on the type of data routinely collected by Medical Physics departments. Advances in knowledge: A computational model has been created that is capable of accurately estimating the thickness of a uniform attenuator using only the radiographic image, the exposure factors with which it was acquired and a priori knowledge of the characteristics of the X-ray unit and detector used for the exposure.
Relative fission product yield determination in the USGS TRIGA Mark I reactor
NASA Astrophysics Data System (ADS)
Koehl, Michael A.
Fission product yield data sets are one of the most important and fundamental compilations of basic information in the nuclear industry. This data has a wide range of applications which include nuclear fuel burnup and nonproliferation safeguards. Relative fission yields constitute a major fraction of the reported yield data and reduce the number of required absolute measurements. Radiochemical separations of fission products reduce interferences, facilitate the measurement of low level radionuclides, and are instrumental in the analysis of low-yielding symmetrical fission products. It is especially useful in the measurement of the valley nuclides and those on the extreme wings of the mass yield curve, including lanthanides, where absolute yields have high errors. This overall project was conducted in three stages: characterization of the neutron flux in irradiation positions within the U.S. Geological Survey TRIGA Mark I Reactor (GSTR), determining the mass attenuation coefficients of precipitates used in radiochemical separations, and measuring the relative fission products in the GSTR. Using the Westcott convention, the Westcott flux, modified spectral index, neutron temperature, and gold-based cadmium ratios were determined for various sampling positions in the USGS TRIGA Mark I reactor. The differential neutron energy spectrum measurement was obtained using the computer iterative code SAND-II-SNL. The mass attenuation coefficients for molecular precipitates were determined through experiment and compared to results using the EGS5 Monte Carlo computer code. Difficulties associated with sufficient production of fission product isotopes in research reactors limits the ability to complete a direct, experimental assessment of mass attenuation coefficients for these isotopes. Experimental attenuation coefficients of radioisotopes produced through neutron activation agree well with the EGS5 calculated results. This suggests mass attenuation coefficients of molecular precipitates can be approximated using EGS5, especially in the instance of radioisotopes produced predominantly through uranium fission. Relative fission product yields were determined for three sampling positions in the USGS TRIGA Mark I reactor through radiochemical analysis. The relative mass yield distribution for valley nuclides decreases with epithermal neutrons compared to thermal neutrons. Additionally, a proportionality constant which related the measured beta activity of a fission product to the number of fissions that occur in a sample of irradiated uranium was determined for the detector used in this study and used to determine the thermal and epithermal flux. These values agree well with a previous study which used activation foils to determine the flux. The results of this project clearly demonstrate that R-values can be measured in the GSTR.
NASA Astrophysics Data System (ADS)
Stoyanov, Stiliyan; Mardirossian, Garo
2012-10-01
The light diffraction is for telescope apparatuses an especially important characteristic which has an influence on the record image contrast from the eye observer. The task of the investigation is to determine to what degree the coefficient of light diffraction influences the record image brightness. The object of the theoretical research are experimental results provided from a telescope system experiment in the process of observation of remote objects with different brightness of the background in the fixed light diffraction coefficients and permanent contrast of the background in respect to the object. The received values and the ratio of the image contrast to the light diffraction coefficient is shown in a graphic view. It's settled that with increasing of the value of background brightness in permanent background contrast in respect to the object, the image contrast sharply decrease. The relationship between the increase of the light diffraction coefficient and the decrease of the brightness of the project image from telescope apparatuses can be observed.
McAuley, Paul A; Hsu, Fang-Chi; Loman, Kurt K; Carr, J Jeffrey; Budoff, Matthew J; Szklo, Moyses; Sharrett, A Richey; Ding, Jingzhong
2011-09-01
Insulin resistance is linked to general and abdominal obesity, but its relation to hepatic lipid content and pericardial adipose tissue is less clear. The purpose of this study was to examine cross-sectional associations of liver attenuation, pericardial adipose tissue, BMI, and waist circumference with insulin resistance. We measured liver attenuation and pericardial adipose tissue using the existing cardiac computed tomography scans in 5,291 individuals free of clinical cardiovascular disease and diabetes in the Multi-Ethnic Study of Atherosclerosis (MESA) during the study's baseline visit (2000-2002). Low liver attenuation was defined as the lowest quartile and high pericardial adipose tissue as the upper quartile of volume (cm(3)). We used standard clinical definitions for obesity and abdominal obesity. Insulin resistance was assessed by the homeostasis model assessment of insulin resistance (HOMA(IR)) index. In multivariate linear regression with all adiposity measures in the model simultaneously, all adiposity measures were significantly (P < 0.0001) associated with insulin resistance: regression coefficients (±s.e.) were 0.31 (±0.02) for low liver attenuation, 0.27 (±0.02) for high pericardial adipose tissue, 0.27 (±0.02) for obesity, and 0.32 (±0.02) for abdominal obesity. We found significant differences (P = 0.003) between standardized liver attenuation and insulin resistance by ethnicity: regression coefficients per 1 s.d. increment were 0.10 ± 0.01 for whites, 0.11 ± 0.02 for Chinese, 0.08 ± 0.2 for blacks, and 0.14 ± 0.01 for Hispanics. Liver attenuation and pericardial adipose tissue were associated with insulin resistance, independent of BMI and waist circumference.
Robust cladding light stripper for high-power fiber lasers using soft metals.
Babazadeh, Amin; Nasirabad, Reza Rezaei; Norouzey, Ahmad; Hejaz, Kamran; Poozesh, Reza; Heidariazar, Amir; Golshan, Ali Hamedani; Roohforouz, Ali; Jafari, S Naser Tabatabaei; Lafouti, Majid
2014-04-20
In this paper we present a novel method to reliably strip the unwanted cladding light in high-power fiber lasers. Soft metals are utilized to fabricate a high-power cladding light stripper (CLS). The capability of indium (In), aluminum (Al), tin (Sn), and gold (Au) in extracting unwanted cladding light is examined. The experiments show that these metals have the right features for stripping the unwanted light out of the cladding. We also find that the metal-cladding contact area is of great importance because it determines the attenuation and the thermal load on the CLS. These metals are examined in different forms to optimize the contact area to have the highest possible attenuation and avoid localized heating. The results show that sheets of indium are very effective in stripping unwanted cladding light.
Optical switch based on electrowetting liquid lens
NASA Astrophysics Data System (ADS)
Li, Lei; Liu, Chao; Peng, Hua-Rong; Wang, Qiong-Hua
2012-05-01
In this paper, we propose an optical switch based on an electrowetting liquid lens. The device consists of an electrowetting liquid lens and a non-transparent cap with a pin hole. When the lens is actuated to be positive, the incident light can be converged on the pin hole and pass through the hole with less attenuation. When the lens is deformed to be negative, the incident light is diverged and most of light is blocked by the cap. Our results show that the system can provide high contrast ratio (˜800:1) and reasonable response time (˜88 ms). The proposed optical switch has potential application in light shutters, variable optical attenuators, and adaptive irises.
Impact of Satellite Remote Sensing Data on Simulations of ...
We estimated surface salinity flux and solar penetration from satellite data, and performed model simulations to examine the impact of including the satellite estimates on temperature, salinity, and dissolved oxygen distributions on the Louisiana continental shelf (LCS) near the annual hypoxic zone. Rainfall data from the Tropical Rainfall Measurement Mission (TRMM) were used for the salinity flux, and the diffuse attenuation coefficient (Kd) from Moderate Resolution Imaging Spectroradiometer (MODIS) were used for solar penetration. Improvements in the model results in comparison with in situ observations occurred when the two types of satellite data were included. Without inclusion of the satellite-derived surface salinity flux, realistic monthly variability in the model salinity fields was observed, but important inter-annual variability wasmissed. Without inclusion of the satellite-derived light attenuation, model bottom water temperatures were too high nearshore due to excessive penetration of solar irradiance. In general, these salinity and temperature errors led to model stratification that was too weak, and the model failed to capture observed spatial and temporal variability in water-column vertical stratification. Inclusion of the satellite data improved temperature and salinity predictions and the vertical stratification was strengthened, which improved prediction of bottom-water dissolved oxygen. The model-predicted area of bottom-water hypoxia on the
Measurement of acoustic attenuation in South Pole ice
NASA Astrophysics Data System (ADS)
IceCube Collaboration; Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Böser, S.; Botner, O.; Bradley, L.; Braun, J.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; de Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Ganugapati, R.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gunasingha, R. M.; Gurtner, M.; Gustafsson, L.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Imlay, R. L.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kemming, N.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Knops, S.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Lauer, R.; Lehmann, R.; Lennarz, D.; Lünemann, J.; Madsen, J.; Majumdar, P.; Maruyama, R.; Mase, K.; Matis, H. S.; Matusik, M.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; Ono, M.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Roucelle, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Sarkar, S.; Schatto, K.; Schlenstedt, S.; Schmidt, T.; Schneider, D.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sullivan, G. W.; Swillens, Q.; Taboada, I.; Tamburro, A.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; van Santen, J.; Voigt, B.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; IceCube Collaboration
2011-01-01
Using the South Pole Acoustic Test Setup (SPATS) and a retrievable transmitter deployed in holes drilled for the IceCube experiment, we have measured the attenuation of acoustic signals by South Pole ice at depths between 190 m and 500 m. Three data sets, using different acoustic sources, have been analyzed and give consistent results. The method with the smallest systematic uncertainties yields an amplitude attenuation coefficient α = 3.20 ± 0.57 km-1 between 10 and 30 kHz, considerably larger than previous theoretical estimates. Expressed as an attenuation length, the analyses give a consistent result for λ ≡ 1/α of ˜300 m with 20% uncertainty. No significant depth or frequency dependence has been found.
Research on Dust Concentration Measurement Technique Based on the Theory of Ultrasonic Attenuation
NASA Astrophysics Data System (ADS)
Zhang, Yan; Lou, Wenzhong; Liao, Maohao
2018-03-01
In this paper, a method of characteristics dust concentration is proposed, which based on ultrasonic changes of MEMS piezoelectric ultrasonic transducer. The principle is that the intensity of the ultrasonic will produce attenuation with the propagation medium and propagation distance, the attenuation coefficient is affect by dust concentration. By detecting the changes of ultra acoustic in the dust, the concentration of the dust is calculate by the attenuation-concentration model, and the EACH theory model is based on this principle. The experimental results show that the MEMS piezoelectric ultrasonic transducer can be use for dust concentration of 100-900 g/m3 detection, the deviation between theory and experiments is smaller than 10.4%.
NASA Astrophysics Data System (ADS)
Ji, Hongli; Luo, Jing; Qiu, Jinhao; Cheng, Li
2018-05-01
Acoustic Black Holes (ABHs), as a new type of passive structure for vibration damping enhancement and noise attenuation, have been drawing increasing attentions of many researchers. Due to the difficulty in manufacturing the sharp edges required by the ABH structures, it is important to understand the wave propagation and attenuation process in the presence of damping layers in non-ideal ABHs with a truncated edge. In this paper, an analytical expression of the wave reflection coefficient in a modified one-dimensional ABH is derived and a time-domain experimental method based on a laser excitation technique is used to visualize the wave propagation. In the experimental studies, the flexural waves in the ABH were excited by a scanning pulse laser and measured by a Laser Doppler Vibrometer (LDV). The incident wave and reflected wave were separated from the measured original wave field and the decrease of the wave velocity in the ABH was exhibited. The reflection coefficient was calculated from the ratio of the amplitude of the reflected wave to that of the incident wave for different ABH parameters and different thicknesses of the damping layer. The measured reflection coefficients were used to identify the unknown coefficients in the theoretical formula. The results confirm that there exists an optimal thickness for the damping layer, which leads to the minimum wave reflection. Based on the laser-induced visualization technique and various signal processing and feature extraction methods, the entire process of the wave propagation in a non-ideal one-dimensional ABH structure can be visualized and scrutinized.
Transparent ITO electrode in the polymer network liquid crystal variable optical attenuator
NASA Astrophysics Data System (ADS)
Zhang, Xindong; Dong, Wei; Liu, Caixia; Chen, Yinghua; Ruan, Shengping; Zhang, Shuang; Guo, Wenbin; Yang, Dong; Han, Lin; Chen, Weiyou
2004-05-01
Indium tin oxide (ITO) films as transparent conductors have caused a great deal of interest due to their prominent electro-optical behavior. This paper describes a study of the properties of ITO thin films that are used for a new type variable optical attenuator using polymer network liquid crystal (PNLC). The mechanism of PNLC optical attenuator operation is that the light from the input fiber is scattered when no voltage is applied, and the light passes through the attenuator when sufficient voltage is applied. So the ITO thin films can provide transparent electrodes for PNLC. They were deposited under various preparation conditions using the radio-frequency (rf) magnetron sputtering technique. Here discuss the results of the structural, electrical and optical properties of the ITO films. The paper presents some experimental results obtained in laboratory.
Ward, Mary H.; Bell, Erin M.; Whitehead, Todd P.; Gunier, Robert B.; Friesen, Melissa C.; Nuckols, John R.
2013-01-01
Background: Residential pesticide exposure has been linked to adverse health outcomes in adults and children. High-quality exposure estimates are critical for confirming these associations. Past epidemiologic studies have used one measurement of pesticide concentrations in carpet dust to characterize an individual’s average long-term exposure. If concentrations vary over time, this approach could substantially misclassify exposure and attenuate risk estimates. Objectives: We assessed the repeatability of pesticide concentrations in carpet dust samples and the potential attenuation bias in epidemiologic studies relying on one sample. Methods: We collected repeated carpet dust samples (median = 3; range, 1–7) from 21 homes in Fresno County, California, during 2003–2005. Dust was analyzed for 13 pesticides using gas chromatography–mass spectrometry. We used mixed-effects models to estimate between- and within-home variance. For each pesticide, we computed intraclass correlation coefficients (ICCs) and the estimated attenuation of regression coefficients in a hypothetical case–control study collecting a single dust sample. Results: The median ICC was 0.73 (range, 0.37–0.95), demonstrating higher between-home than within-home variability for most pesticides. The expected magnitude of attenuation bias associated with using a single dust sample was estimated to be ≤ 30% for 7 of the 13 compounds evaluated. Conclusions: For several pesticides studied, use of one dust sample to represent an exposure period of approximately 2 years would not be expected to substantially attenuate odds ratios. Further study is needed to determine if our findings hold for longer exposure periods and for other pesticides. PMID:23462689
USDA-ARS?s Scientific Manuscript database
Light wavelengths preferentially absorbed by chlorophyll (chl) often display steep absorption gradients. This oversaturates photosynthesis in upper chloroplasts and deprives lower chloroplasts of blue and red light, causing a steep gradient in carbon fixation. Reducing chl content could create a mor...
Marsh canopy leaf area and orientation calculated for improved marsh structure mapping
Ramsey, Elijah W.; Rangoonwala, Amina; Jones, Cathleen E.; Bannister, Terri
2015-01-01
An approach is presented for producing the spatiotemporal estimation of leaf area index (LAI) of a highly heterogeneous coastal marsh without reliance on user estimates of marsh leaf-stem orientation. The canopy LAI profile derivation used three years of field measured photosynthetically active radiation (PAR) vertical profiles at seven S. alterniflora marsh sites and iterative transform of those PAR attenuation profiles to best-fit light extinction coefficients (KM). KM sun zenith dependency was removed obtaining the leaf angle distribution (LAD) representing the average marsh orientation and the LAD used to calculate the LAI canopy profile. LAI and LAD reproduced measured PAR profiles with 99% accuracy and corresponded to field documented structures. LAI and LAD better reflect marsh structure and results substantiate the need to account for marsh orientation. The structure indexes are directly amenable to remote sensing spatiotemporal mapping and offer a more meaningful representation of wetland systems promoting biophysical function understanding.
Quantitative radiographic analysis of fiber reinforced polymer composites.
Baidya, K P; Ramakrishna, S; Rahman, M; Ritchie, A
2001-01-01
X-ray radiographic examination of the bone fracture healing process is a widely used method in the treatment and management of patients. Medical devices made of metallic alloys reportedly produce considerable artifacts that make the interpretation of radiographs difficult. Fiber reinforced polymer composite materials have been proposed to replace metallic alloys in certain medical devices because of their radiolucency, light weight, and tailorable mechanical properties. The primary objective of this paper is to provide a comparable radiographic analysis of different fiber reinforced polymer composites that are considered suitable for biomedical applications. Composite materials investigated consist of glass, aramid (Kevlar-29), and carbon reinforcement fibers, and epoxy and polyether-ether-ketone (PEEK) matrices. The total mass attenuation coefficient of each material was measured using clinical X-rays (50 kev). The carbon fiber reinforced composites were found to be more radiolucent than the glass and kevlar fiber reinforced composites.
Scintillation properties of Gd3Al2Ga3O12:Ce3+ single crystal scintillators
NASA Astrophysics Data System (ADS)
Sakthong, Ongsa; Chewpraditkul, Weerapong; Wanarak, Chalerm; Kamada, Kei; Yoshikawa, Akira; Prusa, Petr; Nikl, Martin
2014-07-01
The scintillation properties of Gd3Al2Ga3O12:Ce3+ (GAGG:Ce) single crystals grown by the Czochralski method with 1 at% cerium in the melt were investigated and results were compared with so far published results in the literature. The light yield (LY) and energy resolution were measured using a XP5200B photomultiplier. Despite about twice higher LY for GAGG:Ce, the energy resolution is only slightly better than that of LuAG:Ce due to its worse intrinsic resolution and non-proportionality of LY. The LY dependences on the sample thickness and amplifier shaping time were measured. The estimated photofraction in pulse height spectra of 320 and 662 keV γ-rays and the total mass attenuation coefficient at 662 keV γ-rays were also determined and compared with the theoretical ones calculated using the WinXCom program.
Effects of prevailing winds on turbidity of a shallow estuary.
Cho, Hyun Jung
2007-06-01
Estuarine waters are generally more turbid than lakes or marine waters due to greater algal mass and continual re-suspension of sediments. The varying effects of diurnal and seasonal prevailing winds on the turbidity condition of a wind-dominated estuary were investigated by spatial and statistical analyses of wind direction, water level, turbidity, chlorophyll a, and PAR (Photosynthetically Active Radiation) collected in Lake Pontchartrain, Louisiana, USA. The prolonged prevailing winds were responsible for the long-term, large-scale turbidity pattern of the estuary, whereas the short-term changes in wind direction had differential effects on turbidity and water level in varying locations. There were temporal and spatial changes in the relationship between vertical light attenuation coefficient (Kd) and turbidity, which indicate difference in phytoplankton and color also affect Kd. This study demonstrates that the effect of wind on turbidity and water level on different shores can be identified through system-specific analyses of turbidity patterns.
Low-contrast underwater living fish recognition using PCANet
NASA Astrophysics Data System (ADS)
Sun, Xin; Yang, Jianping; Wang, Changgang; Dong, Junyu; Wang, Xinhua
2018-04-01
Quantitative and statistical analysis of ocean creatures is critical to ecological and environmental studies. And living fish recognition is one of the most essential requirements for fishery industry. However, light attenuation and scattering phenomenon are present in the underwater environment, which makes underwater images low-contrast and blurry. This paper tries to design a robust framework for accurate fish recognition. The framework introduces a two stage PCA Network to extract abstract features from fish images. On a real-world fish recognition dataset, we use a linear SVM classifier and set penalty coefficients to conquer data unbalanced issue. Feature visualization results show that our method can avoid the feature distortion in boundary regions of underwater image. Experiments results show that the PCA Network can extract discriminate features and achieve promising recognition accuracy. The framework improves the recognition accuracy of underwater living fishes and can be easily applied to marine fishery industry.
Effects of Prevailing Winds on Turbidity of a Shallow Estuary
Cho, Hyun Jung
2007-01-01
Estuarine waters are generally more turbid than lakes or marine waters due to greater algal mass and continual re-suspension of sediments. The varying effects of diurnal and seasonal prevailing winds on the turbidity condition of a wind-dominated estuary were investigated by spatial and statistical analyses of wind direction, water level, turbidity, chlorophyll a, and PAR (Photosynthetically Active Radiation) collected in Lake Pontchartrain, Louisiana, USA. The prolonged prevailing winds were responsible for the long-term, large-scale turbidity pattern of the estuary, whereas the short-term changes in wind direction had differential effects on turbidity and water level in varying locations. There were temporal and spatial changes in the relationship between vertical light attenuation coefficient (Kd) and turbidity, which indicate difference in phytoplankton and color also affect Kd. This study demonstrates that the effect of wind on turbidity and water level on different shores can be identified through system-specific analyses of turbidity patterns. PMID:17617683
An instrumentation project for measuring weak and broadband ultrafast laser signals
NASA Astrophysics Data System (ADS)
Ellis, Armin T.
From our everyday experiences, we know that as light travels through a medium it attenuates due to absorption and scattering. Absorption is the cause of color in tea or grape juice, and it is described by Beer's law. Scattering is the reason why scuba divers have a limited range of vision and why mountain peaks become harder to see the further away they are. Precursors, although not fully understood, are transient light transmission effects and have been shown to exhibit lower attenuation through media than that predicted by Beer's law for steady-state light. In this thesis we present an instrumentation based approach for studying precursors by measuring spectral evolution and pure attenuation over distance. We will also introduce a new instrument concept, RotaryFROG, capable of simultaneous measurement of intensity, phase, and polarization versus frequency of low-intensity broadband pulses for use with ultrafast lasers.
Growth kinetics of the photosynthetic bacterium Chlorobium thiosulfatophilum in a fed-batch reactor.
Kim, B W; Chang, H N; Kim, I K; Lee, K S
1992-08-01
Hydrogen sulfide dissolved in water can be converted to elementary sulfur or sulfate by the photosynthetic bacterium Chlorobium thiosulfatophilum. Substrate inhibition occurred at sulfide concentrations above 5.7 mM. Light inhibition was found at average light intensities of 40,000 lux in a sulfide concentration of 5 mM, where no substrate inhibition occurred. Light intensity, the most important growth parameter, was attenuated through both scattering by sulfur particles and absorption by the cells. Average cell and sulfur particle sizes were 1.1 and 9.4 microm, respectively. Cells contributed 10 times as much to the turbidity as sulfur particles of the same weight concentration. The light attenuation factor was mathematically modeled, considering both the absorption and scattering effects based on the Beer-Lambert law and the Rayleigh theory, which were introduced to the cell growth model. Optimal operational conditions relating feed rate vs. light intensity were obtained to suppress the accumulation of sulfate and sulfide and save light energy for 2- and 4-L fed-batch reactors. Light intensity should be greater for the same performance (H(2)S removal rate/unit cell concentration) in larger reactors due to the scaleup effect on light transmission. Knowledge of appropriate growth kinetics in photosynthetic fed-batch reactors was essential to increase feed rate and light intensity and therefore cell growth. A mathematical model was developed that describes the cell growth by considering the light attenuation factor due to scattering and absorption and the crowding effect of the cells. This model was in good agreement with the experimental results. (c) 1992 John Wiley & Sons, Inc.
Errors in MR-based attenuation correction for brain imaging with PET/MR scanners
NASA Astrophysics Data System (ADS)
Rota Kops, Elena; Herzog, Hans
2013-02-01
AimAttenuation correction of PET data acquired by hybrid MR/PET scanners remains a challenge, even if several methods for brain and whole-body measurements have been developed recently. A template-based attenuation correction for brain imaging proposed by our group is easy to handle and delivers reliable attenuation maps in a short time. However, some potential error sources are analyzed in this study. We investigated the choice of template reference head among all the available data (error A), and possible skull anomalies of the specific patient, such as discontinuities due to surgery (error B). Materials and methodsAn anatomical MR measurement and a 2-bed-position transmission scan covering the whole head and neck region were performed in eight normal subjects (4 females, 4 males). Error A: Taking alternatively one of the eight heads as reference, eight different templates were created by nonlinearly registering the images to the reference and calculating the average. Eight patients (4 females, 4 males; 4 with brain lesions, 4 w/o brain lesions) were measured in the Siemens BrainPET/MR scanner. The eight templates were used to generate the patients' attenuation maps required for reconstruction. ROI and VOI atlas-based comparisons were performed employing all the reconstructed images. Error B: CT-based attenuation maps of two volunteers were manipulated by manually inserting several skull lesions and filling a nasal cavity. The corresponding attenuation coefficients were substituted with the water's coefficient (0.096/cm). ResultsError A: The mean SUVs over the eight templates pairs for all eight patients and all VOIs did not differ significantly one from each other. Standard deviations up to 1.24% were found. Error B: After reconstruction of the volunteers' BrainPET data with the CT-based attenuation maps without and with skull anomalies, a VOI-atlas analysis was performed revealing very little influence of the skull lesions (less than 3%), while the filled nasal cavity yielded an overestimation in cerebellum up to 5%. ConclusionsThe present error analysis confirms that our template-based attenuation method provides reliable attenuation corrections of PET brain imaging measured in PET/MR scanners.
Auxiliary basis expansions for large-scale electronic structure calculations
Jung, Yousung; Sodt, Alex; Gill, Peter M. W.; Head-Gordon, Martin
2005-01-01
One way to reduce the computational cost of electronic structure calculations is to use auxiliary basis expansions to approximate four-center integrals in terms of two- and three-center integrals, usually by using the variationally optimum Coulomb metric to determine the expansion coefficients. However, the long-range decay behavior of the auxiliary basis expansion coefficients has not been characterized. We find that this decay can be surprisingly slow. Numerical experiments on linear alkanes and a toy model both show that the decay can be as slow as 1/r in the distance between the auxiliary function and the fitted charge distribution. The Coulomb metric fitting equations also involve divergent matrix elements for extended systems treated with periodic boundary conditions. An attenuated Coulomb metric that is short-range can eliminate these oddities without substantially degrading calculated relative energies. The sparsity of the fit coefficients is assessed on simple hydrocarbon molecules and shows quite early onset of linear growth in the number of significant coefficients with system size using the attenuated Coulomb metric. Hence it is possible to design linear scaling auxiliary basis methods without additional approximations to treat large systems. PMID:15845767
NASA Astrophysics Data System (ADS)
Ogiso, M.
2017-12-01
Heterogeneous attenuation structure is important for not only understanding the earth structure and seismotectonics, but also ground motion prediction. Attenuation of ground motion in high frequency range is often characterized by the distribution of intrinsic and scattering attenuation parameters (intrinsic Q and scattering coefficient). From the viewpoint of ground motion prediction, both intrinsic and scattering attenuation affect the maximum amplitude of ground motion while scattering attenuation also affect the duration time of ground motion. Hence, estimation of both attenuation parameters will lead to sophisticate the ground motion prediction. In this study, we try to estimate both parameters in southwestern Japan in a tomographic manner. We will conduct envelope fitting of seismic coda since coda has sensitivity to both intrinsic attenuation and scattering coefficients. Recently, Takeuchi (2016) successfully calculated differential envelope when these parameters have fluctuations. We adopted his equations to calculate partial derivatives of these parameters since we did not need to assume homogeneous velocity structure. Matrix for inversion of structural parameters would become too huge to solve in a straightforward manner. Hence, we adopted ART-type Bayesian Reconstruction Method (Hirahara, 1998) to project the difference of envelopes to structural parameters iteratively. We conducted checkerboard reconstruction test. We assumed checkerboard pattern of 0.4 degree interval in horizontal direction and 20 km in depth direction. Reconstructed structures well reproduced the assumed pattern in shallower part while not in deeper part. Since the inversion kernel has large sensitivity around source and stations, resolution in deeper part would be limited due to the sparse distribution of earthquakes. To apply the inversion method which described above to actual waveforms, we have to correct the effects of source and site amplification term. We consider these issues to estimate the actual intrinsic and scattering structures of the target region.Acknowledgment We used the waveforms of Hi-net, NIED. This study was supported by the Earthquake Research Institute of the University of Tokyo cooperative research program.
Methods of Attenuation Correction for Dual-Wavelength and Dual-Polarization Weather Radar Data
NASA Technical Reports Server (NTRS)
Meneghini, R.; Liao, L.
2007-01-01
In writing the integral equations for the median mass diameter and number concentration, or comparable parameters of the raindrop size distribution, it is apparent that the forms of the equations for dual-polarization and dual-wavelength radar data are identical when attenuation effects are included. The differential backscattering and extinction coefficients appear in both sets of equations: for the dual-polarization equations, the differences are taken with respect to polarization at a fixed frequency while for the dual-wavelength equations, the differences are taken with respect to frequency at a fixed polarization. An alternative to the integral equation formulation is that based on the k-Z (attenuation coefficient-radar reflectivity factor) parameterization. This-technique was originally developed for attenuating single-wavelength radars, a variation of which has been applied to the TRMM Precipitation Radar data (PR). Extensions of this method have also been applied to dual-polarization data. In fact, it is not difficult to show that nearly identical equations are applicable as well to dualwavelength radar data. In this case, the equations for median mass diameter and number concentration take the form of coupled, but non-integral equations. Differences between this and the integral equation formulation are a consequence of the different ways in which attenuation correction is performed under the two formulations. For both techniques, the equations can be solved either forward from the radar outward or backward from the final range gate toward the radar. Although the forward-going solutions tend to be unstable as the attenuation out to the range of interest becomes large in some sense, an independent estimate of path attenuation is not required. This is analogous to the case of an attenuating single-wavelength radar where the forward solution to the Hitschfeld-Bordan equation becomes unstable as the attenuation increases. To circumvent this problem, the equations can be expressed in the form of a final-value problem so that the recursion begins at the far range gate and proceeds inward towards the radar. Solving the problem in this way traditionally requires estimates of path attenuation to the final gate: in the case of orthogonal linear polarizations, the attenuations at horizontal and vertical polarizations (same frequency) are required while in the dual-wavelength case, attenuations at the two frequencies (same polarization) are required.
Engineering a Light-Attenuating Artificial Iris
Shareef, Farah J.; Sun, Shan; Kotecha, Mrignayani; Kassem, Iris; Azar, Dimitri; Cho, Michael
2016-01-01
Purpose Discomfort from light exposure leads to photophobia, glare, and poor vision in patients with congenital or trauma-induced iris damage. Commercial artificial iris lenses are static in nature to provide aesthetics without restoring the natural iris's dynamic response to light. A new photo-responsive artificial iris was therefore developed using a photochromic material with self-adaptive light transmission properties and encased in a transparent biocompatible polymer matrix. Methods The implantable artificial iris was designed and engineered using Photopia, a class of photo-responsive materials (termed naphthopyrans) embedded in polyethylene. Photopia was reshaped into annular disks that were spin-coated with polydimethylsiloxane (PDMS) to form our artificial iris lens of controlled thickness. Results Activated by UV and blue light in approximately 5 seconds with complete reversal in less than 1 minute, the artificial iris demonstrates graded attenuation of up to 40% of visible and 60% of UV light. There optical characteristics are suitable to reversibly regulate the incident light intensity. In vitro cell culture experiments showed up to 60% cell death within 10 days of exposure to Photopia, but no significant cell death observed when cultured with the artificial iris with protective encapsulation. Nuclear magnetic resonance spectroscopy confirmed these results as there was no apparent leakage of potentially toxic photochromic material from the ophthalmic device. Conclusions Our artificial iris lens mimics the functionality of the natural iris by attenuating light intensity entering the eye with its rapid reversible change in opacity and thus potentially providing an improved treatment option for patients with iris damage. PMID:27116547
Engineering a Light-Attenuating Artificial Iris.
Shareef, Farah J; Sun, Shan; Kotecha, Mrignayani; Kassem, Iris; Azar, Dimitri; Cho, Michael
2016-04-01
Discomfort from light exposure leads to photophobia, glare, and poor vision in patients with congenital or trauma-induced iris damage. Commercial artificial iris lenses are static in nature to provide aesthetics without restoring the natural iris's dynamic response to light. A new photo-responsive artificial iris was therefore developed using a photochromic material with self-adaptive light transmission properties and encased in a transparent biocompatible polymer matrix. The implantable artificial iris was designed and engineered using Photopia, a class of photo-responsive materials (termed naphthopyrans) embedded in polyethylene. Photopia was reshaped into annular disks that were spin-coated with polydimethylsiloxane (PDMS) to form our artificial iris lens of controlled thickness. Activated by UV and blue light in approximately 5 seconds with complete reversal in less than 1 minute, the artificial iris demonstrates graded attenuation of up to 40% of visible and 60% of UV light. There optical characteristics are suitable to reversibly regulate the incident light intensity. In vitro cell culture experiments showed up to 60% cell death within 10 days of exposure to Photopia, but no significant cell death observed when cultured with the artificial iris with protective encapsulation. Nuclear magnetic resonance spectroscopy confirmed these results as there was no apparent leakage of potentially toxic photochromic material from the ophthalmic device. Our artificial iris lens mimics the functionality of the natural iris by attenuating light intensity entering the eye with its rapid reversible change in opacity and thus potentially providing an improved treatment option for patients with iris damage.
[Passive ranging of infrared target using oxygen A-band and Elsasser model].
Li, Jin-Hua; Wang, Zhao-Ba; Wang Zhi
2014-09-01
Passive ranging method of short range and single band was developed based on target radiation and attenuation characteristic of oxygen spectrum absorption. The relation between transmittance of oxygen A band and range of measured target was analyzed. Radiation strength distribution of measured target can be obtained according to the distribution law of absorption coefficient with environmental parameters. Passive ranging mathematical model of short ranges was established using Elsasser model with Lorentz line shape based on the computational methods of band average transmittance and high-temperature gas radiation narrowband model. The range of measured object was obtained using transmittance fitting with test data calculation and theoretical model. Besides, ranging precision was corrected considering the influence of oxygen absorption with enviromental parameter. The ranging experiment platform was established. The source was a 10 watt black body, and a grating spectrometer with 17 cm(-1) resolution was used. In order to improve the light receiving efficiency, light input was collected with 23 mm calibre telescope. The test data was processed for different range in 200 m. The results show that the transmittance accuracy was better than 2.18% in short range compared to the test data with predicted value in the same conditions.
Hadley, Odelle L; Corrigan, Craig E; Kirchstetter, Thomas W
2008-11-15
This study presents a method for analyzing the black carbon (BC) mass loading on a quartz fiber filter using a modified thermal-optical analysis method, wherein light transmitted through the sample is measured over a spectral region instead of at a single wavelength. Evolution of the spectral light transmission signal depends on the relative amounts of light-absorbing BC and char, the latter of which forms when organic carbon in the sample pyrolyzes during heating. Absorption selectivities of BC and char are found to be distinct and are used to apportion the amount of light attenuated by each component in the sample. Light attenuation is converted to mass concentration on the basis of derived mass attenuation efficiencies (MAEs) of BC and char. The fractions of attenuation due to each component are scaled by their individual MAE values and added together as the total mass of light absorbing carbon (LAC). An iterative algorithm is used to find the MAE values for both BC and char that provide the best fit to the carbon mass remaining on the filter (derived from direct measurements of thermally evolved CO2) at temperatures higher than 480 degrees C. This method was applied to measure the BC concentration in precipitation samples collected in northern California. The uncertainty in the measured BC concentration of samples that contained a high concentration of organics susceptible to char ranged from 12% to 100%, depending on the mass loading of BC on the filter. The lower detection limit for this method was approximately 0.35 microg of BC, and the uncertainty approached 20% for BC mass loading greater than 1.0 microg of BC.
Heat suppression of the fiber coating on a cladding light stripper in high-power fiber laser.
Yan, Ming-Jian; Wang, Zheng; Meng, Ling-Qiang; Yin, Lu; Han, Zhi-Gang; Shen, Hua; Wang, Hai-Lin; Zhu, Ri-Hong
2018-01-20
We present a theoretical model for the thermal effect of the fiber coating on a high-power cladding light stripper, which is fabricated by chemical etching. For the input and output of the fiber coating, a novel segmented corrosion method and increasing attenuation method are proposed for heat suppression, respectively. The relationship between the attenuation and temperature rise of the fiber coating at the output is experimentally demonstrated. The temperature distribution of the fiber coating at the input as well as the return light power caused by scattering are measured for the etched fiber with different surface roughness values. The results suggest that the rise in temperature is primarily caused by the scattering light propagating into the coating. Finally, an attenuation of 27 dB is achieved. At a room temperature of 23°C and input pump power of 438 W, the highest temperature of the input fiber coating decreases from 39.5°C to 27.9°C by segmented corrosion, and the temperature rise of the output fiber coating is close to 0.
USDA-ARS?s Scientific Manuscript database
Row spacing effects on light interception and extinction coefficient have been inconsistent for maize (Zea mays L.) when calculated with field measurements. To avoid inconsistencies due to variable light conditions and variable leaf canopies, we used a model to describe three-dimensional (3D) shoot ...
Remote sensing of the diffuse attenuation coefficient of ocean water. [coastal zone color scanner
NASA Technical Reports Server (NTRS)
Austin, R. W.
1981-01-01
A technique was devised which uses remotely sensed spectral radiances from the sea to assess the optical diffuse attenuation coefficient, K (lambda) of near-surface ocean water. With spectral image data from a sensor such as the coastal zone color scanner (CZCS) carried on NIMBUS-7, it is possible to rapidly compute the K (lambda) fields for large ocean areas and obtain K "images" which show synoptic, spatial distribution of this attenuation coefficient. The technique utilizes a relationship that has been determined between the value of K and the ratio of the upwelling radiances leaving the sea surface at two wavelengths. The relationship was developed to provide an algorithm for inferring K from the radiance images obtained by the CZCS, thus the wavelengths were selected from those used by this sensor, viz., 443, 520, 550 and 670 nm. The majority of the radiance arriving at the spacecraft is the result of scattering in the atmospheric and is unrelated to the radiance signal generated by the water. A necessary step in the processing of the data received by the sensor is, therefore, the effective removal of these atmospheric path radiance signals before the K algorithm is applied. Examples of the efficacy of these removal techniques are given together with examples of the spatial distributions of K in several ocean areas.
Linear attenuation coefficients of tissues from 1 keV to 150 keV
NASA Astrophysics Data System (ADS)
Böke, Aysun
2014-09-01
The linear attenuation coefficients and three interaction processes have been computed for liver, kidney, muscle, fat and for a range of x-ray energies from 1 keV to 150 keV. Molecular photoelectric absorption cross sections were calculated from atomic cross section data. Total coherent (Rayleigh) and incoherent (Compton) scattering cross sections were obtained by numerical integration over combinations of F2m(x) with the Thomson formula and Sm(x) with the Klein-Nishina formula, respectively. For the coherent (Rayleigh) scattering cross section calculations, molecular form factors were obtained from recent experimental data in the literature for values of x<1 Å-1 and from the relativistic modified atomic form factors for values of x≥1 Å-1. With the inclusion of molecular interference effects in the coherent (Rayleigh) scattering, more accurate knowledge of the scatter from these tissues will be provided. The number of elements involved in tissue composition is 5 for liver, 47 for kidney, 44 for muscle and 3 for fat. The results are compared with previously published experimental and theoretical linear attenuation coefficients. In general, good agreement is obtained. The molecular form factors and scattering functions and cross sections are incorporated into a Monte Carlo program. The energy distributions of x-ray photons scattered from tissues have been simulated and the results are presented.
NASA Astrophysics Data System (ADS)
Ladefoged, Claes N.; Benoit, Didier; Law, Ian; Holm, Søren; Kjær, Andreas; Højgaard, Liselotte; Hansen, Adam E.; Andersen, Flemming L.
2015-10-01
The reconstruction of PET brain data in a PET/MR hybrid scanner is challenging in the absence of transmission sources, where MR images are used for MR-based attenuation correction (MR-AC). The main challenge of MR-AC is to separate bone and air, as neither have a signal in traditional MR images, and to assign the correct linear attenuation coefficient to bone. The ultra-short echo time (UTE) MR sequence was proposed as a basis for MR-AC as this sequence shows a small signal in bone. The purpose of this study was to develop a new clinically feasible MR-AC method with patient specific continuous-valued linear attenuation coefficients in bone that provides accurate reconstructed PET image data. A total of 164 [18F]FDG PET/MR patients were included in this study, of which 10 were used for training. MR-AC was based on either standard CT (reference), UTE or our method (RESOLUTE). The reconstructed PET images were evaluated in the whole brain, as well as regionally in the brain using a ROI-based analysis. Our method segments air, brain, cerebral spinal fluid, and soft tissue voxels on the unprocessed UTE TE images, and uses a mapping of R2* values to CT Hounsfield Units (HU) to measure the density in bone voxels. The average error of our method in the brain was 0.1% and less than 1.2% in any region of the brain. On average 95% of the brain was within ±10% of PETCT, compared to 72% when using UTE. The proposed method is clinically feasible, reducing both the global and local errors on the reconstructed PET images, as well as limiting the number and extent of the outliers.
Measurements of striae in CR+ doped YAG laser crystals
NASA Astrophysics Data System (ADS)
Cady, Fredrick M.
1994-12-01
Striations in Czochralski (CZ) grown crystals have been observed in materials such as GaAs, silicon, photorefractive crystals used for data storage, potassium titanyl phosphate crystals and LiNbO3. Several techniques have been used for investigating these defects including electron microscopy, laser scanning tomography, selective photoetching, X-ray diffuse scattering, interference orthoscopy, laser interferometry and micro-Fourier transform infrared spectroscopy mapping. A 2mm thick sample of the material to be investigated is illuminated with light that is absorbed and non-absorbed by the ion concentration to be observed. The back surface of the sample is focused onto a solid-state image detector and images of the input beam and absorbed (and diffracted) beams are captured at two wavelengths. The variation of the coefficient of absorption asa function of distance on the sample can be derived from these measurements. A Big Sky Software Beamcode system is used to capture and display images. Software has been written to convert the Beamcode data files to a format that can be imported into a spreadsheet program such as Quatro Pro. The spreadsheet is then used to manipulate and display data. A model of the intensity map of the striae collected by the imaging system has been proposed and a data analysis procedure derived. From this, the variability of the attenuation coefficient alpha can be generated. Preliminary results show that alpha may vary by a factor of four or five over distances of 100 mu m. Potential errors and problems have been discovered and additional experiments and improvements to the experimental setup are in progress and we must now show that the measurement techniques and data analysis procedures provide 'real' information. Striae are clearly visible at all wavelengths including white light. Their basic spatial frequency does not change radically, at least when changing from blue to green to white light. Further experimental and theoretical work can be done to improve the data collection techniques and to verify the data analysis procedures.
NASA Astrophysics Data System (ADS)
Guerrero, Massimo; Di Federico, Vittorio
2018-03-01
The use of acoustic techniques has become common for estimating suspended sediment in water environments. An emitted beam propagates into water producing backscatter and attenuation, which depend on scattering particles concentration and size distribution. Unfortunately, the actual particles size distribution (PSD) may largely affect the accuracy of concentration quantification through the unknown coefficients of backscattering strength, ks2, and normalized attenuation, ζs. This issue was partially solved by applying the multi-frequency approach. Despite this possibility, a relevant scientific and practical question remains regarding the possibility of using acoustic methods to investigate poorly sorted sediment in the spectrum ranging from clay to fine sand. The aim of this study is to investigate the possibility of combining the measurement of sound attenuation and backscatter to determine ζs for the suspended particles and the corresponding concentration. The proposed method is moderately dependent from actual PSD, thus relaxing the need of frequent calibrations to account for changes in ks2 and ζs coefficients. Laboratory tests were conducted under controlled conditions to validate this measurement technique. With respect to existing approaches, the developed method more accurately estimates the concentration of suspended particles ranging from clay to fine sand and, at the same time, gives an indication on their actual PSD.
Borcherdt, Roger D.
2014-01-01
Proposals are developed to update Tables 11.4-1 and 11.4-2 of Minimum Design Loads for Buildings and Other Structures published as American Society of Civil Engineers Structural Engineering Institute standard 7-10 (ASCE/SEI 7–10). The updates are mean next generation attenuation (NGA) site coefficients inferred directly from the four NGA ground motion prediction equations used to derive the maximum considered earthquake response maps adopted in ASCE/SEI 7–10. Proposals include the recommendation to use straight-line interpolation to infer site coefficients at intermediate values of (average shear velocity to 30-m depth). The NGA coefficients are shown to agree well with adopted site coefficients at low levels of input motion (0.1 g) and those observed from the Loma Prieta earthquake. For higher levels of input motion, the majority of the adopted values are within the 95% epistemic-uncertainty limits implied by the NGA estimates with the exceptions being the mid-period site coefficient, Fv, for site class D and the short-period coefficient, Fa, for site class C, both of which are slightly less than the corresponding 95% limit. The NGA data base shows that the median value of 913 m/s for site class B is more typical than 760 m/s as a value to characterize firm to hard rock sites as the uniform ground condition for future maximum considered earthquake response ground motion estimates. Future updates of NGA ground motion prediction equations can be incorporated easily into future adjustments of adopted site coefficients using procedures presented herein.
Attenuation Measurements of Cell Pellets Using Through Transmission
NASA Astrophysics Data System (ADS)
Vadas, Justin; Greene, Claudia; Grygotis, Emma; Kuhn, Stephen; Mahlalela, Sanele; Newland, Tinisha; Ovutmen, Idil; Herd, Maria-Teresa
2011-10-01
A better understanding of differences in ultrasound tissue characteristics (such as speed of sound, attenuation, and backscatter coefficients) of benign compared to malignant cells could lead to improved cancer detection and diagnosis. A narrow band technique for measuring ultrasonic speed of sound and attenuation of small biological materials was developed and tested. Several mechanical improvements were made to the system to drastically improve alignment, allowing for accurate measurements of small cell pellets. Narrow band attenuation measurements were made first with tissue-mimicking phantoms and then with three different types of cell pellets: Chinese hamster ovary cells, healthy human prostate cells, and cancerous human prostate cells. Attenuation and speed of sound results for all three cell types, as well as the culture medium and tissue mimicking phantoms, are presented for a frequency range of 5 to 25 MHz.
Ultrasonic ranking of toughness of tungsten carbide
NASA Technical Reports Server (NTRS)
Vary, A.; Hull, D. R.
1983-01-01
The feasibility of using ultrasonic attenuation measurements to rank tungsten carbide alloys according to their fracture toughness was demonstrated. Six samples of cobalt-cemented tungsten carbide (WC-Co) were examined. These varied in cobalt content from approximately 2 to 16 weight percent. The toughness generally increased with increasing cobalt content. Toughness was first determined by the Palmqvist and short rod fracture toughness tests. Subsequently, ultrasonic attenuation measurements were correlated with both these mechanical test methods. It is shown that there is a strong increase in ultrasonic attenuation corresponding to increased toughness of the WC-Co alloys. A correlation between attenuation and toughness exists for a wide range of ultrasonic frequencies. However, the best correlation for the WC-Co alloys occurs when the attenuation coefficient measured in the vicinity of 100 megahertz is compared with toughness as determined by the Palmqvist technique.
Significant Attenuation of Lightly Damped Resonances Using Particle Dampers
NASA Technical Reports Server (NTRS)
Smith, Andrew; LaVerde, Bruce; Hunt, Ron; Knight, Joseph Brent
2015-01-01
When equipment designs must perform in a broad band vibration environment it can be difficult to avoid resonances that affect life and performance. This is especially true when an organization seeks to employ an asset from a heritage design in a new, more demanding vibration environment. Particle dampers may be used to provide significant attenuation of lightly damped resonances to assist with such a deployment of assets by including only a very minor set of modifications. This solution may be easier to implement than more traditional attenuation schemes. Furthermore, the cost in additional weight to the equipment can be very small. Complexity may also be kept to a minimum, because the particle dampers do not require tuning. Attenuating the vibratory response with particle dampers may therefore be simpler (in a set it and forget it kind of way) than tuned mass dampers. The paper will illustrate the use of an "equivalent resonance test jig" that can assist designers in verifying the potential resonance attenuation that may be available to them during the early trade stages of the design. An approach is suggested for transforming observed attenuation in the jig to estimated performance in the actual service design. KEY WORDS: Particle Damper, Performance in Vibration Environment, Damping, Resonance, Attenuation, Mitigation of Vibration Response, Response Estimate, Response Verification.
Harnish, Roy; Prevrhal, Sven; Alavi, Abass; Zaidi, Habib; Lang, Thomas F
2014-07-01
To determine if metal artefact reduction (MAR) combined with a priori knowledge of prosthesis material composition can be applied to obtain CT-based attenuation maps with sufficient accuracy for quantitative assessment of (18)F-fluorodeoxyglucose uptake in lesions near metallic prostheses. A custom hip prosthesis phantom with a lesion-sized cavity filled with 0.2 ml (18)F-FDG solution having an activity of 3.367 MBq adjacent to a prosthesis bore was imaged twice with a chrome-cobalt steel hip prosthesis and a plastic replica, respectively. Scanning was performed on a clinical hybrid PET/CT system equipped with an additional external (137)Cs transmission source. PET emission images were reconstructed from both phantom configurations with CT-based attenuation correction (CTAC) and with CT-based attenuation correction using MAR (MARCTAC). To compare results with the attenuation-correction method extant prior to the advent of PET/CT, we also carried out attenuation correction with (137)Cs transmission-based attenuation correction (TXAC). CTAC and MARCTAC images were scaled to attenuation coefficients at 511 keV using a trilinear function that mapped the highest CT values to the prosthesis alloy attenuation coefficient. Accuracy and spatial distribution of the lesion activity was compared between the three reconstruction schemes. Compared to the reference activity of 3.37 MBq, the estimated activity quantified from the PET image corrected by TXAC was 3.41 MBq. The activity estimated from PET images corrected by MARCTAC was similar in accuracy at 3.32 MBq. CTAC corrected PET images resulted in nearly 40 % overestimation of lesion activity at 4.70 MBq. Comparison of PET images obtained with the plastic and metal prostheses in place showed that CTAC resulted in a marked distortion of the (18)F-FDG distribution within the lesion, whereas application of MARCTAC and TXAC resulted in lesion distributions similar to those observed with the plastic replica. MAR combined with a trilinear CT number mapping for PET attenuation correction resulted in estimates of lesion activity comparable in accuracy to that obtained with (137)Cs transmission-based attenuation correction, and far superior to estimates made without attenuation correction or with a standard CT attenuation map. The ability to use CT images for attenuation correction is a potentially important development because it obviates the need for a (137)Cs transmission source, which entails extra scan time, logistical complexity and expense.
Corrosion monitoring along infrastructures using distributed fiber optic sensing
NASA Astrophysics Data System (ADS)
Alhandawi, Khalil B.; Vahdati, Nader; Shiryayev, Oleg; Lawand, Lydia
2016-04-01
Pipeline Inspection Gauges (PIGs) are used for internal corrosion inspection of oil pipelines every 3-5 years. However, between inspection intervals, rapid corrosion may occur, potentially resulting in major accidents. The motivation behind this research project was to develop a safe distributed corrosion sensor placed inside oil pipelines continuously monitoring corrosion. The intrinsically safe nature of light provided motivation for researching fiber optic sensors as a solution. The sensing fiber's cladding features polymer plastic that is chemically sensitive to hydrocarbons within crude oil mixtures. A layer of metal, used in the oil pipeline's construction, is deposited on the polymer cladding, which upon corrosion, exposes the cladding to surrounding hydrocarbons. The hydrocarbon's interaction with the cladding locally increases the cladding's refractive index in the radial direction. Light intensity of a traveling pulse is reduced due to local reduction in the modal capacity which is interrogated by Optical Time Domain Reflectometery. Backscattered light is captured in real-time while using time delay to resolve location, allowing real-time spatial monitoring of environmental internal corrosion within pipelines spanning large distances. Step index theoretical solutions were used to calculate the power loss due changes in the intensity profile. The power loss is translated into an attenuation coefficient characterizing the expected OTDR trace which was verified against similar experimental results from the literature. A laboratory scale experiment is being developed to assess the validity of the model and the practicality of the solution.
NASA Astrophysics Data System (ADS)
Mankovskaya, E. V.; Korchemkina, E. N.; Latushkin, A. A.
2017-11-01
A method allowing to obtain estimates of dissolved organic and suspended matter content in Black Sea waters using beam attenuation coefficient (BAC) measurements in two spectral channels is proposed. It makes possible to assess the composition, bio-productivity and ecological state of waters in real time, and to validate the data of satellite scanners. The method is based on retrieval the spectral distribution of BAC by orthogonal functions. Full spectral distribution in range 416 - 677 nm allows to select spectral sites with a dominant contribution of certain substance in BAC and to obtain the content of yellow substance and suspended matter using specially designed optimization technique. Calculated values are in good agreement with the satellite data obtained from MODIS scanner.
Barrier island community change: What controls it?
NASA Astrophysics Data System (ADS)
Dows, B.; Young, D.; Zinnert, J.
2014-12-01
Conversion from grassland to woody dominated communities has been observed globally. In recent decades, this pattern has been observed in coastal communities along the mid-Atlantic U.S. In coastal environments, a suite of biotic and abiotic factors interact as filters to determine plant community structure and distribution. Microclimatic conditions: soil and air temperature, soil moisture and salinity, and light attenuation under grass cover were measured across a grassland-woody encroachment gradient on a Virginia barrier island; to identify the primary factors that mediate this change. Woody establishment was associated with moderately dense (2200 shoots/m2) grass cover, but reduced at high (> 6200 shoots/ m2) and low (< 1250 shoots/ m2) densities. Moderately dense grass cover reduced light attenuation (82.50 % reduction) to sufficiently reduce soil temperature thereby limiting soil moisture evaporation. However, high grass density reduced light attenuation (98.7 % reduction) enough to inhibit establishment of woody species; whereas low grass density attenuated much less light (48.7 % reduction) which allowed for greater soil moisture evaporation. Soil salinity was dynamic as rainfall, tidal inundation, and sea spray produce spatiotemporal variation throughout the barrier island landscape. The importance of light and temperature were compounded as they also indirectly affect soil salinity via their affects on soil moisture. Determining how these biotic and abiotic factors relate to sea level rise and climate change will improve understanding coastal community response as global changes proceed. Understanding how community shifts affect ecosystem function and their potential to affect adjacent systems will also improve predictive ability of coastal ecosystem responses.
NASA Astrophysics Data System (ADS)
Götz, Benedict; Platz, Roland; Melz, Tobias
2018-03-01
In this paper, vibration attenuation of a beam with circular cross-section by resonantly shunted piezo-elastic supports is experimentally investigated for varying axial tensile and compressive beam loads. The beam's first mode resonance frequency, the general electromechanical coupling coefficient and static transducer capacitance are analyzed for varying axial loads. All three parameter values are obtained from transducer impedance measurements on an experimental test setup. Varying axial beam loads manipulate the beam's lateral bending stiffness and, thus, lead to a detuning of the resonance frequencies. Furthermore, they affect the general electromechanical coupling coefficient of transducer and beam, an important modal quantity for shunt-damping, whereas the static transducer capacitance is nearly unaffected. Frequency transfer functions of the beam with one piezoe-elastic support either shunted to an RL-shunt or to an RL-shunt with negative capacitance, the RLC-shunt, are compared for varying axial loads. It is shown that the beam vibration attenuation with the RLC-shunt is less influenced by varying axial beam loads and, therefore, is more robust against detuning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yusof, M. F. Mohd, E-mail: mfahmi@usm.my; School of Health Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan; Abdullah, R.
A set of tannin-based Rhizophora spp. particleboard phantoms with dimension of 30 cm x 30 cm was fabricated at target density of 1.0 g/cm{sup 3}. The mass attenuation coefficient of the phantom was measured using {sup 60}Co gamma source. The phantoms were scanned using Computed Tomography (CT) scanner and the percentage depth dose (PDD) of the phantom was calculated using treatment planning system (TPS) at 6 MV and 10 MV x-ray and compared to that in solid water phantoms. The result showed that the mass attenuation coefficient of tannin-based Rhizohora spp. phantoms was near to the value of water with χ{sup 2} valuemore » of 1.2. The measured PDD also showed good agreement with solid water phantom at both 6 MV and 10 MV x-ray with percentage deviation below 8% at depth beyond the maximum dose, Z{sub max}.« less
NASA Astrophysics Data System (ADS)
Bagheri, Kobra; Razavi, Seyed Mohammad; Ahmadi, Seyed Javad; Kosari, Mohammadreza; Abolghasemi, Hossein
2018-05-01
Composites of unsaturated polyester containing 5 wt% nanoclay and different amounts of lead monoxide particles (0, 10, 20, and 30 wt%) were prepared. XRD patterns showed the exfoliation of nanoclay layers in the polymer. Morphological properties of the composites were studied using SEM micrographs. The prepared composites were investigated for their thermal resistance and mechanical properties using thermogravimetric analysis and tensile testing method, respectively. Addition of lead monoxide to the polymer worsened its thermal resistance and tensile properties, whereas the observed negative effects could be moderated by the clay nanoparticle. Gamma attenuation performance of the composites was evaluated by 192Ir, 137Cs, and 60Co gamma radiation sources. Linear attenuation coefficient and mass attenuation coefficient of the composites were found to be increased with the increase of PbO content. Shielding efficiency of the prepared composites was compared with some conventional shielding materials regarding their half value layer thickness. UP/nanoclay/PbO composites were found to be suitable materials for the low-energy gamma radiation shielding applications.
NASA Astrophysics Data System (ADS)
Sharaf, J. M.; Saleh, H.
2015-05-01
The shielding properties of three different construction styles, and building materials, commonly used in Jordan, were evaluated using parameters such as attenuation coefficients, equivalent atomic number, penetration depth and energy buildup factor. Geometric progression (GP) method was used to calculate gamma-ray energy buildup factors of limestone, concrete, bricks, cement plaster and air for the energy range 0.05-3 MeV, and penetration depths up to 40 mfp. It has been observed that among the examined building materials, limestone offers highest value for equivalent atomic number and linear attenuation coefficient and the lowest values for penetration depth and energy buildup factor. The obtained buildup factors were used as basic data to establish the total equivalent energy buildup factors for three different multilayer construction styles using an iterative method. The three styles were then compared in terms of fractional transmission of photons at different incident photon energies. It is concluded that, in case of any nuclear accident, large multistory buildings with five layers exterior walls, style A, could effectively attenuate radiation more than small dwellings of any construction style.
NASA Astrophysics Data System (ADS)
Faulkner, B. R.; Lyon, W. G.
2001-12-01
We present a probabilistic model for predicting virus attenuation. The solution employs the assumption of complete mixing. Monte Carlo methods are used to generate ensemble simulations of virus attenuation due to physical, biological, and chemical factors. The model generates a probability of failure to achieve 4-log attenuation. We tabulated data from related studies to develop probability density functions for input parameters, and utilized a database of soil hydraulic parameters based on the 12 USDA soil categories. Regulators can use the model based on limited information such as boring logs, climate data, and soil survey reports for a particular site of interest. Plackett-Burman sensitivity analysis indicated the most important main effects on probability of failure to achieve 4-log attenuation in our model were mean logarithm of saturated hydraulic conductivity (+0.396), mean water content (+0.203), mean solid-water mass transfer coefficient (-0.147), and the mean solid-water equilibrium partitioning coefficient (-0.144). Using the model, we predicted the probability of failure of a one-meter thick proposed hydrogeologic barrier and a water content of 0.3. With the currently available data and the associated uncertainty, we predicted soils classified as sand would fail (p=0.999), silt loams would also fail (p=0.292), but soils classified as clays would provide the required 4-log attenuation (p=0.001). The model is extendible in the sense that probability density functions of parameters can be modified as future studies refine the uncertainty, and the lightweight object-oriented design of the computer model (implemented in Java) will facilitate reuse with modified classes. This is an abstract of a proposed presentation and does not necessarily reflect EPA policy.
NASA Astrophysics Data System (ADS)
Karabutov, Aleksander A.; Pelivanov, Ivan M.; Podymova, N. B.; Skipetrov, S. E.
1999-12-01
A method, based on the optoacoustic effect for determination of the spatial distribution of the light intensity in turbid media and of the optical characteristics of such media was proposed (and implemented experimentally). A temporal profile of the pressure of a thermo-optically excited acoustic pulse was found to be governed by the absorption coefficient and by the spatial distribution of the light intensity in the investigated medium. The absorption coefficient and the reduced light-scattering coefficient of model turbid water-like media were measured by the optoacoustic method. The results of a direct determination of the spatial light-intensity distribution agreed with a theoretical calculation made in the diffusion approximation.
2015-10-15
Munsell Color • Light Attenuation and Turbidity • Sea turtle nesting • Conclusions • Traditional vs. Cross Shore Swash Zone Placement • Acknowledgments...Light Attenuation Long-term Monitoring Dredging 19 Nov. – 28 Dec. Dredging 21 Jan. – 6 Mar. BUILDING STRONG® Sea Turtle Nesting 2015 Traditional...Traditional Placement • Less linear feet of beach impacted for equivalent volume • Reduced environmental Impacts • Turtle nest relocations • Ponding
Ai, Xiangzhao; Hu, Ming; Wang, Zhimin; Lyu, Linna; Zhang, Wenmin; Li, Juan; Yang, Huanghao; Lin, Jun; Xing, Bengang
2018-04-18
Near-infrared (NIR) light-mediated photodynamic therapy (PDT), especially based on lanthanide-doped upconversion nanocrystals (UCNs), have been extensively investigated as a promising strategy for effective cellular ablation owing to their unique optical properties to convert NIR light excitation into multiple short-wavelength emissions. Despite the deep tissue penetration of NIR light in living systems, the therapeutic efficiency is greatly restricted by insufficient oxygen supply in hypoxic tumor microenvironment. Moreover, the coexistent tumor-associated macrophages (TAMs) play critical roles in tumor recurrence during the post-PDT period. Herein, we developed a unique photosensitizer-loaded UCNs nanoconjugate (PUN) by integrating manganese dioxide (MnO 2 ) nanosheets and hyaluronic acid (HA) biopolymer to improve NIR light-mediated PDT efficacy through attenuating hypoxia status and synergistically reprogramming TAMs populations. After the reaction with overproduced H 2 O 2 in acidic tumor microenvironment, the MnO 2 nanosheets were degraded for the production of massive oxygen to greatly enhance the oxygen-dependent PDT efficiency upon 808 nm NIR light irradiation. More importantly, the bioinspired polymer HA could effectively reprogram the polarization of pro-tumor M2-type TAMs to anti-tumor M1-type macrophages to prevent tumor relapse after PDT treatment. Such promising results provided the great opportunities to achieve enhanced cellular ablation upon NIR light-mediated PDT treatment by attenuating hypoxic tumor microenvironment, and thus facilitated the rational design of new generations of nanoplatforms toward immunotherapy to inhibit tumor recurrence during post-PDT period.
NASA Astrophysics Data System (ADS)
Mascarenhas, V. J.; Voß, D.; Wollschlaeger, J.; Zielinski, O.
2017-05-01
Optically active constituents (OACs) in addition to water molecules attenuate light via processes of absorption and scattering and thereby determine underwater light availability. An analysis of their optical properties helps in determining the contribution of each of these to light attenuation. With an aim to study the bio-optical variability, absorption budget and 1% spectral light availability, hydrographical (temperature and salinity), and hyperspectral optical (downwelling irradiance and upwelling radiance) profiles were measured along fjord transects in Sognefjord and Trondheimsfjord, Norway. Optical water quality observations were also performed using Secchi disc and Forel-Ule scale. In concurrence, water samples were collected and analyzed via visible spectrophotometry, fluorometry, and gravimetry to quantify and derive inherent optical properties of the water constituents. An absorption model (R2 = 0.91, n = 36, p < 0.05) as a function of OACs is developed for Sognefjord using multiple regression analysis. Influenced by glacial meltwater, Sognefjord had higher concentration of inorganic suspended matter, while Trondheimsfjord had higher concentrations of CDOM. Increase in turbidity caused increased attenuation of light upstream, as a result of which the euphotic depth decreased from outer to inner fjord sections. Triangular representation of absorption budget revealed dominant absorption by CDOM at 443-555 nm, while that by phytoplankton at 665 nm. Sognefjord however exhibited much greater optical complexity. A significantly strong correlation between salinity and acdom440 is used to develop an algorithm to estimate acdom440 using salinity in Trondheimsfjord.
Occurrence and in-stream attenuation of wastewater-derived pharmaceuticals in Iberian rivers.
Acuña, Vicenç; von Schiller, Daniel; García-Galán, Maria Jesús; Rodríguez-Mozaz, Sara; Corominas, Lluís; Petrovic, Mira; Poch, Manel; Barceló, Damià; Sabater, Sergi
2015-01-15
A multitude of pharmaceuticals enter surface waters via discharges of wastewater treatment plants (WWTPs), and many raise environmental and health concerns. Chemical fate models predict their concentrations using estimates of mass loading, dilution and in-stream attenuation. However, current comprehension of the attenuation rates remains a limiting factor for predictive models. We assessed in-stream attenuation of 75 pharmaceuticals in 4 river segments, aiming to characterize in-stream attenuation variability among different pharmaceutical compounds, as well as among river segments differing in environmental conditions. Our study revealed that in-stream attenuation was highly variable among pharmaceuticals and river segments and that none of the considered pharmaceutical physicochemical and molecular properties proved to be relevant in determining the mean attenuation rates. Instead, the octanol-water partition coefficient (Kow) influenced the variability of rates among river segments, likely due to its effect on sorption to sediments and suspended particles, and therefore influencing the balance between the different attenuation mechanisms (biotransformation, photolysis, sorption, and volatilization). The magnitude of the measured attenuation rates urges scientists to consider them as important as dilution when aiming to predict concentrations in freshwater ecosystems. Copyright © 2014 Elsevier B.V. All rights reserved.
Capmany, José; Mora, José; Ortega, Beatriz; Pastor, Daniel
2005-03-07
We propose and experimentally demonstrate two configurations of photonic filters for the processing of microwave signals featuring tunability, reconfigurability and negative coefficients based on the use of low cost optical sources. The first option is a low power configuration based on spectral slicing of a broadband source. The second is a high power configuration based on fixed lasers. Tunability, reconfigurability and negative coefficients are achieved by means of a MEMS cross-connect, a variable optical attenuator array and simple 2x2 switches respectively.
Ruiz, J M; Romero, J
2003-12-01
The light-limitation hypothesis was tested to assess whether water turbidity had caused the decline of a Mediterranean Posidonia oceanica (L.) Delile meadow in an area affected by a harbor. The annual growth, photosynthesis and rhizome starch concentrations of seagrass were measured and related to changes in light availability and dissolved nutrient concentration along a gradient of meadow degradation from areas close to the harbor outwards. Environmental and plant variables were measured in three stations placed along this gradient and compared with a reference station at an undisturbed meadow. The light attenuation coefficient (k) increased toward the inner harbor area, mainly due to sediment resuspension. The shoot density and leaf productivity of P. oceanica shoots were much lower in disturbed stations of the inner harbor area than in the outer, less disturbed station and the reference meadow. However, daily leaf carbon gains, calculated from the photosynthetic rates at saturating irradiance (P(max)) and the daily period in which seagrass receives light higher than its saturating irradiance (H(sat)), suggested positive C-balance in all stations. This was partly explained by photo-acclimatization of seagrass to the reduced light availability at the disturbed harbor stations (inner and intermediate), as indicated by the lengthening of H(sat) and the decrease in saturating irradiance (I(sat)) and respiratory demands. Despite photo-acclimatization, disturbed harbor stations showed less positive C-balance, seen not only in their lower leaf growth and biomass but also in a decrease in rhizome carbohydrate reserves (starch). Our results suggest that light reduction account for the reduced seagrass productivity and abundance. However, meadow decline (in terms of shoot mortality) in the harbor area is well above that predicted from similar light environments of nearby meadows or simulated in shading experiments. Thus, there are other factors than light limitation involved in seagrass mortality, most probably through more complex interactions (e.g. nutrient-epiphytes-grazers, water quality--siltation).
NASA Astrophysics Data System (ADS)
Hosono, Satsuki; Qi, Wei; Sato, Shun; Suzuki, Yo; Fujiwara, Masaru; Hiramatsu, Hiroyuki; Suzuki, Satoru; Abeygunawardhana, P. K. W.; Wada, Kenji; Nishiyama, Akira; Ishimaru, Ichiro
2015-03-01
For simultaneous measurement of multi-components on-site like factories, the ultra-compact (diameter: 9[mm], length: 45[mm], weight: 200[g]) one-shot ATR (Attenuated Total Reflection) Fourier spectroscopic imager was proposed. Because the proposed one-shot Fourier spectroscopic imaging is based on spatial-phase-shift interferometer, interferograms could be obtained with simple optical configurations. We introduced the transmission-type relativeinclined phase-shifter, that was constructed with a cuboid prism and a wedge prism, onto the optical Fourier transform plane of infinity corrected optical systems. And also, small light-sources and cameras in the mid-infrared light region, whose size are several millimeter on a side, are essential components for the ultra-compact spectroscopic configuration. We selected the Graphite light source (light source area: 1.7×1.7[mm], maker: Hawkeye technologies) whose radiation factor was high. Fortunately, in these days we could apply the cost-effective 2-dimensional light receiving device for smartphone (e.g. product name: LEPTON, maker: FLIR, price: around 400USD). In the case of alcoholic drinks factory, conventionally workers measure glucose and ethanol concentrations by bringing liquid solution back to laboratories every day. The high portable spectroscopy will make it possible to measure multi-components simultaneously on manufacturing scene. But we found experimentally that absorption spectrum of glucose and water and ethanol were overlapped each other in near infrared light region. But for mid-infrared light region, we could distinguish specific absorption peaks of glucose (@10.5[μm]) and ethanol (@11.5[μm]) independently from water absorption. We obtained standard curve between absorption (@9.6[μm]) and ethanol concentration with high correlation coefficient 0.98 successfully by ATR imaging-type 2-dimensional Fourier spectroscopy (wavelength resolution: 0.057[μm]) with the graphite light source (maker: Hawkeye technologies, type: IR-75).
Development of a Multileaf Collimator for Proton Radiotherapy
2006-06-01
voxel size and slice thickness can be adjusted and determine the resolution. Each voxel is assigned a CT Number, in Hounsfield units , which is a...measure of the linear attenuation of the material in that voxel. The Hounsfield unit is a comparison of the linear attenuation coefficient of some...a header, which contains relevant patient and scan information, and the data, which is a sequential listing of the Hounsfield units of each voxel
Optical Attenuation Coefficient Meter
2016-06-22
detector 43 is measured and recorded at the Pico Scope 80 to validate the laser pulse strength (which is proportional to the output and time wave shape ...unusable. [0004] As such, there is a need for a meter, recognizing back scattering by a pulsed laser source, that would allow a propagation path which...an attenuation meter with a transmitter and receiver is provided in which the transmitter produces a laser pulse of a duration and water
Three-dimensional laser velocimeter simultaneity detector
NASA Technical Reports Server (NTRS)
Brown, James L. (Inventor)
1990-01-01
A three-dimensional laser Doppler velocimeter has laser optics for a first channel positioned to create a probe volume in space, and laser optics and for second and third channels, respectively, positioned to create entirely overlapping probe volumes in space. The probe volumes and overlap partially in space. The photodetector is positioned to receive light scattered by a particle present in the probe volume, while photodetectors and are positioned to receive light scattered by a particle present in the probe volume. The photodetector for the first channel is directly connected to provide a first channel analog signal to frequency measuring circuits. The first channel is therefore a primary channel for the system. Photodetectors and are respectively connected through a second channel analog signal attenuator to frequency measuring circuits and through a third channel analog signal attenuator to frequency measuring circuits. The second and third channels are secondary channels, with the second and third channels analog signal attenuators and controlled by the first channel measurement burst signal on line. The second and third channels analog signal attenuators and attenuate the second and third channels analog signals only when the measurement burst signal is false.
NASA Astrophysics Data System (ADS)
Pichardo, Samuel; Sin, Vivian W.; Hynynen, Kullervo
2011-01-01
For medical applications of ultrasound inside the brain, it is necessary to understand the relationship between the apparent density of skull bone and its corresponding speed of sound and attenuation coefficient. Although there have been previous studies exploring this phenomenon, there is still a need to extend the measurements to cover more of the clinically relevant frequency range. The results of measurements of the longitudinal speed of sound and attenuation coefficient are presented for specimens of human calvaria. The study was performed for the frequencies of 0.27, 0.836, 1.402, 1.965 and 2.525 MHz. Specimens were obtained from fresh cadavers through a protocol with the Division of Anatomy of the University of Toronto. The protocol was approved by the Research Ethics Board of Sunnybrook Health Sciences Centre. The specimens were mounted in polycarbonate supports that were marked for stereoscopic positioning. Computer tomography (CT) scans of the skulls mounted on their supports were performed, and a three-dimensional skull surface was reconstructed. This surface was used to guide a positioning system to ensure the normal sound incidence of an acoustic signal. This signal was produced by a focused device with a diameter of 5 cm and a focal length of 10 cm. Measurements of delay in time of flight were carried out using a needle hydrophone. Measurements of effective transmitted energy were carried out using a radiation force method with a 10 µg resolution scale. Preliminary functions of speed of sound and attenuation coefficient, both of which are related to apparent density, were established using a multi-layer propagation model that takes into account speed of sound, density and thickness of the layer. An optimization process was executed from a large set of random functions and the best functions were chosen for those ones that closest reproduced the experimental observations. The final functions were obtained after a second pass of the optimization process was executed, but this time using a finite-difference time-difference solution of the Westervelt equation, which is more precise than the multi-layer model but much more time consuming for computation. For six of seven specimens, measurements were carried out on five locations on the calvaria, and for the other specimen three measurements were made. In total, measurements were carried out on 33 locations. Results indicated the presence of dispersion effects and that these effects are different according to the type of bone in the skull (cortical and trabecular). Additionally, both the speed of sound and attenuation showed dependence on the skull density that varied with the frequency. Using the optimal functions and the information of density from the CT scans, the average values (±s.d.) of the speed of sound for cortical bone were estimated to be 2384(± 130), 2471(± 90), 2504(± 120), 2327(± 90) and 2053(± 40) m s-1 for the frequencies of 270, 836, 1402, 1965 and 2526 kHz, respectively. For trabecular bone, and in the same order of frequency values, the speeds of sound were 2140(± 130), 2300(± 100), 2219(± 200), 2133(± 130) and 1937(± 40) m s-1, respectively. The average values of the attenuation coefficient for cortical bone were 33(± 9), 240(± 9) and 307(± 30) Np m-1 for the frequencies of 270, 836, and 1402, respectively. For trabecular bone, and in the same order of frequency values, the average values of the attenuation coefficient were 34(± 13), 216(± 16) and 375(± 30) Np m-1, respectively. For frequencies of 1.965 and 2.525 MHz, no measurable radiation force was detected with the setup used.
Pichardo, Samuel; Sin, Vivian W; Hynynen, Kullervo
2011-01-01
For medical applications of ultrasound inside the brain, it is necessary to understand the relationship between the apparent density of skull bone and its corresponding speed of sound and attenuation coefficient. Although there have been previous studies exploring this phenomenon, there is still a need to extend the measurements to cover more of the clinically relevant frequency range. The results of measurements of the longitudinal speed of sound and attenuation coefficient are presented for specimens of human calvaria. The study was performed for the frequencies of 0.27, 0.836, 1.402, 1.965 and 2.525 MHz. Specimens were obtained from fresh cadavers through a protocol with the Division of Anatomy of the University of Toronto. The protocol was approved by the Research Ethics Board of Sunnybrook Health Sciences Centre. The specimens were mounted in polycarbonate supports that were marked for stereoscopic positioning. Computer tomography (CT) scans of the skulls mounted on their supports were performed, and a three-dimensional skull surface was reconstructed. This surface was used to guide a positioning system to ensure the normal sound incidence of an acoustic signal. This signal was produced by a focused device with a diameter of 5 cm and a focal length of 10 cm. Measurements of delay in time of flight were carried out using a needle hydrophone. Measurements of effective transmitted energy were carried out using a radiation force method with a 10 μg resolution scale. Preliminary functions of speed of sound and attenuation coefficient, both of which are related to apparent density, were established using a multi-layer propagation model that takes into account speed of sound, density and thickness of the layer. An optimization process was executed from a large set of random functions and the best functions were chosen for those ones that closest reproduced the experimental observations. The final functions were obtained after a second pass of the optimization process was executed, but this time using a finite-difference time-difference solution of the Westervelt equation, which is more precise than the multi-layer model but much more time consuming for computation. For six of seven specimens, measurements were carried out on five locations on the calvaria, and for the other specimen three measurements were made. In total, measurements were carried out on 33 locations. Results indicated the presence of dispersion effects and that these effects are different according to the type of bone in the skull (cortical and trabecular). Additionally, both the speed of sound and attenuation showed dependence on the skull density that varied with the frequency. Using the optimal functions and the information of density from the CT scans, the average values (±s.d.) of the speed of sound for cortical bone were estimated to be 2384(±130), 2471(±90), 2504(±120), 2327(±90) and 2053(±40) m s−1 for the frequencies of 270, 836, 1402, 1965 and 2526 kHz, respectively. For trabecular bone, and in the same order of frequency values, the speeds of sound were 2140(±130), 2300(±100), 2219(±200), 2133(±130) and 1937(±40) m s−1, respectively. The average values of the attenuation coefficient for cortical bone were 33(±9), 240(±9) and 307(±30) Np m−1 for the frequencies of 270, 836, and 1402, respectively. For trabecular bone, and in the same order of frequency values, the average values of the attenuation coefficient were 34(±13), 216(±16) and 375(±30) Np m−1, respectively. For frequencies of 1.965 and 2.525 MHz, no measurable radiation force was detected with the setup used. PMID:21149950
Optical properties of Colored Dissolved Organic Matter (CDOM) on the East Siberian shelf
NASA Astrophysics Data System (ADS)
Semiletov, I. P.; Pugach, S.; Pipko, I.
2015-12-01
The Great Siberian Rivers integrate meteorological and hydrological changes in their watersheds and play a significant role in the physical and biogeochemical regime of the Arctic Ocean. Given the magnitude of Siberian Arctic dissolved organic matter (DOM) export and the uncertain extent to which it is degraded to greenhouse gases, intensified studies to better quantify and understand this large carbon pool and processes acting on it are urgently needed. The East Siberian Arctic shelf is characterized by the highest rate of coastal erosion and significant volume of the riverine discharge which derived terrigenous DOM in the Arctic Ocean. DOM plays a significant role in freshwater and marine aquatic ecosystems including its effects on nutrients and carbon cycling. The colored fraction of DOM, CDOM, directly affects the quantity and spectral quality of available light, thereby impaction both primary production and UV exposure in aquatic ecosystems. Since 2003 we measure CDOM in the East Siberian Arctic Seas (ESAS) in situ using the WETStar fluorometer which doesn't require prefiltration of sample. Combined analysis of CDOM and DOC data obtained at near-annual basis in (2003-2011) demonstrate a high degree of correlation between these parameters. For all the measured samples taken during the ISSS cruises (2003, 2004, 2005, 2008, 2011), there is an overall linear relationship between DOC concentration, CDOM, and salinity. Here we report the spatial-time variability of river-borne DOM in the ESAS using CDOM as a proxy parameter. Higher absorption coefficients (a254), spectral slope parameter over range 275-295 nm (S275-295) and CDOM concentrations reflect the dominant contribution of terrigenous DOM. It is shown that the attenuation light coefficient in the shallow ESAS is mostly determined by riverine CDOM.
Absorbance and light scattering of lenses organ cultured with glucose.
Alghamdi, Ali Hendi Sahmi; Mohamed, Hasabelrasoul; Sledge, Samiyyah M; Borchman, Douglas
2018-06-06
Purpose/Aim: Diabetes is one of the major factors related to cataract. Our aim was to determine if the attenuation of light through glucose treated lenses was due to light scattering from structural changes or absorbance from metabolic changes. Human and rat lenses were cultured in a medium with and without 55 mM glucose for a period of five days. Absorbance and light scattering were measured using a ultraviolet spectrometer. Aldose reductase and catalase activity, RAGE, and glutathione were measured using classical assays. Almost all of the glucose related attenuation of light through the human lens was due to light scattering from structural changes. Glucose treatment caused three absorbance band to appear at 484, 540 to 644 and 657 nm in both the rat and human lens. The optimum time point for equilibration of human lenses was found to be between 2 and 3 days in organ culture. Glucose caused a more significant effect on the opacity of human lenses compared with rat lenses. Since the levels of glutathione, catalase and aldose reductase were reduced in glucose treated rat lenses compared with untreated lenses, glucose may have caused oxidative stress on the rat lens. The absorbance and light scattering of glucose treated lenses in organ culture were quantitated for the first time which could be important for future studies designed to test the efficacy of agents to ameliorate the opacity. Almost all of the glucose related attenuation of light through the human lens was due to light scattering from structural changes and not absorbance from metabolic changes. Glucose caused a more significant effect on the opacity of human lenses compared with rat lenses. The lens model employed could be used to study the efficacy of agents that potentially ameliorate lens opacity.
Prediction of slant path rain attenuation statistics at various locations
NASA Technical Reports Server (NTRS)
Goldhirsh, J.
1977-01-01
The paper describes a method for predicting slant path attenuation statistics at arbitrary locations for variable frequencies and path elevation angles. The method involves the use of median reflectivity factor-height profiles measured with radar as well as the use of long-term point rain rate data and assumed or measured drop size distributions. The attenuation coefficient due to cloud liquid water in the presence of rain is also considered. Absolute probability fade distributions are compared for eight cases: Maryland (15 GHz), Texas (30 GHz), Slough, England (19 and 37 GHz), Fayetteville, North Carolina (13 and 18 GHz), and Cambridge, Massachusetts (13 and 18 GHz).
Downing, Bryan D.; Pellerin, Brian A.; Bergamaschi, Brian A.; Saraceno, John Franco; Kraus, Tamara E.C.
2012-01-01
Field-deployable sensors designed to continuously measure the fluorescence of colored dissolved organic matter (FDOM) in situ are of growing interest. However, the ability to make FDOM measurements that are comparable across sites and over time requires a clear understanding of how instrument characteristics and environmental conditions affect the measurements. In particular, the effects of water temperature and light attenuation by both colored dissolved material and suspended particles may be significant in settings such as rivers and streams. Using natural standard reference materials, we characterized the performance of four commercially-available FDOM sensors under controlled laboratory conditions over ranges of temperature, dissolved organic matter (DOM) concentrations, and turbidity that spanned typical environmental ranges. We also examined field data from several major rivers to assess how often attenuation artifacts or temperature effects might be important. We found that raw (uncorrected) FDOM values were strongly affected by the light attenuation that results from dissolved substances and suspended particles as well as by water temperature. Observed effects of light attenuation and temperature agreed well with theory. Our results show that correction of measured FDOM values to account for these effects is necessary and feasible over much of the range of temperature, DOM concentration, and turbidity commonly encountered in surface waters. In most cases, collecting high-quality FDOM measurements that are comparable through time and between sites will require concurrent measurements of temperature and turbidity, and periodic discrete sample collection for laboratory measurement of DOM.
NASA Astrophysics Data System (ADS)
Lai, Chia-Lin; Lee, Jhih-Shian; Chen, Jyh-Cheng
2015-02-01
Energy-mapping, the conversion of linear attenuation coefficients (μ) calculated at the effective computed tomography (CT) energy to those corresponding to 511 keV, is an important step in CT-based attenuation correction (CTAC) for positron emission tomography (PET) quantification. The aim of this study was to implement energy-mapping step by using curve fitting ability of artificial neural network (ANN). Eleven digital phantoms simulated by Geant4 application for tomographic emission (GATE) and 12 physical phantoms composed of various volume concentrations of iodine contrast were used in this study to generate energy-mapping curves by acquiring average CT values and linear attenuation coefficients at 511 keV of these phantoms. The curves were built with ANN toolbox in MATLAB. To evaluate the effectiveness of the proposed method, another two digital phantoms (liver and spine-bone) and three physical phantoms (volume concentrations of 3%, 10% and 20%) were used to compare the energy-mapping curves built by ANN and bilinear transformation, and a semi-quantitative analysis was proceeded by injecting 0.5 mCi FDG into a SD rat for micro-PET scanning. The results showed that the percentage relative difference (PRD) values of digital liver and spine-bone phantom are 5.46% and 1.28% based on ANN, and 19.21% and 1.87% based on bilinear transformation. For 3%, 10% and 20% physical phantoms, the PRD values of ANN curve are 0.91%, 0.70% and 3.70%, and the PRD values of bilinear transformation are 3.80%, 1.44% and 4.30%, respectively. Both digital and physical phantoms indicated that the ANN curve can achieve better performance than bilinear transformation. The semi-quantitative analysis of rat PET images showed that the ANN curve can reduce the inaccuracy caused by attenuation effect from 13.75% to 4.43% in brain tissue, and 23.26% to 9.41% in heart tissue. On the other hand, the inaccuracy remained 6.47% and 11.51% in brain and heart tissue when the bilinear transformation was used. Overall, it can be concluded that the bilinear transformation method resulted in considerable bias and the newly proposed calibration curve built by ANN could achieve better results with acceptable accuracy.
Callé, Rachel; Plag, Camille; Patat, Frédéric; Ossant, Frédéric
2009-01-01
Previous studies [R. Libgot, F. Ossant, Y. Gruel, P. Lermusiaux, and F. Patat, Proc.-IEEE Utrason. Symp. 4, 2259-2262 (2005); R. Libgot-Calle, F. Ossant, Y. Gruel, P. Lermusiaux, and F. Patat, Ultrasound Med. Biol. 34, 252-264 (2008); F. Ossant, R. Libgot, P. Coupe, P. Lermusiaux, and F. Patat, Proc.-IEEE Ultrason. Symp. 2, 846-849 (2004)] showed the potential of an in vitro high frequency ultrasound (beyond 20 MHz) device to describe the blood clotting process. The parameters were simultaneously estimated in double transmission (DT) with the calculation of the velocity of longitudinal waves and in backscattering (BS) modes with the estimation of the integrated BS coefficient and the effective scatterer size. The aim of the present study was to show how the integrated attenuation coefficient (IAC) assessed in DT mode could provide additional information on this process, especially regarding the fibrin polymerization which is an important part of the coagulation process. A characteristic time t(a) of the variations in IAC that could be linked to fibrin formation was identified.
Electrowetting-actuated optical switch based on total internal reflection.
Liu, Chao; Wang, Di; Yao, Li-Xiao; Li, Lei; Wang, Qiong-Hua
2015-04-01
In this paper we demonstrate a liquid optical switch based on total internal reflection. Two indium tin oxide electrodes are fabricated on the bottom substrate. A conductive liquid (Liquid 1) is placed on one side of the chamber and surrounded by a density-matched silicone oil (Liquid 2). In initial state, when the light beam illuminates the interface of the two liquids, it just meets the conditions of total internal reflection. The light is totally reflected by Liquid 2, and the device shows light-off state. When we apply a voltage to the other side of the indium tin oxide electrode, Liquid 1 stretched towards this side of the substrate and the curvature of the liquid-liquid interface changes. The light beam is refracted by Liquid 1 and the device shows light-on state. So the device can achieve the functions of an optical switch. Because the light beam can be totally reflected by the liquid, the device can attain 100% light intensity attenuation. Our experiments show that the response time from light-on (off) to light-off (on) are 130 and 132 ms, respectively. The proposed optical switch has potential applications in variable optical attenuators, information displays, and light shutters.
NASA Astrophysics Data System (ADS)
Klaessens, John H. G. M.; Hopman, Jeroen C. W.; Liem, K. Djien; de Roode, Rowland; Verdaasdonk, Rudolf M.; Thijssen, Johan M.
2008-02-01
Continuous wave Near Infrared Spectroscopy is a well known non invasive technique for measuring changes in tissue oxygenation. Absorption changes (ΔO2Hb and ΔHHb) are calculated from the light attenuations using the modified Lambert Beer equation. Generally, the concentration changes are calculated relative to the concentration at a starting point in time (delta time method). It is also possible, under certain assumptions, to calculate the concentrations by subtracting the equations at different wavelengths (delta wavelength method). We derived a new algorithm and will show the possibilities and limitations. In the delta wavelength method, the assumption is that the oxygen independent attenuation term will be eliminated from the formula even if its value changes in time, we verified the results with the classical delta time method using extinction coefficients from different literature sources for the wavelengths 767nm, 850nm and 905nm. The different methods of calculating concentration changes were applied to the data collected from animal experiments. The animals (lambs) were in a stable normoxic condition; stepwise they were made hypoxic and thereafter they returned to normoxic condition. The two algorithms were also applied for measuring two dimensional blood oxygen saturation changes in human skin tissue. The different oxygen saturation levels were induced by alterations in the respiration and by temporary arm clamping. The new delta wavelength method yielded in a steady state measurement the same changes in oxy and deoxy hemoglobin as the classical delta time method. The advantage of the new method is the independence of eventual variation of the oxygen independent attenuations in time.
Ohad, Itzakh; Clayton, Roderick K.; Bogorad, Lawrence
1979-01-01
Preparations of allophycocyanin isolated from the alga Fremyella diplosiphon show light-induced optical absorbance changes that suggest the presence of a photoconvertible component [Formula: see text] similar to the algal pigments described by J. Scheibe [(1972) Science 176, 1037-1039]. At pH < 4 the allophycocyanin has an absorption maximum at 620 nm. Red illumination causes a loss of absorbance in the red, centered at 620 nm, and subsequent green illumination restores the lost absorbance. We have studied this photoconversion at temperatures between 200 K and 307 K, analyzing the results in terms of photostationary states established under red (640 nm) and green (550 nm) light. As the temperature was lowered to 260 K, the state Pr became progressively favored; the reaction Pr → Pg induced by red light was attenuated but the reaction Pg → Pr induced by green light was not. Decreasing the temperature from 260 K to 200 K had no further effect. Two distinct and simple models can account for this curious temperature dependence. By analyzing the kinetic and steady-state data, with reasonable estimates of the molar extinction coefficients of Pr and Pg, we computed quantum efficiencies greater than 15% for the photoconversion at 300 K. We deduced that a conversion of “all Pr” to “all Pg” should produce a fractional absorbance change ΔA/A at 620 nm equal to 0.1. If the chromatic adaptation response of intact F. diplosiphon shows the unusual temperature dependence reported here, the system Pr ⇌ Pg will be implicated in mediating this response. PMID:16592721
NASA Astrophysics Data System (ADS)
Chan, T. W.; Brook, J. R.; Smallwood, G. J.; Lu, G.
2010-08-01
In this study a photoacoustic spectrometer (PA), a laser-induced incandescence instrument system (LII) and an aerosol mass spectrometer were operated in parallel for in situ measurements of black carbon (BC) light absorption enhancement. Results of a thermodenuder experiment using ambient particles in Toronto are presented first to show that LII measurements of BC are not influenced by particle coating while the PA response is enhanced and also that the nature of this enhancement is influenced by particle morphology. Comparisons of ambient PA and LII measurements at four different locations (suburban Toronto; a street canyon with heavy diesel bus traffic in Ottawa; adjacent to a commuter highway in Ottawa and; regional background air in and around Windsor, Ontario), show that the different meteorological conditions and atmospheric processes result in different particle light absorption enhancement and hence the specific attenuation coefficient (SAC). Depending upon location of measurement and the BC spherule diameter (primary particle size - PPS) measurement from the LII, the SAC varies from 2.6±0.04 to 22.5±0.7 m2 g-1. Observations from this study also show the active surface area of the BC aggregate, inferred from PPS, is an important parameter for inferring the degree of particle collapse of a BC particle. The predictability of the overall BC light absorption enhancement in the atmosphere depends not only on the coating mass but also on the source of the BC and on our ability to predict or measure the change in particle morphology as particles evolve.
Downhole microseismic signal-to-noise ratio enhancement via strip matching shearlet transform
NASA Astrophysics Data System (ADS)
Li, Juan; Ji, Shuo; Li, Yue; Qian, Zhihong; Lu, Weili
2018-04-01
Shearlet transform has been proved effective in noise attenuation. However, because of the low magnitude and high frequency of downhole microseismic signals, the coefficient values of valid signals and noise are similar in the shearlet domain. As a result, it is hard to suppress the noise. In this paper, we present a novel signal-to-noise ratio enhancement scheme called strip matching shearlet transform. The method takes into account the directivity of microseismic events and shearlets. Through strip matching, the matching degree in direction between them has been promoted. Then the coefficient values of valid signals are much larger than those of the noise. Consequently, we can separate them well with the help of thresholding. The experimental results on both synthetic records and field data illustrate that our proposed method preserves the useful components and attenuates the noise well.
NASA Astrophysics Data System (ADS)
Obaid, Shamsan S.; Sayyed, M. I.; Gaikwad, D. K.; Pawar, Pravina. P.
2018-07-01
In the present work, the mass attenuation coefficient μ/ρ is investigated experimentally and theoretically for seven rocks (olivine basalt, green marble, jet black granite, telphone black granite, cuddapah limestone, white marble and pink marble). The rock samples were collected from different places of India. The mass attenuation coefficients of the samples were measured experimentally at photon energies of radioisotopes Co57 (122 keV), Ba133 (356 keV), 22Na (511 and 1275 keV), Cs137 (662 keV), Mn54 (840 keV), and Co60 (1330 keV). Theoretically, the simulation results of μ/ρ using both XCOM and MCNP5 codes were compared with experimental results and a satisfactory agreement was observed. Total atomic cross sections (σt,a) electronic cross sections (σt,e), effective atomic number (Zeff), electron density (Ne) and half value layer (HVL) were evaluated using the obtained μ/ρ values for investigated rocks. The HVL values for the selected rocks were compared with some common shielding concretes. Moreover, by Geometric Progression method (G-P) exposure buildup factor (EBF) and energy absorption buildup factor (EABF) values were calculated for incident photon energy 0.015-15 MeV up to penetration depths of 40 mean free paths. The results show that among the studied rocks pink marble possesses superior shielding properties for γ-ray. This work was carried out to explore the advantage of utilizing the selected rocks in engineering structures and building construction to shield gamma-rays.
NASA Astrophysics Data System (ADS)
Büyükyıldız, Mehmet
2017-04-01
Radiation interaction parameters such as total stopping power, projected range (longitudinal and lateral) straggling, mass attenuation coefficient, effective atomic number (Zeff) and electron density (Neff) of some shielding materials were investigated for photon and heavy charged particle interactions. The ranges, stragglings and mass attenuation coefficients were calculated for the high-density polyethylene(HDPE), borated polyethylene (BPE), brick (common silica), concrete (regular), wood, water, stainless steel (304), aluminum (alloy 6061-O), lead and bismuth using SRIM Monte Carlo software and WinXCom program. In addition, effective atomic numbers (Zeff) and electron densities (Neff) of HDPE, BPE, brick (common silica), concrete (regular), wood, water, stainless steel (304) and aluminum (alloy 6061-O) were calculated in the energy region 10 keV-100 MeV using mass stopping powers and mass attenuation coefficients. Two different methods namely direct and interpolation procedures were used to calculate Zeff for comparison and significant differences were determined between the methods. Variations of the ranges, longitudinal and lateral stragglings of water, concrete and stainless steel (304) were compared with each other in the continuous kinetic energy region and discussed with respect to their Zeffs. Moreover, energy absorption buildup factors (EABF) and exposure buildup factors (EBF) of the materials were determined for gamma rays as well and were compared with each other for different photon energies and different mfps in the photon energy region 0.015-15 MeV.
Phosphate-based glasses: Prediction of acoustical properties
NASA Astrophysics Data System (ADS)
El-Moneim, Amin Abd
2016-04-01
In this work, a comprehensive study has been carried out to predict the composition dependence of bulk modulus and ultrasonic attenuation coefficient in the phosphate-based glass systems PbO-P2O5, Li2O-TeO2-B2O3-P2O5, TiO2-Na2O-CaO-P2O5 and Cr2O3-doped Na2O-ZnO-P2O5 at room temperature. The prediction is based on (i) Makishima-Mackenzie theory, which correlates the bulk modulus with packing density and dissociation energy per unit volume, and (ii) Our recently presented semi-empirical formulas, which correlate the ultrasonic attenuation coefficient with the oxygen density, mean atomic ring size, first-order stretching force constant and experimental bulk modulus. Results revealed that our recently presented semi-empirical formulas can be applied successfully to predict changes of ultrasonic attenuation coefficient in binary PbO-P2O5 glasses at 10 MHz frequency and in quaternary Li2O-TeO2-B2O3-P2O5, TiO2-Na2O-CaO-P2O5 and Cr2O3-Na2O-ZnO-P2O5 glasses at 5 MHz frequency. Also, Makishima-Mackenzie theory appears to be valid for the studied glasses if the effect of the basic structural units that present in the glass network is taken into account.
Very Fast Current Diagnostic for Linear Pulsed Beams
NASA Astrophysics Data System (ADS)
Nassisi, Vincenzo; Delle Side, Domenico; Turco, Vito
2018-01-01
Fast current pulses manage lasers and particle accelerators and require sophisticate systems to be detected. At today Rogowski coils are well known. They are designed and built with a toroidal structure. In recently application, flat transmission lines are imploded and for this reason we develop a linear Rogowski coil to detect current pulses inside flat conductors. To get deep information from the system, it was approached by means of the theory of the transmission lines. The coil we build presents a resistance but it doesn't influence the rise time of the response, instead the integrating time. We also studied the influence of the magnetic properties of coil support. The new device was able to record pulses of more hundred nanoseconds depending on the inductance, load impedance and resistance of the coil. Furthermore, its response was characterized by a sub-nanosecond rise time ( 100 ps), The attenuation coefficient depends mainly on the turn number of the coil, while the quality of the response depends both on the manufacture quality of the coil and on the magnetic core characteristics. In biophysical applications often, a double line is employed in order to have a sample as control and a sample stressed by a light source. So, in this case we build two equal plane lines by 100 Ω characteristic resistance connected in parallel. We diagnosed the current present in a line. The attenuation factor resulted to be 11,5 A/V.
Code of Federal Regulations, 2014 CFR
2014-07-01
... impairment. A deciview is a haze index derived from calculated light extinction, such that uniform changes in... (for the purposes of calculating deciview, the atmospheric light extinction coefficient must be... extinction coefficient, expressed in inverse megameters (Mm−1). Existing stationary facility means any of the...
Implications of NGA for NEHRP site coefficients
Borcherdt, Roger D.
2012-01-01
Three proposals are provided to update tables 11.4-1 and 11.4-2 of Minimum Design Loads for Buildings and Other Structures (7-10), by the American Society of Civil Engineers (2010) (ASCE/SEI 7-10), with site coefficients implied directly by NGA (Next Generation Attenuation) ground motion prediction equations (GMPEs). Proposals include a recommendation to use straight-line interpolation to infer site coefficients at intermediate values of ̅vs (average shear velocity). Site coefficients are recommended to ensure consistency with ASCE/SEI 7-10 MCER (Maximum Considered Earthquake) seismic-design maps and simplified site-specific design spectra procedures requiring site classes with associated tabulated site coefficients and a reference site class with unity site coefficients. Recommended site coefficients are confirmed by independent observations of average site amplification coefficients inferred with respect to an average ground condition consistent with that used for the MCER maps. The NGA coefficients recommended for consideration are implied directly by the NGA GMPEs and do not require introduction of additional models.
Electro-optic study of PZT ferroelectric ceramics using modulation of reflected light
NASA Astrophysics Data System (ADS)
Kniazkov, A. V.
2016-04-01
Electro-optic coefficients of variations in the refractive index of PZT and PLZT ceramic materials induced by ac electric field are estimated using modulation of reflected light. The electro-optic coefficients of PLZT ceramics measured with the aid of conventional birefringence using the phase shift of transmitted radiation and the proposed method of birefringence using the modulation of reflected light are compared.
Temperature dependence of damage coefficient in electron irradiated solar cells
NASA Technical Reports Server (NTRS)
Faith, T. J.
1973-01-01
Measurements of light-generated current vs cell temperature on electron-irradiated n/p silicon solar cells show the temperature coefficient of this current to increase with increasing fluence for both 10-ohm and 20-ohm cells. A relationship between minority-carrier diffusion length and light-generated current was derived by combining measurements of these two parameters: vs fluence at room temperature, and vs cell temperature in cells irradiated to a fluence of 1 x 10 to the 15th power e/sq cm. This relationship was used, together with the light-generated current data, to calculate the temperature dependence of the diffusion-length damage coefficient. The results show a strong decrease in the damage coefficient with increasing temperature in the range experienced by solar panels in synchronous earth orbit.
Investigation of light induced effect on density of states of Pb doped CdSe thin films
NASA Astrophysics Data System (ADS)
Kaur, Jagdish; Singh, Baljinder; Tripathi, S. K.
2016-05-01
Thin films of Pb doped CdSe are deposited on the glass substrates by thermal evaporation technique using inert gas condensation method. The prepared thin films are light soaked under vacuum of 2×10-3 mbar for two hour. The absorption coefficient in the sub-band gap region has been studied using Constant Photocurrent Method (CPM). The absorption coefficient in the sub-band gap region follows an exponential Urbach tail. The value of Urbach energy and number density of defect states have been calculated from the absorption coefficient in the sub-band gap region and found to increase after light soaking treatment. The energy distribution of the occupied density of states below Fermi level has been evaluated using derivative procedure of the absorption coefficient.
Underwater image enhancement based on the dark channel prior and attenuation compensation
NASA Astrophysics Data System (ADS)
Guo, Qingwen; Xue, Lulu; Tang, Ruichun; Guo, Lingrui
2017-10-01
Aimed at the two problems of underwater imaging, fog effect and color cast, an Improved Segmentation Dark Channel Prior (ISDCP) defogging method is proposed to solve the fog effects caused by physical properties of water. Due to mass refraction of light in the process of underwater imaging, fog effects would lead to image blurring. And color cast is closely related to different degree of attenuation while light with different wavelengths is traveling in water. The proposed method here integrates the ISDCP and quantitative histogram stretching techniques into the image enhancement procedure. Firstly, the threshold value is set during the refinement process of the transmission maps to identify the original mismatching, and to conduct the differentiated defogging process further. Secondly, a method of judging the propagating distance of light is adopted to get the attenuation degree of energy during the propagation underwater. Finally, the image histogram is stretched quantitatively in Red-Green-Blue channel respectively according to the degree of attenuation in each color channel. The proposed method ISDCP can reduce the computational complexity and improve the efficiency in terms of defogging effect to meet the real-time requirements. Qualitative and quantitative comparison for several different underwater scenes reveals that the proposed method can significantly improve the visibility compared with previous methods.
Crescenti, Remo A; Bamber, Jeffrey C; Partridge, Mike; Bush, Nigel L; Webb, Steve
2007-11-21
Research on polymer-gel dosimetry has been driven by the need for three-dimensional dosimetry, and because alternative dosimeters are unsatisfactory or too slow for that task. Magnetic resonance tomography is currently the most well-developed technique for determining radiation-induced changes in polymer structure, but quick low-cost alternatives remain of significant interest. In previous work, ultrasound attenuation and speed of sound were found to change as a function of absorbed radiation dose in polymer-gel dosimeters, although the investigations were restricted to one ultrasound frequency. Here, the ultrasound attenuation coefficient mu in one polymer gel (MAGIC) was investigated as a function of radiation dose D and as a function of ultrasonic frequency f in a frequency range relevant for imaging dose distributions. The nonlinearity of the frequency dependence was characterized, fitting a power-law model mu = af(b); the fitting parameters were examined for potential use as additional dose readout parameters. In the observed relationship between the attenuation coefficient and dose, the slopes in a quasi-linear dose range from 0 to 30 Gy were found to vary with the gel batch but lie between 0.0222 and 0.0348 dB cm(-1) Gy(-1) at 2.3 MHz, between 0.0447 and 0.0608 dB cm(-1) Gy(-1) at 4.1 MHz and between 0.0663 and 0.0880 dB cm(-1) Gy(-1) at 6.0 MHz. The mean standard deviation of the slope for all samples and frequencies was 15.8%. The slope was greater at higher frequencies, but so were the intra-batch fluctuations and intra-sample standard deviations. Further investigations are required to overcome the observed variability, which was largely associated with the sample preparation technique, before it can be determined whether any frequency is superior to others in terms of accuracy and precision in dose determination. Nevertheless, lower frequencies will allow measurements through larger samples. The fit parameter a of the frequency dependence, describing the attenuation coefficient at 1 MHz, was found to be dose dependent, which is consistent with our expectations, as polymerization is known to be associated with increased absorption of ultrasound. No significant dose dependence was found for the fit parameter b, which describes the nonlinearity with frequency. This is consistent with the increased absorption being due to the introduction of new relaxation processes with characteristic frequencies similar to those of existing processes. The data presented here will help with optimizing the design of future 3D dose-imaging systems using ultrasound methods.
NASA Astrophysics Data System (ADS)
Han, Tingting; Xu, Weiqi; Li, Jie; Freedman, Andrew; Zhao, Jian; Wang, Qingqing; Chen, Chen; Zhang, Yingjie; Wang, Zifa; Fu, Pingqing; Liu, Xingang; Sun, Yele
2017-02-01
Aerosol optical properties were measured in Beijing in summer and winter using a state-of-the-art cavity attenuated phase shift single scattering albedo monitor (CAPS PMssa) along with aerosol composition measurements by aerosol mass spectrometers and aethalometers. The SSA directly measured by the CAPS PMssa showed overall agreements with those derived from colocated measurements. However, substantial differences were observed during periods with low SSA values in both summer and winter, suggesting that interpretation of low SSA values needs to be cautious. The average (±σ) extinction coefficient (bext) and absorption coefficient (bap) were 336 (±343) Mm-1 and 44 (±41) Mm-1, respectively, during wintertime, which were approximately twice those observed in summer, while the average SSA was relatively similar, 0.86 (±0.06) and 0.85 (±0.04) in summer and winter, respectively. Further analysis showed that the variations in SSA can be approximately parameterized as a function of mass fraction of secondary particulate matter (fSPM), which is SSA = 0.74 + 0.19 × fSPM (fSPM > 0.3, r2 = 0.85). The contributions of aerosol species to extinction coefficients during the two seasons were also estimated. Our results showed that the light extinction was dominantly contributed by ammonium sulfate (30%) and secondary organic aerosol (22%) in summer, while organic aerosol was the largest contributor (51%) in winter. Consistently, SPM played the major role in visibility degradation in both seasons by contributing 70% of the total extinction.
NASA Technical Reports Server (NTRS)
Mckinna, Lachlan I. W.; Werdell, P. Jeremy; Fearns, Peter R. C.; Weeks, Scarla J.; Reichstetter, Martina; Franz, Bryan A.; Shea, Donald M.; Feldman, Gene C.
2015-01-01
A semianalytical ocean color inversion algorithm was developed for improving retrievals of inherent optical properties (IOPs) in optically shallow waters. In clear, geometrically shallow waters, light reflected off the seafloor can contribute to the water-leaving radiance signal. This can have a confounding effect on ocean color algorithms developed for optically deep waters, leading to an overestimation of IOPs. The algorithm described here, the Shallow Water Inversion Model (SWIM), uses pre-existing knowledge of bathymetry and benthic substrate brightness to account for optically shallow effects. SWIM was incorporated into the NASA Ocean Biology Processing Group's L2GEN code and tested in waters of the Great Barrier Reef, Australia, using the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua time series (2002-2013). SWIM-derived values of the total non-water absorption coefficient at 443 nm, at(443), the particulate backscattering coefficient at 443 nm, bbp(443), and the diffuse attenuation coefficient at 488 nm, Kd(488), were compared with values derived using the Generalized Inherent Optical Properties algorithm (GIOP) and the Quasi-Analytical Algorithm (QAA). The results indicated that in clear, optically shallow waters SWIM-derived values of at(443), bbp(443), and Kd(443) were realistically lower than values derived using GIOP and QAA, in agreement with radiative transfer modeling. This signified that the benthic reflectance correction was performing as expected. However, in more optically complex waters, SWIM had difficulty converging to a solution, a likely consequence of internal IOP parameterizations. Whilst a comprehensive study of the SWIM algorithm's behavior was conducted, further work is needed to validate the algorithm using in situ data.
Depth of colonization (Zc) is a useful seagrass growth metric that describes seagrass response to light attenuation. Similarly, percent surface irradiance (% SI) at Zc is a measure of seagrass light requirements with applications in seagrass ecology and management. Methods for ...
Mohamad Asri, Muhammad Naeim; Mat Desa, Wan Nur Syuhaila; Ismail, Dzulkiflee
2018-01-01
The potential combination of two nondestructive techniques, that is, Raman spectroscopy (RS) and attenuated total reflectance-fourier transform infrared (ATR-FTIR) spectroscopy with Pearson's product moment correlation (PPMC) coefficient (r) and principal component analysis (PCA) to determine the actual source of red gel pen ink used to write a simulated threatening note, was examined. Eighteen (18) red gel pens purchased from Japan and Malaysia from November to December 2014 where one of the pens was used to write a simulated threatening note were analyzed using RS and ATR-FTIR spectroscopy, respectively. The spectra of all the red gel pen inks including the ink deposited on the simulated threatening note gathered from the RS and ATR-FTIR analyses were subjected to PPMC coefficient (r) calculation and principal component analysis (PCA). The coefficients r = 0.9985 and r = 0.9912 for pairwise combination of RS and ATR-FTIR spectra respectively and similarities in terms of PC1 and PC2 scores of one of the inks to the ink deposited on the simulated threatening note substantiated the feasibility of combining RS and ATR-FTIR spectroscopy with PPMC coefficient (r) and PCA for successful source determination of red gel pen inks. The development of pigment spectral library had allowed the ink deposited on the threatening note to be identified as XSL Poppy Red (CI Pigment Red 112). © 2017 American Academy of Forensic Sciences.
Kiss, John Z; Millar, Katherine D L; Edelmann, Richard E
2012-08-01
While there is a great deal of knowledge regarding plant growth and development in microgravity aboard orbiting spacecraft, there is little information available about these parameters in reduced or fractional gravity conditions (less than the nominal 1g on Earth). Thus, in these experiments using the European Modular Cultivation System on the International Space Station, we studied the interaction between phototropism and gravitropism in the WT and mutants of phytochrome A and B of Arabidopis thaliana. Fractional gravity and the 1 g control were provided by centrifuges in the spaceflight hardware, and unidirectional red and blue illumination followed a white light growth period in the time line of the space experiments. The existence of red-light-based positive phototropism in hypocotyls of seedlings that is mediated by phytochrome was confirmed in these microgravity experiments. Fractional gravity studies showed an attenuation of red-light-based phototropism in both roots and hypocotyls of seedlings occurring due to gravitational accelerations ranging from 0.l to 0.3 g. In contrast, blue-light negative phototropism in roots, which was enhanced in microgravity compared with the 1g control, showed a significant attenuation at 0.3 g. In addition, our studies suggest that the well-known red-light enhancement of blue-light-induced phototropism in hypocotyls is likely due to an indirect effect by the attenuation of gravitropism. However, red-light enhancement of root blue-light-based phototropism may occur via a more direct effect on the phototropism system itself, most likely through the phytochrome photoreceptors. To our knowledge, these experiments represent the first to examine the behavior of flowering plants in fractional or reduced gravity conditions.
NASA Astrophysics Data System (ADS)
Kim, G. E.; Pradal, M.-A.; Gnanadesikan, A.
2015-03-01
Light limitation can affect the distribution of biota and nutrients in the ocean. Light absorption by colored detrital material (CDM) was included in a fully coupled Earth System Model using a new parameterization for shortwave attenuation. Two model runs were conducted, with and without light attenuation by CDM. In a global average sense, greater light limitation associated with CDM increased surface chlorophyll, biomass and nutrients together. These changes can be attributed to the movement of biological productivity higher up the water column, which increased surface chlorophyll and biomass while simultaneously decreasing total biomass. Meanwhile, the reduction in biomass resulted in greater nutrient availability throughout the water column. Similar results were found on a regional scale in an analysis of the oceans by biome. In coastal regions, surface chlorophyll increased by 35% while total integrated phytoplankton biomass diminished by 18%. The largest relative increases in modeled surface chlorophyll and biomass in the open ocean were found in the equatorial biomes, while largest decreases in depth-integrated biomass and chlorophyll were found in the subpolar and polar biomes. This mismatch of surface and subsurface trends and their regional dependence was analyzed by comparing the competing factors of diminished light availability and increased nutrient availability on phytoplankton growth in the upper 200 m. Overall, increases in surface biomass were expected to accompany greater nutrient uptake and therefore diminish surface nutrients, but changes in light limitation decoupled trends between these two variables. Understanding changes in biological productivity requires both surface and depth-resolved information. Surface trends may be minimal or of the opposite sign to depth-integrated amounts, depending on the vertical structure of phytoplankton abundance.
Zanethia D. Choice; Thomas K. Frazer; Charles A. Jacoby
2014-01-01
Seagrasses around the world are threatened by human activities that degrade water quality and reduce light availability. In this study, light requirements were determined for four common and abundant seagrasses along the Gulf coast of peninsular Florida using a threshold detecting algorithm. Light requirements ranged from 8% to 10% of surface irradiance for Halophila...
2010-01-01
throughout the entire 3D volume which made quantification of the different tissues in the breast possible. The p eaks representing glandular and fat in...coefficients. Keywords: tissue quantification , absolute attenuation coefficient, scatter correction, computed tomography, tomography... tissue types. 1-4 Accurate measurements of t he quantification and di fferentiation of numerous t issues can be useful to identify di sease from
Millimeter Wave Scatter and Attenuation Measurements on Snow Slabs.
1981-09-01
2id cos0• II. Rlay, P.S. (1972) Broadband complex refractive indices of ice and water, Appl. Optics ,Il(No. 8):1836-1844. 12. Lammers, U.H.W., and Hayes...portion was not investi- gated separately for its attenuation coefficient. The theory of multiple scattering in optics ’- provides ai reasoning for l...at 35 GHz to cause a strong specular response, equal to or higher than the noncoherent response. No substantial snow depth is required to generate
Idris A, Elbakri; Fessler, Jeffrey A
2003-08-07
This paper describes a statistical image reconstruction method for x-ray CT that is based on a physical model that accounts for the polyenergetic x-ray source spectrum and the measurement nonlinearities caused by energy-dependent attenuation. Unlike our earlier work, the proposed algorithm does not require pre-segmentation of the object into the various tissue classes (e.g., bone and soft tissue) and allows mixed pixels. The attenuation coefficient of each voxel is modelled as the product of its unknown density and a weighted sum of energy-dependent mass attenuation coefficients. We formulate a penalized-likelihood function for this polyenergetic model and develop an iterative algorithm for estimating the unknown density of each voxel. Applying this method to simulated x-ray CT measurements of objects containing both bone and soft tissue yields images with significantly reduced beam hardening artefacts relative to conventional beam hardening correction methods. We also apply the method to real data acquired from a phantom containing various concentrations of potassium phosphate solution. The algorithm reconstructs an image with accurate density values for the different concentrations, demonstrating its potential for quantitative CT applications.
Differential pencil beam dose computation model for photons.
Mohan, R; Chui, C; Lidofsky, L
1986-01-01
Differential pencil beam (DPB) is defined as the dose distribution relative to the position of the first collision, per unit collision density, for a monoenergetic pencil beam of photons in an infinite homogeneous medium of unit density. We have generated DPB dose distribution tables for a number of photon energies in water using the Monte Carlo method. The three-dimensional (3D) nature of the transport of photons and electrons is automatically incorporated in DPB dose distributions. Dose is computed by evaluating 3D integrals of DPB dose. The DPB dose computation model has been applied to calculate dose distributions for 60Co and accelerator beams. Calculations for the latter are performed using energy spectra generated with the Monte Carlo program. To predict dose distributions near the beam boundaries defined by the collimation system as well as blocks, we utilize the angular distribution of incident photons. Inhomogeneities are taken into account by attenuating the primary photon fluence exponentially utilizing the average total linear attenuation coefficient of intervening tissue, by multiplying photon fluence by the linear attenuation coefficient to yield the number of collisions in the scattering volume, and by scaling the path between the scattering volume element and the computation point by an effective density.
Injury potentials of light-aircraft instrument panels.
DOT National Transportation Integrated Search
1966-04-01
Results of head-impact tests against typical light-aircraft instrument panels to determine their g time-force parameters during deformation of structure are presented for three different velocities of impact. Evaluations of the energy attenuator rece...
Mehranian, Abolfazl; Arabi, Hossein; Zaidi, Habib
2016-04-15
In quantitative PET/MR imaging, attenuation correction (AC) of PET data is markedly challenged by the need of deriving accurate attenuation maps from MR images. A number of strategies have been developed for MRI-guided attenuation correction with different degrees of success. In this work, we compare the quantitative performance of three generic AC methods, including standard 3-class MR segmentation-based, advanced atlas-registration-based and emission-based approaches in the context of brain time-of-flight (TOF) PET/MRI. Fourteen patients referred for diagnostic MRI and (18)F-FDG PET/CT brain scans were included in this comparative study. For each study, PET images were reconstructed using four different attenuation maps derived from CT-based AC (CTAC) serving as reference, standard 3-class MR-segmentation, atlas-registration and emission-based AC methods. To generate 3-class attenuation maps, T1-weighted MRI images were segmented into background air, fat and soft-tissue classes followed by assignment of constant linear attenuation coefficients of 0, 0.0864 and 0.0975 cm(-1) to each class, respectively. A robust atlas-registration based AC method was developed for pseudo-CT generation using local weighted fusion of atlases based on their morphological similarity to target MR images. Our recently proposed MRI-guided maximum likelihood reconstruction of activity and attenuation (MLAA) algorithm was employed to estimate the attenuation map from TOF emission data. The performance of the different AC algorithms in terms of prediction of bones and quantification of PET tracer uptake was objectively evaluated with respect to reference CTAC maps and CTAC-PET images. Qualitative evaluation showed that the MLAA-AC method could sparsely estimate bones and accurately differentiate them from air cavities. It was found that the atlas-AC method can accurately predict bones with variable errors in defining air cavities. Quantitative assessment of bone extraction accuracy based on Dice similarity coefficient (DSC) showed that MLAA-AC and atlas-AC resulted in DSC mean values of 0.79 and 0.92, respectively, in all patients. The MLAA-AC and atlas-AC methods predicted mean linear attenuation coefficients of 0.107 and 0.134 cm(-1), respectively, for the skull compared to reference CTAC mean value of 0.138cm(-1). The evaluation of the relative change in tracer uptake within 32 distinct regions of the brain with respect to CTAC PET images showed that the 3-class MRAC, MLAA-AC and atlas-AC methods resulted in quantification errors of -16.2 ± 3.6%, -13.3 ± 3.3% and 1.0 ± 3.4%, respectively. Linear regression and Bland-Altman concordance plots showed that both 3-class MRAC and MLAA-AC methods result in a significant systematic bias in PET tracer uptake, while the atlas-AC method results in a negligible bias. The standard 3-class MRAC method significantly underestimated cerebral PET tracer uptake. While current state-of-the-art MLAA-AC methods look promising, they were unable to noticeably reduce quantification errors in the context of brain imaging. Conversely, the proposed atlas-AC method provided the most accurate attenuation maps, and thus the lowest quantification bias. Copyright © 2016 Elsevier Inc. All rights reserved.